
A Decomposition Branch-and-Cut Algorithm for the Maximum
Cross-Graph 𝑘-Club Problem

Hao Pan

hao.pan@okstate.edu

School of Industrial Engineering and

Management

Oklahoma State University

Stillwater, Oklahoma, USA

Balabhaskar Balasundaram

baski@okstate.edu

School of Industrial Engineering and

Management

Oklahoma State University

Stillwater, Oklahoma, USA

Juan S. Borrero

juan.s.borrero@okstate.edu

School of Industrial Engineering and

Management

Oklahoma State University

Stillwater, Oklahoma, USA

ABSTRACT
The analysis of social and biological networks often involves model-

ing clusters of interest as cliques or their graph-theoretic generaliza-
tions. The 𝑘-club model, which relaxes the requirement of pairwise

adjacency in a clique to length-bounded paths inside the cluster,

has been used to model cohesive subgroups in social networks and

functional modules/complexes in biological networks. However,

if the graphs are time-varying, or if they change under different

conditions, we may be interested in clusters that preserve their

property over time or under changes in conditions. To model such

clusters that are conserved in a collection of graphs, we consider

a cross-graph 𝑘-club model, a subset of nodes that forms a 𝑘-club

in every graph in the collection. In this paper, we consider the

canonical optimization problem of finding a cross-graph 𝑘-club

of maximum cardinality. We introduce algorithmic ideas to solve

this problem and evaluate their performance on some benchmark

instances.

KEYWORDS
Cross-graph mining, temporal networks, 𝑘-clubs, integer program-

ming

1 INTRODUCTION
In graph-based data mining (or graph mining), a node models a

data item with different attributes, and two nodes are joined by

an edge if they are “close" to each other based on similarity mea-

sures. Graph mining in social and biological networks involves

modeling clusters of interest using cliques and their graph-theoretic

generalizations. In these graphs, a cohesive/tight-knit subset is a

group whose member nodes are believed or verified to intimately

cooperate with each other towards some specific goal. Cohesive

subgroups in social networks could be identified for use in rec-

ommender systems, marketing campaigns, community detection,

influence maximization, and so forth [3]. In biological networks like

protein interaction networks, gene co-expression networks, and

metabolic networks, clusters and network motifs are commonly

used to identify functional modules that could represent protein

complexes, transcriptional modules, or signaling pathways [12].

© 2022 Copyright held by the owner/authors(s). Published in Proceedings of the 10th
International Network Optimization Conference (INOC), June 7-10, 2022, Aachen,
Germany. ISBN 978-3-89318-090-5 on OpenProceedings.org
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

The clique and its graph-theoretic relaxations have been exten-

sively studied and used as cluster models in diverse fields [19].

Major categories include distance based relaxations 𝑘-clique and

𝑘-club [6], and edge count, degree, and density based relaxations 𝑘-

defective clique [25], 𝑘-plex [5], and quasi-clique [15], respectively.

A significant body of literature on optimization methods for

cluster detection seeks to find a subset of nodes satisfying a graph

property while optimizing a measure of fitness like cluster size

or weight. One common characteristic shared by optimization ap-

proaches to graph mining is that they identify cohesive subgraphs,

critical nodes, most central actors, or other graph structures of

interest in a single graph. However, in many settings the graphs are

time-varying as the underlying dynamic systems they are modeling

evolve over time. In this case, a single graph is typically a snapshot

that reflects node relationships at the point in time it is recorded.

Alternatively, relationships between a group of nodes may be dif-

ferent under different conditions. Jointly mining node relationships

under different conditions might uncover novel clusters that cannot

be found by individually analyzing each condition. An example

in cross-market customer segmentation is finding customers who

have similar behaviors across different markets as a more robust co-

hesive subgroup than those found in a single market [21]. Similarly,

systems biologists are interested in finding groups of co-expressing

genes or interacting proteins that are conserved under different

biological conditions or between different species [20].

In this paper we consider a cross-graph 𝑘-clubmodel to represent

clusters that are conserved in a collection of graphs. Note that the

graph collection may represent temporal graphs with an implicit

ordering, or may be obtained under different (experimental) con-

ditions without any natural ordering. Although our focus is on

clusters that induce low-diameter subgraphs, one may investigate

any clique relaxation or another graph property in the same setting.

2 CROSS-GRAPH 𝑘-CLUBS
For a simple graph 𝐺 , we use 𝑉 (𝐺) and 𝐸 (𝐺) to denote its node
and edge sets respectively. For simplicity we use 𝑢𝑣 to denote an
edge {𝑢, 𝑣} ∈ 𝐸 (𝐺). For a subset of nodes 𝑆 ⊆ 𝑉 (𝐺), 𝐺 [𝑆] denotes
the subgraph induced by 𝑆, obtained by deleting nodes outside 𝑆
and their incident edges. We denote by dist𝐺 (𝑖, 𝑗) the minimum
number of edges on a path connecting nodes 𝑖 and 𝑗 in graph 𝐺
and its diameter as diam(𝐺) B max{dist𝐺 (𝑖, 𝑗) : 𝑖, 𝑗 ∈ 𝑉 (𝐺)}.

Definition 2.1 ([14]). Given a graph 𝐺 and a positive integer 𝑘 , a

subset of nodes 𝑆 ⊆ 𝑉 (𝐺) is called a 𝑘-clique if dist𝐺 (𝑖, 𝑗) ≤ 𝑘 for

every pair of nodes 𝑖, 𝑗 ∈ 𝑆 .

