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ABSTRACT
There are massive amounts of textual data residing in databases,
valuable for many machine learning (ML) tasks. Since ML tech-
niques depend on numerical input representations, word em-
beddings are increasingly utilized to convert symbolic repre-
sentations such as text into meaningful numbers. However, a
naïve one-to-one mapping of each word in a database to a word
embedding vector is not sufficient since it would miss to incor-
porate rich context information given by the database schema,
e.g. which words appear in the same column or are related to
each other. Additionally, many text values in databases are very
specific and would not have any counterpart within the word em-
bedding. In this paper, we therefore, propose Retro (RElational
reTROfitting), a novel approach to learn numerical represen-
tations of text values in databases, capturing the information
encoded by general-purpose word embeddings and the database-
specific information encoded by the tabular relations. We for-
mulate relation retrofitting as a learning problem and present an
efficient algorithm solving it. We investigate the impact of vari-
ous hyperparameters on the learning problem. Our evaluation
shows that embedding generated for database text values using
Retro are ready-to-use for many ML tasks and even outperform
state-of-the-art techniques.

1 INTRODUCTION
Due too their appealing properties, word embeddings techniques
such as Word2Vec [7], GloVe [8] or fastText [3] have become
conventional wisdom in many research fields such as machine
learning, NLP or information retrieval. Typically, these embed-
dings are used to convert text values in a meaningful numerical
representations presenting the input for ML tasks. However, a
naïve application of a word embedding model is not sufficient to
represent the meaning of text values in a database which is often
more specific than the general semantic encoded in the raw text
embedding.
Thus, we argue to incorporate information given by the disposi-
tion of the text values in the database schema into the embedding,
e.g. which words appear in the same column or are related. There-
fore, we develop a relational retrofitting approach called Retro
which is able to automatically derive high-quality numerical rep-
resentations of textual data residing in databases without any
manual effort.
Relational Retrofitting. Figure 1 provides a small example
sketching the main principles of the relational retrofitting pro-
cess. Retro expects a database and a word embedding as input,
e.g. a movie table T that should be retrofitted into a pre-trained
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Figure 1: Relational Retrofitting: basis word embedding
W 0 and relationT (left), retrofittedword embeddingW and
augmented relation T+

word embeddingW0. To provide vector representations for tex-
tual information in databases one could simply reuse the vec-
tors of pre-trained embeddings, e.g. map each term from T to a
term-vector pair inW0. However, often there will be a semantic
mismatch between word embeddings and textual information in
databases:
1) Given the movie table, it is known that all entities within the
movie column must be movies, although some of the titles, such
as “Brazil" or “Alien", may be interpreted differently by the word
embedding model.
2) T provides a specific amount of relation types like the movie-
director, whereas in the word embedding representationW0 large
amounts of implicit relations are modeled, e.g. if the director of a
movie is also the producer or one of the actors this might be rep-
resented in the word embedding although not explicitly visible.
3) Terms in T which occurring infrequent in the general do-
main can not be modeled accurately by word embedding models.
For instance Word2Vec has a limited vocabulary according to a
frequency threshold. Many terms appearing in a database will
therefore have no counter-part within the embedding.
We present Retro1, a novel relational retrofitting approach ad-
dressing all these challenges. Retro augments all terms in data-
base tables by dense vector representations encoding the seman-
tics given by the relation T and the word embeddingW0. In the
context of our movie example, Retro would generate a new
embedding for “Terry Gilliam" which should be close to other
directors and their respective vectors. Furthermore, Retrowould
create vectors for all other textual values in the movie table that
encode the semantic given of the pre-trained word embeddings
and the database. On the one hand, this ensures that vectors
1https://github.com/guenthermi/postgres-retrofit
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appearing in the same column, such as movies or directors, are
close to each other. On the other hand, this ensures that the dif-
ference vectors between movie-director pairs are similar. These
vectors are ready-to-use for a wide range of ML, retrieval and
data cleaning tasks such as classification, regression, null value
imputation, entity resolution and many more.
Outline. In Section 2, we give an overview of the problem and
a briefly introduce the original retrofitting problem. We then
present our novel relation retrofitting and formulate the under-
lying learning problem in Section 3. In Section 4, we show the
feasibility of Retro in automatically creating vector represen-
tations by defining different classification task and conclude in
Section 5.

