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ABSTRACT

Every day, data are produced from different sources with varying
structures for multiple purposes. With increasing heterogene-
ity, the ability to manage it accurately and according to user
requirements has become more challenging for downstream ap-
plications. Among other challenges, detecting ill-formed records
in files is a difficult problem: ill-formed records occur in raw data
due to loosely defined schemata, incorrect formatting of values,
record structure discrepancy, etc. They can lead to aborted load-
ing processes, incorrectly parsed data, and can interfere with the
training process of machine learning algorithms.

We propose Suragh1, a method to detect ill-formed records
without relying on external information, such as data types,
record structure, or schemata. It parses an input file and generates
syntax-based patterns for column values using order-dependent
abstractions. We combine these into patterns for entire rows and
use them to identify ill-formed records.

1 DATA LOADING OBSTACLES

In today’s growing technologymarket, the value that data can add
in terms of improved analytics, decision-making, and knowledge
building needs no introduction. However, parsing and storing
raw data without standardized formats harbors challenges, such
as invalid characters due to incorrect parsing, preambles or com-
ments, or inconsistent formatting that causes problems in data
manipulation operations. Data scientists and machine learning
engineers spend much of their development time cleaning and
preparing data [10, 21, 29]. Existing data cleaning [4, 5, 16, 23, 25]
and data preparation [9, 12, 14, 27, 31] techniques address data
pre-processing tasks. However, improving user experience in
designing and carrying out an automated data pre-processing
pipeline still has open challenges.

Comma-separated value (CSV) files are one of the most com-
monly used formats [19], widely available on most open data
portals [18], and frequently used in scientific projects [3, 12, 17].
Not only can these CSV files be used for exploring, collecting,
and integrating data, but their use is also significant in other re-
search areas, such as knowledge-based design, building machine
learning models, and information mining [2, 20, 26, 28].

1Suragh is an Urdu word that means to investigate an event; to obtain clues about
something.
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Despite the existing standard [11], data entry into CSV files
is prone to errors because users and applications do not always
adhere to this standard; moreover, the standard itself is rather
loose. This behavior is also present in CSV files available on open
data portals. Out of 2 066 files randomly selected from a govern-
ment data portal2, we were unable to directly load 418 (20.2%) of
them into an RDBMS due to inconsistent records. We observe the
same behavior with other tools, including business intelligence
and data wrangling tools. We refer to such records as “ill-formed”
(see Section 2.1 for a formal definition). These records do not
adhere to the file’s structural patterns and prevent data from
being loaded, let alone being consumed by downstream applica-
tions. We expect that most readers have first-hand experience of
a load-process aborting after many minutes due to some mistake,
such as an incorrectly encoded value or a line too long towards
the end of the input file. Another common experience is the need
to “clean up” a file by removing preambles, footnotes, etc., before
attempting to import the data into a database or other application.
Our goal is to identify such problems in advance and alert users
or machines about the problematic rows.

A record may be ill-formed due to inconsistencies that can
exist at both column- and row-levels. Row-level inconsistencies
occur when entire rows appear in the file but do not contain the
expected data. For instance, such rows may contain metadata
or comments, group headers, or are due to misplaced delim-
iter or end-of-line characters. Figure 1 shows several real-world
examples. Column-level inconsistencies include inconsistent col-
umn values, such as incorrectly handled escape characters, string
values in numeric columns, inconsistent formatting, a null or
a missing value, etc. Figure 2 again shows several real-world
examples.

While annotating our files, we identified common inconsis-
tencies at both column and row-levels that cause well-formed
records to become ill-formed records. At column-level, we ob-
served multiple value formats, null values, out of range values,
line breaks within a value, values non-compliant to a schema,
values without quote characters but containing delimiters, non-
escaped values, values with an incorrect escape character, etc. At
row-level we observed comment rows, header rows, group header
rows, aggregation rows, empty rows, footnote rows, misplaced
delimiters, incorrect delimiters, inconsistent number of columns,
and many other problems.

Eventually, such records can hinder or completely halt data
loading and other data processing operations. Similarly, such

2https://www.data.gov/
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Figure 1: Examples of ill-formed records due to row-level inconsistencies

Figure 2: Examples of ill-formed records due to column-level inconsistencies

records impose challenges for machine learning algorithms dur-
ing data annotation, manipulation operations, and algorithm
training phases. Manually identifying ill-formed records involves
effort, domain expertise and is error-prone. We address this prob-
lem and propose an automatic solution, Suragh, to identify ill-
formed records in a file by mapping column values to syntax-
based patterns: syntactic patterns (see Definition 2.1). These pat-
terns are easy to understand and represent data structures com-
prehensively. The syntactic patterns we introduce can assist the
user in various tasks:
• Data ingestion: The core use-case of Suragh is to pre-
vent frustrating experiences of raw data not loading into
a host system.
• Table detection: Ill-formed records can cause ambiguity
for table detection algorithms when detecting table bound-
aries. Using Suragh, we can remove these records and
improve the accuracy of boundary detection. In addition,
our approach can help users identify multiple vertically
aligned tables in a file.
• Quality assessment: With the help of Suragh, users
can pre-determine how messy the input files are and how
much data preparation is needed.
• Data standardization: Syntactic patterns can serve as
a basis for standardizing data into a uniform format, as
they reflect typical problems in ill-formed records (outlier
patterns) and desired structure (frequent patterns).

Our paper makes the following main contributions:

(1) A formalization to describe file schema, syntactic patterns,
and ill/well-formedness of records.

(2) A set of 131 files from five open data sources, each anno-
tated for ill-formed and well-formed rows for a total of
210 550 rows. The datasets are publicly available together
with the annotations and code at the project page3.

(3) Amethod, Suragh, that automatically recognizes ill-formed
records by mapping column values to syntax-based pat-
terns.

(4) Awide range of experiments conducted to validate Suragh
and demonstrate the applicability of our approach.

The rest of the paper is organized as follows: Section 2 defines
relevant concepts, provides a formal definition of ill/well-formed
records, and describes the syntactic patterns grammar specified
by EBNF rules [7]. Section 3 illustrates the workflow of the pro-
posed algorithm and the role of pruning in different phases of
the algorithm. Section 4 presents the experimental evaluation of
Suragh. Section 5 discusses prominent research conducted in
the field of pattern-based approaches, and Section 6 concludes
our study and discusses future work.

3https://github.com/HPI-Information-Systems/SURAGH
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2 PROBLEM DEFINITION

Wefirst introduce the basic concepts involved in this work to then
define the notion of syntactic patterns. We then define ill-formed
and well-formed records, the grammar of syntactic patterns, and
discuss the scope and challenges of the approach.

2.1 Ill-Formed and Well-Formed Records

The input to our approach is a file, which is composed of a num-
ber of records. A record is composed of horizontally aligned cells,
where each cell belongs to a column and is separated by a de-
limiter. A column is composed of vertically aligned cells across
records, where each cell contains a value (including the empty
value). To distinguish ill-formed and well-formed records, we de-
fine a pattern schema: one ormore ordered sequences of attributes,
each attribute having a syntactic pattern (defined hereafter). A
pattern schema can contain more than one ordered sequence
because records even in well-structured tables might follow dif-
ferent patterns. For example, a column with user names might
have a different number of tokens in each row.

