
Q-Store: Distributed, Multi-partition Transactions via
Queue-oriented Execution and Communication

Thamir M. Qadah
1†
, Suyash Gupta

2
, Mohammad Sadoghi

2

Exploratory Systems Lab

1
Purdue University, West Lafayette

2
University of California, Davis

†
Umm Al-Qura University, Makkah

tqadah@purdue.edu, sugupta@ucdavis.edu, msadoghi@ucdavis.edu

ABSTRACT
Distributed database systems partition the data across multiple

nodes to improve the concurrency, which leads to higher through-

put performance. Traditional concurrency control algorithms aim

at producing an execution history equivalent to any serial history

of transaction execution. Hence an agreement on the final serial

history is required for concurrent transaction execution. Tradi-

tional agreement protocols such as Two-Phase-Commit (2PC)

are typically used but act as a significant bottleneck when pro-

cessing distributed transactions that access many partitions. 2PC

requires extensive coordination among the participating nodes

to commit a transaction.

Unlike traditional techniques, deterministic concurrency con-

trol techniques aim for producing an execution history that obeys

a pre-determined transaction ordering. Recent proposals for de-

terministic transaction processing demonstrate high potential

for improving the system throughput, which had led to their

successful commercial adoption. However, these proposals do

not efficiently utilize and exploit modern computing resources

and are limited by design to conservative execution.

In this paper, we propose a novel distributed queue-oriented

transaction processing paradigm that fundamentally re-thinks

how deterministic transaction processing is performed. The pro-

posed paradigm supports multiple execution paradigms, multiple

isolation levels, and is amenable to efficient resource utilization.

We employ the principles of our proposed paradigm to build

Q-Store, which is the first to support speculative execution and

exploits intra-transaction parallelism efficiently among proposed

deterministic and distributed transaction processing systems. We

perform extensive evaluation against both deterministic and non-

deterministic transaction processing protocols and demonstrate

up to two orders of magnitude of improved performance.

1 INTRODUCTION
Distributed transaction processing is challenging due to the in-

herent overheads of costly commit protocols like 2-Phase-Commit
(2PC) [13]. Even for use cases such as in-memory databases and

stored-procedure-based transactions, 2PC is either used (e.g.,

[24, 25, 46]) or avoided by eliminating the processing of multi-

partitioned transactions (e.g., [27, 28]). Note that 2PC by itself

does not ensure serializable transaction processing, and it re-

quires a distributed concurrency control protocol to guarantee

serializability. Traditional concurrency control protocols may

abort active distributed transactions non-deterministically to

© 2020 Copyright held by the owner/author(s). Published in Proceedings of the

23rd International Conference on Extending Database Technology (EDBT), March

30-April 2, 2020, ISBN 978-3-89318-083-7 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons

license CC-by-nc-nd 4.0.

Client Transactions

Single-threaded Sequencing

Single-threaded Scheduling

Multi-threaded
thread-to-transaction

Conservative 5-phase execution
DB

Client Transactions

Multi-threaded Planning

Multi-threaded
thread-to-queue

Speculative or Conservative
DB

Client
Transactions

Batches of
Sequenced

Transactions Queues of
transaction
fragments

Figure 1: Overview of transaction processing in Calvin
(left) and Q-Store (right)
ensure serializable transaction processing. When such abort deci-

sions are coupled with 2PC, the cost of the distributed transaction

processing is further increased because of the overhead of roll-

backs and restarts.

Deterministic databases [12, 40] reduce the cost of committing

distributed transactions by imposing a single order on executing

a batch of transactions prior to actual execution. By ensuring

the same pre-execution ordering, deterministic database systems

eliminate the need to abort transactions for violating serializ-

ability guarantees (in optimistic concurrency control), avoiding

deadlocks (in pessimistic concurrency control), or node crash

failures.

Unfortunately, the state-of-the-art designs of distributed de-

terministic databases suffer from other inefficiencies. We iden-

tify three of these inefficiencies that limit their performance

and scalability. First, they rely on single-threaded pre-execution

sequencing and scheduling mechanisms which cannot exploit

multi-core computing architectures and limit vertical throughput

scalability [20]. Second, they mostly support a conservative (non-

speculative) form of transaction execution. One exception is the

work by Jones et al. [24], which performs speculative-execution

only for multi-partition transactions but limits the concurrency

for single-partition transactions (a property inherited from H-
Store’s design). Third, they follow a thread-to-transaction assign-

ment which limits intra-transaction parallelism [34, 35].

In this paper, we propose a novel transaction processing para-

digm of queuing-oriented processing, and describe Q-Store. Q-Store
is built on the principles of queue-oriented paradigm, which pro-

vides a unified abstraction for processing distributed transactions

deterministically and does not suffer from the inefficiencies such

as lower utilization of cores. Furthermore, it admits multiple

execution paradigms (i.e., speculative or conservative) and multi-

ple isolation levels (i.e., serializable isolation or read-committed

isolation) seamlessly, unlike existing proposals of the determin-

istic database. It is important to note that several existing non-

deterministic database systems already support multiple forms

of isolation levels (e.g., [22, 30, 33, 37, 38]).

Series ISSN: 2367-2005 73 10.5441/002/edbt.2020.08

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2020.08

Our queue-oriented transaction processing paradigm can effi-

ciently utilize the parallelism available with commodity multi-

core machines by maximizing the number of threads doing useful

work. Q-Store processes batches of transactions in two multi-

threaded yet deterministic phases of planning and execution,
as shown in the right side of Figure 1. Each phase utilizes all

available computing resources efficiently, which improves the

system’s throughput significantly. The planning phase is car-

ried out by multiple planning-threads, delivering maximum CPU

utilization. Planning-threads generate queues of transaction op-

erations that require minimal coordination among execution-
threads. These queues are executed by execution-threads that are
assigned to different cores to maximize cache efficiency. Each

execution-thread is assigned one or more queues for execution.

In other words, these queues constitute a schedule for executing

transnational operations of a batch of transactions. Any coordi-

nation among execution-threads is performed via efficient and

distributed lock-free data structures. In particular, we make the

following contribution, in this paper.

• We propose a novel queue-oriented transaction processing

paradigm that facilitates distributed transaction processing

and unifies local and remote transaction processing in a single

paradigm based on pre-determined priorities of queues. Our

proposed paradigm supports multiple execution paradigms

and multiple isolation levels and leads to implementation of

efficient transaction processing protocol (Section 3).

• We present a formalization of our proposed paradigm and

prove that it produces serializable histories to guarantee seri-

alizable isolation. We also formally show how our paradigm

can support read-committed isolation seamlessly (Section 4).

• We design and build Q-Store, which is a distributed transaction

processing system that relies on the principles of our proposed

queue-oriented paradigm (Section 5).

• We present the results of an extensive evaluation of Q-Store. In
our evaluation, we compare Q-Store against non-deterministic

and deterministic transaction processing protocols using work-

loads from standardmacro-benchmarks such as YCSB and TPC-

C. We perform our evaluation using a single code-base, which

allows us to conduct an apple-to-apple comparison against

5 transaction processing protocols. Our experiments demon-

strate that Q-Store out-performs state-of-the-art deterministic

distributed transaction processing protocols by up to 22.1×.

Against non-deterministic distributed transaction processing

protocols, Q-Store achieves up to two orders of magnitude bet-

ter throughput (Section 6).

2 BACKGROUND
In this section, we give an overview of Calvin [40] as a represen-
tative for deterministic databases. As far as we know, Calvin is

regarded as the state-of-the-art distributed deterministic trans-

action processing protocol, and has been commercialized [12].

Other deterministic transaction processing protocols are either

designed for non-distributed environments (e.g., [9, 11, 35]) or a

variation that improves parts of Calvin’s protocol while re-using
the remaining parts as-is (e.g., [44]). These proposals are cov-

ered in Section 7 in more details. We also briefly describe the

transaction model used by Q-Storewhich adopts the same transac-

tion model used by [35], which is in sharp contrast from Calvin’s
transaction model.

2.1 Transaction Processing in Calvin
This section gives a brief description of how Calvin works based
on [40]. The basic processing flow requires 3 phases: a sequencing

phase, a scheduling phase, and an execution phase with 5 sub-

phases. Figure 1 (left), illustrate these phases.

Each node, in Calvin, runs a single sequencer thread, a single
scheduler thread, and one or more worker threads. The sequencer

thread forms batches of sequenced transactions. It uses a time-

based demarcation of batches. Batches formed by different nodes

are processed by scheduler threads in strict round-robin fashion.