2 RETROFITTING AND PROBLEM SCOPE
We aim at leveraging powerful word embedding models to gener-
ate good vector representations for text values residing within re-
lational databases. We therefore extend the notion of retrofitting
which was initially proposed by Faruqui et al. [5]. Retrofitting
is performed as a post-processing step and allows to inject ad-
ditional information into word embeddings. The approach of
Faruqui et al. took a matrix W 0 = (v ′

1, . . . ,v
′
n ) of word em-

beddings and a graph G = (Q,EF ) representing a lexicon as
input. The retrofitting problem was formulated as a dual objec-
tive optimization function: The embeddings of the matrixW 0

are adapted toW = (v1, . . . ,vn ) by placing similar words con-
nected in the graph G closely together, while at the same time
the neighborhood of the words from the original matrix W 0

should be preserved. Hereby, Q = {q1, . . . ,qn } is a set of nodes
where each node qi corresponds to a word vector vi ∈W and
EF ⊂ {(i, j)|i, j ∈ {1, . . . ,n}} is a set of edges. The graph is undi-
rected, thus (i, j) ∈ EF ⇔ (j, i) ∈ EF . The authors specified the
retrofitting problem as a minimization problem of the following
loss function:

ΨF (W ) =

n∑
i=1

[
αi | |vi −v ′

i | |
2 +

∑
j :(i, j)∈EF

βi | |vi −vj | |
2
]

(1)

The constants αi and βi are hyperparameters. ΨF (W ) is convex
for positive values of αi and βi . Thus, the optimization problem
can be solved by an algorithm, which iterates over every node in
Q and updates the respective vector inW .
However, while retrofitting is typically used to improve the vector
quality of general-purpose word embeddings by using lexical
knowledge graphs, we aim at learning vector representations for
text entries in database tables. Here the objective is to 1) reflect
the semantics of the text value specifically referred to in the
database and 2) to fit into the vector space of the given basis
word embedding model.

3 RELATIONAL RETROFITTING
In this paper, we extend idea proposed in [5] and formulate the
relational retrofitting approach that learns a matrix of vector
representationsW = (v1, . . .vn ) corresponding to text values
T = (t1, . . . tn ) where each vi ∈ RD represents a unique text
value in a specific column of the database. To find an initial vector
representation for every text value, we tokenize the text values
based on the vocabulary of the basis word embedding model and
build centroid vectors which is a convenient way to obtain a
representation of text values consisting of multiple tokens [1, 11].
These vectors are stored in a matrixW 0 = (v ′

1, . . .v
′
n ) forming

the basis for the retrofitting process. Besides, columnar and rela-
tional connections are extracted from the database (see Section 3.1).
This encompasses semantic relations between text values, which
are derived from the relational schema. Those connections are
used to create a representation capturing the context of the text
value in the database (e.g. “Brazil” in the column “movie.title” is
considered as a movie) and thus helps to preserve their semantics
more accurately compared to a plain word embedding represen-
tation. The core procedure of the relational retrofitting is the
adaption of the basis vectorsW 0. This is performed by solving
an optimization problem detailed further in Section 3.2.

3.1 Extracting Relational Information
One can derive different structural relations from the alignment
of text values in the relational schema.
Columnar Connections: Text values with the same attribute,
i.e. appearing in the same column, usually form hyponyms of
a common hypernym (similar to subclass superclass relations).
Thus, they share a lot of common properties which typically
leads to similarity. We capture this information and assign each
text value ti to its column C(i).
Relational Connections: Relations exhibit from the co-occur-
rence of text values in the same row as well as from foreign
key relations. Those relations are important to characterize the
semantics of text value in the database. We define a set of relation
types R for each specific pair of related text value columns. Those
columns are related because they are either part of the same
table or there exists a foreign key relationship between their
tables. For every relation type r ∈ R there is a set Er containing
the tuples of related text value ids. Relation types are directed.
Accordingly, there is an inverted counterpart r̄ for each relation
r with Er̄ = {(j, i)|(i, j) ∈ Er }.

3.2 Optimization Problem
Retro considers relational and columnar connections (see Sec-
tion 3.1) to retrofit an initial embedding. Accordingly, we define a
loss function Ψ adapting embeddings to be similar to their basis
word embedding representationW 0, the embeddings appearing
in the same column, and related embeddings.

Ψ(W ) =

n∑
i=1

[
αi | |vi −v ′

i | |
2 + βiΨC (vi ,W ) + ΨR (vi ,W )

]
(2)

The columnal loss is defined byΨC and treats every embeddingvi
to be similar to the constant centroid ci of the basis embeddings
of text values in the same column C(i).

