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ABSTRACT
Data curation – the process of discovering, integrating, and clean-
ing data – is one of the oldest, hardest, yet inevitable data manage-
ment problems. Despite decades of efforts from both researchers
and practitioners, it is still one of the most time consuming and
least enjoyable work of data scientists. In most organizations,
data curation plays an important role so as to fully unlock the
value of big data. Unfortunately, the current solutions are not
keeping up with the ever-changing data ecosystem, because they
often require substantially high human cost. Meanwhile, deep
learning is making strides in achieving remarkable successes in
multiple areas, such as image recognition, natural language pro-
cessing, and speech recognition. In this vision paper, we explore
how some of the fundamental innovations in deep learning could
be leveraged to improve existing data curation solutions and to
help build new ones. We identify interesting research opportu-
nities and dispel common myths. We hope that the synthesis of
these important domains will unleash a series of research activi-
ties that will lead to significantly improved solutions for many
data curation tasks.

1 INTRODUCTION
Data Curation (DC) [32, 44] – the process of discovering, inte-
grating [46] and cleaning data (Figure 1) for downstream analytic
tasks – is critical for any organization to extract real business
value from their data. The following are the most important
problems that have been extensively studied by the database
community under the umbrella of data curation: data discovery,
the process of identifying relevant data for a specific task; schema
matching and schema mapping, the process of identifying simi-
lar columns and learning the transformation between matched
columns, respectively; entity resolution, the problem of identify-
ing pairs of tuples that denote the same entity; and data cleaning,
the process of identifying errors in the data and possibly repair-
ing them. These are in addition to problems related to outlier
detection, data imputation, and data dependencies.

Due to the importance of data curation, there has been many
commercial solutions (for example, Tamr [45] and Trifacta [23])
and academic efforts for all aspects of DC, including data dis-
covery [8, 19, 33, 36], data integration [12, 27], and data clean-
ing [7, 16, 42]. An oft-cited statistic is that data scientists spend
80% of their time curating their data [8]. Most DC solutions can-
not be fully automated, as they are often ad-hoc and require
substantial effort to generate things, such as features and labeled
data, which are used to synthesize rules and train machine learn-
ing models. Practitioners need practical and usable solutions that
can significantly reduce the human cost.
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Deep Learning (DL) is a successful paradigm within the area of
machine learning (ML) that has achieved significant successes in
diverse areas, such as computer vision, natural language process-
ing, speech recognition, genomics, and many more. The trifecta
of big data, better algorithms, and faster processing power has
resulted in DL achieving outstanding performance in many areas.
Due to these successes, there has been extensive new research
seeking to apply DL to other areas both inside and outside of
computer science.
Data Curation Meets Deep Learning. In this article, we in-
vestigate intriguing research opportunities for answering the
following questions:

• What does it take to significantly advance a challenging
area such as DC?
• How can we leverage techniques from DL for DC?
• Given the many DL research efforts, how can we identify

the most promising leads that are most relevant to DC?

We believe that DL brings unique opportunities for DC, which
our community must seize upon. We identified two fundamental
ideas with great potential to solve challenging DC problems.
Feature (or Representation) Learning. For ML- or non-ML based
DC solutions, domain experts are heavily involved in feature
engineering and data understanding so as to define data quality
rules. Representation learning is a fundamental idea in DL where
appropriate features for a given task are automatically learned
instead of being manually crafted. Developing DC-specific repre-
sentation learning algorithms could dramatically alleviate many
of the frustrations domain experts face when solving DC prob-
lems. The learned representation must be generic such that it
could be used for multiple DC tasks.
DL Architectures for DC. So far, no DL architecture exists that is
cognizant of the characteristics of DC tasks, such as represen-
tations for tuples or columns, integrity constraints, and so on.
Naively applying existing DL architectures may work well for
some, but definitely not all, DC tasks. Instead, designing new DL
architectures that are tailored for DC and are cognizant of the
characteristics of DC tasks would allow efficient learning both
in terms of training time and the amount of required training
data. Given the success of domain specific DL architectures in
computer vision and natural language processing, it behooves us
to design an equivalent of such a DL architecture customized for
DC task(s).
Contributions and Roadmap. The major elements of our pro-
posed approach to exploiting the huge potential offered by DL to
tackle key DC challenges include:

• Representation Learning for Data Curation. We de-
scribe several research directions for building representa-
tions that are explicitly designed for DC. Developing algo-
rithms for representation learning that can work on multi-
ple modalities of data (structured, unstructured, graphical),
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Figure 1: A Data Curation Pipeline

and can work on diverse DC tasks (such as deduplication,
error detection, data repair) is challenging.
• Deep Learning Architectures for Data Curation

Tasks. We identify some of the most common tasks in
DC and propose preliminary solutions using DL. We also
highlight the importance of designing DC specific DL ar-
chitectures.
• Early Successes of DL for DC. In the last couple of years,

there has been some promising developments in applying
DL to some DC problems such as data discovery [19] and
entity resolution [14, 35]. We provide a brief overview of
these work and the lessons learned.
• Taming DL’s Hunger for Data. DL often requires a

large amount of training data. However, there are multiple
promising techniques, which when adapted for DC, could
dramatically reduce the required amount of labeled data.
• Myths and Concerns about DL. DL is still a relatively

new concept, especially for database applications and is
not a silver bullet. We thus identify and address a number
of myths and concerns about DL.

2 DEEP LEARNING FUNDAMENTALS
We provide a quick overview of relevant DL concepts needed for
the latter sections. Please refer to [5, 20, 29] for additional details.

