
On the complexity of robust transshipment under consistent flow
constraints

Christina Büsing
∗

RWTH Aachen University,

Combinatorial Optimization

Aachen, Germany

buesing@combi.rwth-aachen.de

Arie M.C.A. Koster

RWTH Aachen University,

Lehrstuhl II für Mathematik

Aachen, Germany

koster@math2.rwth-aachen.de

Sabrina Schmitz
†

RWTH Aachen University,

Combinatorial Optimization

Aachen, Germany

schmitz@combi.rwth-aachen.de

ABSTRACT

In this paper, we study the complexity of robust transshipment

under consistent flow constraints. We consider demand uncertainty

represented by a finite set of scenarios and characterize a subset of

arcs as so-called fixed arcs. In each scenario, we require a flow that

satisfies the respective balance constraints. In addition, we require

on each fixed arc equal flow for all scenarios. The objective is to

minimize the maximum cost occurring among all scenarios.

We show that the problem is strongly NP-hard on acyclic di-

graphs by a reduction from the (3, 𝐵2)-Sat problem. Further, we

prove that the problem is weakly NP-hard on series-parallel di-

graphs by a reduction from Partition. If in addition the number of

scenarios is constant, we suggest a pseudo-polynomial algorithm

based on dynamic programming. Finally, we present a special case

solvable in polynomial time for series-parallel digraphs.

KEYWORDS

Transshipment Problem, Minimum Cost Flow, Equal Flow Problem,

Robust Flows, Demand Uncertainty, Series-Parallel Digraphs

1 INTRODUCTION

In this paper, we consider the robust transshipment problem under

consistent flow constraints (RobT≡). The problem is motivated by

long-term decisions on transshipment that have to be made despite

uncertainties in demand. For instance, in logistic applications the

transshipment is often agreed in advance by long-term contracts

with subcontractors. A solution to the RobT≡ problem facilitates

cost-efficient decision-making which is robust against demand un-

certainty.

The RobT≡ problem is the uncapacitated version of the robust

minimum cost flow problem under consistent flow constraints

(RobMCF≡), introduced in our previous work [4]. The complexity

results for the RobMCF≡ problem rely on the existence of (tight)

capacities. Hence, the question raises whether the problem is solv-

able in polynomial time if the capacity restrictions are neglected.

This is the case for instance for the integral multi-commodity flow

problem, which isNP-hard but becomes polynomially solvable for

uncapacitated networks.

∗
Supported by the Freigeist-Fellowship of the Volkswagen Stiftung and by the German

research council (DFG) Research Training Group 2236 UnRAVeL.

†
Supported by the Freigeist-Fellowship of the Volkswagen Stiftung.

© 2022 Copyright held by the owner/authors(s). Published in Proceedings of the 10th
International Network Optimization Conference (INOC), June 7-10, 2022, Aachen,
Germany. ISBN 978-3-89318-090-5 on OpenProceedings.org
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

As in the transshipment problem [8], we consider an uncapac-

itated network in the RobT≡ problem. To represent demand un-

certainty, we consider vertex balances for a discrete number of

demand scenarios. Furthermore, we characterize a subset of arcs as

so-called fixed arcs. In each scenario, we require a flow that satisfies

the respective balance constraints. In addition, we require on each

fixed arc equal flow for all scenarios. The objective is to minimize

the maximum cost that may occur among all demand scenarios.

The main contribution of this paper can be summarized as fol-

lows. We prove that finding a feasible solution to the RobT≡ prob-

lem is stronglyNP-complete on acyclic digraphs, even if only two

demand scenarios are considered. On series-parallel (SP) digraphs,

we show that the decision version of the RobT≡ problem is weakly

NP-complete. We identify the pseudo-polynomial time solvability

in the special case of a constant number of scenarios. If all demand

scenarios have the same single source and sink in SP digraphs, we

propose a polynomial time algorithm.

The outline of this paper is as follows. In Section 2, we provide

an overview of related work. In Section 3, we define the problem

and introduce the notations of this paper. In Sections 4 and 5, we

analyze the complexity of the RobT≡ problem on acyclic and SP

digraphs, respectively. In Section 6, we conclude our results.

2 RELATEDWORK

In the literature, there are several extensions to the maximum flow

(MF) and minimum cost flow (MCF) problem that consider equal

flow requirements on specified arc sets. Sahni [11] introduces the

integral flow with homologous arcs problem (homIF). In addition

to the set-up of the MF problem, the flow value has to be equal on

specified arcs. Sahni proves the NP-hardness of the problem by

a reduction from the Non-Tautology problem. The MCF version

of the homIF problem is known as the (integer) equal flow prob-

lem (EF). Using standard techniques, the complexity results can be

transformed from the homIF to the EF problem [1].

Meyers and Schulz [10] discuss the transshipment version of

the EF problem. For instance, they prove the strong NP-hardness

of the problem by a reduction from the Exact Cover by 3-sets

problem, even in the case of a single source and sink. Furthermore,

they prove the strong NP-hardness for the special case where

all sets have cardinality two, which was first investigated for the

capacitated version by Ali et al. [2].

Unlike the research referenced above, we do not consider only

one demand scenario in the RobT≡ problem. Like in the RobMCF≡
problem, we consider several demand scenarios. We stress that the

equal flow requirements are only of importance across more than

two different demand scenarios. The flow value of a specified arc

Series ISSN: 2510-7437 57 10.48786/inoc.2022.11

https://OpenProceedings.org/
http://dx.doi.org/10.48786/inoc.2022.11

INOC 2022, June 7-10, 2022, Aachen, Germany

has to be equal among all scenarios. In turn, the flow value of two

specified arcs may differ in one scenario.

To the best of our knowledge, equal flow requirements and de-

mand uncertainty are combined in our previous study [4] for the

first time. Demand uncertainty is frequently studied in the context

of (uncapacitated) network design. Three examples are as follows.

Gutiérrez et al. [5] present a robustness approach to uncapacitated

network design problems. Lien et al. [9] provide an efficient and

robust design for transshipment networks by chain configurations.

Holmberg and Hellstrand [6] concentrate on finding an optimal

solution to the uncapacitated network design problem for com-

modities with a single source and sink by a Lagrangean heuristic

within a branch-and-bound framework.

3 DEFINITION & NOTATIONS

The RobT≡ problem is the uncapacitated version of the RobMCF≡
problem.We define the problem on the basis of our previouswork [4].

Let digraph 𝐺 = (𝑉 ,𝐴) with vertex set 𝑉 and arc set 𝐴 be given.

