
Implementing Distributed Approximate Similarity Joins using
Locality Sensitive Hashing

Martin Aumüller
IT University of Copenhagen

maau@itu.dk

Matteo Ceccarello∗
Free University of Bozen-Bolzano

matteo.ceccarello@unibz.it

ABSTRACT
Similarity joins are a basic primitive in data mining. Given two
sets of points, we are interested in reporting all pairs of points
whose similarity is above a user-defined threshold. Solving the
problem naively entails verifying all possible pairs, which can
be infeasible for large inputs. In such contexts, Locality Sensi-
tive Hashing (LSH) is often considered to reduce the number of
pairs to verify. However, while it provides subquadratic running
time, large input sets make it nevertheless necessary to resort
to distributed computing. Hu, Yi, and Tao (PODS’17, TODS’19)
proposed a nearly load-optimal LSH-based join algorithm and
provided a small-scale experimental study in a distributed setting.
This paper provides further analysis of their approach. It shows
that the load-minimizing parameter settings by Hu et al. incur
too much local work, rendering it impractical.

To remedy this drawback, we propose two approaches: The
first distributes work in a data-independent way, while the second
adapts to the data distribution using LSH. Both schemes then use
LSH to solve subproblems locally. This allows to balance load
and the amount of local work.

Through an experimental evaluation, we show that the transi-
tion from theory to practice for Hu et al.’s approach is challeng-
ing: it is hard to strike a good tradeoff between the load and the
amount of local work of each processor, load balancing is itself
an issue, and LSH may introduce duplicates in the output. Our
extensive experimental evaluation is supported by an efficient
open source implementation of all the methods we test.

Our results highlight the need for an holistic approach: only
focusing on the load, as tradition in the MPC model, might not
make efficient use the available resources and better trade-offs
between local work and load are possible.

1 INTRODUCTION
Computing similarity joins is a basic primitive in many data
mining tasks. In a similarity join, we are given two sets R and
S of objects, typically represented as feature vectors in a high-
dimensional space Rd . For a given similarity measure, for exam-
ple Cosine or Jaccard similarity, we are interested in reporting all
pairs (r , s) ∈ R × S that are “similar” to each other. In a technical
sense, a user provides a threshold value r ∈ R and the system
is to report all pairs whose similarity is at least r . For example,
Sharma et al. [26] carried out a similarity join on the Twitter
follower graph containing 100s of billion of edges to retrieve sim-
ilar users for each user in the dataset. Other applications are in
recommender systems, for example on music or video streaming
platforms. There, carrying out a similarity join retrieves items
that should be recommended to a user based on the user’s history.
∗Work done in part while at the IT University of Copenhagen.

© 2022 Copyright held by the owner/author(s). Published in Proceedings of the
25th International Conference on Extending Database Technology (EDBT), 29th
March-1st April, 2022, ISBN 978-3-89318-086-8 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

A similarity join can be computed in time O(|R | · |S |) by com-
paring each element in R to each element in S , a running time
prohibitive for large datasets with millions of items. Since similar-
ity joins are a special case of nearest neighbor search, the curse of
dimensionality applies also for them. This means that exact solu-
tions to the problem are unlikely to improve much asymptotically
on the quadratic time boundary, see [2]. For certain similarity
measures, for example sets under Jaccard similarity, techniques
like prefix filtering [10] can be used to improve the performance
of the all-to-all comparison. However, this still does not suffice
to provide scalable solutions if the sets are large.

To build efficient solutions to high-dimensional similarity
search problems, research has focused on the design of approxi-
mate solutions. In our context, this means that there is no guar-
antee of the result being exact, and the quality of the solution
can be measured in terms of the recall of the solution. In the case
of a similarity join, this means that we report on the fraction of
similar pairs that were reported by the algorithm compared to
the exact solution. Among all techniques for similarity search
problems, locality-sensitive hashing (LSH) as introduced by Indyk
and Motwani in [16] stands out with strong theoretical guaran-
tees paired with a general black-box approach suitable for many
different metrics and similarity measures. LSH-based solutions
usually provide a probabilistic guarantee on their quality, i.e.,
each close pair has a chance of at least 1 − δ of being reported,
where δ is a failure probability usually set by the user. As we will
see later on, using LSH we can compute the similarity join of two
sets containing n points in space and time O(n1+ρ), where ρ ≤ 1
is the quality of the LSH function. The parameter ρ depends on
the similarity threshold provided by the user and reflects how
difficult it is to separate the close pairs from pairs that are below
the threshold. For large sets, the time and space requirements
might be unrealistic for a single machine, so much of research
focused on the design of distributed systems.

This paper focuses on solving similarity joins of high-dimen-
sional data using LSH in a distributed setting. As a starting point,
a recent VLDB survey by Fier et al. [14] reported on the scalability
of existing, exact solutions for set similarity joins. Their results
were rather discouraging: On a small cluster, many implemen-
tations failed to compute the join in a distributed setting using
Apache Hadoop. This was often an easy task for a single-threaded
C++ implementation, as shown in another VLDB survey byMann
et al. [18]. In terms of the COST measure introduced by McSherry
et al. in [20], this means that exact solutions in Hadoop have a
large COST, i.e., require a large cluster to start outperforming a
single thread, if they are at all able to outperform such a solution.

Solving Similarity Joins via LSH. Locality-Sensitive Hashing
(LSH) [16] is the de-facto standard to provide theoretically sound
algorithms for the approximate near neighbor problem. Given
a metric space (X,M) that admits an LSH, we can use an LSH
function to hash a point p ∈ X to a hash code Rk . The closer two
points are, the more likely they are to land in the same bucket.

Experiments & Analysis Paper

Series ISSN: 2367-2005 78 10.5441/002/edbt.2022.07

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2022.07

Table 1: Comparison of performance between configura-
tions minimizing the load (theoretical) and the running
time (practical), for our implementation of the algorithm
described in [15]. Times are in minutes, the load is the
maximum number of messages received by any machine.

time (min) load
theoretical 107.2 537 104Glove practical 52.3 1 117 862
theoretical 31.5 290 491SIFT practical 21.8 938 691
theoretical 45.6 503 309Livejournal practical 14.2 822 931
theoretical 33.6 391 267Orkut practical 3.6 1 601 311

To solve an LSH-based similarity join of two sets containing
at most n data points each, one hashes the points using L = nρ
hash functions h1, . . . ,hL , where ρ depends on the similarity
threshold. If two points have similarity above a threshold r ∈ R,
then with constant probability there exists a hash function under
which these points collide. As such, we can just carry out an all-
to-all comparison among all colliding vectors and report those
that are above the similarity threshold. More details will be given
in Section 2.

Hu et al. [15] describe a similarity join algorithm using LSH
for distributed similarity joins and give parameter choices that
minimize the expected load during the computation. The idea is
that each worker computes locally the L hash values for each of
its vectors, and then a distributed join is carried out using as keys
the hash values paired with the index of the corresponding hash
function. Then, each worker solves locally the similarity join
using an all-to-all comparison on colliding pairs. The purpose of
the present paper is to provide further analyses and experiments
on Hu et al.’s approach. We believe this is necessary because their
paper focused on the theoretical foundations of designing a load-
optimal similarity join algorithm. When going into practice, their
focus on the MPC model (Section 2.2), which uses network load
as cost metric but hides the cost of local computation, might not
provide best parameter choices. Moreover, they do not discuss
how to solve problems that arise from data duplication: In par-
ticular, how does a worker know if a pair of vectors has already
been counted/emitted on a different worker due to collisions
under multiple hash functions? We will make such challenges of
LSH-based solutions explicit and provide efficient solutions.

A motivating example. We reimplemented the aforementioned
algorithm from [15] in the Timely Dataflow framework. We used
this implementation to compute similarity self-joins on some
standard data sets known from surveys on nearest neighbor
search [4] and set similarity search [14], at similarity threshold 0.7.
Table 1 reports, for each dataset, the configurationminimizing the
load (the cost metric in the MPC model) and the one minimizing
the running time: the former are up to ten times as slow as the
latter.

As we will discuss in detail in Section 2.4, the main reason for
this behavior is that local computation in the context of similarity
search is not free, and might dominate the running time. In more

detail, in [15], the sets R and S are distributed using LSH (putting
similar elements onto the same worker, but retaining a constant
fraction of far pairs as well); each server receiving subsets R′ and
S ′ will compute the similarity join of R′ and S ′ using the naïve
all-to-all comparison approach that runs in time O(|R′ | |S ′ |). As
shown in Hu et al. [15], to achieve minimal load in expectation,
the LSH parameter only depends on the number of servers p
and the “quality of the LSH” in terms of its ρ-value. This means
that R′ and S ′ are still large, and the cost of local computation
will dominate the cost of the join. A particular problem with
LSH is that the subproblems defined by applying a single hash
function do not have good load balancing properties, e.g., they
differ widely in size. This has to be taken into account when
computing the join on the hash values.

