
Automatic generation of comparison notebooks for
interactive data exploration

Alexandre Chanson

University of Tours

Blois, France

Alexandre.Chanson@univ-tours.fr

Nicolas Labroche

University of Tours

Blois, France

Nicolas.Labroche@univ-tours.fr

Patrick Marcel

University of Tours

Blois, France

Patrick.Marcel@univ-tours.fr

Stefano Rizzi

University of Bologna

Bologna, Italy

Stefano.Rizzi@unibo.it

Vincent T’Kindt

University of Tours

Tours, France

Vincent.Tkindt@univ-tours.fr

ABSTRACT
We consider the problem of generating SQL notebooks of compar-

ison queries for Exploratory Data Analysis (EDA). A comparison

query allows to find insights in a dataset by specifying the com-

parison of subsets of data. In this paper, we study the problem of

generating sequences of comparison queries that are insightful

and coherent. We propose exact and approximate resolution ap-

proaches, and study their efficiency and effectiveness on artificial

and real datasets, as well as with a user study.

1 INTRODUCTION
Imagine a data enthusiast with some basic knowledge of SQL,

having to explore an unknown open data set in CSV format. Gen-

erating meaningful insights from this dataset is tedious, because

it requires sending many queries for data profiling, formulat-

ing hypothesis, computing comparisons, etc. — not to mention

running many statistical tests to ensure insights’ significance.

In this work, we contribute to the field of automatic genera-

tion of data exploration sessions (see e.g., [11, 25]). Specifically,

we study the problem of generating meaningful sequences of

comparison insights over a potentially unknown dataset, which

could serve as an entry point in the exploration of this dataset.

We work with the following hypotheses. Firstly, we assume

that the dataset consists of one table, imported into a RDBMS,

for which the user only has to distinguish between numeric

attributes and categorical attributes before starting to query it

with SQL. While the term EDA session is frequently associated

with languages like Python, we insist on the importance of SQL

for data workers, as illustrated by the 10,000+ data professionals

who responded to StackOverflow’s 2020 survey
1
showing that

SQL is the most used language in data science.

Secondly, we assume the user is interested in comparisons.

Comparison are extremely popular among data workers [4, 24,

29]. In this work, we define comparison queries as queries used

to compare two data series. We also assume that the user is

interested in a sequence of such comparison queries, which we

will call a comparison notebook in what follows.

1
https://insights.stackoverflow.com/survey/2020

© 2022 Copyright held by the owner/author(s). Published in Proceedings of the
25th International Conference on Extending Database Technology (EDBT), 29th
March-1st April, 2022, ISBN 978-3-89318-085-7 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Figure 1: Overview of the approach

Finally, we assume that the user expects the comparison in-

sights drawn from the dataset to be statistically significant. Con-

sistently with prior approaches [25, 29], we consider that insights

should be validated using appropriate statistical tests.

An overview of our approach is presented in Figure 1. Once

the dataset is loaded in the RDBMS, a series of statistical tests

are performed to select the significant insights. These are then

turned into hypothesis queries, i.e., queries that the user would
have to write to check whether an aggregate query over the

dataset is an evidence of an insight. Then only those aggregate

queries that are evidences of insights, that we call comparison
queries, are retained. Finally, a notebook of comparison queries

is generated, by picking a given number of comparison queries

that maximize an interestingness criterion and are arranged in a

sequence that minimizes a distance between them.

Our contributions include:

• a logical framework for the definition of comparison in-

sights, hypothesis queries, comparison queries, and com-

parison query interestingness;

• the formal definition of the problem of generating note-

books of comparison queries;

• approaches for computing exact and approximate solu-

tions to this problem;

• implementations of the approaches to generate SQL note-

books of comparison queries; and

• a series of tests on artificial and real datasets, including a

user study, to investigate the scalability of the implemen-

tations and the accuracy of the approximate solutions.

The paper is organized as follows. Section 2 discusses the re-

lated work. Section 3 introduces comparison queries, hypothesis

Series ISSN: 2367-2005 274 10.48786/edbt.2022.15

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2022.15

queries, and insights. Section 4 formalizes the problem while

Section 5 presents our resolution schemes. Section 6 presents the

tests we have done. Section 7 concludes and draws the research

perspectives.

2 RELATEDWORK
Exploratory Data Analysis, insights. Exploratory Data Analysis

(EDA), the notoriously tedious task of interactively analyzing

datasets to gain insights, has attracted a lot of attention lately

[14]. Supporting this task can be done, e.g., by generating EDA

notebooks using deep learning [11] or by pre-analyzing datasets

for computing insights [25]. Quantifying the importance of in-

sights also attracted a lot of attention in both the database and

visualization communities [25, 29]. It is commonly admitted that

interestingness in EDA is manifold [13, 16]. In [11], Bar El et al.

distinguish different kinds of interestingness depending on the

type of EDA operation: on the one hand, for group-by operation,

a conciseness measures considers compact group-by results that

covers many tuples as both informative and easy to understand;

on the other hand, for filtering operation, a measure of exception-

ality compares the filtered tuples to a reference, larger set. The

statistical significance of patterns extracted from datasets is often

used or mixed with other interestingness measures [25, 29]. Tang

et al. [25] proposed an approach for extracting trend insights

from multidimensional data (like yearly increasing of sales, etc.).

They compute the top-k insights in terms of a measure combining

statistical significance and importance of the values displayed in

the insights. Ding et al. proposed QuickInsight [10], a system for

discovering a broad spectrum of insights (Change point, Correla-

tion, Outlier, Seasonality, etc.) in multidimensional data, with the

same approach as [25] for scoring insights. Metainsight [15] aims

at organizing the knowledge conveyed by insights extracted from

multidimensional data, in terms of commonness and exception.

The insight score is a combination of impact (the importance

of the data scope against the entire database) and conciseness

(entropy-like formula quantification of the generality of the in-

sight). Rojas et al. [18] study the feasibility of using sampling

in the context of big data exploration. They conclude that com-

bining different sampling strategies helps grasping a broad and

diverse set of insights, especially if no prior knowledge on the

data is available.

EDA is similar to Discovery-Driven Exploration (DDE) of data

cubes [22], in whose context the pioneering works by Sunita Sara-

wagi [20, 21, 23] proposed techniques for interactively browsing

interesting cells in a data cube. DDE was essentially motivated

by explaining unexpected data in the result of a cube query.

Unexpectedness was characterized in terms of deviation from

the uniform distribution [21] or notable discrepancies in the data

to be explained by generalization (rolling-up) [23] or by detailing

(drilling-down) [20]. In contrast to DDE, EDA does not assume

that the dataset explored has the multidimensional model of a

cube, nor does it assume that the exploration is limited to classical

OLAP operations. EDA operations include data retrieval, data

representation, and data mining tasks [17]. Finally, EDA aims at

finding insights in the data, i.e., high-level observations that are

significant. In our work, the focus is on comparison insights, i.e.,

significant observations made by comparing two series of data, a

type of discovery that has not been addressed by DDE.

Comparisons. Several studies highlighted the importance of

comparisons when analyzing data. For instance, Blount et al.

[4] examined 67 stories, including award-winning data stories,

from both professional journalists and data science-aware stu-

dents, and found comparisons (showing multiple visualisations

juxtaposed and highlighting the difference between them) to

be the most popular pattern among novices and professionals

alike. Zgraggen et al. [29] study the problem of obtaining spuri-

ous comparison insights when exploring a dataset. They define

comparison insights as observations, hypotheses, and generaliza-

tions directly extracted from data and that did not require prior

knowledge or domain expertise. Insights are categorized into five

insight classes: shape, mean, variance, correlation, and ranking.

Each class has its own hypothesis-testing scheme for insight val-

idation. The authors designed an experiment where participants

explore a synthetic dataset and instructed them to report their

reliable insights by writing them down. 60% of user-reported

insights were spurious, which underlines the need for systems

being able to automatically characterize insights. Francia et al.

[12] and, independently, Siddiqui et al. [24] respectively defined

the Assess and Compare operators to give a clear semantics and

logical foundations of comparisons (and labelling the result of the

comparison in [12]) of two series of data. While Compare is ex-

pressed in SQL and implemented and optimized within a RDBMS,

Assess is expressed in terms of a cube algebra and implemented

as a middleware.