Series ISSN: 2510-7437 17 10.48786/inoc.2022.04

https://OpenProceedings.org/
http://dx.doi.org/10.48786/inoc.2022.04

INOC 2022, June 7-10, 2022, Aachen, Germany Pan, Balasundaram, and Borrero

A 𝑘-clique 𝑆 allows two vertices 𝑢 and 𝑣 to be in 𝑆 even if every

path between 𝑢 and 𝑣 of length at most 𝑘 in 𝐺 includes vertices

outside 𝑆 (see Figure 1). By contrast, in a 𝑘-club, at least one of

those paths should be contained in 𝑆 as the definition below states.

Definition 2.2 ([16]). Given a graph 𝐺 and a positive integer 𝑘 , a

subset of nodes 𝑆 ⊆ 𝑉 (𝐺) is called a 𝑘-club if diam(𝐺 [𝑆]) ≤ 𝑘 .

2 4

3 5

1 6

2 4

3 5

1 6

Figure 1: The set {1, 2, 3, 4, 5} forms a 2-club; the set {2, 3, 4, 5, 6}
forms a 2-clique, but does not induce a 2-club [2].

For low values of parameter 𝑘 , typically no more than four, the

𝑘-club can be an appropriate choice for modeling cohesive social

subgroups or tightly knit clusters. We define the cross-graph coun-

terpart of the 𝑘-club, based on the cross-graph quasi-clique model

introduced by Pei et al [21], which also appears to be the earliest for-

mal study of a cross-graph cluster model. Let G = {𝐺1,𝐺2, . . . ,𝐺𝑝 }
denote a collection of 𝑝 simple, undirected graphs, all defined on a

common node set denoted by 𝑉 (G).
Definition 2.3. A subset of nodes 𝑆 ⊆ 𝑉 (G) is called a 𝑝-graph

𝑘-club if 𝑆 is a 𝑘-club in each graph in the collection G.
This paper focuses on the maximum 𝑝-graph 𝑘-club problem,

which seeks to find a 𝑝-graph 𝑘-club of maximum cardinality in G.
We use the prefix “𝑝-graph” when we know or wish to specify that

there are 𝑝 graphs in the collection. Otherwise, in line with past

usage, we simply refer to it as a cross-graph 𝑘-club [21].

3 LITERATURE REVIEW
The (1-graph) maximum 𝑘-club problem is NP-hard for every value

of parameter 𝑘 fixed in the problem [8]. Consequently, the maxi-

mum 𝑝-graph 𝑘-club problem is NP-hard for every fixed positive

integer 𝑘 as it includes the maximum 𝑘-club problem as special case.

Shahinpour and Butenko [23] provide a comprehensive survey on

the complexity results and algorithmic approaches for the maxi-

mum 𝑘-club problem. Given the focus of this paper, we limit our

review to integer programming (IP) formulations of the maximum

𝑘-club problem and prevailing works on cross-graph models.

The first IP formulation for the maximum 𝑘-club problem seen

in the literature was the chain formulation given by Bourjolly et

al [8]. The chain formulation introduces a binary variable for each

path of length at most 𝑘 connecting a nonadjacent pair of nodes 𝑖

and 𝑗 , in addition to binary variables indicating membership in the

𝑘-club. For the special case of 𝑘 = 2, the binary variables for the

paths are unnecessary as each path of length 2 between 𝑖 and 𝑗 is

uniquely identified by the common neighbor internal to that path.

Thus, we obtain the so-called common neighbor formulation for

the maximum 2-club problem. Path enumeration gets increasingly

challenging as 𝑘 takes values larger than two, and for arbitrary 𝑘

it can take up to 𝑂 (𝑛𝑘+1) binary variables and constraints to fully

describe the chain formulation on a graph with 𝑛 nodes.

For the maximum 3-club problem, Almeida and Carvalho [4]
introduced a compact neighborhood formulation, as well as a node
cut set formulation with exponentially many constraints in the
worst case. Veremyev and Boginski [26] introduced two
polynomial-sized IP formulations for the maximum 𝑘-club
problem, one using binary variables and the other using integer
variables, obtained by linearizing a polynomial formulation. Both
are described by 𝑂 (𝑘𝑛2) variables and constraints on an 𝑛-node
graph, and are known to be the first compact IP formulations for
the maximum 𝑘-club problem for general 𝑘.

Moradi and Balasundaram [13, 17] proposed a branch-and-cut

algorithm that is based on a delayed application of canonical hyper-

cube cuts to eliminate integral solutions to the initial relaxation (a

maximum 𝑘-clique formulation) that do not correspond to a 𝑘-club.

They also introduced an iterative graph decomposition framework

based on variable fixing to solve the problem on potentially small

subgraphs of the original graph and to take advantage of intermedi-

ate solutions in preprocessing (vertex deletion) between iterations.

Salemi and Buchanan [22] introduced a cut-like formulation

and a path-like formulation using length-bounded separators and

connectors. Their study generalizes for arbitrary 𝑘 , some of the

aforementioned formulations for the special cases, when 𝑘 = 2, 3.

Generally, the cut-like formulation could use exponentially many

constraints, but only |𝑉 | binary variables. This formulation and the

associated decomposition branch-and-cut algorithm demonstrated

effective computational performance making it the current state-of-

the-art mathematical programming approach to solve themaximum

𝑘-club problem for arbitrary 𝑘 .