Our contribution. With this paper, we bridge the gap between
the theoretical considerations by Hu et al. in [15] and an efficient
distributed similarity join algorithm based on LSH in practice.
We outline the design space of LSH-based algorithms and include
(i) sketching techniques to speed up candidate verification, (ii)
hash function tensoring (i.e., reusing hash values) to decrease
the number of LSH function evaluations, and (iii) propose an
efficient, local duplicate check that works in a distributed setting.
One main contribution of the paper is an efficient, low-overhead
implementation of LSH-based similarity join in a distributed
setting as open source.

Motivated by the shortcomings of disregarding the influence of
local computation, we will explore the design space of LSH-based
similarity join algorithms in a distributed setting. As described
above, Hu et al.’s algorithm distributes data in data-dependent
way to workers using LSH, but then uses all-to-all comparisons
to solve the local subproblems. Splitting up the abstract view
of a similarity join into generating subproblems and solving
them locally gives rise to the following other variants. We could
generate subproblems naïvely (similar to computing a cartesian
product) and solve subproblems locally using LSH, or use LSH on
both levels, both for data distribution and computing solutions
for the generated subproblems. A detailed overview over these
algorithms and their theoretical guarantees in terms of expected
load and their cost of local computation is described in Section 3.
In that section, we will also discuss how we can use techniques
described in [11] to check for duplicated pairs in the output of the
join, and we will use sketching techniques from the very same
paper to speed up candidate checking. In Section 4, we report on
experimental results of the algorithms discussed.

In a nutshell, from a theoretical side using LSH to both gener-
ate subproblems and solve them merges the best of both worlds:
low expected load, and small local work. Empirically, we will
see that for the small cluster employed in our study, the most
efficient solution is often provided by creating subproblems data-
independently, and then using LSH locally to compute the similar-
ity join. However, data-dependent subproblem generation using
LSH provides smaller load and can be favorable in situations
where this is a concern. Adding sketches to the computation is
of tremendous importance: not only does it speed up the verifi-
cation process of a pair, but it also makes the LSH application
much more robust with respect to its internal parameters. Lastly,
Section 3.4 shows that the tensoring approach from [11] can be
used for an efficient duplication check to avoid a final round
of communication to deduplicate the pairs. In essence, it is not
slower than verifying the exact similarity.

79

Related Work. Fier et al. survey exact approaches to set similar-
ity joins inMapReduce in [14]. An overview over such approaches
in a non-distributed setting is given by Mann et al. in [18]. Chris-
tiani et al. describe in [13] an approximate set similarity join
algorithm in the sequential setting based on the algorithm for set
similarity search developed by Christiani and Pagh in [12]. They
compare their approach to some other LSH-based approaches
and we refer the reader to [13] for the details. However, none of
these approximate, centralized techniques are straight-forward
to translate into a distributed setting.

With regard to approximate, distributed similarity join under
Cosine Similarity, Sharma et al. present in [26] a distributed
system using a sampling approach called wedge sampling to
generate candidate vectors. They use SimHash-based sketches [9]
for quick estimation of the Cosine Similarity. In very recent
work, Rashtchian et al. describe in [24] another algorithm in
this scenario that makes use of a locality-sensitive filtering step
to generate subproblems on which to perform the naive join.
While it would be interesting to provide a detailed comparison
between LSF and LSH joins, we stress that this paper focuses
on providing further experiments and analyses on the black-box
LSH-based join by Hu et al. [15]. It is future work to compare
these different approaches to similarity joins to each other, and
we hope that this paper provides a solid starting ground for
LSH-based implementations.

2 PRELIMINARIES
2.1 Problem definition
Consider a metric space (X, dist), and let r > 0 be an input
parameter. The similarity join of radius r of two sets R, S ⊆ X is
defined as the set

R ▷◁≤r S = {(x,y) ∈ R × S : dist(x,y) ≤ r }

For notational simplicity, we define OUT = |R ▷◁≤r S |. We re-
mark that this distance-based join is usually referred to as a
distance range join [27]. Since the distance measure in a metric
space is often a measure of dissimilarity, we will use the more
general term similarity join instead. Additionally, for simplicity
we will only discuss self-joins of the form R ▷◁≤r R in this paper.
The general case R ▷◁≤r S can be solved by merging both sets
into a set R′, carrying out the self-join, and filtering output pairs.
As tradition, we will denote with IN the size of R.

In this paper we present approximate randomized algorithms
for this problem. The quality of the returned solution is measured
in terms of recall, defined as the fraction of pairs in R ▷◁≤r R
reported by the algorithm. Note that all the algorithms we de-
scribe verify their output pairs against the similarity threshold,
therefore there are no false positives, i.e., the precision is always
1.

2.2 Model of Computation
We study our algorithms in the massively parallel computation
model (MPC), which is a standard model to study distributed
join algorithms, see for example the references in [15]. In this
model, p servers are connected with a complete network. The
input data is arbitrarily partitioned across the p servers in the
beginning. In each round, each server receives messages from
the other servers, does some local computation, and then sends
messages to other servers. These messages will be received by
these servers in the start of the next round. The complexity of
an algorithm in this model is described by the number of rounds

it performs, and by the load, which is the maximum message
size received by any server in any round. For simplicity, we state
results on the load in terms of the number of messages received
(instead of the number of bits). Furthermore, we state all of our
results assuming that workers have enough memory to (i) store
all received messages and (ii) carry out the local similarity join
computation1.

The MPC model disregards the cost of local computation. To
highlight differences between algorithms, we will take the cost
of local computation into account, which we will measure by the
maximum number of local operations carried out in any round
of the computation by all workers. In general, we will use the
number of similarity computations carried out between pairs of
points as a proxy for the local work.

2.3 Locality Sensitive Hashing
Definition 2.1 (Locality Sensitive Hashing [16]). Let (X, dist) be

a metric space, let T be a set, and let H be a family of functions
h : X → T . For positive reals r1, r2, q1, q2, with q1 > q2, H is
(r1, r2,q1,q2)-sensitive if for x,y ∈ X and h sampled uniformly
at random fromH we have that:

• dist(x,y) ≤ r1 ⇒ Pr[h(x) = h(y)] ≥ q1
• dist(x,y) ≥ r2 ⇒ Pr[h(x) = h(y)] ≤ q2

In this paper we focus mainly on families of functions where
T = {0, 1}. For the d-dimensional unit sphere under inner prod-
uct similarity (or cosine similarity), such a family is random hy-
perplane hashing from [9]. As another example, 1-bit MinHash
described by Li and König in [17] is such a family for set simi-
larity under Jaccard similarity. As a technical detail, we assume
that the LSH is monotonic, i.e., its collision probability function
is decreasing with the distance. Many LSH families have this
property, see the discussion in [15] as well. Since we use LSH
functions as a black-box, our results hold for all LSH families
that have this property.

Given the set R and two distance thresholds r1 < r2, for no-
tational simplicity we denote as near pairs the pairs of points in
OUT. The pairs of points in R × R at distance greater than r1 but
less than r2 are called r2-near pairs; their number is denoted by
OUTr2 . Pairs of points further away than r2 are called far.

A similarity self-join of the set R with distance threshold r1
can be approached as follows: First, select a hash function h ∈ H

uniformly at random and compute each hash value of points
in R using h. All pairs (x,y) ∈ R × R with h(x) = h(y) form the
candidate setC , which can be efficiently constructed using a hash
map. Using exact distance computations on all pairs in C , report
only those pairs of points at distance at most r1.

This approach has several downsides that need to be addressed:
For a fixed collision probability q2, there might be as many as
q2 |R |2 pairs of far points colliding under the hash function h in
expectation. The standard solution to make this number smaller
is to create a new LSH family Hk obtained by concatenating
k ≥ 1 hash functions from H . The new LSH family is then
(r1, r2,qk1 ,q

k
2)-sensitive [16]. While this allows us to control for

the number of far pairs, a near pair might only be found with
probability as low as qk1 . This means that we have to repeat the
construction with independent random choices fromHk at least
L = 1/qk1 times to obtain constant probability bounds for report-
ing a near pair. On the other hand, in expectation, for a monotonic
1 If either of the two conditions does not hold, the computation can be split into
multiple rounds. However, we found that tuning the algorithm’s parameters so to
meet conditions (i) and (ii) gives better performance.

80

LSH each r2-near point is inspected at most qk1 · 1/qk1 = 1 time
over all repetitions, and not more than O

(
(q2/q1)k

)
far neigh-

bors collide over all repetitions.

