
Predictive Price-Performance Optimization
for ServerlessQuery Processing

Rathijit Sen
Microsoft

rathijit.sen@microsoft.com

Abhishek Roy∗
Keebo

aroy@keebo.ai

Alekh Jindal∗
Keebo

alekh@keebo.ai

ABSTRACT
We present an efficient, parametric modeling framework for pre-
dictive resource allocations, focusing on the amount of com-
putational resources, that can optimize for a range of price-
performance objectives for data analytics in serverless query
processing settings. We discuss and evaluate in depth how our
system,AutoExecutor , can use this framework to automatically se-
lect near-optimal executor and core counts for Spark SQL queries
running on Azure Synapse.

Our techniques improve upon Spark’s in-built, reactive, dy-
namic executor allocation capabilities by substantially reducing
the total executors allocated and executor occupancy while run-
ning queries, thereby freeing up executors that can potentially
be used by other concurrent queries or in reducing the overall
cluster provisioning needs. In contrast with post-execution anal-
ysis tools such as Sparklens, we predict resource allocations for
queries before executing them and can also account for changes
in input data sizes for predicting the desired allocations.

1 INTRODUCTION
Modern clouds have democratized data analytics such that users
can easily sign up and get access to the most sophisticated analyt-
ics platforms in the cloud. As a result, most of the complexities in
owning and operating these data analytics platforms have been
taken care of by the cloud providers, and they offer a way simpler
pricing model based on the amount of resources actually used.
The newer serverless query processing models, such as those in
AWS Athena [13], Google BigQuery [17], Synapse Spark [6], and
Synapse SQL [9], have further alleviated the need for users to pro-
vision any dedicated resources and instead these new serverless
approaches automatically allocate resources on a per-query level.
These trends have also led to data analytics becoming extremely
resource intensive in modern clouds due to the massive amount
of data they consume and the complex processing they apply
over it. As a result, it is important for enterprises to manage
their total cost of operations (TCO) by reducing their resource
consumption and doing more analytics with less resources.

Current approaches for optimizing cloud resources are reactive
in nature. For instance, several efforts have considered recom-
mending SKU1 or other resource recommendations based on past
usage patterns, e.g., SKU recommendations in SQL Server [11].
Others such as Sparklens [5] analyze the performance of a previ-
ously executed Spark query to suggest better resource configura-
tions, e.g., number of Spark executors (worker processes) to use.
Still other automatic approaches include detecting idle cycles to
pause or resume the system as in Azure SQL [8], auto-scaling
∗Work done while at Microsoft.
1Stock Keeping Unit

© 2023 Copyright held by the owner/author(s). Published in Proceedings of the
26th International Conference on Extending Database Technology (EDBT), 28th
March-31st March, 2023, ISBN 978-3-89318-088-2 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

0 10 20 30 40 50
Number of Executors

100

150

200

250

300

350

Ti
m

e
(s

ec
s)

325

379

527 793 1384 2127

Figure 1: Average application run time and area under the
executor allocation skyline (data labels) for an example
TPC-DS query, when run with different executor counts.

the resources either at the cluster or pool level as in Synapse
Spark [26], RedShift [28], Snowflake [20], etc., or at the query
level as in Spark [10] or even Cosmos [30] based on the availabil-
ity of spare resources. Unfortunately, these reactive approaches
take several minutes to react [26] and many of the optimization
opportunities may already be missed. Additionally, reactively
adjusting resources during the course of a query execution could
even lead to expensive changes in the query plan [55]. There-
fore, apart from the reactive approaches, we also need predictive
resource allocation to provide a good starting point.

Predictively allocating resources to an analytics query is chal-
lenging since it is non-trivial to map a query to its resource needs.
In fact, it is well known that even expert users cannot correctly
estimate the resources needed for a given query [41]. Further-
more, changing resources for a query impacts its performance. To
illustrate, Figure 1 shows the performance of an example TPC-DS
query implemented in Spark SQL when using different number
of Spark executors, the unit of resources available to queries in
Spark. The green curve in Figure 1 shows that the performance
improves (lower runtime) initially as more executors are added,
however it plateaus later on. The data labels in red show the total
executor occupancy, measured as the sum of durations (seconds)
over which each executor was allocated to the query, across the
entire query execution. We see that even when the performance
plateaus, the resource consumption continues to increase with
more executors. Thus, we have an interesting price-performance
optimization at hand.

In this paper, we study predictive price-performance optimiza-
tion in serverless query processing setting, i.e., resources are
allocated and users are charged at the query level. We build on
top of our prior work on the relationship between query perfor-
mance and resources in Hive and Spark [55], predictive degree of
parallelism in SQL Server [34], peak [52], adaptive [29] and opti-
mal [47, 48] resource allocation in SCOPE [32] jobs, and present
an end-to-end framework for predictive price-performance opti-
mization at the query level.

Specifically, we make the following key contributions.
(1) We present a framework for predicting optimal resource al-

locations using simple and explainable parametric models

Series ISSN: 2367-2005 118 10.48786/edbt.2023.10

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2023.10

[Section 3]. We extend prior work in this space by explicitly
modeling for performance saturation, the absence of which
can cause allocations to severely overshoot desired levels
when optimizing for cost with a maximum allowable slow-
down [Section 5].

(2) We show for the first time, the distributions of executor and
core counts used by hundreds of thousands of Spark queries
on a commercial platform. By default, these parameter values
are small for a vast majority of queries, which may be a sub-
optimal choice from a performance maximization standpoint.
This suggests the opportunity for substantial performance
improvements by configuring these parameters according to
the query characteristics [Section 2].

(3) We show how our system,AutoExecutor , integrates predictive
allocation within the Spark query optimizer and leverages
existing mechanisms for reactive deallocation to free up idle
resources. We discuss, in depth, various technical challenges
to achieve this and how our solution overcomes these chal-
lenges to create an efficient end-to-end system [Section 4].

(4) We compare the benefits of our system, AutoExecutor , with
two state-of-the-art techniques for Spark: Sparklens [5] and
Dynamic Allocation [10]. We overcome Sparklens’ limita-
tions of not being able to predict optimal resources for ad-hoc
queries before executing them or handling changes in input
data sizes, while achieving similar prediction accuracy. We
also demonstrate substantial cost savings (median 37.5% sav-
ings in per-query executor allocations, median 20.3% savings
in per-query executor occupancy and overall 16.1% savings
for the workload) through AutoExecutor compared with Dy-
namic Allocation, and to the best of our knowledge, this is the
first work to demonstrate substantial savings with predictive
allocation over state-of-the-art reactive allocation in Spark
[Section 5].

We recently demonstrated our system design and concept in
a 4-page demo paper [53]. In this current paper we present the
modeling framework and architecture in more detail, evaluate
additional models, and analyze feature importance and sensitivity
to input data size changes. We also present a characterization of
resources used by Spark queries in production workloads, details
of Spark optimizer extensions that combine both the predictive
and the reactive approaches, and show substantial cost savings
compared to Dynamic Allocation.

2 QUERY RESOURCE ALLOCATION
In this section, we discuss various query-level resource allocation
approaches. We focus our discussion on Spark query processing
engine in this paper. We consider the executor count, i.e., the
number of worker processes, available to each Spark SQL query
as a unit of resource since it is a crucial factor in both query
performance and cost. Later we discuss how we can extend this
to select the total number of cores as well.

The query processing cost is determined by the resource allo-
cated to execute it. In this work, we focus on the computational
resources. Let 𝑛𝑠 denote the number of executors allocated to
a query at time 𝑠 during its execution. We are interested in the
following two metrics.

(1) Themaximum executor allocation,𝑛 =𝑚𝑎𝑥 (𝑛𝑠), that impacts
both query performance and total provisioning needs. The
query performance is inversely proportional to its total run
time, which we denote by 𝑡 (𝑛).

(2) The total executor occupancy, which is the sum of time inter-
vals during which each executor is allocated to the query. If
we consider the resource skyline [41, 50], that is, a timeline
plot of 𝑛𝑠 vs 𝑠 over the duration of the query execution, then
the total executor occupancy is the Area Under the (skyline)
Curve which we denote by 𝐴𝑈𝐶 . It reflects the total resource
reservation cost and can be calculated as 𝐴𝑈𝐶 =

∫
𝑠
𝑛𝑠𝑑𝑠 .

As Figure 1 shows, both 𝑡 (𝑛) and𝐴𝑈𝐶 are strongly influenced by
𝑛. In this work, we do not directly predict 𝐴𝑈𝐶 or optimize for a
specific 𝐴𝑈𝐶 target, but focus on modeling the relationship of
𝑡 (𝑛) as a function of 𝑛. We refer to this as our Price-Performance
Model (PPM). Section 5.4 shows how our techniques help to
reduce 𝐴𝑈𝐶 .

2.1 Why Per-query Resource Allocation?
The first question is why does per-query resource allocation
matter. We do statistical analyses on non-identifying telemetry
information for a large subset of daily production Spark work-
loads at Microsoft consisting of more than 90K applications and
840K queries across more than 3.2K clusters. Figure 2a shows the
distribution of the number of queries per Spark application. We
can see that more than 60% of the applications have more than
one query and so all of them need to be considered if we were to
allocate resources at the application level. Furthermore, Figure 2b
shows that the variation of queries within each of the Spark ap-
plications. We see that queries in half of the applications exhibit
a coefficient of variation [18] of 20% or more in their operator
counts, 40% or more in the number of input rows processed, and
60% or more in their query execution times. As a result, queries
within an application are quite different and are expected to have
different resource requirements that might be hard to aggregate
at the application level. Finally, Figure 2c shows the number of
concurrent Spark applications in a cluster at any given point,
and we see that around 70% of the applications do not share
compute resources with other applications in the same cluster.
The contention for shared resources is further reduced by the
dedicated compute pools and disaggregated storage service [19]
in Azure Synapse [6]. This also makes AutoExecutor applicable to
other systems that leverage the cloud’s ability to independently
scale storage and compute resources like Snowflake [24]. Thus in
cloud systems, it is more practical to allocate resources efficiently
at per-query level within each Spark application.