Scheduler threads use deterministic locking to schedule trans-

actions that require the full knowledge of the read/write sets

of transactions, which is similar to Conservative 2PL [8]. Unlike

Conservative 2PL, Calvin ensures that conflicting transactions are
deterministically processed according to their sequence number

in the sequencing batch. For example, let ta and tb denote two

conflicting transactions (i.e., cannot be scheduled to execute con-

currently), and seq(t) denote the sequence number of transaction

t as determined by the sequencer thread. If seq(ta) < seq(tb),
then Calvin ensures that ta is scheduled before tb . Once locks on
all the records are acquired by the scheduler thread, the transac-

tion is ready for execution, and it is given to a worker thread for

execution.

As Calvin is a distributed database system, each worker thread

executes an assigned transaction in the following phases:

Phase 1 - Read/write set analysis: This phase is used to deter-
mine the set of nodes that are participating in the transaction.

For this set, nodes that are executing at least one write operation

are marked as active participants.

Phase 2 - Perform local read operations: This phase is per-
formed by all participants if records are available locally.

Phase 3 - Serve remote read operations: Multicast records

to active participants. This phase is the last phase performed

by non-active participants. At this point, they can declare the

transaction as completed and move to the next transaction.

Phase 4 - Collect remote read operations: This phase is per-
formed by active participants only, and they need to wait for

remote records before moving to the next phase. Hence, worker

threads can postpone the active transaction (while waiting) and

resume another transaction that is ready for execution.

Phase 5 - Execute transaction logic andperform localwrite
operations: This phase is also performed only by active partic-

ipants.

Discussion. The original Calvin paper by Thomson et al. [40]

does not clearly describe how a transaction is committed (or

aborted). However, by looking into the code-base of one of the

implementations of Calvin from [20], which we ported to our

test-bed, we discovered that the basic idea goes as follows.

The sequencer determines the participant nodes of every se-

quenced transaction by performing Phase 1 from above. When

a participant node completes its work on a transaction, it sends a

one-way acknowledgment (ACK) message to the sequencer of the

transaction. When the sequencer collects all ACK messages from

all participants, it commits the transaction and sends a response

message to the client of the transaction. Worker threads (that ex-

ecute transactions) can re-use read/write set analysis performed

by the sequencer thread to avoid needless computation.

2.2 Q-Store’s Transaction Model
We adopt the same transaction model used by [35]. In this model,

a transaction is broken into fragments. A fragment can perform

74

O1,T1

EQ1(q,p) EQ2(q,p) EQ3(q,p)

O2,T1

O1,T2
O2,T2

O1,T3

O2,T3

Queue
Head

O2,T4

O1,T4

O2,T5

O3,T5

O3,T5

O1,T6

O1,T7

Figure 2: An example illustrating transaction dependen-
cies in Q-Store. Execution-queues (EQs) are planned by
planning-thread PT(q,p)

multiple operations on the same record, such as read, modify,

and write operations. A fragment can cause the transaction to

abort, and in this case, we refer to such fragments as abortable

fragments.

Furthermore, there are can be dependencies among fragments.

In Figure 2, we illustrate these dependencies. There are 7 planned

transactions in 3 execution-queues. Fragments are denoted as

Oi,Tj where i denotes the fragment index in transaction Tj . We

describe the notations in detail in Section 4.

Data dependencies exist when an operation in a fragment

requires a value that is read by another fragment of the same

transaction (solid black arrow between O2,T5 and O3,T5).

Conflict dependencies exist between fragments from different

transactions that access the same record, and the dependee frag-

ment performs a write operation (solid red arrow between O3,T5
and O1,T7).

Two kinds of commit dependencies exist between fragments.

The first kind is concerned with fragments of the same trans-

action. In this case, a commit dependency exists between two

fragments of the same transaction if the dependee is an abortable
fragment (dotted black arrow between O2,T4 and O1,T4). In this

example,O2,T4 is an abortable fragment. The second kind of com-

mit dependencies, which we refer to as speculation dependencies,
exist between fragments of different transactions. Tracking them

is required when using the speculative execution paradigm. A

speculation dependency exists between the two fragments when

the dependent fragment reads speculatively uncommitted data

written by the dependee fragment (dotted red arrow between

O1,T4 and O1,T6).

Discussion. It is worth noting that speculation dependencies

are a realization of conflict dependencies. Tracking speculation

dependencies is needed to ensure correct transaction execution

with speculative execution. Note that, in Q-Store, conflict depen-
dencies are not explicitly tracked during planning. It is possible

to capture these during planning, but that would introduce addi-

tional overhead to the planning phase, which is undesirable.

3 TRANSACTION PROCESSING IN Q-STORE
In this section, we describe the novel and unique features of

Q-Store. As far as we know, Q-Store is the first distributed de-

terministic transaction processing system to provide following

features.

Efficient two-phase distributed processingmodel. In Fig-

ure 1, we show the critical differences between Calvin’s processing
model and Q-Store’ processing model. On the left side (Calvin) of
Figure 1, the total number of phases required to process a batch of

Clients

Planner Threads

Client Transaction
Queues

Execution Threads

In-Memory
Database Partition

Batch
Meta-data

Planner Threads

Client Transaction
Queues

Execution Threads

In-Memory
Database Partition

Batch
Meta-data

Planner Threads

Client Transaction
Queues

Execution Threads

In-Memory
Database Partition

Batch
Meta-data

Server Node 1
(Partition 1)

Server Node 2
(Partition 2)

Server Node 3
(Partition 3)

Figure 3: System Architecture

transactions is 3with the execution phase requiring 5 sub-phases.

Note that the sequencing and the scheduling phases in Calvin
are single-threaded. On the right side, Q-Store processes a batch
of transactions in two multi-threaded phases of planning and

execution. The execution phase does not include any sub-phases.

Q-Store reduces the number of phases compared to Calvin (See

Figure 1). Furthermore, Q-Store uses all available cores efficiently.

All available threads work on the planning of a batch, then all of

them work on execution.

Multi-paradigm execution. The design of Q-Store admits

multiple execution paradigm. The processing of a batch of trans-

actions can be speculative or conservative. Transaction isolation

can be serializable or read-committed.

Queue-oriented processing. The planning phase in Q-Store
abstracts the logical semantics of a transaction into prioritized

queues of transaction fragments. Queues provide ordering for

conflict fragments that seamlessly resolve conflict dependencies

among fragments of different transactions. Therefore, threads

during execution only deal with the other dependencies. Further-

more, queues can be implemented efficiently to ensure efficient

execution and communication.

3.1 Queue-oriented Architecture
In Figure 3, we illustrate an example architecture ofQ-Store, which
consists of three server nodes. A client may send transactions

that require access to multiple partitions, which we call multi-

partition transactions. A client selects one of the server nodes

for a given transaction and sends the transaction to the selected

server. The role of the selected server is to coordinate the ex-

ecution of the received transaction. Note that a server can be

selected during the client session establishment, which allows

mechanisms for load-balancing. Mechanisms for load-balancing

include client-side libraries and middle-ware-based mechanisms.

These details are beyond the scope of this paper.

Also in Figure 3, each node maintains a set of local client trans-
action queues. There is one client transaction queue per planner-

thread to avoid contention. Planner-threads create fragments

from transactions and capture dependencies, and create queues

of fragments for each execution thread. Each planner-thread also

updates the Batch Meta-data distributed data structure. The Batch
Meta-data stores information about fragment dependencies, and

execution-queues progress status. It is a globally shared lock-

free distributed data structure that is used to facilitate minimal

coordination among execution threads. In Figure 3, yellow ar-

rows depict communication patterns during the planning-phase

75

Batch
Meta-data

Communication
Threads

Worker
Threads

Locally
Planned

EQs

Remotely
Planned

EQs

In-Memory Storage

DataIndex

Clients

Network Buffers

Transaction
Queues

Remote EQs

Figure 4: Server Node Architecture

while green arrows depict communication patterns during the

execution-phase.

Zooming into a single node, Figure 4, we illustrate the major

components of a server node. Similar to Figure 3, yellow and

green arrows, depict communication during planning-phase and

execution-phase, respectively.

Each server employs a set of threads to complete various tasks.

We can broadly categorize threads into two sets: (i) communi-
cation threads, and (ii) worker threads. Q-Store employs commu-

nication threads to handle message transmission and reception

among the servers and clients. They are also responsible for han-

dling messages between server components and network buffers.

They store client transactions in transaction queues, send and

receive remote execution-queues (EQs), and apply updates to the

batch meta-data.

Each worker thread may participate in either one or two

phases: planning and execution (e.g., we can have dedicatedworker
threads for each phase). Hence depending on the phase, we refer

to these worker threads as either planning-threads or execution-
threads. We use P to represent the set of planning-threads and E
to represent the set of execution-threads. The planning-threads

take a set of transactions and generate plans to execute these

transactions. The execution-threads execute transactions accord-

ing to these plans.

3.2 Priorities in Q-Store
In Q-Store, we use the notion of priorities to impose order at vari-

ous levels granularity. The concept of priority captures the or-

dering of queues and transaction fragments elegantly. Execution-

threads need to respect these priorities to ensure the correct

ordering of conflicting transactions. We have three different lev-

els of granularity from the perspective of execution.

