
Towards Optimal Resource Allocation for Big Data Analytics
Anish Pimpley

Microsoft
anish.pimpley@microsoft.com

Shuo Li
Microsoft

shuol@microsoft.com

Rathijit Sen
Microsoft

rathijit.sen@microsoft.com

Soundararajan Srinivasan
Microsoft

soundararajan.srinivasan@
microsoft.com

Alekh Jindal∗
Keebo Inc

alekh@keebo.ai

ABSTRACT
Optimizing resource allocation for analytical workloads is vital
for reducing operational costs in modern cloud-oriented query
processing services. At the same time, it is incredibly hard for
users to allocate resources per query in the newer breed of
Big Data processing systems, and they frequently end up mis-
allocating by orders of magnitude. While prior work has focused
on predicting peak resource allocation, it misses opportunities
for more aggressive resource allocation to trade-off resource sav-
ings with query performance. Additionally, these methods fail
to predict resource allocations for queries that have not been
observed in the past.

In this paper, we tackle both these problems. We present a sys-
tem for optimal resource allocation in big data systems that can
predict performance impact for candidate resource allocations,
for both new and past observed queries. We introduce the notion
of a performance characteristic curve (PCC) as a parameterized
representation that can compactly capture the relationship be-
tween resources and performance. To tackle the challenge of
training data sparsity, we introduce a novel data augmentation
technique to efficiently synthesize the entire PCC using a single
run of the query. Lastly, we demonstrate the advantages of a
constrained loss function coupled with GNNs, over traditional
ML methods, for capturing the domain specific behavior through
an extensive experimental evaluation over SCOPE big data work-
loads at Microsoft. Our results show that our fast and novel sky-
line simulation technique for data augmentation is sufficiently
accurate, with a median percentage error in run time estimates
of 9% on past jobs and our ML models can estimate the run time
of jobs for different token counts well, before they have executed,
with a median percentage error of 39% or less.

1 INTRODUCTION
Modern cloud computing has alleviated the need for dedicated
resources [25]. For query processing, this means that Big Data
query processing systems, such as SCOPE[12], Athena[1], and
Big Query[38], can dynamically allocate resources for each in-
coming query without requiring users to reserve a dedicated
capacity for their applications. However, allocating resources ef-
ficiently is a challenge in these systems. This is because big data
queries have a complex relationship between resource allocation
and performance, that is very hard to reason about, and that
relationship changes over the course of query execution [26].

∗Work done while at Microsoft

© 2022 Copyright held by the owner/author(s). Published in Proceedings of the
25th International Conference on Extending Database Technology (EDBT), 29th
March-1st April, 2022, ISBN 978-3-89318-085-7 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Re
so

ur
ce

s

Default Allocation

Peak Allocation

Adaptive Peak Allocation

Over-allocation

Figure 1: Skyline of resources (tokens) used by a SCOPE
job and over-allocations with different allocation policies.

Figure 1 illustrates the challenge in per-query resource alloca-
tion. It shows the amount of resources used by a SCOPE query
(called job), over the duration of its execution on the Cosmos
Big Data analytics platform at Microsoft [12], and the resources
allocated to the job under various allocation policies. Reusing
terminology from prior work [26, 32], we call this time series
representation of the job’s resource usage as the skyline of the
job. Similar to prior work [9, 34], we use the term token to denote
a unit of resource allocation for SCOPE jobs on Cosmos, with
token being synonymous to container and resource in this work.
Although this example job uses less than 80 tokens, the job was
allocated 125 tokens by default, as shown by the dashed line
marked as ‘Default Allocation’. Thus, the job is over-allocated,
with the extent of over-allocation varying as the job runs de-
pending on the number of tokens actually used by the job at that
point in time. As can be seen from this example skyline, it is
incredibly hard for a user to anticipate such a complex resource
usage behavior and allocate resources accordingly.

Recent works have restricted to either predicting the peak re-
source use [34], thereby aiming to achieve a ‘Peak Allocation’ pol-
icy as shown in Figure 1, or to adaptively giving up non-required
resources over the course of query execution [9], thereby aim-
ing to achieve an ‘Adaptive Peak Allocation’ policy as shown
in the figure. Although these policies reduce the over-allocation
compared to that with ’Default Allocation’ for this job, this is
not enough because we see numerous valleys in the job skyline
which consequently result in over-allocations at those points.
Therefore, allocating for the peak resource use, either upfront or
adaptively over time, is highly conservative and misses valuable
opportunities for operational efficiency. With a more aggressive
allocation policy, one could allocate less-than-peak resources
provided that the resulting performance loss (if any) is within an
acceptable limit. But implementing such a policy requires the
ability to predict a job’s expected performance impact, upfront,
for a set of candidate resource allocations so that the optimal allo-
cation, i.e., the minimum resources that satisfy the user-specified
performance constraints, can be chosen for the job.

Series ISSN: 2367-2005 338 10.48786/edbt.2022.20

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2022.20

0% 0-25% 25-50% >50%
Token Request Reduction

10%

20%

30%

40%

50%

Pe
rc

en
ta

ge
 o

f S
CO

PE
 Jo

bs

49%

18%
13%

20%

8%

38%

30%
24%

4%

27%

40%

29%

Potential Token Request Reduction in SCOPE Jobs
Default Performance
95% Default Performance
90% Default Performance

Figure 2: Bar plot of potential token request reduction in
production SCOPE jobs at Microsoft.

Figure 2 shows the potential reduction in the number of tokens
requested by SCOPE jobs in different scenarios. We see that
51% of the SCOPE jobs could request fewer tokens without any
estimated impact on performance (the accumulated token request
reduction greater than 0%, i.e., the second, third and fourth red
bars), with 33% of the jobs requiring less than 75% of the tokens
(the accumulated token request reduction greater than 25%, i.e.,
the third and fourth red bars), and 20% of the jobs requiring less
than 50% of the tokens (token request reduction greater than 50%,
i.e., the fourth red bar). Additionally, if the users are willing to
accept a 5%-10% performance loss, then the percentage of jobs
that could utilize fewer tokens go up to 92%-96%, with 24%-29% of
the jobs requiring less than 50% tokens (the yellow/green bars).

Utilizing fewer tokens reduces job wait time and improves
the overall resource availability for other jobs in the cluster [34].
Interestingly, our conversations with internal Microsoft users
reveal that they do have the above intuition and are in fact look-
ing to allocate resources below the overall peak. However, it is
very hard for them to manually estimate the optimal resources
required for different jobs [32]. To understand further, we ran a
qualitative user study with 12 experienced engineers who have
been using SCOPE for a while. Interestingly, only 5 of them
demonstrated an understanding of what token allocation means,
and yet all 5 either guessed or selected the default value when
deciding the number of tokens to allocate per SCOPE job.

In this paper, we present a machine-learning (ML) based ap-
proach to predict, at compile-time, the optimal resource allocation
for each query in a big data query processing system. Our key
observation is that the relationship between resource allocation
and query performance could be approximated using an expo-
nentially decaying curve, as shown in Figure 3 and referred to as
performance characteristic curve (PCC) henceforth in this paper.
This is because while job performance improves significantly
with more resources (tokens) initially, the change is diminishing
for larger token counts. Our goal then is to learn the PCC for
all jobs, i.e., given the compile time characteristics or features
of a job, predict the parameters for its PCC. Such a curve can be
used for both point prediction, i.e., predict the job run time given
a token amount, and trend prediction, i.e., predict the job run
times for each point in a range of token counts. The monotonicity
property of PCC is further useful in helping users understand the
proposed model and the performance/resource trade-offs, allow-
ing them to tune the resource allocation based on their acceptable
performance range and service-level objectives (SLOs).
Challenges. The biggest challenge in learning the PCC for all
jobs in the workload is the limited historical data available for

training. Queries in the historical workloads were executed with
a given resource allocation, i.e., a single token count, while we
need to gather performance changes across different token counts
in order to learn the PCC model. The problem becomes worse
with the high diversity and the massive scale in typical enterprise
workloads that are hard tomodel, e.g., SCOPE processes hundreds
of thousands of jobs per-day over petabytes of data from several
different business units across the whole of Microsoft, making
it non-trivial to train PCC at such complexity and scale. One
option could be to use a job’s most recent resource allocation
skyline to estimate the PCC, however, the skyline could change
significantly over time due to changes in workloads, such as
changes in the input sizes. Furthermore, newer and ad-hoc jobs
with no historical data do not have historical skylines. Finally,
unlike prior approaches for learning cost models [37], the PCC
model needs to capture the diminishing nature of performance
improvements as more resources are allocated, i.e., not just point
predictions but also trends predictions to understand and reason
about the trade-offs.
Contributions. We address the above challenges in this paper1
and make the following key contributions.
• We present TASQ (Token Allocation for Scalable Queries), an
end-to-end ML pipeline to predict optimal token counts in
SCOPE like query processing systems. (Section 2)
• We introduce an efficient data augmentation technique for
enriching sparse training data using a job skyline simulator,
coined AREPAS, that can accurately synthesize skylines with
alternate token counts. (Section 3)
• We describe an ML approach for point and trend predictions
using a rich set of features from past job graphs. Our model
characterizes the Performance characteristic curve (PCC) us-
ing two parameters of a power-law curve and predicts these
parameters for a given arbitrary job. (Section 4)
• We present extensive evaluation results of TASQ incorporating
different ML approaches. Our results show that an XGBoost-
based approach has the best accuracy for point prediction.
However, its trend prediction is not always correct. In contrast,
feed forward neural networks and graph neural networks guar-
antee a monotonically non-increasing trend between resources
allocation and job run time, and both models have reasonably
good accuracy for point prediction with the median absolute
error in run time prediction being 39% or less over a large
production SCOPE workload at Microsoft. (Section 5)

2 TASQ OVERVIEW
We study the problem of efficient resource allocation in the con-
text of SCOPE [12], which powers the internal big data work-
loads throughout the whole of Microsoft. SCOPE runs hundreds
of thousands of jobs that process petabytes of data per-day, with
each SCOPE job being a DAG of operators that gets executed
using up to thousands of containers (referred to as tokens) in par-
allel. SCOPE users submit their jobs along with a desired token
amount that is allocated as guaranteed resources before the job
can start. Unfortunately, users rarely make informed decisions on
the appropriate number of tokens needed for their jobs, and they
typically opt for the default values, i.e., a static number that is
clearly suboptimal for different jobs. Poor token allocation leads
to performance loss, higher wait times, and more operational
costs for customers. Our recent work considers peak resources,
either upfront or adaptively over time [9, 34]. However, peak
1An early version of this work is available as a preprint [31].

