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ABSTRACT
Road networks are widely used as a fundamental structure in
urban transportation studies. In recent years, with more research
leveraging deep learning to solve conventional transportation
problems, how to obtain robust road network representations
(i.e., embeddings) applicable for a wide range of applications
became a fundamental need. Existing studies mainly adopt graph
embedding methods. Such methods, however, foremost learn the
topological correlations of road networks but ignore the spatial
structure (i.e., spatial correlations) which are also important in
applications such as querying similar trajectories. Besides, most
studies learn task-speci�c embeddings in a supervised manner
such that the embeddings are sub-optimal when being used for
new tasks. It is ine�cient to store or learn dedicated embeddings
for every di�erent task in a large transportation system.

To tackle these issues, we propose a model named SARN to
learn generic and task-agnostic road network embeddings based
on self-supervised contrastive learning. We present (i) a spatial
similarity matrix to help learn the spatial correlations of the
roads, (ii) a sampling strategy based on the spatial structure of
a road network to form self-supervised training samples, and
(iii) a two-level loss function to guide SARN to learn embeddings
based on both local and global contrasts of similar and dissimilar
road segments. Experimental results on three downstream tasks
over real-world road networks show that SARN outperforms
state-of-the-art self-supervised models consistently and achieves
comparable (or even better) performance to supervised models.

1 INTRODUCTION
Road networks are a frequently used structure in a wide range of
urban applications, such as querying shortest-path distances [16,
28] and similar trajectories [21, 41]. They have been commonly
represented as graphs, where graph algorithms such as Dijkstra’s
algorithm are used for the queries. In road network graphs, each
individual vertex or edge carries limited information. As such,
graph algorithms often require a traversal over many vertices
and edges to answer a query, which at times lacks e�ciency.

Motivated by recent advances in graph representation learn-
ing [12, 13, 31], we learn embeddings to encode more information
into the vector representation of each road segment (modeled
as a graph vertex). A road segment embedding is a vectorized
representation of the road segment, i.e., we compute a multidi-
mensional real-valued vector to represent a road segment. The
embeddings have a continuous value domain and a possibly high
dimensionality (e.g., 128 dimensions). They o�er a stronger capac-
ity to encode more information (e.g., spatial properties and local
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topology) of the road segments, compared with a tuple of several
values (e.g., road ID and type). This property enables more e�-
cient and accurate queries on road networks, which is attractive
to many applications (e.g., �nding users with similar commute
trajectories for carpooling). For example, computing trajectory
similarity is a fundamental operation which plays a critical role
in evaluating the query predicate of trajectory queries [7, 36, 43].
We can reduce the time complexity of trajectory similarity com-
putation to linear time by directly comparing the embeddings
(e.g., with L1-norm), while traditional methods [5, 18] may need
a quadratic time since they compute the distance between every
pair of points on two trajectories.

Most existing road network embeddings [17, 33, 40] are learned
with given downstream tasks. For example, Wu et al. [40] learn
road segment embeddings for di�erent downstream tasks such
as road type prediction. Jepsen et al. [17] learn road segment
embeddings for driving speed prediction. Such embeddings are
learned in an end-to-end fashion with task-speci�c supervision
signals. They may become inapplicable (or sub-optimal) when a
new downstream task arises.

Another stream of studies [35, 44] learn embeddings inde-
pendently from downstream tasks. They avoid task-speci�c su-
pervision signals by: (i) using self-supervised graph embedding
techniques (e.g., node2vec [12]) which focus on the graph topol-
ogy but ignore the spatial structure of the road networks [44], or
(ii) using road segment distances and types (e.g., motorway) as
the supervision signals, which ignore the graph topology [35].

In this study, we present a self-supervised learning approach to
embed road networks without requiring task-speci�c supervision
signals. We aim to achieve generic road segment embeddings that
preserve both the graph topology and spatial structure information,
which can be used in a variety of applications, such as shortest-
path distance query and trajectory similarity computation.

We propose a spatial structure-aware road network embed-
ding (SARN) model based on graph contrastive learning (GCL),
motivated by the strong results of GCL models [14, 29, 42, 49].
The basic idea of GCL is that, given a graph ⌧ , we generate a
pair of graph variants (i.e., graph views) by augmenting ⌧ , e.g.,
randomly masking some edges or vertex attributes. Then, a graph
encoder F is applied on each view to map the vertices (road seg-
ments in our problem) to the embeddings. The mapping aims to
generate similar embeddings for the same vertex B8 2 ⌧ in both
graph views and dissimilar embeddings for the di�erent vertices.
This learns embeddings in a task-agnostic manner.

However, there are no GCLmodels designed for road networks
and it is sub-optimal to directly apply existing GCL models (e.g.,
GraphCL [42] and GCA [49]) on road networks due to the fol-
lowing reasons.

• Existing GCL models are designed for general graphs which
do not consider the spatial structure of road networks. They
randomly sample vertex (i.e., road segment) pairs and give an
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(a) Map of San Francisco (b) Road network graph
Figure 1: A road network example

equal focus to di�erentiating the embeddings of the vertices
in each pair. During this process, the spatial structure of road
networks is ignored. Consider four road segments B1, B2, B3,
and B4 in Fig. 1a, with the corresponding graph shown in
Fig. 1b. When learning the embedding of B1, existing GCL
models consider that it is equally important to di�erentiate B1
from B2, B3, and B4. However, since B2 is much closer to B1 than
B3 and B4 in spatial distance, we should treat B2 di�erently
and allow it to have a more similar embedding to that of B1.

• Existing GCL models learn the embedding of a vertex by
aggregating the embeddings of its topologically connected
vertices. This also ignores the spatial correlations between
the road segments when applying GCL models on road net-
work graphs. For example, even though B1 and B2 are close in
spatial distance and they share similar directions, they are
many hops away in the road network graph in Fig. 1b. As a re-
sult, existing GCL models may not learn similar embeddings
for the two road segments, while their spatial similarity is
important in problems such as querying similar trajectories,
which need to be captured and encoded into the embeddings.

To introduce spatial information into GCL, we design novel
components for each key GCL step in our SARNmodel as follows:

The spatial similarity adjacency matrix records the similarity
between road segments based on their spatial properties, e.g.,
locations and angles. We incorporate this matrix into the graph
encoder in SARN to guide the message passing process and learn
embeddings that re�ect the similarities in the spatial properties.

The spatial importance-based graph augmentation strategy
helps generate graph views by masking the less important edges
and retaining edges between road segments of higher importance
(e.g., motorways that connect many parts of the road network)
and sharing more similar spatial properties.

The spatial distance-based negative sampling strategy generates
training vertex pairs with a focus on the road segments close to a
target segment B8 for embedding learning. We partition the road
network space with a grid and fetch multiple recently learned
embeddings in the grid cell of B8 as our local negative samples,
and we generate an aggregated embedding for each of the other
cells as a global negative sample.

The two-level contrastive loss function takes both local and
global contrasts into consideration by leveraging the two types
of negative samples. The local contrastive loss focuses on distin-
guishing the embedding of B8 from those of the local negative
samples, while the global contrastive loss focuses on distinguish-
ing the embedding of B8 from those of the global negative samples.
The two loss terms together produce embeddings that are more
similar (but still distinguishable) for the road segments in the
same local area than those for the road segments in di�erent
areas, thus better preserving the spatial structures.

To summarize, we make the following contributions:

(1) We propose a model named SARN which is the �rst road net-
work embedding model based on graph contrastive learning.
The contrastive learning-based process enables embedding
learning without manually labelled data, while the learned
embeddings can be readily used in a wide range of down-
stream tasks without �ne-tuning.

(2) To encode spatial information, we design four novel compo-
nents for each key learning step of SARN including a spa-
tial similarity-based graph, a spatial importance-based graph
augmentation strategy, a spatial distance-based negative sam-
pling strategy and a two-level loss function.

(3) We evaluate SARN on three real-world downstream predic-
tion tasks over three real road networks. The results show
that: (i) Compared with state-of-the-art self-supervised ap-
proaches, SARN achieves higher prediction accuracy in all
three tasks over all three road networks, and the advantage is
up to 34% (in the hit ratio for predicting similar trajectories).
(ii) Compared with even supervised models for each task,
SARN shows comparable results, and it outperforms them
after �ne-tuning on two of the tasks.

2 RELATEDWORK
2.1 Road Network Embedding
Road network embedding methods can be divided into two cate-
gories: task-speci�c embedding and task-agnostic embedding (i.e.,
generic embedding).

