
DocDesign 2.0: Automated Database Design for Document
Stores with Multi-criteria Optimization

Moditha Hewasinghage, Sergi Nadal, Alberto Abelló
Universitat Politècnica de Catalunya

Barcelona, Spain
moditha|snadal|aabello@essi.upc.edu

ABSTRACT
We present DocDesign 2.0, a novel system that supports data-
base design for document stores. DocDesign 2.0 automatically
generates a document store design driven by a query workload
and a set of optimization objectives. In the presence of a massive
search space, DocDesign 2.0 adopts multi-objective optimization
techniques that, with high probability, guarantee to yield the
optimal design based on the preferences (i.e., weights) provided
by the end-user. In this paper, we demonstrate how DocDesign
2.0 improves the productivity on the task of designing a document
store, as well as how the quality of the results is improved with
respect to those obtained by manually generating the design.

1 INTRODUCTION
The plethora of current NoSQL systems introduces alternative
data storage methods to the traditional relational database man-
agement systems (RDBMSs) [2]. Among these, document stores
have gained popularity due to the semi-structured data storage
model. In contrast to the RDBMS normalization, document stores
favor embedding, trying to keep the data related to a single in-
stance together instead of spreading it across different tables.
This increases the complexity of database design for document
stores as opposed to RDBMS, where reaching 3NF or BCNF guar-
antees an optimal database design in the majority of the use-cases.
Database design for document stores is, in general, given low
precedence, andmostly carried out in a rule-based ad-hocmanner.
For instance, MongoDB, the leading document store, provides a
set of design patterns1 that provide certain guidelines on how
to structure documents. However, it has been shown that the
choice of design has a major impact on performance, specially in
the NOSQL realm [1]. Thus, it is advantageous to have a better
design by exploiting any prior knowledge on the requirements
rather than a purely random one.

Let us take an example of implementing an online auction
system based on the RUBiS benchmark [3] in a document store.
Fig. 1 shows the 5 entities and 6 relationships composing the

Figure 1: ER diagram of RUBiS Benchmark

1https://www.mongodb.com/blog/post/building-with-patterns-a-summary

© 2021 Copyright held by the owner/author(s). Published in Proceedings of the
24th International Conference on Extending Database Technology (EDBT), March
23-26, 2021, ISBN 978-3-89318-084-4 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

RUBiS framework. We can have a normalized solution, similar to
that in a RDBMS, an embedded single-document solution, or the
solution suggested by a purely workload-based schema recom-
mender, such as DBSR [11], which denormalizes certain entities.
To show the complexity of finding the optimal database design
in a document store, let us define a running example use case
consisting of two single entities from RUBiS, namely Product and
Comments, and an equiprobable hypothetical workload defined
as follows:
• Given a Comment ID, find its text.
• Given a Product ID, find its name.
• Given a Comment ID, find the Product name.
• Given a Product ID, find all of its Comments.

In this scenario, we have two entities and one relationship.
If we assume that all attributes for an entity are kept together
within a document, we are left with the decision on where the
relationship must be stored in the final design. Thus, database
designs can be enumerated based on the alternatives to store
the relationship, which depend on three independent choices:
direction, representing, and structuring as shown in Fig. 2, to-
gether with two examples. Direction determines which entity
keeps the information about the relationship. It can be one of
the two entities, or both. Representation affects how this rela-
tionship is stored either by keeping a reference or embedding
the object. Finally, Structuring determines how we structure
the relationship, either as a nested list or flattened. For example,
if keep the references to the comments in the product, they can

Figure 2: Relationship design choices, and two examples

Demo

Series ISSN: 2367-2005 674 10.5441/002/edbt.2021.81

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2021.81

Figure 3: Overview of the DocDesign 2.0 Architecture

be stored as a list of references (comment:...) or in a flattened
manner (comment_1:.., comment_2:..). Hence, we end up with 12
possible designs for our running example. Each of these could
potentially be the optimal solution for an end-user depending
on their preferences. For example, the design where products
and comments nest their counterparts redundantly (i.e., both di-
rections are stored by embedding the objects) will benefit query
performance, as all queries can be answered with a single random
access. However, this is at the expense of storage space due to
redundancy. What if we only have a single reference on the prod-
uct for its comments? Does the reduction of storage space justify
the impact on performance? This trade-off between alternatives
makes the process of finding the optimal design a complex one.

