
Progressive Entity Resolution over Incremental Data
Leonardo Gazzarri

University of Stuttgart

Stuttgart, Germany

leonardo.gazzarri@ipvs.uni-stuttgart.de

Melanie Herschel

University of Stuttgart

Stuttgart, Germany

melanie.herschel@ipvs.uni-stuttgart.de

ABSTRACT
Entity Resolution (ER) algorithms identify entity profiles corre-

sponding to the same real-world entity among one or multiple

data sets. Modern challenges for ER are posed by volume, variety,

and velocity that characterize Big Data. While progressive ER

aims to efficiently solve the problem under time constraints by

prioritizing useful work over superfluous work, incremental ER

aims to incrementally produce results as new data increments

come in.

This paper presents algorithms that combine these two ap-

proaches in the context of streaming and heterogeneous data.

The overall goal is to maximize the chances to spot duplicates to

a given entity profile in a moment closest to its arrival time (early

quality), without relying on any schema information, while being

sufficiently efficient to process large volumes of fast streaming

data without compromising the eventual quality (by cutting too

many corners for efficiency). Experiments validate that our al-

gorithms are the first to support incremental and progressive

ER and, compared to state-of-the-art incremental approaches,

improve early quality, eventual quality, and system efficiency by

progressively and adaptively performing the unexecuted com-

parisons that are more likely to match when waiting for the next

stream input increment.

1 INTRODUCTION
Entity Resolution (ER) approaches identify which different profiles
stored within data sources refer to the same real-world entity.

It is a fundamental step in data cleaning and data integration.

While it has been studied widely in the last decades [8], the Big

Data era has raised additional challenges [11]: (1) data integration

applications may operate on huge volumes of data collected from

the Web. (2) Data are continuously generated, requiring applica-

tions to work incrementally. (3) Data may exhibit considerable

diversity even among profiles referring to the same entity. To

perform ER in this setting, schema-agnostic ER solutions have

been proposed. As surveyed in [9], these can be classified in three

broad categories.

Batch ER produces as output a set of duplicates, either within

a single input dataset (Dirty ER) or across multiple clean datasets

(Clean-Clean ER). Each duplicate identifies a pair of profiles refer-

ring to the same entity. The process of finding duplicates is often

time consuming due to large datasets and an instrinsic quadratic

number of expensive comparisons. To scale to large amount of

data, batch ER often adopts blocking, which assigns profiles to

blocks and then only compares profiles of a same block.

Progressive ER targets ER applications that benefit from finding

duplicates early, e.g., because they have a maximal time budget

(and the number of duplicates found in that time should be maxi-

mized). The main idea is to execute the comparisons of profile

© 2023 Copyright held by the owner/author(s). Published in Proceedings of the

26th International Conference on Extending Database Technology (EDBT), 28th

March-31st March, 2023, ISBN 978-3-89318-088-2 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons

license CC-by-nc-nd 4.0.

execution time

m

at
ch

es Batch ER

t

Incremental ER
Progressive ER

Static data

Dynamic data
Incremental ER
Baseline extended
progressive ER

Figure 1: Matches found over time by different ER ap-
proaches over static and dynamic data (sketched behav-
ior).

pairs that are most likely to be matches as early as possible.

While both batch and progressive ER operate on static datasets,

i.e., datasets fully available upfront and that do not change over

time, the latter focuses on minimizing the average time between

two consecutive duplicate detections rather than reducing the

overall time to finish processing a static dataset [30]. To achieve

this behavior, progressive ER algorithms typically start off with a

pre-analysis step. This step divides into blocking (as in batch ER)

and prioritization that ranks pairwise comparisons and defines

the order of execution.

Incremental ER operates on data increments, i.e., sets of entity

profiles arriving at different time instants. Considering a non

empty data increment ∆D and a previously processed dataset

D, the goal of incremental ER is to find new duplicates by ex-

ploiting previous computations from processing D. Incremental

ER approaches are designed to run much faster than running

batch ER on the “new” dataset D ′ = D ⊎ ∆D, while reaching

comparable quality [18]. Incremental blocking approaches select

a small number of new comparisons involving at least one profile

from ∆D. This selection is done independently from the input

rate of increments or the rate at which selected comparisons are

further processed, which, as we will see in experiments, leads to

a fluctuating performance.

Figure 1 sketches the ideal behavior of the three approaches

when a finite dataset is available a priori (static data). It plots the

typical number of discovered matches over time. Let us consider

time t that precedes the time needed to process the full dataset

(at the rightmost vertical solid grey line, when batch ER termi-

nates and returns all the matches at the same time). At time t ,
progressive ER should give a better partial result than both batch

and incremental ER, assuming t comes after completion of its

pre-analysis step (flat line at the beginning).

When the data are not available upfront, increments stream in

at a possibly varying rate (dynamic data). To keep up with incre-

ment input rates, incremental ER either slows down the upstream

to reduce the load or prunes comparisons. This may cause slow

stream consumption or lost matches: While the former strategy

delays the computation and thus the delivery of the results, the

latter loses matching results when comparisons yielding matches

get pruned. The degradation in performance is sketched as dot-

ted blue line in Figure 1, which we also observe experimentally

(see, e.g., Figures 2 and 7). This is a point where the prioritiza-

tion of progressive ER would come in handy. The idea here is to

Series ISSN: 2367-2005 80 10.48786/edbt.2023.07

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2023.07

0

1K

m
at

ch
es

100 increments at 0.1 D/s

0

10K

20K

m
at

ch
es

100 increments at 1.0 D/s

0

10K

20K

m
at

ch
es

100 increments at 10.0 D/s

0 200
time (sec)

0

10

m
at

ch
es

1K increments at 0.1 D/s

0 200
time (sec)

0

1K

m
at

ch
es

1K increments at 1.0 D/s

0 200
time (sec)

0

10K

20K

m
at

ch
es

1K increments at 10.0 D/s

I-BASE I-PES PPS-GLOBAL PPS-LOCAL

Figure 2: Two progressive ER algorithms in incremen-
tal setting (PPS-global and PPS-local), one incremental
ER algorithm (I-BASE) and one PIER algorithm (I-PES)
when processing slow streams (left), fast streams (right),
short streams (top), long streams (bottom) on the movies
dataset.

avoid pruning by prioritizing the most promising comparisons

and delaying the least promising ones. However, straightforward

adaptations of progressive ER suffer from the reassessment of

the prioritization for every new increment (sketched in Figure 1

and observed in Figures 2 and 8).

We propose progressive and incremental ER (PIER) solutions
to efficiently apply the progressive ER idea on incremental data

to solve the issues presented above. To further illustrate the

aforementioned limitations of the state-of-the-art and the perfor-

mance of our contributions, in Figure 2, we compare one of our

PIER algorithms (I-PES) against the schema-agnostic algorithms

I-BASE [17] for incremental ER and two baseline adaptations

of a progressive algorithm called PPS [36] to incremental data

processing: PPS-GLOBAL considers the complete stream data to

generate and prioritize comparisons, and PPS-LOCAL considers

only the last increment of data for generating and prioritizing

comparisons. Clearly, PPS-LOCAL performs poorly in all set-

tings, barely finding any matches because it does not consider

inter-increment comparisons. PPS-GLOBAL works well for slow

streams (0.1∆D/s), but with faster streams (1 to 10∆D/s) its per-
formance degrades, especially for longer streams with 1000 of

increments. The reason for this is that the prioritization is re-

assessed for each incoming increment - this assessment takes

longer as more data are globally considered and needs to be re-

peated more often for longer streams. The incremental (but not

progressive) I-BASE algorithm eventually finds the most matches,

but does not exhibit a good progressive behavior where we want

to find matches early. Our newly proposed I-PES algorithm out-

performs all state-of-the-art algorithms.

Supporting progressive ER over incremental data offers some

added value over existing ER solutions in a variety of practical

applications. One example are anti-crime applications that use

ER to identify potentially financial illicit activities
12
. These ap-

plications may benefit from PIER. Indeed, the earlier the illicit

is detected (ideally, as soon as the data increment documenting

some illicit activity arrives), the better, since follow-up problems

or crimes may thus be prevented. We also experience the need for

PIER in adaptive building and construction [23]. Here, matching

1
https://www.financialtechnologytoday.com/are-entity-resolution-solutions-the-

weapon-to-fight-financial-crimes

2
https://www.consultancy.uk/news/19454/venture-arm-of-accenture-invests-in-

financial-crime-specialist-quantexa

data across architectural design, pre-fabrication, and monitoring

data on the construction site (the latter two contributing incre-

mental and streaming data) requires incremental processing. At

the same time, matches found early based on progressive be-

havior allow for timely responses based on identified matches,

which can be a factor in improving overall productivity. For in-

stance, performing ER across parts of an architectural design

(modelled in semi-structured formats such as IFC [5] or BHOM
3
),

products on the construction site with properties extracted from

monitoring data (imagery, point-clouds, sensors), and skill-based

task descriptions and status of both on-site an prefabrication ma-

chines (expressed in another semi-structured format called Au-

tomationML [12]) can help adaptively adjust the pre-fabrication

(e.g., positioning for pre-drilling holes) of design parts (e.g., part

of a wall) based on on-site factors (e.g., product alignment). In

both these examples, data arrive incrementally and the earlier

a match is found, the better (e.g., for faster crime discovery or

better resource utilization). Furthermore, both examples may

suffer from missed duplicates due to the comparison selection

strategy of existing incremental ER approaches that allows faster

processing of an increment at the price of not performing all

promising comparisons. Note that this problem can be addressed

by employing two ER pipelines: one online that processes newly

arriving profiles incrementally, and one offline that runs on a

timely basis for more accurate results. In this setting, our PIER

algorithms improve the performance of the online ER pipeline,

maximizing the benefit of finding duplicates early.

