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ABSTRACT
We present NextiaJD, a data discovery system with high predic-
tive performance and computational efficiency. NextiaJD aids
data scientists in the discovery of datasets that can be crossed.
To that end, it proposes a ranking of candidate pairs according to
their join quality, which is based on a novel similarity measure
that considers both containment and cardinality proportions be-
tween candidate attributes. To do so, NextiaJD adopts a learning
approach relying on profiles. These are succinct and informa-
tive representations of the schemata and data values of datasets
that capture their underlying characteristics. NextiaJD’s features
are fully integrated into Apache Spark and benefits from it to
parallelize the profiling and discovery processes. The on-site
demonstration will showcase how NextiaJD can effectively sup-
port large-scale data discovery tasks with a large set of datasets
the audience will be able to play with.

1 INTRODUCTION
Data-driven organizations are nowadays generating valuable in-
sights by crossing their core data with external third party data,
such as data from open data catalogs [6]. This has led to the
creation of massive data repositories, or data lakes [8], of hetero-
geneous datasets without a proper structure or organization [7].
Yet, it is reported that data scientists spend up to 80% of their
time in the process of discovering and integrating such datasets
[9]. The lack of efficient strategies to automate such discovery
process has a large impact on productivity. We exemplify this
fact with the following scenario:

Example 1.1. Emma is a data scientist employed by a marketing
agency, hired to launch a campaign in the northern region of Spain.
The objective is to find the best way to upsell a new product. To
that end, Emma is provided with a reference dataset, such as that
depicted in Table 1, containing the store locations and marketing
channels that will be used to advertise the new product. She knows
that the best strategy for this task is to use demographic data to
define consumer segments, ultimately driving the kind of promotion
and budget devoted to it. Thus, Emma plans to search for datasets in
the agency’s data lake, requiring to manually explore each dataset
to find interesting ones to be crossed.

1st Admin. Level 2nd Admin. Level Store code Channel
Aragon Zaragoza ST123 Social networks
Catalonia Lleida ON456 Transit ads
Catalonia Barcelona ST093 Social networks

Basque Country Araba ON123 TV
... ... ... ...

Table 1: Stores in Spain’s northern region (𝐷𝑟𝑒 𝑓 )
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The previous example is a commonplace data discovery sce-
nario. This is the process of automatically identifying and cross-
ing relevant datasets to enable informed data analysis [1]. We put
the focus on the task of discovering joinable attributes among
datasets in a data lake. The problem is commonly tackled by
measuring the similarities among pairs of attributes, aiming to
provide the user with higher similarity pairs. We distinguish
exact and approximate approaches, where there is a trade-off
between their search accuracy and algorithmic complexity. Mas-
sive data lake environments, containing hundreds of datasets
with thousands of attributes, require solutions with the ability to
scale-up, and thus rule out exact methods. The state-of-the-art
on approximate approaches to data discovery is those adopting
comparison by hash techniques, such as MinHash [2] or LSH En-
semble [11]. These compare and predict similarities among pairs
of attributes using techniques that, with high probability, hash
similar elements to the same bucket (e.g., locality-sensitive hash-
ing or locality-preserving hashing). This process is optimized by
building index structures for a particular threshold, such that
they allow to efficiently look up the predicted similarity. We next
elaborate on applying hash-based techniques on Example 1.2.