The number of relationships of the use-case (𝑟) determines the
number of candidate designs, which is exponential (12𝑟), as the
storage option of each relationship is independent of others. Note,
however, that here we did not consider allowing heterogeneous
collections/lists, which is possible in the context of schemaless
databases, leading to a complexity increase. For example, collec-
tions at the top level could potentially contain different kinds of
documents. In our running example, user and region documents
could be stored in a single heterogeneous collection mixing both.
Precisely, for a design with 𝑐 top-level collections, the total num-
ber of combinations will be

∑𝑐
𝑖=1

{
𝑐
𝑖

}
where

{
𝑛
𝑘

}
is the Stirling

number of the second kind, used to calculate the number of ways
to partition 𝑛 distinct elements into 𝑘 non-empty subsets [5].
Overall, such exponential growth makes impossible to enumer-
ate and evaluate all candidate designs. Hence, existing solutions,
such as DBSR [11], NoSE [10] and Mortadelo [4], mainly rely on
the query workload to propose a database design.

Contributions. Considering the above observations it is clear
that the problem of storage design for document stores has a
large search space. Moreover, each candidate solution poten-
tially performs differently among the considered cost functions.
It is, hence, obvious that exhaustively exploring the search space
is prohibitively expensive. To overcome this issues, in this pa-
per, we present DocDesign 2.0, a novel solution that addresses
the complex problem of database design for document stores.
DocDesign 2.0’s contributions involve automatically generating
potential designs, as well as evaluating the performance of a design
on four objectives: storage size, query performance, degree of het-
erogeneity, and average depth of documents. Finally, DocDesign
2.0 presents the end-user with the near-optimal database design spe-
cific to his/her preference of the objective for a given use-case and
query workload. Precisely, in this paper, we consider read-only
query workloads. DocDesign 2.0 embeds and extends our for-
mer solution DocDesign [7], which aids on evaluating database

designs based on storage size and query performance, requir-
ing however to provide a concrete schema as input. Contrarily,
DocDesign 2.0 automatically generates such designs yielding,
with a high probability, the near-optimal one with respect to a
set of objectives.

Outline. In the rest of the paper we introduce DocDesign 2.0’s
demonstrable features to resolve the motivational example and
other database design for document stores scenarios. We first
provide an overview of DocDesign 2.0and its core features. Lastly,
we outline our on-site demonstration, involving the motivational
scenario as well as other more complex real-world use cases.

2 DOCDESIGN 2.0 IN A NUTSHELL
DocDesign 2.0 adopts multi-objective optimization techniques,
which have shown to be effective on obtaining near-optimal solu-
tions out of a large search space in the presence of contradicting
objectives [9]. In these scenarios, one can only aim to obtain a
Pareto solution (a solution that, in the presence of multiple objec-
tives, cannot improve one objective without worsening another).

Search algorithm. Local search algorithms consist of the sys-
tematic modification of a given state, by means of action func-
tions, in order to derive an improved state. The intricacy of these
algorithms consists of their parametrization, which is at the same
time their key performance aspect. Due to the genericity of dif-
ferent use cases DocDesign 2.0 can tackle, we decided to choose
hill-climbing, a non-parametrized search algorithm which can
be seen as a local search, always following the path that yields
higher utility values. Nevertheless, the cost functions we use
are highly variable and non-monotonic, which can cause hill-
climbing to provide different outputs depending on the initial
state. To overcome this problem, we adopt a variant named shot-
gun hill-climbing, which consists of a hill-climbing with restarts
using random initial states.

An overview of DocDesign 2.0 is shown in Fig. 3 and we present
the modules and components of DocDesign 2.0 in the following
subsections.

2.1 User Inputs
There are three inputs the end-user must provide, namely the
equivalent to an Entity-Relationship diagram of the domain,
query workload, and the weights of the cost functions.

