
Lineage-Preserving Anonymization of the Provenance of
Collection-Based Workflows

Khalid Belhajjame

PSL, Université Paris-Dauphine, LAMSADE

Paris, France

khalid.belhajjame@dauphine.fr

ABSTRACT
We examine in this paper the problem of anonymizing the prove-

nance of collection-oriented workflows, in which the constituent

modules use and generate sets of data records. Despite their popu-

larity, this kind of workflows has been overlooked in the literature

w.r.t privacy. We, therefore, set out in this paper to examine the

following questions: How the provenance of a collection-based
module can be anonymized? Can lineage information be preserved?
Beyond a single module, how can the provenance of a whole work-
flow be anonymized? As well as addressing the above questions,
we report on evaluation exercises that assess the effectiveness

and efficiency of our solution. In particular, we tease apart the

parameters that impact the quality of the obtained anonymized

provenance information.

1 INTRODUCTION
Automated workflows have been shown to facilitate and accel-

erate scientific data exploration and analysis in many areas of

sciences [11]. Figure 1 illustrates a simple workflow that is used

to establish correlations between smoking and health conditions.

Workflow provenance information, recorded during workflow

executions, facilitates the interpretation of the results delivered

by workflow execution. Beyond verification, workflow prove-

nance information represents a useful dataset on its own right,

that can be leveraged to answer queries that are relevant for

an experiment that is (possibly related but) different from the

original experiment, to learn new hypotheses, or to gain insight

on the characteristics and quality of the data generated by given

modules. Collected workflow provenance information can also

be used to respond to the requirements of funding agencies that

are increasingly requesting the publication of the data generated

in the context of research investigations.

In fields such as biomedicine and social sciences, workflow

executions manipulate and generate sensitive information about

individuals. To promote the publication and sharing of the prove-

nance of workflow executions, we set out in this paper to examine

the problem of anonymizing workflow provenance.

1.1 Related Work
Related work has focused on the problem of securing workflow

provenance and policing their access. For example, Chebotko et
al [9] and Biton et al [7] proposed solutions that derive a partial

view on a workflow provenance by hiding the data records of

given modules Our objective is different from the above line of

work in that we seek to provide the user with the provenance of

all the modules of the workflow by leveraging anonymization.

© 2020 Copyright by the author(s). Published in Proceedings of the 23rd Interna-

tional Conference on Extending Database Technology (EDBT), March 30-April 2,

2020, Copenhagen, Denmark, ISBN 978-3-89318-083-7 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons

license CC-by-nc-nd 4.0.

Fig. 1: Example workflow.

Davidson et al. [12] investigated the problem of module pri-

vacy, whereby some of the parameters (attributes) characterizing

the inputs and outputs of the modules are hidden to guarantee

the privacy of modules. In our work, we seek, instead, to guar-

antee the privacy of the data records used and generated by the

modules, instead of the behavior of the module.

We have examined in a previous work, the problem of identifi-

cation of the k-anonymity degree that needs to be enforced when

anonymizing the datasets used and generated by workflows [6].

In doing, we assumed that the modules that compose the work-

flow are 1-to-1 in that they produce a single data record, given

a single data record, and we did not give much thought to the

problem of lineage preservation. In this paper, we are interested

in what we refer to as collection-based workflows [16–18, 27].

The modules that compose such workflows can take as input a

collection of data records and deliver a collection of data records.

Such workflows have been advocated as a way to better meet the

needs of non-expert users to model scientific data [20], and to

structure complex relationships among related pieces of informa-

tion that are processed together by the workflow [22]. This class

of workflows has been overlooked in the literature w.r.t. privacy.

Different techniques have been proposed in the literature for

protecting the privacy of individuals, notably, k-anonymity [26]

and differential privacy [15]. In particular, differential privacy

[15] has recently gained momentum as the method of choice

in statistical databases. It involves adding random noise to the

data so that the distribution of the resulting dataset is almost

invariant to the inclusion of any data record. While powerful,

differential privacy is not suitable for our purposes. It assumes

that the user knows up-front the queries s/he wants to issue prior

to the anonymization. This is not the case in our setting, where

the scientist issues exploratory queries for understanding and

eventually interpreting the results of the workflows. Furthermore,

for it to be useful, the scientist should be able to inspect individual

data records and their relationships (lineage), both of which are

Series ISSN: 2367-2005 229 10.5441/002/edbt.2020.21

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2020.21

not possible using differential privacy. Indeed, differential privacy

is more suited for statistical (i.e., aggregation-based) queries.

For our work, we chose to use k-anonymity [26]. This method

is not as powerful as differential privacy when it comes to privacy

guarantees. Yet, it is better suited for our purposes since it can

be instrumented, as we will show, to allow users to query and ex-

amine individual data records and their lineage within workflow

provenance. k-anonymity is also still perceived by practitioners

as sufficient for mitigating risk while maximizing utility, and

real-world applications still utilize it for data sanitization (see

e.g., [3, 10]). It is also widely popular and is used, e.g., in the

healthcare world [1, 25], and is still recommended by data protec-

tion agencies (see e.g., [2]). This technique has been extensively

investigated in the database and data mining communities [28].

Most of the proposals have focused on anonymizing a single

relational table. In workflow provenance, however, we need to

anonymize different datasets considering and preserving lineage

relationships between them. One solution that can be used to

anonymize workflow using k-anonymity would be to create a

global relational table that is obtained by joining relations rep-

resenting the input and output data records of the modules that

compose the workflows. However, this solution suffers from the

following issues. First, information about the same individual

can be found in different records. This is because we consider

collection based modules, e.g., a patient can be associated with

multiple practitioners. Second, the same tuple in the global table

may contain information about multiple individuals, e.g., a pa-

tient, one of its practitioners, etc. Moreover, as we will see later,

different kinds of individuals may be associated with different

k-anonymity degrees. For example, the k-anonymity degree as-

sociated with patients may be higher than that associated with

practitioners. Traditional k-anonymity is not equipped to deal

with the above issues. In this respect, the proposal by Nergiz

et al. [24] is related to ours. They elaborated a technique that

anonymizes multiple relations of a given database schema. While

useful, this proposal makes a number of limiting assumptions. In

particular, they consider snowflake schemas, in which there is

a single relational table that represents individuals with the re-

maining relations containing quasi-attributes and having a single

foreign key. In our work, we drop these assumptions and show

that the anonymization of workflow provenance can be achieved

in the presence of multiple datasets representing individuals with

multiple relationships (foreign keys constraints) between them.

1.2 Contributions
Our first contribution is the formulation of the problem of k-

anonymization of the provenance of collection-based workflows.

This is, to our knowledge, the first paper that extends the notion

of k-anonymization from a single relation to the provenance

of workflows. Our second contribution is a technique for k-

anonymizing the provenance of a single module, i.e., input and

output records together with their lineage information. Indeed,

lineage information tracing the dependencies between the output

and input of a module (and more generally a workflow) is key for

third-party scientists to understand and examine the validity of

workflow results. We examine this problem for modules that use

and generate collections of data records. Our third contribution

extends the technique proposed to cater for the anonymization

of the provenance of a workflow as a whole. Central to the solu-

tion we present is the notion of k-group anonymity, which we

define based on the k-anonymity degree and the magnitude of

the smallest input (or output) set of data records used and gen-

erated by a module. This concept allows us to gracefully reason

over the different k-anonymity degrees that may be associated

with the inputs and outputs of the workflow’s modules. We also

show how the NP-hard problem of identifying the sets of data

records to be grouped together into equivalence classes that meet

k-anonymity requirements can be cast as a scheduling problem

that we solve using integer programming.

The paper is organized as follows. We start by laying the foun-

dations of our work and stating the problem in Section 2. We then

focus on the problem of anonymizing the provenance of a module

in Section 3, and the provenance workflow in Section 4. In Sec-

tion 5, we address an issue that is inherent to our anonymization

technique, namely grouping sets of data records, and cast it as a

scheduling problem. We report on evaluation exercises that we

empirically conducted to assess the effectiveness and efficiency

of our solution in Section 6, and conclude the paper in Section 7.

2 FOUNDATIONS
2.1 Collection-Based Module and Workflow

Definition 2.1 (module). A module m is defined by the tuple

(Im, Om, card), where Im (resp. Om) is a set of ordered input (resp.

output) ports, and card specifies the cardinality of m. A port

p = ⟨a1, . . . , an⟩ is a list of attributes, each characterized with a

basic type, e.g., String, Integer.

Assigning a data value to each attribute in a port gives rise to

a data item, and assigning a data item to each input (output) port

of a module gives rise to a data record.

card ∈ {1-to-1,1-to-n,n-to-1,n-to-n}: 1-to-1 specifies that the in-

vocation of m takes as input a single data record and produces

a single data record; n-to-1 (resp. 1-to-n) specifies that the in-

vocation of m takes as input a list (ordered set) of data records

(resp. single data record) and produces a single data record (resp.

a list of data records); n-to-n specifies that the invocation of the

module takes as input a list of data records and produces a list of

data records.

Definition 2.2 (data link). A data link dl is defined by the pair

dl = (mi : omi , mj : imj), where mi : omi designates an output port
omi of the module mi, and mj : imj designates an input port imj
of the module mj.