339

25 50 75 100 125 150 175 200
Token

1000

1500

2000

2500

Ti
m

e
(s

)

Run time ~ Token

Figure 3: Trade-off between allocated resources and job
run time. Red marker indicates an elbow in the curve.

allocation is utilized only for a small portion of a job’s lifetime.
Instead, we could allocate tokens below the peak usage without
incurring a noticeable loss in performance. We refer to this maxi-
mal allocation under the peak, that optimally trades off resource
cost and run time, as the optimal resource allocation.

2.1 Problem Definition
We now define the optimal resource problem. Let 𝐽 be an ana-
lytical job and 𝐴 be the resources (token count) allocated to it.
Also, let 𝑅 be the performance, measured typically in terms of the
total run time of job 𝐽 . Our goal then is to learn the performance
characteristic curve of job 𝐽 , i.e., its run time as a function of
resource allocation, as illustrated in Figure 3. Formally,

𝑃𝐶𝐶 𝐽 : 𝑅 = 𝑓 (𝐴) (1)

Given a 𝑃𝐶𝐶 𝐽 , we can then find the optimal resource allocation
using gradient descent with a termination condition, i.e., a thresh-
old beyond which the gains in performance are diminishing. This
threshold could be controlled by the users or administrators,
e.g., asking a minimum 1% performance improvement for every
additional token count that is allocated.

2.2 System Implementation
TASQ is implemented within the broader workload optimization
platform that we have been building at Microsoft [24]. Figure 4
shows the end-to-end TASQ pipeline for training and scoring of
PCC prediction models. The TASQ training pipeline ingests his-
torical data from the job repository that includes query plans, run-
time characteristics, and other job metadata, and transforms them
into a clean model-suitable tabular format, which it stores on
Azure Data Lake Storage (ADLS) [2]. Thereafter, TASQ runs the
featurization step and trains the models on Azure Machine Learn-
ing (AML) [4]. It then registers the trained model in AML model
store and deploys it as an Azure Kubernetes Service (AKS) [3].
This service endpoint is used to integrate with a Python client for
SCOPE. For an incoming SCOPE job, that is submitted through
a client submission system, the TASQ scoring pipeline obtains
compile-time job information from the SCOPE compiler, featur-
izes it, and passes it to the deployed model service for predicting
the PCC for that job. Based on the configuration, the system
may either directly pass the predicted optimal token count to
the job scheduler along with the job for execution or display
the PCC to the users for them to understand the performance-
resource trade-off and to make an informed decision about the
token count.

As discussed before in Section 1, the biggest challenge in learn-
ing the PCC is the limited training data on different token counts.

Training
Data

Optimal Token
Count

Model
Binary

Historical
job data

Job graph,
metadata,

run time, skyline

Featurizer
Model

Training

Model
Scoring

Ingestor

Scoring
Data

Model Binary

Azure Machine
Learning Model Store

Azure Data Lake StorageCosmos Storage

Featurizer
Client

Submission
System

SCOPE
Compiler

Job
Scheduler

Determining
Optimal

Predicted PCC
Online

Operations

Figure 4: TASQ system integration.

Therefore, TASQ uses a novel simulator, called AREPAS, to gen-
erate augmented training input. Given a job’s resource consump-
tion skyline, AREPAS can synthesize the run time for the same job
with different token allocations. We utilize AREPAS to generate
synthetic data that augments the historical dataset. To train the
model, we characterize the output of the simulator by distilling
it down to two parameters that define a power-law shaped PCC
curve. Our training setup uses these parameters as targets for
the ML model. This implicitly constraints the model and guides
it to learn relationships that reflect known intuitions of domain
experts. To accurately learn these parameters, we construct a
loss function containing two components which are balanced by
tuned weights, namely mean absolute error of PCC parameters
and mean absolute error of run time prediction.

In the rest of the paper, we first describe training data aug-
mentation in Section 3, then we discuss the prediction models in
Section 4, and show the evaluation results in Section 5.

2.3 Applicability to Other Platforms
The ideas in TASQ can be applied to decide resource allocations
for other platforms as well. In fact, in our companion work, we
have followed up on TASQ to automatically determine the op-
timal number of executors for Spark SQL queries [35, 36]. We
briefly differentiate the general aspects of TASQ from its platform-
specific adaptations below.

The general aspects are the concept of the PCC, modeling
it with mathematical functions, using ML models to learn and
predict the relationship between query plan characteristics and
query inputs to the PCC parameters, using compile-/optimization-
time features for the ML models, using simulation for data aug-
mentation, and using regression models to predict job run times
for different resource allocations and then using that to determine
the optimal allocation.

The platform-specific adaptations are the specific form of the
mathematical functions, e.g., power-law function, features used
for the ML models and their semantics, the specific ML models,
the specific simulators, and the resource allocation unit, e.g.,
tokens for SCOPE queries and executors for Spark SQL queries.

3 DATA AUGMENTATION
Our goal is to model the relationship between the job run time
and the allocated resources (tokens), given the compile-time job
characteristics. However, to train such a model, we need the
run times for the same job with different token counts so that
the relationship between job run time and token count could
be learned. Unfortunately, historical data only contains the job
run time at one single token count (the one actually used by
the job). Here we first discuss challenges along with a couple
of alternative approaches, and then we describe our simulation-
based technique for augmenting the training dataset.

340

3.1 Challenges
Augmenting the job telemetry that we use for training is challeng-
ing because each of the past jobs ran with a single token count,
and their performance over other token counts is unobserved
and unknown to us. One option could be to rerun the job with dif-
ferent token counts, leveraging the experimentation capabilities
in many data processing platforms, e.g., the job-flighting capa-
bilities in SCOPE that allow re-running production workloads
in a pre-production environment [34, 37, 42]. However, such an
experimentation is not just time-consuming but also expensive
since it requires the availability of sufficient spare tokens to run
these additional jobs. Therefore, this approach is not practical
for large workloads like the ones we see in SCOPE.

Another approach is to use traditional data augmentation tech-
niques such as the Generative Adversarial Networks (GANs) [19].
Unfortunately, this will not work in our scenario because the
GAN models generate new samples based on what we have al-
ready observed in the historical data. Instead, we want to produce
augmented telemetry at other token counts for each job, i.e., un-
seen in the historical data. Furthermore, building GAN models to
generate different resource consumption skylines is as complex
as modeling the run time as a function of token allocation, albeit
with limited training data. Overall, we want to keep data aug-
mentation a lightweight process that can scale to large historical
workloads and also work for jobs in newer workloads over time.

3.2 AREPAS
Our approach is to use a lightweight skyline simulation technique
for data augmentation. Therefore, we introduce Area Preserving
Allocation Simulator (AREPAS) to augment the training data in
TASQ. AREPAS employs a system-level intuition by assuming
that the total amount of work or the area under the resource con-
sumption skyline remains fixed. This makes sense for the same
job having the same inputs and the same outputs. Specifically,
we discretize the resource consumption skyline at 1 second’s
granularity, with a 1x1 square in the skyline plot (tokens used
over the job’s run time) representing 1 token-second, and the
total number of squares under the resource consumption skyline
representing the total amount of token-seconds used by the job.
Our assumption then implies that the total token-seconds will
stay constant.

Note that AREPAS simulates performance at the coarse-grained
granularity of the entire job and its resource consumption skyline,
instead of modeling it for every stage level in the corresponding
job execution graph, as proposed in Jockey [18]. This is because
simulating at the stage level requires making assumptions about
the job scheduler that is much more susceptible to cluster condi-
tions and as a result unpredictable in nature. Instead, AREPAS
makes a more simplifying assumption that the total amount of
work remains constant. While even this assumption will not al-
ways hold, we are still able to obtain run time estimates with
reasonable accuracy, as we will show in Section 5.2.

