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ABSTRACT
Discovering dependencies from data has been studied exten-
sively, with applications in data mining, data integration and
data cleaning. Recent work has proposedmanually parameterized
relaxations of traditional dependencies. For example, a Metric
Functional Dependency (MFD) with a parameter 𝛿 asserts that
any pair of tuples that agree on the antecedent attribute values
must have similar (not necessarily equal) values of the conse-
quent attributes within a distance of 𝛿 . To avoid human burden,
we present a framework to automatically fine-tune parameterized
dependencies and a proof-of-concept implementation for MFDs.
To fine-tune a dependency, we produce a concise pattern tableau,
i.e., conditions representing semantically meaningful subsets of
the data, along with parameter values that hold within each sub-
set. Our solution is based on a variant of the weighted set cover
problem to ensure conciseness, data coverage, and tight parame-
ter values. We demonstrate the efficiency and effectiveness of our
approach by analyzing its performance on two real-life datasets.

1 INTRODUCTION
Data dependencies describe relationships among attributes in
a dataset. For example, given a relation schema 𝑅 and attribute
sets 𝑋,𝑌 ⊆ 𝑅, a functional dependency (FD) 𝑋 → 𝑌 asserts that
any pair of tuples having the same values in all the antecedent
attributes 𝑋 must have the same values in the consequent at-
tributes 𝑌 . To capture the semantics of real-life data, recent work
has proposed parameterized relaxations of FDs and other depen-
dencies [2, 5, 6, 8–10, 12–14]. For example, a metric functional
dependency (MFD) 𝑋 →𝛿 𝑌 asserts that any pair of tuples that
agree on the values of 𝑋 must have similar, but not necessarily
equal, values of the attributes in 𝑌 within a distance of 𝛿 . Note
that setting 𝛿 = 0 reduces an MFD to a standard FD.

Example 1.1. Table 1 shows a fragment of aWeather relation
that integrates temperature measurements from various online
sources. The FD [𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛, 𝐷𝑎𝑦, 𝐻𝑜𝑢𝑟 ] → [𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒]
does not hold due to variations in temperature mea-
surements reported by different sources, but the MFD
[𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛, 𝐷𝑎𝑦, 𝐻𝑜𝑢𝑟 ] →𝛿=6 [𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒] holds, indicating
that these variations are bounded.

Another example of parameterized relaxation is a Band Order
Dependency (BOD) [9]. A BOD 𝑋 ↦→𝛿 𝑌 asserts that when lexi-
cographically ordered by 𝑋 , the values of 𝑌 can be out of order
by at most 𝛿 . For example, a BOD 𝐶𝑎𝑡# ↦→𝛿=3 𝑌𝑒𝑎𝑟 holds on a
Music Album dataset. When ordered by catalog number (Cat#),
the album release year is ordered within a band of three years. In
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Table 1: A fragment of the Weather dataset
id Source Location Day Hour Temperature(°F)
𝑡1 weather.cnn.com NY Friday 12 17
𝑡2 www.nytimes.com NY Saturday 18 17
𝑡3 www.climaton.com NY Saturday 18 18
𝑡4 www.uswx.com NY Saturday 18 17
𝑡5 search.yahoo.com NY Monday 12 26
𝑡6 www.nytimes.com NY Monday 12 26
𝑡7 weather.cnn.com LA Friday 18 54
𝑡8 www.accuweather.com LA Friday 18 57
𝑡9 weather.aol.com LA Friday 18 58
𝑡10 search.yahoo.com LA Friday 18 57
𝑡11 weather.herald.com LA Friday 12 52
𝑡12 www.nytimes.com LA Friday 12 50
𝑡13 weather.weatherbug.com LA Friday 12 52
𝑡14 www.nytimes.com LA Saturday 15 43
𝑡15 search.yahoo.com LA Saturday 15 49
𝑡16 weather.cnn.com Seattle Friday 12 44
𝑡17 weather.cnn.com Seattle Friday 12 45
𝑡18 www.accuweather.com Seattle Friday 12 49
𝑡19 weather.cnn.com Seattle Saturday 15 45
𝑡20 www.climaton.com Seattle Saturday 15 46
𝑡21 weather.cnn.com Boston Saturday 12 6
𝑡22 www.accuweather.com Boston Saturday 12 6
𝑡23 search.yahoo.com Boston Saturday 12 6

Table 2: A pattern tableau for the FD
[Location,Day,Hour] → [Temperature].