Definition 2.3 (workflow). A workflow specification is defined

by a pair w = (M, E), where M is a set of modules and E is a set of
data links. w has one initial module with no incoming data links,

and one final module with no outgoing data links.

We consider acyclic workflows that have a single initial mod-

ule and a single final module, and where each module in the

workflow, other than the initial module, is reachable from the ini-

tial module. Workflow execution follows a pure dataflowmodel: a

module m is invoked (is fireable) as soon as all of its input ports are
bound to data items. During the workflow execution, data items

are transferred between connected output and input ports. For

example, the following data link binding ((m1 : om1, m2 : im2), di)

specifies that the data item diwas transferred using the data link
connecting the output port om1 of m1 to the input port im2 of m2.
The technical report [5] provides more information about the

workflow execution model. It specifies how input data records of

a module are constructed using the data records of the preceding

modules in the workflow. It also specifies how mismatches in

cardinalities between connected modules’ outputs and inputs are

resolved at execution time.

230

Table 1: Input and Output Provenance of admittedTo.
Input Patient DataSet Output Hospital DataSet

ID name birth lin ID hospital Lin

p1 Garnick 1990 {r1, r2 } h1 St Louis

{p1, p3 }p2 Hiyoshi 1987 {r3, r4 } h2 St Anton

p3 Suessmith 1989 {r5, r6 } h3 St Anne

{p2, p4 }p4 Solares 1985 {r7, r8 } h4 St August

p5 Kading 1992 {r9, r10 } h5 Holby

{p5, p7 }p6 Pero 1988 {r11, r12 } h6 Larib.

p7 Pehl 1986 {r13, r14 } h7 St James

{p6, p8 }p8 Barriga 1995 {r15, r16 } h8 St Mary

2.2 Workflow Provenance as Relations
Definition 2.4. Given a workflow w, its provenance, denoted

by prov(w), is the collection of modules and data link bindings

that take place as a result of the executions of w.

For ease of exposition of our anonymization solution, we

encode the provenance of a module m using two relational ta-

bles denoted by prov(m, w).in and prov(m, w).out. They contain

the data records that were used and generated, respectively, by

the invocations of m within the executions of a workflow w. we
call prov(m, w).in (resp. prov(m, w).out) the input (resp. output)
provenance of m. When the referred workflow w is clear from

the context, we abuse the notation and simply use prov(m).in
and prov(m).out to refer to such relations. The schema of such

relations contains the attributes of the input ports (resp. output

ports) of m. We assume that the attribute names are unique within

the input (resp. output) ports of a module. From a provenance

point of view, we do not keep information about the order of

the data records in an input or output list, which is, therefore,

viewed as a set. This is the case, for example, in the Taverna

workflow system [30]. Because of this, we use in what follows

the terms input/output set of data records, as opposed to list

of data records. W.l.o.g, we assume that the attributes of two

succeeding modules that have the same name are connected (via

their ports) by data links. In other words, we can deduce data

link bindings from module bindings, which allows us to write:

prov(w) =
⋃

m ∈ w.M
(prov(m).in ∪ prov(m).out)

Consider a module admittedTo that given a set of patients

returns a set of hospitals that those patients were admitted to
1
.

Table 1 illustrates an example of two relations representing input

provenance and output provenance of the admittedTo module.

The names of identifying attributes are written in bold, and the

names of quasi-identifying attributes are underlined. Notice that

the relations contain also two additional attributes: ID and Lin.
The first is an ID that is generated internally by the workflow

system to identify data records, and the second is used to encode

lineage information. In the case of the input provenance, Lin
specifies the data records produced by the preceding modules

in the workflow and that were used in the construction of the

data record in question. For example, the data record p1 was

constructed using two data records r1 and r2 that were produced
by some preceding modules. The Lin column is empty for the

relational table used to store the data records used as input to the

initial module in the workflow. Regarding the output provenance

of admittedTo, the Lin column identifies the data records that

were used as input to obtain the output data record in question.

For example, it specifies that h1 and h2 were generated given the

inputs p1 and p3. The lineage information we consider here is in

line with the why provenance semantics (see [8]).

2.3 Problem Statement
Adversary Model. The data records used and generated by a

workflow module are characterized by three kinds of attributes:

1
A hospital appears in the result only if it was visited by each of the patients in the

input set.

(i) Identifying attributes allow identifying individuals, e.g., the at-

tribute name is an identifying attribute. (ii) Sensitive attributes are
attributes that carry sensitive information, e.g., health condition.

(iii) Quasi-identifying attributes are non-identifying attributes,

but their combination can be used to identify an individual, e.g.,

address, phone number, etc. Notice that the ID attribute is not

considered as an identifying attribute because it is generated by

the workflow system and does not carry information that allows

identifying individuals such as name for example.

We assume that an adversary may know identifying and quasi-

identifying attribute values about individuals, e.g., name, address,

date of birth. However, we assume that s/he does not know sen-

sitive attribute values, e.g., health-condition, income tax.

In relational databases, a relation r is k-anonymized, where k
is an integer greater than 2, if any data record d in r is not distin-
guishable from (at least) k − 1 other records in r. This condition
is met by masking the values of identifying attributes, and gener-

alizing the values of quasi-identifying attributes (e.g., address, vis-

ited hospital, etc.). Sensitive attributes, such as health condition,

salary, are not masked: adversaries are assumed not to be knowl-

edgeable of the values of sensitive attributes. In what follows,

we use the term identifier record to refer to a data record that

has an identifying attribute value, and the term quasi-identifier

record to refer to a data record that has no identifying attribute

value but has a quasi-identifying attributes value. A module in-

put (resp. output) that is bound to identifier records following

module invocation is called identifier input (resp. output). It is

called quasi-identifier input (resp. output) if it is bound to quasi-

identifier records.

Anonymity degree of Identifier Inputs and Outputs. We assume

that every identifier input (resp. identifier output) of a module m
is associated with an anonymity degree, which we denote by kim
(resp. kom) to be enforced. Note that non-identifier module inputs

and output are not associated with an anonymity degree because

they are not bound at execution time to records that represent

individuals. We do not make the assumption that the anonymity

degrees associated with the identifier inputs and outputs of the

modules that compose the workflow are the same. This is be-

cause the modules that compose a workflow are likely to use

different underlying data sources that are supplied by different

providers who may impose different requirements when it comes

to the anonymity degree to be enforced on their data. Moreover,

the same data provider may impose different anonymity degrees

depending on the data that is retrieved from its source. For exam-

ple, an input that provides information about patients and their

health condition is likely to be associated with an anonymity

degree that is higher than an output that informs on the trips

of practitioners. In this paper, we apply k-anonymization to the

provenance prov(w) of a workflow prov(w) by creating equiv-

alence classes for the relations prov(m).in and prov(m).out for

each identifier input and output of the modules in w.M.

Definition 2.5 (Equivalence Classes). Consider the input

provenance prov(m).in of a module m. We say that the set

{E1min, . . . , E1
m
in}, n ≥ 1, is a set of input equivalence classes

for m and write prova(m).in = {E1min, . . . , E1
m
in} iff:

1)- The set {E1min, . . . , E1
m
in} forms a partitioning for prov(m).in.

That is prov(m).in = ∪
i∈[1,n]

Eimin, and Eimin ∩ Ej
m
in = ∅ for

i, j ∈ [1, n] s.t. i , j.
2)- The identifying attribute values of the data records in every

equivalence class Eimin are masked, and their quasi-identifying

attribute values are generalized such that the data records in an

231

Table 2: Input and Output Provenance of admittedTo
where the Input Provenance is 2-anonymized.

2-anonymized Patient DataSet Hospital DataSet
ID name birth lin ID hospital Lin

p1 ⋆ {1987,1990} {r1, r2 } h1 St Louis

{p1, p3 }p2 ⋆ {1987,1990} {r3, r4 } h2 St Anton

p3 ⋆ {1985,1989} {r5, r6 } h3 St Anne

{p2, p4 }p4 ⋆ {1985,1989} {r7, r8 } h4 St August

p5 ⋆ {1988,1992} {r9, r10 } h5 Holby

{p5, p7 }p6 ⋆ {1988,1992} {r11, r12 } h6 Larib.

p7 ⋆ {1986,1995} {r13, r14 } h7 St James

{p6, p8 }p8 ⋆ {1986,1995} {r15, r16 } h8 St Mary

equivalence class Eimin are indistinguishable w.r.t. their quasi-

identifying attribute values.

A set of output equivalence classes are defined in a similar

manner: prova(m).out = {E1mout, . . . , E1
m
out}.

Note that the ID and Lin attribute values of the data records
are not generalized. This is because the values of the ID attribute
are generated internally by the workflow system. In other words,

they are not meaningful for human users. More importantly, they

are used within the Lin attribute to encode lineage information

that we seek to preserve.

