
Aggregation Detection in CSV Files
Lan Jiang, Gerardo Vitagliano, Mazhar Hameed, Felix Naumann

Hasso Plattner Institute, University of Potsdam, Germany
firstname.lastname@hpi.de

ABSTRACT

Aggregations are an arithmetic relationship between a single
number and a set of numbers. Tables in raw CSV files often in-
clude various types of aggregations to summarize data therein.
Identifying aggregations in tables can help understand file struc-
tures, detect data errors, and normalize tables. However, recog-
nizing aggregations in CSV files is not trivial, as these files often
organize information in an ad-hoc manner with aggregations
appearing in arbitrary positions and displaying rounding errors.

We propose the three-stage approach AggreCol to recognize
aggregations of five types: sum, difference, average, division,
and relative change. The first stage detects aggregations of each
type individually. The second stage uses a set of pruning rules
to remove spurious candidates. The last stage employs rules to
allow individual detectors to skip specific parts of the file and
retrieve more aggregations. We evaluated our approach with two
manually annotated datasets, showing that AggreCol is capable
of achieving 0.95 precision and recall for 91.1% and 86.3% of the
files, respectively. We obtained similar results on an unseen test
dataset, proving the generalizability of our proposed techniques.

1 AGGREGATION DETECTION

An aggregation represents an arithmetic relationship between
a set of numbers and a single number: the latter (aggregate)
can be determined by applying an aggregation function, such
as sum or average, on the former (range). As a useful tool to
summarize data, aggregations are implemented as operators in
many data analytics tools. For example, relational database sys-
tems support a collection of aggregation operators based on
the underlying relational algebra, such as sum, average, count,
and minimum/maximum, to enable data analysis on relational
tables. Spreadsheet programs provide an extensive set of for-
mulas to compute aggregations on values of arbitrary cells [25].
Various business intelligence and data analytics platforms, such
as Tableau and Trifacta, integrate aggregation calculation into
their toolkits. Data scientists and practitioners frequently build
pipelines to prepare data or carry out data analytic tasks with the
above tools. While doing so, they may obtain insights on how
to process data in the next step by looking up various kinds of
aggregations amongst numbers.

Numeric data and aggregations calculated from them often
serve as intermediate or final results of data analytics pipelines.
While some of these results are stored in structured formats, such
as relational tables or key-value pairs, many of them are simply
saved in data files, such as spreadsheets or plain-text files, where
authors can organize content in arbitrary positions. Data files
are useful to store data meant for human readability, such as
reports of company balance sheets, or student rosters of courses.
In this work, we deal with aggregations in a particular type of
data files: verbose CSV files [20], whose cell values represent

© 2022 Copyright held by the owner/author(s). Published in Proceedings of the
25th International Conference on Extending Database Technology (EDBT), 29th
March-1st April, 2022, ISBN 978-3-89318-085-7 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

0 1 2 3 4 5 6 7
0 Population by age 1875–2009

1 Year Population Age 0–14 Age 15–64 Age 65+ 0–14 % 15–64 % 65+ %

2 1875 1 912 647 659 267 1 178 113 75 267 34,5 61,6 3,9

3 1900 2 655 900 930 900 1 583 300 141 700 35,1 59,6 5,3

4 1925 3 322 100 1 031 700 2 090 000 200 400 31,1 62,9 6,0

5 1950 4 029 803 1 208 799 2 554 354 266 650 30,0 63,4 6,6

6 1975 4 720 492 1 030 544 3 181 376 508 572 21,8 67,4 10,8

7 2000 5 181 115 936 333 3 467 584 777 198 18,1 66,9 15,0

8 2009 5 351 427 888 323 3 552 663 910 441 16,6 66,4 17,0

9

10 Source: Population Structure 2009, Statistics Finland

11 Inquiries: Markus Rapo (09) 1734 3238, vaesto.tilasto@stat.fi

12 Director in charge: Jari Tarkoma

Figure 1: A real-world verbose CSV file that contains two

types of aggregations: sum (green) and division (blue).

content of various roles, such as data, header, aggregation, or
metadata. A table in a verbose CSV file is a set of data, header, or
aggregation cells in any configuration. One table may comprise
multiple left and top headers, and contain aggregation rows or
columns, while another may simply resemble a relational table.
Figure 1 illustrates a real-world verbose CSV file. Besides the title
and footnotes at the top and bottom left, the file contains a table
that clarifies the overall and per age-group population for several
years. The three right-most columns account for the proportion
of per-group population against the total.

According to a survey about open portal CSV files, around
9.2% of 107,779 tables in these files have multi-row headers or are
correlated to at least one comment line (title, footnote, etc.) in the
file [23]. Verbose CSV files include both above cases. Furthermore,
our previous work showed that around 5.9% of 1.3M cells in a
verbose CSV file dataset are aggregate cells [20].

Locations of aggregations in a file are not always obvious. One
reason is the lack of proper metadata to describe them. Because
verbose CSV files cannot preserve any metadata, an aggregate
appears to be just a normal numeric cell similar to any other
numeric data cell in a table. As some verbose CSV files are ex-
ported from spreadsheet files, one might refer to the original
spreadsheets, if available, which might contain the actual aggre-
gation function as metadata. However, these metadata are not
always present, even in spreadsheets, as users copy and paste
only the values derived by a formula. Based on our observation
on the Troy dataset, 150 of 200 spreadsheet files have at least
one aggregation, while none of them include the corresponding
formulas.

With the lack of aggregation metadata in verbose CSV files,
discovering them is beneficial for several downstream applica-
tions:

Enriching files with metadata.Metadata, despite being useful
information to help understand data, cannot be embedded into
the vanilla CSV file format that is commonly used to store data.
Specifically, locations of aggregation cells can reveal the arith-
metic relationships between numeric cells. In addition, detected
aggregations can be used to improve cell classification algorithms

Series ISSN: 2367-2005 207 10.48786/edbt.2022.10

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2022.10

that usually treat “aggregation” as a cell type [15, 20, 21]. In Sec-
tion 4.6, we show the improvement gain of a state-of-the-art cell
classification approach by using the results of our proposed aggre-
gation detection algorithm to fill a binary feature that represents
if a cell is an aggregator or not.
Numeric error detection and cleaning. Aggregations in ver-
bose CSV files often include errors: number in the aggregate
cell does not precisely calculate the numbers in the range cells.
A major reason is that numbers are rounded to preserve a cer-
tain amount of decimal digits. The calculated aggregation of a
group of rounded numbers may deviate from the intended ag-
gregate value – an effect we have observed in around 29% of the
real-world aggregations, as described in Section 4.1. With our
advanced approach to detect aggregations with an error, data
scientists may realize the numeric data errors and mend them
accordingly.
Serving as input for formula smell detection.Many verbose
CSV files are exported from spreadsheets where the aggregations
have been created via formulas. However, manual mis-operations
may cause absence or incorrectness of formulas in spreadsheets.
For example, in a row of numeric cells that represent the per-
column sum of numbers in other rows, the formula of one cell
is missing, which can be identified by various “formula smell”
detection approaches [9, 19]. However, these approaches all as-
sume the existence of some surrounding formulas, e.g., the other
cells in the row with the sum formula in the above case. Detected
aggregations can serve as the input for those formula smell de-
tection approaches to recognize more smelly formulas.

With the usefulness of knowledge about aggregations and
the lack of such information in verbose CSV files, being able
to detect them is important. Manual work is infeasible, as lo-
cations of aggregations are not always apparent: any numeric
cell could aggregate any set of other cells. When dealing with a
large table, manual checking is error-prone and time-consuming
due to many aggregation candidates. The existence of specific
keywords in a cell, such as ‘total’ and ‘average’, might indicate
the presence of aggregates in the same row or column. However,
such an approach is unreliable, as keyword dictionaries cannot
cover all aggregations. In the table of Figure 1, for example, none
of the aggregation cells can be identified by their headers. An
investigation into our dataset shows that we could retrieve only
around 60.0% of the true sum aggregates by using a set of key-
words including ‘total’, ‘all’, ’sum’, ’subtotal’, and ‘overall’. In
Section 4.4, we elaborate on the results of this keyword-based
approach.

In light of these challenges, automated approaches are needed.
We propose AggreCol– a three-stage approach to automatically
detect various types of aggregations in verbose CSV files. Our
approach supports sum, difference, average, division, and rela-
tive change, formally defined in Section 2.1. In the first stage,
AggreCol detects adjacent aggregations of each aggregation
function separately. An aggregation is adjacent if the set of cells
in its range are adjacent to its aggregate. The second stage col-
lects the individual detection results and removes the spurious
aggregations with a set of pruning rules. In the last stage, our
approach aims at recognizing non-adjacent aggregations by skip-
ping the aggregates of detected aggregations. In particular, we
make the following contributions:

(i) We formalize the aggregation detection problem for ver-
bose CSV files, and propose the three-stage approach Ag-
greCol to address it for five aggregation functions.

(ii) We annotated two datasets that comprise 466 verbose CSV
files of various domains, published on our website1.

