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ABSTRACT

Millions of videos are ubiquitously generated and shared ev-
eryday. Releasing videos would be greatly beneficial to social
interactions and the community but may result in severe privacy
concerns. To the best of our knowledge, most of the existing pri-
vacy preserving techniques for video data focus on detecting and
blurring the sensitive regions in the video. Such simple privacy
models have two major limitations: (1) they cannot quantify and
bound the privacy risks, and (2) they cannot address the infer-
ences drawn from the background knowledge on the involved
objects in the videos. In this paper, we first define a novel privacy
notion ϵ-Object Indistinguishability for all the predefined sensi-
tive objects (e.g., humans and vehicles) in the video, and then
propose a video sanitization technique VERRO that randomly
generates utility-driven synthetic videos with indistinguishable
objects. Therefore, all the objects can be well protected in the
generated utility-driven synthetic videos which can be disclosed
to any untrusted video recipient. We have conducted extensive
experiments on three real videos captured for pedestrians on the
streets. The experimental results demonstrate that the generated
synthetic videos lie close to the original video for retaining good
utility while ensuring rigorous privacy guarantee.

1 INTRODUCTION

Millions of videos are ubiquitously generated and shared every-
day via video surveillance devices, traffic cameras, smart phones,
among others. Sharing such video data would greatly benefit hu-
man interactions and the community. For instance, surveillance
cameras in buildings capture possible threats to the corporate
assets (such videos are shared for analysis in many cases [44]).
Traffic videos contribute to monitoring the street traffic and traf-
fic analysis applications such as vehicle counting and traffic flow
analysis [3] as well as pedestrian behavior analysis.

However, these scenarios have often raised severe privacy con-
cerns since human faces, bodies, identities, activities and other
sensitive information can be recorded in such videos [8, 44].
Thousands of vehicles are involved in a traffic monitoring video,
and drivers may not be willing to share their vehicle plate, make,
model, locations and trajectories [2]. In addition, video surveil-
lance systems monitor specific areas of interests with the follow-
ing goals: law enforcement, personal safety, resource planning,
and security of assets [44]. While ensuring safety and deterrence,
it may also compromise the privacy of innocent individuals. Thus,
privacy preserving solutions for videos have attracted significant
interests recently.
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To the best of our knowledge, most of the existing privacy
preserving techniques for addressing the privacy concerns in
video data (e.g., [1, 6, 20, 24, 42]) focus on detecting and blur-
ring the sensitive regions in the videos (e.g., faces and bodies).
Such simple privacy models have two major limitations: (1) they
cannot quantify the bound of privacy risks, and (2) they cannot
address the inferences drawn from the background knowledge on
the involved objects. For instance, the video recipient may have
known that an individual lives near the scene, and he/she usually
wears red clothes as well as likes running at a specific side of the
street. In this case, even if all the humans can be detected and
blurred before video disclosure, they can be readily re-identified
by the adversary with the above background knowledge.
ϵ-Object Indistiguishability. To tackle such critical limitations,
we define a novel privacy notion for protecting the objects (and
the corresponding individuals) in the videos – “ϵ-Object Indistin-
guishability”, which is extended from the emerging differential
privacy in local setting [4, 10, 16]. Specifically, in the past decade,
the notion of differential privacy has emerged essentially as the
de facto privacy standard for bounding the privacy risks while
sanitizing different data [7, 13, 25]. Adversaries cannot infer if a
certain individual is included in the input or not from the noisy
aggregated result (perturbed by a trusted aggregator) regardless
of their background knowledge [13]. More recently, local dif-
ferential privacy (LDP) models have been proposed to privately
perturb data by each individual such that the collected (random)
data from different individuals can be indistinguishable. Inspired
by the LDP models, our privacy notion also ensures indistin-
guishability for all the objects in the randomized output video,
and thus the perturbed video can be safe to be disclosed to any
untrusted video recipient.

Recall that videos differ from many other data (e.g., statistical
databases [13], location data [32], and search logs [26]). A local
video may include numerous objects corresponding to multiple
different individuals, e.g., many pedestrians are recorded in a sin-
gle video, and many vehicles are recorded in the same video. A
video includes the “local data” of many individuals (e.g., humans)
which will be shared to the untrusted recipients via the video
owner. Thus, the primary difference between ϵ-Object Indistin-
guishability and the original definition of LDP [4, 10, 16] is that
the video owner locally perturbs data for all the objects rather
than letting the objects execute perturbation (see Figure 1).
Contributions. With the privacy notion of ϵ-Object Indistin-
guishability, we propose a video sanitization technique that ran-
domly generates a synthetic video by the video owner (e.g., the
agency which captures the video) while ensuring ϵ-Object Indis-
tinguishability and good utility.

Specifically, we design a novel random response scheme (by
optimizing the RAPPOR [16]) that randomly generates different
objects in the video by maximizing the utility of random response
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Figure 1: VERRO: Ensuring Object Indistinguishability in

the Video Data Sanitization

[16] applied to the objects. Thus, we name our proposed tech-
nique as “Video with Randomly Responded Objects (VERRO)”. As
a result, we boost the utility of VERRO in two folds: (1) for each
object, optimizing its random response in different frames, and (2)
interpolating the trajectories of objects in the video [17] (without
additional privacy leakage [14], see Section 4). Thus, the syn-
thetic video can be disclosed to any untrusted recipient. Finally,
we summarize the major contributions of this paper as below:

• To the best of our knowledge, we define the first rigorous
privacy notion for all the sensitive objects (predefined by
the video owner) in the video data, which ensures that all
the objects are indistinguishable in the randomized output
video against arbitrary background knowledge.
• We propose a novel video sanitization technique VERRO
that randomly generates utility-driven synthetic videos
in which any two sensitive objects are ϵ-Object Indistin-
guishable.1 The video owner can also specify its privacy
budget ϵ for all the objects in its video.
• The proposed novel random response scheme (by optimiz-
ing RAPPOR [16]) in VERRO that optimally picks frames
of the video to randomly generate objects (while satisfying
indistinguishability). The utility of the synthetic video is
further improved using computer vision techniques.
• We have conducted extensive experiments on real videos
to validate the performance of VERRO. The experimental
results demonstrate that VERRO can effectively generate
private synthetic videos with high utility.

The remainder of this paper is organized as follows. Section
2 introduces some preliminaries. Section 3 illustrates the first
phase of VERRO and analyzes the privacy guarantee. Section 4
presents the second phase of VERRO (for further boosting the
utility) and its privacy guarantee. Section 5 gives discussions for
VERRO. Section 6 demonstrates the experimental results. Section
7 and 8 present the literature and conclusions.

2 PROBLEM FORMULATION

In this section, we first describe the adversary model, then define
our privacy notion, and finally provide a general overview of our
proposed approach.