Lineage information needs to be considered when k-

anonymizing the input provenance (resp. output provenance)

of an identifier module input (resp. output). To illustrate this,

let us consider the admittedTo module. It has an identifier in-

put and a quasi-identifier output. Consider that the anonymity

degree associated with its input is kadmittedToi = 2. Notice that

its output is not associated with an anonymity degree because

it is not an identifier output. Table 2 illustrates the input and

output provenance of admittedTo, where the input provenance
is 2-anonymized. The anonymization consisted in partitioning

the set of input data records into input equivalence classes of size

≥ 2. Notice that this anonymization operation does not guaran-

tee k-anonymization, however. To illustrate this, consider that an

adversary knows that Garnick was born in 1990 and that he vis-

ited the StLouis hospital. By examining the output data records

together with lineage information in prov(admittedTo).out (see
Table 2), an adversary will be able to infer that the data record p1
refers to Garnick. This can be more of an issue when the data

record contains sensitive information such as health condition.

Problem 1 (K-anonymization of the input and output

provenance of a module). Consider a module m with an iden-
tifier input (resp. output). k-anonymizing the input provenance
prov(m).in (resp. prov(m).out) of m using an anonymity degree kmi
(resp. kmo) gives rise to anonymized input provenance prova(m).in
(resp. anonymized output provenance prova(m).out) where:
1)- prova(m).in = {E1min, . . . , En

m
in} (resp.

prova(m).out = {E1mout, . . . , En
m
out}), is a set of input (resp.

output) equivalence classes for the input (resp. output) provenance
of m, with n ≥ 1.
2)- An input equivalence class Eimin (resp. output equivalence class
Eimout) contains at least k

m
i (resp. k

m
o) data records.

3)- The data records in an input equivalence class Eimin (resp. output
equivalence class Eimout) cannot be distinguished by examining
their lineage, i.e., by examining the data records that (transitively)
contributed to the data records in Eimin (resp. Ei

m
out) or by examining

the data records that the records in Eimin (resp. Ei
m
out) contributed

to through workflow execution.

Condition (3) is formally defined in the technical report using

the notions of backward- and forward-lineage in a workflow [5].

Problem 2 (K-anonymization of the provenance of a

workflow). The provenance of a workflow w is said to be k-
anonymized iff the input provenance of every identifier module
input and the output provenance of every identifier module output
in w.M are k-anonymized.

The above problem is NP-Hard: Meyerson and Williams [21]

demonstrated that optimal k-anonymity for a single relational

table without considering lineage is an NP-hard problem. We

present in this paper a heuristic that seeks to satisfy k-anonymity,

to reduce the generalization (information-loss) incurred as a

result, and to preserve lineage information in doing so.

3 ANONYMIZATION OF MODULE
PROVENANCE

We show, in this section, how the input provenance and output

provenance of a module are anonymized. The solution we present

is applicable to many-to-many modules but also to modules with

other cardinalities. We distinguish the case where the module

input is an identifier input and its output is a quasi-identifier

output, and the case where the module input and output are iden-

tifier input and identifier output. In the first case, the attribute

values of the output data records are treated as quasi-identifying

attribute values for their counterpart input data records. The sec-

ond case is slightly more complex in the sense that the attribute

values of the output data records are treated as quasi-identifying

attribute values for their counterpart input data records, and vice-

versa. We will not examine the case where both the module input

and output carry quasi-identifier records. Indeed, it only makes

sense to perform the anonymization when the input and/or the

output carry identifier records, and as such associated with an

anonymity degree to be enforced. That said, we will show in

Section 4 how modules that carry quasi-identifier input and out-

put records are dealt with in situations where they are used in

workflows containing other modules with identifier records.

3.1 Module with Identifier Input and
Quasi-Identifier Output

Consider the admittedTo module, presented earlier, that given

a set of individuals returns a set of hospitals that those patients

visited (see Table 1). And consider that the input dataset has been

2-anonymized as illustrated in Table 2. As discussed earlier, the

lineage associating the output dataset to the input dataset may

allow an adversary to pinpoint patients in the input dataset, even

if this is anonymized. To avoid this, the hospital dataset needs to

be anonymized in a way not to be able to distinguish between

the hospitals visited by the patients that belong to the same

equivalence class as a result of the anonymization of the patient

dataset. For example, p1 and p2 must be associated with the same

set of hospitals, and so do p3 and p4. Given lineage information,

one way to do so consists in generalizing the hospitals in a way

not to be able to distinguish between the hospitals corresponding

to {p1, p3} and those corresponding to {p2, p4}. An example

of generalization of the hospital dataset that achieves this is

illustrated in Table 3. Notice that similar generalization is applied

to the hospitals corresponding to the groups of patients {p5, p7}
and {p6, p8}.

While acceptable, there is a more effective manner in this

case to anonymize the patient and hospital datasets that yields

less generalization of the quasi-attributes, thereby reducing the

information loss incurred by the anonymization. Indeed, we can

exploit the fact that patients are grouped into input sets to guide

232

Table 3: Input and Output Provenance of admittedTo
where the Input and Output are 2-anonymized.

2-anonymized Patient DataSet 2-anonymized Hospital DataSet
ID name birth Lin ID hospital Lin

p1 ⋆ {1987,1990} {r1, r2 } h1 {St Louis, St Anne}
{p1, p3 }p2 ⋆ {1987,1990} {r3, r4 } h2 {St Anton, St August}

p3 ⋆ {1985,1989} {r5, r6 } h3 {St Louis, St Anne}
{p2, p4 }p4 ⋆ {1985,1989} {r7, r8 } h4 {St Anton, St August}

p5 ⋆ {1988,1992} {r9, r10 } h5 {Holby, St James}
{p5, p7 }p6 ⋆ {1988,1992} {r11, r12 } h6 {Larib., St Mary}

p7 ⋆ {1986,1995} {r13, r14 } h7 {Holby, St James}
{p6, p8 }p8 ⋆ {1986,1995} {r15, r16 } h8 {Larib., St Mary}

Table 4: Input and Output Provenance of admittedTo
where the Input is 2-anonymized and the output does not
need to be.

Input Patient DataSet Output Hospital DataSet
ID name birth Lin ID hospital Lin

p1 ⋆ {1989,1990} {r1, r2 } h1 St Louis

{p1, p3 }p2 ⋆ {1985,1987} {r3, r4 } h2 St Anton

p3 ⋆ {1989,1990} {r5, r6 } h3 St Anne

{p2, p4 }p4 ⋆ {1985,1987} {r7, r8 } h4 St August

p5 ⋆ {1986,1992} {r9, r10 } h5 Holby

{p5, p7 }p6 ⋆ {1988,1995} {r11, r12 } h6 Larib.

p7 ⋆ {1986,1992} {r13, r14 } h7 St James

{p6, p8 }p8 ⋆ {1988,1995} {r15, r16 } h8 St Mary

the anonymization process. In particular, we put sets of data

records that are used as input to a module invocation within the

same equivalence class. For example, the patients p1 and p3 are
put within the same equivalence class. Using this approach, we

obtain the 2-anonymized patient dataset illustrated in Table 4.

Notice that by doing so, we actually do not need to anonymize

the hospital dataset. Indeed, starting from the hospital dataset,

we cannot single out any patient: the same set of hospitals are

visited by 2 patients. The approach we have just described is more

effective as far as information loss is concerned. For example,

one would know that p1 and p3 visited St Louis and St Antonio.

Using the previous approach (described in Table 3), we would

infer less specific information: that p1 and p3 visited St Louis or

St Anne, and St Antonio or St Augustine.

With the above consideration in mind, we revisit the definition

of equivalence classes introduced in Section 2 by requiring equiv-

alence classes to contain sets of data records that are used as input

or generated as output of module invocations. We will also intro-

duce the notion of k − group anonymity degree, which allows us

to gracefully reason about k-anonymity for collection-oriented

modules.

Definition 3.1 (Equivalence Classes - Revisited). Given
a module m, we say that the set {E1min, . . . , En

m
in} (resp

{E1mout, . . . , En
m
out}) is a set of input (resp. output) equivalence

classes for m, and write: prova(m).in = {E1min, . . . , E1
m
in} (resp.

prova(m).out = {E1mout, . . . , E1
m
out}) iff:

1)- The conditions in Definition 2.5 are satisfied.

2)- An input (resp. output) equivalence class Eimin (resp. Ei
m
out)

contains entire sets of input sets (resp. output sets) of data records.

That is, two data records that belong to the same input set (resp.

output set) that was used (resp. generated) by the invocation of

m in prov(m).in (resp. prov(m).out) cannot belong to different

input (resp. output) equivalence classes.

Definition 3.2 (k-group anonymity (kg)). We say that the input

provenance prova(m).in (resp. output provenance prova(m).out)
of a module m is k-group anonymized using the k-group

anonymity degree kgmi (resp. kgmo) iff each equivalence class in

prova(m).in (resp. prova(m).out) contains at least kgmi input sets
of data records (resp. kgmo output sets of data records)

Property 1. Consider a module m with an identifier input
associated with an anonymity degree kmi (resp. identifier out-
put with an anonymity degree kmo). And, let lmi (resp. lmo) be

the magnitude of the smallest input (resp. output) set of data
records in prov(m).in (resp. prov(m).out). k-group anonymyz-
ing prov(m).in (resp. prov(m).out) using the k-group anonymity

degree kgmi =
⌈
kmi
lmi

⌉
(resp. kgmo =

⌈
kmo
lmo

⌉
) yields input provenance

prova(m).in (resp. output provenance prova(m).in) that is k-
anonymized using the anonymity degree kmi (resp. k

m
o).

