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ABSTRACT
Graphs offer a generic abstraction for modeling entities and the

interactions and relationships between them. Since most real-

world graphs evolve over time, there is a need for models to

explore the evolution of graphs over time. We introduce the

GraphTempo model that allows aggregation both at the attribute

and at the time dimension. We also propose an exploration strat-

egy for navigating through the evolution of the graph based on

identifying time intervals of significant growth, shrinkage or

stability. This exploration strategy would be useful for example

for identifying time periods of multiple collaborations between

specific groups in a cooperation network, or of declining contacts

between specific groups in a disease propagation network. We

evaluate the performance and effectiveness of our strategy using

two real graphs.

1 INTRODUCTION
Graphs offer an effective model for a variety of data by capturing

the relationships and interactions between entities, ranging for

example, from the co-authorship relation between people in a

collaboration network, to the ratings between users and items

in a recommendation system. Most such graphs are evolving

as the real-world entities they represent and their relationships

change through time. Thus, an interesting problem is to study the

evolution of the graph, and summarize it so as to get insights and

substantial information of the underlying data and its evolution.

There has been a lot of work on aggregation of static graphs

e.g., [5, 26]. More recently, aggregation in temporal graphs has

received some attention, with research focusing on temporal

paths [6], extensions of the property model with time [19], con-

ceptual modeling [13], graph analytics [16], visualization [23],

and supporting different time granularities [1]. In this paper, we

look into the novel problem of identifying important points in

the evolution of the graph both in terms of stability but also of

significant growth and shrinkage.

To this end, we introduce the GraphTempo framework for

aggregating temporal graphs and exploring their evolution. We

consider temporal attributed graphs where nodes have properties

whose values may or not change with time. Our framework

facilitates flexible aggregation both in the attribute and time

dimensions.

Aggregation encompassing both attribute types and time al-

lows us to study a network at a global level and detect patterns

that are not identified when observing the graph at the individual

vertex level. Further, aggregating network instances correspond-

ing to different time intervals may reveal interesting patterns of

evolution.

To motivate our work, consider a co-authorship network,

where nodes represent authors and edges their collaborations.
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By aggregating authors based on one or more types of attributes

for different time periods, we may discover interesting events

which may be associated with external factors. For example, re-

porting an increase on the collaborations between female authors

on a specific time period could be related with a diversity and

inclusion action to empower female researchers and women in

science. Considering the opposite angle, one may wish to assess

the effect of such a diversity and inclusion action by studying

the aggregated collaboration graph after and before the action.

Aggregating authors by affiliation and nationality, in addition to

time, may reveal biases that emerge through time with shrink-

age between relationships of authors of different nationalities

or on the other hand the growth of such relationships may be

attributed to the effect of corresponding action plans that aim to

improve international collaborations.

As another motivating scenario, consider the association of

face-to-face proximity relations between individuals and the

propagation of infectious diseases in the community. An em-

pirical dataset with contacts between students and teachers, the

time interval of their interaction, the class and the grade of the

children is used in [12]. Since children usually spend more time

in contact with children of the same class and the same grade, the

authors show that a targeted closure strategy based on class and

grade is efficient for the mitigation of influenza. Thus, temporal

aggregation based on the individuals’ attributes, contact dura-

tion and the homophily in the aggregated network may reveal

the degree of risk of spreading an infectious disease to the rest

of the community. Measuring shrinkage in contacts or disease

spreading can be used to evaluate the effectiveness of applied

mitigation measures, while detecting stable contacts indicates

that further measures are required to counter the spread.

To support different levels of temporal resolution, we define

temporal operators that aggregate the graphs that exist in two

time intervals using either tight intersection semantics or more

relaxed union semantics. We provide distinct and non-distinct

attribute aggregation by grouping nodes based on their attribute

values and the corresponding relationships between them, and

present algorithms for the implementation of all temporal opera-

tors and aggregation types. We also show how aggregate graphs

can be reused to compute other aggregate graphs more efficiently

without having to access the original temporal graphs.

To model graph evolution, we define three types of events

pertaining to the growth, stability and shrinkage of the graph.

We define the evolution graph that captures the three types of

evolution events by overlaying three different graphs defined

using appropriate temporal operators for each event type. To

explore graph evolution, we define the novel problem of finding

pairs of intervals (T1,T2) such that at least 𝑘 events of interest

have occurred between T1 and T2. Since the number of pairs of

intervals to consider can grow exponentially, we propose an effi-

cient exploration strategy that considers a fixed reference point

and utilizes intersection and union semantics to extend intervals.

We exploit monotonicity to further prune the exploration space.
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Figure 1: A temporal attributed graph.

Figure 2: Union graph of the graph of Fig. 1 on [𝑡0, 𝑡1].

Finally, we present an experimental evaluation of our approach

using two real datasets, aiming at both studying the efficiency of

the proposed algorithms and the effectiveness of our proposed

evolution exploration strategies.

The rest of the paper is structured as follows. In Section 2, we

define the temporal operators, the attribute aggregation, and the

evolution graph. In Section 3, we define our problem of exploring

the graph evolution. In Section 4, we present our algorithms,

and in Section 5 our experimental results. Section 6 summarizes

related work and Section 7 offers conclusions.

2 THE GRAPHTEMPO MODEL
We assume an interval-based definition of a temporal graph. We

use T to denote a set of intervals. Each temporal graph refers to

such a set. We model the existences of edges and nodes by two

timestamp functions 𝜏𝑢 and 𝜏𝑒 the domain of which is T .

Definition 2.1 (Temporal Attributed Graph). A temporal attrib-

uted graph in T is a graph𝐺 (𝑉 , 𝐸, 𝜏𝑢, 𝜏𝑒, 𝐴) where𝑉 is the set of

nodes and 𝐸 is the set of edges (𝑢, 𝑣) with 𝑢, 𝑣 ∈ 𝑉 . Each node in

𝑉 is associated with a timestamp 𝜏𝑢 : 𝑉 → T where 𝜏𝑢 (𝑢) is the
set of intervals during which 𝑢 exists. Similarly each edge 𝑒 in

𝐸 is associated with a timestamp 𝜏𝑒 : 𝐸 → T where 𝜏𝑒 (𝑒) is the
set of intervals during which 𝑒 exists. 𝐴 = {𝐴1, 𝐴2 . . . 𝐴𝑘 } is a set
of 𝑘 node attributes whose values may change over time, that

is, for each 𝑢 ∈ 𝑉 and 𝑡 ∈ 𝜏𝑢 (𝑢), there is a 𝑘-dimensional tuple,

𝐴(𝑢, 𝑡) = {𝐴1 (𝑢, 𝑡), 𝐴2 (𝑢, 𝑡) . . . 𝐴𝑘 (𝑢, 𝑡)}, where 𝐴𝑖 (𝑢, 𝑡) denotes
the value of 𝑢 at time 𝑡 ∈ 𝜏𝑢 (𝑢) on the 𝑖-th attribute.

An attribute 𝐴𝑖 is called static, if its value does not change
with time, i.e., 𝐴𝑖 (𝑢, 𝑡) = 𝐴𝑖 (𝑢, 𝑡 ′), ∀𝑢 ∈ 𝑉 and ∀𝑡, 𝑡 ′ ∈ 𝜏 (𝑢) ⊆ 𝑇 ,
and time-varying otherwise.

Figure 1 depicts an example of a temporal attributed graph for

a collaboration graph in time period T = {𝑡0, 𝑡1, 𝑡2} consisting of,
for simplicity, three distinct time points. The nodes have two at-

tributes, “Gender” a categorical attribute with values {𝑚, 𝑓 } that
is static and “#Publications” a numerical attribute with integer

values that is time-varying.

Other temporal graph models. Temporal graph models can

be classified into: duration-labeled, where nodes have no proper-

ties and edges are labeled with a starting point and a duration;

interval-labeled, where edges are timestamped with the time

interval in which they are valid; and, snapshot-based, where a
graph in an interval is given by a sequence of graph snapshots

for each time point in the interval [6]. Our model follows the

interval-labeled model. Several variations of the interval-labeled

graph model have been defined, including TGraph [1] that asso-

ciates graph entities with time points but treats adjacent points as

intervals, Chronograph [2] that converts point to interval seman-

tics, and the temporal property graph model (TPG) [3, 6, 19, 23].

Similarly to our model, the TPG model includes timestamps on

nodes and attributes, and extends timestamps to set of intervals.

TPG represents node objects, their attributes and values using

different types of nodes. Instead, as in previous work in graph ag-

gregation [5, 26], we do not represent attributes as different node

types. Our concise representation allows us to clearly formulate

the temporal operators and extend graph aggregation with time.

Our approach can also be adapted for any graph representation

that follows the interval-labeled temporal graph model.

2.1 Temporal Operators
We focus first on how to define temporal graphs on intervals of

different lengths and combinations of intervals. To this end, we

define a set of temporal operators that given a temporal attributed

graph and some time intervals, define a new temporal graph

defined on the combination of the given intervals.

Our first operator is project that defines a subgraph of the

original temporal graph defined on specific time intervals.

Definition 2.2 (Time Project Operator). The projection 𝐺1 of

𝐺 in T1 ⊆ T is a temporal attributed graph at time interval T1
𝐺1 (𝑉1, 𝐸1, 𝜏𝑢1, 𝜏𝑒1, 𝐴1), where 𝑉1 includes all nodes 𝑢 ∈ 𝑉 for

which T1 ⊆ 𝜏𝑢 (𝑢), 𝐸1 all edges 𝑒 ∈ 𝐸 for which T1 ⊆ 𝜏𝑒 (𝑒), and
for all nodes𝑢 ∈ 𝑉1, 𝜏𝑢1 (𝑢) = 𝜏𝑢 (𝑢) ∩T1, and for all edges 𝑒 ∈ 𝐸1,
𝜏𝑒1 = 𝜏𝑒 (𝑒) ∩ T1 and 𝐴1 includes the attributes for all nodes in

𝑉1 for the interval T1 .

