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ABSTRACT
This paper addresses a robust variant of the Ring Star Problem
where we assume that at most one hub can fail, among a given sub-
set of nodes of the network. The network should remain functional
despite this failure, which means there is an edge connecting the
neighbors of any hub that can fail, and every terminal is connected
to two different hubs that can fail or a single hub that cannot fail.
The objective is to minimize the cost of such a robust Ring Star
Network structure. The problem is addressed through an integer
linear programming formulation, and a Benders decomposition is
proposed as an alternative solution method. Computational experi-
ments are carried out to compare these two approaches, and the
results are analyzed.

KEYWORDS
Ring star problem, Robustness, Integer linear programming, Ben-
ders decomposition.

1 INTRODUCTION
Several network design, telecommunication, transportation, and
facility location problems, among many others, involve designing
networks in a tributary or backbone architecture. Different designs
of tributary and backbone networks have been proposed, see for
instance Klincewicz[8]. In this manuscript, we consider a Ring Star
network design, where a complete mixed graphwith both, arcs from
and to every node, as well as edges between any pair of different
nodes and a particular node called the depot are given. The Ring
Star Problem (RSP) introduced by Labbé et al.[10] consists in
selecting a subset of nodes that includes the depot, named hubs,
and link them with a cycle to form the ring. A node that is not a
hub is called a terminal. Each terminal is connected to exactly one
hub, forming the star topology part. The aim of RSP is to minimize
the sum of three costs corresponding to (i) selecting the subsets
of hubs, (ii) forming the ring, and (iii) connecting the terminals to
the ring. RSP is NP-hard since it contains the Traveling Salsman
Problem as a special case when the assignment costs are very large
compared to the ring costs.
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RSP has been widely studied in the literature. Labbé et al.[10]
proposed a Mixed Integer Programming model, strengthened with
valid inequalities resulting from a polyhedral analysis and solved
with a Branch-and-Cut algorithm. Another exact approach that
takes advantage of the fact that the depot must be in the ring is
introduced by Kedad-Sidhoum and Nguyen[6]. Calvete et al.[1]
addressed the problem using a bilevel optimization approach and
proposed an evolutionary-based heuristic for solving RSP while
Zang et al.[13] recently proposed an ant colony system algorithm.
As a consequence of some hazardous events (failures, attacks, etc.),
designing a reliable topological network might be essential. Sur-
vivable network design problems have largely been studied in the
literature as a means to provide robustness to networks [4, 7].

In [11], Labbé et al. consider a fully connected star problem
where the selected hubs form a clique. The authors investigate the
polyhedral properties of the proposed model and develop a cus-
tom branch-and-cut algorithm for solving it. Fouilhoux et al. [3]
study a 2 edge-connected star problem where the backbone struc-
ture is a 2 edge-connected subgraph (A graph is 𝑘 edge-connected,
for a non-negative integer 𝑘 , if there are at least 𝑘 edge-disjoint
paths between any pair of nodes). In [5], Karaşan et al. consider 2
edge-connected star problems where each terminal is connected
to two selected hubs. Both papers provide integer programming
models and valid inequalities for the studied problems, analyze
facet-defining inequalities and present exact and heuristic sepa-
ration algorithms. In these works, the survivability is considered
either only for the backbone network [3, 11] or for both tributary
and backbone networks [5]. In all cases, the topological structure
may not be preserved in the case one hub fails. Indeed, as shown
in Figure 1, the backbone structure is disconnected when the hub
in the central position fails.

As a consequence of some hazardous events (failures, attacks,
etc.), designing a reliable topological network might be essential.
Survivable network design problems have largely been studied in
the literature as a means to provide robustness to networks [4, 7].
In this work, we introduce a robust version of RSP where the ring
star structure should be preserved whenever a single hub fails. The
notion of robustness adopted complies with the one introduced in
[9].

The rest of this paper is organized as follows. Section 2 defines the
robust RSP. In Section 3 an integer linear program (ILP) is proposed
to model a robust version of the RSP. In Section 4, a Benders de-
composition is presented as an alternative solution method. Finally,
computational results are presented and discussed in Section 6.
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Figure 1: 2 edge-connected star (dual homed) network [5]

2 ROBUST RING STAR PROBLEM
DEFINITION

In this section we first recall the RSP definition and introduce the
robust version we study in this paper.

