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ABSTRACT

The graph alignment problem calls for finding a matching be-
tween the nodes of one graph and those of another graph, in a
way that they correspond to each other by some fitness measure.
Over the last years, several graph alignment algorithms have
been proposed and evaluated on diverse datasets and quality
measures. Typically, a newly proposed algorithm is compared
to previously proposed ones on some specific datasets, types of
noise, and quality measures where the new proposal achieves
superiority over the previous ones. However, no systematic com-
parison of the proposed algorithms has been attempted on the
same benchmarks. This paper fills this gap by conducting an
extensive, thorough, and commensurable evaluation of state-of-
the-art graph alignment algorithms. Our results highlight the
value of overlooked solutions and an unprecedented effect of
graph density on performance, hence call for further work.

1 INTRODUCTION

Graphs provide a general means to model relationships between
entities in diverse areas of society, science and industry [48],
where entities are represented as nodes and relationships be-
tween entities as edges. Whereas the graph of a social network
might picture which users follow each other [10], a protein-
protein interaction (PPI) network represents the interaction of
proteins associated with a biological species [46, 55].

Despite this diversity of application domains, several graph
analytics tasks are universally relevant. Such a task is graph
alignment, a generalized version of the graph isomorphism prob-
lem that aims to find, for each node in a graph G4(V4,E4), a
structurally corresponding node in another graph Gg(Vp, Ep),
i.e,, a function f : V4 — Vp. This problem is aimed at in many
applications, e.g., aligning entities of social networks, biological
structures, or the intersections of a road network at different
time stamps, as well as a foundation for further analysis of two
aligned graphs.

This diversity of application domains also implies a challenge
in applying a graph alignment algorithm to a problem: while the
problem is fundamentally the same across application domains
and graph data, the particular semantics of a good alignment
differ across domains. For example, whereas in the case of social
networks we may be interested in re-identifying the same user
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in two or more different networks, in the case of protein inter-
action (PPI) networks of different species, we may be interested
to understand which proteins perform similar roles in diverse
species. Given these multifarious application requirements, we
draw a principle distinction between what we call restricted and
unrestricted graph alignment.

Restricted alignment requires domain-specific input infor-
mation, such as a set of pre-aligned users in a social [23] or
biological network [43], knowledge of protein sequences in PPI
networks [3, 33, 43, 50], special types of graphs [28], or node
attributes [61]. Several domain-specific restricted graph align-
ment algorithms have been developed, which, in principle, could
be applied across domains. For example, the requirement for a
set of pre-aligned nodes could also be fulfilled in a PPI network
if there is prior knowledge available for a set of the proteins.
However, in practice this is rarely done. The literature on graph
alignment is extensive, but surprisingly disconnected as algo-
rithms from different fields and for slightly different problem
definitions are not compared to each other. There is no universal
evaluation methodology for graph alignment algorithms. Met-
rics, the graphs evaluated on and experimental design differ from
domain to domain.

Unrestricted alignment, on the other hand, finds correspon-
dences among nodes in two graphs using nodes and edges, but
no additional information (e.g., annotations or labels).

Existing experimental evaluations of graph alignment al-
gorithms usually focus on restricted methods for a specific do-
main, such as biology [9] or neuroscience [36]; these solutions
require additional domain information, such as protein affinity or
brain functions. A recent comparative study [53] reviews seven
graph alignment techniques and features experiments mixing
restricted and unrestricted graph alignment, hence cannot be
conclusive.

In this experimental study, we go beyond [53] and bridge the
gap in previous literature, conducting the first, to our knowledge,
exhaustive, extensive, and in-depth comparative evaluation of
unrestricted graph alignment algorithms under three noise types,
three assignment algorithms, and diverse datasets; these algo-
rithms were not part of the study in [53], apply on undirected,
unattributed graphs, and do not require any prior alignment
information, hence can be generalized across domains. We as-
sess techniques, measures, noise generators, and parameters to
compare the best versions of each algorithm. Thus, our study
complements [53]. In detail, our contributions are the following:

o We perform the first, complete, experimental evaluation of
nine undirected, unattributed graph alignment algorithms.
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e We carefully tune the algorithms hyperparameters based
on network size and using the same assignment algorithm.

e We evaluate the algorithms on real and synthetic graphs,
with different levels and types of noise.

e We include memory and time scalability experiments on
the algorithms.

e We devise an experimental framework for graph align-
ment with reproducible experiments and available data
and code.

2 PRELIMINARIES

Graph Alignment. Given two undirected graphs G4 = (V4,E4)
and G = (VB, EB), a graph alignment is a function f : V4 — Vp
that assigns to each node on G4 a node of Gg. G4 is often referred
to as source graph and Gp as target graph.

Adjacency matrix. A is the adjacency matrix of Gy with A;j =1
if (i, j) € E4 and 0 otherwise. Similarly, B is Gg’s adjacency
matrix.

Neighborhood. The neighborhood N (i) of node i € V is the set
of node j such that (i, j) € E for graph G = (V,E).

Graph Laplacian. The normalized Laplacian of a graph G =
(V,E) is alinear operator, L = I-D~ H AD_% , where A is the adja-
cency matrix of G and D is the degree matrix with D;; = Z;?zl Ajj.
The eigendecomposition of this matrix is £ = ®A®T, where A
is a diagonal matrix of eigenvalues; its diagonal, {A1,...,A,} is
the spectrum of L and @y = [¢p1¢2 ... Pn] is a matrix of eigen-
vectors.

3 ALIGNMENT ALGORITHMS

We focus on algorithms for unrestricted graph alignment, which
find a correspondence among the nodes of two graphs without
using information other than nodes and edges.

While all graph alignment algorithms aim to find correspond-
ing nodes in different networks, they may start out from a dif-
ferent objective formulation. Typically, the problem is stated as
one of finding a correspondence that maximizes a similarity mea-
sure or minimizes the cost of transforming the second graph to
the first. We outline three prerequisites of a graph alignment
algorithms.

Input Data. The most basic input data are the adjacency
matrices of two graphs to be aligned. Some algorithms may re-
quire additional information as input, such as a similarity ma-
trix or known prior alignments. In the biology domain, such
pre-processed input is needed as nodes typically have roles and
semantics beyond structural properties.

