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ABSTRACT
Applying ML-based techniques to optimize traditional databases,
or AI4DB, has becoming a hot research spot in recent. Learned
techniques for query optimizer(QO) is the forefront in AI4DB.
QO provides the most suitable experimental plots for utilizing
ML techniques and learned QO has exhibited superiority with
enough evidence. In this tutorial, we aim at providing a wide and
deep review and analysis on learned QO, ranging from algorithm
design, real-world applications and system deployment. For al-
gorithm, we would introduce the advances for learning each
individual component in QO, as well as the whole QO module.
For system, we would analyze the challenges, as well as some
attempts, for deploying ML-based QO into actual DBMS. Based
on them, we summarize some design principles and point out
several future directions. We hope this tutorial could inspire and
guide researchers and engineers working on learned QO, as well
as other context in AI4DB.

Duration: 1.5h

1 BACKGROUND, GOALS, AND OBJECTIVES
Query optimizer(QO), the core part of DBMS and big data pro-
cessing platform, directly determines the query plan quality as
well as the system performance. Although it has been extensively
studied and refined, the intrinsic nature of varied data and query
workload pose great challenges for QO. Until now, it is a consen-
sus that the performance of QO is not fully favorable, especially
on complex and/or tail cases [10].

Recently, the development of machine learning (ML), espe-
cially deep learning, exhibits great superiority in the data process-
ing area. ML techniques enable automatic, fine-grained and more
accurate characterization of the problem space, thus are potential
to benefit a variety of tasks in DBMS. This cross-filed, called
“AI4DB”, has become a hot spot in the database research field. In
AI4DB, learned QO serve as a pioneer. By some survey [28] and
paper collection repository [1] on AI4DB, more than 100+ of the
paper are published to optimize QO in the last decade.

The prosperity of learned QO arises as it provides suitable
experimental plots for various kinds of ML techniques. The tech-
niques applied in QO including supervised, unsupervised, rein-
forcement learning and etc. Meanwhile, QO is much easier to
be hooked for evaluation than other hardcore parts of DBMS.
Enough evidence has shown the benefits of applying learned QO
techniques on improving the query performance [4, 17].

In a nutshell, learned QO is fast growing and occupies the piv-
otal position in AI4DB. It attracts considerable research efforts
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today and exhibits bright future. Therefore, it is necessary to
summarize its advances, analyze its status and guide its develop-
ment. Motivated by this, we organize this tutorial to fulfill the
following goals and objectives:

1) A comprehensive review on the advances of learned
QO. Recent work in the last decade has proposed numerous ML-
based approaches for each individual component in QO, as well
as the whole QO module. Their scope, technical routines and
properties are very different. We try to categorize and introduce
the representative methods in each class, together with some
benchmark evaluation results, to exhibit the advantages and
disadvantages of each method. This would give the audience a
deep and holistic understanding of learned QO techniques.

2) A deep analysis on the challenges, as well as some
attempts, on applying and deploying learned QO. Using
learned QO to benefit the real-world DBMS is the ultimate goal,
but it is very difficult due to the inherently stochastic nature
of ML. We try to summarize the challenges and requirements
for the actual deployment of learned QO, from both algorithm
and system perspectives. Meanwhile, we would introduce some
valuable tentative work, which tries to apply learned QO in real-
world scenarios or solve the practical deployment problem. This
would give the audience a clear picture on the core difficulties of
learned QO (as well as AI4DB).

3) A summary on promising future work of learned QO.
Based on 1) and 2), we try to point out a series of important
directions for learned QO, including but not limited to the model
and system design, evaluation, application and deployment. We
hope this could inspire and guide the following researchers and
engineers to do more practical work on learned QO, as well as
AI4DB, and make this technology applicable as early as possible.

2 CONTENT AND ORGANIZATION
We organize the tutorial into five units in a logic order corre-
sponding to the three goals. We outline the main structure as
follows and elaborate the details in each subsection.