Task-speci�c embedding. We use task-speci�c embeddings
to denote road network embeddings learned in a supervised man-
ner given a downstream task. Given supervision signals such
as road type labels, shortest-path distances, or recommended
routes, some studies [17, 28, 30, 33] embed intersections and road
segments of a road network by generic neural network models
such as feedforward neural networks (FFNs) and graph neural
networks (GNNs), while others [16, 22, 40] design their own em-
bedding models. All these studies encode information from the
supervision signals into the learned embeddings. They do not
necessarily encode the spatial structure of the road networks such
as the connectivity (when using FFNs) and spatial locations of the
road segments. The learned embeddings become inapplicable (or
sub-optimal) when they are given to new tasks. HRNR [40] is the
state-of-the-art road network embedding model in this category.
It creates a three-level hierarchy of an input road network to cap-
ture its features at di�erent granularity. By leveraging GNNs and
two reconstruction tasks across the three levels, HRNR learns
road segment embeddings that encode richer graph structure
information. However, HRNR still requires task-dependant su-
pervision signals for training. The road segment embeddings
need to be learned for di�erent tasks of interest separately.

Task-agnostic embedding. There are also road network em-
bedding models that aim to learn generic embeddings without
relying on any downstream tasks at training. DeepWalk [26] and
node2vec [12] are two early self-supervised models for graphs
which are adopted for road network embedding [20, 44, 46]. These
methods generate node sequences by random walks on a graph,
which are then treated as “sentences” and are used to learn vertex
embeddings following the word2vec [24] word embedding idea.
The learned embeddings encode local neighborhood structure of
each vertex. Like GNNs, random walk-based embeddings su�er
from lack of spatial structure of the road network.
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A few other studies [11, 34, 35] devise their own models to
learn generic embeddings. Speci�cally, Wang et al. [34] learn
road intersection embeddings with an FFN that takes two in-
tersections (in the form of one-hot embeddings) as inputs and
predicts whether they are close and share the same intersection
types. The �rst layer parameter weights of the trained FFN are
used as the learning embeddings of the intersections. This model
is further extended to learn embeddings for road segments and
then trajectories [11, 35]. SRN2Vec [35], in particular, learns an
FFN to predict whether two road segments are close and share
the same road types. It considers the spatial proximity of the road
segments but not the road network topology.

We aim to address the limitations above and learn generic road
segment embeddings that encode both spatial and topological
information with a self-supervised approach.

2.2 Graph Contrastive Learning
Contrastive learning is a self-supervised learning method that
learns data representations based on positive (similar) and neg-
ative (dissimilar) data sample pairs. The aim is to generate data
embeddings such that objects in a positive pair have much closer
embeddings than those of objects in a negative pair.

Originated from computer vision [6, 8, 15], contrastive learn-
ing has been introduced to graph data, resulting in GCL mod-
els [14, 29, 42, 49] with strong learning capacity.

The basic idea of GCL is to learn vertex embeddings by maxi-
mizing the similarity between the embeddings of positive vertex
pairs and minimizing that between the embeddings of negative
vertex pairs. Di�erent approaches have been proposed to guide
the learning process. Some studies [14, 32] use an instance-global
discrimination approach that maximizes the mutual information
between the embeddings of a vertex and its corresponding sub-
graph. In this case, a vertex and a sub-graph that contains the
vertex forms a positive pair. Others [29, 42, 49] use instance-
instance discrimination that learns from vertex pairs instead. We
follow the latter approach and will detail a baseline algorithm
using this approach in the next section. A comprehensive survey
of GCL models can be found in Ref. [47].

Existing GCL models have focused on the generic graphs by
capturing the topological structure of graphs. Applying them
directly on road networks misses the spatial information such
as the distances among road segments. Our SARN model ad-
dresses this limitation by incorporating spatial knowledge-based
components.

3 PRELIMINARIES
We aim to learn road segment embeddings that encode rich topo-
logical and spatial structure information to enable fast and accu-
rate query processing over road networks. We start with the data
structure to represent a road network and our problem de�nition.
Then, we present a direct adaptation of GCL for road segment
embedding, which serves as the foundation of our SARN model.
We also evaluate such method, i.e., SARN-w/o-MNL, as a baseline
model in the experiments. We list frequently used symbols in
Table 2.

Input road network representation.We represent a road
network as a directed graph⌧ = h(,At,Asi. The set of graph ver-
tices ( represents the = road segments in the road network. This
simpli�es road segment embedding learning, following previ-
ous studies [17, 40]. Each vertex (i.e., a road segment) B8 2 (

Table 2: Frequently Used Symbols
Symbol Description

⌧ An input road network graphe⌧, e⌧ 0 Corrupted graph views of ⌧
( A set of road segments
At The adjacent matrix of ⌧
As The spatial similarity matrix of ⌧
B8 The ith road segment, where B8 2 (
h8 The learned embedding of B8

is represented by the road type (e.g., motorway), length, ra-
dian, and coordinates of its start and end points, denoted by
hB8 .C~?4, B8 .;4=6C⌘, B8 .A0380=, B8 .BC0AC, B8 .4=3i. Here, the start and
end points B8 .BC0AC and B8 .4=3 further contain two features each,
i.e., the latitude and longitude. The radian denotes the spatial
direction of a road segment. We omit the road segment IDs so as
to learn generic and ID-independent embeddings.

The adjacency matrix At 2 R=⇥= represents the topological
connectivity between the road segments. A matrix element At

8, 9
is non-zero if B 9 is directly connected from B8 , and 0 otherwise.
We compute the value of At

8, 9 based on “weights” of B8 and B 9 :

At
8, 9 =

1
2
·
�
weight(B8 ) +weight(B 9 )

�
(1)

Here, weight(·) returns the weight of a road segment, which is
derived from its type, since the road types are a strong indicator
of road importance. For example, motorways are more important
than residential roads, as adding or removing a motorway is more
likely to impact the overall network connectivity. We obtain the
road types fromOpenStreetMap [4] and empirically assign higher
weights to roads of more important types, e.g., 6.0 for motorways
and 2.0 for residential roads.

The spatial similarity matrix As 2 R=⇥= represents the similar-
ity between the road segments based on their spatial properties.
Since this is part of our contributions in the SARN model, we
will detail it in the next section with SARN.

Problem de�nition. Given a road network ⌧ , we learn an
embedding function 5 : ( ! R3 that maps each road segment B8
in ⌧ to a vector h8 2 R3 , where 3 is a small constant.

We aim to achieve a function 5 that preserves road segment
features and latent topological and spatial correlations among
the road segments. The learned embeddings are expected to be
applicable in a wide range of downstream tasks with or without
�ne-tuning, to produce accurate results e�ciently.

A baseline GCL model. We present a baseline model that
directly uses GCL for road network embedding with a graph
augmentation module and a graph encoding module.

In every training epoch of a GCL model, the graph augmenta-
tion module corrupts ⌧ into two new graph variants, i.e., graph
views, e⌧ and e⌧ 0. This can be done by randomly dropping vertices,
dropping or adding edges, or masking vertex attributes.

The graph encoding module encodes each graph view with
a separate GNN model. A nonlinear projection head further
projects a GNN output embedding h8 to a lower dimensional
embedding z8 2 R3I (3I < 3) for loss computation.

Existing GCL models use the InfoNCE loss [25] for model learn-
ing as follows. Given an embedding z8 from graph view e⌧ that
corresponds to vertex B8 2 ⌧ , the embedding z08 of B8 that comes
from the other graph view e⌧ 0 is considered a positive sample of
z8 . We further fetch  (a system parameter) negative samples of
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z8 , denoted by {z�9 | 9 2 [1, ]}, which are embeddings of ran-
dom vertices from e⌧ 0. InfoNCE aims to maximize the similarity
between z8 and z08 and minimize that between z8 and z�9 :

L = EZ
⇥
� log

exp
�
⇤(z8 , z08 )/g

�
exp

�
⇤(z8 , z08 )/g

�
+ Õ 

9=1 exp
�
⇤(z8 , z�9 )/g

� ⇤ (2)

Here, Z denotes the distribution of z8 , ⇤(·, ·) measures the simi-
larity between two embeddings, and g is the temperature hyper-
parameter which controls the penalties on the negative samples
that are more similar to z8 .

When the GCL model is trained, the GNNmodel component is
detached from the model and is used for producing embeddings
for downstream tasks.

4 PROPOSED MODEL
Next, we detail the proposed spatial-structure aware road network
embedding model, SARN. As Fig. 2 shows, given an input road
network, SARN �rst constructs a graph representation ⌧ =
h(,At,Asi. We detail how the spatial similarity matrix As (Techni-
cal Contribution 1) is formed in Section 4.1. Then,⌧ is corrupted
into two graph views e⌧ and e⌧ 0 using a spatial importance-based
graph augmentation module (Technical Contribution 2), which
is detailed in Section 4.2. The graph views go through a graph
encoding module that mainly consists of GNNs and nonlinear
projection heads similar to the baseline GCL model above. We
include the key computation steps of this module in Section 4.3
for completeness. This module outputs road segment embeddings
from the two graph views. SARN uses a spatial distance-based
negative sampling strategy (Technical Contribution 3) to sample
from such embeddings to form positive and negative samples, as
detailed in Section 4.4. The samples are fed into a two-level loss
function (Technical Contribution 4) to compute the contrastive
loss for model learning, which is detailed in Section 4.5.

