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Foreword

The International Conference on Extending Database Technology (EDBT) is an established and renowned
forum for the exchange of the latest research results and advances in data management. This year, the 22nd
edition of EDBT takes place in Lisbon, Portugal, from March 26 to March 29, 2019. It is jointly organized with
the International Conference on Database Theory (ICDT). In a world where increasingly many aspects of our
lives and society are data-driven, data management technology continues to broaden its reach and extends its
tradition of contributing models, algorithms, and architectures to novel applications adapted to new hardware
and software.

As in previous years, EDBT 2019 solicited contributions both on novel research results and on experience and
analysis results that focus on a comprehensive and detailed performance evaluation. For the first time, EDBT
2019 further solicited papers that describe innovative systems as part of its main research track. We also con-
tinued the recently established short paper track, offering a forum to present research in progress and visionary
ideas during plenary poster sessions of the conference. To complement the scientific program, EDBT further
solicited demonstrations of research prototypes, descriptions of industrial and application achievements, and
proposals for tutorials.

The EDBT 2019 program committee reviewed 157 full research papers, of which 36 were accepted. For short
papers, 28 papers out of 122 were selected. Among the 24 submissions to the industry and application track,
8 papers were accepted. The 21 demonstrations presented at the conference were selected among 42 demon-
stration proposals. Finally, we accepted 3 out of 10 tutorials. All these contributions will be presented at
the conference. The program additionally features five workshops, an EDBT/ICDT joint session on research
challenges, and four invited EDBT/ICDT joint keynotes.

Shaping the exciting program of EDBT 2019 is the result of a large community effort, and I take this opportunity
to thank all persons involved. First, I would like to thank all authors for their high-quality submissions and
contributions. I also would like to thank all reviewers who served on the EDBT 2019 program committee and
the chairs responsible for our different tracks, namely Berthold Reinwald (IBM, United States) who chaired
the industrial and application track, Carsten Binnig (TU Darmstadt, Germany) who served as demonstration
chair, our tutorial chair Irini Fundulaki (ICS FORTH, Greece), and Paolo Papotti (EUROCOM, France) who
served as workshop chair. The special session on joint EDBT/ICDT research challenges was organized by Julia
Stoyanovich (NYU, USA). I also thank Laura Haas (UMass Amherst, USA) and Alon Halevy, who generously
accepted to serve on the Test of Time Award Committee. Many thanks also to Paolo Atzeni (Universita’ Roma
Tre, Italy), Wei Wang (UNSW Sydney, Australia), and Jeffrey Xu Yu (Chinese University of Hong Kong) for
serving on the Best Paper Award committee.

The conference would not have been possible without the tireless effort of the general chair Helena Galhardas
(INESC-ID and IST, Universidade de Lisboa, Portugal) and the local organization team. Special thanks to the
finance chair Manuel J. Fonseca (Universidade de Lisboa, Portugal), the local executive chairs José Borbinha
and Luis Rodrigues, the sponsorship chairs Jodo Garcia and Miguel Pardal, the publicity chair Paolo Romano,
the student volunteers chair Hugo Nicolau (all from INESC-ID and IST, Universidade de Lisboa, Portugal), and
the website chair Anténio Higgs (INESC-ID, Portugal). These proceedings have been produced thanks to our
proceedings chair Zoi Kaoudi (QCRIL, Qatar). Norman Paton was most helpful in advising and coordinating
with the EDBT Executive Board.

I really look forward to an interesting program and exciting conference on March 26-29, 2019 and to meeting
you in Lisbon.

Melanie Herschel
EDBT 2019 Program Chair
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Test-of-Time Award

Established in 2014, the Test-of-Time Award awarded by the Extended Database Technology (EDBT) Confer-
ence recognizes papers presented at EDBT Conferences that have had the most impact in terms of research,
methodology, conceptual contribution, or transfer to practice over the past ten years.

The 2019 Test-of-Time Award committee was formed by Laura Haas (University of Massachusetts, USA), Alon
Halevy, and Melanie Herschel, the EDBT 2019 PC chair. The committee was charged with selecting a paper
from the EDBT 2009 Proceedings.