• Part 1: Preliminary and Background (5 mins)
◦ 1.1 Basic concepts and knowledge of QO (3 mins)
◦ 1.2 Status and outline of learned QO (2 mins)

• Part 2: Learned Individual Components (35 minutes)
◦ 2.1 Learned cardinality estimation (15 mins)
− 2.1.1 Problem definition and traditional methods
− 2.1.2 Query-driven methods
− 2.1.3 Data-driven methods
− 2.1.4 Hybird methods
− 2.1.5 Benchmark evaluation and analysis

◦ 2.2 Learned cost model (10 mins)
− 2.2.1 Experience-driven literature methods
− 2.2.2 Single query CostEst
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− 2.2.3 Concurrent query CostEst
◦ 2.3 Learned join order search (7 mins)
− 2.3.1 Problem formulation and existing methods
− 2.3.2 Offline learning methods
− 2.3.3 Online learning methods

◦ 2.4 Summary (3 mins)

• Part 3: Learned Whole QO Module (20 minutes):
◦ 3.1 End-to-end learned QO: NEO [11] (5 mins)
◦ 3.2 Learn to steer QO: BAO [10] (5 mins)
◦ 3.3 One model for all: MTMLF [24] (5 mins)
◦ 3.4 Comparison and analysis (5 mins)

• Part 4: Applications and deployment (25 minutes):
◦ 4.1 Application case studies of learned QO (10 mins)
− 4.1.1 Learned cost model for SCOPE [15]
− 4.1.2 Learn to steer SCOPE [12]

◦ 4.2 Challenges of actual deployment (5 mins)
◦ 4.3 Start-up system for deployment: Baihe [14] (10 mins)

• Part 5: Summary and Future Works (5 minutes):
◦ 5.1 Summary (2 mins)
◦ 5.2 Future work (3 mins)

2.1 Preliminary and Background
QO plays a significant role in DBMS. In this tutorial, we focus
on the seminar structure of QO, such as PostgreSQL and Calcite,
follows the volcano framework [3] shown in Figure 1. On a high
level, the QO module is composed of three components, namely
cardinality estimation (CardEst), cost estimation (CostEst) and
join order search (JoinSel). It provides ample room for using ML
techniques. These work covers different aspects: fromMLmodels
to benchmark evaluation; from system design to applications;
from individually learned component to the whole QO module;
from unsupervised/supervised models to reinforcement learning
policies; and from statistical models to deep models. We try to
carefully organize them and provide some in-depth insights.

2.2 Learned Individual Components
In this part, we first introduce the ML-based advances in each
component(CardEst, CostEst and JoinSel), and then analyze their
relations to give some future work suggestions.

2.2.1 Learned Cardinality Estimation. Given the data D
and query Q , CardEst methods build a sketch-based synopses
using their information to estimate the number of tuples in D
satisfying Q . Traditional CardEst methods mainly utilize one or
multi-dimensional histogram or various sampling techniques.
ML-based CardEst explore more technical routines, which could
be categorized into the three main classes as follows:

1) Query-driven methods learn supervised models directly map-
ping featurized query to its cardinality. The representative work
includes: a) MSCN [7] built upon themulti-set deep convolutional
network; b) LW-XGB and LW-NN [2] using gradient boosted trees
and neural networks with the lightweight regression model; and
c) Fauce [9] using ensembles of deep neural networks.

2) Data-driven methods learn unsupervised models of the data
distribution, then the probability (cardinality) of any query could
be computed. The main modeling tools and the corresponding
CardEst methods include: a) NeuroCard [25] using deep auto-
regression; b) BayesNet [19] and BayesCard [23] using tradi-
tional or revitalized Bayesian networks; c) DeepDB [6] using
sum-product networks; and d) FLAT [30] using FSPNs.
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Figure 1: Architecture of Query Optimizer.

3) Hybird methods utilize statistical models as well as data
and/or query distributions: a) [22] learns a statistical estima-
tor of cardinality from samples drawn from synthetic data and
workload; b) Flowloss [13] learns cardinality considering the im-
portance of each sub-query; and c) GLUE [31] proposes a general
framework merging single table estimation results produced by
any method to predict join query size.

Besides these CardEst methods, some benchmarks [4, 17, 21]
are proposed for comprehensively evaluation. By summarizing
their results, we could clearly understand the pros and cons of
each ML-based CardEst method and when (and how much) it
could improve the QO performance.