4.1 Spatial Similarity Matrix
Given a road network, we �rst form its graph representation
⌧ = h(,At,Asi. The set of vertices ( and the adjacency matrix At

have been described in Section 3. Here, we focus on the spatial
similarity matrix As, which incorporates spatial correlations into
the road network graphs, as de�ned below.

De�nition 4.1 (Spatial similarity matrix). Given a road network
graph ⌧ = h(,Ati, the spatial similarity matrix As 2 R=⇥= rep-
resents the spatial similarity between road segments, where =
denotes the number of road segments in ⌧ .

A matrix element As
8, 9 denotes the spatial similarity between

B8 and B 9 , which is the average of the distance similarity As
8, 9 .3B

and the angular similarity As
8, 9 .0B:

As
8, 9 =

(
1
2 (As

8, 9 .3B + As
8, 9 .0B), 8 < 9

0, otherwise
(3)

As
8, 9 .3B = cos

c ·min{sp_dist(B8 , B 9 ), X3B }
2X3B

(4)

As
8, 9 .0B = cos

c ·min{ag_dist(B8 , B 9 ), X0B }
2X0B

(5)

Here, we use the cosine functions to normalize the two simi-
larity values into the same range of [0, 1]. Functions sp_dist(·, ·)
and ag_dist(·, ·) return the spatial distance and the angular dis-
tance, respectively. Speci�cally, sp_dist(·, ·) computes the haver-
sine distance [2] between themidpoints of two road segments, and

ag_dist(·, ·) computes the absolute angular distance between two
road segments (|B8 .A0380= � B 9 .A0380= |). Two distance threshold
parameters X3B and X0B are used. They set the similarity values
to 0 (since cos c2 = 0) when the spatial distance and the angular
distance are too large, respectively.

Our graph⌧ has two types of edges, i.e., a directed topological
edge ���!B8 , B 9 from B8 to B 9 if At

8, 9 > 0, and an undirected spatial
edge B8 , B 9 between B8 and B 9 if As

8, 9 > 0. In Fig. 2, there are
nine directed road segments B1, B2, . . . , B9. Their topological and
spatial edges are denoted by solid (blue) and dashed (red) lines,
respectively. For example, B7 shares topological edges with B6 and
B8 (they share intersections), and it shares spatial edges with B2
and B4 (they are close and share similar directions).

The spatial edges (e.g., B2, B7) capture the spatial similarity
between the road segments. They help our model learn such
information and encode it into the embeddings, even when the
road segments are not directly connected in the original road
network. This di�ers from the graph structures in typical GCL
models where only topological edges are considered.

4.2 Spatial Importance-Based Graph
Augmentation

Once ⌧ is formed, we need to augment it to produce two graph
variants (i.e., graph views). Augmenting ⌧ to generate similar
but not the same views is an important step towards high-quality
embeddings [48, 49]. Next, we detail our augmentation strategy
that considers the spatial importance of the road segments.

We generate two graph views e⌧ and e⌧ 0 by corrupting ⌧ be-
fore each training epoch, to produce the positive and negative
samples. Since the positive samples require embeddings from e⌧
and e⌧ 0 that correspond to the same road segment B8 2 ( , we only
corrupt ⌧ by modifying its edges but not the vertices. Further,
the embeddings of B8 from e⌧ and e⌧ 0 are supposed to be similar.
Thus, e⌧ and e⌧ 0 should have a similar topology. This requires
the edges with a stronger impact on the graph topology to have
higher probabilities to be retained.

Inspired by the GCA model [49], we remove edges from⌧ us-
ing probabilities based on their weights. Recall that the weights of
the topological edges are based on the road segment importance,
while the weights of the spatial edges are based on the importance
to retain the spatial similarity relationship between two road seg-
ments. Thus, our graph augmentation strategy re�ects the spatial
importance of the road segments and their relationships.

We use two corruption rate parameters dC and dB to control
the proportion of the topological edges and the spatial edges to
be removed, respectively (dC , dB 2 (0, 1)). We perform weighted
sampling without replacement to remove edges.

For a topological edge ���!B8 , B 9 , its probability of being sampled
and removed (i.e., its corruption probability) is:

? (���!B8 , B 9 ) = fn
⇣
1 �

At
8, 9 �min{At}

max{At} �min{At}
⌘

(6)

Here,min{At} andmax{At} denote the minimum and maximum
non-zero elements of matrix At, respectively; fn (·) is a linear
function that maps the probability into range [n, 1 � n] to avoid
corruption probabilities of 0 or 1, where n is a small number.
Intuitively, a topological edge with a larger weight connects two
road segments with larger weights (i.e., more important road
segments, cf. Eq. 1). It should be less likely to be removed (i.e., a
lower corruption probability).
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Figure 2: SARN model architecture
For a spatial edge B8 , B 9 , its corruption probability is:

? (B8 , B 9 ) = fn
�
1 � As

8, 9
�

(7)

We do not normalize As
8, 9 with the minimum and maximum

elements of As, because As
8, 9 is already in range (0, 1) (cf. Eq. 3).

Intuitively, a spatial edge with a larger weight denotes a higher
spatial similarity between two road segments, which needs to be
retrained to preserve the similarity relationship.

When there are both a topological edge and a spatial edge
between B8 and B 9 (we call them a “dual-typed edge” for short),
we remove both edges when either is sampled. Such an edge
removal strategy may cause the dual-typed edges being more
likely to be removed, since they can be removed by either spatial
or topological edge sampling. However, such edges are quite rare
(e.g., 7.5% in the CD road network, cf. Table 3), and their impact
is small as observed in our experiments.

4.3 Graph Encoding
Each corrupted graph view (e⌧ and e⌧ 0) is fed into a graph encod-
ing module separately to learn embeddings for the graph vertices.
The graph encoding module consists of a GNN and a nonlinear
projection head. We follow the momentum update strategy [15]
in our graph encoding module. Its key steps are briefed below
for completeness of our SARN model.

Feature embedding layer. Before feeding e⌧ or e⌧ 0 into a
GNN, the raw road segment features are �rst mapped to a higher
dimensional space to enhance their representation power. This
is done with a feature embedding layer shared by both corrupted
graph views, as shown in Fig. 2.

As mentioned in Section 3, each road segment B8 is a 5-tuple
with seven feature values in total, since there are two coordinates
for each of the start and end points. We represent B8 .C~?4 with an
integer type ID (a one-hot vector). The other feature values are
real numbers. We discretize each value domain with equi-sized
bins (5 meters, 10 degrees, and 50 meters per bin for B8 .;4=6C⌘,
B8 .A0380=, and the end point coordinates, respectively) and con-
vert each value into an integer bin ID (also a one-hot vector). We
use s8 to denote the resultant feature vector.

Each feature value then goes through a separate linear embed-
ding layer, due to its di�erent value domain (and hence di�erent
amount of information to be encoded). The outputs of the linear
layers for all seven feature values are concatenated to form a
vector x8 2 R35 which is used as the input for the next module,
where 35 is a system parameter.

Graph encoder. The mapped corrupted graphs e⌧ and e⌧ 0
(with mapped feature vectors x8 ) then go through GNNs F
and F 0 separately (cf. Fig. 2). We use the graph attention net-
work (GAT) [31] as the GNN. 1 Models F and F 0 each learns the
1We use GAT to learn uni�ed underlying correlation weights which can imply
both topological and spatial structure-based correlation between vertices based on

embedding h8 2 R3 of a vertex B8 by aggregating those of its (�rst-
order) neighboring vertices using the self-attention mechanism
(readers familiar with GATs may skip this paragraph):

h8 =
!n

;=1
f

 ’
B 9 2N8

U;8 9W
;x9

!
(8)

Here, N8 denotes the set of neighboring vertices of B8 . We con-
sider neighboring vertices connected to B8 by either a topological
edge or a spatial edge, such that the learned embedding of B8
encodes both the topological and spatial structure information.
Function f is a nonlinear activation function (ELU), and k denotes
concatenation (averaging is used for the �nal GAT layer – we
use three layers). There are ! (a hyper-parameter, 4 in our model)
sets of independent attention weights each denoted by U; andW;

(i.e., multi-head attention), to represent the vertex correlations.
To compute the attention coe�cient U8 9 of x8 and x9 , both

x8 and x9 are �rst mapped to R3 via multiplying by a learned
and shared weight matrixW 2 R3⇥35 . The mapped vectors are
concatenated and then further mapped back into a single real
value 48 9 2 R by a learned weight vector a 2 R23 :

48 9 = a) · [Wx8 kWx9 ] (9)

A softmax-like function is applied to normalize the attention
coe�cients among the neighbouring vertices.

U8 9 =
exp(LeakyReLU(48 9 ))Õ

B: 2N8
exp(LeakyReLU(48: ))

(10)

We use the embedding h8 learned via the graph encoder F as
the embedding of B8 in downstream tasks.