Given two sets of time intervals, T1 and T2, the union operator

defines a graph that includes the nodes and edges that exist in at

least one time instant in T1 or T2.

Definition 2.3 (Union Operator). Given𝐺 and two sets of time

intervals T1 and T2, the union graph is a temporal attributed

graph 𝐺∪ (𝑉∪, 𝐸∪, 𝜏𝑢∪, 𝜏𝑒∪, 𝐴∪) defined in (T1,T2), where 𝑉∪ =

{𝑢 | (𝜏𝑢 (𝑢) ∩ T1 ≠ ∅) or (𝜏𝑢 (𝑢) ∩ T2 ≠ ∅)}, 𝐸∪ = {𝑒 | (𝜏𝑒 (𝑒) ∩ T1 ≠
∅) or (𝜏𝑒 (𝑒) ∩ T2 ≠ ∅)}, for all nodes 𝑢 ∈ 𝑉∪, 𝜏𝑢∪ (𝑢) = 𝜏𝑢 (𝑢) ∩
(T1 ∪ T2), for all edges 𝑒 ∈ 𝐸∪, 𝜏𝑒∪ (𝑒) = 𝜏𝑒 (𝑒) ∩ (T1 ∪ T2) and
𝐴∪ includes the attributes for all nodes 𝑢 ∈ 𝑉∪,∀𝑡 ∈ 𝜏𝑢∪ (𝑢) .

Figure 2 depicts the union graph 𝐺∪ of the temporal graph of

Fig. 1 on (𝑡0, 𝑡1).
The intersection operator captures the stable part of the graph,

i.e., the set of edges and nodes that exist in both intervals.

Definition 2.4 (Intersection Operator). Given 𝐺 and two sets

of time intervals T1 and T2, the intersection graph is a tempo-

ral attributed graph 𝐺∩ (𝑉∩, 𝐸∩, 𝜏𝑢∩, 𝜏𝑒∩, 𝐴∩) defined in (T1,T2),
where 𝑉∩ = {𝑢 | (𝜏𝑢 (𝑢) ∩ T1 ≠ ∅) and (𝜏𝑢 (𝑢) ∩ T2 ≠ ∅)}, 𝐸∩ =

{𝑒 | (𝜏𝑒 (𝑒) ∩ T1 ≠ ∅) and (𝜏𝑒 (𝑒) ∩ T2 ≠ ∅)}, for all nodes 𝑢 ∈
𝑉∩, 𝜏𝑢∩ (𝑢) = 𝜏𝑢 (𝑢) ∩ (T1 ∪ T2), for all edges 𝑒 ∈ 𝐸∩, 𝜏𝑒∩ =

𝜏𝑒 (𝑒) ∩ (T1 ∪ T2) and 𝐴∩ includes the attributes for all nodes

𝑢 ∈ 𝑉∩,∀𝑡 ∈ 𝜏𝑢∩ (𝑢) .

The difference operator T1 − T2, given that T1 precedes T2,
captures the part of the graph that existed in T1 but not in T2,
that is the nodes and edges that were deleted.

Definition 2.5 (Difference Operator). Given 𝐺 and two sets of

time intervals T1 and T2, the difference graph between T1 and T2
is a temporal attributed graph 𝐺− (𝑉−, 𝐸−, 𝜏𝑢−, 𝜏𝑒−𝐴−) defined
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in T1 ∩ T2, where 𝑉− = {𝑢 | (𝜏𝑢 (𝑢) ∩ T1 ≠ ∅) and ((𝜏𝑢 (𝑢) ∩ T2 =

∅) or (∃(𝑢, 𝑣) ∈ 𝐸−)}, 𝐸− = {𝑢 | (𝜏𝑒 (𝑒)∩T1 ≠ ∅) and (𝜏𝑒 (𝑒)∩T2 =
∅)}, for all nodes 𝑢 ∈ 𝑉−, 𝜏𝑢− (𝑢) = 𝜏𝑢 (𝑢) ∩ T1, for all edges
𝑒 ∈ 𝐸−, 𝜏𝑒− = 𝜏𝑒 (𝑒) ∩ T1 and 𝐴− includes the attributes for all

nodes 𝑢 ∈ 𝑉−,∀𝑡 ∈ 𝜏𝑢− (𝑢) ∪ 𝜏𝑒− (𝑢, 𝑣) .

The difference operator is not symmetric. The difference T2 −
T1, given that T1 precedes T2, captures the part of the graph that

exists in T2 but not in T1, that is the new nodes and edges.

2.2 Graph Aggregation
We might describe graph aggregation as the operation of group-

ing nodes together based on (some of) their attributes, while

taking network structure into consideration. So, each aggregate

node (node in the aggregate graph) corresponds to a set of the

original nodes and aggregate edges are built based on the inter-

actions of the aggregate nodes in the original network.

Definition 2.6 (Graph Aggregation). Given a temporal attrib-

uted graph 𝐺 (𝑉 , 𝐸, 𝜏𝑢, 𝜏𝑒, 𝐴), in T , and 𝑛 aggregate attributes,

1 ≤ 𝑛 ≤ 𝑘 , 𝐴′
1
, 𝐴′

2
, .., 𝐴′𝑛 ∈ 𝐴, the aggregated graph 𝐺 ′ is defined

as a weighted graph 𝐺 ′(𝑉 ′, 𝐸 ′,𝑊𝑉 ′,𝑊𝐸′, 𝐴
′), where for each dis-

tinct tuple of𝐴′
1
(𝑢, 𝑡), 𝐴′

2
(𝑢, 𝑡), . . . , 𝐴′𝑛 (𝑢, 𝑡), 𝑢 ∈ 𝑉 and 𝑡 ∈ 𝜏𝑢 (𝑢),

there is a node 𝑢 ′ ∈ 𝑉 ′ with 𝐴′
𝑖
(𝑢 ′) = 𝐴𝑖 (𝑢, 𝑡),∀𝑖, 1 ≤ 𝑖 ≤ 𝑛,

and there is an edge 𝑒 ′ ∈ 𝐸 ′ between 𝑢 ′, 𝑣 ′ ∈ 𝑉 ′, if and only

if ∃𝑒 ∈ 𝐸 between nodes 𝑢, 𝑣 ∈ 𝑉 with 𝐴′
𝑖
(𝑢 ′) = 𝐴𝑖 (𝑢, 𝑡) and

𝐴′
𝑖
(𝑣 ′) = 𝐴𝑖 (𝑣, 𝑡),∀𝑖, 1 ≤ 𝑖 ≤ 𝑛. The weight 𝑤𝑉 ′ is an aggregate

function 𝑓𝑉 defined upon vertices and the weight𝑤 ′𝑒 of 𝑒
′
is an

aggregate function 𝑓𝐸 defined upon edges.

We use COUNT as our aggregation function for both node

and edges, in our model and the rest of this paper. However other

aggregations may be supported, if edges are attributed as well.

We discern between two types of aggregation, distinct aggrega-
tion (denoted as DIST) and non-distinct aggregation (denoted as

ALL). Distinct aggregation is about aggregating on unique nodes

and edges of the original graph, while, in non-distinct aggrega-

tion, duplicates are not identified and counted each time they

appear. Thus, using COUNT as our aggregate function, weights

are calculated in the two cases as follows.

• For𝐺 ′
𝐷𝐼𝑆𝑇

(𝑉 ′, 𝐸 ′,𝑊𝑉 ′,𝑊𝐸′, 𝐴
′), the weight𝑤𝑉 ′ (𝑢 ′) of the

attribute tuple𝐴′
1
(𝑢 ′), 𝐴′

2
(𝑢 ′), . . . , 𝐴′𝑛 (𝑢 ′) is defined as the

number of distinct𝑢 ∈ 𝑉 with𝐴′
𝑖
(𝑢 ′) = 𝐴𝑖 (𝑢, 𝑡), 1 ≤ 𝑖 ≤ 𝑛

at any time point 𝑡 ∈ 𝑇 .
• For 𝐺 ′

𝐴𝐿𝐿
(𝑉 ′, 𝐸 ′,𝑊𝑉 ′,𝑊𝐸′, 𝐴

′
), the weight𝑤𝑉 ′ (𝑢 ′) of the

attribute tuple𝐴′
1
(𝑢 ′), 𝐴′

2
(𝑢 ′), . . . , 𝐴′𝑛 (𝑢 ′) is defined as the∑

𝑢 |𝑡𝑢 |, for all 𝑢 ∈ 𝑉 , where |𝑡𝑢 | denotes the number of

times points 𝑡 ∈ 𝑇 that with 𝐴′
𝑖
(𝑢 ′) = 𝐴𝑖 (𝑢, 𝑡), 1 ≤ 𝑖 ≤ 𝑛.

In 𝐺 ′
𝐷𝐼𝑆𝑇

, we count all appearances of an attribute tuple on the

same node as one, while in𝐺 ′
𝐴𝐿𝐿

, each tuple is counted each time

it appears either on the same or different nodes.

Figure 3(a-c) depicts the aggregate graphs on gender and pub-

lications of the projection graphs of 𝑡0, 𝑡1 and 𝑡2 respectively of

the graph of Fig. 1. As we consider aggregate graphs on a time

point instead of interval, there is no difference between 𝐺 ′
𝐷𝐼𝑆𝑇

and 𝐺 ′
𝐴𝐿𝐿

. We can see the difference in Fig. 3(d-e) that shows,

for the union graph of Fig. 2, 𝐺 ′
𝐷𝐼𝑆𝑇

(Fig. 3d) and 𝐺 ′
𝐴𝐿𝐿

(Fig. 3e)

respectively. The weight for the node ‘f,1’ in 𝐺 ′
𝐷𝐼𝑆𝑇

is equal to 3,

as 3 distinct nodes appear with this attribute contribution in the

union graph, while in 𝐺 ′
𝐴𝐿𝐿

it is equal to 4 as there are 4 total

appearances of this combination in the union graph.

2.3 Evolution Graph
In addition to the temporal operators that are based on set oper-

ations and graph aggregation, since we want to capture graph

evolution, i.e., the changes that occur in a graph through time,

we define the evolution graph.