2.2.2 Learned Cost Model. Let P be a physical plan for the
query Q . Based on Q’s cardinality and P ’s operators, CostEst
returns a cost value to predict its execution time. Traditional cost
models are rule based, driven by experience. Learned cost model
can be categorized into two classes as follows:

1) Single query CostEst. In fact, we can directly leverage learned
cardinality for cost estimation, but this leads to accumutative
errors. [16] proposed an end-to-end method that uses TreeLSTM
to encode the queries and learns from previous examples, so as
to directly output the cost.

2) Concurrent queries CostEst. CostEst over concurrent queries
is non-trivial because it is rather hard to capture the correlations
between different queries. GPredictor [29] utilizes the graph neu-
ral network to capture the query relationships and estimate the
query perofrmance accurately. Prestroid [27] leverages the tree
convolution based approach to estimate the concurrent query
performance in a cloud environment.

2.2.3 Learned Join Order Search. The JoinSel enumerates
all candidate plans in the search space to find a near-optimal
plan with the minimum estimated cost. Traditional approaches
typically explore the search space using some pruning rules,
which are efficient but may miss good plans. ML-based methods
could learn from history and overcome the bias in the estimated
cost. They could bemainly categorized into two classes as follows:

1) Offline learning methods learn from the previous queries to
improve the performance of future ones. DQ [5] and ReJoin [8]
are proposed to use neural network and reinforcement learning
to optimize the join orders, but the simple neural architecture
limits their learning ability. Hence, RTOS [26] proposes a model
that utilizes the TreeLSTM to represent the join state, so as to
better capture join tree structure.

2) Online learning methods learn a join order through adaptive
query processing, which can change the order even during the
execution of queries. Eddy-RL [20] models the query execution
as a reinforcement learning problem and automatically learn
how to adjust the join order during execution using Q-learning.
SkinnerDB [18] optimizes the join order on the fly with the help
of a Monte-Carlo tree search based approach, where different
join orders are tried in each time slice.

2.2.4 Summary. Finally, we analyze the roles and impor-
tance. Based on this, we give some future research suggestions
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on: 1) how to design practical ML-based methods for each com-
ponent; and 2) how to coordinate them together to optimize the
end-to-end performance.

2.3 Learning the Whole QO Module
In this part, we first introduce three representative work fol-
lowing different technique routines to optimize the whole QO
module, and then make a comparison and analysis.

2.3.1 End-to-end learned QO: NEO [11]. It replace each
component in the traditional QO to be the first end-to-end learned
system. Specifically, a value network is learned, upon featurized
queries and data statistical, to predict the execution time of any
query plan, which replaces CardEst and CostEst. A DNN-guided
learned best-first search strategy is utilized to replace the dy-
namic programming based plan enumeration in JoinSel. Mean-
while, NEO use RL to evolve its experience during execution.

2.3.2 Learn to steer QO: BAO [10]. It regards the original
QO as a black-box but learn to provide per-query optimization
hints. Specifically, for each query and each possible hint set (i.e.,
disable or enable some join/scan operations), the original QO
would generate a candidate plan. BAO learns a predictive model
on the execution time of each plan, and returns the plan with
minimum predicted latency. By this way, BAO make minimal
changes of the existing QO and is more flexible to data, schema
and query workload updates.

2.3.3 One model for all: MTMLF [24]. This is more of a
vision work considering howML could help for the multiple tasks
in QO. It provides a new perspective on classifying knowledge
that ML models trying to comprehend. A pre-trained model is
learned to represent shared knowledge across data and tasks,
which would be fine-tuned for a specific data. Upon it, several
small models are learned together using multi-task learning for
each task, i.e., CardEst, CostEst and JoinSel, respectively.

2.3.4 Comparison and analysis. First, we conceptually com-
pare the architecture difference of the three work. Based on this,
we analyze their success and shortcomings in terms of different
aspects: training cost, integration hardness, transferability, gen-
erality, update speed and etc. Later, we verify our claims using
benchmark experimental results. Finally, we summarize some
key insights on the design choices of learned QO systems and
provide some valuable suggestions for the future work.

2.4 Applications and Deployment
In this part, we move from designing to applying and deploying
learned QO in real-world scenarios. We first introduce some
specific case studying of applying learned QO in the industry
production environments. Then, we stand on the more general
view to analyze the challenges of deploying learned QO in actual
DBMS. After that, we introduce a start-up work trying to mitigate
this gap with a demonstration.