Similarity Notion. A graph alignment algorithm needs to
translate the information in the input graphs to some representa-
tion from which a similarity score can be computed. This may be
done by computation a graph embedding method [34] or some
graph function such as a heat kernel [5]. The computation may be
done for each graph separately, or concurrently on two graphs. In
all cases, the representations are combined and yield a similarity
matrix.

Assignment. The last operation is to extract the alignments
based on the provided similarity matrix by solving a Linear As-
signment Problem (LAP) on a bipartite graph among nodes of
the two graphs on the two sides, weighted according to similar-
ity scores. Previous work considers four assignment algorithms:
nearest neighbor (NN) [8, 19, 59, 60] that returns the unmatched
node with the highest similarity, SortGreedy (SG) [27, 50] that
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progressively matches similarity-sorted pairs of nodes, the Max-
imum Weighted Matching (MWM) [3, 25, 38] and the Jonker-
Volkenant (JW) [20] that directly solve the linear assignment
problem.

Table 1 collects the characteristics of the algorithms we con-
sider; IsoRank and GRAAL require preprocessing and target bi-
ological networks; assignment algorithms are as proposed in
the respective papers; CONE optimizes for the MNC measure
(Section 5.2.1); time complexity is expressed in the number of
nodes n; the presented hyperparameters are obtained via grid
search on real graphs.

Algorithm  Year Prepr. Bio Assign Opt Time Parameters
IsoRank [50] 2008 Yes Yes SG  Any oY a=09
GRAAL[29] 2010 Yes No SG Any O(n®) a=0.8

NSD [27] 2011 Both No SG Any O(n?) a=08

LREA [38] 2018 No No MWM Any O(nlogn) iterations=40
REGAL [19] 2018 No No NN Any O(nlogn) k=2 p=10logn
GWL [60] 2019 No No NN Any O(n®)  epoch=1
S-GWL [59] 2019 No No NN Any O(n’logn) B€{0.0250.1}
CONE [8] 2020 No No NN MNC O(n?) dim=512
GRASP [20] 2021 No No JV Any O(n®) g=100,k=20

Table (1) Algorithms considered in the experiments.

3.1 IsoRank

IsoRank [50] is the first network alignment algorithm applied
on biological networks; it assumes similarity scores are provided
by the Blast algorithm [24]. IsoRank uses neighborhood simi-
larity to extract structural graph information, inspired from the
way PageRank [7] uses neighborhood topology (links) to rank
nodes. A node from target graph Gg is considered a possible
match to a node from source graph G4 if their neighbors are
also possible matches to each other. The score of a node pair
recursively depends on the score of their neighbors. Equation 1
shows how the similarity for node pairs is calculated, where R
is an iteratively updated matrix of pairwise node similarities be-
tween nodes in G4 and those in Gg, while matrix M captures
the topological similarity of the two graphs based on their edges
having weight w. R;; fori € Vy, j € Vg is:

R;; = Z w(i, w)w(j,0) R (1)
ueN(i) veN(j) Z w(r, u) Z w(q,0)
reN (u) geN (v)

The problem expressed by Equation 1 is an eigenvalue problem
solved by the power method that finds the leading eigenvector.
Further, IsoRank incorporates Blast similarity scores in a ma-
trix E by linear combination R = «MR + (1 — «)E with parameter
0 < a < 1. A value of « close to 1 gives more weight to topologi-
cal similarity, while a value close to 0 emphasizes Blast similarity.
Global alignments are determined by solving a linear assignment
problem via a SortGreedy [12] heuristic. An extension of IsoRank,
IsoRankN [33], solves the global multiple network alignment
problem, i.e., aligns multiple networks instead of just two.

3.2 GRAph ALigner (GRAAL)

GRAAL [29] is a greedy alignment method that matches nodes
using a similarity score based on a dictionary of 73 graphlets
with 4 or less nodes. A graphlet is a frequent graph pattern, such
as a triangle with three nodes and three edges. In a pre-processing
step, GRAAL constructs a vector signature for each node, in which
each value indicates the number of times a graphlet appears in



the node’s neighborhood. This steps takes O(n’) time. GRAAL
aligns a node u in G4 with v in Gg by computing a cost Cy;, as
a linear combination, with parameter a € [0, 1], of the vector
similarity S(u,v) among signatures and the degrees of u and v:

IN(w)| + [N (0)]
max [N (i)| + max |[N(i
max N )]+ max [N ()|

Cpw=2-|1(1-0a)- +a-S(u,0)

@

Having created matrix C, GRAAL selects a pair of nodes with
the minimum cost as seeds and aligns the nodes induced by the
seeds’ neighbors up to a certain distance. The alignment proceeds
to other seeds by a SortGreedy [12] method until all nodes are
aligned.

3.3 Network Similarity Decomposition (NSD)

NSD [27] improves upon both the efficiency and topological
similarity capture of IsoRank using the HITS [26] link analysis
algorithm. It works well without preprocessing information, yet
it can work with preprocessing information by receiving the
same Blast similarity matrix as Isorank and getting its singular
values by SVD.

The algorithm extends Isorank [6] by approximating the ma-
trix R in Equation 1 using power iteration, resulting in Equation 3,
where « is the importance of preprocessing information, h is the
vectorized preprocessing matrix and C=A®B is the Kronecker
product between the source’s degree-normalized adjacency ma-
trix A = D' A and the target’s A = D™!B.

n—1
X" = (1-a) Z o*Ckh + a"C"h
k=0

®)

Thereafter, by noticing that A®Bh = BHA? where H is the
matrix-form of h, NSD decomposes the C matrix as a linear com-

(k)

bination of orthonormal vectors w; <’ = B¥w; and similarly to

i
get the z vector, zlgk) = Ak zi, to obtain ranks of X<"), while inte-
grating preprocessing information expressed by singular values

of the Blast similarity matrix in the z vexctor:

©

n-1
T T
XE") =(1-a) Z akwl.(k)zlgb + a"wl.(n)zi(n)
k=0
Eventually, it combines ranks to form a dense similarity matrix:

S
x(m — le(n)
i=1

To extract final alignments, the authors of NSD propose two
solutions. One is to enforce a sparse matrix using sparse versions
of the outer products w and z; another is to use SortGreedy [12].