Automatic generation of data explorations. While the problem

of automatic generation of coherent EDA sessions has already

been investigated [11], to the best of our knowledge the only

tentative formal definition of this problemwas given in a previous

work of ours [5]. Dubbed the Traveling Analyst Problem (TAP), it

describes the computation of a sequence of interesting queries

over a dataset, given a time budget on the query execution cost,

and such that the distance between the queries is minimized. TAP

differs from the classical orienteering problem [27] by adding a

knapsack constraint to it. In [6] we remark that this formulation is

close to that of chain composite item (CCI) retrieval [19] for travel

itinerary recommendation, defined in terms of compatibility (e.g.,

geographic distance), validity (e.g., the total cost of an itinerary

is within budget), and maximality (e.g., the itinerary should be

of the highest value in terms of its POIs popularities), the latter

being often used as the objective function. Retrieval of CCIs is

usually NP-hard, being reduced to TSP or orienteering problems.

Compared to TAP, CCI usually allows merging action cost and

travel time budget, while for TAP the distance has a semantics in

itself and cannot be led back to a time or to a physical distance.

Furthermore, differently from the classical orienteering problem,

starting and ending points are not specified.

Since comparisons happen frequently in practice, with a high

risk of comparison-based insights being spurious, there is a need

to automate the production of non-spurious comparison insights.

To the best of our knowledge, our approach is the only one com-

bining comparison insight identification with notebook genera-

tion. Our work complements previous works in EDA [10, 25] that

address other forms of insights. Noticeably, while we restrict here

to comparison insights, our approach can be extended to other

forms of insights; the characterization of the insights supported

is left as future work, as briefly discussed in the conclusion. We

specifically target a special case of Compare queries identified in

[24], namely many-to-many comparison queries over fixed𝑋 and

𝑌 attributes. We aim at efficiently and automatically extracting

non-spurious comparison insights in the sense of Zgraggen et

al. [29], on a potentially unknown dataset, and generate EDA

sessions consisting of related insights.

275

3 COMPARISON QUERIES, HYPOTHESIS
QUERIES, AND INSIGHTS

This section presents our logical framework. Section 3.1 defines

comparison queries and notebooks, and Section 3.2 defines in-

sights and hypothesis queries. Finally, Section 3.3 introduces

insight credibility and a transitivity relation over insights.

3.1 Comparison queries
We consider an instance of relation 𝑅 of schema 𝑅 [𝐴1, . . . , 𝐴𝑛,

𝑀1, . . . , 𝑀𝑚]. The 𝐴𝑖 ’s are categorical attributes and the 𝑀𝑗 ’s

are numerical attributes, called measures in what follows. The

active domain of attribute 𝐴 is noted 𝑑𝑜𝑚(𝐴).

Definition 3.1 (Comparison query). Comparison queries are ex-
tended relational queries of the form:

𝜏𝐴 ((𝛾𝐴,𝑎𝑔𝑔 (𝑀)→𝑣𝑎𝑙 (𝜎𝐵=𝑣𝑎𝑙 (𝑅))) ⊲⊳ (𝛾𝐴,𝑎𝑔𝑔 (𝑀)→𝑣𝑎𝑙 ′ (𝜎𝐵=𝑣𝑎𝑙 ′ (𝑅))))
where 𝐴, 𝐵 are categorical attributes in {𝐴1, . . . , 𝐴𝑛},𝑀 is a mea-

sure attribute in {𝑀1, . . . , 𝑀𝑚}, 𝑎𝑔𝑔 is an aggregate function, and

𝑣𝑎𝑙, 𝑣𝑎𝑙 ′ ∈ 𝑑𝑜𝑚(𝐵). 𝛾 denotes the grouping/aggregation operator

and 𝜏 the sorting operator.

For simplicity, we work under the following assumptions: (i) a

single attribute is used to aggregate each query; (ii) a single mea-

sure is computed for each query; (iii) all aggregation operators

can be applied to all measures; (iv) there is no functional depen-

dency between categorical attributes.
2
In what follows, a com-

parison query is described by the 6-tuple (𝐴, 𝐵, 𝑣𝑎𝑙, 𝑣𝑎𝑙 ′, 𝑀, 𝑎𝑔𝑔).
Finally, we call comparison notebook, or notebook for short, a

finite sequence of comparison queries.

Note that our definition of comparison queries requires that a

tabular presentation is used for presentation of the result, hence

the need for the join and the projection in the out-most position.

Alternatively, comparison queries could be written without join:

𝛾𝐴,𝐵,𝑎𝑔𝑔 (𝑀) (𝜎𝐵=𝑣𝑎𝑙∨𝐵=𝑣𝑎𝑙 ′ (𝑅)). However, this would require a

pivot operation [8] to present the result in a suitable tabular way.

In [12] we experimented with the two forms and they appeared

to be similar in terms of execution cost.

Lemma 3.2 (Number of comparisonqeries). For a relation 𝑅
of schema 𝑅 [𝐴1, . . . , 𝐴𝑛, 𝑀1, . . . , 𝑀𝑚], where 𝑓 aggregation func-
tions can be applied over the𝑚 measures, the number of possible
comparison queries is polynomial in the number 𝑛 of categorical
attributes and the cardinalities of their active domains:

𝑛∑
𝑖=1

(
|𝑑𝑜𝑚(𝐴𝑖) |

2

)
× (𝑛 − 1) ×𝑚 × 𝑓

Example 3.3. An example of comparison query for the anal-

ysis of COVID-19 infections is given in Figure 2. A comparison

notebook could start with the query of that figure, change the

measure (replacing cases by deaths), change the aggregation func-

tion (replacing sum by avg), then change selection by comparing

months 5 and 6, and finally drill continents down to countries

(keeping the same selections).

3.2 Insights and hypothesis queries
Consistently with previous characterizations of insights in EDA

[25, 29], we see insights over a dataset as declarations such as

“On average there were more COVID cases in May compared

2
In practice, as we will explain later, we use functional dependency detection in

a pre-processing step to exclude meaningless queries, like selecting two days and

grouping over months.

select t1.continent, April, May
from
(select month, continent, sum(cases) as April
from covid where month = '4' group by month, continent) t1,

(select month, continent, sum(cases) as May
from covid where month = '5' group by month, continent) t2

where t1.continent = t2.continent
order by t1.continent;

Figure 2: A SQL comparison query, its result, and an in-
sight

to April” based on a visual display that triggers the insight, i.e.,

on the result of a user comparison query over the dataset (e.g.,

number of cases grouped by continents, in April and May). To

check the significance of an insight 𝑖 , 𝑖 is turned into a testable

statistical hypothesis, and the significance of 𝑖 corresponds to

the p-value of the statistical test. For instance, the insight “On
average there were more COVID cases in May compared to April”

is turned into the null hypothesis (i.e., assuming the absence of

effect) 𝐸 [𝑋] = 𝐸 [𝑌] where 𝑋 and 𝑌 are the random variables

representing number of cases for April and May, respectively.

In the case of comparisons, we give a specific definition of

insights as declarations concerning two particular values of a

given categorical attribute.

Definition 3.4 (Insight type, insight). An insight type is a name

giving the semantics of an insight. Given a measure 𝑀 , a cate-

gorical attribute 𝐵 of a relation 𝑅, and two constants 𝑣𝑎𝑙, 𝑣𝑎𝑙 ′ ∈
𝐷𝑜𝑚(𝐵), an insight over 𝑅 is a tuple 𝑖 = (𝑀, 𝐵, 𝑣𝑎𝑙, 𝑣𝑎𝑙 ′, 𝑝) where
𝑝 is a selection predicate depending on the insight type.

Inwhat followswe consider two types of insights:mean greater
(M) and variance greater (V). The predicates associated with each

type of insight are, respectively, 𝑎𝑣𝑔(𝑣𝑎𝑙) > 𝑎𝑣𝑔(𝑣𝑎𝑙 ′) (M) and

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 (𝑣𝑎𝑙) > 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 (𝑣𝑎𝑙 ′) (V).

Lemma 3.5 (Number of insights). Let 𝑇 be the number of in-
sight types. The number of insights over𝑅 of schema𝑅 [𝐴1, . . . , 𝐴𝑛, 𝑀1, . . . ,

𝑀𝑚] is
𝑛∑
𝑖=1

(
|𝑑𝑜𝑚(𝐴𝑖) |

2

)
×𝑚 ×𝑇

An insight induces a hypothesis over relation 𝑅.

