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ABSTRACT

Distributed, data parallel machine learning algorithms frequently
exchange the gradients of their locally trained models to converge
to a consistent global model. This distributed training works
reasonably well if the training classes are partitioned evenly.
In practice, however, the data partitions are often skewed for
various reasons. The local models then strive for different local
optima and start to compete rather than collaborate, which spoils
the global model. The general solution to this problem is data
shuffling, but due to predetermined data placements or physical
constraints re-allocating almost all training records in the cluster
for some machine learning task is often not possible.

To minimize the negative impact of skewed data distributions,
we propose DataGossip, a novel extension for distributed ma-
chine learning algorithms. DataGossip runs as a background
process and dynamically exchanges relevant training instances
between the different cluster nodes. We investigate how many
training instances a cluster node needs to exchange, which train-
ing instances it should select, and how much foreign training
instances need to be emphasized to impact the training positively.
Our evaluation shows that DataGossip can improve the accuracy
of models that have been trained on skewed data distributions.
It also motivates further research on asynchronous and reactive
data exchange systems for distributed learning scenarios.

1 INTRODUCTION

The popularity of distributed machine learning algorithms in-
creases steadily not only because long training times demand
for parallel computing but also because large, pre-partitioned
datasets force the training into a distributed setting. Hence, data
scientists often need to train a model for a specific task, such
as classification, prediction, scoring, or detection, on a training
dataset that is scattered across several compute nodes. A widely
used solution for such situations is to train multiple models in a
data parallel fashion on different, isolated processors that each
own a partition of the training data; during the training, the local
models frequently exchange their model weights (or gradients) in
order to converge to a single global model. The weight exchange
can be implemented synchronized via barriers between training
steps or asynchronously for better performance and resource uti-
lization; it can further be based on peer-to-peer communication
or a dedicated leader node, such as a parameter server.
Regardless of the training subtleties, data parallel training
approaches that are based on gradient/weight exchanges usually
assume that the classes, events or other training objectives are (at
least approximately) evenly partitioned in the cluster. If the data
distribution is skewed, i.e., the training classes are represented
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unevenly over the various data partitions, the local models strive
for (very) different local optima that might distort both the global
model and other local models when updates are executed.

In practice, skewed data distributions often arise naturally
through recording bias (e.g. grouping by sensor, department or
user), time bias (e.g. grouping by experiment, transaction or ses-
sion), and semantic bias (e.g. grouping by sensitivity, size or own-
ership). The bias is then also reflected in the training classes. For
example, chairs and baskets are more common on street cameras
than on highway cameras [14], the expression of hate speech and
sentiment is very characteristic to certain communities [19, 20]
and mammal recordings from wildlife cameras vary depending
on the location of the cameras [7]. A commonly applied solution
to overcome the class bias is training data randomization. Un-
fortunately, many setups prohibit the shuffling of the training
data, because physical, political and/or operational constraints
tie the partitions to their specific locations. If the peers then can-
not afford to store a second, randomly shuffled partition due to
memory constraints (e.g. cloud setups with pay-per-use payment
model), full randomization is not possible and the skew prevails.

Biased training data distributions are a well researched is-
sue in Federated Learning (FL) research where the algorithms
try to fight the class skew with sophisticated parameter aggre-
gation algorithms. In federated setups, the data partitions are
usually strictly private and may, therefore, not be exchanged.
For the distributed machine learning extension proposed in this
paper, we break with this assumption and assume that training
records may temporarily be shared, which is a valid assumption
for most of the scenarios described above. While the partitions
stay on the machines that they are supposed to be stored on, a
background process dynamically selects currently most relevant
training records and shares them with all other training nodes to
mitigate the class bias. Because the foreign training records are
few in number, they are weaved into the local training records in
such a way that they receive sufficient emphasize during training.