Proof. An input equivalence class in prova(m).in contains at

least

⌈
kmi
lmi

⌉
input sets of data records. Given that lmi is the magni-

tude of the smallest input set in prov(m).in, we conclude that an
input equivalence class in prova(m).in contains at least kgmi · l

m
i

data records, which is equal to or greater than kmi. In other words,

prova(m).in is k-anonymized using the k-anonymity degree of

kmi. The same reasoning can be applied to show that the output

provenance is k-anonymized using the degree of kmo. □

We are now ready to discuss the general case. To anonymize

the input provenance and output provenance of a module m
with an identifier input and quasi-identifier output, we start

by k-group anonymizing its input provenance using the k-group

anonymity degree of kgmi =
⌈
kmi
lmi

⌉
. This yields input provenance

prova(m).out that is k-anonymized using the degree of kmi (see
Property 1). Because the data records in the output provenance

act as quasi-identifying records for the data records in the input

provenance, we also need to anonymize the output provenance.

To do so, we partition prov(m).out into a set of output equiva-

lence classes prova(m).out. This is done by putting the output

sets of data records, that correspond to input sets pertaining to

the same input equivalence class in prova(m).in, within the same

output equivalence class in prova(m).out. This way, an adver-

sary cannot distinguish the data records in an input equivalence

class by examining their corresponding output data records, since

these belong to the same output equivalence class and as such

have the same quasi-identifying attribute values.

The above solution is applicable to modules with quasi-

identifier input and identifier output, by inverting the roles of

the input and output used above.

3.2 Modules with Identifier Input and
Identifier Output

Consider a module mwith an identifier input and an identifier out-
put. To anonymize the input provenance and output provenance

of m, we reason using the k-group anonymity degrees associated

with the input and output of m. Specifically, we distinguish the

following cases:

Case 1: kgmi ≥ kgmo. We k-group the input provenance using

the k-group degree kgmi. This yields k-anonymized input prove-

nance with an anonymity degree of kmi (according to Property

1). The output provenance is anonymized by partitioning it into

a set of output equivalence classes prova(m).out: output sets of
data records, that correspond to input sets pertaining to the same

input equivalence class in prova(m).in, are put within the same

output equivalence class in prova(m).out.
An output equivalence contains the sets of data records that

correspond to input sets of data records in the same input equiva-

lence class. Given that an input equivalence class contains at least

kgmi input sets of data records, it follows that an output equiva-

lence class in prova(m).out contains at least kgmi output sets of
data records. Given that kgmi ≥ kgmo, it follows that prov

a(m).out
is k-group anonymized using the k-group anonymity degree of

233

Table 5: Input and Output Provenance of
getPractitioners.

Input Patient DataSet Output Practitioner DataSet
ID name birth ID name birth Lin

p1 Facello 1953 pr1 Rosch 1996

{p1, p2 }p2 Simmel 1964 pr2 Bellone 1987

p3 Bamford 1959 pr3 Gargeya 1993

p4 Koblick 1954 pr4 Gubsky 1988

{p3, p4 }p5 Maliniak 1955 pr5 Heyers 1985

p6 Preusig 1953 pr6 Tokunaga 1991

p7 Zielinski 1957 pr7 Camarinopoulos 1995

{p5, p6 }p8 Kalloufi 1958 pr8 Miculan 1986

pr9 Birrer 1992

pr10 Keustermans 1999

{p7, p8 }pr11 Mancunian 2001

pr12 Bond 1982

kgmo, which implies that prova(m).out is k-anonymized using the

anonymity degree of kmo (see Property 1). Note also that data

records in the same input (resp. output) equivalence class cannot

be distinguished by examining their corresponding output (resp.

input) data records. This is because the data records in a given

input equivalence class will have their corresponding output

data records in the same output equivalence class, and, therefore,

cannot be distinguished by examining their quasi-identifying

attribute values, and vice-versa.

As an example, consider a module, getPractitioners, that
takes a set of patients and returns the set of practitioners that

have examined those patients
2
. Table 5 illustrates the input

provenance and the output provenance of getPractitioners.
We omit the lineage information (Lin column) in the input

provenance because it is not useful in the example. Con-

sider that the input of getPractitioners is associated with

kgetPractitionersi = 2, and its output with kgetPractitionerso = 2.

Given that lgetPractitionersi = 2 and lgetPractitionerso = 3 (see

Table 5), we have kggetPractitionersi = kggetPractitionerso = 1.
The k-group anonymity degree for both input and output in

this case is 1. Tables 6 shows the anonymized input and output

provenance obtained using the solution we have just described.

Notice that the resulting patient dataset is 2-anonymized and

that the resulting practitioner dataset is 3-anonymized. Moreover,

we cannot distinguish between the practitioners of the patients

in the same input equivalence class, and, similarly, we cannot

distinguish between the patients of the practitioners that belong

to the same output equivalence class.

Case 2: kgmi < kgmo. We perform the same processing as in

(case 1) by inverting the roles of the input and output.

Table 6: 2-anonymized Input and 3-anonymized Output
Provenance of getPractitioners.

Input Patient DataSet Output Practitioner DataSet
ID name birth ID name birth Lin

p1 ⋆ {53, 64} pr1 ⋆ {87, 93, 96}
{p1, p2 }p2 ⋆ {53, 64} pr2 ⋆ {87, 93, 96}

p3 ⋆ {54, 59} pr3 ⋆ {87, 93, 96}
p4 ⋆ {54, 59} pr4 ⋆ {85, 88, 91}

{p3, p4 }p5 ⋆ {53, 55} pr5 ⋆ {85, 88, 91}
p6 ⋆ {53, 55} pr6 ⋆ {85, 88, 91}
p7 ⋆ {57, 58} pr7 ⋆ {86, 92, 95}

{p5, p6 }p8 ⋆ {57, 58} pr8 ⋆ {86, 92, 95}
pr9 ⋆ {86, 92, 95}
pr10 ⋆ {82, 99, 01}

{p7, p8 }pr11 ⋆ {82, 99, 01}
pr12 ⋆ {82, 99, 01}

4 DATA PRIVACY OF WORKFLOW
PROVENANCE

Given a workflow w, we seek to anonymize its provenance

prov(w) by anonymizing the input provenance and output prove-

nance of its constituent modules. In doing so, we can use the

2
A practitioner appears in the output set only if it has examined every

patient in the input set.

method presented in the previous section as is to anonymize the

data used and generated by each module, in an independent fash-

ion. Unfortunately, this solution may lead to a breach of privacy.

Indeed, equivalence classes will be formed without consideration

to lineage between data records output by given modules and

the data records used to feed the succeeding modules within the

workflow, which may lead to a privacy breach. The technical

report [5] contains a detailed example that illustrates this case.

We, therefore, designed an algorithm that ensures that lineage

information cannot be used by an adversary to uncover private

information about individuals. For the purpose of the anonymiza-

tion algorithm, we will be shortly presenting, we group the work-

flow modules into levels as illustrated in Figure 2. A module

belongs to level O if it does not have a previous module. A mod-

ule belongs to a level i where i > 0, if it has at least an incoming

data link connected to a module in level i − 1, and it does not

have any incoming data link connected to a module in level ≥ i.

Fig. 2: Workflow levels.

Algorithm 1 Anonymize Workflow Provenance

Input: w, the workflow specification.

Input: Modules = {L0, . . . , Lk } //workflow modules grouped into levels (breadth)
from the sink to the source.

prov(w), the provenance of the workflow w.
kg, group anonymity degree.

Output: Prova(w) // anonymized provenance

1: for Level in Modules do
2: for m in Level do
3: if (m is the initial module) then
4: prova(m).in← anonymizeInitialInput(m, prov(m).in, kg)
5: prova(m).out← anonymizeOutput(m, prov(m).out, prova(m).in)
6: else
7: prova(m).in← constructInputRecords(m, prec(m))
8: prova(m).out← anonymizeOutput(m, prov(m).out, prova(m).in)
9: end if
10: end for
11: end for
12: prova(w) ←

⋃
m∈w.M prof

a(m)

13: return prova(w)

To anonymize the provenance of a workflow w, Algorithm
1 takes as input the modules that compose the workflow orga-

nized into levels from the source to the sink, the provenance

of the workflow prov(w), as well as a group anonymity degree

kg to be applied to the input provenance of the initial module

of the workflow. (We will see later which k-group anonymity

degree is used.) The algorithm examines the modules by level.

For the first level composed of the initial module minit, the op-
eration anonymizeInitialinput() (line 4) anonymizes the in-

put data of such module using the k-group degree kg and pro-

duces the set of equivalence classes prova(minit).in. The output
data records of the initial module are used to feed the operation

234

anonymizeOutput(), which produces prova(minit).out (line 5).

For a module m that belongs to a level other than the initial one,

the algorithm starts by constructing the anonymized input data

records by using the anonymized data records of the preceding

output in the previous level using the constructInputRecords()
operation (lines 7). The output data records of m are, then,

anonymized by using the same grouping applied to its inputs

to produce prova(m).out using the anonymizeOuput() operation
(line 8). The algorithm terminates when the provenance of the

module that belongs to the sink level is anonymized.

