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ABSTRACT

This work addresses the problem of estimating the probability
density function for each nutritional status considering the sex
and the kind of transition a person suffers between two consec-
utive periods. To this end, an optimization scheme is proposed
based on a hierarchical model considering previously known
information as input to estimate mixture densities through the
expectation maximization algorithm. Besides, a goodness-of-fit
metric is shown based on the shared area of the actual density
obtained from a Dirichlet distribution and its close relation with
the Beta distribution. Thus, several experiments are performed
showing a goodness-of-fit of 93.1%, at least.
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1 INTRODUCTION

Within the non-communicable diseases (NCDs), one of the most
important ones is obesity, which is a nutritional status with other
three -main- possible classifications: i) Underweight, ii) Normal,
iii) Overweight, being obesity the last one. In particular, this
disease has been widely studied in literature due to its close rela-
tion with serious health risks (comorbidities) [17] as well as high
associated costs to face it [7, 9]. Even more, analyzing the data
including the income level of countries, it shows an increasing
behavior depending on the income level of the country [24, 27].
Regardless this fact, the exactly reverse effect can be observed
when the income is analyzed at household level instead of coun-
tries. It is well known that the higher the country income the
higher the inequality income is; thus, the household acquisition
power is different for each person/family in the same country,
thereby a lower income is generally associated with worse di-
etary profile [2, 23] and therefore with higher obesity presence
and diet-related illnesses [16]. Although the prevalence! of nu-
tritional statuses is very important from an economic point of
view, it is more a public health challenge. For instance, people
that have not a normal nutritional status are associated with an
increased risk of anovulatory infertility [3] whereas people with
overweight or obesity are more likely to develop type 2 diabetes

Prevalence of a disease is defined as the net number of individuals that have the
disease in a particular moment.
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[1] and/or coronary artery disease [8]. Thus, the estimation of
the nutritional statuses must be an outstanding concern for any
government since it is expensive as well as dangerous for public
health.

In literature, there have been several studies addressing the
estimation of this phenomenon using the so-called transition
probabilities, being transition rates or transference rates are of-
ten used as synonyms, which are defined as the probability or rate
to move from one state of a categorical risk factor to another [25].
Although the results depend on these variables, estimation guide-
lines are not properly stated and hence different results might be
obtained under the same experimental settings. Shumei Sun Guo
et al. [13] fit logistic models in order to estimate the probability to
develop overweight and/or obesity (using the body mass index as
metric) until 35 years old considering a longitudinal study with
Men and Women aged between 3 and 20 years. Gonzéalez-Parra
et al. [12] develop an homogenous network epidemic model us-
ing the fact that NCDs are influenced by the environment, e.g.
an obesogenic environment, assuming the waiting times (tran-
sition probabilities) are Gamma distributed. J. van de Kassteele
et al. [25] formulate a linear programming model based on the
well-known transportation problem to estimate the transition
probabilities between any nutritional status. Zachary J. Ward et al.
[26] perform a longitudinal study using the National Health and
Nutrition Examination Survey to estimate the (transition) proba-
bility children aged 2 years have to be normal weight or obese at
35-years-old. Recently, Avalos et al. [29] proposed a mathemati-
cal model based on cross-sectional data in Chile to estimate the
transition probabilities from a body mass index to another on the
assumption they depend on the age group of the person and just
one transition is allowed between two consecutive years. Even
although a work we found uses a distribution over the transition
probabilities, this does not accomplish two important conditions,
the sum up to 1 nor the domain of the probabilities [0, 1]. Thus,
we propose a hierarchical approach to estimate the distribution of
transition probabilities based on the literature review performed
by Avalos [28] where transition probabilities are reported. To
achieve the proposed goal, we state the problem in Section 2 and
how we address it in Section 3 where mathematical expressions
are developed showing a general scheme to handle the estimation
problem. Then, the obtained results are shown in Section 4 and
thereafter analyzed to get insights for future works in Section 5.

