
Local Certification of Reachability
Oliver Bachtler

TU Kaiserslautern

Kaiserslautern, Germany

bachtler@mathematik.uni-kl.de

Tim Bergner

TU Kaiserslautern

Kaiserslautern, Germany

bergner@mathematik.uni-kl.de

Sven O. Krumke

TU Kaiserslautern

Kaiserslautern, Germany

krumke@mathematik.uni-kl.de

ABSTRACT
Motivated by self-stabilising algorithms, the objective of local certi-

fication is to verify whether a (global) property holds while being

restricted to a local view of the graph. Roughly speaking, this works

as follows: a prover assigns a certificate to every vertex of a graph.

Subsequently a verifier checks, for every vertex, whether its local

view of the graph is consistent with the property we wish to verify.

If this is the case at all vertices, then it accepts and it rejects other-

wise. For a prover-verifier pair to locally certify a graph property,

the verifier must accept any graph with this property that received

certificates from the prover and it must reject any proof on a graph

that does not have the desired property. The quality of such a pair

is measured by the prover’s size which is the length of the longest

certificate it uses.

One common model for local certification is that of proof la-

belling schemes. This is a prover-verifier pair in which the verifier

at a vertex 𝑣 has access to the information at 𝑣 as well as the cer-

tificates of all its neighbours. Determining whether an undirected

graph has an 𝑠𝑡-path (for specified nodes 𝑠 and 𝑡) can be done

with a prover of size 1 and in the directed case it is known that

O(logΔ(𝐺)) bits suffice, where Δ(𝐺) denotes the maximum degree

of𝐺 . We prove a matching lower bound, in particular, showing that

a constant amount of bits does not suffice.

KEYWORDS
Local Certification, Proof Labelling Schemes, Reachability

1 INTRODUCTION
The objective of local certification is to locally verify (global) prop-

erties in a distributed system. It is motivated by self-stabilising

algorithms [4]. These algorithms are used in distributed systems

which are subject to faults and have the property that they converge

to a solution for a given problem. A possible way of designing such

an algorithm is to first move to a solution and then to maintain

it for as long as it remains correct. This so called local detection

paradigm was introduced in [1]. Local certification describes this

last step, where the algorithm needs to detect whether the solution

is correct or not.

In local certification, a global prover has to convince a verifier

that a graph has a specific property. To do so, the prover first

presents a proof by assigning certificates to the vertices. Afterwards,

the verifier decides at every vertex whether to accept or reject the

proof provided. The decision at a vertex 𝑣 is solely based on the

© 2022 Copyright held by the owner/authors(s). Published in Proceedings of the 10th
International Network Optimization Conference (INOC), June 7-10, 2022, Aachen,
Germany. ISBN 978-3-89318-090-5 on OpenProceedings.org
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

local view of the graph around 𝑣 , including certificates. If a graph

has the designated property, the prover must be able to choose

certificates in a way that makes the verifier accept at every vertex.

Otherwise, the verifier must reject at some vertex of the graph,

regardless of which certificates are given. What exactly the term

local view means differs amongst the various local certification

concepts.

To illustrate the concept, we sketch how local certification of

bipartiteness works [10]. As local view, we assume that every vertex

has access to its own certificate as well as those of its neighbours. In

the case of a bipartite graph, the prover could specify a bipartition

using the certificates 0 and 1. The verifier then only needs to check

that the certificates of its neighbours differ from its own. If this is the

case everywhere, then the graph is bipartite, so the verifier never

accepts a non-bipartite graph. Furthermore, the bipartition specified

by the prover makes the verifier accept. Hence, this prover-verifier

pair locally certifies bipartiteness using a single bit.

Local certification does not restrict the computational power

of the prover or verifier. Instead the quality is measured by the

certificate lengths needed. The prover’s size is the length of the

longest certificate it assigns to a vertex. Given some property, a

natural question to consider is what size a prover needs to have

and what size suffices to locally certify this property.

The answer to this question may depend on the precise concept

used since a “larger” local view of the verifier may result in smaller

certificate lengths being sufficient. In this paper, we are interested

mainly in two such concepts: proof labelling schemes and locally

checkable proofs. These were introduced in [12] and [10], respec-

tively. A formal definition is given in Section 2, but here it suffices

to know that the verifiers in locally checkable proofs are more

powerful that the ones in proof labelling schemes. Thus, ideally,

one determines lower bounds on the prover’s size using locally

checkable proofs, and upper bounds using proof labelling schemes

(since then they hold for both concepts).