The set of arcs 𝐴 is divided into two disjoint sets 𝐴fix
and 𝐴free

,

termed fixed and free arcs, respectively. If not explicitly defined,

we specify the sets of vertices, arcs, fixed arcs, and free arcs of a

digraph 𝐺 by 𝑉 (𝐺), 𝐴(𝐺), 𝐴fix (𝐺), and 𝐴free (𝐺), respectively. Let
arc cost 𝑐 : 𝐴 → Z≥0 be given. The demand uncertainty is repre-

sented by the finite set of discrete scenarios Λ. For every scenario

𝜆 ∈ Λ, vertex balances 𝑏𝜆 : 𝑉 → Z with

∑
𝑣∈𝑉 𝑏𝜆 (𝑣) = 0 that

define the supply and demand realizations are given, denoted by

𝒃 = (𝑏1, . . . , 𝑏 |Λ |). A vertex with a positive or negative balance is

termed source or sink, respectively. In general, the source (sink)

vertices do not necessarily have to be the same in every scenario.

If all scenarios have only one vertex with a positive (negative) bal-

ance and if it is the same vertex in all scenarios, we say that the

problem has a unique source (sink). In sum, we obtain the network

(𝐺 = (𝑉 ,𝐴 = 𝐴fix ∪𝐴free), 𝑐, 𝒃).
For a single scenario 𝜆 ∈ Λ, a 𝑏𝜆-flow in digraph 𝐺 is defined by

a function 𝑓 𝜆 : 𝐴 → Z≥0 that satisfies the flow balance constraints∑︁
𝑎=(𝑣,𝑤) ∈𝐴

𝑓 𝜆 (𝑎) −
∑︁

𝑎=(𝑤,𝑣) ∈𝐴
𝑓 𝜆 (𝑎) = 𝑏𝜆 (𝑣)

at every vertex 𝑣 ∈ 𝑉 . The cost of a 𝑏𝜆-flow 𝑓 𝜆 is defined by

𝑐 (𝑓 𝜆) =
∑︁
𝑎∈𝐴

𝑐 (𝑎) · 𝑓 𝜆 (𝑎).

For the entire set of scenarios Λ, a robust 𝒃-flow 𝒇 = (𝑓 1, . . . , 𝑓 |Λ |)
is defined by a |Λ|-tuple of 𝑏𝜆-flows 𝑓 𝜆 : 𝐴 → Z≥0 that satisfy the

consistent flow constraints 𝑓 𝜆 (𝑎) = 𝑓 𝜆
′ (𝑎) on all fixed arcs 𝑎 ∈ 𝐴fix

for all scenarios 𝜆, 𝜆′ ∈ Λ. The cost of a robust 𝒃-flow 𝒇 is defined

by

𝑐 (𝒇) = max

𝜆∈Λ
𝑐 (𝑓 𝜆) .

Finally, the RobT≡ problem is defined as follows.

Definition 3.1 (RobT≡). Given a network (𝐺 = (𝑉 ,𝐴 = 𝐴fix ∪
𝐴free), 𝑐, 𝒃), the robust transshipment problem under consistent flow

constraints aims at computing a robust 𝒃-flow 𝒇 = (𝑓 1, . . . , 𝑓 |Λ |) of
minimum cost.

We note that in the case of a single scenario, i.e., |Λ| = 1, the

RobT≡ problem corresponds to the transshipment problem [8].

Analogously to the RobMCF≡ problem, we stress that the integral

flow property of the transshipment problem (uncapacitated MCF

problem) does not hold for the RobT≡ problem. In general, the

solution of the continuous relaxation of the RobT≡ problem is not

integral.

4 COMPLEXITY FOR ACYCLIC DIGRAPHS

In this section, we investigate the complexity of the RobT≡ problem

for networks based on acyclic digraphs. The reduction is performed

from the strongly NP-complete (3, 𝐵2)-Sat problem, introduced

by Berman et al. [3]. The (3, 𝐵2)-Sat problem is a special case of

the 3-Sat problem where every literal occurs exactly twice. We use

the notation [𝑛] := {1, . . . , 𝑛}.

Theorem 4.1. Deciding whether or not a feasible solution exists to

the RobT≡ problem for networks based on acyclic digraphs is strongly

NP-complete, even if a unique source and a unique sink are given

and only two scenarios are considered.

Proof. The RobT≡ problem is contained inNP as we can check

in polynomial time whether the flow balance and consistent flow

constraints are satisfied for every scenario. Let {𝑥1, . . . , 𝑥𝑛} be the
set of variables and 𝐶1, . . . ,𝐶𝑚 be the clauses of the (3, 𝐵2)-Sat
instance I. For a set of two scenarios Λ = {1, 2}, we construct a
RobT≡ instance Ĩ = (𝐺, 𝑐, 𝒃). An example of a RobT≡ instance

corresponding to a (3, 𝐵2)-Sat instance with four clauses and three

variables is visualized in Figure 1. In general, the instance is based on

a digraph𝐺 = (𝑉 ,𝐴) defined as follows. The vertex set𝑉 consists of

one vertex 𝑣𝑖 per variable 𝑥𝑖 , 𝑖 ∈ [𝑛], one dummy vertex 𝑣𝑛+1, and
one vertex𝑢 𝑗 per clause𝐶 𝑗 , 𝑗 ∈ [𝑚]. For every literal 𝑥𝑖 (𝑥𝑖), 𝑖 ∈ [𝑛],
four auxiliary vertices𝑤 ℓ

𝑖
(𝑤 ℓ

𝑖), ℓ ∈ [4] are included. Furthermore,

set 𝑉 consists of one auxiliary vertex 𝑡 and vertices 𝑟ℓ for ℓ ∈
[2(2𝑛 + 2)]. Arc set 𝐴 contains arcs that connect two successive

variable vertices 𝑣𝑖 , 𝑣𝑖+1, 𝑖 ∈ [𝑛] by two parallel paths 𝑝𝑖 and 𝑝𝑖
defined along the auxiliary vertices, i.e., 𝑝𝑖 = 𝑣𝑖𝑤

1

𝑖
𝑤2

𝑖
𝑤3

𝑖
𝑤4

𝑖
𝑣𝑖+1 and

𝑝𝑖 = 𝑣𝑖𝑤
1

𝑖𝑤
2

𝑖𝑤
3

𝑖𝑤
4

𝑖 𝑣𝑖+1 for 𝑖 ∈ [𝑛]. Path 𝑝𝑖 represents the positive

literal 𝑥𝑖 and path 𝑝𝑖 the negative literal 𝑥𝑖 of instance I. As each
literal occurs exactly twice, we identify two arcs of paths 𝑝𝑖 and 𝑝𝑖
each with the literals. More precisely, let 𝑥𝑘