We formalize the notion of priorities by representing our dis-

tributed system as a set S, which is the set of server nodes. We

assign each server Sq a priority q, that is,

S := {S1, S2,, Sq }, where q ≥ 1

Q-Store requires each server to associate a priority p with each

of its planning-threads. Note that the planning-thread priority p
differs from the server priority q. As each planning-thread also

inherits the priority of its server, so each planning-thread has

two associated priorities. Hence, we use the Pq,p representation

for a planning thread with priority p.

Pq := {Pq,1, Pq,2,, Pq,p }, where q,p ≥ 1 (1)

Planning-threads create execution-queues for transactions

and tag them with their priorities. The execution-queues created

by a planning-thread constitute schedules of transaction frag-

ments of the set of transactions processed by the planning-thread.

Execution-threads execute fragments according to planned sched-

ules while respecting the priorities of execution-queues in addi-

tion to checking and resolving dependencies among fragments.

3.3 Logging and Recovery
Q-Store like other deterministic transaction processing systems

(e.g., [25, 40]) assumes a deterministic stored procedure based

transaction model [1]. Within this model, all inputs of a trans-

action are available before this transaction can start execution.

Therefore, the input of a batch of transactions is logged before

they are delivered to execution-threads. Periodic check-pointing

of the database state is used to reduce the time required for re-

covery in case of a failure. In this paper, we mainly focus on

transaction execution as we can rely on the same techniques for

logging and recovery as [25, 40].

4 FORMALIZING Q-STORE
We now formalize the planning and execution phases of Q-Store.
Later in this section, we also prove that Q-Store transaction pro-

cessing protocol produces serializable histories.

4.1 Planning Transactions
As stated earlier in the previous section, the set of planning-

threads Pq at a server inherit its priority q, and each planning-

thread Pq,p in the set Pq has another priority p to prioritize

planning-threads of the same server. In general, planning-threads

may use any mechanism to create execution-queues as long as

they ensure that conflicting operations are placed in the same

queue. For example, a range-based partitioning of the record-
identifiers can be used, which ensures that operations accessing

the same record are placed in the same execution queue. However,

a placement strategy that minimizes the dependencies among

execution-queues can yield better performance. More sophisti-

cated approaches based on some cost model are also possible as

long as the planning times are minimized and do not introduce

significant overhead to the processing latency. The study of such

strategies is out of the scope of this paper.

We denote the set of these execution-queues as Qq,p and indi-

vidual execution-queue as Qi
q,p .

Qq,p := {Q1

q,p , Q
2

q,p , ...,Q
i
q,p }, where i ≥ 1 (2)

In Q-Store, each planning-thread processes a batch of transac-

tions and places its fragments in its respective execution-queues.

Hence, each ith execution-queue Qi
q,p contains a set of oper-

ations that access the records belonging to that sub-partition,

which implies that fragments from two execution-queues created

by the same planning-thread have operations, access records

in different sub-partitions, and any conflicting fragments (i.e.,

access the same records) are placed in the same execution-queue.

Q-Store’s planning-threads try to balance the load and create

execution-queues equal to the number of execution-threads in

the system. Such planning is done to keep execution-threads

from being idle. More formally:

76

∀ Pq,p , ∈ Pq , |Qq,p | ≥ |E| (3)

However, it is undesirable in practice to have the number of

execution-queues much larger than the number of execution-

threads because it can lead to performance degradation due to

low-level issues (e.g., cache-locality).

Each transaction can perform multiple operations. These op-

erations can be grouped into fragments if they are accessing the

same record. Otherwise, a fragment has a single operation. We

denote the set of fragments in a transaction T as OT . For presen-

tation simplicity, let us assume that each fragment Ok,T in set

OT can be either a read (R) or a write (W).

OT := {O1,T , O2,T , ...,Ok,T }

A planning-thread may distribute the fragments of a given

transaction acrossmultiple execution-queues.Q-Store needs to im-

pose an order to the transactions that are being planned. This or-

der can be as simple as the order imposed by the client-transaction-
queue. A transaction and its fragments inherit the priorities of

its planning-thread.

Hence, we can identify the order of a transaction T using a

triple (i,p,q), where q is the priority of the server, p is the priority

of the planning thread, and i can be the order imposed by the

client-transaction-queue.

∀ i, j, i < j → T(j,p,q)
follows

−−−−−−→ T(i,p,q) (4)

Equation 4 shows that as T(i,p,q) has a smaller identifier (i)
thanT(j,p,q), so it must have been placed in the client-transaction-

queue before T(j,p,q).
Since transactionsmay have operations accessing remote parti-

tions, planning-threads similarly create remote execution-queues

to be executed at remote nodes. Note that our notation of an

execution-queue Qi
q,p identifies the priority q of a remote server,

which guides the execution phase. Therefore, queue execution at

remote nodes is also deterministic.

When the planning-threads have collectively processed a set of

transactions, they mark the resulting batch of execution-queues

(local and remote) as ready for execution and deliver them to

(local and remote) execution threads.

4.2 Speculatively Executing Transactions
The execution phase is performed by a set of execution-threads.

Each server consists of a set of execution-threads E.

E := {E1,E2, ...,Ej }, where j ≥ 1

We require all the execution-threads to adhere to the following

condition strictly:

Condition: For each record, operations belonging to higher priority
execution-queues must always be executed before executing any
lower priority operations.

∀ Qm ∈ Qq,p , ∀ Qn ∈ Qs,t , ∀ Oi ∈ Qm , ∀ O j ∈ Qn

| (q > s) ∨ ((q = s) ∧ (p > t)) → O j
follows

−−−−−−→ Oi
(5)

This condition ensures that the order of executed operations

follows a single order within and across servers. In other words,

Q-Store requires execution-threads E to process the operations

from those execution-queues, which have the highest priority

among all the servers and planning-threads. However, Q-Store
does allow the execution-queues produced by a single planner

thread to be executed in parallel because they have the same

priority.

Execution-threads process fragments from the execution-queues

speculatively such that fragments are allowed to read uncom-

mitted data (speculating that it would commit at a later time).

Q-Store tracks these speculative actions and captures correspond-

ing speculation dependencies (Section 2.2).

When a violation of an integrity constraint causes a transac-

tion to abort, other fragments of the same transaction that have

updated records must rollback as well. The other fragments may

have uncommitted updates that have been read by fragments be-

longing to other transactions. In this case, dependent fragments

and their respective transactions must rollback, causing a cascade

of aborts through the batch.

4.3 Conservatively Executing Transactions
Q-Store also seamlessly supports a conservative execution, which

introduces stalls when processing queues, but has the advantage

of avoiding cascading aborts. In Q-Store, a transaction is aborted

when the transaction logic induces an abort (e.g., for violating an

integrity constraint). By design, non-deterministic aborts (e.g.,

for ensuring deadlock-free execution) do not exist in Q-Store.
Looking back at our example illustrating transaction depen-

dencies from Section 2.2, FragmentO1,T4 depends onO2,T4 which

is abortable. In conservative execution, the execution-thread exe-

cuting EQ2

q,p stalls until the dependency is resolved. The event

of resolving the dependency indicates that O2,T4 is not going

to abort. Therefore, any records updated by fragment O1,T4 are

safe for any read operations by subsequent fragments in the

execution-queue.

Fragments are marked by planning-threads to ensure that

execution-threads know when to wait and stall the processing

of an execution-queue. When execution-threads encounter a

marked fragment, they stall waiting for its commit dependencies

to be resolved. Execution-threads can work on other execution-

queues if they need to stall due to unresolved commit dependen-

cies. Therefore, we are still exploiting parallelism by allowing

other fragments to execute. If an integrity constraint violation

happens, then, only one transaction is aborted and rollbacked.

4.4 Serializability
We now prove the serializability guarantees of Q-Store’s transac-
tion processing model.

Theorem 4.1. Q-Store’s distributed transaction processing is
serializable.

Proof. One principle of our queue-oriented paradigm is to

treat local and remote execution-queues in the same way. There-

fore, the fact that an execution-queue is remote or local is an

orthogonal concept.

Let us assume that Q-Store produces a non-serializable history,
which means that there exist 4 transaction fragments that are

executed in an incorrect order. Let these fragments be as follows:

Oi,Tn ,O j,Tn ,Ok,Tm and Ol,Tm . Here Oi,Tn conflicts with Ok,Tm
and O j,Tn conflicts with Ol,Tm . Further, let n < m in the client

transaction queue, which means that a planner plans Tn before

Tm . A non-serializable history means that at one execution-queue

Oi,Tn is executed before Ok,Tm while Ok,Tm is executed before

Oi,Tn at another execution node. More formally,

∃Qa ,Qb s.t. {Oi,Tn ,Ok,Tm } ∈ Qa ∧ {O j,Tn ,Ol,Tm } ∈ Qb (6)

77

Furthermore, the following constraint captures one possible

non-serializable history for the transaction fragments.