&)

3.4 Low-Rank EigenAlign (LREA)

LREA [38] is an alignment method that builds on the EigenAlign [15]

algorithm. Whereas the default EigenAlign has very high com-
putational cost, LREA applies a low-rank matrix approximation
that dramatically decreases runtime. LREA align graphs of 10 000
nodes in the time EigenAlign needs to align graphs of 1000 nodes,
while achieving similar results in terms of the loss function. LREA
aims to solve the following quadratic assignment problem:
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y' My

yi €{0,1}
Yuyluo] < 1forallo € Vy
2oylu,v] < 1forallu ey

maximize
y

subject to

(6)

Matrix M gathers an alignment score based using three el-
ements: overlaps, non-informative, and conflicts (acting as a
regularization), and uses the dominant eigenvectors to find the
maximum of the objective function. M is rewritten as a linear
combination of Kronecker products among the adjacency matri-
ces A and B of the two graphs and all-one matrices of the same
size E.

Thus, the quadratic assignment problem in Equation 6 is re-
laxed to the following, using X, the leading eigenvector of M:

maximize X o (c1AXBT + c2AXE" + c;EXBT + c3EXE")

subject to ||X||p = 1,X € RIValxIVsl

™

This problem is translated to a two-factor low-rank decompo-
sition. Starting from rank 1, a power iteration process calculates
the similarity matrix of rank k. To obtain the alignment, LREA
separates positive and negative values into two matrices and
pairs them based on their sorted positions for each rank, with
each rank produces a matching score, eventually reaching the op-
timal solution to the relaxed problem. The authors also propose
a variant that uses a sparse matrix Y with all possible matchings
from the ranks.

3.5 REGAL

REGAL [19] aligns graphs fast with high accuracy scores, work-

ing in three steps, namely embedding calculation, cross-embedding
calculation, and node alignment, without using any pre-processed

information. The first step gathers structural and connectivity

information about the nodes, taking into account the degree of

the neighborhood nodes:

K
dy = > 5+ df
k=1

Equation 8 iterates over k-hop neighbors of node u and stores

neighborhood degrees in the vector dy; § is a discount factor that

gives less importance to nodes away from u. The authors propose

iterating up to a 2-neighborhood (K = 2). Besides, degree informa-

tion is stored in logarithmically scaled buckets. Attribute informa-

tion is stored in f-dimensional vectors, from which the distance

between two nodes’ attributes can be estimated; in our study, we

focus on aligning graph structures, agnostic to attributes. REGAL

evaluates potential node matchings using a cross-network node
similarity:

®)

©

Here, ys and y, are scalar parameters that weigh the struc-
tural and attribute information, respectively. We set y to 0. This
cross-network similarity is used to calculate a similarity matrix
S used in the next part, cross-embedding calculation, using the
Nystrom method for low-rank matrix approximation. The proce-
dure chooses p random landmark nodes from both graphs (p is
set to 10 log, n) and approximates S as S~ = CWTCT, where C is

sim(u,v) = exp [~s - [ldu — dol|3 — ya - dist (fu, )



an n X p node-to-landmark similarity matrix and W' is a pseudo-
inverse landmark-to-landmark similarity matrix. By applying
SVD on W to obtain the decomposition ULV, cross-embeddings

are derived as Y’ = CUX? without fully calcluating the similarity
matrix S.

Lastly, REGAL performs node alignment by efficiently query-
ing embeddings, while translating Euclidean distance to the sim-
ilarity:

Simepp (Y1 [u], Y2 [o]) = ¢ Ml-R0lE - (q0)

The target graph embeddings are stored in a k-d tree for fast
nearest-neighbor querying using source graph embeddings. By
default, REGAL returns the highest-scoring matching for each
source node, hence may return the same target node more than
once. In our study, we configure it to return one-to-one matchings
for the sake of comparability to other methods.

3.6 Gromov-Wasserstein Learning (GWL)

GWL [60] follows a different approach; instead of first calculating
embeddings and then learning alignments from those embed-
dings, it jointly calculates embeddings X4, Xp and alignments
using the dissimilarity notion of Gromov-Wasserstein discrep-
ancy to transport masses from one node to a node in the other
graph. The problem is solved collaterally in iterations, using
embeddings X to estimate distances while learning the optimal
transport T, and using the learned transport to regularize the
learning of embeddings in the next iteration.

min min (L(Ca(X4),C(Xp),T),T)
Xa.XB Tell(py.pp)

Gromov-Wasserstein discrepancy

¢ a(K(XuXp).T) + pR(X4Xp) )

Wasserstein discrepancy  prior information

In Equation (11), L is an element-wise loss function, C is a
pairwise node distance computed on edge weights, and K is a
distance matrix on the embeddings. The first part of the equation
captures the relational dissimilarity between the two graphs and
the second expresses the dissimilarity between nodes of the two
graphs. This non-convex problem is solved iteratively by break-
ing it into two minimization problems. The first is to minimize
optimal transport (OT), solved iteratively with the proximal point
method. The second problem is to update the embeddings using
gradient descent.

As mentioned, the two problems are solved collaterally in
alternations: first find the OT, then update the embedding X
using the OT. GWL can thereby align multiple networks.

S-GWL [59] addresses the scalability drawback of GWL by adopt-
ing a partitioning method on the input graphs. While the S-GWL
objective is the same as GWL, S-GWL recursively decomposes
the graphs into K small graphs and calculates a common in-
termediate graph with K-nodes called a barycenter graph. The
algorithm matches the nodes in the barycenter graph with the
subgraphs of the graph using GWL and repeats the partition-
ing process over the subgraphs in a divide-and-conquer fashion,
thus achieving a logarithmic speedup over GWL. S-GWL further
reduces the times employing a proximal gradient scheme [58]
that decomposes the original GWL non-convex objective into
smaller convex problems, achieving an additional speedup on
sparse graphs.
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3.7 CONE

CONE (8] finds alignments by focusing on matched neighbor-
hood consistency (MNC), defined in Section 5.2.1 as the Jaccard
similarity among node neighbohoods. It calculates node embed-
dings Y4, Yp for each graph separately using an off-the-shelf
method, and aligns embedding sub-spaces by combining two
optimization problems, Procrustes and Wasserstein, to create the
following problem:

min min |[Y40 - PYg||?
Qg()dPEP"” AQ - PYgl;

(12)

P is a row permutation found by solving a Wasserstein prob-
lem and Q is a column permutation found by solving a Procrustes
problem. The overall problem is initilized by a Frank-Wolf algo-
rithm for 10 iterations. CONE minimizes Wasserstein distance by
the Sinkhorn algorithm and updates the Procrustes orthogonal
matrix by SVD. This procedure is repeated around 50 times to
return the embeddings. The last step is to align nodes to their
nearest neighbor by Euclidean distance, by default using a k-d
tree as REGAL does.