Although previous works on cross-graph models in the litera-

ture are limited, we mention some examples that are related and

motivated our study. To extract reliable patterns across multiple

pieces of data, Pei et al [21] mined cross-graph quasi-cliques and

developed algorithms to enumerate them across multiple graphs.

Jiang and Pei [11] extended this work to the problem of finding fre-

quent cross-graph quasi-cliques. They seek to enumerate maximal

node subsets that form quasi-cliques in at least a minimum number

of graphs in the collection. We must clarify that the terminology

has been reused as these are “degree-based” quasi-cliques [18], and

not “density-based” quasi-cliques [15].

Sim et al [24] introduced an approach to clustering stocks that

exhibit homogeneous financial ratio values by mining the complete

set of cross-graph quasi-bicliques in a bipartite graph. This bipartite

graph has stocks as nodes in one partition and different features of

the stock data in the other partition. The cross-graph quasi-biclique

model was used to handle the issue of missing values in stock data.

4 IP FORMULATIONS
We begin with an IP formulation that is a direct extension of the

cut-like formulation for the maximum 𝑘-club problem to the cross-

graph setting. Then we propose a new formulation based on what

we refer to as ‘pairwise peeling.’

4.1 A conjunctive cut-like formulation
We use the following additional notations in the formulation. Let𝐺

denote the complement graph of 𝐺 . Given a graph 𝐺 and a pair of

nonadjacent nodes 𝑢 and 𝑣 , a subset of nodes 𝑆 is called a length-𝑘

18

The Maximum Cross-Graph 𝑘-Club Problem INOC 2022, June 7-10, 2022, Aachen, Germany

𝑢, 𝑣-separator if dist𝐺\𝑆 (𝑢, 𝑣) > 𝑘 , where 𝐺 \ 𝑆 denotes the graph

obtained from 𝐺 by deleting the nodes in 𝑆 along with its incident

edges. In other words, every path of length at most 𝑘 in𝐺 between

𝑢 and 𝑣 uses nodes from 𝑆 . By S𝐺 (𝑢, 𝑣), we denote the collection of

all length-𝑘 𝑢, 𝑣-separators that are minimal by exclusion. For the

case 𝑘 = 2, the unique minimal length-2 𝑢, 𝑣-separator is the set of

common neighbors, i.e., nodes adjacent to both 𝑢 and 𝑣 in 𝐺 . For a

subset of nodes 𝐶 , we use the short form 𝑥 (𝐶) to denote

∑
𝑢∈𝐶 𝑥𝑢 .

Consider the following optimization problem:

max 𝑥 (𝑉 (G)) (1a)

s.t. 𝑥𝑢 + 𝑥𝑣 − 𝑥 (𝑆) ≤ 1 ∀𝑆 ∈ S𝐺 (𝑢, 𝑣), 𝑢𝑣 ∈ 𝐸 (𝐺),𝐺 ∈ G (1b)

𝑥𝑢 ∈ {0, 1} ∀𝑢 ∈ 𝑉 (G) . (1c)

Formulation (1) is a conjunction of the cut-like formulation of the

maximum 𝑘-club problem introduced by Salemi and Buchanan [22],

across all the graphs in the collection. Henceforth, we refer to

formulation (1) as the conjunctive cut-like formulation (CCF). It is

readily verified that the CCF is a correct formulation in the sense

that 𝑥 is an incidence vector of a cross-graph 𝑘-club if and only if

it is feasible to the CCF.

Formulation (1) can be strengthened by noting that if a node

𝑤 that belongs to some minimal length-𝑘 𝑢, 𝑣-separator of graph

𝐺𝑖 ∈ G (i.e.,𝑤 ∈ 𝑆 ∈ S𝐺𝑖
(𝑢, 𝑣)) is also at a distance strictly greater

that 𝑘 from either 𝑢 or 𝑣 in some other graph 𝐺 𝑗 in the collection,

then𝑤 cannot be in a cross-graph 𝑘-club that contains both 𝑢 and

𝑣 . Consequently, constraints (1b) can be replaced by

𝑥𝑢 + 𝑥𝑣 − 𝑥 (𝑆 ∩ 𝐷𝑢𝑣) ≤ 1, (2)

where,

𝐷𝑢𝑣 B
{
𝑤 ∈ 𝑉 (G) \ {𝑢, 𝑣} : dist𝐺 (𝑢,𝑤) ≤ 𝑘 and

dist𝐺 (𝑣,𝑤) ≤ 𝑘 ∀𝐺 ∈ G
}

(3)

is the set of nodes that are at a distance of at most 𝑘 from 𝑢 and 𝑣

in all the graphs in G. The validity of constraints (2) follows from

the observation that if 𝑥𝑢 = 𝑥𝑣 = 1, then 𝑥 (𝑆 \ 𝐷𝑢𝑣) = 0 as no

nodes from the set 𝑆 \ 𝐷𝑢𝑣 can be included in a cross-graph 𝑘-club

containing 𝑢 and 𝑣 . Alternately, we can think of 𝑆 ∩ 𝐷𝑢𝑣 as further

minimalizing the separator 𝑆 by removing nodes that are not on

any path of length at most 𝑘 between 𝑢 and 𝑣 , in some graph in the

collection. Observe that the resulting formulation is at least as tight

as the CCF. Moreover, there are instances where 𝑥 (𝑆 ∩𝐷𝑢𝑣) < 𝑥 (𝑆)
for at least one separator 𝑆 ∈ S𝐺 (𝑢, 𝑣), as illustrated next.