Contributions.We present a family of PIER algorithms. These

are the first algorithms that progressively solve ER for dynamic

data, which covers both incremental and streaming data. Thereby,

we address the previously described shortcomings of existing ap-

proaches that either put unnecessary work into not so promising

comparisons or spend too much time and resources in determin-

ing promising comparisons. Our algorithms stand on the shoul-

ders of progressive strategies presented in [36] and extend the ER

framework for dynamic data proposed in [17]. Our algorithms go

beyond limitations of existing incremental ER approaches that

uniquely rely on (incremental) blocking to choose the compar-

isons to execute for each input increment. Indeed, our methods

(1) incrementally build a “global comparison index” of the best

comparisons involving the profiles found, (2) progressively exe-

cute comparisons from this index until the next increment arrives,

and (3) adaptively reassess the number of comparisons to gener-

ate for an increment based on how fast the overall ER pipeline

can process the generated pairs. Our algorithms do not assume a

fixed schema of incoming profiles and thus qualify as schema-

agnostic ER (in line with, e.g., in [3, 24, 29, 36]). Experiments

validate that our algorithms are the first to support incremental

and progressive ER and, compared to state-of-the-art incremental

approaches, improve early quality, eventual quality, and system

efficiency by progressively and adaptively performing the unexe-

cuted comparisons that are more likely to match when waiting

for the next increment.

Structure. Section 2 provides the formal background and re-

views relevant related work. Section 3 formalizes our novel PIER

problem and describes the framework embedding our algorithms.

The next three sections discuss different PIER algorithms. We

discuss experiments in Section 7 and conclude in Section 8.

3
https://github.com/BHoM

81

2 PRELIMINARIES AND RELATEDWORK
In this section, we develop notation and we formally define batch

ER (Section 2.1), progressive ER (Section 2.2), and incremental

ER (Section 2.3). We review further related work in Section 2.4.

2.1 Batch ER
ER consists in finding the duplicates, aka matches, in a dataset,

where each duplicate is a pair of profiles that refer to the same

real-world entity. We denote by Fbatch the batch ER method that

obtains a set of duplicates MD from a set of profiles D; that is
MD = Fbatch (D). For example, from a set of entity profiles D =
{p1,p2, ...,p100} the output MD = {(p1,p2), (p6,p100), (p20,p63)}
indicates that, e.g., profiles p6 and p100 refer to the same real-

world entity (i.e., they are a match).

To determine if profiles pi and pj are a match or not, a com-

parison candidate ci , j = (pi ,pj) is created and then evaluated by

match function M , which may obtain true if they are a match

or f alse otherwise. For example,M(c6,100) = true andM(c1,6) =
f alse . In practice, the functionM employs a similarity function

to assess the similarity of the two profiles (e.g., Jaccard or Edit

Distance) and based on a similarity threshold, it classifies the

pair as a match (true) or non-match (f alse). While the exact

choice of the similarity function and threshold are not the focus

of this paper (and are generally highly dependent on the actual

application), different choices come with significantly different

computational complexities, which influence the performance of

Fbatch .
Without further optimizations, the number of comparisons

over a dataset D including n profiles is in O(n2). In practice, to

significantly reduce the number of comparisons and scale to large

datasets, blocking is commonly used. Blocking takes as input the

dataset D and returns a block collection BD . Essentially, input
profiles are placed in the same block according to some criteria.

A profile may be placed in multiple blocks as well. We denote

by BD (pi) all blocks of block collection BD containing profile

pi . After blocking, only pairs of profiles within a same block are

considered for comparison.

Considering heterogeneous data, i.e., data where profiles do

not conform to a single structured schema, blocking further di-

vides into three steps: block building, block cleaning, and com-

parison cleaning [29]. Block building techniques construct an

initial block collection. Block cleaning techniques restructure the

block collection by removing blocks or individual profiles from

blocks. From these blocks, pairwise comparisons are generated

and further pruned by a comparison cleaning technique.

2.2 Progressive ER
The main idea of progressive ER is to order the comparison can-

didates by their match-likelihood. Then, a matching functionM
is applied first on the pairs (comparisons) that are more likely

to match. Notice that progressive ER still applies on batch data,

but the goal is to discover the matches as early as possible. We

denote by Fpr io the progressive ER algorithm that obtains a set of

duplicates Fpr io (D) from a set of profiles D. The idea behind pro-
gressive ER is to have the best possible partial result under fixed

time/cost budget constraints. For instance, considering a time

budget of t , we would like to get a set of duplicates Fpr io (D)[t]
having more duplicates than its batch counterpart Fbatch (D)[t].

Definition 1 (Progressive ER [30, 39]). Let D be a set of pro-
files. In comparison to a batch ER algorithm Fbatch , a progressive
ER algorithm Fpr io satisfies the following two conditions:

• Improved early quality: Let t be an arbitrary target time
smaller than the overall runtime of Fbatch on D. Then,
Fpr io discovers more duplicates at time t than Fbatch , i.e.,
|Fpr io (D)[t]| > |Fbatch (D)[t]|.
• Same eventual quality: When finished, the two algorithms
discover the same duplicates, Fbatch (D) = Fpr io (D).

To satisfy the second condition, both Fpr io and Fbatch use

the same blocking method (that selects the same pairs of pro-

files to compare) and the same match method (that for a given

pair of profiles gives the same result true or f alse). To satisfy

the first condition, after blocking, two phases are needed. In

the initialization phase, the algorithm builds the data structures

needed to define the comparison order for the pairs based on

their match-likelihood. In the emission phase, the best remaining

pair is retrieved to be compared. The initialization phase is exe-

cuted once in batch mode (corresponds to first flat part of curve

in Figure 1), while the emission phase is executed each time a

new comparison is requested or until depletion.

2.3 Incremental ER
The main idea of incremental ER is to find new duplicates when-

ever a new data increment comes as input, without recomputing

from scratch the data structures needed for processing (e.g., the

block collection), without repeating already executed compar-

isons, and without reconsidering again the already discovered

duplicates. We denote by Fincr the incremental ER algorithm

that obtains a set of duplicates Fincr (D,∆D,BD ,MD) from a set

of profiles D and a new data increment ∆D, reusing the block

collection BD and the set of duplicates MD from a dataset D.
The idea behind incremental ER is to compute a set of duplicates

Fincr (D,∆D,BD ,MD)with approximately the same quality of its

batch counterpart Fbatch (D ⊎ ∆D), but much faster. To measure

time efficiency, we introduce a functionT (·) that takes as input a
computation of an algorithm and returns its runtime. We define

incremental ER, similarly as [18]:

Definition 2 (Incremental ER). Let D be a set of profiles
and ∆D an increment to it. In comparison to a batch ER algorithm
Fbatch , an incremental ER algorithm Fincr satisfies the following
two properties:
• When |∆D | << |D |, computing Fincr should be much faster
than Fbatch , T (Fincr (D,∆D,BD ,MD)) << T (Fbatch (D ⊎
∆D)).
• When finished, the two algorithms discover approximately
the same duplicates, Fincr (D,∆D,BD ,MD) ≈ Fbatch (D ⊎
∆D).

Opposed to ER algorithms operating in batch mode, incremen-

tal ER needs to perform blocking incrementally whenever a new

data increment arrives. For this reason, Fincr takes as parameter

the existing block collection BD that has previously been com-

puted for D. Moreover, in order to not repeat work that already

led to discover matches, the set of duplicates MD is needed as

parameter as well. Note that in the rest of this paper, to simplify

notation, we will omit the parameters BD and MD by writing

Fincr (D,∆D) instead of Fincr (D,∆D,BD ,MD).

Let Dn be the dataset composed by the bag union of n data

increments ∆D1,∆D2, ...∆Dn . The application of Fincr over the
n increments is denoted by

F incr (Dn) =

n⊎
i=1

Fincr (Di−1,∆Di)

82

Notice that for i = 1, the initial dataset D0, the block collection

and the set of duplicates are empty. For i > 1, the block collec-

tion and the set of duplicates in the input are computed by the

application of Fincr on the previous data increment ∆Di−1.

Incremental ER applications need a minimum of memory to

handle long streams of data and keep the necessary data struc-

tures in memory. They also should exhibit high throughput to

process an increment before the next increment arrives.

2.4 Related Work
As surveyed in [4, 6, 8, 9, 28] a lot of work has been proposed for

ER, ranging from methods for relational data, over parallelization

approaches to scale ER to large data, to the application of deep

learning approaches to ER in the matching step.

Progressive ER methods aim to prioritize useful work emitting

possible matches as soon as possible. State-of-the-art approaches

are mostly for relational data [1, 2, 30, 39]. Progressive methods

based on an oracle feedback find application in crowdsourcing

ER [14, 37, 38]. This type of methods re-adjust the processing

order in function of the matcher’s answer and differ from the first

that define a static order independently of the matching step. An

advanced blocking method named pBlocking [15] progressively

refines the blocking results leveraging intermediate ER results

from oracle-based methods such as [14].

