
AVID: GPU-enabled Visual Analytics with GPU-FAST-PROCLUS
Jakob Rødsgaard Jørgensen

jakobrj@cs.au.dk
Department of Computer Science

Aarhus University
Denmark

Ira Assent
ira@cs.au.dk

Department of Computer Science
DIGIT Centre for Digitalisation, Big

Data and Data Analytics
Aarhus University

Denmark

Hans-Jörg Schulz
hjschulz@cs.au.dk

Department of Computer Science
Aarhus University

Denmark

ABSTRACT
GPU-FAST-PROCLUS is a GPU-parallelized algorithm for pro-
jected clustering based on the 𝑘-medoids approach. It speeds up
clustering to allow for real-time interaction – even for datasets of
millions of items. Interactivity allows users to quickly determine
sensible clustering parameters such as the number of clusters 𝑘 ,
provided a suitable visualization is available. Yet, as clustering
and visualization are usually decoupled, cluster results are fun-
neled from the GPU back to the CPU, only to be mapped onto
appropriate graphics, which are then rendered on the GPU again.
This introduces a bottleneck that hinders fluid interaction with
clustering.

As a solution to this, we propose AVID (Analysis and Visu-
alization In Device). Following the principle “What happens on
the GPU, stays on the GPU”, AVID removes the round trip to the
CPU and keeps clustering results on the GPU to render them
on the GPU directly. By doing so, users can interactively tune
projected clustering parameters and observe the effects without
noticeable delay. In our demo system, we showcase the efficiency
of our data management strategies for projected clustering as
well as the efficacy of data visualization.

1 INTRODUCTION
Projected clustering aims to identify groups of similar objects
in subspace projections of the full-dimensional space. Efficient
algorithms for projected clustering are crucial as the number of
possible subspace projections is exponential in the number of
dimensions. Projected clustering algorithms must be provided
with predefined parameters, but the best parameters are rarely
known in advance. The choice of sensible parameters generally
requires a human in the loop [4].

To enable interactive, human-in-the-loop parametrization of
clustering, the effects of a change in parameters must be ob-
servable at interactive framerates. This usually means that re-
sults must be computed in around 100𝑚𝑠 to reduce the temporal
separation [13, p.140] between parameter change and visualiza-
tion change,and thus providing the necessary “fluidity” [3]. In
Jørgensen et al. [6], we present GPU-FAST-PROCLUS, a GPU-
parallelized algorithm that computes projected clusters under
the definition of the well-known PROCLUS approach [2], which
extends𝑘-medoids clustering to subspace projections. GPU-FAST-
PROCLUS runs on a million points in around 100𝑚𝑠 , and there-
fore theoretically allows for real-time interaction [11]. Yet, in
order to visualize the results of GPU-FAST-PROCLUS to allow
their interactive exploration under different parameterizations
and in different projections – similar to the works by Tatu et

© 2022 Copyright held by the owner/author(s). Published in Proceedings of the 
25th International Conference on Extending Database Technology (EDBT), 29th 
March-1st April, 2022, ISBN 978-3-89318-085-7 on OpenProceedings.org. 
Distribution of this paper is permitted under the terms of the Creative Commons 
license CC-by-nc-nd 4.0.

al. [12] or Yuan et al. [15] – we would need to visualize these
millions of points. To do so, the data would be clustered on the
GPU (Graphics Processing Unit), then be transferred back to the
CPU and mapped onto graphics primitives using some graphics
framework, only to be then rendered again on the GPU.

To prevent the bottleneck of the CPU, we propose to compute
both the cluster analysis and the visualization as a combined
pipeline directly on the GPU. While GPU-based visualization
is widely used [5, 10, 14], GPU-based Visual Analytics combin-
ing computational analysis and visualization on the GPU is still
very rare with only a handful of systems having been published
– e.g., [1, 7, 9]. To the best of our knowledge, no such purely
GPU-based solution exists for computing and visualizing pro-
jected clusterings. Hence, we propose and demonstrate AVID
(Analysis and Visualisation In Device), a real-time interactive
data visualization for GPU-FAST-PROCLUS.