1 2

34

5

67

𝐺

1 2

34

5

67

𝐻

Figure 2: Inequality 𝑥1 + 𝑥2 ≤ 1 is valid for the problem on
G = {𝐺,𝐻 } when 𝑘 = 2.

Consider the maximum 2-graph 2-club problem on the graph

collection in Figure 2. Formulation (1), for node pair 1 and 2, includes

the constraints 𝑥1 + 𝑥2 − 𝑥3 ≤ 1 due to 𝐺 and 𝑥1 + 𝑥2 − 𝑥6 ≤ 1 due

to 𝐻 . However, we can tighten the first constraint by intersecting

the separator {3} with 𝐷1,2 = {5, 6, 7} to obtain the constraint

𝑥1 + 𝑥2 ≤ 1 that dominates both previous constraints; note that

dist𝐻 (1, 3) = 3.

4.2 A conjunctive formulation based on
pairwise peeling

Based on the idea of intersecting the length-𝑘 𝑢, 𝑣-separator 𝑆 in

constraint (1b) with 𝐷𝑢𝑣 to obtain a tighter constraint (2), we can

envision an approach in which we further tighten the constraints

with respect to each 𝑢, 𝑣 pair, by recursively deleting nodes which

are too far away from either 𝑢 or 𝑣 in any graph in the collection.

As the deletion of nodes tends to have a domino effect on pairwise

distances in graphs, leading to more nodes meeting the condition

for deletion, the resulting inequalities will be at least as strong as

their counterpart in constraints (2). However, it is important to

recognize that this operation is node pair specific, i.e., the graph
collection obtained by deleting nodes based on a particular 𝑢, 𝑣 pair

is only valid for generating constraints with respect to that pair.

This is because nodes deleted based on 𝑢 and 𝑣 might be within

distance 𝑘 of a different node pair.

To illustrate this idea, consider the maximum 2-graph 3-club

problem on the graph collection in Figure 3. Constraints (2) are

listed below for the node pair 1 and 6, for graphs 𝐺 and 𝐻 , by

noting that 𝐷1,6 = {3, 4, 5}, S𝐺 (1, 6) =
{
{2, 3}, {2, 5}, {3, 4}, {4, 5}

}
,

and S𝐻 (1, 6) =
{
{3}, {4}

}
.

𝑥1 + 𝑥6 − 𝑥3 ≤ 1

𝑥1 + 𝑥6 − 𝑥5 ≤ 1

𝑥1 + 𝑥6 − 𝑥3 − 𝑥4 ≤ 1

𝑥1 + 𝑥6 − 𝑥4 − 𝑥5 ≤ 1

𝑥1 + 𝑥6 − 𝑥3 ≤ 1

𝑥1 + 𝑥6 − 𝑥4 ≤ 1

However, the inequality 𝑥1 + 𝑥6 ≤ 1 that can replace all of the

foregoing constraints for the node pair 1 and 6 can be derived

as follows: observe that dist𝐻 (2, 6) = 4 > 3, thus if we want to

simultaneously include nodes 1 and 6 in a 2-graph 3-club, then we

cannot include node 2 and it can be deleted from 𝐺 and 𝐻 . Then,

the dist𝐺\{2} (1, 4) = 4 > 3, and consequently we cannot include

node 4 either. Upon deleting nodes 2 and 4 from 𝐺 and 𝐻 , we find

that nodes 1 and 6 are disconnected in 𝐻 ; so, 𝑥1 + 𝑥6 ≤ 1 is valid.

Algorithm 1 formalizes the idea illustrated by the foregoing

example to generate tighter constraints, and we refer to it as the

pairwise peeling algorithm. We denote by J the node pairs that are

nonadjacent in some graph in the collection G, i.e.,

J B
{
{𝑢, 𝑣} ⊂ 𝑉 (G) : 𝑢 ≠ 𝑣,𝑢𝑣 ∈ 𝐸 (𝐺) for some 𝐺 ∈ G

}
.

The algorithm takes a graph collection G, a positive integer 𝑘 , and a
node pair𝑢𝑣 ∈ J as input, and creates an auxiliary graph collection

G𝑢𝑣 by recursively deleting from every graph in the collection,

nodes that are more than distance 𝑘 from either 𝑢 or 𝑣 in some

graph in the collection. The constraints for the node pair 𝑢 and 𝑣

19

INOC 2022, June 7-10, 2022, Aachen, Germany Pan, Balasundaram, and Borrero

2 4

3 5

1 6

𝐺

2 4

3 5

1 6

𝐻

Figure 3: Inequality 𝑥1 + 𝑥6 ≤ 1 is valid for the problem on
{𝐺,𝐻 } when 𝑘 = 3.

can then be generated based on the minimal separators of graphs in

this auxiliary collection G𝑢𝑣 . Thus, we can replace constraints (1b)

by the following based on the pairwise peeled collection:

𝑥𝑢 + 𝑥𝑣 − 𝑥 (𝑆) ≤ 1 ∀𝑆 ∈ S𝐺 (𝑢, 𝑣) and

∀𝐺 ∈ G𝑢𝑣 such that 𝑢𝑣 ∈ 𝐸 (𝐺), 𝑢𝑣 ∈ J . (4)

In Algorithm 1, the do-while loop executes at most |𝑉 (G)| + 1
times, as we delete at least one node in each iteration. In one execu-
tion of the do-while loop, the nested for-loops execute 𝑂 (𝑝|𝑉 (G)|)
times. Computing distances from a single node 𝑤 and deleting 𝑤 if
necessary, can be completed in 𝑂 (|𝑉 (𝐺)| + |𝐸(𝐺)|). Although the
worst-case complexity is unattractive, we did not find this algo-
rithm to be time-consuming when compared to the impact it has
on overall running time in our computational experiments.

