Ezxperiments & Analyses Paper

O

proceedings

Evaluating the Impact of Error-Bounded Lossy Compression on
Time Series Forecasting

Carlos Enrique Muniz-Cuza
Aalborg University
cemc@cs.aau.dk

Nguyen Ho
Loyola University Maryland
tnho@loyola.edu

ABSTRACT

Time series data is widely used for decision-making and advanced
analytics such as forecasting. However, the vast data volumes
make storage challenging. Using lossy compression can save
more space compared to lossless methods, but it can affect the
forecasting accuracy. Understanding the impact of lossy compres-
sion on forecasting accuracy is a multifaceted challenge, necessi-
tating experimental evaluation across various forecasting models,
compression methods, and time series. This paper conducts such
experimental evaluation by combining seven forecasting models,
three lossy compression algorithms, and six datasets. By sim-
ulating a real-life scenario where forecasting models use lossy
compressed data for prediction, we address three main research
questions related to compression error and its effects on the time
series characteristics and the forecasting models.

The results show that the Poor Man’s Compression and Swing
Filter lossy compression algorithms add less error than the Squeeze
method as the error bound increases. Poor Man’s Compression
provides the best balance between compression ratio and fore-
casting accuracy. Specifically, we obtained an average compres-
sion ratio of 13.65, 5.56, and 14.97 for PMC, SWING, and SZ
with an average impact on forecasting accuracy of 5.56%, 3.3%,
and 8.5%, respectively. An analysis of several time series charac-
teristics shows that the maximum Kullback-Leibler divergence
between consecutive windows in the time series is the best
indicator of the impact of lossy compression on forecasting
accuracy. Finally, our results indicate that simple models like
Arima, are more resilient to lossy compression than complex
deep learning models. The source code and data are available at
https:// github.com/cmcuza/EvallmpLSTS.

1 INTRODUCTION

High-frequency time series generated by reliable sensors are
rapidly transforming various industries such as manufacturing
and renewable energy generation. This data is particularly impor-
tant for optimizing the operation of industrial systems including
wind turbines. However, the huge amount of data points gen-
erated by each sensor makes its transfer and storage infeasible.
Lossless compression cannot solve the problem, e.g., for smart
meters, it only provides compression ratios (CRs) between 2x and
4x [45]. Lossy compression provides significantly higher CRs at
the expense of a small amount of error [11, 17, 33, 40]. However,
the broad application of lossy compression in industry is still

© 2024 Copyright held by the owner/author(s). Published in Proceedings of the
27th International Conference on Extending Database Technology (EDBT), 25th
March-28th March, 2024, ISBN 978-3-89318-095-0 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Series ISSN: 2367-2005

Seren Kejser Jensen
Aalborg University
skj@cs.aau.dk

650

Jonas Brusokas
Aalborg University
jonasb@cs.aau.dk

Torben Bach Pedersen
Aalborg University
tbp@cs.aau.dk

limited by a lack of understanding of how the decompression
error affects data analytics such as time series forecasting.

As an example, consider a wind turbine transferring data to the
cloud for analysis through a communication network. To reduce
the bandwidth required, the time series are lossy compressed
on the wind turbine [29, 53, 58]. Once the data is transferred to
the cloud, the operators use it to forecast different variables to
optimize energy production and make informed decisions about
predictive maintenance. However, applying lossy compression
can affect the accuracy of the forecasting models and thus cause
incorrect decisions. Thus, it is necessary to select the combina-
tion of lossy compression method and forecasting model that
provides the highest forecasting accuracy. However, this is a chal-
lenging task given the large number of possible combinations.
Moreover, lossy compression algorithms generally require a user-
defined error bound. This is hard to set apriori since its impact
on forecasting accuracy is not well understood. Other factors like
data characteristics and error distribution also impact forecasting
accuracy. To determine, understand, and predict this impact, an
experimental evaluation is necessary.

This paper conducts such an evaluation using seven well-
known time series forecasting models, three lossy compression
algorithms, and six time series datasets. We focus on pointwise
error-bounded lossy time series compression methods as they
possess the advantage of preserving the data’s structure and out-
liers thus providing users with fine-grained control over the loss
of information. Specifically, we evaluate the forecasting models:
Arima [5], Gradient Boosting [7, 13], NBeats [42], Informer [65],
DLinear [62], Transformer [18], and GRU [47]; the lossy compres-
sion algorithms Poor Man’s Compression (PMC) [33], Swing Fil-
ter [11], and Squeeze (SZ) [35]; the datasets ETTm1, ETTm2 [65],
Solar [61], Weather [66], ElecDem [15] and Wind (released as
part of this paper); and different error bounds as parameters of
the lossy compression methods. In addition, we analyze 42 time
series characteristics that deal with shifts in the series’ distribu-
tion, curvature, and stability, and conduct multiple correlation
and regression analyses, to answer the three research questions:

e RQ1: How does lossy compression affect time series?

e RQ2: How does lossy compression affect the accuracy of
time series forecasting?

o RQ3: How does lossy compression affect individual forecast-
ing models?

Experimental results show that it is possible to obtain high CRs
without significantly affecting forecasting accuracy. Specifically,
the lossy compression methods obtain an average CR of 13.65
for PMC, 5.56 for SWING, and 14.97 for SZ with an average im-
pact on forecasting accuracy of 5.5%, 3.5%, and 8.5%, respectively.

10.48786/edbt.2024.56

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2024.56

The maximum Kullback-Leibler divergence between consecu-
tive windows emerged as the most important characteristic for
predicting the impact of lossy compression on forecasting accu-
racy. Finally, our results suggest that models that heavily rely on
capturing short-term fluctuations, like Transformer, experience
a more significant drop in forecasting accuracy, while, models
that prioritize broader trends, like Arima, remain more resilient.
Throughout this paper, we make suggestions about which com-
pression algorithm to use based on their CR, decompression error,
and impact on forecasting accuracy.

In summary, we make the following contributions:

(1) We provide extensive experimental results of the impact
that three well-known lossy compression methods have
on seven forecasting models using six different datasets.

(2) We systematically analyze the relation between decom-
pression error, compression ratio, and forecasting accuracy
for multiple pointwise error bounds.

(3) We evaluate which time series characteristics are the best
predictors of the impact of lossy compression on fore-
casting accuracy. We also provide guidelines on how to
monitor the most important characteristics.

(4) We analyze the resilience of individual forecasting models
to lossy compression on each dataset and provide em-
pirical evidence regarding the time series characteristics
associated with that resilience.

The paper’s structure is the following. Section 2 introduces the
definitions used throughout the paper. Section 3 describes the
setup of our experimental evaluation. Section 4 analyses the
experimental results and describes our major findings. Section 5
provides future research directions. Section 6 describes related
work. Finally, Section 7 provides the conclusion and future work.

2 PRELIMINARIES

DEFINITION 1. A time series (ts) is a list of data points in-
dexed in time order, e.g., X = ((t1,01), ..., (tn, vn)). Each data point
(ti,v;), is a tuple consisting of a timestamp t; and the corresponding
value v;. The timestamp represents when the value was recorded.

DEFINITION 2. A ts X is a regular time series if the time
elapsed between consecutive data points is constant, i.e., tiy1 — tj =
Lji+1 — l’j,V 1<=ij<n.

DEFINITION 3. Given a regular time series X, a segment xs (i, j)
of X is the list of data points from timestamp t; totj, where i <= j.

DEFINITION 4. Let xg be a segment of a regular time series. The
pointwise error bound, also known as the Lo, norm, denoted as e,
is the maximum allowed difference between values in xs and their
corresponding decompressed values.

We say that € is relative if it represents the maximum relative
allowed error between the values in x; and the decompressed
values, i.e., 0; € [v; — vj€, v; +0i€],Y 0; € x5, where d; and v; are
the decompressed and original data point value at timestamp i, re-
spectively. From now on, we will refer to these lossy compressors
as pointwise error-bounded lossy compression (PEBLC).

DEFINITION 5. We define the transformation T of X, as a
mapping between the raw time series X and the decompressed time
series)A(, ie., X = T(X), where T maps every value of the time
series x; = (t;,v;) € X to its decompressed value x; = (t;,0;) € X.

DEFINITION 6. We define transformation error (T1E) as the
difference between the values of X and X. This difference can be
computed by any distance metric D, e.g., Root Mean Square Error.

651

The TE metric quantifies the error introduced by lossy com-
pression as measured by a distance metric (details in Section 3.5),
thus it only yields positive values.

DEFINITION 7. Given a list of k values of X, (x;_p., ..., xt), the
task of time series forecasting aims to predict the values of the
next h values denoted by (§t+1, ..., Ysn)- These values are inferred
by the forecasting model F such that:

1

DEFINITION 8. We define forecasting error (FE) as the differ-
ence between (Yri1, .. Yih) and (a1, - Upyn)- This difference
can be computed by any time series distance metric D.

Grats s oo g = F(Xp—fs s X2)

DEFINITION 9. We define transformation forecasting er-
ror (TFE) as the relative difference between the forecasting error
obtained with the original and transformed time series as input.

_ D(F(X),y) - D(F(X),y)

TFE= D(F(X).9) B

TFE can reflect whether transforming the data improves or
worsens forecasting accuracy. Specifically, a negative TFE means
the forecasting accuracy improved after compressing and decom-
pressing, and a positive value that it degraded.

3 EXPERIMENTAL SETUP
3.1 Datasets

To select the datasets, we consider two criteria: the sampling
interval and their use in highly cited time series forecasting pa-
pers, including the papers proposing the used forecasting models.
For the first criterion, we only consider datasets with a short
sampling interval, i.e., high-frequency data (HFD). Using HFD
means the lossy compression algorithms can achieve high CRs.
This is because in HFD consecutive data points tend to be very
similar and a large increase or decrease within a short time is not
common [25]. HFD is defined differently in different domains,
ranging from a daily to a second sampling interval. [21, 56]. In
this paper, we focus on a sampling interval of less than or equal
to 30 minutes considering the forecasting literature and the avail-
ability of the data [56, 65, 66].

The second criterion, i.e., the use of well-known datasets, en-
ables us to validate our baseline results and reuse the hyperpa-
rameter configuration of the forecasting models. Moreover, it
facilitates the reproducibility of the results, thus reducing the
chance that the forecasting models are incorrectly tuned for the
dataset. For these reasons, we use the following datasets:

e ETT [65]: It has two subsets ETTm1 and ETTm2. Each
contains 2 years of data from an electrical transformer with
a sampling interval of 15 minutes. The target variable is
the oil temperature of the transformer.
Solar [61]: It contains the power output collected from
137 photovoltaic (PV) plants sampled every 10 minutes.
The target variable is the power output of each PV.
Weather [66]: It contains 21 meteorological indicators for
a range of 1 year sampled every 10 minutes. The target
variable is the CO2 concentration of ambient air.
ElecDem [15]: It contains a time series representing the
half-hourly electricity demand of Victoria state in Aus-
tralia. The target variable is the electricity demand.
e Wind: contains the active power output of a wind turbine
sampled every 2 seconds for 10 days. The data contains 9
other variables including the rotor and wind speeds. We

Table 1: Details and statistics of datasets.