Many results of this type are known, for example, certifying

acyclicity [12] and planarity [6] requires Θ(log𝑛) bits, whilst mini-

mum spanning trees need Θ(log𝑛 log𝑊) bits [11], where 𝑛 is the

order of the graph and𝑊 is the largest weight of an edge. These

bounds are for proof labelling schemes, though the planarity re-

sult also works for locally checkable proofs. That Θ(log𝑛) bits are
required for acyclicity is also true in the locally checkable proof set-

ting is was open until recently and is, in fact, also shown in [6]. For

more results we refer to [5], a recent survey of local certification.

A very basic problem is that of certifying whether an 𝑠𝑡-path

exists, for two specified vertices 𝑠 and 𝑡 , which we refer to as the

𝑠𝑡-reachability problem. In [10] it is shown how to solve this for

undirected graphs using a single bit. In the directed case, a prover

using O(logΔ(𝐺)) bits, where Δ(𝐺) in the maximum degree of the

graph𝐺 , is described. Whether a constant size proof exists is posed

Series ISSN: 2510-7437 40 10.48786/inoc.2022.08

https://OpenProceedings.org/
http://dx.doi.org/10.48786/inoc.2022.08

INOC 2022, June 7-10, 2022, Aachen, Germany

as an open question. We recapitulate how these locally checkable

proofs work at the start of Section 3 and why the directed case

cannot be solved analogously.

Another paper that looks at locally certifying 𝑠𝑡-reachability

is [7]. Here the authors use a significantly more restrictive model in

which the verifier sees less information, making it weaker. To obtain

a logarithmic lower bound for 𝑠𝑡-reachability, they additionally

restrict to a one-way communication model in which vertices only

see their predecessors. The proof heavily relies on this restriction

and a lower bound for the standard two-way communication is left

open.

This suggests that the directed version is harder than the undi-

rected one, which is a common occurrence: In the 𝑘 disjoint paths

problem the task to find vertex-disjoint paths between 𝑘 pairs of

specified vertices. It can be solved in polynomial time on undirected

graphs for any fixed 𝑘 [13] but it is NP-complete in the directed

case, even for 𝑘 = 2 [8]. Similarly, the feedback arc set problem

is NP-complete [9] while its undirected counterpart is solved by

computing a spanning tree. Another result [2] demonstrates that

undirected 𝑠𝑡-reachability can be expressed by existential monadic

second order logic and directed reachability cannot.

We show that locally certifying 𝑠𝑡-reachability (in the proof la-

belling scheme setting) is another such example. More precisely,

we prove that the upper bound of O(logΔ(𝐺)) is tight. In partic-

ular, this covers the missing lower bound in [7] and shows that

no constant amount of bits suffices. Hence, this yields a new very

basic problem where we now have tight bounds for proof labelling

schemes, but whose lower bounds do not extend to locally checkable

proofs.

Outline. In Section 2 we introduce the notation we need and for-

mally define proof labelling schemes and locally checkable proofs.

The proof of the lower bound for the directed 𝑠𝑡-reachability prob-

lem is presented in Section 3 and in Section 4 we discuss the diffi-

culties that occur when extending our result to locally checkable

proofs.

2 PRELIMINARIES
Basic notation. The notation for this paper is based on [3], but

we briefly summarise what we need here. All graphs are non-empty

and finite. We write 𝑢𝑣 for an edge from 𝑢 to 𝑣 and 𝐸 (𝑣) denotes
the set of edges incident to the vertex 𝑣 . The set of neighbours of 𝑣

in 𝐺 is 𝑁𝐺 (𝑣) or 𝑁 (𝑣). We denote the maximum degree of a graph

𝐺 by Δ(𝐺) and its diameter by diam(𝐺).
A path is a graph 𝑃 with vertex set𝑉 (𝑃) = {𝑣1, . . . , 𝑣𝑛} and edge

set 𝐸 (𝑃) = {𝑣1𝑣2, . . . , 𝑣𝑛−1𝑣𝑛}, for which we write 𝑃 = 𝑣1 . . . 𝑣𝑛 . If

𝑢 and 𝑣 are distinct vertices of a path 𝑃 , then 𝑢𝑃𝑣 is the unique path

in 𝑃 joining 𝑢 and 𝑣 . If |𝑢𝑃𝑣 | ≥ 3, then we set 𝑢𝑃𝑣 B 𝑢𝑃𝑣 − {𝑢, 𝑣}.
Similarly, for a 𝑢𝑣-path 𝑃 , we write 𝑃 for 𝑃 − {𝑢, 𝑣}.

Local certification. Let G be a class of (directed or undirected)

graphs, for example, G could be the class of all connected undi-

rected graphs. Further, let F ⊆ G be the graphs in G that satisfy a

certain property (acyclicity, for example). In this context we specify

that graphs 𝐺 ∈ G have an identity for every vertex 𝑣 ∈ 𝑉 (𝐺),
which is denoted by id(𝑣) and can be encoded in O(log |𝑉 (𝐺) |)
bits. All identities in a graph are distinct. Furthermore, vertices also

have labels, L(𝑣), that can contain further information (but may

be empty). For example, these can be used to indicate colours of

vertices or to select a certain subset of the edges.