Definition 3.6 (Hypothesis postulating an insight). Let 𝑅 be a

relation and 𝑖 = (𝑀, 𝐵, 𝑣𝑎𝑙, 𝑣𝑎𝑙 ′, 𝑝) be an insight over 𝑅. The

hypothesis postulating 𝑖 depends on the insight type: 𝐸 [𝑋] >
𝐸 [𝑌] (M) or 𝑣𝑎𝑟 (𝑋) > 𝑣𝑎𝑟 (𝑌) (V) where 𝑋 and 𝑌 are the random

variables over 𝑅 representing measure𝑀 for predicates 𝐵 = 𝑣𝑎𝑙

and 𝐵 = 𝑣𝑎𝑙 ′, respectively.

The queries that express a comparison together with a given

hypothesis are called hypothesis queries. An example is given in

Figure 3, and they are defined as follows.

276

Table 1: Statistical tests by insight type

Insight type Null hypothesis Test statistics

M 𝐸 [𝑋] = 𝐸 [𝑌] |𝜇𝑋 − 𝜇𝑌 |
V 𝑣𝑎𝑟 (𝑋) = 𝑣𝑎𝑟 (𝑌) |𝜎2

𝑋
− 𝜎2

𝑌
|

with comparison as
(select t1.continent, April , May
from
(select month, continent, sum(cases) as April
from covid where month = '4'
group by month, continent) t1,

(select month, continent, sum(cases) as May
from covid where month = '5'
group by month, continent) t2

where t1.continent = t2.continent
order by t1.continent)

select 'mean greater' as hypothesis from comparison
having avg(April)<avg(May);

Figure 3: A hypothesis query postulating insight
𝑎𝑣𝑔(𝐴𝑝𝑟𝑖𝑙) < 𝑎𝑣𝑔(𝑀𝑎𝑦).

Definition 3.7 (Hypothesis query). Given a comparison query

𝑞 = (𝐴, 𝐵, 𝑣𝑎𝑙, 𝑣𝑎𝑙 ′, 𝑀, 𝑎𝑔𝑔) and an insight 𝑖 = (𝑀, 𝐵, 𝑣𝑎𝑙, 𝑣𝑎𝑙 ′, 𝑝)
of type 𝜏 , an hypothesis query is an extended relational query of

the form:

𝜋𝜏→ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠 (𝜎𝑝 (𝑞))

To be considered a true discovery, an insight has to be both (i)

supported by the result of comparison queries and (ii) significant.

For condition (i), the result of a comparison query is susceptible

to trigger an insight only if it supports a hypothesis that can be

tested.

Definition 3.8 (Query supporting an insight). Given a hypoth-

esis query ℎ = 𝜋𝜏→ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠 (𝜎𝑝 (𝑞)) for insight 𝑖 = (𝑀, 𝐵, 𝑣𝑎𝑙,

𝑣𝑎𝑙 ′, 𝑝) of type 𝜏 , ℎ supports 𝑖 , denoted ℎ ⊢ 𝑖 , if ℎ evaluates to

true; consequently, 𝑞 supports 𝑖 for ℎ, denoted 𝑞 ⊢ℎ 𝑖 , if 𝜎𝑝 (𝑞) is
true. If 𝜎𝑝 (𝑞) is false, we say that ℎ (resp., 𝑞) does not support 𝑖 .

Note that a given comparison query 𝑞 can support many in-

sights. The set of insights supported by comparison query 𝑞 is

noted 𝐼𝑞 in what follows. In what follows, we consider that the

more insights supported by a query, the more interesting the

query. Note also that an insight can be supported by many com-

parison queries. If we consider the set of insights of any type

over 𝑅, for measure𝑀 , attribute 𝐵 and values 𝑣𝑎𝑙, 𝑣𝑎𝑙 ′, the set of
comparison queries of the form (𝐴, 𝐵, 𝑣𝑎𝑙, 𝑣𝑎𝑙 ′, 𝑀, 𝑎𝑔𝑔) support-
ing such insights only differ in the grouping attribute 𝐴. In what

follows, we consider that only the most interesting query from

this set should be kept, since all the other queries would evidence

the same insights.

As to condition (ii), the hypothesis postulating an insight cor-

responds to the alternative hypothesis of a statistical test for

which the p-value indicates the significance of the insight. The

test considered and the null hypothesis depend on the insight

type (see Table 1).

Definition 3.9 (Insight significance). Let 𝜋𝜏→ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠 (𝜎𝑝 (𝑞))
be a hypothesis query for insight 𝑖 = (𝑀, 𝐵, 𝑣𝑎𝑙, 𝑣𝑎𝑙 ′, 𝑝) of type 𝜏 .
The significance of 𝑖 is 𝑠𝑖𝑔(𝑖) = 1 − 𝑃 (𝑇 > 𝑜 |𝐻0), where 𝑜 is the

observed statistics over 𝑅, 𝐻0 is the null hypothesis, and 𝑇 is the

random variable associated to the test results over 𝑅.

Example 3.10. An example of hypothesis query for the com-

parison query of Figure 2 is given in Figure 3. It postulates that

the average number of cases for the month of April is less than

the average number of cases for the month of May, i.e., insight

𝑖 = (𝑐𝑎𝑠𝑒𝑠,𝑚𝑜𝑛𝑡ℎ,𝐴𝑝𝑟𝑖𝑙, 𝑀𝑎𝑦, 𝑎𝑣𝑔(𝐴𝑝𝑟𝑖𝑙) < 𝑎𝑣𝑔(𝑀𝑎𝑦)). The re-
sult of the comparison query of Figure 2 supports this, since it is

observed at the continent level, 𝑎𝑣𝑔(𝑀𝑎𝑦)−𝑎𝑣𝑔(𝐴𝑝𝑟𝑖𝑙) = 61346.4.

To check the significance of the insight 𝑎𝑣𝑔(𝐴𝑝𝑟𝑖𝑙) < 𝑎𝑣𝑔(𝑀𝑎𝑦),
it is turned into the null hypothesis 𝐸 [𝑋] = 𝐸 [𝑌] where 𝑋 and 𝑌

are the random variables representing cases for May and April,

respectively. The test statistics |𝜇𝑋 − 𝜇𝑌 | is applied over 𝑅, show-
ing that 𝑎𝑣𝑔(𝑀𝑎𝑦) − 𝑎𝑣𝑔(𝐴𝑝𝑟𝑖𝑙) = 55.79. The p-value gives the

significance of the insight as the probability to observe the test

statistics value over 𝑅 as extreme as the observation 𝑜 . If the

p-value is low enough, this means that the insight is both sig-

nificant and supported by the comparison query, making this

comparison query a good candidate for being presented to the

user.

3.3 Insights and statistical errors
In statistical hypothesis testing, a type I error is the rejection of

a true null hypothesis, while a type II error is the non-rejection

of a false null hypothesis. Consistently with Zgraggen et al. [29],

we associate false discoveries with type I error, a false discovery

being in our case a query 𝑞 supporting an insight 𝑖 while the

insight is not significant, i.e., 𝑠𝑖𝑔(𝑖) < 0.95 and 𝑞 ⊢ 𝑖 . On the other

hand, a false omission means ignoring a real pattern because it

looks uninteresting, and corresponds to type II error. In our case,

such a pattern corresponds to a query 𝑞 not supporting an insight

𝑖 while the insight is significant., i.e., 𝑠𝑖𝑔(𝑖) > 0.95 and 𝑞 ⊬ 𝑖 .
To quantify the evidence of an insight 𝑖 , we define its credibility

as the number of queries that support it.

Definition 3.11 (Credibility of an insight). Let 𝑖 be an insight and
𝑄𝑖

be the set of hypothesis queries postulating 𝑖 . The credibility

of 𝑖 is

𝑐𝑟𝑒𝑑𝑖𝑏𝑖𝑙𝑖𝑡𝑦 (𝑖) = |{ℎ ∈ 𝑄𝑖 |ℎ ⊢ 𝑖}|
For an insight 𝑖 over schema 𝑅 [𝐴1, . . . , 𝐴𝑛, 𝑀1, . . . , 𝑀𝑚], it is

|𝑄𝑖 | = 𝑛 − 1.
The probability of making a type I error is a conditional proba-

bility, namely
𝑐𝑟𝑒𝑑𝑖𝑏𝑖𝑙𝑖𝑡𝑦 (𝑖)

|𝑄𝑖 | knowing that 𝑠𝑖𝑔(𝑖) < 0.95, while the

probability of making a type II error is 1− 𝑐𝑟𝑒𝑑𝑖𝑏𝑖𝑙𝑖𝑡𝑦 (𝑖)
|𝑄𝑖 | knowing

that 𝑠𝑖𝑔(𝑖) ≥ 0.95. In what follows, we are interested only in

significant insights, i.e., only those for which 𝑠𝑖𝑔(𝑖) ≥ 0.95 is

true.