Projection head. An output embedding of a GNN, i.e., h8 , is
fed into a projection head, which is an FFN that maps h8 to a
lower dimensional vector z8 2 R3I (3I < 3) before computing the
loss. This step was shown to be e�ective to improve the quality
of the learned embeddings [8, 9]. Let FC and ReLU be a fully
connected layer and the ReLU activation function, respectively,
and ‘�’ denote function composition.

z8 = (FC � ReLU � FC) (h8 ) (11)

We denote the two projection heads used for the two corrupted
graph views by P and P 0, respectively.

Weight update. Each of the GATs F and F 0 and the pro-
jection heads P and P 0 has its own weight values. The weights
of F and P are updated (i.e., learned) by gradient descent with
the contrastive loss (detailed in Section 4.5) computed for each
mini-batch input. Then, the weights of F 0 and P 0 are updated
the input features of vertices and their neighbouring relationships (which can be
obtained from (0,1)-adjacency matrices of At and As). Comparing with using At ,
As , or their sum, the weights as learned one by the attention mechanism of GAT
have better expressive power that can model both types of weights adaptively.
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by momentum update [15]:

WX0 =<WX0 + (1 �<)WX (12)

Here, WX denotes all weights of model X, where X 2 {F ,P}.
< 2 (0, 1) is the momentum coe�cient (a hyper-parameter) that
controls the stableness of the weight updates in F 0 and P 0. We
use a large value (0.999 in our experiments) for< to keep stable
weight updates. This enables reusing embeddings learned from
previous mini-batches for the next round of negative sampling,
thus enlarging the pool of negative samples.

4.4 Spatial Distance-Based Negative Sampling
By now, we have obtained vertex embeddings of both graph viewse⌧ and e⌧ 0 from the graph encoding module. The next step is to
compute a training loss which will be used for model parameter
updates in the backpropagation process. Before introducing our
loss function, we need to �rst describe our procedure to sample
the vertex pairs for the loss computation.

Similar to the baseline GCL model in Section 3, SARN needs
both positive and negative samples to guide model training. We
adopt the same positive sampling strategy used in the baseline
GCL model, i.e., given a vertex B8 from e⌧ , (the embedding of) the
same vertex from e⌧ 0 is used as a positive sample for B8 .

Next, we focus on negative samples (cf. Eq. 2), which are criti-
cal to provide learning signals in GCL since there is no external
supervision signals. Existing GCL models treat all vertices (road
segments) in e⌧ 0 equally and sample from them randomly to
form the negative samples. As discussed earlier, road segments
of di�erent distances from a target road segments contribute
di�erently to the contrastive learning process. We thus propose
a spatial distance-based negative sampling strategy.

s2

Figure 3: Spatial distance-based negative sampling

Our sampling strategy uses a grid partitioning on the space of
the road network ⌧ , where each cell 28 has a side length of 2;4=.
Each cell 28 maintains a queue & (28 ) of size q . The queue stores
the last q embeddings z09 produced by projection head P 0 (in
previous mini-batches, following MoCo [15]) that correspond to
road segments B 9 whose midpoints fall in 28 . For example, Fig. 3
shows a road network space with 3 ⇥ 3 grid. When P 0 produces
embedding z02 of B2, we push z02 into & (28), since B2 is in 28.

Inspired by MoCo [15], we use queues to store embedding
samples from the recent mini-batches, where the stored embed-
dings will be used as negative samples during the training stage.
Such a technique can o�er a larger set of negative samples than
those in contrastive learning models [8, 42] that sample negative
samples from only one mini-batch. A large set of negative sam-
ples helps learn more robust representations since it prompts the
distribution of embeddings with uniformity [38].

Using the grid partition, we can obtain two types of nega-
tive samples, namely local negative samples and global negative
samples. Given a target road segment B8 , let B8 .24;; be the cell

enclosing the midpoint of B8 , and & (B8 .24;;) be its queue. The
set of local negative samples of B8 contains the embeddings in
& (B8 .24;;) (except those corresponding to B8 ), denoted by:

#; (B8 ) = {z9 |z9 2 & (B8 .24;;), B 9 < B8 } (13)

Here, z9 is the embedding corresponding to B 9 . Such samples help
di�erentiate road segments in the same local area.

The set of global negative samples of B8 is generated from the
embeddings in the queues of the other cells. They provide training
signals to di�erentiate road segments in di�erent areas. Since
vertices in the other cells are far away from B8 , it is unnecessary
to learn �ne-grained di�erences between their embeddings and
that of B8 . We thus leverage a A403>DC function (we use the mean
aggregate) R(·) to aggregate the embeddings in each queue to
obtain their overall representation. The resultant aggregated
embedding is also in R3I and is used as a global negative sample.
The set of global negative samples is thus denoted by:

#6 (B8 ) = {R(& (2: )) |2: 2 ⇠, 2: < B8 .24;;} (14)

Here, ⇠ denotes the set of all cells in the grid.

4.5 Two-level Loss Function
Finally, we introduce our loss function, which has two loss terms,
local contrastive loss and global contrastive loss, based on the local
and the global negative samples. Intuitively, the global contrastive
loss guides our model SARN to learn a general pattern shared by
all road segments in the same cell, which is di�erent from cell to
cell. Meanwhile, the local contrastive loss further guides SARN
to learn more subtle di�erences among the embeddings of the
road segments in the same cell.

Local contrastive loss. The local contrastive loss L; (B8 ) for
a target road segment B8 is similar to the InfoNCE loss (cf. Eq. 2),
except that we use the local negative samples as z�9 instead of
random ones:

L; (B8 ) = � log
exp

�
⇤(z8 , z08 )/g

�
exp

�
⇤(z8 , z08 )/g

�
+ Õ

z�9 2#; (B8 )
exp

�
⇤(z8 , z�9 )/g

� (15)

Here, z8 and z08 denote the embeddings of B8 produced by P and
P 0, respectively. Function ⇤(·, ·) measures the similarity of two
embeddings (we use their dot product) and g is the temperature
parameter as in Eq. 2.

Global contrastive loss. The global contrastive loss L6 (B8 )
for B8 is computed using the global negative samples as z�9 :

L6 (B8 ) = � log
exp

�
⇤(z8 , z+8 )/g

�
exp

�
⇤(z8 , z+8 )/g

�
+ Õ

z�9 2#6 (B8 )
exp

�
⇤(z8 , z�9 )/g

� (16)

Here, z+8 denotes the aggregated embedding of B8 .24;; , i.e., z+8 =
R(& (B8 .24;;)), which is used as the positive sample in the global
contrastive loss.

We combine the two loss terms with a trade-o� parameter
_ 2 (0, 1) to obtain our �nal loss function LSARN:

LSARN = EB8 2(⇤
⇥
_L; (B8 ) + (1 � _)L6 (B8 )

⇤
(17)

Here, (⇤ denotes the set of road segments in a mini-batch.
Training algorithm. Algorithm 1 summarizes the training

process of SARN. In each epoch, we generate two corrupted
graph views e⌧ and e⌧ 0 (Lines 2 and 3, Section 4.2) and use them
in every mini-batch with a di�erent subset (⇤ of the set ( of
all road segments. For each subset (⇤, we compute the graph
embeddings (Lines 5 and 6) which are fed into the projection
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heads (Lines 7 and 8). Then, we leverage the local and the global
negative samples (denoted as N) and the projection head outputs
for loss computation (Lines 9 and 10), the result of which is used
to guide weight updates (Lines 11 to 14). We update the queues
of the cells with the newly computed embeddings before the
next mini-batch is processed (Line 15). The algorithm returns the
output H of graph encoder F as the road network embeddings
when the training completes.
Algorithm 1: SARN_training
Input: ⌧ : road network graph;

dC , dB , _,<: model parameters.
Output: H: road segment embeddings

1 while not converged do
2 e⌧  augment_graph(⌧, dC , dB );
3 e⌧ 0  augment_graph(⌧, dC , dB );
4 for (⇤ ⇢ ( do
5 H F ((⇤, e⌧);
6 H0  F 0((⇤, e⌧ 0);
7 Z P(H);
8 Z0  P 0(H0);
9 N fetch_negative_samples((⇤);

10 LSARN  compute_loss(Z,Z0,N, _);
11 WF  gradient_descent(WF,LSARN);
12 WP  gradient_descent(WP ,LSARN);
13 WF0  momentum_update(WF,WF0,<);
14 WP0  momentum_update(WP ,WP0,<);
15 update_queue(Z0);
16 return H;

Model costs. Each epoch takes $ (=4 ) + M(=) + $ ( · = ·
32) time. Here, $ (=4 ) denotes the time to generate the graph
views, assuming =4 edges in⌧ . CostM(=) denotes the time to go
through the graph encoding module and generate the projected
embeddings for all = vertices, which is determined by the time
costs of the neural network models used. We generalize it to
M(=) for simplicity. Cost $ ( · = · 32) denotes the time for loss
computation over = vertices, assuming  negative samples for
each vertex, i.e.,  = |#; (B8 ) | + |#6 (B8 ) |. In comparison, our
baseline GCL models GCA [49] and GraphCL [42] (detailed in the
next section) share the same time costs$ (=4 ) +M(=) with SARN
in graph view and embedding generation. For loss computation,
GCA takes $ (=2 · 32) time while GraphCL takes $ ( |(⇤ | · = · 32)
time, since they use all vertices and only other vertices in the
same mini-batch as the negative samples, respectively.