Incremental ER is a challenging task, albeit necessary to per-

form ER in the presence of dynamic data. Several approaches to

perform parts of incremental ER have been proposed [18, 19, 32–

34]. All of these approaches require domain or schema knowledge,

making them suitable only for relational data, and they do not

trivially extend to highly heterogeneous data (e.g., Web data).

Schema mapping specifies a relationship between source and

target schemas. Schema mapping has been widely studied, e.g.,

in [10, 20, 21, 31]. However, in the context of incremental ER

and/or progressive ER, if the input data are highly heterogeneous

(e.g., Web Data), schema mapping solutions may be extremely

time consuming and unsuitable for processing ER under time

constraints. Schema-agnostic solutions are therefore necessary

in these settings and to the best of our knowledge the only work

addressing progressive schema-agnostic ER is [36], while the only

works addressing schema-agnostic incremental entity resolution

are [3, 17].

Four schema-agnostic methods for progressive ER have been

proposed in [36]. Local Schema-Agnostic PSN (LS-PSN) and

Global Schema-Agnostic PSN (GS-PSN) are both non-trivial schema-

agnostic adaptations of PSN [39]. Progressive Block Scheduling

(PBS) sorts the blocks by size and the blocks are processed start-

ing from the smallest. For each block, a weighting scheme of

Meta-blocking is used to rank the comparisons and to define the

order of emission. Progressive Profile Scheduling (PPS) uses a

weighting scheme of Meta-blocking [25] to compute the likeli-

hood of a profile to have one or more duplicates. Meta-blocking

techniques [13, 25, 27, 35] build a block graph where the nodes

are the profiles in D and an edge between pi and pj exists if they
share at least on block. A variety of weighting schemes exist to

give a weight to each edge, as well a variety of pruning tech-

niques exist to remove the low-weighted edges. After applying

Meta-blocking, only pairs of profiles that are directly connected

by an edge are considered for comparison. In PPS, the profiles are

processed starting from the profile with highest likelihood to the

one with the lowest likelihood. For each profile, the top-k best

non redundant comparisons involving that profile are emitted

and then executed. All these approaches are not applicable to

incremental data.

PI-Block [3] is a schema-agnostic blocking technique also

based on Meta-blocking that supports both heterogeneous data

and incremental processing. The framework presented in [17],

which integrates specific techniques for incremental block clean-

ing and for incremental comparison cleaning, is the only solution

that allows incremental ER for heterogeneous and possibly highly

dynamic data such as high velocity streams.

3 PIER PROBLEM DEFINITION
This section first formalizes the problem of incremental and pro-

gressive ER, or PIER for short. We then describe the framework

that we define to address this problem.

3.1 Problem definition
Considering dynamic data, let D be a (possibly empty) data set

and S be a sequence of increments ∆D1, ∆D2, ..., ∆Dn coming at

different times t1, t2, ..., tn where ti < tj for i < j. It is usually
desirable to process the increment ∆Di before ∆Di+1 arrives, i.e.,

the time to process ∆Di (service time) should be less than or equal

to the time δti = ti+1 − ti (interarrival time). In other words, it is

desirable to process the increment ∆Di under a time constraint,

i.e., the time budget δti . If the desired time property does not hold,

i.e., in scenarios where δti < T (Fincr (Di−1,∆Di))), bottlenecks

arise.

To run in this ideal setting, the question is how to select the

work to be done in this limited time. Classical incremental ER

usually limits itself to comparisons involving at least one profile

of the current increment, i.e., for a given increment∆Di , they only

generate pairwise comparisons involving at least one profile pj ∈
∆Di . A particular incremental ER algorithm Fincr determines

the generated comparisons through blocking and possibly with a

further refinement according to some match-likelihood criteria.

This approach naturally limits the idea of progressive ER where

the most promising comparisons come first, which may not be in

the current increment - wemay not have had time to processmore

promising ones of the previous increments. Clearly, this requires

a more global view of promising comparisons while ensuring

throughput and a strategy to adapt to varying interarrival times

to best allocate work.

Our goal is to devise an ER method that, considering dynamic
input, is able to incrementally find duplicates such that the incre-

mental output will more quickly approximate the result for the

current set of profiles. We define a progressive incremental ER

method as follows.

Definition 3 (Progressive incremental ER). Let the dataset
Dn = ∆D1 ⊎ . . . ⊎ ∆Dn be the dataset combining data increments
∆D1, . . . ,∆Dn occurring at respective times t1, . . . , tn . In compar-
ison to a batch algorithm Fbatch , a PIER algorithm Fpier satisfies
the following four conditions:

• Improved early quality: Let t be an arbitrary target time
such that t1 < t << T (Fbatch (Dn)). Then, |Fpier (Dn)[t]| >
|Fbatch (Dn)[t]|.
• Comparable eventual quality: For sufficiently large t , the
two algorithms discover approximately the same duplicates,
i.e., Fpier (Dn) ≈ Fbatch (Dn).
• Incrementality: Let ∆Di be an increment, i > 1. Then, it
should hold (especially for large i) that

T
(
Fpier (Di−1,∆Di)

)
< T (Fbatch (Di))

83

Data
Reading

Incremental
Blocking

Incremental
Prioritization

Incremental
Classification

t3

t4

t5

t6

∆##

∆#$

∆#% …

…

…

…
✓ ✓

✓ ✕

Data
increments Results

Best comparisons

Best comparisons Block Collection

…

Comparison

Profiles

✓ Match
✕ Non-match

Legend

Figure 3: Framework for incremental progressive ER: tem-
poral progression of five increments ∆D1, ∆D2, ∆D3, ∆D4,
∆D5. Details in gray areas are omitted for simplicity. Pro-
file colors indicate from which increment they originate.

• Globality: Let ∆Di be the increment that has become avail-
able most recently at a time t, t1 < t < ti+1. Then, up to
time ti+1, Fpier processes the best remaining pairs among
profiles in ∆D1 ⊎ . . . ⊎ ∆Di .

The condition of improved early quality is adapted from the

corresponding condition for progressive ER (see Definition 1). For

the second condition on result quality, we follow the definition

of incremental ER (see Definition 2) rather than requiring the

exact same results as progressive ER (in batch mode), because

we cannot expect an algorithm for progressive and incremental

ER to perform the exact same comparisons (only in a different

order) than a batch ER algorithm. Indeed, incremental processing

typically requires “cutting corners” to counteract bottlenecks and

keep internal data structures manageable in order to ensure the

incrementality property (also adapted from Definition 2). The

novel condition of globality formalizes that PIER needs to pri-

oritize comparisons taking all profiles encountered so far into

account. This means that executed comparisons for Fpier in the

interarrival time δti may not involve profiles in ∆Di as these

are deemed unlikely to match. This is an advantage for both

early and eventual quality, because the comparison candidates of

(likely) duplicates that have not been considered yet (e.g., as fully

processing the increments including their profiles would have

taken longer than the interarrival time for these increments) get

a chance to be found early, respectively at all. Meanwhile, this

also allows to better balance the load of processing the full data.

As long as there exist comparisons potentially yielding matches

among all data, comparisons are continuously performed, ir-

respective to which increment their profiles belong to, which

reduces idle time compared to existing incremental ER methods

such as [17]. Indeed, if T (Fincr (Di−1,∆Di)) << δti , the system
goes idle waiting for the next increment without performing

useful work (this is somewhat visible in Figure 2 where the idle

time corresponds to “steps” in the curve for slow streams). If data

increments arrive too quickly, i.e., T (Fincr (Di−1,∆Di)) > δti ,
incremental ER delays the processing of the next increment and

it will be slower to consume the entire stream (the reason why

the incremental approach takes longer to reach the “final quality”

for faster streams in Figure 2). Opposed to that, globality allows

to put comparisons temporarily on hold when a new increment

arrives.

3.2 Framework
Our framework for progressive and incremental ER for unstruc-

tured data, like any other ER framework, integrates functions

for data reading, blocking, pair generation, and classification.

Given that we intend to process incremental data, we rely on

incremental versions of individual steps. In this work, we reuse

components for incremental blocking and incremental classifi-

cation of unstructured data proposed in [17], which correspond

to the most recent state-of-the-art. However, instead of using

comparison cleaning to select non-redundant pairs from a block

collection, we introduce incremental prioritization, which im-

plements novel techniques for the improved early quality and

the globality conditions. This paper focuses on implementations

of this component, nevertheless, to clarify how it integrates ER

processing, we briefly summarize all components. To illustrate

how the components work in the incremental setting, we use

Figure 3. It shows the incremental processing over time of sev-

eral increments at the different components (listed at the top). At

time t3, the first increments ∆D1 and ∆D2 have already “flowed

through” the initial steps as ∆D3 comes in.

Data Reading receives data increments ∆Di at different points

in time, denoted ti . It is responsible for emitting profiles that

describe real-world entities that are part of ∆Di , which typically

involves some data scrubbing or standardization. In Figure 3, at

time t3, the data reading component has received ∆D3 and it

emits tokenized entity profiles. The data reading step interfaces

with the sources and is also responsible for managing the flow

of the system, i.e., if the system is slow and the input rate is too

fast, it buffers the increments or it slows down the sources.

Incremental Blocking takes as input profiles and outputs both

the block collection it incrementally maintains and the last re-

ceived data increment. To maintain the block collection, we first

tokenize the values of input profiles and add a profile p to each

block that corresponds to a token present in p. Complete blocks

or profiles in blocks can then further be pruned, e.g., oversized

blocks yielding an excessive number of comparisons are removed

by block pruning [17]. Figure 3 illustrates that Incremental Block-

ing has finished the blocking process for ∆D1,∆D2, and ∆D3 at

time t5 and thus outputs the resulting block collection and ∆D3.