2.1 Adversary Model

Denote a video asV which is captured by a video owner, e.g., a
hospital or a company equipped with CCTV surveillance, and an
agency which captures the video on the street. VideoV (all the
frames) includes a set ofn sensitive objectsO = {O1,O2, · · · ,On }

(e.g., humans and vehicles). Assume that the video owner would

1As formally defined in Definition 2.1, ϵ -Object Indistinguishability ensures a similar
privacy guarantee as ϵ -local differential privacy [4, 10, 16].

like to share V to an external party for analysis (viz. the ad-
versary). To ensure privacy, our proposed VERRO (randomly)
generates a synthetic videoV∗ which is close toV , such that:
• Each sensitive object in all the frames satisfies ϵ-Object
Indistinguishability – the adversary cannot distinguish
any two objects from the output synthetic videoV∗ with
arbitrary background knowledge.
• The synthetic videoV∗ retains good utility (close toV).

In VERRO, we assume that the adversaries can possess arbi-
trary background knowledge on each object (e.g., object contents,
trajectories, at-scene times, and gathering groups of objects). To
retain the output utility, VERRO does not change the background
scene(s), but the privacy model can break the linkage between
each object and the background scene(s) via indistinguishability.

With privacy guarantee for all the objects (making them in-
distinguishable), VERRO regularly generates synthetic videos
for videos including sensitive objects w.r.t. multiple individu-
als (e.g., pedestrians and vehicles). In case that a video includes
only one sensitive object, the adversary still cannot re-identify
the object (see Section 5). In addition, VERRO only addresses
the visual privacy concerns, assuming that the adversary cannot
identify objects from the audio or audio is not captured (e.g.,
traffic monitoring and video surveillance).

2.2 Privacy Notion

2.2.1 Traditional Privacy Model. VideoV includes multiple
sensitive objects O1, . . . ,On , which can be detected and tracked
in all the frames [48, 49]. Specifically, it first detects all the sen-
sitive objects in each frame with the detection algorithms (e.g.,
HOG for human [51] and SVM for vehicles [22]). Each detected
object can be accurately tracked with the same ID if they highly
overlap in multiple frames.

The traditional privacy models are defined to blur all the de-
tected objects [1, 6, 20, 24, 42]. An alternative solution could be
replacing the detected objects with “synthetic objects” [28, 43].
Each object can be replaced by a unique synthetic object: for in-
stance, a red synthetic human and a purple synthetic human can
be used to represent two different pedestrians in all the frames in-
volving them. Then, the inferences and re-identification visually
from the objects can be greatly mitigated.

2.2.2 ϵ-Object Indistinguishability for Sensitive Objects. Recall
that only replacing the objects with synthetic objects in the video
cannot address the re-identification based on the adversaries’
background knowledge (as discussed in Section 1). Thus, we need
to ensure indistinguishability for not only objects themselves
(can be achieved by synthetic objects) but also their moving
trajectories [50] in the video.

To this end, inspired from the indistinguishability provided
by the ϵ-LDP, we define a novel privacy notion ϵ-Object Indistin-
guishability by considering each object’s trajectory in the video
(coordinates at different frames) as its “local data”. Specifically,
in the standard LDP definition [4, 10, 16], there are a set of users,
each of which has its own data. After each user locally perturbs
its data, the obfuscated output can be directly disclosed to any
untrusted recipient/aggregator, where the randomized data col-
lected from any two different users are indistinguishable [10, 16].
Migrating the LDPmodel to the objects in any videoV , we define
the ϵ-Object Indistinguishability as below:

Definition 2.1 (ϵ-Object Indistinguishability). A randomization
algorithm A satisfies ϵ-Object Indistinguishability, if and only if
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Figure 2: VERRO for Utility-Driven Synthetic Video Generation with Object Indistinguishability

for any two input objects Oi ,O j ∈ O in the input videoV , and
for any output object of A in the synthetic videoV∗ (denoted
as y), we have Pr [A(Oi ) = y] ≤ eϵ · Pr [A(O j ) = y].

Similar to ϵ-LDP [16], ϵ-Object Indistinguishability also focuses
on the indistinguishability of randomizing any two objects, rather
than the indistinguishability of randomizing any two neighboring
inputs (whether any object is included or not included in the
input) in traditional differential privacy [13]. Privacy budget ϵ
decides the degree of indistinguishability (identical to LDP [16]).

Definition 2.1 guarantees that the randomly perturbed output
of any two objects in V (both the object contents and the tra-
jectories in all the frames) are ϵ-indistinguishable inV∗. It also
ensures plausible deniability for every object [5]. Since ϵ-Object
Indistinguishability also requires all the objects to be visually
indistinguishable (object contents), VERRO randomly assigns
synthetic objects (e.g., the same shape but different colors) to
replace the original distinct objects while generating the syn-
thetic videoV∗. The synthetic objects are generated and placed
by considering the distance of the object to the camera (e.g., the
synthetic object size is larger if getting closer to the camera) [31].

2.3 VERRO Framework

The major components of VERRO (see Figure 2) consist of:
(1) Preprocesssing: all the objects are detected and tracked,

and background scene (for each frame) is extracted using
computer vision techniques [11, 48, 49].

(2) Phase I: for each object, its presence or absence in dif-
ferent frames/segments of the video are randomly gener-
ated (by random response) to be indistinguishable. Before
executing random response, VERRO reduces the frame
dimension in the video by detecting the key frames. Then,
the utility can be improved by allocating optimal budgets
for different dimensions. Furthermore, we also formulate
a utility maximizing random response problem (optimiz-
ing RAPPOR [16]) to retain the optimal object presence
information after Phase I. Note that Phase I satisfies ϵ-
Object Indistinguishability: all the objects’ presence in all
the frames are indistinguishable (see details in Section 3).

(3) Phase II: with the randomly generated presence/absence
information for each object, VERRO generates the syn-
thetic video by inserting the synthetic objects into the
video (background scene(s)). Specifically, the coordinates
(where to insert the synthetic objects) are assigned, and
computer vision techniques are applied to interpolate ob-
ject moving trajectories between two assigned coordinates
in the synthetic video. We also shown that Phase II does

not leak any additional information (as a post-processing
step [14]), and then VERRO satisfies ϵ-Object Indistin-
guishability (see details in Section 4).

3 PHASE I: OPTIMAL OBJECT PRESENCE

As the “local data” of each object (e.g., a pedestrian or vehicle)
in the video V , the object trajectory includes its presence or
absence information in each frame and the coordinates in the
frame (if present). In this section, we illustrate the Phase I of
VERRO that first generates indistinguishable object presence.

3.1 Poor Utility with Random Response

We first define a bit vector for each object to indicate if such
object is included in different frames or not:

Definition 3.1 (Object Presence Vector). Given videoV which
includes m different frames F1, . . . , Fm and n distinct objects
O = {O1, ...,On }, whether each object Oi , i ∈ [1,n] is present in
frame Fk ,k ∈ [1,m] or not (allm frames) can form a bit vector:
Bi = (b

1
i , ..,b

m
i ) ∈ {0, 1}

m for object Oi .