Example 1.2. Table 2 depicts a sample of Emma’s agency data
lake. She aims to automatically find datasets that will yield the
best join with 𝐷𝑟𝑒 𝑓 . To do so, as an indicator of a high quality
join, she builds a threshold index to discern pairs of attributes
with a containment similarity larger than 0.75. Then, Emma uses
this index to find promising joinable pairs. Examples of the pro-
posed pairs are𝐷𝑟𝑒 𝑓 .1𝑠𝑡 𝐴𝑑𝑚𝑖𝑛 𝐿𝑒𝑣𝑒𝑙 = 𝐷1 .𝐴𝑟𝑒𝑎,𝐷𝑟𝑒 𝑓 .1𝑠𝑡 𝐴𝑑𝑚𝑖𝑛
𝐿𝑒𝑣𝑒𝑙 = 𝐷2 .𝑅𝑒𝑔𝑖𝑜𝑛 and 𝐷𝑟𝑒 𝑓 .1𝑠𝑡 𝐴𝑑𝑚𝑖𝑛 𝐿𝑒𝑣𝑒𝑙 = 𝐷3 .𝑃𝑟𝑜𝑑𝑢𝑐𝑡 .
Note, however, that the last pair is clearly a false positive, since
many regions have a matching product name. Indeed, the values
from 𝐷𝑟𝑒 𝑓 .1𝑠𝑡𝐴𝑑𝑚𝑖𝑛𝐿𝑒𝑣𝑒𝑙 can also be found in datasets related
to ship names, people names, places that are not from Spain, etc.
This is a usual scenario in heterogeneous data lakes (i.e., files in
different formats and covering different semantic topics) that tend
to generate a significant amount of false positives pairs when only
considering containment. The number of false positives generated
by current approaches is overwhelming when working at scale.

State of the art hash-based data discovery systems tend to op-
timistically propose too many candidate pairs at scale. Moreover,
the arrival of new datasets requires to reconstruct the threshold
indexes for efficient lookup. Such factors can overwhelm data sci-
entists when dealing with large data lakes. Alternatively, another
kind of approximate method to data discovery is the compari-
son by profile approach. These approaches extract summaries of
datasets and their attributes to build a profile. Profiles are then
compared to predict whether a given pair of attributes will join.
Such succinct representations can be efficiently generated in a
distributed fashion, and their comparison is much more efficient
than comparing data values from a complexity point of view.
Nevertheless, state of the art profile-based solutions, such as Flex-
Matcher [3] and Aurum [4], have a low quality prediction rate
with respect to other approaches. This is mainly due to either the
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(a) 𝐷1 – Spain census data

Area Total
population

Persons
under 18

Households with
a computer

Aragon 3,017,804 23.2 % 84.1 %
Catalonia 973,764 20.9% 89.9%
Asturias 28,995,881 25.5% 89.2%
Galicia 6,045,680 22.1% 91.3%

... ... ... ...

(b) 𝐷2 – Average life expectancy per region

Region Life expectancy
(Women)

Life expectancy
(Men)

Catalonia 77.9 71.9
Galicia 82.6 77.5

Cantabria 78.8 73.3
Andalusia 81.4 76.8

... ... ...

(c) 𝐷3 – One million products reviews

Product Brand Kind Rating
Asturias Sidra de Asturias Cider 7.22
Catalonia K. McRoberts Book 8.83
Echo dot Amazon Smart speakers 8.3
Aragon Ambar Beer 8.22
Georgia Fossil Watch 5.4

... ... ...

Table 2: Three datasets proposed in a data discovery (𝐷1, 𝐷2 and 𝐷3)

Figure 1: Profiling and data discovery stages implemented
by NextiaJD

usage of a predictive binary class (i.e., joinable or non-joinable)
that generate too many false positives in practice; or to the adop-
tion of rather basic profiles that do not accurately describe the
underlying data.

In order to overcome the previous issues, we present NextiaJD1,
a novel data discovery system with high predictive performance
and computational efficiency. NextiaJD aims to fill the gap gener-
ated by the low predictive performance of current profile-based
methods, as well as the limited precision and scalability of hash-
based ones on data lakes. NextiaJD adopts a novel learning-based
method based on data profiles. Importantly, the steps related to
profiling and classification can be efficiently run in parallel. Our
experiments (see [5] for more details) have shown that the predic-
tive performance of NextiaJD is comparatively better than that
obtained using state-of-the-art profile-based solutions, and the
rate of false positives (i.e., precision) is improved w.r.t. hash-based
ones. Additionally, NextiaJD also outperforms these systems in
terms of scalability. This is achieved by integrating NextiaJD into
the Apache Spark2 ecosystem for distributed data processing,
providing a competitive advantage with respect to the state of
the art on scalability. NextiaJD’s predictive model is based on
random forest classifiers, a highly expressive model robust to out-
liers and noise. These models, unlike current approaches, predict
a categorical quality for a candidate join based on both the con-
tainment and cardinality proportion of the involved attributes,
and provide a join quality ranking that facilitates to disregard
false positives.