Dataset LEN FREQ MEAN MIN MAX QI Q3 rlQD
ETTm1 69,680 15min 13.32 -4 46 7 18 82%
ETTm2 69,680 15min 26.60 -3 58 16 36 75%
Solar 52,560 10min 6.35 0.0 34 0.0 12 200%
Weather 52,704 10min 427.66 305 524 415 437 5%
ElecDem 230,736 30min 6,740 3,498 12,865 5,751 7,658 28%
Wind 432,000 2sec 363.69 -68 2030 108 550 121%

are releasing this data with the paper. The target variable

is the activate power of the wind turbine.
Table 1 lists their descriptive statistics. The relative InterQuartile
Difference rIQD = % % 100, reflects how spread out the
middle 50% of the data is relative to the mean of the time series.
This statistic will provide insights into the impact that lossy
compression has on the different datasets.

3.2 Error-Bounded Lossy Compression

We have chosen three well-known lossy compression algorithms
that have received a lot of coverage in the scientific literature
[27, 34, 53]. The three algorithms are PMC (specifically PMC-
Mean) [33], SWING [11], and SZ [35]. These algorithms guar-
antee a relative pointwise error bound that preserves the data’s
structure and outliers if they are outside the error bound. This
error bound provides users with fine-grained control over the
loss of information and it can be meaningfully applied across
datasets, e.g., € = 0.1 can be meaningfully applied to both the
Weather and Solar datasets. For other compression methods like
Discrete Cosine and Wavelet Transforms [1, 39], although widely
used, supporting a user-defined error bound is not straightfor-
ward. This yields a significant limitation in controlling the error
introduced during the compression process, a key requirement
of our industry collaborators. Moreover, PMC and SWING learn
constant and linear approximations which have been shown to
represent time series more efficiently than higher-level polynomi-
als [10]. Finally, SZ is one of the most popular lossy compression
algorithms with multiple improvements over the years and stable
releases. Descriptions of the original algorithms follow:

PMC: The algorithm adds data points to an adaptive window
updating the mean value in the window. At the same time, the
maximal absolute or relative (as in this paper) difference of the
points to the mean value is computed. If the difference exceeds
the error bound, the window without the latest point is turned
into a segment represented by its mean value.

SWING: The algorithm adds data points to an adaptive win-
dow updating a linear approximation of the data points in the
window. After adding a new point, the algorithm checks if the er-
ror between the actual data points and the linear approximation
remains within a predefined threshold. If the error exceeds the
error bound, the window is turned into a segment, and its values
are compressed by the line that minimizes the mean square error.

SZ: The algorithm first splits the dataset into multiple non-
overlapping equal-sized segments. For each segment, SZ eval-
uates different prediction models like classic Lorenzo, mean-
integrated Lorenzo, and linear regression, which estimate the
value of a new data point based on the values of its neighbors.
Based on the prediction results, SZ dynamically selects the best-
fit data predictor considering the data points within the segment.
After prediction, the algorithm quantizes the difference between
the actual data point and its predicted value. This quantization
process translates the differences into a smaller set of discrete

652

g — OR
€=0.05
— e=0.1

g — OR
€=0.05
; — e=01

10-23 10-24 10-23 10-24 10-25 10-23 10-24
P S S.

(a) ETTm1

{
LA
Lﬂj “ =~ “

e — X,]

— e=0.1

30.0 -
275 \/:;T“\ J
Y
— OR

N 4 A

7 |
=005 7|

— e=0.1

10-23

\N—/’

10-24 10-25 10-23 10-24 10-25 10-23 10-24
P! Swi sz

(b) ETTm2

Figure 1: PMC, SWING, and SZ compression output at differ-
ent error bounds compared to the original time series (OR).

symbols, which are easier to compress. Afterward, the quan-
tized values are compressed using Huffman encoding or some
other kind of entropy encoder, e.g., arithmetic coding. Finally, SZ
applies a general lossless compression, e.g., gzip.

Figure 1 shows an example of the output generated by PMC,
SWING, and SZ on a segment of ETTm1 and ETTm2. Note that,
the three methods generate very different outputs under the
same error bounds of 0.05 and 0.1. At first glance, SZ seems to
fit a constant line like PMC, however, this is due to the quantiza-
tion step. Most likely, quantization is also causing the noticeable
fluctuations in short time intervals of the decompressed data.

Implementations Used: We use ModelarDB’s [27, 28] im-
plementation of PMC and SWING, and Libpressio’s [55] Python
wrapper for SZ 2.1. Thus, all of the implementations used a piece-
wise relative error-bound. ModelarDB’s SWING computes the
slope and intercept coefficients as the mean of the upper and
lower bound of the linear approximation. In addition, SZ applies
gzip as the final lossless compression. To ensure the compression
methods can be directly compared we took two extra steps. First,
we compress the timestamps for all the methods by storing the
first timestamp as a 32-bit integer, the sampling interval as a
16-bit integer, and the length of the generated segments as a
16-bit integer. This extra step was needed as SZ cannot efficiently
compress the timestamps, while PMC and SWING need them
to reconstruct the time series. Second, we compress the PMC’s
and SWING’s compressed representations using gzip since SZ
applies gzip as the final step while the former two do not. Gzip
is also applied directly to the raw dataset.

During the evaluation, we compress the datasets using 13
different error bounds (EB) unevenly distributed from 0.01 to 0.8.
Concretely, EB = {0.01, 0.03, 0.05, 0.07, 0.1, 0.15, 0.2, 0.25, 0.3, 0.4,
0.5, 0.65, 0.8}. We explore more values when the error bound is
lower than 0.1, and as the error bound increases, we increase
the distance between the values to cover higher error bounds
while keeping the size of EB manageable. For each compression
method and error bound, we generate an output file containing
the compressed representation of the time series. Additionally,
we add a header with the sampling interval, initial timestamp, and
the number of data points in the segment to be able to decompress
the data. Thus, the size of the raw and compressed data is the
number of bytes in each of the generated .gz files.

3.3 Lossless Compression Baseline

Facebook’s Gorilla (GORILLA) [43] is a compression method used
as the default encoding for floating point measurements in many
time series databases (TSMSs) [26]. Thus, we use it as a baseline
to show the compression ratio that currently can be achieved
with lossless compression. In the original paper, the data points
are split into two hour blocks. However, for our datasets such
as ETTml1, with 15 minutes sampling intervals, this will mean
considering only 8 data points thus affecting the compression
ratio of the algorithm. Considering this, our implementation of
GORILLA compresses the whole time series as a single segment.
Each value is compressed by XORing with the previous value
followed by a variable-length binary encoding.

3.4 Forecasting Models & Hyperparameters

We have chosen seven prominent forecasting models ranging
from classical statistical models to deep learning.

e Arima [5]: is the Autoregressive Integrated Moving Aver-
age model with Fourier terms as exogenous variables to
model long seasonality.

Gradient Boosting (GBoost) [7, 13]: an ensemble of basic
predictors that, when combined, form a strong predictive
model by iteratively correcting the errors of prior models.
We use simple decision trees as the basic predictors.
GRU [47]: widely used for time series forecasting, it is an
encoder-decoder Gated Recurrent Neural Network.
NBeats [42]: a deep neural architecture based on back-
ward and forward residual links and a very deep stack of
fully connected layers.

Transformer [18]: an encoder-decoder architecture that
has as its core feature a multi-head attention mechanism
that learns intra-dependencies and inter-dependencies
within the input time series.

Informer [65]: an improvement over the Transformer
model with a probabilistic sparse self-attention mechanism
which achieves better time complexity and a generative
style decoder to acquire long sequence output with only
one forward step.

DLinear [62]: a shallow neural architecture that decom-
poses the time series into trend and remainder, and em-
ploys a feed-forward layer per each component.

To conduct the hyperparameter search, we first explore the
literature and reuse the deep learning model’s suggested hyperpa-
rameter. Moreover, we follow a standard hyperparameters search
strategy in case the model has not been tested on a dataset [14].
Specifically, we split the datasets into training/validation/testing
using 70%/10%/20% for each set. Then, using the validation sub-
set we conducted a grid search over the hyperparameters of the
models: the number of units, layers, blocks, heads, and stacks.
We search for values around the suggested hyperparameters to
guide and limit the search space. The dropout hyperparameter
was searched for all models within the values [0, 0.05, 0.1]. We
use a learning rate equal to 0.001 and a weight decay equal to
0.0001 as default parameters for the Adam optimizer [31]. During
training, we use an early-stop strategy on the validation subset
with patience 3. Moreover, we apply a standard scaler to the
input of the forecasting models and fix its size to 96 previous
timestamps following previous work [65]. We set the forecasting
horizon to 24 timestamps into the future. For Solar, the input
size of DLinear is set to 720 as suggested for multivariate time

653

series [62]. In the case of Arima, we use the Akaike Information
Criterion (AIC) [19] to select the best model.

3.5 Evaluation Metrics

Compression Ratio: The compression ratio is defined as the
ratio between the size of the raw dataset and the size of its com-
pressed representation as follows:

size_of_raw_data

size_of_compressed_data

®)

Thus, a higher CR means the compression reduced the size of the
data more. As mentioned before, the sizes of the raw dataset and
its compressed representation are the numbers of bytes in the
generated .gz files.

Transformation and Forecasting Error: To compute the
transformation and forecasting error, we use three metrics: Root
Mean Square Error (RMSE), Root Relative Squared Error (RSE),
and Normalized Root Mean Square Error (NRMSE). RMSE is
a classic metric used to compare time series. NRMSE and RSE
facilitate the comparison between datasets that have different
scales [3, 49]. Moreover, we use the correlation metric (R) to
measure the similarity between the raw and transformed time
series, and as an evaluation metric of the forecast accuracy.

NRMSE = %}E&y) (4) RMSE = Z:l(x‘T_y‘)z)
T =% (i - 9) SE:@
VEL G = HVEL AT

(yi - 9)?

(6) (7)
where Ry = max(x) —min(x), x is the raw time series, and x and
7 are the mean value of x and y which represents the predicted
or transformed time series. The metrics RMSE, NRMSE, and RSE
measure the distance between the two input time series, thus,
lower values indicate that the time series are more similar. R
interpretation is the opposite, the higher the value, the more
correlated the time series thus closer to each other.

3.6 Evaluation Scenario

We consider one evaluation scenario based on the wind turbine
example described in Section 1 to conduct our experiments. In the
example, the time series is compressed directly in the wind tur-
bine and transmitted to a central analysis system. Assuming there
exists a forecasting model already trained on previously collected
segments of the raw time series, it is desirable to understand the
impact of lossy compression on forecasting accuracy. Alternative
scenarios include retraining the model using the transformed
data. However, performing such an evaluation requires evalu-
ating different incremental machine-learning (ML) techniques
which fall outside the scope of this paper. Algorithm 1 shows the
procedure followed.

The evaluation starts by splitting the dataset into training,
validation, and testing, and training the forecasting model on
the training subset. We pre-computed the hyperparameters for
each combination of model and dataset according to Subsection
3.4 using the validation subset. In Algorithm 1, test.y and test.x
refers to the set of all output sequences of the raw test subset and
the set of all input of the transformed test subset, respectively.
T(test| C,) refers to transforming the testing data given the
lossy compression method C with error bound €. The function
calculateMetrics() returns the RMSE, RSE, and NRMSE evalu-
ation metrics. After transforming the testing subset, we obtain

Algorithm 1 Evaluation Procedure

Input: ModelID F;4, Dataset X
1: function EVALUATESCENARIO
2 results « []
train, val, test « split(X)
F « trainModel(F;4, train, val)
for C € [PMC, SWING, SZ] do
for ¢ € EBdo
test «— T(test| C, €) /*transform test*/
prAed « F.predict(test.x)
results.append(calculateMetrics(test.y, pred))
end for
11 end for
12: return results
13: end function

10:

the model’s prediction using as input the transformed data. The
metrics are collected by comparing the raw data on the testing
subset against the predictions of the model. To reduce the effect
of the random initialization of the forecasting models, we run
EvaluateScenario multiple times and report the mean values using
different random seeds. We run the deep neural network models
10 times and the rest of the models only 5 times as they are less
affected by random initialization.