It has been proven that a classic randomized response (RR)
technique (e.g., RAPPOR [4, 16]) can be adapted to ensure ϵ-LDP
for locally randomizing bit vectors. Similarly, a naive solution
of ensuring ϵ-Object Indistinguishability for the object presence
vectors is to directly the random response mechanism (we will
discuss how to optimize the utility in Section 3.2 and 3.3). For each
object Oi ∈ O, i ∈ [1,n], if object Oi exists in frame Fk , we
set bki = 1,k ∈ [1,m]. Otherwise, bki = 0 holds in the vector
Bi . Then, we flip one bit in vector Bi , i ∈ [1,n] with a certain
probability to report the true value. Then, all the perturbed bits
in the object presence vector Bi can be combined as the output
object presence vector for objectOi . Thus, the vectors B1, . . . ,Bn
(of all the objects) can be indistinguishable. Algorithm 1 shows the
details of directly applying random response for object presence.

Algorithm 1 Random Response for Object Presence [16]
1: detect all the objects O = {O1, . . . ,On } in V
2: for each Oi , i ∈ [1, n] do
3: collect the object presence vector Bi = (b1i , .., b

m
i ) in V

4: for each frame Fk , k ∈ [1,m] do
5: equally allocate budget ϵ/m to frame Fk
6: random response for bit bki with the probability eϵ/m

1+eϵ/m
7: end for

8: Bi ← (b1i , ..., b
m
i )

9: end for

10: Return ∀i ∈ [1, n], Bi
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Theorem 3.2. Algorithm 1 randomly generates object presence

vectors for objects with ϵ-Object Indistinguishability.

Proof. ϵ-Object Indistinguishability can be proven by follow-
ing the proof of ϵ-LDP with random response [16]. Given the ob-
ject presence vectors Bi = {b1i , . . . ,b

m
i } and Bj = {b

1
j , . . . ,b

m
j }

of any two objects Oi ,O j ∈ O, for any possible output m-bit
vector y = (y1, . . . ,ym ), we have:

Pr [A(Bi ) = y]
Pr [A(Bj ) = y]

=
Pr (b1i = y

1)

Pr (b1j = y
1)
· · ·

Pr (bmi = y
m )

Pr (bmj = y
m )

(1)

Since each bit is allocated with an equal privacy budget ϵ/m,
the flipping probability would be eϵ/m

1+eϵ/m [16]. For k ∈ [1,m],

if bki = bkj (either 0 or 1), then Pr (bki =y
k )

Pr (bkj =y
k )

always equals 1. If

bki , b
k
j and bki = yk , thus we have:

Pr (bki = y
k )

Pr (bkj = y
k )
=

e
ϵ
m

1 + e
ϵ
m
· (1 + e

ϵ
m ) = e

ϵ
m (2)

Similarly, ifbki , b
k
j andb

k
j = yk , we have

Pr (bki =y
k )

Pr (bkj =y
k )
= e−ϵ/m .

Then, we have ∀k ∈ [1,m], Pr (b
k
i =y

k )

Pr (bkj =y
k )
≤ eϵ/m (equals one of 1,

eϵ/m and e−ϵ/m ). Combining allm bits, we have:

Pr [A(Bi ) = y]
Pr [A(Bj ) = y]

≤ eϵ (3)

Thus, the generated presence bit vectors satisfy ϵ-Object Indistin-
guishability. This completes the proof. □

Poor Utility. Although Algorithm 1 satisfies ϵ-Object Indistin-
guishability, the utility of synthetic video would be extremely low
since the total number of frames in a videom can be thousands
or more, and then the allocated budget for each frame would be
negligible. It destroys the utility of random response (i.e., RAP-
POR [16]). For instance, a vehicle occurs in 100 frames out of
a 1000-frame video, then the privacy budget for each frame is
ϵ/1000, which makes the flipping probability close to 0.5. Then,
each of the 1000 frames would have 50% probability to include
the vehicle (and other vehicles), then the objects in the video are
too random (extremely low utility at this time). Thus, we explore
an alternative solution for the video data in Section 3.2 and 3.3.

3.2 Dimension Reduction in the Video

Recall that the limited utility in Algorithm 1 results from the high
dimensions in the video (considering each frame as a dimension).
Most existing LDP techniques (e.g., RAPPOR [16], LDPMiner
[40], and PLDP [9]) have reduced the dimension (e.g., bloom filter
reduces the bits dimension for RAPPOR [16], top k frequent items
reduces the dimension of items in LDPMiner [40], and Johnson-
Lindenstrauss transform reduces the dimension of location data
[9]). In videos, since difference between two consecutive frames
is very small, we extract the key frames [12, 19, 30] out of m
frames fromV to reduce dimension in VERRO.

3.2.1 Key Frame Extration. In computer vision, many existing
key frame extraction algorithms have been proposed based on
the boundary method [19], motion analysis [12], clustering [30],
among others. Since algorithms based on clustering has been
shown to generate more accurate results [30], we integrate it into
VERRO for dimension reduction. The basic idea is to divide the
video into several groups of similar frames.

The algorithm [39] first transforms each pixel RGB value to
construct the HSV (hue, saturation, value) histogram for each
frame, and then calculates the pixel distribution in terms of hue,
saturation, value, respectively. Each cluster is initialized with
a new frame, and expanded by adding new consecutive frames
which are similar to the existing frames (measured by the HSV
histograms). After the clustering, each cluster includes a group
of consecutive frames, which can be considered as a segment
of the video. Finally, a key frame can be extracted from each
cluster/segment. The details are illustrated in Algorithm 2.

As a result, the key frame can be utilized to represent every
segment. Then, the m-bit object presence vectors (for all the
objects) can be reduced to ℓ-bit vectors. For instance, key frames
F1, . . . , Fℓ (where ℓ denotes the number of key frames, and ℓ ≪
m in general) are extracted fromV . Object Oi ’s presence vector
Bi can be reduced to B′i = (kb

1
i , · · · ,kb

ℓ
i ).