2 PROCLUS AND GPU-FAST-PROCLUS
PROCLUS [2] is an axis-parallel projected clustering algorithm,
inspired by the 𝑘-medoids algorithm CLARANS [8]. Given a
dataset and the parameters

• number of clusters 𝑘 ,
• average number of dimensions 𝑙 , and
• scalars 𝐴 and 𝐵.

PROCLUS returns a cluster assignment for each point in some
axis-aligned subspace projection for the respective cluster. To
that end, PROCLUS proceeds in three phases:

(1) Greedily picking potential medoids𝑀 ⊂ 𝐷𝑎𝑡𝑎.
(2) Iteratively improving the best set of current medoids𝑚 ⊂

𝑀 that yields the best projected clustering
(3) Further refining the best clustering.

The final result are 𝑘 projected clusters within on average 𝑙-
dimensional subspace. E.g., if we have 𝑘 = 3 and 𝑙 = 4, clusters
could exist within subspaces of 2, 3, or 7 dimensions.

OurGPU-FAST-PROCLUS approach [6] provides efficient GPU-
parallelization of PROCLUS clustering and even supports reusing
computations between parameter settings, which is important in
practice when determining the best set of parameters for a dataset
and analysis task at hand. In Jørgensen et al. [6], we also provide
an experimental evaluation on both real-world and synthetic
datasets, and with varying size, dimensionality, distribution, and
parameter settings. In the following, we provide a brief overview,
with more details given in [6].

Speed-up is achieved by maintaining the distances 𝐷𝑖𝑠𝑡 from
all points to all previously used medoids. Furthermore, the com-
putation of scores 𝑍𝑖, 𝑗 , which indicate the suitability of medoid
𝑚𝑖 in dimension 𝑗 , is reorganized. The most expensive part of
computing 𝑍𝑖, 𝑗 is the sum of distances 𝐻𝑖, 𝑗 from each medoid𝑚𝑖

to all points that are within that medoid’s sphere of influence 𝐿𝑖
along each dimension 𝑗 . The sphere of influence 𝐿𝑖 is all points

Demonstration Paper

 

 

Series ISSN: 2367-2005 562 10.48786/edbt.2022.51

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2022.51


within a 𝛿𝑖 radius of 𝑚𝑖 , where 𝛿𝑖 is the distance from 𝑚𝑖 to
the closest of the current medoids𝑚 𝑗 . Since 𝐿𝑖 is not likely to
change much between iterations, the previously computed 𝐻𝑖, 𝑗

are stored, and updated only with the change Δ𝐿𝑖 in sphere 𝐿𝑖 .
To map between potential medoids𝑀 and the current medoids
𝑚, we use the index𝑀𝐼𝑑𝑥 . All proposed reuses of computations
can also be reused across parameter settings, provided that the
selected sample of potential medoids𝑀 remains fixed.

In total, GPU-FAST-PROCLUS achieves up to 5000× speed-up
over PROCLUS and can perform data analysis on a million points
in around 100𝑚𝑠 . Therefore, GPU-FAST-PROCLUS is admissible
for real-time interaction [11]. Existing visualization frameworks,
however, require data transfer to and from main memory and
CPU involvement, dramatically increasing runtime beyond what
users will accept in interactive settings.

3 ANALYSIS AND VISUALIZATION IN
DEVICE

To leverage the speed of GPU-FAST-PROCLUS, we implement a
“What happens on the GPU, stays on the GPU” data visualization
supporting efficient visualization and interactive exploration of
GPU-FAST-PROCLUS, called AVID (Analysis and Visualization
In Device). We first discuss the implementation and then the data
visualization.