(iii) We conduct a series of comparative experiments to evalu-
ate the effectiveness of AggreCol.

In Section 2, we formalize the definitions of the used terms,
and possible aggregation patterns, followed by the formal prob-
lem statement. Section 3 describes the technical details of our
approach. The experimental results along with a detection error
analysis are presented in Section 4. Section 5 briefly discusses
the related work. As a conclusion, we summarize this work and
envision future work in Section 6.

2 PRELIMINARIES

We first provide definitions of all necessary concepts, including
tables in verbose CSV files, the components of an aggregation –
aggregate, range, and aggregation function – and the error level.
In the next part, we summarize the three observed aggregation
patterns and give the formal problem statement.

2.1 Definitions

We adopt the notion of verbose CSV files from Jiang et al. [20].
A verbose CSV file is a two-dimensional plain-text file in which
content is organized in cells separated by delimiters. As a general-
ized version of standard CSV files defined by RFC 41802, verbose
CSV files do not require a single relational table with the defined
schema as content. Instead, every cell may represent an arbi-
trary type of information, such as data, title, header, aggregate,
metadata of a table, or the empty value.

To interpret a file as a verbose CSV file, the corresponding file
dialect must be recognized first [8, 14, 27]. A file dialect incorpo-
rates all utility characters used to interpret its structure, such as
field delimiter and quotation character. While comma and double-
quote characters are widely used, no mandatory requirements
are enforced for their selection. Here, we assume verbose CSV
file dialects have been correctly detected, and the input files are
delimited accordingly. As verbose CSV files allow a loose layout,
tables therein may have unique structures.

Definition 1 (Table). A table in a verbose CSV file is a group of
cells. Each cell carries information, such as data, row or column
header, group header, aggregate, or empty visual separator. A
table contains structured information about entities of a common
type.

Stemming from spreadsheets, tables in verbose CSV files of-
ten contain sets of numbers and their aggregates. The verbose
CSV file in Figure 1 includes a table that spans rows 1 to 8, and
columns 0 to 7. This table includes cells that serve as row header,
column header, data, or aggregate. In tables of verbose CSV files,
users often express the numeric value zero with an empty table
cell. We follow this interpretation in this work.

An aggregation describes an arithmetic relationship between
a numeric cell and a set of other numeric cells in the same table.
We refer to the former numeric cell as the aggregate and the
latter numeric cell set as the range. We call each component in
an aggregatee an range element. A table may include multiple
aggregations.

Definition 2 (Aggregate & Range). An aggregate 𝑟 = 𝑐𝑖𝑟 , 𝑗𝑟 ,
where 𝑖𝑟 ∈ [0, 𝑀) and 𝑗𝑟 ∈ [0, 𝑁), is a numeric cell whose value
1https://hpi.de/naumann/projects/data-preparation/aggregation-detection-in-
verbose-csv-files.html
2https://datatracker.ietf.org/doc/html/rfc4180

208

can be derived by applying a specific arithmetic function on a set
of other numeric cells 𝐸 = {𝑐𝑖, 𝑗 |𝑖 = 0, . . . , 𝑀 −1, 𝑗 = 0, . . . , 𝑁 −1},
referred to as an range. We represent the list of row and column
indices of the elements in 𝐸 with 𝑖𝐸 and 𝑗𝐸 .

Definition 3 (Aggregation function). An aggregation function
𝑓 is an arithmetic operator that can be applied to the values in
an range to determine the value of an aggregate.

While many different aggregation functions can be applied
to numeric values, only few appear frequently in verbose CSV
files based on our annotation of 385 files. Figure 2 illustrates the
occurrence distribution of aggregation functions. In this work,
we cover the aggregation functions that appear in more than
5% of the files, i.e., sum, difference, average, division, and relative
change. Table 1 displays the specifications of these aggregation
functions. For example, a sum function requires no less than one
element in the aggregatee, and is a cumulative function, which
means the aggregator derived by applying this function can be
further used as aggregatee element in other aggregations. In
contrast, average is non-cumulative: averaging numbers that are
themselves averages is not arithmetically meaningful. Relative
change describes the change from 𝐵 to𝐶 normalized by 𝐵, which
is commonly used to show changes across a certain time period.

Figure 2: Percentage of 385 files that contain the individ-

ual aggregation functions.

We observe that a few real-world aggregations involve multi-
ple aggregation functions. For example, the percentage of popula-
tion holding at least a university degree is the sum of populations
with bachelor, master, and doctor degrees divided by the total
population. In this work, we treat only single-function aggrega-
tions. Having defined all components of an aggregation, we can
formalize the definition of an aggregation as follows.

Definition 4 (Aggregation). An aggregation 𝑎 is a tuple (𝑟 �
𝐸, 𝑓), where 𝑟 ∉ 𝐸 and the value of the cell 𝑟 can be derived by
applying the arithmetic function 𝑓 on all values in 𝐸.

In principle, the value of 𝑟 should equal precisely the value
calculated by applying 𝑓 on 𝐸. However in practice, this is often
not true as numbers displayed in cells can be rounded. In fact,
we observed that around 30% of all aggregations in our manually
annotated files contain such errors. Numbers can be rounded to
different significant figures, leading to a wide variety of error
margins. As verbose CSV files do not preserve the metadata
on how numbers were rounded, we model such a calculation
deviation with an error level and detect aggregations for different
levels.

Table 1: Overview of the supported aggregation functions.

Aggregation

function

Aggregatee

elements

Formula Cumulative

Sum ≥ 1 𝐴 =
∑𝑛
𝑖=1 𝐵𝑖 Yes

Difference = 2 𝐴 = 𝐵 −𝐶 Yes
Average ≥ 1 𝐴 = (∑𝑛

𝑖=1 𝐵𝑖)/𝑛 No
Division = 2 𝐴 = 𝐵/𝐶 No
Relative change = 2 𝐴 = (𝐶 − 𝐵)/𝐵 No

Definition 5 (Error level). Given an aggregation 𝑎 (𝑟 � 𝐸, 𝑓),
where 𝑟 is the observed aggregate value, and 𝑟 ′ the value deter-
mined by applying 𝑓 on 𝐸, the error level 𝑒 of 𝑎 describes the
deviation factor from 𝑟 to 𝑟 ′: 𝑒 = | (𝑟 ′ − 𝑟)/𝑟 |

We calculate the error level with the normalized absolute dif-
ference, because numeric values of aggregates vary in their order
of magnitude. Based on this formula, the highest observed error
for a true aggregation was 37.5%. The error level is undefined if 𝑟
= 0. For the few such cases in our dataset, we calculate the error
level as the absolute difference between 𝑟 and 𝑟 ′. We extend the
notation of an aggregation to include the error level: 𝑎 (𝑟 � 𝐸, 𝑓 ,
𝑒).

While in principle both 𝑟 and 𝐸 can be located at any arbitrary
position in a verbose CSV file, in practice, most aggregations orga-
nize 𝑟 and 𝐸 in the same row (row-wise) or column (column-wise).
We make this same-line aggregation assumption. Discovering non-
same line aggregations can be an interesting extension, but is
likely to be fraught with many false-positives.

To express a row-wise aggregation, we use a slightly modified
notation (row:𝑖, 𝑗𝑟 � 𝑗𝐸 , 𝑓 , 𝑒), where 𝑖 is the row index of all cells;
𝑗𝑟 and 𝑗𝐸 are column indices of the aggregate and the range,
respectively; 𝑓 is the aggregation function; 𝑒 is the observed
error level. For example, the green-shaded sum aggregation in
Figure 1 can be represented as (row:2, 1 � {2, 3, 4}, Sum, 0). We
call 𝑗𝑟 � 𝑗𝐸 the pattern of the aggregation that indicates the
scope of the aggregate and the range. Column-wise aggregations
can be represented analogously.

2.2 Aggregation patterns

Given a row-wise or column-wise aggregation, range elements
can be any subset of the numeric cells in the same column or same
row. However, we observe that range elements are usually not
randomly distributed. Authors of verbose CSV files tend to place
aggregates close to their corresponding ranges. We summarize
three aggregation patterns, shown in Figure 3, based on our
examination of our dataset that includes 385 verbose CSV files.

The simplest and the most common pattern is adjacent, where
the range is right next to the corresponding aggregate. Out of the
examined verbose CSV files, 77.9% include adjacent aggregations.
The high ratio is likely due to localized reading habits: humans
tend to find the summary of a group of numbers in its direct
proximity.

The second pattern is cumulative. As shown in Figure 3b, the
value 35 is the sum of 22 and 13, which is not an adjacent aggrega-
tion. However, the latter two numbers are themselves aggregates
of two different adjacent aggregations. For example, the global
population equals to the sum of populations of northern and
southern hemispheres, which, in turn, equals those of a number
of countries therein. We have observed such a pattern in around
20% of the files. Note that to obtain a cumulative aggregation,
the intermediate aggregates (22 and 13 in the figure) must be of

209

38

12

6

3

2

2

10

3

(a) Adjacent

35

22

16

3

3

13

10

3

(b) Cumulative

37

8

9

7

10

11

(c) Interrupt

Figure 3: Aggregator-aggregatee patterns of three differ-

ent aggregations (Blue and green cells are sum and aver-

age of the corresponding orange cells).

cumulative nature: for the aggregations considered in this study,
only sum and difference can behave cumulatively.