Location Day Hour
Boston - -
NY Monday -

the music industry, catalog numbers are often assigned to records
at the production stage, before they are actually released, and
some records take longer to produce than others.

In practice, even further relaxations are often necessary, for
example when a dependency holds only on some fragments of a
dataset [9]. To express this, a conditional dependency consists of
an embedded dependency plus a pattern tableau 𝑇𝑝 that specifies
the subsets of the relation in which the dependency holds.

Example 1.2. Table 2 shows a pattern tableau for the embedded
FD [𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛, 𝐷𝑎𝑦, 𝐻𝑜𝑢𝑟 ] → [𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒] with respect to
Table 1. The tableau consists of two patterns; the symbol ‘ − ‘ is
a wildcard, meaning that this FD only holds for tuples having
[𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 = ‘𝐵𝑜𝑠𝑡𝑜𝑛‘] or [𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 = ‘𝑁𝑌 ‘ & 𝐷𝑎𝑦 = ‘𝑀𝑜𝑛𝑑𝑎𝑦‘].
This corresponds to 𝑡5, 𝑡6, 𝑡21, 𝑡22 and 𝑡23. The patterns in this
tableau are disjoint; however, in general, patterns may overlap.

Discovering dependencies from data has been studied exten-
sively, with applications in data mining, data integration and
data cleaning [1]. We formulate and solve a new dependency
discovery problem: automatically fine-tuning dependencies with
parameters to reduce the burden of human specification. Given
a dependency, we generate a concise pattern tableau that iden-
tifies semantically meaningful fragments of the data where the
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dependency holds with tight parameter values (lower than that
which holds on the full dataset).

Consider theMFD [𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛, 𝐷𝑎𝑦, 𝐻𝑜𝑢𝑟 ] →𝛿 [𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒].
Setting 𝛿 = 6 allows the MFD to hold on the Weather dataset
shown in Table 1. In Table 3, we show the pattern tableau for
this MFD that was generated by our method over Table 1; ignore
the ’Coverage’ column for now. The tableau indicates that
small 𝛿 values hold in some subsets, which provides additional
information about the data semantics for knowledge discovery
and data quality assessment. For instance, the second pattern
indicates that the MFD reduces to a standard FD for tuples
with 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 = ‘𝐵𝑜𝑠𝑡𝑜𝑛‘, i.e., every source reports the same
temperature readings in Boston for the same day and hour.

A simple solution to fine-tune a dependency with a parameter
𝛿 is to output a few patterns with the smallest 𝛿s. However, such
patterns may cover few tuples and therefore may not capture the
data semantics. For example, the 1000 patterns in the full Weather
dataset (described in detail in Section 4) with the smallest 𝛿s cover
less than 3 percent of the tuples. From the dependency discovery
literature, the closest method discovers a pattern tableau for a
given FD [3], containing (approximately) the fewest patterns that
cover a user-supplied fraction of the data. However, this method
does not take 𝛿 into account since traditional FDs do not have
parameters. Patterns that cover many tuples are more likely to
have high values of 𝛿 , which defeats the purpose of fine-tuning.

To address these challenges, we formulate the fine-tuning
problem as a variant of the weighted set cover problem that takes
conciseness, coverage and 𝛿 into account. Given a desired num-
ber of patterns and a coverage threshold (corresponding to the
fraction of the dataset that is covered by the patterns included in
the tableau), we aim to minimize tableau cost, defined as a func-
tion of the 𝛿s associated with each pattern. Efficient algorithms
for this variant of weighted set cover have been proposed [4],
but this work is the first to leverage this problem formulation in
the context of dependency discovery.