2.2 The Default Behavior
Our production Spark workloads show that 59% of the Spark
applications have Dynamic Allocation [10] enabled, which is a
reactive approach to adjust the executor count based on the pend-
ing requests (more on Dynamic Allocation below). Interestingly,
97% of these applications with Dynamic Allocation enabled also
have the default minimum and maximum executor threshold
set, which are 0 and 231 − 1 respectively. For the remaining 3%
applications users set their own values, and Figure 3a shows the
distribution of the executor count range in those applications. We
can see that almost 60% of these applications have a range of just
2, while the remaining could have a range growing all the way
to 64 executors. The other 41% of the Spark applications that do
not have Dynamic Allocation enabled by default have the default
executor count as shown in Figure 3b. We can see that 80% of
these applications that do not have Dynamic Allocation enabled
run with a default executor count of 2. Overall, we observe that
the default resource settings for Spark SQL queries are far from

119

100 101 102 103 104

Queries per application (Log scale)

0

20

40

60

80

100

Cu
m

ul
at

iv
e

di
st

rib
ut

io
n

(%
)

(a) Queries per application

0 20 40 60 80 100 120 140 160 180 200
Coefficient of variation (%)

0

20

40

60

80

100

Cu
m

ul
at

iv
e

di
st

rib
ut

io
n

(%
)

Rows processed
Query times
Operator counts

(b) Variation in application queries

1 2 4 8 16 32 64
Maximum concurrent applications (Log scale)

0

20

40

60

80

100

C
um

ul
at

iv
e

di
st

rib
ut

io
n

(%
)

(c) Concurrent applications within clusters

Figure 2: Insights from production Spark workloads at Microsoft.

1 2 4 8 16 32 64
Dynamic Allocation Range (Log scale)

0

20

40

60

80

100

C
um

ul
at

iv
e

di
st

rib
ut

io
n

(%
)

(a) Non-default range for Dynamic Allocation

2 8 32 128 512 2048
Resource allocation per application (Log scale)

0

20

40

60

80

100

C
um

ul
at

iv
e

di
st

rib
ut

io
n

(%
)

Executor Instances
Total Cores

(b) Static resource allocation

0 10 20 30 40 50
Number of Executors

0

20

40

60

80

100

Cu
m

ul
at

iv
e

di
st

rib
ut

io
n

(%
)

SF = 1
SF = 10
SF = 100
SF = 1000

(c) Optimal executors for TPC-DS queries

Figure 3: Executor counts in production Spark workloads and optimal executor counts for TPC-DS.

ideal, with unrealistic minimum and maximum values set for the
executor counts.

2.3 Reactive Approaches
Spark’s Dynamic Allocation [10] reacts to tasks piling up during
the course of query execution and allocates exponentially more
executors to improve the performance. While it can indeed help
with unexpected number of tasks, it takes some time for the
additional executor requests to be fulfilled, and might require
several requests before the required number of executors are
finally allocated. Therefore, it runs the risks of allocating too late
as well as exponentially overshooting the required count. Users
can control the minimum and the maximum executor counts
with Dynamic Allocation, however as we discussed above, the
default values are set to 0 and 231 − 1 respectively.

Sparklens [5] allows users to analyze executor count usage
of a Spark SQL query in a post-hoc manner, i.e., reacting after
a query has finished executing, and get recommendations for
better executor count allocations for future instances of the same
query. Still, the approach is limited to improving the resource
allocation for the same query and inputs, and requires analysis for
every such query, which may not be possible for large production
workloads. Other approaches such as Tuneful [35], Reloca [39],
and Perforator [50] rely on sample runs to generate training data
and build models for predicting the resource requirements.

Cloud analytics platforms today provide auto-scaling of the
compute nodes, i.e., reactively expand or shrink the total number
of nodes available to a customer. Theoretically, if such auto-
scaling is fast enough then it can react to per-query requirements
by allocating or de-allocating the overall resources available, i.e.,
if more tasks get queued up and Dynamic Allocation cannot
find anymore available executors, then auto-scale can kick in
and allocate more nodes. In practice, however, allocating VMs
can take several minutes [26], thus taking a while before the
auto-scale can react to resource needs at the query-level.

Finally, many analytics platforms also have auto-pause capa-
bility to stop charging customers if there are compute resources
have been idle for some time [2, 8, 16, 49]. However, similar to
auto-scale, auto-pause could take several minutes to react and
comes into effect only when there are no queries by the user or
tenant. Furthermore, auto-pause is even more conservative since
the paused nodes will take a few minutes to be resumed making
it ineffective for short pause intervals.

2.4 Prediction Challenges
Predictive resource allocation at the query level is challenging.
Figure 3c shows the distribution of the optimal number of execu-
tors over different TPC-DS queries for four different scale factors.
We can see that the optimal values vary for different queries and
also for the different scale factors, varying from as little as 1 ex-
ecutor all the way to 48 executors, and thus indicating that a rich
set of features containing both the query and data characteristics
are needed to predict the resources at the query level. Larger
scale factors (larger data sizes) tend to have more queries with
larger values of the optimal executor counts. For example, the
optimal count is ≥ 16 for 56 queries at SF=1 and 10 in contrast
with 75 and 88 queries for SF=100 and 1000 respectively. The
optimal count is ≥ 32 for 16, 25, 32, and 45 queries for SF=1, 10,
100, and 1000 respectively.

3 PRICE-PERFORMANCE MODEL (PPM)
We now present our approach to price-performance model (PPM).
We build on top of prior work on predicting optimal resources
for SCOPE jobs at Microsoft [47, 48], and extend it to a more
generalized framework for price-performance optimization.

3.1 Model Framework
Our approach to selecting the optimal configuration involves first
predicting the PPM, that is, the relationship between resource
allocation and execution time and then selecting the optimal

120

configuration according to the price-performance optimization
objective. We can use the same predicted PPM to select different
configurations that optimize for various objectives without need-
ing to re-predict the PPM separately for each scenario. There are
two components to our modeling approach that are defined as
follows.
(1) Represent the PPM by a mathematical function with known

properties. It is parametrized by scalars whose values depend
on the query characteristics. The time 𝑡 (𝑛) taken by a query
with 𝑛 executors is given by:

𝑡 (𝑛) = 𝑓 (𝑛, {scalar parameters}) (1)

(2) Train a parameter model to learn the values of the scalar
parameters of 𝑓 for a given query:

𝑔 : query characteristics ↦→ {scalar parameters} (2)

This model is used to predict the parameter values of 𝑓 for
a newly-submitted query. Note that the parameter model is
scored only once per query, not once per candidate config-
uration, and 𝑡 (𝑛) is estimated by evaluating the predicted
instantiation of 𝑓 at different values of 𝑛. We discuss the
parameter model in more detail in Section 3.4.
Similar to prior work [47, 48], we impose a condition of mono-

tonicity while selecting candidate functions for 𝑓 . This condition
means that 𝑡 (𝑛) should be monotonically non-increasing with 𝑛.
This is consistent with user expectations that a query’s run time
should not increase with more resources allocated to the query.

In practice, this expectation can be violated in systems, e.g.,
due to parallelism overheads on small sizes or skew in input
data. However, we still impose the monotonicity constraint on
the PPM model due to the following reasons – (1) It is never
cost-efficient to operate in a region where time increases with
allocated resources, so accurately modeling that behavior is not
needed; (2) even in cases when non-monotonic behavior is ob-
served, the overall minimum time often is the same or close to
the minimum time in the initial monotonically decreasing region,
so optimization objectives relative to minimum times would not
be affected; (3) run-time estimates from Sparklens, that we use
to extract parameters for training our models (Section 3.4), are
always monotonically non-increasing; (4) being consistent with
user expectations with simple monotonic models helps with ex-
plainability of our resource model decisions and with forecasting
the future resources provisioning needs.

We evaluate two candidates for the PPM function 𝑓 as follows.
Power Law with saturation: We leverage the performance

characteristic curve from the prior work [47, 48], which uses a
power-law function for 𝑓 , but also extend it by adding a constant
term𝑚 that reflects a lower bound on the running time of the
query. The PPM model is thus formulated as:

𝑡 (𝑛) =𝑚𝑎𝑥 (𝑏 × 𝑛𝑎,𝑚) (3)

This model has three query-specific parameters, 𝑎, 𝑏, and𝑚, that
the ML model will learn and predict. We abbreviate this model
by AE_PL in the rest of this work.

Amdahl’s Law: This is inspired by the well-known Amdahl’s
Law model for computation speedup with increase in allocated
resources [14]. In this model, the latency is divided into two
parts: a fixed component 𝑠 that is invariant to changes in resource
allocation and a scalable component that is inversely proportional
to the amount of resources. The PPM model is thus formulated
as:

𝑡 (𝑛) = 𝑠 + 𝑝

𝑛
(4)

1 3 8 12 16 17 19 24 32 48 64 80
Number of Executors

0.000
0.025
0.050
0.075
0.100
0.125
0.150
0.175

To
ta

l A
bs

ol
ut

e
Er

ro
r/T

ot
al

 T
im

e

AE_PL
AE_AL

Figure 4: PPM model errors for different executor counts
for two models, AE_PL and AE_AL, when fit on Sparklens
estimates of the PPM over all queries of TPC-DS SF=100.

This model has two query-specific parameters, 𝑠 and 𝑝 , that the
ML model will learn and predict. We abbreviate this model by
AE_AL in the rest of this work.

For AE_AL, saturation happens at (infinitely) large values of
𝑛 for parallelized queries rather than at smaller query-specific
values unlike the AE_PL model. While saturation constraints
could be refined for AE_AL, we use the Amdahl’s Law model
as is, since it is a well-established and very popular model. But
its lack of job-specific early saturation limits its applicability to
this domain, in particular, it can cause resource allocations to
far overshoot optimal values when the optimization objective
is to minimize executor counts subject to a maximum allowed
slowdown [Section 5.3].

3.2 Model Comparison with Sparklens
We now compare the accuracy of the above two predictive PPMs
with Sparklens, which is a post-hoc reactive model after the
queries have finished executing. While Sparklens simulates the
Spark scheduler, it implicitly follows a model of the query run
time by first determining the length of the critical path and then
distributing the remaining tasks according to available executors.
Conceptually, this is similar to the Amdahl’s Law approach except
that the scaling of time with resources need not be uniform
and saturation happens, that is, time estimates stop decreasing
beyond some point.