Ok,Tm
follows

−−−−−−→ Oi,Tn ∧O j,Tn
follows

−−−−−−→ Ol,Tm (7)

The other non-serializable history is captured by:

Oi,Tn
follows

−−−−−−→ Ok,Tm ∧Ol,Tm
follows

−−−−−−→ O j,Tn (8)

Either Qa or Qb has fragments from Tm ordered before Tn ,
which contradicts the fact that the planner ofQa andQb planned

Tn before Tm .

□

4.5 Read-committed Isolation
Not only that, Q-Store supports multiple execution paradigms

but also multiple isolation levels seamlessly using the queue-

oriented paradigm. Supporting read-committed isolation requires

planning-threads to produce an additional set of execution-queues

Q
′j
q,p such that they only contain read-only transaction fragments

as shown in Eq. 9. Read-only transaction fragments do not per-

form any write operations.

∀ Pq,p , ∈ Pq ,Qq,p := {Q1

q,p , Q
2

q,p , ...,Q
i
q,p }

∪ {Q ′1
q,p , Q

′2
q,p , ...,Q

′j
q,p }, where i ≥ 1, j ≥ 1

(9)

Furthermore, Q-Store employs a copy-on-write technique that

creates a private copy of the updated records. Using these two

simple techniques, Q-Store can support read-committed isolation

seamlessly.

4.6 Discussion
The performance of speculative execution is dependent on the

workload. Two properties of the workload can degrade the perfor-

mance of speculative execution. The activation of logic-induced

aborts which leads to the cascading aborts phenomena. The con-

servative execution solves this issue at the cost of more coordi-

nation among execution-threads.

For either of the execution paradigms, there is another work-

load property that impacts their performance negatively. The

existence of a large number of data dependencies among frag-

ments (see Section 2.2) in the planned workload limits the concur-

rency because it forces additional coordination among threads

to resolve these data dependencies.

In Q-Store, mitigating the impact of data dependencies require

more intelligent planning. Planning-threads can minimize the

data dependencies among execution-queues. However, solving

the minimization problem cannot introduce significant latency.

Furthermore, because the database is partitioned, this can only

work for local execution-queues. Planning-threads can intelli-

gently move read-only fragments to a special set of execution-

queues that allow resolving data-dependencies before executing

dependent fragments. The implementation of these optimization

remains as future work.

Limitations Advantages and disadvantages of deterministic

transaction processing are discussed in the literature [36]. The

key limitation of deterministic transaction processing is that the

knowledge of the full read/write sets is required. One approach

is to run the transaction without committing its write-set to

compute the full read/write sets [40]. In general, this approach

does not guarantee the finality of the read/write set when running

the transaction. Another approach is to partially execute the

transaction over multiple batches instead of a single batch. The

study of these approach is beyond the scope of this paper.

5 IMPLEMENTATION
We now present some key details for our implementation of

Q-Store. In our implementation of Q-Store, we model various com-

ponents of Q-Store as a set of producers and consumers. As stated

in Section 3, Q-Store includes a set of communication-threads.

These threads perform two tasks: (i) consuming messages from

the network and storing them in respective queues, and (ii) con-

suming messages from the worker-threads and pushing those

on to the network. The task of consuming messages from the

network involves reconstructing the raw buffers into appropriate

message types so that other threads can interpret them.

InQ-Store, we partition the database using a range-partitioning
scheme. At each server, we allocate an equal number of worker

threads that assume the roles of both the planning-threads and

execution-threads but only one role at a time. This scheme sim-

plifies both the planning and execution phases as computing the

number of sub-partitions across the whole cluster requires no

additional communication.

When an input thread receives a client transaction, it places the

transaction into a client-transaction-queue associated with one of

the planning-threads, in a round-robin fashion. We allocate one

client-transaction-queue for each planning-thread. This approach

eliminates contention among the planning-threads to fetch the

next transaction.

Q-Store employs a count-based batch demarcation mechanism

which requires Planning-threads to create batches of transactions

containing a specific number of transactions. However, time-
based implementations for defining batches are also possible (e.g.,

a batch is created every 5 milliseconds).

Our Q-Store’s implementation requires minimal low-level syn-

chronization among all the threads in the system. Communica-

tion threads and worker threads utilize lock-free data structures

to interact. For instance, if a worker thread is currently acting

as a planning-thread, then as soon as it has processed the re-

quired number of transactions for the next batch and created

its execution-queues, it starts acting as an execution-thread and

checks for any available execution-queue to process. When it has

executed all the required execution-queues, then it resumes the

role of a planning-thread.

Batch Meta-data Q-Store requires execution-threads to pro-

cess both the local execution-queues and remote execution-queues.

This requirement implies there is a need to store locally gener-

ated execution-queues and incoming remote execution-queues.

We employ a distributed lock-free data-structure, which we re-

fer to as the Batch meta-data (illustrated in Figures 3 and 4), to

store these execution-queues as well as any relevant meta-data

needed to fulfill transactions dependencies. The implementation

of dependencies uses a count to represent the number of de-

pendencies to be resolved. When a dependency is resolved, we

use atomic operations to decrement the dependency count. The

communication-threads push the incoming remote execution-

queues directly to the batchmeta-data, whichmakes these queues

available for execution. In this case, communication-threads are

acting as virtual planning-threads. Execution-threads access this

batch meta-data to fetch any available remote execution-queues.

Moreover, the batch meta-data also stores the incoming acknowl-

edgment messages (ACK), which an execution-thread transmits

after processing a remote execution-queue, and the commit pro-

tocol uses them.

78

Commitment Protocol Q-Store’s design allows us to support
two light-weight commitment protocols. We can commit a trans-

action as soon as its last operation has been processed when

using conservative execution. Alternatively, we can defer the

commitment of all the transactions to the end of the batch when

using speculative execution.

Note that the former approach requires additional implemen-

tation complexity to ensure that committed transactions do not

read uncommitted updated from aborted transactions. The latter

approach could cause a non-trivial increase in the latency at the

client because all transactions are committed at the end. However,

the latter approach also helps the system to amortize the cost of

the commit protocol over a batch of transactions [7].

One of the key advantages of employing deterministic trans-

action processing protocols is that non-deterministic aborts are

no longer possible (e.g., aborts induced by concurrency control

algorithms). Therefore, there no need to rely on costly commit
protocols, such as 2PC.

For speculative execution in Q-Store, the commit protocol com-

mits the whole batch after all the execution-queues are processed.

On completing the execution of an execution-queue, the worker

thread sends an ACK message notifying the planner’s node about

it. When the planner’s node receives the ACKmessage, it updates

the batch meta-data associated with the remote execution-queue.

Further, Q-Store requires the local execution-threads to directly

update the batch meta-data. When all the local execution-queues

are executed and remote execution-queues are acknowledged,

the planner node starts the commit stage for the planned trans-

actions.

To commit a particular transaction, we check if all of its frag-

ments’ dependencies are resolved. If so, the transaction is com-

mitted. Otherwise, the transaction needs to be aborted, and the

rollback process is started. During rollback, the speculative de-

pendency path is walked, and dependent transactions are aborted.

Note that, in the conservative execution, there are no speculative

dependencies, and there are no cascading aborts.

6 EVALUATION
In this section, we present an extensive evaluation of Q-Store.
We implement our techniques in ExpoDB [18, 19, 35]. We com-

pare the performance of Q-Store’s speculative execution with

the following concurrency control techniques. The conservative

execution’s performance evaluation and analysis remain future

work.

• NO-WAIT: A representative of pessimistic protocols. A two-

phase locking (2PL) variant that aborts a transaction if a lock

cannot be acquired [3].

• TIMESTAMP: A basic time-ordering protocol [3] that is a repre-

sentative of time-ordering concurrency control protocols.

• MVCC: An optimistic concurrency control protocol that relies

on maintaining multiple versions of the accessed records. We

select MVCC as representative of multi-version concurrency

control protocols.

• MaaT: An optimistic concurrency control protocol [29] that is

a representative of optimistic concurrency control protocols.

• Calvin: A deterministic transaction processing protocol [40].

We use a range-based partitioning instead of the original hash-

based partitioning used by [20].

Cluster Setup We use a total of 32 Amazon EC2 instances

for all experiments (16 server nodes and 16 client nodes). The

instance type c5.2xlarge, which has 16GB of RAM and 8 vCPUs.

Table 1: Workload configurations parameters. Default val-
ues are in parenthesis.