Lastly, 14.8% of our verbose CSV files contained interrupt ag-
gregations. The range elements in an interrupt aggregation are
scattered in the row or column. Interrupt aggregation happens
when, for example, it is blocked by another non-cumulative ag-
gregation (green shaded cell in Figure 3c is the average of the next
two cells), an intermediate aggregation is actually not satisfied,
or rows/columns are simply not organized in a localized manner.

We can now formally define the problem of aggregation detec-
tion in verbose CSV files: given a verbose CSV file 𝑉 = {𝑐𝑖, 𝑗 |𝑖 =
0, . . . , 𝑀 − 1, 𝑗 = 0, . . . , 𝑁 − 1}, a set of functions 𝐹 , a given error
level parameter 𝑒 ′, find all aggregations in 𝑉 using 𝐹 presented
in Table 1. Each aggregation satisfies the same-line aggregation
assumption, and has the appropriate number of range elements,
according to Table 1, i.e., each detected aggregation 𝑎 (𝑟 � 𝐸, 𝑓 ,
𝑒) must satisfy the following four requirements:

(i) 𝑓 ∈ 𝐹 ;
(ii) 𝑒 ≤ 𝑒 ′;
(iii) either ∀𝑐𝑖, 𝑗 ∈ 𝐸 : 𝑖 = 𝑖𝑟 or ∀𝑐𝑖, 𝑗 ∈ 𝐸, 𝑗 = 𝑗𝑟 ;
(iv) |𝐸 | ≥ 1 if 𝑓 ∈ {sum, average}, or
|𝐸 | = 2 if 𝑓 ∈ {difference, division, relative change}.

3 THE AGGRECOL APPROACH

In this section, we present the methods used by our three-stage
algorithm AggreCol to detect aggregations in verbose CSV files.
We start by describing the general workflow of our approach, and
then elaborate on the individual, collective, and supplemental
aggregation detection stages in Sections 3.1-3.3.

Figure 4 illustrates the overview of AggreCol. Given a ver-
bose CSV file, AggreCol first detects aggregations of different
aggregation functions separately. Because some results of this
step might be incidental, the results are then passed to the col-
lective aggregation detection stage, where we remove spurious
aggregations with a set of pruning rules. To specifically handle
interrupt aggregations as defined in Section 2.2, we introduce
a final stage that constructs new files from the original verbose
CSV file, on which we re-apply the individual aggregation func-
tion detectors. The results of the third stage are presented as the
final output.

We assume same-line aggregations, i.e., aggregate and range
are either in the same row or the same column. We handle row-
wise and column-wise aggregations equivalently. Without loss
of generality, the examples and terminology used in the rest of
this section are focused on row-wise aggregations.

3.1 Individual aggregation detection

AggreCol expects a verbose CSV file as input. Each file may
use a unique number format. For example, one file may use dot
as thousands separator and comma as decimal separator, while
another may use space and comma for them, respectively. The
interpretation of numbers may affect the results of aggregation
detection. Therefore, identifying number format is a necessary
prior step. Section 4.2 clarifies our method to recognize the num-
ber format and interpret the underlying numbers in the file.

AggreCol detects aggregations of each aggregation function
separately. Algorithm 1 outlines the procedure of the individual
aggregation detection algorithm. It takes as input a verbose CSV
file, the function it detects aggregations of, the maximum tolera-
ble error level, and the minimum coverage of aggregates in a row
or column. To help understand the procedure, we use Figure 5 as
a working example: it shows a table with four row-wise aggre-
gations whose formulas are shown below the table. Numbers in
the table are modified to fit the example. We set 𝑒 as zero, and
𝑐𝑜𝑣 as 0.7. Details of the algorithm are elaborated below.

The individual aggregation detection algorithm starts by rec-
ognizing, within each row, the aggregations whose range is in
proximity to its aggregate (lines 4-7). Depending on the mathe-
matical properties of the aggregation functions summarized in
Table 1, it employs either an adjacency list strategy, or a sliding
window one. The two strategies are explained as follow.

Algorithm 1: Individual aggregation detection (row-
wise)
Input: Verbose CSV file 𝑉 , aggregation function 𝑓 , error

level 𝑒 , line aggregation coverage threshold 𝑐𝑜𝑣
Output: A set of row-wise aggregations D

1 𝐷 ← {};
2 while true do
3 𝑚 ← 𝑙𝑒𝑛𝑔𝑡ℎ(𝑉);
4 foreach i in {0,. . . ,𝑚} do
5 𝐷𝑚 ← 𝑑𝑒𝑡𝑒𝑐𝑡_𝑎𝑑 𝑗𝑎𝑐𝑒𝑛𝑡_𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛𝑠(𝑉𝑚 , 𝑒);
6 𝐷 ′ ← 𝐷 ′ ∪ 𝐷𝑚

7 end

8 𝐷 ′ ← 𝑒𝑥𝑡𝑒𝑛𝑑_𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛𝑠 (𝐷 ′);
9 if 𝐷 ′ = ∅ then
10 break;
11 𝐷 ′ ← 𝑝𝑟𝑢𝑛𝑒(𝐷 ′, 𝑐𝑜𝑣);
12 𝐷 ← 𝐷 ∪ 𝐷 ′;
13 if f is not cumulative then
14 break;
15 𝑉 ← 𝑟𝑒𝑚𝑜𝑣𝑒_𝑐𝑜𝑙𝑢𝑚𝑛𝑠(𝑉);
16 end

17 return 𝐷

Adjacency list strategy. This strategy recognizes an aggrega-
tion only if the set of all numeric elements in its range is adjacent
to the aggregate, e.g., 𝑎1 and 𝑎2 in Figure 5. We employ this
strategy for aggregation functions that are commutative. The
commutative property guarantees that changing the order of the
elements in an range has no impact on the aggregated result.
For the functions supported in this work, sum and average hold
such a property. The commutative property allows us to resort
to a greedy approach: for each aggregate candidate 𝑐𝑖, 𝑗 and the
numeric cells 𝐸 = {𝑐𝑖,𝑘 |𝑘 > 𝑗} in its row, the approach itera-
tively moves the numeric cell in 𝐸 that is column-wise closest

210

Verbose CSV File
Detected

Aggregations

Supplemental aggregation detectionCollective aggregation detectionIndividual aggregation detection

Adjacent list

Sliding window

Sum detector

Average detector

Subtraction
detector

Division detector

Relative change
detector

Detected
aggregations

Pruning rules

Combined aggregations

Sum detector

Average
detector

Subtraction
detector

Division
detector

Relative change
detector

File constructing rules

Reconstructed files

Detected
aggregations

Figure 4: General workflow of our three-stage aggregation detection approach.

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 Ye
ar

Eu
ro

pe

Bu
lg

ar
ia

Fr
an

ce

Ge
rm

an
y

Po
la

nd

Po
rt

ug
al

Ro
m

an
ia

Af
ric

a

Ke
ny

a

Et
hi

op
ia

Ch
ile

To
ta

l
po

p.
 c

ha
ng

e

Ke
ny

a
in

 A
fr

ic
a

1 2013 3703 215 930 1278 1216 62 2 64 58 6 128 3895 0.91
2 2014 4038 546 959 1145 1388 -243 243 22 6 16 78 4138 0.27
3 2015 3900 307 736 1573 1263 90 -69 23 6 17 123 4046 0.26
4 2016 4830 279 1176 1683 135 1548 9 19 10 9 197 5046 0.53
5 2017 4944 378 1669 2897 -305 228 77 21 8 14 4965 0.38
6 2018 5791 900 2583 1148 1127 21 13 34 21 12 5825 0.62
7 2019 8266 364 4155 3550 164 22 11 33 14 19 8299 0.42

𝒂𝟏: 𝑪𝟏 = 𝑪𝟐 + 𝑪𝟑 + 𝑪𝟒 + 𝑪𝟓 + 𝑪𝟔 + 𝑪𝟕; 𝒂𝟐: 𝑪𝟖 = 𝑪𝟗 + 𝑪𝟏𝟎;

𝒂𝟑: 𝑪𝟏𝟐 = 𝑪𝟏 + 𝑪𝟖 + 𝑪𝟏𝟏; 𝒂𝟒: 𝑪𝟏𝟑 = 𝑪𝟗/𝑪𝟖

Figure 5: Excerpt of a table that contains three sum (in

green) and one division (in blue) aggregations. 𝐶𝑖 repre-

sents the 𝑖th column.

to 𝑐𝑖, 𝑗 into an adjacency list 𝐿. After each move, it checks if the
error level between 𝑐𝑖, 𝑗 and the value calculated by applying 𝑓

on 𝐿 is smaller than the given 𝑒 . If such a list 𝐿 can be found,
𝑐𝑖, 𝑗 and 𝐿 compose a detected aggregation. The same process
is applied also to the numeric cells 𝐸 = {𝑐𝑖,𝑘 |𝑘 < 𝑗} to detect
possible aggregations at the other side of the aggregate candidate.
Although the range of a sum or average aggregation may have
only one element, such single range element cases rarely appear
in our datasets. Allowing detection of such aggregations would
include massive false positives in the results, especially for files
with many cells of identical numbers. Therefore, our approach
requires at least two range elements for these two functions.
Sliding window strategy. For non-commutative aggregation
functions, the order of range elements affects the result. As the
greedy adjacency list strategy is not applicable, we use a window
for each aggregate candidate. For each aggregate candidate 𝑐𝑖, 𝑗
the approach searches for possible aggregations by traversing
all permutations of size 𝑛 in the set of𝑤 numeric cells that are
closest to 𝑐𝑖, 𝑗 , where 𝑛 is the number of possible range elements
of the function specified in Table 1. Similar to the adjacency list
strategy, this process is also applied to both sides of 𝑐𝑖, 𝑗 separately.
We employ this strategy when detecting difference, division, and
relative change aggregations.