Algorithm 2 Segmentation and Key Frame Extraction
1: initialize the first segment S1 = F1, segment index i = 1
2: equally partition H , S , V value ranges to h, s and v parts
3: for each frame Fk , k ∈ [2,m] do
4: for each part ĥ, ŝ , v̂ in H, S, V do

5: construct the histograms H (ĥ), S (ŝ), V (v̂) in frame Fk
6: end for

7: SimH (Fk , Si ) =
∑h
ĥ=1

min{H (ĥ), Si [H (ĥ)]}

8: SimS (Fk , Si ) =
∑s
ŝ=1 min{S (ŝ), Si [S (ŝ)]}

9: SimV (Fk , Si ) =
∑v
v̂=1 min{V (v̂), Si [V (v̂)]}

{α , β , γ : weights for H, S, V; similarity threshold: τ }
10: if (α · SIH + β · SIV + γ · SIS ) ≥ τ then

11: Si ← Si ∪ Fk

12: else

13: i = i + 1 and initialize a new segment Si
14: Si ← Si ∪ Fk
15: end if

16: end for

17: for each segment Si do
18: compute the maximum frame entropy Entropy(F ):
19: max {−α ·

∑h
ĥ=1
[H (ĥ) logH (ĥ)] − β ·

∑s
ŝ=1[S (ŝ) log S (ŝ)] − γ ·∑v

v̂=1[V (v̂) logV (v̂)]}
20: extract the key frame with maximum entropy Fi in Si
21: end for

22: return all the segments and key frames

3.2.2 Random Response. After dimension reduction, random
response can be implemented based on the RAPPOR framework
[16] for each object. Each bit kbki in ℓ-bit vector of object Oi is
randomly flipped into 0 or 1 using the following rules:

kbki =


kbki , with the probability of (1 − f )

1, with the probability of f
2

0, with the probability of f
2

(4)

Theorem 3.3. The random response (with rules in Equation 4)

ℓ log( 2−ff )-Object Indistinguishability.

Proof. Again, object indistinguishability can be proven by
following the proof of LDP [16]. Specifically, the RAPPOR [16]
satisfies 2h log( 2−ff )-LDP with the output size of the hash func-
tion in the bloom filter h and the flipping probability f . Max-
imum difference sizes are 2h between two input values. Thus,
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the random response (with rules in Equation 4) make ϵ equal
to ℓ log( 2−ff ) since size difference in any two presence vector is
at most ℓ (by replacing the encoded bit vectors of bloom filter
as the object presence vectors in RAPPOR [16]), which satisfies
ℓ log( 2−ff )-Object Indistinguishability.

□

3.3 Optimizing RAPPOR for Object Presence

Although ℓ is far less thanm, the number of key frames ℓ may
still be large depending on the background scene(s), activity
motion and light density. To solve this, we can further reduce the
dimension by choosing a subset of key frames out of ℓ key frames
to allocate the privacy budget. Indeed, determining whether each
key frame is picked for allocating the privacy budget or not can
be formulated as an optimization problem (maximizing the utility

of generating the synthetic video using the random object presence

vectors in Phase II ).

3.3.1 Optimization Problem. For each key frameFk ,k ∈ [1, ℓ],
we define a binary variable xk ∈ {0, 1} to represent if key frame
Fk is picked for budget allocation or not. Then, the total number
of picked key frames is referred as

∑ℓ
k=1 xk . Per the Theorem 3.3,

we have the random response satisfies
∑ℓ
k=1 xk log(

2−f
f )-Object
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Random Response

An example for dimension reduction, utility maximization
and random response is given in Figure 3. Considering the n
objects O1,. . . ,On , after dimension reduction, all the n object
presence vectors are reduced to n different ℓ-bit vectors. Our goal
is to accurately retain more objects in the video, thus we aim at
minimizing the distance between ∀i ∈ [1,n],B′i (extracted from
V) and ∀i ∈ [1,n],Ri (denoted as the ℓ-bit vectors by applying
random response to ∀i ∈ [1,n],B′i ).

Specifically, since ∀i ∈ [1,n],Ri are randomized bit vectors
(the kth entry in all the vectors are 0 if xk = 0), we should mea-
sure the difference between the expectation ∀i ∈ [1,n], E(Ri ) =
E[(R1i , . . . ,R

ℓ
i )] and B

′
i = (kb

1
i , . . . ,kb

ℓ
i ).

We first learn the expectation of Rki (the kth entry in Ri ). If
xk = 0, then ∀i ∈ [1,n],Rki = 0 hold. Thus, we have:

E(Rki ) = xk · [Pr (R
k
i = 1) · 1 + Pr (Rki = 0) · 0] (5)

There are two cases for Rki (in case of xk = 1):

(1) If kbki = 1, per Equation 4, we have E[Rki ] = 1 · [(1 − f ) ·

1 + f
2 · 0 +

f
2 · 1].

(2) If kbki = 0, we have E[Rki ] = 1 · [(1 − f ) · 0 + f
2 · 0 +

f
2 · 1].

Thus, the expectation can be summarized as following:
E(Rki ) =

f
2 , if xk = 1 and kbki = 0

E(Rki ) = 1 − f
2 , if xk = 1 and kbki = 1

E(Rki ) = 0, if xk = 0 and kbki = 0 or 1
(6)

The objective function can be formulated as:

min :
ℓ∑

k=1
[xk

n∑
i=1
|E(Rki ) − kb

k
i |] (7)

Furthermore, for accurately interpolating the objects in dif-
ferent frames in Phase II, the number of key frames picked for
budget allocation should be no less than 2. Therefore, we formu-
late the optimization problem as below:

min :
ℓ∑

k=1
[xk

n∑
i=1
|E(Rki ) − kb

k
i |]

s .t .

{
2 ≤

∑ℓ
k=1 xk ≤ ℓ

∀k ∈ [1, ℓ], xk ∈ {0, 1}

(8)

Detailing expectation E(Rki ) with the flipping probability, the
optimization problem can be converted to:

min :
ℓ∑

k=1
(xk |

n · f
2
− f ·

n∑
i=1

kbki |)

s .t .

{
2 ≤

∑ℓ
k=1 xk ≤ ℓ

∀k ∈ [1, ℓ], xk ∈ {0, 1}

(9)

3.3.2 Complexity and Solver. Since f and ∀k ∈ [1, ℓ],∀i ∈
[1,n],kbki are constants, ∀k ∈ [1, ℓ], | n ·f2 − f ·

∑n
i=1 kb

k
i | are

constants. Then, Equation 9 is a binary integer programming (BIP)
problem. Although solving the BIP problems can be NP-hard [27],
we can approximately solve Equation 9 using linear programming
(LP) since the objective function and the constraints are linear:
(1) letting the binary variable ∀k ∈ [1, ℓ], xk be continuous in
[0, 1], (2) solving the problem using standard LP solvers (e.g.,
the Simplex algorithm), and (3) in the optimal solution of the
LP problem, ∀k ∈ [1, ℓ], if xk ∈ [0, 0.5), we assign xk = 0; if
xk ∈ [0.5, 1] we assign xk = 1 as the approximated optimal
solution of the BIP problem.

3.3.3 Addressing Possible Privacy Leakage in Optimization.
Compared to randomly picking a number of key frames for bud-
get allocation, computing the optimal frames for budget allo-
cation may result in some minor privacy leakage since the to-
tal number of objects in the kth key frame

∑n
i=1 kb

k
i ,k ∈ [1, ℓ]

(which is used in the optimization) might be different. Such pri-
vacy leakage is generally minor due to a small sensitivity ∆ of
the object count in each frame (e.g., ∆ = 1 for protecting the
presence/absence of each object in every frame). Thus, it can
be addressed by injecting a small amount of generic Laplace
noise Lap( ∆ϵ ′ ) into

∑n
i=1 kb

k
i ,k ∈ [1, ℓ] before formulating the

optimization problem. Although adding such small amount of
noise may slightly deviate the optimality, this could guarantee
end-to-end indistinguishability (differential privacy). Since such
privacy guarantee is well studied in literature [13], we do not
discuss it in this paper due to space limitation.