𝑖
(𝑥𝑘𝑖) denote literal 𝑥𝑖

(𝑥𝑖) which occurs the 𝑘-th time, 𝑘 ∈ [2] in the formula. Literal arc

(𝑤2𝑘−1
𝑖

,𝑤2𝑘
𝑖
) ((𝑤2𝑘−1

𝑖 ,𝑤2𝑘
𝑖)) corresponds to literal 𝑥𝑘

𝑖
(𝑥𝑘𝑖). Using

this correspondence, we add arc (𝑤2𝑘
𝑖
, 𝑢 𝑗) ((𝑤2𝑘

𝑖 , 𝑢 𝑗)) for every
literal 𝑥𝑘

𝑖
(𝑥𝑘𝑖), 𝑖 ∈ [𝑛], 𝑘 ∈ [2] included in clause𝐶 𝑗 , 𝑗 ∈ [𝑚]. In the

next step, we create a path 𝑝 from vertex 𝑣𝑛+1 =: 𝑟0 along vertices
𝑟ℓ , ℓ ∈ [2(2𝑛 + 2) − 1] to vertex 𝑧 := 𝑟

2(2𝑛+2) . Before introducing
the last arcs, we identify all literal arcs and every second arc of path

𝑝 as the only fixed arcs in the network, i.e.,

𝐴fix =
{
(𝑤 ℓ

𝑖 ,𝑤
ℓ+1
𝑖), (𝑤 ℓ

𝑖 ,𝑤
ℓ+1
𝑖) | ℓ ∈ {1, 3}, 𝑖 ∈ [𝑛]

}
∪
{
(𝑟ℓ , 𝑟ℓ+1) | ℓ ∈ {1, 3, . . . , 2(2𝑛 + 2) − 1}

}
.

We add arcs that connect vertex 𝑣1 with every literal arc and every

literal arc with auxiliary vertex 𝑡 , i.e., (𝑣1,𝑤 ℓ
𝑖
), (𝑣1,𝑤 ℓ

𝑖) for ℓ ∈ {1, 3}
and (𝑤 ℓ

𝑖
, 𝑡), (𝑤 ℓ

𝑖 , 𝑡) for ℓ ∈ {2, 4}. The clause vertices are connected
with the first𝑚 fixed arcs of path 𝑝 , i.e., (𝑢 𝑗 , 𝑟2𝑗−1) for all 𝑗 ∈ [𝑚].
The auxiliary vertex 𝑡 is connected with the successive 2𝑛 − 𝑚

fixed arcs of path 𝑝 by (𝑡, 𝑟ℓ), ℓ ∈ {2𝑚 + 1, 2𝑚 + 3, . . . , 4𝑛 − 1}. We

58

On the complexity of robust transshipment under consistent flow constraints INOC 2022, June 7-10, 2022, Aachen, Germany

𝑣1 𝑣2 𝑣3 𝑣4

𝑡

𝑧

𝑢1 𝑢2 𝑢3 𝑢4

𝑣1 𝑣2 𝑣3 𝑣4

𝑡

𝑢1 𝑢2 𝑢3 𝑢4

𝐶1 = 𝑥1 ∨ 𝑥2 ∨ 𝑥3

𝐶2 = 𝑥1 ∨ 𝑥2 ∨ 𝑥3

𝐶3 = 𝑥1 ∨ 𝑥1 ∨ 𝑥3

𝐶4 = 𝑥2 ∨ 𝑥2 ∨ 𝑥3

𝐴fix

𝐴free

Balances 𝑏1

Balances 𝑏2

1 −1
−2𝑛 − 22𝑛 + 2

𝑤ℓ
𝑖
vertices

𝑤ℓ
𝑖 vertices

𝑟ℓ vertices

Figure 1: Construction of RobT≡ instance Ĩ.

add arcs (𝑣1,𝑤4

𝑛), (𝑣1,𝑤4

𝑛), (𝑤4

𝑛, 𝑟4𝑛+1), and (𝑤4

𝑛, 𝑟4𝑛+3). Finally, we
connect all 2𝑛+2 fixed arcs of path 𝑝 with vertex 𝑧, i.e., (𝑟ℓ , 𝑧) for all
ℓ ∈ {2, 4, . . . , 4𝑛 + 2}. We set the cost 𝑐 ≡ 0 and define the balances

𝒃 = (𝑏1, 𝑏2) by

𝑏1 (𝑣) =


1 if 𝑣 = 𝑣1,

−1 if 𝑣 = 𝑧,

0 otherwise,

𝑏2 (𝑣) =


2𝑛 + 2 if 𝑣 = 𝑣1,

−(2𝑛 + 2) if 𝑣 = 𝑧,

0 otherwise.

Overall, we obtain a feasible RobT≡ instance Ĩ = (𝐺, 𝑐, 𝒃) that is
constructed in polynomial time. Hence, it remains to show that I is

a Yes-instance if and only if for instance Ĩ a feasible robust 𝒃-flow
exists.

Let 𝑥1, . . . , 𝑥𝑛 be a satisfying truth assignment for instance I.
We define the first scenario flow 𝑓 1 of instance Ĩ as follows

𝑓 1 (𝑎) =


1 for all 𝑎 ∈ 𝐴(𝑝𝑖) if 𝑥𝑖 = True,

1 for all 𝑎 ∈ 𝐴(𝑝𝑖) if 𝑥𝑖 = False,

1 for all 𝑎 ∈ 𝐴(𝑝),
0 otherwise.

Flow 𝑓 1 uses either path 𝑝𝑖 or 𝑝𝑖 , 𝑖 ∈ [𝑛] to send one unit from

source 𝑣1 to vertex 𝑣𝑛+1. The unit is forwarded from vertex 𝑣𝑛+1 to
sink 𝑧 along path 𝑝 . As 𝑥1, . . . , 𝑥𝑛 is a satisfying truth assignment,

there exists one designated verifying literal 𝑥𝑘
𝑖
or 𝑥𝑘𝑖 , 𝑘 ∈ [2],

𝑖 ∈ [𝑛] for each clause 𝐶 𝑗 , 𝑗 ∈ [𝑚]. Using this, we define the first
part of the second scenario flow 𝑓 2 as follows

𝑓 2 (𝑎) =



1 for all 𝑎 ∈ 𝐴(𝑞𝑘
𝑖
) with 𝑞𝑘

𝑖
= 𝑣1𝑤

2𝑘−1
𝑖

𝑤2𝑘
𝑖
𝑢 𝑗𝑟2𝑗−1𝑟2𝑗𝑧

if 𝑥𝑘
𝑖
∈ 𝐶 𝑗 is verifying,

1 for all 𝑎 ∈ 𝐴(𝑞𝑘
𝑖
) with 𝑞𝑘

𝑖
= 𝑣1𝑤

2𝑘−1
𝑖 𝑤2𝑘

𝑖 𝑢 𝑗𝑟2𝑗−1𝑟2𝑗𝑧

if 𝑥𝑘𝑖 ∈ 𝐶 𝑗 is verifying,

0 otherwise.