We make the following main contributions:
• We motivate and formulate a new dependency discovery prob-
lem of automatically fine-tuning dependencies with parame-
ters to capture data semantics.

• We propose a solution framework that generates concise pat-
tern tableaux using a variant of weighted set cover.

• As a proof of concept, we implement and experimentally eval-
uate the efficiency and effectiveness of our solution for MFDs.

2 PRELIMINARIES
Let 𝑅 denote a relational schema on attributes {𝐴1, 𝐴2, ..., 𝐴𝐿},
and 𝑑𝑜𝑚(𝑅) = {𝑡1, 𝑡2, ..., 𝑡𝑁 } denote an instance of the relation
(with 𝑁 tuples). For a subset of attributes 𝑋 ⊆ 𝑅, 𝑑𝑜𝑚(𝑋 ) repre-
sents {𝑡1 [𝑋 ], 𝑡2 [𝑋 ], ..., 𝑡𝑁 [𝑋 ]}, the set of tuples of the relation in-
stance projected on attributes of𝑋 . Let𝑑 : 𝑑𝑜𝑚(𝑌 )×𝑑𝑜𝑚(𝑌 ) → R
be a distance function. For 𝑋,𝑌 ⊂ 𝑅, a Metric Functional Depen-
dency 𝑋 →𝛿 𝑌 asserts that ∀𝑡𝑖 , 𝑡 𝑗 ∈ 𝑑𝑜𝑚(𝑅) : 𝑡𝑖 [𝑋 ] = 𝑡 𝑗 [𝑋 ]
implies 𝑑 (𝑡𝑖 [𝑌 ], 𝑡 𝑗 [𝑌 ]) ≤ 𝛿 . We refer to 𝑋 as the antecedent
attributes and to 𝑌 as the consequent attributes.

A Conditional Metric Functional Dependency (CMFD) on rela-
tion R is a pair (𝑋 →𝛿 𝑌 , 𝑇𝑝 ) where 𝑋 →𝛿 𝑌 is an MFD and
𝑇𝑝 = {(𝑡𝑝1 , 𝛿1), (𝑡𝑝2 , 𝛿2), ..., (𝑡𝑝𝐾 , 𝛿𝐾 )} denotes a pattern tableau.
The 𝑘𝑡ℎ row of 𝑇𝑝 includes a pattern 𝑡𝑝𝑘 and the corresponding
distance bound 𝛿𝑘 (𝛿𝑘 ≤ 𝛿). For each antecedent attribute 𝐴 ∈ 𝑋 ,
either 𝑡𝑝𝑘 [𝐴] = 𝑎 for some 𝑎 ∈ 𝑑𝑜𝑚(𝐴) or 𝑡𝑝𝑘 [𝐴] = ‘ − ‘. A
tuple 𝑡𝑖 ∈ 𝑑𝑜𝑚(𝑅) matches a tableau pattern 𝑡𝑝𝑘 (represented by

Table 3: A pattern tableau for the MFD
[Location,Day,Hour] →𝛿 [Temperature].

PID Location Day Hour 𝛿 Coverage
𝑡𝑝1 NY - - 𝛿1 = 1 26%
𝑡𝑝2 Boston - - 𝛿2 = 0 13%
𝑡𝑝4 LA - 12 𝛿4 = 2 13%
𝑡𝑝3 Seattle Saturday - 𝛿3 = 1 9%

𝑡𝑖 [𝑋 ] ≍ 𝑡𝑝𝑘 [𝑋 ]) iff for each antecedent attribute 𝐴 ∈ 𝑋 either
𝑡𝑝𝑘 [𝐴] = ‘ − ‘ or 𝑡𝑖 [𝐴] = 𝑡𝑝𝑘 [𝐴]. The CMFD (𝑋 →𝛿 𝑌 , 𝑇𝑝 ) as-
serts that for each pair of tuples 𝑡𝑖 , 𝑡 𝑗 ∈ 𝑑𝑜𝑚(𝑅) and each row
of the tableau (𝑡𝑝𝑘 , 𝛿𝑘 ) ∈ 𝑇𝑝 : 𝑡𝑖 [𝑋 ] = 𝑡 𝑗 [𝑋 ] ≍ 𝑡𝑝𝑘 [𝑋 ] implies
𝑑 (𝑡𝑖 [𝑌 ], 𝑡 𝑗 [𝑌 ]) ≤ 𝛿𝑘 , i.e., the distance between the consequent
values of each pair of tuples agreeing on the antecedent attributes
andmatching a tableau pattern is nomore than the corresponding
distance bound.