Figure 5 shows two examples of different types of skylines. In
these visualizations, we divide the regions under the skylines into
different color-coded sections based on the height of the curve
in each of those regions, i.e., the utilization of allocated tokens
at that point in time. Red indicates near-minimum utilization,
pink indicates low utilization, and green indicates moderate-high
utilization. We observe that both skylines show potential for
cost savings because they spend a portion of the run time in
the red/pink section. However, The more peaky job (Figure 5a)

(a) Peaky Skyline (b) Flatter Skyline

Figure 5: Resource skylines divided into sections by re-
source consumption.

Figure 6: Unchanged section between the Ground truth
(left) skyline and simulated (right) skyline.

spends a majority of its run time in the pink/red regions and
flatter job (Figure 5b) spends longer time in the green region.
We want to simulate the skyline for the above jobs at any token
allocation value which is lower than the original token allocation.
Additionally, we aim to achieve this using only the above skyline
as an input to the simulator. We make the following assumptions.
• The simulated skylines are deterministic, i.e., for any given
combination of a job and a token allocation we always get the
same skyline. Thus, we do not model any stochastic behavior in
the execution environment, e.g., random failures of machines,
cluster load at the time of execution, noisy neighbors on same
physical machines, scheduler queues, etc.
• Each 1x1 block under the skyline, representing 1 token-seconds
each, is independent of each other. So, if a compute process
consumes 10 token-seconds over its lifetime, then it will take 1
second and 10 seconds to complete with 10 tokens and 1 token
respectively, based on the right-nearest integer approximation.
• Sections of a simulated skyline that are below the allocated
resources will have the shape of their skylines unchanged
when simulated. (Figure 6)
• For sections of a skyline that go over the allocated resources,
the simulator adapts the skyline’s shape by reallocating work
while keeping the total amount of work done in those sections
constant. (Figure 7)
Using the above assumptions, we simulate skylines over dif-

ferent resource allocation for the same job. We divide a resource
allocation skyline into sections, where each section is a contigu-
ous chunk of the skyline that is completely under or completely
over the new allocation. Figure 6 shows how over-allocated sec-
tions (where usage < new allocation) are copied without change
to the new skyline. Figure 7 shows how sections of the skyline
that are under-allocated (cut-off by new allocation) are imme-
diately added back as a task in front of the part that was cut
off. This pushes the rest of the plot forward and as a result it
increases the overall job run time. The area that is being added

341

Figure 7: Redistributed section between the Ground truth
(left) skyline and simulated (right) skyline. The simulator
reallocates work with fewer resources. To preserve area,
the reallocated portion in the simulated skyline takes
more than twice as long, when allocated a little less than
half as many tokens.

is the same as the area that is being cut out, in accordance with
the area preservation design choice.

Algorithm 1: Skyline simulation
output :𝑆𝑠𝑖𝑚: simulated skyline (𝑙𝑖𝑠𝑡) ;
input :𝑆𝑜𝑔: original skyline = [𝑠0, 𝑠1, 𝑠2,𝑠𝑟𝑢𝑛𝑡𝑖𝑚𝑒]

𝑁𝑡 : new allocation threshold to simulate (𝑖𝑛𝑡);
1 𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑆𝑡𝑎𝑟𝑡𝐼𝐷𝑠 = []
2 for 𝑖 ← 1 to 𝑟𝑢𝑛𝑡𝑖𝑚𝑒 do
3 if 𝑠𝑖𝑔𝑛(𝑆𝑜𝑔[𝑖]−Nt) ≠ 𝑠𝑖𝑔𝑛(𝑆𝑜𝑔[𝑖 − 1]−Nt) then

𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑆𝑡𝑎𝑟𝑡𝐼𝐷𝑠.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑖);
4 𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑠 = 𝑆𝑜𝑔.𝑠𝑝𝑙𝑖𝑡 (𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑆𝑡𝑎𝑟𝑡𝐼𝐷𝑠):
5 for sec in sections do
6 if 𝑠𝑒𝑐 [0] > 𝑁𝑡 then
7 𝑠𝑒𝑐𝐴𝑟𝑒𝑎 = 𝑠𝑢𝑚(𝑠𝑒𝑐)
8 𝑛𝑒𝑤𝑆𝑒𝑐𝐿𝑒𝑛𝑔𝑡ℎ = 𝑖𝑛𝑡 (𝑠𝑒𝑐𝐴𝑟𝑒𝑎/𝑀𝑡)
9 repeat 𝑛𝑒𝑤𝑆𝑒𝑐𝐿𝑒𝑛𝑔𝑡ℎ times
10 𝑆𝑠𝑖𝑚.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑀𝑡)
11 else
12 𝑆𝑠𝑖𝑚.𝑎𝑝𝑝𝑒𝑛𝑑𝐴𝑙𝑙𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠 (𝑠𝑒𝑐)

13 return 𝑆𝑠𝑖𝑚

Algorithm 1 shows the steps for simulating a skyline for a
given token count. The input is the original skyline (discretized
at 1 second granularity) along with the token count to be used
for simulation. The output is the simulated skyline. First, we
identify the timestamps where the skyline intersects with the
new allocation (Lines 2–3). Then, we use these time stamps to
divide the skyline into sections (Line 4). Sections that are above
the new allocation are lengthened until they can fit under the
new token allocation, while keeping their area under the curve
constant (Lines 7–10). Sections that are at or under the new
allocation stay unchanged and are copied over as is (Line 12).
The new sections are then stacked in front of the others to obtain
the newly simulated skyline and the corresponding job run time.

Figure 8 shows the simulation of two kinds of jobs (peaky
and flatter) for different token allocations, with the simulated
skylines shown in different colors. Note that the peaky jobs show
less impact on performance with lower resource allocation than
more flatter jobs. This is expected since peaky jobs have deeper
valleys and hence more aggressive allocation can shift some of
the work to other low activity regions, thus freeing up resources
for other jobs.

Figure 8: Flatter jobs (left) lose significant performance as
soon as the token allocation is decreased, while peaky jobs
(right) can tolerate a significant loss of resource allocation
before they lose performance. G.T, that is, Ground Truth,
denotes the starting skyline for the simulations.

4 PREDICTION MODELS
In this section, we first define the monotonicity constraint of
the trend predictions. Then we explain why we prefer a global
model compared to fine-grained models. We also discuss how we
featurize the job metadata and use ML models to predict job run
time as a function of token allocation.

4.1 Monotonicity constraint
The PCC captures the relationship between the job’s run time
and the number of allocated tokens. Users typically expect to see
a monotonically decreasing trend for the run time with increas-
ing token count. While there can be cases in practical situations
where the run time increases at high token counts due to paral-
lelism overheads, those are not optimal operating regions for the
job, either from a performance or from a cost-efficiency stand-
point. However, for SCOPE jobs in particular, re-partitioning
of the data or re-optimization of queries do not happen when
submitted with different token counts. In this context, we expect
to observe monotonic behavior as the dominant common-case
scenario. We validate and confirm this hypothesis in Section 5.1.

Our motivations for modeling a monotonic behavior for the
PCC, that is, job run times do not increase with increasing token
counts, are thus the following.
• It is the common-case scenario for jobs on this platform,
• From a resource allocation perspective, it is not interesting to
operate in a region where run time increases with allocated
resources, either from the perspective of the user or of the
service provider; thus the region of interest is where run times
do not increase with token counts, and
• A simple, monotonic PCC is easier to use to explain resource
allocation decisions to users.
We consider two alternative approaches for predicting the

Performance characteristic curve (PCC).
(1) Point Prediction: we predict the run time for a given token

amount, then construct the PCC from the collection of pre-
dicted points. However, as we will discuss in Section 5.3, the
resulting PCC is often not monotonic.

(2) Trend Prediction; we fit a monotonic mathematical func-
tion to the PCC, then predict the parameters of the function.
We discuss the choice of this function below.
From Amdahl’s law, the parallelizable portion of a workload

has an inverse relationship with run time [8]. However, the steep-
ness of the inverse relationship is not captured by a simple in-
verse proportionality. To generalize this idea, we characterize the

342

Figure 9: Performance characteristic and the fitted curve
in absolute and log-log spaces.

inverse relationship as power-law:

𝑅𝑢𝑛𝑡𝑖𝑚𝑒 = 𝑓 (𝐴 : 𝑇𝑜𝑘𝑒𝑛𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛) = 𝑏 × A𝑎 (2)

Where ‘a’ and ‘b’ are the 2 scalar parameters of the curve and
whose values depend on the job’s characteristics. Amdahl’s law
can be seen as a special case where ‘a’ = -1. Thus, the run time
versus token relationship would be monotonically increasing if
the signs of ‘a’ and ‘b’ are consistent and decreasing if the signs of
‘a’ and ‘b’ are inconsistent. Since power-law relationships can be
represented as a linear curve in the log-log space, we transform
the above equation as follows.

log (𝑅𝑢𝑛𝑡𝑖𝑚𝑒 (𝐴)) = log (𝑏) + 𝑎 × log(𝐴)
Figure 9 visualizes the simulated curve and fitted power-law

curve in both spaces. We can now fit a straight line (linear re-
gression) through it to estimate the values of ‘a’ and ‘b’.