Applying the greedy adjacency list strategy may yield incor-
rect aggregation candidates in particular situations. For example,
(row:2, 1 � {2, 3, 4, 5, 6, 7}, Sum, 0) cannot be retrieved, as a pre-
viously detected aggregation with a shorter range (row:2, 1 �
{2, 3, 4, 5}, Sum, 0) terminates the search for this aggregate can-
didate. However, the detected aggregation is in fact not a true

one. It occurs because the sum of 𝑐2,6 and 𝑐2,7 happens to be
zero. We assume that, although such patterns might appear
in few rows due to a computational coincidence, they would
not repeat across all rows in the table. To discover the above
true aggregation and also drop the spurious one, AggreCol
extends the detected aggregations by checking whether candi-
dates with the same patterns as the detected aggregations across
rows are also valid aggregations (line 8). In the case of Figure 5,
as (row:3, 1 � {2, 3, 4, 5, 6, 7}, Sum, 0) is a valid aggregation, we
check the candidates with the same pattern in the other rows,
and validate the candidates for rows 2 and 5. These two can-
didates could not be retrieved, because an aggregation with
a shorter range in the respective row was detected. However,
(row:1, 1 � {2, 3, 4, 5}, Sum, 0) is not valid, even though it shares
the same pattern as the detected (row:2, 1 � {2, 3, 4, 5}, Sum, 0).
Table 2 lists the detected aggregations with no errors after the
extension for the example in Figure 5.

Table 2: Detected row-wise sum aggregations after aggre-

gation extension, grouped by column patterns (𝑒 = 0).

Column pattern Compliant rows

1 1 � {2, 3, 4, 5, 6, 7} 1, 2, 3, 4, 5, 7
2 4 � {5, 6} 1, 2, 3, 4, 6
3 8 � {6, 7} 1, 2, 6, 7
4 8 � {9, 10} 1, 2, 3, 5, 6, 7

Note that some rows are not compliant to specific column
patterns. For example, (row:6, 1 � {2, 3, 4, 5, 6, 7}, Sum, 0) cannot
be detected as the numbers in columns 2-7 in row 6 add up to 5792,
deviating slightly from the aggregate value “5791” in column 1.

If there are no detected aggregations in any row, the entire
process is terminated (line 10). Otherwise, the algorithm removes
spurious detected aggregations with a pruning step (line 11).

Before performing the pruning step, all aggregation candi-
dates are first grouped by their patterns. Any group possessing
an insufficient number of aggregations is discarded. The suffi-
ciency score is calculated as the number of candidates in the group
normalized by the number of numeric cells in the column with
the aggregate cell. Additionally, for all groups sharing the same
aggregate, only the one with the highest sufficiency score is pre-
served. The same process is conducted also for the groups sharing
the same range. The surviving groups are organized in a ranked
list, where a group with a higher rank has (i) the more detected
aggregations; (ii) the smaller average actual error level of the
aggregations. After that, AggreCol iterates over the list and

211

prunes the lower-ranked groups whose patterns cannot co-exist
with the pattern of the currently inspected group, based on the
following three heuristics:
Directional disagreement. Two aggregation candidates may
share the same aggregate, yet develop their ranges in the two dif-
ferent directions, e.g., (row:3, 4 � {5, 6, 7}, Sum, 0) and (row:3, 4 �
{2, 3}, Sum, 0). For the same-function aggregation candidates
sharing the same aggregate, we allow their ranges to reside only
at the same side of the aggregate, reflecting the typical structure
of spreadsheets.
Complete inclusion. For two aggregation candidates, a com-
plete inclusion scenario appears if both the aggregate and part of
the range elements of one aggregation are contained in the range
of the other aggregation. For example, (row:1, 4 � {5, 6}, Sum, 0)
and (row:1, 3 � {4, 5, 6, 7}, Sum, 0) form a complete inclusion,
because the aggregate and range elements of the former are in-
cluded in the range of the latter. As all elements in an range
should represent entities of the same semantic level, e.g., the av-
erage sales of all departments, or the population of all states, any
one of them cannot serve as an aggregate of any of its fellows.
Mutual inclusion. Two aggregation candidates are mutually
included when the aggregate of each is included in the range of
the other. For example, (row:1, 4 � {5, 6}, Sum, 0) and (row:1, 5 �
{3, 4}, Sum, 0) are mutually inclusive. If one of them, say the for-
mer, is true aggregation, then 𝑐1,5 is part of the range elements
that add up to 𝑐1,4. Then, 𝑐1,5 should not be the aggregate that
sums up numbers including 𝑐1,4. Two mutually included candi-
dates cause circular calculations, which should not be correct
semantically.

Given these pruning rules, in the example of Table 2, only the
aggregations with the 1st and 4th column patterns are preserved.
Six of the seven numeric rows, which is more than 0.7 given as
the 𝑐𝑜𝑣 parameter, are compliant rows in both cases. Therefore,
all aggregations in these rows that have one of the patterns are
included in the output of this phase.

Non-cumulative aggregation functions, according to Table 1,
need no more iterations, because the detected aggregates can-
not be used as ranges any more (line 14 of Algorithm 1). For
cumulative aggregation functions, the detected range columns
are ignored in the next iteration (line 15), because they cannot
be used as aggregates or ranges by any other aggregations that
will be detected in the following iterations.

The individual aggregation detection phase outputs a set of
row-wise and column-wise aggregation candidates for each ag-
gregation function. The sets of results are consumed by the next
phase that removes spurious candidates.

3.2 Collective aggregation detection

The previous phase recognizes aggregations of individual func-
tions with the three pruning rules. However, there might exist
a number of false positive results – mathematically correct but
coincidental aggregations. Figure 6 demonstrates a fictitious ex-
ample that has a true aggregation summing up the cost of heating,
water, electricity, garbage disposal cost to a total cost. However,
this table also includes a spurious average aggregation candidate,
which calculates garbage disposal cost by taking the mean cost
of the other three individual items. The coverage of this pattern
is 3 of 4 (indicated by the orange shaded cells in the “Garbage
disposal” column), surpassing the 𝑐𝑜𝑣 parameter. Therefore, the
aggregation candidates with this pattern could not be removed
by the previous phase.

Total cost Heating Water Electricity Garbage
disposal

Household A 280 110 30 70 70

Household B 320 120 45 75 80

Household C 200 74 35 58 50

Household D 240 75 33 72 60

Figure 6: A fictitious example table with true sum aggre-

gates (green solid fill) and spurious average aggregates (or-

ange diagonal strip fill).

To remove them, we introduce the collective aggregation de-
tection phase. By using pruning rules on the collection of results
from all individual detectors of the previous stage, we refine these
results: similar to the pruning step in the first phase, aggregation
candidates with a particular pattern cannot co-exist with those
of another particular pattern in the final results. However, in the
first phase each detector refines the detected aggregations of its
own function, whereas in this phase, AggreCol performs the
refinement across all functions.

Specifically, the algorithm first groups the accepted aggre-
gations from all individual detectors by their column patterns,
similar to the process in the first phase, and ranks the aggregation
groups by two criteria: (i) the number of range elements in the
group of a column pattern; (ii) the number of detected aggrega-
tions in a group. As the primary criterion, the more elements an
range comprises, the higher the group’s priority is, because we
believe that an aggregation with fewer range elements is more
likely to be a false positive. For the secondary criterion, we fa-
vor column patterns induced by a greater number of detected
aggregations.

Once AggreCol has re-ordered aggregation groups, it filters
out groups contradicting the ones that have been validated, ac-
cording to the complete inclusion and mutual inclusion rules
suggested in Section 3.1. Besides that, AggreCol discards an ag-
gregation group if the aggregate in its pattern is the same as that
of a previously validated group, and the ranges of the two groups
overlap: if a cell is the aggregate of a particular aggregation func-
tion, it should not act as the aggregate of another function, while
using (partly) the range of the former one. However, it is valid
for a cell to serve as aggregate for two aggregations with disjoint
ranges. For example, the yearly net income of a company that
equals the difference between the gross income and the expense
can simultaneously be the sum of the net income of all quarters.