Parameter Name Possible Parameter Values
Common parameters:
% of multi-partition txns. 1%, 5%, 10%, 20%, (50%), 80%, 100%

YCSB Workloads:
Zipfian’s theta (0.0), 0.4, 0.8, 0.9, 0.99

% of write operations 0%, 5%, 20%, (50%), 80%, 95%

Operations/txn. 2, 4, 8, 12, (16)

Partitions accessed/txn. 2, 4, (8), 12, 16

Server nodes counts 2, 4, 8, (16)

Batch sizes 5K , 10K , 20K , 40K , (80K), 160K , 320K

TPC-C Workloads:
% of Payment txn. 0%, 50%, 100%

We use Ubuntu 16.04 (xenial), GCC 5.4, Jemalloc 4.5.0 [2, 23] and

compile our code with -O2 compiler optimization flag. We pin

threads to cores to reduce the variance from the operating system

scheduling and the effect of the caching system. Each dedicates 4

threads as worker threads, and 4 as communication threads. For

Calvin, 2 out of the 4 worker threads are dedicated to sequencing

and scheduling tasks. Each client node maintains a load of 10K
active concurrent transactions.

Workloads We use two common macro-benchmarks for our

evaluation. The first one is YCSB [5]. YCSB is representative

of web applications used by YAHOO. The YCSB benchmark is

modified to have transactional capabilities by including multiple

operations per transaction. Each operation can be either a READ
or a READ-MODIFY-WRITE operation. The benchmark consists of

a single table that is partitioned across server nodes, and each

node hosts 16 million records. The benchmark can be configured

to capture various workload characteristics.

We also experiment with workloads based on the industry-

standard TPC-C [41]. The TPC-C benchmark simulates a whole-

sale order processing system. There are 9 tables and 5 transaction

types in this benchmark. All tables are partitioned across server

nodes, where a partition can host one or more warehouses. Simi-

lar to previous studies in the literature[20, 45], we focus on the

two main transaction profiles (NewOrder and Payment) out of the
five transaction profiles, which correspond to 88% of the default

TPC-C workload mix [41].

We report the average of 3 trials where each experiment trial

runs for 120 seconds, and we ignore the measurements of the

first 60 seconds, as it is used as a warm-up period. All reported

measurements are observed by the client-side; thus, they are

reflective of practical settings. Table 1, shows the various config-

uration parameters we used in our evaluation. Unless mentioned

otherwise, we employ the default values.

Our experimental evaluation focuses on answering the follow-

ing questions: (1) How does batch size affects the performance

of batch-based distributed transaction processing systems (e.g.,

Calvin and Q-Store)? How do these systems handle high-volume

workloads with large batches of concurrent multi-partition trans-

actions? How do the following workload characteristics impact

the performance of distributed transaction processing protocols:

(a) the contention induced by data access skew; the percentage of

multi-partition transactions in the workload; (b) the percentage

of update operations in each transaction; (c) the transaction size

(i.e., the number of operation per transaction); (d) the number of

partitions accessed per transaction, and; (e) the transaction pro-

files? (3) How do these transaction protocols scale with respect

to the number of nodes in the cluster?

79

5 10 20 40 80 160 320
Batch Sizes (103)

105

106

T
ra

n
sa

ct
io

n
s

p
e
r

S
e
co

n
d

(a) Throughput

5 10 20 40 80 160 320
Batch Sizes (103)

0

10

20

30

40

50

60

S
e
co

n
d

s

CALVIN

Q-Store

(b) 99th Percentile Latency

Figure 5: Impact of varying batch sizes on the system
throughput and 99

th percentile latency of deterministic
systems.

6.1 YCSB Experiments
The YCSB benchmark is versatile, and we use it to answer many

of the questions related to sensitivity factors.We start by studying

the impact of batch sizes for protocols that rely on batching.

Impact of Batch Sizes Using the YCSB benchmark, we first

study the impact of batch size on protocols that rely on batching,

such as Calvin and Q-Store. The current implementation of Q-Store
uses a count-based batch demarcation mechanism. On the other

hand, the original Calvin implementation uses a time-based mech-

anism. For this set of experiments to be meaningful, we modified

Calvin to use a count-based batch demarcation mechanism and

make it stand on the same ground as Q-Store. We use the default

parameters and varying the batch size from 5K to 320K. The

results are shown in Figure 5. Compared to Calvin, Q-Store scales
very well as we increase the batch size up to 80K .

Moreover, Calvin’s throughput is very low because both the

sequencing layer and the scheduling layer are single-threaded

per node. With a large number of transactions per batch, those

layers act as a bottleneck for the system. These results also show

that Q-Store’s architecture can utilize computing and network

resources more efficiently. Beyond 80K , the throughput of Q-
Store plateaus as transaction processing becomes CPU-bound,

and the latency starts to increase because worker threads take

more time to process large batches. Calvin cannot handle large
batches as transaction latency values exceed the experiment

period. Remarkably, at 40K batches, Q-Store demonstrates an

improvement of 22.1× the throughput of Calvin and an order of

magnitude lower latency.

The most significant insight for Q-Store is that for large deploy-
ments (e.g., here, we have a total of 64worker threads distributed

over 16 server nodes), we need more work per thread to ensure ef-

ficient transaction processing and to hide the latency. Q-Store can
handle large batches of concurrent transactions while keeping

the latency low.

The presented results indicate that Q-Store is efficient in terms

of performing useful work locally. The bottleneck is in the com-

munication protocol, which is expected because the network is

slower than local communication.

In the remaining experiments, we use the original time-based

batch demarcation mechanism for Calvin and use their reported

parameter of 5ms [20]. We observe that with 5ms time-based

batch demarcation, Calvin produces batches of size 160 per node
approximately.

Variable Contention In this set of experiments (Figure 6),

we vary the Zipfian skew factor θ from 0.0 (uniform) to 0.99

(extremely skewed). As θ approaches 1.0, the data access becomes

0.0 0.3 0.6 0.8 0.9 0.95 0.99
Zipfian θ

103

104

105

106

T
ra

n
sa

ct
io

n
s

p
e
r

S
e
co

n
d

Figure 6: Impact of varying the data access skewness pa-
rameter θ of the Zipfian distribution on systems through-
put (log scale).

more skewed within a partition, but the partitions are chosen

uniformly per transaction. In other words, each partition receives

uniform access, but the record access within the partition is

skewed. It is possible to use a Zipfian distribution for partitions

as well, but that would not measure the performance of how each

node is dealing with skewness. Further, in such a case, mostly

one node is active while the remaining nodes are idle most of

the time. We use a 50% multi-partition workload such that the 16

operations in a transaction randomly access exactly 8 partitions.

Both Calvin andQ-Store perform better because they both avoid

the cost of the two-phase commit protocol (2PC). However, Q-
Store achieves up to 6× better throughput. The first reason for

that is queue-oriented execution and communication. Q-Store
sends a queue of ordered operations that belong to several con-

current transactions to remote nodes. Thus, Q-Store ensures a
more efficient communication.

Since different threads execute queues in parallel, Q-Store ex-
ploits intra-transaction parallelism (bothwithin a node and across

nodes) better than Calvin. For Calvin, the level of contention does

not affect its performance because the bottleneck is in the se-

quencing and scheduling layer. Note that Q-Store’s throughput
degrades slightly under high-contention (i.e., beyond θ = 0.6)

due to the imbalance in the size of execution queues.

The throughputs for non-deterministic protocols are low be-

cause they require a costly 2PC protocol for committing each

transaction. As the contention increases, the abort rates also

increases, which lowers their performance even more. When

transactions abort, they are retried using a random back-off

period. Under high-contention, transactions may abort multi-

ple times, which effectively increases the latency per transac-

tion, which lowers the throughput. Remarkably, Q-Store achieves
nearly two orders of magnitude better system throughput under

high-contention in comparison to non-deterministic protocols.

Varying multi-partition transactions rate Now, we focus
on the impact of multi-partition transactions in the workload.

We vary the percentage of multi-partition transactions in the

workload from 0% (single-partition transactions only) to 100%

(multi-partition transactions). We fix the values of other param-

eters to the default values. The results shown in Figure 7 are

for low contention (i.e., θ = 0.0). Note that in comparison to

Figure 6, there is no noticeable difference in the throughputs of

the protocols with single-partition transaction workloads, except

for Calvin.
Non-deterministic protocols do not need to perform 2PC,

which allows them to avoid 2PC’s cost. When the rate of multi-

partition transactions increases, non-deterministic protocols in-

cur the overhead of 2PC to ensure serializable execution, and

80

0 10 15 50 75 100
% of Multi-partition Transactions

105

106

T
ra

n
sa

ct
io

n
s

p
e
r

S
e
co

n
d

Figure 7: Impact of varying the percentage of multi-
partitions transactions in the workload on the system’s
throughput.

0 5 20 50 80 95
% of Update Operations

105

106

T
ra

n
sa

ct
io

n
s

p
e
r

S
e
co

n
d

Figure 8: Impact of varying the percentage of update oper-
ations in the workload on the system’s throughput.

thus, their throughput decreases. Thus, our results validate pre-

viously published results (e.g., [20]), which illustrate the poor

performance of non-deterministic protocols.