Once the metrics are collected, we compare the results against
the results obtained when using the raw data without applying
any lossy compression, i.e., the baseline results. The baseline con-
sists of performing the prediction and collecting the evaluation
metrics using the raw testing subset test. For the baseline, we
also compute 10 or 5 different baseline instances using different
random seeds to reduce the effects of random initialization. Only
the mean is reported.

3.7 Baseline Results

Table 2 shows the baseline results for the evaluation scenario.
Overall, GRU’s accuracy is the worst, especially on ETTm2, Solar,
and ElecDem compared to the other models. The simpler models,
DLinear and Arima, obtain very good results overall and even
perform best in some datasets like ETTm1. In contrast, on Solar,
these models perform worse in comparison to the complex mod-
els since they are unable to learn the correlation between the
137 series. Finally, NBeats obtains the best results on Solar and
Wind while Informer and Transformer obtain the best results on
ETTm2 and Weather, respectively. We use the results presented
in Table 2 throughout the remainder of the paper to compute
the TFE. Specifically, given an evaluation metric, a dataset, and a
forecasting model, the respective entry in Table 2 constitutes the
D(F(X),y) factor in Eq. 2.

4 RESULTS ANALYSIS

4.1 Research Questions

In this section, we define our three main research questions
(RQs) and relevant related sub-questions that guided our analysis.
Firstly, as we are evaluating the impact of lossy compression on
time series forecasting, it is necessary to understand what the
impact of lossy compression on time series is. In this regard, the
three aspects that can be analyzed are the piecewise relative error
bound, TE, and CR.
RQ1: How does lossy compression affect time series?

654

Table 2: Evaluation scenario baseline results (best in bold).
Model Metric ETTml ETTm2 Solar Weather ElecDem Wind
R 0.95 0.97 0.82 0.87 0.78 0.98
Arima RSE 0.32 0.24 0.60 0.53 0.58 0.19
RMSE 0.12 0.15 0.51 0.46 0.5 0.16
NRMSE 0.054 0.045 0.164 0.08 0.081 0.036
R 0.93 0.95 0.90 0.87 0.95 0.98
Gboost RSE 0.39 0.34 0.45 0.50 0.34 0.17
RMSE 0.14 0.21 0.39 0.45 0.29 0.15
NRMSE 0.067 0.061 0.12 0.07 0.047 0.033
R 0.96 0.96 0.91 0.90 0.94 0.98
DLinear RSE 0.30 0.26 0.41 0.46 0.36 0.17
RMSE 0.10 0.16 0.35 0.41 0.31 0.15
NRMSE 0.051 0.049 0.095 0.07 0.051 0.033
R 0.94 0.87 0.78 0.89 0.58 0.98
GRU RSE 0.38 0.5 0.79 0.46 0.96 0.17
RMSE 0.13 0.31 0.68 0.41 0.83 0.15
NRMSE 0.065 0.091 0.184 0.069 0.14 0.033
R 0.94 0.97 0.93 0.89 0.96 0.99
Informer RSE 0.39 0.24 0.39 0.48 0.29 0.17
RMSE 0.13 0.15 0.34 0.43 0.25 0.15
NRMSE 0.067 0.045 0.091 0.07 0.040 0.032
R 0.95 0.97 0.94 0.88 0.96 0.99
NBeats RSE 0.36 0.26 0.34 0.48 0.29 0.17
RMSE 0.12 0.16 0.30 0.43 0.25 0.14
NRMSE 0.062 0.048 0.080 0.074 0.041 0.032
R 0.95 0.97 0.93 0.82 0.96 0.99
Transformer RSE 0.37 0.27 0.38 0.57 0.30 0.17
RMSE 0.13 0.17 0.33 0.51 0.26 0.15
NRMSE 0.063 0.049 0.089 0.086 0.042 0.032

e RQ1.1: Which lossy compression method best preserves
the data quality as the error bound increases?

e RQ1.2: Which lossy compression method provides the
highest CR?

e RQ1.3: How are TE and CR related?

Secondly, and our main focus, is the impact of lossy compres-
sion on the accuracy of time series forecasting. Intuitively, as the
error bound increases, the accuracy should decrease. However,
determining how the accuracy decreases and which metrics can
best explain the negative impact is very important. We also an-
alyze the relationship between CR and TFE to determine how
lossy compression can best be used with forecasting.

RQ2: How does lossy compression affect the accuracy of time
series forecasting?

e RQ2.1: How much TE can be introduced before signifi-
cantly affecting the forecasting accuracy?

e RQ2.2: Which time series characteristics best explain the
impact of lossy compression on forecasting accuracy?

e RQ2.3: How high CR can be obtained without significantly
affecting the forecasting accuracy?

Finally, determining which forecasting model is most resilient
to lossy compression can help users select the best model to
combine with lossy compression.

RQ3: How does lossy compression affect the individual fore-
casting models?

e RQ3.1: Which factors influence the resilience of the fore-
casting models?

e RQ3.2: Which time series forecasting model is more re-
silient to the effect of lossy compression?

4.2 TE and CR Evaluation (RQ1)

Figure 2 shows the TE measured by NRMSE and the CR per lossy
compression method for the different error bounds and datasets.
Additionally, the figure shows GORILLA’s CR as a baseline with
1.49x, 2.08x, 3.09x%, 2.22x, 2.02x, and 1.73x for ETTm1, ETTm?2,
Solar, Weather, ElecDem, and Wind, respectively. Note, that the

w 35

2020 — PMC .30 — PMC

z — sz S5 — SZ
5015 —— SWING Sal SWING
e i GORILLA
S0.10 315

] I

Soos §'°

£o.00

0
00 01 02 03 04 05 06 0.7 08
error bound

00 0.1 02 03 04 05 06 0.7 0.8
error bound

(@) ETTm1TE (b) ETTm1 CR
o
5025 — PMC 50 — PMC
z — sz s | — sz
Z0.20 T 40
s —— SWING c SWING
0.15 230 e
c 2
S 3
5 0.10 520
E £
£0.05 ©10
2
£o0.00 0
0.0 0.1 02 03 04 05 06 07 08 00 01 02 03 04 05 06 07 0.8
error bound error bound
(c) ETTm2 TE (d) ETTm2 CR
w
g0,07 14
g 006 i 212
z — sz =
= 0.05 240
g —— SWING c
3 0.04 S g
c 2
$0.03 S 6
ﬁ o
£0.02 E 4
2 0.01 ° 2
2
£0.00 0
0.0 0.1 02 03 04 05 06 07 08 00 01 02 03 04 05 06 07 08
error bound error bound
(e) Solar TE (f) Solar CR
w
] 1000
52-5 — PMC
Zgo — SZ £ 800
Bi5 — SN S 600
] 8 400 i L
£10 s sz
£ £ i
505 g 200 —— SWING
-/ S R e S — 7 S E R R GORILLA
©00 0 L
00 01 02 03 04 05 06 07 08 0.0 0.1 02 03 04 05 06 07 0.8
error bound error bound
(g) Weather TE (h) Weather CR
% 4
204 — PMC 10
204 sz -%103
503 —— SWING =
& s —
% z= 1
So2 g 10 PMC
g 5 — sz
So1 §10 —— SWING
] of | | | || GORILLA
50.0 O e s -
00 01 02 03 04 05 06 0.7 08 00 01 02 03 04 05 06 07 08
error bound error bound
(i) ElecDem TE (j) ElecDem CR
w
205 80
H — PMC 70 —— PMC
— kel
‘260.4 — §€VING geop— o
503 5 50 SWING
5 ‘@40 -
-Eo.z %30
20
50.1 S
3 10
5 0.0 0
~ 00 01 02 03 04 05 06 07 08 00 01 02 03 04 05 06 07 08

error bound

(1) Wind CR

error bound
(k) Wind TE

Figure 2: TE and CR per dataset and lossy compression.

lossy compression methods provide much higher CRs than GO-
RILLA even at an error bound of 0.01, with the single exception
being SWING on Solar. An explanation for this is that during
nighttime, the values are always 0. Thus, GORILLA’s XOR and
variable-length encoding can efficiently compress those segments
using a single bit per value while SWING needs two coeflicients.

Analyzing the CR among the lossy compression methods, SZ
initially excels at lower error bounds due to its linear-scale quan-
tization and Huffman encoding. However, as the error bound
increases, PMC’s simpler single-coefficient model proves more
effective, surpassing both SZ and SWING in CR. For instance, for

655

@ — PMC 2 25000 — PMC
S 40000 _— g _—
£ 5z £ 20000 Sz
230000 — SWING 2 —— SWING
@ @ 15000
o o
5 20000 5 10000
Qo Qo
£ 10000 E 5000
z z
0

0
00 0.1 02 03 04 05 06 0.7 0.8
error bound

0.0 0.1 02 03 04 05 06 0.7 038
error bound

(a) ETTm1 (b) ETTm2
8000 —
220000 PMC 2 PMC
g sz £ 6000 &
%15000 — SWING P SWING
1%} 12}
2 5 4000
2 10000 :
2 € 2000
5 5000 2 .
00 04 02 03 04 05 06 07 08 00 01 02 03 04 05 0.6 0.7 0.8
error bound error bound
(c) Solar (d) Weather
200000
£ 200000 T PMC g 475000 — PMC
£ 150000 — :€VING £ 150000 b
§’ 2125000 —— SWING
(2]
5 100000 + 100000
g 5 75000
E 50000 € 50000
2 2 25000
0 0

0.0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8
error bound

0.0 0.1 0.2 0.3 04 0.5 06 0.7 0.8
error bound

(e) ElecDem (f) Wind

Figure 3: Number of segments per dataset.

ETTm1, PMC and SZ create 11889 and 20434 segments at an error
bound of 0.05, respectively. However, PMC only creates 899 seg-
ments at an error bound of 0.5, compared to SZ’s 3397 segments.
This trend is evident in Figure 3, which shows the segment counts
across the datasets, indicating PMC’s better effectiveness with
higher error bounds. On the other hand, despite the flexibility
of SWING with its two-coefficient model, as indicated by the
lower number of segments in Figure 3, it is less efficient in terms
of CR. The added storage overhead from its two coefficients be-
comes a disadvantage, especially after gzip compression. PMC’s
constant-value segments benefit more from gzip, resulting in a
higher CR compared to SWING’s slope-intercept pairs. These
findings show that simple lossy compression methods like PMC
can significantly increase their CR by incorporating lossless com-
pression like gzip, thus avoiding the need for more complex lossy
compression methods like SWING.

One anomaly that emerges is the exceptionally high CR ob-
served on Weather, where CR exceeds 200 at an error bound of
just 0.15, as depicted in Figure 2. This striking efficiency is primar-
ily due to the dataset’s characteristics, particularly, its small rIQD
of 5% as summarized in Table 1. Such a characteristic allows com-
pression to approximate the entire dataset with a small number
of segments under the pointwise relative error bound, as shown
in Figure 3. This contrasts sharply with the results observed on
the Solar dataset, where the CR barely surpasses 14 even with an
error bound of 0.8. In this case, rIQD is equal to 200%, indicating
that even with an error bound of 0.8, the compression method
cannot fit the entire series with only a few segments. These find-
ings show the importance of contextualizing the error bound
within the rIQD of the dataset to avoid misleadingly high CRs
that can compromise the data quality.