We now define the central notion of a syntactic pattern:

Definition 2.1. Syntactic patterns are a sequence of symbols
to represent characters of an input value. The production rules
of Table 1 transform each input value to one or more weighted
syntactic patterns, where weights reflect different levels of pattern
abstraction.

For example, using our syntactic pattern grammar (presented
in Section 2.2) two of the syntactic patterns for New York City
zip codes (e.g., 10001) are ⟨D⟩⟨D⟩⟨D⟩⟨D⟩⟨D⟩ and ⟨SEQD⟩. We as-
sign a higher weight to each abstraction of the pattern inversely
proportional to its abstraction level (see Figure 3); thus, the ab-
straction “digit” ⟨D⟩ is given a higher weight than “sequence of
digits” ⟨SEQD⟩. Suragh uses these weights to avoid generaliza-
tion during its pattern selection and to prune highly abstracted
patterns. However, ⟨SEQD⟩ and other higher-level abstractions
are also crucial in the process when necessary, e.g., a column
with an index number from 1 to 1 million; there, it is not trivial
to find small set of patterns using low-level abstractions due to
the many different cell values.

In general, we expect all the rows of a standard CSV file to
conform to the same schema and thus contain values with the
same syntactic patterns across columns. However, non-standard
CSV files may include rows with different syntactic patterns, for
example, if they contain multiple tables and therefore multiple
schemata, or containmetadata rows, such as table titles, footnotes,
etc.

Definition 2.2. A record conforms to a pattern schema if it has
the same number of attributes as the schema, and all column val-
ues of the record conform to the corresponding column patterns
of one of the attribute sequences of the pattern schema. We call
such a record well-formed and ill-formed otherwise.

We now formally define our problem as follows: Given an
input file 𝐹 = {𝑟1, 𝑟2, . . . , 𝑟𝑚} of𝑚 records, automatically generate
its pattern schema and use it to classify each record as ill-formed
or well-formed.

Please note that we limit our solution to syntactically or struc-
turally ill-formed records. Identifying semantically ill-formed
records, e.g., rows with data errors, is beyond the goal of this
research.

2.2 A Grammar for Data Rows

To construct syntactic patterns, we define a set of production
rules to transform values and call them abstractions. Table 1 lists
these abstractions with their representation and also shows the
associated grammar. We specify the grammar using the extended
Backus-Naur Form (EBNF) rules and notations [7]. The abstrac-
tions are of two types, namely (1) encoder and (2) aggregator.
For a given value, the encoder abstractions map each character
to a derived representation, while the aggregator abstractions
that depend on encoder abstractions combine representations
resulting from other encoder and aggregator abstractions based
on a given rule. The application of these rules is order-dependent;
for example, the “sequence of upper-case letters” ⟨SEQUL⟩ ab-
straction is an aggregator abstraction that is applicable only on
representations of the “upper-case letter” ⟨UL⟩ abstraction. Fig-
ure 3 shows the dependency graph between abstractions, where
abstractions without edges can be executed in any order. The
abstractions shown in orange are encoders, while those shown
in green are aggregators.

Figure 3: Abstractions dependency graph

For a given input file, Suragh generates, collects, and con-
structs syntactic patterns at several levels; syntactic value pattern,
syntactic column pattern, and syntactic row pattern each serves
a purpose in the process of detecting ill-formed records (see
Section 3 for detailed definitions).

2.3 Scope and Challenges

Although CSV files are mainly comma-separated, we observe
many CSV files with other delimiters, which are also in the scope
of our work. In the context of our research, we do assume that a
file contains structured data. Dealing with semi-structured and
unstructured data is beyond the scope of this paper. Also, to limit
search space size, our approach is designed for data files that
contain ASCII values. The extension to larger character sets is
conceptually easy but computationally expensive.

One main challenge we address is system efficiency. Our solu-
tion comprises several phases that require both time and memory
optimization. We achieve efficiency by introducing pruning tech-
niques to optimize the different phases of the algorithm (see
Section 3).

3 THE SURAGH ALGORITHM

In this section, we describe the workflow of Suragh as depicted
in Figure 4. Given an input file, Suragh returns a list of indices of
ill- and well-formed records along with the dominant syntactic
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Table 1: Abstractions with weight and associated grammar (EBNF notation)

Weight Abstractions Grammar

5 Literal Represented by the character of the field itself

4

Delimiter⟨𝐷𝐸𝐿⟩ "," | ";" | ":" | ?US-ASCII character 9? | "|"
Upper-case letter ⟨𝑈𝐿⟩ "A" | "B" | "C" | "D" | "E "| "F" | ...... | "Z"
Lower-case letter ⟨𝐿𝐿⟩ "a" | "b | "c" | "d" | "e" | "f" | ....... | "z"
Digit ⟨𝐷⟩ "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"
Space ⟨𝑆⟩ ?US-ASCII character 32?
Quotation ⟨”⟩ ’ " ’
Arithmetic ⟨𝐴𝑅𝐼𝑇𝐻 ⟩ "*" | "+" | "-" | "/" | "%" | "=" | "<" | "> "
Bracket ⟨𝐵𝑅𝐾𝑇 ⟩ "[" | "]" | "{" | "}" | "(" | ")"
Symbol ⟨𝑆𝑌𝑀⟩ "$" | "#" | "." | "?" | "@" | "\" | "^" | " ‘ " | "~" | "_" | "

’ " | "&" | "!" | ’ " ’ | "," | ";" | ":" | ?US-ASCII character
9? | "|"

Line break ⟨𝐿𝐵⟩ ?US-ASCII character 10? | ?US-ASCII character 13?
Empty value ⟨𝐸𝑉 ⟩ null

3

Sequence of upper-case letters ⟨𝑆𝐸𝑄𝑈𝐿⟩ ⟨𝑈𝐿⟩, {⟨𝑈𝐿⟩}
Sequence of lower-case letters ⟨𝑆𝐸𝑄𝐿𝐿⟩ ⟨𝐿𝐿⟩, {⟨𝐿𝐿⟩}
Sequence of digits ⟨𝑆𝐸𝑄𝐷⟩ ⟨𝐷⟩, {⟨𝐷⟩}
Whitespace ⟨𝑊𝑆⟩ ⟨𝑆⟩, {⟨𝑆⟩}
Date ⟨𝐷𝑇 ⟩ 2*⟨𝐷⟩,⟨𝐴𝑅𝐼𝑇𝐻 ⟩, 2*⟨𝐷⟩, ⟨𝐴𝑅𝐼𝑇𝐻 ⟩, 4*⟨𝐷⟩ | 2*⟨𝐷⟩, ⟨𝐴𝑅𝐼𝑇𝐻 ⟩, 2*⟨𝐷⟩,