Despite the deterministic nature of Calvin, its throughput also
decreases as the rate of multi-partition transaction increases.

Calvin needs to send a given transaction to all participants and

waits for their responses before scheduling the next conflicting

transaction. This approach increases the communication over-

head per transaction and negatively affects the performance of

Calvin. Unlike Calvin, Q-Store is not sensitive to multi-partition

transactions. In addition to avoiding 2PC overhead, it has minimal

communication overhead. Q-Store communicates only a minimal

number of execution queues between partitions, which contain

scheduled operations of several transactions. Thus, it effectively

reduces the communication overhead per transaction. Q-Store
outperforms Calvin’s throughput by up to 10.6×.

Vary the percentage of update operations In the follow-

ing experiments, we study the impact of the percentage of the

update operations on the transaction processing performance. In

previous experiments, we used a value of 50%, which means that

8 out of 16 operations are updating the database in each trans-

action. To study this factor, we vary the percentage of update

operations from 0% (read-only operations) to 95%. We fix the re-

maining parameters to their default values. Note that increasing

the rate of update operations increases the contention on records

(e.g., exclusive locks induce record contention).

Figure 8 shows the result of varying the percentage of up-

date operations. The results show that neither Q-Store nor Calvin
are sensitive to this factor. Calvin employs deterministic lock-

ing to avoid aborting transactions unnecessarily while Q-Store
executes operations according to their order in a given queue.

1 2 4 8 10 16
Number of Operations per Transaction

106

107

O
p

e
ra

ti
o
n

s
p

e
r

S
e
co

n
d

Figure 9: The impact of varying the number of operation
per transaction on system’s throughput.We force each op-
eration access a different partition. This results is for low
contention θ = 0.0.

In other words, for Q-Store there is no difference between the

read or update operations as Q-Store executes each operation

in-order, which eliminates any sensitivity to this factor. With

non-deterministic protocols, we observe that the abort-rate in-

creases as the contention increases due tomore update operations

in the workload. For NO-WAIT, MaaT, TIMESTAMP, and MVCC, the
abort-rates are up to 41%, 19%, 7%, and 6%, respectively, at 95%

update rate.

When a transaction is read-only, there is no need to perform

2PC, but participants still need to communicate messages to fi-

nalize the running transaction. As the transaction involves more

update operations, the overhead of 2PC protocol becomes more

substantial, which negatively affects the performance of non-

deterministic protocols that rely on 2PC as their atomic com-

mitment protocol. Notably, Q-Store shows an improvement in its

system’s throughput by up to 5.9× and 17.1× over Calvin and

MVCC (the next best non-deterministic protocol), respectively.

Vary the number of operations per transaction Now, we

experiment with varying the number of operations per trans-

action. We set the percentage of multi-partition transactions to

50%, and force each transaction to access the same number of

partitions as its number of operations. For example, if a transac-

tion has 4 operations, the number of partitioned accessed by that

transaction is also 4. However, each partition has the same proba-

bility of access by any operation, and we do not force operations

to be remote.

This experiment aims to capture execution and communica-

tion overheads as transactions become larger. For non-deterministic

protocols, as the number of operations increases, the cost of 2PC

increases because it is more likely that more nodes need to par-

ticipate in the commitment protocol. Calvin performs better than

other non-deterministic protocols, but its performance does not

scale with larger transactions. Q-Store, on the other hand, scales

well as the number of operations per transaction increases. With

16 operations per transaction, Q-Store’s performance reaches a

remarkable throughout of nearly 16 million operations per sec-

ond. These numbers are 12× and 20× better than those for Calvin
and NO-WAIT, respectively, as shown in Figure 9. These gains are

due to the proposed efficient queue-oriented execution and com-

munication. For Q-Store, the number of queues communicated

is constant (but their sizes may vary) while the other protocols

exchange messages for remote operations, which increases the

overall communication overhead.

81

2 4 8 12 16
Number of Partitions Accessed

105

106

T
ra

n
sa

ct
io

n
s

p
e
r

S
e
co

n
d

Figure 10: The impact of varying the number of partitions
accessed by each transaction on the system’s throughput.

2 4 8 16
Number of Server Nodes

105

106

T
ra

n
sa

ct
io

n
s

p
e
r

S
e
co

n
d

Figure 11: Throughput scalability results while varying
the number of server nodes.

Vary partitions per transaction In Figure 10, we show the

results for varying the number of partitions accessed by transac-

tions having 16 operations. We use uniform data access, which

leads to a low contention workload. By having uniform data ac-

cess, the effect of contention is negligible, which can help us to

examine the communication costs. As we increase the number

of partitions accessed by a transaction, the overhead of commit-

ting this transaction increases because the commitment involves

agreement of more participants per transaction. This issue is

mainly a problem for non-deterministic protocols as the partici-

pants need to agree on the order for operations. As the number of

participants increases, more coordination is required to commit

each transaction.

While Calvin eliminates the overhead of 2PC, it still suffers

from increasing the number of partitions accessed per transaction.

The reasons for that are: (i) it needs to send the transactions to

more participants, and (ii) it needs to wait for acknowledgments

from more participants before declaring a transaction as commit-

ted. This communication overhead increases as the number of

partitions accessed increases. In contrast, Q-Store demonstrates

its insensitivity to this factor and achieves a throughput of around

a million transactions per second despite the increase in the num-

ber of partitions accessed per transaction. Since the workload

is uniform, the number of partitions accessed affects only the

sizes of remote execution queues, and there is no increase in the

number of communicated execution queues.

Scalability For all previous experiments, we have used 16

servers. In this set of experiments, we vary the number of nodes to

evaluate the scalability. We set the percentage of multi-partition

transactions to 50%, and force each transaction to access all avail-

able partitions. Figure 11, shows that Q-Store scales well as the
number of server nodes increases in the cluster, achieving over

0 50 100
Payment Transaction %

103

104

105

106

T
ra

n
sa

ct
io

n
s

p
e
r

S
e
co

n
d

Q-Store

CALVIN

MaaT

MVCC

NO_WAIT

TIMESTAMP

Figure 12: The impact of different TPC-C transaction
mixes on the system’s throughput. 15% multi-partition
transactions is used.

0 10 15 50 75 100
% of Multi-partition Transactions

102

103

104

105

106

T
ra

n
sa

ct
io

n
s

p
e
r

S
e
co

n
d

Figure 13: Varying the percentage ofmulti-partition trans-
action with equal ratios of Payment and NewOrder trans-
actions.

1 million transactions per second at 16 server nodes. Other ap-

proaches do not scale due to the overhead of multi-partition

transactions. Calvin’s performance cannot scale because of the

single-threaded pre-execution phases, while non-deterministic

protocols do not scale due to the increased overhead of 2PC.

6.2 TPC-C Experiments
We also evaluate Q-Store with workloads based on the industry-

standard TPC-C benchmark. For this set of experiments, we use

a total of 16 server nodes, with 4 warehouses per server. Hence,

the total number of warehouses is 64. We use three workloads:

100% NewOrder-transaction workload, 50% Payment and 50%

NewOrder transactions workload mix, and finally 100% Payment-

transaction workload. We use the standard rate of 15% of the

payment transactions coming from remote customers as the

multi-partition transaction rate, for all the transactions in the

workloads. We also restrict the number of partitions accessed to

two even for NewOrder transactions.

The results are shown in Figure 12. Both deterministic systems

Calvin and Q-Store significantly outperform other algorithms by

a significant margin due to their use of 2PC. Q-Store outperforms

Calvin by up to 1.8×. Remarkably, Q-Store outperforms NO-WAIT,
which is the best performing non-deterministic protocol, by up

to 55.2×. NO-WAIT suffers from high abort rates due to contended

warehouse records (to avoid deadlocks) and the overhead of

2PC for multi-partition transactions. On the other hand, Q-Store
eliminates the overhead of 2PC and execution-induced aborts.

The second set of experiments that use TPC-C workloads

study the effects of multi-partition transaction rates (Figure 13).

The transaction profiles in TPC-C are more complicated than

their YCSB counterparts. It involves data dependencies among

82

operations, which can reduce the performance of Q-Store. For
example, in the NewOrder transaction, many operations require

the new value of the OrderId, which is updated by the same

transaction. Our current implementation creates an execution-

queue per warehouse, which serializes all operations accessing

records belonging to a given warehouse. Despite this unfavorable

data partitioning scheme, Q-Store’s throughput still outperforms

Calvin’s throughput. 1

7 RELATEDWORK
Research on distributed transaction processing systems started

several decades ago. One of the key challenges in distributed

transaction processing is managing the execution of concurrent

transactions such that they produce serializable execution histo-

ries. Bernstein and Goodman [3] give a comprehensive overview

of distributed concurrency control techniques. In this section,

we cover some of the recently proposed distributed transaction

processing systems and transaction processing techniques that

are mostly related to Q-Store. We categorize them as follows.