This research project investigates (1) how relevant training
records for the sharing process can be identified, (2) how many
records each gossip cycle needs to share, and (3) how much
emphasis each local trainer must put on foreign records. As a
first solution, we propose DataGossip, a non-invasive extension
for distributed machine learning algorithms that counteracts
class imbalances during training by dynamically sharing training
records. DataGossip encapsulates automatic instance selection,
asynchronous record exchange and transparent record weaving
into a separate process that does not change existing machine
learning algorithms. The extension primarily targets the training
of non-convex models, such as neural networks, with gradient
descent-based learning techniques. Our experiments demonstrate
that DataGossip effectively improves the learning accuracy on
skewed data distributions.

10.48786/edbt.2022.24


https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2022.24

2 RELATED WORK

DataGossip is an extension for distributed, data parallel machine
learning algorithms. Such algorithms train the same model archi-
tectures on multiple nodes that each hold a unique partition of
the entire training dataset. To make progress, the local models
are frequently synchronized by sharing model weights/gradients.

Distributed machine learning. Synchronous gradient update
techniques for distributed machine learning algorithms introduce
blocking barriers after each training step, where a master process
collects, aggregates and shuffles training results. Such techniques
have been implemented in, for instance, map-reduce [3] and Py-
Torch [17]. Asynchronous gradient update techniques, on the
contrary, decouple the model weight updates from the actual
training processes. A popular representative of this class is Hog-
wild! [18] and its distributed version Hogwild++ [22]. To spread
learning results in the cluster, Hogwild++ circulates a weight
token that gets updated with local model weights by every train-
ing node that it passes. Inspired by this idea, our DataGossip
extension also sends a token in a ring of training nodes, but
with training instances instead of model weights. Another pop-
ular distributed and asynchronous machine learning approach
is DownpourSGD [5]. This algorithm uses a parameter server
that asynchronously (but in some predefined frequency) receives
model updates, aggregates the updates into a global model and,
then, broadcasts the global model’s updates to all local trainees.
Our DataGossip extension is a background process that works
well in conjunctions with any of the existing distributed learning
techniques regardless of whether they are synchronous or asyn-
chronous. In our evaluation, though, we picked DownpourSGD
as an example training algorithm to demonstrate DataGossip.

Dynamic data sharing. While most distributed machine learn-
ing algorithms exchange only model weights or gradients, a few
federated learning [10] algorithms exist that also exchange data.
For example, a variant of FL [8] trains a generative model while
sharing underrepresented class labels to handle the imbalance.
The proposed sharing strategy essentially trains a separate model
to learn about underrepresented classes. This technique is basi-
cally an alternative instance selection option (also for DataGos-
sip), but it is far more compute intensive than the techniques
that we consider and needs to be integrated deeper into the
training process. Another FL-related algorithm [23] copes with
imbalanced data by sharing small sampled datasets amongst their
workers, which generates a small random overlap between parti-
tions. In contrast to DataGossip, this overlap is static and does
not adapt to the current state of the training.

Instance selection. A central component of DataGossip is its
strategy of selecting local training instances that appear to be
relevant for the training and should, therefore, be shared with
other trainees. The same task is also solved by instance selection
algorithms, which identify representative training instances to
reduce the amount of training data, and by curriculum learning
algorithms, which re-order the training instances in a way that
improves the learning efficiency. In both areas, random sampling
is usually the default. Hard Example Mining (HEM) and Easy
Example Mining (EEM) [16] are two more advanced techniques
that consider an already (partially) trained model to calculate
the model’s classification loss (or error) for all training instances.
The techniques then rank the instances by their losses to choose
either the top-k highest or lowest ranked instances for training.
Self-Paced Learning (SPL) [12] is a more dynamic technique that
judges the difficulty of training records throughout the entire
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Figure 1: An example setup with a DownpourSGD Parame-
ter Node (PN) and six Training Nodes (TN) extended with
DataGossip Workers (DW)