Example 2.1. Recall Table 3, which shows a tableau for the em-
bedded MFD [𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛, 𝐷𝑎𝑦, 𝐻𝑜𝑢𝑟 ] →𝛿 [𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒] and dis-
tance function 𝑑 (𝑡𝑖 , 𝑡 𝑗 ) = |𝑡𝑖 [𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒] − 𝑡 𝑗 [𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒] |.
The last column of the tableau indicates the fraction of tuples in
Table 1 covered by each pattern.

We define the size of a tableau, 𝑆𝑖𝑧𝑒 (𝑇𝑝 ), as the number of
patterns. Further, we define the coverage of a tableau as the
fraction of tuples covered by at least one of its patterns. For
example, in Table 3, 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 (𝑇𝑝 ) = 14

23 .
Real datasets may contain errors and outliers. In the context of

MFDs, tuples with unusually high or low values of the consequent
attribute can make 𝛿 very large, thus obfuscating the true seman-
tics of the data. For robustness, we allow each 𝛿𝑘 to be violated by
a bounded fraction of tuples covered by the corresponding pat-
tern. In our running example, the pattern (‘𝐿𝐴‘, ‘𝐹𝑟𝑖𝑑𝑎𝑦‘, ‘18‘) for
the MFD [𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛, 𝐷𝑎𝑦, 𝐻𝑜𝑢𝑟 ] →𝛿 [𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒] has 𝛿𝑘 = 4,
but if we ignore one of the four tuples covered (𝑡7), then 𝛿𝑘 = 1
holds on the remaining three tuples (𝑡8, 𝑡9 and 𝑡10). We say that
𝛿𝑘 = 1 holds for this pattern with a confidence of 0.75 since this
is true for 75 percent of the covered tuples.

Finally, we define the cost of a pattern as a function of its
corresponding distance bound: 𝐶𝑜𝑠𝑡 (𝑡𝑝𝑘 ) = 𝑓 (𝛿𝑘 ), and the cost
of a tableau as the sum of the costs of its patterns: 𝐶𝑜𝑠𝑡 (𝑇𝑝 ) =
𝑓 (𝛿1) + 𝑓 (𝛿2) + ... + 𝑓 (𝛿𝐾 ). We will discuss our choice of the cost
function in the next section.

3 OUR FRAMEWORK
We propose to fine-tune dependencies with parameters by
leveraging the machinery of pattern tableaux. We seek pattern
tableaux that are concise (to focus on the most important trends),
have high coverage (to summarize a large fraction of the data)
and have low cost (i.e., tight parameter values).

Problem statement: Given a dependency, a cost function,
a desired number of patterns 𝑘 , desired coverage threshold 𝑠 ,
and desired confidence threshold 𝑐 (that must be satisfied by
each pattern) settings, produce a pattern tableau with at most
𝑘 patterns that covers the desired fraction of the data and has
minimal cost.

We observe that the above problem corresponds to Size-
Constrained Weighted Set Cover (SCWSC) [4]. In SCWSC, we
are given a collection of elements (in our case, tuples) and a
collection of sets (in our case, patterns) with non-negative costs.
The objective is to identify 𝑘 sets that collectively cover a desired
fraction of elements and whose sum of costs is minimal.
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Figure 1: The proposed fine-tuning framework

Our fine-tuning framework is based on this observation and
is illustrated in Figure 1. We first prepare the candidate sets
(i.e, patterns) for the SCWSC problem and calculate their costs
according to the cost function and the confidence threshold. The
second step is to compute the SCWSC solution, which directly
corresponds to the pattern tableau, to which we may append
statistics such as pattern coverage, as in Table 3. Users may then
inspect the tableau and verify the data semantics or re-run the
process with different settings (i.e., different values for 𝑘 , 𝑠 , or 𝑐).