⟨𝐴𝑅𝐼𝑇𝐻 ⟩, 2 *⟨𝐷⟩ | 4*⟨𝐷⟩, ⟨𝐴𝑅𝐼𝑇𝐻 ⟩, 2*⟨𝐷⟩, ⟨𝐴𝑅𝐼𝑇𝐻 ⟩, 2*⟨𝐷⟩ | ⟨𝐷⟩,
⟨𝐴𝑅𝐼𝑇𝐻 ⟩, ⟨𝐷⟩, ⟨𝐴𝑅𝐼𝑇𝐻 ⟩, 2 *⟨𝐷⟩ | ⟨𝐷⟩, ⟨𝐴𝑅𝐼𝑇𝐻 ⟩, ⟨𝐷⟩, ⟨𝐴𝑅𝐼𝑇𝐻 ⟩,
4*⟨𝐷⟩ | ⟨𝐷⟩, ⟨𝐴𝑅𝐼𝑇𝐻 ⟩, 2*⟨𝐷⟩, ⟨𝐴𝑅𝐼𝑇𝐻 ⟩,2 *⟨𝐷⟩| ⟨𝐷⟩, ⟨𝐴𝑅𝐼𝑇𝐻 ⟩,
2*⟨𝐷⟩, ⟨𝐴𝑅𝐼𝑇𝐻 ⟩, 4*⟨𝐷⟩ | 4*⟨𝐷⟩, ⟨𝐴𝑅𝐼𝑇𝐻 ⟩, ⟨𝐷⟩, ⟨𝐴𝑅𝐼𝑇𝐻 ⟩, ⟨𝐷⟩ |
4*⟨𝐷⟩, ⟨𝐴𝑅𝐼𝑇𝐻 ⟩, 2*⟨𝐷⟩, ⟨𝐴𝑅𝐼𝑇𝐻 ⟩, ⟨𝐷⟩ | 4*⟨𝐷⟩, ⟨𝐴𝑅𝐼𝑇𝐻 ⟩, ⟨𝐷⟩,
⟨𝐴𝑅𝐼𝑇𝐻 ⟩, 2*⟨𝐷⟩

2
Number ⟨𝑁𝑈𝑀⟩ "+" | "-", ⟨𝐷⟩ | ⟨𝑆𝐸𝑄𝐷⟩ OR ["+" | "-"], ⟨𝐷⟩ | ⟨𝑆𝐸𝑄𝐷⟩, ("," |

"."), ⟨𝐷⟩ | ⟨𝑆𝐸𝑄𝐷⟩, { ("," | "."), ⟨𝐷⟩ | ⟨𝑆𝐸𝑄𝐷⟩ }
Text ⟨𝑇𝑋𝑇 ⟩ ⟨𝑈𝐿⟩ |⟨𝑆𝐸𝑄𝑈𝐿⟩| ⟨𝐿𝐿⟩ | ⟨𝑆𝐸𝑄𝐿𝐿⟩, (⟨𝑈𝐿⟩ | ⟨𝑆𝐸𝑄𝑈𝐿⟩| ⟨𝐿𝐿⟩ | ⟨𝑆𝐸𝑄𝐿𝐿⟩|

⟨𝑆⟩| ⟨𝑊𝑆⟩ |" - "|" _" |" ’ "|" \" | "/" |" . "|" &" ), { ⟨𝑈𝐿⟩
| ⟨𝑆𝐸𝑄𝑈𝐿⟩| ⟨𝐿𝐿⟩ | ⟨𝑆𝐸𝑄𝐿𝐿⟩| ⟨𝑆⟩| ⟨𝑊𝑆⟩ |" - "|" _" |" ’ "|" \" |
"/" |" . "|" &" }

Missing value ⟨𝑀𝑉 ⟩ ⟨𝐸𝑉 ⟩| | ⟨𝑆⟩| | ⟨𝑊𝑆⟩| | ?US-ASCII character 9? | "Null" | "null"
| "na" | "n/a" | "NA" | "N/A" | "NaN" |"nan" |" None "|" NONE
"|’ "" ’

1 Fulltext ⟨𝐹𝑇𝑋𝑇 ⟩ Very long string e.g., cellValue.size() > 50

row patterns as its pattern schema. The workflow consists of
four phases, and we discuss their functionalities in the following
sections.

3.1 Pattern Modeling

In this phase, Suragh first leverages dialect detection to extract
values and then applies our abstraction grammar to these values
to generate syntactic value patterns. Then, value patterns are
collected to form a set of syntactic column patterns.

3.1.1 Value extraction. To extract column values, we must
first detect the dialect of the file. The dialect of a file specifies
a set of characters that define the structure of a file. A CSV file
dialect consists of a delimiter, a quote character, a quote escape
character, and a record separator. Dialect detection is a well-
known problem in academia [6, 8, 30] and industry: Suragh
leverages the univocity parser4 to identify a file’s dialect and
extract the individual column values. This dialect determines the
scope of each column. We validated the detected dialects for all
our files and found no incorrectly detected dialects.
4https://www.univocity.com/pages/about-parsers

3.1.2 Pattern generation. As mentioned, an ill-formed record
contains inconsistencies at column- and/or row-level. Some of
these inconsistencies result in different record structures, such
as incorrect delimiter, while others result in inconsistent column
values, such as values not compliant to a schema, making an
ill-formed record different from a well-formed record. Extracting
the intended pattern schema helps recognize these ill-formed
records. For pattern schema detection, Suragh generates one or
more syntactic value patterns for each individual cell value using
the abstractions grammar.

Definition 3.1 (Syntactic value pattern). Given a column value, a
syntactic value pattern 𝑣𝑝 is a sequence of literals or abstractions
from that value. We represent abstractions with their acronyms,
where each abstraction represents a single character or a group
of characters. The set of syntactic value patterns for a column
value is denoted with 𝑉𝑃 .
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Figure 4: The workflow of Suragh

Algorithm 1: Syntactic value pattern generation
Input :𝑐: input column

𝐴: the set of abstractions
𝐺 : the abstractions dependency graph

Output :𝐿𝑉𝑃 = the list of 𝑉𝑃 that represents values in 𝑐
1 𝐿𝑉𝑃 ← []
2 foreach string ∈ 𝑐 do
3 𝑉𝑃 ← {}
4 𝐴← getAbstractions(string)
5 𝑃𝑆 ← pruneAbstractionCombinations(powerSet(A),

𝐺)
6 foreach set ∈ 𝑃𝑆 do

7 𝑣𝑝 ← string
8 foreach abstraction ∈ set do
9 𝑣𝑝 ← executeAbstractions(abstraction , 𝑣𝑝)

10 end

11 if 𝑣𝑝 ∉ 𝑉𝑃 then

12 𝑉𝑃 ← 𝑉𝑃 ∪ {𝑣𝑝}
13 end

14 end

15 𝐿𝑉𝑃 .𝑎𝑑𝑑 (𝑉𝑃)
16 end

17 return 𝐿𝑉𝑃

The process of generating syntactic value patterns is presented
in Algorithm 1. Suragh uses abstractions to map each character
in each value of a column and generates a set of syntactic value
patterns. Formally, let 𝐹 = {𝑟1, 𝑟2, . . . , 𝑟𝑛} be the input file of 𝑛
records. Let𝐶 = {𝑐1, 𝑐2, . . . , 𝑐𝑚} be the set of𝑚 columns. For each
value in 𝑐𝑖 , the algorithm first accesses the relevant abstractions
{𝑎1, 𝑎2, . . . , 𝑎𝑡 } based on input value characters (line 4). Then,
the algorithm creates a power set of the selected abstractions to
capture all possible combinations of abstractions and uses them
to generate all possible syntactic value patterns (line 5). After

creating a power set, the algorithm prunes the subsets that vio-
late the encoder-aggregator abstraction dependencies shown in
Figure 3. For example, the algorithm prunes a subset if it contains
“date” ⟨DT ⟩ abstraction before “digit” ⟨D⟩ in the execution order.
For each remaining subset, it maps each column value character
to its derived representation from the abstractions to generate
the set of value patterns 𝑉𝑃 = {𝑣𝑝1, 𝑣𝑝2, . . . , 𝑣𝑝𝑢 } (lines 6-14). It
repeats the same process for all column values and populates
a list that contains the set of value patterns for each column
value in 𝑐𝑖 (line 15). For example, Figure 6(a) lists the set of value
patterns for column value “All” in the input file 𝐹 in Figure 55.