Having described how Algorithm 1 operates, we will describe

in detail the operations used in the algorithm.We will also list the

guarantees respected by each operation. Due to space limitations,

the poofs of the guarantees can be found in the technical report

[5]. Before proceeding to the presentation of the operations used

in our algorithm, we start by defining the notion of lineage-

related equivalence classes.

Definition 4.1 (Lineage-Related Equivalence Classes). Let E1 and
E2 be two different equivalence classes. We say that E1 and E2 are
lineage-related iff there are data records in E1 that (transitively)

contributed through workflow executions to data records in E2,
or vice-versa.

anonymizeInitialInput(m, prov(m).in, kg). This operation

generates input equivalence classes for the initial module m:
prova(m).in = {E1min, . . . , En

m
in}, n ≥ 1. Such equivalences

classes are obtained by partitioning the input sets of data records

in prov(m).in into groups, each containing at least kg input sets.
Each group gives rise to an equivalence class by masking the

identifying attribute values of its data records and generalizing

their quasi-identifying attribute values such that the data records

in the group are indistinguishable w.r.t. their quasi-identifying

attribute values. Details about the partitioning operation are

presented later in Section 5.

Guarantees:

• G1: prov(minit)
a.in is kg group anonymized.

anonymizeOutput(m, prov(m).out, prova(m).in). Given
anonymized input provenance prova(m).in = {E1min, . . . , En

m
in}

of a module m, this operation generates anonymized output

provenance of that module: prova(m).out = {E1mout, . . . , En
m
out}.

To do so, for every input equivalence class Eimin, a group Gimout
containing the output sets of data records in prov(m).out
that are lineage dependent on input sets of data records in

Eimin, is constructed. Each group Gimout gives rise to an output

equivalence class Eimout by masking the identifying attribute

values of the data records in Gimout and by generalizing their

quasi-identifying attribute values such that the data records in

the group are indistinguishable w.r.t. their quasi-identifying

attribute values.

Guarantees:

• G2: for every equivalence class Emin in prova(m).in,
anonymizeOutput() generates one lineage-related equiv-

alence Emout in prova(m).out.
• G3: anonymizeOutput() preserves k-group anonymity

degree. That is, the number of output sets of data

records in an output equivalence class Emout, generated
by anonymizeOutput(), is equal to the number of input

sets of data records in the input equivalence class Emin that
is used as input to that operation.

ConstructInputRecords(m, prec(m)). construct input equiv-
alence classes for m given the output equivalence classes of its

preceding modules prec(m). We distinguish two cases:

Case 1: m is preceded by one module: prec(m) = {m′}
There are data links connecting the output ports of m′

to the input ports of m. Given the anonymized output

provenance prova(m′).out = {E1m
′

out, . . . , En
m′
out} of m

′
, this op-

eration generates the anonymized input provenance of m,
prova(m).in = {E1min, . . . , En

m
in}, as follows: For every output

equivalence class Eim
′

out, a group Gimin is constructed contain-

ing the input sets of data records in prov(m).in that are lineage

dependent on output sets of data records in Eim
′

out. The data

records in Gimin are, then, anonymized by masking their identi-

fying attribute values, and by replacing their quasi-identifying

attribute values, with the values used in their lineage-dependent

data records in Eim
′

out. Thereby, each group Gimin gives rise to an

input equivalence class Eimin.
Case 2: m is preceded by multiple modules. Suppose that

prec(m) = {m1, m2}. Cases, where a module has more than two

preceding modules, are handled in the same manner. Given

the anonymized output provenance prova(m1).out of m1 and

the anonymized output provenance prova(m2).out of m2, the
anonymized input provenance prova(m).in of m is obtained using
the following process:

For pair (Eim1out, Ej
m2
out) in (prov

a(m1).out, prov
a(m1).out), if

there exists a data record d in prov(m).in that is lineage depen-
dent on a data record in Eim1out and a data record in Ejm2out, a
group Gijmin containing the data records in prova(m).in that are

lineage-dependent on data records from both equivalence classes

Eim1out and Ejm2out, is constructed. The data records in Gijmin are

anonymized, thereby giving rise to Eijmin, as follows. The identi-
fying attribute values of the data records in Gijmin are masked,

and their quasi-identifying value attributes are replaced by the

attribute values of their lineage-wise corresponding data records

in Eim1out and Ejm2out.

Guarantees:

• G4: Using the operation ConstructInputRecords(), an
output equivalence class of a module in prec(m) con-
tributes to one lineage-related input equivalence class of

m.
• G5: The operation constructInputRecord() preserves k-
group anonymity. In other words, the number of input

sets of data records in an input equivalence class Emin is

equal to or greater than the number of output sets of data

records in the corresponding output equivalence classes

of the preceding modules.

4.1 Privacy Analysis
We will show, in this section, that an adversary cannot break

k-anonymized workflow provenance that is obtained using Al-

gorithm 1. In doing so, we need to show that: i)- The data

records in the anonymized input provenance prova(m).in (resp.
anonymized output provenance prova(m).out) of every identifier
input (resp. identifier output) of a module m in w, belong to equiv-
alence classes of size ≥ kmi (resp. ≥ kmo). ii)- The data records in

an equivalence class in prova(m).in (resp. prova(m).out) cannot
be distinguished by examining their lineage (i.e., by examining

the data records they have been (transitively) generated from

or the data records that they have (transitively) contributed to

235

within workflow executions). To do so, we present in what fol-

lows a lemma and a theorem, each of which is accompanied by

proof.

Lemma 1. An input equivalence class (resp. output equivalence
class) of a given module:

(1) is lineage-related with at most one input equivalence class

and one output equivalence class of a different module in

the same workflow, and

(2) is lineage-related with one output equivalence class (resp.

input equivalence class) of the same module, and

(3) is not lineage-related with any input equivalence class

(resp. output equivalence class) of the same module.

Proof. We start by showing (1). Let m and m′ be two modules

in a workflow w, and let Emin and Emout be an input and output

equivalence classes of m. There are three possible cases:
a)- There is exist a dataflow path connecting m to m′ in w. For ease
of exposition, we denote m by m1, and m′ by mn, and, therefore,
the data flow path connecting m to m′, can be represented by

the sequence (m1, . . . , mn), with n ≥ 2. The sequence (m1, . . . , mn)
denotes a dataflow, i.e. there are data links connecting the output

ports of mi to the input ports of mi+1 for i ∈ [1, n − 1]. Given the

guarantees G2 and G4, it follows that

• Every input equivalence class in mi gives rise to

one lineage-related output equivalence class of mi for

i ∈ [1, n].
• Every output equivalence class in mi gives rise to

one lineage-related input equivalence class of mi+1 for

i ∈ [1, n − 1].

Given that we consider acyclic workflow, a module cannot

appear twice in the dataflow path (m1, . . . , mn), which allows us

to conclude that every input or output equivalence class of m1
gives rise to one lineage-related input equivalence class for mn
and one lineage-related output equivalence class for the output

of mn. Given that we use m1 to denote m1 and mn to denote m′, we
can conclude that m′ has one input equivalence class and one

output equivalence class that are lineage-related with Emin (resp.
Emout).
b)- There is exist a dataflow path connecting m′ to m in the work-

flow. The same analysis in (a) allows to conclude that m′ has one
input equivalence class and one output equivalence class that are

lineage-related with Emin (resp. E
m
out).

c)- There does not exist a data flow path connecting m to m′, or
vice-versa. Given that we consider a data-driven workflow exe-

cution module, the data records used and generated by m cannot

possibly contribute to the data records used and generated by

m′, and vice-versa. It follows from Definition 4.1 that the equiv-

alence classes associated with the input or output of m cannot

be lineage-related to the equivalence classes associated with the

input or output of m.
(a), (b) and (c) allows us to conclude (1).

We now show (2). According to G2, given a module m in a work-

flow w, the operation anonymizeOutput() generates one lineage-
related output equivalence class Emout of m, for every input equiv-

alence class Emin of m. Given that w is acyclic, it follows that Emin
contains all the data records bound to the input of m that con-

tributed to Emout, and the data records in Emin contribute to no data
records bound to the output of m, other than those in Emout. In
other words, Emout is the only output equivalence class of m that
is lineage-related with Emin, and E

m
in is the only input equivalence

class of m that is lineage-related with Emout.

We now show (3). Given that we consider acyclic workflows,

input data records (resp. output data records) of a given module

cannot possibly contribute data records bound to the same input

module (resp. module output). It follows then that an input equiv-

alence class (resp. output equivalence class) of a given module is

not lineage-related with any input equivalence class (resp. output

equivalence class) of the same module. □

Theorem 4.2 (Soundness). The workflow provenance gener-
ated for the provenance prov(w) of a workflow w by Algorithm 1
using as input the k-group anonymity degree:

kgmax = max(
⋃

mj∈WF.modules

{kg
mj
i , kg

mj
o }) (1)

is k-annoymized.

Proof. To prove this theorem, we need to show: i) that every

equivalence class in prova(m).in of an identifier input of (resp.

prova(m).out of an identifier output) of every module m in the

workflow w, contains at least kmi (resp. kmo) data records, and ii)

that data records in an equivalence class of the input or output

of m cannot be distinguished by examining their lineage within

the executions of w (see the problem statements in Section 2).