3.4 Privacy Guarantee

After solving the optimization problem, as shown in Figure 3,
each of the picked key frames will be allocated with a privacy
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budget ϵ/
∑ℓ
k=1 xk . In the meanwhile, VERRO utilizes the op-

timal solution ∀k ∈ [1, ℓ], xk n to derive the optimal presence
vectors (

∑ℓ
k=1 xk -bit), denoted as B∗1, . . . ,B

∗
n . Next, random re-

sponse is applied to B∗1, . . . ,B
∗
n to generate output presence vec-

tors R1, . . . ,Rn .

Theorem 3.4. Phase I satisfies ϵ-Object Indistinguishability.

Proof. Phase I derives the presence bit vectors B∗i and B
∗
j for

any two objects Oi and O j after the optimization. Then, random
response is applied to B∗i and B

∗
j and generate random vectors Ri

and Rj . Per Theorem 3.3, Phase I satisfies ϵ-Object Indistinguisha-
bility where ϵ =

∑ℓ
k=1 xk ln

2−f
f (note that the privacy guarantee

for utility maximization has been discussed in Section 3.3.3). □

It is worth noting that the presence of objects in the remaining
(m −

∑ℓ
k=1 xk ) frames and the coordinates of the objects in allm

frames in the synthetic videoV∗ will be generated in Phase II.

4 PHASE II: VIDEO GENERATION

In this section, we illustrate the details of Phase II.

4.1 Background Scene(s)

As discussed in Section 2, video preprocessing includes detect-
ing/tracking objects and background scene(s) extraction. While
removing objects from digital images (e.g., each frame of a video),
the pixels within the objects are missing in the frame and need to
be reconstructed for the background scene(s). In VERRO, we uti-
lize an efficient algorithm [11] to fill the blank area by considering
both texture and structure.

First, the quality of the output image/frame highly depends
on the order of filling different parts of the blank areas. The
algorithm provides a filling strategy by prioritizing them using
the combination of the continuation of strong edges and high-
confidence surrounded pixels. The priority is computed for every
border patch, with distinct patches for each pixel on the boundary
of the blank areas. Then, we always start filling at the border
pixels with the highest priority.

Second, while filling the pixel p, the algorithm places it at
the centroid of a patch with certain size (e.g., 3 × 3). Then, we
traverse all the background pixels, and the centroid pixel of the
most similar patch from the source background region will be
filled inp, where the similarity is measured by the sum of squared
errors. Some reconstructed background scenes are demonstrated
in Section 6.

4.2 Randomly Generating Object Coordinates

Phase I generates indistinguishable presence information (in dif-
ferent frames) for all the objects. Next, we need to insert synthetic
objects into the background scene (each frame) to generate the
synthetic videoV∗. Specifically, we denote all the frames in the
synthetic videoV∗ as {F ∗1 , . . . , F

∗
m }, and the frames inV∗ cor-

responding to the original key frames as {F ∗1 , . . . , F
∗
ℓ
}. We then

discuss different cases of generating coordinates for the objects
in each frame.

4.2.1 Ri = ∅. If all the entries in any object presence vector
are 0, such random vector output Ri would result in object loss
(the synthetic video will lose one object), and it is unnecessary to
identify the coordinates for them in this case. We have evaluated
such utility loss in Section 6, and most of the objects can be
retained by VERRO in practice.

4.2.2 Ri , ∅. If there exists at least one non zero entry in
Ri , then an object will be inserted to the synthetic videoV∗. A
critical and challenging question is that where to insert the object.
We employ the coordinates of all the objects in the original video
V as “Candidate Coordinates” to generate the coordinates in
each frame of the synthetic video.

Specifically, in each key frame of the synthetic video ∀k ∈
[1, ℓ], F ∗k , the number of objects inserted into key frame F ∗k is∑n
i=1 R

k
i (derived in Phase I). Denoting the number of objects in

the kth key frame ofV as ck ,k ∈ [1, ℓ] where ck = 0 if xk = 0,
we thus have:
• Sufficient candidate coordinates: if

∑n
i=1 R

k
i ≤ ck , the num-

ber of required objects in F ∗k is no greater than the num-
ber of candidate coordinates in Fk . Then, VERRO ran-
domly picks

∑n
i=1 R

k
i out of ck candidate coordinates for∑n

i=1 R
k
i different objects in the background scene (frame

F ∗k ). Please see the left example in Figure 4.
• Insufficient candidate coordinates: if

∑n
i=1 R

k
i > ck , the

number of required objects in F ∗k is greater than the num-
ber of candidate coordinates in Fk . For instance, in the
right example in Figure 4, we expand the set of candidate
coordinates by adding the candidate coordinates in Fk ’s
neighboring frames in the same segment. Then, VERRO
randomly picks

∑n
i=1 R

k
i out of c ′k candidate coordinates

(c ′k is expanded from ck where ck <
∑n
i=1 R

k
i ≤ c ′k ) to in-

sert
∑n
i=1 R

k
i different objects into the background scene

(frame F ∗k ).

…
…

ℓ

ℓ

…

ℓ

ℓ

ℓ

…

…

ℓ

ℓ−1

ℓ−

…

ℓ

ℓ

Sufficient Candidate 

Coordinates

Insufficient Candidate 

Coordinates

Figure 4: Random Coordinates Assignment (before Inter-

polation)

After assigning coordinates to the key frames (where Rki = 1),
we obtain at least 1 frame with the corresponding coordinates for
any Oi (if the corresponding object is retained in the synthetic
video) – the retained object has been assigned with coordinates
in at least two frames in almost all the cases in our experiments
in Section 6. With such randomly assigned coordinates in some
key frames, we can interpolate the coordinates in other frames
(out ofm frames in total) between such key frames. For instance,
given coordinates in two key frames F1 and F10 for object Oi ,
then its coordinates between F1 and F10 can be estimated. In
literature, there are many interpolation methods for moving
object trajectories data, such as nearest neighbor interpolation
[21] and Lagrange interpolation [17]. In VERRO, we adopt the
Lagrange interpolation to estimate such trajectories with the
randomly generated positions.

Finally, after interpolation, we define the first frame in which
any object first occurs as “head” and the frame where such object
last occurs as “end” in the interpolated trajectory. The head and
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end generally involve such object on the border of the frame.
Thus, the interpolation terminates as each object’s head and end
are identified on the border of the frame (objects do not occur in
all the frames in general).

Theorem 4.1. VERRO (Phase I and Phase II) satisfies ϵ-Object
Indistinguishability.