2.1 Ring Star Problem
We first recall the Ring Star Problem definition as proposed in
Labbé et al.[10]. It consists of selecting a subset of nodes, called hubs,
to be linked by a cycle (ring topology) and join all the terminals to
the cycle (star topology). We consider a mixed graph𝐺 = (𝑉 , 𝐸∪𝐴)
with 𝑉 = {1, 2, . . . , 𝑛} a node set where node 1 is a specific node
called the depot, 𝐸 = {𝑖 𝑗 | (𝑖, 𝑗) ∈ 𝑉 2, 𝑖 < 𝑗} an edge set and
𝐴 = {(𝑐, ℎ) | (𝑐, ℎ) ∈ 𝑉 2} an arc set.
• The Ring part aims to select a subset 𝐻 ⊆ 𝑉 and link up all
hubs of 𝐻 with a cycle using edges of 𝐸. The cost of opening
a hub 𝑖 ∈ 𝑉 is 𝑜𝑖 ∈ R+ and the cost of selecting an edge
𝑖 𝑗 ∈ 𝐸 between two hubs 𝑖 and 𝑗 is 𝑟𝑖 𝑗 ∈ R+. The depot node
has to be in 𝐻 .
• The Star requires that each terminal in 𝑇 = 𝑉 \ 𝐻 must be
connected to exactly one hub in 𝐻 . The cost of selecting
arc (𝑡, ℎ) ∈ 𝐴 to connect terminal 𝑡 ∈ 𝑇 to a hub ℎ ∈ 𝐻 is
𝑠𝑡ℎ ∈ R+.

Finally, the RSP is to design a minimum-cost Ring Star network,
composed of the sum of selecting the hubs, linking them to form
the ring, and connecting the terminals.

2.2 Robust Ring Star Problem
The Robust Ring Star Problem, referred to as 𝜌-RSP where 𝜌

stands for robust, has an additional input compared to RSP: 𝑉 ⊆ 𝑉
is a possibly empty subset of nodes that can fail if they are selected
as hubs. A hub in 𝑉 is called uncertain because it may fail, whereas
a hub in 𝑉 \𝑉 is called certain as it is not supposed to fail [12].

The 𝜌-RSP is to build a minimal cost subgraph of 𝐺 that will
always contain a ring-star topology even if a hub in 𝑉 fails. By
contrast with RSP, if a hub belongs to 𝑉 , an additional edge has to
join its two neighbors in the ring. This edge will be used if the hub

in question fails. Furthermore, each terminal is linked to the ring
by either connecting it to a single hub in 𝑉 \𝑉 (if there exist one),
or by connecting it to two hubs in 𝑉 . The 𝜌-RSP is then to design
a minimal cost robust ring-star network. Thus, it can be observed
that 𝜌-RSP reduces to RSP when 𝑉 is empty. Figure 2 shows an
illustration of the 𝜌-RSP with 𝑉 = 𝑉 \ {1, 5, 6}.
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Figure 2: An instance of the 𝜌-RSP with 𝑉 = 𝑉 \{1, 5, 6} and
𝐻 = 𝑉 \{3, 10, 11}.

3 ILP FORMULATION OF ROBUST RSP
The proposed ILP formulation of 𝜌-RSP is based on the following
decision variables: 𝑥𝑖 𝑗 ∈ {0, 1}, ∀(𝑖, 𝑗) ∈ 𝑉 2, 𝑖 < 𝑗 is set to 1 if
and only if edge (𝑖, 𝑗) ∈ 𝐸 belongs to the ring. Note that we may
sometimes refer to 𝑥𝑖 𝑗 for 𝑖 > 𝑗 , in which case the actual computer
implementation will simply replace 𝑥𝑖 𝑗 with 𝑥 𝑗𝑖 . Variable 𝑦𝑖 𝑗 ∈
{0, 1}, ∀(𝑖, 𝑗) ∈ 𝑉 2 is set to 1 if and only if terminal 𝑖 is assigned
to hub 𝑗 and; 𝑦 𝑗 𝑗 is set to 1 if 𝑗 is selected as a hub, and 0 if it is a
terminal. Finally, 𝑥 ′

𝑖𝑘
∈ {0, 1} is set to 1 if and only if 𝑖 and 𝑘 are

hubs that have a common neighbor 𝑗 that can fail in the ring ( 𝑗 is a
hub in 𝑉 ). Note that the edges for which 𝑥 ′ is one do not need to
form a cycle, for e.g. see Figure 4 and Figure 3. In Figure 3, 𝑥 ′ and
𝑥 variables equal to one are displayed. Since there are eight hubs
in the ring, there are exactly eight 𝑥𝑖 𝑗 nonzero variables and since
there are five uncertain hubs, there are exactly five 𝑥 ′

𝑖 𝑗
nonzero

variables. Finally, since the smallest ring has size 3, a robust solution
must have a ring of size at least 3+1=4 in 𝜌-RSP unless all the hubs
are in 𝑉 \𝑉 . Variable 𝜎 is an integer that enforces that the ring has
a size at least 4 whenever there is at least one selected hub in 𝑉 .