Flow 𝑓 2 sends 𝑚 units from the source 𝑣1 to the clause vertices

𝑢1, . . . , 𝑢𝑚 along the literal arcs corresponding to the verifying

literals. The𝑚 units are forwarded via the subsequent fixed arc to

sink 𝑧. Further, we define the second part of the second scenario

flow 𝑓 2 that sends 2𝑛 −𝑚 units along the remaining literal arcs to

vertex 𝑡 . The flow is forwarded to sink 𝑧, i.e., 𝑓 2 (𝑎) = 1 for all

𝑎 ∈ 𝐴(𝑝𝑘
𝑖
) with 𝑝𝑘

𝑖
= 𝑣1𝑤

2𝑘−1
𝑖

𝑤2𝑘
𝑖
𝑡 if 𝑥𝑘

𝑖
= True

and 𝑥𝑘
𝑖
is not chosen as a clause-verifying literal,

𝑎 ∈ 𝐴(𝑝𝑘
𝑖
) with 𝑝𝑘

𝑖
= 𝑣1𝑤

2𝑘−1
𝑖 𝑤2𝑘

𝑖 𝑡 if 𝑥𝑘
𝑖
= False

and 𝑥𝑘
𝑖
is not chosen as a clause-verifying literal,

𝑎 ∈ 𝐴(𝑝ℓ) with 𝑝ℓ = 𝑡𝑟ℓ𝑟ℓ+1𝑧, ℓ ∈ {2𝑚 + 1, 2𝑚 + 3, . . . , 4𝑛 − 1}.

Finally, one unit is sent along path 𝑣1𝑤
4

𝑛𝑟4𝑛+1𝑟4𝑛+2𝑧 and one along

path 𝑣1𝑤
4

𝑛𝑟4𝑛+3𝑧. We have constructed a feasible robust 𝒃-flow
𝒇 = (𝑓 1, 𝑓 2).

Conversely, let 𝒇 = (𝑓 1, 𝑓 2) be a feasible robust 𝒃-flow. Flows
𝑓 1 and 𝑓 2 send one and 2𝑛 + 2 units from source 𝑣1 to sink 𝑧,

respectively. By construction of the network, the only option to

reach the sink requires the usage of at least two fixed arcs, namely

one literal arc and one fixed arc of path 𝑝 (except for the two paths

𝑣1𝑤
4

𝑛𝑟4𝑛+1𝑟4𝑛+2𝑧 and 𝑣1𝑤
4

𝑛𝑟4𝑛+3𝑧 which include only one fixed arc

of path 𝑝). Due to the integral flow 𝑓 1 sending one unit within the

acyclic digraph, it holds 𝑓 1 (𝑎) = 𝑓 2 (𝑎) ∈ {0, 1} for all fixed arcs

𝑎 ∈ 𝐴fix
. Consequently, flows 𝑓 1 and 𝑓 2 use at least 4𝑛+2 fixed arcs

in order to meet the demand of flow 𝑓 2. To use sufficient fixed arcs

in the first scenario, flow 𝑓 1 sends the unit along either path 𝑝𝑖 or 𝑝𝑖
(but due to the integrality requirement and the acyclic construction

never both simultaneously) for all 𝑖 ∈ [𝑛] and subsequently along

path 𝑝 . If flow 𝑓 1 sends flow along path 𝑝𝑖 , 𝑖 ∈ [𝑛], we set 𝑥𝑖 =

True. If flow 𝑓 1 sends flow along path 𝑝𝑖 , 𝑖 ∈ [𝑛], our choice is
𝑥𝑖 = False. To use sufficient fixed arcs in the second scenario,

flow 𝑓 2 sends one unit via each clause vertex and 2𝑛 −𝑚 units

via vertex 𝑡 . Accordingly, flow 𝑓 2 sends one unit along either path

𝑣1𝑤
ℓ
𝑖
𝑤 ℓ+1
𝑖

𝑢 𝑗𝑟2𝑗−1𝑟2𝑗𝑧 or 𝑣1𝑤
ℓ
𝑖𝑤

ℓ+1
𝑖 𝑢 𝑗𝑟2𝑗−1𝑟2𝑗𝑧, ℓ ∈ {1, 3}, 𝑖 ∈ [𝑛]

for all 𝑗 ∈ [𝑚] but never both simultaneously due to the consistent

flow constraints. In the former case, clause 𝐶 𝑗 is verified due to

the previous assignment 𝑥𝑖 = True induced by flow 𝑓 1 and the

fact that 𝑥𝑖 ∈ 𝐶 𝑗 holds. In the latter case, clause 𝐶 𝑗 is verified due

to the previous assignment 𝑥𝑖 = False induced by flow 𝑓 1 and

the fact that 𝑥𝑖 ∈ 𝐶 𝑗 holds. Two extra units are sent along paths

𝑣1𝑤
4

𝑛𝑟4𝑛+1𝑟4𝑛+2𝑧 and 𝑣1𝑤
4

𝑛𝑟4𝑛+3𝑧 using the last two fixed arcs on

path 𝑝 . The two extra units sent are needed as otherwise, there

59

INOC 2022, June 7-10, 2022, Aachen, Germany

might exist a feasible robust flow whose second scenario flow sends

a unit along path 𝑣1𝑤
3

𝑛𝑤
4

𝑛𝑣𝑛+1𝑟1𝑟2𝑧 or 𝑣1𝑤
3

𝑛𝑤
4

𝑛𝑣𝑛+1𝑟1𝑟2𝑧 which in

turn allows one unsatisfied clause. Overall, 𝑥1, . . . , 𝑥𝑛 is a satisfying

truth assignment for instance I. □

We note that the construction of our previous work’s reduc-

tion [4] exploits (tight) capacities. For this reason, the adjusted

construction containing path 𝑝 is essential for the proof of Theo-

rem 4.1. Otherwise, without capacities, we cannot control that one

flow unit is sent via every clause vertex.

5 ROBT≡ PROBLEM ON SP DIGRAPHS

In this section, we consider the RobT≡ problem on SP digraphs. In

Section 5.1, we show the weak NP-completeness of the problem.

In Section 5.2, we provide two algorithms running in polynomial

time for the special case of networks with a unique source and a

unique sink.

We consider SP digraphs based on the edge SP multi-graphs

definition of Valdes et al. [12]. In short, SP digraphs are recursively

composed serially or in parallel by SP digraphs, where a single

arc itself is defined as an SP digraph. The corresponding SP tree

represents its individual arcs (𝐿-vertices) and the order of its se-

ries (𝑆-vertices) and parallel (𝑃-vertices) compositions by a binary

decomposition computable in polynomial time [12].