Non-deterministic Transaction ProcessingWhen a trans-

action updates multiple partitions of the distributed database,

there is a need for a commit protocol to ensure that the updates

are consistent across all the partitions because nodes may ar-

rive at distinct order of execution for the transaction operations.

As a result, aborts may occur non-deterministically. The two-

phase commit protocol is typically used to resolve this problem,

but naive implementations of 2PC suffer from costly overheads,

which negatively impact the system performance. Therefore,

many optimizations for 2PC have been proposed (e.g., [26, 29, 31,

39]) while preserving the non-deterministic nature of execution.

However, due to this non-determinism, these systems suffer from

execution-induced aborts and cannot eliminate the overhead of

2PC [1]. In contrast to these approaches, Q-Store processes trans-
actions deterministically and eliminates the overhead of 2PC and

non-deterministic aborts during execution.

EliminatingMulti-partitionTransactions Some proposed

approaches avoid the cost of 2PC by avoiding the need to pro-

cess multi-partition transactions. For example, G-store [6] allows
applications to declare arbitrary groups of records and moves

these groups to a single node to avoid the overhead of processing

multi-partition transactions. In a similar spirit, LEAP [27] avoids

the cost of 2PC by moving records accessed by a given transac-

tion to a single node at run-time implicitly. Q-Store, on the other

hand, embraces multi-partition transactions, and deterministi-

cally orders operations into execution-queues; thus avoiding the

need for a 2PC protocol.

Deterministic Transaction Processing Deterministic ap-

proaches to transaction processing showed great potential in the

academic research literature and even had commercial offerings,

e.g., [12, 42]. For single-partitioned workloads, H-Store[25] uses
single-threaded serial execution per partition. For workloads

having multi-partition transactions, H-Store provides limited con-

currency by employing a coarse-grained locking mechanism that

locks all the partitions prior to the start of a transaction. Jones

et al. [24] studies the application of speculative concurrency

control to multi-partition transactions in H-Store, which allows

transactions to read uncommitted updates of transactions that are

1
For TPC-C like workloads, unlike Calvin, Q-Store’s performance can be further

optimized by further splitting execution-queues and exploit parallelism instead of

serializing operations per warehouse. However, such optimization is beyond the

scope of this paper, and we leave it to future work.

performing distributed commitment protocol. Unlike H-Store, Q-
Store does not lock partitions to produce a serializable execution

for operations of multi-partition transactions. Instead, Q-Store
creates execution-queues that capture the serializable order of

conflicting operations, and it assigns these execution-queues

to worker threads. After that, each worker thread executes its

assigned execution-queues according to the pre-determined pri-

ority of execution-queues, which allows Q-Store to maintain its

high performance despite the multi-partition workloads.

In Gargamel [4], a single dedicated load-balancing node pre-

serializes (using static analysis) possibly conflicting transactions

before their execution. The load-balancing node can easily be-

come the bottleneck for the system. Unlike Gargamel, Q-Store
is centered around the notion of priority and exploits multiple

nodes for planning.

Calvin [40, 44] uses determinism to eliminate the cost of two-

phase-commit protocol when processing distributed transactions.

T-Part [44] relies on the same system architecture of Calvin, but
its scheduling layer constructs transaction dependency graphs to

reduce the stalling of worker threads. There are fundamental ar-

chitectural differences between Calvin and Q-Store. The planning
phase performs the same functionality as the two-step (sequenc-

ing and scheduling) pre-processing phases, but in parallel, and
the execution phase of Q-Store does not rely on any locking mech-

anism and employs a queue-oriented (speculative and conserva-

tive) processing design. Additionally, in contrast to Calvin, which
assigns a transaction to a worker thread for processing, Q-Store
assigns an execution-queue to a worker. Because of this thread-

to-transaction mapping, Calvin cannot exploit intra-transaction
parallelism opportunities within a single node.

Intra-transaction Parallelism Most transaction processing

systems perform a thread-to-transaction assignment, whichmakes

these systems unable to exploit intra-transaction parallelism ef-

ficiently. Several research studies proposed techniques for ex-

ploiting this kind of parallelism in centralized environments (e.g.,

[10, 34, 35, 43]). Q-Store goes beyond these proposals and ex-

ploits intra-transaction parallelism within and across nodes in

the context of distributed transaction processing.

8 CONCLUSIONS AND FUTUREWORK
We presented Q-Store, which efficiently processes distributed

multi-partition transactions via queue-oriented priority-based

execution model. We present a formalization of our system and

describe its design and implementation. We perform an extensive

evaluation of Q-Store using different workloads from standard

benchmarks (that is, YCSB and TPC-C). We demonstrate that Q-
Store, consistently and significantly achieves higher performance

than existing non-deterministic and deterministic distributed

transaction processing systems. We experimentally demonstrate

that Q-Store out-performs the state-of-the-art deterministic dis-

tributed transaction processing protocol by up to 22.1× with

YCSB workloads. Against non-deterministic distributed transac-

tion processing protocols, Q-Store achieves up to two orders of

magnitude better throughput with YCSB workloads, and up to

55× with TPC-C workloads.

There are renewed research interests in byzantine fault-tolerance

for transaction processing [14–17, 21, 32]. In future, we plan to

support byzantine fault-tolerance for database transactions in Q-
Store. On the one hand, blockchain transactions are deterministic,

which aligns with the kind of transactions that Q-Store’s supports.
On the other hand, it is very challenging to design and implement

83

efficient, Byzantine fault-tolerant protocols. We believe that the

design principles behind Q-Store can lead to efficient Byzantine

fault-tolerant protocols, as very few blockchain proposals look

at optimizing execution.

REFERENCES
[1] Daniel J. Abadi and Jose M. Faleiro. 2018. An Overview of Deterministic

Database Systems. Commun. ACM 61, 9 (Aug. 2018), 78–88. https://doi.org/

10.1145/3181853

[2] Jason Evans April. 2006. A Scalable Concurrent Malloc(3) Implementation for

FreeBSD.

[3] Philip A. Bernstein and Nathan Goodman. 1981. Concurrency Control in

Distributed Database Systems. ACM Comput. Surv. 13, 2 (June 1981), 185–221.
https://doi.org/10.1145/356842.356846

[4] P. Cincilla, S. Monnet, and M. Shapiro. 2012. Gargamel: Boosting DBMS

Performance by Parallelising Write Transactions. In Proc. ICPADS’12. 572–579.
https://doi.org/10.1109/ICPADS.2012.83

[5] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and

Russell Sears. 2010. Benchmarking Cloud Serving Systems with YCSB. In Proc.
SoCC’10. ACM, 143–154. https://doi.org/10.1145/1807128.1807152

[6] Sudipto Das, Divyakant Agrawal, and Amr E. Abbadi. 2010. G-Store: A Scalable

Data Store for Transactional Multi Key Access in the Cloud. In Proc. SoCC’10
(SoCC ’10). ACM, Indianapolis, Indiana, USA, 163–174. https://doi.org/10.1145/

1807128.1807157

[7] David J. DeWitt, Randy H. Katz, Frank Olken, Leonard D. Shapiro, Michael R.

Stonebraker, and David A. Wood. 1984. Implementation Techniques for Main

Memory Database Systems. In Proc. SIGMOD’84. ACM, 1–8. https://doi.org/

10.1145/602259.602261

[8] Ramez Elmasri and Shamkant B. Navathe. 2015. Fundamentals of Database
Systems (7th ed.). Pearson.

[9] Jose M. Faleiro and Daniel J. Abadi. 2015. Rethinking Serializable Multiversion

Concurrency Control. Proc. VLDB Endow. 8, 11 (July 2015), 1190–1201. https:

//doi.org/10.14778/2809974.2809981

[10] Jose M. Faleiro, Daniel J. Abadi, and Joseph M. Hellerstein. 2017. High Perfor-

mance Transactions via Early Write Visibility. Proc. VLDB Endow. 10, 5 (Jan.
2017), 613–624. https://doi.org/10.14778/3055540.3055553

[11] Jose M. Faleiro, Alexander Thomson, and Daniel J. Abadi. 2014. Lazy Evalua-

tion of Transactions in Database Systems. In Proc. SIGMOD’14. ACM, 15–26.

https://doi.org/10.1145/2588555.2610529

[12] FaunaDB. 2019. FaunaDB Website. https://fauna.com/. (2019).

[13] J. N. Gray. 1978. Notes on Data Base Operating Systems. In Operating Systems:
AnAdvanced Course, R. Bayer, R.M. Graham, andG. Seegmüller (Eds.). Springer

Berlin Heidelberg, Berlin, Heidelberg, 393–481.

[14] Suyash Gupta, Jelle Hellings, Sajjad Rahnama, and Mohammad Sadoghi. 2019.