As we shall see, when there is spare time as no further data

increment arises, we integrate techniques to trigger the consid-

eration of further pairs for prioritization. For this reason, Incre-

mental Blocking periodically emits the block collection and an

empty data increment to the next component, thus triggering the

generation of the comparisons from older data.

Incremental Comparison Prioritization. We introduce this

novel component to the ER pipeline to support progressive and

incremental ER, therefore, describe further details here. Algo-

rithm 1 summarizes its general processing steps. It takes as in-

put a data increment and a (possibly empty) block collection,

as received from the Incremental Blocking component. Eventu-

ally, it returns a list of comparisons to be compared next, i.e.,

that is passed as a batch to the incremental classification step.

The algorithm can be set to a specific incremental prioritization

strategy IncrPrioritization. This paper proposes three different
implementations for IncrPrioritization, which are the subject

of subsequent sections, where we discuss comparison-centric

(Section 4), block-centric (Section 5), and entity-centric priori-

tization approaches (Section 6). The common goal of all these

approaches is to maintain and update a global index CmpIndex ,

84

Algorithm 1: Progressive incremental algorithm

Input: Increment ∆D, block collection BD⊎∆D
Output: List of comparisons CmpList
Strategy: IncrPrioritization

1 IncrPrioritization.updateCmpIndex(BD⊎∆D ,∆D);

2 CmpIndex ← IncrPrioritization.дetCmpIndex();

3 CmpList ← ∅;

4 K ← f indK();

5 while CmpIndex , ∅ and K > 0 do
6 c ← CmpIndex .dequeue();

7 CmpList ← CmpList ∪ {c};

8 K ← K − 1;

9 return CmpList ;

which handles the global best comparisons and offers an inter-

face with two operations: dequeue() retrieves and removes the

best comparison from the index, while enqueue(ci , j) inserts a
weighted comparison ci , j to the index. First, the algorithm up-

dates the global index CmpIndex implemented by the specific

IncrPrioritization strategy (line 1). Then, the algorithm retrieves

CmpIndex (line 2). Next, as long as CmpIndex is non empty and

we have not reached a previously determined maximum number

K of comparisons to output (more on this later), the algorithm

fills CmpList with the next best comparison (lines 5-8).The num-

ber K of comparisons returned is chosen dynamically according

to the rate of the different components in order to promote a

faster stream consumption if it can occur. In particular, a slow

matcher implies lower K , a fast matcher implies higher K . We

implement findK() by computing the input and processing rates

as the average of their latest measurements. If the average input

rate is lower than the system service rate, usually determined

by the matcher (typical bottleneck in ER), it increases K (i.e., the

matcher can perform more work). Otherwise, it decreases K (i.e.,

the matcher has to perform less work to facilitate a faster stream

consumption).

In Figure 3, starting from t5, the Incremental Prioritization

component adds comparisons involving profiles of ∆D3 to the

CmpIndex , which defines an order of comparison execution.With

K determined to be 2 in this example, it returns two comparisons

in order of priority.

Incremental Classification. The last framework component

receives a list of comparisons, which are processed in received

order. More precisely, each comparison yields a classification re-

sult corresponding to the two compared profiles being duplicates

or not. In our example of Figure 3, at time t5, it classifies only
pairs involving profiles of ∆D1 and ∆D2 because Incremental

Prioritization for ∆D3 is ongoing, while ∆D4 is being processed

by the Incremental Blocking component.

4 COMPARISON-CENTRIC
PRIORITIZATION

The general idea of comparison-centric approaches is to produce

a list of profile comparisons sorted in descending order of match-

ing likelihood [9]. To measure the matching likelihood of a pair of

entity profiles cx ,y = (px ,py) (i.e., a comparison) we use a weight-

ing schemew(cx ,y). In this paper, we consider theCommon Blocks
Scheme (CBS) as weighting scheme of meta-blocking [25], as it

is the fastest to compute among the proposed alternatives while

its adaptation to an incremental setting exhibited good overall

Algorithm 2: I-PCS.updateCmpIndex

Input: (i) Block collection BD⊎∆D , (ii) Increment ∆D
Parameters: Parameter β
Global: Index CmpIndex

1 CmpList ← ∅;

2 foreach px ∈ ∆D do
3 Cx ← ∅;

4 Bx ← BD⊎∆D (px);

5 Bx ← BlockGhostinд(Bx , β);

6 foreach py ∈ b ∧ b ∈ Bx ∧ x , y do
7 Cx ← Cx ∪ {cx ,y };

8 Cx ←I-WNP(Cx);
9 CmpList ← CmpList ∪Cx ;

10 if ∆D = ∅ ∧CmpIndex = ∅ then
11 CmpList ← GetComparisons(BD⊎∆D);

12 foreach cx ,y ∈ CmpList do
13 CmpIndex .enqueue(cx ,y);

performance [17]. CBS is defined as the number of blocks that

px and py have in common, i.e.,w(cx ,y) = |B(px) ∩ B(py)|.
The comparison-centric approach for PIER that we propose

is called Incremental Progressive Comparison Scheduling (I-PCS).
I-PCS uses a bounded priority queue to store the generated com-

parisons and its efficiency relies completely on the quality of the

weighting scheme used, in our case an approximation of CBS.

Experiments show that relying on this alone leads to poor per-

formances, especially when matching is expensive. We propose

a more effective approach addressing this problem in Section 6.

The I-PCS algorithm for maintaining and updating the global

index CmpIndex , introduced in Section 3.2, is outlined in Algo-

rithm 2. Here CmpIndex is a bounded priority queue returning

as first element the comparison with highest weight. First, all

the new comparisons that can be generated by a new profile px
are inserted in a local comparison list Cx (lines 1- 7). The com-

parisons are generated from Bx , the set of blocks that include
px , after the application of block ghosting [17], an incremental

block cleaning method, that removes from Bx the least repre-

sentative blocks for px . Block ghosting relies on a parameter β

and it removes all the blocks b ∈ Bx such that b > |bmin |
β where

bmin is the smallest block in Bx . Then, I-PCS calls the I-WNP
algorithm proposed in [17] to update the weight of comparisons.

In a nutshell, I-WNP is an incremental comparison cleaning al-

gorithm that removes comparisons with low weight (below the

average for the input comparison list) and weighs the remaining

comparisons according to a weighting scheme, e.g., CBS. Apply-

ing I-WNP returns a refactored, weighted comparison list that

will update the local list CmpList containing all the weighted

comparisons for the increment (line 9). Finally, with this local

list, the algorithm updates the CmpIndex (lines 12-13).

As we have introduced in Section 3.2, the blocking step period-

ically sends messages with empty increments if no new data are

available from its input. Note that in case of an empty increment,

the local comparison list CmpList will be empty and not used

to update CmpIndex . However, if CmpIndex is non empty, Algo-

rithm 1 will still be able to get the best remaining comparisons. If

both the data increment ∆D and the CmpIndex are empty, I-PCS

updates CmpList with the function GetComparisons(BD⊎∆D),
that for each call takes comparisons from a block b ∈ BD⊎∆D ,

85

Algorithm 3: I-PBS.updateCmpIndex

Input: (i) Block collection BD⊎∆D , (ii) Increment ∆D
Global: (i) Index CmpIndex, (ii) Cardinality index CI ,

(iii) Profile index PI , (iv) Comparison filter CF
1 foreach profile px ∈ ∆D do
2 Bx ← BD⊎∆D (px);

3 foreach b ∈ Bx do
4 CI (b) ← CI (b) + |b | − 1;

5 PI (b) ← PI (b) ⊎ {px };

6 bmin ← block in CI with the smallest number of

associated comparisons;

7 if CmpIndex , ∅ then
8 ⟨bsize,weiдht⟩ ← CmpIndex .top.weiдht ;

9 if CmpIndex = ∅ ∨ bsize < |bmin | then
10 foreach cx ,y ∈ {(px ,py) | px ∈ PI (bmin) ∧ x < y)}

do
11 if ¬CF .contains(cx ,y) then
12 CF .add(cx ,y);

13 cx ,y .weiдht = ⟨|bmin |,w(cx ,y ⟩;

14 CmpIndex .enqueue(cx ,y);

/* Reset the indexes */

15 CI (bmin) ← +∞;

16 PI (bmin) ← ∅;

from the smallest to the biggest. The idea of this behavior is based

on continuing the computation even if the index becomes empty

and the time budget is not yet exhausted.

5 BLOCK-CENTRIC PRIORITIZATION
Our second algorithm for comparison prioritization is based on

the ordering of blocks. The general idea for such a block-centric

prioritization is to sort the block collection in a descending order

of likelihood that blocks contain duplicates [9]. Here, we propose

an incremental version of Progressive Block Scheduling (PBS) [36].
PBS is based on the hypothesis that the smaller a block in a block

collection, the more likely it contains duplicates. Based on this

hypothesis, PBS sorts the blocks from the smallest to the largest.

Then, it defines the processing order of comparisons inside each

block according to a chosen schema-agnostic weighting scheme

of Meta-blocking [25]. As we did before for comparison-centric

prioritization, we consider CBS as weighting scheme.