5.1 Multiple Sources & Sinks Networks

Before discussing the case of networks based on SP digraphs with

multiple sources andmultiple sinks, we concentrate on the complex-

ity of the RobT≡ problem in case of a unique source. We perform

a reduction from the Partition problem, which is known to be

weakly NP-complete [7].

Theorem 5.1. The decision version of the RobT≡ problem on net-

works based on SP digraphs with a unique source and multiple sinks

is weakly NP-complete, even if only two scenarios are considered.

Proof. Let I be a Partition instance with positive integers 𝑠𝑖 ,

𝑖 ∈ [𝑛] such that

∑𝑛
𝑖=1 𝑠𝑖 = 2𝑤 holds. For a set of two scenarios Λ =

{1, 2}, we construct a RobT≡ instance Ĩ = (𝐺, 𝑐, 𝒃) as visualized
in Figure 2. The network is based on an SP digraph 𝐺 = (𝑉 ,𝐴).
Vertex set𝑉 consists of two auxiliary vertices 𝑣0, 𝑡 and two vertices

𝑡𝑖 , 𝑣𝑖 per integer 𝑠𝑖 , 𝑖 ∈ [𝑛]. Arc set 𝐴 consists of two parallel

arcs 𝑎1
𝑖
, 𝑎2

𝑖
that connect vertices 𝑣𝑖−1, 𝑡𝑖 , 𝑖 ∈ [𝑛]. Furthermore, arcs

𝑎3
𝑖
= (𝑡𝑖 , 𝑣𝑖) and 𝑎4𝑖 = (𝑣𝑖−1, 𝑣𝑖) for 𝑖 ∈ [𝑛] and arc 𝑎𝑛+1 = (𝑣𝑛, 𝑡) are

included. The fixed arcs of set 𝐴 are defined by arcs 𝑎2
𝑖
= (𝑣𝑖−1, 𝑡𝑖),

i.e., 𝐴fix = {𝑎2
𝑖
| 𝑖 ∈ [𝑛]}. All other arcs are included in set 𝐴free

.

The subgraph induced by vertices 𝑣𝑖−1, 𝑡𝑖 , 𝑣𝑖 represents integer 𝑠𝑖 ,
𝑖 ∈ [𝑛]. The cost 𝑐 is given such that the use of arcs 𝑎1

𝑖
and 𝑎2

𝑖
cost two and one times the integer value 𝑠𝑖 , 𝑖 ∈ [𝑛] per flow unit,

respectively. The use of arc 𝑎𝑛+1 costs 2𝑤 per flow unit. The use of

all other arcs causes zero cost. We define balances 𝒃 = (𝑏1, 𝑏2) by

𝑏1 (𝑣) =


1 if 𝑣 = 𝑣0,

−1 if 𝑣 = 𝑡,

0 otherwise,

𝑏2 (𝑣) =


𝑛 if 𝑣 = 𝑣0,

−1 if 𝑣 = 𝑡𝑖 , 𝑖 ∈ [𝑛],
0 otherwise.

Overall, we obtain a RobT≡ instance Ĩ = (𝐺, 𝑐, 𝒃) that is con-
structed in polynomial time. Hence, it remains to show that I is

a Yes-instance if and only if for instance Ĩ a robust 𝒃-flow exists

with cost of at most 3𝑤 .

Let 𝑆1 and 𝑆2 be a feasible partition for instance I. We define

the first scenario flow 𝑓 1 for instance Ĩ by

𝑓 1 (𝑎) =


1 for arcs 𝑎 = 𝑎4

𝑖
∈ 𝐴, 𝑖 ∈ [𝑛] if 𝑠𝑖 ∈ 𝑆1,

1 for arcs 𝑎 ∈ {𝑎2
𝑖
, 𝑎3

𝑖
} ⊆ 𝐴, 𝑖 ∈ [𝑛] if 𝑠𝑖 ∈ 𝑆2,

1 for arc 𝑎 = 𝑎𝑛+1 ∈ 𝐴,

0 otherwise.

The cost is

𝑐 (𝑓 1) =
∑︁

𝑎∈𝐴fix

𝑐 (𝑎) 𝑓 1 (𝑎) +
∑︁

𝑎∈𝐴free\{𝑎𝑛+1 }
𝑐 (𝑎) 𝑓 1 (𝑎) + 𝑐 (𝑎𝑛+1) 𝑓 1 (𝑎𝑛+1)

= 𝑤 + 0 + 2𝑤 = 3𝑤.

According to flow 𝑓 1 and the partition, we define the second sce-

nario flow 𝑓 2 by

𝑓 2 (𝑎) =


1 for arcs 𝑎 = 𝑎1

𝑖
∈ 𝐴, 𝑖 ∈ [𝑛] if 𝑠𝑖 ∈ 𝑆1,

1 for arcs 𝑎 = 𝑎2
𝑖
∈ 𝐴, 𝑖 ∈ [𝑛] if 𝑠𝑖 ∈ 𝑆2,

𝑛 − 𝑖 for arcs 𝑎 = 𝑎4
𝑖
∈ 𝐴, 𝑖 ∈ [𝑛],

0 otherwise.

The cost is

𝑐 (𝑓 2) =
∑︁

𝑎∈𝐴fix

𝑐 (𝑎) 𝑓 2 (𝑎) +
∑︁

𝑎∈𝐴free

𝑐 (𝑎) 𝑓 2 (𝑎) = 𝑤 + 2𝑤 = 3𝑤.

Consequently, we have constructed a robust 𝒃-flow 𝒇 = (𝑓 1, 𝑓 2)
with cost 𝑐 (𝒇) = 3𝑤 .

Conversely, let 𝒇 = (𝑓 1, 𝑓 2) be a robust 𝒃-flow with cost 𝑐 (𝒇) =
max{𝑐 (𝑓 1), 𝑐 (𝑓 2)} ≤ 3𝑤. The first scenario flow 𝑓 1 sends one unit

from source 𝑣0 to sink 𝑡 . To reach sink 𝑡 , arc 𝑎𝑛+1 = (𝑣𝑛, 𝑡) with cost

of 2𝑤 is used. If all arcs 𝑎4
𝑖
, 𝑖 ∈ [𝑛] of cost zero were used to reach

vertex 𝑣𝑛 , no fixed arc could be used in the second scenario due

to the consistent flow constraints. This in turn means that flow 𝑓 2

would have to use all arcs 𝑎1
𝑖
, 𝑖 ∈ [𝑛] to send one unit from source

𝑣0 to each of the sinks 𝑡1, . . . , 𝑡𝑛 . However, the cost would be

𝑛∑︁
𝑖=1

𝑐 (𝑎1𝑖) =
𝑛∑︁
𝑖=1

2𝑠𝑖 = 4𝑤 > 3𝑤 ≥ max{𝑐 (𝑓 1), 𝑐 (𝑓 2)}.