Figure 5: Selected lines of a 100-line file
5
with dominant

syntactic row patterns (shaded blue and green) and ill-

formed records (shaded red). The cell separators in the ta-

ble indicate the ⟨𝐷𝐸𝐿⟩ abstraction, which we omit due to

space limitation.

5https://github.com/HPI-Information-Systems/SURAGH/blob/main/InputFile.csv
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Figure 6: Value patterns, column patterns, highly specific

and high coverage column patterns, and row patterns.

3.1.3 Pattern collection. Suragh collects the syntactic value
patterns generated in the previous step column by column and
uses them as column patterns.

Definition 3.2 (Syntactic column pattern). A syntactic column
pattern 𝑐𝑝 is a syntactic value pattern that represents one or more
column values in a column. The set of syntactic column patterns
for a column is denoted with 𝐶𝑃 .

After collecting value patterns, Suragh forms a set 𝐶𝑃 of
syntactic column patterns {𝑐𝑝1, 𝑐𝑝2, . . . , 𝑐𝑝𝑣}. This set represents
a column in a file, and each pattern in this set represents one
or more cell values in that column. For example, for the input
file 𝐹 in Figure 5, Figure 6(b) lists the set of column patterns for
column “Fund_Source”.

3.2 Column Pattern Pruning

During syntactic pattern generation, the algorithm aims to apply
every combination of abstractions to generate all possible value
patterns for representing column values, requiring many system
resources and affecting performance. We propose a cell value
detection module that scans each column value and uses only
relevant abstractions (see Figure 7). For example, for the value
“All” in the input file 𝐹 in Figure 5, the relevant abstractions are
{⟨UL⟩, ⟨LL⟩, ⟨SEQUL⟩, ⟨SEQLL⟩, and ⟨TXT ⟩}.

In addition, the dependency graph between the abstractions
guides the process of reducing the number of abstraction combi-
nations, which optimizes the time expense of the pattern genera-
tion process because the algorithm generates fewer patterns.

However, not every generated pattern is suitable for the ill-
formed record detection due to its generality and/or coverage.

To select the highly specific and high coverage subset of col-
umn patterns from the generated patterns, we make use of two
pruning techniques: (1) specificity-based pruning and (2) coverage-
based pruning. We preserve Highly specific and high coverage
column patterns after applying the above pruning techniques on
the given column pattern set 𝐶𝑃 .

3.2.1 Specificity-Based Pruning. Suragh generates syntactic
patterns with all possible abstraction combinations based on the
content of the input values. These patterns represent column
values from the most specific to the most generic way, depending
on the pattern’s abstractions. The most specific column pattern
contains the fewest and the lowest level abstractions. In con-
trast, the most generic column pattern includes maximum and the
highest level abstractions.

Suragh aims to choose column patterns that are highly spe-
cific in a column. To do so, it applies specificity-based pruning
and leverages the weighting of abstractions, and uses the rela-
tionship between encoder and aggregator abstractions to prune
generic column patterns. The goals of this phase are:
• Preserve the most specific column patterns.
• Reduce the search space for optimization.

Weighing criteria: Each abstraction 𝑎𝑖 has a weight𝑤 based
on its abstraction level (see Figure 3): the higher the abstraction
level, the lower the weight. Suragh uses these weights to obtain a
score for each column pattern 𝑐𝑝 . This score helps Suragh prune
column patterns by identifying the significance of these patterns
in a column. To obtain a score for each column pattern, Suragh
scans through the column, counts its number of occurrences 𝑜𝑐 ,
and multiplies it by the mean value of the utilized abstractions
weight:

𝑆𝑐𝑜𝑟𝑒 (𝑐𝑝) = 𝑜𝑐 (𝑐𝑝) ∗ 1
𝑡

𝑡∑
𝑖=1

𝑤 (𝑎𝑖 (𝑐𝑝)) (1)

Consider, as an example, that the value “male” appeared in
a column 80% of the time. To represent this value, three of the
possible value patterns using the abstraction grammar are {male,
⟨LL⟩⟨LL⟩⟨LL⟩⟨LL⟩, and ⟨SEQLL⟩}. As a user, we would like to see
the value male itself as one of the top column patterns for this
column due to its specificity and high coverage and because this
pattern with the literal value itself represents the column very
well. Thus, we assign the highest weight to the literal abstraction
due to its specificity to prioritize the patterns with literals. The
second-highest weighting applies to level 1 abstractions that help
identify highly specific patterns when the topmost patterns are
not predominantly literal values. For example, if a column con-
tains different values distributed across the cells, e.g., a column
containing the US state alpha codes, i.e., AL, AK, AZ, etc. In this
case, despite the highest weighting, the literal column patterns
would be ranked low due to their occurrences, so abstraction
level 1 and higher abstractions would serve the purpose better.
For example, two of the possible column patterns for the men-
tioned column are {⟨UL⟩⟨UL⟩ and ⟨SEQUL⟩}. According to our
definition, we assign ⟨UL⟩⟨UL⟩ a higher weight and ⟨SEQUL⟩ a
lower weight based on their abstraction level.

Pruning generic column patterns: As mentioned earlier, not
every generated pattern is suitable. For example, in Figure 6(b),
the column patterns ⟨UL⟩⟨UL⟩ and ⟨SEQUL⟩ occur the same num-
ber of times and represent the same set of values. Therefore, we
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prune ⟨SEQUL⟩ since it is just a higher abstraction of the same
values in this case. Note that occurrences is not the only criterion
to prune these patterns. We also check the dependency between
the encoder and the aggregator abstractions of these patterns and
the pattern score. In the above example, ⟨SEQUL⟩ is dependent
on ⟨UL⟩, and due to its higher abstraction, it also has a lower
score.

Suragh first sorts column patterns by their score, starts with
the highest-scored column pattern, compares it to all subsequent
column patterns by examining their occurrences, checks encoder-
aggregator dependency on those that meet the occurrence cri-
terion, and removes those with higher abstractions. In this way,
Suragh removes most generic patterns, as they are just another
representation of specific patterns. However, there are other cases
where a column contains many different values, and it is not pos-
sible to represent values with low-level abstractions due to a
maximum variation, such as columns with addresses or website
URLs. Therefore, despite the lower weight, due to the number of
occurrences of higher-level abstractions, the top patterns of the
columns Suragh returns are generic.