Figure 4 shows how well the AE_PL and AE_AL models fit
Sparklens estimates for all TPC-DS queries at SF=100 for different
values of 𝑛. The Sparklens estimates were obtained from a single
run of each query at 𝑛 = 16. We see that AE_AL is a better fit
to Sparklens estimates for 𝑛 < 32 while AE_PL is a better fit
beyond that. Thus, one can obtain an error of around 5% or less
for the full range of 𝑛 by using the models over different ranges
of 𝑛. Interestingly, we see that although AE_AL fits Sparklens
estimates better at lower values of 𝑛, it does not translate into
better prediction accuracy than AE_PL when compared to actual
query run times in a number of cases, as we will show in Section 5.

3.3 Impact of Total Cores
So far the PPM (Equations 1– 4) has considered the number
of executors, 𝑛, as the only input parameter representing the
computational resources available to the query. However, the
total number of compute cores, 𝑘 , is also determined by the
number of cores per executor, 𝑒𝑐 , since 𝑘 = 𝑛 × 𝑒𝑐 . To allow for
different values of 𝑒𝑐 , one approach could be to modify the PPM
to consider it as an additional parameter, but this increases the
model complexity. Instead, we can directly use 𝑘 in the PPM as
we discuss below. The model’s ability to work with total cores
makes it more applicable since it can now be used on datasets
with different 𝑒𝑐 values for queries.

121

To explore this idea, we evaluated several configurations with
different values of 𝑛 and 𝑒𝑐 (six configurations with 𝑒𝑐 ≠ 4), for
each TPC-DS (SF=100) query. We estimated the time for 𝑒𝑐 ≠ 4
configs using the (linearly-interpolated) time with 𝑒𝑐 = 4 for
the same value of 𝑘 , and compared it with the actual time for
𝑒𝑐 ≠ 4. The relative estimation error, calculated as 1 −

(
𝑡𝑛,𝑒𝑐≠4
𝑡𝑛,𝑒𝑐=4

)
,

were small, with an average of 8.8%, and with 68.4% and 92.9%
of the points lying in the intervals [-10%,10%] and [-20%,20%]
respectively. Overall, using 𝑘 for the PPM instead of 𝑛 and 𝑒𝑐
separately gives good accuracy while reducing model complexity.

There may be several choices for factorizing the optimal 𝑘
for a query into 𝑛 and 𝑒𝑐 values. Choosing smaller values of 𝑒𝑐
offers more granularity in cost-performance trade-offs due to the
larger range of possible values for 𝑛. Since currently executors
cannot spanmultiple nodes, wewant to choose executor sizes that
minimizes resource wastage (stranded resources on a node) to
minimize the total nodes, 𝑟 . For example, assume that each node
is homogeneous, has 𝐶 cores, 𝑀 amount of memory, and each
executor will get 𝑒𝑚 memory. One may solve an optimization
problem to minimize 𝑟 such that

𝑒𝑚 × ⌊ 𝐶
𝑒𝑐
⌋ ≤ 𝑀, 𝑟 × ⌊ 𝐶

𝑒𝑐
⌋ = 𝑛, 𝑎𝑛𝑑 𝑒𝑐 × 𝑛 = 𝑘.

Additional considerations can constrain the factorizing strat-
egy, such as reducing garbage collection overheads with very
large 𝑒𝑐 and avoiding difficulties in determining the optimal
amount of overhead memory with very small 𝑒𝑐 values [4].

3.4 Training Parameter Model
The goal of the parameter model is to learn a function 𝑔 : query
characteristics ↦→ {𝑎, 𝑏,𝑚} for the AE_PL model or 𝑔′ : query
characteristics ↦→ {𝑠, 𝑝} for the AE_AL model, depending on the
choice of the PPM. Section 4 discusses how we extract the query
characteristics. For model training, we additionally need the PPM
parameters as targets (labels). On the other hand, model scoring
will predict the PPM parameter values, and thereby also the PPM.
We use an off-the-shelf implementation [23, 46] of Random Forest
regression models for the parameter model.

For training the parameter model, the PPM parameters are ob-
tained by fitting the PPM to run times of each query for different
configurations, which in our case is the number of executors, 𝑛,
or number of cores, 𝑘 . The run times may be from actual query
runs or estimates of run times from simulators or other tools.
Getting actual run times for different configurations, along with
multiple runs to account for run-to-run variance, can be time
consuming (also see Section 5.1). Moreover, rerunning queries
with different configurations may not be easy for production
workloads. Instead, our approach is to run the training queries
once (at 𝑛 = 16) and use estimates generated by Sparklens with a
post-execution analysis on the logs. Sparklens can also generate
estimates from production workloads. Note that we are using
simulation to augment the training data for speed and conve-
nience in production environments, but our models can also be
trained with actual run time data for all configurations in case
they are available.

Once the training data is available, the PPM parameters for
each query can be obtained as follows. For AE_PL, the power-law
portion of the PPM can be transformed into logarithmic space as:

𝑙𝑜𝑔(𝑡 (𝑛)) = 𝑙𝑜𝑔(𝑏) + 𝑛 × 𝑙𝑜𝑔(𝑎) (5)

Table 1: Feature list for parameter model

Feature Description
Aggregate,
Project, Join,
Filter, Sort,
Union, etc.

Count of each type of operator in the query
plan (14 operators for TPC-DS)∑

all operators Total number of operators in the query plan
Max Depth Maximum depth of query plan

Input sources Number of input data sources used by the
query∑

Input bytes Estimated total number of bytes of input data
used by the query∑

Rows
processed

Estimated total number of rows processed by
all operators in the query

𝑙𝑜𝑔(𝑎) and 𝑙𝑜𝑔(𝑏) can then be determined by fitting a linear re-
gression model to 𝑙𝑜𝑔(𝑡 (𝑛)) as a function of 𝑛. For this, we con-
sider only the non-saturating region for 𝑡 (𝑛), that is, over the
region 𝑛 ∈ [1, 𝑛𝑚] where 𝑡 (𝑛𝑚) = 𝑚 for all 𝑛 > 𝑛𝑚 . We deter-
mine 𝑚 by the minimum run time of the query seen over all
configurations. For AE_AL, we determine 𝑠 and 𝑝 by fitting a
linear regression model to 𝑡 (𝑛) as a function of 1

𝑛 . The paramet-
ric approach thus compresses data points into an 𝑂 (1)-space
representation per query.

Table 1 shows the features used for the parameter model. This
includes characteristics for the query plan as well as inputs to
the query, and is motivated by our observation that the optimal
executor count depends on both of these aspects (also see Fig-
ure 3c). We only use features that are available at compile-time
and optimization-time of the query since (1) we want to predict
the optimal executor count before running the query and (2) we
need to use the same features for scoring the model as we used
for training it. Thus, we do not include any runtime statistics
as features for the parameter model. We evaluate model feature
importances in Section 5.7.

With our parametric PPM approach, we construct a single
training data point for each query in our training dataset, regard-
less of how many different configurations for which the query
run time is available. Thus, if we are training over all 103 queries
of TPC-DS, our training dataset will have 103 data points. During
model scoring time, the model is scored only once per query
regardless of the number of candidate target configurations; the
predicted times for the target configurations are determined by
evaluating the PPM functions (Equations 3 and 4) which are gen-
erally much faster than model scoring times except those for
simple, linear models. Section 5.6 discusses the overheads.

In contrast, a non-parametric approach would include run
times for every configuration of each query as a separate data
point in the training dataset. So, for the above example, the train-
ing dataset would have 103×𝑐𝑡𝑟 data points where 𝑐𝑡𝑟 is the
number of training configurations for each query. If there are
𝑐𝑡𝑡 candidate configurations for each test query, then it would
score the model 𝑐𝑡𝑡 times as opposed to only once with the para-
metric approach. Thus, our parametric PPM approach reduces
training datasets, and subsequently random forest model sizes,
model training and scoring times compared to a non-parametric
approach.

4 AUTOEXECUTOR INTEGRATION
We now describe how we integrate predictive price-performance
optimization with Spark query engine [15]. Traditionally, the

122

Typical model
management

Optimizer

Model

Rule
based

Cost
based

Prediction
based

1. Model load
and cache

2. Plan
featurization

3. PPM parameter
predictions

4. Elbow
selection

5. Resource
request

Dynamic
Allocation
(modified)

Training
data

“Any” ML Library Sparklens

Query plan
telemetry

Alternate
executor
counts

Past executor
counts

Augmented

Add
Executors

Remove
Executors

R
u

n
ti

m
e

En
vi

ro
n

m
e

n
t

Reactive

Predictive

Observability

Figure 5: The AutoExecutor system design illustrating the prediction-based resource optimization in Spark.

Spark query optimizer performs rule-based and cost-based op-
timizations, and provides extensions for custom rules and cost
models. We augment the Spark optimizer to support predictive
optimizations, i.e., using ML-models to make the optimization
decisions. These models could be trained offline using any of pop-
ular ML libraries such as Scikit-learn, PyTorch, TensorFlow, etc.,
and we score them efficiently and in-process during the course
of query optimization. We believe this a major shift for query
optimization in Spark and while we focus on predictive executor
counts in this paper, our approach can be leveraged for many
other predictive optimizations in the future. Figure 5 shows our
augmented Spark optimizer with support for predictive query
optimizations. Below we walk through the different components
in this architecture.

4.1 Training Data
We collect a rich set of data from past query runs to generate
training data for AutoExecutor . The training features for AutoEx-
ecutor include query characteristics, input dataset information,
and runtime statistics as shown in Table 1. To collect this informa-
tion, we use Peregrine [40] and SparkCruise [51] to log detailed
plans with annotations such as input dataset information, and
runtime metrics at the end of every query. The collected data is
transformed into a tabular representation of the query workload.
The table contains one row per query.

Given that past telemetry contains runtime metrics for a given
executor count, with which the query actually ran, we need more
data with different executor counts in order to train the PPM.
We achieve this by augmenting the past executions with simu-
lated runs for other executor counts using Qubole Sparklens [5].
Sparklens simulates the Spark scheduler to provide expected run-
times with different executor counts. These simulation points
provide additional training data for the same query. Another
alternative is to re-run the queries with different executor counts.
This method is more expensive and might not be possible for
production workloads.

4.2 Model Training
Once we have the training data that has been augmented for
different executor counts, we train the parametermodel described
in Section 3.4. AutoExecutor allows using any of the popular ML
libraries, like Scikit-learn, PyTorch, TensorFlow, etc., as illustrated
in Figure 5. Although, we used Scikit-learn in this paper, this

flexibility is useful in improving themodels over time for different
workload characteristics by trying out different libraries. We
describe the training environment and overheads in Section 5.6.