Thus, flow 𝑓 2 uses at least as many fixed arcs 𝑎2
𝑖
, 𝑖 ∈ [𝑛] as cost of

𝑤 is saved. In return, flow 𝑓 1 uses as many fixed arcs 𝑎2
𝑖
, 𝑖 ∈ [𝑛] as

cost of at most𝑤 is caused. Consequently, to reach sink 𝑡 , flow 𝑓 1

uses either arc 𝑎4
𝑖
or the two successive arcs 𝑎2

𝑖
, 𝑎3

𝑖
, 𝑖 ∈ [𝑛] of each

subgraph but due to the integrality requirement and the acyclic

construction never simultaneously. As a result, the sets

𝑆1 := {𝑠𝑖 | 𝑓 1 (𝑎4𝑖) = 1 for 𝑖 ∈ [𝑛]},
𝑆2 := {𝑠𝑖 | 𝑓 1 (𝑎2𝑖) = 1 and 𝑓 1 (𝑎3𝑖) = 1 for 𝑖 ∈ [𝑛]}

form a feasible partition for instance I. □

Corollary 5.2. The decision version of the RobT≡ problem on net-

works based on SP digraphs with multiple sources and multiple sinks

is weakly NP-complete, even if only two scenarios are considered.

In the special case of a constant number of scenarios, we can

solve the RobT≡ problem on networks based on SP digraphs with

multiple sources and multiple sinks by the pseudo-polynomial algo-

rithm presented in our previous work [4]. As the algorithm is based

on dynamic programming, it needs arc capacities as input to limit

60

On the complexity of robust transshipment under consistent flow constraints INOC 2022, June 7-10, 2022, Aachen, Germany

𝑣0 𝑡1 𝑣1 𝑡2 𝑣2 . . . 𝑣𝑛−1 𝑡𝑛 𝑣𝑛 𝑡
𝑠1

0

2𝑠1

0 𝑠2

0

2𝑠2

0 𝑠𝑛

0

2𝑠𝑛

0 2𝑤1

𝑛 −1 −1 −1

−1
𝐴fix

𝐴free

Balances 𝑏1

Balances 𝑏2

𝑣𝑖 𝑣𝑗
𝑐

Figure 2: Construction of RobT≡ instance Ĩ.

the number of occurring labels. We can simply set the capacity for

every arc to the maximum total demand among all scenarios.

5.2 Unique Source & Unique Sink Networks

For the special case of networks based on SP digraphs with a unique

source and a unique sink, we can solve the RobT≡ problem by the

polynomial time algorithm presented in our previous work [4]. We

set the capacities required for the input to the maximum source’s

balance among all scenarios. The algorithm reduces to the compu-

tation of two shortest paths – one in digraph 𝐺 and one in digraph

𝐺 −𝐴fix
.

In the following, we discuss an alternative polynomial algorithm

which provides further insight into the RobT≡ problem on SP di-

graphs. Exploiting the SP structure of the digraph, we introduce

two shrinking procedures, the parallel- and the series-shrinking

procedure. Applying these procedures, we only need to solve the

RobT≡ problem on a resulting digraph consisting of one multi-arc.

Without loss of generality, we assume a digraph 𝐺 with multi-

arcs of the form 𝑎 = (𝑎1, . . . , 𝑎𝑟 (𝑎) , 𝑎𝑟 (𝑎)+1, . . . , 𝑎𝑘 (𝑎)) with 𝑟 (𝑎) ∈
Z≥0 fixed and 𝑘 (𝑎) − 𝑟 (𝑎) ∈ Z≥0 free arcs, i.e., 𝑎1, . . . , 𝑎𝑟 (𝑎) ∈
𝐴fix (𝐺) and 𝑎𝑟 (𝑎)+1, . . . , 𝑎𝑘 (𝑎) ∈ 𝐴free (𝐺), ordered by their costs

𝑐 (𝑎1) ≤ . . . ≤ 𝑐 (𝑎𝑟 (𝑎)) and 𝑐 (𝑎𝑟 (𝑎)+1) ≤ . . . ≤ 𝑐 (𝑎𝑘 (𝑎)). We define

the parallel-shrinking procedure as visualized in Case 1 of Figure 3.

The procedure shrinks a multi-arc to a multi-arc consisting of at

most one fixed and one free arc.

1: Require: SP digraph 𝐺 = (𝑉 ,𝐴), cost 𝑐 , multi-arc 𝑎

2: Ensure: Reduced SP digraph 𝐺 = (𝑉 ,𝐴 \ {𝑎} ∪ {𝑎})
3: procedure Parallel-Shrinking(𝐺 , 𝑐 , 𝑎)

4: if 𝑘 (𝑎) = 𝑟 (𝑎) then
5: Set 𝑎 := (𝑎1)
6: else if 𝑟 (𝑎) = 0 or 𝑐 (𝑎𝑟 (𝑎)+1) ≤ 𝑐 (𝑎1) then
7: Set 𝑎 := (𝑎𝑟 (𝑎)+1)
8: else

9: Set 𝑎 := (𝑎1, 𝑎𝑟 (𝑎)+1)
10: return 𝐺 := (𝑉 ,𝐴 \ {𝑎} ∪ {𝑎})
Applying the parallel-shrinking procedure, we obtain the following

result.

Lemma 5.3 (Parallel-Shrinking). Let I = (𝐺, 𝑐, 𝒃) be a RobT≡
instance where 𝐺 is an SP digraph. Further, let Ĩ = (𝐺, 𝑐, 𝒃) be the
RobT≡ instance where digraph 𝐺 results from applying the parallel-

shrinking procedure on arc 𝑎 ∈ 𝐴(𝐺). The problem of finding an

optimal robust 𝒃-flow for instance I can be reduced to the problem of

finding an optimal robust 𝒃-flow for instance Ĩ.