For all error bounds less than or equal to 0.1 the lossy compres-
sion methods all have a similar TE. PMC exhibits a remarkable
consistency as the error bound increases. Its strategy of only
fitting the mean value across the segments seems to avoid big

Table 3: Linear regression coefficients [6;,)], and standard
error (SE). CR as a function of TE.

PMC SWING Sz
PEBLC 6, 6 6, 6o 6, 6y
Coef 5117 -0.4 126.1 0.97 1044 6.7
ETTm1 SE 27.6 0.9 5.6 0.41 13.2 1.0
Coef 409.9 -0.1 205.1 -0.17 1282 10.1
ETTm2 SE 25.6 1.3 8.3 0.79 17.8 1.7
Solar Coef 367.5 3.0 91.5 1.6 288.6 5.8
SE 23.6 0.3 4.5 0.1 43.2 0.7
Weather Coef 74939 -203.3 9733 166.9 76.9 119.6
SE 806.8 98.3 238.6 93.1 40.9 31.1
ElecDem Coef 2.6e+4 -968.9 1.le+4 -620.9 369.6 343
SE 1.2e+4 9488 2941.1 3782 1132 209
Wind Coef 662.2 -3.0 150.7 3.0 71.9 9.3
SE 58.6 3.4 5.7 0.99 9.6 1.8

TE, as indicated by its sub-linear growth on all datasets as shown
in Figure 2. In contrast, SWING’s super-linear TE growth shown
in Figure 2 can be due to larger errors in particular segments—
especially in segments where the data does not follow a linear
trend—skewing the overall NRMSE higher. Similar intuition can
be applied to SZ which has more flexibility and can take full
advantage of the maximum allowed error bound.

4.2.1 Quantifying the TE and CR Relationship: To quantify the
expected increase of CR per unit of TE we use a linear regression
model of the form: CR = 01 TE + 0. The slope 0; represents the
increase in CR for each unit increase in TE. The intercept 6
indicates the expected CR when no compression is applied. Table
3 shows the coefficients and their standard error (SE). The results
can be classified into two clusters: one composed of ETTm1,
ETTm2, Solar, and Wind—less sensitive to compression—and
another cluster with Weather and ElecDem—highly sensitive to
compression. As previously analyzed for the CR on Weather, the
main reason for this is the rIQD. Specifically, the first 4 time
series have an rIQD between 75% and 200%, while the other two
datasets have an rIQD of 5% and 28%, see Table 1. This means that
for the first 4 datasets, most of the error bounds are below this
value. In summary, the results suggest that if the error bounds
are lower than the rIQD—the first cluster—users can expect an
increase in CR of [3.6x-6.6x], [0.9x-2.1x], and [0.7x-2.8x] for every
0.01 increase of TE for PMC, SWING, and SZ, respectively. These
results confirm that PMC generally offers the highest CR gains
as TE increases. However, as illustrated by the 6y coefficients, SZ
will generally obtain a higher CR for lower error bounds. The
low SEs obtained for the coefficients on ETTm1, ETTm2, Solar,
and Wind indicate a strong and reliable linear relationship. In
contrast, for the other two datasets (Weather and ElecDem), with
high SEs, the relation is unreliable, underscoring how the rIQD
can impact the compression.

Finally, we answer RQ1 through its sub-questions as follows:

RQ1.1: Which lossy compression method best preserves the data
quality as the error bound increases? Answer: For error bounds
less or equal to 0.1, all lossy compression methods perform simi-
larly in terms of TE. However, as the error bound increases, PMC
best preserves the data quality of the time series.

RQ1.2: Which lossy compression method provides the highest
CR? Answer: SZ provides the highest CR at low error bounds.
As the error bound increases, the CR provided by SZ increases
slower than PMC. SWING provides the lowest CR and in some
cases, even a lower CR than GORILLA.

656

RQ1.3: How are TE and CR related? Answer: Overall, TE and
CR have a positive linear correlation on datasets where the rIQD
is higher than the error bound specified by the users. In contrast,
on datasets with a low rIQD, the lossy compression methods can
achieve very high TE and CR at very low error bounds making
the relationship less predictable.

4.3 TFE Evaluation (RQ2)

To evaluate how lossy compression affects the forecasting accu-
racy, we first analyze the TE and TFE relation. Figure 4 shows
the results. The horizontal line shows the average TFE while
the vertical bars represent the 95% confidence intervals given by
the different forecasting models. The smaller the vertical bars,
the closer the results are across the different forecasting models.
We have focused the results in the area with TFE <= 0.5, i.e.,
50% of forecasting accuracy lost, to improve the visualization.
We exclude GRU on Solar and ElecDem due to its significantly
poorer baseline performance (Table 2) on these datasets, which
renders a noticeable deviation from the typical pattern seen for
the other forecasting models. Also, GRU remains largely immune
to the effects of compression and even improves the forecasting
accuracy as TE increases. This stark contrast from the trends on
other datasets and forecasting models can skew interpretations,
thus we exclude these results.

Overall, it is evident that minor TEs do not detrimentally in-
fluence forecasting accuracy. Interestingly, compression seems
to be advantageous in several instances, suggesting that it helps
eliminate noise or redundant information, thus enhancing the
model’s predictive performance. Specifically, for ETTm1, Solar,
Weather, and Wind, we observe an improvement of the fore-
casting accuracy of up to 2% as indicated by the negative TFE.
Moreover, every dataset shows a super-linear growth of TFE
as TE increases, meaning that TFE decreases faster as TE in-
creases. When evaluating the different compression methods, it
becomes evident that SWING and PMC generally have a lower
or equal TFE compared to SZ. This suggests that these two lossy
compression methods preserve crucial data characteristics more
effectively than SZ, thus leading to more consistent forecasting
results despite decompression errors.

4.3.1 Time Series Characteristics Analysis. The variance in re-
sults across datasets, as depicted in Figure 4, suggests that distinct
time series characteristics influence the compression methods.
To explore this, we analyze 42 characteristics extracted using the
R ts-feature package [23]. This analysis involves computing these
characteristics on decompressed data across all lossy compres-
sion and error bounds and then computing the difference from
the original data. To predict the TFE, we train a GBoost model
and determine the significance of each characteristic using SHAP
(SHapley Additive exPlanations) [36]. The model achieved an
R? = 0.9 indicating a good fit of the train data. SHAP ranks the
characteristics based on their contribution to the model’s pre-
dictions. Figure 5 shows the most influential characteristics and
their relationships with the predicted outcome based on SHAP
values. We complement this analysis with the top characteristics
based on the Spearman correlation to TFE in Table 4.

The SHAP analysis reveals that the most crucial characteris-
tics to forecasting accuracy post-compression are those related to
shifts in distribution (max_kl_shift, max_level_shift, max_var_shift,
mean), autocorrelation (seas_acfl, x_pacf5), stationarity (unit-
root_pp, unitroot_kpss), and seasonality (seas_strength). Notably,
the max_kl_shift characteristic, representing the Kullback-Leibler

— PMC 05 — pmC
0.5 sz — sz
I 04 —— swING
04 SWING
0.3
0.3 w
W =
Foz 0.2
0.1 0.1
0.0 0.0
000 001 002__003 004 005
000 002 004.006 008 010 e
(a) ETTm1 (b) ETTm2
0.35 MG 0.40
" — PMC
030 ——
Sz 0.35 sz
025 — SWING 030 — SWING
0.25
E0.20 oo
F0.15 e
F0.15
0.10 0.10
0.05 0.05
0.00 0.00
0.00 001 0.02__0.03 0.04 0.05
%03 000 002 0.04 006 008
(c) Solar excluding GRU (d) Weather
0.7 — pMC 05— pmc
06 — SZ os —
— SWING “ —— SwING
0.5
0.4 u.vo'3
£ E
0.3 0.2
0.2
0.1
0.1
0.0 00
0.00 0.01 O'OZTE0'03 0.04 0.05 0.00 0.02 0.04TE 0.06 0.08 0.10

(e) ElecDem excluding GRU (f) Wind

Figure 4: TE and TFE relation per dataset.

(KL) divergence across consecutive windows, stands out as the
predominant characteristic. The Spearman correlation values in
Table 4 support these results, with the KL divergence showing the
highest positive correlation of 0.74. The overlap observed in both
analyses, particularly for characteristics like max_kl_shift and
seas_strength, underscores their robust influence on TFE. Other
significant characteristics such as diff1_acf1 and diff2x_pacf5
from the Spearman analysis are likely related to seas_acf1 and
x_pacf5 from the SHAP analysis, as they all capture temporal
dependencies and cyclic patterns in the time series. Interestingly,
the stationarity characteristics (unitroot_pp and unitroot_kpss)
exhibit very low correlations to TFE, at 0.01 and 0.12 respectively,
thus they are not shown in Table 4. This discrepancy in their per-
ceived importance is due to SHAP’s capability to capture complex
interactions between characteristics that the correlation cannot.

By analyzing the SHAP values in the bee swarm plot in Fig-
ure 5 (left), one can determine that instances with higher KL
divergence correspond to higher predicted TFE, denoted by the
aggregation of red points on the positive side of the SHAP val-
ues. Conversely, instances featuring lower KL divergence cor-
relate with improved forecasting accuracy, as depicted by blue
points on the negative SHAP values. Similarly, higher shifts in
mean and variance across consecutive windows, as indicated by
max_level_shift and max_var_shift, are associated with higher
predicted TFE. Conversely, lower shifts in these characteristics
align with a reduction in TFE. This pattern suggests that when
compression mitigates the distributional shifts, it effectively acts
as a smoother, thereby preserving and potentially enhancing the
accuracy of subsequent forecasts, a phenomenon substantiated
by the trends observed in Figure 4. These results suggest that a
lossy compression method should minimize distributional shifts
of consecutive windows to retain forecasting accuracy.

657

High
max_kI_shift P e —]
max_level_shift - sl 0 |
seas_acf1 L . I
max_var_shift e 3 .
unitroot_pp O ——— o
mean —f——— - §]
unitroot_kpss B — <
seas_strength o |
x_pacf5 4
33 other features = ~=ffpmmmenmamem ooicee -
' ' Low
0.0 0.1 0.00 0.02 0.04
SHAP Value Importance

Figure 5: Top characteristics based on SHAP values.

Table 4: Top characteristics based on the correlation to TFE.

Characteristic ~ Correlation Characteristic ~ Correlation
max_kl_shift 0.74 var -0.40
seas_strength -0.58 e_acfl -0.38
flat_spots 0.57 beta -0.37
diff1_acf1 -0.55 mean -0.36
diff2x_pact5 0.46 crossing_points -0.34

In contrast, lower values of seas_acfI (seasonality autocorrela-
tion at lag 1), mean, x_pacf5 (partial autocorrelation at lag 5) and
seas_strength (seasonal strength) correspond to a decrease in fore-
casting accuracy, as seen by blue dots with positive SHAP. This
correlates with the negative correlation obtained for seas_strength
and mean in Table 4. The compact clustering of SHAP values
for seas_strength and x_pacf5 suggests these characteristics have
a stable impact on forecasting remaining consistent across the
dataset despite compression. Essentially, the steadiness of these
characteristics’ SHAP values signifies the resilience of seasonal
patterns and lagged correlations in the compressed data. Finally,
unitroot_pp and unitroot_kpss cannot be straightforwardly in-
terpreted as high values of these characteristics, indicative of
non-stationarity, are associated with either high or low TFE,
explaining the low correlation to TFE.