Algorithm 3 provides pseudo-code for our Incremental Pro-
gressive Block Scheduling (I-PBS) algorithm. I-PBS relies on two

globally maintained indexes: (1) a cardinality indexCI that maps

block identifiers b to the number of comparisons that can be gen-

erated by the unexecuted profiles in b, (2) a profile index PI that
maps block identifiers to a list of unexecuted entity profiles. These

indexes are respectively initializated such that each block identi-

fier is associated with +∞ and ∅, respectively. I-PBS accesses and

updates the global index CmpIndex that we introduced in Sec-

tion 3.2 in Algorithm 1. Again, CmpIndex is a bounded priority

queue, but the weights it considers are pairs of values as opposed

to single values considered in I-PCS. For each profile px ∈ ∆D,
the algorithm retrieves Bx , the set of blocks containingpx (line 2).

Then, for each block b ∈ Bx , it updatesCI by adding toCI (b), i.e.,
the entry inCI having as key the block identifier of b, the number

of the new and unexecuted comparisons involving px . The algo-
rithm also updates PI by adding to PI (b) (analogous toCI (b)) the
unexecuted profile px (lines 4- 5). Note that in case a block identi-

fierb is not yet in PI (CI), the index automatically creates an entry

PI (b) (CI (b)) initialized to ∅ (+∞). Next, I-PBS selects the block

denoted bmin . This is the block yielding the least number of un-

executed comparisons, i.e., the block where CI (bmin) is minimal

(line 6). Note that CI (bmin) ≤ ||bmin | |, where | |bmin | | denotes

the number of comparisons that can be generated from bmin .

Then, if CmpIndex is non empty, the algorithm retrieves the cur-

rent top comparison and its weight as a pair ⟨bsize,weiдht⟩ from
CmpIndex (line 8). The value bsize is the size of the compari-

son’s generating block when it has been inserted in CmpIndex ,
while theweiдht is a computation of CBS (see lines 13- 14). The

CmpIndex prioritizes first on bsize , then onweiдht . Then, only
if Cmpindex is empty or bsize < |bmin | (why is explained later),

the algorithm adds to CmpIndex all the non-redundant compar-

isons cx ,y that can be generated based on bmin and where px is

an unexecuted profile for that block as determined by PI (lines 10-
14). A filter CF implemented as a scalable Bloom filter is used to

check if a comparison cx ,y is redundant or not, as shown in [16].

To indicate that bmin has been processed, it resets the entries in

CI and PI for bmin (lines 15-16).

As mentioned before, I-PBS updates CmpIndex only when

the comparisons generated in an earlier iteration have been ex-

hausted or if the top weighted comparison in CmpIndex comes

from a block with smaller size than bmin . We justify this choice

as it avoids the comparison list becoming indefinitely large and

to prefer comparisons that originated from smaller blocks. The

weiдht of a comparison is used to prioritize comparisons with

higherweiдht if they originated from the same block. This means

that the first emitted unexecuted comparison cx ,y for a block is

the one with the higherw(cx ,y).

6 ENTITY-CENTRIC PRIORITIZATION
The main limitation of the comparison-centric approach is that

its effectiveness and efficiency are not independent from the

weighting method we have chosen. For example, CBS will priori-
tize comparisons between two entities sharing many tokens. It

is possible that for many of these comparisons, these entities do

not represent the same real-world entity but their descriptions

are just very long. As we will see in Section 7 this may have

very negative impact in performances, especially when using

expensive matching functions.

Our third prioritization strategy considers entity-centric prior-

itization. In general, the main idea of entity-centric prioritization

approaches is to provide a list of profiles that are sorted according

to their duplication likelihood. Therefore, the comparisons for

each profile are emitted following the order given by the list.

Here, we propose an incremental entity-centric prioritization

approach that is inspired by Progressive Profile Scheduling (PPS)
proposed in [36]. PPS employs a meta-blocking graph to compute

the duplication likelihood of each profile (by aggregating the

weights of its incident edges) and it creates a sorted profile list.

During the construction of the sorted profile list, it also builds

a comparison list where the top comparisons for each profile

are stored and sorted. During the emission phase, PPS first emits

the top comparisons from the comparison list, then it emits a

bounded number of comparisons for each profile following the

order given by the sorted profile list. PPS does not extend to the in-

cremental setting because the incremental building, maintaining,

86

Algorithm 4: I-PES.updateCmpIndex

Input: (i) Block collection BD⊎∆D , (ii) Increment ∆D
Parameters: Parameter β
Global: (i) Index CmpIndex = ⟨EntityQueue, EPQ , PQ⟩,

(ii) total number of generated comparisonsCount ,
(iii) total sum of comparisons’ weights Total

/* repeat lines 1-11 of Algorithm 2 */

1 foreach cx ,y ∈ CmpList do
2 wx ,y ← cx ,y .weiдht ;

3 ⟨Total,Count⟩ ← ⟨Total +wx ,y ,Count + 1⟩;

4 if EPQ (px).top.weiдht < wx ,y then
5 EPQ (px).enqueue(cx ,y);

6 EntityQueue .enqueue(⟨px ,wx ,y ⟩)

7 else if EPQ (py).top.weiдht < wx ,y then
8 EPQ (py).enqueue(cx ,y);

9 EntityQueue .enqueue(⟨py ,wx ,y ⟩)

10 else if wx ,y >
Total
Count then

11 i ← argmin(|EPQ (pi)| ∧ i ∈ (x,y));

12 insert(cx ,y ,pi , EPQ (pi));

13 else
14 PQ .enqueue(cx ,y)

15 CmpIndex ← ⟨EntityQueue, EPQ , PQ⟩

and updating of the meta-blocking graph is very costly, as shown

in [17]. Moreover, the comparison list needs to be computed for

every update.

Our algorithm, named Incremental Progressive Entity Schedul-
ing (I-PES), proposes a similar strategy in the incremental setting.

However I-PES, as opposed to its batch counterpart, does not

employ a meta-blocking graph for ranking the comparisons and

it implements the profile list as a priority queue that can change

over time. For this purpose, we employ three data structures:

(1) an entity index EPQ that maps each entity identifier px to

a priority queue PQx containing weighted comparisons Cx , (2)
an entity priority queue EntityQueue that stores tuples in the

form ⟨px ,wx ⟩ wherewx is the weight of the top comparison in

PQx at the time of the tuple insertion, and (3) a bounded priority

queue PQ that keeps low-weighted comparisons. These three

data structures will constitute the CmpIndex for I-PES.

The I-PES approach is described in Algorithm 4. As we have

seen in Algorithm 2, a weighted comparison list CmpList is cre-
ated by using I-WNP. Then, if wx ,y is higher than the weight

of the current top comparison in EPQ (px), we update EPQ (px)
with cx ,y (line 5) and EntityQueue with ⟨px ,wx ,y ⟩ (line 6). Anal-

ogously, we update EPQ (py) in lines 7 -9. Ifwx ,y is the lower of

both the top comparisons, but higher than the average weight

considering all the inserted comparisons, computed as
Total
Count ,

first we select pi between px or py such that the size of the pri-

ority queue |EPQ (pi)| associated to pi is the minimum (line 11).

Then, we call the function insert(cx ,y ,pi , EPQ (pi) (line 12). This
function will insert cx ,y in EPQ (e) only if its weight wx ,y is

higher than the average weight of all the comparisons involving

e that have been inserted in EPQ (e). The reason why we intro-

duced this double pruning is to reduce the memory overhead and

remove further superfluous comparisons. The performance of the

pruning depends on the weighting scheme used and thus on the

token distribution. Experiments demonstrate good performances

for I-PES across all real-world datasets we considered. Finally, if

Table 1: Datasets characteristics

Name #Profiles #Matches

Dda dblp-acm 2.62k - 2.29k 2.22k

Dmovies movies 27.6k - 23.1k 22.8k

D2M synthetic 2M 1.7M

Ddbpedia dbpedia 1.19M - 2.16M 892k

wx ,y is lower than the total average weight
Total
Count , it is inserted

in a bounded priority queue PQ .
As said before, here theCmpIndex is essentially a wrapper for

EntityQueue , EPQ , and PQ . The operationCmpIndex .dequeue(),
first retrieves (and removes) the top ⟨e,weiдht⟩ fromEntityQueue ,
then it retrieves (and removes) the best comparison from EPQ (e).

If the EntityQueue becomes empty, for each entry e in EPQ
we add the tuple ⟨e, EPQ (e).top.weiдht⟩ in EntityQueue . If the
EntityQueue is smaller than K (see Algorithm 1) the missing

comparisons are taken from PQ .

7 EVALUATION
In this section, we experimentally evaluate our PIER algorithms.

First, we describe the experimental setup, thenwemake a detailed

comparative analysis between our PIER algorithms and state of

the art approaches. Our evaluation consider both a static setting

and a dynamic setting, for which PIER algorithms are best suited.

7.1 Setup
Implementation. We implemented our methods in Scala and

using the Akka Streams framework
4
(note however that our

methods can be implemented in other data stream processing

systems as well). The code is publicly available
5
. Baselines for

progressive ER use methods of the JedAI framework (v3.1, Java

8)
6
. The baseline for incremental ER is implemented in Scala [17].

We run experiments on an OpenStack virtualized server with

Ubuntu 18.04 (16 processors @ 2.30GHz, 50GB RAM).

Datasets and configurations. Table 1 summarizes the charac-

teristics of the datasets we used. The datasets Dda , Dmovies , and

Ddbpedia have been used extensively in related ER literature

(e.g., in [17, 22, 26, 36]). These datasets include real-world collec-

tions suitable for Clean-Clean ER. In addition to these standard

benchmark datasets, we use D2M , an artificial dataset including

census data which has been generated based on Febrl [7, 26].