After careful consideration, the Test-of-Time Award committee decided for the following paper from the 2009
EDBT Conference held in Saint Petersburg, Russia to receive the award:

Shore-MT: a scalable storage manager for the multicore era
by Ryan Johnson, Ippokratis Pandis, Nikos Hardavellas, Anastasia Ailamaki, and Babak Falsafi
published in the EDBT 2009 Proceedings, pp. 24-35, DOI: 10.1145/1516360.1516365.

The committee members agreed that this paper clearly stands out in terms of methodology, impact, and influ-
ence. It has catalyzed and enabled substantial follow-up research and has demonstrated its high relevance to
industry.

Abstract:

Historically, database engines focused on the ability to efficiently overlap many requests over a small number
processor cores, with I/O latencies and scalability as the main design driver. However, the advent of increas-
ingly multicore hardware circa 2000 brought new challenges because concurrent transactions begin to stress
the limits of the storage manager’s thread scalability by accessing its internal structures simultaneously and
in large numbers. This EDBT 2009 paper shows the results of experiments running benchmarks on four (then
and still) popular open-source storage managers (Shore, BerkeleyDB, MySQL, and PostgreSQL) on a multi-
core machine. The results show that all systems suffer from scalability bottlenecks at the storage engine level.
From that research emerged Shore-MT, an open-source multithreaded and highly scalable storage manager,
built with Shore as a base. We learned that designers should favor scalability over single-thread performance,
and we identified several other key principles for architecting scalable storage engines.

Ten years later, Shore-MT work has concluded, although the system still serves as a research platform in
the space. Meanwhile, research on transaction processing scalability continues to mature, the move to main-
memory transaction processing and their higher TPS increased the need for scalable storage managers, while
the popular open-source systems, such as MySQL and PostgreSQL, significantly improved their scalability. In
particular, a significant amount of research and industrial developments in the ten years since the Shore-MT
paper focused on improving the scalability of individual components of a storage manager, such as latches, the
logging subsystem and access methods. This research was partly carried out by our research group as follow-
on work, but other research groups and database vendors have made important contributions as well. Another
significant amount of effort has focused on scalable concurrency control protocols, again both within and
outside our research group. The knowledge that we have gained from building Shore-MT has been invaluable
in maintaining scalability in this new, multi-dimensional ecosystem.

The EDBT Test-of-Time award for 2019 will be presented during the EDBT/ICDT 2019 Conference as part of
the Awards session on Wednesday, March 27, 2019, by Anastasia Ailamaki (EPFL, Switzerland).
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ABSTRACT

The rising demands of real-time analytics have emphasized the
need for Hybrid Transactional and Analytical Processing (HTAP)
systems, which can handle both fast transactions and analyt-
ics concurrently. Wildfire is such a large-scale HTAP system
prototyped at IBM Research - Almaden, with many techniques
developed in this project incorporated into the IBM’s HTAP
product offering. To support both workloads efficiently, Wild-
fire organizes data differently across multiple zones, with more
recent data in a more transaction-friendly zone and older data
in a more analytics-friendly zone. Data evolve from one zone to
another, as they age. In fact, many other HTAP systems have also
employed the multi-zone design, including SAP HANA, Mem-
SQL, and SnappyData. Providing a unified index on the large
volumes of data across multiple zones is crucial to enable fast
point queries and range queries, for both transaction processing
and real-time analytics. However, due to the scale and evolving
nature of the data, this is a highly challenging task. In this pa-
per, we present Umzi, the multi-version and multi-zone LSM-like
indexing method in the Wildfire HTAP system. To the best of
our knowledge, Umozi is the first indexing method to support
evolving data across multiple zones in an HTAP system, provid-
ing a consistent and unified indexing view on the data, despite
the constantly on-going changes underneath. Umzi employs a
flexible index structure that combines hash and sort techniques
together to support both equality and range queries. Moreover, it
fully exploits the storage hierarchy in a distributed cluster envi-
ronment (memory, SSD, and distributed shared storage) for index
efficiency. Finally, all index maintenance operations in Umzi are
designed to be non-blocking and lock-free for queries to achieve
maximum concurrency, while only minimum locking overhead
is incurred for concurrent index modifications.

1 INTRODUCTION

The popularity of real-time analytics, e.g., risk analysis, online
recommendations, and fraud detection etc., demands data man-
agement systems to handle both fast concurrent transactions
(OLTP) and large-scale analytical queries (OLAP) over fresh data.
These applications ingest data at high-speed, persist them into
disks or shared storage, and run analytical queries simultaneously
over newly ingested data to derive insights promptly.