These rules are not applicable to the division function, because
division aggregations can always be included in the final result.
For example, given that 𝑎2 in Figure 5 is validated, it is reasonable
to justify 𝑎4, even though these two aggregations contradict each
other according to the complete inclusion rule. This division
records the percentage that a part (column 8) accounts for in
the entirety (column 7) – a frequent usage of division in our
observations.

3.3 Supplemental aggregation detection

While the collective aggregation detection phase can eliminate
many spurious aggregations with the proposed pruning rules,
difficult cases, such as interrupt aggregations, still cannot be re-
trieved. Take the interrupt aggregation shown in Figure 3c as
an example: only the average aggregation can be retrieved by
applying the first two phases. Because the sum detector in phase

212

one can identify only adjacent aggregations, it cannot recognize
the interrupt sum aggregation in this case. We introduce the sup-
plemental aggregation detection phase to detect such interrupt
aggregations.

The general idea is to apply individual detectors proposed in
Section 3.1 on a set of constructed verbose CSV files derived from
the original file. Each of the new files is built by systematically
removing certain aggregate cells that have been detected in the
previous steps. As such “blocking” aggregates are removed from
the file, some interrupt aggregations become detectable using the
original individual detectors. Algorithm 2 describes the supple-
mental aggregation detection approach. It takes the original file,
the aggregation functions, the detected aggregations from the
previous phase, the error level, and the aggregation row coverage
as input, and outputs a set of detected aggregations.

Algorithm 2: Supplemental aggregation detection (row-
wise)
Input: Verbose CSV file 𝑉 , aggregation functions 𝐹 ,

detected aggregations 𝐴, error level 𝑒 , line
aggregation coverage 𝑐𝑜𝑣

Output: A set of row-wise supplemental aggregations D
1 detectors← {𝑑𝑓 |𝑓 ∈ 𝐹 };
2 𝑞 ← detectors;
3 𝐷 ← {};
4 while 𝑞 ≠ ∅ do
5 𝑑 ← pop(𝑞);
6 VS← 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡_𝑓 𝑖𝑙𝑒𝑠(𝑉 , 𝐷);
7 res← {};
8 foreach V’ in VS do
9 res← res ∪ 𝑑(𝑉 ′, 𝑒 , 𝑐𝑜𝑣);

10 end

11 if res ≠ ∅ then
12 𝐷 ← 𝐷 ∪ res;
13 𝑞 ← {detectors \ 𝑑}∪ 𝑞;
14 end

15 𝐷 ← 𝑝𝑟𝑢𝑛𝑒(𝐷 , 𝑐𝑜𝑣);
16 return D

First, individual detectors of all aggregation functions 𝐹 are
pushed to a queue (line 2), so that each will be executed at least
once. The algorithm constructs a set of files based on the origi-
nal file 𝑉 by removing specific columns from 𝑉 (line 6). On the
one hand, all aggregate columns of detected non-cumulative ag-
gregations should be excluded from the constructed files when
detecting interrupt aggregations, because they cannot be used
as range elements. On the other hand, each aggregate column of
detected cumulative aggregations can be either excluded from
or included in the constructed files, leading to multiple configu-
rations to construct files. The algorithm constructs one file for
each configuration, and applies the individual detectors 𝑑 on all
these files to recognize more aggregations (lines 7-10).

The approach runs sequentially: individual detectors are exe-
cuted one after another. Once a detector discovers new aggrega-
tions, the queue reloads detectors of other aggregation functions
that have already been processed (line 13). Newly detected ag-
gregations may expose interrupt ones, leading to the necessity
to re-check the other functions. Therefore, some detectors might
be executed multiple times. The whole process terminates when
no aggregation detector reports new aggregations. Finally, the

algorithm applies the pruning rules used in the individual aggre-
gation detection phase again to filter out spurious supplemental
aggregations (line 15).

To summarize, AggreCol employs a three-stage approach to
detect aggregations, where the first stage recognizes simple and
cumulative occurrences of individual aggregation functions. The
second stage combines individual aggregation results into one
collection and aims at removing spurious ones. To extend the
ability of AggreCol on discovering interrupt aggregations, we
apply the third stage that utilizes the individual detectors from
the first phase on a set of reconstructed files.

4 EXPERIMENTAL EVALUATION

This section includes the description of our evaluation datasets
and the results of our in-depth qualitative evaluation of Ag-
greCol including a comparison with a baseline and a detailed
error analysis.

4.1 Datasets

We collected real-world verbose CSV files from a variety of
sources, and constructed two datasets from them to evaluate our
approach on detecting aggregations in verbose CSV files. Most
tables in these files have fewer than 100 rows and 50 columns,
whereas the longest and the widest tables contain 601 rows and
97 columns, respectively.

The first dataset combines files fromTroy and EUSES. Troy [24]
is a set of 200 verbose CSV files collected between 2009 and 2010
from various international statistic data portals, such as Statis-
tics Finland and The World Bank. The authors evaluated their
approach that transforms heterogeneous statistical web tables
into relational databases [11]. The original data were stored in
HTML and converted by the authors via Excel to verbose CSV
files. EUSES [12] includes a collection of 1,352 spreadsheet files
from diverse domains, such as data management, education, and
finance and is widely used [1, 16, 18]. We randomly sampled 200
files from this dataset, and converted them to CSV format with
the Apache POI library3. Dropping the files that could not be
processed by the library left us with 185 verbose CSV files. As
both datasets incorporate files from diverse domains, we merged
them into a single dataset referred to as Validation, as we used
it to validate the effectiveness of AggreCol while designing our
approach.

The second dataset comprises verbose CSV files from three
different datasets: the Statistical Abstract of the United States
(SAUS), the Criminal In the US (CIUS), and the administrative
spreadsheet files on an open data portal of the UK. These datasets
include in total 3,053 files, and have been used by related work
in classifying lines or cells [15, 20]. We randomly sampled and
annotated 100 files and created our Unseen dataset with those
81 files that contain aggregations. This dataset served purely as
an unseen test set to assess the generalizability of our approach.

Naturally, verbose CSV files do not contain aggregation infor-
mation. Thus, we implemented a dedicated annotation tool to
manually create aggregation annotations for our datasets. Ac-
cording to Definition 4, an aggregation annotation must include
three components: a single cell that acts as the aggregate, a set
of other cells as the range, and the aggregation function. There-
fore, each annotation includes all the three components. Apart
from the typical purely numeric aggregations, we observed that

3https://poi.apache.org/

213

Table 3: Statistics of datasets.

Observations Dataset
Validation Unseen

Number of files with 385 81
No aggregations 50 0
Aggregations of one type 259 62
Aggregations of two types 71 17
Aggregations of three types 5 2
Aggregations of all types 0 0

Number of aggregations 20,280 5,854
Sum 14,070 4,399
Average 858 33
Division 4,800 1,097
Relative change 552 325

Number of aggregations with 20,280 5,854
error = 0 14,479 4,020
error > 0 5,801 1,834

Min. per-file aggregation count 1 1
Max. per-file aggregation count 1,651 490

verbose CSV files may include aggregations that comprise non-
numeric cells. A typical example is the usage of ‘x’ or ‘-’ in cells to
represent zero. Another unusual case represents the number ‘1.4’
with the string ‘+1.4 Points’. Our annotations cover all cases as
such, to better reflect the true aggregations in the datasets. Note
that aggregations may be subject to rounding errors. Even when
an aggregate could not be precisely derived from its range, we
labeled an aggregation based only on its semantics as indicated
context, including file and column names, surrounding cell value,
and our general understanding of the respective domain.

Table 3 displays some basic statistics of our datasets showing
the high complexity of aggregations in data files. Around 20%
of the files in both datasets include aggregations of more than
one type. Sum is the most frequently used aggregation function,
accounting for about 70% aggregations in both datasets. Aggrega-
tions in real-world data files often have errors – their aggregate
does not precisely aggregate the range. This is the case for about
29% of all aggregations in our datasets.

4.2 Number format transformation

Numbers can be formatted in different ways: the decimal sep-
arator may vary depending on the cultural background of file
authors, and a thousands separator can differ or be absent en-
tirely. One file may use ‘12 345,67’ and another ‘12,345.67’ to
represent the same underlying number ‘12345.67’. Cell values in
verbose CSV files commonly preserve these formats of numbers.
As for aggregations, an incorrect interpretation of the numbers
in a file might cause incorrect calculation results. For instance,
‘1.000’ may or may not be a correct aggregator for 700+ 300 if the
thousands separator character is treated as the decimal separator.

Before detecting aggregations in verbose CSV files, we first
apply a pre-processing step to identify and normalize the number
format. An investigation into the Troy dataset indicates five valid
number formats, shown in Table 4. We propose a number format
transformer that converts values of numeric cells in a file into
a normalized format. A normalized format uses no thousands
separator and the dot as the decimal separator. We created a
regular expression for each valid number format. For each cell in
the file, we tried to match it with every regular expression. As a
consequence, numeric cells might be matched to one or multiple
number formats, while non-numeric cells do not match any. We

Table 4: Overview of valid number formats and their re-

spective occurrence in the 200 files from Troy.