training process. The idea is inspired by the observation that a
machine learning model learns more effectively from easier data
instances in the beginning and ever harder instances towards
the end of the training process [1]. Hence, SPL puts a thresh-
old on the difficulty of selected training instances and increases
this threshold as the training progresses. Active Bias (AB) [2]
is another dynamic technique that selects training records by
their loss variance during training. Driven by the observation that
particularly easy instances (as in EEM and SPL) are ineffective
during training and particularly hard instances (as in HEM) are
too noisy, AB proposes to select instances by their loss variance,
which indicates instances whose classification was impacted the
most by the local training. Because DataGossip works with any
of the proposed instance selection techniques, we evaluate all of
them in this paper.

3 DATA GOSSIP

DataGossip is an extension for a variety of distributed, data-
parallel machine learning algorithms. It requires access to (1) the
training data, (2) the losses of the training records, and (3) some
signal as an indicator for when the local training process has
finished a training iteration. Any distributed training method
that can offer these elements at runtime can use DataGossip. For
demonstration purposes, we use DownpourSGD [5] in this paper.

As visualized in Figure 1, a DownpourSGD cluster consists
of a parameter node that maintains the global model and sev-
eral training nodes that train local models on local partitions
of the training data. The parameter node initializes the model
and broadcasts its weights to the training nodes. Each training
node owns a unique, potentially skewed partition, on which it
trains its local model on. After a certain amount of iterations,
each DownpourSGD training node sends its local model updates
asynchronously to the parameter node. The parameter nodes
updates the global model and, then, sends the aggregated global
model weights back to the training node.

DataGossip introduces a second process to the learning setup
on every training node. This process hosts a DataGossip worker
that runs in parallel to the training process. Both the DataGossip
worker and DownpourSGD’s training node have access to the
training data. In the following, we describe the gossip algorithm
and how training records are selected, sized and weaved.



DataGossip algorithm. DataGossip expects the training nodes
to log the most recent losses for each local training record into a
shared memory buffer (a shared PyTorch tensor). After each local
training epoch, i.e., every time all local losses got updated, the
DataGossip worker receives a signal to attempt a new round of
data exchange. The data exchange itself is implemented using the
Gloo library [6] and the ring-allgather protocol. If a preceding
data exchange has not finished when a signal is received, the
signal is ignored to not flood the network with gossip attempts;
otherwise, all DataGossip workers share a selected set of training
records in a ring-shaped pattern. Once a worker receives new
foreign training records, it writes them into a predefined shared
memory buffer for the training process. If the buffer already
contains training records, they get replace by the new ones.

Record selection. Choosing training records that are partic-
ularly relevant for the training is important to focus the com-
munication efforts on possibly significant examples. Hence, we
tested DataGossip with four different loss-based selection ap-
proaches: Random, Hard Example Mining (HEM), Self-Paced
Learning (SPL), and Active Bias (AB). The random strategy se-
lects records randomly (without replacement) from the entire
local partition. Random sampling is very efficient and also used
by SPL and AB until enough losses are recorded. The HEM strat-
egy chooses the most difficult training records from the local
partition to be shared with the other training nodes. For this,
HEM sorts all records by their most recent loss and, then, selects
the top-k hardest instances (highest loss). The SPL strategy de-
fines a threshold to differentiate between sufficiently easy and
too hard training records. This threshold increases with every
epoch. SPL then selects a random sample of easy records for
the gossiping while using the loss as sampling weights. In this
way, the sampling focus lies on the hardest records in the set of
considered records and follows the moving threshold over time
to ever harder training records. The AB strategy samples training
records from the entire local partition by using the loss variance
of the training records as weights. For this purpose, AB calculates
the variance of losses for each training record over the already
trained epochs. The loss variance reflects the impact of the local
training on a particular record and, hence, the records’ potential
relevance for the local training.