This dataset is suitable for Dirty ER. All the datasets with ground

truth files are available in a Mendeley repository
7
used to assess

JedAI performance [26]. Observe that Daд , Dda are quite small

datasets, Dmovies has moderate size, while D2M and Ddbpedia
are by far the largest datasets.

While the PIER algorithms are general and independent from

the match function used, they depend on how fast comparisons

can be performed subsequently in thematching step (see Figure 3).

We thus test them in two alternative pipeline configurations that

use different match functions. The first match function employs a

cheap similarity metric, namely the Jaccard similarity (JS), result-

ing in a matching step that is fast in consuming the pairs emitted

by prioritization. Thus, in Algorithm 1, K is comparatively large.

4
https://doc.akka.io/docs/akka/current/stream/index.html

5
https://github.com/UniStuttgart-DataEngineering/progressive-incremental-er

6
https://github.com/scify/JedAIToolkit

7
https://data.mendeley.com/datasets/4whpm32y47/7

87

The second match function relies on the more expensive edit

distance (ED). This simulates system behavior with small K .
Experiments and metrics. Our evaluation is related to the

properties that an incremental and progressive ER algorithm

Fpier should have in comparison to a batch algorithm Fbatch
(see Definition 3), i.e., early quality, eventual quality, incremen-

tality, and globality. For the properties relating to quality, we

quantify quality according to Pair Completeness (PC). PC is an

established measure defined as the number of matches emitted

by the blocking step (or prioritization step) divided by the size of

the set of all the existing matches. A higher PC value indicates

a better performance of a method. To study the progress of an

algorithm, we consider both its progress over time or progress

after number of comparisons.

Given that the four properties of the PIER problem are a

“summa” of the properties we find in the definitions of progressive

ER and incremental ER, we directly evaluate our solutions in each

setting for comparative evaluation to state-of-the-art solutions.

Progressive setting. In progressive ER, we are interested in how

fast matches are emitted over time, in other words the effective-

ness over time. To study this, we plot the evolution of PC (vertical

axis) with respect to the time (horizontal axis). We study how

our methods compare to the progressive baselines “at their best”,

i.e., when these run on static data. The comparison focuses on

improved early quality and eventual quality, given that these are

the two relevant criteria for progressive ER (see Definition 1).

Incremental setting. In incremental ER, both incrementality and

eventual quality are of concern. In this setting, we evaluate how

the PIER algorithms compare to the state-of-the-art approach for

incremental ER in incrementally processing a dataset. Questions

we study are how fast the algorithms consume the streaming

data and if their matching quality is eventually good. We further

validate that straightforward adaptations of progressive ER al-

gorithms to the incremental setting yield unsatisfactory results,

by studying their performance in incremental settings where we

vary the input rate of increments to be processed.

Baselines. In the progressive setting, for comparison to state-of-

the-art solutions, we consider the two best methods for schema-

agnostic progressive ER described in [36], namely PPS and PBS.

For the incremental setting, we consider the best state-of-the-

art approach described in [17], denoted as I-BASE (Incremental

Baseline). We further consider simple adaptations of PPS and

PBS to the incremental setting. As we have seen in the introduc-

tion when discussing Figure 2, the only reasonable adaptation

are the GLOBAL variants, which we implemented here. We test

all algorithms as part of ER pipelines with different similarity

measures (JS and ED) to measure their behavior for different

match overheads. Each algorithm supports both Dirty ER and

Clean-Clean ER (the latter only considering pairs with a profile

from each source).

7.2 Progressive setting
7.2.1 Experiment 1: progressive ER vs PIER. Here, we compare

PPS and PBS with our algorithms in a progressive setting where

all profiles in a dataset are available from the start (static dataset).

This puts batch progressive ER solutions in their ideal situation,

as they can consider all data to determine an optimal comparison

order. Our algorithms, opposed to PPS and PBS, process data

incrementally. Therefore, we divide the datasets into multiple

increments that are processed sequentially one after the other.

When not mentioned otherwise, we split Dda and Dmovies into

1000 increments, while for D2M and Ddbpedia , we create 20000

and 30000 increments, respectively. We choose these configura-

tions to simulate long streams (a dedicated experiment studies

the effect of varying the number of increments). In the progres-

sive setting considered in this section, we study the evolution of

PC over time and over number of comparisons performed. The

evolution of PC over time gives insights into the efficiency of

the different methods as well as the quality over time. Study-

ing PC over performed comparisons provides further details on

how much effort an algorithm wastes on comparisons not lead-

ing to matches. Our analysis focuses on the early quality and

eventual quality of different approaches, which are, according to

Definition 3, the main characteristics of progressive ER.

In Figure 4, we plot PC evolving over time for all our methods

and baselines implementing progressive ER on the four datasets

of Table 1. The first line shows results when JS applies during

matching, while the results summarized in the second line use

ED for comparisons. The plots set a time-budget of 5 minutes

for the small and medium datasets, while for the larger D2M
and Ddbpedia datasets, we set a maximum time-budget of 80

minutes. Figure 5 puts the number of comparisons on the x-axis

and reports results for all algorithms until completion (so no

time budget). Based on these results, we make the following

observations.

PPS vs I-PES. As we have seen in Section 6, I-PES is based on

similar ideas as PPS. In all experiments, we observe in Figure 5

that their eventual quality is comparable. However, they may

reach the eventual quality at very different points in time. While

on the small datasets Dda and Dmovies , we see in Figure 4 that

the performance over time is comparable, PPS requires an exces-

sive time for initialization on the larger datasets (not even visible

for Ddbpedia as it took longer than 80 minutes). Consequently,

on the large datasets, even in a static context, I-PES is clearly

preferable over PPS in terms of early quality, while the differ-

ence (mere seconds) is negligible on smaller datasets. Note that

this behavior is not impaired by the fact that I-PES may need

to perform significantly more comparisons to reach the PC of

PPS. For instance, in Figure 5 for Ddbpedia using ED, we see that

the line of I-PES is clearly below the line of PPS, still, we get a

reasonable result after 80 minutes while for PPS, in our setting,

the initialization alone takes more than 4 hours.

PBS vs. I-PBS. Next, we focus on the relative performance of the

related algorithms PBS and I-PBS. When comparisons are fast

(i.e., when using JS), we observe a comparable eventual quality for

both algorithms, I-PBS being only at slight disadvantage. How-

ever, PBS requires much less preprocessing time than PPS on the

large datasets, so its early quality is best. This does not come as a

surprise, as, opposed to the incremental methods, considering the

full dataset upfront finds a better global comparison prioritization

compared to the incremental methods, that perform a varying

number K of comparisons (see Algorithm 1). As a reminder, K
adapts to the rate that pairs can be processed by the subsequent

matcher. Thus, K is sufficiently large when using the cheap JS

to still obtain satisfactory results. However, the results obtained

when using the expensive ED for comparisons draw a different

picture, as K may become too small and, for each increment, only

few pairs even get a chance to be compared. We observe this

effect both on Dmovie and Ddbpedia . So overall, as the system

gets “throttled” based on the matching step, I-PBS may become

inadequate for progressive ER on a static dataset. Furthermore,

while the number of comparisons are approximately the same

88

0

0.5

1

PC

Dda(JS) Dmovies(JS) D2M(JS) Ddbpedia(JS)

0 100 200 300
RT (sec)

0

0.5

1

PC

Dda(ED)

0 100 200 300
RT (sec)

Dmovies(ED)

0 20 40 60 80
RT (min)

D2M(ED)

0 20 40 60 80
RT (min)

Ddbpedia(ED)

PPS
PBS
I-PES
I-PCS
I-PBS

Figure 4: PC over time for Dda , Dmovies , D2M and Ddbpedia in a batch setting.

0.0 0.2 0.4 0.6
0

0.5

1

PC

Dda(JS)

0 5 10 15

Dmovies(JS)

0 200 400

D2M(JS)

0 200 400 600

Ddbpedia(JS)

0.0 0.2 0.4 0.6
Comparisons (x10^6)

0

0.5

1

PC

Dda(ED)

0.0 0.5 1.0 1.5 2.0
Comparisons (x10^6)

Dmovies(ED)

0 50 100 150 200
Comparisons (x10^6)

D2M(ED)

0 2 4 6 8
Comparisons (x10^6)

Ddbpedia(ED)

PPS
PBS
I-PES
I-PCS
I-PBS

Figure 5: PC per emitted comparison for Dda , Dmovies , D2M and Ddbpedia in a batch setting.

for both algorithms (see Figure 5), the effort spent on those is

less well spent by I-PBS compared to PBS. The reason for this

is that the effectiveness of I-PBS relies on the update frequency

of CmpIndex (see Algorithm 3). When the index is empty, the

unexecuted comparisons from the current smallest block are in-

serted into CmpIndex . Using a slow matcher implies consuming

the comparisons in CmpIndex slower, missing the opportunity

to execute better comparisons earlier.

I-PCS. Finally, our comparison-based approach I-PCS exhibits

an acceptable eventual quality when using JS, in the sense that it

ultimately reaches the same eventual quality as a baseline pro-

gressive ER method. Its early quality in these settings is also

comparable to I-PES. We notice however that, compared to I-PES,

it performs far more comparisons to reach this similar PC-over-

time performance. One reason for this is that I-PCS’s effectiveness

relies on the rank method used, in this case CBS. Using CBS, pairs

of profiles that share many tokens are prioritized. However, we

observe that a lot of these pairs are just non-matches with long

entity representations, resulting in more expensive and useless

match computation. When considering the settings using ED,

analogously to our observations concerning I-PBS, the perfor-

mance of I-PCS degrades both in terms of early quality as well

as eventual quality.

