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ABSTRACT
In this work we study the Load Minimization Problem in undi-
rected weighted cycles. In this problem, we are given a cycle and
a set of weighted origin-destination pairs. The goal is to route
all the pairs minimizing the load of the routing according to the
given weights. We prove that the problem is NP-complete and
that it is 2-approximable. For unitary weights we present a FPT
algorithmwhose parameter is a natural lower bound for the value
of the load.

KEYWORDS
network routing, approximation algorithms, routing and assign-
ment.

1 INTRODUCTION
In the Load Minimization Problem, we are given an undirected
graph 𝐺 = (𝑉 , 𝐸) and a set of weighted origin-destination pairs
D, with weights w; the aim is to find a minimum load routing
of these pairs. The load of a routing is the maximum weight of a
set of pairwise intersecting routes.

In full generality, the Load Minimization Problem is NP-hard,
as deciding whether there is a routing with load equal to zero for
a given set of origin-destination pairs on a graph corresponds to
the Edge Disjoint Path (EDP) problem, a classical NP-complete
problem [9], which remains NP-complete even when restricted
to planar graphs [12]. On the other hand, EDP is Fixed Parameter
Tractable on the number of demands, i.e., of origin-destination
pairs ([14],[10]).

The optimization version of EDP where the number of de-
mands whose routes form a pairwise edge disjoint set is maxi-
mized, has an 𝑂 (

√
𝑛)-approximation algorithm [1].

Our work is also related to the Congestion Minimization Prob-
lem where a routing is sought which minimizes the number
of paths passing through any edge. This problem has an ap-
proximation factor of 𝑂 (log𝑛/log log𝑛) which is matched by
an Ω(log𝑛/log log𝑛)-hardness result [3]. When the Congestion
Minimization Problem is restricted to cycles it is also known as
the Load Routing Problem first discussed in [1] where it was
proved to be NP-hard and 2-approximable. This result was im-
proved latter in [11], where the existence of a PTAS (Polyno-
mial Time Approximation Scheme) was proved. It is also known
that the problem can be solved in polynomial time when all the
weights are the same [5].
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Since any set of routes passing through an edge is a set of pair-
wise intersecting routes, the optimal value of the Load Minimiza-
tion Problem is an upper bound for the Congestion Minimization
Problem. This implies the lower bound Ω(log1/2−𝜖 𝑛) for the ap-
proximability of the Load Minimization Problem. Nonetheless,
neither the PTAS for the Congestion Minimization Problem in
cycles nor the polynomial time algorithm when all the demands
have the same weight can be extended to the Load Minimization
Problem.

A version of the Load Minimization Problem with colors arises
in the context of routing in optical networks. The Routing and
Wavelength Assignment (RWA) Problem asks to find, for each
origin-destination pair, a route through the network and a wave-
length or color so that routes with the same wavelength share no
edges, and the number of used wavelengths is minimized [13]. A
more general problem, the Routing and Spectrum Assignment
(RSA) Problem consists in finding, for each origin-destination
pair with weight𝑤 , a route through the network and a channel
of 𝑤 consecutive frequency slots so that the channels of two
demands are disjoint whenever their routes have an edge in com-
mon, and the number of used frequency slots is minimized [16].
Naturally, the RWA and RSA problems have been shown to be
NP-hard [4, 17]. We note that the RSA problem remains hard
when the network is a path [15], whereas the RWA problem is
polynomial solvable in this case [6].

In this work we study the complexity of the Load Minimiza-
tion Problem restricted to cycles. Our first result shows that the
Load Minimization Problem in cycles is NP-hard. This result is
complemented with a 2-approximation algorithm and with a FPT
algorithm when all the demands have the same weight.

2 COMPLEXITY AND APPROXIMATION
RESULTS

In order to state and prove our results, we introduce some defini-
tions and notation. We assume that the graph 𝐺 is a cycle with
node set {1, 2 . . . , 𝑛} and a fixed orientation of the edges of 𝐺 in
a way that they induce a directed circuit.

For any two nodes 𝑖 and 𝑗 of 𝐺 we denote by [𝑖, 𝑗] the unique
directed path from 𝑖 to 𝑗 in this circuit. Moreover, let [𝑖, 𝑗] =

[ 𝑗, 𝑖]; whence, each route in 𝐺 is given by [𝑖, 𝑗], for some 𝑖, 𝑗 ∈
{1, . . . , 𝑛}.