2.4 Similarity Join by Hu et al.
In [15], Hu et al. described a straight-forward LSH-based sim-
ilarity join algorithm for high-dimensional data. We will refer
to their algorithm as OneLevelLSH. It works as follows for a
self-join on R and a distance threshold r1 > 0 in a setting using
p servers. To set up parameters for the LSH function, select an
approximation factor c > 1 such that pairs of points at distance
at least r2 = cr1 are considered far. (This is up to the user.) From
that, the ρ value of the LSH is obtained as the ratio of the loga-
rithms of the collision probabilities q1 and q2 of the LSH function
at distance r1 and r2, respectively. Next, choose k as the small-
est integer such that qk1 ≤ 1/p

ρ
1+ρ , which ends the parameter

estimation phase. To compute the similarity join, choose 1/qk1
hash functions at random from Hk and distribute them to the
servers. For each input point, create 1/qk1 copies applying each
hash function once. As is standard in the LSH literature, we call
a copy a repetition. Finally, perform an equi-join on the pairs that
collide under the same hash value and report the points that are
at distance at most r1 from each other by doing a naive all-to-all
comparison among the points having the same hash value. We
summarize the performance of this approach in the following
lemma. The load discussion was provided in [15, Theorem 6.1].
We augment their result considering hash function evaluations
and distance computations.

Lemma 2.2. In expectation, OneLevelLSH evaluates

O
(
k · p1/ρ · IN

)
hash functions, has load

O

(√
OUT

p1/(1+ρ)
+

√
OUTr2

p
+

IN
p1/(1+ρ)

)
,

and carries outO
(
OUT · p

ρ
1+ρ + OUTr2 + IN2 · p

ρ−1
ρ+1

)
distance com-

putations over the whole computation. Each pair in OUT has con-
stant probability of being reported.

For convenience, we provide a sketch of the proof.

Proof. By linearity of expectation, we may consider pairs of
near points, r2-near points, and far points independently. First,
each pair of near points could collide under each of the 1/qk1
copies of the point, so we expect O(OUT/qk1) such collisions. By
the properties of a monotonic LSH, each pair of r2-near points
is expected to collide O(1) times over all 1/qk1 repetitions. Fi-
nally, each pair of far points has a chance of qk2 of colliding. This
means that we expect to see O((q2/q1)k IN2) such pairs. This is
the output size of the natural join on the hash, and the equi-
join algorithm described in [15, Section 3.1] has expected load
O(

√
OUT/p+IN/p). As shown in [15], the choiceqk1 ≤ 1/pρ/(1+ρ)

minimizes this load. Plugging in this value provides both the
number of required distance computations and the expected load
stated in the lemma. □

We note that there is a huge cost involved in the parameter
setting that minimizes the load: The number of generated tuples
of pairs that are far away might be only a constant fraction away

from IN2, i.e., the cost of the naïve brute-force solution. More-
over, it is not clear how to handle duplicates, which in a naive
solution might need another round of distributed computation
to be removed.

2.5 Fewer Hash Function Evaluations via
Tensoring

The approach discussed above means that each dataset vector in-
cursO (k · L) = O

(
k · (1/q1)k

)
hash function evaluations, which

can be potentially expensive. To reduce this cost, Christiani [11]
proposed a technique, named tensoring, to reduce the number
of evaluated hash functions, based on the work of Andoni and
Indyk [3]. We will describe a simplified construction that is a
special case of [11].

Assume we are given an (r1, r2,q1,q2)-sensitive hash family
H and an integer k ≥ 1. Split up k into kℓ = ⌈k/2⌉ and kr =
⌊k/2⌋ such that kℓ + kr = k . For an integerm ≥ 1, let Hℓ be a
collection ofm hash functions sampled fromHkℓ , and letHr be a
collection ofm hash functions sampled fromHkr . The collection
(ha,hb) ∈ Hℓ ×Hr , 1 ≤ a,b ≤ m providesm2 (interdependent)
repetitions, with only km hash function evaluations.

To guarantee that two near points collide with probability at
least 1 − δ , we observe that a collision happens if there is an
h ∈ Hℓ and an h′ ∈ Hr such that the points collide under both h
and h′. Since these hash functions are drawn independently, this
happens with probability at least

(1 − (1 − qkℓ1)m)(1 − (1 − qkr1)m), (1)

and we may pick the smallestm such that (1) is at least 1 − δ . A
straight-forward manipulation of (1) shows thatm is bounded

from below by Ω

(√
ln(1/δ)/qk1

)
to achieve recall at least 1 − δ

for constant q1.
In Section 3.4 we show that the tensoring data structure for

computing hash values does not only provide an efficient way
of computing hash values, but its structure can also be used to
efficiently check for duplicates.

2.6 Sketching
Christiani [11] describes the following general way to create
1-bit sketches for points x ∈ X. First, choose a random hash func-
tion hLSH from an (r1, r2,q1,q2)-sensitive familyH with range
R. Next, choose a universal hash function h : R → {0, 1} [8]. The
sketch for x ∈ X is s(x) = h(hLSH(x)). To create b-bit sketches,
we repeat the process above b times with independent functions.
Note that for R = {0, 1}, we do not need to apply h.

As Christiani observes in [11], Hoeffding’s inequality gives
rise to a threshold λb such that pairs of points at distance at most
r1 collide at least λb times with good probability, while far points
are unlikely to collide.

Lemma 2.3 ([11]). Let H be a (r1, r2,q1,q2)-sensitive family
and let λ = (1 + q2)/2 + (q1 − q2)/4. Then for sketches of length
b ≥ 1 and for every pair of points x,y ∈ X:

• If dist(x,y) ≤ r1 then

Pr[∥s(x) − s(y)∥1 ≤ λb] ≤ e−b(q1−q2)
2/8.

• If dist(x,y) ≥ r2 then

Pr[∥s(x) − s(y)∥1 > λb] ≤ e−b(q1−q2)
2/8.

81

As we can see, the larger our sketch length b, the better it is
at differentiating between close and far points.

Since the number of colliding bits of two sketches of points x
and y at distance r is binomially distributed with parameters b
and p = f (r), we can also derive these thresholds exactly from
the CDF of the Binomial distribution.

It remains to discuss which sketch functions to use. For inner
product similarity on the unit sphere, using random hyperplane
LSH [9] provides collision probability q = 1 − arccos(t)

π for two
points x and y with inner product t . For Jaccard similarity and
two points with similarity t , using one-bit MinHash [17] the
probability of two bits of the sketches being the same is simply
(1+t)/2. We can think of one-bit MinHash as Christiani’s general
sketching function with hLSH being Broder’s MinHash [7].

We remark that ad-hoc sketching techniques have been used
in other approaches as well, e.g., in [6, 25, 26].

3 ALGORITHMS
Starting from the similarity join algorithm by Hu et al. [15], we
categorize distributed similarity join algorithms into four natural
categories, depending where and how they use LSH, as detailed
in Table 2. First, we can choose whether to distribute points in a
data-dependent way (using LSH) or in a data-independent way.
In the former case, subproblems are defined by points colliding
on the same hash value in some repetition (as in OneLevelLSH).
In the latter case, we define subproblems by partitioning the
cartesian product of the input. Once subproblems have been
defined, we can choose how to solve them locally in each worker:
either we evaluate all possible pairs of points, or we use LSH. We
therefore have the following four cases:

• Data independent partitioning, all to all local computation.
This is equivalent to computing the cartesian product of
the input, and filtering the resulting pairs depending on
their similarity. This is the simplest approach. It has load
Θ(IN/√p) and computes Θ(IN2) distances. We refer to it
as Cartesian.

• Data dependent partitioning (with LSH), all to all local com-
putation. This is the approach OneLevelLSH by Hu et al.
[15] with the properties stated in Lemma 2.2.

• Data independent partitioning, LSH-based local computa-
tion. This is LocalLSH described in Section 3.1.

• Data dependent partitioning (with LSH), LSH-based local
computation.This isTwoLevelLSH described in Section 3.2.

We remark that while this categorization is natural, it was not
considered by Hu et al. because local computation is considered
free in the MPC model.

In the following, we will discuss the two aforementioned algo-
rithms. For simplicity, we assume that thewished recall guarantee
1 − δ is a constant. This allows us to hide the additional factor of
log(1/δ) in the repetition count in the big-Oh notation. Further-
more, we will discuss the practical role of sketching separately
in Section 3.3.

3.1 LocalLSH algorithm
For a given set R, a distance threshold r1, and a recall guarantee
of 1 − δ , the algorithm works as follows. First, the user picks a
distance threshold r2 > r1, in the same spirit as the choice of c
in Section 2.4. Consider an (r1, r2,q1,q2)-sensitive family H . Let
ρ =

log 1/q1
log 1/q2 , and let k be a parameter to be set later.

(1) Sample km hash functions as described in Section 2.5 and
sample a sketch function σ of length b (Section 2.6). Dis-
tribute the hash functions and the sketch function to all
workers.