Deep learning is a subfield of ML that seeks to learn meaning-
ful representations from the data using computational models
that are composed of multiple processing layers. The representa-
tions could be then used to solve the task at hand effectively. The
most commonly used DL models are neural networks with many
hidden layers. The key insight is that successive layers in this
“deep” neural network can be used to learn increasingly useful
representations of the data. Intuitively, the input layer often takes
in the raw features. As the data is forwarded and transformed
by each layer, an increasingly sophisticated and more meaning-
ful information (representation) is extracted. This incremental
manner in which increasingly sophisticated representations are
learned layer-by-layer is one of the defining characteristic of DL.

2.1 Deep Learning Architectures
Fully-connected Neural Networks. The simplest model is a
neural network with many hidden layers – a series of layers
where each node in a given layer is connected to every other
node in the next layer. They are also called feed-forward neu-
ral network. It can learn relationships between any two input
features or intermediate representations. Its generality however

comes with a cost; one has to learn weights and parameters which
requires a lot of training data.
Domain Specific Architectures. There are a number of neural
network architectures that are designed to leverage the domain
specific characteristics. For example, Convolutional Neural Net-
works (CNNs) are widely used by the computer vision community.
The input is fed through convolutions layers, where neurons in
convolutional layers only connect to close neighbors (instead
of all neurons connecting to all neurons). This method excels
in identifying spatially local patterns and use it to learn spatial
hierarchies such as nose → face → human. Recurrent Neural
Networks (RNNs) are widely used in Natural Language Process-
ing (NLP) and Speech recognition. RNN processes inputs in a
sequence one step at a time. For example, given two words “data
curation”, it first handles “data” and then “curation”. Neurons in
an RNN are designed by being fed with information not just from
the previous layer but also from themselves from the previous
pass that are relevant for NLP.

2.2 Distributed Representations
Deep learning is based on learning data representations, and
the concept of distributed representations (a.k.a. embeddings) is
often central to DL. Distributed representations [24] represent one
object by many representational elements (or many neurons).
Each neuron is associated with more than one represented object.
That is, the neurons represent features of objects. Distributed
representations are very expressive and can handle semantic
similarity. These advantages become especially relevant in do-
mains such as DC. There has been extensive work on developing
algorithms for learning distributed representations for different
types of entities such as words and nodes.
Distributed Representations of Words (a.k.a. word embed-
dings) seek to map individual words to a vector space, which
helps DL algorithms to achieve better performance in NLP tasks
by grouping similar words. The dimensionality is often fixed
(such as 300) and the representation is often dense. Word em-
beddings are often learned from the data in such a way that
semantically related words are often close to each other. The geo-
metric relationship between words often also encodes a semantic
relationship between them. An oft-quoted example shows that
by adding the vector corresponding to the concept of female to
the distributed representation of king, we (approximately) obtain
the distributed representation of queen.
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Distributed Representations of Graphs (a.k.a. network em-
beddings) are a popular mechanism to effectively learn appro-
priate features for graphs (see [6] for a survey). Each node is
represented as a dense fixed length high dimensional vector. The
optimization objective is neighborhood-preserving whereby two
nodes that are in the same neighborhood will have similar rep-
resentations. Different definitions of neighborhood results in
different representations for nodes.
Distributed Representations for Sets. Sets are a fundamental
data structure where the order of items does not matter. Sets are
extensively used in the Codd model where each tuple is a set
of atomic units and a relation is a set of tuples. Algorithms for
learning set embeddings must ensure that they have permutation
invariance so that any permutation of the set should obtain the
same embedding. There has been a number of popular algorithms
for processing sets to produce such embeddings such as [41, 52].
Compositions of Distributed Representations. One can
then use these to design distributional representations of atomic
units – words in NLP, or nodes in a graph – for more complex
units. For NLP, these could be sentences (i.e., sentence2vec), para-
graphs or even documents (i.e., doc2vec) [28]. In the case of
graphs, it can be subgraphs or entire graph.

3 REPRESENTATION LEARNING FOR DATA
CURATION

In this section, we discuss potential research opportunities for de-
signing DL architectures and algorithms for learning DC specific
representations.

3.1 The Need for DC Specific Distributed
Representations

Data curation is the process of discovering, integrating and clean-
ing data for downstream tasks. There are a number of challenging
sub-problems in data curation. However, a number of problems
could be unified through the prism of “matching”.
Data Discovery is the process of identifying relevant data for a
specific task. In most enterprises, data is often scattered across
a large number of tables that could range in the tens of thou-
sands. As an example, the user might be interested in identifying
all tables describing user studies involving insulin. The typical
approach involves asking an expert or performing manual data
exploration [8]. Data discovery could be considered as identify-
ing tables that match a user specification (e.g., a keyword or an
SQL query).
Schema Matching is the problem of identifying a pair of
columns from different tables that are (semantically) related and
provide comparable information about an underlying entity. For
example, two columns wage and salary could store similar in-
formation. The problem of schema mapping seeks to learn the
transformation between matched columns such as hourly wage
and monthly salary. One can see that this problem seeks to iden-
tify matching columns.
Data Cleaning is the general problem of detecting errors in
a dataset and repairing them in order to improve the quality
of the data. This includes qualitative data cleaning which uses
mainly integrity constraints, rules, or patterns to detect errors and
quantitative approaches which are mainly based on statistical
methods. Many sub-problems in data cleaning fall under the
ambit of matching. These include:

• Entity Resolution is the problem of identifying pairs of
tuples that denote the same entity. For example, the tuple
⟨Bill Gates, MS⟩ and ⟨William Gates, Microsoft⟩ refer to
the same person. This has a number of applications such
as identifying duplicate tuples between two tables. Once
again, we can see that this corresponds to discovering
matching entities (or tuples), i.e., those that refer to the
same real-world objects.
• Data Dependencies specify how one attribute value de-

pends on other attribute values. This is widely used as
integrity constraints for capturing data violations. For ex-
ample, the social security number determines a person’s
name while the country name typically determines its cap-
ital. We can see that this could be treated as an instance
of relevance matching.
• Outlier Detection identifies anomalous data that does not

match a group of values, either syntactically, semantically,
or statistically. For example, the phone number 123−456−
7890 is anomalous when the other values are of the form
nnnnnnnnnn.
• Data Imputation. is the problem of guessing the missing

value that should match its surrounding evidence.