Note that an insight, even if significant, may have no support-

ive hypothesis query, by construction of hypothesis queries. We

choose not to consider this kind of insights, since no comparison

seen by a user would trigger it.

For insight types like mean and variance, a transitivity relation

allows to prune insights that can be deduced. If the mean of 𝑋

is smaller than the mean of 𝑌 and the mean of 𝑌 is smaller than

that of 𝑍 , then the mean of 𝑋 is smaller than the mean of 𝑍 . In

other words, the fact that the mean of 𝑋 is smaller than that of 𝑍

is an insight that can be deduced from the other two, and can be

pruned out from the set of insights. The same holds for variance.

4 COMPARISON NOTEBOOKS
GENERATION

We now define the problem of generating sequences of compari-

son insights. Consistently with EDA (e.g., [11]), our objective is to

generate compelling exploratory sessions, specifically, coherent

sequences of comparison queries showing significant insights.

277

4.1 Problem formulation
Given a relation 𝑅 and the set𝑄 of all comparison queries over 𝑅,

we are interested in producing a sequence of comparison queries

from 𝑄 such that the sum of their execution costs is less than

a time budget 𝑡 , their total interestingness is maximal, and the

overall distance between the queries is minimal.

This problem is defined formally in [5] as follows:

Definition 4.1 (Traveling Analyst Problem (TAP)). Let𝑄 be a set

of 𝑁 queries, each associated with a positive time cost 𝑐𝑜𝑠𝑡 (𝑞𝑖)
and a positive interestingness score 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡 (𝑞𝑖). Each pair of

queries is associated with a metric 𝑑𝑖𝑠𝑡 (𝑞𝑖 , 𝑞 𝑗) representing the
cognitive distance of browsing from one query result to the next.

Given a time budget 𝜖𝑡 , the optimization problem consists in find-

ing a sequence ⟨𝑞1, . . . , 𝑞𝑀 ⟩ of queries,𝑞𝑖 ∈ 𝑄 , without repetition,

with𝑀 ≤ 𝑁 , such that:

(1) max

∑𝑀
𝑖=1 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡 (𝑞𝑖)

(2)

∑𝑀
𝑖=1 𝑐𝑜𝑠𝑡 (𝑞𝑖) ≤ 𝜖𝑡

(3) min

∑𝑀−1
𝑖=1 𝑑𝑖𝑠𝑡 (𝑞𝑖 , 𝑞𝑖+1).

Lemma 4.2 (Complexity of TAP [5]). TAP is strongly NP-hard.

4.2 Interestingness, cost, and distance
Interestingness. Consistently with prior works [11, 16, 25, 29],

our definition of comparison query interestingness is manifold: (i)

the more insights supported, the better; (ii) the more significant

the insights, the better; (iii) the more surprising the insights, the

better; (iv) the more concise the comparison query, the better.

For (i), we just sum over the number of insights that a com-

parison query can support. For insight 𝑖 , 𝑠𝑖𝑔(𝑖) is used for (ii).

As to (iii), we use the probability of the insight being a type II

error. Finally, we use a conciseness measure in the spirit of that

introduced in [11] for (iv).

Definition 4.3 (Interestingness of a query). Let 𝑞 be a compari-

son query and 𝐼𝑞 be the set of insights supported by 𝑞.

𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡 (𝑞) = 𝑐𝑜𝑛𝑐𝑖𝑠𝑒𝑛𝑒𝑠𝑠 (𝜃𝑞, 𝛾𝑞)×
∑
𝑖∈𝐼𝑞
(𝜔×𝑠𝑖𝑔(𝑖)×(1−𝑐𝑟𝑒𝑑𝑖𝑏𝑖𝑙𝑖𝑡𝑦 (𝑖)

|𝑄𝑖 |
))

where

𝑐𝑜𝑛𝑐𝑖𝑠𝑒𝑛𝑒𝑠𝑠 (𝜃𝑞, 𝛾𝑞) = 𝑒
− 1

𝜃𝛿𝑞

(𝛾𝑞−𝜃𝑞𝛼)2

and 𝜔 is a weigh ruling the importance of 𝑠𝑖𝑔(𝑖).

Conciseness uses a non-monotonic function of two variables:

(i) 𝜃𝑞 , the number of tuples aggregated by query 𝑞, and (ii) 𝛾𝑞 , the

number of groups in the result of 𝑞. Two values 𝛼 and 𝛿 are used

to control the tuple-to-group ratio. Parameter 𝛼 sets the growth

rate of the ideal number of groups given the number of tuples,

behaving like the slope in a linear function. Parameter 𝛿 allows

to “spread” the ideal ratio. A geometric intuition of the function

behavior is given in Figure 4 (the undefined zone corresponds to

the number of groups being greater than the number of tuples,

which does not make sense in our context).

Distance. The distance we need should satisfy the triangle in-

equality since otherwise, given the problem formulation, the risk

is to trade interestingness for distance. In other words, we could

end up with sub-sequences where it is better to pass through a

low-cost non-interesting query to reach an interesting one, while

this would be impossible with a proper metric.

To keep the computation of this metric under control, we

choose to use a weighted Hamming distance over the query

parts. We recall that a comparison query 𝑞 is represented as

Figure 4: Illustration of the 𝑐𝑜𝑛𝑐𝑖𝑠𝑒𝑛𝑒𝑠𝑠 function

Figure 5: Distribution of comparison queries run times

a vector of query parts 𝑞 = (𝐴, 𝐵, 𝑣𝑎𝑙, 𝑣𝑎𝑙 ′, 𝑀, 𝑎𝑔𝑔) that can be

extracted from the text of the query. Consistently with prior work

[2], the weights represent the importance of the query parts in

the transition from one comparison query to another, precisely:

𝑣𝑎𝑙, 𝑣𝑎𝑙 ′ the highest, followed by 𝐵, then 𝐴, and finally 𝑀 and

𝑎𝑔𝑔 have the lowest impact.

Cost. The cost of a query should straightforwardly be its eval-

uation time. However, given the form of comparison queries,

and assuming that no physical optimizations have been made,

the cost of all comparison queries will roughly be the same. We

ran a test with a sample of comparison queries over the ENEDIS

dataset used in Section 6 which confirms this intuition (see Figure

5). In this case, only interestingness and distance should have an

impact on the computation of an exact solution to the problem. In

other words, we can set the cost of each query to the same value,

and use the time budget for controlling the number of queries in

the solution.

4.3 Generating the set of comparison queries
The generation of the set 𝑄 of comparison queries over a dataset

𝑅 is given by Algorithm 1. The algorithm loops over all potential

insights over 𝑅 (lines 2-8), checking for each one its significance

with the appropriate statistical test (line 3). If the insight is found

to be significant (line 4), a comparison query is generated for it,

by first generating a hypothesis query for each possible grouping

attribute and aggregation function (line 5), then checking if this

278

hypothesis query supports the insight (line 8). Finally, for the

sets of comparison queries that evidence the same insights (line

15), only the ones maximizing interestingness are kept (line 16).

Algorithm 1 Comparison query generation

Require: a relation 𝑅

Ensure: a set of comparison queries over 𝑅

1: 𝑄 ← ∅
2: for each insight 𝑖 = (𝑀, 𝐵, 𝑣𝑎𝑙, 𝑣𝑎𝑙 ′, 𝑝) of type 𝜏 over 𝑅 do
3: compute 𝑠𝑖𝑔(𝑖) ⊲ perform statistical test

4: if 𝑠𝑖𝑔(𝑖) > 0.95 then ⊲ 𝑖 is significant

5: for each 𝐴 ≠ 𝐵 of 𝑅 and function 𝑎𝑔𝑔 do
6: 𝑞 ← (𝐴, 𝐵, 𝑣𝑎𝑙, 𝑣𝑎𝑙 ′, 𝑀, 𝑎𝑔𝑔)
7: ℎ ← 𝜋𝜏→ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠 (𝜎𝑝 (𝑞))
8: if ℎ ⊢ 𝑖 then ⊲ ℎ supports 𝑖

9: 𝑄 ← 𝑄 ∪ {𝑞}
10: end if
11: end for
12: end if
13: end for
14: for each 𝑞 = (𝐴, 𝐵, 𝑣𝑎𝑙, 𝑣𝑎𝑙 ′, 𝑀, 𝑎𝑔𝑔) ∈ 𝑄 do
15: 𝑄𝐴 ← {𝑞′ ∈ 𝑄 | (𝐶, 𝐵, 𝑣𝑎𝑙, 𝑣𝑎𝑙 ′, 𝑀, 𝑎𝑔𝑔) with 𝐶 ≠ 𝐴}
16: 𝑄 ← 𝑄 \𝑄𝐴 ∪ {𝑎𝑟𝑔𝑚𝑎𝑥𝑞′∈𝑄𝐴𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡 (𝑞′)}
17: end for
18: return 𝑄

Algorithm 1 consists of a naive and inefficient approach for

generating comparison queries. Computationally-wise, the costly

steps are the statistical tests (line 3) and the evaluation of the

hypothesis queries (line 8). We address these issues in the next

section.