The above approach for trend prediction has several advan-
tages. First, using just the two parameters for fitting the PCC
helps represent the domain knowledge compactly, which not
only simplifies the problem but also makes it easier for users to
understand the performance-resource trade-off given a PCC. Sec-
ond, learning a model that can predict the two parameters with
good accuracy also guarantees that the monotonicity constraint
is satisfied. In contrast, doing a series of point predictions and
joining the predictions will not necessarily reach a monotonically
non-increasing PCC (as we show in Section 5.3). Furthermore,
we can generalize the relationship between job metadata at com-
pile time and performance characteristic to any job, including
previously unseen jobs.

A few pitfalls can be expected when using simulated data as
the training input. The simulated data is entirely a function of the
originally observed points, which violates the assumption about
training samples being independent. This makes the simulated
data a second-class citizen in the training input and risks teaching

the model how to better estimate the AREPAS simulator instead
of the run time itself. Fortunately, using our modeling approach
allows us to mitigate this to some degree. This is because, one
component of the loss function discussed in Section 4.5 only uses
ground truth for learning. Thus, the simulator serves as a tool
for constraining the model’s architecture using inductive bias
instead of explicitly guiding it.

We implemented and compared three models: XGBoost [13],
feed forward neural networks (NN) and graph neural networks
(GNN) in this paper. All these models can be used to make predic-
tions for the power-law curve parameters (Section 4.4), that leads
to either monotonically increasing or decreasing PCC. However,
we are able to enforce monotonically non-increasing curve by
design for NN and GNN (Section 4.5). Below we first discuss the
granularity of our models and the featurization, before discussing
the models.

4.2 Modeling granularity
We consider two learning granularities:
(1) Global model: a single model for all incoming jobs, both

recurring and ad-hoc jobs, and
(2) Fine-grainedmodels: grouping similar jobs together and train-

ing separatemodels for each group, similar as in priorwork [34].
Compared to a global model, the fine-grained approach could
improve the accuracy by specializing each subgroup’s run time
versus token count relationship. However, a global model can
provide coverage for all jobs, both recurring and ad-hoc jobs,
whereas the coverage for the fine-grained approach is limited
to recurring jobs seen in the past. Given that token allocation
is a difficult parameter for the users to set, we want to predict
resource allocation for all incoming jobs and not be restricted to
recurring jobs. Therefore, we choose the global model approach
in this work, and as we shall show in Section 5.3, the accuracy is
quite good as well.

4.3 Featurization
Our models take into account:
(1) job operator characteristics that are available during job com-

pilation and optimization time as summarized in Table 1
(operators are described in more detail in related work [44]),
and

(2) the job graph, i.e., a directed acyclic graph (DAG) of the
operators as input data.

The featurization and modeling setup differs according to the ML
model as we describe in Table 2 and further discuss below.

Modeling the non-linear interactions between a large set of
features is difficult with hand-engineering alone. This issue and
the presence of labeled data at scale motivated the choice of ML
for learning the underlying relationships between run time, re-
sources and features of the submitted job. Each Big Data platform
has a different set of features available at compilation time. Once
they are grouped into their appropriate variable types and fea-
turization schemes mentioned below, the models outlined in the
paper should be able to train and infer from these new features.

Aggregated job-level features. XGBoost and NN models
require same input features dimension for each job. As a result,
we aggregate the metrics from each operator in the query plan to
form an equal length feature vector for each job and feed these
models with the aggregated job level features. The continuous
and count variables are aggregated by mean, and the categorical

343

Table 1: Operator level features fromSCOPE jobs. Features
are grouped by pre-processing and featurization pipelines
needed according to variable type.

Variable type Features encoded in each type

Continuous Cardinality (estimated: output, leaf input, children
(float) input), Average Row Length,

Cost (estimated: subtree, operator exclusive, total)

Discrete Number of Partition, Number of Partitioning Column,
(integer) Number of Sort Column

Categorical 35 Physical Operators & 4 Partitioning methods,
(one-hot) described in J. Zhou et al. (§5.2, §4.4 [44])

Table 2: Featurization methods and target variables.

Model Features Target Variables

XGBoost Aggregated Job Level Run time
NN Aggregated Job Level PCC Parameters
GNN Operator Level PCC Parameters

Graph Representation

variables are aggregated by frequency count. The number of
operators and stages are included as features as well. For each
job, we have a 1 × 𝑃 𝐽 feature vector, where 𝑃 𝐽 is the number of
aggregated features.

Operator-level features. Unlike XGBoost and NN, GNN is
flexible in that the model can take operator level features, as
shown in Table 1, directly as input and the input feature dimen-
sion could vary by job, depending on how many operators a job
has. For each job, the operator-level features are represented as
a 𝑁 × 𝑃𝑂 feature matrix, where N is the number of operators
and 𝑃𝑂 is the number of operator-level features. Operator-level
features avoid the information loss due to aggregation.

Graph representation.We represent the query plan graph
structure by an adjacency matrix, and it is obtained from the DAG
of the operators. We use this matrix to measure the connectivity
of the nodes for the GNN. GNN’s native support for learning
from graphs motivates its choice as a model.

4.4 Model training
We now describe training three kinds of models, namely, XG-
Boost, NN and GNN, to learn the parameters of PCC.

XGBoost: Since we cannot use XGBoost [13] to predict the
two PCC parameters jointly, we first train XGBoost with Gamma
regression trees to predict job run time, then form the PCC with
a series of run time predictions. To enable the model to learn a
monotonically non-increasing PCC, we perform data augmen-
tation and explore alternate points on both side of the default
allocation. For each job, we generate twomore observations using
the AREPAS simulator at 80% and 60% of observed token amount.
For the over-allocated jobs, we observe the peak token allocation
and generate two other observations, at 120% and 140% of the
peak token allocation, with run time floored at peak allocation.
For run time prediction, we consider two approaches to form a
PCC as follows.
(1) XGBoost Smoothing Spline (XGBoost SS): The predictions

at multiple token counts (within ±40% of the reference, that
is, observed token count for the job) are smoothed to form a
PCC, and

Figure 10: Graph Neural Network architecture.

(2) XGBoost Power-Law (XGBoost PL): The predictions at multi-
ple token counts are used to fit a power-law shaped PCC.
Feed-Forward Fully Connected Neural Networks (NN):

The job level aggregated features are fed into a multi-layer fully
connected NN to predict the two power-law shaped PCC param-
eters. The run time at specific token counts can be predicted by
plugging the token values into that function. In addition, we can
define the peak token count or the optimal token count (e.g., at a
specific token count, adding/reducing one token will cause the
run time to decrease/increase by p%). This token count can be
calculated using the slope and run time predictions based on the
predicted PCC function as follows: 𝑓 ′ (𝐴)

𝑓 (𝐴) = 𝑝%
Graph Neural Networks (GNN)We train GNN on operator

level features and graph adjacency matrix to predict PCC pa-
rameters. We implement a GNN architecture, that is similar to
SimGNN [10], which is computationally feasible and efficient,
but also takes the node importance into consideration with an
effective attention mechanism. Because of the attention mecha-
nism, we can overweigh and focus on the most relevant part of
the graph to make accurate run time predictions.

Our GNN consists of three stages, as shown in Figure 10.
First, the input data is passed to graph convolution networks
(GCN) [28], a neighbor aggregation approach, to obtain the node-
level embeddings. Second, the node embeddings are fed into an
attention layer, where the attention weight represents the node’s
similarity to the global context. The global context is a nonlinear
transformation of the weighted average of the node embeddings
(whose weight is a learnable object), and the graph embedding
is the attention weighted sum of the node embeddings. And fi-
nally, the job level convolved embeddings are then passed to the
multi-layer fully connected NN to predict the PCC parameters.

4.5 Loss function for NN and GNN
For the NN and GNN models, we construct three loss functions
using the standard mean absolute error (MAE) loss. We combine
several loss components corresponding to both the PCC parame-
ters and run time predictions to form the three loss functions:

LF1: single component loss, MAE of the curve parameters. The
parameters are scaled so that neither of the two would dominate
the loss function. By scaling these parameters in the training and
scaling back in the prediction, the signs of the two predicted curve
parameters are guaranteed to be different, which also guarantees
the monotonically non-increasing trend between run times and
token counts.

LF2: two components loss, a second penalization term of MAE
(in percentage) of run time (at the observed token count) is added
to regularize the models and improve run time estimates.

LF3: three components loss, a third term of mean absolute
difference (in percentage) between the NN/GNN and XGBoost

344

run time predictions (at the observed token count) is added, with
the idea of transfer learning to leverage the learnings from XG-
Boost (because XGBoost makes good run time point predictions,
see Section 5.3). The weights of the components are regarded as
hyper-parameters.

5 EVALUATION
We first evaluate the accuracy of the AREPAS simulator. To do
this, we gather a ground truth dataset using a small set of jobs,
selected based on a job selection process, and re-execute them
at different token values using job-flighting capabilities of the
platform (Section 5.1). Then, we fit the PCC to obtain the curve
parameters. We call this a flighted dataset and use it to validate
the AREPAS simulator (Section 5.2).