The main drawback of traditional DC solutions is that they
typically use syntactic similarity based features. The syntactic
approach is often ad-hoc, heavily reliant on domain experts and
thus not extensible. While they are effective, they cannot leverage
semantic similarity. A different approach is needed.

Intuitively, distributed representations, which can interpret
one object in many different ways, may provide great help for
various DC problems. However, there are a number of challenges
before they could be used in DC. In domains such as NLP, simple
co-occurrence is a sufficient approximation for distributional
similarity. In contrast, domains such as DC require much more
complex syntactic and semantic relationships between (multiple)
attribute values, tuples, columns, and tables. Furthermore, the
data itself could be noisy and the learned distributions should be
resilient to errors.

3.2 Distributed Representation of Cells
A cell, which is an attribute value of a tuple, is the atomic data
element in a relational database. Learning distributed representa-
tion for cells is already quite challenging and requires synthesis
of representation learning of words and graphs.
Word Embeddings based Approaches. An initial approach in-
spired by word2vec [31] treats this as equivalent to the problem
of learning word embeddings. Each tuple corresponds to a doc-
ument where the value of each attribute corresponds to words.
Hence, if two cell values occur together often in a similar context,
then their distributed representation will be similar. For example,
if a relation has attributes Country and Capital with many tuples
containing (USA, Washington DC) for these two attributes, then
their distributed representations would be similar.
Limitations of this Approach. The embeddings produced by
this approach suffer from a number of issues. First, databases are
typically well normalized to reduce redundancy, which also mini-
mizes the frequency that two semantically related attribute values
co-occur in the same tuples. Databases have many data depen-
dencies (or integrity constraints), within tables (e.g., functional
dependencies [2], and conditional functional dependencies [17])
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or across tables (e.g., foreign keys, and matching dependencies).
These data dependencies are important hints about semantically
related cells that should be captured by learning distributed rep-
resentations of cells.
Combining Word and Graph Embeddings. To capture the
relationships (e.g., integrity constraints) between cells, a more
natural way is to treat each relation as a heterogeneous network.
Each relation D is modeled as a graph G (V ,E), where each node
u ∈ V is a unique attribute value, and each edge (u,v ) ∈ E
represents multiple relationships, such as (u,v ) co-occur in one
tuple, there is functional dependency from the attribute of u to
the attribute ofv , and so on. The edges could be either directed or
undirected, have labels and weights. This enriched model might
provide a more meaningful distributed representation that is
cognizant of both content and constraints.

A sample table and our proposed graph representation of the
table is shown in Figure 2. There are four distinct Employee ID
values (nodes), three distinct Employee Name values, two dis-
tinct Department ID values, and three Department Name values.
There are two types of edges: undirected edges indicating values
appearing in the same tuple, e.g., 0001 and John Doe, and di-
rected edges for functional dependencies, e.g., Employee ID 0001
implies DepartmentID 1.

Research Opportunities.

• Algorithms. How can we design an algorithm for learning
cell embeddings that take values, integrity constraints, and
other metadata (e.g., a query workload) into consideration?
• Global Distributed Representations. We need to learn dis-

tributed representations for the cells over the entire data
lake, not only on one relation. How can we “transfer”
knowledge gained from one relation to another to improve
the representations?

• Handling Rare Values. Word embeddings often provide
inadequate representations for rare values. How can we
ensure that primary keys and other rare values have a
meaningful representation?

3.3 Hierarchical Distributed Representations
Many DC tasks are often performed at a higher level of granu-
larity than cells. The next fundamental question to solve is to
design an algorithm to compose the distributed representations of
more abstract units from these atomic units. As an example, how
can one design an algorithm for tuple embeddings assuming one
already has a distributed representation for each of its attribute
values? A common approach is to simply average the distributed
representation of all its component values.

Research Opportunities.

• Tuple, Column and Table Embeddings (Tuple2Vec, Col-
umn2Vec, Table2Vec ): Are there any other elegant ap-
proaches to compose representations for tuples than aver-
aging? Can it be composed from representations for cells?
Or should it be learned directly? How can one extend this
idea to learn representations for columns that are often
useful for tasks such as schema matching? Finally, how
can one learn a representation for the entire relation that
can benefit a number of tasks such as copy detection or
data discovery (finding similar relations)?
• Compositional or Direct Learning: Different domains re-

quire different ways to create hierarchical representations.
For the computer vision domain, hierarchical representa-
tions such as shapes are learned by composing simpler in-
dividual representations such as edges. On the other hand,
for NLP, hierarchical representations are often learned
directly [28]. What is an appropriate mechanism for DC?
• Contextual Embeddings for DC. There has been increas-

ing interest in the NLP community in contextual embed-
dings [10, 38] that can provide different embeddings for
a word (such as apple) based on the surrounding context.
This is often helpful for tasks requiring word disambigua-
tion. Often, DC tasks require a number of contextual infor-
mation and hence any learned representation must take
that into account. What is an appropriate formalization of
context and algorithms for contextual embeddings in DC?
• Multi Modal Embeddings for DC. Enterprises often pos-

sess data across various modalities, such as structured
data (e.g., relations), unstructured data (e.g., documents),
graphical data (e.g., enterprise networks), and even videos,
audios, and images. An intriguing line of research is cross
modal representation learning [25], wherein two entities
that are similar in one or more modalities, e.g., occurring
in the same relation, document, image, and so on, will
have similar distributed representations.