A proof for a graph 𝐺 is a function P : 𝑉 (𝐺) → {0, 1}∗ that
assigns a binary certificate (a bit string) to each vertex of 𝐺 . The

size |P| of a proof is the maximum number of bits in any of its

certificates and the set of all proofs for a graph 𝐺 is denoted by

P(𝐺). For the empty certificate and the empty label we write 𝜀. Note

that the label 𝐿(𝑣) of a vertex 𝑣 is part of the graph 𝐺 whereas the

certificate P(𝑣) at 𝑣 is provided by the prover.

A verifier for a class G is a function V defined for all triples

(𝐺, P, 𝑣) with𝐺 ∈ G, P ∈ P(𝐺), and 𝑣 ∈ 𝑉 (𝐺). Its output is a single
bit, that is,

V :

⋃
𝐺∈G

({𝐺} × P(𝐺) ×𝑉 (𝐺)) → {0, 1}.

A verifier V accepts (a proof P) at a vertex 𝑣 if V(𝐺, P, 𝑣) = 1. It

accepts (a proof P for) a graph 𝐺 if it accepts at all 𝑣 ∈ 𝑉 (𝐺) and it

rejects the proof otherwise. The verifier is sound for a subset F of G
if it rejects any graph not in F , regardless of the proof provided,
that is, for all 𝐺 ∈ G \ F and all proofs P ∈ P(𝐺) there exists a
vertex 𝑣 ∈ 𝑉 (𝐺) such thatV(𝐺, P, 𝑣) = 0.

A prover is a function P that maps every 𝐺 ∈ F to a proof

P(𝐺) ∈ P(𝐺). The size 𝑠 (P) of a prover is the maximum size of any

proof it assigns to a graph in F , often expressed as a function of

|𝑉 (𝐺) |. A prover P is complete for a verifierV ifV accepts P(𝐺)
for all 𝐺 ∈ F .

A pair 𝜋 = (P,V), consisting of a prover and verifier, locally

certifies F ⊆ G if it is both complete and sound. The pair is complete

if P is complete forV and it is sound if the verifier is sound for F .
The size 𝑠 (𝜋) of 𝜋 is just the size of its prover.

Restricting the verifier. So far the definition does not include

locality and this is where the various concepts that are used in

the literature differ. We now describe restrictions on the verifier

that make its computation local and lead to the definition of proof

labelling schemes and locally checkable proofs.

Let 𝐺 be a graph and 𝑣 ∈ 𝑉 (𝐺). The set of vertices in 𝐺 with

distance at most 𝑟 (with respect to number of edges) to 𝑣 is denoted

by 𝐵𝑟
𝐺
(𝑣) or just 𝐵𝑟 (𝑣). For directed graphs, we always use the

underlying undirected graph to determine balls. A verifier is 𝑟 -local
if it satisfies that

V(𝐺, P, 𝑣) = V(𝐺𝑟
𝑣 , P

𝑟
𝑣, 𝑣) for all 𝐺, P, 𝑣

where 𝐺𝑟
𝑣 = 𝐺 [𝐵𝑟 (𝑣)] and P𝑟𝑣 is the restriction of P to 𝐵𝑟 (𝑣). We

say a verifier is neighbourhood-local if

V(𝐺, P, 𝑣) = V(𝐺𝑁
𝑣 , P1

𝑣, 𝑣) for all 𝐺, P, 𝑣

where 𝐺𝑁
𝑣 = (𝐵1 (𝑣), 𝐸 (𝑣)). If, additionally, the verifier does not

depend on the labels or identities of any vertex other than 𝑣 when

faced with (𝐺, P, 𝑣), then we call the verifier label- or identity-
restricted, respectively. We say it is restricted, if it is both label-

and identity-restricted and satisfies that

V(𝐺, P, 𝑣) = V(𝐺−𝑣 , P−𝑣 , 𝑣) for all 𝐺, P, 𝑣
where 𝐺−𝑣 is the star with 𝑣 at its centre and an edge 𝑣𝑥𝑒 (respec-

tively 𝑥𝑒𝑣) for each edge 𝑒 = 𝑣𝑢 (𝑒 = 𝑢𝑣) in𝐺 . The proof P−𝑣 maps 𝑣

to P(𝑣) and 𝑥𝑒 to the certificate P(𝑢) if 𝑒 = 𝑣𝑢 or 𝑒 = 𝑢𝑣 .

41

Local Certification of Reachability INOC 2022, June 7-10, 2022, Aachen, Germany

With this notation we can now define proof labelling schemes

and locally checkable proofs.