We will use the set of indices �̃� = {(𝑖, 𝑗, 𝑘) ∈ 𝑉 3 : 𝑗 ∈ 𝑉 , 𝑖 ≠ 𝑗, 𝑗 ≠

𝑘, 𝑖 < 𝑘} and 𝑉 ≠ = {(𝑖, 𝑗) ∈ 𝑉 2 : 𝑖 ≠ 𝑗} in the ILP formulation of
𝜌-RSP:
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Figure 3: Same instance as in Figure 2 with 𝑥 and 𝑥 ′ variables
equal to one displayed and non-hubs with lesser opacity

Minimize
∑
𝑖∈𝑉

∑
𝑗 ∈𝑉
𝑖< 𝑗

𝑟𝑖 𝑗 (𝑥𝑖 𝑗 + 𝑥 ′𝑖 𝑗 ) +
∑
𝑖∈𝑉

𝑜𝑖𝑦𝑖𝑖 +
∑
𝑖∈𝑉

∑
𝑗 ∈𝑉 \{𝑖 }

𝑠𝑖 𝑗𝑦𝑖 𝑗

∑
𝑗 ∈𝑉
𝑖< 𝑗

𝑥𝑖 𝑗 +
∑
𝑗 ∈𝑉
𝑖> 𝑗

𝑥 𝑗𝑖 = 2𝑦𝑖𝑖 ∀𝑖 ∈ 𝑉 (1)

|𝑆 | − 1
|𝑉 \𝑆 |

∑
𝑖∈𝑉 \𝑆

𝑦𝑖𝑖 ≥
∑
𝑖∈𝑆

∑
𝑗 ∈𝑆
𝑖< 𝑗

𝑥𝑖 𝑗 ∀𝑆 ⊂ 𝑉 : |𝑆 | ≤ 1
2 |𝑉 | (2)

∑
𝑗 ∈𝑉 \𝑉
𝑖≠𝑗

2𝑦𝑖 𝑗 +
∑
𝑗 ∈𝑉
𝑖≠𝑗

𝑦𝑖 𝑗 = 2(1 − 𝑦𝑖𝑖 ) ∀𝑖 ∈ 𝑉 (3)

∑
𝑖∈𝑉

∑
𝑗 ∈𝑉
𝑖< 𝑗

𝑥𝑖 𝑗 ≥ 3 + 𝜎 (4)

𝜎 ≥ 𝑦𝑖𝑖 ∀𝑖 ∈ 𝑉 (5)

𝑥𝑖 𝑗 + 𝑥 𝑗𝑘 ≤ 1 + 𝑥 ′
𝑖𝑘

∀(𝑖, 𝑗, 𝑘) ∈ �̃� (6)

𝑦𝑖 𝑗 ≤ 𝑦 𝑗 𝑗 ∀(𝑖, 𝑗) ∈ 𝑉 ≠ (7)
𝑦11 = 1 (8)
𝜎 ∈ N
𝑦𝑖 𝑗 ∈ {0, 1} ∀(𝑖, 𝑗) ∈ 𝑉 2

𝑥𝑖 𝑗 ∈ {0, 1} ∀(𝑖, 𝑗) ∈ 𝑉 2, 𝑖 < 𝑗

𝑥 ′𝑖 𝑗 ∈ {0, 1} ∀(𝑖, 𝑗) ∈ 𝑉 2, 𝑖 < 𝑗

Constraints (1) correspond to connectivity constraints for the
ring while (2) to subtour elimination constraints. Constraints (3)
enforce that each terminal is connected to exactly two distinct hubs
if these hubs are in 𝑉 , or to a single hub if it is in 𝑉 \𝑉 . Constraints
(4) and (5) state that the ring has size at least three if all hubs are in
𝑉 \𝑉 , or four if at least one hub can fail. Constraints (6) enforce that
for each hub 𝑗 ∈ 𝑉 having hubs 𝑖 and 𝑘 as neighbors in the ring,
there is an edge that joins 𝑖 and 𝑘 , that can serve when 𝑗 fails. There
are 1

2𝑛(𝑛 − 1) (𝑛 − 2) = O(𝑛𝑛
2) such inequalities where 𝑛 = |𝑉 | and

𝑛 = |𝑉 |. Constraints (7) ensure that a terminal can only be linked
to a hub. Finally, (8) force the depot to be part of the ring.

This model can be solved using a branch-and-cut approach,
where subtour elimination constraints are added on-the-fly as Lazy
Constraints.

4 BENDERS DECOMPOSITION OF ROBUST
RSP

We can observe that whenever the ring is known (i.e., the 𝑦𝑖𝑖 vari-
ables, the 𝑥𝑖 𝑗 variables, and 𝜎 are fixed), determining all the other
variables is an easy problem. Indeed, if the ring has 5 or more
hubs, we can simply set 𝑥 ′

𝑖𝑘
to one if and only if 𝑗 ∈ 𝑉 , and

𝑦 𝑗 𝑗 = 𝑥𝑖 𝑗 = 𝑥 𝑗𝑘 = 1, and zero otherwise, and for each terminal 𝑖 ,
we connect it either to the two nearest hubs in 𝑉 or to the closest
hub in 𝑉 \𝑉 , the selected option being the one that incurs the mini-
mum cost. Hence, we can devise a Benders decomposition whose
master problem decides on the 𝑦𝑖𝑖 , 𝑥𝑖 𝑗 and 𝜎 variables, whereas the
subproblem is to set the remaining variables.