The necessity of real-time analytics prompts the emergence
of Hybrid Transactional and Analytical Processing (HTAP) sys-
tems, e.g., MemSQL [7], SnappyData [28], SAP HANA [21], and
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among others. HTAP systems support both OLTP and OLAP
queries in a single system, thus allowing real-time analytics over
freshly ingested data. Wildfire [15] is a large-scale HTAP system,
prototyped at IBM research - Almaden. Many of the techniques
developed in this research project have been incorporated into
the IBM Db2 Event Store offering [4]. Wildfire leverages the Spark
ecosystem [10] to enable large-scale data processing with differ-
ent types of complex analytical requests (SQL, machine learning,
graph analysis, etc), and compensates Spark with an underlying
engine that supports fast transactions with snapshot isolation
and accelerated analytics queries. Furthermore, it stores data in
open format (Parquet [8]) on shared storage, so that other big
data systems can access consistent snapshots of data in Wildfire.
The back-end shared storage that Wildfire supports includes dis-
tributed file systems like Hadoop Distributed File System (HDFS)
and GlusterFS [2], as well as object-based storage on cloud like
Amazon S3 and IBM Cloud Object Storage.

To support efficient point lookups and range queries for high-
speed transactional processing and real-time analytics, fine-grained
indexing is mandatory in a large-scale HTAP system like Wildfire.
However, indexing large volumes of data in an HTAP system is
highly non-trivial due to the following challenges.

Challenges due to shared storage. First of all, for large-
scale HTAP, memory-only solutions are not enough. As a result,
most HTAP systems, including Wildfire, persist data in highly-
available fault-tolerant shared storage, like HDFS and Amazon S3,
etc. However, most of these shared storage options are not good
at random access and in-place update. For example, HDFS only
supports append-only operations and optimizes for block-level
transfers, and object storage on cloud allows neither random
access inside an object nor update to an object. To accommodate
the unique characteristics of shared storage, index operations,
e.g., insert, update and delete, have to leverage sequential I/Os
without in-place updates. Naturally, LSM-like index structures
are more appealing.

Furthermore, a typical shared storage prefer a small number of
large files to a large number of small files. This is not only because
of the overhead in metadata management, e.g., the maximum
number of files supported by an HDFS cluster is determined
by how much memory is available in the namenode, but more
importantly because of the reduced seek time overhead when
accessing larger files.

Finally, accessing remote shared storage through networks
for index lookups is costly. Thus, indexing methods on HTAP
must fully exploit the storage hierarchy in a distributed cluster
environment for efficiency. Particularly, nowadays, we can take
advantage of large memories and SSDs in modern hardware. Due
to the large scale of data in HTAP systems, however, only the most
frequently accessed portions of indexes can be cached locally,
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while leaving cold entries in shared storage. Effective caching
mechanisms must be developed to facilitate index lookup.

Challenge due to evolving nature of data. Since HTAP
systems have to support both transactional and analytical work-
loads efficiently, many of them [7, 14, 21, 23, 28] store data in
different organizations, typically one organization good for trans-
actions on the more recent data and one organization good for
analytics on the older data. We call the different data organi-
zations zones. As data age in the system, they evolve from the
transaction-friendly zone to the analytics-friendly zone. In Wild-
fire, transactions first append writes into a transaction log, which
is then groomed into columnar data blocks. The groomed data is
further periodically post-groomed to a more analytics-friendly
organization that is optimal for queries by creating data versions,
data partitioning, and larger data blocks. SAP HANA organizes
data into a read-optimized main store and a write-optimized
delta store. Writes are first buffered into the row-major delta
store, which is further transformed into the columnar main store
to facilitate analytical queries. Some loosely-coupled HTAP so-
lutions employ NoSQL stores, like HBase [3] or Cassandra [1],
for operational workloads, and periodically copy data from the
NoSQL stores into files in columnar format like Parquet or ORC-
File on the shared storage, so that SQL-on-Hadoop engines, like
Hive [35] or SparkSQL [13], can efficiently query them. The data
evolution across different zones in these HTAP systems/solutions
is constantly on-going, posing a significant challenge to building
and maintaining indexes.