SCWSC was shown to be NP-hard and hard to approximate,
and two greedy heuristics were proposed in prior work [4]. In
our implementation, we use the CWSC (Concise Weighted Set
Cover) heuristic, which is fast and was shown to work well in
practice in terms of minimizing the cost of the resulting set cover.
The idea behind CWSC is intuitive. In each one of the 𝑘 iterations,
the gain of each candidate set 𝑠 is calculated as: the number of
uncovered elements that 𝑠 covers, divided by the cost of 𝑠 . In the
first iteration, CWSC selects a set with the highest gain among
those that cover at least 1

𝑘
of the elements that need to be covered

according to the user-specified coverage threshold. In the second
iteration, CWSC selects a set with the highest gain among those
that cover at least 1

𝑘−1 of the elements that have not yet been
covered, and so on. This approach guarantees that the coverage
threshold will be met at the end of the last (𝑘th) iteration.

The time complexity of CWSC is 𝑂 (𝑘 × 𝑝), where 𝑘 is the
desired number of patterns (the number of iterations of the algo-
rithm), and 𝑝 is the number of candidate patterns. 𝑝 is exponential
in the number of antecedent attributes but linear in the number
of tuples. It has been reported that meaningful dependencies
are not likely to have many antecedent attributes [1], so this
exponential relationship should not be an issue in practice.

Next, we comment on our choice of the cost function in our
proof-of-concept prototype for fine-tuning MFDs. In general, we
prefer patterns with small 𝛿𝑘 s, but the question is how strongly
we should penalize large 𝛿s. In our experiments with various
MFDs and datasets, linear and low-degree polynomial relation-
ships between 𝛿 and cost sometimes favoured the all-wildcards
pattern (whose coverage is always 100%), resulting in no fine-
tuning at all. We therefore fit an exponential relationship between
𝛿𝑘 and cost; for each pattern, 𝑓 (𝛿𝑘 ) = 𝑏𝛿𝑘 .

As for the choice of 𝑏 in the exponential cost function, exper-
iments with various datasets and MFDs showed that 2

1
𝑆𝑡𝑑 is a

good value for 𝑏, where 𝑆𝑡𝑑 is the standard deviation of the dis-
tribution of the 𝛿 values of all patterns without wildcards. These
are the non-overlapping patterns that include a value in each
antecedent attribute (no wildcards). The intuition behind this
choice of 𝑏 is that the higher the variance of the 𝛿s, the lower the
cost that should be assigned to each unit of 𝛿 .

Finally, note that while our proof-of-concept implementation
focuses onMFDs, other dependencies with parameters can also be
fine-tuned by our method. This includes Matching Dependencies
[12], Differential Dependencies [13], Sequential Dependencies [2]

and Band Order Dependencies [8, 9]. However, different methods
may be required to set 𝑏 for these dependencies.

Example 3.1. Table 3 is produced by running our method on
Table 1 with 𝑐 = 90%, 𝑠 = 60%, 𝑘 = 4 and 𝑏 = 2. In the first
iteration, all the patterns covering at least ⌈𝑠𝑁 × 1

𝑘
⌉ = 4 tuples

are considered as candidates. Among all such patterns, the pattern
(‘𝑁𝑌 ‘, ‘ − ‘, ‘ − ‘) with 𝑔𝑎𝑖𝑛 =

𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒
𝑐𝑜𝑠𝑡 = 6

21 = 3 has the highest
gain and is added to the tableau. For this pattern, 𝛿1 = 1 since
one degree is the maximum difference in temperature among all
pairs of tuples with Location=NY within the same day and hour.
In the second iteration, among all the patterns covering at least
⌈(𝑠𝑁 − 6) × 1