4.3 Model Format
The Spark optimizer code runs inside Java Virtual Machine (JVM).
However, data scientists heavily rely on Python libraries, esp.
Scikit-learn. Currently, the AutoExecutor pipeline also uses Scikit-
learn library to train models. This language barrier makes it dif-
ficult to use making it difficult to use Scikit-learn models for
inference inside the optimizer. To solve this interoperability prob-
lem, we convert the models into ONNX format [21]. Scikit-learn,
like manymachine learning libraries, supports convertingmodels
into ONNX format. ONNX model runtime provides Java bind-
ings and can be used inside Spark optimizer. We can also replace
the training library with TensorFlow, PyTorch, etc. as long as
they also export to the ONNX model format. Once the ONNX
model is produced, we can leverage typical model management
libraries and infrastructure, such as Azure Machine Learning [7]
or MLflow [56]. Additionally, ONNX model runtime has multi-
ple optimizations to improve the inference time. AutoExecutor
requires fast inference times as it runs inside the query optimizer
and any delay will affect the end-to-end query completion time.

4.4 Model Scoring
AutoExecutor introduces prediction-based optimizations in the
Spark query optimizer and applies a series of five steps, as illus-
trated in Figure 5, to request the desired number of resources dur-
ing optimization phase before a query is run.We implemented the
prediction-based optimizations using the Spark extensions fea-
ture [1] and it does the following. First, we load the ONNX model
from the corresponding model register, e.g., the AML model reg-
istry. In contrast to traditional model scoring, we load the model
into the optimizer process for low-latency scoring. We also cache
the models once loaded inside the optimizer to not load them
repeatedly since the inference step is in the live query path. We
evaluate the performance of inference inside optimizer in Sec-
tion 5.6. Then, we featurize the optimized query plan and its
input datasets into a feature vector and feed them to the param-
eter model to get the predicted parameters for the PPM. With
the predicted PPM parameters, AutoExecutor rule gets the exe-
cution time predictions for different number of executor counts.
The default executor selection strategy automatically selects the

123

executor count right before the performance flattens in the price-
performance trade-off to achieve the fastest query performance
with minimal number of executors. This strategy can be updated
depending on the price-performance tradeoffs of the user.

4.5 Predictive Resource Allocation
After using the model to get the desired executor count, AutoEx-
ecutor automatically requests for resources before the query is
run and releases the resources after the query has finished. We
use the executor allocation API in Spark to request additional
number of executors from the cluster manager. Note that the
allocation request is not binding and the cluster manager might
allocate fewer than the requested count depending on available
resources.

4.6 Combining Predictive and Reactive
Approaches

Finally, we need to combine the predictive resource allocation
with the reactive approach, namely the dynamic allocation. Specif-
ically, we use dynamic allocation as amechanism to release excess
resources after they are no longer needed by the query, i.e., to
de-allocate resources. The reasoning behind this is long-running
analytics queries typically require more resources upfront for
more scale-out to process larger volumes of data before they get
filtered or aggregated [29]. AutoExecutor uses a modified version
of dynamic allocation strategy from Spark. We disable dynamic
allocation for scaling up since we can predict the resources up-
front, but enable dynamic allocation to remove executors after
they have been idle for more than a specified time duration.

Figure 6: Combining predictive and reactive allocation for
individual queries in an interactive Spark application.

Figure 6 shows AutoExecutor with predictive allocation and
reactive deallocation of executors for two queries in an inter-
active Spark notebook. When the first query is submitted, Au-
toExecutor predicts 𝑛 = 22 and automatically requests it. We
see the completed executor allocation at around 90 seconds in
Figure 6. There is a time gap between the end time of first query
and the submit time of second query. During this time gap, dy-
namic (de)allocation releases the idle executors. For the second
query, AutoExecutor automatically allocates the predicted execu-
tor count of 27. We release the resources after both the queries
have finished.

5 EVALUATION
We now present an experimental evaluation of AutoExecutor . Our
goal is to answer several key questions, including how good are
the models, what is the impact of price-performance trade-off,
how much cost savings can our predictive approach bring, can
predictive approach cope with changes in input sizes, what are
the overheads involved, and which features are more important

than others. We first describe our setup, then discuss each of the
above questions.

5.1 Setup
We use TPC-DS [27] for evaluation since it is the most popular
benchmark for analytical workloads, both in academia and in
industry [31, 43]. It allows us to easily scale input data sizes by
orders of magnitude, compare performance with current state-
of-art systems such as Sparklens [5], and provides a repeatable
baseline for future work in this area.

Our testbed consists of 103 TPC-DS queries (99 queries + vari-
ants) [25], for four scale factors SF=1, 10, 100, and 1000 running
on Azure Synapse Spark pools with medium-sized nodes (8 cores
and 64 GB memory per node). At most two executors can be
placed on each node. We allocate 4 cores (𝑒𝑐 = 4) and 28 GB
memory for the driver and each executor. We vary the number
of executors, 𝑛, from 1 to 48. All other configuration parameters
are fixed for these experiments. Each TPC-DS query runs as a
separate application and we record its time elapsed, that we refer
to as 𝑡 (𝑛) in this work.

We run each query several times for every 𝑛 = 1, 3, 8, 16, 32, 48,
then take averages after discarding outliers (points lying outside
±1.5× the inter-quartile range. The ‘Actual’ series shown in the
figures correspond to this averaged run time data. Gathering
ground truth data using actual runs is thus time-consuming and
expensive, not only due to the need to run queries with different
configurations, but also to do repeated runs to get reasonable av-
erages. Fast and deterministic simulation tools, such as Sparklens,
are thus quite useful for data augmentation to train ML models.
For each query, we obtain Sparklens estimates for the application
time, shown as series ’S’ in the figures, by running the tool on
the executor logs for a single run of that query with 𝑛 = 16.
Depending on the SF, total 𝑡 (𝑛 = 16) over all queries was 8.5%–
13.5% of total 𝑡 (𝑛) over all the 𝑛 listed above, showing the savings
potential in training data collection costs by using simulation. Of
course, the testing dataset only uses runtimes from actual runs.

We used TPC-DS since it is the most popular benchmark for
analytical workloads both in academia and in industry. We evalu-
ated model generalizability along two dimensions: (1) data sizes
by changing scale factor (SF), with different train and test SF, and
(2) query templates—we do a 5-fold cross validation (80:20 train-
ing:test dataset split) and repeat it 10 times. For each repeated
trial, the 5 folds collectively cover all of the TPC-DS queries in the
testing datasets while not including any test query in the training
dataset. We evaluate two models for AutoExecutor, Power Law
and Amdahl’s Law, that are referred as AE_PL and AE_AL series
respectively in the figures.

5.2 Time Prediction
We now evaluate how well the run times can be predicted for
different values of 𝑛. For the experiments we use SF=100 and
evaluate model generalizability for query templates by splitting
the dataset and doing cross validations as described above. We
also compare against estimates from Sparklens. However, to get
the Sparklens estimates for the testing dataset, we need to execute
each test query once, which we do with 𝑛 = 16. We fix 𝑒𝑐 = 4 for
all configurations.

To determine the overall prediction accuracy for the test dataset,
we compute the following errormetric. Let 𝑡𝑞 (𝑛) and 𝑡𝑞 (𝑛) denote

124

the actual and predicted run times for query 𝑞 with 𝑛 executors.

𝐸 (𝑛) =
∑
𝑞 |𝑡𝑞 (𝑛) − 𝑡𝑞 (𝑛) |∑

𝑞 𝑡𝑞 (𝑛)
(6)

𝐸 (𝑛) is the ratio of the sum of the absolute time errors to the
sum of the actual run times, with the sums taken over all queries
in the test dataset. An ideal predictor would have 𝐸 (𝑛) = 0 for
all 𝑛.

1 3 8 16 32 48
Number of Executors (n)

0.0

0.2

0.4

0.6

0.8

1.0

E(
n)

S
AE_PL
AE_AL

(a) Training Dataset

1 3 8 16 32 48
Number of Executors (n)

0.0

0.2

0.4

0.6

0.8

1.0

E(
n)

S
AE_PL
AE_AL

(b) Testing Dataset

Figure 7: Average errors, 𝐸 (𝑛), for Sparklens (S), AE_PL, and
AE_AL aggregated over test queries from TPC-DS SF=100
(10-repeated, 5-fold cross validations). The error bars show
±1 standard deviation across the 5 × 10 = 50 testing folds.

Figures 7a and 7b show average 𝐸 (𝑛) for the training and
testing datasets, for SF=100, corresponding to each fold of the
10-repeated 5-fold cross validations. For both models, as well as
for Sparklens estimates, the errors are largest for small 𝑛, small-
est for intermediate 𝑛, and intermediate for large 𝑛. This pattern
is similar for both training (fit) and testing dataset (prediction)
errors. This pattern is affected by our choice of reference con-
figuration (𝑛 = 16) for invoking Sparklens—a smaller or higher
value of 𝑛 would reduce the errors in that region while likely
increasing it elsewhere. The relatively larger errors at small 𝑛 are
not problematic since such 𝑛 are rarely optimal operating points
for optimal performance or balanced tradeoff between increased
cost and performance loss (‘elbow points’, also see Section 5.3).

The model fit and predict errors are close to Sparklens estima-
tion errors. This is because we augment the training data for the
PPM model with the Sparklens estimates. The average absolute
difference in 𝐸 (𝑛) values from Sparklens was quite small: 0.079
for AE_PL and 0.087 for AE_AL on this testing dataset.

5.3 Configuration Selection
We now evaluate how well we can select optimal configurations
based on run time predictions.We consider two scenarios: (1) cost-
savings with a limited slowdown, and (2) elbow point selection.
We use SF=100 for experiments in this section. We also piecewise-
linearly interpolate the Actual and Sparklens series to cover all
𝑛 ∈ [1, 48] and thus expand the set of target configurations.