3.8 GRASP

GRASP [20] solves the alignment problem using the spectral prop-
erties of the graphs grounded on the eigenvectors of their normal-
ized Laplacian matrices, in a manner reminiscent of NetLSD [54].
The normalized Laplacian, £ = I — DféADfé, converges to
the eigenfunctions of Laplace-Berltrami operator [4]. The Heat
Kernel, computed based on Laplacian eigenvectors, provides
meaningful information about the structure of the graph in a
permutation-invariant manner robust to small perturbations:

n
Hy = e 20T = 3 e hig ;0T
j=1

GRASP performs eigendecomposition and calculates heat ker-

nels of the two graphs for different values of ¢, forms matrices F

and G from the diagonals of those heat kernels; it produces linear

combinations of the two graphs’ Laplacian eigenvectors, con-

tained in matrices ® and ¥, using F and G, and aligns the eigen-

vector matrices ® and ¥ via a diagonal base alignment matrix M
that minimizes the objective:

(13)

e in - off (MTAM) + [FTe - GTeMm]|?

This objective strives for the diagonality of M by penalizing
off-diagonal elements via the first (diagonalization) term. Next,
it approximates a diagonal matrix C that maps those linear com-
binations of Laplacian eigenvectors from the one graph to the
other, using the top-k aligned eigenvectors, ® and ¥ = ¥ M.

The matching problem is solved as a Linear Assignment Prob-
lem (LAP); the authors chose the JV [22] algorithm for this pur-
pose.

(14)



4 EXCLUDED ALGORITHMS

In our preparatory assessment, we initially considered a larger
collection of algorithms. However, we soon realized that some
algorithms cannot adapt to the unrestricted scenario, or cannot
run in reasonable time on graphs with more than 100 nodes.

There is an extensive body of work on graph alignment al-
gorithms for biological networks, which includes GHOST [44],
MAGNA [49], and NETAL [42]. We exclude these methods as
they require O (n*) or higher time complexity that hinders their
application outside biology, or additional information, such as
protein-protein sequence similarity. We exclude two popular
alignment algorithms, Klau [25] due to its O(n®) time complex-
ity and NetAlign [3] as we observed inadequate quality even after
we applied the enhancements granted to the rest of algorithms,
including the IsoRank similarity notion described in Section 6.1
and the JV assignment algorithm described in Section 6.2. Like-
wise, we exclude methods in which additional information is part
of the algorithm definition, such as FINAL [61], BigAlign [28],
and the extensive literature on supervised algorithms that require
pre-aligned nodes.

5 EXPERIMENTAL SETUP

All algorithms other than GRAAL are implemented in Python
3.8.5. We use the authors’ original Python codes, whether avail-
able, and re-implement algorithms without an available imple-
mentation; in the case of GRAAL, we use the authors’ executable.
Our code! uses the Sacred framework [18] to easily test and tune
algorithms.

We use a 28-core Intel Core CPU i9-10940X machine at 3.30
GHz with 256Gb RAM on Linux 5.4.0-74.

5.1 Datasets

We evaluate the algorithms with both real and synthetic graphs
where the edges have been perturbed with a fixed amount of noise
and nodes have been permuted. Moreover, to further investigate
the the behaviour of the algorithms under different conditions,
we employ three types of noise. For each graph, we generate 10
noisy graphs, perform the alignment on each noisy graph, and
report the average result. We also test the methods on graphs
with ground-truth alignment.

5.1.1 Noise types. In line with previous work [8, 19, 20, 38,
60], we perturb the adjacency matrix of the graph by removing
or adding edges. In the literature, several strategies have been
proposed, such as removing edges with uniform probability [8,
19], adding and removing edges with uniform probability [29, 35,
37, 38, 61], removing and adding nodes [29], generating noise
based on the distance between nodes [27] or sampling from
the Poisson distribution [60]. Typically, the authors test their
methods using only one strategy. We instead adopt three noise
strategies to evaluate the algorithms under different regimes:

e One-Way: Remove edges from the target (G) graph.

e Multi-modal: Remove and add the same number of edges
from the target G, graph.

o Two-Ways: Remove edges from both G; and G.

5.1.2  Synthetic Graphs [3, 38]. We generate graphs using pop-
ular four graph models to evaluate the algorithms under various
characteristics of real graphs.

!https://github.com/constantinosskitsas/Framework_GraphAlignment
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e Erdos-Rényi (ER) [14]: random graphs where edges form
with a fixed probability. We generate graphs with probability
p =0.009

e Barabasi-Albert (BA) [2]: scale-free graphs under the prefer-
ential attachment model. We generate graphs with initial node
degree m = 5.

e Watts-Strogats (WS) [57]: graphs with small-world proper-
ties and high clustering coefficient. We generate graphs with
number of neighbors per node k = 10 and rewiring probability
p=0.5.

o Newmann-Watts (NW) [40]: similar to WS but edges are not
removed. We generate graphs with number of neighbors per
node k = 7 and rewiring probability p = 0.5

e Powerlaw cluster (PL) [21]: a Holme-Kim model similar to
BA with a tunable probability of forming triangles. We generate
graph with number of random edges m = 5 and probability of
forming a triangle p = 0.5.

5.1.3  Real Graphs. We also use real-world data. Table 2 shows
their characteristics. Social and communication graphs are typi-
cally power-law, infrastructure networks are grids with power-
law distributions; collaboration networks have many triangles;
biological and proximity networks are dense.