Figure 7: Cell value to abstraction mapping

3.2.2 Coverage-Based Pruning. In coverage-based pruning,
we introduce a coverage threshold to prune column patterns
at the column-level (column coverage threshold 𝛽) and column
pattern combinations at the row-level (row coverage threshold 𝛾 ,
see Section 3.3.1). Here, Column-level pattern coverage: means
how many column values are covered by a column pattern, and
Row-level pattern coverage: implies how many records are cov-
ered by a combination of column patterns across all columns. In
Section 4 we test combinations of seven different thresholds at
both column- and row-level with a step size of 5, starting from
1% to 30% of the pattern coverage. Here, percentage implies the
coverage of column patterns at column-level and column pattern
combinations at row-level. The goals of this phase are:

• Preserve high coverage column patterns (column-level).
• Preserve high coverage column pattern combinations (row-
level).
• Reduce the search space for optimization.

Column coverage threshold. Let 𝛽 be the specified column cov-
erage threshold; we prune all column patterns that provide col-
umn coverage less than or equal to the specified 𝛽 . We use seven
different thresholds for column pattern pruning. The goal is to
select the set of high coverage column patterns using a global
column coverage threshold.

For example, for the input file 𝐹 in Figure 5, Figure 6(c) shows
the highly specific and high coverage column patterns for column
“Fund_Source” that we obtain after specificity- and coverage-
based pruning, where 𝛽 = 20%. For the column coverage threshold
of 25%, the remaining column patterns for the mentioned column
are {⟨UL⟩⟨UL⟩⟨UL⟩, All, and ⟨TXT ⟩}.

3.3 Row Pattern Construction

In this phase of Suragh, we use the highly specific and high
coverage column patterns from the column pattern pruning
phase and first construct the set 𝑅𝑃 of syntactic row patterns
{𝑟𝑝1, 𝑟𝑝2, . . . , 𝑟𝑝𝑦} that represents records. We then select the set
𝐷𝑅𝑃 of dominant syntactic row patterns {𝑑𝑟𝑝1, 𝑑𝑟𝑝2, . . . , 𝑑𝑟𝑝𝑧 }
by pruning the set of syntactic row patterns to generate the
pattern schema for the input file.

3.3.1 Coverage-Based Pruning. Similar to selecting column
patterns with high coverage at the column-level, the goal here is
to select the combinations of column patterns with high coverage
when constructing row patterns, which leads us to select high
coverage row patterns.

Row coverage threshold. Let 𝛾 be the specified row coverage
threshold; we prune all cross column candidate combinations
that provide row coverage less than or equal to the specified
𝛾 . We use the same thresholds as at the column-level to prune
column patterns combinations during row pattern construction.

For example, for the input file 𝐹 in Figure 5, a combination
of column patterns {2008-2009 and FFS} covers 23% rows for the
columns {“SFY” and “Fund_Source”} (see Figure 6(c) for column
“Fund_Source” column patterns). For the row coverage threshold
of 25%, Suragh prunes this combination and stops the cross-
column combination generation process for this candidate.

3.3.2 Cross column candidate combination generation. For
row pattern construction, Suragh creates all combinations of
column patterns across all columns while pruning based on cov-
erage (𝛾 ). Here, coverage is the number of records corresponding
to a combination of column patterns across all columns. Further-
more, the algorithm generates column pattern combinations for
all columns and constructs all row patterns with high coverage.

Definition 3.3 (Syntactic row pattern). A syntactic row pattern
𝑟𝑝 is an ordered sequence of (highly specific and high coverage)
column patterns that represents one or more records. The set of
syntactic row patterns for a file is denoted with 𝑅𝑃 .

The process of constructing the set of syntactic row patterns is
presented in Algorithm 2. Formally, let {𝑐1, 𝑐2, . . . , 𝑐𝑚} be the set
of columns and let 𝐶𝑃𝑖 = {𝑐𝑝𝑖,1, . . . , 𝑐𝑝𝑖,𝑣} be the corresponding
set of highly specific and high coverage column patterns 𝑐𝑝s for
a column 𝑐𝑖 . Suragh first starts comparing 𝐶𝑃𝑖 and 𝐶𝑃𝑖+1, and
then progressively moves towards 𝐶𝑃𝑚 (lines 2-13). For each
pair of columns, Suragh generates cross-column combinations
by comparing each 𝑐𝑝 ∈ 𝐶𝑃𝑖 with each 𝑐𝑝 ∈ 𝐶𝑃𝑖+1 governed
by coverage-based pruning (lines 4-11). Intersection (line 6) com-
putes the record coverage of a specified 𝑐𝑝 combination, and
the coverage check (line 7) allows 𝑐𝑝 combinations above the
specified threshold 𝛾 . Then, combinePattern concatenates the 𝑐𝑝
combination, and stores it into a column combination set (line 8).
This column combination set contains 𝑐𝑝 combinations across
columns, and serves as new input after each iteration (line 12).
The algorithm repeats the same process and creates all possible
column pattern combinations until 𝑐𝑚 and test them against the
coverage threshold. To avoid the multiplicative nature of this
approach, Suragh systematically grows row patterns by one
column at a time in a branch & bound fashion. It prunes those
intermediate patterns that already violate the coverage threshold
𝛾 and returns the set of row patterns (line 14). For example, for
the input file 𝐹 in Figure 5, Figure 6(d) lists the set of syntactic
row patterns.
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Algorithm 2: Cross column candidate combination gen-
eration:
Input : {𝐶𝑃1,𝐶𝑃2, . . . ,𝐶𝑃𝑛}, row coverage threshold 𝛾

(see Section 3.2.2)
Output :𝑅𝑃 = set of syntactic row patterns

1 𝑅𝑃 ←− 𝐶𝑃1
2 foreach 𝐶𝑃𝑖 , 𝑖 > 1 do
3 𝐶𝐶 ←− {}
4 foreach 𝑐𝑝𝑟 ∈ 𝑅𝑃 do

5 foreach 𝑐𝑝𝑐 ∈ 𝐶𝑃𝑖 do
6 𝑃𝐶 ←− intersection(𝑐𝑝𝑟 , 𝑐𝑝𝑐 )
7 if 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 (𝑃𝐶) > 𝛾 then

8 𝐶𝐶 ←− 𝐶𝐶 ∪ combinePattern(𝑐𝑝𝑟 , 𝑐𝑝𝑐 )
9 end

10 end

11 end

12 𝑅𝑃 ←− 𝐶𝐶
13 end

14 return 𝑅𝑃

3.3.3 Prune subsumed syntactic row pattern. The set of syn-
tactic row patterns that Suragh constructs may contain one or
more row patterns, where one row pattern may represent records
that are also represented by another row pattern, resulting in
pattern redundancy. To avoid this redundancy, Suragh detects
and removes the row patterns that are subsumed by any other
row patterns.

Definition 3.4 (Pattern subsumption). A row pattern 𝑟𝑝𝑖 ∈ 𝑅𝑃 is
subsumed by another row pattern 𝑟𝑝𝑘 ∈ 𝑅𝑃 if the set of all records
it represents is a proper subset of the set of those represented by
𝑟𝑝𝑘 .