Next, we ran extensive experiments to evaluate the PCC and
run time prediction accuracy and to compare the effectiveness
of the three ML models, namely XGBoost, NN and GNN, with
three different loss functions for NN and GNN. We consider three
metrics for model prediction.
(1) Pattern, that is, whether or not the predicted PCC is mono-

tonically non-increasing (qualitative metric),
(2) MAE, that is, mean absolute error of the curve parameters

(quantitative metric), and
(3) Median absolute error, in percentage, of run time predictions

(quantitative metric).
We train the models with a large production workload of 85𝐾

SCOPE jobs after anonymizing identifiable information about the
jobs. Both job run time and token utilizations have right-skewed
distributions. The job run times range from 33 seconds to 21
hours, with the average and median being 9.5 and 3 minutes
respectively. The peak number of tokens used by jobs ranges
from 1 to 6,287 tokens, with mean and median of 154 and 54
tokens respectively.

For testing, first we consider a large set of 78K SCOPE jobs, that
were submitted a day after the training jobs on the same produc-
tion cluster. For this dataset, we have the ground truth run time
at only one token count for each job. For other token counts, we
use estimated run time data obtained from the AREPAS simulator,
regarding them as proxy ground truth. We call this a historical
dataset and evaluate the three metrics of prediction accuracy for
the different models (Section 5.3). Second, we further evaluate
run time prediction accuracy and token-saving opportunities at
the workload level on a flighted dataset that we obtain using a
similar methodology as before (Section 5.4).

5.1 Flighted dataset for AREPAS validation
In order to construct the flighted dataset for validating AREPAS,
we want to obtain run time data for production jobs, where each
job is executed with multiple token counts. However, historical
data has the job’s run time when it was executed at a particular
token count. To get the run times at other token counts, we
re-executed the jobs at those token counts using the flighting
capabilities of the SCOPE processing platform.

However, given that production resources are scarce, we can
only re-execute a small fraction of the jobs, each for multiple
token counts. So our goal is to construct a (small) subset of jobs
that match the population distribution, so that results on this
subset could be generalized; and to obtain a subset that con-
tains as many unique jobs as possible. A recent work generates
summarized workload sets from the workload population while
maximizing coverage and representation [15]. However, in our

0

1

2

3 4
5

6

7
Population

01234
5

6

7
Pre-Selection

0

1

2

3 4
5

6

7
Post-Selection

Figure 11: Clusters in the population (left), pre-selection
samples (middle) and post-selection samples (right).

case, we have to select the subset from a pool of jobs that satisfy
certain constraints, e.g., being within certain time frames, hav-
ing tokens within a particular range, or belonging to a specific
virtual cluster. Therefore, we design a simple but effective strat-
ified under-sampling procedure for workload subset selection
from the pre-selected pool of jobs. Our procedure includes the
following four steps.
1. Job Filtering: Filtering the overall workload population based

on the constraints (i.e., virtual cluster, token range, time
frame) and forming a pre-selected pool of jobs.

2. Job Clustering: K-means clustering over the entire popula-
tion to divide jobs into multiple clusters, and predicting the
cluster for each sample in the pre-selected pool of jobs.

3. Stratified Sampling: Random under-sampling within each
cluster, corresponding to its cluster-size proportion in the
population. We further set a threshold value to limit the num-
ber of times each type of job can be selected.

4. Quality Evaluation: Performing a Kolmogorov-Smirnov
(KS) test [5] before and after the job selection. A lower KS
statistic after the job selection indicates that the subset distri-
bution is closer to that of the population, compared with the
pre-selected pool of jobs.
For validation, we selected 200 jobs using our job selection

procedure from the historical data. The population (historical
jobs) is split into 8 groups and the cluster size proportion ranges
from 5.9% (group 5) to 26.7% (group 6). In the pre-selection sam-
ples, however, the majority of (79.9%) jobs fall in group 6 and
the smallest sized group only accounts for 0.6% (group 2). After
the job subset selection, we are able to create a subset of jobs
with cluster-size proportion matching that of the population, as
shown in Figure 11. We re-execute each job in the subset with
four different token values, at 100%, 80%, 60% and 20% of the
original (reference) token count and use the run times as the
ground truth in subsequent experiments.

Henceforth, a flight or an execution will refer to a single run
of a job with a specific allocation of tokens and the associated
time it took to run that once. It is not possible to completely
eliminate uncertainty when establishing controls for the flighting
experiment. We execute each job 4 times. However, job failures
and randomness due to anomalies are always possible. For this
reason, each unique flight is run thrice to establish redundancy.
We also filter out flights that do not abide by constraints that jobs
are expected to follow. The filters are as follows.
(1) Not an isolated flight (that is, we have more than one suc-

cessful flights of the same job. A minimum of two flights are
needed for further analysis),

(2) Max. tokens should not exceed allocation (so, discard errant
jobs where the job mistakenly used more than the allocated
resources),

345

(3) Job run time should monotonically decrease with tokens (that
is, more compute should not slow the job down).

Therefore, we initially sample a set of non-anomalous jobs that
were flighted offline, such that we only analyze those jobs that
display non-anomalous behaviors. This added up to 296 flighting
instances. They serve as the ‘non-anomalous’ dataset used for
all flighting-related validation henceforth.

To validate the monotonicity assumption in filter (3), we in-
spected our dataset of 180 uniquely flighted jobs and set a toler-
ance of less than 10% error to account for environmental/time-
of-day conditions. With this limit, we observe that 96% of jobs
satisfy the monotonicity constraint. For the remaining 4%, i.e.,
8 of 180 jobs that violate the constraint, the average slowdown
due to more resources was 14% compared to the minimum run
time for the job.

5.2 AREPAS Validation Results
We now validate the area-preserving assumption in AREPAS, i.e.,
"The total token-secs or area under the resource consumption curve
stays constant". To do this, we run each job with 4 different token
counts and compare the area under the resource consumption
curve (skyline) for each pair of executions. Four executions per
job provide 4𝐶2 = 6 execution pairs. We consider an execution
pair to uphold the area conservation assumption if the percentage
difference in area is under a specified tolerance range. As we relax
our tolerance by increasing the range, a greater proportion of
execution pairs will be considered matches. Figure 12 (top) shows
the CDF over all tolerance ranges. We observe that if we set the
tolerance range to 30%, then 65% of all execution pairs match
with each other. When viewed on a granular job-by-job basis, if
an execution does not match with the rest of its executions, we
refer to it as an outlier. Figure 12 (bottom) shows the prevalence
of outliers over the 4 executions of each job. 83% of all jobs have
1 or fewer outliers over their 4 executions. Having evaluated our
assumption at both the aggregate and granular level, we find
AREPAS’s core assumption of token-seconds staying constant to
be reasonable.

Figure 12 compares the relationship between the percentage
tolerance and the percentage matches of job execution pairs. Let
us set the tolerance at 10%, and compare 2 flights of the same
job at different tokens. As long as the areas under the skylines
for both flights are within 10% of each other, we will consider
it a match. In Figure 12, we see that at 10% tolerance, 50% of all
flights that were compared were considered matches. Along the
same vein, we also see that almost all comparisons lie within a
tolerance of 100%. This means that in our test flights, the area
under the skyline curve for one flight of a job was almost never
twice as much as another flight of the same job at a different
token value.

We now validatewhether the simulations generated byAREPAS
match those of the re-executed job instances. To focus on deter-
ministic patterns, we discard jobs with any anomalous behavior
as outlined in Section 5.1.

Alongside the non-anomalous dataset, we also analyze a smaller
(fully-matched) subset of jobs which exhibit zero outliers on the
green line as seen in Figure 12 (bottom). These are jobs where
token-secs match for all four executions. They represent 38%
of the original sample. We report Mean Average Percent Error
(MeanAPE) and Median Average Percent Error (MedianAPE) for
both the non-anomalous subset and the fully-matched subset in
Table 3. We observe, that AREPAS’s results match the re-executed

Figure 12: Validating constant resource allocation area as-
sumption: 83% jobs uphold the assumption within a toler-
ance of up to 30% and with 1 or fewer outliers.

Table 3: AREPAS error compared to ground truth.

Job Groups N Executions MedianAPE MeanAPE

Non-anomalous subset 296 9% 14%
Fully-matched subset 97 22% 25%

run times quite closely, with the worst-case error being under
50% and 30% for the non-anomalous and fully-matched subsets
respectively. This can be seen in Figure 13 at the 100 percentile
point of both plots. The spikes on Figure 13’s percent histogram
indicate AREPAS’s median average percent error on each subset.

5.3 Model accuracy on historical dataset
We now validate the model predictions over the historical dataset.

Table 4–6 shows the performance comparison of the three
models. For trend prediction, neither of the XGBoost models
(XGBoost SS, XGBoost PL) can guarantee a monotonically non-
increasing PCC even after data augmentation. For XGBoost SS,
only 41% of the jobs have non-increasing PCC (within a region
of ±40% of the reference token count for the job i.e., the allocated
token count for the actual run), and around 60% the predicted
PCCs have at least one region of increase. For XGBoost PL, around
73% of the jobs have predicted PCC non-increasing (the two
predicted curve parameters have different signs), and 27% of the
jobs have the predicted PCC monotonically increasing (predicted

346

Figure 13: AREPAS accuracy against the ground truth: me-
dian error for jobs with non-anomalous behavior is 9.2%.

curve parameters have the same sign), i.e., run time increases with
token counts. This is because point predictions for XGBoost do
not necessarily decrease with the increase of tokens. For NN and
GNN, a monotonically decreasing PCC is fitted and guaranteed,
because the curve parameters are scaled and treated directly
as target variables. GNN has a smaller error (MAE) of curve
parameters (0.071–0.077), compared to NN (0.083–0.090). The
MAE of curve parameters for XGBoost PL is much higher (0.232),
around 3× that of NN and GNN.