4 DEEP LEARNING ARCHITECTURES FOR
DATA CURATION TASKS

Representation learning and domain specific architectures are
the two pillars that led to the major successes achieved by DL
in various domains. While representation learning ensures that
the input to the DL model contains all relevant information, the
domain specific architecture often processes the input in a mean-
ingful way requiring less training data than generic architectures.
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In this section, we motivate the need for designing DC specific
architecture and provide a promising design space to explore.

4.1 Need for DC Specific DL Architectures
Recall from Section 2 that a fully connected architecture is the
most generic one. It does not make any domain specific assump-
tions and hence can be used for arbitrary domains. However, this
generality comes at a cost: a lot of training data. One can argue
that a major part of DL’s success in computer vision and NLP is
due to the design of specialized DL architectures – CNN and RNN
respectively. CNN leverages spatial hierarchies of patterns where
complex/global patterns are often composed of simpler/local pat-
terns (e.g., curves→ mouth→ face). Similarly, RNN processes an
input sequence one step at a time while maintaining an internal
state. These assumptions allows one to design effective neural
architectures for processing images and text that also require less
training data. This is especially important in data curation where
there is a persistent scarcity of labeled data. There is a pressing
need for new DL architectures that are tailored for DC and are
cognizant of the characteristics of DC tasks. This would allow
them to do the learning efficiently both in terms of training time
and the amount of required training data.
Desiderata for DC-DL Architectures.

• Handling Heterogeneity. In both CNN and RNN, the input
is homogeneous – images and text. However, a relation
can contain a wide variety of data, such as categorical,
ordinal, numerical, textual, and image.
• Set/Bag Semantics. While an image can be considered as a

sequence of pixels and a document as a sequence of words,
such an abstraction does not work for relational data. Fur-
thermore, the relational algebra is based on set and bag
semantics with the major query languages specified as
set operators. DL architectures that operate on sets are an
under explored area in DL.
• Long Range Dependencies. The DC architecture must be

able to determine long range dependencies across at-
tributes and sometimes across relations. Many DC tasks
rely on the knowledge of such dependencies. They should
also be able to leverage additional domain knowledge and
integrity constraints.

4.2 Design Space for DC-DL Architectures
Broadly speaking, there are two areas in which DL architectures
could be used in DC. First, novel DL architectures are needed
for learning effective representations for downstream DC tasks.
Second, we need DL architectures for common DC tasks such as
matching, data repair, imputation, and so on. Both are challenging
on their own right and require significant innovations.
Architectures for DC Representation Learning. In a number
of fields such as computer vision, deep neural networks learn
general features in early layers and transition to task specific
features in the latter layers. Initial layers learn generic features
such as edges (which can be used in many tasks) while latter
layers learn high level concepts such as a cat or dog (which could
be used for task for recognizing cats from dogs). Models trained
on large datasets such as ImageNet could be used as feature
extractors followed by specific task specific models. Similarly,
in NLP there has been a number of pretrained language models
such as word2vec [31], ELMo [38], and BERT [10] that could then
be customized for various tasks such as classification, question

answering, semantic matching, and coreference resolution. In
other words, the pre-trained DL models act as a set of Lego bricks
that could be put together to perform the required functionality.
It is thus important that the DL architecture for DC follows this
property by learning features that are generic and could readily
generalize to many DC tasks.

While there has been extensive work in linguistics about the
hierarchical representations of language, a corresponding inves-
tigation in data curation is lacking. Nevertheless, we believe that
a generic DC representation learning architecture must be in-
spired based on the pretrained language models. Once such an
architecture is identified, the learned representations could be
used for multiple DC tasks.
DL Architectures for DC Tasks. While the generic approach
is often powerful, it is important that we must also work on DL
architectures for specific DC tasks. This approach is often much
simpler and provides incremental gains while also increasing
our understanding of DL-DC nexus. In fact, this has been the
approach taken by the NLP community - they worked on DL
architectures for specific tasks (such as text classification or ques-
tion answering) even while they searched for more expressive
generative language models.

A promising approach is to take specific DC tasks and break
them into simpler components and evaluate if there are existing
DL architectures that could be reused. Often, it is possible to
“compose” individual DL models to create a more complex model
for solving a specific DC task. Many of the DC tasks could be
considered as a combination of tasks such as matching, error
detection, data repair, imputation, ranking, discovery, and syn-
tactic/semantic transformations. An intriguing research question
is to identify DL models for each of these and investigate how to
instantiate and compose them together.

4.3 Pre-Trained DL Models for DC
In domains such as computer vision and NLP, there is a com-
mon tradition of training a DL model on a large dataset and then
reusing it (after some tuning) for tasks on other smaller datasets.
One example include ImageNet [9] which contains almost 14M
images over 20k categories. The spatial hierarchy learned from
this dataset is often a proxy for modeling the visual world [5]
and can be applied on a different dataset and even different cate-
gories [5]. Similarly, in NLP, word embeddings are an effective
approximation for language modeling. The embeddings are often
learned from large diverse corpora such as Wikipedia or PubMed
and could be used for downstream NLP tasks. These pre-trained
models can be used in two ways: (a) feature extraction where
these are used to extract generic features that are fed to a sep-
arate classifier for the task at hand; (b) fine-tuning where one
adjusts the abstract representations from the last few hidden lay-
ers of a pre-trained model and make it more relevant to a targeted
task. A promising research avenue is the design of pre-trained DL
models for DC that could be used by others with comparatively
less resources.