5 OPTIMIZING COMPARISON NOTEBOOK
GENERATION

Generating comparison queries with Algorithm 1 and comput-

ing an exact solution of the TAP provides a basic approach to

generate notebooks of comparison queries over small datasets.

To scale to real-world datasets with very large number of in-

sights and comparison queries, we implemented three types of

optimizations: (i) optimizing statistical tests, (ii) minimizing the

number of queries to send to the DBMS, and (iii) using a heuristic

to approximate the TAP.

5.1 Optimizing statistical tests
5.1.1 Using permutation testing. For hypothesis testing we

use resampling, due to its advantages over parametric testing

[29]: it does not assume the distributions of the test statistics,

nor does it impose samples to be large enough. We use the same

permutations to check all possible insights on different measures

for a given attribute, and correct the p-values using the Benjamini-

Hochberg FDR correction [3].

5.1.2 Using sampling. We use two different offline sampling

strategies to speed-up the statistical tests. The first one, unbalanced-
sampling, samples each of the 𝑛 categorical attributes indepen-

dently. It seeks to balance the number of tuples per attribute

value, avoiding that very selective values be under-represented.

The second one, random-sampling, randomly samples the dataset

in a uniform way.

5.2 Reducing the number of queries
Algorithm 1 requires (i) for doing statistical tests, to evaluate 𝑛

queries of the form 𝜋𝐴,𝑀 (𝑅), where 𝐴 is a categorical attribute

in {𝐴1, . . . , 𝐴𝑛} and 𝑀 is a measure attribute in {𝑀1, . . . , 𝑀𝑚},
and (ii) for generating comparison queries, to evaluate all hy-

pothesis queries for significant insights, i.e., in the worst case all

hypothesis queries.

Our aim is to reduce the number of queries to send to the

DBMS by finding a set of queries retrieving all necessary data for

the statistical tests and the generation of comparison queries. We

first remark that we should separate the computation of statistical

tests from the evaluation of hypothesis queries because doing

both at the same timewould require to evaluate𝑛(𝑛−1)/2 queries
of the form 𝜋𝐴,𝐵,𝑀1,...,𝑀𝑚

(𝑅) over the full dataset, which for large
instances is almost as large as the instance itself.

5.2.1 Bounding the number of queries. To reduce the number

of queries for doing the statistical tests, we send 𝑛 queries of the

form 𝜋𝐴,𝑀1,...,𝑀𝑚
(𝑅). To reduce the number of hypothesis queries

to evaluate, we remark that we need only all the group-by sets of

two categorical attributes (named 2-group-by sets from now on)

taken in a given order. This corresponds to 𝑛(𝑛 − 1)/2 queries
(see Lemma 3.2) of the form 𝛾𝐴,𝐵,𝑎𝑔𝑔1 (𝑀1),𝑎𝑔𝑔1 (𝑀2),...,𝑎𝑔𝑔𝑓 (𝑀𝑚) (𝑅)
where𝐴, 𝐵 are two different categorical attributes from the schema

𝑅 [𝐴1, . . . , 𝐴𝑛, 𝑀1, . . . , 𝑀𝑚], and the 𝑎𝑔𝑔𝑖 are all the aggregate

functions. This also provides an upper bound to the number of

queries to launch to retrieve the data necessary to evaluate the

set of hypothesis queries.

5.2.2 Merging group-by queries. To further reduce the num-

ber of hypothesis queries, we use a group-by aggregate merging

strategy similar to the one used in [15] and presented in Algo-

rithm 2. Specifically, we look for the largest group-by sets fitting

in memory from which many hypothesis queries can be evalu-

ated, and evaluate them for free once the data they need is in

memory. The problem of finding the best set of group-by sets is

an instance of the classical weighted set cover problem. Let 𝑅 be a

relation over the set 𝐴 = {𝐴1, . . . , 𝐴𝑛} of 𝑛 categorical attributes.

Let𝐺 be the set of all group-by sets from 𝑅 except the 1-group-by

sets, i.e.,𝐺 = 2
𝐴 \ {𝐴1} \ . . . \ {𝐴𝑛} (line 2). Assume that we have

a weight for each elements of𝐺 corresponding to their estimated

memory footprint, as obtained from the query optimizer (line 6).

The goal is to find the sub-collection of 𝐺 having the minimal

overall weight that covers the set𝑈 of 2-group-by sets. This prob-

lem being NP-hard, we use a greedy heuristic to approximate

the solution to the weighted set cover problem (line 8), whose

complexity is 𝑂 (|𝑈 | × 𝑙𝑜𝑔 |𝐺 |) [28]. In case the smallest subset

of aggregates does not fit in memory, we implement a fallback

strategy that successively loads the smallest possible aggregates

(i.e., the group by sets of𝑈) in main memory.

5.3 Solving the TAP
Solving the TAP problem (see Section 4) exactly is done with a

mathematical model on CPLEX 20.10 and is implemented in C++
3
.

For large datasets with millions of queries, finding exact solutions

or even using complex polynomial heuristic is intractable. We use

a fast and memory-efficient heuristic inspired by the classic “sort

by item efficiency” heuristic for solving the Knapsack problem

[9], presented in Algorithm 3. The trick is to sort all queries of 𝑄

in decreasing order of interest/cost (lines 1-4), constructing the

solution by iterating over the sorted 𝑄 (lines 7-14), and adding

3
https://github.com/AlexChanson/Cplex-TAP

279

Algorithm 2 Finding the best set of group-by sets

Require: a relation 𝑅 with 𝑛 categorical attributes 𝐴 =

{𝐴1, . . . , 𝐴𝑛}
Ensure: a set of group-by sets over 𝑅 with minimal memory

footprint covering all pairs of categorical attributes

1: 𝐺 ← 2
𝐴

2: 𝐺 ← 𝐺 \ {𝑔 ∈ 𝐺 | |𝑔| = 1}
3: 𝑈 ← {𝑔 ∈ 𝐺 | |𝑔| = 2}
4: for each group-by set 𝑔 of 𝐺 do
5: 𝑞 ← 𝛾𝑔 (𝑅)
6: Estimate the size of 𝑞

7: end for
8: 𝐺 ← Solve the weighted set cover problem for 𝐺,𝑈

9: return 𝐺

Table 2: Description of the datasets

Name Size Size #Categ. Adom size #Meas. #Comp.

(tuples) (Bytes) attr. (min-max) queries

Vaccine 5045 656K 6 2-107 1 700

ENEDIS 114,527 21M 7 3-1295 2 1,571,832

Flights 5,819,079 808M 5 7-377 3 350,460

a query to the sequence if (i) the budget is not spent (line 10),

and (ii) the global distance of the sequence is not over a pre-fixed

bound 𝜖𝑑 (line 10). The query is then inserted in a position of the

sequence that minimizes the global distance (line 11). Assuming

the size of the solution is much smaller than |𝑄 |, which depends

on the bounds set by 𝜖𝑑 and 𝜖𝑡 , the most costly operation is the

sort (line 4), which can be achieved in the worst case in 𝑂 (|𝑄 | ×
𝑙𝑜𝑔(|𝑄 |)) time. This stands for any practical purpose, especially

for large datasets that will yield hundreds of thousands of insights

while the notebook sizes, controlled with 𝜖𝑡 , are expected to

remain readable and thus much shorter. Additionally, distances

can be computed on the fly, limiting memory consumption.

While this heuristic can be applied to the TAP as defined above,

we recall from Section 4 that all comparison query costs can be

set to the same value, further simplifying Algorithm 3: 𝑄 can be

sorted based only on interest, and 𝜖𝑡 is used to bound the number

of queries in the solution.