4.3.2 Inflection Point Analysis: One of the most interesting
observations from Figure 4 is the presence of a distinct inflec-
tion point where an increase in TE begins to have a pronounced
detrimental impact on forecasting accuracy. This characteristic
bend or "elbow" in the curve is evident across most datasets.
By extracting and analyzing the elbow points across different
compression methods, we can systematically evaluate how each
method impacts the forecasting accuracy relative to the decom-
pression error. If one compression method consistently shows
an elbow at a much higher TE than another, it suggests that this
method produces errors that can be tolerated better before signif-
icantly affecting the forecasting accuracy. Similarly, we extract
the error bounds, the CR, and the TFE at the elbow points to
provide a comprehensive view of the lossy compression methods
across all these performance metrics. This analysis is pivotal in
determining the most efficient compression method for balancing
error tolerance, forecasting accuracy, and CR, guiding users in
selecting the most appropriate method for their specific needs.
We use the Kneedle algorithm [48] to extract the elbow points in
an automated manner. Table 5 shows the median of the perfor-
mance metrics across forecasting models and the average (AVG)
across the datasets.

Overall, PMC is a well-rounded option, delivering good com-
pression and consistent results across datasets. Its slightly higher

Table 5: Elbows’ median error bound (EB), TE, TFE, and CR.

ETTm1 ETTm2 Solar Weather ElecDem Wind AVG

EB 0.2 0.1 0.3 0.02 0.07 0.15 0.14
TE 0.025 0.02 0.013 0.03 0.026 0.039 0.026
PMC
CR 107 7.7 8.0 25.8 10.1 19.6 13.65
TFE 0.023 0.105 0.005 0.017 0.13 0.051 0.055
EB 0.15 0.07 028 0.015 0.04 0.1 0.11
TE 0.024 0.016 0.022 0.031 0.016 0.033 0.023
SWING CR 3.5 4.8 3.5 10.1 4.5 7.0 5.56
TFE 0.003 0.057 0.045 0.023 0.05 0.02 0.033
EB 0.2 0.07 0.2 0.03 0.05 0.05 0.10
sz TE 0.031 0.015 0.008 0.067 0.02 0.018 0.026
CR 120 11.3 9.7 235 25.1 8.2 14.97
TFE 0.058 0.074 0.01 0.25 0.07 0.045 0.085

error bounds and TEs imply that PMC can deviate a bit more
from the original data than SWING and SZ before significantly
impacting forecasting accuracy. The TFEs at the detected elbows
are relatively low across most datasets, suggesting that, for the
amount of CR achieved (13.65x on average), the impact on fore-
cast accuracy is tolerable (0.055 TFE on average). Its highest TFE
is on ElecDem with 0.13, i.e., 13% of accuracy lost compared to
the baseline while achieving a CR 10.1x higher than compressing
with gzip. In summary, PMC offers a balanced approach, espe-
cially when there is a requirement for a moderate CR without a
significant loss in forecasting accuracy.

SWING’s results indicate that its compression can be the ideal
choice when maintaining forecasting accuracy is the primary
concern, even if it means compromising somewhat on compres-
sion. Across all datasets, SWING’s TFE is consistently less than
or equal to 0.05 (0.033 on average), and almost always lower
than the rest of the lossy compression methods. Only on Solar,
was SWING’s TFE the highest at 0.045, while the rest all have
less than or equal to 0.01. But even there its TE is the highest,
indicating that more error was introduced before affecting the
forecasting accuracy by that much.

Finally, while SZ is very efficient in terms of CR, achieving an
impressive average of 14.97, it is important to note that this often
comes at the cost of reduced forecasting accuracy as indicated by
the higher TFEs. This trade-off is particularly noticeable on the
Weather dataset with a TFE of 0.25 and a CR of 23.5. Users seeking
high CRs will find SZ suitable, but only if they can tolerate some
reduction in forecasting accuracy.

4.3.3 Time Series Characteristic Sensitivity. Building on our
earlier analysis, we now aim to understand what is producing
the elbow points analyzed. For this, knowing which character-
istics start getting affected at the inflection point will provide
more insights into why the forecasting accuracy starts degrading
rapidly past this point. We set a threshold of TFE < 0.1 as, in
our findings, most datasets’ elbows are below this mark. Table 6
shows the mean and standard deviation of the relative difference
(%) between the original data and their compressed counterparts
for the 5 most important characteristics: max_kI_shift (MKLS),
max_level_shift (MLS), seas_acf1 (SACF1), max_var_shift (MVS),
and unitroot_pp (URPP).

The results reveal that while MKLS and URPP can be signifi-
cantly impacted by compression, others like MLS, SACF1, and
MVS remain consistently unaffected. PMC has the least average
impact on these characteristics which aligns with its fundamental
operation. By taking the mean value of segments, PMC inherently
minimizes variations and level shifts in the compressed series,

658

Table 6: Mean and standard deviation of the relative differ-
ence (%) for the five most important characteristics when
TFE < 0.1.

dataset MKLS MLS SACF1 MVS URPP
PMC 30.0(34) 03(0.5) 07(1.1) 13(21) 12(13.0)

ETTml SWING 42(8) 22(3.2) 09(1.0) 56(8.4) 13(12.8)
SZ 35.9(49) 03(0.3) 1.1(1.4) 1.8(22) 40(53.3)

PMC 81.4(140) 04(0.9) 0.6(1.0) 13(40) 0.6 (2.1)

ETTm2 SWING 7.0(83) 1.0(12) 0.1(0.2) 1.5(2.1) 45 (43)
SZ 63.6(139) 0.8(1.1) 0.5(0.9) 13(1.9) 3.9(7.0)

PMC 60.2(54) 08(0.9) 03(0.2) 0.2(0.2) 3.6(3.5)

Solar SWING 3.6(7) 1.0(0.9) 05(0.8) 2.1(3.4) 3.1(45)
SZ 23.0(32) 0.2(05) 1.0(1.2) 1.8(21) 6.7(8.5)

PMC 133(73) 13(09) 0.4(04) 25(27) 52 (28)

Weather SWING 57.4 (47) 24(1.3) 11(1.1) 3.2(2.3) 15.7(3.4)
SZ 151(202) 2.7(2.6) 2.0(14) 44(3.9) 52.6(40)

PMC 493 (54) 0.6(0.8) 0.7(1.0) 0.6(1.0) 3.4(47)
ElecDem SWING 83(12) 1.0(25) 0.5(1.2) 1.1(27) 0.4(0.6)
SZ 84(16) 05(0.6) 05(0.6) 0.9(1.0) 1.6(2.2)

PMC 88(106) 0.2(0.6) 03(0.4) 1.1(1.8) 7.4(7.5)

Wind SWING 16.2(14) 0.7(1.0) 03(03) 2.5(35) 10(9.4)
SZ 28.0(28) 0.5(0.4) 02(0.2) 1.6(2.0) 7.8(9.4)

PMC 736(77) 0.6(0.8) 0.5(0.7) 1.2(1.9) 5.4 (5.6)

AVG SWING 16.1(16) 1.4(17) 0.6(0.8) 27(3.7) 7.9(6.7)
SZ 51.6(78) 0.8(0.9) 0.9(0.9) 1.9(22) 18.8(20)

ensuring that the fluctuations and deviations are almost negli-
gible. Nevertheless, the remarkable stability across all datasets
and compression methods of these three characteristics, indicates
that the seasonality, mean, and variability of the series largely
remain intact helping to preserve the TFE < 0.1. Ultimately, when
these characteristics show small deviations of even 1%, it is a sign
that the forecasting models will not perform optimally, thereby
making them key indicators to monitor.

Table 6 also shows that MKLS and URPP are pivotal in deter-
mining the exact impact on forecasting accuracy when TFE<0.1
for ML models. However, using these characteristics as indicators
of the forecasting accuracy drop is not straightforward, particu-
larly for MKLS. The sensitivity of the KL divergence metric to
small probability values, notably in PMC’s averaging approach,
can exaggerate the perceived impact on forecasting accuracy.
Such differences are more prominent for PMC than for SZ and
SWING, leading to higher KL divergence values that do not reflect
actual data value changes. On the other hand, URPP shows more
uniformity across datasets, allowing users to set a threshold for
alerts at even a 5% deviation, in line with PMC’s average impact.

Finally, we answer RQ2 through its sub-questions as follows:

RQ2.1: How much TE can be introduced before significantly
affecting the forecasting accuracy? Answer: By studying the in-
flection points at which the TFE starts rapidly increasing and the
corresponding TE values for each combination of lossy compres-
sion and dataset, we can establish an average TE of 0.026, 0.023,
and 0.026, with an average TFE of 0.055, 0.033, and 0.085, and an
average error bound of 0.14, 0.11, and 0.11 for PMC, SWING, and
SZ, respectively. RQ2.2: Which time series characteristics best ex-
plain the impact of lossy compression on forecasting accuracy? An-
swer: Our analysis reveals that the most important characteristics
for predicting forecasting accuracy post-compression are those
related to shifts in distribution (max_kl_shift, max_level_shift,
max_var_shift, mean), autocorrelation (seas_acfl, x_pacf5), sta-
tionarity (unitroot_pp, unitroot_kpss), and seasonality strength

s ARIMA . DLINEAR mmm GBOOST mmm GRU mmm INFORMER mmm NBEATS TRANSFORMER
0.08
0.5 0.030
0.06 ETTm1 020 ETTM2 0.025 Solar
it 0.04 wo w 0.020
i 0. w 0.15 - 0.015
0.02 | | |||| 0.10 0.010
a1 i 0.05 I II 0.005 ||
0.00 - 1 1 - 0.00 |- o ___|| il. I 0.000 - e i In _|| il || |
0.01 0.03 0.05 0.07 0.1 0.15 0.2 0.01 0.03 0.05 0.07 0.01 0.03 0.05 0.07 0.1 0.15 0.2 0.25
0.10
0.08 030 0.125
" Weather 0.25 EjecDem 0.100 Wind
0.06 0.20
& £ 015 g 070
0.04 0'10 0.050
o= g ol ol I D<= i - b “|”
oco illl Tle] 11 oo~ - ol Il ol 11 1 0000 o e
0.01 0.013 0.015 0.017 0.02 0.01 0.03 0.05 0.07 0.01 0.03 0.05 0.07 0.15
Figure 6: Average TFE per forecasting model.
Table 7: Best models based on NRMSE and TFE 0.10
: . Arima 020 wmm Arima
ETTm!l ETTm2 Solar Weather ElecDem Wind 0.08 W= DLinear 81? f DLinear
NRMSE DLinear Informer NBeats DLinear Transformer NBeats w208 w 0.12
TFE GBoost GRU Arima DLinear Arima Arima £ 0.04 to0.10
0.02 0.08
L] - 0.05
(seas_strength). Notably, the max_kl_shift characteristic stands 0.00 E-—g " 0 03 (1]
-

out as the predominant one. RQ2.3: How high CR can be obtained
without significantly affecting the forecasting accuracy? Answer:
We observed an average CR of 13.65 for PMC, 5.56 for SWING,
and 14.97 for SZ without significantly affecting the forecasting
accuracy. For specific combinations of lossy compression and
dataset, the CR is 25x higher than gzip’s, without significantly
affecting the forecasting accuracy.