Definition 2.7 (Evolution Graph). Given𝐺 and two sets of time

intervals T1 and T2, the evolution graph between T1 and T2 is

a temporal attributed graph 𝐺≻ (𝑉≻, 𝐸≻, 𝜏𝑢≻, 𝜏𝑒≻𝐴≻) in (T1,T2),
with 𝐺∩ the intersection graph defined in (T1,T2), 𝐺− the dif-

ference graph between T1 and T2 and 𝐺 ′− the difference graph

between T2 and T1, where𝑉≻ = 𝑉∩∪𝑉−∪𝑉 ′−, 𝐸≻ = 𝐸∩∪𝐸−∪𝐸 ′−,
for nodes𝑢 ∈ 𝑉∩, 𝜏𝑢≻ (𝑢) = 𝜏𝑢∩ (𝑢), for nodes𝑢 ′ ∈ 𝑉−, 𝜏𝑢≻ (𝑢 ′) =
𝜏𝑢− (𝑢 ′), for nodes 𝑢 ′′ ∈ 𝑉 ′−, 𝜏𝑢≻ (𝑢 ′′) = 𝜏𝑢 ′− (𝑢 ′′), for edges
𝑒 ∈ 𝐸∩, 𝜏𝑒≻ (𝑒) = 𝜏𝑒∩ (𝑒), for edges 𝑒 ′ ∈ 𝐸−, 𝜏𝑒≻ (𝑒 ′) = 𝜏𝑒− (𝑒 ′),
for edges 𝑒 ′′ ∈ 𝐸 ′−, 𝜏𝑒≻ (𝑒 ′′) = 𝜏𝑒 ′− (𝑒 ′′), and 𝐴≻ includes the

attributes for all nodes 𝑢 ∈ 𝑉≻,∀𝑡 ∈ 𝜏𝑢≻ (𝑢)

An evolution graph is therefore defined as a combination of

three other graphs, one defined based on the intersection and

two on the difference operator. Thus, we may discern between

different types of nodes and edges. The evolution graph consists

of nodes and edges that have stayed in the graph in both intervals,

others that disappear in the later interval and others that appear

in the second interval while not in the first, capturing therefore

in detail the evolution of the graph. In particular, for an evolution

graph 𝐺≻ defined on T1,T2:
• Nodes𝑢 ∈ 𝑉≻ for which 𝜏𝑢≻ (𝑢)∩T1 ≠ ∅ and 𝜏𝑢≻ (𝑢)∩T2 ≠
∅ are nodes that remain during the evolution of the graph

from T1 to T2, i.e., these are the nodes belonging to𝑉∩ and
capture stability.
• Nodes 𝑢 ′ ∈ 𝑉≻ for which 𝜏𝑢≻ (𝑢 ′) ∩ T1 ≠ ∅ and 𝜏𝑢≻ (𝑢 ′) ∩
T2 = ∅ are nodes that exist in the graph in interval T1 but
disappear at interval T2, i.e., these are the nodes belonging
to 𝑉− defined on T1 − T2 and capture shrinkage.
• Nodes𝑢 ′′ ∈ 𝑉≻ for which 𝜏𝑢≻ (𝑢 ′′)∩T1 = ∅ and 𝜏𝑢≻ (𝑢 ′′)∩
T2 ≠ ∅ are nodes that did not exist in the graph in interval

T1 but have appeared at interval T2, i.e., these are the nodes
belonging to 𝑉− defined on T2 − T1 and capture growth.

Similarly, we may discern between the edges. Figure 4a shows

the evolution graph of the graph of Fig.1 from time point 𝑡0 to

𝑡1, where labels 𝑆𝑡 , 𝐺𝑟 and 𝑆ℎ𝑟 are used to differentiate between

entities with stability, growth and shrinkage respectively.

As an evolution graph is derived by the combination of an

intersection and two difference graphs, aggregation can be ap-

plied similarly by considering each such graph separately or as a

whole. In the latter case, the three aggregate graphs are overlaid

and different weights corresponding to each entity are used so

as to discern between growth, shrinkage and stability. Figure 4b

depicts the aggregation of the evolution graph of Fig. 4a, where

we can discern the weights for stability, growth and shrinkage.

For instance, node (𝑓 , 1), corresponding to female authors with

1 publication, has: a) stability weight 1, as it had 1 stable appear-

ance on node 𝑢2 at both 𝑡0 and 𝑡1, b) growth weight 1, because

a new appearance on 𝑢4 occurs at 𝑡1, and c) shrinkage weight 1,

because one appearance on 𝑢3 at 𝑡0 is removed in 𝑡1.

3 EXPLORATION
Our goal is to use the idea of the evolution graph so as to detect

interesting events in the behavior of the graph. Based on the

different types of nodes and edges in the graph, we discern three
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(a) 𝑡0 (b) 𝑡1 (c) 𝑡2 (d)𝐺′
𝐷𝐼𝑆𝑇

(e)𝐺′
𝐴𝐿𝐿

Figure 3: Aggregate graphs on (Gender, #Publications) for (a-c) the graph of Fig.1 per time point and (d-e) the graph of Fig. 2.

(a)

(b)

Figure 4: (a) Evolution graph for 𝑡0, 𝑡1 and (b) its aggregation
on (Gender, #Publications) for the graph of Fig. 1.

types of events: (i) growth, which concerns the addition of enti-

ties, nodes or edges, in the graph, (ii) shrinkage, which concerns

the deletion of entities from the graph, and (iii) stability, which
concerns entities that remain stable in the graph.

We want to study the evolution of a graph in time intervals of

different length, for example, find events that occur between two

months, six months or two years, etc. We use a threshold based

approach and considering a specific type of entities, we define

our problem as: detect pairs of intervals between which at least 𝑘
events have occurred.

3.1 Union and Intersection Semantics
We are interested on changes on aggregate graphs, and as the

number of aggregate graphs defined on different intervals one

has to study is exponential, we need a way to efficiently explore

the corresponding search space. Based on our problem definition,

we are interested in considering time intervals of various lengths

and not sets of intervals, thus, we require combining successive

intervals to derive intervals of greater length.

Let T𝑖 , 1 ≤ 𝑖 ≤ 𝑛, be the intervals with shortest length. If

we consider T𝑖 as the elements of a set T , we may construct

the lattice of the powerset T . Since we want to extend intervals

based on combining successive intervals, we only focus on a sub

lattice of the powerset lattice of T , that is the tree that combines

at each level 𝑡 of the lattice two elements of the previous level

𝑡 − 1 if they differ only by one element. As a powerset lattice is

defined on union and intersection set operators, it follows by the

definitions of the temporal operators union and intersection, that

the graphs defined on the time intervals of the sub lattice also

form a sub lattice with respect to these operations.

Therefore, we can define a temporal graph using either union
semantics by considering the respective union semi-lattice, or

intersection semantics by considering the respective intersection

semi-lattice. The first approach adopts amore relaxed view,where

the graph defined on a union of time intervals contains all entities

that exist in any of the two original time intervals. On the other

hand, using intersection semantics, we adopt a stricter view, in

which the intersection graph contains only entities that exist in

both the original time intervals.

Definition 3.1 (Monotonically Increasing). We define aggrega-

tion as monotonically increasing or increasing w.r.t. a temporal

operator (·), if given intervals T𝑘 ,T𝑖 ,T𝑗 such that T𝑖 ⊆ T𝑗 and ag-

gregate graphs𝐺𝑖 (𝑉𝑖 , 𝐸𝑖 ,𝑊𝑉𝑖 ,𝑊𝐸𝑖 , 𝐴) and𝐺 𝑗 (𝑉𝑗 , 𝐸 𝑗 ,𝑊𝑉𝑗
,𝑊𝐸 𝑗

), 𝐴
defined on T𝑘 · T𝑖 and T𝑘 · T𝑗 respectively, it holds that (i) ∀𝑣 ∈ 𝑉𝑗 ,
if 𝑣 ∈ 𝑉𝑖 then 𝑤𝑉𝑖 (𝑣) ≤ 𝑤𝑉𝑗

(𝑣), and (ii) ∀𝑒 ∈ 𝐸 𝑗 , if 𝑒 ∈ 𝐸𝑖 then

𝑤𝐸𝑖 (𝑒) ≤ 𝑤𝐸 𝑗
(𝑒).

Definition 3.2 (Monotonically Decreasing). We define aggrega-

tion as monotonically decreasing or decreasing w.r.t. a temporal

operator (·), if given intervals T𝑘 ,T𝑖 ,T𝑗 such that T𝑖 ⊆ T𝑗 , and
aggregate graphs 𝐺𝑖 (𝑉𝑖 , 𝐸𝑖 ,𝑊𝑉𝑖 , 𝑊𝐸𝑖 , 𝐴), 𝐺 𝑗 (𝑉𝑗 , 𝐸 𝑗 ,𝑊𝑉𝑗

, 𝑊𝐸 𝑗
, 𝐴)

defined on T𝑘 · T𝑖 and T𝑘 · T𝑗 respectively, it holds that (i) ∀𝑣 ∈ 𝑉𝑗 ,
if 𝑣 ∈ 𝑉𝑖 then 𝑤𝑉𝑖 (𝑣) ≥ 𝑤𝑉𝑗

(𝑣), and (ii) ∀𝑒 ∈ 𝐸 𝑗 , if 𝑒 ∈ 𝐸𝑖 then

𝑤𝐸𝑖 (𝑒) ≥ 𝑤𝐸 𝑗
(𝑒).

Regarding union and intersection semantics it easily follows

from their definition that:

Lemma 3.3. Aggregation is monotonically increasing with re-
spect to union and monotonically decreasing with respect to inter-
section.

As union is monotonically increasing, it follows that expand-

ing intervals using union will increase the size of the aggregate

graphs and the number of events we find. Thus, the highest num-

ber of events of interest would be detected when considering the

largest intervals. Consequently, in this case it is interesting to

detect the minimal interval pairs at which at least 𝑘 events occur.