2 STATEMENT OF THE PROBLEM

Let 7, 9 and K be the set of nutritional status, the set of transi-
tions and the set of sexes, respectively. Thus, let’s denote X ; x
a positive variable that denotes the transition probabilities for
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each nutritional status i € 7, transition j € J and sex k € K.
Thus, we denote Y i that represents the probabilities associated
to all set of nutritional status i € I for a given transition j € J
and sex k € K such that Y; = Ujer Xj jx- Besides, we de-
note T; ;. and Zj as collections of transition probabilities for a
given nutritional status and sex, and the collection of transition
probabilities for each sex k € K such that Tjx = Ujec 7 Xi jk
and Zy = Uje g Yjk = Uier Tik- Thereby, given the nature of
probabilities, we must impose two constraints to be satisfied:

i) Domain [0, 1]: Such as probabilities are defined, they must
belong to a bounded interval satisfying 0 < X; ;1 < 1,
Viel,jeJ,keXkK.

ii) Sum up to one: Let a person with nutritional status i € 7
and sex k € K. Then, this person has a certain proba-
bility associated to each transition j € J, nevertheless
we know that the sum over the transitions must satisfies
2jegXijk=1LViel keK

Besides, we denote f as the probability density function (PDF) as-
sociated to transition probabilities suchas X; j . ~ f(X; j x10; j k)
Viel,je J,k e XK, where Gi,j,k represents the set of parame-
ters that governs the PDF. Thus, we denote g and h as the PDFs
associated to a certain transition j € J and to a certain nutri-
tional statusi € I, such as Y ~ g(Y; kn; i) Tik ~ q(Tikl7ik)
and Z ~ h(Zy|y). The latter relationships can be drawn such
as Figure 1 shows.

j=1 j=2 i=1Jl
i=1
i=2
ik Tik
i=|1|
Yik Zy

Figure 1: Illustration of the relationships between the
stated variables over the sets for each sex k € K.

Thus, the problem is to estimate the PDF for each nutritional
status i € 7, transition j € J and sex k € K subject to the
aforementioned conditions.

3 HIERARCHICAL BETA MIXTURE MODEL

We address the estimation of the aforementioned PDFs using a
linear combination of them using the expectation maximization
algorithm (EM) [6] to maximize the log-likelihood of a mixture
model under a hierarchical scheme.

3.1 Mixture model and hierarchical scheme

Given these constraints, it is possible to propose that the PDFs
associated to each transition j € J (g) corresponds to a Beta
distribution such as Y; ~ Beta(Y; |, Bj k). Vk € K since
they belong to interval [0, 1]; whereas the collection of the as-
sociated distribution to that variable that satisfy the sum up to
one condition (T} ;) corresponds to a Dirichlet distribution such
as Z ~ Dirichlet(¢; ;), where £;; € RIJI vk e K.

Fortunately, these two distributions are closely related such
that a Dirichlet distribution is the multivariate generalization
of the Beta distribution, where the relationship is given by the
following equivalences

Gr=Ee Bk= D, &k VieJkek

e J\{j}
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3.1.1 Beta mixture model. Thus, as the probabilities of each
nutritional status i € 7 are also Beta distributed we have that
Oijk = (a;,j,k’ ﬂi’,j,k); then, each PDF corresponding to each
combination of transition j € J and sex k € K is given by the
mixture model defined as

9(Y kel Bik) = Z wijf Yixle ;1 By i) (1)
iel
subject to Z wijk =1 2)
iel
Wi, jk >0 Viel (3)

Nonetheless, this problem is highly non-linear, thereby the
approach we propose to address this issue is by using a hierar-
chical scheme using the EM algorithm simulating data from the
Dirichlet distribution satisfying the sum up to one constraint for
each nutritional status i € 7.

3.1.2  Estimation through EM algorithm. We can rewrite ex-
pression (1) in order to get the likelihood I such that for each
transition j € J and sex k € K, we have that

n]-’k

il B = [ | D wigaef Yilal s o B i)

t=1jel

©)

where n; . represents the length of the observed values (data) for
a given transition j € J and sex k € K. Then, the log-likelihood
L is given by

I‘lj’k
L(Yklajpe Bia) = D n [ D wijuf (Gklal o B0 | )
t=1 iel

thereby, for each nutritional status j € J and sex k € K we
have to tackle the non-linear optimization problem given by
max . L(-) subject to expressions (2) and (3).

So far, we have stated the optimization problem about the
estimation of the parameters that govern the associated distribu-
tion. However, we have to set the scheme in order to implement
the EM algorithm and some metrics to control the estimation
process.