Digit group

separator

Decimal

separator

Example Occurrences

Space Comma 12 345,67 24.5%
Space Dot 12 345.67 6.0%
Comma Dot 12,345.67 66.5%
None Comma 12345,67 1.5%
None Dot 12345.67 1.5%

selected the number format that matches most cells in the file
and performed the appropriate transformation. In case of ties,
we chose the number format that has a higher occurrence ratio
according to Table 4.

4.3 Quality evaluation

We conducted a series of qualitative experiments to test the abil-
ity of AggreCol on recognizing aggregations with a variety of
patterns in the datasets. First, we introduce the metrics used in
our experiments. Then, we present the evaluation results on the
Validation dataset upon both aggregation- and file-level. Our
last experiment investigates the generalizability of AggreCol by
applying it on the Unseen dataset that remained unseen while
designing the approach.

4.3.1 Metrics. According to Definition 4, two aggregations
match only if their aggregates, ranges, and aggregation functions
all match, respectively. We refer to a detected aggregation as cor-
rect if it matches some true aggregation in the ground truth, and
incorrect if not. A true aggregation in the ground truth is missed
if no detected aggregation matches it. With these interpretations,
we apply the commonly used precision (𝑃) and recall (𝑅) metrics
to measure the effectiveness of our approach:

𝑃 =
|correct|

|correct + incorrect| 𝑅 =
|correct|

|correct +missed| (1)

Precision counts the number of correctly detected aggrega-
tions amongst all detected ones, while recall counts the number
of correctly detected aggregations amongst all in the ground
truth. The F1-score is the harmonic mean of these two measures.
Note that precision is undefined when no result is returned by
an approach, similarly for recall if a dataset contains no true
aggregations. As usual, we set the score to 1 in both cases.

4.3.2 Aggregation-level effectiveness. The first experiment eval-
uates the effectiveness of AggreCol at individual aggregation
level, considering all aggregations from all verbose CSV files in a
dataset equally, regardless of the files they belong to.

Three parameters affect the performance of our approach:
(i) the error level 𝑒 , which specifies how much calculation error
the approach tolerates; (ii) the line aggregation coverage 𝑐𝑜𝑣 ,
which indicates the minimum percentage of numeric cells in a
row or column recognized as aggregates of aggregations with the
same pattern; (iii) the window size used by the sliding window
strategy, which specifies howmany numeric cells in the proximity
of an aggregate candidate should be checked.

Here, we fix the window size at 10 to cover the majority of
the difference, division, and relative change aggregations. Before
selecting the best error level for each aggregation function, we
first set the coverage as 0.7, as our experiment shows that the
average F1-score across aggregation functions is highest when

214

Figure 7: Per-function recall and F1-scores under different

error levels. Line aggregation coverage is set as 0.7.

using this coverage value. Also, we select the best error level
for each function with the results of individual detectors pro-
posed in Section 3.1. Figure 7 illustrates the recall and F1-scores
our approach achieves for individual aggregation functions with
coverage value 𝑐𝑜𝑣 = 0.7, under different error levels. Note that
a difference aggregation can be trivially transformed to a sum
aggregation by moving the minuend to the aggregate side. There-
fore, we merge the ground truth of sum and difference, and the
evaluations on them as well.

We observe a common trend of the change of F1-score against
the increasing error level: it first increases as small increments of
the error level allow more true positives to be retrieved and are
still not large enough to includemany spurious cases. As the error
level becomes sufficiently large, e.g., 5% for division, F1 starts to
decrease, because the algorithm incorporates many occasional
false positive cases in the prediction and sharply decreasing the
precision.

Overall, the F1-score reaches maximum at different error levels
for different aggregation functions. We identify and select the
respective optimal error levels for the aggregation functions for
the following experiments.

Given the selected values for both per-function error level and
line aggregation coverage parameters, we explored the effective-
ness of different stages of AggreCol. Figure 8 demonstrates the
precision, recall, and F1-scores for each aggregation function.
The letters ‘I’ ‘C’, and ‘S’ in the x-axis represent the individual,
collective, and supplemental aggregation detection stages, re-
spectively. As each stage depends on the result of the previous
stage, the metric score of a particular stage indicates the results
obtained by applying AggreCol until this stage.

On the one hand, applying the collective aggregation detec-
tion stage increases precision across all aggregation functions,
because this stage removes spurious candidates detected in the
first stage with a set of pruning rules. Although the pruning could
also drop some correct candidates, our experiment shows no or
only a very minor drop of recall. On the other hand, adding a sup-
plemental aggregation detection phase to the workflow achieves
better recall, as expected. An investigation into the results indeed
shows the detection of some interrupt aggregations. Overall, em-
ploying all phases yields a better F1-score across all aggregation
functions.

4.3.3 File-level effectiveness. Verbose CSV files may have dif-
ferent numbers of aggregations: the file with most aggregations
contains 1,651 cases, while the one with fewest only one case
in the Validation dataset. The aggregation-level results of the
previous section may be biased in favor of long and wide files
with many aggregations. To deal with this bias, we conducted an
additional file-level evaluation on the Validation dataset. For
each verbose CSV file, we compared the entire set of aggregations
detected by our approach against the collection of real aggre-
gations in it and determined which percentage of files meets
certain minimum precision and recall values. Figure 9 presents
the results, where the y-axis represents the percentage of the
files on which AggreCol achieves the score in the range given
by the x-axis. The score ranges between zero and one is divided
into 20 bins, each spans 0.05. As AggreCol achieves medium-
range precision or recall (between 0.05 and 0.95) on very few
files, we group the bins in this scope into three larger groups,
each stretching over 0.3 on the score.

At file-level, AggreCol achieves greater than 0.95 precision
and recall for more than 90% of the files with regard to aver-
age, division, and relative change. The corresponding scores for
aggregation-level results are all below 0.9, and even below 0.6 for
the recall of average detection, indicating that most false nega-
tive and false positive aggregations are concentrated in few files.
Compared to recognizing the above three aggregation functions,
correctly detecting sum aggregations in a verbose CSV file is
more challenging – our approach achieves more than 0.95 pre-
cision and recall for 79.2% and 61.6% of the files, respectively.
As around 70% of the aggregations in our ground truth are sum,
each file includes on average more sum aggregations than other
types, increasing the difficulty to discover all of them correctly.
The grey bars demonstrate the overall precision and recall across
all aggregation functions. For some cases, it is lower than the pre-
cision or recall of any single function, due to undefined precision
or recall values that are adjusted to 1.

Overall, the file-level evaluation results indicate that false
negative and false positive cases yielded by our approach tend to
occur only in few files.

4.3.4 Test on an unseen dataset. Due to ad-hoc shapes and
forms of verbose CSV files, a set of 385 files can hardly cover all
aggregation patterns. Therefore, we tested the generalizability
of our approach with a second dataset after completing the algo-
rithm design. Figure 10 demonstrates the file-level precision and
recall achieved by AggreCol on this dataset.

Similar to our approach’s performance on the Validation
dataset, precision and recall are higher than 0.95 for the majority
of the files, and sum detection is the most challenging task on this
dataset as well. The similar results on the two datasets indicate
that our solution is not tailored for the Validation dataset. A
noticeable difference of precision in the results of the two datasets
appears in the right-most group (0.95 < 𝑃 ≤ 1), where our
approach obtains only 0.630 on the Unseen dataset, which is
caused by the prevalence of zero-valued cells in the files.

4.4 Comparison to baseline

There is no previous work dedicated to automatically detect-
ing and specifying aggregations in verbose CSV files. Therefore,
we compared AggreCol with a baseline approach that eagerly
checks all possible range element combinations as possible: for
each numeric cell in a verbose CSV file, the baseline traverses
the permutations of all numeric cells in the same row or column,

215

Figure 8: Precision, recall, and F1-scores for each aggregation function obtained by AggreCol at different stages. The

individual, collective, and supplemental stages are indicated as “I”, “C”, and “S” in the x-axis.

treating each permutation as a range candidate. Given a verbose
CSV file with 𝑛 columns, the complexity of the traversal is in
O(𝑛 ∗ 2𝑛−1) for aggregation functions that involve at least two

Figure 9: File-level precision and recall obtained by Ag-

greCol on the Validation dataset.

Figure 10: File-level precision and recall obtained by Ag-

greCol on the Unseen dataset.

range elements, and O(𝑛3) for those having only two range ele-
ments. The computational burden is thus infeasible in general,
and we set a 5 minute timeout for each file. Within that limit,
this approach managed to process only 202, 203, 379, and 380
files regarding sum, average, division, and relative change detec-
tion, respectively, out of 385 verbose CSV files in the Validation
dataset.