Proof. Given any two objectsOi andO j , their randomly gen-
erated presence vectors Ri and Rj are proven to be ϵ-Object In-
distinguishable (after Phase I). We now examine the randomly
assigned coordinates in the key frames and two full interpolated
trajectories in the synthetic videoV∗.

Specifically, given any output presence vectory and any output
trajectory t = {t1, . . . , tm } in V∗, for simplicity of notation,
we also denote the trajectories of Oi and O j in V∗ as Oi =

{T 1
i , . . . ,T

m
i } and O j = {T

1
j , . . . ,T

m
j }, respectively.

Pr [A(Oi ) = t ]
Pr [A(O j ) = t ]

=
Pr [A(B′i ) = y]
Pr [A(B′j ) = y]

·
Pr [A(T 1

i ) = t1]

Pr [A(T 1
j ) = t1]

· · ·
Pr [A(Tmi ) = tm ]
Pr [A(Tmj ) = tm ]

On one hand, we have Pr [A(B′i )=y]
Pr [A(B′i )=y]]

≤ eϵ (Phase I). On the

other hand, if ∀k ∈ [1,m],Rki = Rkj = 1, two objects are present
in the same frame Fk (and F ∗k ). In this case, since the same ran-
domization is applied to Oi and O j to pick the coordinates from
the same set of candidates, we have ∀k ∈ [1,m], Pr [A(T ki ) =
tk ] = Pr [A(T kj ) = tk ]. If ∀k ∈ [1,m],Rki = Rkj = 0 (the coordi-
nates are interpolated from the coordinates randomly assigned
in the previous case [14]), we also have ∀k ∈ [1,m], Pr [A(T ki ) =
tk ] = Pr [A(T kj ) = tk ].

To sum up the above three cases, we have:

Pr [A(Oi ) = t ]
Pr [A(O j ) = t ]

≤ eϵ (10)

where ϵ =
∑ℓ
k=1 xk log(

2−f
f ), as analyzed in Theorem 3.3 and

Section 3.3. This completes the proof. □

Finally, we summarize the procedures and privacy guarantee in
VERRO. Given an video, the presence of objects in all the frames
are indistinguishable via random response. Then, adversaries
cannot identify specific objects by the frame presences with any
background knowledge. Furthermore, we randomly generate
synthetic positions of objects. Therefore, we claim that any object
in the input V can possibly generate any object in the output
V∗ (with random response in Phase I and random coordinates
assignment in Phase II).

5 DISCUSSION

Distributed Framework: LDP techniques [4, 16] are deployed
in distributed setting where each user perturbs its local data to
share. Our object-based privacy model ensures indistinguishabil-
ity at the object level where all the “distributed” local data can
be perturbed by a “local agent” (aka. video owner) and shared as
V∗ to untrusted recipients.

Different video owners can also share their perturbed videos
to any untrusted recipient (all the objects in each video are still
well protected). Note that VERRO does not ensure video level
indistinguishability (all the videos are indistinguishable). We will

investigate the utility of the video level indistinguishability in
practice and explore the LDP solutions in the future.
Noise Cancellation: in VERRO, objects and their trajectories
are generated in the sanitized video. Thus, the individual noises
resulted from random response for all the objects may not be di-
rectly canceled in the output video. Indeed, after random response
and random coordinates assignment, there exists trajectories in
the sanitized video which are close to the original trajectories
(as shown in Figure 6-8 in our experiments). Also, such noise
can be cancelled in data aggregation applications [9] (e.g., object
counting, as shown in Figure 12 and 13).
Multiple Object Types: in this paper, we use pedestrians and
vehicles as concrete examples to show their indistinguishability
in the publishable synthetic video. It is worth noting that other
objects can also be protected with the defined privacy notion
in VERRO by replacing the detecting algorithms and synthetic
objects. Furthermore, if any video includes multiple types of ob-
jects (e.g., pedestrians and vehicles), VERRO can generate the
synthetic video for different types of objects, respectively. For
instance, it first randomly generates pedestrians, and then ran-
domly generates the vehicles. All the pedestrians are ϵ-Object
Indistinguishable while all the vehicles are ϵ-Object Indistinguish-
able, assuming that it does not leak additional information across
different object types (as all the objects have been replaced with
random synthetic objects in the same type).
Protection for One-Object Video: VERRO can generate syn-
thetic videos in which all the objects are ϵ-indistinguishable. In
case that the video includes only one sensitive object, VERRO
can also protect such object against re-identification. In existing
LDP techniques [4, 16], if only one user perturbs its Object data
and discloses it to the untrusted aggregator, the original data can-
not be identified from its perturbed data. Similar to such works
(e.g., RAPPOR [16]), the objects and the trajectories cannot be
identified from the perturbed presence in the synthetic video
even if the adversary has arbitrary background knowledge on
the presence of individuals at specific times.
Imperfect Background Scene(s): as discussed in Section 4,
background scene(s) is extracted from the original video. The
reconstructed scene may not be as perfect as the original frame
(e.g., human/vehicle silhouette or duplicated/blurred region may
occur). Thus, imperfect background scene(s) may leak some pri-
vacy about “there exists some object in the silhouette or blurred
regions in the original video”. However, adversaries cannot infer
that “who is in that region or which object is in that region” since
all the objects are indistinguishable from end to end.
SystemDeployment: the proposedVERRO can be implemented
as an application, and deployed as a component to generate
utility-driven synthetic videos by processing the videos captured
by each camera (e.g., in the surveillance system, integrated with
the traffic monitoring facilities, in smart phones or other mobile
devices) where ϵ-Object Indistinguishability can be guaranteed.

6 EXPERIMENTS

In this section, we present the performance evaluations.

6.1 Experimental Setup

We conduct our experiments on three real videos in the repository
of multiple object tracking benchmark2. To benchmark the re-
sults, we choose three pedestrian videos, two videos are captured
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by static cameras while the third video is recorded by a moving
camera (where multiple background scenes are extracted):

(1) MOT16-01 (people walking around a large square, denoted
as “MOT01”) [35]: 23 distinct pedestrians are sensitive
objects in 450 frames (static camera).

(2) MOT16-03 (pedestrians on the street at night, denoted
as “MOT03”) [35]: 148 distinct pedestrians are sensitive
objects in 1,500 frames (static camera).

(3) MOT16-06 (street scene from a moving platform, denoted
as “MOT06”) [35]: 221 distinct pedestrians are sensitive
objects in 1,194 frames (moving camera).

Table 1: Characteristics of Experimental Videos

Video Resolution Frame # Objects Camera
MOT16-01 1920 × 1080 450 23 static
MOT16-03 1920 × 1080 1,500 148 static
MOT16-06 640 × 480 1,194 221 moving

We implement the detecting/tracking algorithm [48, 49] to
identify all the objects (pedestrians). Objects are detected in each
frame, and the same object is marked with the same ID in the
entire video. Computer vision technique [11] is also utilized to
extract/reconstruct the background scene(s) from the input video
V . All the programs are implemented in Python 3.6.4 with the
OpenCV 3.4.0 library and tested on an HP PC with Intel Core
i7-7700 CPU 3.60GHz and 32G RAM.