Definition 3.4 (Minimal Interval Pair). A minimal interval pair

T𝑖 ,T𝑗 for a given threshold 𝑘 is defined as a pair of intervals for

which at least 𝑘 events occurred from T𝑖 to T𝑗 , if T𝑖 precedes T𝑗 ,
or from T𝑗 to T𝑖 if T𝑗 precedes T𝑖 and for the same T𝑖 , �T𝑗 ′ ⊂ T𝑗
such that at least 𝑘 events occurred from T𝑖 to T𝑗 ′ or T𝑗 ′ to T𝑖
respectively.

On the other hand, as intersection is monotonically decreasing,

it follows that expanding intervals using intersection will reduce

the size of the aggregate graphs and the number of events we

find. Therefore, the highest number of events of interest would be

detected when considering the smallest intervals. Consequently,
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in this case it is interesting to detect the maximal interval pairs

at which at least 𝑘 events occur.

Definition 3.5 (Maximal Interval Pair). Amaximal interval pair

T𝑖 ,T𝑗 for a given threshold 𝑘 is defined as a pair of intervals for

which at least 𝑘 events occurred from T𝑖 to T𝑗 , if T𝑖 precedes T𝑗 , or
from T𝑗 to T𝑖 if T𝑗 precedes T𝑖 , and for the same T𝑖 , �T𝑗 ′ : T𝑗 ⊂ T𝑗 ′
for which at least 𝑘 events occurred from T𝑖 to T𝑗 ′ , or T𝑗 ′ to T𝑖
respectively.

Based on the above, we define our problem as follows.

Definition 3.6 (Problem Definition). Given an attributed graph

𝐺 and a time period T and a user-defined threshold 𝑘 , find the

minimal and maximal interval pairs in which at least 𝑘 events of

either stability, growth or shrinkage occur.

3.2 Stability
Let us focus on the stability issue first. To determine the minimal

or maximal interval pairs on which at least 𝑘 entities remain

stable, we need to consider all possible pairs of intervals using

union or intersection semantics respectively. We propose a more

efficient exploration of the candidate interval pairs by exploiting

their monotonicity properties.

Therefore, given two time intervals T𝑜𝑙𝑑 and T𝑛𝑒𝑤 , where
T𝑜𝑙𝑑 precedes T𝑛𝑒𝑤 , we study stability by studying the aggregate

graph 𝐺∩ defined on T𝑜𝑙𝑑 , T𝑛𝑒𝑤 . We propose keeping one of the

two ends of the interval fixed, as a time point of reference, and

gradually extending the other end of the interval by exploiting

the union or the intersection semi-lattice respectively. When our

focus is on the original graph then we maintain T𝑜𝑙𝑑 fixed as our

reference point, while when our focus is on the latest state of the

graph, T𝑛𝑒𝑤 is viewed as our fixed reference point.

We denote as 𝑟𝑒𝑠𝑢𝑙𝑡 (𝐺) the number of events of interest that

belong in the aggregate graph. We first consider union semantics,

thus, our problem is defined as finding the minimal interval pairs

in which at least 𝑘 entities remain stable.

Without loss of generality, we maintain T𝑜𝑙𝑑 and gradually

extend T𝑛𝑒𝑤 . Given T𝑖 , 1 ≤ 𝑖 ≤ 𝑛, we apply the following steps:

(1) First compute the aggregate graphs for all pairs T𝑖 ∩ T𝑖+1,
1 ≤ 𝑖 < 𝑛.

(2) If for any aggregate graph𝐺 defined on T𝑖 ∩ T𝑖+1, it holds
that 𝑟𝑒𝑠𝑢𝑙𝑡 (𝐺) ≥ 𝑘 , return 𝐺 on T𝑖 ∩ T𝑖+1 and prune any

pair with T𝑖 as its left end,
(3) For each pair T𝑖 ∩ T𝑖+1 that continues, extend its right

end by substituting T𝑖+1 with its right child in the union

semi-lattice (i.e., T𝑖+1 ∪ T𝑖+2, and apply step 2.

(4) The previous is repeated by extending the right end of

each surviving interval with its right child in the union

semi-lattice (i.e.,T𝑖+1∪T𝑖+2∪· · ·∪T𝑖+𝑘 ) until either 𝑖+𝑘 = 𝑛

or no interval survives further.

We refer to this algorithm as Union Exploration, (U-Explore). U-
Explore can be adapted to perform extension on the left end of

each interval, i.e., by maintaining T𝑛𝑒𝑤 fixed, and extending T𝑜𝑙𝑑 .
The difference is that T𝑜𝑙𝑑 is substituted in the next step by its

left child in the union semi-lattice.

Theorem 3.7. The minimal interval pairs for stability derived
by extending T𝑛𝑒𝑤 are not equal to those derived by extending T𝑜𝑙𝑑 .

Proof. Let us consider of a graph consisting of 𝑛 (> 2) time

points. 𝑇𝑖 ∩ 𝑇𝑖+1 forms the first of our initial pairs. 𝑇𝑖 repre-

senting 𝑇𝑜𝑙𝑑 cannot be extended as there is no preceding time

point. Therefore, w.r.t. 𝑇𝑖 as point of reference, 𝑇𝑖 ∩ 𝑇𝑖+1 is the

only available pair. 𝑇𝑛𝑒𝑤 , that is 𝑇𝑖+1 will be extended to 𝑇𝑖+1 ∪
𝑇𝑖+2, . . . ,𝑇𝑖+1 ∪ 𝑇𝑖+2 ∪ · · · ∪ 𝑇𝑛 , concluding to different pairs of

intervals for the same point of reference. □

Let us now focus on intersection semantics, thus, our problem

is defined as finding the maximal intervals pairs in which at least

𝑘 entities (nodes or relationships) remain stable. Without loss

of generality, let as assume that we maintain T𝑜𝑙𝑑 and gradually

extend T𝑛𝑒𝑤 . Given T𝑖 , 1 ≤ 𝑖 ≤ 𝑛, we apply the following steps:

(1) First compute the aggregate graphs for all pairs T𝑖 ∩ T𝑖+1,
1 ≤ 𝑖 < 𝑛.

(2) If for any aggregate graph𝐺 defined on T𝑖 ∩ T𝑖+1, it holds
that 𝑟𝑒𝑠𝑢𝑙𝑡 (𝐺) ≥ 𝑘 , add 𝐺 to candidate set 𝐶 , else prune

any pair with T𝑖 as its left end.
(3) For each pair T𝑖 ∩ T𝑖+1 that continues, extend its right end

by substituting T𝑖+1 with its right child in the intersection

semi-lattice (i.e., T𝑖+1 ∩ T𝑖+2) and apply step 2, and for any

graph 𝐺 added to 𝐶 , remove from 𝐶 its predecessor (i.e.,

the aggregate graph defined on T𝑖 ∩ T𝑖+1).
(4) The previous is repeated by extending the right end of each

surviving interval with its right child in the intersection

semi-lattice (i.e.,T𝑖+1∪T𝑖+2∪· · ·∪T𝑖+𝑘 ) until either 𝑖+𝑘 = 𝑛

or no interval survives further.

(5) The final candidate set 𝐶 is returned.

We refer to this algorithm as Intersection Exploration, (I-Explore).
I-Explore can be adapted to perform extension on the left end of

each interval, i.e., by maintaining T𝑛𝑒𝑤 fixed, and extending T𝑜𝑙𝑑 .
The difference is that T𝑜𝑙𝑑 is substituted in the next step by its

left child in the intersection semi-lattice.

Theorem 3.8. The maximal interval pairs for stability derived
by extending T𝑛𝑒𝑤 are equivalent to those derived by extending
T𝑜𝑙𝑑 .

Proof. Given that𝑇𝑖 ∩ (𝑇𝑖+1 ∩𝑇𝑖+2) = (𝑇𝑖 ∩𝑇𝑖+1) ∩𝑇𝑖+2 with
points of reference𝑇𝑖 and𝑇𝑖+2 respectively, we derive that pairs of
intervals with different points of reference give the same results if

the time points participating in the pairs of intervals are identical.

Therefore, extending 𝑇𝑛𝑒𝑤 for all initial pairs concludes to the

same maximal pairs of intervals when extending 𝑇𝑜𝑙𝑑 . □

3.3 Growth
Given two time intervals T𝑜𝑙𝑑 and T𝑛𝑒𝑤 , where T𝑜𝑙𝑑 precedes

T𝑛𝑒𝑤 , we study growth by studying the aggregate graph ofT𝑛𝑒𝑤−
T𝑜𝑙𝑑 , i.e., the newer graph minus the old graph to evaluate the

new additions.

Let us first consider union semantics, thus, our problem is

defined as finding the minimal interval pairs in which at least 𝑘

entities (nodes or relationships) are added.

As difference is not a symmetric operator, our results differ

when extending T𝑜𝑙𝑑 in contrast to T𝑛𝑒𝑤 . When extending T𝑜𝑙𝑑
we expect the 𝑟𝑒𝑠𝑢𝑙𝑡 (𝐺) to decrease, while extending T𝑛𝑒𝑤 we

expect causes an increase to 𝑟𝑒𝑠𝑢𝑙𝑡 (𝐺).
Let us first extend T𝑜𝑙𝑑 . We adopt U-Explore by computing at

step (1), instead of the intersection, the difference graphs T𝑖+1−T𝑖 ,
and then apply step (2). We claim that we do not need to proceed

to further steps as for any aggregate graph for which 𝑟𝑒𝑠𝑢𝑙𝑡 (𝐺) <
𝑘 extending the right interval will not increase the result size on

the derived aggregate graph.