Proof. Let𝒇 be an optimal robust 𝒃-flow for instance Ĩ. Assume

flow 𝒇 is not an optimal robust 𝒃-flow for instance I. There exists
a 𝒃-flow 𝒇 with less cost, i.e., 𝑐 (𝒇) < 𝑐 (𝒇). Flow 𝒇 uses at least

Case 1: 𝑣0 𝑣1
𝑐2
𝑐4

𝑐6

𝑐3

𝑐5

𝑐1
𝑣0 𝑣1

𝑐4

𝑐1

Case 2: 𝑢 𝑣 𝑤

𝑐2

𝑐1

𝑐4

𝑐3

𝐴fix 𝐴free

𝑐

𝑢 𝑤

𝑐2 + 𝑐4

𝑐1 + 𝑐3

Case 3: 𝑢 𝑣 𝑤

𝑐2

𝑐1

𝑐4

𝑢 𝑤

𝑐2 + 𝑐4

𝑐1 + 𝑐4

Case 4: 𝑢 𝑣 𝑤

𝑐2

𝑐1 𝑐3

𝑢 𝑤

𝑐1 + 𝑐3

Figure 3: Parallel- and series-shrinking.

one arc of set 𝐴 := 𝐴(𝐺) \ 𝐴(𝐺). If 𝑓 𝜆 (𝑎) > 0 holds for a fixed or

free arc 𝑎 ∈ 𝐴 = {𝑎2, . . . , 𝑎𝑟 (𝑎) , 𝑎𝑟 (𝑎)+2, . . . , 𝑎𝑘 (𝑎) } in one scenario

𝜆 ∈ Λ, we shift the flow to arc 𝑎1 or arc 𝑎𝑟 (𝑎)+1 (provided they

exist), respectively. This results in a feasible robust 𝒃-flow 𝒇 for

instance Ĩ with cost 𝑐 (𝒇) ≤ 𝑐 (𝒇) < 𝑐 (𝒇), which contradicts the

assumption. □

In the next step, we define the series-shrinking procedure. Let

𝑎𝑢𝑣 ∈ 𝐴(𝐺) denote a multi-arc directed from vertex 𝑢 to vertex 𝑣

with𝑢, 𝑣 ∈ 𝑉 (𝐺). Further, let 𝑎𝑢𝑣 and 𝑎𝑣𝑤 be multi-arcs that consist

of at most one fixed and one free arc, indicated by the labels ‘fix’

and ‘free’. By the parallel-shrinking procedure, we assume without

loss of generality that multi-arcs are of the form 𝑎𝑢𝑣 = (𝑎fix𝑢𝑣, 𝑎free𝑢𝑣)
with 𝑐 (𝑎fix𝑢𝑣) < 𝑐 (𝑎free𝑢𝑣). The series-shrinking procedure reduces a

series composition of multi-arcs 𝑎𝑢𝑣 and 𝑎𝑣𝑤 associated with an

𝑆-vertex in the corresponding SP tree to a single multi-arc 𝑎𝑢𝑤 .

Depending on whether multi-arc 𝑎𝑣𝑤 consists of a fixed and/or a

free arc, the series-shrinking procedure is visualized in Cases 2 − 4

of Figure 3.

1: Require: SP digraph 𝐺 = (𝑉 ,𝐴), cost 𝑐 , SP tree 𝑇 , 𝑆-vertex

𝑠 ∈ 𝑉 (𝑇) with associated subgraph𝐺𝑠 = ({𝑢, 𝑣,𝑤}, {𝑎𝑢𝑣, 𝑎𝑣𝑤 })
2: Ensure: Reduced SP digraph 𝐺 = (𝑉 \ {𝑣}, 𝐴 \ {𝑎𝑢𝑣, 𝑎𝑣𝑤 } ∪

{𝑎𝑢𝑤})
3: procedure Series-Shrinking(𝐺 , 𝑐 , 𝑎𝑢𝑣 , 𝑎𝑣𝑤)

4: if 𝑎𝑣𝑤 = (𝑎fix𝑣𝑤 , 𝑎free𝑣𝑤) then

61

INOC 2022, June 7-10, 2022, Aachen, Germany

5: Set 𝑎𝑢𝑤 := (𝑎fix𝑢𝑤 , 𝑎free𝑢𝑤)
6: Set 𝑐 (𝑎fix𝑢𝑤) = 𝑐 (𝑎fix𝑢𝑣) + 𝑐 (𝑎fix𝑣𝑤)
7: and 𝑐 (𝑎free𝑢𝑤) = 𝑐 (𝑎free𝑢𝑣) + 𝑐 (𝑎free𝑣𝑤)
8: else if 𝑎𝑣𝑤 = (𝑎free𝑣𝑤) then

9: Set 𝑎𝑢𝑤 := (𝑎fix𝑢𝑤 , 𝑎free𝑢𝑤)
10: Set 𝑐 (𝑎fix𝑢𝑤) = 𝑐 (𝑎fix𝑢𝑣) + 𝑐 (𝑎free𝑣𝑤)
11: and 𝑐 (𝑎free𝑢𝑤) = 𝑐 (𝑎free𝑢𝑣) + 𝑐 (𝑎free𝑣𝑤)
12: else

13: Set 𝑎𝑢𝑤 := (𝑎fix𝑢𝑤)
14: Set 𝑐 (𝑎fix𝑢𝑤) = 𝑐 (𝑎fix𝑢𝑣) + 𝑐 (𝑎fix𝑣𝑤)
15: return 𝐺 := (𝑉 \ {𝑣}, 𝐴 \ {𝑎𝑢𝑣, 𝑎𝑣𝑤} ∪ {𝑎𝑢𝑤})

Lemma 5.4 (Series-Shrinking). Let I = (𝐺, 𝑐, 𝒃) be a RobT≡
instance where 𝐺 is an SP digraph. Let 𝑎𝑢𝑣, 𝑎𝑣𝑤 ∈ 𝐴(𝐺) be multi-

arcs consisting of at most one fixed and one free arc. Further, let

𝑎𝑢𝑣, 𝑎𝑣𝑤 ∈ 𝐴(𝐺) be arcs whose series composition is associated with

an 𝑆-vertex in the SP tree of digraph 𝐺 . Let Ĩ = (𝐺, 𝑐, 𝒃) be a RobT≡
instance where digraph 𝐺 results from applying the series-shrinking

procedure on arcs𝑎𝑢𝑣, 𝑎𝑣𝑤 ∈ 𝐴(𝐺). The problem of finding an optimal

robust 𝒃-flow for instance I can be reduced to the problem of finding

an optimal robust 𝒃-flow for instance Ĩ.

Proof. Let 𝑎𝑢𝑤 ∈ 𝐴(𝐺) denote the shrunk arc. Let 𝒇 be an

optimal robust 𝒃-flow for instance Ĩ. We define a corresponding

robust 𝒃-flow 𝒇 for instance I as follows. For all arcs 𝑎 ∈ 𝐴(𝐺) \
{𝑎𝑢𝑣, 𝑎𝑣𝑤 }, we set 𝒇 (𝑎) = 𝒇 (𝑎). For multi-arcs 𝑎𝑢𝑣, 𝑎𝑣𝑤 ∈ 𝐴(𝐺),
we distinguish between the following three cases, assuming 𝑎𝑢𝑣 =

(𝑎fix𝑢𝑣, 𝑎free𝑢𝑣) without loss of generality.
Case 1: 𝑎𝑣𝑤 = (𝑎fix𝑣𝑤 , 𝑎free𝑣𝑤)

𝒇 (𝑎) =
{
𝒇 (𝑎fix𝑢𝑤) for arcs 𝑎 ∈ {𝑎fix𝑢𝑣, 𝑎fix𝑣𝑤},
𝒇 (𝑎free𝑢𝑤) for arcs 𝑎 ∈ {𝑎free𝑢𝑣 , 𝑎free𝑣𝑤 }.