Entity-Relationship. Refers to the use case-specific entities,
their attributes, and the relationships between them. To accu-
rately measure the different cost functions, DocDesign 2.0 re-
quires the number of instances of each entity, the size of its

675

a. Input entity relationships
{

"atoms ":[{

"PRODUCT ":{"* P_ID ":{" count ":2500000 ," size ":4},

"P_NAME ": varchar (155)}},

{" COMMENT ":{"* C_ID ":{" count ":5000000 ," size ":4},

"C_TEXT ": varchar (105)}}],

"relationships ":[{" P_ID ":{" C_ID ":"1~2"}}]}

b. Immutable graph c. Query workload
[

{"freq ":0.25 ,"q":[" C_ID","C_TEXT "]},

{"freq ":0.25 ,"q":[" P_ID","P_NAME "]},

{"freq ":0.25 ,"q":[" C_ID","P_ID","P_NAME "]},

{"freq ":0.25 ,"q":[" P_ID","C_ID","C_TEXT "]}

]

Figure 4: Input entity relationships, its internal graph representation, and query workload

attributes, and the relationship multiplicities (Fig. 4.a). This in-
formation is considered immutable, and the database design is
carried out on top of it. We use a hypergraph-based canonical
model internally to represent them [8]. (shown in Fig. 4.b). Fur-
thermore, the entities are atomic, meaning that attributes related
to an entity cannot be split.

Query workload. Consists of a set of queries together with
their frequencies to be executed in the use case. These queries
are independent of the database design and are represented as
subsets of the immutable information (Fig. 4.c).

Cost function weights. Allows the end-user to include his/her
preference in the database design. Currently, DocDesign 2.0 sup-
ports tuning four cost functions corresponding to the objectives:
query cost, storage size, degree of heterogeneity within collec-
tions and sets, and average depth of the documents. The end-user
can decide how important each of these costs are and resolve
trade-offs between them. For instance, forcing higher importance
to query cost and lowering the one of storage size would lead to
a schema with higher redundancy and better performance.

2.2 Design Operations
Information about entities, their attributes, and the relationships
are considered immutable, and the database design is built from
it. Indeed, with regard to our running example, the final design
must have information on all the warehouses, districts, and the
relationships between them. A hypergraph-based representation
enables DocDesign 2.0 to guarantee this property (we refer the
reader to [7, 8] for further details). We introduce two methods to
fit the shotgun hill climbing approach: generation of a random
design, and evolution of a design using valid transformations.

Random design generation. The random schema generator
relies on identifying subsets of entities and relationships that will
be made into a collection (referred to as connected components)
and the structure of the documents inside the collection in a
document store database design. Based on the 12 possible designs
that a relationship can be stored, we make the following decisions
randomly in the schema generation process.
• Root of the connected component is chosen at random
from the available entities. This choice determines the root
document of the document store collection that this component
represents. In our running example, this is either picking the
warehouse or the district as the root of the collection. Let us
assume we picked the warehouse in this case.

• Choosing the next path to explore expands the connected
component and determines it’s structure. Potentially multiple
relationships connect an entity to others in a connected com-
ponent. Thus, for a given entity of a connected component, a
random subset of these relationships is picked to further ex-
pand, determining the depth and the related documents of the
final design. This, together with the root of the document deter-
mines the choice of the direction in Fig. 2 except for replicating

both. In the running example, we choose the relationship to the
district from the warehouse (already inside the component).

• Embedding or Reference determines possible ways to rep-
resent the relationship between two entities of a component.
If embedding is chosen, the entire document is embedded in
the parent and referencing only keeps the reference of the
related document on the parent. In the running example, if the
embedding option is chosen, the final collection will be ware-
houses with embedded districts. We also make the decision of
replicating both based on a given probability.
The above choices are carried out until all the entities and

relationships belong to at least one of the connected components.
Finally, each of the components is represented as a document
store collection. These initial designs do not contain heteroge-
neous collections or lists, yet, since we initially ignore the choice
of flattening and only use the nested option for structuring with
regard to the options in Fig. 2. This decision reduces the complex-
ity of the random generation and the number of starting schemas.
However, we introduce this through design transformations to
ensure that we do not lose certain designs in the process.