Since we are working in an undirected setting, we can assume
that each demand is a pair 𝑝 = (𝑖, 𝑗), with 1 ≤ 𝑖 < 𝑗 ≤ 𝑛. A
demand 𝑝 = (𝑖, 𝑗) can be routed in two ways: 𝑝+ = [𝑖, 𝑗] and
𝑝− = [ 𝑗, 𝑖]. The integers 𝑖 and 𝑗 are called the ends of 𝑝 , and
𝑒 (𝑝) = {𝑖, 𝑗} is the set of ends of 𝑝 . Hence, a routing 𝑅 consists
of assigning either 𝑝+ or 𝑝− to each demand 𝑝 . For a routing 𝑅
and a demand 𝑝 , let 𝑅𝑝 be the route assigned to 𝑝 by 𝑅.
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For a set of demands D ′ ⊆ D, we set w(D ′) = ∑
𝑝∈D′ w𝑝 ;

for a set of routes 𝑆 of a routing 𝑅 of D we set w(𝑆) = w({𝑝 :
𝑅𝑝 ∈ 𝑆}).

To get a better understanding of the problem it is convenient
to associate with each routing 𝑅, the edge-intersection graph of
its routes, denoted by 𝐻𝑅 . When𝐺 is a cycle, 𝐻𝑅 is a circular-arc
graph and the load of 𝑅 is the maximum weight, with respect to
the weights w of the demands in D, of a clique in 𝐻𝑅 , denoted
by ℓ (𝐻𝑅,w), which can be computed in time 𝑂 ( |D|3), by Hsu’s
result ([8]).

Using previous notation, the Load Minimization Problem con-
sists in determining

ℓ (𝐺,D,w) = min{ℓ (𝐻𝑅,w) | 𝑅 routing of D}.
We start by assessing the complexity of the Load Minimization

Problem.

Theorem 2.1. The Load Minimization Problem is NP-hard.

Proof. The decision problem associated with the Load Mini-
mization Problem is in NP since, given a routing one can check in
polynomial time (see above) if its load is less than a given value
𝑘 .

Now, we prove the completeness by a polynomial reduction
from Partition [7]. Let 𝑆 = {𝑥1, . . . , 𝑥𝑟 } be a multiset of positive
integers, an instance of Partition. We have to decide if there is
𝑇 ⊆ 𝑆 such that ∑

𝑥 ∈𝑇
𝑥 =

∑
𝑥 ∈𝑆\𝑇

𝑥 . (1)

We may assume that
∑𝑛
𝑟=1 𝑥𝑟 is an even number without loss

of generality. Let 𝑉 = {1, 2, 3} be and let D be composed by 𝑟

demands 𝑝𝑖 = (1, 2) with 𝑤𝑝𝑖 = 𝑥𝑖 for all 𝑖 ∈ {1, . . . , 𝑟 }, and
𝑘 = 1

2
∑𝑛
𝑟=1 𝑥𝑟 . For a given routing 𝑅, let 𝑅𝑝 be the route assigned

to 𝑝 and let
D+ (𝑅) � {𝑝 ∈ D : 𝑅𝑝 = 𝑝+}

and
D− (𝑅) � {𝑝 ∈ D : 𝑅𝑝 = 𝑝−}.

Suppose that ℓ (𝐺,D,w) ≤ 𝑘 . Then, there is a routing 𝑅 such
that ℓ (𝐻𝑅,w) ≤ 𝑘 . Therefore, w(D+ (𝑅)) = w(D− (𝑅)) = 𝑘 . The,
the set𝑇 = {𝑥𝑖 : 𝑝𝑖 ∈ D+ (𝑅)} satisfies (1) since 𝑆 \𝑇 = {𝑥𝑖 : 𝑝𝑖 ∈
D− (𝑅)}.

Conversely, if there is some 𝑇 satisfying (1), then the routing
𝑅 given by 𝑅𝑝𝑖 = 𝑝+

𝑖
, for all 𝑖 such that 𝑥𝑖 ∈ 𝑇 , and 𝑅𝑝𝑖 = 𝑝−

𝑖
,

otherwise has load at most 𝑘 . Therefore, 𝑘 ≥ ℓ (𝐺,D,w). □

We now prove that the Load Minimization Problem is 2- ap-
proximable. For this purpose we need some more definitions.

Definition 2.2. For given demands 𝑝, 𝑞 ∈ D we say that 𝑝 and
𝑞 cross if |𝑒 (𝑝) ∩𝑉 (𝑞+) | = |𝑒 (𝑝) ∩𝑉 (𝑞−) | = 1. When 𝑝 and 𝑞 do
not cross we say that they are parallel.