Dataset n m ¢  Type

Arenas [30] 1133 5451 0 communication
Facebook [32] 4039 88234 0 social
CA-AstroPh [32] 17903 197031 0 collaboration
inf-euroroad [1, 47] 1174 1417 200 infrastructure
inf-power [47, 57] 4941 6594 0 infrastructure
fb-Haverford76 [47, 51] 1446 59589 0 social
fb-Hamilton46 [47, 51] 2314 96394 2 social
fb-Bowdoin47 [47, 52] 2252 84387 2 social
fb-Swarthmore42 [47, 52] 1659 61050 2 social
soc-hamsterster [47] 2426 16630 400 social
bio-celegans [13, 47] 453 2025 0  biological
ca-GrQc [31, 47] 4158 14 422 0 collaboration
ca-netscience [39, 47] 379 914 0 collaboration
MultiMagna [56] 1004 8323 0  biological
HighSchool [16] 327 5818 0  proximity
Voles [11] 712 2391 0  proximity

Table (2) Information about the real graphs, number of
nodes n, number of edges m, number of nodes left out of
the largest connected component ¢, and network type.

The last three data sets in Table 2 are evolving graphs that nat-
urally provide ground-truth alignment. These graphs represent
the most challenging scenario, since the real noise distribution
is unknown. Only few previous works [20, 38] besides methods
designed for biological networks [3, 25, 50] evaluate their per-
formance on ground-truth alignment preferring synthetically
generated noise.

5.2 Quality measures
The evaluation of an alignment method requires a measure for
alignment quality.

5.2.1 Matched Neighborhood Consistency (MNC) [8, 38]. is

the Jaccard similarity of the mapped neighborhood ﬁéB( i) =
{j €Vg: 3k € Ng,(i) st. f(k)=j}of anodei € V4 and a



node j € Vp.
NS, () NG, (1)

MNC(i, ) =
NS, (0 U NG, (1)

(15)

The final score is the average MNC among all nodes.

5.2.2  Accuracy or Node Correctness (NC). The most popular
measure is Accuracy, that calculates the number of correctly
aligned nodes given the true alignment. The accuracy score is the
count of corrected alignments normalized by the total number
of such alignments. Accuracy assumes that a node in the source
graph corresponds to a single node in the target graphs. As such,
accuracy disregards multiple alignments or partial alignments.

523 EC, ICS, S®. An alternative way to assess the quality of
an alignment is to count the number of edges that are correctly
aligned. Edge correctness (EC) is the percentage of edges in the
source graph G4 = (Vy, E4) correctly aligned in the target graph
Gp = (VB, Ep). Given an alignment f, and the set of correctly
aligned edges f(Ea) = {(f(i),f(j)) € Eg : (i,j) € Ea} EC s
defined as

lf (Ea)l

|Eal

EC does not penalize sparse regions in the source graphs, matched
to dense region in the target graph. The Induced Conserved Struc-
ture (ICS) [45] normalizes over the graph in Gp induced by the
source graph’s nodes f(V4) = {f(v) € Vg : v € V4} correctly
aligned

EC(f) =

lf (Ea)
|E (G [f (Va)DI

Similarly to EC, ICS does not penalize dense regions in the source
graph matched to sparse regions in the target graph.

The symmetric substructure score (S°) [49] corrects the defi-
ciencies of EC and ICS with a normalization over both the source
and the target graphs

1CS(f) =

If (Ea)l

3 _
S = EAT+1E @5 f VADI = If Bl

(16)

Graph models Time (<3h)
Algorithm ER BA/PL WS/NW  n>214

Mem. (<256Gb)

A>10°  n>2" A>10°

IsoRank - - -
GRAAL - - -
NSD - - -
LREA - - -
REGAL - - -
GWL - -
S-GWL

CONE -

GRASP - - -

x %X X X Q QXX
AUXXXX TS
X X XX R XX
UXXXx TN

Table (3) Summary results vs. graph model (first and sec-
ond best method marked with "), graph size and density.

6 RESULTS

Here we present the results of our experimental study. Table 3
provides a concise view of our results with different graph models,
indicating time and space efficiency in terms of working with
graphs of more than 214 nodes and average degree A higher
than 10 in less than 3 hours and within 256Gb.
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6.1 Similarity Notion

To address the needs of IsoRank, we devised our own weight
schema that takes into account node degrees. In particular, the

node similarity between nodes u, v is sim(u, v) = 1—

where deg(u) = |N(u)| is the degree of node u. Prior works have
used binary weights that had a negative effect the performance
of IsoRank. We tried this enhancement on NetAlign, to no avail.

6.2 Assignment Algorithms

We first investigate the performance of assignment algorithms
used in the final alignment step. As discussed, some techniques
use a heuristic that greedily selects the most attractive one-to-
one match; we call this method SortGreedy (SG) [12]; GRAAL
performs SG integrally, rendering the adaptation to other meth-
ods hard; others use assignment to Nearest Neighbor, that allows
for many-to-one matches; lastly, many techniques execute an
optimal algorithm for the minimum cost one-to-one linear as-
signment problem (LAP), i.e., the Hungarian algorithm and its
variations for sparse matrices (MWM) [3, 17, 38] or the JV al-
gorithm [20]. These LAP algorithms have higher runtime than
heuristics, yet may produce results of better quality. To create
a level playing field, we should use a common method for all
algorithms in the rest of our study.

We evaluate algorithms with all assignment methods and se-
lect the ones that yield highest accuracy on a real dataset, Arenas,
and a random graph with power-law degree distribution; we gen-
erate noise by permuting the source graph and removing edges
with uniform probability {0, 0.01, 0.02, ..., 0.05} while keeping
the graph connected. Figure 1 shows the results. We try out all
assignment methods, yet do not report solutions that produce
worse results than the method the authors proposed or need
many hours to finish. As MWM produces results similar to those
of JV, we show it only with LREA as the author-proposed method.