7.2.2 Experiment 2: Influence of increment size. In this exper-

iment, we vary the size of increments on our largest datasets.

We expect that as we increase the size of increments, we can

get a better order that comes closer to the “optimal” order of the

progressive baselines. However, larger increments require more

maintenance effort for the data structures the PIER algorithms

use.

In Figure 6, consideringDdbpedia and ED, we report results for

30000 increments of approximately 100 profiles (|Ddbpedia/30000)

as well as 300 increments of size 10000. PC over time results are

shown left, while PC over number of comparisons is shown on

the right. The plots compare the behavior of I-PES and I-PBS

to the behavior of their progressive baseline counterparts. Fo-

cusing on the PC over number of comparisons, we clearly see

for I-PBS that with smaller number of larger increments, the

0

0.5

1

PC

I-PBS vs PBS on Ddbpedia(ED)

0 2 4 6

I-PBS vs PBS on Ddbpedia(ED)

0 20 40 60 80
RT (min)

0

0.5

1

PC

I-PES vs PPS on Ddbpedia(ED)

0 2 4 6 8
Comparisons (x10^6)

I-PES vs PPS on Ddbpedia(ED)

PBS
I-PBS(300)

I-PBS(30000)
PPS

I-PES(300)
I-PES(30000)

Figure 6: Influence of batch size on Ddbpedia . Alg(x) de-
notes algorithm Alд (either I-PBS or I-PES) on x incre-
ments.

comparison order determined becomes better, thus getting closer

to the performance of PBS. This effect is not clearly visible for

I-PES compared to PPS. The reason is that PPS needs 4 hours to

find the good comparison order, while I-PES “does its best” with

a budget of 80 minutes, where in this experiment, no significant

improvements are reached for larger increments. Considering

the evolution of PC over time, we observe that the price for a

potentially better eventual quality is a longer pre-analysis on

large increments.

7.2.3 Summary for progressive setting. When performing pro-

gressive and incremental ER in a static setting where the full

dataset is given upfront, our methods, when working with in-

crements, perform differently depending on the match function

used and the number of created increments. Overall, the I-PES

method was the most useful of the incremental methods on the

considered datasets, as it exhibits high eventual quality and ad-

equate progression of early quality. Only exception is the D2M
dataset where I-PBS is superior. The reason here relies on the fact

thatD2M is relational data (short and non-heterogeneous values),

involving census data artificially generated. This implies that the

89

0

0.5

1

PC

D2M(JS) x 32 D/s D2M(ED) x 32 D/s

0 20 40 60 80
RT (min)

0

0.5

1

PC

Ddbpedia(JS) x 32 D/s

0 20 40 60 80
RT (min)

Ddbpedia(ED) x 32 D/s

PPS
PBS

I-PES
I-PCS

I-BASE
I-PBS

Figure 7: PC over time for D2M and Ddbpedia in an incre-
mental setting with a fast stream (32∆D/s). If present, the
symbol × on a line indicates the point where the stream
has been fully consumed.

smallest blocks are highly informative blocks, thus rewarding

block-centric approaches.

7.3 Incremental setting
So far, we have evaluated our PIER approaches in a setting they

are not designed for, on static datasets. In this section, we now

consider their performance in an incremental setting. Note that

for space constraints, we only report results on the two large

datasets.

7.3.1 Experiment 3: Comparative evaluation. We consider as

baselines the adaptations of the progressive ER approaches PPS

and PBS. Additionally, we compare our approaches to the in-

cremental (but not progressive) approach I-BASE. To create in-

crements, we split datasets into a given number of equi-sized

increments (as before, 20000 and 30000 for D2M and Ddbpedia ,

respectively). This experiment uses a fast rate at which the incre-

ments stream in, i.e., 32∆D/s . We again assume a time budget of

80 minutes. In Figure 7, we report only the results for D2M and

Ddbpedia , for which we make the following observations.

Progressive ER adaptations.Clearly, the straightforward adap-
tations of PPS and PBS to the incremental setting are both not

suited. Their PC remains close to 0 over the first 80 minutes. As

explained in the motivation, this behavior is caused by the rela-

tively high overhead times of PBS and especially PPS required to

reorganize internal data structures needed to enable the progres-

sive behavior.

Incremental baseline I-BASE.When focusing on I-BASE with

JS, I-BASE gets the same eventual PC as I-PES and I-PCS. How-

ever, in terms of early quality, it lags behind all PIER algorithms.

When looking at the results when using ED, we observe that the

performance of I-BASE (as well as I-PCS and I-PBS, discussed

later) significantly degrades - the effect being much more visible

on Ddbpedia than D2M . For I-BASE, we observe that the stream

can no longer be consumed within 80 minutes. The reason for

this is that while the PIER algorithms are adaptive and select use-

ful work according to the input rate and the system’s response,

I-BASE generates the same number of comparisons for a given in-

put increment and existing block collection, independently of the

input rate or the system’s response. For this reason, when using

ED, I-BASE gets stuck in useless match computations, delaying

further processing.

PIER algorithms. Looking at the relative performance of the

PIER algorithms, I-PES outperforms both I-PCS and I-PBS in

0

0.5

1

PC

D2M(JS) x 4 D/s D2M(JS) x 8 D/s D2M(JS) x 16 D/s

0 20 40 60 80
RT (min)

0

0.5

1

PC

Ddbpedia(JS) x 4 D/s

0 20 40 60 80
RT (min)

Ddbpedia(JS) x 8 D/s

0 20 40 60 80
RT (min)

Ddbpedia(JS) x 16 D/s

PPS
PBS

I-PES
I-PCS

I-BASE
I-PBS

Figure 8: PC over time for D2M and Ddbpedia in an incre-
mental setting. Four streams with four different rates are
considered. If present, the symbol × indicates the point
where the stream has been fully consumed.

terms of eventual quality for both JS and ED on all the datasets of

Table 1. Only exception is the dataset D2M , involving census data

where smallest blocks are highly informative, where I-PBS per-

forms better. On JS, I-PCS almost matches the early and eventual

quality of I-PES, and the evolution of I-PBS is similar. However,

when ED is used on a real dataset, the prioritization of I-PBS and

I-PCS, guided mainly by CBS, degrades the comparison order

by giving high priority not only to matches, but also to profile

pairs with long representations. These useless comparisons are

very expensive when ED is used, contributing to a drastic drop

in performance.

7.3.2 Experiment 4: Varying the increment input rate. This ex-
periment reuses the same setup as Experiment 3, however, we

vary the input rate. We report results for D2M and Ddbpedia for

input rates of 4∆D/s , 8∆D/s , and 16∆D/s . We summarize the

results in Figure 8. From these, we make the following observa-

tions.

Progressive ER adaptations. Even for the slowest input rate,

we do not observe good performance for PPS and PBS. This

validates that in larger incremental settings, they do not apply.

Incremental ER approaches.We observe that for JS, the bene-

fit of using the PIER approaches on early quality as opposed to

I-BASE increases when the input rate increases. On the slower

streams (4 and 8 ∆D/s), I-BASE can keep up with processing

the profiles streaming in, reaching comparable performance to

the PIER algorithms. But as the input rate increases, I-BASE can

eventually not keep up and “stagnates”. Opposed to that, the PIER

algorithms are adaptive to different input rates. Of course, for

slow streams where all (scarce) matches are found before the next

increment arrives, PC only increases slowly for all approaches,

while a clear benefit on early quality becomes evident on faster

streams. Considering the results employing ED, this effect is also

visible, even though all approaches suffer from the expensive

ED, leading to a much slower increase of PC over time. I-PES on

the slowest stream for D2M suffers of large overheads when its

EntityQueue becomes empty too many times.

7.3.3 Summary for incremental setting. Clearly, in an incre-

mental setting, our PIER algorithms outperform any of the con-

sidered baselines in terms of early quality as well as eventual

quality (validated for all experiments that did not time out). Given

that they can compete with I-BASE that was validated in terms

90

of incrementality in [17], we can further conclude that they sat-

isfy incrementality as well. As for globality, it is built into the

prioritization algorithms, contributing to improved performance

with respect to state of the art incremental solutions by allowing

a more “global” prioritization of comparisons. Among the PIER

algorithms, our evaluation indicates that I-PES is in general the

best algorithm, by being less sensitive to a particular weighting

scheme or matching function.

8 CONCLUSION
We introduced the PIER problem, i.e., progressive and incremental

entity resolution. Focusing on heterogeneous data, after show-

ing how to extend an existing schema-agnostic incremental ER

pipeline with a prioritization component necessary for progres-

sive behavior, we presented three algorithms to implement this

prioritization component. Experiments on several benchmark

datasets validate that our approaches are the only ones to work

in an incremental setting, while offering both improved early

quality and earlier eventual quality compared to state-of-the-art

incremental approaches. Among the three alternatives presented,

the entity-centric approach I-PES appears to be the method of

choice, especially for long and fast streams, as it manages to

compensate poor performance of weighting schemes (used by all

algorithms) when these are not optimally chosen for a dataset. Fu-

ture work includes the integration of a heuristic for determining

the best appropriate method to use for the given data.