Then, two demands 𝑝 and 𝑞 cross if 𝑝 has exactly one end in
each of the possible routes for 𝑞, i.e., in 𝑞+ and 𝑞−. Notice that
this implies that 𝑞 also has exactly one end in each of the routes
𝑝+ and 𝑝−. Moreover, any route of 𝑝 and any route of 𝑞 have at
least one arc in common.

When drawing the directed cycle like a circle in the plane, a
demand can be represented by a chord between its origin and
its destination. In this representation chords associated with
two demands that cross, intersect in the interior of the circle.
Conversely, if the chords do not intersect in the interior of the
circle, then the demands are parallel. In Figure 1, (1, 5), (4, 8)

D = {(1, 5), (2, 3), (3, 6), (4, 5), (4, 8), (6, 8)}

𝑅 = {[3, 2], [4, 5], [8, 6], [4, 8], [5, 1], [6, 3]}

(2, 3)

(4, 5) (6, 8)

(4, 8)

(1, 5)

(3, 6)

ℓ (𝐻𝑅, 1) = 4

8

7

6

5

4

3

2

1

Figure 1: An instance with a feasible solution for w = 1.

and (3, 6) are pairwise crossing, while (1, 5), (2, 3) and (6, 8) are
pairwise parallel.

Definition 2.3. Let D+ ⊆ D be the set of demands 𝑝 such that
|𝑉 (𝑝−) | = |𝑉 (𝑝+) |.

In the example given in Figure 1, D+ = {(4, 8), (1, 5)}. Notice
that 𝑝, 𝑞 ∈ D+ cross whenever 𝑒 (𝑝) ≠ 𝑒 (𝑞). Moreover, for 𝑝 ∉

D+ either |𝑉 (𝑝+) | < |𝑉 (𝑝−) | or |𝑉 (𝑝+) | > |𝑉 (𝑝−) |. Also, as
|𝑉 (𝑝−) | = 𝑛 − |𝑉 (𝑝+) | + 2 for any demand 𝑝 , we have that, if
𝑛 is even, D+ = {𝑝 ∈ D : |𝑉 (𝑝+) | = 𝑛/2 + 1} and, if 𝑛 is odd,
D+ = ∅.

We now present Algorithm 1 which assigns routes to D+ by
alternating senses of directions, and then the remaining demands,
where the shortest path is chosen.

Algorithm 1 Approximation algorithm for ℓ (𝐺,D,w).
Input: A cycle 𝐺 = (𝑉 , 𝐸), a set of demands D and weights

w ∈ ZD+ .
Output: A feasible solution 𝑅 and ℓ (𝐻𝑅,w).

1: Compute D+ = {𝑝1, 𝑝2, . . . , 𝑝𝑡 } so that demands are listed
in lexicographic order

2: for 𝑘 = 1, . . . , 𝑡 do
3: if 𝑘 is odd then assign 𝑅𝑝𝑘 = 𝑝+

𝑘
else assign 𝑅𝑝𝑘 = 𝑝−

𝑘
4: end for
5: for 𝑝 ∈ D \ D+ do
6: if |𝑉 (𝑝+) | < |𝑉 (𝑝−) | then assign 𝑅𝑝 = 𝑝+ else assign

𝑅𝑝 = 𝑝−

7: end for
8: Find a clique 𝑄 in 𝐻𝑅 with w(𝑄) maximum.
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Our main theoretical contribution is to prove that Algorithm 1
is a 2-approximation algorithm for the Load Minimization Prob-
lem in cycles.

It is easy to see that for a routing 𝑅, two demands 𝑝 and
𝑞 which cross are adjacent in 𝐻𝑅 . Indeed, as observed above,
𝑅𝑝 ∈ {𝑝+, 𝑝−} and 𝑅𝑞 ∈ {𝑞+, 𝑞−} share at least one common arc.
Then, if D ′ is a set of pairwise crossing demands, ℓ (𝐻𝑅,w) ≥
w(D ′) must hold, and the following lower bound for ℓ (𝐺,D,w)
is obtained.

Lemma 2.4. Let 𝐺 be a cycle and let D ′ be a subset of D such
that any two demands in D ′ cross. Then, ℓ (𝐺,D,w) ≥ w(D ′).