ΨC (vi ,W ) = | |vi − ci | |
2 ci =

∑
j ∈C(i)

v ′
j

|C(i)|
(3)

The relational loss ΨR treats embeddings vi and vj to be similar
if there exists a relation between them and dissimilar otherwise.
Er is the set of tuples where a relation r ∈ R exists. Ẽr is the set
of all tuples (i, j) < Er where i and j are part of relation r . Thus,
each of both indices has to occur at least in one tuple of Er .

ΨR (vi ,W ) =
∑
r ∈R

[∑
j :(i, j)
∈Er

γ ri | |vi −vj | |
2 −

∑
k :(i,k )
∈Ẽr

δ ri | |vi −vk | |
2
]
(4)

αi , βi , γi and δi are hyperparameters. Ψ should be a convex
function. In [6] we proved the convexity of Ψ for hyperparameter
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β = 1, γ = 2, δ = 1

(a) Influence of α = 1, 2, 3

α = 2, γ = 2, δ = 1

(b) Influence of β = 1, 2, 3

α = 2, β = 1, δ = 1

(c) Influence of γ = 1, 2, 3

α = 2, β = 1, γ = 3

(d) Influence of δ = 0, 1, 2

Figure 2: Examples for Different Hyperparameter Settings

configurations fulfilling the following inequation:

∀r ∈ R, i ∈ {1, . . . ,n} (αi ≥ 0, βi ≥ 0, γ ri ≥ 0) (5)

∀vi ∈W (4αi −
∑
r ∈R

∑
j :(i, j)∈Ẽr

δ ri ≥ 0)

In practice, however, other parameter configurations that do not
comply might work as well. The impact of the hyperparameter
values on the retrofitting result is shown in Section 4.1. The
retrofitting algorithm iteratively executes for all vi ∈ V the
following equation, which is derived from the root of the partial
derivative ∂Ψ(W )

∂vi
.

vi =

αiv
′
i + βici +

∑
r ∈R

[ ∑
j :(i, j)
∈Er

(γ ri + γ
r̄
j )vj −

∑
k :(i,k )
∈Ẽr

(δ ri + δ
r̄
k )vk

]
αi + βi +

∑
r ∈R

[ ∑
j :(i, j)
∈Er

(γ ri + γ
r̄
j ) −

∑
k :(i,k )
∈Ẽr

(δ ri + δ
r̄
k )
]

(6)

Given the property of convexity, such an iterative algorithm can
be used to minimize Ψ illustrated in more details in the next
section.

3.3 Retrofitting Algorithm
The retrofitting algorithm can be expressed as a set of matrix
operations that can be solved with linear time complexity accord-
ing to the number of text values inW . We update all vectors at
once using a recursive matrix equation. Ψ(W ) can be minimized
by iteratively calculatingW k according to (7).

WR =
∑
r ∈R

[
((γ ri j ) + (γ

r̄
i j )

T ) − ((δ ri j ) + (δ
r̄
i j )

T )
]
W k

W ′ = αW 0 + βc +WR

D = diag
(
α + β +

∑
r ∈R

[ ∑
j :(i, j)
∈Er

(γ ri + γ
r̄
j ) −

∑
k :(i,k )
∈Ẽr

(δ ri + δ
r̄
k )
] )

W k+1 = D−1W ′

c = (c1, . . . ,cn ) α = (α1, . . . ,αn ) β = (β1, . . . , βn ) (7)

More details are outlined in [6].

4 EVALUATION
Retro is a fully functional system built on top of PostgreSQL.
Given an initial configuration including the connection informa-
tion for a database and the hyperparameter configuration, Retro
fully automatically learns the retrofitted embeddings and adds

them to the given database. We created two databases based on
the Movie Database2 (TMDB) and the Google Play Store Apps
dataset3 (GPSA). TMDB consists of 15 tables containing 493,751
unique text values, whereas the GPSA database has 7 tables and
27,571 unique text values (details are outlined here45). Both of
them are available as CSV files and are imported in our Retro
PostgreSQL database system.
One baseline we compare our retrofitted embeddings to, are plain
word vectors (PV) that have no notion of the relational schema.
The counterpart to this would be embeddings that just rely on
the the structural information given by the database. Here we
use the node embedding technique DeepWalk [9] (DW) that is
learned based on a graph representation of the database rela-
tions. Moreover, we applied the original retrofitting approach [5]
leading to another baseline embedding dataset (MF).