SARN takes $ (=4 ) memory space at training which is domi-
nated by the size of the adjacencymatrix and the spatial similarity
matrix. We use an edge list-based implementation of these matri-
ces to reduce the space usage. The trained model takes $ (= · 3)
space to store, for the learned embeddings and the model param-
eters. These costs are the same as those of GCA and GraphCL.

5 EXPERIMENTS
We show the applicability of the SARN embeddings via three
downstream tasks: road property prediction, trajectory similarity
prediction, and shortest-path distance prediction. These three tasks
focus on individual road segments, sequences of road segments,
and relative position of a pair of road segments, respectively.
We use these tasks as they relate to the topological and spatial
structures of the road networks, which are the focus of this study.
Tasks that involve other contextual factors such the time (e.g.,
travel time predictions) are beyond the scope of this study and
will be considered in future work.

5.1 Experimental Setup
Datasets. We use three road network datasets that are extracted
from OpenStreetMap [3]. They correspond to a region within the
Second Ring Road of Chengdu (CD, a capital city in southwest
China), a region within the Second Ring Road of Beijing (BJ, the
capital of China), and a northeastern region of San Francisco (SF,
USA). We build a road network graph ⌧ for each dataset. The
three datasets contain 29,593, 36,809, and 37,284 road segments,
respectively. The datasets are summarized in Table 3. Besides, we
also extract another two road networks with di�erent sizes in San
Francisco, which are used to study the impact of the road network
size along with SF. The details will be discussed in Section 5.2.4.

Table 3: Road Network Datasets
CD BJ SF

Number of road segments 29,593 36,809 37,284
Number of edges in At 50,325 66,598 60,410
Number of edges in As 48,002 63,875 59,606
Area (km2) 10.13 ⇥ 11.26 9.49 ⇥ 8.74 5.72 ⇥ 5.69
For the trajectory similarity prediction task, we use three real-

world trajectory datasets, i.e., DiDi [1], T-Drive [45], and SF-
Cab [27]. DiDi contains ride-hailing vehicle trajectories recorded
during November 2016 (�rst seven days) in Chengdu. T-Drive and
SF-Cab contain weekly and monthly taxi trajectories recorded
in Beijing and San Francisco, respectively. We break each trajec-
tory into two when the time interval between two adjacent GPS
points exceeds 20 minutes. We also remove any trajectory points
outside the regions of the CD, BJ, and SF road networks. Then,
we randomly sample 10k trajectories from each trajectory dataset
and map them to the CD, BJ, and SF road networks using a map-
matching algorithm [23]. By default, we truncate the matched
trajectories to a maximum length of 60 segments to form the tra-
jectory datasets. We also study the impact of number of segments
by varying it from 60 to 180 in the experiments. Here, we focus
on the number of segments instead of the physical trajectory
length. This is because the neural network models for trajectory
modelling take input in the form of sequence of segments, and
their learning performance is impacted more by the number of
segments than by the physical trajectory length (e.g., a lengthy
trajectory can be represented by limited number of segments
using trajectory simpli�cation algorithms [10]).

Competitors.We compare embeddings learned by our SARN
model with those learned by four self-supervised embedding mod-
els, one task-agnostic supervised model and two task-speci�c su-
pervised models.

• Self-supervised models:
(1) node2vec [12] is a widely used self-supervised graph em-

bedding model that applies random walks on a graph to
generate sequences of vertices (i.e., road segments), which
are then treated as “sentences” and are used for embedding
learning with the word2vec technique [24].

(2) GraphCL [42] is a representative GCL model that follows
the description of the baseline model in Section 3, except
that its graph encodingmodules for both graph views share
parameters. It uses road segments in the same mini-batch
of the target segment as negative samples.

(3) GCA [49] extends GraphCL by an adaptive graph augmen-
tation based on the weights of the vertex attributes and
edges. A vertex or an edge of a higher weight is more likely
to be retained in the augmented graph views. GCA uses
all other vertices in ⌧ to form negative samples.
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(4) SRN2Vec [35] learns an FFN that maps road segments
which are spatially close and are of the same type to be
close in the embedding space (this can also be seen as a
self-supervised model), as described in Section 2.1.

• Task-agnostic supervised model:
(1) HRNR [40] is the state-of-the-art task-agnostic supervised

road network embedding model. It creates a hierarchical
road network representation and uses two reconstruction
tasks to learn the inter-relationships between the three
layers of the road network hierarchy. While this model
does not rely on a particular downstream task, it needs
to be connected with a task-speci�c component to obtain
supervision signals for embedding learning.

• Task-speci�c supervised models:
(1) NEUTRAJ [41] is a recent model for trajectory similar-

ity prediction. It uses a recurrent neural network (RNN)
with a spatial attention memory unit to learn trajectory
representation and predict trajectory similarity.

(2) RNE [16] is the state-of-the-art for shortest-path distance
prediction with high e�ciency. It uses FFNs to learn ver-
tex embeddings based on the road network hierarchy and
predict shortest-path distances.

We use the released code for all these competitors except
SRN2Vec which does not have released code. We implemented
SRN2Vec following its proposal [35]. We use the recommended
parameters of these models provided in the associated papers
unless speci�ed otherwise.

Implementation details.We use the same backbone graph
encoder GAT for GraphCL, GCA and SARN for fair comparison.
The embedding size 3 is 128 for all models. For SARN, we set the
distance thresholds X3B and X0B to 200 meters and c

8 , respectively.
We use 0.4 as the default edge corruption rates dC and dB . We use
1, 000 (this value bounds  ) as the total size of all sample queues
on each road network. This means that the cell side length 2;4=
and queue size q are 1,200 meters and 11 for CD, 1,200 meters
and 16 for BJ, and 600 meters and 10 for SF, respectively.

We use the Adam optimizer with early stopping in training.
The maximum number of training epochs of SARN is 200 and
the patience is 20. The learning rate is initialized to 0.005 and it
decays following the cosine annealing schedule. We use a mini-
batch size of 128. In the loss function (Eq. 17), _ is set to 0.4 with
the temperature g = 0.05. The experimental results of parameter
study can be found in Section 5.5.

We implement SARN with PyTorch 1.8.1. All experiments are
run on a 64-bit Linux server with an Intel Xeon Gold 6132 CPU,
64 GB RAM, and an NVIDIA Tesla V100 GPU. We repeat the
experiments 5 times with di�erent random seeds and report the
average performance.

5.2 Performance on Downstream Tasks
We �rst investigate the e�ectiveness of SARN on the downstream
tasks. Even though our embeddings provide prediction results
with both high accuracy and e�ciency, we focus on the accuracy
in the following discussion. This is because the e�ciency of
embedding-based approaches have been shown in the baseline
models NEUTRAJ and RNE in each task. We retain the e�ciency
by following prediction procedures similar to these models.

For the self-supervised models node2vec, GraphCL, GCA,
SRN2Vec, and our model SARN, we �rst learn the embedding

independently from any downstream tasks. Then, for each down-
stream task, we learn a simple prediction model (detailed in each
task), where the learned embeddings are frozen.

For HRNR, the embeddings and prediction models are learned
together in an end-to-end fashion for each task. NEUTRAJ and
RNE are both end-to-end supervised methods. We directly use
them for their respective target tasks.

Additionally, we freeze the RNE embeddings and used them
with the prediction models for the other two tasks like those of
the self-supervised models. We do not do this with NEUTRAJ
because it does not produce road segment embeddings.

We further implement a �ne-tuned version of SARN, denoted
by SARN⇤, to observe the quality of the embeddings when SARN
receives task-speci�c supervision signals. SARN⇤ is initialized to
a trained SARN model, and its �nal layer of the graph encoder
F is �ne-tuned together with training the prediction model of
each downstream task.

5.2.1 Road Property Prediction.
Setup. Following previous studies [35, 40], we use the learned
embeddings to predict the properties of each road segment. The
intention here is to show the e�ectiveness of the learned em-
beddings to di�erentiate road segments of di�erent properties.
The OpenStreetMap datasets contain a variety of road properties.
We predict the speed limits of road segments here as they are
not part of the input features of SARN. There are 613, 57, and
7,283 road segments in CD, BJ, and SF datasets with speed limit
values, respectively (we use a 6:2:2-spit for training, validation,
and testing). The numbers of di�erent speed limits in the three
datasets are 7, 4, and 10, respectively.