Record sizing. To keep the network pressure low, not exhaust
the memory and stay reactive, the selected set of training records
for the gossiping needs to be as small as possible. The optimal
amount of gossiped data also depends on the network speed,
cluster size and available memory. For this reason, DataGossip
offers the size of gossip batches as a parameter that we later
investigate in the evaluation.

Record weaving. Because the number of foreign training records
on each node needs to be very small in comparison to the local
training records, they and their classes are significantly underrep-
resented, which causes them to have little effect on the training
when treated equally to all local records. For this reason, the
DataGossip workers weave the foreign records into the local
records in a way that foreign records appear more often and,
hence, are trained on more frequently. Technically, foreign and
local records are still stored in different buffers (to avoid physical
duplication), but a weaving protocol defines that a next batch of
records needs to be read from the foreign buffer every certain
amount of batch readings from the local partition. We analyze
the frequency of such readings, i.e., the emphasize that is put on
foreign training records, in the evaluation.
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4 EXPERIMENTS

In this section, we evaluate the effectiveness of using DataGossip
to minimize the impact of skewed data distributions on the learn-
ing accuracy. The experiments use w.l.o.g. DownpourSGD [5] as
the distributed machine learning algorithm. We refer to Down-
pourSGD without DataGossip as baseline and to DownpourSGD
with DataGossip as datagossip. Both implementations use Py-
Torch [17], PyTorch Distributed [13], and Gloo [6]. The source
code for algorithms and experiments can be found on GitHub!.

Hardware. All experiments are run on a server cluster with
14 nodes. Each node has an Intel Xeon E5-2630 v4 CPU with 20
threads and 60 GB RAM. One node of the cluster acts as parameter
node and the remaining 13 nodes are training nodes.

Datasets. As training data, we use CIFAR10 [11] with gray-scaled
images and Fashion-MNIST [21]. For both datasets, we created a
balanced partitioning via random shuffling and an imbalanced
partitioning via class skewing, i.e., we sorted the datasets by their
class labels and split the sorted datasets horizontally in as many
equally sized partitions as there are training nodes.

Parameterization. DownpourSGD’s hyper-parameters are the
learning rate (default 0.003), the update frequency (default 5), the
weight batch size (default 64), and the optimizer (default SGD). We
opted for SGD, because RMSprop and Adam [9] are more sensitive
to staleness [4]; the batch size of 64 was chosen, because it is a
good compromise between result accuracy and training efficiency
considering the results of [15] and our own experiments. All
experiments train a Convolutional Neural Network (CNN) with
three convolutional and two fully-connected layers using the
ReLU activation function. The CNN model is randomly initialized
and not pre-trained. The instance selection strategy SPL sets its
initial threshold A to 0.1 and its growth factor to 1.2.

Experiments. Because DataGossip increases the number of train-
ing records per epoch and adds an overhead for data selection and
data sending, it would have an unfair advantage over the baseline
if we compare the training progress over epochs; hence, we com-
pare the results over time. We also performed all experiments
three times and report the mean and standard deviation, because
the asynchronous weight and data exchanges, the random model
initialization, and the randomization in the instance selection
strategies create fluctuations in the experimental results.

4.1 DataGossip Effectiveness

Figure 2 depicts the learned accuracy of the baseline and the
datagossip setup over time on balanced and unbalanced datasets.
If the training classes are evenly partitioned, DataGossip does not
improve the training, but with careful configuration (k = 5, f = 4,
AB) it also does not worsen the training. On imbalanced data,
however, DataGossip clearly improves the training performance:
At the times the baseline stopped, the datagossip setup achieved
a 5% higher accuracy on Fashion-MNIST and a 7% higher ac-
curacy on CIFAR10. This is because without data exchange the
local optima differ significantly and, therefore, the local models
compete rather than support one another. The partitionings used
in this experiment are, of course, extreme cases. In practice, we
expect class distributions to be in between balanced and fully
imbalanced. The effect of DataGossip might therefore be smaller,
but it is somewhere in the spectrum of same and significantly
higher (7% in our case) accuracy. Hence, we recommend the use
of DataGossip if the partition balance is unknown or uneven.