ACKNOWLEDGMENTS
Partially supported by the Deutsche Forschungsgemeinschaft

(DFG, German Research Foundation) under Germany’s Excel-

lence Strategy - EXC 2120/1 - 390831618. Partially funded by the

Ministry of Science of Baden-Württemberg, Germany, for the

Doctoral Program ‘Services Computing’.

REFERENCES
[1] Y. Altowim, D.V. Kalashnikov, and S. Mehrotra. 2014. Progressive approach to

relational entity resolution. Proceedings of the VLDB Endowment (PVLDB) 7,
11 (2014), 999–1010.

[2] Y. Altowim and S. Mehrotra. 2017. Parallel progressive approach to entity res-

olution using mapreduce. In IEEE International Conference on Data Engineering
(ICDE). 909–920.

[3] T.B. Araújo, K. Stefanidis, C.E. Santos Pires, J. Nummenmaa, and T.P. da

Nóbrega. 2020. Schema-agnostic blocking for streaming data. In ACM Sympo-
sium on Applied Computing. 412–419.

[4] N. Barlaug and J.A. Gulla. 2021. Neural Networks for Entity Matching: A

Survey. ACM Transactions on Knowledge Discovery from Data (TKDD) 15, 3
(2021), 1–37.

[5] A. Borrmann, J. Beetz, C. Koch, T. Liebich, and S. Muhic. 2018. Industry

foundation classes: A standardized datamodel for the vendor-neutral exchange

of digital building models. In Building Information Modeling. Springer, 81–126.
[6] X. Chen, E. Schallehn, and G. Saake. 2018. Cloud-scale entity resolution:

current state and open challenges. Open Journal of Big Data (OJBD) 4, 1 (2018),
30–51.

[7] P. Christen. 2008. Febrl- an open source data cleaning, deduplication and

record linkage system with a graphical user interface. In ACM International
Conference on Knowledge Discovery and Data Mining (SIGKDD). 1065–1068.

[8] P. Christen. 2011. A survey of indexing techniques for scalable record linkage

and deduplication. IEEE Transactions on Knowledge and Data Engineering
(TKDE) 24, 9 (2011), 1537–1555.

[9] V. Christophides, V. Efthymiou, T. Palpanas, G. Papadakis, and K. Stefanidis.

2020. An overview of end-to-end entity resolution for big data. Comput.
Surveys 53, 6 (2020), 1–42.

[10] D. De Una, N. Rümmele, G. Gange, P. Schachte, and P.J. Stuckey. 2018. Machine

Learning and Constraint Programming for Relational-To-Ontology Schema

Mapping.. In International Joint Conference on Artificial Intelligence (IJCAI),
Vol. 2018. 27th.

[11] X.L. Dong and D. Srivastava. 2015. Big Data Integration. Morgan & Claypool

Publishers.

[12] R. Drath, A. Luder, J. Peschke, and L. Hundt. 2008. AutomationML-the glue

for seamless automation engineering. In IEEE International Conference on

Emerging Technologies and Factory Automation (ETFA). 616–623.
[13] V. Efthymiou, G. Papadakis, G. Papastefanatos, K. Stefanidis, and T. Palpanas.

2017. Parallel meta-blocking for scaling entity resolution over big heteroge-

neous data. Information Systems 65 (2017), 137–157.
[14] D. Firmani, B. Saha, and D. Srivastava. 2016. Online entity resolution using

an oracle. Proceedings of the VLDB Endowment (PVLDB) 9, 5 (2016), 384–395.
[15] S. Galhotra, D. Firmani, B. Saha, and D. Srivastava. 2021. Efficient and effective

ER with progressive blocking. The VLDB Journal 30, 4 (2021), 537–557.
[16] L. Gazzarri and M. Herschel. 2020. Boosting Blocking Performance in Entity

Resolution Pipelines: Comparison Cleaning using Bloom Filters. In Interna-
tional Conference on Extending Database Technology (EDBT). 419–422.

[17] L. Gazzarri and M. Herschel. 2021. End-to-end Task Based Parallelization for

Entity Resolution on Dynamic Data. In IEEE International Conference on Data
Engineering (ICDE). 1248–1259.

[18] A. Gruenheid, X.L. Dong, and D. Srivastava. 2014. Incremental record linkage.

Proceedings of the VLDB Endowment (PVLDB) 7, 9 (2014), 697–708.
[19] D. Karapiperis, A. Gkoulalas-Divanis, and V.S. Verykios. 2018. Summarization

Algorithms for Record Linkage.. In International Conference on Extending
Database Technology (EDBT). 73–84.

[20] A. Kimmig, A. Memory, and L. Getoor. 2017. A collective, probabilistic ap-

proach to schema mapping. In IEEE International Conference on Data Engineer-
ing (ICDE). 921–932.

[21] A. Kimmig, A. Memory, R.J. Miller, and L. Getoor. 2018. A collective, prob-

abilistic approach to schema mapping using diverse noisy evidence. IEEE
Transactions on Knowledge and Data Engineering (TKDE) 31, 8 (2018), 1426–
1439.

[22] H. Köpcke, A. Thor, and E. Rahm. 2010. Evaluation of entity resolution

approaches on real-worldmatch problems. Proceedings of the VLDB Endowment
(PVLDB) 3, 1-2 (2010), 484–493.

[23] Nico Lässig, Melanie Herschel, Alexander Reichle, Carsten Ellwein, and

Alexander Verl. 2022. The ArchIBALD data integration platform: Bridging

fragmented processes in the building industry (to appear). In CAISE Forum.

[24] G. Papadakis, G. Alexiou, G. Papastefanatos, and G. Koutrika. 2015. Schema-

Agnostic vs Schema-Based Configurations for Blocking Methods on Homoge-

neous Data. Proceedings of the VLDB Endowment (PVLDB) 9, 4 (2015), 312–323.
[25] G. Papadakis, G. Koutrika, T. Palpanas, and W. Nejdl. 2013. Meta-blocking:

Taking entity resolutionto the next level. IEEE Transactions on Knowledge and
Data Engineering (TKDE) 26, 8 (2013), 1946–1960.

[26] G. Papadakis, G. Mandilaras, L. Gagliardelli, G. Simonini, E. Thanos, G. Gi-

annakopoulos, S. Bergamaschi, T. Palpanas, and M. Koubarakis. 2020. Three-

dimensional entity resolution with jedai. Information Systems 93 (2020),

101565.

[27] G. Papadakis, G. Papastefanatos, T. Palpanas, and M. Koubarakis. 2016. Scaling

entity resolution to large, heterogeneous data with enhanced meta-blocking..

In International Conference on Extending Database Technology (EDBT). 221–
232.

[28] G. Papadakis, D. Skoutas, E. Thanos, and T. Palpanas. 2020. Blocking and

filtering techniques for entity resolution: A survey. Comput. Surveys 53, 2
(2020), 1–42.

[29] G. Papadakis, J. Svirsky, A. Gal, and T. Palpanas. 2016. Comparative analysis

of approximate blocking techniques for entity resolution. Proceedings of the
VLDB Endowment (PVLDB) 9, 9 (2016), 684–695.

[30] T. Papenbrock, A. Heise, and F. Naumann. 2014. Progressive duplicate de-

tection. IEEE Transactions on Knowledge and Data Engineering (TKDE) 27, 5
(2014), 1316–1329.

[31] L. Qian, M.J. Cafarella, and H.V. Jagadish. 2012. Sample-driven schema map-

ping. In ACM International Conference on Management of Data (SIGMOD).
73–84.

[32] B. Ramadan, P. Christen, H. Liang, and R.W. Gayler. 2015. Dynamic sorted

neighborhood indexing for real-time entity resolution. Journal of Data and
Information Quality (JDIQ) 6, 4 (2015), 1–29.

[33] B. Ramadan, P. Christen, H. Liang, R.W. Gayler, and D. Hawking. 2013. Dy-

namic similarity-aware inverted indexing for real-time entity resolution. In

Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD).
47–58.

[34] W. Ren, X. Lian, and K. Ghazinour. 2021. Online Topic-Aware Entity Reso-

lution Over Incomplete Data Streams. In ACM International Conference on
Management of Data (SIGMOD). 1478–1490.

[35] G. Simonini, S. Bergamaschi, and H.V. Jagadish. 2016. BLAST: a loosely schema-

aware meta-blocking approach for entity resolution. Proceedings of the VLDB
Endowment (PVLDB) 9, 12 (2016), 1173–1184.

[36] G. Simonini, G. Papadakis, T. Palpanas, and S. Bergamaschi. 2019. Schema-

Agnostic Progressive Entity Resolution. IEEE Transactions on Knowledge and
Data Engineering (TKDE) 31, 6 (2019), 1208–1221.

[37] N. Vesdapunt, K. Bellare, and N. Dalvi. 2014. Crowdsourcing algorithms for

entity resolution. Proceedings of the VLDB Endowment (PVLDB) 7, 12 (2014),
1071–1082.

[38] J. Wang, T. Kraska, M.J. Franklin, and J. Feng. 2012. CrowdER: Crowdsourcing

Entity Resolution. Proceedings of the VLDB Endowment (PVLDB) 5, 11 (2012),
1483–1494.

[39] S.E. Whang, D. Marmaros, and H. Garcia-Molina. 2012. Pay-as-you-go entity

resolution. IEEE Transactions on Knowledge and Data Engineering (TKDE) 25,
5 (2012), 1111–1124.

91