Algorithm 1: Pairwise Peeling
Input: G, 𝑘 , 𝑢𝑣 ∈ J
Output: G𝑢𝑣

1 do
2 𝑊 ← ∅
3 for 𝐺 ∈ G do
4 for𝑤 ∈ 𝑉 (G) \ (𝑊 ∪ {𝑢, 𝑣}) do
5 if dist𝐺 (𝑢,𝑤) > 𝑘 or dist𝐺 (𝑣,𝑤) > 𝑘 then
6 𝑊 ←𝑊 ∪ {𝑤}
7 delete𝑤 from every graph in G

8 while𝑊 ≠ ∅;
9 return G𝑢𝑣 ← G

Proposition 4.1. If constraints (1b) in formulation (1) are re-
placed by constraints (4), the resulting formulation is correct for the
maximum 𝑝-graph 𝑘-club problem.

The claim follows from the observation that the incidence vector

of a 𝑝-graph 𝑘-club satisfies constraints (4) and every binary vector

satisfying these constraints also satisfies constraints (1b).

Proposition 4.2. The pairwise peeling algorithm will delete the
same set of nodes independent of the order in which the graphs in G
are processed by the algorithm.

Proof. Suppose for a specific 𝑢𝑣 ∈ J , (𝑤1,𝑤2, . . . ,𝑤𝑞) is the
order in which nodes were deleted using an ordering 𝜋 of the graphs

in G. Then, 𝑤1 is too far from either 𝑢 or 𝑣 in some graph in the

original collection, and hence, must be deleted by Algorithm 1 using

any other ordering of graphs in G. If𝑤2 was deleted following𝑤1

when using 𝜋 , then in any other ordering, after𝑤1 is deleted, we

know that 𝑤2 must be too far from either 𝑢 or 𝑣 , and therefore,

must also be deleted. By repeating this argument, {𝑤1,𝑤2, . . . ,𝑤𝑞}
must be deleted under any ordering that is different from 𝜋 . As 𝜋 is

arbitrary, we can conclude that the final outcome of Algorithm 1 is

independent of the order in which graphs in G are processed. □

Henceforth, we refer to the new formulation as the pairwise

peeled cut-like formulation (PPCF). For each 𝑢𝑣 ∈ J , constraint (4)

is at least as strong as constraint (2) (which in turn dominates

constraint (1b)). Through our computational experiments reported

in the next section, we assess the gains made by using Algorithm 1

to generate potentially stronger constraints.

5 COMPUTATIONAL EXPERIMENTS
The goal of our computational study is to compare the performance

of a general purpose IP solver when using CCF and PPCF to solve

the maximum 𝑝-graph 𝑘-club problem. As either formulation uses

exponentially many constraints in the worst case, we generate them

in a delayed fashion and implement two decomposition branch-

and-cut (BC) algorithms that use the same master problem based

on cross-graph 𝑘-cliques defined below.

Definition 5.1. A subset of nodes 𝑆 ⊆ 𝑉 (G) is called a 𝑝-graph
𝑘-clique if 𝑆 is a 𝑘-clique in each graph in the collection G.

5.1 Overview of the solvers
Like the single-graph counterparts, a cross-graph 𝑘-clique is a

graph-theoretic relaxation of a cross-graph 𝑘-club. The maximum

𝑝-graph 𝑘-clique problem is equivalent to the classical maximum

clique problem on the power-intersection graph of G, i.e., the graph
with node set 𝑉 (G) and edge set containing every pair of distinct

nodes that are at distance at most 𝑘 in every graph in the collection.

We can then define the complementary edge set 𝐸 containing all

the conflicting pairs of nodes as:

𝐸 B
{
{𝑢, 𝑣} ⊆ 𝑉 (G) : dist𝐺 (𝑢, 𝑣) > 𝑘 in some graph 𝐺 ∈ G

}
,

and we use it in our master IP formulation (5):

max𝑥 (𝑉 (G)) (5a)

𝑥𝑢 + 𝑥𝑣 ≤ 1 ∀𝑢𝑣 ∈ 𝐸 (5b)

𝑥𝑢 ∈ {0, 1} ∀𝑢 ∈ 𝑉 (G) (5c)

The two decomposition BC algorithms, referred to as CCF and

PPCF henceforth, would add constraints (1b) and (4), respectively,

whenever a feasible solution to the master problem (5) that is not a

cross-graph 𝑘-club is encountered anywhere in the BC tree. Our

implementations are also enhanced by preprocessing (see Algo-

rithm 2) based on a feasible solution 𝑆 to the problem obtained

using the “DROP heuristic” for 𝑘-clubs [7, 22] on the intersection
graph 𝐽 with node set 𝑉 (G) and edge set

⋂{𝐸 (𝐺) : 𝐺 ∈ G}.
Note that a 𝑘-club in 𝐽 is a cross-graph 𝑘-club of G. Then, in the

power-intersection graph of G denoted by 𝐽𝑘
, if a node 𝑢 has fewer

than |𝑆 | neighbors, it cannot belong to a cross-graph 𝑘-club larger
than 𝑆. (Because if it did, node 𝑢 would have degree at least |𝑆 | in