Lemma 3.9. The difference T𝑛𝑒𝑤−T𝑜𝑙𝑑 is monotonically decreas-
ing when we extend T𝑜𝑙𝑑 and monotonically increasing when we
extend T𝑛𝑒𝑤 , using union semantics.
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Proof. Let 𝑟𝑒𝑠𝑢𝑙𝑡 (𝐺) the result weights of aggregate graph
𝐺 on T𝑛𝑒𝑤 − T𝑜𝑙𝑑 . Since union is monotonically increasing, for

the aggregate graph on T𝑜𝑙𝑑 , 𝑟𝑒𝑠𝑢𝑙𝑡 (𝐺𝑜𝑙𝑑 ) is at most equal to the

weights 𝑟𝑒𝑠𝑢𝑙𝑡 (𝐺∪𝑜𝑙𝑑 ) for the aggregate graph defined on the

union based extension of T𝑜𝑙𝑑 . As 𝑟𝑒𝑠𝑢𝑙𝑡 (𝐺𝑛𝑒𝑤) for the aggre-
gate graph defined on T𝑛𝑒𝑤 remains the same, it follows that for

𝑟𝑒𝑠𝑢𝑙𝑡 (𝐺 ′) of the aggregate graph on T𝑛𝑒𝑤 − T∪𝑜𝑙𝑑 it holds that

𝑟𝑒𝑠𝑢𝑙𝑡 (𝐺) ≤ 𝑟𝑒𝑠𝑢𝑙𝑡 (𝐺 ′). Similarly, by extending T𝑛𝑒𝑤 to T∪𝑛𝑒𝑤 ,
the result of 𝑇∪𝑛𝑒𝑤 −𝑇𝑜𝑙𝑑 is at least equal to 𝑟𝑒𝑠𝑢𝑙𝑡 (𝐺). □

Let us now consider extending T𝑛𝑒𝑤 . Again, we adopt U-

Explore, by computing the difference aggregate graphs T𝑖+1 − T𝑖
instead of the intersection aggregate graphs at the respective

steps. The rest of the steps are applied as defined.

Next, we focus on intersection semantics and determine the

maximal intervals pairs in which at least 𝑘 entities are added. We

first extend T𝑜𝑙𝑑 using intersection semantics.

Lemma 3.10. T𝑛𝑒𝑤 − T𝑜𝑙𝑑 is monotonically increasing when we
extend T𝑜𝑙𝑑 and monotonically decreasing when we extend T𝑛𝑒𝑤 ,
using intersection semantics.

Proof. Let 𝑟𝑒𝑠𝑢𝑙𝑡 (𝐺) the result weights of aggregate graph
𝐺 on T𝑛𝑒𝑤 − T𝑜𝑙𝑑 . As intersection is monotonically decreasing,

for the aggregate graph on T𝑜𝑙𝑑 , 𝑟𝑒𝑠𝑢𝑙𝑡 (𝐺𝑜𝑙𝑑 ) is at least equal to
the weights 𝑟𝑒𝑠𝑢𝑙𝑡 (𝐺∩𝑜𝑙𝑑 ) for the aggregate graph defined on

the intersection based extension of T𝑜𝑙𝑑 . As 𝑟𝑒𝑠𝑢𝑙𝑡 (𝐺𝑛𝑒𝑤) for the
aggregate graph defined onT𝑛𝑒𝑤 remains the same, it follows that

for 𝑟𝑒𝑠𝑢𝑙𝑡 (𝐺 ′) of the aggregate graph onT𝑛𝑒𝑤−T∩𝑜𝑙𝑑 it holds that

𝑟𝑒𝑠𝑢𝑙𝑡 (𝐺) ≥ 𝑟𝑒𝑠𝑢𝑙𝑡 (𝐺 ′). Similarly, by extending T𝑛𝑒𝑤 to T∩𝑛𝑒𝑤 ,
the result of 𝑇∩𝑛𝑒𝑤 −𝑇𝑜𝑙𝑑 is at most equal to 𝑟𝑒𝑠𝑢𝑙𝑡 (𝐺). □

Based on the above lemma, the maximal interval pairs are:

each point of reference T𝑛𝑒𝑤 , with the longest possible T𝑜𝑙𝑑 as

long as for the defined aggregate graph, 𝑟𝑒𝑠𝑢𝑙𝑡 (𝐺) ≥ 𝑘 .

When extending T𝑛𝑒𝑤 , I-Explore is adopted appropriately. In

all respective steps, we compute the aggregate difference graphs

T𝑖+1 − T𝑖 , and then apply the rest of the steps accordingly.

As difference is not a symmetrical operator to exploit mono-

tonicity properties either T𝑛𝑒𝑤 or T𝑜𝑙𝑑 should be extended. When

we extend both T𝑛𝑒𝑤 and T𝑜𝑙𝑑 , difference is non-monotonous ir-

respectively to the semantics (union or intersection) used.

3.4 Shrinkage
Given two time intervals T𝑜𝑙𝑑 and T𝑛𝑒𝑤 , where T𝑜𝑙𝑑 precedes

T𝑛𝑒𝑤 , we study shrinkage based on the aggregate graph of T𝑜𝑙𝑑 −
T𝑛𝑒𝑤 , i.e., the old graph minus the new one to evaluate deletions.

With union semantics, our problem is defined as finding the

minimal intervals pairs in which at least 𝑘 entities (nodes or

relationships) are deleted. When extending T𝑜𝑙𝑑 , we adapt U-

Explore by computing the difference graphs T𝑖 − T𝑖+1. On the

other hand, when extending T𝑛𝑒𝑤 , as according to lemma 3.9, the

operator is monotonically decreasing, we only need to evaluate

the difference aggregate graphs on pairs of the shortest intervals

(i.e., step 1 of U-Explore) and check their result with respect to 𝑘 .

With intersection semantics we determine the maximal inter-

vals pairs in which at least 𝑘 entities are deleted. When extending

T𝑛𝑒𝑤 , I-Explore is adapted appropriately by computing the aggre-

gate difference graphs T𝑖 −T𝑖+1. When extending T𝑜𝑙𝑑 , according
to lemma 3.10 the operator is monotonically increasing and again

for each reference point T𝑛𝑒𝑤 , the longest possible T𝑜𝑙𝑑 forms the

maximal interval and it suffices to check whether 𝑟𝑒𝑠𝑢𝑙𝑡 (𝐺) ≥ 𝑘 .

All cases are summarized on Table 1. Column Case shows

which is the reference point and which interval is extended using

either union (∪) or intersection (∩) semantics. Columns Left and
Right refer to the left and right interval in the result interval

pairs. One of the elements in the pair is always a time point (t.p.)

while the other can be either of type time point (t.p.) or interval

and longest interval. The last column shows the relationships

between the results of different cases, and in particular when the

result of one case is a subset of the result of another case.

3.5 Initialization of k
The appropriate value of the threshold 𝑘 depends each time on

the given graph and its data. To configure this threshold, we

propose an initial value for 𝑘 , indicating a threshold of interest-

ingness and acting as a starting point so as to attain some results

and then continue with its tuning. In particular, given the type of

entity we are interested in, we initialize 𝑘 to a value𝑤𝑡ℎ which

is defined as the minimum or the maximum weight of the given

type of entity in the aggregation graph for any graph defined on

the temporal aggregation of pairs of consecutive time points. For

stability, we compute the aggregate graphs on intersections of

pairs of consecutive time points, while for growth and shrinkage

we compute the aggregate graphs on the appropriate difference

graphs. Further, for a monotonically increasing operator, we start

with𝑤𝑡ℎ as the minimum aggregation weight for a given entity

type, and increase it gradually, while for the monotonically de-

creasing operators𝑤𝑡ℎ corresponds to the maximum aggregation

weight and is gradually decreased as the exploration progresses.

4 ALGORITHMS
To store an attributed temporal graph𝐺 (𝑉 , 𝐸, 𝜏𝑢, 𝜏𝑒, 𝐴) defined in
a set of time intervals T , we maintain separate structures for𝑉 , 𝐸

and 𝐴. For each 𝑣 ∈ 𝑉 , 𝜏𝑢 (𝑢) is represented by a binary vector of

size |T |, where each element in the vector corresponds to a time

𝑡 ∈ T , and is 1 iff 𝑡 ∈ 𝜏𝑢 (𝑣). Combining the temporal information

for all nodes, we store these vectors as a labeled array V with |𝑉 |
rows labeled with the nodes ids and |T | columns labeled with

the time 𝑡 . A similar representation is deployed for the edges

that are also stored in a labeled array E, with |𝐸 | rows labeled
with the edges ids denoted as the edges end points (𝑢, 𝑣) and |T |
columns labeled with the time 𝑡 .

For efficient storage and processing, we discern between static

and time-varying attributes. For static-attributes a labeled array

S maintains a row for each node 𝑣 ∈ 𝑉 , labeled by the node id,

and a number of columns equal to the number of static attributes,

labeled by the corresponding attribute name. Each row 𝑣 in the

array associates node 𝑣 with its corresponding static attributes

values. In contrast, we maintain a labeled array A𝑖 , for each of

the time-varying attributes 𝐴𝑖 . Rows are similarly to S labeled
with node ids, while the columns maintain temporal information.

Each cell A𝑖 [𝑣, 𝑡] maintains the value of attribute 𝐴𝑖 of 𝑣 at time

𝑡 . Table 2 depicts V, S and A for the graph of Fig. 1.

4.1 Temporal Operators Implementation
Based on our data representation, time projection is easily imple-

mented by restricting the arrays to the columns corresponding

to a given time interval.

We present in detail the algorithm implementing the union

operator of a graph 𝐺 (𝑉 , 𝐸,𝐴) for T1,T2 as depicted in Alg. 1.

The algorithm takes as input the labeled arrays V, E, S and A𝑖

for all time-varying attributes 𝐴𝑖 ∈ 𝐴, and outputs the labeled
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Table 1: Exploration Intervals Properties

Event Type Case Left Right Mon. Increasing Mon. Decreasing ⊆ of

Growth

Min.

T𝑛𝑒𝑤 - T𝑜𝑙𝑑 (∪) t.p. t.p. ✓ T𝑛𝑒𝑤 (∪) - T𝑜𝑙𝑑
T𝑛𝑒𝑤 (∪) - T𝑜𝑙𝑑 t.p. / interval t.p. ✓

Max.