Design transformations. Even though it is possible to generate
most of the potential designs through the random generator, it is
very unlikely to reach an optimal state randomly. Moreover, we
omitted the heterogeneous collections/lists and flattened ones in
the random process. Thus, we introduce seven design transfor-
mation operations and use five of them to generate the neighbors
of a particular design. These transformations are inspired by
the rule-based design patterns proposed by MongoDB.We have
validated them by recreating the MongoDB design patterns as
sequences of transformations2.
• Union - merges two collections/lists at the same level and
creates a heterogeneous one.

• Segregate - separates a homogeneous collection/list out of a
heterogeneous one.

• Embed - embeds a related document inside another.
• Flatten - flattens an embedded document or a list inside it’s
parent.

• Group - creates an embedded list of related documents inside
another (opposite of flattening a list).
We also identify two other operations, namely,Nest and Split.

Nest operation creates a nested document inside another and is
unnecessary as we already cover it through the random genera-
tion. Split is similar to vertical partitioning a document. However,
adhering to the atomic entity rule, we decided not to include this
operation as it would also expand the search space uncontrollably.

2.3 Optimization
Candidate designs obtained through random generation or trans-
formation need to be evaluated in order to assess their optimality.

2More details at https://www.essi.upc.edu/~moditha/transformations

676

Figure 5: DocDesign 2.0 user interface

Cost functions. We introduce four cost functions to be mea-
sured and optimized in DocDesign 2.0: query cost, storage cost,
degree of heterogeneity, and average depth of the documents.
These are defined as follows:
• Query cost (𝐶𝐹𝑄), is the sum of the relative query perfor-
mance values calculated from the schema using a cost model
for document stores [6].

• Storage size (𝐶𝐹𝑆), is the total storage size required by the
collections and indexes, calculated using the canonical model.

• Degree of heterogeneity (𝐶𝐹𝐻), is the number of different
types of documents in a collection/list. We use the average over
all the collections and lists of the schema. Each heterogeneity
is given a weight depending on which level the list/collection
lies in the document. The higher the level, the higher the as-
signed weight, penalizing heterogeneities at higher levels of
the document structure.

• Depth of the documents (𝐶𝐹𝐷), is the average depth of the
documents of the design.

Utility function. Guiding the local search algorithm requires
the definition of a utility function taking into account the end-
user’s preferences. Here, this is a function to beminimized. Hence,
the end-user can assign weights to each of the cost functions
according to their importance in the use-case. Then, for a given
design𝐶 , we define the utility as the normalized weighted sum of

each cost function 𝑢 (𝐶) =
𝑛∑
𝑖=1

𝑤𝑖

𝐶𝐹𝑖 (𝐶) −𝐶𝐹𝑜
𝑖

𝐶𝐹𝑚𝑎𝑥
𝑖

−𝐶𝐹𝑜
𝑖

. The expression

considers the weight𝑤 of each cost function, which is used on
the transformed utility function for𝐶 . This is a normalized value
that considers the utopia (i.e., the expected minimal) and the
maximal design costs, yielding values between zero and one.

3 DEMONSTRATION OVERVIEW
DocDesign 2.0 has a web interface as shown in Fig. 5. In the
on-site demonstration, we will showcase DocDesign 2.0 using
the RUBiS usecase as a real-world example The manual database
design process is expensive as RuBiS contains five entities and
six relationships, leading to a large solution space. Moreover,
we use the 11 queries with their access frequencies as the work-
load. First, for the ease of explanation, we will use the paper’s
running example (i.e., Products and Comments) and the four
queries to showcase the ease of using DocDesign 2.0, initially
with equal weights and then higher weight to query cost. In the
first scenario with equal weights, the optimal schema is prod-
ucts having references to their comments. When optimizing only
for the query performance, DocDesign 2.0 suggests redundantly

nesting comments inside the product and product inside the com-
ment. This approach reduces the actual runtime almost by half
at the expense of double the storage space. This establishes the
functionality and the efficiency of DocDesign 2.0.