4.4 Forecasting Models Evaluation (RQ3)

To examine the resilience of the individual forecasting models,
we first analyze their mean TFE at different error bounds per
dataset. The maximum error bound was selected based on the
mean error bound found in Table 5 per each dataset. Figure 6
shows the results. Additionally, Table 7 presents a summary of the
best models based on forecasting accuracy measured by NRMSE
and TFE, showing the top performers according to these metrics.

The results show that there is no single model that uniformly
excels in both forecasting accuracy and compression resilience
across all datasets. However, two general patterns can be ex-
tracted. 1) While complex models such as Transformers, Informer,
and NBeats obtain the best NRMSE on four of the six datasets,
they suffer a more significant performance drop when used on
compressed data. This is evident by their absence at the top
of the TFE rankings. In contrast, simpler models like Arima
tend to maintain their performance better when used with lossy
compressed data. 2) There is an inverse relationship between a
model’s baseline forecasting accuracy and its resilience to com-
pression. Models with higher accuracy on raw data, such as Arima
on ETTm2 and ETTm1, and NBeats on the Solar dataset, tend
to be more sensitive to the error introduced by lossy compres-
sion. Conversely, models that exhibit lower accuracy on raw data,
demonstrate stronger resistance to the errors induced by com-
pression. For example, Informer and GRU, which produce poorer
baseline forecasts on ETTm1 and ETTm2 (Table 2), demonstrate
a stronger resistance to the added compression error.

These patterns have two main implications: 1) Models that
achieve high accuracy on raw data, or in general complex models

659

0.010.030.050.07 0.1 0.15 0.2
EBon ETTm1

0.01 0.08 0.05 0.07

EB on ETTm2

0.1

Figure 7: TFE results of Arima and DLinear training on de-
compressed data.

like Transformer, capture very subtle patterns of the time series.
When the data is compressed and decompressed, those subtle pat-
terns are among the first to be distorted, leading to a noticeable
drop in accuracy for these models. Building upon the time series
characteristic analysis in Section 4.3.1, the MKLS characteristic is
likely indicative of these subtle patterns. 2) Models with lower ac-
curacy on raw data, or simpler models like Arima, are capturing
broader, more general patterns of the time series. These pat-
terns are robust enough to resist the compression-decompression
process, leading to relatively consistent performance. This is
consistent with the SHAP values analysis of seas_strength and
x_pacf5, which remains consistent across the datasets despite
the use of lossy compression. This opens up interesting research
directions outlined in Section 5.

4.4.1 Training on Decompressed Data: In this section we con-
duct a set of experiments to understand how models respond
to retraining on the decompressed data. The goal is to validate
if the forecasting models can get accustomed to compression-
induced error and improve their resilience by training on the
decompressed data. We selected the Arima and DLinear models
and the ETTm1 and ETTm2 datasets for this experiment. Arima
and DLinear are the best baseline models on ETTm2 and ETTm1,
respectively, as shown in Table 2. However, they also show more
sensitivity to compression on those datasets. For our experiment,
we train and infer in the decompressed data and record the ac-
curacy using NRMSE between the predictions and the raw data.
Figure 7 shows the TFE results per error bound.

The results show that Arima improved its resilience, this is
more evident on ETTm2 where TFE was reduced from 0.3 in
Figure 6 to 0.18 at the error bound of 0.2. Conversely, DLinear
exhibits more sensitivity when training on decompressed data.
While the difference on ETTm1 is marginal, ETTm2 showcases a

substantial deterioration, with TFE increasing from 0.06 in Figure
6 to 0.2 at the error bound of 0.1. The decrease in resilience
for DLinear suggests that compression alters key time series
characteristics relevant to its operation. Specifically, this model
decomposes the time series into trend and remainder components
and learns to predict their future values. Then, when the model
is trained on decompressed data, it can learn a different set of
decompositions that are too distant from the original components,
thus negatively impacting the DLinear model.

We explore this hypothesis by analyzing the impact on the
trend and remainder components of ETTm1 and ETTm2. Specifi-
cally, we extract the values of these components on the original
and decompressed data. We set the error bounds to 0.2 and 0.1
and compute the average RMSE between extracted components
across all lossy compression methods. The RMSEs for the trend
on ETTm1 and ETTm?2 are 0.28 and 0.45, while the RMSEs for
the remainder are 0.4 and 0.8, respectively. Note, that the RMSE
for the remainder of ETTm2 is twice as high as the one from
ETTm1 which is consistent with the observed impact on fore-
casting with TFEs 0.2 and 0.1, respectively. Moreover, the higher
RMSE:s for the remainder compared to the trend indicate that
the compression is affecting short-term fluctuations more than
the overall trend in the data. This aligns with Arima’s higher
resilience since the primary strength of this model lies in it cap-
turing autocorrelations and trends, rather than predicting precise
values in high-noise scenarios. Thus, even if some short-term
fluctuations have been altered due to compression, Arima can
still provide reasonably accurate forecasts based on that overall
trend. Conversely, since DLinear is trained to capture both trend
and short-term fluctuations, the distortion in the remainder is
leading DLinear to make inaccurate predictions.

While we can discern the impacts of trend and remainder
distortions on simpler models like Arima and DLinear, making
similar deductions for their black-box counterparts like GRU and
Transformer-based models is much more complex. The previ-
ous analysis suggested that the max_kl_shift can be the most
significant characteristic when monitoring the performance of
these models. However, validating this hypothesis would require
diving into several elements, including, but not limited to, inter-
nal neuron activations, weight adjustments, gate behaviors, and
attention mechanisms. This necessitates a more comprehensive,
and potentially, different set of analytical techniques and simula-
tions. We will address this question in future work and provide a
general methodology that can be used for different analytics.

Finally, we answer RQ3 through its sub-questions as follows:

RQ3.1: Which factors influence the resilience of the forecasting
models? Answer: Our results suggest that there are two main
factors: 1) the model complexity and 2) the accuracy of the model
on the raw data. Specifically, a simple model, that prioritizes the
generalization of long-term trends will be more resilient than a
complex model that prioritizes learning short-term fluctuations.

RQ3.2: Which time series forecasting model is more resilient
to the effect of lossy compression? Answer: Arima stands out as
a consistently resilient model, leading the TFE ranking in three
out of the six datasets (Solar, ElecDem, and Wind). Arima also
exhibits superior resilience when trained on decompressed data.

5 RESEARCH DIRECTIONS

This section outlines broader research directions in the field, in-
tended for the wider scientific community to explore. Within this
context, a critical area for advancement is the development of new

660

lossy compression methods, specifically optimized to preserve
forecasting accuracy. By leveraging the identified key character-
istics like KL divergence and seasonal strength, these methods
should aim to balance the CR with the preservation of forecasting
accuracy. Further studies are also needed for different types of
time series analytics, e.g., anomaly detection. For each of these
analytics, it is crucial to identify and preserve characteristics that
significantly influence them, thereby guiding the refinement of
lossy compression methods to preserve these characteristics

An additional promising research direction is the development
of ML models designed to predict the impact of lossy time se-
ries compression on various analytical tasks. Such models would
effectively be learning the relationships between compression
characteristics (e.g., compression ratio, impact on the time series
characteristics) and the performance metrics of downstream ana-
lytics tasks (e.g., accuracy, precision). By doing so, they can guide
the selection or optimization of compression methods based on
the expected impact on analytical outcomes.

Finally, another interesting research direction involves com-
bining models that are strong in forecasting with those that are
more resilient. For example, create an ensemble model using
Transformer which has good overall forecasting accuracy and
Arima which is more resilient. This should improve the resilience
and overall accuracy of forecasting models.

6 RELATED WORK

6.1 Time Series Forecasting

The field of time series forecasting has evolved from simple statis-
tical models to sophisticated deep learning architectures. The de-
velopment of the Arima model [5] marked a significant advance-
ment by combining autoregressive (AR) and moving average
(MA) components and handling non-stationary data (integrated,
I). With the rise of machine learning, ensemble techniques like
bagging and boosting [24], combining multiple models to im-
prove forecast accuracy, offered a way to capture non-linear rela-
tionships without explicit model specification. The deep learning
era has brought countless new models from Multilayer Percep-
tron (MLP) [46], and Radial Basis Function Neural Networks [6]
which are very effective in capturing nonlinear relationships in
the time series, Bayesian Neural Network which are particularly
useful for estimating uncertainty and managing overfitting [37],
to Transformer models [57] which are highly efficient capturing
long-term dependencies in the time series [59].

Modern deep learning models can be divided into three main
groups [54]. The first group consists of models that have exten-
sively explored, combined, and modified Recurrent and Convolu-
tional Neural Networks (RNNs and CNNs) [12, 32, 51, 52, 60, 64].
These models are capable of modeling short-term local depen-
dencies among different time series. However, RNN models are
not parallelizable and unable to handle long-term dependencies
between the current and previous timestamps of a time series
[50]. CNN models are limited by the reception field of the kernel
and the locality of the features extracted.

The second group consists of Transformer-based [57] mod-
els adapted from NLP to learn long-term dependencies within
time series. Transformer models rely on self-attention mecha-
nisms to extract the correlations between paired elements in the
time series making it permutation-invariant and anti-ordering.
Examples of these models are Informer [65], Autoformer [59],
Triformer [9], and FEDformer [66]. These models incrementally
improved the accuracy of many datasets. However, recent papers

suggest that these results have little to do with the temporal
correlation learning capabilities of the Transformer model and
that simpler linear models can obtain similar accuracy [62, 63].

The third group of models is based on the classic MLP ar-
chitecture. This shift from Transformer models to MLP-based
models is partly motivated by NBeats [42]. NBeats is the first
pure MLP-based method for univariate time series forecasting
that achieved state-of-the-art accuracy in the M4 competition
[38]. More recently, MLP models like DLinear [62] and LightTS
[63] support the claim that carefully designed MLP models are
better at capturing the historical patterns of time series than
Transformer models.

6.2 Time Series Compression

Time series compression algorithms can be divided into four cat-
egories based on their approach [8]: dictionary-based, functional
approximation, sequential algorithms, and autoencoders.

The dictionary-based approach follows the principle that the
time series can be represented as a sequence of segments from
a dictionary. These segments are characterized by a sequence
of "Atoms" which have a key in a dictionary used both in the
representation of the time series and for querying its content.
The dictionary can be created by domain experts who add typical
patterns or by learning a training set. However, newly arriving
data can introduce patterns or variations that were not previously
included in the dictionary, thus constant updates of the dictionary
are needed in real-life scenarios. Examples are: TRISTAN [40],
CORAD [30], and A-LZSS [44].

The functional approximation approach divides the time series
into segments and applies a function to approximate each of
them. The segment size can be fixed beforehand or found by the
algorithm as it compresses the data. For each segment, the com-
pression algorithm learns the coefficients of a family of functions
that best approximate the values of the segment. The functional
approximation approach is especially suitable for error-bounded
lossy compression as constraints on the coefficients of the func-
tions are simple to add. Examples of functional approximation
methods include PMC [33], Swing [11], and PPA [10].

The sequential approach combines several simple compres-
sion techniques sequentially. The most common encodings are
Huffman, delta, run-length, and Fibonacci binary encoding [8].
The majority of the algorithms in this category are lossless like
Spritz [4], GORILLA [43], and Chimp [34]. GORILLA is currently
used as the default encoding for floating point measurements in
many time series databases [26].