3.1.3 Scheme. Regardless of the problem and the approach
to solve it has been stated already, we have to take into account
certain considerations regarding the most likely scenarios moti-
vated by the high non-linearity of the model. Thus, we focus on
the second stage of the EM algorithm where we can use as many
suitable optimization algorithms as possible. Nonetheless, the
solution might lie in a bad local maximum no matter how many
iterations were in the settings. Therefore, and in concordance
with the later analysis, it is useful to consider a rule that helps the
algorithm to avoid local maximum looking for a better solution.

This issue has been widely studied especially when the estima-
tion of neural networks arose. Indeed, we propose a transforma-
tion stage following the momentum term proposed by Rumelhart
& McClelland [21] to improve the gradient descent method. In
particular, when a local optimal point is found and it is not possi-
ble to improve after several trials, we consider a perturbation of
the estimated parameter generating a random number between
two values around the unit, i.e., randomly expand or contract the
solution. Otherwise, if the algorithm gets a better solution the
process continues while the stopping criteria, time limit, number
of iterations and tolerance, have not been achieved. The general
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Figure 2: Hierarchical model estimation process workflow.
Notice that the workflow depicts the hierarchical model,
the expectation maximization algorithm and the mixtures
densities in the first, second and third rectangle, respec-
tively.

diagram of the estimation process is set out by in Figure 2, where
the hierarchical scheme is depicted.

3.2 Goodness-of-fit

Regardless a local maximum is computed by the proposed opti-
mization scheme, another issue arises when a bad local maximum
is obtained and, even more, the non-linearity of the model does
not necessarily imply that the best solution found is also the best
fit. Thereby, we have to show how an expected result could be
in the first place and how to pick a suitable measuring metric in
order to get the goodness-of-fit of the solution.

We propose to assess the performance of the maximization
process considering the shared area between the actual curve
and the mixture model as a goodness-of-fit measure. This area,
however, can be difficult to compute due to there might be several

67

2.5 MO M®?
2.0 1 R R(2) R®A)
z\' 157 e A \
.5 \
=] \
it \
1.0 1 \
\
\
i \
0.5 \
\
i
0.0 - S
1 T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0

Transition probability

Figure 3: Illustration of a mixture model (dotted line) for
a particular nutritional status j € J and sex k € K consid-
ering four mixture densities and the marginal beta distri-
bution (black dashed line) with parameters 2.38 and 1.63,
where the common area Ay is depicted by the grey zone
under both curves. Besides, it shows the roots and the in-
tervals.

points where both curves intersect to each other. To this end, it
is necessary to introduce R i as the set of roots obtained from
equation (1) ordered in an increasing order where the first and
the last element are R(l) =0and R(lm) = 1, respectively, for
each transition i € I and sex k € K. Consequently, we consider
the set of intervals between two consecutive roots where each
interval is denoted by Mj(rk) = {Yx : R](rk) < Yk < Rj’rk}
such as for each transition j € J and sex k € K we have that
UVERj,k\HRj,kH Mj(,rk) = [0,1] and M(r) ﬂM<r+l) R(.;:l),
Vr € R \ {IRkl}. Thus, for each m1xture model obtained
in each combination of transition j € J and sex k € K the
goodness-of-fit is given by the common area A; i as follows

J

A=
Jk (r
k€M

Q! ,3<Y,~,k>de,k) ©)

rERj,k\{IRj,kl}(

where

(r)(Y k)= min (g(yj,k)> Z wi ik (Yik)
Yjke M,(rk) iel

Notice that in the ideal scenario the perfect fit implies A ; = 1

and |‘Rj’k| — oo Vje T,k € K, ie., both the actual density and

the mixture model coincide over the domain [0, 1]. An illustration

of a solution to this problem using four components into the

mixture model is as Figure 3 shows.

4 COMPUTATIONAL EXPERIMENTS

The computational experiments are implemented in R [19] 4.0.0
programming language and was executed in NLHPC infrastruc-
ture (National Laboratory for High Performance Computing)
considering a time limit of 600 seconds, the maximum number of
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Figure 4: Log-likelihood value throughout time (in seconds) according to the proposed estimation scheme using the opti-
mization algorithms Broyden, Fletcher, Goldfarb and Shanno (BFGS), Nelder-Mead (NM) and Simulated Annealing (SANN).
Notice that the black circle indicates where the best goodness-of-fit (common area) was obtained.

EM iterations of 200, a tolerance of 10E-9 and the maximum num-
ber of iterations without improvement of 50. Also, we consider
the perturbation as a uniform random number between 0.85 and
1.15.