T𝑛𝑒𝑤 - T𝑜𝑙𝑑 (∩) t.p. longest interval ✓
T𝑛𝑒𝑤 (∩) - T𝑜𝑙𝑑 t.p. / interval t.p. ✓

Shrinkage

Min.

T𝑜𝑙𝑑 (∪) - T𝑛𝑒𝑤 t.p. / interval t.p. ✓
T𝑜𝑙𝑑 - T𝑛𝑒𝑤 (∪) t.p. t.p. ✓ T𝑜𝑙𝑑 (∪) - T𝑛𝑒𝑤

Max.

T𝑜𝑙𝑑 (∩) - T𝑛𝑒𝑤 t.p. / interval t.p. ✓
T𝑜𝑙𝑑 - T𝑛𝑒𝑤 (∩) t.p. longest interval ✓

Stability

Min.

T𝑜𝑙𝑑 (∪) ∩ T𝑛𝑒𝑤 t.p. / interval t.p. ✓
T𝑛𝑒𝑤 (∪) ∩ T𝑜𝑙𝑑 t.p. / interval t.p. ✓

Max.

T𝑜𝑙𝑑 (∩) ∩ T𝑛𝑒𝑤 t.p. / interval t.p. ✓ T𝑛𝑒𝑤 (∩) ∩ T𝑜𝑙𝑑
T𝑛𝑒𝑤 (∩) ∩ T𝑜𝑙𝑑 t.p. / interval t.p. ✓ T𝑜𝑙𝑑 (∩) ∩ T𝑛𝑒𝑤

Table 2: Arrays V, S for Gender, and A for #Publications for
the graph of Fig. 1.

Id 𝑡0 𝑡1 𝑡2

𝑢1 1 1 0

𝑢2 1 1 1

𝑢3 1 0 0

𝑢4 1 1 1

𝑢5 0 0 1

Id
𝑢1 𝑚

𝑢2 𝑓

𝑢3 𝑓

𝑢4 𝑓

𝑢5 𝑚

Id 𝑡0 𝑡1 𝑡2

𝑢1 3 1 -

𝑢2 1 1 1

𝑢3 1 - -

𝑢4 2 1 1

𝑢5 - - 3

arrays V∪, E∪, S∪ and A𝑖∪ that maintain the information of the

derived union graph 𝐺∪ for (T1,T2). As our result is defined in

(T1,T2), we initialize all V∪, E∪ and A𝑖∪s as empty arrays with

one column for each 𝑡 ∈ T1 ∪ T2 (line 1). Similarly, we restrict

the input tables, except S that stores no temporal information,

only to the columns corresponding to time 𝑡 ∈ T1 ∪ T2 (line 2).
Union is first applied on nodes and their attributes, and then on

the edges. For each node 𝑣 ∈ 𝑉 , the corresponding row 𝑣 of V is

accessed, and if there is a value in any V[𝑣, 𝑡] equal to 1, the row

is inserted in V∪. The corresponding entries for the attributes of

𝑣 are also updated. That is, the row corresponding to 𝑣 in S and
for each time-varying attribute 𝐴𝑖 the corresponding rows from

arrays A𝑖 are retrieved and copied in S∪ and A𝑖∪ respectively

(lines 3-9). Similarly, for each edge 𝑒 ∈ 𝐸 the corresponding row

𝑒 of E is accessed, and if there is a value in any E[𝑒, 𝑡] equal to 1,

the row is inserted in E∪ (lines 10-14).

The next operator is intersection. For selecting the nodes that

are to be included in the intersection graph, that is, for a row 𝑣 ofV
to be inserted intoV∩, we require that all elementsV[𝑣, 𝑡] with 𝑡 ∈
T1 and V[𝑣, 𝑡 ′] with 𝑡 ′ ∈ T2 are equal to 1. The insertion of edges

is also changed accordingly. Thus, the intersection algorithm

is similar to the union algorithm and only differentiates in the

selection of nodes and edges to be included in the result.

Finally, for the difference operator, let T1 − T2, for selecting
the nodes that are to be included in the difference graph, a row

𝑣 of V is inserted into V− if any V[𝑣, 𝑡] with 𝑡 ∈ T1 is equal to 1,

and all V[𝑣, 𝑡 ′] with 𝑡 ′ ∈ T2 are equal to 0.

4.2 Aggregation Implementation
Aggregation differentiates between distinct and non-distinct. Fur-

thermore, to improve efficiency, static and time-varying attributes

can be treated separately.

Algorithm 2 applies distinct aggregation when at least one of

the attributes of aggregation is time-varying. It takes as input

V, E, S and A𝑖 for all time-varying attributes 𝐴𝑖 ∈ 𝐴, interval

T and a list 𝐿 of the aggregation attributes, and outputs the

labeled vectors V′, E′ representing the aggregated graph 𝐺 ′. For
each attribute 𝐴𝑖 in 𝐿, the array A𝑖 is unpivoted, i.e., its columns

corresponding to the time points inT are appended as rows (lines

1-3), and then merged into a new array A′ (line 4). Array A′ is
then deduplicated based on key (𝑢, 𝑎′), where 𝑎′ is a tuple formed

by the aggregate attributes, so that each node 𝑢 appears with a

given attribute tuple 𝑎′ only once (line 5). For static attributes, we
restrict S to the columns corresponding to attributes in 𝐿 (line 6)

and merge the restriction result into A′ (line 7). Groups are then
formed on A′ based on each distinct attribute tuple 𝑎′ and its

appearances are counted (line 8). Each such group corresponds

to a node that is inserted in the aggregate graph, labeled by the

attribute tuple 𝑎′ and with value equal to the groups count which

constitutes the node’s weight (lines 9-12). To add the edges in

the aggregation graph, we traverse the edge array E and lookup

the edge ends (nodes) in A′ to retrieve the pair of attribute tuples
corresponding to the given nodes at each time point. Each such

tuple pair is inserted into a new temporary arrayA′′ (lines 13-17).
The rest of the procedure is similar to our treatment of nodes. A′′

is deduplicated based on key (𝑢, 𝑣), (𝑎′, 𝑎′′), groups are formed

based on pairs (𝑎′, 𝑎′′) and their appearances counted (lines

18-19). Finally, for each group a new row with label (𝑎′, 𝑎′′) is
inserted in array E′, representing a new edge, and with weight

equal to its count that is assigned as its value (lines 20-23).

For non-distinct aggregation, Alg. 2 is modified by omitting

deduplication for nodes and edges, thus counting all appearances

of each attribute tuple, or pair of attribute tuples respectively.

Optimization is possible if aggregation concerns only static

attributes. For distinct aggregation, we do not require unpivot-

ing nor deduplication as each node has a unique value for each

static attribute not depending on time. Further, for each edge the

lookups required for its ends do not depend on time and again

no deduplication is required. For non-distinct aggregation, as

we need to count all appearances of a node, we initialize corre-

sponding weights for each (𝑢, 𝑎′) (or (𝑢, 𝑣), (𝑎′, 𝑎′′)) by counting

the columns in V (or E) equal to 1. Then, instead of counting the

appearances of each group 𝑎′ (or (𝑎′, 𝑎′′), we sum their weights.

4.3 Optimizations
To implement our aggregation framework, we need to materialize

all possible combinations of dimensions and all possible inter-

val aggregations. Although, this is the best option in terms of
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Algorithm 1: Union
Input: A temporal attributed graph 𝐺 represented by

V, E, S and {A𝑖 }, intervals T1,T2
Output: The union graph 𝐺∪ represented by

V∪, E∪, S∪, {A𝑖∪}
1 Initialize V∪, E∪, {A𝑖∪} in T1 ∪ T2, and S∪
2 Restrict V, E, and {A𝑖 } in T1 ∪ T2
3 for each row 𝑣 ∈ V do
4 if 𝑎𝑛𝑦 V[𝑣, 𝑡] = 1 then // 𝑡 ∈ T1 ∪ T2
5 Insert V[𝑣] in V∪
6 Insert S[𝑣] in S∪
7 Insert each A𝑖 [𝑣] in the corresponding A𝑖∪
8 end
9 end

10 for each row 𝑒 ∈ E do
11 if 𝑎𝑛𝑦 E[𝑒, 𝑡] = 1 then // 𝑡 ∈ T1 ∪ T2
12 Insert E[𝑒] in E∪
13 end
14 end
15 return V∪, E∪, S∪, {A𝑖∪}

response time of OLAP queries, generation of all possible aggre-

gations of a large multidimensional network is quite unrealistic

as it requires excessive storage space.

We propose using partial materialization based on the proper-

ties of the aggregate graphs and which graphs can be derived by

other aggregates without accessing the original graph.

In particular, given an aggregate graph𝐺 ′ on a set of attributes
𝐴′ = {𝐴1, 𝐴2, . . . , 𝐴𝑘 } any aggregate graph𝐺 ′′ on a subset𝐴′′ ⊆
𝐴′ can be derived directly from𝐺 ′. In particular, nodes and edges

between them with attributes corresponding to distinct tuples

in 𝐴′′ are grouped together from 𝐺 ′ to form the new aggregate

nodes and edges in 𝐺 ′′. The weights in 𝐺 ′′ are evaluated by

summing up the respective weights of the entities of𝐺 ′ belonging
to each group. Consequently, our aggregation with COUNT as

the aggregation function is identified as a D-distributive measure

w.r.t. top-down aggregations.

With respect to time, we can compute the aggregate graph

of a time interval of higher granularity based on lower level

aggregate graphs if available. In particular, we claim that union

and non-distinct aggregation is T-distributive. That is, to compute

the weights of the higher level aggregate union graph, we sum

up the weights for the respective nodes and edges in each of the

lower level graphs. Based on the above, we propose precomputing

aggregations on the unit of time that can be combined with

union to attain the aggregate graphs of higher granularity. While

distinct union aggregates are not T-distributive, as we need to

identify distinct nodes across multiple graphs.

5 EVALUATION
Ourmethods are implemented in Python 3.7.9 utilizing theModin

multiprocess library [20] and our experiments are conducted in a

Windows 10 machine with Intel Core i5-2430, 2.40GHz processor

and 8GB RAM. We use two real-world datasets, a collaboration

network, DBLP, and a movie ratings dataset, MovieLens [17]. Our
code and data are publicly available

1
.