Definition 2.1. A proof labelling scheme is a prover-verifier pair
𝜋 = (P,V) in whichV is restricted.

Definition 2.2. A locally checkable proof is a prover-verifier pair

𝜋 = (P,V) in whichV is 𝑟 -local for some constant 𝑟 ≥ 1.

Note that, in a proof labelling scheme, the verifier at a vertex

𝑣 may only use 𝑣 ’s identity and label, as well as the certificates

assigned to 𝑣 and its neighbours. In contrast, the verifier in a locally

checkable proof has access to much more information. Even if we

restrict ourselves to a 1-local verifier, it can still use the identities

and labels of the neighbours as well as the graph structure of the

neighbourhood, meaning it knows which of its neighbours are the

same and whether or not they are adjacent.

We introduced the term neighbourhood-local, which comes be-

tween the two. In contrast to proof labelling schemes, the veri-

fier here can detect parallels and anti-parallels, but, unlike locally

checkable proofs, it is still limited to direct neighbours and does

not know which of these are adjacent. We actually prove that a pair

(P,V) that locally certifies 𝑠𝑡-reachability needs Ω(Δ(𝐺)) bits if
the verifier is neighbourhood-local and identity-restricted in the

next section. This yields the results for proof labelling schemes as

a corollary.

An example. To wrap up the preliminaries, we illustrate these

concepts on an example. We have already seen how to certify bi-

partiteness and we now sketch how to verify acyclicity using a

proof labelling scheme as a slightly more involved example. As

mentioned in the introduction, Θ(log𝑛) bits are needed for this

and the lower bound does not extend to locally checkable proofs.

We illustrate why and refer to [12] for a more detailed proof.

The upper bound is obtained by rooting a tree: An arbitrary

vertex is chosen as the root and the certificate at each vertex is its

distance to this root. To locally verify this, a vertex with certificate 𝑑

need only check that it has exactly one neighbour with distance𝑑−1

and all other neighbours have distance 𝑑 + 1 (unless 𝑑 = 0 in which

case all neighbours must have distance 1). This is a proof labelling

scheme since the graph is a tree if the verifier accepts: in any cycle

in the graph, the vertex with largest certificate has at least two

neighbours whose certificates are not larger, which the verifier can

detect.

To obtain the lower bound, assume that a proof labelling scheme

exists that uses 𝑜 (log𝑛) bits. Then, for large enough 𝑛, we can as-

sume it has fewer than 𝑐 log𝑛 bits for some appropriate constant 𝑐 ,

chosen such that any path of length 𝑛 contains two disjoint pairs

that are labelled identically. By connecting the second vertex of the

first pair to the first vertex of the second pair, a cycle is obtained

in which all local behaviour is identical. Since the path must be ac-

cepted, the verifier also accepts the cycle, contradicting soundness.

The reason this no longer works for locally checkable proofs is

because, in this concept, the verifier can see the identities of its

neighbours even if the size of the prover is too small to simply add

these to the certificates. As a result, the verifier would notice that

its neighbour has changed in the transition to the cycle, since the

ends of the new edge now have a neighbour whose identity differs

from the path.

3 VERIFYING REACHABILITY
The 𝑠𝑡-reachability problem. The (directed) 𝑠𝑡-reachability prob-

lem starts with a graph class G of (directed) graphs in which there

is a unique vertex labelled 𝑠 and one labelled 𝑡 (and all other vertices

have empty labels). The subclass F that we wish to verify contains

those graphs in which 𝑡 is reachable from 𝑠 , that is, those graphs in

G that have an 𝑠𝑡-path. For the remainder of this section, G and F
will be used to denote these graph classes.

In the undirected case, a single bit is sufficient to verify reacha-

bility (as described in [10]): by fixing some shortest 𝑠𝑡-path 𝑃 and

setting P(𝑣) = 1 if 𝑣 ∈ 𝑃 (and leaving the certificate empty other-

wise), a vertex 𝑣 can check that either P(𝑣) = 𝜀 or exactly two of its

neighbours are also assigned a non-empty certificate. The vertices

𝑠 and 𝑡 are exceptions, they must receive certificate 1 and require

exactly one neighbour with this property.

This breaks down in the directed case, since the analogous re-

quirement of asking for exactly one predecessor and one successor

is not true. Even on shortest paths, the existence of back-edges

may lead to larger quantities of both. This can be fixed by addi-

tionally specifying the distance from 𝑠 (as in the verification of

acyclicity), letting us detect back-edges. Alternatively, one can spec-

ify which of the edges incident to a vertex leads to the succes-

sor on the path. These yield upper bounds of O(log diam(𝐺)) and
O(logΔ(𝐺)), both of which are potentially O(log𝑛).