Definition 2.5. For two distinct arcs 𝑎 = (𝑢, 𝑣) and 𝑏 = (𝑠, 𝑡)
of the directed cycle, let 𝐶𝑈𝑇 (𝑎, 𝑏) be the set of demands 𝑝 such
that

|𝑒 (𝑝) ∩𝑉 ( [𝑣, 𝑠]) | = |𝑒 (𝑝) ∩𝑉 ( [𝑡,𝑢]) | = 1.

Hence, demands in 𝐶𝑈𝑇 (𝑎, 𝑏) have one end in [𝑣, 𝑠] and the
other end in [𝑡,𝑢]. Notice that, if 𝑝 ∈ 𝐶𝑈𝑇 (𝑎, 𝑏), any route for 𝑝
must contain exactly one of the arcs 𝑎 or 𝑏, i.e., the sets {𝑎, 𝑏} ∩
𝐴(𝑝+) and {𝑎, 𝑏} ∩𝐴(𝑝−) are both non-empty. This observation
leads to the following lower bound for ℓ (𝐺,D,w).

Lemma 2.6. Let𝐺 be a cycle and letD be a set of demands. Then,
for any two distinct arcs 𝑎 and 𝑏, w(𝐶𝑈𝑇 (𝑎, 𝑏)) ≤ 2ℓ (𝐺,D,w).

Proof. Let𝑅 be a routing ofD and 𝑝 ∈ 𝐶𝑈𝑇 (𝑎, 𝑏). As we have
seen above, 𝑅𝑝 contains either 𝑎 or 𝑏. Thus, 𝐶𝑈𝑇 (𝑎, 𝑏) can be
partitioned into two setsD𝑎 andD𝑏 of demands whose assigned
routes contain 𝑎 or 𝑏, respectively. Each of these sets of demands
induces a clique in 𝐻𝑅 , as the corresponding routes share (at
least) one arc. Hence,

w(𝐶𝑈𝑇 (𝑎, 𝑏)) = w(D𝑎) +w(D𝑏 ) ≤ 2ℓ (𝐻𝑅,w).

□

Theorem 2.7. The Load Minimization Problem restricted to
cycles is 2-approximable.

Proof. As we already discused, the clique 𝑄 obtained by Al-
gorithm 1 can be computed in time 𝑂 ( |D|3).

Let us first prove that 𝑄 is a subset of 𝐶𝑈𝑇 (𝑎, 𝑎), where 𝑎 is
the arc opposite to 𝑎 in 𝐺 , for some arc 𝑎. From the definition
of Algorithm 1, for each 𝑝 ∈ D and each arc 𝑎 of the cycle, if
𝑎 ∈ 𝐴(𝑅𝑝 ), then 𝑎 ∉ 𝐴(𝑅𝑝 ). Let 𝑄𝑎 denote the set of demands
in 𝑄 whose associated routes contain the arc 𝑎, and let 𝑎0 be
such that 𝑄𝑎0 is the largest set among all 𝑄𝑎 . We shall prove
that 𝑄 ⊆ 𝐶𝑈𝑇 (𝑎0, 𝑎0). This is immediate when 𝑄 = 𝑄𝑎0 , by the
definition of Algorithm 1. We claim that for each 𝑝 ∈ 𝑄 \𝑄𝑎0 we
have that 𝑎0 ∈ 𝐴(𝑅𝑝 ). If this were not the case, then 𝑅𝑝 would
be contained in one of the two paths obtained from 𝐺 when we
remove 𝑎0 and 𝑎0.

Let 𝑏 be the arc in 𝑅𝑝 closest to 𝑎0. Then, for each 𝑞 ∈ 𝑄𝑎0
we have that 𝑏 ∈ 𝐴(𝑅𝑞) ∩ 𝐴(𝑅𝑝 ) which shows that 𝑄𝑎0 ⊆ 𝑄𝑏 .
However, since 𝑝 ∈ 𝑄𝑏 \ 𝑄𝑎0 we get a contradiction with the
choice of 𝑎0.

After the result in Lemma 2.6 and the fact that𝑄 ⊆ 𝐶𝑈𝑇 (𝑎, 𝑎),
we get that w(𝑄) ≤ 2ℓ (𝐺,D,w)). This implies that it is an 2-
approximation algorithm for the LoadMinimization Problem. □

It is worth to see that we can not improve the factor 2 in the
algorithm. In fact, consider the following family of instances. For
𝑟 ≥ 1, let𝐺 be a cycle of length 8𝑟 −1 and for each 𝑖 ∈ {1, . . . , 2𝑟 },

let 𝑝𝑖 = (4𝑟 −𝑖, 4𝑟 +𝑖−1). Then, for each 𝑖 ∈ {1, . . . , 2𝑟 }, |𝐴(𝑝+
𝑖
) | =

2𝑖 − 1 and
𝐴(𝑝+1 ) ⊆ 𝐴(𝑝+2 ) ⊆ · · · ⊆ 𝐴(𝑝+2𝑟 ).