5 EARLY SUCCESSES OF DL FOR DC
In this section, we describe the early successes achieved by the
DC community on using DL for major DC tasks such as data
discovery and entity matching.
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5.1 Data Discovery
Large enterprises typically possess hundreds or thousands of
databases and relations. Data required for analytic tasks is often
scattered across multiple databases depending on who collected
the data. This makes the process of finding relevant data for a
particular analytic task very challenging. Usually, there is no
domain expert who has complete knowledge about the entire
data repository. This results in a non-optimal scenario where
the data analyst patches together data from her prior knowledge
or limited searches – thereby leaving out potentially useful and
relevant data.

As an example of applying word embeddings for data discov-
ery, [19] shows how to discover semantic links between different
data units, which are materialized in the enterprise knowledge
graph (EKG)1. These links assist in data discovery by linking
tables to each other, to facilitate navigating the schemas, and by
relating data to external data sources such as ontologies and dic-
tionaries, to help explain the schema meaning. A key component
is a semantic matcher based on word embeddings. The key idea
is that a group of words is similar to another group of words
if the average similarity in the embeddings between all pairs
of words is high. This approach was able to surface links that
were previously unknown to the analysts, e.g., isoform, a type
of protein, with Protein and Pcr – polymerase chain reaction, a
technique to amplify a segment of DNA – with assay. We can
see that any approach using syntactic similarity measures such
as edit distance would not have identified these connections.

5.2 Entity Matching
Entity matching is a key problem in data integration, which
determines if two tuples refer to the same underlying real-world
entity [15].
DeepER. A recent work [14], DeepER, applies DL techniques
for ER, whose overall architecture is shown in Figure 3. DeepER
outperforms existing ER solutions in terms of accuracy, efficiency,
and ease-of-use. For accuracy, DeepER uses sophisticated compo-
sitional methods, namely uni- and bi-directional recurrent neural
networks (RNNs) with long short term memory (LSTM) hidden
units to convert each tuple to a distributed representation, which
are used to capture similarities between tuples. DeepER uses a
locality sensitive hashing (LSH) based approach for blocking; it
takes all attributes of a tuple into consideration and produces
much smaller blocks, compared with traditional methods that
consider only few attributes. For ease-of-use, DeepER requires
much less human labeled data, and does not need feature en-
gineering, compared with traditional machine learning based
approaches which require handcrafted features, and similarity
functions along with their associated thresholds.
DeepMatcher [35] proposes a template based architecture for
entity matching. Figure 4 shows an illustration. It identifies
four major components: attribute embedding, attribute summa-
rization, attribute similarity and matching. It proposes various
choices for each of these components leading to a rich design
space. The four most promising models differ primarily in how
the attribute summarization is performed and are dubbed as
SIF, RNN, Attention, and Hybrid. SIF model is the simplest and
computes a weighted average aggregation over word embed-
dings to get the attribute embedding. RNN uses a bi-directional
1An EKG is a graph structure whose nodes are data elements such as tables, at-
tributes, and reference data such as ontologies and mapping tables, and whose
edges represent different relationships between nodes.

w1

wi

wj

A1 … Ap … Am

Words

Composition 
(avg, LSTM) 

layer 

v1

vi

vk

Classification
layer

Dense
layer

Similarity
layer

Words

tuple t

A1 … Ap … Amtuple t’

Embedding lookup 
layer

Figure 3: DeepER Framework (Figure from [14])

Attr 1 Attr 2

Se
q

1

Se
q

2 

Sequences of Words

1. Attribute Embedding

Sequences of 
Word Embeddings

2. Attribute Similarity
Representation

Attribute Similarity

Entity Similarity

3. Classification

prediction

Se
q

1

Se
q

2

NNs with the same 
pattern share parameters

Neural Network (NN)

Attr 3

Se
q

1

Se
q

2

Figure 2: Our architecture template for DL solutions for EM.

3 A DESIGN SPACE OF DL SOLUTIONS
Building on the above categorization of the DL solutions for match-
ing tasks in NLP, we now describe an architecture template for DL
solutions for EM. This template consists of three main modules,
and for each module we provide a set of choices. The combinations
of these choices form a design space of possible DL solutions for
EM. The next section selects four DL solutions for EM (SIF, RNN,
A�ention, and Hybrid) as “representative points” in this design
space. Section 5 then evaluates these four DL solutions, as well as
the trade-o�s introduced by the di�erent design choices.

3.1 Architecture Template & Design Space
Figure 2 shows our architecture template for DL solutions for EM.
This template is for the matching phase of EM only (the focus of
this paper). It uses the categorization of DL models for matching
related tasks discussed in Section 2.3, and is built around the same
categorization dimensions: (1) the language representation, (2) the
summarization technique, and (3) the comparison method used
to analyze an input pair of sequences. The template consists of
three main modules each of which is associated with one of these
dimensions.

Before discussing the modules, we discuss assumptions regarding
the input. We assume that each input point corresponds to a pair
of entity mentions (e1, e2), which follow the same schema with
attributes A1, . . . ,AN . Textual data can be represented using a
schema with a single attribute. We further assume that the value of
attribute Aj for each entity mention e corresponds to a sequence of
words we, j . We allow the length of these sequences to be di�erent
across di�erent entity mentions. Given this setup, each input point
corresponds to a vector of N entries (one for each attribute Aj 2
{A1, . . . ,AN }) where each entry j corresponds to a pair of word
sequences we1, j and we2, j .
The Attribute Embedding Module: For all attributes Aj 2
A1 · · ·AN , this module takes sequences of words we1, j and we2, j
and converts them to two sequences of word embedding vectors

ue1, j and ue2, j whose elements correspond to d-dimensional em-
beddings of the corresponding words. More precisely, if for e1, word
sequence we1, j contains m elements then we have ue1, j 2 Rd⇥m .
The same holds for e2. The overall output of the attribute embed-
ding module of our template is a pair of embeddings ue1, j and ue2, j
for the values of attribute Aj for entity mentions e1 and e2. We
denote the �nal output of this module as {(ue1, j , ue2, j )}N

j=1.
The Attribute Similarity Representation Module: The goal of
this module is to automatically learn a representation that captures
the similarity of two entity mentions given as input. This module
takes as input the attribute value embeddings {(ue1, j , ue2, j )}N

j=1 and
encodes this input to a representation that captures the attribute
value similarities of e1 and e2. For each attribute Aj and pair of
attribute embeddings (ue1, j , ue2, j ) the operations performed by
this module are split into two major parts:

(1) Attribute summarization. This module takes as input the two
sequences (ue1, j , ue2, j ) and applies an operation H that summa-
rizes the information in the input sequences. More precisely, let
sequences ue1, j and ue2, j contain m and k elements respectively.
An h dimensional summarization model H takes as input sequences
ue1, j 2 Rd⇥m and ue2, j 2 Rd⇥k and outputs two summary vectors
se1, j 2 Rh and se2, j 2 Rh . The role of attribute summarization is
to aggregate information across all tokens in the attribute value
sequence of an entity mention. This summarization process may
consider the pair of sequences (ue1, j , ue2, j ) jointly to perform more
sophisticated operations such as soft alignment [2].

(2) Attribute comparison. This part takes as input the summary
vectors se1, j 2 Rh and se2, j 2 Rh and applies a comparison function
D over those summaries to obtain the �nal similarity representation
of the attribute values for e1 and e2. We denote that similarity
representation by sj 2 Rl with sj = D(se1, j , se2, j ).

The output of the similarity representation module is a collec-
tion of similarity representation vectors {s1, . . . , sN }, one for each
attribute A1, . . . ,AN . There are various design choices for the two
parts of this module. We discuss those in detail in Section 3.3.
The Classi�er Module: This module takes as input the similar-
ity representations {s1, . . . , sN } and uses those as features for a
classi�er M that determines if the input entity mentions e1 and e2
refer to the same real-world entity.
A Design Space of DL Solutions for EM: Our architecture tem-
plate provides a set of choices for each of the above three modules.
Figure 3 describes these choices (under “Options” on the right side
of the �gure). Note that we provide only one choice for the classi�er
module, namely a multi-layer NN, because this is the most common
choice today in DL models for classi�cation. For other modules we
provide multiple choices. In what follows we discuss the choices for
attribute embedding, summarization, and comparison. The number-
ing of the choices that we will discuss correspond to the numbering
used in Figure 3.

3.2 Attribute Embedding Choices
Possible embedding choices for this module can be characterized
along two axes: (1) the granularity of the embedding and (2) whether

Figure 4: DeepMatcher Framework (Figure from [35])

GRU for summarizing an attribute for efficiency. Attention uses
a decomposable attention model that can leverage information
from aligned attributes of both tuples to summarize the attribute.
Finally, the hybrid approach combines RNN and attention. Deep-
Matcher was evaluated on a diverse set of datasets such as struc-
tured, unstructured and noisy and provides useful rule of thumb
on when to use DL for ER.

5.3 Representation Learning
A number of recent works such as DeepER [14], Deep-
Matcher [35] have applied a compositional approach using aver-
aging or RNN/LSTMs for obtaining tuple embeddings from pre-
trained word embeddings. For a number of benchmark datasets
in entity resolution, this provides good results. There has been
a number of recent efforts for learning distributed representa-
tions for data curation directly. Freddy [22] incorporated support
for semantic similarity based queries by using pre-trained word
embeddings inside Postgres. Termite [18] proposed an effective
technique to learn a common (distributed) representation for both
structured and unstructured data in an organization. In this ap-
proach, various entities such as rows, columns, and paragraphs
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are all represented as a vector. This unified representation al-
lows Termite to identify related concepts even if they are spread
across structured and unstructured data. Finally, EmbDC [4] pro-
posed an interesting approach to learn embeddings for cells that
combine ideas from word and node embeddings. It constructs
a tripartite graph and performs random walks over them. The
walks correspond to sentences that are passed to an algorithm
that computes word embeddings. This allows for different per-
mutations of the same data being outputted thereby partially
incorporating the set semantics. The authors show that this two
step approach provides promising results for unsupervised DC
tasks such as schema matching and entity resolution.

5.4 Understanding the Success and What is
Missing?

Both DeepER and DeepMatcher provide a mechanism to obtain
tuple embeddings from pre-trained word embeddings. The simi-
larity between the embeddings of two tuples is then used to train
a DL classifier. In both cases, the classifier was generic and hence
the state-of-the-art performance of these approaches could be
attributed to learning effective representations for the tuples. A
follow-up work [50] showed that such learned representations
could improve the performance of even non-DL classifiers. [35]
performed extensive empirical evaluation and found that deep
learning based methods were especially effective for entity reso-
lution involving textual and dirty data. For example, the use of
word embeddings allowed the DL based approach to identify that
‘Bill‘ and ‘William‘ are semantically similar while no string simi-
larity metric could do that. Learning such representations could
result in some unexpected applications such as performing entity
resolution between relations that are in different languages [3].

Something analogous happens in the data discovery scenario
as well. The word embedding based approach learned effective
representations that could show that certain concepts were rele-
vant (isoform and Protein or Pcr and assay as mentioned above)
that could not have been identified by any syntactic similarity
measures such as edit distance. This ability to learn representa-
tions that could identify similar pair of words even if they are
syntactically dissimilar explains the success of DL for schema
matching in [34, 43].

From the above discussion, it is clear that learning effective
representations was the cornerstone of improved performance of
DL based methods. Such representations learn relationships that
are hard to pull off using non-DL methods. However, these early
works are only scratching the surface as they do not yet leverage
powerful techniques such as task specific architectures or trans-
fer learning. As an example, DeepMatcher proposed a template
based architecture that has two key layers – composition/ag-
gregation and similarity computation. This could be considered
as a rudimentary task specific architecture that resulted in re-
duced training data. Recent work such as [50] and [26] seek to
use transfer learning to improve ER. However, the days of using
pre-trained ER models for multiple datasets is still far off. Even
within representation learning, works have not yet explored the
use of contextual embeddings such as ELMO or BERT.