20

The Maximum Cross-Graph 𝑘-Club Problem INOC 2022, June 7-10, 2022, Aachen, Germany

Algorithm 2: Preprocessing
Input: G, 𝑘
Output: a preprocessed graph collection G

1 obtain the intersection graph 𝐽 of all graphs in G
2 compute a 𝑘-club 𝑆 of 𝐽 using DROP heuristic

3 obtain the power-intersection graph 𝐽𝑘 of G
4 CorePeel(G, 𝐽𝑘 , |𝑆 |)
5 CommunityPeel(G, 𝐽𝑘 , |𝑆 |)
6 recursively delete edge 𝑢𝑣 from every graph 𝐺 ∈ G and 𝐽𝑘

in which it is present, if 𝑢 and 𝑣 are in distinct connected

components of some graph 𝐺 ∈ G or 𝐽𝑘

7 return G

𝐽𝑘
). Hence, core peeling [1] recursively deletes nodes with degree

less than |𝑆 | in 𝐽𝑘
, and correspondingly from every graph in G.

After core-peeling, as long as 𝑉 (𝐽𝑘) is not empty, 𝐽𝑘
will be an |𝑆

|-core as every node that survives will have at least |𝑆 | neighbors.
Now, a pair of nodes 𝑢 and 𝑣 that are adjacent in 𝐽𝑘

can belong to a
cross-graph 𝑘-club larger than 𝑆 only if they have at least |𝑆 | − 1
common neighbors in 𝐽𝑘

. If not, the edge 𝑢𝑣 is deleted from 𝐽𝑘
and

from every graph in the collection where 𝑢 and 𝑣 are adjacent in
the community peeling [27] step.

Graph 𝐽𝑘
may contain more connected components after core

and community peeling than before. As a result, there may exist
an edge 𝑢𝑣 ∈ 𝐸 (𝐺) for some 𝐺 ∈ G whose end points 𝑢 and 𝑣
belong to different connected components of 𝐽𝑘

. These edges can
be removed from every 𝐺 ∈ G containing the edge. Doing so may
disconnect a graph 𝐺 ∈ G so that not only 𝑢 and 𝑣 belong to
different components, but so do some other nodes 𝑎 and 𝑏 that
are adjacent in 𝐽𝑘

; then, we can delete edge 𝑎𝑏 from 𝐽𝑘
. Hence,

we can recursively delete edges from every graph in the expanded
collection G ∪ {𝐽𝑘 } until all of them have identical connected
components (in terms of the node subsets inducing the components).
The preprocessing steps can be implemented to run in time that is
linear or quadratic in the size of the input [22, 27], and their running
time is negligible in practice compared to the BC algorithm.

To avoid unnecessary constraints (5b) added for pairs of nodes

which reside in different components of 𝐽𝑘 , we extend formula-

tion (5) by introducing a binary variable for each of the connected

components of 𝐽𝑘 and enforce that nodes selected must belong

to the same component. In the master problem, only conflict con-

straints related to a pair of nonadjacent nodes in a same connected

component would be enumerated. Similarly, any node pair for

which a lazy constraint is generated must also belong to the same

connected component of 𝐽𝑘 .

5.2 Preliminary results
We report computational experiments conducted on 64-bit Linux

®

compute nodes with dual Intel
®

“Skylake" 6130 CPUs with 96 GB

RAM. Optimization models are solved using Gurobi
TM

Optimizer

v9.0.1 [10] and the algorithms are implemented in C++. We consider

the following parameter values in our experiments: 𝑘 ∈ {2, 3, 4}
and 𝑝 ∈ {2, 3, 4, 5}.

To generate test instances for this preliminary computational
study, we generate graphs using the algorithm described in [8] (BG
graphs). These graphs are known to be challenging for the (single-
graph) maximum 𝑘-club problem. We first generate a set of 10
graphs {𝐺1, 𝐺2, . . . , 𝐺10}, each with 200 nodes, by specifying an
edge density and running BG algorithm 10 times. From our pre-
liminary results, BG_1 (generated with edge density of 0.15%) and
BG_4 (generated with edge density of 0.1%) are challenging in-
stances when 𝑘 = 2. When 𝑘 = 3 or 4, BG_2 (generated with edge
density of 0.05%) and BG_3 (generated with edge density of 0.025%)
are challenging instances. For each 𝑝, 𝑘 pair, we report results aver-
aged over instances obtained from the collection of 10 graphs with
the edge density that is most challenging for the chosen value of 𝑘 .

Each row of Table 1 reports results averaged over 11 − 𝑝 runs

with collections {𝐺1, . . . ,𝐺𝑝 }, {𝐺2, . . . ,𝐺𝑝+1}, . . ., {𝐺11−𝑝 , . . . ,𝐺10}.
Except for BG_1 instance when 𝑝 = 2 and 𝑘 = 2, where both ap-

proaches did not reach optimality, PPCF based BC takes a signifi-

cantly shorter running times than CCF for most of the instances.

For example, on BG_2 instance when 𝑝 = 4 and 𝑘 = 3, CCF took

1079.11 seconds while PPCF only took 47.11 seconds (over 20 times

faster than CCF). Overall, PPCF is over 6 times faster than CCF in

terms of average running time on challenging instances.

Table 1: Comparison of CCF and PPCF on BG instances.