It is clear that Algorithm 1 applied to this instance produces,
for each 𝑖 = 1, . . . , 2𝑟 , 𝑅𝑝𝑖 = 𝑝+

𝑖
, since |𝐴(𝑝+

𝑖
) | = 2𝑖 − 1 ≤

|𝐴(𝑝−
𝑖
) | = 8𝑟 − 2𝑖 . Hence, 𝐻𝑅 is a complete graph and ℓ (𝐻𝑅, 1) =

2𝑟 .
However, the optimal solution for this instance is 𝑅∗𝑝𝑖 = 𝑝+

𝑖
, for

𝑖 = 1, . . . , 𝑟 and 𝑅∗𝑝𝑖 = 𝑝−
𝑖
, for 𝑖 = 𝑟 + 1, . . . , 2𝑟 , with ℓ (𝐻𝑅∗ , 1) = 𝑟 ,

which shows that the factor 2 is best possible for this algorithm.

3 A FPT ALGORITHM FOR UNIT WEIGHTS
Our last result is a FPT algorithm for the Load Minimization Prob-
lem restricted to cycles for which we still need some additional
definitions.

Given a routing 𝑅, two parallel demands 𝑝 and 𝑞 collide in 𝑅 if
𝐴(𝑅𝑝 ) ∪𝐴(𝑅𝑞) is the set of arcs of the cycle. In this case, we call
the pair (𝑝, 𝑞) a collision in 𝑅.

Note that the solution 𝑅 given by the previously introduced
2-approximation algorithm is such that there are no collisions
between parallel demands. Now we are going to prove that there
is always an optimal solution satisfying this nice, structural prop-
erty, when all the weights are equal to one.

Theorem 3.1. The Load Minimization Problem for constant
weights at value 1, has an optimal solution without collisions.

Proof. By contradiction, let us assume that every optimal
solution has collisions and take an optimal solution 𝑅 with the
minimum number of them. Let (𝑝, 𝑞) be a collision in 𝑅 such that
|𝐴(𝑅𝑝 ) | + |𝐴(𝑅𝑞) | is as large as possible.

Let 𝑜 ∈ D with 𝑒 (𝑜) ⊆ 𝑉 (𝑅𝑝 ). Then, 𝑅𝑜 ⊆ 𝑅𝑝 . Otherwise,
𝑅𝑝 ⊆ 𝑅𝑜 and (𝑜, 𝑞) would be a collision, because 𝑒 (𝑞) ⊆ 𝑅𝑝 .
Since |𝐴(𝑅𝑝 ) | < |𝐴(𝑅𝑜 ) |, we get a contradiction. Similarly, if
𝑒 (𝑜) ⊆ 𝑉 (𝑅𝑞), then 𝑅𝑜 ⊆ 𝑅𝑞 .

Consider the new solution 𝑅′ obtained from 𝑅 by replacing
𝑅𝑝 and 𝑅𝑞 by 𝑅𝑝 and 𝑅𝑞 , respectively.

Clearly, in𝐻𝑅′ the demands 𝑝 and𝑞 are not adjacent. Moreover,
any neighbor 𝑝 ′ of 𝑝 in 𝐻𝑅′ is also a neighbor of 𝑞 in 𝐻𝑅 because
𝑅′
𝑝 ⊆ 𝑅𝑞 ; similarly, any neighbor 𝑞′ of 𝑞 in 𝐻𝑅′ is also a neighbor

of 𝑝 in 𝐻𝑅 .
Let𝐶 be a set of pairwise adjacent demands in𝐻𝑅′ . If {𝑝, 𝑞}∩𝐶

is empty, then the demands in𝐶 are also pairwise adjacent in 𝐻𝑅 .
Whence, |𝐶 | ≤ ℓ (𝐻𝑅, 1).

Since 𝑝 and 𝑞 are not adjacent in 𝐻𝑅′ we can assume that
𝑝 ∈ 𝐶 and 𝑞 ∉ 𝐶 . Hence, the demands in 𝐶 \ {𝑝} are adjacent to
𝑞 in 𝐻𝑅 which shows that |𝐶 | ≤ ℓ (𝐻𝑅, 1). Therefore, ℓ (𝐻𝑅′, 1) ≤
ℓ (𝐻𝑅, 1).