The baseline was run on a Mac Pro 2019 using 4 cores. We
also tested AggreCol on the same hardware with the same time
limit. Our proposed approach is able to finish within 5 minutes
per-file for 381 files, which cover all those that can be handled
by the baseline. Therefore, only the baseline processable files
are used for the following analysis. Note that even with a 20-
minute time limit, the baseline still cannot finish all files. In
contrast, the longest time taken byAggreCol for any single file is
about 599 seconds. Because the individual detectors of AggreCol
process each aggregation candidate independently, they can be
easily implemented in parallel to improve efficiency. Phase 3
costs on average 85% of the runtime in the entire workflow.

Figure 11 shows the F1-score achieved by the eager baseline
approach and AggreCol with the same error level setting for
each function. For all functions, AggreCol achieves more than
0.95 on F-1 for more than 60% of the files, whereas the baseline
obtains such an F-1 score for only up to 35% of the files. For the
majority of the files, the baseline achieves less than 0.05 on F-1,
which is caused mainly due to poor precision of the baseline, as
it checks every possible range element permutation and predicts
numerous false positives. For example, a file with many zeros or
ones includes many false positive sum cases. As a consequence,
the baseline approach is not an ideal solution to obtain high
F1-scores.

Table headers in verbose CSV files could indicate the pres-
ence of aggregates in the same row or column. For example, if
a header cell includes the word ‘total’, it might imply that the
numeric cells in its row or column might be sum of several other
numeric cells. However, an investigation into the Validation
dataset shows that only 60.0% of the real sum aggregates use
one of the keywords ‘total’, ‘all’, ’sum’, ’subtotal’, and ‘overall’ in
their header. The corresponding ratios for average, division, and
relative change are 86.6%, 53.1%, and 92.4%, with a unique key-
word dictionary for the respective aggregation functions. What is
more, these keywords are often used in rows or columns without
aggregates. Our experiments show that the precision scores of
detecting aggregates are 0.565, 0.256, 0.458, and 0.038 for sum,
average, division, and relative change, respectively.

4.5 Analysis of detection errors

Depending on how the authors organize their data, aggregations
in verbose CSV files have all sorts of patterns. Due to this diversity,

216

Figure 11: File-level F1-score comparison between the ea-

ger baseline approach and AggreCol.

recognizing aggregations in all possible situations is challenging.
Here, we analyze the mistakes produced by AggreCol on the
Validation dataset, and summarize the major causes that lead
to false positive and false negative cases.

A general reason that causes both false positive and false neg-
ative cases is the selection of the parameter error level value.
As we used a fixed error level for each function determined by
the aggregation-level F1-score in our experiment, it may not
be resilient to different orders of magnitude of aggregate val-
ues. A difference between 𝑟 and 𝑟 ′ normalized by a smaller 𝑟
is larger than one normalized by a larger 𝑟 according to Defini-
tion 5. Therefore, the fixed error level might be too large for big
aggregate numbers and yield incorrect results, or too small for
small numbers and causes missed cases.

4.5.1 False positive cases. A particular reason that causes
many of the false sum predictions is the small number of different
numbers in table cells. For example, when marking absence as
‘0’ and presence as ‘1’, a table for the student roster of a course
might include only these two numbers. Therefore, it is very likely
that many spurious sum results, such as ‘1 = 0 + 1’ are generated.
In our experiment, most mistakes involved many ‘0’ valued cells.
We make similar observations for the division detection results
that involve many ‘1’ valued cells.

Empty or almost empty lines and columns can be misinter-
preted as contributing the number zero to the aggregatee. We
observe such effects in only very few cases and a corresponding
preprocessing might lead to more false negatives.

4.5.2 False negative cases. Ranges of some aggregations in the
ground truth are both of the interrupt kind and not in the proxim-
ity of their aggregates. Although the supplemental aggregation
detection phase retrieves some interrupt aggregations, it cannot
deal with cases whose ranges are not interrupted by aggregates
of other detected aggregations. For example, consider a table
that has columns for trade volume, import volume, and export
volume of a country with other countries in a whole year and
for every month. The aggregation that sums up the per-month
import volume to the yearly one cannot be detected, because the

Table 5: Per-type F-1 scores of the cell classification ap-

proach Strudel by using its original aggregation cell detec-

tion approach (𝑆𝑡𝑟𝑢𝑑𝑒𝑙𝑂) or AggreCol (𝑆𝑡𝑟𝑢𝑑𝑒𝑙𝐴).

SAUS Troy

Cell type 𝑆𝑡𝑟𝑢𝑑𝑒𝑙𝑂 𝑆𝑡𝑟𝑢𝑑𝑒𝑙𝐴 𝑆𝑡𝑟𝑢𝑑𝑒𝑙𝑂 𝑆𝑡𝑟𝑢𝑑𝑒𝑙𝐴

metadata 0.987 0.989 0.975 0.976

header 0.976 0.978 0.959 0.963

group 0.731 0.806 0.638 0.740

data 0.967 0.976 0.950 0.962

aggregation 0.677 0.786 0.615 0.740

notes 0.957 0.956 0.968 0.966

per-month export volume columns, which are not detected ag-
gregates, cannot be removed when constructing files in the third
phase. Another reason causing false negative cases is that the
selection of a fixed window size cannot cover the whole ground
truth. Third, we observed that very few pairs of true aggregations
break the ‘directional agreement’ rule proposed in Section 3.1.
However, our approach could retrieve these cases by dismissing
this rule at the cost of introducing many false positives into the
results. Lastly, ranges whose last cells are ‘0’-valued could be
missed when detecting sum, because our adjacency list strategy
stops when encountering zeros. If every sum with the same pat-
tern has the same number of tailing zero cells, an aggregation
with fewer range elements is detected, rather than the true one.

We tested our approach with different error levels, yet none
of them can completely eliminate detection errors caused by
the selection of this parameter value. We did not use particular
techniques tailored to address the aforementioned special cases,
as they appear in only few files. Resolving them could lead to
many more detection errors overall.

4.6 Cell classification improvement

Cell classification aims at classifying each cell in a CSV file as
one of several pre-defined semantic types, among which “aggre-
gation” is a common one [15, 20]. AggreCol can contribute to
the improvement of overall cell classification performance, as
we show for one example: our supervised-learning based cell
classification approach Strudel uses a binary feature to repre-
sent whether a cell is an aggregate (sum or average) [20]. The
authors used an approach similar to the adjacency list strategy
of AggreCol to detect aggregates in CSV files. We replaced the
values of that feature with the results of AggreCol on the SAUS
and Troy datasets4 used there, and conducted the same cross-
validation experiments described in that work. Table 5 shows
the per-type F-1 score of the original Strudel algorithm and the
version using AggreCol’s results.

For both datasets, the F-1 score of the aggregation type in-
creases significantly, as expected. When using AggreCol’s out-
put in the feature of Strudel, more cells previously classified as
one of the other types are predicted correctly as aggregation,
increasing the precision scores, and also the F-1 scores, of most
other types.

5 RELATEDWORK

Only two previous efforts have been made to directly address
aggregation detection in individual verbose CSV files. Long et

4Annotations have been revised due to some label errors.

217

al. introduced a keyword-based approach to recognize only sum-
mation in tables of plain-text files [22]. They suggested using
two categories of keywords: direct aggregation keywords, such
as ‘total’ and ‘sum’, and complementary keyword pairs in two
rows or columns, such as ‘student’ and ‘non-student’. The Strudel
approach discussed in Section 4.6 detects whether a cell is the
sum or average of some other numeric cells [20]. This approach
can deal with only adjacent aggregations depicted in Figure 3,
missing all cumulative and interrupt cases. The result was then
encoded in a binary feature to detect classes of lines and cells in
verbose CSV files.

While both the aforementioned works exploited keywords,
these information are not always reliable in locating aggregations.
A limited number of keywords is not general enough to cover all
cases. Meanwhile, having keywords in headers does not always
imply the existence of aggregations.

Aggregations might reference information, such as weights
of a weighted sum, in other tables. Singh et al. suggested a
programming-by-example approach to recover aggregations in a
table by looking up information across several tables [26]. How-
ever, unlike AggreCol, this approach requires users to provide
input examples.

Despite the lack of previous work on aggregation detection,
there is related work on downstream tasks that require aggrega-
tion information as input. In the rest of this section, we discuss
related work on these use cases.

5.1 Structure detection

Information in data files, such as spreadsheets and verbose CSV
files, are often organized in an ad-hoc manner: authors treat files
like a canvas and drop information at arbitrary positions therein,
whichmakes it difficult to process data in these files automatically
by a machine. Before we can extract information from these files,
it is important to understand their overall structure (not just
aggregations) by recognizing the types of content in different
regions.

Identifying types of lines or cells in data files is a typical way
to tackle the structure detection task. Various previous works
have been proposed for this purpose [2, 7, 15, 20, 21]. Common
content types include data, header, metadata, aggregation, and
so on. Distinguishing aggregation content from data content is
usually challenging, as content of both types are often numbers
that are similar to each other. An advanced aggregation detection
approach helps locate lines or cells of this type more precisely
by resolving the above challenge, and therefore can improve the
structure detection performance. Detected structures in data files
can help extract and transform information from data files [4–6].