GWL, REGAL, CONE and S-GWL extract alignments by
Nearest-Neighbor (NN). CONE and REGAL do so using a kd-
tree to return the top-k most similar matches. While all four
methods may produce good results, they return many-to-one
assignments. As a matter of principle, we consider one-to-one
matchings, hence restrict these four methods to such outputs.
They all benefit by applying SG or JV instead of NN. While for
CONE, REGAL and S-GWL the improvements due to SG or JV is
only between 1% and 4%, for GWL on Arenas SG and JV improve
the results from 60% to close to 100%.

GRASP and LREA use variants of the Hungarian algorithm
in their proposed form. LREA creates a sparse matching matrix
called union of matchings and runs the MWM algorithm [3]
thereon, a variation of Hungarian that works well with sparse
matrices. GRASP implements JV. Our test on GRASP confirms
that JV achieves better quality than SG albeit in higher runtime.
For LREA, we evaluate MWM against SG and JV. As JV and MWM
yield comparable quality results, we opt for JV’s multi-threaded
implementation.

NSD and IsoRank are proposed with SG as alignment method,
yet benefit significantly from using JV instead.

In conclusion, JV is our assignment method of choice as it
improves alignment accuracy with all algorithms. Linear assign-
ment gracefully leads to one-to-one alignments that maximize the
sum of the similarities across nodes. Henceforward, as all algo-
rithms use JV, we report runtime excluding the assignment step.
Still, as the density of the similarity matrix affects JV’s runtime,
more lightweight methods, SG and even NN, are recommendable

max{deg(u),deg(v) }’
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on large graphs. The ability to produce quality assignment with
SG or NN is instrumental for scalability purposes. In addition, for
algorithms like CONE, REGAL and S-GWL, where JV only brings
slight improvements on the cost of a large increase in running
time, JV might not be worth the small improvement even for
smaller graphs.

6.3 Evaluation of Synthetic Random Graphs

We evaluate the algorithms on five random graph models, to
comprehend whether characteristics of the graphs, such as de-
gree distribution or topology, affect the algorithms and how. We
choose the models presented in Section 6.3: Erdos-Rényi (ER)
(Figure 2), Barabasi-Albert (BA) (Figure 3), Watts-Strogats (WS)
(Figure 4), Newmann-Watts (NW) (Figure 5) and Power Law (PL)
(Figure 6). For all models, we fix the graph size n = 1133 and the
degree distribution. In the case of powerlaw graph generators
(BA and PL) the degree distribution simulates the one of Face-
book, Arenas and Ca-AstroPh. In the case of Gaussian degree
distribution as generated by BA, WS, and NW, we mimic the
degree distribution of graphs with real alignments, such as High-
School. To reduce variance across noise levels we generate 10
noisy graphs and report the average.

CONE performs well on all graph models, returning nearly
perfect alignments in nearly all models. CONE faces some diffi-
culty with NW graphs, exhibiting some sensitivity to strongly
small-world graphs as NW. CONE deficiencies are mostly promi-
nent in PL graphs. This is also confirmed on the Facebook dataset
that exhibits a skewed degree distribution (Figure 7). Another
interesting insight is the CONE’s susceptivity to different types of
noise; on multi-modal and two-way noise CONE’s quality drops
faster than the more common one-way. CONE, that introduced
the MNC score, effectively attains better results with the MNC
score than with accuracy and $3.

GWL exhibits good performance only on powerlaw graphs,
such as BA (Figure 3) and PL (Figure 6). On other graph types
GWL fails to find the correct alignment, scoring close to 0 in all
measures even with low noise levels. This behaviour indicates
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that the exact transport objective that GWL optimizes might not
be able to discriminate nodes with similar degree distribution.
This is also confirmed on BA and PL, in which the S3 and MNC
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Figure (3) Accuracy, S°, and MNC for Barabasi-Albert (BA)
synthetic graphs; noise up to 5% and different noise types.

scores, both based on neighbor matches, are lower than accuracy.
On the other hand, GWL is more robust to different noise types
than CONE.

IsoRank is among the most competitive algorithms, as op-
posed to previous comparisons. This is due to an appropriate
choice of the weights in Equation (9) that capture the degree dis-
tribution of the neighbors of each node. Yet, IsoRank is sensitive
to the type and level of noise; for multi-modal and two-way noise
accuracy drops by 10 — 30%. We surmise that multi-modal and
two-way noise alter the neighbor structure significantly, weak-
ening IsoRank’s random walk approach. Nevertheless, IsoRank
shows consistent results across graph models. These results ren-
der IsoRank a competitive approach compared to more recent
methods.

NSD improves upon IsoRank by not requiring prior informa-
tion to return alignments. The incorporation of prior information
boosts quality, but is detrimental to the running time. As expected,
NSD exhibits comparable performance to IsoRank, yet its quality
drops faster than IsoRank’s. NSD inherits IsoRank’s sensitivity
to noise. Thus, NSD is only preferable to IsoRank when time is
critical.

LREA, as expected from the objective, consistently finds the
correct alignment on graphs with no noise (i.e., isomorphic). Yet,
the performance drops close to 0 on graphs with only 1% noise.
This behaviour is consistent across all graph models and poten-
tially reveal the local nature of LREA objective that considers
mismatch of single edges rather than structures. This intuition
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is corroborated by a 40% quality in PL graphs in which node
connectivity is more easily determined by the skewed degree
distribution.

GRASP, by its spectral nature, performs better on PL graphs
with community structure and skewed degree distributions, al-
though it also performs generally well in all graph models and
noise types. GRASP exhibits superior performance to REGAL
on small-world WS and NWS graphs. Similar to LREA, GRASP
almost consistently returns the best alignment on graphs with
no noise.

REGAL performs best on powerlaw PL and BA graphs, less
so on WS and NWS graphs. REGAL is robust to noise types,
although it delivers inferior results than IsoRank by 10%-20%.
REGAL is consistent across measures, indicating that the method
does not optimize to any of the measures explicitly. All in all,
REGAL is a stable algorithm with average performance in most
degree distributions.

S-GWL exhibits performance comparable or superior to CONE.
Although approximating GWL, S-GWL is competitive in most
datasets. This phenomenon in which an approximation outper-
forms the exact method is not surprising, as approximate methods
often remove noise from the data. S-GWL is stable across graph
models and noise types. S-GWL is less affected than GWL by the
degree distribution and is therefore preferable.