Proof-of-Execution: Reaching Consensus through Fault-Tolerant Speculation.

CoRR abs/1911.00838 (2019).

[15] Suyash Gupta, Jelle Hellings, and Mohammad Sadoghi. 2019. Brief Announce-

ment: Revisiting Consensus Protocols through Wait-Free Parallelization. In

DISC’19. 44:1–44:3. https://doi.org/10.4230/LIPIcs.DISC.2019.44
[16] Suyash Gupta, Sajjad Rahnama, and Mohammad Sadoghi. 2019. Permissioned

Blockchain Through the Looking Glass: Architectural and Implementation

Lessons Learned. CoRR abs/1911.09208 (2019).

[17] Suyash Gupta and Mohammad Sadoghi. 2018. Blockchain Transaction Pro-

cessing. In Encyclopedia of Big Data Technologies. Springer International
Publishing, Cham, 1–11. https://doi.org/10.1007/978-3-319-63962-8_333-1

[18] Suyash Gupta and Mohammad Sadoghi. 2018. EasyCommit: A Non-Blocking

Two-Phase Commit Protocol. In Proc. EDBT’18. https://doi.org/10.5441/002/
edbt.2018.15

[19] Suyash Gupta and Mohammad Sadoghi. 2019. Efficient and non-blocking

agreement protocols. Distributed and Parallel Databases (13 Apr 2019). https:
//doi.org/10.1007/s10619-019-07267-w

[20] Rachael Harding, Dana Van Aken, Andrew Pavlo, and Michael Stonebraker.

2017. An Evaluation of Distributed Concurrency Control. Proc. VLDB Endow.
10, 5 (Jan. 2017), 553–564. https://doi.org/10.14778/3055540.3055548

[21] Jelle Hellings and Mohammad Sadoghi. 2019. Brief Announcement: The Fault-

Tolerant Cluster-Sending Problem. In DISC’19. 45:1–45:3. https://doi.org/10.
4230/LIPIcs.DISC.2019.45

[22] IBM. 2014. DB2 Isolation Levels. http://disq.us/t/2s92c84. (Oct. 2014).

[23] Jemalloc. 2018. Jemalloc Website. http://jemalloc.net/. (2018).

[24] Evan P.C. Jones, Daniel J. Abadi, and Samuel Madden. 2010. Low Overhead

Concurrency Control for Partitioned Main Memory Databases. In Proc. SIG-
MOD’10. ACM, New York, NY, USA, 603–614. https://doi.org/10.1145/1807167.

1807233

[25] Robert Kallman, Hideaki Kimura, Jonathan Natkins, Andrew Pavlo, Alexander

Rasin, Stanley Zdonik, Evan P. C. Jones, Samuel Madden, Michael Stone-

braker, Yang Zhang, John Hugg, and Daniel J. Abadi. 2008. H-Store: A High-

Performance, Distributed Main Memory Transaction Processing System. Proc.
VLDB Endow. 1, 2 (Aug. 2008), 1496–1499. https://doi.org/10.14778/1454159.
1454211

[26] Butler W. Lampson and David B. Lomet. 1993. A New Presumed Commit

Optimization for Two Phase Commit. In Proc. VLDB’93. Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA, 630–640.

[27] Qian Lin, Pengfei Chang, Gang Chen, Beng Chin Ooi, Kian-Lee Tan, and

Zhengkui Wang. 2016. Towards a Non-2PC Transaction Management in

Distributed Database Systems. In Proc. SIGMOD’16. ACM, New York, NY, USA,

1659–1674. https://doi.org/10.1145/2882903.2882923

[28] Yi Lu, Xiangyao Yu, and Samuel Madden. 2019. STAR: Scaling Transactions

through Asymmetric Replication. PVLDB 12, 11 (2019), 1316–1329.

[29] Hatem A. Mahmoud, Vaibhav Arora, Faisal Nawab, Divyakant Agrawal, and

Amr El Abbadi. 2014. MaaT: Effective and Scalable Coordination of Distributed

Transactions in the Cloud. PVLDB 7, 5 (Jan. 2014), 329–340. https://doi.org/

10.14778/2732269.2732270

[30] Microsoft. 2019. SQL Server Isolation Levels. https://docs.microsoft.com/en-

us/sql/t-sql/statements/set-transaction-isolation-level-transact-sql. (2019).

[31] C. Mohan, B. Lindsay, and R. Obermarck. 1986. Transaction Management in

the R* Distributed Database Management System. ACM Trans. Database Syst.
11, 4 (Dec. 1986), 378–396. https://doi.org/10.1145/7239.7266

[32] Faisal Nawab and Mohammad Sadoghi. 2019. Blockplane: A Global-Scale

Byzantizing Middleware. In ICDE’19. 124–135. https://doi.org/10.1109/ICDE.
2019.00020

[33] Oracle. 2019. Data Concurrency and Consistency - 11g Release 2 (11.2).

https://docs.oracle.com/cd/E25054_01/server.1111/e25789/consist.htm. (2019).

[34] Ippokratis Pandis, Ryan Johnson, Nikos Hardavellas, and Anastasia Ailamaki.

2010. Data-Oriented Transaction Execution. Proc. VLDB Endow. 3, 1-2 (Sept.
2010), 928–939. https://doi.org/10.14778/1920841.1920959

[35] Thamir M. Qadah and Mohammad Sadoghi. 2018. QueCC: A Queue-Oriented,

Control-Free Concurrency Architecture. In Proc. Middleware ’18. ACM, Rennes,

France, 13–25. https://doi.org/10.1145/3274808.3274810

[36] Kun Ren, Alexander Thomson, and Daniel J. Abadi. 2014. An Evaluation of the

Advantages and Disadvantages of Deterministic Database Systems. Proc. VLDB
Endow. 7, 10 (June 2014), 821–832. https://doi.org/10.14778/2732951.2732955

[37] Mohammad Sadoghi, Souvik Bhattacherjee, Bishwaranjan Bhattacharjee, and

Mustafa Canim. 2018. L-Store: A Real-Time OLTP and OLAP System. In Proc.
EDBT’18. 540–551. https://doi.org/10.5441/002/edbt.2018.65

[38] Mohammad Sadoghi and Spyros Blanas. 2019. Transaction Processing on

Modern Hardware. Synthesis Lectures on Data Management 14, 2 (March 2019),

1–138. https://doi.org/10.2200/S00896ED1V01Y201901DTM058

[39] George Samaras, Kathryn Britton, Andrew Citron, and C. Mohan. 1993. Two-

Phase Commit Optimizations and Tradeoffs in the Commercial Environment.

In Proc. ICDE’93. IEEE Computer Society, Washington, DC, USA, 520–529.

[40] Alexander Thomson, Thaddeus Diamond, Shu C. Weng, Kun Ren, Philip Shao,

and Daniel J. Abadi. 2012. Calvin: Fast Distributed Transactions for Partitioned

Database Systems. In Proc. SIGMOD’12. ACM, 1–12. https://doi.org/10.1145/

2213836.2213838

[41] TPC. 2010. TPC-C, On-Line Transaction Processing Benchmark, Version 5.11.0.
TPC Corporation.

[42] VoltDB. 2019. VoltDB. https://www.voltdb.com/. (2019).

[43] Zhaoguo Wang, Shuai Mu, Yang Cui, Han Yi, Haibo Chen, and Jinyang Li.

2016. Scaling Multicore Databases via Constrained Parallel Execution. In

Proc. SIGMOD’16 (SIGMOD ’16). ACM, New York, NY, USA, 1643–1658. https:

//doi.org/10.1145/2882903.2882934

[44] Shan-Hung Wu, Tsai-Yu Feng, Meng-Kai Liao, Shao-Kan Pi, and Yu-Shan

Lin. 2016. T-Part: Partitioning of Transactions for Forward-Pushing in Deter-

ministic Database Systems. In Proc. SIGMOD’16. ACM, New York, NY, USA,

1553–1565. https://doi.org/10.1145/2882903.2915227

[45] Xiangyao Yu, George Bezerra, Andrew Pavlo, Srinivas Devadas, and Michael

Stonebraker. 2014. Staring into the Abyss: An Evaluation of Concurrency

Control with One Thousand Cores. Proc. VLDB Endow. 8, 3 (Nov. 2014), 209–220.
https://doi.org/10.14778/2735508.2735511

[46] Xiangyao Yu, Yu Xia, Andrew Pavlo, Daniel Sánchez, Larry Rudolph, and

Srinivas Devadas. 2018. Sundial: Harmonizing Concurrency Control and

Caching in a Distributed OLTP Database Management System. PVLDB 11, 10

(2018), 1289–1302. https://doi.org/10.14778/3231751.3231763

84

	Q-Store: Distributed, Multi-partition Transactions via Queue-oriented Execution and CommunicationThamir Qadah, Suyash Gupta, Mohammad Sadoghi