The master problem is:

Minimize
∑
𝑖∈𝑉

∑
𝑗 ∈𝑉
𝑖< 𝑗

𝑟𝑖 𝑗𝑥𝑖 𝑗 +
∑
𝑖∈𝑉

𝑜𝑖𝑦𝑖𝑖 + 𝜆

Subject to (1), (2), (4), (5), (8), and

𝜎 ∈ N
𝑦𝑖𝑖 ∈ {0, 1} ∀𝑖 ∈ 𝑉
𝑥𝑖 𝑗 ∈ {0, 1} ∀(𝑖, 𝑗) ∈ 𝑉 2, 𝑖 < 𝑗

𝜆 ≥ 0

The numerical value of the 𝑥𝑖 𝑗 and 𝑦 𝑗 𝑗 variables after solving
the master problem are stored as 𝑥𝑖 𝑗 and 𝑦 𝑗 𝑗 , then passed to the
subproblem, whose primal can be stated as:

Minimize 𝜆 =
∑
𝑖∈𝑉

∑
𝑗 ∈𝑉
𝑖< 𝑗

𝑟𝑖 𝑗𝑥
′
𝑖 𝑗 +

∑
𝑖∈𝑉

∑
𝑗 ∈𝑉 \{𝑖 }

𝑠𝑖 𝑗𝑦𝑖 𝑗

∑
𝑗 ∈𝑉 \𝑉
𝑖≠𝑗

2𝑦𝑖 𝑗 +
∑
𝑗 ∈𝑉
𝑖≠𝑗

𝑦𝑖 𝑗 = 2(1 − 𝑦𝑖𝑖 ) ∀𝑖 ∈ 𝑉 (9)

𝑥 ′
𝑖𝑘
≥ 𝑥𝑖 𝑗 + 𝑥 𝑗𝑘 − 1 ∀(𝑖, 𝑗, 𝑘) ∈ �̃� (10)

𝑦𝑖 𝑗 ≤ 𝑦 𝑗 𝑗 ∀(𝑖, 𝑗) ∈ 𝑉 ≠, (11)

𝑦𝑖 𝑗 ∈ {0, 1} ∀(𝑖, 𝑗) ∈ 𝑉 ≠ (12)

𝑥 ′𝑖 𝑗 ∈ {0, 1} ∀(𝑖, 𝑗) ∈ 𝑉 2, 𝑖 < 𝑗

Where (9), (10), and (11) are derived from (3), (6), and (7) respectively.
This subproblem is easy to solve. Indeed, for all (𝑖, 𝑗, 𝑘) ∈ �̃� such

that 𝑥𝑖 𝑗 + 𝑥 𝑗𝑘 = 2 we should set 𝑥 ′
𝑖𝑘

= 1 if 𝑦 𝑗 𝑗 = 1. If 𝑖 is a terminal
meaning 𝑦𝑖𝑖 = 0, we compute𝑚𝑖 and𝑚′𝑖 as the closest hubs in 𝑉 .
• 𝑚𝑖 = argmin

𝑗 ∈𝑉 :�̂� 𝑗 𝑗=1
𝑠𝑖 𝑗 and

• 𝑚′
𝑖
= argmin

𝑗 ∈𝑉 \{𝑚𝑖 }:�̂� 𝑗 𝑗=1
𝑠𝑖 𝑗 .

If no two such hubs exist, 𝑚𝑖 and 𝑚′
𝑖
are set to zero. We also

compute𝑚★
𝑖
, as the closest hub in𝑉 \𝑉 :𝑚★

𝑖
= argmin

𝑗 ∈𝑉 \𝑉 :�̂� 𝑗 𝑗=1
𝑠𝑖 𝑗 . If no

such hub exists,𝑚★
𝑖
is set to zero. Assuming that 𝑠𝑖,0 is infinite, if
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𝑠𝑖,𝑚𝑖
+ 𝑠𝑖,𝑚′

𝑖
< 𝑠𝑖,𝑚★

𝑖
, then terminal 𝑖 is connected to its two closest

uncertain neighbors in the ring, otherwise 𝑖 is connected to the
closest certain hub in the ring. It can be observed that 𝑠𝑖,𝑚𝑖