6.2 Generic Utility Evaluation

We first evaluate the utility of our synthetic videos. The proposed
VERRO is a two-phase LDP approach. In Phase I, it randomly
generates the object presence in all the frames of the synthetic
video (“1” or “0”). In Phase II, we interpolate the trajectories. Thus,
we evaluate two different types of utility: (1) the retained utility
after Phase I (Random Response), and (2) the utility of synthetic
video after Phase II.

6.2.1 Utility for Phase I. Phase I generates “presence bit vec-
tors” for all the objects with frame dimension reduction, optimiza-
tion (“OPT”) and random response (“RR”). Some objects might
not be included in the key frames, and/or might not be generated
in the random response. Then, such objects cannot be generated
in the synthetic video (all the entries in the corresponding vec-
tors are 0) since they cannot be interpolated without any object
presence in Phase I (also treated as noise). Thus, we evaluate the
count of distinct objects (pedestrians) in Phase I.

First, Table 2 shows some results after detecting key frames
for frame dimension reduction. In video MOT01, there are 22 key
frames, and 19 out of 23 objects are present in the key frames. In
video MOT03, 52 key frames are extracted, and 124 out of 148
objects are present in such key frames. In video MOT06, 191 out
of 221 objects are captured in the identified 48 key frames. We
can observe that frame dimension reduction results in less utility
loss (retaining ∼ 80% distinct objects).

Figure 5(a), 5(c) and 5(e) present the count of distinct objects in
original video, after optimization (“OPT”), and random response
(“RR”).We set the flipping probability f from 0.1 to 0.9 for random
response. In Figure 5(a), approximately 17 distinct objects can be
retained in 10 key frames (optimized). f only slightly affects the
optimization: the count of distinct objects increases a little bit
2https://motchallenge.net/

Table 2: Distinct Objects after Key Frame Extraction

Video Frame # Objects # Key Frame # Remaining #
MOT01 450 23 22 19
MOT03 1,500 148 52 124
MOT06 1,194 221 48 191

as f grows. To evaluate how f affects the random response, we
can observe that one or two objects are not randomly generated
in RR as f grows to a large flipping probability (e.g., 0.8). This
matches the fact that higher f results in worse utility in random
response (Theorem 3.2) – such utility loss is indeed minor in our
experiments. In addition, we can draw similar observations in
Figure 5(c) and 5(e) where the utility loss of random response is
even less for videos MOT03 and MOT06. Thus, Phase I retains a
high percent of distinct objects via their random presence vectors,
which means less side effect introduced by RR (this facilitates the
interpolation in Phase II for boosting utility).
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Figure 5: Utility Evaluation of Phase I & II of MOT01

(MOT03 and MOT06)

6.2.2 Utility for Phase II. Since the synthetic video gener-
ated in Phase II includes the synthetic objects at the same scene,
the corresponding synthetic object of each original object (e.g.,
pedestrian) may have different coordinates in the same frame.
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(a) Object #2 (f =0.1)
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(b) Object #2 (f =0.9)
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(c) Object #9 (f =0.1)
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(d) Object #9 (f =0.9)

Figure 6: Trajectories of Two Randomly Selected Objects in MOT01

Frame #

0 25 50 75 100 125 150 175
X-C

oor
din
ate

480
490

500
510

520
530

540

Y-
Co

or
di
na

te

0

20

40

60

80

100

120

140

160

Original
Synthetic

(a) Object #35 (f =0.1)

Frame #

0 25 50 75 100 125 150 175
X-C

oor
din
ate

480
490

500
510

520
530

540

Y-
Co

or
di
na

te

0

20

40

60

80

100

120

140

160

Original
Synthetic

(b) Object #35 (f =0.9)
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(c) Object #105 (f =0.1)
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(d) Object #105 (f =0.9)

Figure 7: Trajectories of Two Randomly Selected Objects in MOT03

Frame #

0 10 20 30 40
50

60
70

80
X-C

oor
din
ate

100

200

300
400

500
600

Y-
Co

or
di
na

te

200

210

220

230

240

250

260

Original
Synthetic

(a) Object #5 (f =0.1)
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(b) Object #5 (f =0.9)
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(c) Object #165 (f =0.1)
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(d) Object #165 (f =0.9)

Figure 8: Trajectories of Two Randomly Selected Objects in MOT06

All the coordinates in different frames may form a trajectory
in the synthetic video. Thus, we also measure the deviation for
the trajectories of all the objects in the original video and syn-
thetic video:

∑n
i=1

∑m
k=1

P (Oi ,Fk )−P (Oi ,F ∗k )
P (Oi ,Fk )

, where P(Oi , Fk ) and
P(Oi , F

∗
k ) are the center coordinates of objectOi in the kth frame

of the input video and the synthetic video.
In Figure 5(b), 5(d) and 5(f), we can observe that the deviation

before Phase II is higher than 0.9, since each object is only gener-
ated in a few frames. The deviation of trajectories increases as
the flipping probability f gets larger since more flips occur more
frequently (e.g., “0” to “1”, or vice-versa). In such three figures,
after Phase II, the deviation can be significantly reduced (e.g., in
[0.1, 0.2] for video MOT01, in [0.02, 0.2] for video MOT06).

More specifically, we randomly select two objects (e.g., pedes-
trians) from each of the three videos, and extract their trajectories
in the original videoV . In addition, we also extract their corre-
sponding trajectories in the synthetic videoV∗. Figure 6, 7 and 8
demonstrate the trajectories of those objects in the input videos

and synthetic videos, where 3-dimensional axes refer to the frame
ID and coordinates (X ,Y ) in videos. As f = 0.1, the trajectories of
the objects lie closer to the original ones (compared to f = 0.9). It
is worth noting that any object (pedestrian) in the original video
can generate the corresponding trajectory of any object (e.g., the
plotted trajectories corresponding to Object #2 and Object #9 in
Figure 6). This is ensured by the ϵ-indistinguishable presence bit
vectors randomly generated from all the objects in VERRO.

6.3 Visual & Aggregated Results

We also randomly pick a frame from each of the three experimen-
tal videos, and present the generated background scenes and the
corresponding frames in the synthetic videos. For video MOT01,
Figure 9(a) shows the input frame and the detected objects in
the frame. Also, we use a background interpolation algorithm
[11] to fill the missing pixels (after removing all the detected
objection), as shown in Figure 9(b). Similarly, a randomly picked
frame (with the detected objects) and the generated background
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(a) Frame 8 (b) Background Scene (c) Synthetic Frame (f =0.1) (d) Synthetic Frame (f =0.9)

Figure 9: Representative Frames in MOT01 and the Generated Synthetic Video

(a) Frame 134 (b) Background Scene (c) Synthetic Frame (f =0.1) (d) Synthetic Frame (f =0.9)

Figure 10: Representative Frames in MOT03 and the Generated Synthetic Video

(a) Frame 216 (b) Background Scene (c) Synthetic Frame (f =0.1) (d) Synthetic Frame (f =0.9)

Figure 11: Representative Frames in MOT06 and the Generated Synthetic Video

scenes in MOT03 and MOT06 are given in the first two subfigures
of Figure 10 and 11. Some human silhouettes still exist in the
background scenes. Clearly, the silhouettes cannot be associated
to any objects in the synthetic video (as shown in Figure 10(c),
10(d), 11(c) and 11(d)). This confirms the discussion for imperfect
background scene in Section 5.