(2) Compute σ (x) for each point in R. Distribute R (associated
with their sketches) to workers in the same way as for
computing the cartesian product. Each worker receives a
subset R′ and R′′ of size (|R′ | + |R′′ |)/

√
p.

(3) Each worker computes R′ ▷◁≤r R′′ using the basic LSH
approach with tensoring, see Section 2. For each pair
of points (x,y) colliding on the same hash value, if the
sketches σ (x), σ (y) differ in more than λb bits (see Sec-
tion 2.6), the pair is discarded. Otherwise, the algorithm
checks whether the pair has already been seen using the
duplication check strategy described in Section 3.4. If this
is not the case, the actual distance between the two points
is computed, and reported if it is at most r1.

Theorem 3.1. In expectation, LocalLSH computes the similar-

ity self-join of a set R with loadO
(
IN/√p

)
, evaluatesO

(
IN1+ρ/2

)
hash functions, and carries out

O
(
INρ · OUT + OUTr2 + IN1+ρ

)
distance computations.

Proof. Let (x,y) ∈ R × R be a pair of close points. There
exists exactly one worker that receives both x and y. This worker
carries out the local LSH approach using anm value described
in Section 2.5 such that x and y are guaranteed to collide with
probability at least 1−δ ′, for an δ ′ < δ . Choose the sketch length
according to Lemma 2.3 such that x andy pass the threshold with
probability p′ such that p′ · (1 − δ ′) ≥ (1 − δ). Any such choice
of p′ and δ ′ that satisfies the inequality guarantees that x and y
will be reported with probability at least 1 − δ , which completes
the correctness argument.

Distributing the sets incurs a load of O(IN/√p). The distribu-
tion of the hash functions to all worker has load km, which is
O(INρ/2). The number of hash function evaluations follows by
the properties of the tensoring approach that is carried out for
each point in R. We now focus on the local computation.

As in the proof of Lemma 2.2, for every choice of k we ex-
pect to see a pair of close points O(1/qk1) times, we expect to
see an r2-near pair O(1) times, and we expect to see not more
than O(IN2 · qk2 /q

k
1) pairs of far away points. Thus, the num-

ber of distance computations can be bounded from above by
O

(
OUT/qk1 + OUTr2 + IN

2(q2/q1)k
)
. By setting k as the small-

est value that satisfies qk2 ≤ 1/IN (and using that q1 = q
ρ
2), we

obtain the bound claimed in the theorem. □

Clearly, the load of this algorithm is not output optimal. How-
ever, we notice that for the regime OUT = O(IN2−ρ), the algo-
rithm does fewer distance computations than OneLevelLSH, cf.
Lemma 2.2.

3.2 TwoLevelLSH algorithm
In this section we use LSH to both define subproblems being
assigned to workers and to solve these subproblems. In a nutshell,
we run OneLevelLSH to distribute data points to workers, and
then apply LocalLSH to compute the similarity join for the data
points received by a worker. It will turn out that this approach
enjoys both the load bound from OneLevelLSH as well as the
improvements in terms of local computation from LocalLSH.

82

Table 2: Taxonomy of similarity join algorithm depending on their usage of Locality Sensitive Hashing.

Solution of subproblems
All to all LSH-based

Data partitioning Data independent Cartesian LocalLSH [this paper]
Data dependent (LSH) OneLevelLSH [15] TwoLevelLSH [this paper]

Consider an (r1, r2,q1,q2)-sensitive family H and let kinner
and kouter be integers to be set below. Let ρ = log 1/q1

log 1/q2 , and let
1 − δ be the recall guarantee.

(1) Chooseδ ′ such that 1−δ ′ =
√
1 − δ . Next, samplekinnerminner

and koutermouter hash functions from H according to Sec-
tion 2.5 for failure probability δ ′. Sample a b-bit sketch
function σ . Distribute these functions to the workers.

(2) Each worker having data point x producesm2
outer copies

(i,hi (x), x,σ (x)) with 1 ≤ i ≤ m2
outer. It uses the equi-join

algorithm on (i,hi (x)) to distribute these tuples.
(3) Each worker receiving (i,hi (x), x,σ (x)) forms the sets R′

i
and R′′

i for 1 ≤ i ≤ m2
outer. For each i ∈ {1, . . .,m2

outer},
carry out step 3 of LocalLSH to compute R′

i ▷◁≤r1 R′′
i

with parameter kinner.

Theorem 3.2. In expectation, TwoLevelLSH computes the sim-
ilarity self-join of a set R with load

O

(√
OUT

p1/(1+ρ)
+

√
OUTr2

p
+

IN
p1/(1+ρ)

)
,

evaluatesO
(
IN1+ρ/2

)
hash functions, and computes not more than

O
(
INρ · OUT + OUTr2 + IN1+ρ) distances.
Proof. We first discuss the correctness. Fix a pair of points

(x,y) ∈ R × R at distance at most r1. A necessary condition
to report (x,y) is that the pair collides under at least one of
the outer functions, i.e., it is part of one subproblem. Next, it
has to collide in step 3 as well. Since the hash functions are
independently chosen, the algorithm succeeds with probability
(1 − δ ′)2 =

√
1 − δ

2
= 1 − δ .

By setting kouter such that qkouter1 = (1/p)ρ/(ρ+1), we get the
same expected load as OneLevelLSH, cf. the proof of Lemma 2.2.
The number of hash function evaluations follows from using
the tensoring approach as discussed in Section 2.5. It remains to
bound the local computation.

From Lemma 2.2 we expect

O

(
OUT · p

ρ
1+ρ + OUTr2 + IN2 · p

ρ−1
ρ+1

)
tuples (x,y) ∈ R×R over all workers. Each near pair might collide
O(1/qkinner1) times. Thus, we expect not more than

O(OUT/qkinner1 p
ρ

1+ρ)

such pairs. For r2-near pairs, we expect at most O(1) collisions.

Finally, we expectO
(
(q2/q1)kinner IN2p

ρ−1
ρ+1

)
collisions of far pairs.

We set parameters such that (1/q1)kinnerp
ρ

1+ρ ≤ INρ , which

results in the choice kinner =
log(INρ /p

ρ
1+ρ)

log(1/q1) . Using the identity
q1 = q

ρ
2 and plugging the choice of kinner into the equation above

gives a bound of O(IN1+ρ) on the number of far away pairs. □

As stated before, TwoLevelLSH combines the best of both
worlds: it has load asymptotically similar to OneLevelLSH and
performs local work asymptotically as well as LocalLSH. How-
ever, these asymptotics hide one factor that might become impor-
tant for practical performance: Instead of a factor of ln(1/δ)more
repetitions for success probability 1−δ , the success probability on
each level has to be as large as

√
1 − δ . This means that we carry

out a factor of ln2(1/(1 −
√
1 − δ)) more repetitions. If we wish

for recall at least 80%, for example, this translates into roughly 3
times more repetitions compared to LocalLSH or OneLevelLSH.

3.3 The role of sketching
From Theorem 3.1 and Theorem 3.2 we know that the algorithms,
in expectation, carry out O(INρOUT +OUTr2 + IN1+ρ) distance
computations, which can easily dominate the running time. Using
the sketch approach discussed in Section 2.6, we can replace these
distance computations by a first filtering step (using sketches),
followed by the actual distance computation.

Lemma 3.3. Using sketches of lengthΘ(ln IN/(q1−q2)2),OneLev-
elLSH and TwoLevelLSH (Theorem 3.1 and Theorem 3.2) carry out
O(INρOUT + OUTr2 + IN1+ρ) filter computations using sketches
and O(INρOUT + OUTr2 + INρ) distance computations, in expec-
tation.

Proof. From Lemma 2.3, we may set a sketch bitlength of
b = Θ(ln IN/(q1 − q2)2) to obtain sketches (and a threshold λb)
such that far pairs will be filtered out with probability 1 − 1/IN,
and close pairs survive with probability at least 1 − 1/IN. This
means that, in expectation, the algorithm carries outO(INρOUT+
OUTr2 + IN1+ρ) filter computations using sketches, but only
O(INρOUT + OUTr2 + INρ) actual distance computations. □

In practice, one can think about choosing a different thresh-
old r ′ with r ′ < r2 such that the sketching approach takes care
of removing r2-near pairs that are not r ′-near. This increases the
sketch length by a factor (q1−q2q1−q′)

2 and gives an interesting trade-
off between the internal parameters of the LSH and the sketch
parameters. We will explore these options in the experimental
evaluation in Section 4.

3.4 Duplicate removal
Replicating a point multiple times introduces the additional prob-
lem of duplicate detection. The main challenge lies in the prob-
lem that a given pair of near points may be allocated to different
workers in different repetitions. The most straightforward way
to remove duplicates in this setting would be to perform an addi-
tional round of communication. However, the load of this round
could be as high as Õ (OUT), which is clearly too high.2

2There can beO (p) copies of the same output pair, one in each worker (assuming
that local duplicates are removed), and output pairs can be hash-partitioned in
Õ (OUT /p) groups, each assigned to a different worker.