𝑘−1 ⌉ = 3 uncovered tuples, the pattern (‘𝐵𝑜𝑠𝑡𝑜𝑛‘, ‘−
‘, ‘ − ‘) with 𝑔𝑎𝑖𝑛 = 3 has the highest gain and is appended to the
tableau. In the third iteration, among all the patterns covering
at least 3 uncovered tuples, the pattern (‘𝐿𝐴‘, ‘ − ‘, ‘12‘) having
𝑔𝑎𝑖𝑛 = 3

4 is selected. Finally, in the forth iteration, among all
the patterns covering at least 2 uncovered tuples, the pattern
(‘𝑆𝑒𝑎𝑡𝑡𝑙𝑒‘, ‘𝑆𝑎𝑡𝑢𝑟𝑑𝑎𝑦‘, ‘ − ‘) with 𝑔𝑎𝑖𝑛 = 1 is added to the tableau.
The resulting tableau, shown in Table 3, covers more than 60%
of the tuples with four patterns, as desired.

4 EXPERIMENTS
We implemented our solution in Python 3 and ran it on the
Google Colab Python engine. The source code is available on
our GitHub page1. We used two real-life datasets: Weather and
Flight. We obtained the Weather dataset from the authors of [6];
it contains 89,564 temperature readings for 30 US cities reported
by various sources in January-February 2010 (Table 3 shows
a fragment of this dataset). As in our running example, we
consider the MFD [𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛, 𝐷𝑎𝑦, 𝐻𝑜𝑢𝑟 ] −→𝛿 [𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒],
which holds on the entire dataset with 𝛿 = 60 degrees Fahrenheit.
There are 6,813 candidate patterns for this MFD. Flight2 includes
701,352 departure times of flights in major airports in August
2018. Even though every flight has a scheduled departure time,
the actual departure times may be early or late. This gives
the MFD [𝑂𝑟𝑖𝑔𝑖𝑛, 𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛,𝐴𝑖𝑟𝑙𝑖𝑛𝑒𝐼𝐷, 𝐹𝑙𝑖𝑔ℎ𝑡𝑁𝑢𝑚𝑏𝑒𝑟 ] →𝛿

[𝐷𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒𝑇𝑖𝑚𝑒], with 𝛿 = 1149 minutes. There are 234,096
patterns for this MFD.

The above MFDs hold with large 𝛿s (60°𝐹 for Weather and
1149𝑚𝑖𝑛 for Flight), due to data errors and outliers such as very
long flight delays, which may hide the underlying data semantics.
This confirms the need for fine-tuning dependency parameters
and discovering meaningful subsets of the data in which a depen-
dency tightly holds, which is the motivation behind our work.

We use the following default settings: 𝑐 = 0.9, 𝑠 = 0.6, and
𝑘 = 60. For the cost function, using the heuristic described in
Section 3, we set 𝑏 = 2 for Weather and 𝑏 = 15

√
2 for Flight.

4.1 Solution Quality
We start by comparing our solution to a baseline created by
extending the existing FD tableau discovery method from [3] to
take pattern costs into account. The original method uses the
greedy partial set cover algorithm to find (approximately) the
fewest patterns that cover a desired fraction of the data. In every
iteration, the greedy algorithm selects a pattern that covers the
most uncovered tuples. To account for pattern costs, we add a
pre-processing step in which we eliminate all patterns whose

1https://github.com/lgolab/Fine-tuning-data-dependencies
2https://data.world/dot/airline-on-time-performance-statistics/
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(a)Weather

(b) Flight

Figure 2: Costs of tableaux generated by the baseline
method and by ourmethod on (a) theWeather dataset, and
(b) the Flight dataset (in all experiments 𝑐 = 90% & 𝑠 = 60%)

Table 4: Tableau generated by the baseline method (with
d = 5) for the Weather dataset.

PID Location Day Hour 𝛿 Coverage
𝑡𝑝1 - - 12 𝛿1 = 5 52%
𝑡𝑝2 - - 18 𝛿2 = 4 30%

𝛿𝑘 values are above some threshold 𝑑 ; we then apply the same
partial set cover algorithm to the surviving patterns.