Definition 3.5 (Syntactic row pattern dominance). A dominant
syntactic row pattern 𝑑𝑟𝑝 is a syntactic row pattern that is not
subsumed by any other syntactic row pattern. The set of domi-
nant syntactic row patterns for a file is denoted with 𝐷𝑅𝑃 .

3.4 Record Classification

In the final phase of Suragh, we utilize the constructed set of
dominant syntactic row patterns from the row pattern construc-
tion phase to generate a pattern schema for the input file and
classify records based on this schema. First, Suragh accumulates
dominant row patterns obtained from the row construction phase
and generates pattern schema for the input file. Then, Suragh
checks each record whether it conforms to the generated schema.

Suragh classifies non-conforming records as ill-formedwhereas
conforming records as well-formed. For example, Figure 5 shows
the input file, the set of dominant syntactic row patterns that
form its pattern schema, the records that comply with the schema,
and the non-compliant (ill-formed) records.

4 EXPERIMENTS

First, this section describes the datasets used in our experiments,
the dataset selection process, and the annotation criteria. We then
present our experimental evaluation of Suragh, including the
global threshold selection and its results for each dataset. Finally,
we present a comparison between Suragh and state-of-the-art
syntactic pattern approach and line classification approach and
conclude the section with an error analysis.

4.1 Datasets and Annotation

This section lists the datasets used in our evaluations and specifi-
cation of the annotated ill- and well-formed records.

4.1.1 Datasets. We conducted our experiments with datasets
collected from five different open data sources: DataGov, Mende-
ley, GitHub, UKGov, NYCData. The statistics for each data source
are summarized in Table 2. The files of each source have at least
some column and/or row-level inconsistencies. To find files with
inconsistencies, we first randomly selected files from each source
and manually loaded each into an RDBMS. If the data loading
process aborted, we kept the file as one of our test files. Later on,
we utilized the same RDBMS along-with data wrangling and busi-
ness intelligence tools to investigate where loading operations
are interrupted and used this information to annotate records in
our files. To render manual annotation of individual lines feasible,
we further reduced the number of files by manually selecting one
file from each group of similarly structured files. As a result, we
have a unique set of diverse files for each source. Here, unique-
ness implies that the files either do not have the same schema or,
if they do have the same schema, they have different ill-formed
records.

The UKGov and GitHub dataset files were taken from related
work on dialect detection [30]. We randomly selected 1 000 CSV
files from both of these datasets and manually checked each file
by loading it into the RDBMS and selected the unique files with
ill-formed records, which gives us 23 and 25 files from UKGov
and GitHub, respectively. The numbers 23 and 25 are what were
left after only unique files were selected. For the DataGov dataset,
we crawled CSV files from www.data.gov. From the randomly
selected 2 066 files, there were 418 files with ill-formed records
that we observed by loading them into the RDBMS. We then used
40 manually selected unique files for our experiments. Similar to
UKGov and GitHub, the number 40 is what was left after only
unique files were selected. Our Mendeley dataset was created by
selecting files from data.mendeley.com where files are grouped
by research projects. We crawled all 2 214 projects and selected
the lexicographical first 170, which already displayed a large
variety of ill-formed records. These projects contain not only CSV
files but also other formats, such as .XML, .XLSX, etc. We kept
only projects with at least one CSV file and manually selected
33 unique files for our experiments, each file coming from a
different project. Similar to other datasets, the number 33 is what
was left after only unique files were selected. NYCData dataset
includes a random subset of files downloaded from opendata.
cityofnewyork.us and was kept unseen in the development of
Suragh to ensure generalizability. Note that similar to other
datasets, we have ensured file uniqueness for the unseen dataset
as well.

Moreover, we utilized a command line tool6 to check whether
a file is compliant to RFC 4180. The purpose is to include both
standardized and non-standardized files in our datasets and em-
phasize that also standard files can stop the data loading process,
for instance, due to values not compliant to schema. Despite the
inconsistent records, we manually checked each file and ensured
that each selected file contained at least 50% non-empty values at
both column and row-levels to avoid empty values and missing
values (⟨𝐸𝑉 ⟩, ⟨𝑀𝑉 ⟩) to dominate the pattern search.

The difference in the number of records per file is significant,
as shown by the high standard deviation in Table 2, for two

6https://github.com/Clever/csvlint/
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reasons: 1) A few of the files in our datasets are very large. 2) To
ensure a unique set of files, we selected only one file from sets of
similar files, resulting in a different number of records per file.

Table 2: The dataset overview, number of records (R), ill-

formed (I), well-formed (W), each with the standard devi-

ation in the brackets.

Source # files Avg # records Avg # ill-f. Avg # well-f.

DataGov 40 1143.2 (2060.6) 70.9 (165.9) 1072.3 (2014.1)
Mendeley 33 2688.8 (3664.3) 56.8 (109.1) 2632.0 (3636.1)
GitHub 25 791.9 (1094.6) 110.6 (300.8) 681.4 (963.5)
UKGov 23 1548.1 (3179.2) 98.7 (202.1) 1449.4 (3076.1)
NYCData 10 2068.7 (3159.4) 713.0 (1970.3) 1355.7 (1507.8)

4.1.2 Data annotation. We annotated each record in each
file as ill- or well-formed and created a ground truth of 210 550
records across all datasets. As part of the annotation process for
Suragh, we first checked each file in our dataset by loading it into
three commercial tools from different categories: (i) an RDBMS,
(ii) a data wrangling tool, and (iii) a business intelligence tool.
We observed that all tools recognized the dialect for files that
conformed to the RFC 4180 standard [11], but the RDBMS aborted
the data loading process due to the ill-formed records in each
file. We observed different behavior with the data wrangling and
business intelligence tools for standardized files: in most cases,
the tools successfully load our files correctly by simply mending
the cell value, such as correcting the date format type based on
the common pattern in a column. However, in some cases, this
automatic correction led to incorrect results, such as assigning
the most generic data type (string) to a column in the case of
values that do not match a schema.

We then manually identified column-level and row-level in-
consistencies in these ill-formed records (all encountered incon-
sistencies are listed in Section 1). Based on these findings, we
manually determined the most specific syntactic patterns for
each given column in the file and manually labeled them as part
of the pattern schema. Finally, we annotated each record as well-
formed if it conforms to the manually labeled pattern schema
and ill-formed otherwise.

In addition, for most files that do not conform to the RFC
standard, the RDBMS does not recognize the correct dialect and
loads all the data into one column. For the few files where the
RDBMS did recognize the dialect, it aborted the data loading
process due to various issues, such as incorrect quotation marks,
misplaced delimiters, inconsistent number of columns, etc. While
the data wrangling and business intelligence tools, due to their
built-in intelligence, do recognize the correct dialect in most
cases, they may still load data incorrectly: for instance, they
might assign the most generic data type (string) to each column
or add new columns due to an incorrect splitting, or by simply
deleting records they could not parse. A few cases where these
tools do not recognize the correct dialect load all the data into
one column, similar to the RDBMS.

For these non-standardized files, we manually checked each
record and performed the same process as above to obtain its
pattern schema and annotate ill- and well-formed records.