We now show that the second approach is best possible in the

sense that 𝑜 (Δ(𝐺)) bits are insufficient to obtain a proof labelling

scheme in the directed case. To achieve this, we assume that a proof

labelling scheme (P,V) exists that only uses 𝑥 bits and therefore

uses at most 𝑐 B 2
𝑥+1 − 1 distinct certificates. We then construct a

graph 𝐺 ∈ G that the verifier would falsely accept and check that

its maximum degree is polynomial in 𝑐 . This yields that logΔ(𝐺)
is some multiple of 𝑥 , and 𝑥 ∈ Ω(logΔ(𝐺)).

As we already mentioned at the end of the last section, our con-

struction works even if we can detect parallels and anti-parallels

and can see the labels of neighbouring nodes. It also does not use

the relation between 𝑐 and 𝑥 . Therefore, we suppose that (P,V)
is a prover-verifier pair with neighbourhood-local and identity-

restricted verifier that locally verifies directed 𝑠𝑡-reachability using

𝑐 distinct certificates. To facilitate our argumentation, we now pro-

vide some notation.

Split paths and their properties. Let
←−
𝑃 be an 𝑠𝑡-path with back-

edges, that is, 𝑃 = 𝑠𝑣1 . . . 𝑣𝑘𝑡 ,
←−
𝐴 = {𝑣𝑖𝑣 𝑗 : 𝑖 > 𝑗} is the set of back-

edges of 𝑃 , and 𝑃 ⊆ ←−𝑃 ⊆ 𝑃 +←−𝐴 (for some 𝑘). Note that
←−
𝑃 ∈ F . Let

𝑢𝑣 be an edge of 𝑃 and 𝑏𝑎 be a back-edge in

←−
𝑃 with 𝑢𝑣 ∈ 𝑎𝑃 ˚𝑏. The

split-path (of

←−
𝑃) at 𝑢𝑣 using 𝑏𝑎 is the graph

←−
𝑃 − {𝑢𝑣, 𝑏𝑎} + {𝑏𝑣,𝑢𝑎},

which is in G \ F . This operation is illustrated in Figure 1.

We now show that assigning certain certificates to the vertices

of a path with back-edges would makeV accept a split-path, and

hence these assignments may not occur. For simplicity, we write

P(𝑥𝑦) for (P(𝑥), P(𝑦)), where P is some proof and 𝑥𝑦 is an edge.

Lemma 3.1. Let
←−
𝑃 be an 𝑠𝑡-path with back-edges, P = P(←−𝑃),

𝑢𝑣 be an edge of 𝑃 , and 𝑏𝑎 be a back-edge in
←−
𝑃 with 𝑢𝑣 ∈ 𝑎𝑃 ˚𝑏. If

𝑣 ∉ 𝑁 (𝑏), 𝑢 ∉ 𝑁 (𝑎), and 𝑣𝑢 ∉
←−
𝑃 , then P(𝑢𝑣) ≠ P(𝑏𝑎).

42

INOC 2022, June 7-10, 2022, Aachen, Germany

𝑎 𝑢 𝑣 𝑏

𝑎 𝑢 𝑣 𝑏

Figure 1: An illustration of the split-path operation.