!https://github.com/HPI-Information-Systems/DataGossip
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Figure 2: Model accuracies on balanced/imbalanced parti-
tionings with/without DataGossip (k = 5, f = 4, AB).
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Figure 3: Model accuracies for different batch sizes k on
skewed partitionings with DataGossip (f = 1, AB).

4.2 DataGossip Instance Selection

If activated, DataGossip is configured to happen at most once
per local epoch to align the gossip frequency with the learn-
ing progress and, hence, not flood the network with possibly
redundant training data, as an epoch is needed to re-evaluate all
training losses. With the gossip frequency fixed, we now investi-
gate three DataGossip parameters: the batch size k of gossiped
training records, the training frequency f for foreign records, and
the instance selector, which is either random, HEM, SPL, or AB.

How many training records should be sent? The parameter k
is the number of local records that each training node shares with
all other training nodes in every round of gossip. Hence, with 13
training nodes, a round of gossip sends k X (13 — 1) records to
every training node. The measurements in Figure 3 show that
the number of exchanged records impacts the performance of
the training only slightly. This is because the record weaving
always ensures the same emphasize on foreign records (and their
classes) regardless of k and finer class variances are learned well
enough by the regular model weight updates. Smaller values of k,
however, deliver slightly better results than larger ones, because
they are more efficient and consume less resources so that the
overall training converges a bit faster. In our experiments, we
found k = 5 to be an overall effective and robust setting.

How often should be trained on foreign records? The param-
eter f is the frequency for the training on local records w.r.t. for-
eign records. It denotes that the setup should train on f batches
of local records after every batch of foreign records. Figure 4
plots the model accuracies with different frequencies f. The mea-
surements show that with a small f, i.e., a high proportion of
foreign records, the training on skewed partitions works best.
On balanced partitions, however, we observed that small f can
slightly reduce the training accuracy (by about 2-3% in our tests)
due to the training bias towards gossiped records. We therefore
recommend a small value f = 1, only if the data is known to be
skewed; if the skew is unknown, a slighly higher value, such as
f =4, is a safe choice.
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Which training records should be sent? Figure 5 shows the
impact of the chosen instance selection strategy on the training
accuracy. The measurements show that random, SPL and AB
all perform similarly well. This is because all three introduce
randomness in the selection, which seems to be the most impor-
tant selection feature, as small differences in the quality of the
selected records are compensated for by the weight exchange
of DownpourSGD. Because AB performs slightly best on our
datasets w.r.t. accuracy and variance over the training time, we
recommend this instance selector as default. The HEM strategy,
on the contrary, performs worst, because the chosen hard ex-
amples are too deterministic, noisy and confusing for the local
training processes.

5 CONCLUSION

DataGossip is, to the best of our knowledge, the first approach
that extends arbitrary data parallel distributed machine learning
algorithms with the capability to dynamically exchange records
at training time. Our implementation of DataGossip demonstrates
that sharing data at runtime can effectively reduce the impact of
imbalanced training data distributions. The extension focuses on
learning setups with large, potentially skewed corpora of training
data; the data is tied to specific physical locations but parts of
the data may temporarily be shared with other nodes. In our
experiments, training setups with DataGossip achieved up to 7%
more accurate training results on imbalanced class distributions;
with careful parametrization, the extension does no harm when
used on balanced training datasets.

Although we already tested the idea of data gossip on differ-
ent datasets (two are shown is this paper) and machine learning
algorithms (one is shown in this paper), we still need to experi-
ment with different skew patterns, data sizes, and data types. Our
experiments also indicate that a more intelligent parametrization
(e.g. dynamic adjustment of f and k at runtime) and an asynchro-
nous data exchange protocol (e.g. a reactive gossiping strategy)
can further improve the accuracy with DataGossip.
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