The autoencoder approach uses a symmetric pair of encoder
and decoder neural network architectures. The basic idea is to
reproduce the input time series in the output of the decoder by
minimizing a distance metric. The output of the encoder, ie.,
the embedded representation of the input, is the compressed
representation. Examples of methods using this approach are
DZip [16] and APRA [22].

6.3 Lossy Compression & Time Series
Analytics

A few papers have made preliminary analyses of the impact of
lossy compression on time series analytics including, change-
detection, and time series classification. In [20] the impact of
lossy compression on time series change-detection was analyzed.
Specifically, the authors investigate how multiple combinations
of lossy compression and change-detection algorithms perform

661

on different datasets. The authors show that accurate change
detection is possible even on heavily compressed data. In [41]
the authors present a similar study for the classification prob-
lem using three lossy compression algorithms based on Wavelet
Transform [2]. The paper shows an improvement from 10% to
50% in the classification accuracy and recall for different model
configurations. Finally, [10] analyzes the impact of the PPA lossy
compression algorithm on a single domain-specific (energy) fore-
casting task. Specifically, the authors perform a small experiment
with a single dataset and exponential smoothing (ES) as the fore-
casting model. The experiments show that when guaranteeing
the data is compressed within the absolute error bound of 25 Wh
the forecasting accuracy remains unaffected despite achieving a
compression ratio of 3x. Although these preliminary results sug-
gest that lossy compression may not harm time series analytics,
it is clear that much more in-depth analysis is needed.

7 CONCLUSIONS AND FUTURE WORK

With the rise of data-driven decision-making using massive
amounts of sensors, high-frequency time series have become
a crucial tool. However, managing such a massive amount of data
can be challenging, as transferring or even storing the raw time
series is often infeasible. Lossy compression algorithms provide a
solution to this problem. However, using these algorithms intro-
duces new issues, e.g., understanding their effect on the accuracy
of time series forecasting models. In this paper, we answered
the research questions: RQ1: How does lossy compression af-
fect the time series? RQ2: How does lossy compression affect
the accuracy of time series forecasting? RQ3: How does lossy
compression affect individual forecasting models?

Our results suggest that it is possible to obtain high CR through
lossy compression without having a significant negative impact
on the forecasting accuracy and even in some cases improving it.
Specifically, we obtained an average compression ratio of 13.65
for PMC, 5.56 for SWING, and 14.97 for SZ with an average impact
on forecasting accuracy of 5.56%, 3.3%, and 8.5%, respectively.
Among the compression methods, PMC offers a well-balanced
approach, especially when there is a requirement for a moderate
CR without a significant loss in forecasting accuracy. Moreover,
we analyzed how the impact of lossy compression on 42 different
time series characteristics, can be used to predict the impact of
lossy compression on forecasting accuracy. From this analysis,
the maximum Kullback-Leibler divergence between consecutive
windows was the top characteristic, followed by the seasonality
strength and other characteristics related to the autocorrelation
function. Finally, Arima stood out as the most resilient model in
half of the tested datasets and exhibited superior resilience when
trained on decompressed data.

In future work, we will use synthetic data to further validate
our findings. This approach will allow us to adjust the critical
time series characteristics identified in this paper, and test the
resilience of specific forecasting models to changes in these char-
acteristics. Moreover, we will explore scenarios that include train-
ing forecasting models on decompressed data.

ACKNOWLEDGMENTS

This paper was supported by the MORE project funded by the
EU Horizon 2020 program under grant agreement no. 957345.

REFERENCES

[1] Nasir Ahmed, T. Raj Natarajan, and K. R. Rao. 1974. Discrete Cosine Transform.
IEEE Trans. Computers 23, 1 (1974), 90-93. https://doi.org/10.1109/T-C.1974.

[2

[

(3]

[10]

[11

[12

[13]

[14]

[15

[16

[17

[18]

[19

[20]

[21]

[22

[23]

[24]

223784

Ali N Akansu and Richard A Haddad. 2001. Multiresolution signal
decomposition: transforms, subbands, and wavelets. Academic Press,
Inc. https://shop.elsevier.com/books/multiresolution-signal-decomposition/
akansu/978-0-12-047141-6

J.Scott Armstrong and Fred Collopy. 1992. Error measures for generalizing
about forecasting methods: Empirical comparisons. International Journal of
Forecasting 8 (1992), 69-80. Issue 1. https://doi.org/10.1016/0169-2070(92)
90008-W

Davis W. Blalock, Samuel Madden, and John V. Guttag. 2018. Sprintz: Time
Series Compression for the Internet of Things. Proc. ACM Interact. Mob.
Wearable Ubiquitous Technol. 2, 3 (2018), 93:1-93:23. https://doi.org/10.1145/
3264903

George EP Box, Gwilym M Jenkins, Gregory C Reinsel, and Greta M
Ljung. 2015. Time series analysis: forecasting and control. ~ John Wi-
ley & Sons. https://www.wiley.com/en-us/Time+Series+Analysis%3A+
Forecasting+and+Control%2C+5th+Edition-p-9781118675021

David S. Broomhead and David Lowe. 1988. Multivariable Functional In-
terpolation and Adaptive Networks. Complex Syst. 2, 3 (1988). http:
//www.complex-systems.com/abstracts/v02_i103_a05.html

Tianqgi Chen and Carlos Guestrin. 2016. XGBoost: A Scalable Tree Boosting
System. In Proceedings of the 22nd ACM SIGKDD. 785-794. https://doi.org/10.
1145/2939672.2939785

Giacomo Chiarot and Claudio Silvestri. 2023. Time Series Compression Sur-
vey. ACM Comput. Surv. 55, 10 (2023), 198:1-198:32. https://doi.org/10.1145/
3560814

Razvan-Gabriel Cirstea, Chenjuan Guo, Bin Yang, Tung Kieu, Xuanyi Dong,
and Shirui Pan. 2022. Triformer: Triangular, Variable-Specific Attentions for
Long Sequence Multivariate Time Series Forecasting. In Proceedings of IJCAL
https://doi.org/10.24963/]JCAL2022/277

Frank Eichinger, Pavel Efros, Stamatis Karnouskos, and Klemens Bohm. 2015.
A time-series compression technique and its application to the smart grid.
VLDB . 24, 2 (2015), 193-218. https://doi.org/10.1007/S00778-014-0368-8
Hazem Elmeleegy, Ahmed K. Elmagarmid, Emmanuel Cecchet, Walid G. Aref,
and Willy Zwaenepoel. 2009. Online Piece-wise Linear Approximation of
Numerical Streams with Precision Guarantees. Proc. VLDB Endow. 2, 1 (2009),
145-156. https://doi.org/10.14778/1687627.1687645

Hosein Eskandari, Maryam Imani, and Mohsen Parsa Moghaddam. 2021.
Convolutional and recurrent neural network based model for short-term
load forecasting. Electric Power Systems Research 195 (2021), 107173. https:
//doi.org/10.1016/j.epsr.2021.107173

Jerome H Friedman. 2001. Greedy function approximation: a gradient boosting
machine. Annals of statistics (2001), 1189-1232. https://doi.org/10.1214/ao0s/
1013203451

James Gareth, Witten Daniela, Hastie Trevor, and Tibshirani Robert. 2013. An
introduction to statistical learning: with applications in R. Springer. https:
//doi.org/10.1007/978-1-4614-7138-7

Rakshitha Godahewa, Christoph Bergmeir, Geoffrey I. Webb, Rob J. Hyndman,
and Pablo Montero-Manso. 2021. Monash Time Series Forecasting Archive. In
NeurlIPS, Vol. 1. https://datasets-benchmarks-proceedings.neurips.cc/paper/
2021/hash/eddea82ad2755b24c4e168c5fc2ebd40- Abstract-round2.html
Mohit Goyal, Kedar Tatwawadi, Shubham Chandak, and Idoia Ochoa. 2021.
DZip: improved general-purpose lossless compression based on novel neural
network modeling. In DCC. IEEE, 153-162. https://doi.org/10.1109/DCC50243.
2021.00023

S Edward Hawkins III and Edward Hugo Darlington. 2012. Algorithm for
compressing time-series data. Technical Report. NASA Tech Briefs. https:
//ntrs.nasa.gov/citations/20120010460

Julien Herzen, Francesco Léssig, Samuele Giuliano Piazzetta, Thomas Neuer,
Léo Tafti, Guillaume Raille, Tomas Van Pottelbergh, Marek Pasieka, Andrzej
Skrodzki, Nicolas Huguenin, Maxime Dumonal, Jan Koscisz, Dennis Bader,
Frédérick Gusset, Mounir Benheddi, Camila Williamson, Michal Kosinski,
Matej Petrik, and Gaél Grosch. 2022. Darts: User-Friendly Modern Machine
Learning for Time Series. J. Mach. Learn. Res. 23 (2022), 124:1-124:6. http:
//jmlr.org/papers/v23/21-1177 html

Akaike Hirotugo. 1974. A new look at the statistical model identification. IEEE
Trans. Automat. Control 19, 6 (1974), 716-723. https://doi.org/10.1109/TAC.
1974.1100705

Gregor Hollmig, Matthias Horne, Simon Leimkiihler, Frederik Scholl, Carsten
Strunk, Adrian Englhardt, Pavel Efros, Erik Buchmann, and Klemens B6hm.
2017. An evaluation of combinations of lossy compression and change-
detection approaches for time-series data. Inf. Syst. 65 (2017), 65-77. https:
//doi.org/10.1016/].1S.2016.11.001

Tao Hong. 2020. Forecasting with high frequency data: M4 competition and
beyond. International Journal of Forecasting (2020). https://doi.org/10.1016/j.
ijforecast.2019.03.013

Daniel Hsu. 2017. Time Series Compression Based on Adaptive Piecewise
Recurrent Autoencoder. CoRR abs/1707.07961 (2017). http://arxiv.org/abs/
1707.07961

Rob Hyndman, Yanfei Kang, Pablo Montero-Manso, Mitchell O’'Hara-Wild,
Thiyanga Talagala, Earo Wang, and Yangzhuoran Yang. 2023. tsfeatures: Time
Series Feature Extraction. https://pkg.robjhyndman.com/tsfeatures/

Rob J Hyndman and George Athanasopoulos. 2021. Forecasting: principles and
practice, 3rd edition. OTexts. https://otexts.com/fpp3/

662

[25]

[26]

[27]

[28]

[29]

[30]

(31]

[32]

(33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43

[44]

[45]

[46]

[47]

Robert F. Engle Jeffrey R. Russell. 2010. Analysis of high-frequency Data, In
Handbooks in Finance, Handbook of Financial Econometrics: Tools and Tech-
niques. Vol. 1. Elsevier, 383-426. https://doi.org/10.1016/B978-0-444-50897-3.
50010-9

Soren Kejser Jensen, Torben Bach Pedersen, and Christian Thomsen. [n.d.].
Time Series Management Systems: A 2022 Survey. In Data Series Management
and Analytics (Forthcoming). ACM. Preprint available at: https://vbn.aau.dk/
da/publications/time-series-management- systems-a-2022- survey.