Proof. Suppose P(𝑢𝑣) = P(𝑏𝑎). Let 𝑆 be the split path of

←−
𝑃 at

𝑢𝑣 using 𝑏𝑎. We show that V accepts P for 𝑆 , which contradicts

𝑆 ∈ G \ F .
Notice that for all vertices 𝑥 ∉ {𝑎, 𝑏,𝑢, 𝑣} the ball 𝐵1 (𝑥) remains

unchanged and thus V accepts at all these vertices. Also, in the

remaining four balls we only exchange the vertices 𝑎 and 𝑣 or 𝑏 and

𝑢. Since these are assigned the same certificate by assumption, the

verifier is faced with the same certificates. Moreover, none of these

vertices can be 𝑠 or 𝑡 , so they are all unlabelled. Finally note that

the remaining assumptions of the lemma ensure that none of the

edges 𝑢𝑣 , 𝑏𝑎, 𝑏𝑣 , or 𝑢𝑎 have a parallel or an anti-parallel in

←−
𝑃 or 𝑆 ,

hence the graphs

←−
𝑃 𝑁
𝑥 and 𝑆𝑁𝑥 also coincide for 𝑥 ∈ {𝑎, 𝑏,𝑢, 𝑣}. □

Constructing a counterexample. We are now ready to construct a

path with back-edges

←−
𝑃 in which any proof that the verifier accepts

leads to a split path which is accepted as well. Since the verifier

accepts P(←−𝑃), this is a contradiction.
We let 𝑟 =

(𝑐
2

)
+ 𝑐 and define a graph 𝐺𝑘 for 0 ≤ 𝑘 ≤ 𝑟 , each of

which is an 𝑠𝑡-path with back-edges. For a copy 𝐻 of a graph 𝐺𝑘 ,

we write 𝑃 (𝐻) for the copy of the 𝑠𝑡-path of 𝐺𝑘 in 𝐻 and write

𝑠 (𝐻), 𝑡 (𝐻) for its start and end, respectively. The graph𝐺0 is simply

the path 𝑠𝑢0𝑣0𝑡 . For 𝑘 ≥ 1, the graph 𝐺𝑘 is the disjoint union of 𝑘

copies 𝐻1, . . . , 𝐻𝑘 of 𝐺𝑘−1
which are combined to an 𝑠𝑡-path with

back-edges as follows: copies 𝐻𝑖 and 𝐻𝑖+1 are connected by a path

𝑡 (𝐻𝑖)𝑢𝑖𝑣𝑖𝑠 (𝐻𝑖+1) introducing new vertices 𝑢𝑖 and 𝑣𝑖 . Additionally,

we prepend the path 𝑠𝑢0𝑣0𝑠 (𝐻1) and append the path 𝑡 (𝐻𝑘)𝑢𝑘𝑣𝑘𝑡 .
Finally, all possible back-edges between vertices {𝑢𝑖 , 𝑣𝑖 } and {𝑢 𝑗 , 𝑣 𝑗 }
for 𝑖 > 𝑗 are added.

This construction is visualised in Figure 2 and a formal definition

of the edge and vertex set of the graph 𝐺𝑘 is given below:

𝑉 (𝐺𝑘) =
𝑘⋃
𝑖=1

𝑉 (𝐻𝑖) ∪ {𝑢𝑖 , 𝑣𝑖 : 0 ≤ 𝑖 ≤ 𝑘} ∪ {𝑠, 𝑡},

𝐸 (𝐺𝑘) =
𝑘⋃
𝑖=1

𝐸 (𝐻𝑖) ∪ {𝑢𝑖𝑣𝑖 : 0 ≤ 𝑖 ≤ 𝑘}

∪ {𝑣𝑖−1𝑠 (𝐻𝑖), 𝑡 (𝐻𝑖)𝑢𝑖 : 1 ≤ 𝑖 ≤ 𝑘} ∪ {𝑠𝑢0, 𝑣𝑘𝑡}.

We say that a pair of certificates (𝑐1, 𝑐2) ismissing on a path with

back-edges if no edge on the path has certificate (𝑐1, 𝑐2). We extend

this definition to sets {𝑐1, 𝑐2}, where 𝑐1 and 𝑐2 need not be distinct,

and call such a set missing if the tuples (𝑐1, 𝑐2) and (𝑐2, 𝑐1) are. Note
that 𝑟 is exactly the number of such sets. With these definitions at

hand we can now prove the following lemma.

Lemma 3.2. For every 𝑘 ≤ 𝑟 , the graph𝐺𝑟 contains a copy𝐻 of𝐺𝑘

in which at least 𝑟 − 𝑘 sets are missing on the path ˚𝑃 (𝐻).

Proof. We prove this by induction on 𝑘 , where in the case 𝑘 = 𝑟

there is nothing to show. For 𝑘 < 𝑟 let𝐻 ′ be the copy of𝐺𝑘+1 given
by the induction hypothesis and let 𝑃 ′ = ˚𝑃 (𝐻 ′). Then 𝑟 − (𝑘 + 1)
sets are missing on 𝑃 ′ and every vertex on this path is assigned a

certificate whose corresponding set is amongst the remaining 𝑘 + 1

many. Since 𝐺𝑘+1 has the 𝑘 + 2 edges 𝑢0𝑣0, . . . , 𝑢𝑘+1𝑣𝑘+1, at least
two of the corresponding edges in 𝑃 ′ are assigned certificates that

give rise to the same set {𝑐1, 𝑐2}. For simplicity, we assume these

edges are 𝑢0𝑣0 and 𝑢1𝑣1. This set is not missing in 𝑃 ′, but we show
that it is missing on the path 𝑃 = ˚𝑃 (𝐻) where 𝐻 is the copy of 𝐺𝑘

between 𝑢0𝑣0 and 𝑢1𝑣1 in 𝐻 ′.
To see that this is indeed the case, we note that for any edge𝑢𝑣 on

the path 𝑃 we can apply Lemma 3.1 to the edges 𝑢𝑣 and 𝑏𝑎 = 𝑢1𝑢0

in 𝐺𝑟 : since the only edges with an end in 𝑉 (𝐻 ′) \𝑉 (𝐻) and the

other in 𝑉 (𝐻) are 𝑣0𝑠 (𝐻) and 𝑡 (𝐻)𝑢1, we get that 𝑣 ∉ 𝑁 (𝑢1) and
𝑢 ∉ 𝑁 (𝑢0). Moreover, 𝑣𝑢 ∉ 𝐺𝑟 since 𝐺𝑟 has no anti-parallels by

construction. Therefore, the assumptions of Lemma 3.1 are satisfied,

and P(𝑢𝑣) ≠ P(𝑢1𝑢0). The same holds for the back-edges𝑢1𝑣0, 𝑣1𝑢0,

and 𝑣1𝑢1.