We note that the road type (which is one of the model input
features) and the speed limit have some correlation naturally.
However, this correlation is not always high. The normalized
mutual information (NMI) between the two features are 0.80,
0.73, and 0.39 for the CD, BJ, and SF datasets, respectively. The
NMI for the largest dataset SF, in particular, is quite low, i.e., 0.39,
which shows that this prediction problem is still non-trivial.

We use an FFN with one hidden layer of 32 nodes as the
classi�er. We report the F1 score and the area under the receiver
operating characteristic curve (AUC) score.

Results. Table 4 presents the results. Overall, SARN out-
performs all self-supervised models on all three datasets, even
though the baseline models have very strong results already.
Comparing with GCA which is the more recent GCL model (and
also the best self-supervised baseline), SARN improves by up to
3.78% on F1 score on SF. Note that this improvement is more
substantial than what GCA has achieved over GraphCL, i.e., up
to 0.3%. The advantage of SARN con�rms the e�ectiveness of
using spatial knowledge to further enhance the GCL models. On
BJ, GraphCL and GCA have the same performance, which is a
coincidence on this small dataset.

After �ne-tuningwith task-speci�c supervision signals, SARN⇤
outperforms SARN on CD and SF as expected. SARN⇤ even out-
performs the supervised model HRNR, by up to 3.65% in F1 on
SF. This result is somewhat unexpected as SARN⇤ is only �ne-
tuned but not trained from scratch with task-speci�c supervision
signals like HRNR is. We attribute the advantage to the spatial
knowledge encoded in the SARN embeddings, which helps iden-
tify road segments of similar speed limits (e.g., parallel ring roads
or roads in the same region with similar speed limits). RNE is
also outperformed by SARN⇤ as it was not designed for the task.
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Table 4: Road Property Prediction Results
(SARN and SARN⇤ results are in bold. The best self-supervised and supervised baseline results are underlined. “Gain (%)” denotes the relative

improvement of SARN over the best self-supervised baseline, and that of SARN⇤ over the best supervised baseline respectively. Same for the tables below.)

Category Method CD BJ SF
F1 (%) AUC (%) F1 (%) AUC (%) F1 (%) AUC (%)

Self-supervised

node2vec 89.11±1.96 93.64±1.14 90.00±13.69 93.33±9.13 60.99±1.55 78.33±0.86
SRN2Vec 74.31±1.58 85.01±0.92 46.67±12.64 64.44±8.43 54.85±0.51 74.92±0.28
GraphCL 96.75±0.81 98.10±0.47 98.33±3.73 98.89±2.48 87.82±2.28 93.24±1.26
GCA 97.07±1.58 98.29±0.92 98.33±3.73 98.89±2.48 87.89±1.91 93.27±1.06
SARN 98.70±0.73 99.24±0.42 100.00±0.00 100.00±0.00 91.21±0.71 95.12±0.40
Gain (%) +1.68 +0.97 +1.69 +1.12 +3.78 +1.98

Fine-tuned SARN⇤ 99.02±1.34 99.43±0.78 100.00±0.00 100.00±0.00 92.68±1.36 95.94±0.75

Supervised
HRNR 95.93±2.37 97.63±1.38 81.67±19.00 87.78±12.67 89.42±0.86 94.12±0.48
RNE 97.40±1.06 98.48±0.62 98.33±3.73 98.89±2.48 87.71±0.82 93.17±0.46
Gain (%) +1.67 +0.96 +1.69 +1.12 +3.65 +1.93

Table 5: Trajectory Similarity Prediction Results

Category Method CD BJ SF
HR@5 (%) HR@20 (%) R5@20 (%) HR@5 (%) HR@20 (%) R5@20 (%) HR@5 (%) HR@20 (%) R5@20 (%)

Self-supervised

node2vec 43.03±1.89 60.44±1.20 81.91±1.41 26.45±3.61 50.82±6.06 65.21±8.42 25.42±0.91 41.35±1.00 55.53±1.72
SRN2Vec 59.87±1.33 73.16±0.56 95.22±0.55 48.51±0.85 68.66±0.88 89.06±1.34 59.73±0.94 72.65±0.50 94.29±0.39
GraphCL 58.09±2.52 72.23±2.20 94.06±1.64 39.91±1.60 61.78±1.15 81.47±1.25 42.42±2.65 57.99±2.80 81.33±3.19
GCA 55.97±3.13 71.98±1.97 94.75±1.24 41.64±3.34 62.97±2.47 81.99±2.57 52.48±2.36 66.24±1.60 90.92±1.16
SARN 66.42±1.29 78.44±0.77 98.36±0.32 65.18±1.92 79.73±1.15 98.22±0.70 68.80±0.92 78.64±0.35 98.39±0.18
Gain (%) +10.94 +7.22 +3.30 +34.36 +16.13 +10.28 +15.19 +8.24 +4.35

Fine-tuned SARN⇤ 71.69±2.38 81.27±1.98 99.32±0.37 70.54±1.88 82.98±1.33 99.22±0.49 75.67±0.40 82.33±0.51 99.48±0.13

Supervised

HRNR 67.33±3.57 78.47±2.53 97.55±0.88 64.43±1.49 79.36±0.86 97.18±0.40 65.50±0.89 76.39±0.65 95.54±0.79
NEUTRAJ 72.18±1.66 79.79±0.76 99.18±0.35 70.94±0.82 78.79±0.38 98.81±0.20 72.94±2.40 79.40±1.77 98.61±0.67
RNE 68.27±2.13 79.17±1.62 98.26±0.59 66.19±0.84 79.63±0.31 98.08±0.23 69.59±3.73 78.13±2.80 98.16±1.13
Gain (%) -0.68 +1.86 +0.14 -0.58 +5.31 +0.41 +3.74 +3.69 +0.88

Table 6: Shortest-Path Distance Predication Results (Smaller values are better.)

Category Method CD BJ SF
MRE (%) MAE (meter) MRE (%) MAE (meter) MRE (%) MAE (meter)

Self-supervised

node2vec 52.76±2.11 2017.71±95.36 57.36±1.45 2054.52±49.34 59.59±3.64 1196.62±162.91
SRN2Vec 57.19±1.08 2208.95±57.84 60.16±0.55 2183.24±12.97 62.94±0.32 1188.38±4.55
GraphCL 15.35±1.02 656.96±34.53 16.48±3.16 678.92±117.41 12.31±1.84 280.99±41.39
GCA 11.88±2.56 530.23±100.50 9.81±1.18 434.01±53.58 8.76±0.47 210.70±8.83
SARN 10.19±0.25 462.46±11.31 7.44±0.37 324.12±15.84 7.53±0.12 174.08±2.79
Gain (%) +14.23 +12.78 +24.16 +25.32 +14.04 +17.38

Fine-tuned SARN⇤ 9.37±0.36 401.77±26.56 7.08±0.12 313.34±9.24 7.21±0.28 174.24±12.37

Supervised
HRNR 7.08±0.39 303.30±31.40 5.36±0.24 205.26±17.05 4.85±0.34 98.65±9.21
RNE 9.55±0.15 462.11±16.53 7.63±0.15 302.87±7.28 7.94±0.13 176.01±2.83
Gain (%) -32.31 -32.46 -31.98 -52.66 -48.65 -76.63

5.2.2 Trajectory Similarity Prediction.
Setup. Next, we show the e�ectiveness of the SARN embeddings
in di�erentiating a series of road segments (i.e., trajectories). Fol-
lowing the baseline method NEUTRAJ [41], we use the embed-
dings of trajectories to predict their similarities, and we compute
the top-: most similar trajectories based on the predicted similar-
ity. This procedure helps reduce the time needed to compute the
similarity between two trajectories (by avoiding pairwise point
distance computation), and hence it reduces the time for �nding
the top-: most similar trajectories as shown by NEUTRAJ [41].

Given a trajectory, we feed the road segments (i.e., embed-
dings) into a 2-layer GRU model to learn a trajectory embedding
(a 1024-dimensional vector) and we use the last hidden state of
GRU as the trajectory embedding. We compute the !1 distance

of two trajectory embeddings as the predicated distance of the
two trajectories. For model training and testing, we compute the
Fréchet distance [5] between two trajectories as the ground truth,
which is frequently used in trajectory query studies [19, 37, 39].
It is straightforward to replace it with another metric. We use a
6:2:2-split on each dataset for training, validation, and testing.

Following NEUTRAJ, we report HR@5, HR@20, and R5@20.
HR@: (: = 5, 20) is the percentage of ground truth top-: trajec-
tories in the predicted top-: results. R5@20 is the percentage of
ground truth top-5 trajectories in the predicted top-20 results.