CCF PPCF

𝑘 𝑝 Instance obj time(s) #LC
a

#NCT
b

obj time(s) #LC #SLC
c

#NCT

2 2 BG_4 9.44 88.01 12116.22 2.26 9.44 54.77 8085.56 6887.00 0.53

2 2 BG_1 ≥16.33d 7200.23 20353.00 4.32 ≥16.22 6973.67 17958.22 1310.33 4.00

2 3 BG_4 4.63 55.22 12564.38 2.27 4.63 38.41 9807.00 9802.25 0.00

2 3 BG_1 7.88 3074.61 24496.13 4.39 7.88 760.30 19702.88 3214.00 3.48

2 4 BG_4 2.43 49.74 11712.43 2.27 2.43 44.59 10442.00 10441.86 0.00

2 4 BG_1 4.43 1982.95 25226.43 4.39 4.43 338.92 20934.71 5719.86 2.94

2 5 BG_4 2.00 40.70 10166.33 2.27 2.00 36.36 9253.67 9253.67 0.00

2 5 BG_1 2.50 1533.07 25121.67 4.41 2.50 201.43 21074.00 8851.50 2.36

3 2 BG_2 12.00 3008.56 47557.00 4.54 12.00 576.44 26125.44 6079.22 3.46

3 3 BG_2 3.13 1748.18 45065.50 4.52 3.13 105.67 21304.25 12592.63 1.91

3 4 BG_2 3.00 1079.11 40636.29 4.55 3.00 47.11 17284.29 15254.00 0.61

3 5 BG_2 3.00 818.45 36544.33 4.47 3.00 40.02 15971.67 15687.17 0.10

4 2 BG_3 8.78 192.51 23791.11 3.60 8.78 40.72 12169.78 10365.56 0.79

4 3 BG_3 4.00 99.02 18502.13 3.37 4.00 31.06 11116.88 10921.00 0.01

4 4 BG_3 4.00 59.55 13925.57 3.21 4.00 30.74 9216.86 8992.71 0.00

4 5 BG_3 4.00 46.07 11001.67 3.16 4.00 29.12 7622.17 7406.50 0.00

a
Average number of lazy constraints added.

b
Average number of negative terms in a lazy constraint.

c
Average number of strengthened lazy constraints added.

d
On instances not solved to optimality we report the lower-bound provided by the best solution found.

Table 1 also shows the number of lazy constraints added by

each algorithm on average. For each instance, we observe fewer

lazy constraints used in PPCF than CCF. Together with the fact

that PPCF took much less time than CCF for each instance, this

observation is indicative of the strength of using constraints (4)

over constraints (1b). On average, CCF added over 1.5 times more

lazy constraints than PPCF. Column #SLC under PPCF reports

the number of strengthened lazy constraints added, i.e., these are
strictly constraints (4). On average, over 70% of lazy constraints

added in PPCF are of this type. For BG_4 instance when 𝑝 = 5 and

𝑘 = 2, all lazy constraints added in PPCF are of this type.

The columns labeled #NCT in Table 1 report the average number

of terms with coefficient -1 on the left hand side of the added lazy

constraints. This is another indirect indicator of the strength of the

lazy constraints—generally, the smaller this number, the stronger

the constraint. For most of the instances, we observed a significantly

21

INOC 2022, June 7-10, 2022, Aachen, Germany Pan, Balasundaram, and Borrero

smaller value under PPCF than CCF. Note that the value of #NCT

is zero for five instances under PPCF. The lazy constraints of this

type are actually conflict constraints with no negative terms on the

left hand side. The foregoing observations strongly suggest that

PPCF approach based on pairwise peeling constraints significantly

improves our ability to find maximum 𝑝-graph 𝑘-clubs.

Figure 4 shows the performance profiles [9] based on running

times of CCF and PPCF algorithms for solving the maximum 𝑝-

graph 𝑘-club problem on the challenging instances. The red (dash-

dotted) and blue (dotted) lines plot the fraction 𝑓𝑖 (𝜏) of instances
solved within a factor 𝜏 of the shortest running time (over all values

of parameters 𝑝 , 𝑘 , and all challenging instances) by solvers 𝑖 =

CCF and PPCF. The profiles clearly suggest that the computational

benefits of using lazy constraints strengthened by pairwise peeling

is quite significant.

100 101

 in log scale with base 10

0.2

0.4

0.6

0.8

1.0

f i(
)

CCF
PPCF

Figure 4: Performance profiles of CCF and PPCF algorithms.

6 CONCLUDING REMARKS
In this paper, we consider cross-graph 𝑘-clubs for modeling low-

diameter clusters that are conserved in a collection of graphs. We

introduce a pairwise peeling approach designed to strengthen con-

straints in a straightforward conjunction of a known formulation.

This approach helps with scale-reduction and integrates informa-

tion across graphs in the collection to produce tighter constraints.

These claims are supported by the empirical evidence obtained from

our preliminary experiments. The decomposition branch-and-cut

algorithm based on this approach seems to be promising, and capa-

ble of handling moderately large instances and graph collections.

ACKNOWLEDGEMENT
The computing for this project was performed at the High Per-

formance Computing Center at Oklahoma State University sup-

ported in part through the National Science Foundation grant OAC-

1531128. The research of the third author was partially supported

by the Office of Naval Research under Grant N00014-19-1-2329.

REFERENCES
[1] J. Abello, P. M. Pardalos, and M. G. C. Resende. 1999. On maximum clique prob-

lems in very large graphs. In External memory algorithms and visualization,
J. Abello and J. Vitter (Eds.). DIMACS Series on Discrete Mathematics and Theo-

retical Computer Science, Vol. 50. American Mathematical Society, Boston, MA,

USA, 119–130.