3.1 Implementation
To the best of our knowledge, there does not exist a GPU-based
data visualization framework that allows visualizing data directly
located on the GPU. This implies that visualizing the result of
GPU-FAST-PROCLUS must be funneled through the CPU and
back to the GPU to be displayed. We, therefore, see the need to
implement a visualization that does not use the standard data vi-
sualization frameworks to bypass the CPU. AVID is implemented
using OpenGL1, GLEW2, GLUT3, and CUDA4. OpenGL, GLEW,
and GLUT are application programming interfaces (APIs) for
graphics rendering that can leverage the GPU to achieve acceler-
ation. Furthermore, OpenGL and CUDA support resource inter-
polation between the interfaces which implies that the graphics
displayed by OpenGL can be manipulated using CUDA kernels or
the CUDA API directly, which is used to implement GPU-FAST-
PROCLUS.

Like any graphics framework, OpenGL, GLEW, and GLUT
support drawing dots, lines, polygons, and text. However, they do
not directly support our needs for interactive data visualization.
To enable brushing and selection of elements in the visualization,
we have implemented layout components as a tree-structure and
mouse move and click listeners for each component. The content
of each plot, e.g., points, bars, and grid cells, is the part of the
visualization that is related to the data and results, and therefore
the part that must be computed on the GPU. For each content, the
visual mapping to color, scale, and location is done in parallel for
all data points using CUDA kernels and rendered directly on the
GPU. This implies that the data and results never leave the GPU.
For demonstration purposes, we also implement a second version
where visualization is done on the CPU, but the data analysis and
rendering are still performed on the GPU. The user can switch
between implementations to experience the difference in runtime.

1https://www.opengl.org/
2http://glew.sourceforge.net/
3http://freeglut.sourceforge.net/
4https://developer.nvidia.com/cuda-downloads

To reuse computations between parameter settings, we keep𝐷𝑖𝑠𝑡 ,
𝐷𝑖𝑠𝑡𝐹𝑜𝑢𝑛𝑑 , 𝐻 ,𝑀 ,𝑀𝐼𝑑𝑥 , 𝛿𝑡 ′ , each |𝐿𝑡 ′

𝑖
|, and the previous results

in GPU-memory during the lifetime of the system.

3.2 Effective and efficient visualization
Using these as a foundation, we can construct an interactive data
visualization for GPU-FAST-PROCLUS. A common workflow,
when exploring parameters for projected clustering, is for the
user to select an initial set of parameters, wait for the result,
plot the result in a scatter plot matrix, maybe zoom in to see a
single scatter plot, adjust the parameters and repeat the whole
process. Optimally, the user could see all possible results at once.
However, having 𝑘 × 𝑙 𝑑-dimensional scatter plot matrices, either
requires a huge display or makes the scatter plots so small that
they become indistinguishable. Instead of this tedious workflow,
we propose a data visualization that has an overview, a detailed
view, and previews of different parameter settings side by side.
This allows the user to apply filters, selection in, and changing
all views at once.
Layout: The layout consists of several components and can be
seen in Figure 1. In the top left, we have an overview in form of
a scatter plot matrix. The scatter plots in the lower triangle of
the matrix provide the same information as the upper triangle
and are therefore replaced with heat maps to allow the user to
more clearly identify dense areas. In the scatter plots, the points
in each cluster are assigned a unique color corresponding to that
cluster, but only of the dimensions that the scatter plot represent
are both in the subspace that the cluster represent. We further
assign a gray color to all points, which are not part of a cluster
within the subspace shown by a scatter plot.

Next, we have two menus for selecting parameters 𝑙 and 𝑘 ,
where 𝑙 is the average number of dimensions in the subspace of
the 𝑘 clusters. These are located below and to the right of the
overview, and we refer to them as 𝑙-menu and 𝑘-menu, respec-
tively. Both menus consist of three scatter plots, each showing
a change in the associated parameter and two buttons with an
arrow. This allows the user to quickly see part of the result for the
surrounding parameter settings, before changing the parameters
for the whole view.

At the bottom right corner of the overview, we have a column
chart displaying the size of each cluster and the outliers in the
current result.