Results. Table 5 shows the results. SARN again outperforms
all self-supervised competitors, and the advantage now becomes
larger as the task becomes more complex, i.e., up to 34.36% in
HR@5 on BJ, while SARN⇤ further improves over SARN. The
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large advantage of our models can be explained by their encoding
of the road segment angles and spatial locations, which are core
to trajectory similarity measurements. This also explains for the
strong performance of SRN2Vec as it also encodes the spatial
structure of the road segments.

SARN⇤ achieves comparable performance to that of the recent
trajectory similarity prediction model NEUTRAJ, where NEU-
TRAJ is 0.68% better in HR@5 on CD while SARN⇤ is 3.74% better
in HR@5 on SF. Note that NEUTRAJ is a highly optimized model
for trajectory similarity prediction only. It does not produce road
segment embeddings that can be used in other applications, while
our models do.

The performance gap between HRNR and SARN⇤ now be-
comes larger, as this task focuses more on the spatial structure,
which is not considered by HRNR. RNE again shows strong re-
sults (although still worse than our models). We conjecture that
this is because it learns pairwise distances of all road segments,
which essentially encodes the entire graph structure. This can be
helpful in di�erent tasks.
Table 7: Impact of the Number of Road Segments in Tra-
jectories on Trajectory Similarity Prediction.
Metric Method 60 120 180

HR@5
(%)

SRN2Vec 48.51±0.85 15.87±2.13 12.15±0.83
SARN 65.18±1.92 31.88±2.00 27.58±1.87
SARN⇤ 70.54±1.88 43.00±1.63 41.92±1.35
NEUTRAJ 70.94±0.82 42.92±1.00 40.97±0.81

HR@20
(%)

SRN2Vec 68.66±0.88 33.19±2.48 27.27±1.84
SARN 79.73±1.15 50.40±2.77 44.32±2.34
SARN⇤ 82.98±1.33 63.26±1.10 59.88±1.52
NEUTRAJ 78.79±0.38 62.37±0.94 59.88±1.03

R5@20
(%)

SRN2Vec 89.06±1.34 41.95±3.61 32.97±2.43
SARN 98.22±0.70 67.58±4.18 58.71±3.88
SARN⇤ 99.22±0.49 84.54±1.33 82.13±2.69
NEUTRAJ 98.81±0.20 83.85±1.22 80.52±1.58

Impact of the number of road segments.We further study
the impact of the number of road segments in each trajectory by
varying the maximum number of road segments allowed for a
trajectory when truncating the trajectories in each dataset. We
show the results when the maximum number of road segments
increases from 60 to 180 on the T-Drive dataset in Table 7, since
the trajectories in T-Drive have the largest physical length (i.e.,
up to 19,418 meters for trajectories of 180 segments).

For conciseness, we show results of our models and the best
self-supervised and supervised baselines, i.e., SRN2Vec and NEU-
TRAJ, respectively, according to the previous results in Table 5.
We see that, as the number of segments increases, all four models
yield decreasing hit ratio and recall. This is because all these
models are based on recurrent neural networks, the performance
of which are known to be negatively impacted by the length
of the input sequence. Similar to the observations from Table 5,
SARN outperforms the self-supervised competitor SRN2Vec con-
sistently in all three metrics across all length settings. SARN⇤ fur-
ther improves over SARN. It outperforms the supervised competi-
tor NEUTRAJ in most cases except in HR@5 when the maximum
number of segments is 60 and in HR@20 when the maximum
number of segments is 180. This demonstrates the robustness of
the embeddings learned by our models, which enables them to
be used for embedding long trajectories.

5.2.3 Shortest-path Distance Prediction.
Setup. The third task considers encoding the relative position
of the road segments, i.e., to predict the shortest-path distance
(SPD) [16, 28] between (the mid-point of) two road segments.

We consider directed graphs, which is di�erent from the set-
ting in the state-of-the-art model for the task (i.e., RNE [16],
which uses undirected graphs). We thus cannot follow RNE and
use the !1 distance between two road segment embeddings di-
rectly as their predicted SPD. Instead, for each model (including
RNE), we train an FFN with a single hidden layer of 20 nodes
(using the MSE loss) to predict the SPD of two road segments,
given the di�erence in each dimension between the correspond-
ing embeddings produced by the model. We follow RNE and
randomly sample 1‰ reachable origin-destination pairs from
all road segment pairs for training and 0.01‰ pairs for testing.
We measure the model performance by the mean absolute error
(MAE) and mean relative error (MRE).

Results. Table 6 shows that SARN outperforms all other self-
supervised baselines consistently as before. It reduces the predic-
tion errors by up to 25.32% (in MAE on BJ) comparing with the
best self-supervised baseline GCA. The spatial distance encoded
in its embeddings help predict the relative positions of the road
segments in the road network, since spatial distance and road
network distance are often correlated.

SARN⇤ further improves the performance and it outperforms
RNE by up to 10.12% in MRE on SF (to be fair, RNE was designed
for undirected graphs). We observe a performance gap between
SARN⇤ and the best supervised model HRNR. We emphasize that,
unlike HRNR, SARN⇤ is only �ne-tuned but not trained from
scratch for the task, as mentioned above. More importantly, spa-
tial distance and road network distance do not always correlate
(especially for road segments far away from each other), which
can cause errors and negatively impact our models. In compari-
son, HRNR’s three level hierarchical road network representation
helps it learn the relative positions of the road segments better.

Here, we reiterate the strength of SARN and SARN⇤ over the
state-of-the-art self-supervised models, as our models are also
self-supervised, while the supervised models may be limited by
their applicability over di�erent tasks.

5.2.4 Road Networks with Di�erent Sizes.

Setup. We study the impact of the road network graph size
on downstream task performance. We use SF as the baseline,
since it has the largest number of road segments (i.e., 37,284).
Speci�cally, we extract another two road networks in San Fran-
cisco, where the one with smaller area (SF-S) contains 19,540
road segments and the other with larger area (SF-L) has 74,016
road segments. The number of road segments in SF-S, SF and
SF-L follows approximately two-fold increase. We have not run
experiments on even larger road networks because one of the
GCL baselines, GCA, already generates an out of memory error
on SF-L. Similarly, we generate trajectory datasets within the
regions of SF-S and SF-L respectively, following the aforemen-
tioned preprocessing of trajectories. For conciseness, we only
report one of metrics for each downstream task.

Results. Table 8 shows the same trend as the previous ex-
periments that is SARN consistently outperforms other self-
supervised methods, and SARN⇤ outperforms the state-of-the-art
supervised methods on road property prediction and trajectory
similarity prediction. Next, we discuss the results respectively.
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Table 8: Downstream Task Results on Road Networks of Di�erent Sizes

Category Method
Road Property Predication

F1 (%)
Trajectory Similarity Prediction

HR@5 (%)
Shortest-Path Distance Predication
MRE (%) (Smaller values are better)

SF-S SF SF-L SF-S SF SF-L SF-S SF SF-L

Self-supervised

node2vec 60.48±1.23 60.99±1.55 55.56±2.27 34.24±1.28 25.42±0.91 18.03±3.50 60.24±0.49 59.59±3.64 62.38±0.85
SRN2Vec 56.00±2.06 54.85±0.51 43.27±1.63 62.43±1.13 59.73±0.94 54.71±2.04 59.38±0.35 62.94±0.32 64.56±0.22
GraphCL 89.61±1.21 87.82±2.28 82.46±2.75 55.40±2.60 42.42±2.65 36.96±2.83 10.13±0.35 12.31±1.84 22.66±3.16
GCA 88.20±0.87 87.89±1.91 OOM 58.89±1.11 52.48±2.36 OOM 10.06±0.67 8.76±0.47 OOM
SARN 92.44±0.95 91.21±0.71 86.62±1.00 68.25±1.60 68.80±0.92 68.73±1.57 8.75±0.13 7.53±0.69 7.45±0.15
Gain (%) +3.16 +3.78 +5.04 +9.32 +15.19 +25.63 +13.02 +14.04 +67.12

Fine-tuned SARN⇤ 93.29±0.84 92.68±1.36 90.91±0.72 74.02±1.31 75.67±0.40 74.54±2.46 8.15±0.15 7.21±0.28 6.38±0.11

Supervised

HRNR 72.79±2.38 89.42±0.86 OOM 67.14±6.20 65.50±0.89 OOM 5.58±0.12 4.85±0.34 OOM
NEUTRAJ - - - 68.81±2.27 72.94±2.40 69.29±4.27 - - -
RNE 77.12±3.02 87.71±0.82 80.15±3.45 73.23±0.63 69.59±3.73 65.75±1.43 8.75±0.26 7.94±0.13 7.79±0.12
Gain (%) +20.97 +3.65 +13.42 +1.08 +3.74 +7.58 -46.06 -48.65 +18.10

On road property prediction, as the road network size in-
creases, the F1 score of all self-supervised methods is decreased
except that of node2vec on SF. SARN keeps superior than other
self-supervised baseline methods by achieving up to 5.04% im-
provement on the largest SF-L dataset. After �ne-tuning, SARN⇤
outperforms other supervised methods as before, where the im-
provement is up to 20.97% on SF-S. Note that, GCA and HRNR
are out of memory during the training process on SF-L. This
is because GCA uses all vertices as negative samples in each
iteration, and HRNR stores several di�erent adjacency matrices
and corresponding mapping relation. Both will take more GPU
memory than other methods.