For run time prediction at the reference token count for each
job, XGBoost models have smaller errors since they model the
run time directly and aim to minimize the run time error only.
Half of the jobs have run time prediction error of 13% or less. The
median absolute error (Median AE) of run time prediction for
NN and GNN are similar, but larger than that for XGBoost. The
run time prediction accuracy also depends on the loss function.

NN and GNN have the largest errors with LF1 because it has
a single target to minimize the error of curve parameters. For
LF2, the penalization term is added and as a result, the models
aim to minimize the run time prediction error as well. The curve
parameter loss and run time related loss are balanced by applying
weights. We tuned the penalization weights, so that the MAE of
the curve parameters in LF2 is close to that of LF1. Adding the
penalization terms substantially improves the run time prediction
for NN and GNN (31% Median AE for LF1 vs. 20–22% for LF2)
without sacrificing the accuracy of curve parameters prediction.
When comparing LF2 with LF3, the NN/GNN model errors do
not differ significantly. So, adding another penalization term to
take advantage of XGBoost’s learning is redundant.

Among the models that we studied, XGBoost SS makes no
assumption of the shape of the PCC. XGBoost PL, NN, and GNN

Table 4: Results for 1st form of the loss function (LF1).

Model Pattern
(Non-Increase)

MAE
(Curve Params)

Median AE
(Run Time)

XGBoost SS 41% NA 13%
XGBoost PL 73% 0.232 13%
NN 100% 0.086 31%
GNN 100% 0.071 31%

Table 5: Results for 2nd form of the loss function (LF2).

Model Pattern
(Non-Increase)

MAE
(Curve Params)

Median AE
(Run Time)

XGBoost SS 41% NA 13%
XGBoost PL 73% 0.232 13%
NN 100% 0.090 22%
GNN 100% 0.071 20%

Table 6: Results for 3rd form of the loss function (LF3).

Model Pattern
(Non-Increase)

MAE
(Curve Params)

Median AE
(Run Time)

XGBoost SS 41% NA 13%
XGBoost PL 73% 0.232 13%
NN 100% 0.083 22%
GNN 100% 0.077 21%

assume a power-law shaped PCC. However, the XGBoost models
do not guarantee a non-increasing pattern for the PCC.We obtain
the non-increasing curve from XGBoost SS for less than half
of the jobs within a local range (±40%) of the reference point.
For XGBoost PL, the predicted run time has a monotonically
increasing relationship with token count for 27% jobs. This could
cause confusion to users as an increase in job run time with more
tokens is not expected. Also, the XGBoost model performance
outside the local range of the reference point is not expected to
perform as well. Thus, the construction of the range as well as
the prediction of the reference point are needed.

In contrast, the NN and GNN models with LF2 are accurate
for both trend and point predictions. We prefer NN/GNN to
XGBoost. They aim to learn the shape of the PCC from AREPAS
and predict run times using the predicted power-law curve that is
monotonically decreasing for the whole range. Both models make
assumptions of the PCC shape (specified by two parameters).

Table 7: Parameter counts, training and inference times.

Model Number of
Parameters

Time(s): Training
Per epoch

Time(s): Inference
Per 10,000 jobs

NN 2,216 2 0.09
GNN 19,210 913 78

As shown in Table 7, NN is more lightweight than the GNN
model (9× fewer parameters), is less computationally intensive
(450× faster training, 900× faster predictions), and does not re-
quire the job graph data. The GNN model shows marginally
better performance than NN, but requires job graph data and
more computational capacity. Thus, while both XGBoost and
GNN models excel in certain areas, they fall short towards some

347

Table 8: Results on the flighted dataset.

Model Pattern
(Non-Increase)

MAE
(Curve Params)

Median AE
(Run Time)

XGBoost SS 32% NA 53%
XGBoost PL 93% 0.202 52%
NN 100% 0.163 39%
GNN 100% 0.168 33%

critical constraints with regards to expected trends and speed
respectively. On the other hand, the NN model strikes a balance
by sufficiently satisfying constraints towards accuracy, required
trends and speed.

5.4 Model accuracy on flighted dataset
To evaluate model prediction accuracy against ground truth data
on multiple token counts for the same job, and since it is in-
feasible to flight a large number of jobs, we obtain a flighted
dataset by selecting a representative sample of jobs, as discussed
in Section 5.1, from the test set and running each job with mul-
tiple token counts. The successfully-flighted dataset comprised
of 31 jobs, 97 runs, and 67 unique token counts, with 2–4 token
selections per job.

Table 8 summarizes the errors for XGBoost SS, XGBoost PL,
NN and GNN with LF2 on this flighted dataset. The errors for
XGBoost are the largest, followed by NN and GNN. For point
prediction, the Median AE of run time predictions for XGBoost is
4.1× that for the full historical jobs augmented with AREPAS (53%
vs 13%; also see Table 5), while for NN and GNN it is 1.8× (39% vs
22%) and ∼1.7× (33% vs 20%) respectively. For trend prediction,
the MAE of curve parameters for NN and GNN are 1.8× and
2.4× that of the full historical jobs, while for XGBoost PL it is
smaller. NN and GNN have smaller error on both point and trend
prediction, compared with XGBoost. Predicted PCCs for NN and
GNN have less than 17% error in curve parameter estimation
and all have the monotonically non-increasing pattern, while in
the flighted dataset 28 of the 31 jobs have monotonically non-
increasing PCCs (within the 10% tolerance limit mentioned in
Section 5.1). GNN has the smallest Median AE (33%) for run time
predictions amongst the models.

To evaluate the token-savings opportunities at the workload
level against predicted and actual performance impacts, we con-
sidered the following workloads from the flighted dataset. For
each workload, we consider the baseline as using the largest
flighted token count for each job, for every run of that job in the
workload.
• W1: this is the entire flighted dataset with all 97 runs of the 31
jobs and using the flighted token counts for each run. W1 uses
a total of 6.7K tokens. Baseline B1 uses 8.6K tokens.
• W2: this consists of 31 runs, one for each job in the flighted
dataset, using the second-largest flighted token count for that
job. W2 uses a total of 2.4K tokens. Baseline B2 uses 3K tokens.

Thus, W1 and W2 respectively save 23% and 20% of total tokens
compared to the baselines B1 and B2. Considering total run times
for the workload, W1 and W2 incur slowdowns (𝑠𝑙𝑜𝑤𝑑𝑜𝑤𝑛 =

(𝑛𝑒𝑤𝑡𝑖𝑚𝑒/𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝑡𝑖𝑚𝑒) − 1) of 18% and 8% compared to B1
and B2, thereby showing trade-offs between token savings and
workload performance. The GNN model predicts a workload-
level slowdown of 8% and 5% forW1 andW2, which is reasonably
close compared to the actual slowdowns.

6 RELATEDWORK
We first mention a few other contexts where inductive bias based
on domain knowledge has been useful. Then we discuss prior
approaches for automatically allocating the optimal amount of
resources, and how TASQ extends the state of the art. Following
that we describe a couple of other simulation techniques and
their limitations.

6.1 The rise of ML and the role of inductive
bias

The rise of big data has been accompanied by the meteoric rise
of the field of Machine Learning (ML), which has made signifi-
cant advances by exploiting the exponential increase in data and
computational resources. ML methods have been employed to
great success in various domains by finding creative ways of in-
jecting domain knowledge as constraints in the ML architecture,
also referred to as inductive bias [11]. We enumerate a few such
examples below.

Convolutional neural networks [29, 30] used sliding window
filters to learn spatial relationships inherent in visual structures.
LSTMNetworks [23] and Transformers [39] exploit directionality,
memory, and context inherent in language to obtain state of the
art performance for natural language use-cases. Graph Neural
Networks [20, 33] are slowly gaining momentum as promising
tools for understanding data structured in the form of a graph.

In each case, building machine learning models around induc-
tive biases that have been derived from domain knowledge of
the problem space has yielded successful outcomes.

6.2 Optimal resource allocation
Efficient resource allocation has received a lot of attention in
recent years [7, 14, 16, 18, 26, 27, 32, 34]. Amazon recently an-
nounced about Predictive Scaling in EC2 where ML models are
used to predict traffic patterns and create a scaling plan [6].

For SCOPE, Jockey [18] and PerfOrator [32] study efficient
resource allocation using non-ML approaches. Morpheus [26]
considers past resource-usage skylines and uses linear program-
ming for their job resource model. However, it does not model
critical relationships, e.g., those between the amount of data and
run time.

Autotoken [34] groups recurring SCOPE jobs by signatures
and then trains individual off-the-shelf models for each group
to capture relationships between data size as well as compile-
time estimates of job metadata and a group’s peak allocation.
AutoToken does not predict resource allocations for ad-hoc jobs.
For SCOPE, between 40–60% [34] of the query jobs are new and
do not have previous runs to act as a reference. Also, AutoTo-
ken does not do time prediction, and thus is unable to answer
what-if questions regarding impact of sub-peak token allocations
on job run time. AutoToken only considers aggregate job-level
characteristics, not the shape or individual operators of the job
plan. TASQ, in contrast, constraints the model to the expected
performance characteristics to learn a PCC and can do trend
predictions using that. It also uses a novel simulator to cheaply
yet accurately augment the training data.