Note that for our study, we annotated the header row in all
CSV files as ill-formed: We cannot assume that all tools have a
built-in feature to distinguish header rows from data rows, or
at least provide a user with a feature to mark the first row as a
header row so that it does not become a part of the data.

4.2 Performance Evaluation

This section first presents the precision-recall metric and the per-
formance evaluation of Suragh using the set of coverage-based
thresholds at both column- and row-level. Then, it presents how
we determined the global threshold setting and demonstrates the
results for each dataset, including the unseen data (NYCData),
which we used to test the generalizability of Suragh. Finally,
this section presents the runtime analysis of Suragh.

4.2.1 Precision-recall metric. As per Definition 2.2, a record
in a file is ill-formed if it does not conform to the pattern schema
of that file. We call a detected ill-formed record true if its corre-
sponding record in the ground truth is labeled as ill-formed, and
false if it does not. To show the effectiveness of our approach, we
use the precision and recall metrics:

𝑃 =
|true ill-formed records detected |

|true & false ill-formed records detected | (2)

𝑅 =
|true ill-formed records detected |
|total ill-formed records | (3)

4.2.2 Threshold setting evaluation. To evaluate Suragh, we
test combinations of seven different threshold values for both
column- and row-level thresholds presented in Section 3.2.2, lead-
ing to 49 experiments for each dataset. The CSV files do not al-
ways have an equal number of ill- and well-formed records, so
choosing experiments at the record-level across all files would
bias the results toward large files. To avoid this bias, we con-
ducted our experiments at the file-level. We compared the set of
ill-formed records detected by Suragh with the set of true ill-
formed records of ground truth for each CSV file. Figures 8a, 8b,
and 8c show precision, recall, and F-1 scores, respectively, for
each threshold-combinations where the color codes reflect the
average runtimes associated with each threshold-combination.
Each cell reports the average score across all files of all datasets
(excluding the unseen dataset NYCData) for a combination of
column- and row-level thresholds. As expected, we can observe
that low thresholds lead to less pruning and, thus, to higher
runtime.

For the first threshold, we use 1% since 0% pattern coverage is
meaningless. We kept a maximum threshold of 30% for two rea-
sons: 1) we achieved the highest recall by retaining only patterns
with the highest coverage 2) precision decreased due to many
false positives.

The goal of these experiments was to determine the global
threshold setting (column- and row-level thresholds combination)
and provide a user with a tool including built-in threshold setting.

The F-1 score shows an increasing trend at the beginning and a
peak in the middle of the threshold setting, which then decreases
as the threshold step size increases. The decreasing trend of the
F-1 score from the middle of the threshold setting to both ends is
due to the lowest recall at the minimum threshold setting and the
lowest precision at themaximum threshold setting. The threshold
setting (𝛽 = 20%, 𝛾 = 1%) is the one with the highest F-1 score,
which we tested on unseen data and can thus recommend as a
global setting.

We observed that in our datasets, most column patterns cov-
ering ≤ 20% of cell values, and column pattern combinations
covering ≤ 1% of records, refer to ill-formed records. Since we
first apply the column-level threshold 𝛽 , the larger step size of 𝛽
perfectly balances with the smaller step size of the row thresh-
old𝛾 , as most of the patterns that might refer to ill-formed records
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(a) Precision score

(b) Recall score

(c) F-1 score

Figure 8: Average precision, average recall, and average F-

1 score across all datasets. The color code shows runtimes

(same for all three plots).

are already pruned after applying the formal threshold. This be-
havior is reflected in Figures 8a and 8b where precision decreases
by about 7%, but the recall score increases significantly by about
39% between 𝛽 = 1% to 20% when 𝛾 = 1%. Table 4 shows average
precision, average recall, and F-1 score Suragh obtained for all

datasets using the best threshold setting found (global threshold
setting).

4.2.3 Unseen dataset. To test the generalizability of Suragh,
we applied our approach on the unseen dataset NYCData. Table 4
shows the results achieved by Suragh using the global threshold
setting as determined using the other four datasets. Similar to
the performance on all the other datasets, Suragh achieved a
recall of over 90% and a precision of 70%.

4.2.4 System efficiency. We achieve classification times of
less than 9 milliseconds per row, on average with the global
threshold setting. All experiments are performed on a 4-core Intel
Core i7 2.3G CPU with 16GB RAM. Figure 9 shows the runtime of
Suragh for the files in our dataset. While we observe a quadratic
scalability overall, variance is quite high due to the quite different
pattern complexity of individual files. The runtime increase is
expected due to the increase in cross-column combinations in
Algorithm 2, which depends on #columns and #rows; adding
more columns leads to more cross-column combinations. Adding
more rows can dominate the runtime as these combinations are
integrated to construct row patterns, where #rows can influence
the row coverage threshold, resulting in less pruning and thus
more computation time.

Figure 9: Ill-formed record detection efficiency, with a fit-

ted quadratic curve. The last six files were obtained by ex-

tending existing files with duplicate records.

4.3 Comparative Analysis

There is no other approach dealing specifically with the detec-
tion of ill-formed records at the syntactic level. However, FAHES
is a syntactic pattern-based approach to detect disguised miss-
ing values (DMVs) [23], with which we can simulate our task.
The authors categorize DMVs into the following cases: (1) out
of range data values, e.g., missing values disguised with a neg-
ative value for an attribute with positive values; (2) outliers,
e.g., missing values disguised as very large values; (3) strings
with repeated characters, e.g., replacing a phone number with
5555555555; (4) values with non-conforming data types, e.g., dis-
guising the missing strings with numerical values; (5) valid values
that are randomly distributed within the range of the data. The
proposed approach uses a syntactic outlier detection module
for Cases 1, 3, and 4 to detect those DMVs that are syntactic
outliers or contain special patterns. The approach also uses a
numerical outlier detection module for Cases 1 and 2, and follows
missing-completely-at-random (MCAR) or missing-at-random
(MAR) models [1, 15] for Case 5. For our experiments, we use
the FAHES demo [24]7.
7https://github.com/daqcri/Fahes_Demo/
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To compare FAHES with our approach, we consider records
that, according to FAHES, contain disguised missing values as ill-
formed, otherwise as well-formed. Since our approach is broader,
the files in our datasets include not only the inconsistencies
that FAHES deals with but many others, so not every file could
be parsed by FAHES during our experiments. Of the files that
FAHES successfully parsed, we excluded those with only header
and missing values as inconsistencies because FAHES does not
consider these cases. Table 3 shows the average precision, average
recall, and F-1 score obtained by FAHES and Suragh with the
global threshold setting. Note that we set the precision score to 1
when FAHES returned no DMVs.