+ 𝑠𝑖,𝑚′
𝑖

and 𝑠𝑖,𝑚★
𝑖
cannot be simultaneously set to infinity, as the ring has

at least three hubs.
The subproblem is originally an integer linear program, but it

can be stated as a linear program by adding the following constraint:
𝑦𝑖 𝑗 ≤

∑
𝑘∈𝑉 \{𝑖, 𝑗 }:�̂�𝑘𝑘=1

𝑦𝑖𝑘 for all 𝑖 ∈ 𝑉 such that 𝑦𝑖𝑖 = 0, and for all

𝑗 ∈ 𝑉 \{𝑖} such that 𝑠𝑖 𝑗 = 𝑠𝑖𝑚𝑖
. If no such 𝑗 exists, the constraint is

not enforced. This constraint, labeled as (14) in the sequel, states
that if terminal 𝑖 is connected to an uncertain hub, then it should
be connected to at least another one. Since (11) dominates (12), and
because the objective function “pushes” the 𝑥 ′ variables downward,
integrality constraints can be dropped, and it can be shown that
the linear relaxation of the subproblem (with the new constraints
above) has an integral optimal solution. Let Ω = {(𝑖, 𝑗) ∈ 𝑉 ×𝑉 \{𝑖} :
𝑦𝑖𝑖 = 0, 𝑠𝑖 𝑗 = 𝑠𝑖𝑚𝑖

}, the linear relaxation of the subproblem is:

Minimize 𝜆 =
∑
𝑖∈𝑉

∑
𝑗 ∈𝑉
𝑖< 𝑗

𝑟𝑖 𝑗𝑥
′
𝑖 𝑗 +

∑
𝑖∈𝑉

∑
𝑗 ∈𝑉 \{𝑖 }

𝑠𝑖 𝑗𝑦𝑖 𝑗

∑
𝑗 ∈𝑉 \𝑉
𝑖≠𝑗

2𝑦𝑖 𝑗 +
∑
𝑗 ∈𝑉
𝑖≠𝑗

𝑦𝑖 𝑗 = 2(1 − 𝑦𝑖𝑖 ) ∀𝑖 ∈ 𝑉 (13)

−𝑦𝑖 𝑗 +
∑

𝑘∈𝑉 \{𝑖, 𝑗 }

𝑦𝑖𝑘 ≥ 0 ∀(𝑖, 𝑗) ∈ Ω (14)

𝑥 ′
𝑖𝑘
≥ 𝑥𝑖 𝑗 + 𝑥 𝑗𝑘 − 1 ∀(𝑖, 𝑗, 𝑘) ∈ �̃� (15)

−𝑦𝑖 𝑗 ≥ −𝑦 𝑗 𝑗 ∀(𝑖, 𝑗) ∈ 𝑉 ≠, (16)

𝑥 ′𝑖 𝑗 ≥ 0 ∀(𝑖, 𝑗) ∈ 𝑉 2, 𝑖 < 𝑗

𝑦𝑖 𝑗 ≥ 0 ∀(𝑖, 𝑗) ∈ 𝑉 ≠

5 DUAL FORMULATION OF BENDERS
SUBPROBLEM RELAXATION

In this section, we state the dual of the linear relaxation of the
subproblem, and the optimality cut that is used in the Benders
decomposition. Then, we introduce a hybrid solution approach to
solve the subproblem’s dual. Rather than solving the master prob-
lem and the subproblem alternatively, the Benders decomposition is
implemented as follows: whenever a feasible integer solution to the
master problem is found, the subproblem is solved and an optimal-
ity cut is added to the master problem (if necessary). If the current
integer solution to the master problem contains a subtour, we add
a Benders feasibility cut, i.e., a subtour elimination constraint (2).

5.1 Subproblem’s dual and optimality cut
The decision variables of the subproblem’s dual are associated with
the subproblem’s primal constraints as follows:

• Constraints (13) in the primal are associated with 𝛼𝑖
∀𝑖 ∈ 𝑉
• Constraints (14) in the primal are associated with 𝛿𝑖 𝑗
∀(𝑖, 𝑗) ∈ Ω
• Constraints (15) in the primal are associated with 𝛽𝑖 𝑗𝑘

∀(𝑖, 𝑗, 𝑘) ∈ �̃�

• Constraints (16) in the primal are associated with 𝛾𝑖 𝑗
∀(𝑖, 𝑗) ∈ 𝑉 ≠

The dual of the relaxation of the subproblem is:

Maximize 𝜆 =
∑
𝑖∈𝑉

2(1 − 𝑦𝑖𝑖 )𝛼𝑖+
∑
(𝑖, 𝑗,𝑘) ∈ �̃�

(𝑥𝑖 𝑗 + 𝑥 𝑗𝑘 − 1)𝛽𝑖 𝑗𝑘

−
∑
(𝑖, 𝑗) ∈𝑉 ≠

𝑦 𝑗 𝑗𝛾𝑖 𝑗

2𝛼𝑖 − 𝛾𝑖 𝑗 ≤ 𝑠𝑖 𝑗 , ∀𝑖 ∈ 𝑉 (17)

∀𝑗 ∈ 𝑉 \(𝑉 ∪ {𝑖})
𝛼𝑖 − 𝛾𝑖 𝑗 ≤ 𝑠𝑖 𝑗 , ∀𝑖 ∈ 𝑉 ,𝑦𝑖𝑖 = 1 (18)