1
https://github.com/etsoukanara/GraphTempo

Algorithm 2: Distinct Aggregation

Input: A temporal attributed graph 𝐺 represented by

V, E, S and {A𝑖 }, intervals T and a list 𝐿 of

aggregation attributes

Output: The aggregate graph 𝐺 ′ represented by arrays

V′ and E′

1 for 𝐴𝑖 ∈ 𝐿 do
2 A′𝑖 ← 𝑢𝑛𝑝𝑖𝑣𝑜𝑡 (A𝑖 )
3 end
4 A′ ←Merge all A′𝑖s
5 A′ ← A′.𝑑𝑒𝑑𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒 (𝑣, 𝑎′)
6 S′ restrict to columns for 𝑠 ∈ 𝐿
7 A′ ←Merge A′ and 𝑆
8 𝐺𝑟𝑜𝑢𝑝𝑠𝐴′ ← A′.𝑔𝑟𝑜𝑢𝑝𝑏𝑦 (𝑎′).𝑐𝑜𝑢𝑛𝑡 ()
9 for each group in 𝐺𝑟𝑜𝑢𝑝𝑠𝐴′ do
10 Insert row 𝑎′ in V′

11 V′[𝑎′] ← 𝑎′.𝑐𝑜𝑢𝑛𝑡
12 end
13 for (𝑒 (𝑢, 𝑣), 𝑡) ∈ E do
14 𝑎′ ← Look up (𝑢, 𝑡) in A′

15 𝑎′′ ← Look up (𝑣, 𝑡) in A′

16 Insert (𝑎′, 𝑎′′) to A′′

17 end
18 A′′.𝑑𝑒𝑑𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒 ((𝑢, 𝑣), (𝑎′, 𝑎′′))
19 𝐺𝑟𝑜𝑢𝑝𝑠𝐴′′ ← A′′.𝑔𝑟𝑜𝑢𝑝𝑏𝑦 ((𝑎′, 𝑎′′)) .𝑐𝑜𝑢𝑛𝑡 ()
20 for each group in 𝐺𝑟𝑜𝑢𝑝𝑠𝐴′′ do
21 Insert row (𝑎′, 𝑎′′) to E′

22 E′[(𝑎′, 𝑎′′)] ← (𝑎′, 𝑎′′).𝑐𝑜𝑢𝑛𝑡
23 end
24 return V′, E′

(a) DBLP (b)MovieLens

Figure 5: Aggregation time per attribute and groups of
attributes per time point.

The DBLP dataset is extracted from DBLP
2
. Each node cor-

responds to an author and two authors are connected with an

edge if they co-author one or more papers in a year. Our DBLP
dataset covers a period of 21 years from 2000 to 2020 and we limit

it to publications at 21 conferences related to data management

research areas. The derived graph is directed and the direction

of the edges indicates the order of the authors of a paper. Each

node is associated with one static attribute that is the gender (𝐺)

of the author and one time-varying attribute representing the

number of publications (𝑃 ) an author published each year.

The MovieLens dataset is built on the benchmark MovieLens

[17] movie ratings dataset. We select a period of six months,

2
https://dblp.uni-trier.de/
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Table 3: DBLP Dataset

#TP 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

#Nodes 1708 2165 1761 2827 3278 4466 4730 5193 5501 5363 6236 6535 6769 7457 7035 8581 8966 9660 11037 12377 12996

#Edges 2336 2949 2458 4130 4821 7145 7296 7620 8528 8740 10163 10090 11871 12989 12072 15844 16873 18470 21197 27455 28546

Table 4:MovieLens Dataset

#TP May Jun Jul Aug Sep Oct

#Nodes 486 508 778 1309 575 498

#Edges 100202 85334 201800 610050 77216 48516

from May 1st, 2000 to October 31st, 2000, where each month

corresponds to a time point. Each node corresponds to a user

and an edge between two users denotes that they have rated

the same movie. Our dataset is directed and does not contain

multiple edges in the unit of time. The order of nodes on each

edge denotes precedence of rating. Each node has 3 static and 1

time-varying attribute. Specifically, we have: gender (𝐺), age (𝐴)
that takes 6 discrete values according to the age group of a user,

and occupation (𝑂) that takes 21 discrete values. The time-varying

attribute is the average rating (𝑅) of the user per month.

Table 3 and Table 4 show nodes and edges per time point for

the DBLP and MovieLens dataset respectively.

5.1 Performance Evaluation
In the first set of experiments, we evaluate the performance of

our algorithms by measuring execution times.

Type of Attribute. In Fig. 5, we measure aggregation time per

attribute and all attributes combinations on time points. While

we expect static attributes to be faster compared to time-varying

ones, in Fig. 5a, for DBLP time is similar for both attributes, since

static and time-varying aggregation have similar behaviour when

dealing with time points. Their difference is due to the larger

domain of the time-varying attribute, as gender has 2 distinct

values, while publications vary from 7 to 18. The aggregation

(gender, publications) needs 0.18s on 2020, almost 3 times the

time for gender (0.06s) and publications (0.07s). When combining

attributes, the domain gets larger, e.g. there are 28 distinct val-

ues for (gender, publications) forming the number of aggregate

nodes. In Fig. 5b forMovieLens, for presentation clarity, we report

part of all possible attribute combinations as the ones omitted

behave in a similar way. We depict aggregation time for each

attribute, and, from all possible groups with a specific number of

attributes, we selectively report a representative example com-

bining static and time-varying attributes. We notice a similar to

Fig. 5a pattern as gender aggregation hits the best time overall,

while aggregation on all 4 attributes has the longest time. The

results confirm that time is analogous to the distinct values in

the aggregation attribute or combination of attributes domain.

The peak observed during August is due to its high number of

nodes and edges compared to other months (Table 4).

Temporal Operators. Figures 6- 9 focus on temporal aggregations

for different operators comparing static and time-varying at-

tributes while extending time intervals. We report the total time

of operation and aggregation and the time split between the two

per attribute for DBLP, and total time for MovieLens.
Figure 6 illustrates results for union (𝑈 ) and compares non-

distinct (𝐴) and distinct (𝐷) aggregation. The type of attribute

greatly influences behavior. Non-distinct aggregation for the

longest interval needs 0.53s and 0.52s for gender, while 5.9s and

2.1s for the time-varying attribute for DBLP (Fig. 6a) and Movie-
Lens (Fig. 6d) respectively. The big difference is because static

attributes remain stable over time, while for time-varying ones,

we need to capture all different values of the attributes in the

interval. Also, distinct aggregation on static attributes achieves

slightly better performance than non-distinct, up to 0.32s com-

pared to 0.3 (Fig. 6b), as in the latter, we additionally compute the

occurrences of an individual node or edge in the interval. On the

contrary, non-distinct aggregation for time-varying attributes

needs 5.7s while distinct is completed in 7.18s for the longest time

interval (Fig. 6c). The cost for the temporal operator is similar in

all cases, while aggregation increases the total time.

Figure 7 depicts intersection (𝐼 ), where the results refer up to

[2000, 2017] for DBLP and [May, July] for MovieLens, indicating
the longest interval there exists at least one common edge. The

type of attribute is again the controlling performance factor (Fig.

7a and Fig. 7d). In Fig. 7b, for time split, intersection is more

costly than aggregation for the static attribute, in contrast to the

results derived for union. This is due to the decreasing number

of nodes and edges as the intervals expand. For time-varying

attributes, the operation time is similar to static, but aggregation

takes much longer, dominating the total cost (Fig. 7c) due to the

increase in the distinct attribute values.

For difference (𝐹 ), we extend T𝑜𝑙𝑑 with union semantics, while

T𝑛𝑒𝑤 is our reference point. In Fig. 8, we consider T𝑜𝑙𝑑 - T𝑛𝑒𝑤 . As
T𝑜𝑙𝑑 expands, total time increases as the output of the operation

also grows. Figure 8b shows that for static attributes, similar to

intersection, difference requires more than double time required

for both types of aggregation, whereas for the time-varying at-

tribute aggregation is more expensive (Fig. 8c). For MovieLens

(Fig. 8d), there is no large distinction between performance for

static and time-varying attributes. Figure 9 depicts T𝑛𝑒𝑤 - T𝑜𝑙𝑑 ,
that needs less time compared to T𝑜𝑙𝑑 - T𝑛𝑒𝑤 , as the operation
output decreases. Any aggregation is faster than the operation

for both the static (Fig. 9b) and time-varying (Fig. 9c) attribute.

Total time does not depend on the type of attribute or the type

of aggregation because the operation time is about the same for

both, while aggregation is actually time point aggregation.

Partial Materialization.We evaluate our proposed optimiza-

tions by measuring speedup defined as the execution time of

the proposed aggregation algorithms to the time of optimized

aggregation that exploits precomputed results. In Fig. 10, we re-

port speedup when exploiting precomputed aggregations on time

points to derive their non-distinct union compared to computing

it from scratch. For DBLP, aggregation over the years offers an

8x to 20x speedup for static attributes (Fig. 10a), and from 8x up

to 78x for time-varying ones (Fig. 10b).

Figure 11 depicts speedup when exploiting precomputed at-

tributes aggregations to derive aggregations on subsets of those

attributes compared to computing them from scratch. Figure 11a

shows gender and publications aggregation when computed from

the aggregation of all DBLP attributes with a speedup of 6x up to

21x. ForMovieLens, first we report each attribute when computed

from all pairs of attributes (Fig. 11b). In particular, gender is com-

puted in 𝐺1 from (gender, age), in𝐺2 from (gender, rating) and

in𝐺3 from (gender, occupation), and similarly for rating, with 𝑅1
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(a) Total time per attribute (b) Time split for Gender (c) Time split for #Publications (d) Total time per attribute

Figure 6: Union and aggregation (DIST, ALL) time per attribute for (a), (b), (c) DBLP and (d)MovieLens.