GRAAL has a mediocre position, while it is more robust than
others of similar caliber as noise grows.
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Figure (5) Accuracy, S3, and MNC for Newman-Watts
(NW) synthetic graphs; noise up to 5% and different noise
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Concluding, CONE shows consistently good performance,
due to the use of embeddings that capture local and global struc-
tures. However, no algorithm is overall the best; CONE is defi-
cient with power-law graphs, while GWL excels only in those.
S-GWL does consistently well, yet does not stand out. REGAL,
GRASP, GWL, and GRAAL are robust to noise type. IsoRank,
with appropriate choice of weights, is a formidable competitor.
Although CONE and GWL outperforms competitors, they also
present scalability drawbacks, as we see in Section 6.6.

6.4 Evaluation on Graphs with Synthetic
Noise

In this section, we evaluate all algorithms on real world graphs
with synthetic noise of One-Way, Multi-Modal, and Two-ways
type. We report runtime results within 3 hours.

6.4.1 Low Noise. Figure 7 presents results for noise levels in
the domain {0,0.01,0.02,...,0.05} on three real world graphs:
Arenas, Facebook and CA-AstroPh.

GWL performs nearly optimal on Arenas with a slight drop
in the accuracy scores with increasing noise levels. For Facebook
and CA-AstroPh, GWL exceeds the runtime limit of 3 hours, as
its runtime increases significantly for dense or big graph. Thus
we do not report accuracy results for these graphs.

CONE also performs nearly optimal on Arenas and is robust to
noise. On CA-AstroPh, CONE attains 80% accuracy for One-Way
and Two-Way noise; yet, CONE is less effective with Multi-modal
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noise. We note a similar behaviour on Facebook, where CONE
gives ground to S-GWL due to the powerlaw degree distribution.

REGAL follows the same pattern as in Section 5.1.2: uninflu-
enced by the type of noise, but losing accuracy at higher noise
levels. On all three datasets, REGAL achieves comparable accu-
racy.

GRASP falters on graphs with several connected components,
which may arise if the random edge removals disconnect the
graph. For instance, on Arenas and CA-AstroPh, sparsity induces
disconnected components with noise above 3%. Besides, the Multi-
Modal and Two-Way noise affects GRASP’s performance due to
increased chances to disconnect the graph. On the other hand,
GRASP performs well in dense graphs such as Facebook, on
which the noise does not generate disconnected components.

LREA performs better on real graphs with synthetic noise
than on the synthetic graphs reported in Section 5.1.2, but still not
well. Yet it is not too affected by noise type, hence it outperforms
GRASP and NSD with Multi-Modal noise on Facebook.

IsoRank is the best algorithm on Facebook and the second-
best in the other graphs with One-Way noise. We reiterate that,
as prior information, we provide a “naive” similarity score based
on degrees. The algorithm is influenced by the type and level of
noise, especially Multi-Modal; this is expected, as the more noise
is included, the less relevant prior information becomes.

NSD performs poorly with Multi-Modal noise; however, with
One-Way and Two-Way noise, it is usually the third-best per-
former, achieving results comparable to GRASP or REGAL.
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Figure (7) Accuracy on real graphs; noise up to 5%.

S-GWL is one of the best algorithms on Arenas and Facebook.
Yet, although it is more scalable than GWL, its complexity is cubic
in dense networks, hence it is unsuitable for large graphs. On the
other hand, on Arenas S-GWL has performance comparable to
CONE.

GRAAL stands again in mediocre positions among the best
and worst performers, in those data where it runs within 3 hours;
it stands out in terms of its robustness to growing noise, yet never
matches the performance of GWL, CONE, and S-GWL.

6.4.2 High Noise. In this experiment we use graphs from the
network-repository website [47] shown in Table 2. We run experi-

ments with One-Way noise in the domain value {0, 0.05,0.1, ..., 0.25}

and report average accuracy of 5 runs. Results are in Figure 8.

CONE is least influenced by the noise level, performing well
even with 25% noise. On social networks, it achieves close to
optimal accuracy at the highest noise level, except for Hamilton46,
where accuracy drops swiftly after 15% noise. For all other graphs,
there is slight drop of the accuracy score with increasing noise
levels. Infrastructure graphs are most challenging for CONE.

GWL is challenged on infrastructure networks, where its accu-
racy drops. On other graphs, CONE and GWL exhibit comparable
behavior and achieve the highest accuracy, except for the collab-
oration network CA-GrQc, where GWL performs significantly
worse.
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REGAL struggles at noise levels larger than 5%. The only
datasets where REGAL achieves more than 30% accuracy for
noise 10% are Ca-Netscience and Bio-celegans, our two smallest
networks.

GRASP is affected by the number of connected components,
which, in turn, is influenced by the noise, since deleting edges
may disconnect parts of the graph. If a graph consists of more
than one connected component, the accuracy score for this graph
stays below 15% regardless of noise level. If the noise does not
render the graph disconnected, GRASP delivers competitive re-
sults, as observed in the previous section. If both source and
target graphs are disconnected, but the largest connected compo-
nent of the graphs is close to the full graph, GRASP can align the
networks well. This is the case for Hamilton46, Bowdoin47 and
Swarthmore42. Euroroad and hamsterer comprise several con-
nected components in their original form, even without adding
noise. In this case, GRASP fails to align the graphs even without
noise.



IsoRank succeeds in aligning all the networks and is con-
stantly the third best; its accuracy scores are similar on all the
datasets and seem to not be affected by distribution, size, clus-
tering, or density characteristics. It also performs best on infras-
tructure graphs, where algorithms falter. However, the accuracy
of IsoRank drops significantly with increasing noise level. This is
due to the fact that with more noise, degree change significantly
across graphs and our prior information model becomes less
meaningful.

NSD shows a pattern similar to IsoRank, but achieves accuracy
between 10% and 20% less than IsoRank for low noise levels.
Accuracy drops with noise, but the effect is less pronounced.
With noise between 20% and 25%, IsoRank and NSD have similar
scores.

S-GWL consistently achieves accuracy close to the best, even
with 25% noise. Its main drawback is sensitivity to hyperpa-
rameters. We manually set f = 0.025 on sparse data sets (e.g.,
inf-power, ca-netscience) and f = 0.1 on dense dasets (e.g., fb-
datasets).