It remains to see that the number of collisions in 𝑅′ is smaller
than the ones in 𝑅. This follows from the fact that 𝑝 and 𝑞 are
not involved in any collision in 𝑅′ and that any collision in 𝑅′

not involving neither 𝑝 nor 𝑞 is a collision in 𝑅. □

For a demand 𝑝 ∈ D, let D(𝑝) denote the set of all demands
parallel to 𝑝 . Also, let 𝑆𝑝 be the routing of D(𝑝) \ {𝑝} given by:
𝑆
𝑝
𝑞 ⊆ 𝑝+, when 𝑒 (𝑞) ⊆ 𝑉 (𝑝+) and 𝑆𝑝𝑞 ⊆ 𝑝−, when 𝑒 (𝑞) ⊆ 𝑉 (𝑝−).
A demand 𝑝 is critical for a routing 𝑅 if for all 𝑞 ∈ D(𝑝) \ {𝑝},
𝑅𝑞 = 𝑆

𝑝
𝑞 .

It is easy to see that if 𝑅𝑝 is the largest route of a routing 𝑅

without collisions, then 𝑝 is critical for 𝑅. Notice that the number
of routings for which a given demand 𝑝 is critical is at most
2 |D\D(𝑝) |+1.
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We can take advantage of this fact to derive a Fixed Parame-
ter Tractable Algorithm for the problem, parameterized by 𝑘 =

max{|D \ D(𝑝) | : 𝑝 ∈ D}.

Theorem 3.2. The Load Minimization Problem has a FPT algo-
rithm whose time complexity is 𝑂 (2𝑘 |D|4).

Proof. The algorithm computes, for each demand 𝑝 , a routing
𝑅𝑝 which minimizes w(𝑅, 1), over all routings 𝑅 of D for which
𝑝 is critical for 𝑅, i.e. 𝑅𝑞 = 𝑆

𝑝
𝑞 , for 𝑞 ∈ D(𝑝) \ {𝑝}. The output

of the algorithm is a routing 𝑅∗ that minimizes w(𝑅𝑝 ) over all
𝑝 ∈ D.

The algorithm is correct since each routing without collision
has a critical demand and then, an optimal solution to our problem
without collisions must be 𝑅𝑝 , for some 𝑝 ∈ D.

For a given routing 𝑅, computing w(𝑅, 1) takes time 𝑂 ( |D|3).
Then, to determine 𝑅𝑝 takes time 𝑂 (2𝑘 |D|3), since the set of
routings for which 𝑝 is critical has at most 2𝑘 elements. Therefore,
the time complexity of this algorithm is 𝑂 (2𝑘 |D|4). □

Even though we do not known how to find an optimal routing
for all the demands we can find an optimal routing for those
demands satisfying D = D(𝑝).

Proposition 3.3. Let 𝑝 ∈ D be such that D = D(𝑝). Suppose
that w+ ≥ w−, where w+ = w({𝑞 : 𝑆𝑝𝑞 ⊆ 𝑝+, 𝑞 ≠ 𝑝}) and
w− = w({𝑞 : 𝑆𝑝𝑞 ⊆ 𝑝−, 𝑞 ≠ 𝑝}). Then, there exists an optimal
routing 𝑅 without collisions such that 𝑅𝑝 = 𝑝−.

Proof. Suppose that 𝑅′ is an optimal routing without colli-
sions such that 𝑅′

𝑝 = 𝑝+. Then, w(𝑅′) ≥ w+ + 1. Since for each 𝑞
with 𝑆

𝑝
𝑞 ⊆ 𝑝+, 𝑅′

𝑞 = 𝑞+, to avoid collisions with 𝑅′
𝑝 = 𝑝+. Let 𝑅

be the extension of 𝑆𝑝 to a routing of D given by 𝑅𝑝 = 𝑝− (and
𝑅𝑞 = 𝑆

𝑝
𝑞 , for 𝑞 ≠ 𝑝). Then, we get that w(𝑅) = max{w+,w− +

1} ≤ w+ + 1, since w+ ≥ w−, by hypothesis, which shows that
w(𝑅) ≤ w(𝑅′). Therefore, since 𝑆𝑝 has no collisions, 𝑅 is an
optimal routing without collisions. □
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