83

The following lemma says that as long as the workers have
access to the (small) collection of tensor hash functions from
Section 2.5, they can check for duplicates in isolation.

Lemma 3.4. Let Hℓ and Hr be the collection of 2m tensor hash
functions. Order allm2 repetitions in an arbitrary way. If a pair
(x,y) collides in repetition j, then by evaluating O(m) hash func-
tions we can decide if there exists a repetition j ′ < j in which (x,y)
collides as well.

Proof. Let j with 0 ≤ j < m2 be a repetition under which
a pair (x,y) collides. Split up j = a ·m + b such that the hash
function used in the j-th repetition is (ha,hb) ∈ Hℓ × Hr . To
check if there exists a repetition j ′ < j in which (x,y) collide as
well, we compute all ha′(x),ha′(y) for ha′ ∈ Hℓ with 0 ≤ a′ < a
and hb′(x),hb′(y) for each hb′ ∈ Hr . If there exist values a′ < a
and b ′ such that x and y collide under (ha′,hb′), or if there exists
b ′ < b such that (ha,hb′) collides, the pair (x,y) is a duplicate. □

Since we are exchanging the hash functions to all workers, this
check only requires local information. Hence duplicate removal
can be performed without an additional communication round,
that is without increasing the load of the algorithm. In practice,
we check for a pair being a duplicate right after the pair passed
the sketch. We remark that the strategy translates naturally to
TwoLevelLSH.

Pagh et al. discussed in [22] a simpler approach if the applica-
tion that uses the result of the join is robust with respect to each
pair being reported O(1) times: Let L′ be the expected number
of times a near pair (x,y) collides under the tensoring approach.
When we consider (x,y), we emit the pair (x,y) only with proba-
bility (1 − δ)/L′. By linearity of expectation, we expect to report
each near pair (x,y) a constant number of times. If the collision
probability of a tensor hash function can be evaluated in time
O(1), the duplicate check will run in time O(1) per pair.

4 EXPERIMENTS
The goal of this experimental section is to assess the relative
merits of the four approaches to data distribution and local com-
putation that we outlined in the previous sections, as well as
investigating the influence of parameters on the performance. In
particular, we focus on the self join case.

Implementation details. We implement3 all our algorithms on
top of Timely Dataflow [21], using Rust 1.51 nightly (c5a96fb79
2021-01-19). Our experimental setup allows to easily tune pa-
rameters, so that the interested reader can further explore the
behavior of the implementations [5].

Figure 1 provides an overview over the dataflow of the four
different implementations considered in this paper.

Load balancing. When data is partitioned across the p proces-
sors using LSH, we run all the repetitions in a single distributed
round, balancing the load similarly to [15]. Let n be the total
number of hashed values. If a hash sees more than n/p collisions,
we split it into smaller subproblems of size n/p: all the candidate
output pairs are considered bymeans of a cartesian product of the
subproblems. Then, subproblems are sorted by decreasing size,
and assigned to processors greedily: a processor accepts subprob-
lems until its load does not exceed n/p. Once the assignment is
computed, the hashed values are distributed accordingly and the
implementation proceeds to find similar pairs. Note that in [15]

3https://github.com/Cecca/danny

Table 3: Datasets considered in this experimental evalua-
tion. For the two similarity threshold we consider, we re-
port the average number of neighbors per point. The dim
column reports the number of dimensions of the vectors
for Glove and SIFT, and the size of the universe for Orkut
and Livejournal.

avg. neighb.
Data n dim size 0.5 0.7
SIFT 1 000 000 128 522 Mb 2 832.7 115.9
Livej. 3 201 203 7 489 073 486 Mb 51.7 15.6
Orkut 2 783 196 8 730 857 1.3 Gb 1.7 1.1
Glove 1 193 514 200 924 Mb 76.8 2.2

the authors propose a slightly different practical join algorithm
based on sampling rather than collecting the exact histograms
of hash values. Nonetheless our heuristic is able to successfully
balance the load while requiring negligible time, compared to
the overall running time.

Experimental setup. To evaluate similarity predicates on the
Jaccard distance, we use the verification procedure of [18, Algo-
rithm 1]. As for the cosine distance, we normalize all the vectors
at read time, and thus only compute the inner product (with
SIMD instructions).

To measure the actual time required to perform the join, we
simply count the number of matching pairs, without reporting
them explicitly. Doing so would in fact perturb the measurement
with the time required to output large volumes of data, which is
an issue orthogonal to the goals of our experimental evaluation.
Nevertheless, counting the matching pairs is still sufficient to
compute the recall, since all the algorithms we consider remove
duplicates and do not return false positives.

We run our implementation on a 5 node cluster, with a In-
tel©Xeon©CPU E5-1650 v3 @ 3.50GHz processor each with 8
cores and 32 Gb of memory. Therefore we have p = 40. The nodes
are connected by a 1 Gb/s network. We report on experiments
on a larger cluster in Section 4.5.

Datasets. We use four datasets as a benchmark, whose charac-
teristics are reported in Table 3. Glove is a word vector dataset,
while SIFT is a standard dataset for general Euclidean space. To
avoid implementing another LSH function, we use the kernel
embedding by Rahimi and Recht [23] to embed vectors onto the
unit sphere. Vectors are dense, and the metric we use is the co-
sine similarity. Livejournal and Orkut are datasets of users of
social networks. Each element of these datasets is a set, and the
metric used is the Jaccard similarity. We employ two similarity
thresholds: 0.5 and 0.7. These are the thresholds used in [14] as
well. As can be seen in Table 3, the former gives substantially
larger outputs. In particular, Orkut features a very small output
size, whereas SIFT has a very large output, for both thresholds4.
In the remainder of the paper, recalls are computed with respect
to the output sizes computed using Cartesian with no sketches.

4 Another threshold choice would be to use different thresholds per dataset, for
example by fixing OUT to some constant and choosing the threshold that results in
OUT close pairs on average. This choice would entail using different number of
repetitions for each datasets, which would reflect on the running time and memory
usage. Conversely, having different output sizes with the same number of repetitions
allows to inspect the behavior of the algorithms because of widely different output
sizes.

84

Figure 1: Overview over the dataflow of the different implementations considered. The example shows 9workers arranged
in a 3-by-3 grid, and focuses on the flow of two vectors depicted as a blue and a black circle, initially residing in two of
the workers. Data is distributed to individual workers using the cartesian product (Cartesian, LocalLSH) or a hash-join
on LSH values (OneLevelLSH, TwoLevelLSH, 4 copies in the example). Next, the local subproblems on the worker are
solved using an all-to-all comparison (Cartesian, OneLevelLSH) in quadratic time, or they are solved using LSH locally
(LocalLSH, TwoLevelLSH, using 4 hash functions) in expected subquadratic running time.

Table 4: Best configuration for each algorithm on each
dataset. Running times reported inminutes.

0.5 0.7

data. alg. time recall k b time recall k b

Glove Cart. 21.9 1.00 0 256 16.2 1.00 0 256
Glove Local 4.1 0.84 8 512 1.4 0.87 8 256
Glove 1 Level 20.0 0.83 6 512 5.5 0.87 8 512
Glove 2 Level 12.9 0.83 3 512 2.4 0.79 3 512

SIFT Cart. 18.0 1.00 0 256 11.7 1.00 0 256
SIFT Local 7.0 0.83 8 512 1.4 0.84 8 512
SIFT 1 Level 21.5 0.82 6 512 3.5 0.84 8 512
SIFT 2 Level 67.7 0.85 3 512 4.2 0.87 3 512

LiveJ Cart. 122.6 1.00 0 256 115.2 1.00 0 0
LiveJ Local 4.0 0.88 17 256 1.0 0.99 19 0
LiveJ 1 Level 8.3 0.88 8 256 2.0 0.99 12 256
LiveJ 2 Level 6.9 0.88 4 256 1.2 0.99 4 256

Orkut Cart. 93.2 1.00 0 256 93.1 1.00 0 256
Orkut Local 3.4 0.84 8 256 1.4 1.00 20 0
Orkut 1 Level 6.6 0.84 8 256 2.0 0.99 8 256
Orkut 2 Level 4.2 0.84 4 256 1.0 1.00 4 256

Research questions. Our experiments aim at answering the
following questions:

(1) How do the different data distribution and local computation
strategies compare with each other? (§ 4.1)
(2) What is the influence of k on the performance? (§ 4.2)
(3) What is the influence of sketching on the running time? (§ 4.3)
(4) How expensive is removing duplicates? (§ 4.4)

Parameter setting. In the following experimental evaluation,
we test values of k ∈ [3, 20] for all algorithms, and kinner ∈

[4, 12] for TwoLevelLSH. When using sketches, we test sketch
sizes of 256 and 512 bits. The number of LSH repetitions is set
according to Equation 1. If not stated otherwise, we perform
enough repetitions to get a guaranteed recall of 0.8. Note that
not all combinations of parameters are feasible, in that they may
entail prohibitive use of memory or impractically long running
times, in which case the corresponding data points are missing
from the figures.