As classically done for simplifying the resolution of such multi-

objective problems, both exactly and for heuristic approaches, one

objective is transformed into a constraint. In the case of the TAP,

the distance objective is transformed into

∑𝑀−1
𝑖=1 𝑑𝑖𝑠𝑡 (𝑞𝑖 , 𝑞𝑖+1) <

𝜖𝑑 . Varying 𝜖𝑑 allows to generate different points on the Pareto

front of the original multi-objective problem [26]. For instance,

smaller values of 𝜖𝑑 force solutions with queries that are closer

to each other. The complete mathematical model used in CPLEX

is described in [7].

6 EXPERIMENTAL RESULTS
6.1 Experimental setup
The real datasets for our tests are described in Table 2. The tiny

Vaccine dataset
4
consists of country-level Covid19 vaccination

data as of June 2021. The ENEDIS dataset
5
is about electric con-

sumption in France by location, year, consumption category,

and commercial sector. The Flights dataset
6
consists of one year

4
https://www.kaggle.com/gpreda/covid-world-vaccination-progress

5
https://data.enedis.fr/explore/dataset/consommation-electrique-par-secteur-dactivite-iris/

export/

6
https://community.amstat.org/jointscsg-section/dataexpo/dataexpo2009

Algorithm 3Adaptation of the “sort by item efficiency” heuristic

Require: A set of queries 𝑄 with their 𝑐𝑜𝑠𝑡 and 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡 two

reals 𝜖𝑡 (time budget), 𝜖𝑑
Ensure: an approximate solution to the TAP, of size at most 𝜖𝑡
1: for 𝑞 ∈ 𝑄 do
2: 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑞) ← 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡 (𝑞)/𝑐𝑜𝑠𝑡 (𝑞)
3: end for
4: 𝔔 ← sort 𝑄 by weights in decreasing order

5: 𝑡 ← 0

6: 𝑆 ← []
7: for 𝑞 ∈ 𝔔 do
8: 𝔖← the set of possible unique inserts of 𝑞 in 𝑆

9: 𝑚𝑖𝑛𝑑 ←𝑚𝑖𝑛𝔖 (
∑ |𝑆 |
𝑖=1

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑞𝑖 , 𝑞𝑖+1))
10: if 𝑡 + 𝑐𝑜𝑠𝑡 (𝑞) < 𝜖𝑡 and𝑚𝑖𝑛𝑑 < 𝜖𝑑 then
11: 𝑆 ← 𝑎𝑟𝑔𝑚𝑖𝑛𝔖 (

∑ |𝑆 |
𝑖=1

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑞𝑖 , 𝑞𝑖+1))
12: 𝑡 ← 𝑡 + 𝑐𝑜𝑠𝑡 (𝑞)
13: end if
14: end for
15: return 𝑆

Table 3: Implementations

Name Generation of𝑄 Solving TAP

Naive-exact Algo. 1 + bounding CPLEX

Naive-approx Algo. 1 + bounding Algo. 3

WSC-approx Algo. 2 Algo. 3

WSC-unb-approx Algo. 2 + unbalanced-sampling Algo. 3

WSC-rand-approx Algo. 2 + random-sampling Algo. 3

of flight arrival and departure details for all commercial flights

within the USA.

The implementations used in the tests are described in Table 3,

where we detail the algorithm for generating the set of compari-

son queries and the algorithm for solving the TAP, using naive

implementations and the optimizations presented in Section 5.

Naive-exact uses the naive Algorithm 1 and the optimization of

Section 5.2.1 for generating the set of comparison queries, and

then vanilla CPLEX for solving the TAP. In Naive-approx, ap-

proximating TAP is done with our adaptation of the sort by item

efficiency heuristics described in Algorithm 3. This heuristics

is used for implementations of WSC-approx, WSC-unb-approx,

and WSC-rand-approx, which use Algorithm 2 of Section 5.2.2 to

reduce the number of queries and differ in how statistical tests

are done: no sampling for WSC-approx, unbalanced sampling for

WSC-unb-approx, and random-sampling for WSC-rand-approx.

In all our tests, the parameters of the conciseness function (see

Section 4) are set to values empirically tuned to a good trade-off

between the number of groups and the number of tuples aggre-

gated, and 𝜖𝑑 is set to a value empirically tuned to obtain TAP

solutions where queries are very close to each other.

Our prototype is written in Java and is publicly available
7
.

It runs on top of PostgreSQL version 13.4. We implemented a

pre-processing step to detect functional dependencies among

categorical attributes, to prevent meaningless queries from being

generated. All tests were run on a Fedora Linux (kernel 5.11.13-

200) workstation, on a 2.3 Hz Intel Xeon 5118 12-core, 24 logical

processors and 377GB 2666 MHz of DDR4 main memory.

280

Table 4: Time to solve the TAP to optimality

#Queries Time (s) %Timeouts

avg min max stdev

100 1.61 0.65 8.14 1.62 0

200 28.47 3.12 126.92 31.52 0

300 239.83 12.28 963.55 240.12 0

400 727.90 24.47 1667.2 414.51 0

500 1869.75 166.15 > 3600 830.74 23.3

600 1343.89 240.06 > 3600 1000.37 86.7

700 - > 3600 > 3600 - 100

6.2 Exact resolution of the TAP
This first test aims at answering the following question: how

many queries can be reasonably handled when computing the

exact solution to the TAP? For this test, we generated artificial

sets of queries of different sizes, from 100 to 700 queries (reaching

the size of the set of comparison queries of our smallest dataset,

Vaccine), varying the number of comparison queries, while keep-

ing similar uniform distributions of interestingness, cost, and

distances. We ran vanilla CPLEX with defaults settings (notably

single-threaded), with a timeout set to one hour, on 30 instances

of equal size, for a given number of queries (𝜖𝑡 = 25) in the

solution. We report the average time by size in Table 4.

Timeouts are reached from 500 queries onward; when reach-

ing the size of our smallest dataset (700 queries) the solver always

took more than one hour, preventing the calculation of average

and standard deviation. This instance size is then ignored in sub-

sequent tests. The fact that the average time is lower for 600

queries (compared to 500) is explained by the high number of

timeouts for this instance size, which are ignored in the computa-

tion of the average. This shows that, expectedly, the TAP cannot

be solved exactly for large datasets, so heuristics will be used in

the following. Note that assessing the quality of the approximate

solutions found heuristically will be done by comparing them to

the exact solutions found on our smallest dataset.

6.3 Scalability
Since, as shown above, exact resolution is practically possible only

for small datasets, this next test aims at answering the question:

how well does the implementation of a reasonable approximate

solution to the problem scale? To answer this question, we ran

many tests to check the different optimizations presented in the

previous section.

For each implementation, we show the time to compute a note-

book, broken down into generation and solving time, varying the

dataset size and the number of queries expected in the solution,

i.e., 𝜖𝑡 (see Section 4), called budget in what follows.

We start by adjusting the sample size for the two implementa-

tions that use sampling: WSC-unb-approx andWSC-rand-approx.

6.3.1 Adjusting sample size. This test aims at finding what

sample size to use on large datasets, to achieve a good com-

promise between runtime and percentage of insights detected.

We ran WSC-unb-approx and WSC-rand-approx on the Enedis

dataset, varying the sample size and reporting the runtime and

the fraction of insights found. As shown in Figure 6, 20% seems a

good compromise for WSC-unb-approx while WSC-rand-approx

needs larger samples, around 40%, to achieve a similar ratio of

insights that can be detected. This is mainly due to the ability of

7
https://github.com/patrickmarcel/sqlEDAqueryGenerator

Figure 6: Adjusting sample size forWSC-unb-approx (top)
and WSC-rand-approx (bottom)

unbalanced sampling to better preserve the initial dataset diver-

sity, particularly minority trends, which in turn helps preserving

more insights at lower sampling rates.

6.3.2 Runtime by budget. For this test, we ran the 5 imple-

mentations on the Enedis dataset, varying 𝜖𝑡 , i.e., the number of

comparison queries in the solution, in {5, 10, 20, 40}.

Figure 7: Runtimes by budget 𝜖𝑡 (top) and breakdown (bot-
tom) on the ENEDIS dataset

The result is shown in Figure 7, which shows the runtime

by budget (top) and the average runtime breakdown (bottom).