6 TAMING DL’S HUNGER FOR DATA
Deep learning often requires a large amount of training data.
Unfortunately, in domains such as DC, it is often prohibitively
expensive to get high quality training data. In order for DL to be

widely used to solve DC problems, we must overcome the prob-
lem of obtaining training data. Fortunately, there are a number
of exciting innovations from DL that can be adapted to solve this
issue. We highlight some of these promising ideas and discuss
some potential research questions.

6.1 Unsupervised Representation Learning
While the amount of supervised training data is limited, most
enterprises have substantial amount of unsupervised data in var-
ious relations and data lakes. These unlabeled data could be used
to learn some generic patterns and representations that are then
used train a DL model with relatively less labeled data. This tech-
nique is widely used in NLP where word embeddings are learned
on large unlabeled corpus data such as Wikipedia and provide
good performance for many downstream NLP tasks.

Research Opportunities.

• How can we perform a holistic representation learning over
the enterprise data? How can the learned representations
be used as features for downstream DC tasks such as entity
matching, schema matching, etc? While there are some
promising start in recent work such as [4, 51], more needs
to be done.

6.2 Data Augmentation
Data augmentation increases the size of labeled training data
without increasing the load on domain experts. The key idea is to
apply a series of label preserving transformations over the existing
training data. For an image recognition task, one can apply a
transformations such as translation (moving the location of the
dog/cat within the image), rotation (changing the orientation),
shearing, scaling, changing brightness/color, and so on. Each of
these operations does not change the label of the image (cat or
dog) – yet generate additional synthetic training data.

Research Opportunities.

• Label Preserving Transformations for DC. What does label
preserving transformations mean for DC? Is it possible to
design an algebra of such transformations?
• Domain Knowledge Aware Augmentation. To avoid creat-

ing erroneous data, we could integrate domain knowledge
and integrity constraints in the data augmentation process.
This would ensure that we do not create tuples that say
New York City is the capital of USA.
• Domain Specific Transformations. There are some recent

approaches such as Tanda [40] that seek to learn domain
specific transformations. For example, if one knows that
Country → Capital, we can just swap the (Country, Cap-
ital) values of two tuples to generate two new tuples. In
this case, even if the new tuple is not necessarily real, its
label will be the same as the original tuple. Is it possible
to develop an algebra for such transformations?

6.3 Synthetic Data Generation for DC
A seminal event in computer vision was the construction of
ImageNet dataset [9] with many million images over thousands
of categories. This was a key factor in the development of
powerful DL algorithms. We believe that the DC community is
in need of such an ImageNet moment.
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Research Opportunities.

• Benchmark for DC. It is paramount to create a similar
benchmark to drive research in DC (both DL and non-
DL). While there has been some work for data cleaning
such as BART [1], it is often limited to specific scenarios.
For example, BART can be used to benchmark data repair
algorithms where the integrity constraints are specified
as denial constraints.
• Synthetic Datasets. If it is not possible to create an open-

source dataset that has realistic data quality issues, a useful
fall back is to create synthetic datasets that exhibit repre-
sentative and realistic data quality issues. The family of
TPC benchmarks involves a series of synthetic datasets
that is somehow realistic and widely used for benchmark-
ing database systems. A recent work [48] proposed a vari-
ational autoencoder based model for generating synthetic
data that has similar statistical properties as the original
data. Is it possible to extend that approach to encode data
quality issues as well?

6.4 Weak Supervision
A key bottleneck in creating training data is that there is often
an implicit assumption that it must be accurate. However, it is
often infeasible to produce sufficient hand-labeled and accurate
training data for most DC tasks. This is especially challenging for
DL models that require a huge amount of training data. However,
if one can relax the need for the veracity of training data, its
generation will become much easier for the expert. The domain
expert can specify a high level mechanism to generate training
data without endeavoring to make it perfect.

Research Opportunities.

• Weakly Supervised DL Models. There has been a series of
research (such as Snorkel [39]) that seek to weakly super-
vise ML models and provide a convenient programming
mechanism to specify “mostly correct” training data. What
are the DC specific mechanisms and abstractions for weak
supervision? Can we automatically create such a weak
supervision through data profiling?

6.5 Transfer Learning
Another trick to handle limited training data is to “transfer” rep-
resentations learned in one task to a different yet related task. For
example, DL models for computer vision tasks are often trained
on ImageNet [9], a dataset that is commonly used for image
recognition purposes. However, these models could be used for
tasks that are not necessarily image recognition. This approach
of training on a large diverse dataset followed by tuning for a
local dataset and tasks has been very successful.

Research Opportunities.

• Transfer learning. What is the equivalent of this approach
for DC? Is it possible to train on a single large dataset such
that it could be used for many downstream DC tasks?
Alternatively, is it possible to train on a single dataset and
for a single task (such as entity matching) such that the
learned representations could be used for entity matching
in similar domains? How can we train a DL model for one
task and tune the model for new tasks by using the limited
labeled data instead of starting from scratch?
• Pre-trained Models. Is it possible to provide pre-trained

models that have been trained on large, generic datasets?

These models could then be tuned by individual practi-
tioners in different enterprises.

7 DEEP LEARNING: MYTHS AND
CONCERNS

In the past few years, DL has achieved substantial successes in
many areas. However, DC has a number of characteristics that
are quite different from prior domains where DL succeeded. We
anticipate that applying DL to challenging real-world DC tasks
can be messy. We now describe some of the concerns that could
be raised by a pragmatic DC practitioner or a skeptical researcher.