5.2 Formula smell detection and repair

Spreadsheet formulas often contain “smells”. The term formula
smell is inspired by source code smells that indicate violations
of programming principles, such as mysterious variable names
and overly large classes [13]. Such smells may cause poor code
readability and error-prone code refactoring. Similarly, a formula
smell in a spreadsheet indicates a wide variety of poor usage of
the formula functions, such as inconsistent formulas in a single
row or column, missing formulas, and complex formulas that are
caused by sloppy cell copy-and-paste, abuse of formula functions,
etc.

Many research efforts have been dedicated to detect and repair
smelly formulas [3, 9, 10, 17, 19]. However, these approaches all

assume that some of the formulas in the files are present. Unfor-
tunately, verbose CSV files do not preserve such information, and
not every spreadsheet keeps formulas in its cells. Aggregation
detection approaches can supply the necessary input to these
approach on formula smell detection and repair tasks.

6 CONCLUSION AND FUTUREWORK

Aggregations represent arithmetic relationships between a set of
numbers (range) and a single number (aggregate), and are com-
mon in tables of verbose CSV files. A variety of applications de-
pends on the existence of aggregations. Identifying aggregations
helps understand the structure of tables and provides insights
on how raw data can be extracted from such files. In addition,
data errors might be cleaned with the knowledge of the true
aggregations.

We formalize the problem of recognizing aggregations in ver-
bose CSV files and recognize three patterns of aggregations in
data files. We propose the three-stage approach AggreCol to
address this problem. Our approach can detect aggregations of
five types in verbose CSV files: sum, difference, average, division,
and relative change. We annotated 466 real-world verbose CSV
files and conducted a series of qualitative experiments to show
the effectiveness of our approach. For the validation dataset en-
compassing 385 data files, AggreCol achieves on average 0.795
F1-score in the aggregation-level evaluation, and more than 0.95
precision and recall for 91.1% and 86.3% of the files, respectively.
A test on an unseen test data shows similar performance. Besides
that, we also compared AggreCol with a baseline approach that
retrieved eagerly too many spurious aggregations. Our study also
reveals that real-world verbose CSV files incorporate surprisingly
many errors in aggregations.

AggreCol does have limitations. In this work, we address
aggregations whose aggregate and range are in the same row or
column, which might not always be the case and could be relaxed.
A further observation we made is that some aggregations involve
more than one aggregation function in the calculation. For exam-
ple, students’ final scores for a course may be weighted by the
importance of different modules (attendance, homework, exams,
etc.) – both sum and division calculations are involved. Therefore,
further work shall support multi-functional aggregations.

ACKNOWLEDGMENTS

This research was funded partially by the HPI research school
on Data Science and Engineering.

REFERENCES

[1] Robin Abraham and Martin Erwig. 2007. GoalDebug: A spreadsheet debug-
ger for end users. In Proceedings of the International Conference on Software
Engineering (ICSE). 251–260.

[2] Marco D Adelfio and Hanan Samet. 2013. Schema extraction for tabular data
on the web. PVLDB 6, 6 (2013), 421–432.

[3] Daniel W Barowy, Emery D Berger, and Benjamin Zorn. 2018. ExceLint:
automatically finding spreadsheet formula errors. Proceedings of the ACM on
Programming Languages 2, OOPSLA (2018), 1–26.

[4] DanielWBarowy, Sumit Gulwani, TedHart, and Benjamin Zorn. 2015. FlashRe-
late: extracting relational data from semi-structured spreadsheets using exam-
ples. ACM SIGPLAN Notices 50, 6 (2015), 218–228.

[5] Zhe Chen and Michael Cafarella. 2013. Automatic web spreadsheet data
extraction. In Proceedings of the 3rd International Workshop on Semantic Search
over the Web. 1–8.

[6] Zhe Chen and Michael Cafarella. 2014. Integrating spreadsheet data via accu-
rate and low-effort extraction. In Proceedings of the International Conference
on Knowledge discovery and data mining (SIGKDD). 1126–1135.

[7] Christina Christodoulakis, Eric B Munson, Moshe Gabel, Angela Demke
Brown, and Renée J Miller. 2020. Pytheas: pattern-based table discovery
in CSV files. PVLDB 13, 12 (2020), 2075–2089.

218

[8] Till Döhmen, Hannes Mühleisen, and Peter Boncz. 2017. Multi-hypothesis
CSV parsing. In Proceedings of the International Conference on Scientific and
Statistical Database Management (SSDBM). 1–12.

[9] Wensheng Dou, Shing-Chi Cheung, and Jun Wei. 2014. Is spreadsheet ambi-
guity harmful? detecting and repairing spreadsheet smells due to ambiguous
computation. In Proceedings of the International Conference on Software Engi-
neering (ICSE). 848–858.

[10] Wensheng Dou, Shi Han, Liang Xu, Dongmei Zhang, and Jun Wei. 2018. Ex-
pandable group identification in spreadsheets. In Proceedings of the ACM/IEEE
International Conference on Automated Software Engineering. 498–508.

[11] David W Embley, Mukkai S Krishnamoorthy, George Nagy, and Sharad Seth.
2016. Converting heterogeneous statistical tables on the web to searchable
databases. International Journal on Document Analysis and Recognition (IJDAR)
19, 2 (2016), 119–138.

[12] Marc Fisher and Gregg Rothermel. 2005. The EUSES spreadsheet corpus: a
shared resource for supporting experimentation with spreadsheet depend-
ability mechanisms. In Proceedings of the First Workshop on End-user Software
Engineering. 1–5.

[13] Martin Fowler. 2018. Refactoring: improving the design of existing code. Addison-
Wesley Professional.

[14] Chang Ge, Yinan Li, Eric Eilebrecht, Badrish Chandramouli, and Donald Koss-
mann. 2019. Speculative distributed CSV data parsing for big data analytics. In
Proceedings of the International Conference on Management of Data (SIGMOD).
883–899.

[15] Majid Ghasemi Gol, Jay Pujara, and Pedro Szekely. 2019. Tabular cell classifi-
cation using pre-trained cell embeddings. In Proceedings of the International
Conference on Data Mining (ICDM). 230–239.

[16] Julius Gonsior, Josephine Rehak, Maik Thiele, Elvis Koci, Michael Günther,
and Wolfgang Lehner. 2020. Active Learning for Spreadsheet Cell Classifica-
tion.. In Proceedings of the Workshop on Search, Exploration, and Analysis in
Heterogeneous Datastores.

[17] Felienne Hermans, Martin Pinzger, and Arie Van Deursen. 2012. Detecting
code smells in spreadsheet formulas. In International Conference on Software

Maintenance (ICSM). IEEE, 409–418.
[18] Birgit Hofer, André Riboira, Franz Wotawa, Rui Abreu, and Elisabeth Get-

zner. 2013. On the Empirical Evaluation of Fault Localization Techniques for
Spreadsheets. In Proceedings of the International Conference on Fundamental
Approaches to Software Engineering (FASE) (Lecture Notes in Computer Science),
Vol. 7793. Springer, 68–82.

[19] Bas Jansen and Felienne Hermans. 2015. Code smells in spreadsheet formulas
revisited on an industrial dataset. In International Conference on Software
Maintenance and Evolution (ICSME). IEEE, 372–380.

[20] Lan Jiang, Gerardo Vitagliano, and Felix Naumann. 2021. Structure Detec-
tion in Verbose CSV Files. In Proceedings of the International Conference on
Extending Database Technology (EDBT). 193–204.

[21] Elvis Koci, Maik Thiele, Oscar Romero, and Wolfgang Lehner. 2016. Cell
classification for layout recognition in spreadsheets. In International Joint
Conference on Knowledge Discovery, Knowledge Engineering, and Knowledge
Management. Springer, 78–100.

[22] Vanessa Long. 2010. An agent-based approach to table recognition and interpre-
tation. Ph.D. Dissertation. Macquarie University Sydney, NSW, Australia.

[23] Johann Mitlöhner, Sebastian Neumaier, Jürgen Umbrich, and Axel Polleres.
2016. Characteristics of open data CSV files. In International Conference on
Open and Big Data (OBD). IEEE, 72–79.

[24] George Nagy. 2010. TANGO-DocLab web tables from international statistical
sites (Troy_200). http://tc11.cvc.uab.es/datasets/Troy_200_1. [Online; accessed
March-2021].

[25] Sajjadur Rahman, Kelly Mack, Mangesh Bendre, Ruilin Zhang, Karrie Kara-
halios, and Aditya Parameswaran. 2020. Benchmarking Spreadsheet Systems.
In Proceedings of the International Conference on Management of Data (SIG-
MOD). 1589–1599.

[26] Rishabh Singh and Sumit Gulwani. 2012. Learning semantic string transfor-
mations from examples. PVLDB 5, 8 (2012), 740–741.

[27] Gerrit JJ van den Burg, Alfredo Nazábal, and Charles Sutton. 2019. Wran-
gling messy CSV files by detecting row and type patterns. Data Mining and
Knowledge Discovery 33, 6 (2019), 1799–1820.

219