A prior work [9] adapts resources to the skyline progressively
by estimating peaks in the job’s remaining lifetime and releasing
excess resources. But it cannot reclaim resources more aggres-
sively. It also requires deep integration and constant commu-
nication with the job scheduler during the job’s run time and

348

cannot provide estimates or insights into the job’s execution at
compilation time.

Wang et al. [41] use two-step classification with black-box ML
models to tune Spark configuration parameters. Fan et al. [16, 17]
useMLmodels on compile-time estimates of query characteristics
to predict run times of SQL queries for different Degrees Of
Parallelism (DOP) in order to select the optimal DOP. In contrast,
in addition to point prediction, TASQ also uses novel techniques
to do trend prediction and uses a novel simulator to augment
training data.

Venkataraman et al. [40] try to capture this relationship by
fighting an observed job for a variety of resources, but at a much
smaller scale of under-sampled data and lower compute, and
then learn generalized linear models. Their predictions use up
on average, 4% of the job’s total run time, and needs to be run
for every job that is submitted, implying that deploying such a
feature would add a blanket 4% overhead on average to all jobs
submitted to Cosmos.

Zhang et al. [43] built a similar performance modeling tool for
MapReduce, where they learn linear relationships between data
and each of the 6 processes that encompass a standard MapRe-
duce pipeline. However, the assumption of linear scaling of run
time with data does not always hold. In SCOPE the number of
operators are much larger (52) and further extensive to any num-
ber using UDOs. They also do not consider the nature of the data
itself, in terms of rows or data format. SCOPE job graphs are
almost always complex DAGs which prevents us from making
the same assumptions.

Elastisizer and Starfish [21, 22] studied the problem of auto-
matically predicting optimal cluster sizes for MapReduce jobs.
In their work, the cost statistics and dataflow properties for jobs
are modeled differently, with profiling and M5 tree models used
to model the former and white-box/analytical models used to
model the latter. The model prediction results are used by a task
scheduler simulator to simulate the execution of the job on the
target cluster. A separate simulation/estimation is needed for
each candidate cluster size (point prediction). In contrast, TASQ
does trend prediction for the PCC in addition to point prediction,
and uses simulation only for training data augmentation. While
TASQ does not use analytical models, it uses a simple power-law
formulation for the PCC to make resource allocation decisions
easily explainable to users.

6.3 Simulators for SCOPE
Within the optimal resource allocation domain, many different
simulators have been proposed. These methods attempt to simu-
late a job’s execution time for previously unobserved resource
allocations. For SCOPE, Ferguson et al.[18] have introduced two
different job simulators as a part of Jockey. We refer to them as
the Jockey simulator and the Amdahl’s law[8] simulator.

The Jockey simulator looks at previous runs of the same job,
and records stage-level performance statistics aggregated over
all historic runs of that job. These aggregated statistics include
distributions of task run times, initialization latency, and the
probabilities of single and multiple task failures. A key statistic
that is not captured is input size variation. The simulator then
consumes the job’s Algebra, allowing to simulate each stage
of the job based on statistics gleaned from previous runs. The
simulator’s parameters can be prohibitively expensive to compute
online. As a mitigation, exhaustive simulations are run offline
for different resource allocations 𝑎 and progress points 𝑝 in the

job’s life cycle to estimate a distribution 𝐶 (𝑝, 𝑎) which can then
be used online for no extra cost.

Similar to the Jockey simulator, the Amdahl’s law simulator
operates at a stage-level granularity and has the same limitations.
This simulator divides each stage into a serial(𝑆) and parallel(𝑃)
part. Here, 𝑆 is the critical path for each stage and (𝑁) represents
tokens, which serve as a proxy for the resources allocated to the
job. The simulator states that the run time𝑇 can be formalized as:
𝑇 = 𝑆 +𝑃/𝑁 . For each stage, 𝑆 and 𝑃 are computed as aggregated
statistics obtained from prior runs of the job. When used for
predicting run time for a job at compile time, the Jockey simulator
performs identically to the Amdahl’s law simulator.

Slow online run times and inability to extend to fresh jobs or
capture how simulations may vary with data size are the main
shortcomings of the Jockey and Amdahl’s law simulators. Both
simulators encode information that is rich in domain knowledge.
Being able to inject this information into an ML architecture as
inductive bias might be a promising avenue to explore. However,
since both simulators are represented by a large number of stage-
level parameters, ML models are unable to sufficiently constrain
these rich representations to learn anything of value.

7 CONCLUSION
This paper pushes the envelope for resource optimization in big
data analytics. In contrast to peak resource allocation in prior
works, we target optimal resource allocation that trades small to
minimal loss in performance for more aggressive allocation to
improve the overall efficiency. We presented TASQ, an end-to-
end learning approach to capture the performance characteristics
curves (PCC) of analytical jobs as a function of resource allocation.
TASQ is flexible in that it enables users to choose their own
scheduling policy based on the PCC, but is also able to predict the
optimal token counts automatically, without user inputs, based on
a preset threshold. We model the PCC as a power-law curve with
monotonicity constraints, to be in line with user expectations,
and compared three kinds of models with multiple loss functions.
Our evaluations on production workloads showed that PCCs can
be well-predicted, with median run time prediction errors of 39%
or less at individual token counts.

One of the challenges in training ML models to learn the
relationship between job run time and resource allocation is ob-
taining sufficient training data. Historical datasets of production
workloads usually include runs of jobs at a given token count for
each job, but we also needed run times of the job at other token
counts. While replay/re-execution of jobs at other token counts is
possible, this is costly and time consuming in addition to needing
platform support for the capability. To address this challenge, we
introduced the AREPAS simulator that can be used to efficiently
augment limited ground truth data with synthetically generated
skylines at different token allocations for jobs that have run in
the past. Our results show that run time estimates from AREPAS
are close to actual run times, with a worst-case estimation error
of less than 50%.

ACKNOWLEDGMENT
We thank Vishal Rohra, Anubha Srivastava, Yi Zhu, Hiren Patel,
Shi Qiao, Marc Friedman, Carlo Curino, and other members from
the MAIDAP, SCOPE, and GSL teams who have contributed,
shared feedback, or provided useful directions throughout the
TASQ project, and the anonymous reviewers for their valuable
feedback on this paper.

349

REFERENCES
[1] 2022. Amazon Athena. https://aws.amazon.com/athena/
[2] 2022. Azure Data Lake Storage. https://azure.microsoft.com/en-us/services/

storage/data-lake-storage
[3] 2022. Azure Kubernetes Service. https://azure.microsoft.com/en-us/services/

kubernetes-service
[4] 2022. Azure Machine Learning. https://ml.azure.com
[5] 2022. Kolmogorov–Smirnov test. https://en.wikipedia.org/wiki/

Kolmogorov-Smirnov_test
[6] 2022. New - Predictive Scaling for EC2,

Powered by Machine Learning. https://aws.amazon.com/blogs/aws/
new-predictive-scaling-for-ec2-powered-by-machine-learning/

[7] Omid Alipourfard, Hongqiang Harry Liu, Jianshu Chen, Shivaram Venkatara-
man, Minlan Yu, and Ming Zhang. 2017. Cherrypick: Adaptively Unearthing
the Best Cloud Configurations for Big Data Analytics. In Proceedings of the
14th USENIX Conference on Networked Systems Design and Implementation
(Boston, MA, USA) (NSDI’17). USENIX Association, USA, 469–482.

[8] Gene M Amdahl. 1967. Validity of the single processor approach to achieving
large scale computing capabilities. In Proceedings of the April 18-20, 1967, Spring
Joint Computer Conference. 483–485.

[9] Malay Bag, Alekh Jindal, and Hiren Patel. 2020. Towards Plan-aware Resource
Allocation in Serverless Query Processing. In 12th USENIX Workshop on Hot
Topics in Cloud Computing (HotCloud 20). USENIX Association. https://www.
usenix.org/conference/hotcloud20/presentation/bag

[10] Yunsheng Bai, Hao Ding, Song Bian, Ting Chen, Yizhou Sun, and Wei
Wang. 2019. SimGNN: A Neural Network Approach to Fast Graph Simi-
larity Computation. In Proceedings of the Twelfth ACM International Confer-
ence on Web Search and Data Mining (Melbourne VIC, Australia) (WSDM
’19). Association for Computing Machinery, New York, NY, USA, 384–392.
https://doi.org/10.1145/3289600.3290967

[11] Jonathan Baxter. 2000. A model of inductive bias learning. Journal of Artificial
Intelligence Research 12 (2000), 149–198.

[12] Ronnie Chaiken, Bob Jenkins, Per-Åke Larson, Bill Ramsey, Darren Shakib,
Simon Weaver, and Jingren Zhou. 2008. SCOPE: easy and efficient parallel
processing of massive data sets. Proceedings of the VLDB Endowment 1, 2
(2008), 1265–1276.