To the right, we have a detailed view that shows a larger
version of a scatter plot selected in the scatter plot matrix. Below
the detailed view, there is a set of tools: a button for recomputing
the results, a switch to change where the visualization is being
computed, and a display of the time it takes to compute each
frame.
Selecting: In the scatter plot matrix, the user can select a scatter
plot to show in the detailed view and the menus. The selected
scatter plot is highlighted with light blue in the scatter plot matrix
as well as the dimension id. In the menus, the user can click the
buttons to increment or decrement the parameters previewed in
the three scatter plots. When a scatter plot in the menu is clicked,
the associated parameter is selected and all views are updated.
Again, the selected scatter plot is marked with blue.
Filtering and linking:The user can filter points within a specific
area by brushing the data points shown in the detailed view, or
to a specific cluster by clicking on the bars in the column chart.
Both filters can be applied at the same time and both are linked
to all other scatter plots and heatmaps.

563



Figure 1: Layout of the data visualization AVID.

Figure 2: AVID showing a cluster that should be split in
two.

4 DEMONSTRATION PLAN
For the demonstration of AVID, we use a synthetic dataset to
show the different mechanisms. However, the user can provide
AVID with any dataset 𝐷𝑎𝑡𝑎 ∈ R𝑛×𝑑 as a CSV-file. As examples,
we provide real-world datasets with the source code. We here
describe the demonstration, but a short video and source code is
provided at https://au-dis.github.io/publications/AVID/.

We present the architecture and the frameworks used in AVID,
as described in Section 3.1. Furthermore, we present the layout
and options for selecting and filtering, as outlined in Section 3.2.
To illustrate that AVID is fast enough for real-time interaction,
we demonstrate how to use these mechanics to find a good set of
parameters. An example could be the following (due to random
initialization in PROCLUS, there can be variations):

Initially, we start with 𝑘 = 6 and 𝑙 = 7 as seen in Figure 1. We
pick a scatter plot to show in the detailed view. We identify a
cluster that maybe should have been split into two. Using the
column chart, we filter to show only that cluster. The filter is
applied in all plots and a look at the overview confirms that

Figure 3: AVID showing brushing of two clusters.

the cluster should be split in two, see Figure 2. In the 𝑘-menu,
we investigate the previews. When changing the previews, a
projected clustering is performed but happens so fast that it
is not noticeable. We find at 𝑘 = 10 the cluster is split, pick
this parameter value and all views are updated accordingly. To
update the previews for 𝑙 = 6 and 𝑙 = 8, two clusterings are
computed using GPU-FAST-PROCLUS, and updated seamlessly.
To investigate the old cluster, we filter using brushing in the
detailed view, see Figure 3. In the overview, we see that it has
indeed been split into two clusters. However, the clusters are
also identified in subspaces that contains dimensions where the
clusters are not dense. We conclude that 𝑙 is too high and we
look at the preview scatter plots in the 𝑙-menu. Again, changing
the previews requires computing new projected clusterings, but
happens seamlessly. We pick 𝑙 = 6 and in the overview, we
see that the clusters only appear in the scatter plots where the
clusters are dense, see Figure 4. Again, the last update requires
two projected clusterings but occurs smoothly.

At last, we switch to computing the visualization on the CPU,
to show the difference in interaction. Now the time to compute

564



Figure 4: AVID showing the final clustering.

one frame increased from around a hundred milliseconds to a
second.

5 CONCLUSIONS
We presented a demo of GPU-FAST-PROCLUS and a new data
visualization that supports the exploration of parameters for
the projected clustering algorithm PROCLUS. The fast GPU-
parallelized version of PROCLUS makes the interaction real-time.
To avoid funneling the results from the GPU through the bot-
tleneck of the CPU and main memory just to transfer the vi-
sualization back to the GPU to be displayed, we implemented
the pipeline for both clustering analysis and computing the data
visualization fully on the GPU. This means that what happens
on the GPU stays on the GPU. The proposed solution is a case
study for GPU-FAST-PROCLUS, but could easily be adapted to
fit any GPU-parallelized (projected) clustering approach.

ACKNOWLEDGMENTS
This work was supported by Independent Research Fund Den-
mark.