Since we assumed that both 𝑢0𝑣0 and 𝑢1𝑣1 are assigned a certifi-

cate corresponding to the set {𝑐1, 𝑐2}, one of the four back-edges
has certificate (𝑐1, 𝑐2) and another has (𝑐2, 𝑐1). Thus, we have en-
sured that both of these are missing, giving us the new missing

set {𝑐1, 𝑐2} (in addition to the 𝑟 − (𝑘 + 1) many provided by the

induction hypothesis), which completes the proof. □

By Lemma 3.2 for 𝑘 = 0, 𝐺𝑟 has a copy 𝐻 of 𝐺0 in which 𝑟

pairs are missing on the path 𝑃 = ˚𝑃 (𝐻). But since these are all

possible pairs, the single edge in 𝑃 has no valid assignment, which

is a contradiction. To complete this section, we only need to see

how 𝑐 relates to Δ(𝐺𝑟).

Observation 3.3. The maximum degree of𝐺𝑟 is 2𝑟 + 2 = 𝑐2 +𝑐 + 2.

Proof. We prove by induction that the maximum degree of 𝐺𝑘

is 2𝑘 + 2. Since 𝐺0 is a path, this holds initially. For 𝑘 > 0 let 𝑣 be a

vertex in 𝐺𝑘 . If 𝑣 is in some copy 𝐻 of 𝐺𝑘−1
, then its degree is at

most 2𝑘 : in 𝐻 only the vertices 𝑠 (𝐻) and 𝑡 (𝐻) have incident edges
to vertices outside of this copy of 𝐻 , and these have degree 2 in𝐺𝑘 .

Any other vertex of 𝐺𝑘 is 𝑠 , 𝑡 , or in {𝑢0, 𝑣0, . . . , 𝑢𝑘 , 𝑣𝑘 }. The first
two have degree 1 and any 𝑢𝑖 or 𝑣𝑖 has two neighbours on the

path and 2𝑘 further neighbours in 𝐺𝑘 , namely all 𝑢 𝑗 and 𝑣 𝑗 for

𝑗 ∈ {0, . . . , 𝑘} \ {𝑖}. Hence, the maximum degree of 𝐺𝑘 is 2𝑘 + 2.

The missing equality follows from the definition of 𝑟 . □

By Observation 3.3, Δ(𝐺𝑟) is indeed polynomial in 𝑐 . Simple

computations yield that at least log
2
(𝑐 + 2) − 1 bits are required to

obtain 𝑐 + 1 distinct certificates and log
2
(Δ(𝐺𝑟)) ≤ 2 log

2
(𝑐) + 2.

Consequently, since we need at least 𝑐 + 1 certificates to correctly

verify 𝐺𝑟 , at least
1

2
log

2
(Δ(𝐺𝑟)) − 2 bits are necessary. We have

thus arrived at the desired result.

43

Local Certification of Reachability INOC 2022, June 7-10, 2022, Aachen, Germany

𝐻1
𝐻𝑘

𝑠 𝑢0 𝑣0 𝑠 (𝐻1) 𝑡 (𝐻1) 𝑢1 𝑣1
𝑠 (𝐻𝑘) 𝑡 (𝐻𝑘) 𝑢𝑘 𝑣𝑘 𝑡

Figure 2: A visualisation of the graph 𝐺𝑘 constructed for the proof of Theorem 3.4.

Theorem 3.4. The 𝑠𝑡-reachability problem cannot be locally certi-
fied by a prover-verifier pair (P,V) of size 𝑜 (Δ(𝐺)) if the verifier is
neighbourhood-local and identity-restricted.

As a corollary, we get the same result for proof labelling schemes.

Corollary 3.5. There exists no proof labelling scheme of size
𝑜 (logΔ(𝐺)) for directed 𝑠𝑡-reachability.

4 CONCLUSION AND FURTHER RESEARCH
We have shown that Ω(logΔ(𝐺)) bits are necessary in any proof

labelling scheme for directed 𝑠𝑡-connectivity. This implies the only

missing bound in [7], but does not answer the open question in [10],

since locally checkable proofs are not covered. It would be desirable

to obtain an example that fools the stronger verifiers allowed in

locally checkable proofs. We now describe why this additional

verification power is problematic for the example we constructed.