Our demonstration will let EDBT participants impersonate
Emma on her data discovery tasks. These involve exploring a
data lake, generating a ranking based on the join quality of at-
tribute pairs, as well as generating data processing pipelines from
them. Similarly to other contemporary data discovery solutions

1More info and resources are available at https://www.essi.upc.edu/dtim/nextiajd/
2https://spark.apache.org/

(e.g., [10]), NextiaJD is accessible via a friendly notebook inter-
face, nowadays the customary tool to develop and visualize data
science tasks. Nevertheless, NextiaJD is able to scale-up and man-
age more and larger datasets. Additionally, the audience will be
encouraged to try NextiaJD on datasets of their interest.

This will demonstrate how NextiaJD facilitates data discov-
ery by reducing the time on high quality data exploration and
discovery, and thus increasing the productivity of data scientists.

Outline. We next introduce NextiaJD’s demonstrable features
to resolve the motivational example and other data discovery
scenarios. We first provide an overview of NextiaJD, followed by
a presentation of its core features. Lastly, we outline our on-site
demonstration, involving the motivational scenario as well as
other more complex real-world use cases.

2 NextiaJD IN A NUTSHELL
Apache Spark has emerged as the leading framework for Big Data
processing due to its scalability and performance. It has been
extended with modules to enable structured data processing and
machine learning, namely SparkSQL andMLlib. NextiaJD extends
Spark’s source code with new operators to discover joinable
datasets: attributeProfile and discovery. Figure 1, depicts a
high-level overview of the stages involved in these operators.

2.1 Attribute profiling
The profiling operator implements the computation of a dataset’s
profile, which is composed of attribute meta-features. These
represent the underlying distribution and characteristics of at-
tributes. Hence, the method attributeProfile lazily computes
the attribute profiles from a DataFrame object once and stores
them for later reuse. This process can be triggered at ingestion
time, or later in the discovery phase. NextiaJD takes full advan-
tage of the Spark’s Catalyst Optimizer to efficiently distribute
the workload on very large datasets.

Kinds of profiles. NextiaJD collects extensive meta-features
about the structure and content of String attributes in a DataFrame.
We consider three kinds of meta-features: cardinalities, value dis-
tribution, and syntax. Cardinalities provide a broad view of an
attribute via meta-features like the number of distinct values,
uniqueness, or incompleteness. The value distribution builds a
histogram by collecting the number of occurrences and aggre-
gating it to compute meta-features such as the mean, standard
deviation, or quantiles. Finally, syntax meta-features aim to de-
scribe the shape of data and their patterns. NextiaJD collects
meta-features such as the length of values, numbers, or alphabetic
values. Here, NextiaJD also exploits several regular expressions
to identify specific data types such as telephones, IPs, or emails.

Overall, NextiaJD computes 48 meta-features that compose
an attribute’s profile. Figure 2, depicts the Scala code used to
compute attribute profiles for 𝐷𝑟𝑒 𝑓 , as well as an excerpt of its
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Spark.read.csv("Dref.csv").attributeProfile()

1st Admin. Level 17 0 12.59 5% . . .
2nd Admin. Level 50 130 0.73 12% . . .

Store code 8 5 8.22 1% . . .
. . .
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Figure 2: Code to compute profiles and output’s excerpt

output. Additionally, prior to the discovery process, NextiaJD also
computes binary meta-features, which denote the characteristics
of the relationship between pairs of attributes. Precisely, we mea-
sure the degree of similarity and dissimilarity between attribute
names by computing the Levenshtein distance. NextiaJD also es-
timates a best-case containment scenario, assuming all unique
values are covered in both attributes. The current set of meta-
features used result from a principal component analysis and
therefore, all of them are guaranteed to contribute with relevant
information to make the decision. Indeed, NextiaJD computes
richer profiles compared to other profile-based approaches.

2.2 Data discovery
The data discovery operator exposes the functionality to dis-
cover joinable attributes by using the profiles. We distinguish
two scenarios: discovery-by-attribute and discovery-by-dataset.
The former focuses on the discovery from a reference attribute,
while the latter exhaustively searches all attributes in a reference
dataset. Both settings require a reference dataset and a list of
candidate datasets. Additionally, discovery-by-attribute requires
a reference attribute name. This operator encapsulates and hides
from the analyst the complexity required to implement the dif-
ferent stages in the discovery pipeline: profile normalization,
comparison, classification, and ranking. Thus, NextiaJD does not
require to parameterize or process the input data.