4.1 Hyperparameter Analysis
The influence of the hyperparameters is visualized in Figure 2:We
learned 2-dimensional embeddings for a small example dataset
containing three movies and the country where those movies
have been produced. Accordingly, there are two columnar (movie
and country) and one relational connection (see Section 3.1).
“Amélie” was produced in “France”, the other movies in the “USA”.
Usually the hyperparameters for each vector are derived from
four global hyperparameters α , β ,γ , and δ as detailed in [6]. We
set the hyperparameters α , β,γ , and δ to different values and
performed the relational retrofitting.
As shown in Figure 2a, the learned embeddings stay closer to
their original embeddings when the α values increasing. Higher
values of β make it easier to cluster the categories from each
other, e.g. reduce the distances between the movie vectors of
“Inception” (red), “Godfather” (green), and “Amélie” (blue). The
γ value controls the influence of relational connections. This
brings the representations of text values which share a relation
closer together. The δ factor causes vectors with different rela-
tions to separate and thus prevent concentrated hubs of vectors
with different semantic. One can see in Figure 2d how δ = 0
causes all vectors to concentrate around the origin of the coor-
dinate system. If δ is set to a high value like δ = α = 2, the
algorithm places the vectors far from the origin of the coordinate
system. However, related text values still get assigned to similar
representations. In the example, the retrofitting algorithm is still
converging for this configuration. Our analysis shows, that the
exposed hyperparameters allow to steer the relational retrofitting

2https://www.kaggle.com/rounakbanik/the-movies-dataset
3https://www.kaggle.com/lava18/google-play-store-apps/
4https://github.com/guenthermi/the-movie-database- import
5https://github.com/guenthermi/google-play-dataset- import
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Figure 3: Classification of Birth Places of US-American Di-
rectors with Increasing Sample Size

process into different directions in a fine-grained manner, i.e. to
adapt to different downstream tasks.

4.2 Machine Learning Tasks
Binary Classification. We implemented a binary classifier to
label a set of directors of the TMDB dataset according to there
citizenship. The classifier should decide between US-American
and non-US-American directors. Since this information is not
available from the TMDB dataset, we extract the citizenship from
Wikidata [10] by using the SPARQL query service. We trained a
feed-forward neural network (one hidden layer with 600 neurons;
applying dropout and L2 regularization; Nadam optimizer [4])
on the different 300-dimensional embedding representations of
the director names (full names). We used for the training 200 to
1, 000 samples and validate the accuracy with 1, 000 test samples.
We compared the accuracies achieved when using plain word
embeddings (PV), node embeddings (DW), simple retrofitted (MF)
and relational retrofitted embeddings (RR). We ran the training
and testing on the ANNs 20 times for each configuration with
different sample sets.
The accuracy values and their standard deviation achieved by the
classifiers are shown on the left in Figure 3. The best results are
achieved with our relational retrofitting approach (RR) utilizing
word embedding features of the directors name but indirectly also
word embedding features of related text values like the movie
titles directed by them. The influence of the training sample size
is at lowest for the plain word embeddings (PV). DeepWalk (DW)
needs a larger amount of training data to achieve comparable
results. The right side of Figure 3 shows the accuracies achieved
by running the same experiment but combining the previous
embeddings with node embeddings by concatination. This leads
to better results for all methods. Notably, the accuracies of the
retrofitting methods are much better compared to methods where
node embeddings (DW) and plain word embeddings (PV) are just
concatenated.
Missing Value Imputation. Further, we built classifiers to pre-
dict app categories within GPSA database which can be used
to impute missing values. Here,a feed-forward neural network
(two hidden layer with 600 and 300 neurons; applying dropout
and L2 regularization; Nadam optimizer [4]) is applied on the
embeddings of the application names. The network was trained
10 times on 400 random samples to predict the one out of 33
categories. The category information and the genre information
(which is often redundant) are omitted for the retrofitting. We
trained the network on all embedding types and compared it to

Figure 4: Imputation of Categories of Android Apps

MODE imputation, choosing always the most frequent category
in the training data, and Datawig [2]. Figure 4 shows that best
accuracy is achieved by relational retrofitting (RR).

5 CONCLUSION
In this paper, we presented Retro, a system that augments all
terms in database tables by dense vector representations. There-
fore, we employed the notion of retrofitting to modify word em-
bedding representations to specialize for given relational schemas.
We validated Retro experimentally by building standard feed-
forward neural networks for different classification tasks. Our
evaluation showed that the generated relational embeddings are
ready-to-use for different ML tasks and even outperform state-
of-the-art techniques such as the approach of Faruqui et al. or
DeepWalk [9].
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