Limited Slowdown: The goal in this scenario is to select the
smallest 𝑛 such that the slowdown compared to the minimum

1 1.05 1.1 1.2 1.5 2
Target Max. Slowdown

1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7

Ac
tu

al
 S

lo
wd

ow
n

(In
te

rp
ol

at
ed

) S
AE_PL
AE_AL
Actual

(a) Performance

1 1.05 1.1 1.2 1.5 2
Target Max. Slowdown

0

10

20

30

40

50

Nu
m

be
r o

f E
xe

cu
to

rs S
AE_PL
AE_AL
Actual

(b) Cost

Figure 8: Configuration selection impacts for Sparklens (S),
AE_PL, and AE_AL aggregated over test queries from TPC-
DS SF=100 (10-repeated, 5-fold cross validations). Slow-
downs 𝐻 are with respect to actual run times (piecewise-
linearly interpolated). The error bars show ±1 standard
deviation across the 5 × 10 = 50 testing folds.

time 𝑡𝑚𝑖𝑛 does not exceed a threshold𝐻 , i.e., 𝑡 (𝑛)𝑡𝑚𝑖𝑛
≤ 𝐻 . Figure 8a

shows the slowdowns using the (interpolated) actual run times
for the selected configurations for different values of 𝐻 , while
Figure 8b shows the corresponding𝑛. We average over the queries
in the test datasets for the 10-repeated 5-fold cross validations.
The error bars correspond to ±1 standard deviation of averages
for the 10 repeats.

𝐻 = 1 corresponds to the scenario where the smallest number
of executors is used to achieve the best performance (no slow-
down over 𝑡𝑚𝑖𝑛). We find that with the selected configurations,
there is a resulting additional slowdown of 5.1% for Sparklens,
3.6% for AE_PL, and 8.9% for AE_AL. The average values for 𝑛 are
20.5 for Actual and 34.9, 22.3, and 48 respectively for Sparklens,
AE_PL, and AE_AL, thus reflecting a significant savings oppor-
tunity. AE_PL improves over both Sparklens and AE_AL and
realizes a substantial portion of the savings opportunity while
incurring a small additional slowdown (which is comparable to
the average variation in run times). AE_AL always select the
maximum value of 𝑛 (= 48) due to the lack of early saturation of
the model unlike AE_PL.

As discussed in Section 2.2, users often run jobs with static
(same settings for all jobs), small values of 𝑛. But using the AE_PL
or AE_AL models, we can automatically choose a configuration
that optimizes for𝐻 = 1 as above, to provide significant speedups.
The above selected configurations provided an average speedup
of 39.5–43.8% for static 𝑛 = 3 (12 cores) and 3.4–7.9% for 𝑛 = 8
(32 cores). Speedups over static 𝑛 = 2 (8 cores) would be higher
(expected 2.1× using interpolated values for Actuals).

For larger values of 𝐻 , particularly 𝐻 ≥ 1.1, the configura-
tions selected by the models, as also from Sparklens, tend to be
conservative in exploiting slowdown thresholds and saving ex-
ecutor counts. The average slowdowns for AE_PL for 𝐻 = 1.05,
1.1, 1.2, 1.5, 2 were 1.04, 1.04, 1.04, 1.08, 1.23 for AE_PL (with

125

average 𝑛 = 20.2, 18.3, 15.3, 9.7, 5.5), but 1.04, 1.08, 1.15, 1.36, 1.58
(with average 𝑛 = 11.5, 8.4, 6.1, 3.5, 2.4) for Actual. Note that
the slowdown for Actual is less than the target slowdown due
to 𝑛 being a discrete variable. This shortfall varies according to
queries, and hence to composition of the test dataset in each fold
of the 5-fold cross validation. Overall, AE_AL tends to signifi-
cantly overestimate 𝑛. While AE_PL realizes only a part of the
full savings potential, it has a similar impact as that of Sparklens
but is able to achieve it without executing the query as opposed
to post-execution analysis by Sparklens.

‘Elbow Point’ Selection: We see in the example curve of
Figure 1 that the PPM has two distinct regions: at low executor
counts 𝑛, the run time 𝑡 (𝑛) changes rapidly for a small change in
𝑛, whereas at high values of 𝑛, 𝑡 (𝑛) changes slowly reflecting a
diminishing return on investment for increasing 𝑛. In this config-
uration selection experiment, we aim to select the ‘elbow point’
that strikes a balance between rate of decrease in 𝑡 (𝑛) and rate
of increase in 𝑛.

Note that in these example curves, the x- and y-axes, cor-
responding to 𝑛 and 𝑡 (𝑛) respectively, are on different scales.
However, we need a way to compare the two quantities in order
to determine the elbow point. So, we normalize 𝑛 and 𝑡 (𝑛) using
range-scaling functions 𝑢 : 𝑛 ↦→ [0, 1] and 𝑣 : 𝑡 (𝑛) ↦→ [0, 1], then
compute the slope at each point𝑢 (𝑛) of the normalized PPM. The
elbow point 𝐿 is determined as the smallest 𝑛 for which there is a
crossover point for the slope, compared to unit slope, in the nor-
malized PPM. That is, the smallest 𝑛 for which 𝑠𝑙𝑜𝑝𝑒 (𝑢 (𝑛)) ≥ 1
and 𝑠𝑙𝑜𝑝𝑒 (𝑢 (𝑛 + 1)) ≤ 1. Note that the above is only an example;
other definitions for the elbow point can be chosen according to
user needs and calculated using predictions from the models.

For the above definition, the vast majority of queries have
𝐿 = 8. For SF=100, only 13 of 103 queries have 𝐿 < 8 for Actual
while for Sparklens estimates, all but one query had 𝐿 = 8. For
model predictions, we consider the test datasets over the 5-fold
cross-validations, then take averages over the 10 repeats. AE_PL
selected 8–11 for 𝐿. Interestingly, AE_AL selected 𝐿 = 7 for all
these queries.

5.4 Cost Savings
Figure 9 shows the executor allocation skylines for two example
queries with SF=1000 when run using four policies: dynamic
allocation (DA) with𝑛 restricted to [1, 48]; static allocation (SA(𝑛)),
that is all executors requested upfront during job submission,
once with 𝑛 = 48 and once with 𝑛 = 𝑥 ; Rule(𝑛), where a request
of 𝑛 = 𝑥 total executors was made during the AutoExecutor
optimizer rule for a run that started with 𝑛 = 5. The 𝑥 executor
count was predicted by AE_PL for these queries in one of the
5-fold cross validation experiments with optimization objective
of 𝐻 = 1.05 (see Section 5.3). Our evaluation, which gives an
advantage to DA, is with hot standbys for nodes. Thus, executors
are allocated as fast as possible upon request (also for SA). But
for cost (𝐴𝑈𝐶) calculations, we only consider executors actually
allocated to the query.

Due to the choice of our optimization objective (𝐻 = 1.05), the
queries are expected to take longer to run for SA and Rule with
the chosen 𝑛 = 𝑥 compared to SA(48), as we see in these examples.
The first example (Figure 9a) shows a scenario where SA(𝑥) and
Rule(𝑥) took less time than DA(1,48) while the second example
(Figure 9b) shows the reverse scenario. Both DA and Rule take
more time than the SA policies, with the delay for Rule due to a
lag from the timewhen theAutoExecutor optimizer rule made the

0 20 40 60 80
Time (secs)

0

10

20

30

40

50

Ex
ec

ut
or

s A
llo

ca
te

d DA(1,48)
SA(48)
SA(30)
Rule(30)

(a) Skylines for an example query. 𝐴𝑈𝐶s for
DA(1,48), SA(48), SA(30), and Rule(30) are 1542,
2441, 1516, and 979 respectively.

0 20 40 60 80 100
Time (secs)

0

10

20

30

40

50

Ex
ec

ut
or

s A
llo

ca
te

d DA(1,48)
SA(48)
SA(23)
Rule(23)

(b) Skylines for an example query. 𝐴𝑈𝐶s for
DA(1,48), SA(48), SA(23), and Rule(23) are 1641,
2675, 1527, and 1093 respectively.

Figure 9: Executor allocation skylines for two example
queries, SF=1000, with Dynamic Allocation (DA), 1 ≤ 𝑛 ≤ 48,
Static Allocation (SA(𝑛)) with 𝑛 = 48, and also with 𝑛 = 23
and 30 which are the executor counts requested during op-
timizer Rule(𝑛) execution for the two queries respectively
using AE_PL model and 𝐻 = 1.05 config. selection policy.

request and the full allocation of the requested executors by the
runtime environment. However, DA and Rule are not equivalent
since Rule requests all executors at optimization time whereas
DA reacts gradually over the lifetime of the query execution, after
optimization. Current system overheads in fulfilling executor
requests by Rule makes its performance similar to that of DA. A
more efficient scheduler implementation in future may reduce
these overheads. But the delays for DA are more fundamental, due
to the need to observe part of the query execution before making
its requests. SA policies, while faster, may only take into account
query characteristics from prior runs as they need to specify 𝑛
even before the query is compiled.

Regarding cost savings, we first note that DA, like SA(48), al-
locates up to 48 executors for these examples. In contrast, our
models predicted 30 and 23 executors for these two queries, which
is a substantial reduction in the resource requirements with the
potential to reduce resource provisioning needs, wait time to
reserve resources, and improve cluster utilization by freeing up
resources for other queries. We also note a substantial reduc-
tion in 𝐴𝑈𝐶 with all policies compared to SA(48). While SA(𝑛)
for the predicted 𝑛 = 𝑥 slightly reduced 𝐴𝑈𝐶 compared to DA,
Rule significantly reduced 𝐴𝑈𝐶 compared to DA: 1542→979 and
1641→1093 for the two example queries respectively. To restrict
DA from over-shooting, one would need to manually provide a
query-specific upper bound or use learned models such as Au-
toExecutor to predict and set an upper bound depending on query
characteristics.

We evaluated cost savings over all TPC-DS SF=1000 queries,
for 𝐻 = 1.05 and with one set of 5-fold cross validation experi-
ments. Rule substantially saved 𝑛; the average per-query 𝑛 was

126

26.3 for Rule whereas it was 48 for SA(48), that is, 45.1% reduc-
tion (median: 50%) in resource allocation requirements with Rule,
and 40.8 for DA(1,48), that is, 35.5% reductions (median: 37.5%)
with Rule. Over all queries, Rule saved median and total 𝐴𝑈𝐶
by 20.3% and 16.1% over DA, and median and total 𝐴𝑈𝐶 by 65.2%
and 54.8% over SA(48).