Seren Kejser Jensen, Torben Bach Pedersen, and Christian Thomsen. 2018.
ModelarDB: Modular Model-Based Time Series Management with Spark and
Cassandra. Proc. VLDB Endow. 11, 11, 1688-1701. https://doi.org/10.14778/
3236187.3236215

Seren Kejser Jensen, Torben Bach Pedersen, and Christian Thomsen. 2021.
Scalable Model-Based Management of Correlated Dimensional Time Series in
ModelarDB+. In ICDE. IEEE, 1380-1391. https://doi.org/10.1109/ICDE51399.
2021.00123

Seren Kejser Jensen, Christian Thomsen, and Torben Bach Pedersen. 2023.
ModelarDB: Integrated Model-Based Management of Time Series from Edge to
Cloud. Vol. 53. 1-33. https://doi.org/10.1007/978-3-662-66863-4_1
Abdelouahab Khelifati, Mourad Khayati, and Philippe Cudré-Mauroux. 2019.
Corad: Correlation-aware compression of massive time series using sparse
dictionary coding. In Big Data. IEEE, 2289-2298. https://doi.org/10.1109/
BIGDATA47090.2019.9005580

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic
Optimization. In ICLR. http://arxiv.org/abs/1412.6980

Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. 2018. Model-
ing Long- and Short-Term Temporal Patterns with Deep Neural Networks. In
ACM SIGIR. ACM, 95-104. https://doi.org/10.1145/3209978.3210006

Tosif Lazaridis and Sharad Mehrotra. 2003. Capturing Sensor-Generated Time
Series with Quality Guarantees. In ICDE. IEEE, 429-440. https://doi.org/10.
1109/ICDE.2003.1260811

Panagiotis Liakos, Katia Papakonstantinopoulou, and Yannis Kotidis. 2022.
Chimp: Efficient Lossless Floating Point Compression for Time Series
Databases. Proc. VLDB Endow. 15, 11 (2022), 3058-3070. https://doi.org/
10.14778/3551793.3551852

Xin Liang, Sheng Di, Dingwen Tao, Sihuan Li, Shaomeng Li, Hangi Guo,
Zizhong Chen, and Franck Cappello. 2018. Error-Controlled Lossy Compres-
sion Optimized for High Compression Ratios of Scientific Datasets. In Big
Data. IEEE, 438-447. https://doi.org/10.1109/BIGDATA.2018.8622520

Scott M. Lundberg, Gabriel G. Erion, Hugh Chen, Alex J. DeGrave, Jordan M.
Prutkin, Bala Nair, Ronit Katz, Jonathan Himmelfarb, Nisha Bansal, and Su-In
Lee. 2020. From local explanations to global understanding with explainable
Al for trees. Nat. Mach. Intell. 2, 1 (2020), 56-67. https://doi.org/10.1038/
$42256-019-0138-9

Martin Magris and Alexandros losifidis. 2023. Bayesian learning for neural
networks: an algorithmic survey. Vol. 56. 11773-11823 pages. https://doi.org/
10.1007/S10462-023-10443-1

Spyros Makridakis, Evangelos Spiliotis, and Vassilios Assimakopoulos. 2018.
The M4 Competition: Results, findings, conclusion and way forward. Interna-
tional Journal of Forecasting 34, 4 (2018), 802-808. https://doi.org/10.1016/j.
ijforecast.2018.06.001

Stéphane Mallat. 1989. A Theory for Multiresolution Signal Decomposition:
The Wavelet Representation. IEEE Trans. Pattern Anal. Mach. Intell. 11,7 (1989),
674-693. https://doi.org/10.1109/34.192463

Alice Marascu, Pascal Pompey, Eric Bouillet, Michael Wurst, Olivier Ver-
scheure, Martin Grund, and Philippe Cudre-Mauroux. 2014. TRISTAN: Real-
time analytics on massive time series using sparse dictionary compression. In
Big Data. IEEE, 291-300. https://doi.org/10.1109/BIGDATA.2014.7004244
Aekyeung Moon, Jaeyoung Kim, Jialing Zhang, and Seung Woo Son. 2018.
Evaluating fidelity of lossy compression on spatiotemporal data from an IoT
enabled smart farm. Comput. Electron. Agric. 154 (2018), 304-313. https:
//doi.org/10.1016/].COMPAG.2018.08.045

Boris N. Oreshkin, Dmitri Carpov, Nicolas Chapados, and Yoshua Bengio.
2020. N-BEATS: Neural basis expansion analysis for interpretable time series
forecasting. In ICLR. OpenReview.net. https://openreview.net/forum?id=
rlecqn4dYwB

Tuomas Pelkonen, Scott Franklin, Paul Cavallaro, Qi Huang, Justin Meza,
Justin Teller, and Kaushik Veeraraghavan. 2015. Gorilla: A Fast, Scalable,
In-Memory Time Series Database. Proc. VLDB Endow. 8, 12 (2015), 1816-1827.
https://doi.org/10.14778/2824032.2824078

James Pope, Antonis Vafeas, Atis Elsts, George Oikonomou, Robert J. Piechocki,
and Ian Craddock. 2018. An accelerometer lossless compression algorithm
and energy analysis for IoT devices. In WCNC. IEEE, 396-401. https://doi.
org/10.1109/WCNCW.2018.8368985

Martin Ringwelski, Christian Renner, Andreas Reinhardt, Andreas Weigel,
and Volker Turau. 2012. The hitchhiker’s guide to choosing the compression
algorithm for your smart meter data. In ENERGYCON. IEEE. https://doi.org/
10.1109/EnergyCon.2012.6348285

David E Rumelhart, Geoffrey E Hinton, and Ronald] Williams. 1986. Learning
representations by back-propagating errors. Nature 323, 6088 (1986), 533-536.
https://doi.org/10.1038/323533a0

Fathi M Salem. 2022. Recurrent Neural Networks: From Simple to Gated Archi-
tectures. Springer Nature. https://doi.org/10.1007/978-3-030-89929-5

[48

[49

[50

[51

[52

[53

[54

[55

[57

[58

[59

[60

[61

(62

[63

[64

[65

[66

]

]

]

]

]

]

]

]

Ville Satopaa, Jeannie Albrecht, David Irwin, and Barath Raghavan. 2011.
Finding a Kneedle in a Haystack: Detecting Knee Points in System Behavior.
In ICDCSW. 166-171. https://doi.org/10.1109/ICDCSW.2011.20

Maxim Vladimirovich Shcherbakov, Adriaan Brebels, Nataliya Lvovna
Shcherbakova, Anton Pavlovich Tyukov, Timur Alexandrovich Janovsky, Va-
leriy Anatol’evich Kamaev, et al. 2013. A survey of forecast error measures.
World Applied Sciences Journal (2013). https://doi.org/10.5829/idosi.was;j.2013.
24.itmies.80032

Alex Sherstinsky. 2020. Fundamentals of recurrent neural network (RNN) and
long short-term memory (LSTM) network. Physica D: Nonlinear Phenomena
404 (2020), 132306. https://doi.org/10.1016/j.physd.2019.132306

Shun-Yao Shih, Fan-Keng Sun, and Hung-Yi Lee. 2019. Temporal pattern
attention for multivariate time series forecasting. Mach. Learn. 108, 8-9 (2019),
1421-1441. https://doi.org/10.1007/S10994-019-05815-0

Xianlun Tang, Yuyan Dai, Ting Wang, and Yingjie Chen. 2019. Short-term
power load forecasting based on multi-layer bidirectional recurrent neural
network. IET Generation, Transmission & Distribution 13, 17 (2019), 3847-3854.
https://doi.org/10.1049/iet-gtd.2018.6687

Seshu Tirupathi, Dhaval Salwala, Giulio Zizzo, Ambrish Rawat, Mark Purcell,
Seren Kejser Jensen, Christian Thomsen, Nguyen Ho, Carlos E Muniz-Cuza,
Jonas Brusokas, et al. 2022. Machine Learning Platform for Extreme Scale
Computing on Compressed IoT Data. In Big Data. IEEE, 3179-3185. https:
//doi.org/10.1109/BigData55660.2022.10020540

Jose F Torres, Dalil Hadjout, Abderrazak Sebaa, Francisco Martinez-Alvarez,
and Alicia Troncoso. 2021. Deep learning for time series forecasting: a survey.
Big Data 9, 1 (2021), 3-21. https://doi.org/10.1089/BIG.2020.0159

Robert Underwood. 2022. libpressio. https://github.com/robertu94/libpressio.

Kevin Michell Valencia, Werner Kristjanpoller, and Marcel C. Minutolo. 2022.
Electrical consumption forecasting: a framework for high frequency data.
Neural Comput. Appl. 34, 7 (2022), 5577-5586. https://doi.org/10.1007/
5S00521-021-06735-8

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. At-
tention is All you Need. In Advances in Neural Information Process-
ing Systems. 5998—6008. https://proceedings.neurips.cc/paper/2017/hash/
3f5ee243547dee91fbd053c1c4a845aa- Abstract.html

Chen Wang, Xiangdong Huang, Jialin Qiao, Tian Jiang, Lei Rui, Jinrui Zhang,
Rong Kang, Julian Feinauer, Kevin Mcgrail, Peng Wang, Diachan Luo, Jun
Yuan, Jianmin Wang, and Jiaguang Sun. 2020. Apache IoTDB: Time-series
database for Internet of Things. Proc. VLDB Endow. 13, 12 (2020), 2901-2904.
https://doi.org/10.14778/3415478.3415504

Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. 2021. Autoformer:
Decomposition Transformers with Auto-Correlation for Long-Term Series
Forecasting. (2021), 22419-22430. https://proceedings.neurips.cc/paper/2021/
hash/bcc0d400288793e8bdcd7c19a8ac0c2b- Abstract.html

Wenyi Wu, Wenlong Liao, Jian Miao, and Guoli Du. 2019. Using gated recurrent
unit network to forecast short-term load considering impact of electricity
price. Energy Procedia 158 (2019), 3369-3374. https://doi.org/10.1016/j.egypro.
2019.01.950

Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, Xiaojun Chang, and
Chenggqi Zhang. 2020. Connecting the Dots: Multivariate Time Series Fore-
casting with Graph Neural Networks. In ACM SIGKDD. ACM, 753-763.
https://doi.org/10.1145/3394486.3403118

Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. 2023. Are Transformers
Effective for Time Series Forecasting?. In Conference on Artificial Intelligence,
AAAIL AAAI Press, 11121-11128. https://doi.org/10.1609/AAALV3719.26317
Tianping Zhang, Yizhuo Zhang, Wei Cao, Jiang Bian, Xiaohan Yi, Shun Zheng,
and Jian Li. 2022. Less Is More: Fast Multivariate Time Series Forecasting
with Light Sampling-oriented MLP Structures. arXiv preprint arXiv:2207.01186
(2022). https://arxiv.org/pdf/2207.01186.pdf

Jian Zheng, Cencen Xu, Ziang Zhang, and Xiaohua Li. 2017. Electric load
forecasting in smart grids using Long-Short-Term-Memory based Recurrent
Neural Network. In CISS. IEEE, 1-6. https://doi.org/10.1109/CISS.2017.7926112
Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui
Xiong, and Wancai Zhang. 2021. Informer: Beyond Efficient Transformer for
Long Sequence Time-Series Forecasting. In AAAL AAAI Press, 11106-11115.
https://doi.org/10.1609/AAALV35112.17325

Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin.
2022. FEDformer: Frequency Enhanced Decomposed Transformer for Long-
term Series Forecasting. In ICML (Proceedings of Machine Learning Research),
Vol. 162. 27268-27286. https://proceedings.mlr.press/v162/zhou22g.html

663