[2] R. D. Alba. 1973. A graph-theoretic definition of a sociometric clique. Journal of
Mathematical Sociology 3, 1 (1973), 113–126.

[3] R. Alhajj and J. Rokne (Eds.). 2018. Encyclopedia of Social Network Analysis and
Mining. Springer, New York.

[4] M. T. Almeida and F. D. Carvalho. 2012. Integer models and upper bounds for

the 3-club problem. Networks 60 (2012), 155–166. Issue 3.
[5] B. Balasundaram, S. Butenko, and I. V. Hicks. 2011. Clique relaxations in social

network analysis: The maximum 𝑘-plex problem. Operations Research 59, 1

(January-February 2011), 133–142.

[6] B. Balasundaram, S. Butenko, and S. Trukhanov. 2005. Novel approaches for

analyzing biological networks. Journal of Combinatorial Optimization 10, 1

(August 2005), 23–39.

[7] J.-M. Bourjolly, G. Laporte, and G. Pesant. 2000. Heuristics for finding 𝑘-clubs in

an undirected graph. Computers & Operations Research 27 (2000), 559–569.

[8] J.-M. Bourjolly, G. Laporte, and G. Pesant. 2002. An exact algorithm for the maxi-

mum 𝑘-club problem in an undirected graph. European Journal of Operational
Research 138 (2002), 21–28.

[9] E. D. Dolan and J. J. Moré. 2002. Benchmarking optimization software with

performance profiles. Mathematical programming 91, 2 (2002), 201–213.

[10] Gurobi Optimization, LLC. 2020. Gurobi Optimizer Reference Manual. http:

//www.gurobi.com

[11] D. Jiang and J. Pei. 2009. Mining Frequent Cross-Graph Quasi-Cliques. ACM
Transactions on Knowledge Discovery in Data 2, 4 (2009), 16:1–42.

[12] B. H. Junker and F. Schreiber (Eds.). 2008. Analysis of Biological Networks. Wiley,

New York.

[13] Y. Lu, E. Moradi, and B. Balasundaram. 2018. Correction to: Finding a maximum𝑘-

club using the 𝑘-clique formulation and canonical hypercube cuts. Optimization
Letters 12, 8 (November 2018), 1959–1969.

[14] R. D. Luce. 1950. Connectivity and generalized cliques in sociometric group

structure. Psychometrika 15, 2 (1950), 169–190.
[15] Z. Miao and B. Balasundaram. 2020. An Ellipsoidal Bounding Scheme for the

Quasi-Clique Number of a Graph. INFORMS Journal on Computing 32, 3 (2020),

763–778. Codes/instances online at: https://github.com/baski363/Quasi-clique.

[16] R. J. Mokken. 1979. Cliques, Clubs and Clans. Quality and Quantity 13, 2 (1979),

161–173.

[17] E. Moradi and B. Balasundaram. 2018. Finding a maximum 𝑘-club using the

𝑘-clique formulation and canonical hypercube cuts. Optimization Letters 12, 8
(November 2018), 1947–1957.

[18] G Pastukhov, A. Veremyev, V. Boginski, and O. A. Prokopyev. 2018. On maximum

degree-based-quasi-clique problem: Complexity and exact approaches. Networks
71, 2 (2018), 136–152.

[19] J. Pattillo, N. Youssef, and S. Butenko. 2013. On clique relaxation models in

network analysis. European Journal of Operational Research 226, 1 (2013), 9–18.

[20] J. Pei, D. Jiang, and A. Zhang. 2005. Mining cross-graph quasi-cliques in gene

expression and protein interaction data. In Data Engineering, 2005. ICDE 2005.
Proceedings. 21st International Conference on. IEEE, 353 – 356.

[21] J. Pei, D. Jiang, and A. Zhang. 2005. On mining cross-graph quasi-cliques. In

Proceedings of the eleventh ACM SIGKDD international conference on Knowledge
discovery in data mining (KDD ’05). ACM, New York, NY, USA, 228–238.

[22] H. Salemi and A. Buchanan. 2020. Parsimonious formulations for low-diameter

clusters. Mathematical Programming Computation 12, 3 (2020), 493–528.

[23] S. Shahinpour and S. Butenko. 2013. Distance-based clique relaxations in net-

works: 𝑠-clique and 𝑠-club. In Models, Algorithms, and Technologies for Network
Analysis, B. I. Goldengorin, V. A. Kalyagin, and P. M. Pardalos (Eds.). Vol. 59.

Springer, New York, 149–174.

[24] K. Sim, G. Liu, V. Gopalkrishnan, and J. Li. 2011. A case study on financial ratios

via cross-graph quasi-bicliques. Information Sciences 181, 1 (2011), 201–216.
[25] S. Trukhanov, C. Balasubramaniam, B. Balasundaram, and S. Butenko. 2013. Algo-

rithms for detecting optimal hereditary structures in graphs, with application to

clique relaxations. Computational Optimization and Applications 56, 1 (September

2013), 113–130. https://doi.org/10.1007/s10589-013-9548-5

[26] A. Veremyev and V. Boginski. 2012. Identifying large robust network clusters via

new compact formulations of maximum 𝑘-club problems. European Journal of
Operational Research 218, 2 (2012), 316–326.

[27] A. Verma, A. Buchanan, and S. Butenko. 2015. Solving the maximum clique and

vertex coloring problems on very large sparse networks. INFORMS Journal on
Computing 27, 1 (2015), 164–177.

22