In the synthetic videos, we use different colors for different
synthetic objects. Compare to f = 0.1 (shown in Figure 9(c), 10(c)
and 11(c)), f = 0.9 would lead to more coordinates/trajectory
deviation (as shown in Figure 9(d), 10(d) and 11(d)). However,
accurate count of objects (pedestrians) can be retained in the
synthetic frames even if the flipping probability f is specified as
0.9 (small privacy bound). Thus, we can still use such synthetic
videos to function specific application based on the count of
objects, e.g., head counting and crowd density [23, 34]. To confirm
such observation, we also detect and count all the pedestrians in
each frame of the synthetic videos (f = 0.1 and f = 0.9).

Figure 12 shows the pedestrian counts in the (optimized) key
frames (after Phase I). The aggregated result lies very close to
the original result when f is small. When f goes larger, the ag-
gregated result is slightly more fluctuated, and more objects are

generated in the frames. Figure 13 demonstrates the aggregated
counts of pedestrians in each frame (after Phase II). Note that
many objects (with the coordinates outside the frames; not be-
tween the “head” and “end”) are suppressed in Phase II, making
the object counts in different frames more accurate. Note that if
multiple cameras capture more videos (e.g., surveillance or traffic
monitoring cameras for the smart city) for joint analysis, the
noise can be further cancelled in the applications.

6.4 Overheads

We evaluate the overheads of VERRO. Table 3 presents the run-
time of the two phases and the required bandwidth for sending
the synthetic videos to an untrusted recipient.

Table 3: Computational and Communication Overheads

Video Phase I (Sec) Phase II (Sec) Bandwidth (MB)
MOT01 0.89 34.78 9.58
MOT03 1.56 36.12 16.6
MOT06 1.57 43.12 19.4
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Figure 12: Object Counts in the Optimized Key Frames (by each frame)
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Figure 13: Object Counts in the Synthetic Videos (by each frame)

The computational cost increases as the count of distinct ob-
jects increases (MOT01 has the least pedestrians while MOT06
has the most pedestrians). The results reflect a sublinear increase
trend, which enables VERRO to be scaled to generate synthetic
videos for longer videos (with more frames). In addition, although
MOT06 has a lower resolution (less pixels) than MOT01 and
MOT03, it is captured by a moving camera. Since more back-
ground scenes have to be interpolated, it requires longer runtime
(but still efficient). Note that the runtime for object detecting and
background scene(s) generation (1-2 minutes in our experiments)
can be considered as computational costs for preprocessing.

Finally, the communication overhead for sharing three syn-
thetic videos is almost identical to the original video size.

7 RELATEDWORK

In the context of privacy preserving video publishing, many
solutions have been proposed in literature (e.g., [6, 20, 41, 42, 44]).
Saini et al. [41] have categorized such works in terms of the
sensitive attributes obfuscated in the sanitization. These sensitive
attributes include the evidence types bodies, what(activity), where
(location where the video is recorded) and when (time when the
video is recorded). In general, most of these works employ a
detect and blur policy for only body attributes [6, 20, 42, 44] and
some of them [15, 41, 47] aims at preserving the privacy against
other three implicit inference channels.3

Specifically, these techniques often leverage computer vision
techniques [20, 29] to first detect faces and/or other sensitive
regions in the video frames and then obscure them. However, such
detect-and-protect solutions have some limitations. For instance,
the detect-and-protect techniques cannot formally quantify and
3The synthetic videos generated by VERRO can preserve the information of “where
and when the videos are captured” while ensuring indistinguishability of objects
(the linkage between every object and such inference channels can be broken to
avoid leakage in the disclosure of the background scene).

bound the privacy leakage. In addition, blurred regions might still
be reconstructed by deep learning methods [33, 37]. Last but not
least, these techniques often use naive measures for quantifying
the privacy loss in videos. For instance, in [20, 36], if faces are
present, then it is considered as complete privacy loss, otherwise
no privacy loss is reported. Fan [18] applied Laplace noise to
randomly perturb the pixels in an image to ensure differential
privacy for protecting specific regions of an image. However,
the quality of the image is significantly deviated in the sanitized
results. Our proposed privacy notion and the VERRO technique
have addressed all the above limitations.

On the other hand, in the context of privacy preserving data
publishing, the notion of differential privacy has emerged as a
standard specification during past decade. This strong notion of
privacy was first proposed by Dwork [13] to guarantee indistin-
guishability in the published data against an adversary armed
with arbitrary background knowledge. Although differential pri-
vacy has been widely used to sanitize and release data in statis-
tical databases [13], numeric data [45], location data [38], and
search logs [25], to the best of our knowledge, no attempt has yet
been made to benefit from differential privacy in video databases.
Furthermore, to fully utilize differential privacy for sanitizing
videos, we have defined our privacy notion based on a recently
proposed locally implemented notion of differential privacy in
which individuals in the videos (i.e., as objects) can directly inter-
act with the sanitized result to ensure trustworthiness and fine-
grained privacy. The emerging local differential privacy (LDP)
models [4, 10, 16] have been utilized in a wide variety of applica-
tions (e.g., heavy hitters or histogram construction [4, 16], and
frequent itemset mining [46]), but cannot be directly applicable
to local video perturbation. VERRO complements the literature
with strong privacy protection for (local) objects in the video
against arbitrary background knowledge.
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8 CONCLUSION

Privacy concerns arise in considerable number of real world
videos. To the best of our knowledge, we take the first cut to
pursue indistinguishability for objects in the video by defining a
novel privacy notion ϵ-Object Indistinguishability. We propose a
two-phase video sanitization technique VERRO that locally per-
turbs all the objects in the video and generates a utility-driven
synthetic video with indistinguishable objects, which can be di-
rectly shared to any untrusted recipient. In the synthetic videos,
not only the object contents (e.g., different humans, and vehi-
cle make/model/color), but also their moving trajectories in the
video (e.g., a series of coordinates in different frames) can be
effectively protected since every synthetic object and its trajec-
tory can be possibly generated from any object in the original
video. Experiments performed on real videos have validated the
effectiveness and efficiency of VERRO. In the future, we will
comprehensively study the utility of the synthetic videos in more
application scenarios, and explore rigorous protection for objects
which can be tracked in multiple videos.
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