REFERENCES
[1] Yaw Adu-Gyamfi. 2019. GPU-Enabled Visual Analytics Framework for Big

Transportation Datasets. Journal of Big Data Analytics in Transportation 1, 2-3
(2019), 147–159. https://doi.org/10.1007/s42421-019-00010-y

[2] Charu C Aggarwal, Joel L Wolf, Philip S Yu, Cecilia Procopiuc, and Jong Soo
Park. 1999. Fast algorithms for projected clustering. In Proc. of ACM SIGMOD
International Conference on Management of Data. ACM, 61–72. https://doi.
org/10.1145/304182.304188

[3] Niklas Elmqvist, Andrew Vande Moere, Hans-Christian Jetter, Daniel Cernea,
Harald Reiterer, and TJ Jankun-Kelly. 2011. Fluid interaction for information
visualization. Information Visualization 10, 4 (2011), 327–340. https://doi.org/
10.1177/1473871611413180

[4] Alex Endert, M. Shahriar Hossain, Naren Ramakrishnan, Chris North, Patrick
Fiaux, and Christopher Andrews. 2014. The human is the loop: New directions
for visual analytics. Journal of Intelligent Information Systems 43, 3 (2014),
411–435. https://doi.org/10.1007/s10844-014-0304-9

[5] Jean-Daniel Fekete and Catherine Plaisant. 2002. Interactive information
visualization of a million items. In Proc. of the IEEE Symposium on Information
Visualization (InfoVis). IEEE, 117–124. https://doi.org/10.1109/INFVIS.2002.
1173156

[6] Jakob Rødsgaard Jørgensen, Katrine Scheel, Ira Assent, Ajeet Ram Pathak, and
Anne C Elster. 2022. GPU-FAST-PROCLUS: A Fast GPU-parallelized Approach
to Projected Clustering. In EDBT.

[7] Todd Mostak. 2016. Using GPUs to accelerate data discovery and visual
analytics. In Proc. of the Future Technologies Conference (FTC). IEEE, 1310–1313.
https://doi.org/10.1109/FTC.2016.7821771

[8] Raymond T. Ng and Jiawei Han. 2002. CLARANS: A method for clustering
objects for spatial data mining. IEEE Transactions on Knowledge and Data En-
gineering 14, 5 (2002), 1003–1016. https://doi.org/10.1109/TKDE.2002.1033770

[9] Eric Papenhausen, Bing Wang, Sungsoo Ha, Alla Zelenyuk, Dan Imre, and
Klaus Mueller. 2013. GPU-accelerated incremental correlation clustering of
large data with visual feedback. In Proc. of the IEEE International Conference
on Big Data. IEEE, 63–70. https://doi.org/10.1109/BigData.2013.6691716

[10] Donghao Ren, Bongshin Lee, and Tobias Höllerer. 2017. Stardust: Accessible
and Transparent GPU Support for Information Visualization Rendering. Com-
puter Graphics Forum 36, 3 (2017), 179–188. https://doi.org/10.1111/cgf.13178

[11] Ben Shneiderman. 1994. Dynamic queries for visual information seeking. IEEE
Software 11, 6 (1994), 70–77. https://doi.org/10.1109/52.329404

[12] Andrada Tatu, Fabian Maaß, Ines Färber, Enrico Bertini, Tobias Schreck,
Thomas Seidl, and Daniel Keim. 2012. Subspace search and visualization
to make sense of alternative clusterings in high-dimensional data. In Proc. of
the IEEE Conference on Visual Analytics Science and Technology (VAST). IEEE,
63–72. https://doi.org/10.1109/VAST.2012.6400488

[13] Christian Tominski and Heidrun Schumann. 2020. Interactive Visual Data
Analysis. A K Peters/CRC Press. https://doi.org/10.1201/9781315152707

[14] Daniel Weiskopf. 2007. GPU-based interactive visualization techniques.
Springer. https://doi.org/10.1007/978-3-540-33263-3

[15] Xiaoru Yuan, Donghao Ren, Zuchao Wang, and Cong Guo. 2013. Dimension
Projection Matrix/Tree: Interactive Subspace Visual Exploration and Analysis
of High Dimensional Data. IEEE Transactions on Visualization and Computer
Graphics 19, 12 (2013), 2625–2633. https://doi.org/10.1109/TVCG.2013.150

565