7.1 Deep Learning is Computing Heavy
A common concern is that training DL models requires exor-
bitant computing resources where model training could take
days even on a large GPU cluster. In practice, training time often
depends on the model complexity, such as the number of param-
eters to be learnt, and the size of training data. There are many
tricks that can reduce the amount of training time. For example,
a task-aware DL architecture often requires substantially less
parameters to be learned. Alternatively, one can “transfer” knowl-
edge from a pre-trained model from a related task or domain
and the training time will now be proportional to the amount of
fine-tuning required to customize the model to the new task. For
example, DeepER [14] leveraged word embeddings from GloVe
(whose training can be time consuming) and built a light-weight
DL model that can be trained in a matter of minutes even on a
CPU. Finally, while training could be expensive, this can often be
done as a pre-processing task. Prediction using DL is often very
fast and comparable to that of other ML models.

7.2 Data Curation Tasks are Too Messy or
Too Unique

DC tasks often require substantial domain knowledge and
a large dose of “common sense”. Current DL models are very
narrow in the sense that they primarily learn from the corre-
lations present in the training data. However, it is quite likely
that this might not be sufficient. Unsupervised representation
learning over the entire enterprise data can only partially address
this issue. Current DL models are often not amenable to encoding
domain knowledge in general as well as those that are specific
to DC such as data integrity constraints. As mentioned before,
substantial amount of new research on DC-aware DL architec-
tures is needed. However, it is likely that DL, even in its current
form, can reduce the work of domain experts.
DC tasks often exhibit a skewed label distribution. For the
task of entity resolution (ER), the number of non-duplicate tuple
pairs are orders of magnitude larger than the number of duplicate
tuple pairs. If one is not careful, DL models can provide inaccu-
rate results. Similarly, other DC tasks often exhibit unbalanced
cost model where the cost of misclassification is not symmetric.
Prior DL work utilizes a number of techniques to address these
issues such as (a) cost sensitive models where the asymmetric
misclassification costs are encoded into the objective function,
and (b) sophisticated sampling approach where we under or over
sample certain classes of data. For example, DeepER [14] samples
non-duplicate tuple pairs that are abundant at a higher level than
duplicate tuple pairs.
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7.3 Deep Learning Predictions are Inscrutable
Domain experts could be concerned that the predictions of DL
models are often uninterpretable. Deep learning models are of-
ten very complex and the black-box predictions might not be
explainable by even DL experts. However, explaining why a
DL model made a particular data repair is very important for a
domain expert. Recently, there has been intense interest in de-
veloping algorithms for explaining predictions of DL models or
designing interpretable DL models in general. Please see [21] for
an extensive survey. Designing algorithms that can explain the
prediction of DL models for DC tasks is an intriguing research
problem. While there are some promising approaches exist for
specific tasks such as Entity resolution [11, 13, 49], more research
remains.

7.4 Deep Learning can be Easily Fooled
There exist a series of recent works which show that DL mod-
els (especially for image recognition) can be easily fooled by
perturbing the images in an adversarial manner. The sub-field
of adversarial DL [37, 47] studies the problem of constructing
synthetic examples by slightly modifying real examples from
training data such that the trained DL model (or any ML model)
makes an incorrect prediction with high confidence. While this
is indeed a long term concern, most DC tasks are often collab-
orative and limited to an enterprise. Furthermore, there are a
series of research efforts that propose DL models that are more
resistant to adversarial training such as [30].

7.5 Building Deep Learning Models for Data
Curation is “Just Engineering”

Many DC researchers might look at the process of building DL
models for DC and simply dismiss it as a pure engineering effort.
And they are indeed correct! Despite its stunning success, DL is
still at its infancy and the theory of DL is still being developed.
To a DC researcher used to purveying a well organized garden
of conferences such as VLDB/SIGMOD/ICDE, the DL research
landscape might look like the wild west.

In the early stages, researchers might just apply an existing DL
model or algorithm for a DC task. Or they might slightly tweak a
previous model to achieve better results. We argue that database
conferences must provide a safe zone in which these DL explo-
rations are conducted in a principled manner. One could take
inspiration from the computer vision community. They created a
large dataset (ImageNet [9]) that provided a benchmark by which
different DL architectures and algorithms can be compared. They
also created one or more workshops focused on applying DL for
specific tasks in computer vision (such as image recognition and
scene understanding). The database community has its own TPC
series of synthetic datasets that have been influential in bench-
marking database systems. Efforts similar to TPC are essential
for the success of DL-driven DC.

7.6 Deep Learning is Data Hungry
Indeed, this is one of the major issues in adopting DL for DC. Most
classical DL architectures often have many hidden layers with
millions of parameters to learn, which requires a large amount
of training data. Unfortunately, the amount of training data for
DC is often small. The good news is, there exist a wide variety of
techniques and tricks in the DL’s arsenal that can help address
this issue. We could leverage the techniques described in Section 6
for addressing these issues.

8 A CALL TO ARMS
In this paper, we make two key observations. Data Curation is a
long standing problem and needs novel solutions in order to han-
dle the emerging big data ecosystem. Deep Learning is gaining
traction across many disciplines, both inside and outside com-
puter science. The meeting of these two disciplines will unleash
a series of research activities that will lead to usable solutions for
many DC tasks. We identified research opportunities in learning
distributed representations for database aware objects such as
tuples or columns and designing DC-aware DL architectures.
We described a number of promising approaches to tame DL’s
hunger for data. We discuss the early successes in using DL for
important DC tasks such as data discovery and entity matching
that required novel adaptations of DL techniques. We make a
call to arms for the database community in general, and the DC
community in particular, to seize this opportunity to significantly
advance the area, while keeping in mind the risks and mitigation
that were also highlighted in this paper.
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