∀𝑗 ∈ 𝑉 \ {𝑖}

𝛼𝑖 − 𝛾𝑖 𝑗 − 𝛿𝑖 𝑗 +
∑

𝑘∈𝑉 \{𝑖, 𝑗 }
𝑠𝑖𝑘=𝑠𝑖𝑚𝑖

𝛿𝑖𝑘 ≤ 𝑠𝑖 𝑗 , ∀(𝑖, 𝑗) ∈ Ω (19)

𝛼𝑖 − 𝛾𝑖 𝑗 +
∑

𝑘∈𝑉 \{𝑖, 𝑗 }
𝑠𝑖𝑘=𝑠𝑖𝑚𝑖

𝛿𝑖𝑘 ≤ 𝑠𝑖 𝑗 , ∀𝑖 ∈ 𝑉 : 𝑦𝑖𝑖 = 0 (20)

∀𝑗 ∈ 𝑉 \{𝑖} : 𝑠𝑖 𝑗 > 𝑠𝑖𝑚𝑖∑
𝑗 ∈𝑉 :𝑗≠𝑖, 𝑗≠𝑘

𝛽𝑖 𝑗𝑘 ≤ 𝑟𝑖𝑘 , ∀(𝑖, 𝑘) ∈ 𝑉 2, 𝑖 < 𝑘 (21)

𝛼𝑖 ∈ R, ∀𝑖 ∈ 𝑉
𝛾𝑖 𝑗 ≥ 0, ∀(𝑖, 𝑗) ∈ 𝑉 ≠

𝛿𝑖 𝑗 ≥ 0, ∀(𝑖, 𝑗) ∈ Ω

𝛽𝑖 𝑗𝑘 ≥ 0, ∀(𝑖, 𝑗, 𝑘) ∈ �̃�

The optimality cut to be added to the master problem of the
Benders decomposition is then:

𝜆 ≥
∑
𝑖∈𝑉

2(1 − 𝑦𝑖𝑖 )𝛼𝑖 +
∑
(𝑖, 𝑗,𝑘) ∈ �̃�

(𝑥𝑖 𝑗 + 𝑥 𝑗𝑘 − 1)𝛽𝑖 𝑗𝑘

−
∑
(𝑖, 𝑗) ∈𝑉 ≠

𝑦 𝑗 𝑗𝛾𝑖 𝑗

Even if the subproblem can be stated as a linear program, it has
a cubic number of 𝛽𝑖 𝑗𝑘 variables, which makes it long to solve. In
order to solve it faster, we take advantage of the fact that these
variables are independent of the other variables. The next section
presents a quadratic time algorithm that finds a partial optimal
solution to the subproblem’s dual, in the sense that it sets the 𝛽𝑖 𝑗𝑘
variables. Then, the other decision variables of the subproblem’s
dual are set by solving the subproblem’s dual where 𝛽𝑖 𝑗𝑘 variables
and constraint (21) are removed. This “light” version of the sub-
problem dual has 𝑂 ( |𝑉 |2) variables and constraints, and is solved
much faster.

5.2 An algorithm for solving partially the
subproblem’s dual

Algorithm 1 solves partially the dual of Benders subproblem’s re-
laxation. It takes advantage of the fact that at most |𝑉 | of the 𝛽𝑖 𝑗𝑘
will be non-zeros and compute them in a quadratic running time.
Knowing 𝑥𝑖 𝑗 and 𝑦 𝑗 𝑗 , we initially let 𝛽 ′

𝑗
be the adjacency list of
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node 𝑗 ∈ 𝑉 such that 𝑦 𝑗 𝑗 = 1: 𝛽 ′
𝑗
[1] and 𝛽 ′

𝑗
[2] are its two neighbors

in the ring. Next we handle the special case of a four-hub ring,
in which an edge joining two nonadjacent hubs may wrongly be
counted twice. As an example, in Figure 4, the dashed edge be-
tween depot 1 and hub 3must not be counted twice in the objective
function as this edge preserves the ring structure when hub 2 or
4 fails. This is achieved in constant time, lines 13 to 19 in Algo-
rithm 1: if there exist 𝑗1 ≠ 𝑗2 in 𝑉 such that 𝑦 𝑗1 𝑗1 = 𝑦 𝑗2 𝑗2 = 1 and
(𝛽 ′

𝑗1
[1], 𝛽 ′

𝑗1
[2]) = (𝛽 ′

𝑗2
[1], 𝛽 ′

𝑗2
[2]), then we set 𝛽 ′

𝑗2
to the empty set.

Note that for all (𝑖, 𝑗, 𝑘) ∈ �̃� , 𝛽𝑖 𝑗𝑘 ≠ 0 implies that 𝛽 ′
𝑗
is nonempty

(the converse does not hold when some ring costs are zero).