But the resource and cost savings also comes with a perfor-
mance loss, beyond expected levels (5% target for these experi-
ments), due to the lag in rule invocation and gradual allocation
of executors. The runtime environment takes ∼20–30 secs to
gradually allocate the requested executor count, and is beyond
the control of the prediction models. The median per-query slow-
down with Rule was 17.6% compared to SA(48), and 10.3% com-
pared to DA(1,48). Total query time was 16.8% and 10% longer
compared with SA(48) and DA respectively. Also, for the above
experiments, 12 of the 103 queries finished before the runtime
environment was able to completely allocate all executors re-
quested by Rule (AE_PL predictions). The average shortfall for
these queries was 5.8 executors whereas their average request
was for 22.3 executors. The total allocated executors matched the
model-predicted value for the remaining 91 of the 103 queries.
For smaller scale factors, a higher percentage of queries are likely
to see shortfalls since queries finish faster before the allocations
can be fully satisfied by the system.

One potential direction for future work is exploring if the per-
formance losses can be reduced by accounting for the allocation
delays in the model predictions and subsequent configuration se-
lections. This would induce selection of a higher executor count
to make up for the delays, but would also potentially reduce𝐴𝑈𝐶
savings. The allocation delays could be estimated by a periodic
calibration step.

5.5 Change in input data size
We now evaluate how well the models perform when the test
queries operate on a different amount of data than what they had
in the training datasets for the models. A simple way to test this
is to train the models on one or more scale factors of TPC-DS
and then test them on a different scale factor.

Figure 10 shows average prediction errors, 𝐸 (𝑛), over all 103
queries when the testing dataset is SF=1 and the training dataset
is SF=1, 10, 100, 1000 for subfigures (a)–(d) respectively. Thus
subfigures (b)–(d) represent a scale-down scenario for data sizes
from training to test. We see that both AE_PL and AE_AL do
better than Sparklens for most cases. The gap increases with
difference between the training vs testing SF, with it being most
pronounced in Figure 10d where SF=1000 is used for training.

Figure 10 shows the scenario when the testing dataset is
SF=1000 and the training dataset is SF=1, 10, 100, 1000 for sub-
figures (a)–(d) respectively. Thus subfigures (a)–(c) represent a
scale-up scenario for data sizes from training to test. Here we see
that Sparklens does better in most cases than the model predic-
tions but unlike in the previous scenario, the gap is smaller and
does not necessarily follow the difference between training and
test SFs. Interestingly, when the training SF=1 (Figure 11a), which
is the largest difference from the test SF of 1000, the models do
quite well and even outperform Sparklens for 𝑛 ≥ 16. Over all
training SFs, 𝐸 (𝑛) for AE_PL was less than 0.65 for 𝑛 ≥ 8.

Figure 12 shows a scenario where all SFs different from the
testing SF were used for training the AE_PL and AE_AL models.
Subfigure (d) shows a scale-up scenario, (a) shows a scale-down
scenario, while (b) and (c) show an in-range scenario. Note that

since Sparklens does not include data size as an input, we cannot
use an objective estimate for it in any of these scenarios. For ex-
ample, should one use the min./max./average/some scaled values,
etc. of estimates from prior runs? Instead, we show Sparklens esti-
mates from the corresponding testing SF as a reference, assuming
they are obtained after the query has been run.

Comparing Figure 12d with Figures 11a–c we see that AE_PL
does better with training with the multiple SFs together than
with any single SF for 𝑛 ≤ 16 and is close for larger 𝑛. For
example, 𝐸 (𝑛 = 8) for AE_PL is 0.39 in Figure 12d whereas it
is 0.46, 0.62, and 0.65 in Figures 11a–c respectively. AE_AL is
worse than AE_PL for this example, but does better at 𝑛 = 8 in
Figures 12a–c. Both models do better with combined training
SFs than the worst-case single SF accuracy for all 𝑛, for scale-
up (Figure 12d vs 11a–c) and scale-down (Figure 12a vs 10b–d).
Overall, the model accuracy is reasonable with data size changes
for scale-down, in-range, and scale-up scenarios with multiple
SFs included in the training dataset.

5.6 Overheads
Training: The time taken to fit the parameter model on the
Sparklens estimates, as described in Section 3.4, was ∼0.3 msec
on average for each training data point. As we have discussed, our
parametric PPM approach reduces overheads by design. We used
scikit-learn’s default parameter settings of 100 estimators [23]
for the Random Forest model. The pickled file size on disk when
trained over all 103 TPC-DS queries (for a given scale factor) was
0.8 MB for AE_AL and 0.9 MB for AE_PL. The ONNX file size
was slightly larger at 1 MB and 1.1 MB respectively. The average
single-threaded training time for this dataset was ∼79 msec.

Scoring: The time taken to predict the PPM using the Random
Forest model was on average ∼3.6 msec for the scikit-learn model.
Inside the query optimizer, the plan featurization time was ∼10.3
msec. The one-time cost to load and setup ONNX model for pre-
diction was ∼88.1 msec and ∼47.1 msec respectively. The ONNX
model inference time per query was ∼0.9 msec. The AutoExecutor
optimizer rule is the last rule invoked once per query.

5.7 Feature importance
To understand how different features contribute to model pre-
diction accuracy, we computed feature permutation importance
scores [22]. Figure 13 lists the top 8 features in decreasing order
of the sum of average importance scores for the model predic-
tions on the testing datasets for SF=100 (5-fold cross-validation,
repeated 10 times). The most important features are the esti-
mated total input bytes and rows processed, maximum depth
of the query plan, number of operators, and specific operators
such as Project and Filter. The results support our view that both
amount of input data and query characteristics involving infor-
mation about the query plan and operators are important for
query run time prediction. Some other operators, not shown in
Figure 13, appeared much less frequently or changed less in value
across queries in our dataset and got low importance scores. We
validated this result by retraining the models with this reduced
feature set and testing their predictions. We found that 𝐸 (𝑛) dif-
fered from the earlier values (from models trained with the full
features set) by less than 0.02 for both AE_PL and AE_AL models
for all our values of 𝑛.

127

3.5
4.0

1 3 8 16 32 48
Number of Executors (n)

0.0

0.5

1.0

1.5

2.0

E(
n)

S
AE_PL
AE_AL

(a) Training Dataset: SF=1

3.5
4.0

1 3 8 16 32 48
Number of Executors (n)

0.0

0.5

1.0

1.5

2.0

E(
n)

S
AE_PL
AE_AL

(b) Training Dataset: SF=10

3.5
4.0

1 3 8 16 32 48
Number of Executors (n)

0.0

0.5

1.0

1.5

2.0

E(
n)

S
AE_PL
AE_AL

(c) Training Dataset: SF=100

3.5
4.0

1 3 8 16 32 48
Number of Executors (n)

0.0

0.5

1.0

1.5

2.0

E(
n)

S
AE_PL
AE_AL

(d) Training Dataset: SF=1000

Figure 10: Testing Dataset: SF=1. Average errors, 𝐸 (𝑛), for Sparklens (S), AE_PL, and AE_AL, aggregated over test queries.

1 3 8 16 32 48
Number of Executors (n)

0.0

0.2

0.4

0.6

0.8

1.0

E(
n)

S
AE_PL
AE_AL

(a) Training Dataset: SF=1

1 3 8 16 32 48
Number of Executors (n)

0.0

0.2

0.4

0.6

0.8

1.0

E(
n)

S
AE_PL
AE_AL

(b) Training Dataset: SF=10

1 3 8 16 32 48
Number of Executors (n)

0.0

0.2

0.4

0.6

0.8

1.0

E(
n)

S
AE_PL
AE_AL

(c) Training Dataset: SF=100

1 3 8 16 32 48
Number of Executors (n)

0.0

0.2

0.4

0.6

0.8

1.0

E(
n)

S
AE_PL
AE_AL

(d) Training Dataset: SF=1000

Figure 11: Testing Dataset: SF=1000. Average errors, 𝐸 (𝑛), for Sparklens (S), AE_PL, and AE_AL, aggregated over test queries.

1 3 8 16 32 48
Number of Executors (n)

0.0

0.2

0.4

0.6

0.8

1.0

E(
n)

S
AE_PL
AE_AL

(a) Testing Dataset: SF=1

1 3 8 16 32 48
Number of Executors (n)

0.0

0.2

0.4

0.6

0.8

1.0

E(
n)

S
AE_PL
AE_AL

(b) Testing Dataset: SF=10

1 3 8 16 32 48
Number of Executors (n)

0.0

0.2

0.4

0.6

0.8

1.0

E(
n)

S
AE_PL
AE_AL

(c) Testing Dataset: SF=100

1 3 8 16 32 48
Number of Executors (n)

0.0

0.2

0.4

0.6

0.8

1.0

E(
n)

S
AE_PL
AE_AL

(d) Testing Dataset: SF=1000

Figure 12: Average errors, 𝐸 (𝑛), for Sparklens (S), AE_PL, and AE_AL, aggregated over test queries. The Training Dataset
for AE_PL and AE_AL comprised of data from the 3 other SFs for all queries. Training and Testing Datasets are always
separate for AE models. The Training Dataset for Sparklens is the same as the Testing Dataset, and is obtained after one
run of each query.

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Average Importance Score

Join

Sort

Filter

Project

NumOps

Total-
RowsProcessed

MaxDepth

TotalInputBytes

AE_PL
AE_AL

Figure 13: Top 8 features, ranked by AE_PL + AE_AL scores,
using permutation importance for the testing datasets
fromTPC-DS SF=100 (10-repeated, 5-fold cross validations).
For each model (fold), we repeat feature permutations 100
times. The averages are over 10 × 5 × 100 = 5000 scores.

6 RELATEDWORK
Resource Prediction For Jobs: There has been prior work on
predicting resources for big data applications. Tuneful [35] learns
over multiple iterations of the query to predict optimal resources
and needs tens of iterations to converge. It also does not gen-
eralize to new queries. In contrast, our goal is to do a one-shot
prediction for both existing and new queries. Reloca [39] relies on
sampling runs to generate training data for deep neural network
(DNN) models but does not optimize for cost or compares against
reactive allocation. In AutoExecutor we use simple parametric

models that offer better explainability and visualization com-
pared to DNNs. Sparklens [5] does post-execution analysis and
cannot handle changes in queries or inputs. AutoExecutor can uti-
lize Sparklens estimates to augment data for training ML models.
Many systems [37, 38, 42] were designed to optimize the perfor-
mance ofMapReduce applications. For example, Starfish [38] uses
dynamic tracing to build profile of MapReduce applications. This
application profile is then fed to a what-if engine that can predict
its performance over different configurations using analytical
and simulation models. In contrast, AutoExecutor is integrated
closely with Spark and does not require intrusive profiling of
running applications that can affect runtime performance. Un-
like analytical models that require manual updates to reflect the
current implementation of the data processing engine, AutoEx-
ecutor is resilient to changes in the Spark engine. The machine
learning model of AutoExecutor can automatically learn changes
in performance characteristics from new training samples.