4.1 Algorithm comparison
As a first step, we take a bird’s eye view of the performance of
the algorithms, concentrating on the configurations giving the
best performance, reported in Table 4. In the next sections we
will investigate the influence of each parameter on the perfor-
mance. For reference, we include the running time forCartesian,
which evaluates all possible pairs using sketches to speed up the
computation.

First, we notice how LocalLSH is the fastest algorithm on all
datasets, with the exception of SIFT at threshold 0.7, running 2 to
30 times faster than Cartesian. Remember that LocalLSH and
Cartesian leverage the same data distribution strategy, while
choosing different strategies for solving the subproblems locally.
Therefore, the gap between the two algorithms is a measure of
the impact of using LSH locally to speed up the computation.

As for the algorithms partitioning data using LSH, for thresh-
old 0.5 they perform 2 to 9 times worse than LocalLSH, even
though they are faster than Cartesian (with the notable ex-
ception of SIFT at similarity 0.5). Even though both algorithms
are able to theoretically take advantage of a lower load com-
pared to LocalLSH, in practice distributing several copies of the
data (one for each repetition) to each processor counterbalances
the potential gains. At a higher similarity threshold such as 0.7,
however, where fewer repetitions are needed, they both become
competitive with LocalLSH for Jaccard-based datasets.

As for the quality of the solution, the recall obtained by all
algorithms is always larger than 0.8, as expected since we are
setting the number of repetitions accordingly. For Jaccard-based
datasets at threshold 0.7, the recall is much better than 0.8.

In general, all the algorithms benefit from the use of sketching,
as we will detail in Section 4.3. The only exception we observed is
for LocalLSH on Livejournal and Orkut at threshold 0.7, where
LSH is already selective enough to make sketching redundant.

4.2 Dependency on k
We now focus on the influence of the parameter k on the per-
formance of the algorithms. For the sake of clarity in the inter-
pretation of the results, in this set of experiments we count the
number of candidate pairs that need to be evaluated under each
parameter configuration, without carrying out the actual similar-
ity verifications. This also allows to assess the performance of
non-optimal configurations, whose actual running time would

85

Figure 2: Dependency of the number of distance computations and load on the value of the parameter k . The dashed line
reports the number of distance computations carried out by the cartesian product.

be impractically high. In Section 4.3, we will run experiments
reporting the actual running times of the best configuration.

Figure 2 reports, for both similarity thresholds, the number
of candidates as a fraction of the total number of pairs (top) and
loads (bottom) against different values of k . The former measure
allows to assess how effectively each approach can prune the
number of candidates. Values larger than 1 indicate that a par-
ticular parameter configuration evaluates the similarity of more
pairs than the naive Cartesian algorithm. The dashed horizon-
tal line reports the number of pairs evaluated by the Cartesian
algorithm, for reference. To follow more closely the MPC model,
the load is measured in terms of maximum number of messages
received by a processor, not by their size. For TwoLevelLSH, we
set the k for solving local subproblems with LSH to 12, which we
found to be the best among the several values we tested. Data
points for OneLevelLSH and TwoLevelLSH for high values of k
are missing from the plots: The reason is that, as can be observed
from the bottom row of plots in Figure 2, the load increases withk ,
to the point that the machines of our clusters do not have enough
memory to process all the messages at once. Our implementation
supports to divide the computation into several parallel rounds
to meet the memory limits, but this further decreased the per-
formance in a parameter range that already turned out to be
non-competitive, see Table 4.

We observe that for all algorithms the number of candidates
is heavily influenced by k . The best value of k for OneLevelLSH
and TwoLevelLSH is smaller than the best for LocalLSH: using
a smaller value implies less duplication of the points due to the
need of doing fewer repetitions, even if this requires dealing with
larger subproblems compared to higher values of k .

Interestingly, the value of k minimizing the number of distance
computations for OneLevelLSH and TwoLevelLSH is not the
one minimizing the load, a fact which is eventually reflected in
the running time. Consider for instance Livejournal at thresh-
old 0.5. OneLevelLSH with k = 4 has load ≈ 851 000 and needs
to evaluate ≈ 50% of the pairs, whereas with k = 8 has load over
2 000 000, but evaluates only ≈ 15% of the pairs evaluated by
Cartesian. We stress that many of these pairs will be duplicates.
As we shall see in Section 4.4, discarding duplicates is consid-
erably faster than verifying the similarity of a pair. Therefore,
tuning k to minimize the load might not the best strategy: rather,
it should be tuned in such a way as to strike the balance between
the load of the processors and the cost of solving the subproblems.
As expected, the load of LocalLSH is constant across all values

of k , since it depends only on the size of the input rather than its
distribution.

On all datasets, LocalLSH and OneLevelLSH perform a com-
parable number of distance evaluations, for the same value of
k . This is expected, since both prune pairs to be compared us-
ing LSH functions configured in the same way. The difference
between the two algorithms lies in the load, which is generally
higher for OneLevelLSH, with the exception Livejournal and
Orkut at similarity threshold 0.7. This difference in load makes
OneLevelLSH in general slower than LocalLSH, even though
they evaluate a comparable number of candidate pairs.

On the other hand, TwoLevelLSH allows to prune a lot of
candidate pairs, at the expense of a higher number of repetitions.
This is reflected in a load which is much higher than that of
OneLevelLSH. In the next section, we shall see how the aggres-
sive pruning of TwoLevelLSH can in some cases balance the
increased load, making it competitive with LocalLSH.

Overall, we note that LocalLSH has a very predictable be-
havior, which allows to exercise a wide parameter range on all
datasets5. OneLevelLSH and TwoLevelLSH, on the other hand,
are much more sensitive to setting parameters correctly: as is
clear from Figure 2, setting k to too large values—trying to prune
many candidate pairs—leads to very high load; this can possi-
bly exceed the memory limits of the cluster, as is happening
whenever there is a missing point in the plot.

As we will see in the next section, using sketches to speed-up
local work changes the influence of k on the performance, to the
point that the configuration minimizing the number of distance
computations might not be the fastest.

4.3 Effect of sketching
To further reduce the cost of local work, we can use sketching as
described in Section 3.3 in order to discard far away pairs without
the need of verifying their similarity. Specifically, we set sketches
so that close pairs are rejected with probability at most 1%.

First, to assess the influence of sketching on the recall, we run
the Cartesian algorithm with 256, and 512-bits sketches, com-
paring the size of the output with the baseline without sketching.
We found that at most 0.5% of the output pairs are lost due to
sketching (twice as good as the theoretical guarantee), therefore
we conclude that the effect of sketching on the recall is negligible.

5In the supplemental material (https://doi.org/10.6084/m9.figshare.c.5598171) we
provide an extended version of Figure 2, testing LocalLSH with k up to 20.

86

Figure 3: Influence of sketches of different sizes on the runtime performance, at similarity threshold 0.5. The red dot
marks the best configuration for a given algorithm. Each point is labeled with the running time in minutes. When a value
is missing, the corresponding experiment crashed due to exceeding the memory capacity of our cluster.

Figure 3 reports on the results for sketches of different sizes in
combination with different values of the parameter k . A higher
resolution image is provided in the supplemental material. For Lo-
calLSH, we try the value of k minimizing the number of distance
computations (17 for Livejournal, 20 for the others) and k = 8,
in order to be able to assess the effect of sketching on fairly dif-
ferent configurations. As for OneLevelLSH and TwoLevelLSH,
due to the smaller parameter range that can be exercised be-
fore exhausting the memory available on the system, we test
the value of k minimizing the number of distance computations
along with a neighboring k value. The value of k minimizing
distance computations is marked with ∗ in the plots.

Before considering the impact of sketching on the perfor-
mance, we consider the running times without sketches (first
dot in each line of Figure 3). The results are in line with our
findings from the previous section, where we used the number of
distance computations as a proxy for running time performance.
LocalLSH is the fastest algorithm, on Glove and SIFT, whereas
on Livejournal and Orkut TwoLevelLSH is the best perform-
ing, with LocalLSH and OneLevelLSH running in comparable
time.

We note that the introduction of sketching greatly improves
the general performance. In particular, for Orkut and Livejournal
the speedup is between 3 and 18, and for Glove and SIFT it is
between 3 and 6.