2.4.1 Application case studies of learned QO. We intro-
duce two works on applying learned QO in the Microsoft SCOPE:

1) [15] tries to learn accurate cost models for big data systems
and integrate them within the original QO. It analyzes the work-
load patterns to learn a large number of individual cost models
and combine them together to achieve high accuracy and cov-
erage over a long period. Meanwhile, the models are integrated
into the Cascade-style QO of SCOPE and exhibit the superiority.

2) [12] applies BAO’s idea to steer SCOPE’s QO. It tries to
bridge the gaps between the research assumptions and industry
scenarios. Specifically, a rule signature method is proposed to

collect a small number of configuration hints that could be tuned
to optimize per-query performance. Based on this, an in-depth
evaluation is done on petabyte-scale big data and 150k daily jobs.

2.4.2 Challenges of actual deployment. Most prior re-
search has been justified on numerical experiments outside of real
systems, there has been a striking absence of work focusing on
the practical deployment of learned QO inside real world systems.
In this part we would discuss challenges, as well as concrete
requirements and design patterns, for learned QO deployment.

First, the inherently stochastic nature of ML appears to be at
odds with the rock-solid, stable and deterministic requirements of
DB systems. ML models may produce results with unpredictable
error bounds and their generalization ability may fail catastroph-
ically on different data.

Second, failures of ML models may not be readily detectable,
since they might only be visible through a change in some numer-
ical value rather than a concrete and meaningful error message.

Third, ML model training is very specific. It requires close
supervision by experts to tune optimizers, hyper-parameters
and termination criteria. Hence, it is very difficult to integrate
automated training procedures into a DB system as maintaining
simple rules and statistical information.

2.4.3 A start-up system for deployment: Baihe [14]. We
develop the Baihe, a general framework developed for integrat-
ing ML models into a relational DB systems. Its fundamental
architecture provides a blueprint for deploying learned QO, as
well as other modules in AI4DB. Baihe will be made open source
before the start of the tutorial.

Baihe is developed upon PostgreSQL, a widely used and ex-
tensible DBMS. We would present a quick overview of Baihe’s
design principle, a detailed description on its architecture and
them perform a live demo showing how Baihe can be used to
quickly develop and deploy a query latency prediction module
for PostgreSQL. Afterwards, we will briefly discuss how Baihe
can be used in other contexts related to learned QO.

2.5 Summary and Future Work
We summarize the status, including both advances and problems
for learned QO. We target at putting forward the learned QO
technology applicable as early as possible. Thus, we outline sev-
eral future directions for this. First is on the design principles
and evaluation metrics for each learned component and better
models considering the role of each in the QO module. Second
is on how to consider QO as a whole upon which the possible
new routines for learned QO can be designed. Third is about
the deployment of such AI-aided components in real database
systems as well as algorithm-system co-design. Forth is on how
to transfer the learned QO techniques to other fields in AI4DB.

3 TUTORIAL INFORMATION
Intended Audience. We target to attract audience from three
fields:

1) DB and system researchers who are interested in designing
AI-driven databases. This tutorial would give them a comprehen-
sive picture and provide guidelines for their future work.

2) ML researchers who are interested in finding ML applica-
tions in system-related fields. This tutorial would educate them
the requirements of the DB scenarios and guide them to design
and optimize ML models.

3) System engineers who are now using ML techniques in
real-world industry data processing systems. This tutorial would
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help them to know about the current advances of learned QO
and inspire them to resolve the practical deployment issues.
Difference with Previous Tutorials. Our tutorial has sightly
overlaps with two of our tutorials before:

1) AI Meets Database: AI4DB and DB4AI in SIGMOD 2021.
This tutorial provides a very board review on AI4DB and DB4AI
topics. Learned QO is only a very small part (around 5mins) in
this tutorial, covering the main ideas in some Card/CostEst and
JoinSel methods. However, our EDBT tutorial aims at providing
a comprehensive and deep review and analysis on learned QO.

2) AutoML: From Methodology to Application in CIKM 2021.
This tutorial focuses on AutoML techniques, including hyper-
parameter tuning, NAS, and meta-learning. ML-based CardEst
is discussed as an important application. The main topics are
totally different with our EDBT tutorial.
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