[13] Tianqi Chen and Carlos Guestrin. 2016. XGBoost. Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining
(Aug 2016). https://doi.org/10.1145/2939672.2939785

[14] Andrew Chung, Jun Woo Park, and Gregory R. Ganger. 2018. Stratus: Cost-
Aware Container Scheduling in the Public Cloud. In SoCC ’18 (Carlsbad, CA,
USA). Association for Computing Machinery, New York, NY, USA, 121–134.
https://doi.org/10.1145/3267809.3267819

[15] Shaleen Deep, Anja Gruenheid, Kruthi Nagaraj, Hiro Naito, Jeff Naughton,
and Stratis Viglas. 2020. DIAMetrics: Benchmarking Query Engines at Scale.
Proceedings of the VLDB Endowment 13, 12 (Aug. 2020), 3285–3298. https:
//doi.org/10.14778/3415478.3415551

[16] Zhiwei Fan, Rathijit Sen, Paraschos Koutris, and Aws Albarghouthi. 2020.
Automated tuning of query degree of parallelism via machine learning. In Pro-
ceedings of the Third International Workshop on Exploiting Artificial Intelligence
Techniques for Data Management. 1–4.

[17] Zhiwei Fan, Rathijit Sen, Paraschos Koutris, and Aws Albarghouthi. 2020.
A Comparative Exploration of ML Techniques for Tuning Query Degree of
Parallelism. arXiv preprint arXiv:2005.08439 (2020).

[18] Andrew D Ferguson, Peter Bodik, Srikanth Kandula, Eric Boutin, and Rodrigo
Fonseca. 2012. Jockey: guaranteed job latency in data parallel clusters. In
Proceedings of the 7th ACM European Conference on Computer Systems. 99–112.

[19] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative
Adversarial Nets. In Proceedings of the 27th International Conference on Neural
Information Processing Systems - Volume 2 (Montreal, Canada) (NIPS’14). MIT
Press, Cambridge, MA, USA, 2672–2680.

[20] Marco Gori, Gabriele Monfardini, and Franco Scarselli. 2005. A new model
for learning in graph domains. In Proceedings. 2005 IEEE International Joint
Conference on Neural Networks, 2005., Vol. 2. IEEE, 729–734.

[21] Herodotos Herodotou, Fei Dong, and Shivnath Babu. 2011. No One (Cluster)
Size Fits All: Automatic Cluster Sizing for Data-Intensive Analytics (SOCC
’11). Association for Computing Machinery, New York, NY, USA, Article 18,
14 pages. https://doi.org/10.1145/2038916.2038934

[22] Herodotos Herodotou, Harold Lim, Gang Luo, Nedyalko Borisov, Liang Dong,
Fatma Bilgen Cetin, and Shivnath Babu. 2011. Starfish: A Self-tuning System
for Big Data Analytics. In Fifth Biennial Conference on Innovative Data Systems
Research, CIDR 2011, Asilomar, CA, USA, January 9-12, 2011, Online Proceed-
ings. www.cidrdb.org, 261–272. http://cidrdb.org/cidr2011/Papers/CIDR11_
Paper36.pdf

[23] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory.
Neural computation 9, 8 (1997), 1735–1780.

[24] Alekh Jindal, Hiren Patel, Abhishek Roy, Shi Qiao, Zhicheng Yin, Rathijit
Sen, and Subru Krishnan. 2019. Peregrine: Workload Optimization for Cloud

Query Engines. In SoCC ’19 (Santa Cruz, CA, USA). Association for Computing
Machinery, New York, NY, USA, 416–427. https://doi.org/10.1145/3357223.
3362726

[25] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-Che Tsai, Anurag
Khandelwal, Qifan Pu, Vaishaal Shankar, Joao Menezes Carreira, Karl Krauth,
Neeraja Yadwadkar, Joseph Gonzalez, Raluca Ada Popa, Ion Stoica, and
David A. Patterson. 2019. Cloud Programming Simplified: A Berkeley View
on Serverless Computing. Technical Report UCB/EECS-2019-3. EECS Depart-
ment, University of California, Berkeley. http://www2.eecs.berkeley.edu/
Pubs/TechRpts/2019/EECS-2019-3.html

[26] Sangeetha Abdu Jyothi, Carlo Curino, Ishai Menache, Shravan Matthur
Narayanamurthy, Alexey Tumanov, Jonathan Yaniv, Ruslan Mavlyutov, Íñigo
Goiri, Subru Krishnan, Janardhan Kulkarni, and Sriram Rao. 2016. Morpheus:
Towards automated SLOs for enterprise clusters. In 12th USENIX Symposium
on Operating Systems Design and Implementation (OSDI ’16). 117–134.

[27] M. Khan, Y. Jin, M. Li, Y. Xiang, and C. Jiang. 2016. Hadoop Performance
Modeling for Job Estimation and Resource Provisioning. IEEE Transactions on
Parallel and Distributed Systems 27, 2 (2016), 441–454.

[28] Thomas N Kipf and Max Welling. 2016. Semi-supervised classification with
graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[29] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. ImageNet
Classification with Deep Convolutional Neural Networks. In Advances in
Neural Information Processing Systems 25, F. Pereira, C. J. C. Burges, L. Bottou,
and K. Q. Weinberger (Eds.). Curran Associates, Inc., 1097–1105.

[30] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-
based learning applied to document recognition. Proc. IEEE 86, 11 (1998),
2278–2324.

[31] Anish Pimpley, Shuo Li, Anubha Srivastava, Vishal Rohra, Yi Zhu, Soundarara-
jan Srinivasan, Alekh Jindal, Hiren Patel, Shi Qiao, and Rathijit Sen. 2021. Opti-
mal Resource Allocation for Serverless Queries. arXiv preprint arXiv:2107.08594
(2021).

[32] Kaushik Rajan, Dharmesh Kakadia, Carlo Curino, and Subru Krishnan. 2016.
PerfOrator: Eloquent Performance Models for Resource Optimization. In SoCC
’16 (Santa Clara, CA, USA) (SoCC ’16). Association for Computing Machinery,
New York, NY, USA, 415–427. https://doi.org/10.1145/2987550.2987566

[33] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and
GabrieleMonfardini. 2008. The graph neural networkmodel. IEEE Transactions
on Neural Networks 20, 1 (2008), 61–80.

[34] Rathijit Sen, Alekh Jindal, Hiren Patel, and Shi Qiao. 2020. AutoToken: Pre-
dicting Peak Parallelism for Big Data Analytics at Microsoft. Proceedings of
the VLDB Endowment 13, 12 (2020), 3326–3339.

[35] Rathijit Sen, Abhishek Roy, and Alekh Jindal. 2021. Predictive Price-
Performance Optimization for Serverless Query Processing. arXiv preprint
arXiv:2112.08572 (2021).

[36] Rathijit Sen, Abhishek Roy, Alekh Jindal, Rui Fang, Jeff Zheng, Xiaolei Liu,
and Ruiping Li. 2021. AutoExecutor: Predictive Parallelism for Spark SQL
Queries. Proceedings of the VLDB Endowment 14, 12 (2021), 2855–2858.

[37] Tarique Siddiqui, Alekh Jindal, Shi Qiao, Hiren Patel, and Wangchao Le. 2020.
Cost Models for Big Data Query Processing: Learning, Retrofitting, and Our
Findings. In SIGMOD ’20 (Portland, OR, USA). Association for Computing
Machinery, New York, NY, USA, 99–113. https://doi.org/10.1145/3318464.
3380584

[38] Jordan Tigani and Siddartha Naidu. 2014. Google BigQuery Analytics. John
Wiley & Sons.

[39] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is All you
Need. In Advances in Neural Information Processing Systems 30, I. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett
(Eds.). Curran Associates, Inc., 5998–6008.

[40] Shivaram Venkataraman, Zongheng Yang, Michael Franklin, Benjamin
Recht, and Ion Stoica. 2016. Ernest: Efficient Performance Prediction for
Large-Scale Advanced Analytics. In USENIX (NSDI 16). Santa Clara, CA,
363–378. https://www.usenix.org/conference/nsdi16/technical-sessions/
presentation/venkataraman

[41] G. Wang, J. Xu, and B. He. 2016. A Novel Method for Tuning Configuration
Parameters of Spark Based on Machine Learning. In 2016 IEEE 18th Interna-
tional Conference on High Performance Computing and Communications; IEEE
14th International Conference on Smart City; IEEE 2nd International Conference
on Data Science and Systems (HPCC/SmartCity/DSS). 586–593.

[42] Chenggang Wu, Alekh Jindal, Saeed Amizadeh, Hiren Patel, Wangchao Le,
Shi Qiao, and Sriram Rao. 2018. Towards a Learning Optimizer for Shared
Clouds. Proceedings of the VLDB Endowment 12, 3 (2018), 210–222.

[43] Zhuoyao Zhang, Ludmila Cherkasova, and Boon Thau Loo. 2013. Benchmark-
ing Approach for Designing a Mapreduce Performance Model. In ICPE ’13
(Prague, Czech Republic). Association for Computing Machinery, New York,
NY, USA, 253–258. https://doi.org/10.1145/2479871.2479906

[44] Jingren Zhou, Nicolas Bruno, Ming chuanWu, Per ake Larson, Ronnie Chaiken,
and Darren Shakib. 2012. SCOPE: parallel databases meet MapReduce. The
VLDB Journal 21, 5 (2012), 611–636.

350