The Cartesian algorithm has the best performance with 256-
bits sketches: using larger sketches deteriorates the performance
since it requires more communication without a compensating
gain in local work. Note that LocalLSH incurs the same com-
munication as Cartesian, but is not affected by a similar per-
formance degradation with larger sketches. This is because it
performs less local work compared to Cartesian due to the
usage of LSH, thus balancing the increased network communi-
cation. TwoLevelLSH, on the other hand, seems to benefit less

Table 5: Benchmark of individual verification operations.
Times are in nanoseconds.

sketch deduplication similarity

data type pair median max median max median max

Cosine close 7.0 9.0 9.0 28.0 30.0 37.0
Cosine far 7.0 8.0 9.0 31.0 30.0 38.0
Jaccard close 7.0 8.0 7.0 17.0 23.0 418.0
Jaccard far 7.0 9.0 8.0 17.0 11.0 267.0

from the use of sketching: the maximum improvement is ≈ 6 (for
Glove), compared with the ≈ 18 speedup attained by LocalLSH
on Livejournal. In fact, its aggressive use of LSH implies that
most of the local work consists in evaluating repetitions of close
pairs, which cannot be discarded by sketching. ForOneLevelLSH,
the sketching can make its performance comparable with the
other two algorithms.

The runs of LocalLSH make for a particularly interesting
case. The higher value of k makes the algorithm perform less
distance computations compared to the smaller one. Nonethe-
less, on Glove and SIFT the running times are comparable with
both values of k when sketches are not used, with the smaller k
value giving the best performance when sketches are in use. On
Livejournal and Orkut, without sketches a higher k value is in-
deed beneficial in terms of performance. When sketches are used,
however, the running times become comparable. The reason is
that discarding far-away pairs is so efficient with sketching that
we can afford to evaluate more such pairs using a smaller k .

Unfortunately, there does not seem to be a single sketch size
that works best in all situations: large sketches work best on
datasets based on the cosine similarity, whereas on Livejournal

87

Figure 4: Scalability with respect to the number of work-
ers.

and Orkut 256-bit sketches work better, even though the differ-
ence in running time between different sketch sizes is not so
marked.

4.4 Micro-benchmarks
We concentrate now on the cost of the individual steps of the
evaluation pipeline, namely sketch evaluation, similarity veri-
fication and duplicate elimination using tensoring. We run the
following benchmark: at similarity 0.5 we sample 10 000 close
pairs and 10 000 far pairs from the Glove dataset (for cosine sim-
ilarity) and Livejournal (for Jaccard similarity). Then, for each
pair, we measure the time employed to run 10 000 times each of
the aforementioned operations on each pair individually, using
the arithmetic mean as an estimate for the mean of the individual
invocation. The results are reported in Table 5.

Evaluating sketches is very fast and stable in terms of running
time, and does not depend on the similarity measure nor on the
actual similarity of the pair. This is in line with our expectations,
since we implement sketch comparison with simple bitwise op-
erations. On the other hand, the verification of the similarity
predicate is more expensive and subject to greater variability in
the case of Jaccard similarity. In fact, since the verification proce-
dure described in [18] stops as soon as the similarity is bound to
be above the threshold, far pairs are cheaper to verify than close
ones.

These measurements allow us to put in context the cost of du-
plicate removal using tensoring that we described in Section 3.4.
We have that our procedure for duplicate removal has a run-
time cost comparable to sketching and much less than similarity
verification. Therefore it can be used to remove the duplicates
introduced by LSH repetitions with a low overhead, certainly less
than the cost of the cluster-wide shuffle that is usually leveraged
to remove duplicates.

4.5 Scalability
We now focus on the scalability of the three implementations,
running experiments on a cluster with 9 machines, each equipped
with 32GiB of RAM, an Intel i7-4790 CPU@ 3.60GHzwith 4 cores,
connected by a 1Gbit network. On each machine, we spawn 8
workers, which allows us to run scalability experiments with
8-72 workers on 1-9 physical nodes.

We consider the Glove dataset, with similarity threshold 0.7.
For a given number of workers, we test several parameters for
each algorithm, reporting the performance of the best configu-
ration. Note that this is consistent with the theoretical analysis,

where changing the number of processors might change the best
value of k .

Figure 4 reports the results of this experiment. Points are
annotated with a text box reporting the value of k used, whenever
it changes going from left to right.

Consider the LocalLSH algorithm. From 8 to 40 workers it
exhibits almost ideal scalability: using 5 times more resources
yields a ≈4.5 speedup. From 40 workers onwards, we hit a plateau
due to the increased communication cost balancing the reduced
cost of local computation. As for OneLevelLSH, using a higher
k creates more subproblems (hence more opportunities for paral-
lelism) at the expense of a higher memory requirement. The first
consequence is that the best value of k increases with the number
of workers, as expected. Second, we see sharp improvements of
the running time as soon as the system has enough memory to
allow the usage of a higher k value: going from 8 to 40 workers
gives 6 fold speedup. For a fixed value of k the improvement in
running times is much less pronounced. Finally, for TwoLev-
elLSH the best configuration is k = 3 for data distribution and
k = 12 for solving subproblems locally, for all the number of
workers we tested. The speedup from 8 to 40 workers is ≈2.5.
Above 40 workers, however, the number of generated subprob-
lems is so small that most workers will not see their workload
decrease. This would be improved by using a larger k value, but
the additional communication and replication did not yield faster
running times for the dataset.

4.6 System profiling
Finally, we inspect the usage of system resources throughout the
execution of each algorithm. Figure 5 reports the CPU, memory,
and network usage of one machine in the experiment with 40
workers presented in the previous subsection, with the x-axis
reporting the elapsed time. All three implementations fully utilize
the CPU, even when network communication is underway. The
reason is that while communication is ongoing, the implementa-
tion is using the CPU to arrange data for more efficient access
at later stages of execution. There are three execution stages: at
first hash values and sketches are computed locally (used mem-
ory increases, but the network is not used)6, then hash values,
sketches, and input vectors are exchanged on the network, and fi-
nally the subproblems are solved locally (used memory decreases
as parts of the subproblems are solved, and the network is not
used). LocalLSH, other than being the fastest in this setting,
is also the implementation using the network for the shortest
span of time. TwoLevelLSH uses the network for a shorter time
compared to OneLevelLSH (because using a smaller k for the
data distribution implies a smaller number of repetitions), but
requires a longer setup phase, since the hash values for solving
the subproblems need to be computed as well.

We now give some intuition about the memory usage of differ-
ent algorithms. In the implementation, we have to differentiate
between the memory usage of the actual data structures and the
overhead induces by buffers of the distributed system.

As discussed in Section 2.5, for a given k and recall guarantee
of 1−δ , we carry out Θ(ln(1/δ)/qk1)many repetitions in the LSH
scheme, where the constant in the notation will be at most 2. For
both LocalLSH and OneLevelLSH, this is carried out once; for
TwoLevelLSH each subproblem is again considered as the input
for an LSH. For a vector being part of a repetition, we store both
the vector and its sketch on the machine. For example, for Glove

6This part is clearly visible only for TwoLevelLSH

88

Figure 5: System profiling for a single machine.

and 512 bit sketches, a single vector takes up 800 + 512/8 = 864
bytes. For OneLevelLSHwith k = 6 on Glovewith threshold 0.7,
we carry out 16 repetitions which results in a total space usage
roughly 18GB. Initially, there is also a memory overhead on the
worker for reading the input from disk.

On the configuration considered in this section each worker,
to store input vectors, sketches, and pools of hash values received
after the exchange on the network7, uses ≈240 Mbytes for Lo-
calLSH, ≈1045 Mbytes for OneLevelLSH (≈28 Mbytes per LSH
repetition), and ≈ 248 Mbytes for TwoLevelLSH (≈50 Mbytes
per LSH repetition). LocalLSH allocates the smallest memory
since data is replicated fewer times, compared to the other two
approaches. TwoLevelLSH allocates almost the same memory
overall, and much fewer than OneLevelLSH since it performs
fewer LSH repetitions in the data distribution phase, due to the
smaller value of k being used. As it can be seen from Figure 5,
memory measurements are around a factor of two larger, due to
the communication buffers and auxiliary data structures used by
Timely Dataflow.

4.7 Discussion
We summarize our main empirical takeaways as follows.

(1) It is difficult to improve on data-independent data distri-
bution with a small cluster.

(2) A holistic approach on the whole similarity join pipeline
is necessary to find good parameter choices.

(3) Sketches not only provide a way to speed up the join
computation, but also make the parameter selection more
robust.

(4) Tensoring-based duplicate detection provides an efficient
way to discard duplicates using only local information.