We also briefly distinguish AutoExecutor from some of our
priorworks on resource allocation and predictions. AutoToken [52]
predicted the peak parallelism/resources for recurring overallo-
cated SCOPE queries. Unlike AutoExecutor , it did not predict
performance or optimal resource allocation. Optimal (depending
on the metric) allocations can be less than the peak. Fan, et al. [34]
used ML models to predict the optimal parallelism/resources for
SQL Server queries. They used a non-parametric ML approach,
with the model being scored once per target configuration. In
contrast, AutoExecutor uses a parametric approach, scores the
model once per query, and shows improvements over reactive

128

allocation. Bag, et al. [29] determined when resources allocated
to a running SCOPE query are no longer required for the re-
mainder of the run and releases/deallocates those resources early.
In contrast, AutoExecutor focuses on upfront optimal resource
allocation. QROP [55] presented a vision for the query optimizer
and resource manager to work together for efficient query pro-
cessing, but did not propose a predictive mechanism for price-
performance optimization.

TASQ [47, 48] predicted the optimal parallelism/resources for
SCOPE queries. They used a parametric ML model to predict a
performance characteristic curve. The model is scored once per
query and they also compare against scoring other models once
per configuration. AutoExecutor differs from TASQ in taking re-
source optimization from a SCOPE batch processing environment
in Cosmos to an interactive Spark query processing environment
in Synapse. Concretely, it differs in the following ways.
• Model: AutoExecutor extends the prior parametric model by
adding a saturation constraint, that enables prediction of where
the performance curve flattens with increasing resource allo-
cation, instead of having to rely on user inputs, visual inspec-
tion, or ad-hoc strategies. We propose a general parametric
framework for price-performance optimization, evaluate the
well-known Amdahl’s Law model in this context and show
its limitations for configuration selection scenarios due to the
lack of early saturation, show how to automatically determine
elbow points for price-performance trade-offs, and discuss
feature importance.

• Platform: TASQ addressed optimal allocation for SCOPE queries
on Cosmos, which is internal to Microsoft, whereas AutoEx-
ecutor focuses on Spark SQL queries. The underlying system
details are quite different from SCOPE and therefore we had
to come up with novel system and algorithm engineering to
bridge that gap. In the current paper we described our integra-
tion for Spark in depth, including how to leverage an open-
source simulator (Sparklens) for data augmentation, how to
combine predictive allocation with dynamic deallocation, and
how to improve over dynamic allocation. We implemented the
end-to-end system to collect Spark telemetry, train simple and
interpretable machine learning models with good accuracy,
and extended the Spark optimizer to load models in a universal
format for fast scoring during optimization and to perform
automatic resource allocation. We also show (first, to the best
of our knowledge) distributions of resource allocations over
many Spark queries on a commercial platform, that highlights
the opportunity and importance of optimal resource allocation
for Spark.

• Predictive vs Reactive: In contrast to all the above prior works,
in this paper we compared between the predictive and reactive
allocation approaches. Adaptivity has long been thought to
fix many of the query processing deficiencies, and techniques
such as adaptive indexing, etc. have been presented over the
years. Spark introduced Dynamic Allocation on similar lines,
and yet in this paper we showed significant cost savings over
Dynamic Allocation for Spark.
Workload Prediction: There have been a number of recent

efforts to predict load patterns at a cluster or service level. For
example, Seagull [49] uses forecasting techniques to predict work-
load patterns. This approach has many applications such as auto-
matic resizing of clusters and scheduling maintenance tasks but
cannot be used to allocate resources at the job level. Amazon an-
nounced a predictive scaling policy in EC2 using ML models [12],
but the modeling details are not public.

Centralized Job Scheduler: Another relevant area of re-
search is resource allocation techniques employed in job schedul-
ing systems such as YARN [54]. Our approach is complementary
to resource allocation techniques that take into account factors
like job priorities, wait times, and shared resources. After Au-
toExecutor requests the desired executor count, the scheduler can
use any scheduler policy like hierarchical queues [3] or Domi-
nant Resource Fairness [36] to allocate from the pool of available
resources. Other comparable techniques to AutoExecutor such
as Dynamic Allocation [10] also rely on the job scheduler for
allocation of resources.

Concurrent Workloads: Prior work has discussed modeling
concurrent workloads [44] and sharing resources with perfor-
mance guarantees [45] for transactional databases. AutoExecutor
is particularly well suited for analytical systems designed to
leverage the cloud’s elasticity. In this paper, we have focused on
Azure Synapse [6] that reduces contention between shared jobs
by utilizing dedicated resource pools and disaggregated storage
service [19]. But, AutoExecutor is equally applicable on newer
cloud databases like Snowflake [24] that also use virtual com-
pute warehouses [33] and storage services to avoid interference
between workloads.

7 CONCLUSION
We presented a novel approach for predictive price-performance
optimization in analytical queries. Our system, AutoExecutor ,
predicts a parametric model for estimating Spark SQL query run
times, and picks a better resource configuration upfront dur-
ing query optimization. We focus on simple parametric models
due to their ease of interpretability, efficiency in compressing
training datasets, and enabling fast predictions by requiring only
one model scoring per query instead of one per configuration.
AutoExecutor can optimize for different objectives and is inte-
grated with the Spark optimizer where it considers both the
query characteristics and the input data sizes for predicting ex-
ecutor counts. Our extensive evaluation over TPC-DS workloads
show that AutoExecutor can achieve prediction accuracies very
close to Sparklens estimates, which are post-execution, and yet
save executor occupancy compared to state-of-the-art Dynamic
Allocation in Spark.

ACKNOWLEDGMENT
We thank Rui Fang, Jeff Zheng, Xiaolei Liu, Ruiping Li, Carlo
Curino, and other members of the Synapse and GSL teams who
provided feedback or useful directions for theAutoExecutor project,
and the anonymous reviewers for their feedback on this paper.

REFERENCES
[1] 2017. Add hooks and extension points to Spark. Retrieved February 12, 2022

from https://issues.apache.org/jira/browse/SPARK-18127
[2] 2018. New – Predictive Scaling for EC2, Powered by Machine Learn-

ing. Retrieved February 12, 2022 from https://aws.amazon.com/blogs/aws/
new-predictive-scaling-for-ec2-powered-by-machine-learning/

[3] 2019. Hadoop: Capacity Scheduler. Retrieved February 12, 2022
from https://hadoop.apache.org/docs/r2.9.1/hadoop-yarn/hadoop-yarn-site/
CapacityScheduler.html

[4] 2020. Part 3: Cost Efficient Executor Configuration for Apache Spark. Re-
trieved February 12, 2022 from https://medium.com/expedia-group-tech/
part-3-efficient-executor-configuration-for-apache-spark-b4602929262

[5] 2020. Qubole Sparklens tool for performance tuning Apache Spark. Retrieved
February 12, 2022 from https://github.com/qubole/sparklens v0.3.2.

[6] 2021. Apache Spark in Azure Synapse Analytics. Retrieved February 12,
2022 from https://docs.microsoft.com/en-us/azure/synapse-analytics/spark/
apache-spark-overview

[7] 2021. Azure Machine Learning. Retrieved February 12, 2022 from https:
//azure.microsoft.com/en-us/services/machine-learning

129

[8] 2021. Azure SQL Database serverless. Retrieved February 12, 2022
from https://docs.microsoft.com/en-us/azure/azure-sql/database/
serverless-tier-overview#auto-pausing-and-auto-resuming

[9] 2021. Azure Synapse SQL architecture. Retrieved February 12,
2022 from https://docs.microsoft.com/en-us/azure/synapse-analytics/sql/
overview-architecture

[10] 2021. Dynamic Resource Allocation. Retrieved February 12,
2022 from https://spark.apache.org/docs/3.2.1/job-scheduling.html#
dynamic-resource-allocation

[11] 2021. Get Azure SQL SKU recommendations. Retrieved February 12, 2022 from
https://docs.microsoft.com/en-us/sql/dma/dma-sku-recommend-sql-db?
view=sql-server-ver15

[12] 2021. Predictive scaling for Amazon EC2 Auto Scaling. Retrieved Febru-
ary 12, 2022 from https://docs.aws.amazon.com/autoscaling/ec2/userguide/
ec2-auto-scaling-predictive-scaling.html

[13] 2022. Amazon Athena. Retrieved February 12, 2022 from https://aws.amazon.
com/athena

[14] 2022. Amdahl’s law. Retrieved February 12, 2022 from https://en.wikipedia.
org/wiki/Amdahl%27s_law

[15] 2022. Apache Spark. Retrieved February 12, 2022 from https://spark.apache.org
[16] 2022. Auto-suspension and Auto-resumption - Snowflake Documentation. Re-

trieved February 12, 2022 from https://docs.snowflake.com/en/user-guide/
warehouses-overview.html

[17] 2022. BigQuery. Retrieved February 12, 2022 from https://cloud.google.com/
bigquery

[18] 2022. Coefficient of variation. Retrieved February 12, 2022 from https://en.
wikipedia.org/wiki/Coefficient_of_variation

[19] 2022. Data Lake: Microsoft Azure. Retrieved February 12, 2022 from https:
//azure.microsoft.com/en-us/solutions/data-lake

[20] 2022. Multi-cluster Warehouses - Snowflake Documentation. Re-
trieved February 12, 2022 from https://docs.snowflake.com/en/user-guide/
warehouses-multicluster.html

[21] 2022. ONNX. Retrieved February 12, 2022 from https://onnx.ai
[22] 2022. Permutation feature importance. Retrieved February 12, 2022 from

https://scikit-learn.org/stable/modules/permutation_importance.html
[23] 2022. sklearn.ensemble.RandomForestRegressor. Retrieved February 12,

2022 from https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.
RandomForestRegressor.html

[24] 2022. Snowflake Data Cloud. Retrieved February 12, 2022 from https://www.
snowflake.com

[25] 2022. Spark SQL Performance Tests. Retrieved February 12, 2022 from https:
//github.com/databricks/spark-sql-perf