Algorithm 1: Building the robust edges in the dual of the
subproblem of 𝜌-RSP
1 Input: (�̂�𝑖𝑖 )𝑖∈𝑉 , (𝑥𝑖 𝑗 )(𝑖,𝑗 )∈𝑉 2 | 𝑖< 𝑗 booleans
2 Output: (𝛽′

𝑗
)
𝑗∈𝑉

3 foreach 𝑗 ∈ 𝑉 do
4 𝛽′

𝑗
← [ ]

5 foreach 𝑖 ∈ 𝑉 do
6 𝛼𝑖 ← 0
7 foreach 𝑗 ∈ 𝑉 : 𝑗 ≠ 𝑖 do
8 if 𝑗 > 𝑖 and 𝑥𝑖 𝑗 = 1 and 𝑖 ∈ 𝑉 then
9 Append 𝑗 to 𝛽′

𝑖

10 if 𝑗 > 𝑖 and 𝑥𝑖 𝑗 = 1 and 𝑗 ∈ 𝑉 then
11 Append 𝑖 to 𝛽′

𝑗

/* Particular case of a 4-hub ring */

12 𝐻 ← {𝑖 ∈ 𝑉 : �̂�𝑖𝑖 = 1}
13 if |𝐻 | = 4 then
14 𝐻 ← 𝐻 ∩𝑉
15 foreach ( 𝑗1, 𝑗2) ∈ 𝐻 ×𝐻 : 𝑗1 < 𝑗2 do
16 if (𝛽′

𝑗1
[1], 𝛽′

𝑗1
[2]) = (𝛽′

𝑗2
[1], 𝛽′

𝑗2
[2]) then

17 𝐻 ← 𝐻\{ 𝑗2 }
18 𝛽′

𝑗2
← ∅

19 return (𝛽′
𝑗
)
𝑗∈𝑉

When Algorithm 1 terminates, 𝛽𝑖 𝑗𝑘 is set to 𝑟𝑖𝑘 for all (𝑖, 𝑗, 𝑘) ∈ �̃� ,
and the optimality cut can be written as:
𝜆 ≥

∑
𝑖∈𝑉 :�̂�𝑖𝑖=0

2(1 − 𝑦𝑖𝑖 )𝛼𝑖 −
∑

(𝑖, 𝑗) ∈𝑉 ≠:�̂�𝑖𝑖=0
𝛾𝑖 𝑗𝑦 𝑗 𝑗

+
∑

𝑗 ∈𝑉 :𝛽′
𝑗
≠∅

(𝑥𝛽′
𝑗
[1] 𝑗 + 𝑥 𝑗𝛽′

𝑗
[2] − 1)𝑟𝛽′

𝑗
[1]𝛽′

𝑗
[2]

12

3
4

Figure 4: 𝜌-RSP instance with𝑉 = {2, 3, 4}with a dashed edge
used when hub 2 or 4 fails.

6 COMPUTATIONAL RESULTS
The ILP formulations given in Sections 3 and 4 are addressed using
a branch-and-cut approach. They have been implemented with
Julia v1.5.2 and Gurobi v0.9.4 on a 16 GB RAM machine and an
Intel(R) Core(TM) i7-10610U processor running at 1.80GHz.

Two types of instances have been used. First, we generated
random instances with 𝑛 ∈ {100, 200} nodes. The nodes’ coordi-
nates are randomly drawn in [1, 𝑛] for both abscissa and ordinates.
The parameter 𝛼 ∈ {3, 5, 7, 9} allows to compute the ring costs
𝑟𝑖 𝑗 = ⌈(10 − 𝛼)ℓ𝑖 𝑗 ⌉, for all (𝑖, 𝑗) in 𝐸 where ℓ𝑖 𝑗 is the euclidean dis-
tance between 𝑖 ∈ 𝑉 and 𝑗 ∈ 𝑉 . Opening costs 𝑜𝑖 , for all 𝑖 ∈ 𝑉 are
either randomly distributed over O𝑖 (where O𝑖 is a random variable
following the discrete distribution over the set N ∩ [0.5𝑛; 1.5𝑛]) or
are equal to 1. Star assignment costs 𝑠𝑖 𝑗 for all (𝑖, 𝑗) ∈ 𝐴 are either
randomly distributed over S𝑖 𝑗

(
where S𝑖 𝑗 is a random variable

such that S𝑖 𝑗 ∼
1

U([𝑛; 3𝑛/2])

)
, or defined by 𝑠𝑖 𝑗 = ⌈𝛼ℓ𝑖 𝑗 ⌉, for all

(𝑖, 𝑗) ∈ 𝐴. For all random instances, we launched 5 runs and com-
puted the average for all of them. Second, we used eil 51 adapted
from TSPLIB as in Labbé 2004 [10]. For this TSPLIB instance, we set
𝑟𝑖 𝑗 = ⌈(10 − 𝛼)ℓ𝑖 𝑗 ⌉, 𝑜𝑖 = 𝑛. In all cases, 𝑉 = 𝑉 \ {1}, and instance
names are of the form rand 𝑛 − 𝛼 and eil 51−𝛼 in Table 1.

The formulation of 𝜌-RSP given in Section 3 is referred to as
ILP, the one of Section 4 is referred to as Benders. Table 1 shows a
comparison of ILP and Benders, with a time limit of 600 seconds
per instance.