Then, we will import the full RUBiS E/R to DocDesign 2.0 to-
gether with the queries and showing the ability of DocDesign
2.0 to solve more complex use-cases. The results presented by
DocDesign 2.0 have a higher throughput once implemented com-
pared to the best solution suggested by DBSR [11]. Moreover, the
suggestion by DocDesign 2.0 has far less redundancy compared
to the ones by DBSR. The participants are also allowed to interact
with the DocDesign 2.0 demonstration with the ability to choose
between different queries and objective function weights as well
as generate their own. The resulting updates made to the design
can be discussed by means of changes introduced (e.g.: giving
more importance to query cost will result data redundancy). We
also present the actual runtimes (calculated by a benchmarking
suite) and storage sizes for the usecases and the designs that we
demonstrate. This allows the users to validate the effectiveness
of the solutions generated by DocDesign 2.0.

Since the JSON input format is specific to DocDesign 2.0, we
also include a functionality to create them through an intuitive
UI. Moreover, the users can suggest their own design to compare
against the one suggested in terms of the four objective functions.
The designs suggested by DocDesign 2.0 rely on pre-defined
queries. If the queries are unknown the end users have to rely on
the other three cost functions to obtain a "good enough" design.
Through this hands-on experience, we are able to show the ability
of DocDesign 2.0 to address the complex problem of document
store database design improving the quality and productivity as
opposed to a manual design process.3

ACKNOWLEDGMENTS
This research has been funded by the European Commission
through the Erasmus Mundus Joint Doctorate Information Tech-
nologies for Business Intelligence - Doctoral College (IT4BI-DC)

REFERENCES
[1] Paolo Atzeni, Francesca Bugiotti, Luca Cabibbo, and Riccardo Torlone. 2016.

Data modeling in the NoSQL world. Computer Standards & Interfaces (2016).
[2] Rick Cattell. 2010. Scalable SQL and NoSQL data stores. SIGMOD Record 39, 4

(2010).
[3] Emmanuel Cecchet, Julie Marguerite, and Willy Zwaenepoel. 2002. Perfor-

mance and scalability of EJB applications. In SIGPLAN. ACM, 246–261.
[4] A. de la Vega, D. García-Saiz, C. Blanco, M. E. Zorrilla, and P. Sánchez. 2020.

Mortadelo: Automatic generation of NoSQL stores from platform-independent
data models. Future Gen. Comp. Sys. 105 (2020).

[5] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. 1994. Concrete
Mathematics: A Foundation for Computer Science, 2nd Ed. Addison-Wesley.

[6] Moditha Hewasinghage, Alberto Abelló, Jovan Varga, and Esteban Zimányi.
[n.d.]. A Cost Model for Random Access Queries in Document Stores (Under
review).

[7] Moditha Hewasinghage, Alberto Abelló, Jovan Varga, and Esteban Zimányi.
2020. DocDesign: Cost-Based Database Design for Document Stores. In Int.
Conf. Scientific and Statistical Database Management. SSDBM.

[8] Moditha Hewasinghage, Jovan Varga, Alberto Abelló, and Esteban Zimányi.
2018. Managing Polyglot Systems Metadata with Hypergraphs. In Int. Conf.
on Conceptual Modeling. ER.

[9] R TimothyMarler and Jasbir S Arora. 2004. Survey of multi-objective optimiza-
tion methods for engineering. Structural and multidisciplinary optimization
26, 6 (2004), 369–395.

[10] Michael Joseph Mior, Kenneth Salem, Ashraf Aboulnaga, and Rui Liu. 2017.
NoSE: Schema design for NoSQL applications. IEEE Trans. Knowl. Data Eng.
29, 10 (2017).

[11] Vincent Reniers, Dimitri Van Landuyt, Ansar Rafique, and Wouter Joosen.
2020. A Workload-Driven Document Database Schema Recommender (DBSR).
In Int. Conf. on Conceptual Modeling. ER.

3Demo video available at https://vimeo.com/505248323

677

	DocDesign 2.0: Automated Database Design for Document Stores with Multi-criteria OptimizationModitha Hewasinghage, Sergi Nadal, Alberto Abelló