We provide further discussion on the first item. A cluster with
p = 72 provides a difficult setup for data-dependent data dis-
tribution: Given that data-independent partitioning replicates
each point √p < 9 times, it is difficult to incur smaller load
using LSH because of the necessary repetitions. Only for Jaccard-
based datasets, we could identify parameter choices that provided
smaller load. For OneLevelLSH, this did not translate into speed-
ups; as predicted by theory, the associated choices of k incur
too much local work. On the other hand, TwoLevelLSH can—in
these cases—provide a speedup by providing smaller load with
local work similar to LocalLSH. Again, parameter choices follow

7We do not take into account the memory needed to allocate auxiliary data struc-
tures and communication buffers.

theory nicely: A small kouter minimizes the load, a large kinner
minimizes local work.

Given that this paper uses OneLevelLSH by Hu et al. [15]
as a starting point and provides further analyses and evaluation
of their approach, our recommendations are as follows: Use Lo-
calLSH—avoiding data-dependent distribution—if √p is small;
otherwise, TwoLevelLSH provides a way to incur smaller load,
following parameter choices from [15] and using a larger kinner
as discussed in the proof of Theorem 3.2.

Our selection of datasets included themost challenging datasets
from the large-scale distributed similarity join study [14]. On
these datasets, the implementations in [14] timed out or exceeded
compute capabilities on a cluster larger than ours. Furthermore,
our results generalize to larger datasets with regard to recom-
mendations on which approach to use. On larger clusters, data-
dependent data distribution is more competitive, also for smaller
thresholds.

5 CONCLUSION AND FUTUREWORK
In this paper, we provided further analyses and evaluation of the
nearly load-optimal similarity-join algorithm by Hu et al. [15].
We extended the analysis and described the whole design space of
LSH-based similarity join algorithms. Experimentally, we showed
the importance of other techniques such as sketching and efficient
duplicate elimination.

Using LSH to distribute work across processors is challenging:
while it can be used to control the load of workers, the data
replication introduced by repetitions can cancel out the benefits.
In connection with this, however, we observed that the recall
provided by LSH is often much higher than the target one: many
repetitions are therefore not necessary in practice. Hence, an
interesting open question in the distributed setting is to devise a
way of stopping repetitions early, as soon as the target recall is
reached.

Choosing k wisely is second only to using sketches to get good
performance in practice. In this respect, an interesting avenue to
explore is setting k adaptively for different subsets of the input,
following [1, 19].

It is not clear if LSH is the best approach to compute a similarity
join. A nice direction for future work is to compare it to LSF-
based approaches [24]. However, the first step would be to devise
a LSF framework for computing similarity joins that is as general
as the LSH-based model.

ACKNOWLEDGEMENTS
We thank Rasmus Pagh for the many fruitful discussions. We
are grateful for the comments and suggestions provided by the
anonymous reviewers which improved both content and presen-
tation of this paper.

The research leading to these results has received funding from
the European Research Council under the European Union’s 7th
Framework Programme (FP7/2007-2013) / ERC grant agreement
no. 6143311, and from the Free University of Bozen-Bolzano
under project SSJoin.

REFERENCES
[1] Thomas D. Ahle, Martin Aumüller, and Rasmus Pagh. 2017. Parameter-free

Locality Sensitive Hashing for Spherical Range Reporting. In SODA. SIAM,
239–256.

[2] Josh Alman and RyanWilliams. 2015. Probabilistic Polynomials and Hamming
Nearest Neighbors. In FOCS. IEEE Computer Society, 136–150.

[3] Alexandr Andoni and Piotr Indyk. 2006. Efficient algorithms for substring
near neighbor problem. In SODA. ACM Press, 1203–1212.

89

[4] Martin Aumüller, Erik Bernhardsson, and Alexander John Faithfull. 2020.
ANN-Benchmarks: A benchmarking tool for approximate nearest neighbor
algorithms. Inf. Syst. 87 (2020).

[5] Martin Aumüller and Matteo Ceccarello. 2020. Running Experiments with
Confidence and Sanity. In SISAP, Vol. 12440. Springer, 387–395. https://doi.
org/10.1007/978-3-030-60936-8_31

[6] Martin Aumüller, Tobias Christiani, Rasmus Pagh, and Michael Vesterli. 2019.
PUFFINN: Parameterless and Universally Fast FInding of Nearest Neighbors.
In ESA (LIPIcs), Vol. 144. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
10:1–10:16.

[7] Andrei Z. Broder. 1997. On the resemblance and containment of documents.
In SEQUENCES. IEEE, 21–29.

[8] J Lawrence Carter and Mark N Wegman. 1979. Universal classes of hash
functions. J. Comp. Syst. Sci. 18, 2 (1979), 143–154.

[9] Moses S Charikar. 2002. Similarity estimation techniques from rounding
algorithms. In STOC. ACM, 380–388.

[10] Surajit Chaudhuri, Venkatesh Ganti, and Raghav Kaushik. 2006. A Primitive
Operator for Similarity Joins in Data Cleaning. In ICDE. IEEE Computer
Society, 5.

[11] Tobias Christiani. 2019. Fast Locality-Sensitive Hashing Frameworks for
Approximate Near Neighbor Search. In SISAP. 3–17. https://doi.org/10.1007/
978-3-030-32047-8_1

[12] Tobias Christiani and Rasmus Pagh. 2017. Set similarity search beyond Min-
Hash. In STOC. ACM, 1094–1107.

[13] Tobias Christiani, Rasmus Pagh, and Johan Sivertsen. 2018. Scalable and
Robust Set Similarity Join. In ICDE. IEEE Computer Society, 1240–1243.

[14] Fabian Fier, Nikolaus Augsten, Panagiotis Bouros, Ulf Leser, and Johann-
Christoph Freytag. 2018. Set Similarity Joins on MapReduce: An Experimental
Survey. PVLDB 11, 10 (2018), 1110–1122.

[15] Xiao Hu, Ke Yi, and Yufei Tao. 2019. Output-Optimal Massively Parallel
Algorithms for Similarity Joins. ACM Trans. Database Syst. 44, 2 (April 2019),
1–36. https://doi.org/10.1145/3311967

[16] Piotr Indyk and Rajeev Motwani. 1998. Approximate Nearest Neighbors:
Towards Removing the Curse of Dimensionality. In STOC. ACM, New York,
NY, USA, 604–613. https://doi.org/10.1145/276698.276876

[17] Ping Li and Christian König. 2010. B-Bit Minwise Hashing. In WWW (WWW
’10). ACM, New York, NY, USA, 671–680. https://doi.org/10.1145/1772690.
1772759

[18] Willi Mann, Nikolaus Augsten, and Panagiotis Bouros. 2016. An Empirical
Evaluation of Set Similarity Join Techniques. PVLDB 9, 9 (May 2016), 636–647.
https://doi.org/10.14778/2947618.2947620

[19] Samuel McCauley and Francesco Silvestri. 2018. Adaptive MapReduce Simi-
larity Joins. In BeyondMR@SIGMOD. ACM, 4:1–4:4.

[20] Frank McSherry, Michael Isard, and Derek Gordon Murray. 2015. Scalability!
But at what COST?. In HotOS. USENIX Association.

[21] Derek Gordon Murray, Frank McSherry, Michael Isard, Rebecca Isaacs, Paul
Barham, and Martín Abadi. 2016. Incremental, Iterative Data Processing with
Timely Dataflow. Commun. ACM 59, 10 (2016), 75–83. https://doi.org/10.
1145/2983551

[22] Rasmus Pagh, Ninh Pham, Francesco Silvestri, and Morten Stöckel. 2017.
I/O-Efficient Similarity Join. Algorithmica 78, 4 (2017), 1263–1283.

[23] Ali Rahimi and Benjamin Recht. 2008. Random Features for Large-Scale
Kernel Machines. In NIPS, J. Platt, D. Koller, Y. Singer, and S. Roweis (Eds.),
Vol. 20. Curran Associates, Inc. https://proceedings.neurips.cc/paper/2007/
file/013a006f03dbc5392effeb8f18fda755-Paper.pdf

[24] Cyrus Rashtchian, Aneesh Sharma, and David P. Woodruff. 2020. LSF-Join:
Locality Sensitive Filtering for Distributed All-Pairs Set Similarity Under Skew.
In WWW. ACM / IW3C2, 2998–3004.

[25] Venu Satuluri and Srinivasan Parthasarathy. 2012. Bayesian Locality Sensitive
Hashing for Fast Similarity Search. PVLDB 5, 5 (2012), 430–441.

[26] Aneesh Sharma, C. Seshadhri, and Ashish Goel. 2017. When Hashes Met
Wedges: A Distributed Algorithm for Finding High Similarity Vectors. In
WWW. ACM, 431–440.

[27] Yasin N. Silva, Spencer S. Pearson, Jaime Chon, and Ryan Roberts. 2015. Similar-
ity Joins: Their implementation and interactions with other database operators.
Inf. Syst. 52 (2015), 149–162.

90