GRAAL performs similarly to NSD in those cases where it
runs within the time limit of 3 hours; its previously observed
robustness to growing noise levels is attenuated at these high
noise levels.

Figure 9 visualizes the results on the NetScience data, as a
representative case, juxtaposing accuracy to runtime. CONE and
S-GWL stand out on resolving the time-accuracy tradeoff. We
obtained similar results with other noise types at high noise levels.
We include GRAAL for illustration, albeit not implemented in
Python.
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Figure (9) Time vs. accuracy on NetScience; marks show
results with One-way noise in [0.25,0.2,0.15,0.1, 0.05, 0].

6.5 Evaluation on Graphs with Real Noise

We now evaluate all algorithms on three real-world networks
with respect to accuracy, MNC, and S3. HighSchool and Voles
are temporal proximity networks; we match the last version of
the graph to versions with 80%, 85%, 90%, and 99% of edges. Mul-
tiMagna is a base yeast network with five variants, with edges
indicating a possible protein-protein interaction. We match the
original to each variant. Figure 10 shows our results. GWL and
CONE do well in all three measures. GWL perfectly aligns High-
school, whereas CONE achieves only 55% accuracy on this net-
work with 80% of edges. Roles are reversed with Voles, where
CONE achieves around 80% accuracy on the graph with 80% of
edges, while GWL achieves only 32%. On MultiMagna, both algo-
rithms perform similarly; CONE obtains 10% better results on the
first graph variants. Accuracy drops consistently across variants
to 40% for the last variants. Overall, CONE and GWL perform
the best. The next best algorithms are IsoRank and GRAAL,
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Figure (10) Accuracy, MNC and S° results for the real
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albeit they fare poorly on the HighSchool data. IsoRank’s good
performance on MultiMagna is expected, as it is designed for
protein-protein interaction networks. The remaining algorithms
perform well only when the networks to be matched do not differ
much, i.e., aligning graphs with 99% of edges on HighSchool and
Voles and the first MultiMagna variants; GRASP has a slight ad-
vantage, followed by NSD, REGAL and LREA. In terms of MNC
and $3, GRASP approaches IsoRank.

6.6 Scalability

Lastly, we study runtime and memory usage vs. network size
and average degree on configuration model [41] graphs with
normal degree distribution; we exclude the runtime for linear
assignment and average results over 5 runs. All algorithms use
all 28 cores and a memory of 256Gb, with a maximum runtime
allowance of 3 hours. We exclude GRAAL due to its quintic
(O(n°)) pre-processing time. Figures 11 and 13 show results when
tuning the number of nodes from 210 to 21¢ with average de-
gree 10, while Figures 12 and 14 show results for average degree
in [10, 102, 103, 10%] with size 214.

By algorithmic complexity, we expect LREA, NSD, and REGAL
to be fastest and IsoRank and GWL slowest. The results in Fig-
ures 11-12 confirm our expectation. IsoRank has lower runtime
than expected as we let it return a similarity matrix after 100
iterations even if it has not converged. REGAL could not run
within the available memory for the highest number of nodes.
We let algorithms use sparse array representations as in their im-
plementations. Thus, with CONE using a sparse representation,
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even when the number of edges grows, its memory usage does
not.

6.7 Varying Density

Our preceding analysis reveals that S-GWL and CONE perform
best on small and medium graphs, while REGAL does well on
large graphs. In this section, we investigate whether such conclu-
sions hold under varying graph density characteristics. While the
graph models we employ do not explicitly allow for controlling
density, in NWS graphs, the rewiring probability p implicitly
affects the edge density of the sampled graphs for a fixed number
of nodes n; besides, the k parameter, i.e., the number of nearest
neighbors for each node, implicitly controls the minimum and
expected degree.

Figure 15 presents the impact of density with NWS graphs
of n = 2000 nodes. While CONE and S-GWL outperform other
algorithms, they face a difficulty when handling sparse graphs
with p = 0.2. A flatter degree distribution with k = 100 accen-
tuates this problem. Besides, GRASP’s performance is unstable
due to its sensitivity to the disjoint components appearing in
the NWS model, reconfirming our observation that, due to its
spectral basis, GRASP does not handle disconnected graphs well.
We also vary the minimum k while fixing the rewiring probability
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Figure (16) Accuracy for 1% One-way noise on New-
man-Watts—Strogatz synthetic graphs of increasing size.

to p = 0.5; we see that GWL and, to a lesser extend, S-GWL, can-
not align graphs with either too low (0-100) or too high (> 600)
average degree. Contrariwise, IsoRank performs comparatively
well on low-degree graphs, reconfirming our observations with
the Multimagna graph in Figure 10. CONE falters with average
degree k = 200; this effect seems to arise from a uniform degree
distribution rendering nodes indistinguishable to the embedding
that forms CONE’s backbone.

Figure 16 shows the effect of size on quality. We first examine
a constant average degree k = 10 and p = 0.5 and increasing
graph size, hence decreasing density. Remarkably, as the graph
becomes progressively sparser, alignment quality drops, except
with IsoRank. We conclude that, by virtue of its weighted M
matrix, IsoRank can easily align small-degree nodes. We also
experiment with density fixed to 10%, setting k = n/10 and
increasing n. The right side of Figure 16 shows our results. GRASP
and CONE manage graphs with variable degree, while S-GWL
and GWL, as in Figure 15, fail to align networks of either too low
or too high average degree.

7 CONCLUSION

We evaluated a gamut of graph alignment algorithms in terms
of efficiency and quality. Our study comprised algorithms never
compared before, exhaustive parameter tuning, and datasets with
real and generated ground-truth alignments; for the latter, we
corrupt graph structure with noise of diverse types and at differ-
ent levels. Our experiments suggest that S-GWL is an algorithm
of choice on most counts; yet, if scalability is a concern, REGAL
offers a viable alternative. Graph density and degree distribution
affect performance. As these are inherent graph properties, we
conclude that future graph alignment algorithms should consider
these parameters in pre-processing. Our study therefore calls for
further efforts for development in graph alignment.
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