Normalization. Meta-features in a profile are represented in
different magnitudes, therefore normalization plays an important
role to guarantee a meaningful comparison between profiles.
NextiaJD adopts the Z-score normalization method for all meta-
features in a profile. To do so, a UDF function computes the
mean and standard deviation for a given meta-feature using the
respective SparkSQL aggregation functions.

Comparison. Comparing profiles requires computing distances
among meta-features corresponding to a pair of attributes. Once
pairs are created, we merge the profiles subtracting the normal-
ized meta-features from the reference attribute and the to-be-
compared attribute by using Spark SQL.

Classification. NextiaJD adopts a learning approach that allows
us to classify pairs of attributes producing high quality joins.
Precisely, NextiaJD aims to predict the join quality, which is an
asymmetric rule-based measure combining both containment
similarity and cardinality proportion. In [5] we introduced the
concept and role of the cardinality proportion, which comple-
ments the containment metric to remove a substantial amount of
the false positives generated by it. In short, the cardinality propor-
tion contextualizes containment, and as such, different cardinali-
ties tend to identify different semantics or granularity levels for

heterogeneous data lakes. Such metric yields a quality class from
a totally-ordered set 𝑆 = {None, Poor, Moderate, Good, High}.
Hence, the definition of join quality is as follows:

Definition 2.1. Let 𝐴, 𝐵 be sets of values, respectively the ref-
erence and candidate attributes. The join quality among 𝐴 and 𝐵
is defined by the expression

𝑄𝑢𝑎𝑙𝑖𝑡𝑦 (𝐴, 𝐵) =



(4) High, 𝐶 (𝐴, 𝐵) ≥ 𝐶𝐻 ∧ |𝐴 |
|𝐵 | ≥ 𝐾𝐻

(3) Good, 𝐶 (𝐴, 𝐵) ≥ 𝐶𝐺 ∧ |𝐴 |
|𝐵 | ≥ 𝐾𝐺

(2) Moderate, 𝐶 (𝐴, 𝐵) ≥ 𝐶𝑀 ∧ |𝐴 |
|𝐵 | ≥ 𝐾𝑀

(1) Poor, 𝐶 (𝐴, 𝐵) ≥ 𝐶𝑃
(0) None, otherwise

NextiaJD embeds a set of general purpose models, one per
quality label in the previous definition, trained with Random
Forest classifiers from Spark MLlib. These models were trained
by transforming a multi-class classification problem into a binary
one per class. Each of these models takes as input the normalized
unary and binary meta-features of the pair of attributes for which
we aim to predict their join quality. These models were trained
following good practices in model learning and the ground truth
(including labeling), data preparation, and validation processes
are thoroughly presented in a reproducible manner at: https:
//www.essi.upc.edu/dtim/nextiajd/. As part of this process, we
empirically determined the values 𝐶𝐻 = 3/4 = 0.75,𝐶𝐺 = 2/4 =
0.5,𝐶𝑀 = 1/4 = 0.25,𝐶𝑃 = 0.1 for containment, and 𝐾𝐻 =

1/4 = 0.25, 𝐾𝐺 = 1/8 = 0.125, 𝐾𝑀 = 1/12 = 0.083 for cardinality
proportion on our training dataset composed of 138 real datasets.
The models validation was conducted with 139 real datasets
from different topics and file sizes and yielding a high predictive
performance [5]. As a result, for each candidate join pair the
discovery operator associates a join quality label (i.e., from None
to High) and five probability scores, one per model.

A key distinguishing factor of NextiaJD with regard to other
profile-based approaches (e.g., FlexMatcher [3]), is that it relies on
general purpose models that can be used for any data discovery
process with heterogeneous datasets.