To compute the log-likelihood we consider the values provided
by Avalos [28] to estimate the maximum likelihood estimators of
the Dirichlet distribution using the sirt package [20] and thereof
using them to simulate random numbers such that n; ;. = 1000,
Vj € .,k € K. Then, we use the maxLik package [14] to solve
the maximization problem considering three optimization algo-
rithms:

(1) The BFGS algorithm proposed by Broyden [4], Fletcher
[10], Goldfarb [11] and Shanno [22]; considering 200 iter-
ations.

(2) The NM algorithm proposed by Nelder & Mead [18]; con-
sidering the reflection factor equal to 1, the contraction
factor equal to 0.5 and the expansion factor equal to 2.

(3) The SANN (Simulated Annealing) algorithm proposed by
Kirkpatrick, Gelatt and Vecchi [15] and Cerny [5]; consid-
ering the starting temperature for the cooling schedule
equal to 10 and the number of function evaluations at each
temperature equal to 10.

Besides, we also address missing values related issues given
those infeasible transitions, e.g. decreasing or increasing when
a person has underweight or obesity, respectively; in this re-
gard, we use the number data to compute the starting mixture
weights such as they are considered to be directly or inversely
proportional to the presence of missing values in the input.

68

Figure 4 shows the evolution of the log-likelihood consider-
ing all the settings involved in the experiment throughout time
highlighting that point where the best goodness-of-fit value was
obtained. It is clear to see that both log-likelihood and goodness-
of-fit are not closely related, which is why there is no guarantee
of choosing one over the other would give the best result be-
cause they are equally important considering the relevance of
the log-likelihood and the interpretability and the suitableness of
the estimated parameters. Thereby, we can realize that in almost
all the estimated models the best results were obtained by using
directly proportional starting weights but for those Women that
decrease their current nutritional status.

Then, even although the obtained results show excellent per-
formance in terms of goodness-of-fit, Figure 5 shows this metric is
not conclusive by itself. However, for both sexes that remain their
current nutritional status, the obtained results show low kurtosis
in comparison with other transitions, which is the major problem
of other models where there is one density, at least, that has high
kurtosis, i.e., it concentrates the most of the density around a
narrow interval. Therefore, despite the goodness-of-fit shows
excellent values, the suitableness of the obtained results are not
correct at all but for those individuals that remain their current
nutritional status, especially for Men. Nonetheless, this contradic-
tory analysis is given by the unbalanced weight of each mixture
density and, moreover, the important outstanding differences
between the parameters al.”j’ , and ﬂl’] > Where it is highlighted
the case al.”j’ <1 (see Figure 5 c), d) and f), where this parameter
takes values equal to 0.89, 0.73 and 0.84, respectively).
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Figure 5: Mixture model of the best obtained result based on the goodness-of-fit for each combination of sex and transition.
The long-dashed line represents the actual density whereas the dashed line is the mixture density. Besides, the parameters
for each PDF associated to each nutritional status and their respective weights in the respective mixture model are shown

in the table.

5 CONCLUSION

In this work, we propose a hierarchical beta mixture model to
estimate the probability density functions associated to each nu-
tritional status according to the sex and the transition a person
could suffer between two consecutive periods based on the im-
posed conditions and the relationship between the Dirichlet and
Beta distribution. Thereby, several computational experiments
are carried out following the proposed optimization scheme us-
ing the expectation maximization algorithm representing the
goodness-of-fit through the shared area between the actual den-
sity (marginal Beta) and the mixture model. The obtained results
show excellent goodness-of-fit values but they also set out the
best log-likelihood (objective function) does not imply the best
goodness-of-fit. Thus, it is possible to get bad local maximum
points due to the high non-linearity of the model, which are the
cases of the transitions to decrease and to increase, for both sexes.
Likewise, it is possible to see these -bad- local maximums have
high kurtosis values and high differences in the weight of each
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nutritional status on the mixture model. Finally, it is important to
remark that the optimization process does not use the time limit
for computing the results due to it cannot improve the obtained
solution according to the proposed transformation step.

For future works, we propose to increase the grid of experi-
ments and to construct a hybrid scheme about the optimization
algorithms and studying bad local optimal maximum regarding
the characterization of an actual good maximum following a
multi-criteria framework.
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