281

Importantly, for Naive-exact, the TAP resolution timed out and is

not counted, meaning that the runtime shown in Figure 7 (top) is

only for the generation of 𝑄 . It can be observed that the runtime

is quite steady for all values of 𝜖𝑡 , for all implementations. This

confirms the remark made in Section 5.3 that, for approximate

solutions, the value of 𝜖𝑡 has no impact when it is much smaller

than |𝑄 |.
As expected, the implementations using sampling strategies

outperform the others, i.e., naive-exact, naive-approx, and WSC-

approx, which are all between 300 and 400 seconds. The sample

sizes were adjusted based on the observations reported above,

and therefore WSC-rand-approx runs on a larger sample, which

explains whyWSC-unb-approx, while using a more sophisticated

sampling strategy, runs faster. However, even with this larger

sample, only 85% of insights can be tested on average by WSC-

rand-approx, compared to 95% for WSC-unb-approx. As to the

breakdown for the different steps of the implementations, we

observe that performing the statistical tests is themost costly step,

with sampling drastically reducing it. Solving TAP is negligible,

except obviously for the exact resolution. Algorithm 2 has only

little impact on the hypothesis query evaluation, which can be

explained by the small number of categorical attributes in the

dataset.

Figure 8: Impact of multi-threading on the generation of
𝑄

6.3.3 Multi-threading. Several steps of the generation of 𝑄

can be parallelized, notably (i) permutation testing over different

groups of categorical attributes and (ii) the use of in-memory

partial aggregates to check which comparison queries support

the insights. We run WSC-approx on the ENEDIS dataset, with

1 to 48 threads and report the runtime for steps (i) and (ii) in

Figure 8. The speedup from single threaded to only 8 threads

is very large, and remains substantial when going from 8 to 16

threads. However, further increasing the number of threads yields

diminishing returns. The main reason for this is related to the

architecture of the processor used for our tests, which produces

overhead when increasing the number of threads over 24. In our

tests, we therefore set the number of threads to 16.

6.3.4 Runtime of sampling strategies on larger datasets. Run-
ningWSC-approx on the Flights dataset took more than 14 hours.

To be able to generate comparison notebooks more efficiently for

Table 5: Average deviation to optimal solution objective

#Queries Deviation

100 1.14 ±1.52 %
200 0.17 ±0.12 %
300 0.10 ±0.09 %
400 0.06 ±0.06 %
500 0.06 ±0.05 %
600 0.03 ±0.04 %

this dataset, we ran WSC-unb-approx and WSC-rand-approx on

Flights, testing different sample sizes in {5%, 10%, 20%, 30%}. The
results are shown in Figure 9.

Figure 9: Runtime and % of insights on the Flights dataset

It can be seen that WSC-unb-approx outperforms WSC-rand-

approx, as already observed on the ENEDIS dataset. Analyzing

the runtime breakdown, we see that the last two steps remain

insensitive to the sample size, around 20 seconds for Hypothesis

query evaluation and around 300 milliseconds for TAP solving.

Note that the percentage of insights detected, for both imple-

mentations, is greater than 1. This is due to the extreme reduc-

tion in the dataset size using aggressive sampling factors during

statistical tests: some insights detected are spurious, and the

quantity of spurious insights decreases as the sampling factor

increases. We observe that WSC-unb-approx uses a sampling

strategy that is more robust to the spurious insights than that

of WSC-rand-approx. Tuning the credibility component of our

interestingness function (see Section 4.2), being computed on the

complete dataset, could be used to control the weight given to

these spurious insights.

6.4 Quality of approximate solutions
This test aims at answering the question: how degraded are the

approximate solutions of the TAP compared to the exact ones?

For this test, we used Algorithm 3 to find approximate solutions

of the TAP.

Our first experiment uses the same artificial datasets as the

ones used in Section 6.2, with the same protocol (averaging the

results over 30 runs on instances of equal size, fixing the size of the

solutions 𝜖𝑡). As a measure of quality of the solution, we compute

𝑧, i.e., the sum of interestingness of the queries in the solutions.

We show in Table 5 ((𝑐𝑝𝑙𝑒𝑥 .𝑧 − 𝑎𝑙𝑔𝑜3.𝑧)/𝑐𝑝𝑙𝑒𝑥 .𝑧) × 100, i.e., the
deviation between 𝑐𝑝𝑙𝑒𝑥 .𝑧, the quality of solutions found with

CPLEX, and 𝑎𝑙𝑔𝑜3.𝑧, the quality of solutions found by Algorithm

3.

The deviation remains very low in general, indicating that

the heuristics used by Algorithm 3 is effective when considering

282

Table 6: Deviation to optimal solution

#Queries Recall (Algorithm 3) Recall (Baseline)

100 0.285 ± 0.085 0.122 ± 0.062

200 0.296 ± 0.054 0.089 ± 0.038

300 0.270 ± 0.041 0.094 ± 0.028

400 0.285 ± 0.033 0.087 ± 0.021

500 0.285 ± 0.027 0.094 ± 0.024

600 0.279 ± 0.032 0.095 ± 0.017

Table 7: Notebook generators for user tests

Name Sampling Sample Interestingness Solving

size TAP

Naive-exact - 100% full CPLEX

WSC-approx - 100% full Algo. 3

WSC-approx-sig - 100% sig. only Algo. 3

WSC-approx-sig-cred - 100% sig. and cred. only Algo. 3

WSC-unb-approx unbalanced 10% full Algo. 3

WSC-rand-approx random 10% full Algo. 3

query interestingness. Deviations are greater for small instances

and decrease with larger sizes. This is expected since, for smaller

instances, as distribution of interestingness is uniform and the

size of solutions is fixed, the probability of picking an uninterest-

ing query is higher.

Our second experiment consists in measuring the recall of

comparison queries in the solution, i.e., the proportion of queries

present in the optimal solution that are found by the heuristic.

We use the same protocol as above, and show the average recall

in Table 6.

We observe that the heuristic manages to find around 30% of

the queries present in the optimal solution, on average, varying

very little with the instance size. While this recall appears rel-

atively low, it is counterbalanced by the fact that the heuristic

picks queries with high interestingness for the remaining 70%

of the solution, as illustrated by the deviations in Table 6. We

implemented a baseline consisting of picking the top 𝜖𝑡 queries

in terms of interestingness, and compared the recall of this Base-

line to that of Algorithm 3. As shown in Table 6, Algorithm 3 is

steadily around 2.5 to 3 times better than the Baseline.

6.5 Human evaluation
This last test aims at answering the questions: which version

of the notebook generator is favored by users? Are the note-

books generated using sampling or approximating the TAP also

approved by users?

For this test, we recruited 9 volunteer PhD students or lecturers

from France and Italy with at least some basic knowledge in

data science. We generated a collection of 6 notebooks of 10

comparison queries each on the ENEDIS dataset, using different

versions of our generator detailed in Table 7. The versions of

Naive-exact, WSC-approx, WSC-unb-approx, and WSC-rand-

approx are as described in Table 3. In addition, we used two more

versions of WSC-approx: WSC-approx-sig is WSC-approx where

the interstingness score of the comparison queries is computed

with only the significance of the insights, i.e., without conciseness

nor credibility, whileWSC-approx-sig-cred isWSC-approxwhere

the interstingness score of the comparison queries is computed

with the significance and credibility, but without conciseness.

Figure 10: Qualitative human evaluation

The notebooks generated were deployed on Jupyter
8
and were

presented to the volunteers, insisting on the fact that the note-

books should be considered as starting points of the exploration

of a potentially unknown dataset. We also provided a brief data

dictionary explaining some business terms of the ENEDIS dataset.

We asked them to rate the notebooks, on a scale from 1 (lowest) to

7 (highest), using the 4 criteria proposed in [11]: (1) Informativity

— How informative is the notebook and how well does it capture

dataset highlights? (2) Comprehensibility — To what degree is

the notebook comprehensible and easy to follow? (3) Expertise

— What is the level of expertise of the notebook composer? (4)

Human Equivalence — How closely does the notebook resemble

a human-generated session?

We show the average scores given by testers in Figure 10. In

general, the main observations are that WSC-rand-approx and

SC-approx-sig dominates the other on all criteria, while Naive-

exact is dominated on all criteria. The fact that WSC-rand-approx

8
https://datastory.lifat.fr/tree?#notebooks, Password: 1598Rksil%42TAP

283

obtains the best scores indicates that sampling does not seem

to systematically affect how users consider the insights in the

notebooks. In particular, even if some insights may be missed by

the approach, as explained above, the notebook generated can

still be deemed informative. The low scores received by Naive-

exact tend to indicate that an exact resolution is not needed for

a notebook to be well perceived by users. As to the interesting-

ness measure, the test is inconclusive in ruling out one or the

other of the components, from a user’s perspective. We also re-

call that notebooks were generated with values of 𝜖𝑑 favoring

solutions where comparison queries are very close to each other,

which may have disappointed users preferring more diversity in

the notebook, and might explain the low scores on the Human

equivalence criterion. Interestingly, a statistical t-test confirmed

that the difference in the positive evaluations received by WSC-

rand-approx and SC-approx-sig is not significant. Moreover, this

difference is not significant either on the comprehensibility crite-

ria with WSC-approx-sig-cred (even if in this case the p-value

is around 0.16 which indicates a weaker confidence in the con-

clusion). Another interesting observation concerns Naive-exact,

which is supposedly the optimal approach. However, human eval-

uations rather show that it is overall the least appreciated method.