NextiaJD.discovery(Dref, Seq[D1,D2,D3],
"1st Admin. Level")

Dataset Attribute Quality Probability
𝐷2 Region High 0.95
𝐷1 Area High 0.93

Figure 3: Code to trigger a discovery process, and the two
first elements of the ranking it generates

Ranking. Finally, an evaluation is performed in the probabilities
of a candidate join pair to assign a single probability. In short, the
highest probability wins, except for cases where several probabil-
ities are close to each other. In those cases, we follow a rule-based
strategy to avoid misclassifications due to the fact that the prob-
ability for the None class is the only one predicting no join. We
identified two main cases generating the most misclassifications:
(i) when the no join probability (i.e., the probability for None) is
above 50% and (ii) when the join-related labels (i.e., from Poor to
High) are all below 50% and the None probability is close to them
(measured by an empirical threshold). In these cases, the final
decision is modified to the second highest probability (which
in practice, given these rules, mostly means to that of None).
Then, NextiaJD generates a partial order by considering, first,
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Figure 4: NextiaJD GUI in a Zeppelin notebook

the predicted quality label (and the totally-ordered set related to
them). For pairs yielding the same quality label, we rank them
considering the probability yielded by the model (i.e., that of the
model of the quality labeled finally assigned). An example of the
ranking produced for Emma’s use case is presented in Fig. 3. By
default, NextiaJD only shows High and Good qualities. However,
other qualities can be requested on-demand.

3 DEMONSTRATION OVERVIEW
Computational notebooks have become the de-facto tool for
data science projects. In our experience in several Data Science
projects, data scientists like to explore datasets with their usual
analytical tools. Using a third party tool to perform data discovery
is disruptive for their day-by-day tasks, and they tend to avoid it.
For this reason, we created NextiaJD, which fills a current gap to
bring data discovery closer to data scientists. We argue that em-
bedding data discovery into notebooks and taking advantage of
their interactive capabilities will improve data scientists’ produc-
tivity. Therefore, for our demonstration, we will use a Zeppelin
notebook to present the main functionalities: profiling and data
discovery, and how they can be used in the day-by-day of data
scientists. We have also created an informative companion web-
site3 where the notebooks4, source code and experiments are
publicly available. It is worthy to say that NextiaJD is not tied
to this demonstration platform and can be integrated into any
technology that supports Spark in Java or Scala clients.

We encourage attendees to impersonate Emma and follow the
workflow she would have to execute using NextiaJD. Note that
we assume for this demonstration that datasets were profiled
when ingested into a repository to be ready for use in further
discoveries. However, new datasets can be processed and pro-
filed on demand if required during the demo. Figure 4 shows
NextiaJD’s GUI in a Zeppelin notebook:
(1) Dataset selection. First, attendees can select and preview

datasets available in our heterogeneous data lake containing
Emma’s dataset and datasets from different topics such as
movies, territories, finance, etc. Through this step, attendees
can also preview the profiling computed to have a better
perspective of what kind of meta-features NextiaJD collects.

(2) DataDiscovery.Once a dataset is selected, we proceed to the
data discovery task. Users can perform two types of setting:
discovery-by-dataset or discovery-by-attribute. Through this
step, it is possible to select the desired quality. NextiaJD will

3https://www.essi.upc.edu/dtim/nextiajd/
4NextiaJD online notebooks have deactivated parallelism to keep them 24/7
in a budget machine. Find instructions to install Spark and NextiaJD in
https://www.essi.upc.edu/dtim/nextiajd/#resources

execute the data discovery operator and will handle all steps:
normalization, comparison, classification, and ranking.

(3) Explore results. After data discovery, results are visualized
in a table wherewe show the attributes pairs found, the source
of the datasets, the quality predicted, and the probability.

(4) Validate results. Once the attendees find an interesting pair
proposed by NextiaJD, they can validate the result by execut-
ing the join operation. This operation will update the dataset
preview with the result of the join. Additionally, the similar-
ity and cardinality proportion obtained by the join operation
is also computed and shown.
Last, but not least, we are aware that some data scientists are

advanced users. In these cases, they do not need to use NextiaJD’s
GUI but directly use the new it offers as an extension of Spark.
These are compiled and ready in the Spark fork available from our
website. This is shown in the live demo on our website. Overall,
this demonstration will offer a comprehensive dive into NextiaJD.
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