Note that we are able to deal with parallels and anti-parallels,

but already had to exclude being able to see which neighbours are

adjacent and which ones are not. The reason for this is that the

proof of Lemma 3.1 no longer works in this case: if we look at 𝑢’s

local view of the graph in Figure 1, then it replaces 𝑣 by 𝑎. But if 𝑣

was adjacent to other neighbours of 𝑢 and 𝑎 is not, then the verifier

can now detect this. Indeed, this happens in the graph 𝐺𝑟 . In the

graph 𝐺𝑘 , the vertices 𝑢0, . . . , 𝑢𝑘 , 𝑣0, . . . , 𝑣𝑘 form a complete graph

(in the undirected sense). But if we transition to a split path at one

of the edges 𝑢𝑖𝑣𝑖 , using a back-edge 𝑏𝑎 from outside this 𝐺𝑘 , then

we replace the neighbour 𝑣𝑖 that is part of this complete graph by

some other vertex 𝑎 that neighbours none of these vertices.

Similarly, larger radii are problematic. It is not implausible to

generalise Lemma 3.1 to paths (by replacing back-edges by “back-

paths” and forbidding paths with the same certificate sequence

below them). However, this is not helpful. The reason is that it

does not allow us to generate new forbidden paths, which is easiest

exemplified by assigning all intermediate vertices on back-paths a

unique certificate, distinguishing them from the rest.

The last obstacle introduced by locally checkable proofs is that

the identities of the neighbours are now visible, for which tools

similar to the ones used in [10] seem to be required: multiple graphs

in F with disjoint identities need to pieced together to obtain one

that is not in F , but locally appears to be.

REFERENCES
[1] Yehuda Afek, Shay Kutten, and Moti Yung. 1997. The local detection paradigm

and its applications to self-stabilization. Theoretical Computer Science 186, 1 (1997),
199–229. https://www.sciencedirect.com/science/article/pii/S0304397596002861

[2] Miklos Ajtai and Ronald Fagin. 1990. Reachability is harder for directed than

for undirected finite graphs. Journal of Symbolic Logic 55, 1 (1990), 113–150.

https://doi.org/10.2307/2274958

[3] Reinhard Diestel. 2010. Graph Theory (fourth ed.). Graduate Texts in Mathematics,

Vol. 173. Springer, Heidelberg; New York. https://doi.org/10.1007/978-3-662-

53622-3

[4] Shlomi Dolev. 2000. Self-stabilization. MIT press.

[5] Laurent Feuilloley. 2021. Introduction to local certification. Discrete Mathematics
& Theoretical Computer Science 23, 3 (Sep 2021). https://doi.org/10.46298/dmtcs.

6280

[6] Laurent Feuilloley, Pierre Fraigniaud, Ivan Rapaport, Éric Rémila, Pedro Mon-

tealegre, and Ioan Todinca. 2020. Compact Distributed Certification of Planar

Graphs. arXiv:2005.05863 [cs.DC]

[7] Klaus-Tycho Foerster, Thomas Luedi, Jochen Seidel, and Roger Wattenhofer.

2018. Local checkability, no strings attached: (A)cyclicity, reachability, loop

free updates in SDNs. Theoretical Computer Science 709 (2018), 48–63. https:

//doi.org/10.1016/j.tcs.2016.11.018 Special Issue of ICDCN 2016 (Distributed

Computing Track).

[8] Steven Fortune, John Hopcroft, and James Wyllie. 1980. The directed subgraph

homeomorphism problem. Theoretical Computer Science 10, 2 (1980), 111 – 121.

https://doi.org/10.1016/0304-3975(80)90009-2

[9] Michael R. Garey and David S. Johnson. 1990. Computers and Intractability; A
Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York, NY,

USA.

[10] Mika Göös and Jukka Suomela. 2016. Locally Checkable Proofs in Distributed

Computing. Theory of Computing 12, 19 (2016), 1–33. https://doi.org/10.4086/

toc.2016.v012a019

[11] Amos Korman and Shay Kutten. 2006. Distributed Verification of Minimum

Spanning Trees. In Proceedings of the Twenty-Fifth Annual ACM Symposium
on Principles of Distributed Computing (Denver, Colorado, USA) (PODC ’06).
Association for Computing Machinery, New York, NY, USA, 26–34. https://doi.

org/10.1145/1146381.1146389

[12] A. Korman, S. Kutten, and D. Peleg. 2010. Proof labeling schemes. Distributed
Computing 22 (2010), 215–233. https://doi.org/10.1007/s00446-010-0095-3

[13] N. Robertson and P.D. Seymour. 1995. Graph Minors .XIII. The Disjoint Paths

Problem. Journal of Combinatorial Theory, Series B 63, 1 (1995), 65 – 110. https:

//doi.org/10.1006/jctb.1995.1006

44