(a) Total time per attribute (b) Time split for Gender (c) Time split for #Publications (d) Total time per attribute

Figure 7: Intersection and aggregation (DIST) time per attribute for (a), (b), (c) DBLP, and (d)MovieLens.

(a) Total time per attribute (b) Time split for Gender (c) Time split for #Publications (d) Total time per attribute

Figure 8: Difference (T𝑜𝑙𝑑 (∪) - T𝑛𝑒𝑤 ) and aggregation (DIST, ALL) time per attribute for (a), (b), (c) DBLP, and (d) MovieLens.

(a) Total time per attribute (b) Time split for Gender (c) Time split for #Publications (d) Total time per attribute

Figure 9: Difference (T𝑛𝑒𝑤 - T𝑜𝑙𝑑 (∪)) and aggregation (DIST, ALL) time per attribute for (a), (b), (c) DBLP, and (d) MovieLens.

from (rating, gender), 𝑅2 from (rating, age) and 𝑅3 from (rating,

occupation), where we achieve a significant speedup of up to 48x.

ForMovieLens, we also report results for computing all pairs (Fig.

11c) and triplets (Fig. 11d) of attributes from the aggregate of all

4 attributes, where we observe up to 8x and 6x speedup, respec-

tively. Improvement is greater for single attributes followed by

pairs and then, triplets.

5.2 Qualitative Evaluation
We study the evolution on gender aggregation for authors with

high activity (#Publications > 4) for DBLP where we depict the

distribution of each entity w.r.t. stability, growth and shrinkage.

Figure 12a depicts the aggregate evolution graph for 2010 w.r.t.

the past decade, 2000’s, while Fig. 12b refers to 2020 w.r.t. to

2010’s. In Fig. 12a, around 61% of both male and female authors
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(a) DBLP (b)MovieLens

Figure 10: Speedup of efficient Union aggregation (ALL).

remain stable, however male authors are 86 compared to only 11

female authors. While nodes exhibit stability and there is little

growth, edges have a high rate of shrinkage and no stability, so

collaborations between active authors of the past decade do not

continue on 2010. Figure 12b depicts similar behaviour, where

the ratio of stable male authors is 9.2% higher and of women

authors 17.6% higher in 2020 compared to 2010. Shrinkage in

collaborations shows a similar increase.

Finally, we determine maximal interval pairs for stability and

minimal for growth and shrinkage for female-female relation-

ships. For MovieLens, the maximum weight for stability is𝑤𝑡ℎ =

86. Thus, we gradually decrease it, setting 𝑘3 = 𝑤𝑡ℎ , 𝑘2 = 𝑤𝑡ℎ/2
and 𝑘1 = 𝑤𝑡ℎ/86. The greatest stability is achieved on August to

September where there are at least 86 common edges between

women (Fig. 13a). For growth, with 𝑤𝑡ℎ = 33968 and 𝑘3 = 𝑤𝑡ℎ ,

𝑘2 = 𝑤𝑡ℎ/2, and 𝑘1 = 𝑤𝑡ℎ/12, the greatest growth occurs on Au-

gust with 33968 new edges (Fig. 13b). For shrinkage,𝑤𝑡ℎ = 6548

is the minimum weight and we increase it so that, 𝑘1 = 𝑤𝑡ℎ ,

𝑘2 = 𝑤𝑡ℎ ∗ 2, and 𝑘3 = 𝑤𝑡ℎ ∗ 5. In August, 32740 edges of [May,

July] are eliminated (Fig. 13c), though August has the highest

number of edges, indicating the high turnover of edges at each

time point. For DBLP with 𝑤𝑡ℎ = 62, 𝑘3 = 𝑤𝑡ℎ , 𝑘2 = 𝑤𝑡ℎ/2 and
𝑘1 = 𝑤𝑡ℎ/62, the greatest stability occurs in 2019 with at least 62

stable edges (Fig. 14a). In Fig. 14b, with𝑤𝑡ℎ = 721 and 𝑘3 = 𝑤𝑡ℎ ,

𝑘2 = 𝑤𝑡ℎ/3 and 𝑘1 = 𝑤𝑡ℎ/10, there is a growth of at least 721 new
edges on 2019. Lastly, for shrinkage, with𝑤𝑡ℎ = 60 and 𝑘1 = 𝑤𝑡ℎ ,

𝑘2 = 𝑤𝑡ℎ ∗ 5, 𝑘3 = 𝑤𝑡ℎ ∗ 20, 1200 collaborations from 2001 up to

2009 no longer exist on 2010 (Fig. 14c).

6 RELATEDWORK
In [4, 5], dimensions, measures and operators for graph OLAP

are defined. Aggregate graphs are defined on both informational

(attribute-based) and topological (structural) dimensions and roll-

up, drill-down, slice and dice are supported. Partial material-

ization is discussed, while efficient computation for topological

OLAP is also addressed in [21]. In [24], drill-down and roll-up

are supported on graphs aggregated based on node attributes

and relationships between them. GraphCube [26] also defines

aggregate graphs based on both attributes and structure, where

the evaluated measure is the actual aggregated graph, while it ex-

tends OLAP with queries between aggregated graphs. Graphoids

are defined in [15] over labeled directed multi-hypergraphs to

deal with heterogeneous data that are connected with more than

binary relationships. In [9], aggregates on RDF graphs are based

on SPARQL aggregation semantics, and the problem of efficiently

determining the most interesting attribute-based aggregations

is addressed. In [7], TigerGraph’s query language defines accu-

mulators for aggregating values returned by pattern matching.

State information is gradually computed for nodes (and globally)

accumulating the corresponding aggregate values for a query.

In [18], aggregation is based on random walks. Each node has a

score based on the concentration of the attribute values of nodes

in its vicinity. The goal is to determine interesting nodes based

on a user-defined threshold. In [22], a comprehensive review on

graph OLAP compares related works on 7 criteria: materializa-

tion, network, selection, aggregation, model, OLAP operations

and analytics. As graph aggregation and OLAP provide a concise

representation of a graph, it can be also deployed for graph sum-

marization [25]. Finally, the term graph aggregation is used in

[11] to refer to the mapping of different non-attributed graphs

into one, to deal with problems such as consolidating conflicting

views, counting votes or computing consensus.

All works above do not focus on temporal of data. There is a

lot of previous work in temporal relational databases. Temporal

relational algebra [8] employs multidimensional tuple timestamp-

ing and supports both valid and transactional time. Relational

operators are extended to preserve snapshot semantics, and tem-

poral projection and temporal group by are defined. In [10], new

temporal operators on sets of intervals are implemented to over-

come the complexity of temporal calculations. A survey [14] on

time management in data warehouses covers several issues such

as warehouse design, querying and schema changes.

Little research has focused on incorporating temporal opera-

tions in the graph OLAP model. In [6], GQL is extended to T-GQL

handling temporal paths. Continuous paths address evolution and

consecutive paths travel scheduling problems. In TGraph [19],

temporal algebraic operators such as temporal selection for nodes

and edges and traversal with temporal predicates are defined for

a temporal property graph. TGraph is further extended to allow

aggregation on attributes and time [1], similarly to our work.

Time aggregation focuses on viewing a graph in the appropriate

resolution and studies stability, whereas, we focus on different

events such as growth and shrinkage besides stability, and define

an evolution graph that models all three through set based tempo-

ral operators. In [23], graph summarization is based on grouping

nodes of the same type and aggregating on attributes and time.

The system provides different visualizations of a graph, i.e., the

temporal graph view, the grouped graph view where grouped

elements are enriched with both attribute and temporal aggre-

gate information, and the difference graph view that illustrates

new, stable and deleted elements between two graph snapshots.

In contrast to our work, the system is driven by user queries

and provides no exploration strategy to determine intervals with

events of interest. In [13], a conceptual model with explicit label-

ing of graph elements is designed to support analytical operations

over evolving graphs, and particularly time-varying attributes.

This model incurs redundancy by adding elements that could be

discovered through graph traversal, sacrificing performance for

richer analysis support. In the EvOLAP Graph [16], versioning is

used, both on attributes and graph structure to enable analytics

on changing graphs but no temporal operators are supported.

7 CONCLUSIONS
In this paper, we introduce GraphTempo, a model designed with a

twofold purpose (a) the temporal aggregation of attributed graphs

and (b) the exploration of their evolution. We define a set of

temporal operators for considering graphs on intervals of varying

granularity with both tight and relaxed semantics. We also define

a novel structure that captures graph evolution, and show howwe
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(a) Single attributes (b) Single attributes (c) Pairs of attributes (d) Triples of attributes

Figure 11: Speedup of efficient attribute aggregation per time point for (a) DBLP and (b), (c), (d)MovieLens.

(a) 2010 w.r.t. 2000’s (b) 2020 w.r.t. 2010’s

Figure 12: Evolution on Gender for top active authors of DBLP.

(a) Stability (T𝑜𝑙𝑑 (∩) ∩ T𝑛𝑒𝑤 ) (b) Growth (T𝑛𝑒𝑤 - T𝑜𝑙𝑑 (∪)) (c) Shrinkage (T𝑜𝑙𝑑 (∪) - T𝑛𝑒𝑤 )

Figure 13: Exploration cases with (a) intersection, and (b), (c) union semantics on 𝑘 for female co-rating ofMovieLens.

(a) Stability (T𝑜𝑙𝑑 (∩) ∩ T𝑛𝑒𝑤 ) (b) Growth (T𝑛𝑒𝑤 - T𝑜𝑙𝑑 (∪)) (c) Shrinkage (T𝑜𝑙𝑑 (∪) - T𝑛𝑒𝑤 )

Figure 14: Exploration cases with (a) intersection, and (b), (c) union semantics on 𝑘 for female collaborations of DBLP.

can explore it to determine the minimal intervals with significant

growth and shrinkage or the maximal intervals with significant

stability. We experimentally evaluate the cost of the proposed

operators and showcase the evolution of two real datasets. We

plan to develop GraphTempo into an interactive exploration

framework that will assist users navigate large graphs and detect

intervals and attribute groups of interest in their evolution.
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