The input equivalence classes of the initial module in the

workflow are generated using anonymizeInitialInput. Ac-
cording to G1, the input equivalence classes generated by

anonymizeInitialInput are k-grouped using the k-group

anonymity degree kgmax. Such equivalence classes give rise to

other equivalence classes by repeatedly applying the the oper-

ations anonymizeOutput() and ConstructInputRecords(). Ac-
cording to the guarantees G3 and G5 , such operations preserve

k-group anonymity. It follows, then, that every equivalence class

of an input (or output) of a module m that is generated by the algo-
rithm contains a number of input (or output) sets that is equal to

or greater than kgmax. In other words, the equivalence classes in

prova(m).in (resp. prova(m).out) contain at least kgmax · lmin data
records (resp. kgmax · lmout data records). Given that, kgmax · lmin
is equal to or greater than kgmi · l

m
i, which by definition is equal

to or greater than kmi. It follows that the equivalences classes in
prova(m).in contain at least kmi data records. Similarly, given that,

kgmax · lmo is equal to or greater than kg
m
o · l

m
o, which by definition

is equal to or greater than kmo. It follows that the equivalences
classes in prova(m).out contain at least kmo data records. Thereby,
we have just shown (i).

We will now show (ii). Every input equivalence class Emin in
prova(m).in is, according to lemma 1, not lineage-related to any

equivalence class of the same input, and it is lineage-related

with at most one input equivalence class Em
′

in of any other mod-

ule input in the workflow, and is lineage-related with at most

one output equivalence class Em
′

in of any module in the workflow

(including m). The data records in any lineage-related input equiv-

alence class Em
′

in or output equivalence class E
m′
out) do not carry

identifying attribute values and are indistinguishable w.r.t. their

quasi-identifying attribute values. Therefore, an adversary is un-

able to distinguish between the data records in Emin of an input

equivalence class of a module m by examining the data records of

its lineage-related equivalence classes. The same reasoning can

be applied to the output equivalences classes in prova(m).out.
This implies that data records in an equivalence class E cannot
be distinguished by examining the records of any of its lineage-

related equivalence class E′. And, by recursion, the data records

in E′ cannot be distinguished by examining the data records in the

236

equivalence classes that are lineage-related with E′., etc. That is,
the data records in an equivalence class cannot be distinguished

by examining their lineage, thereby showing (ii). □

5 GROUPING OF DATA RECORD SETS
Consider that the initial module of a workflow took as in-

put the following sets of records D = D1 ∪ · · · ∪ Dn , with

l = mini∈[1· · ·n] |Di |. Consider now that the target k-group

anonymity degree is kg, i.e., the target anonymity degree

k = kg ∗ l. If k > l, i.e. kg > 1, then the method for anonymiza-

tion that we have described so far states that the inputs sets in

D = D1 ∪ · · · ∪ Dn need to be grouped (unionied) into equivalence
sets of a magnitude at least equal to k. In doing so, the method

we presented does not specify which inputs sets in D to group

together to form equivalence classes. A naïve solution to this

problem would be to union all the datasets in D into a single

group, i.e. a single equivalence class, and anonymize the quasi-

identifying attributes of the data records accordingly. However,

the records obtained using this approach are likely to be useless

since the scientists will not be able to distinguish between any of

the data records used as input to the module in question. A more

desirable solution would, therefore, generate groups that have a

small magnitude of at least k, and yet try to keep the magnitude

of such groups as close as possible to k. We can formally define

the above problem as follows
3
.

Given sets of data records D = D1 ∪ · · · ∪ Dn, and an

anonymity degree k, group the sets Di, i = 1 . . . n, into groups

G = G1 ∪ · · · ∪ Gm, m ≤ n, such that:

(1) |Gi | ≥ k, and
(2) maxi=1...m(|Gi |) is minimal.

The above problem can be viewed as a variant of the scheduling

problem [29], in which the datasets Di represent independent

and non-preemptive jobs, and the cardinalities of such datasets

represent jobs’ lengths. There is a maximum of n machines. If

a machine is used then its load must be greater or equal to k.
The objective of such a scheduling problem is to minimize the

makespan. To our knowledge, there does not exist any variant

of the scheduling problem in the literature that meets the above

criteria. We prove in the technical report that this is a strongly

NP-hard problem, by reducing the 3-partition problem to the

above problem (see [5], page 14, for the proof).

Given that our problem is strongly NP-hard, we turn our at-

tention to approximation algorithms. In particular, we devised

the minimizeG integer problem (see below) to produce a good

quality solution. xij is an integer that can takes the value 1 if

the set Di participates in the union that forms the group Gj, and
0, otherwise (Constraint C4). yj is an integer that can takes the

value 1 if the group Gi contains at least one set in D, and 0, oth-

erwise (Constraint C5). cardi represents the cardinality of the

set Di. Constraints (C1) states that a set Di must participate in

the union of exactly one group. Constraint (C2) specifies that a
group Gj can have a cardinality of 0 (when yj equals to 0), or a

cardinality greater or equal to k (when yj equals to 1). Constraint
(C3) specifies that the cardinalities of the groups G1, . . . , Gn is

smaller than a variable Z, which represents the makespan. The

objective of the integer program is, therefore, to minimize the

value of Z. Constraints (C6) states that yj is definitely equal to 1 if
xij is equal to 1. More specifically, if the set Di has been affected

to the group Gj (i.e., xij = 1), then the group Gj contains at least
one set (i.e.yj = 1).

3
The problem statement formulated in Section 2.3 contains this condition.

minimizeG Z
subject to

∑
j∈{1, ··· ,n}

xi j = 1, i = 1, ..., n (C1)∑
i∈{1, ··· ,n}

cardi · xi j ≥ k .yj , j = 1, ..., n (C2)∑
i∈{1, ··· ,n}

cardi · xi j ≤ Z , j = 1, ..., n (C3)

xi j ∈ {0, 1}, i, j = 1, ..., n (C4)

yj ∈ {0, 1}, j = 1, ..., n (C5)

yj ≥ xi j , i, j = 1, ..., n (C6)

Notice that we need to invoke the minimiseG program only

once per workflow to identify the way the input sets of the

initial module are to be grouped. The output of the initial module,

as well as the input and output of the remaining modules in

the workflow, use groupings that are derived based on lineage

information (see Algorithm 1, lines 4 − 8).

6 VALIDATION
We implemented the solution that we have described in this paper

using Python 2.7. We used the COIN Branch and Cut solver (CBC)

provided by the LPModeler Pulp
4
for solving the integer program

MinimizeG presented in Section 5.

6.1 Experimental Setup
There is no existing solution that we can utilize as a base solu-

tion for comparison. Nonetheless, the approach that we have

described raises the question as to which parameters impact

the quality of the provenance anonymized using our solution.

The analysis of the k-group anonymity degree computed for a

workflow (see Equation 1), which dictates the degree of general-

ization, i.e., information loss, to be applied to the provenance of

a workflow, reveals that the quality of the provenance (level of

generalization) can be influenced by the anonymity degrees and

magnitudes of the sets of data records used and generated by the

parameters (inputs or outputs) of the workflow’s modules. Note

that on the other hand, the same equation allows us to rule out

the topology (structure) of the workflow as a possible influencing

factor. Because of this, we focus in our experiment on assessing

the impact that the difference in the anonymity degrees and the

magnitudes of the sets associated with two module parameters,

which we take w.l.o.g to be the input and output of a module, has

on the quality of anonymized provenance.

To be able to control the parameters of our experiment, we im-

plemented a python program that given lmin, l
m
out and a number of

module invocations, automatically generates module provenance.

The provenance identifies the data records that are automatically

generated by our tool. Regarding the content of data records, we

use the Adult dataset [14], a de facto benchmark for anonymiza-

tion solutions.

To assess the quality of anonymized data, we used the average

equivalence class size [19] and the discernability metric [19].

For conciseness sake, we focus in what follows on the average

equivalence class size. Readers interested in examining the results

for discernability are referred to [5].

The average equivalence class measures how well equivalence

classes created by the anonymization do not exceed what is

required by the anonymization degree k. It can be defined as

follows: AEC(DS∗) = |DS|
|EQ(DS∗)|·k

where EQ(DS∗) represents the set of equivalence classes created
as a result of anonymizing DS, i.e., |EQ(DS∗)| is the number of

equivalence classes created. k represents the k-anonymity degree

4
https://pypi.org/project/PuLP

237

required. The best value of AEC is 1. It means that none of the

equivalence classes created as a result of anonymization exceeds

the required anonymity degree when performing the generaliza-

tion. We chose AEC as a measure because it is a good indicator for

the quality of the anonymized data, with respect to a minimum

requirement that is set by the anonymity degree.

As well as examining the impact of the anonymity degree and

magnitude of sets of data records on the quality of anonymized

provenance (in Sections 6.2, 6.3 and 6.4), we assess the utility

of anonymized workflow provenance by examining the degree

to which they can be used for answering workflow provenance

challenge queries using real-world workflows [23] (in Section

6.5), and assess the efficiency of our solution (in Section 6.6).