The output of our numerical results are as follows: CPU is the
CPU Time in seconds for both methods. (TL) is indicated when the
time limit is reached for at least one instance; CPU SP is the CPU
time in seconds for Benders subproblem. Note that the master prob-
lem execution time is CPU − CPU SP; Gap represents the relative

optimality gap of bothmethods computed as
|obj_bound − obj_val |

|obj_val |
where obj_bound and obj_val are the ILP objective bound and in-
cumbent objective value; n_subtour is the number of subtour elim-
ination constraints, i.e., feasibility cuts for Benders, and Lazy Con-
straints for ILP; n_cut gives the number of optimality cuts in the
Benders decomposition; and 𝒓∗ corresponds to the percentage of
hubs over total number of nodes in the best solution found.

We can see from Table 1 that for all random instances we gen-
erated, the Benders decomposition approach outperforms the ILP
model. Those random instances are designed so that star costs are
very low compared to opening and ring costs. For such instances,
star costs are approximately 𝑛 times smaller than the opening costs
and the ring costs if opening costs are equal to 1, and 𝑛2 smaller
than the opening costs if the opening costs are randomly distributed
over O𝑖 . In these instances, we observe that we have 4 hubs in the
ring in all optimal solutions. For instances of size 𝑛 = 100, Ben-
ders is between 1.5 to 2 times faster than ILP, and for 𝑛 = 200, the
speedup lies between 4 and 5. For eil 51, Benders decomposition
is slower. This might be partially explained because star costs are
of the same order of magnitude as opening and ring costs. For such
instances, the master problem does not take into account subtour
elimination constraints and the contribution of star costs. Hence,
a large number of feasibility and optimality cuts are required to
achieve lower bounds that are competitive with the ones provided
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Table 1: Comparison of ILP and Benders

Instance 𝑛–𝛼 Instance type ILP Benders Decomposition

𝑛 = |𝑉 | 𝑜𝑖 𝑠𝑖 𝑗 CPU Gap 𝑟∗ n_subtour CPU Gap 𝑟∗ n_subtour CPU SP n_cut

rand 100-3 O𝑖 S𝑖 𝑗 38.01 0% 0.04 4.0 16.04 0% 0.04 15.2 12.01 85.8

rand 100-5 O𝑖 S𝑖 𝑗 30.97 0% 0.04 46.2 13.08 0% 0.04 20 9.39 66.8

rand 100-3 1 S𝑖 𝑗 30.01 0% 0.04 36.6 19.79 0% 0.04 38.4 14.78 102.2

rand 100-5 1 S𝑖 𝑗 28.8 0% 0.04 21.6 19.78 0% 0.04 53.8 15.01 109.8

rand 200-5 1 S𝑖 𝑗 349.74 0% 0.02 59.0 71.3 0% 0.02 54 53.84 76.2

rand 200-7 1 S𝑖 𝑗 324.28 0% 0.02 81.2 76.03 0% 0.02 68.4 51.59 69.6

eil 51-3 𝑛 ⌈3𝑙𝑖 𝑗 ⌉ 600.00 (TL) 26% 0.92 283.0 600.00 (TL) 47% 0.8 2492.0 58.25 754.0

eil 51-5 𝑛 ⌈5𝑙𝑖 𝑗 ⌉ 600.00 (TL) 29% 0.08 566.0 600.00 (TL) 36% 0.18 3442.0 62.17 1438.0

eil 51-7 𝑛 ⌈7𝑙𝑖 𝑗 ⌉ 600.00 (TL) 7% 0.08 118.0 600.00 (TL) 5% 0.08 1746.0 100.89 2332.0

eil 51-9 𝑛 ⌈9𝑙𝑖 𝑗 ⌉ 11.04 0% 0.08 0.0 15.41 0% 0.08 31.0 11.17 312.0

by the solver while addressing the monolithic ILP model. This issue
may be mitigated by reformulating the problem objective function
to let the master problem use more knowledge about star costs.
This may improve the lower bounds of the linear relaxation of the
master problem.

7 CONCLUSION
Future works may be focused on accelerating the proposed Benders
decomposition. A first option is to replace the hybrid method for
solving the subproblem’s dual by a single quadratic time algorithm
to separate Benders optimality cuts faster. This would also open the
way for the generation of stronger optimality cuts. Indeed, there
may exist many different optimal solutions to the subproblem’s
dual, that may lead to different optimality cuts. It would be bene-
ficial to return the solution that yields the strongest cut, and this
aspect is currently not under control when we resort to a linear
programming solver for separating Benders optimality cuts. In addi-
tion, a heuristic may be devised to address the master problem as in
Costa et al. [2]. This would be useful especially for large instances,
that might be beyond the range of exact approaches. Finally, lower
bounds could also be proposed in an attempt to address this prob-
lem with a branch-and-bound algorithm, as this class of solution
approaches does not seem have been explored to tackle ring star
problem variants.
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