[26] 2022. Synapse Autoscaling. Retrieved February 12, 2022 from
https://docs.microsoft.com/en-us/azure/synapse-analytics/spark/
apache-spark-autoscale

[27] 2022. TPC-DS Homepage. Retrieved May 14, 2022 from https://www.tpc.org/
tpcds/default5.asp

[28] 2022. Working with concurrency scaling - Amazon Redshift. Retrieved
February 12, 2022 from https://docs.aws.amazon.com/redshift/latest/dg/
concurrency-scaling.html

[29] Malay Bag, Alekh Jindal, and Hiren Patel. 2020. Towards Plan-aware Resource
Allocation in Serverless Query Processing. In 12th USENIX Workshop on Hot
Topics in Cloud Computing (HotCloud 20). USENIX Association. https://www.
usenix.org/conference/hotcloud20/presentation/bag

[30] Eric Boutin, Jaliya Ekanayake, Wei Lin, Bing Shi, Jingren Zhou, Zheng-
ping Qian, Ming Wu, and Lidong Zhou. 2014. Apollo: Scalable and Coor-
dinated Scheduling for Cloud-Scale Computing. In 11th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 14). USENIX Associa-
tion, Broomfield, CO, 285–300. https://www.usenix.org/conference/osdi14/
technical-sessions/presentation/boutin

[31] Nicolas Bruno, Johnny Debrodt, Chujun Song, and Wei Zheng. 2022. Compu-
tation Reuse via Fusion in Amazon Athena. In 2022 IEEE 38th International
Conference on Data Engineering (ICDE). IEEE.

[32] Ronnie Chaiken, Bob Jenkins, Per-Åke Larson, Bill Ramsey, Darren Shakib,
Simon Weaver, and Jingren Zhou. 2008. SCOPE: easy and efficient parallel
processing of massive data sets. PVLDB 1, 2 (2008), 1265–1276.

[33] Benoit Dageville, Thierry Cruanes, Marcin Zukowski, Vadim Antonov, Artin
Avanes, Jon Bock, Jonathan Claybaugh, Daniel Engovatov, Martin Hentschel,
Jiansheng Huang, Allison W. Lee, Ashish Motivala, Abdul Q. Munir, Steven
Pelley, Peter Povinec, Greg Rahn, Spyridon Triantafyllis, and Philipp Unter-
brunner. 2016. The Snowflake Elastic Data Warehouse. In Proceedings of the
2016 International Conference on Management of Data. 215–226.

[34] Zhiwei Fan, Rathijit Sen, Paraschos Koutris, and Aws Albarghouthi. 2020.
Automated Tuning of Query Degree of Parallelism via Machine Learning.
In Proceedings of the Third International Workshop on Exploiting Artificial
Intelligence Techniques for Data Management. Article 2, 4 pages.

[35] Ayat Fekry, Lucian Carata, Thomas Pasquier, Andrew Rice, and Andy Hopper.
2020. To Tune or Not to Tune? In Search of Optimal Configurations for Data
Analytics. In Proceedings of the 26th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining (Virtual Event, CA, USA) (KDD ’20).
Association for Computing Machinery, New York, NY, USA, 2494–2504.

[36] Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy Konwinski, Scott
Shenker, and Ion Stoica. 2011. Dominant Resource Fairness: Fair Al-
location of Multiple Resource Types. In 8th USENIX Symposium on

Networked Systems Design and Implementation (NSDI 11). USENIX As-
sociation, Boston, MA. https://www.usenix.org/conference/nsdi11/
dominant-resource-fairness-fair-allocation-multiple-resource-types

[37] Herodotos Herodotou and Shivnath Babu. 2011. Profiling, what-if analysis,
and cost-based optimization of MapReduce programs. PVLDB 4, 11 (2011),
1111–1122.

[38] Herodotos Herodotou, Harold Lim, Gang Luo, Nedyalko Borisov, Liang Dong,
Fatma Bilgen Cetin, and Shivnath Babu. 2011. Starfish: A Self-tuning System
for Big Data Analytics.. In Cidr, Vol. 11. 261–272.

[39] Zhiyao Hu, Dongsheng Li, Dongxiang Zhang, and Yixin Chen. 2020. ReLoca:
Optimize Resource Allocation for Data-parallel Jobs using Deep Learning. In
IEEE INFOCOM 2020 - IEEE Conference on Computer Communications. 1163–
1171.

[40] Alekh Jindal, Hiren Patel, Abhishek Roy, Shi Qiao, Zhicheng Yin, Rathijit Sen,
and Subru Krishnan. 2019. Peregrine: Workload Optimization for Cloud Query
Engines. In Proceedings of the ACM Symposium on Cloud Computing. 416–427.

[41] Sangeetha Abdu Jyothi, Carlo Curino, Ishai Menache, Shravan Matthur
Narayanamurthy, Alexey Tumanov, Jonathan Yaniv, Ruslan Mavlyutov, Íñigo
Goiri, Subru Krishnan, Janardhan Kulkarni, and Sriram Rao. 2016. Morpheus:
Towards automated SLOs for enterprise clusters. In Proceedings of the 12th
USENIX Conference on Operating Systems Design and Implementation. 117–134.

[42] Min Li, Liangzhao Zeng, Shicong Meng, Jian Tan, Li Zhang, Ali R Butt, and
Nicholas Fuller. 2014. MRONLINE: MapReduce online performance tuning. In
Proceedings of the 23rd International Symposium on High-performance Parallel
and Distributed Computing. 165–176.

[43] Abhishek Modi, Kaushik Rajan, Srinivas Thimmaiah, Prakhar Jain, Swinky
Mann, Ayushi Agarwal, Ajith Shetty, Shahid K I, Ashit Gosalia, and Partho
Sarthi. 2021. New Query Optimization Techniques in the Spark Engine of
Azure Synapse. Proc. VLDB Endow. 15, 4 (dec 2021), 936–948. https://doi.org/
10.14778/3503585.3503601

[44] Barzan Mozafari, Carlo Curino, Alekh Jindal, and Samuel Madden. 2013. Per-
formance and resource modeling in highly-concurrent OLTP workloads. In
Proceedings of the 2013 ACM SIGMOD International Conference on Management
of Data. 301–312.

[45] Vivek Narasayya, Ishai Menache, Mohit Singh, Feng Li, Manoj Syamala, and
Surajit Chaudhuri. 2015. Sharing buffer poolmemory inmulti-tenant relational
database-as-a-service. PVLDB 8, 7 (2015), 726–737.

[46] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D.
Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn:
Machine Learning in Python. Journal of Machine Learning Research 12 (2011),
2825–2830.

[47] Anish Pimpley, Shuo Li, Rathijit Sen, Soundararajan Srinivasan, and Alekh
Jindal. 2022. Towards Optimal Resource Allocation for Big Data Analytics.
In 25th International Conference on Extending Database Technology (EDBT).
338–350.

[48] Anish Pimpley, Shuo Li, Anubha Srivastava, Vishal Rohra, Yi Zhu, Soundarara-
jan Srinivasan, Alekh Jindal, Hiren Patel, Shi Qiao, and Rathijit Sen. 2021. Opti-
mal Resource Allocation for Serverless Queries. arXiv preprint arXiv:2107.08594
(2021).

[49] Olga Poppe, Tayo Amuneke, Dalitso Banda, Aritra De, Ari Green, Manon
Knoertzer, Ehi Nosakhare, Karthik Rajendran, Deepak Shankargouda, Meina
Wang, Alan Au, Carlo Curino, Qun Guo, Alekh Jindal, Ajay Kalhan, Morgan
Oslake, Sonia Parchani, Vijay Ramani, Raj Sellappan, Saikat Sen, Sheetal
Shrotri, Soundararajan Srinivasan, Ping Xia, Shize Xu, Alicia Yang, and Yiwen
Zhu. 2020. Seagull: An Infrastructure for Load Prediction and Optimized
Resource Allocation. PVLDB 14, 2 (oct 2020), 154–162. https://doi.org/10.
14778/3425879.3425886

[50] Kaushik Rajan, Dharmesh Kakadia, Carlo Curino, and Subru Krishnan. 2016.
Perforator: eloquent performance models for resource optimization. In Pro-
ceedings of the Seventh ACM Symposium on Cloud Computing. 415–427.

[51] Abhishek Roy, Alekh Jindal, Priyanka Gomatam, Xiating Ouyang, Ashit Gos-
alia, Nishkam Ravi, Swinky Mann, and Prakhar Jain. 2021. SparkCruise:
Workload Optimization in Managed Spark Clusters at Microsoft. PVLDB 14,
12 (2021).

[52] Rathijit Sen, Alekh Jindal, Hiren Patel, and Shi Qiao. 2020. AutoToken: Pre-
dicting Peak Parallelism for Big Data Analytics at Microsoft. PVLDB 13, 12
(2020), 3326–3339.

[53] Rathijit Sen, Abhishek Roy, Alekh Jindal, Rui Fang, Jeff Zheng, Xiaolei Liu,
and Ruiping Li. 2021. AutoExecutor: Predictive Parallelism for Spark SQL
Queries. PVLDB 14, 12 (2021), 2855–2858.

[54] Vinod Kumar Vavilapalli, Arun C. Murthy, Chris Douglas, Sharad Agarwal,
Mahadev Konar, Robert Evans, Thomas Graves, Jason Lowe, Hitesh Shah,
Siddharth Seth, Bikas Saha, Carlo Curino, Owen O’Malley, Sanjay Radia,
Benjamin Reed, and Eric Baldeschwieler. 2013. Apache Hadoop YARN: Yet
Another Resource Negotiator. In Proceedings of the 4th annual Symposium on
Cloud Computing. 1–16.

[55] Lalitha Viswanathan, Alekh Jindal, and Konstantinos Karanasos. 2018. Query
and Resource Optimization: Bridging the Gap. In 34th IEEE International
Conference on Data Engineering. 1384–1387.

[56] Matei Zaharia, Andrew Chen, Aaron Davidson, Ali Ghodsi, Sue Ann Hong,
Andy Konwinski, Siddharth Murching, Tomas Nykodym, Paul Ogilvie, Mani
Parkhe, Fen Xie, and Corey Zumar. 2018. Accelerating the machine learning
lifecycle with MLflow. IEEE Data Engineering Bulletin 41, 4 (2018), 39–45.

130