6.2 Impact of the Disparity of kmin, k
m
out on the

Quality of Anonymization
Given the provenance of the module m, one would expect that

disparity between kmin and kmout, or more specifically between

the ratios kgmin and kgmout have an impact on the quality of the

obtained anonymized input and output datasets of m. Specifically,
if kgmout is larger than kgmin then the inputs records of m will be
grouped into equivalence classes that are beyond what is required

by kmin to meet kmoutput. Thereby, the average equivalence class

of the obtained anonymized input datasets is likely to suffer as

a results. On the contrary, if kgmin and kgmout are close then one

would expect that the average equivalence class for both the

input and output anonymized datasets to be of good quality. To

assess this intuition, we ran an experiment in which:

1) We generated the provenance of a module m that associates

sets of input data records with sets of output data records. (Note

that we ran our experiments using different numbers of mod-

ule invocations, namely 50, 100, 200, 300, 400 and 500 module

invocation. The results we obtained presented similar trends.

We, therefore, focus on reporting on the results obtained for 100

module invocations.) We set lmin and lmout to the same value, viz.

1. Specifically, an input (resp. output) set of data records that are

used or generated by m has a magnitude between 1 and 3 (resp.

1 and 4). (We did so to examine the interplay between kmin and
kmout. Later on, we report on an experiment that we ran to assess

the impact of the magnitudes of the sets of data records and their

variability.) 2)We then set the value of kmin to 2, and anonymized

the input and output datasets using our method by varying the

value of kmin between 2 and 20.

We ran this experiment three times. Figures 3 illustrates the

average of the AEC obtained. Notice that the AEC of the output

dataset is close (if not equal) to 1, indicating that the quality of

the anonymized dataset is optimal as far as the constructed equiv-

alence classes are concerned. On the other hand, we observe that

the AEC of the input dataset increases as the disparity between

kmin and kmout increases. This confirms our initial observation.

6.3 Impact of the Disparity of kmin, l
m
in on the

Quality of Anonymization
Another aspect that can impact the quality of the anonymized

datasets is the difference between the anonymity degree and the

magnitude of the smallest input (resp. output) set of data records.

Without loss of generality, let us consider the input of a module

m. If lmin is greater than the anonymity degree kmin, then the mag-

nitude equivalence classes obtained as a result of anonymization

will be greater than what is required by kmin, thereby impacting

negatively the AEC. To empirically examine this aspect, we set

 1

 2

 3

 4

 5

 6

 7

 8

 9

 2 4 6 8 10 12 14 16 18 20

A
v
e
ra
g
e

 E
q
u
iv
a
le
n
c
e

 C
la
s
s

Anonymity degree of the output

Input AEC
Output AEC

Fig. 3: AEC of the input and output.

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 0 10 20 30 40 50 60 70 80 90 100

A
v
e
ra
g
e

 E
q
u
iv
a
le
n
c
e

 C
la
s
s

Magnitude of the smallest set

AEC

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 11 13 15 17 19 21 23 25

Fig. 4: AEC obtained by sweeping the value of l for
k = 20.

the anonymity degree kmin to 20. We then varied the parameter

lmin between 1 and 99, with a unit of 2, i.e., [1, 3, . . . , 97, 99]. In
particular, for a given value of lmin, the input sets generated for

a module have a magnitude between lmin and lmin + 3. In other

words, the input sets have a magnitude that is close to the value

of lmin. We did so to factor out the impact that the variability in

the magnitude of the input sets, which we will examine later on.

For each value of lmin, we generated the provenance for the

module m (100 module invocation) and anonymized the obtained

input dataset. We ran this experiment three times, and averaged

the results, which are depicted in Figure 4 for the average equiva-

lence class. The chart can be partitioned into two parts. The first

part where lmin ranges from 1 to 20, and in the second part where

it ranges from 20 to 100. In the first part, we notice that the AEC

remains relatively close to 1 until it reaches the value of 15 and

17 where we notice an increase of the AEC 1.5. The AEC then

decreases to values that are close to 1 for lmin values of 19 and
21. To explain this increase in the AEC, consider the case where

lmin = 15. The magnitude of the input sets ranges between 15

and 18 according to the above experiment setting. Consequently,

the magnitude of the sets obtained using the grouping ranges

between 30 and 36. Indeed, an input set on its own has a magni-

tude lower than the required anonymity degree of 20, and two

unionied input sets will definitely have a magnitude between 30

and 36, which is larger than the required anonymity degree. This

explains the fact that the AEC value is close to 1.5. In the second

phase, we observe that the value of the AEC grows linearly as the

magnitude of the smallest set grows. This can be explained by

the following. For values of lmin greater than 20, no set grouping

is actually performed: the magnitude of the input set is greater

than the required anonymity degree. The larger is the magnitude

of lmin, the larger the disparity between lmin and kmin = 20, and

subsequently, the larger is the AEC.

238

6.4 Impact of the Disparity of the Size of
Input (resp. Output) Sets

In the experiment that we ran this far, we assumed that the size of

the input (resp. output) set of data records are close to lmin (resp.
lmout). We have examined the provenance of the workflows avail-

able in ProvBench
5
, namely the workflow provenance collected

the workflow systems Taverna and Wings (120 workflows). For

each workflow and each of its modules, we computed lmin and
lmout. We then examined the variability of the magnitude of the

input and output sets. This analysis revealed that in the majority

of the cases the magnitude of the sets used and output by the

modules that compose the workflow follows a uniform distri-

bution. However, for an important proportion of the modules

(≈ 15%), we observed that the distribution is instead geometric

in the sense that the input (resp. output) sets have a magnitude

that is close to lmin (resp. l
m
out).

Given the above results, we decided to empirically examine the

variability of the magnitude of the parameter sets on the quality

of the anonymization considering the two distributions. For the

random uniform distribution, we used three distributions where

the maximum magnitude of a set is 20, 50 and 100, respectively.

Regarding the geometric distribution, we used three distributions

with the probabilities of 30, 50 and 80, respectively.

We then ran an experiment in which we computed the AEC by

varying the anonymity degree kin between 2 and 20. The results

of the experiment for geometric distributions are illustrated in

Figure 5, and those obtained for uniform distribution are illus-

trated in Figure 6. For geometric distribution, we observe that the

higher the success probability, the better the AEC obtained. For

example, the AEC quickly converges to the value of 1 when the

success probability is equal to 0.8. On the other hand, the AEC

converge to 1 only when the anonymity degree reaches 11 when

the success probability is set to 0.3. That said, overall, geomet-

ric distribution delivers better results compared with uniform

distribution: the AEC is much smaller. This can be explained

by the fact that the variability in the magnitudes of the sets of

data records is smaller in the case of the geometric distribution.

And, the lower the variability of the magnitude of the data record

sets, the better is the grouping of sets in the sense that it yields

groups (i.e. equivalence classes) with magnitudes close to k, and
therefore the better the AEC obtained (close to 1).

6.5 Assessing Utility Using Real Workflows
We assessed the degree to which anonymized provenance can be

used to answer the following 3 queries that are representative

of the queries defined by the workflow provenance challenge

community [23].
6
.

q1 Find the workflow executions that led to a given record in the

workflow results.

q2 Find the input data records that contributed to a given data

record in the workflow result.

q3 Find the difference between two workflow execution.

For this experiment, we used 14 real-world Taverna workflows.

The size of the workflows ranges from 3 modules to 24 modules,

and have different structures patterns. We ran each workflow

30 times, and captured the provenance obtained using the Tav-

erna workflow systems. We then anonymized the provenance by

5
https://github.com/provbench

6
We could not use the provenance challenge queries as they are since they were

specified for a single specific workflow on image processing.

 1

 1.5

 2

 2.5

 3

 3.5

 2 4 6 8 10 12 14 16 18 20

A
v
e
ra
g
e

 E
q
u
iv
a
le
n
c
e

 C
la
s
s

Anonymity Degree

Output AEC (lmax = lmin + 3)
Output AEC (p = 0.80)
Output AEC (p = 0.50)
Output AEC (p = 0.30)

Fig. 5: AEC obtained using a geometric distribution for
the magnitude of l

 0

 5

 10

 15

 20

 25

 30

 35

 2 4 6 8 10 12 14 16 18 20

A
v
e
ra
g
e

 E
q
u
iv
a
le
n
c
e

 C
la
s
s

Anonymity Degree

Output AEC (lmax = lmin + 3)
Output AEC (uniform 20)
Output AEC (uniform 50)
Output AEC (uniform 100)

Fig. 6: AEC obtained using a uniform distribution for
the magnitude of l

varying the group anonymity degree kgmax from 1 to 10, and ex-

amined whether queries of the form listed above can be answered

using the anonymized provenance.

Regarding q1 and q2, a user is presented with anonymized

workflow provenance, and as such cannot pinpoint a single data

record in the results that can be used as input to q1 and q2.
Instead, s/he chooses a (set) of data records that belong to the

same equivalence class. As expected, the larger is the anonymity

degree, the larger is the set of data records to be considered (see

Table 7). Note that on the other hand, the query results obtained

had 100% precision and recall, regardless of the value of group-

anonymity degree used. This was possible thanks to the fact that

our anonymization method preserves lineage across data records.