On trajectory similarity prediction, SARN and SARN⇤ are
persistently superior than other self-supervised methods and
supervised methods with the performance gains by up to 25.63%
and 7.58%, respectively. More importantly, SARN and SARN⇤
are less a�ected by the road network size than other baseline
methods except NEUTRAJ which also shows such strength. This
is mainly due to the proposed spatial distance-based negative
sampling strategy which can provide comprehensive negative
samples from both local and global perspective even on a large
road network.

On shortest-path distance prediction, SARN keeps achieving
better performance (i.e., lower MREs) than other self-supervised
methods, and SARN⇤ further improves the performance com-
paring with SARN. We also notice that our methods SARN and
SARN⇤ have a better scalability than others especially GCA and
HRNR which are the best self-supervised and supervised base-
line methods on small road networks respectively. As GCA and
HRNR are not applicable on large road networks, the improve-
ment gains of SARN and SARN⇤ rise to 67.12% and 18.10% on
SF-L respectively.

5.3 Embedding Learning E�ciency
We report the embedding learning time of SARN and compare
it with those of the other self-supervised models. We omit the
learning times of the supervised models as they depend on the
prediction models used for the di�erent tasks, which are not
our focus. We also omit the learning time of SARN⇤. Its initial
embedding learning time is the same as that of SARN, while its
�ne-tuning is part of the prediction model training process, the
time of which is task dependant.

From Fig.4, we can see that SARN is consistently and substan-
tially faster than the best GCL based competitor GCA (in terms
of prediction accuracy). The advantage is up to 5.59 times (on
SF). This is because, as discussed in the cost analysis, GCA uses

Figure 4: Embedding learning times

all road segments from both graph views as negative samples,
which incurs high computation costs. SRN2Vec and GraphCL are
the fastest, because SRN2Vec trains a simple FFN, and GraphCL
does not maintain queues for the negative samples between mini-
batches. Although SARN is slower than these two models, it still
learns the embeddings of much higher quality in less than an
hour, as evidenced by the high accuracy across di�erent datasets
and tasks shown above.

5.4 Ablation Study
We study the e�ectiveness of the proposed components of SARN
on SF for conciseness, since the results on other two datasets
show the similar pattern. We use the following model variants:

• SARN-w/o-MNL is SARN without the spatial similarity
matrix, the spatial distance-based negative sampling strat-
egy, and the two-level loss function. It uses the InfoNCE loss
(Eq. 2) with weighted topological edge-based graph augmen-
tation and random negative sampling.

• SARN-w/o-NL is SARN without the spatial distance-based
negative sampling strategy and the two-level loss function,
i.e., it uses the spatial similarity matrix in graph encoding
and our proposed graph augmentation strategy.

• SARN-w/o-M is SARN without spatial similarity matrix, i.e.,
it uses the weighted topological edge-based graph augmenta-
tion, the spatial distance-based negative sampling, and the
two-level loss function.

All sub-�gures in Fig. 5 show that the model performs bet-
ter as more proposed components are incorporated. This con-
�rms the e�ectiveness of the components and the importance
of spatial knowledge in road network embedding. For exam-
ple, on trajectory similarity prediction (Fig. 5b), SARN-w/o-NL
and SARN-w/o-M improve over SARN-w/o-MNL by 19.18% and
33.41% in HR@5, while SARN which has all proposed compo-
nents further improves by 1.18% over SARN-w/o-M. Considering
the di�erence of the proposed components, SARN-w/o-M out-
performs SARN-w/o-NL on shortest-path distance prediction
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(a) Road property prediction (b) Traj. similarity prediction (c) Shortest-path distance prediction
Figure 5: Ablation study results (Smaller values are better in Fig. 5c.)

(a) Varying 3 (b) Varying 2;4= (c) Varying _ (d) Varying  (e) Varying dC and dB
Figure 6: Impact of parameters on trajectory similarity prediction

(Fig. 5c), while SARN-w/o-NL outperforms SARN-w/o-M on road
property prediction (Fig. 5a). Nevertheless, SARN retains the best
performance, which shows that the spatial similarity matrix and
the spatial distance-based negative sampling strategy (and the
two-level loss) compensate for the errors made by each other.

5.5 Parameters Study
We study the impact of four parameters in SARN: the embedding
dimensionality 3 , the cell side length 2;4=, the loss trade-o� _,
and the edge corruption rates dC and dB . We present the results on
the trajectory similarity prediction task over SF in Fig. 6. We omit
the results on the other tasks and datasets since the performance
patterns are similar.

Impact of the embedding dimensionality 3 . Fig. 6a shows
the hit ratios of SARN as 3 varies from 32 to 512. The hit ratios
increase with 3 at start, where a larger 3 helps encode more in-
formation. The hit ratios reach the peak at 3 = 128 and decrease
afterwards as 3 increases further. This is because now the embed-
ding size has become too large, which triggers the over-�tting
problem and impacts the test performance.

Impact of the cell side length 2;4=. Fig. 6b shows the hit
ratios of SARN as 2;4= increases from 200 to 800 meters. We
�x the total number of negative samples to 1,000 via adjusting
the size of each queue as the number of cells changes with 2;4=.
The hit ratios also �rst increase with 2;4=. Considering that the
road segments are 70 meters in length on average (cf. Table 3), a
200 ⇥ 200 cell may not provide su�cient local negative samples.
The best results are achieved when 2;4= = 600, and the hit ratios
decrease as 2;4= increases further. This is because now there are
too many local negative samples (and insu�cient global negative
samples) to be learned from, which may contribute more noise
and confuse the model.

Impact of the loss trade-o� parameter _. Fig. 6c shows
the hit ratios as _ increases from 0 to 1. Parameter _ controls
the weight of the two loss terms in our loss function (Eq. 17).
Specially, the loss function degenerates to a global contrastive
loss (Eq. 16) when _ = 0, and it becomes to a local contrastive
loss (Eq. 15) when _ = 1. The hit ratios �rst increase and then
decrease as _ increases. The hit ratios are the highest when _ 2
[0.3, 0.5]. This suggests that both our global and local loss terms
play an important role in the learning process. A skewed loss
function towards either the global loss or the local loss will cause
the hit ratios to deteriorate. In particular, when _ = 1, the hit
ratios drop signi�cantly. This is because all negative samples

come from the local negative samples, which severely limits the
diversity of negative samples and loses the perspective of the
whole embedding space.

Impact of the total size of negative sample queues  .
Fig. 6d shows the hit ratios as  varies from 250 to 4,000. Pa-
rameter  controls the number of negative samples used in each
training iteration. The results show a similar trend observed in
Ref. [15], i.e., SARN bene�ts from a larger  in prediction accu-
racy. However, a larger  also leads to a higher training time
for each training epoch. To balance the model e�ectiveness and
e�ciency, we use 1,000 as the default  value in the experiments,
since there is a signi�cant increase in HR@5 from  = 500 to
1,000.

Impact of the edge corruption rates dC and dB . Fig. 6e
shows the HR@5 values as dC and dB vary from 0.2 to 0.8. The
best performance is observed when both corruption rates are 0.4.
We also see that when both corruption rates are greater than 0.5,
HR@5 becomes worse than that when both corruption rates are
less than 0.5. This is expected, as high corruption rates lead to
sparse graphs, which su�er from insu�cient neighboring vertices
for contextual information learning. The results also show the
importance of the spatial edges – corrupting the spatial edges (i.e.,
larger dB ) causes the hit ratios to drop faster. This is evidenced by
that the hit ratios in the upper left triangle are lower (i.e., having
lighter colors) than those of the lower right triangle. For example,
the hit ratio at dB = 0.8 and dC = 0.2 is 0.695, which is lower than
that at dB = 0.2 and dC = 0.8, which is 0.701.

6 CONCLUSIONS
We propose a self-supervised road network embedding model
named SARN based on graph contrastive learning. Unlike ex-
isting models that learn dedicated embeddings for speci�c ap-
plications, SARN learns generic road network embeddings that
can be applied to a wide range of downstream applications. We
propose a spatial similarity matrix, a spatial importance-based
graph augmentation strategy, a spatial distance-based negative
sampling strategy, and a two-level contrastive loss function to
guide SARN to learn both topology and spatial structure of road
networks. Experiments on three downstream tasks over three
real road networks show that SARN outperforms state-of-the-art
self-supervised models consistently by up to 34% (in hit ratio).
SARN also has comparable performance to supervised models,
and even outperforms them after �ne-tuning on two of the down-
stream tasks.
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