Table 3: FAHES comparison overview

Source # files # files

used

FAHES [23] Suragh

P R F-1 P R F-1

DataGov 40 20 0.35 0.27 0.30 0.87 0.89 0.88
Mendeley 33 3 0.00 0.00 0.00 1.00 1.00 1.00
Github 25 11 0.70 0.22 0.33 0.80 0.92 0.86
UKGov 23 19 0.37 0.10 0.16 0.84 0.99 0.91
NYCData 10 8 0.63 0.06 0.11 0.81 0.93 0.87

Another system to which we compared our approach is the multi-
class random forest classifier approach Strudel for CSV file line
classification [12]. Strudel divides rows into six semantic classes:
metadata, group, header, data, derived, and notes. The approach
uses a set of features: content, context, and computational fea-
tures to model the individual classes to classify rows in a CSV file.
Strudel is a supervised learning approach, so for our experiments,
we trained on the datasets available at the Strudel project page8
and tested on the datasets listed in Section 4.1.1. We chose the
Strudel datasets for training, because they contain a large set
of files than the datasets we used for Suragh, and the authors
tested their approach on out-of-domain datasets. Moreover, we
used the same parameter settings as [12], except for the dialect
detection tool, which we replaced with the univocity parser.

To compare Strudel with our approach, we consider the rows
classified as data by Strudel to be well-formed and the remaining
five classes as ill-formed. Table 4 shows the average precision,
average recall, and F-1 score obtained by Strudel and Suragh
with the global threshold setting. Strudel’s recall is lower for two
main reasons: (i) If there are errors in the data block, Strudel
cannot detect them due to the scope of the project, as it does
further distinguish erroneous data rows from correct data rows.
(ii) In our file collection, some files have metadata and footnote
rows with the same number of fields as data rows, making it
difficult for Strudel to distinguish these non-data rows from data
rows that authors also reported in their paper. Note that we set
the precision score to 1 when Strudel returned all rows as data,
thus not misclassifying any outlier-row.

Table 4: Strudel comparison overview

Source # files # records
Strudel [12] Suragh

P R F-1 P R F-1

DataGov 40 45 728 0.98 0.21 0.34 0.80 0.93 0.86
Mendeley 33 88 729 0.97 0.42 0.58 0.80 0.98 0.88
Github 25 19 799 0.93 0.26 0.40 0.78 0.96 0.86
UKGov 23 35 607 0.90 0.22 0.35 0.71 0.99 0.83
NYCData 10 20 687 1.00 0.04 0.08 0.70 0.95 0.81

8https://hpi.de/naumann/s/strudel

4.4 Error Analysis

Not every ill-formed record follows a unique pattern in a file.
Similarly, a well-formed record might follow a unique pattern,
confusing Suragh to treat it as ill-formed. We present an analysis
of selected detection errors made by Suragh.

4.4.1 False positive cases. Our global threshold settings achieved
an average precision of 76% across all datasets. To investigate the
false positive cases for all datasets, we manually checked each file.
We found that Suragh does not accurately classify a record when
a correct pattern is less frequent. Consider a column that stores
employee names comprising mostly two tokens (first-name and
last-name). Thus, the top patterns for this column will be for two
words. If an employee has a name with three tokens, this record
might be marked as ill-formed and thus be a false positive.

Another case of a less frequent pattern is a column containing
values with long decimal numbers, such as 0.0347414562 and
7.6389273017𝑒 − 005. Data-driven systems load them correctly
by identifying their type; therefore, we include both patterns as
well-formed in our annotations. However, as very few values are
represented in the scientific notation “e”, Suragh prunes this
pattern, resulting in false positives.

4.4.2 False negative cases. Our global threshold settings were
able to achieve an average recall of 96% across all datasets. One
case of false negatives is that columns containing only non-
textual values make it difficult to distinguish the header row
from the data row, e.g., numeric headers, such as year, date, etc.
Thus, Suragh fails to classify the header row as ill-formed, re-
sulting in a false negative.

Another false negative case is when ill-formed record value
patterns simply occur frequently – the file contains many prob-
lematic rows. This is often the case for rows with many missing
values. Note that we only consider empty/null values records
as inconsistent if the file contains non-uniform empty/null val-
ues, e.g., a column that contains empty/null values at arbitrary
locations. Therefore, the global threshold setting considers these
patterns as well-formed, which prevents Suragh from classifying
these records as correctly.

5 RELATEDWORK

Detecting ill-formed records in CSV files is a novel research prob-
lem. However, to improve the user experience, some related work
has developed pattern-based approaches to implement automated
data pre-processing pipelines.

The first step in retrieving data from CSV files is to determine
the dialect of a file, particularly the delimiter and quote characters.
Van den Burg et al. detect the dialect of CSV files by leveraging
row and type patterns [30]. The authors use pattern scores to
favor frequent and long row patterns to find the most suitable
dialect. In our approach, we used the more readily available and
flexible univocity dialect detection system.

Discovering the structure of CSV files is a challenging task that
requires distinguishing amongst rows of different types, e.g., data,
metadata, header, group header, aggregation, and footnote rows.
To address the row classification problem, Jiang et al. propose
the Strudel approach [12], which classifies rows based on three
types of features: content, context, and computational features.
We compared Suragh with this approach in Section 4.3.

Qahtan et al. suggest a syntactic pattern approach to detect
disguised missing values as an outlier [23], which we compared

153



with our proposed technique in Section 4.3. The authors also in-
troduced so-called pattern functional dependencies, a new type of
integrity constraint for data cleaning by making use of syntactic
patterns [22].

Jin et al. introduced the transformation-by-pattern (TBP) para-
digm for data transformation using a pattern-based approach that
uses a source pattern, a target pattern, and a transformation pro-
gram [13]. Their way of representing the data patterns is similar
to our abstraction representation, so our automatically detected
patterns might serve as input to this approach in discovering
TBP programs.

6 CONCLUSION AND FUTUREWORK

Raw data contain ill-formed records, which have inconsistencies
at both column- and row-levels, preventing data from being (cor-
rectly) loaded into downstream applications. Identifying such
records in advance reduces errors and user effort in the event of
a data loading problem.

We introduced Suragh– a method to automatically detect
ill-formed records and helps expert users by generating a pat-
tern schema for a file so that they can pre-determine how messy
the data is and how much data preparation is needed. Suragh
takes an input file from a user and then generates, collects, and
constructs syntactic patterns at several levels that help classify
ill-formed records in a file. In addition, we used pruning tech-
niques and selected highly specific and high coverage syntactic
patterns by introducing weighing criteria and coverage thresh-
olds to optimize our solution.

To evaluate our approach, we collected real-world datasets
that exhibit data errors found in practice at the syntactic level.
To annotate our data, we performed an extensive empirical study
by loading each file of our datasets into three tools: 1) an RDBMS,
2) a data wrangling tool and 3) a business intelligence tool, to
investigate whether and where the load-process is interrupted.
We annotated 210 550 records in files that had at least one loading
problem. Finally, we conducted an extensive set of experiments on
datasets: DataGov, Mendeley, GitHub, and UKGov and achieved
an average precision of 77% and an average recall of 97% in
identifying ill-formed records. We also tested the generalizability
of our approach on an unseen dataset NYCData and achieved
70% precision and 95% recall.

We plan to extend our system with an interface that allows
users to interact with it and choose between the sets of dominant
syntactic row patterns and even increase or decrease their size by
changing the threshold settings. Such an interactive tool would
help users keep or remove ill-formed records, depending on their
preferences.

After detecting ill-formed records in a file, the next possible
direction would be to transform these records into a uniform
format and help users prepare data. Our system shall transform
these records by looking at the frequent patterns in a file using
the dominant syntactic row patterns.
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