Table 7: Size of the data record sets used as input to q1 and
q2 given kgmax, averaged over the 14 workflows.

kgmax 1 2 4 6 8 10

avg size of the set of data records 3 6 11 20 25 33

Regarding q3, the provenance challenge does not formally

specify what it is meant by the difference of workflow executions

[23]. That said, this question has later been thoroughly examined

by Bao et al. [4]. They defined the difference between workflow

executions of the same workflow specification using the edit

distance which is the minimum number of edit operations that

transform one provenance graph structure to the other. Using this

definition, the edit distance between every pair of anonymized

provenance graphs (of the 14 workflow specifications that we

used) was the same as the edit distance computed using their

counterpart original provenance graphs. This can be explained by

the fact that our anonymization solution preserves the structure

of the provenance graph as-is (since one of the requirements

that we set is to preserve lineage information). Therefore, the

239

original provenance graph of a given workflow specification is

homomorphic to its anonymized counterpart.

This experiment has shown the utility of the workflow prove-

nance anonymized using our solution since we were able to

answer the three classes of queries. This evaluation exercise has

also shown that for q1 and q2, the input of the query size (number

of records) depends on the anonymity degree. Smaller anonymity

degrees allow having smaller sets of data records that can be used

for the queries, and vice-versa.

6.6 Efficiency
The only operation that is costly in the anonymization solution

presented is the grouping of sets of data records, which we imple-

mented using the integer program minimizeG (Section 5). Note,

however, that such an operation is performed only once for the

input of the initial module of the workflow. Indeed, the remain-

ing parameters of the modules that compose the workflow apply

the same grouping as the one applied to the input of the initial

module. That said, we investigated the cost of such an operation

to group n data sets, where n = 50, 100, 100, · · · , 500. As expected,

this experiment showed that time required increased as does the

number of module invocations. Interestingly, the experiment also

showed that the time required for performing the grouping of

the sets of data records is primarily impacted by the distribution

of the magnitude of the sets of data records to be grouped.

This experiment showed that using a uniform distribution,

the range has little impact on the time required for grouping: it

took between 16 and 18 seconds. On the other hand, it showed

that sets that follow a geometric distribution with high success

probability (50% and higher) require a considerable time com-

pared to sets that follow a uniform distribution: it took up to 17

minutes. This can be explained by the fact that for a geometric

distribution with high success probability, the majority of the

sets have the same (or close) magnitudes. Therefore, many of the

groupings that are explored by the integer program yield similar

values for the objective function, hence recording little progress.

The above results prompted us to develop an alternative solution

when the magnitudes of the sets follow a geometric distribution

with high success probability. The alternative solution we devel-

oped is simple, yet it group sets of data records in the orders of

microseconds with a small impact on the AEC, which was higher

by a margin of 0.03 on average compared with the situation in

which we used our integer program minimizeG. More details can

be found in the technical report [5].

7 CONCLUSIONS
We presented, in this paper, a solution for systematically

anonymizing the provenance of collection-oriented workflows.

Evaluation exercises allowed us to tease apart the aspects that

impact the quality of the anonymization, namely the disparity

between the anonymity degrees of the input and output sets

of a module (or more generally the inputs and outputs of the

modules that compose the workflow), the disparity between the

anonymity degree and the magnitude of the sets of data records,

and the distribution of the magnitudes of the record sets. We

also examined the utility of the anonymized provenance using

real-world workflows, and assessed the efficiency of our solution.

In our ongoing work, we are investigating the applicability of our

solution to anonymization techniques, other than k-anonymity,

e.g., l-diversity and t-closeness [13]. We are also investigating

the incorporation of vocabularies (hierarchies of concepts) to

our solution. In the solution we presented, we substitute each

quasi-identifier attribute value with a set containing the values

that that attribute takes given a group (i.e. equivalence class) of

data records. We will investigate how the use of vocabularies

can be incorporated in our solution for generalizing the values

of quasi-identifier attributes.

ACKNOWLEDGMENTS
I warmly thank Eun Jung Kim and Florian Sikora from the Paris-

Dauphine University for the enlightening discussions on sched-

uling problems and integer programming. I would also like to

thank the reviewers for their time and constructive comments,

which helped improve the quality of the paper.

REFERENCES
[1] K. Abouelmehdi, A. B. Hssane, and H. Khaloufi. Big healthcare data: preserving

security and privacy. J. Big Data, 5:1, 2018.
[2] AEPD. k-anonymity as a privacy measure. Spanish Agency

for Data Protection, 2018. https://www.aepd.es/media/notas-tecnicas/

nota-tecnica-kanonimidad-en.pdf.

[3] V. Ayala-Rivera, P. McDonagh, T. Cerqueus, and L. Murphy. A systematic

comparison and evaluation of k-anonymization algorithms for practitioners.

Trans. Data Privacy, 7(3):337–370, 2014.
[4] Z. Bao, S. C. Boulakia, S. B. Davidson, et al. Differencing provenance in

scientific workflows. In ICDE, pages 808–819. IEEE, 2009.
[5] K. Belhajjame. On Anonymizing the Provenance of Collection-Based Work-

flows. Research report, Université Paris-Dauphine, PSL Research University,

Jan. 2020. https://hal.inria.fr/hal-02430624/file/techreport.pdf.

[6] K. Belhajjame, N. Faci, Z. Maamar, V. A. Burégio, E. Soares, and M. Barhamgi.

Privacy-preserving data analysis workflows for escience. In EDBT/ICDT
Workshops, volume 2322 of CEUR Workshop Proceedings. CEUR-WS.org, 2019.

[7] O. Biton, S. C. Boulakia, and S. B. Davidson. Zoom*userviews: Querying

relevant provenance in workflow systems. In VLDB. ACM, 2007.

[8] P. Buneman, S. Khanna, and W. C. Tan. Why and where: A characterization

of data provenance. In ICDT, volume 1973, pages 316–330. Springer, 2001.

[9] A. Chebotko, S. Chang, et al. Scientific workflow provenance querying with

security views. In WAIM, pages 349–356. IEEE CS, 2008.

[10] C. Clifton and T. Tassa. On syntactic anonymity and differential privacy.

Transactions on Data Privacy, 6(2):161–183, 2013.
[11] R. F. da Silva et al. Automating environmental computing applications with

scientific workflows. In e-Science, pages 400–406. IEEE, 2016.
[12] S. B. Davidson, S. Khanna, T. Milo, et al. Provenance views for module privacy.

In PODS, pages 175–186, 2011.
[13] J. Domingo-Ferrer and V. Torra. A critique of k-anonymity and some of its

enhancements. In Availability, Reliability and Security, 2008. ARES 08. Third
International Conference on, pages 990–993. IEEE, 2008.

[14] D. Dua and C. Graff. UCI machine learning repository, 2017.

[15] C. Dwork. Differential privacy. In ICALP, pages 1–12. Springer, 2006.
[16] R. Filgueira, A. Krause, M. P. Atkinson, et al. dispel4py: An agile framework

for data-intensive escience. In e-Science, pages 454–464. IEEE, 2015.
[17] E. Griffis, P. Martin, and J. Cheney. Semantics and provenance for processing

element composition in dispel workflows. In WORKS. ACM, 2013.

[18] J. Hidders, N. Kwasnikowska, J. Sroka, J. Tyszkiewicz, and J. V. den Bussche.

DFL: A dataflow language based on petri nets and nested relational calculus.

Inf. Syst., 33(3):261–284, 2008.
[19] K. LeFevre, D. J. DeWitt, and R. Ramakrishnan. Mondrian multidimensional

k-anonymity. In ICDE, page 25. IEEE, 2006.
[20] T. M. McPhillips, S. Bowers, D. Zinn, and B. Ludäscher. Scientific workflow

design for mere mortals. FGCS, 25(5):541–551, 2009.
[21] A. Meyerson and R. Williams. On the complexity of optimal k-anonymity. In

PODS, pages 223–228. ACM, 2004.

[22] P. Missier, N. W. Paton, and K. Belhajjame. Fine-grained and efficient lineage

querying of collection-based workflow provenance. In EDBT. ACM, 2010.

[23] L. Moreau, B. Ludäscher, I. Altintas, et al. Special issue: The first provenance

challenge. CCPE, 20(5):409–418, 2008.
[24] M. E. Nergiz, C. Clifton, and A. E. Nergiz. Multirelational k-anonymity. IEEE

Trans. Knowl. Data Eng., 21(8):1104–1117, 2009.
[25] N. Park, M. Mohammadi, K. Gorde, et al. Data synthesis based on generative

adversarial networks. PVLDB, 11(10):1071–1083, 2018.
[26] P. Samarati and L. Sweeney. Generalizing data to provide anonymity when

disclosing information (abstract). In PODS, page 188. ACM Press, 1998.

[27] J. Sroka, J. Hidders, P. Missier, and C. A. Goble. A formal semantics for the

taverna 2 workflow model. J. Comput. Syst. Sci., 76(6):490–508, 2010.
[28] M. Terrovitis, N. Mamoulis, and P. Kalnis. Privacy-preserving anonymization

of set-valued data. VLDB Endowment, 1(1):115–125, 2008.
[29] F. Werner, L. Burtseva, and Y. Sotskov. Algorithms for Scheduling Problems.

MDPI, 2018.

[30] K. Wolstencroft et al. The taverna workflow suite: designing and executing

workflows of web services on the desktop, web or in the cloud. NAR, 41, 2013.

240

	Lineage-Preserving Anonymization of the Provenance of Collection-Based WorkflowsKhalid Belhajjame