This is nuanced by the following elements: (i) recall studies as

presented in Table 6 show that in general around 30% of the

queries in Naive-exact and the other approaches are actually the

same, and (ii) t-tests on human evaluation criteria results show

that there are no significant differences between Naive-exact and

WSC-approx or WSC-unb-app approaches. The latter point con-

firms the previous observations: firstly, our heuristic is perceived

similarly as an exact resolution, and second, it cannot be said

that sampling affects how human evaluate the notebooks.

7 CONCLUSION
This paper addressed the problem of generating SQL notebooks

of comparison queries to support Exploratory Data Analysis. We

introduced the definitions of comparison insights, hypothesis

queries, comparison queries, and comparison query interesting-

ness, and formalized the problem of generating notebooks of com-

parison queries that are insightful and coherent. We presented

approaches for computing exact and approximate solutions to

this problem, and ran experiments on artificial and real datasets

to understand the scalability of the implementations and the

accuracy of approximate solutions.

Our future work includes the tuning of our notebooks gen-

erators, especially to speed up the generation of the set of com-

parison queries and to avoid the generation of spurious insights

on large datasets. We also aim at characterizing the forms of in-

sights that can be included in our approach. Indeed, although the

present work is restricted to comparison insights, our approach

can be extended to other forms of insights. This requires to (i) find

an appropriate SQL hypothesis query that expresses the insight,

(ii) find an appropriate statistical test for it, and (iii) adapt the

interestingness, distance, and cost functions. Finally, we plan to

extend our approach to other forms of popular analytical queries

(like, e.g., explain queries [1]), and to the possibility of mixing

queries and model computation.

REFERENCES
[1] Firas Abuzaid, Peter Kraft, Sahaana Suri, Edward Gan, Eric Xu, Atul Shenoy,

Asvin Anathanaraya, John Sheu, Erik Meijer, Xi Wu, Jeffrey F. Naughton, Peter

Bailis, and Matei Zaharia. DIFF: A relational interface for large-scale data

explanation. Proceedings of VLDB Endow., 12(4):419–432, 2018.

[2] Julien Aligon, Matteo Golfarelli, Patrick Marcel, Stefano Rizzi, and Elisa Turric-

chia. Similarity measures for OLAP sessions. Knowl. Inf. Syst., 39(2):463–489,
2014.

[3] Yoav Benjamini and Yosef Hochberg. Controlling the false discovery rate -

a practical and powerful approach to multiple testing. J. Royal Statist. Soc.,
Series B, 57:289 – 300, 11 1995.

[4] Tom Blount, Laura Koesten, Yuchen Zhao, and Elena Simperl. Understanding

the use of narrative patterns by novice data storytellers. In Proceedings of
CHIRA, pages 128–138, Budapest, Hungary, 2020.

[5] Alexandre Chanson, Ben Crulis, Nicolas Labroche, Patrick Marcel, Verónika

Peralta, Stefano Rizzi, and Panos Vassiliadis. The Traveling Analyst Problem:

Definition and preliminary study. In Proceedings of DOLAP@EDBT/ICDT,
pages 94–98, Copenhagen, Denmark, 2020.

[6] Alexandre Chanson, Thomas Devogele, Nicolas Labroche, Patrick Marcel,

Nicolas Ringuet, and Vincent T’kindt. A chain composite item recommender

for lifelong pathways. In Proceedings of DaWaK, pages 55–66, 2021.
[7] Alexandre Chanson, Nicolas Labroche, Patrick Marcel, and Vincent T’Kindt.

The Traveling Analyst Problem, Orienteering applied to exploratory data

analysis. In Proceedings of ROADEF, 2021.
[8] Conor Cunningham, Goetz Graefe, and César A. Galindo-Legaria. PIVOT

and UNPIVOT: optimization and execution strategies in an RDBMS. In

(e)Proceedings of VLDB, pages 998–1009, Toronto, Canada, 2004.
[9] George B. Dantzig. Discrete-variable extremum problems. Operations Research,

5(2):266–288, 1957.

[10] Rui Ding, Shi Han, Yong Xu, Haidong Zhang, and Dongmei Zhang. Quick-

Insights: Quick and automatic discovery of insights from multi-dimensional

data. In Proceedings of SIGMOD, pages 317–332, Amsterdam, The Netherlands,

2019.

[11] Ori Bar El, Tova Milo, and Amit Somech. Automatically generating data

exploration sessions using deep reinforcement learning. In Proceedings of
SIGMOD, pages 1527–1537, Portland, OR, USA, 2020.

[12] Matteo Francia, Matteo Golfarelli, Patrick Marcel, Stefano Rizzi, and Panos

Vassiliadis. Assess queries for interactive analysis of data cubes. In Proceedings
of EDBT, pages 121–132, Nicosia, Cyprus, 2021.

[13] Liqiang Geng and Howard J. Hamilton. Interestingness measures for data

mining: A survey. ACM Comput. Surv., 38(3):9, 2006.
[14] Stratos Idreos, Olga Papaemmanouil, and Surajit Chaudhuri. Overview of

data exploration techniques. In Proceedings of SIGMOD, pages 277–281, 2015.
[15] Pingchuan Ma, Rui Ding, Shi Han, and Dongmei Zhang. MetaInsight: Auto-

matic discovery of structured knowledge for exploratory data analysis. In

Proceedings of SIGMOD, pages 1262–1274, 2021.
[16] Patrick Marcel, Verónika Peralta, and Panos Vassiliadis. A framework for

learning cell interestingness from cube explorations. In Proceedings of ADBIS,
pages 425–440, 2019.

[17] Tova Milo and Amit Somech. Next-step suggestions for modern interactive

data analysis platforms. In SIGKDD, pages 576–585. ACM, 2018.

[18] Julian Ramos Rojas, Mary Beth Kery, Stephanie Rosenthal, and Anind K. Dey.

Sampling techniques to improve big data exploration. In Proceedings of LDAV,
pages 26–35, Phoenix, AZ, USA, 2017.

[19] Senjuti Basu Roy, Gautam Das, Sihem Amer-Yahia, and Cong Yu. Interactive

itinerary planning. In Proceedings of ICDE, pages 15–26, 2011.
[20] Sunita Sarawagi. Explaining differences in multidimensional aggregates. In

Proceedings of VLDB, pages 42–53, 1999.
[21] Sunita Sarawagi. User-adaptive exploration of multidimensional data. In

Proceedings of VLDB, pages 307–316, 2000.
[22] Sunita Sarawagi, Rakesh Agrawal, and Nimrod Megiddo. Discovery-driven

exploration of OLAP data cubes. In Proceedings of EDBT, pages 168–182, 1998.
[23] Gayatri Sathe and Sunita Sarawagi. Intelligent rollups in multidimensional

OLAP data. In Proceedings of VLDB, pages 531–540, 2001.
[24] Tarique Siddiqui, Surajit Chaudhuri, and Vivek R. Narasayya. COMPARE:

accelerating groupwise comparison in relational databases for data analytics.

Proceedings of VLDB Endow., 14(11):2419–2431, 2021.
[25] Bo Tang, Shi Han, Man Lung Yiu, Rui Ding, and Dongmei Zhang. Extracting

top-k insights from multi-dimensional data. In Proceedings of SIGMOD, pages
1509–1524, Chicago, IL, USA, 2017.

[26] Vincent T’kindt and Jean-Charles Billaut. Multicriteria Scheduling: Theory,
Models and Algorithms. Springer, 2006.

[27] Pieter Vansteenwegen and Aldy Gunawan. Orienteering Problems. EURO

Advanced Tutorials on Operational Research. Springer, 2019.

[28] Neal E. Young. Greedy set-cover algorithms. In Encyclopedia of Algorithms,
pages 886–889. Springer, 2016.

[29] Emanuel Zgraggen, Zheguang Zhao, Robert C. Zeleznik, and Tim Kraska.

Investigating the effect of the multiple comparisons problem in visual analysis.

In Proceedings of CHI, page 479, Montreal, QC, Canada, 2018.

284