Case 2: 𝑎𝑣𝑤 = (𝑎free𝑣𝑤)

𝒇 (𝑎) =


𝒇 (𝑎fix𝑢𝑤) for arc 𝑎 = 𝑎fix𝑢𝑣,

𝒇 (𝑎free𝑢𝑤) for arc 𝑎 = 𝑎free𝑢𝑣 ,

𝒇 (𝑎fix𝑢𝑤) + 𝒇 (𝑎free𝑢𝑤) for arc 𝑎 = 𝑎free𝑣𝑤 .

Case 3: 𝑎𝑣𝑤 = (𝑎fix𝑣𝑤)

𝒇 (𝑎) =
{
𝒇 (𝑎fix𝑢𝑤) for arcs 𝑎 ∈ {𝑎fix𝑢𝑣, 𝑎fix𝑣𝑤},
0 for arc 𝑎 = 𝑎free𝑢𝑣 .

As the flow balance and consistent flow constraints are still satisfied,

flow 𝒇 is a feasible robust 𝒃-flow for instance I. Furthermore, flow

𝒇 causes in every scenario 𝜆 ∈ Λ the same cost as flow 𝒇 . Assume

flow 𝒇 is not an optimal 𝒃-flow for instance I. There exists a robust
𝒃-flow 𝒇 with less cost, i.e., 𝑐 (𝒇) < 𝑐 (𝒇) = 𝑐 (𝒇). We can transform

flow 𝒇 to a feasible flow 𝒇 ′
for instance Ĩ. By definition of the

shrinking procedure, flow 𝒇 ′
causes the same cost as flow 𝒇 , i.e.,

𝑐 (𝒇 ′) = 𝑐 (𝒇) < 𝑐 (𝒇) = 𝑐 (𝒇), which contradicts to the assumption

that 𝒇 is an optimal flow for instance Ĩ. □

Using the shrinking procedures, we obtain the following result.

Theorem 5.5. The RobT≡ problem can be solved in polynomial

time on networks based on SP digraphs with a unique source and a

unique sink.

Proof. We construct SP digraph 𝐺 with its unique source 𝑜 ∈
𝑉 (𝐺) by instructions from the SP tree. If we apply the series- and

the parallel-shrinking procedure after each parallel and each series

composition of two subgraphs, we obtain a reduced digraph 𝐺 =

({𝑢̃, 𝑣}, {𝑎}). We consider the RobT≡ problem on digraph 𝐺 . For

determining a robust 𝒃-flow 𝒇 , we distinguish between three cases.

If 𝑎 = (𝑎fix), there exists no feasible solution to the RobT≡
problem as the consistent flow constraints cannot be satisfied (un-

less the demand of all scenarios is equal). If 𝑎 = (𝑎free), we set

˜𝑓 𝜆 (𝑎) = 𝑏𝜆 (𝑜) for all scenarios 𝜆 ∈ Λ. If 𝑎 = (𝑎fix, 𝑎free), we set

˜𝑓 𝜆 (𝑎) =
{
min𝜆∈Λ 𝑏

𝜆 (𝑜) for arc 𝑎 = 𝑎fix,

𝑏𝜆 (𝑜) −min𝜆∈Λ 𝑏
𝜆 (𝑜) for arc 𝑎 = 𝑎free,

for scenario 𝜆 ∈ Λ. The retransformation of the reduced digraph 𝐺

to digraph 𝐺 and the analog transformation of flow 𝒇 (cf. proof of

Lemmas 5.3 and 5.4) result in a robust minimum cost 𝒃-flow 𝒇 for

digraph𝐺 . Considering the runtime, we can construct an SP tree in

O(|𝐴(𝐺) |) time. The series- and parallel-shrinking procedures as

well as the (re-)transformation are done in O(1) time for all vertices

of the SP tree. In total, the algorithm runs in O(|𝐴(𝐺) |) time. □

6 CONCLUSION

In this paper, we considered the RobT≡ problem. On acyclic net-

works, we proved that finding a feasible solution is strongly NP-

complete, even if a unique source and sink are given and only two

scenarios are considered. On networks based on SP digraphs, we

proved the weakNP-completeness, even if a unique source is given

and only two scenarios are considered. For the special case of a

constant number of scenarios, we showed how to solve the problem

in pseudo-polynomial time. For the special case of a unique source

and sink, we presented two algorithms running in polynomial time.

For the future work, we will study the complexity of the RobT≡
problem on networks based on SP digraphs with a unique source

and one sink per scenario (but not a unique sink). Furthermore, we

will consider the case if the number of scenarios is part of the input.

REFERENCES

[1] R K Ahuja, T L Magnanti, and J B Orlin. 1988. Network flows. (1988).

[2] A I Ali, J Kennington, and B Shetty. 1988. The equal flow problem. European

Journal of Operational Research 36, 1 (1988), 107–115.

[3] P Berman, M Karpinski, and A D Scott. 2004. Approximation hardness of short

symmetric instances of MAX-3SAT. Technical Report.

[4] C Büsing, A MCA Koster, and S Schmitz. 2021. Robust minimum cost flow

problem under consistent flow constraints. Annals of Operations Research (2021),

1–32.

[5] G J Gutiérrez, P Kouvelis, and A A Kurawarwala. 1996. A robustness approach

to uncapacitated network design problems. European Journal of Operational

Research 94, 2 (1996), 362–376.

[6] K Holmberg and J Hellstrand. 1998. Solving the uncapacitated network design

problem by a Lagrangean heuristic and branch-and-bound. Operations research

46, 2 (1998), 247–259.

[7] D S Johnson and M R Garey. 1979. Computers and intractability: A guide to the

theory of NP-completeness. WH Freeman.

[8] B H Korte and J Vygen. 2011. Combinatorial optimization. Vol. 1. Springer.

[9] R W Lien, S MR Iravani, K Smilowitz, and M Tzur. 2011. An efficient and robust

design for transshipment networks. Production and Operations Management 20,

5 (2011), 699–713.

[10] C AMeyers and A S Schulz. 2009. Integer equal flows. Operations Research Letters

37, 4 (2009), 245–249.

[11] S Sahni. 1974. Computationally related problems. SIAM J. Comput. 3, 4 (1974),

262–279.

[12] J Valdes, R E Tarjan, and E L Lawler. 1982. The recognition of series parallel

digraphs. SIAM J. Comput. 11, 2 (1982), 298–313.

62