Comparing our solution to this baseline is not straightforward
because our problem includes the tableau size as part of the in-
put settings, whereas the baseline computes (approximately) the
smallest tableau for a given coverage threshold. In our exper-
iments, we ran the baseline with various 𝑑 values in the pre-
processing step; then, for each generated tableau, we recorded
its size and ran our method to produce a tableau with that size
(given the same coverage threshold).

Figure 2 compares the baseline with our solution, in terms of
the tableau cost, for various tableau sizes resulting from various
values of 𝑑 . As an example, in the Weather dataset, if we run the
baseline with 𝑑 = 6, we get a tableau with size 82 and cost 3368.
Then, if we run our method with 𝑘 = 82, we get a tableau with
cost 1586 (and the same coverage). As expected, Figure 2 shows
that the tableaux generated by the baseline have higher costs
since the baseline does not directly optimize for cost. Moreover,
the baseline method requires the end user to select an appropriate
𝛿-threshold before fine-tuning, another disadvantage compared
to our solution.

According to Figure 2, the baseline method gives best results,
in terms of cost, at 𝑑 = 5 and 𝑑 = 7 on the Weather dataset.
Table 4 shows the tableau for 𝑑 = 5 generated for the fragment
of the Weather dataset shown in Table 1. Note that the tableau
generated by our method (Table 3) includes patterns with smaller
values of 𝛿 , leading to tighter fine-tuning.

4.2 Performance and Scalability
Figure 3 shows the running time of our method for various values
of 𝑛, the number of tuples, and for various values of 𝑘 . We gen-
erated datasets with different sizes by sampling from the Flight
dataset. The figure shows linear scalability with respect to the
number of tuples and the tableau size, which aligns with the
complexity analysis in Section 3.

(a) Running time for 𝑘 = 100 and
subsets of the Flight dataset.

(b) Running time for various
tableau sizes.

Figure 3: Runime of our method for (a) various fragments
of Flight, and (b) various tableau sizes using the full Flight.

(a) Cost vs. 𝑠 for 𝑘 = 40. (b) Cost vs. 𝑘 for 𝑠 = 60%.

Figure 4: Tableau costs generated by our method for vari-
ous settings using the Weather dataset.

The running time on the complete Flight dataset is about
100 seconds. We implemented the proof-of-concept prototype
in Python; however, the performance of our solution can be
improved by reimplementing it in C++ or MapReduce using
distributed techniques [7, 11].

4.3 Settings
Our method requires several settings: the tableau size 𝑘 , the
coverage and confidence thresholds 𝑠 and 𝑐 , as well as the cost
function value of 𝑏. Datasets with more noise and outliers require
a looser confidence threshold to capture data semantics (e.g., start
with 𝑐 = 0.95 and reduce it to 0.9 or 0.8 if needed), whereas larger
datasets may require a lower coverage threshold (e.g., start with
75% and reduce it to 50% or less) and/or a larger tableau.

Figure 4 shows the effect of the coverage threshold 𝑠 and the
tableau size on tableau cost. Clearly, minimizing tableau size,
minimizing cost and maximizing coverage are conflicting. If we
require higher coverage while keeping the tableau size fixed, we
may have to select “larger” patterns that are likely to be associated
with larger 𝛿s. Thus, as 𝑠 increases, the tableau cost increases.
On the other hand, as the allowed tableau size increases, then it
becomes easier to find a larger collection of “smaller” patterns
that may have smaller 𝛿s, however, together cover the desired
fraction of the data.

5 CONCLUSIONS
We formulated and solved a new problem in dependency dis-
covery: given a dependency such as a Metric Functional Depen-
dency, fine-tune the dependency by identifying semantically-
meaningful subsets of a dataset in which the dependency holds
with tight parameter values. We showed that our problem corre-
sponds to Size-Constrained Weighted Set Cover, and we imple-
mented and experimentally evaluated a proof-of-concept proto-
type for Metric Functional Dependencies. The main directions for
future work are to improve the performance of our prototype us-
ing distributed techniques [11] and to incorporate other types of
dependencies with parameters into our framework [8, 9, 12, 13].
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