Existing indexing solutions on multi-zone HTAP systems ei-
ther support index on the transaction-friendly zone only, like
in SnappyData [28] and the loosely coupled HTAP solutions, or
support separate indexes on different zones, like in MemSQL [7].
First of all, being able to efficiently query historical data is very
important for real-time analytics, especially for analytical queries
that are part of a transaction in the true HTAP scenario. As a re-
sult, the index needs to cover both recent data and historical data.
Secondly, having separate indexes on different zones exposes
a divided view of data. This requires queries to perform extra
work to combine index query results that span multiple zones. In
particular, with the constant evolving nature of HTAP data, it is
non-trivial for queries to make sure that there is no duplicate or
missing data in the final results. Therefore, it is highly desirable
to have a consistent and unified index across the different zones
in an HTAP system.

Contributions. To tackle the challenges of indexing in a large-
scale HTAP system, we present Umzi, the multi-version and multi-
zone LSM-like index in the context of Wildfire. Umzi provides
a consistent and unified indexing view across the groomed and
post-groomed zones in Wildfire. To the best of our knowledge,
Umvzi is the first unified multi-zone indexing method for large-
scale HTAP systems.

Umzi employs an LSM-like structure with lists of sorted index
runs to avoid in-place updates. A novel index-run format that
combines hash and sort techniques is introduced to flexibly an-
swer equality/range queries as well as the combination of both
using the index. Runs are organized into multiple levels as in
today’s NoSQL systems, e.g., LevelDB [6] and RocksDB [9]. A
new run is added into the lowest level, i.e., level 0, and runs are
periodically merged into higher levels within a zone. However,
when data evolve from one zone to another, an index evolve op-
eration is introduced to build new index runs in the new zone
and garbage-collect obsolete index runs from the old zone in a
coordinated way, so that the entire index is always in a consistent

state. To fully exploit the storage hierarchy, lower index levels
can be made non-persistent to speed up frequent merges, and we
dynamically adjust cached index runs from memory and SSD to
speed-up index lookups and transactional processing. In Umzi,
all operations are carefully designed to be non-blocking such
that readers, i.e., index queries, are always lock-free while only
negligible locking overhead is incurred for index maintenance.

Paper organization. Section 2 provides the background on
Wildfire. Section 3 describes an overview of the Umzi index.
Section 4 presents the internal structure of Umzi components.
Section 5 describes index maintenance operations in Umzi. Sec-
tion 6 discusses some design decisions of Umzi to exploit the
storage hierarchy. Section 7 introduces methods for processing
index queries, i.e., range scans and point lookups. Section 8 re-
ports the experimental evaluation of Umzi. Section 9 surveys
related work. Finally, Section 10 concludes this paper.

2 BACKGROUND

2.1 Wildfire

Wildfire [15] is a distributed multi-master HTAP system consist-
ing of two major pieces: Spark and the Wildfire engine. Spark
serves as the main entry point for the applications that Wild-
fire targets, and provides a scalable and integrated ecosystem
for various types of analytics on big data, while the Wildfire
engine adds the support for high-speed transactions, accelerates
the processing of application requests, and enables analytics on
newly-ingested data. All inserts, updates, and deletes in Wildfire
are treated as upserts based on the user-defined primary key. Wild-
fire adopts last-writer-wins semantics for concurrent updates to
the same key, and snapshot isolation of quorum-readable content
for queries, without having to read the data from a quorum of
replicas to satisfy a query.

A table in Wildfire is defined with a primary key, a sharding
key, and optionally a partition key. Sharding key is a subset of
the primary key, and it is primarily used for load balancing of
transaction processing in Wildfire. Inserted records are routed by
the sharding key to different shards. A table shard is replicated
into multiple nodes, where one replica serves as the shard-leader
while the rest are slaves. Any replica of a shard can ingest data.
A table shard is the basic unit of a lot of processes in Wildfire,
including grooming, post-grooming, and indexing (details later).
In contrast, the partition key is for organizing data in a way that
benefits the analytics queries. Typically, the sharding key is very
different from the partition key. For example, an IoT application
handling large volumes of sensor readings could use the device
ID as the sharding key, but the date column as the partition key
to speed up time-based analytical queries.

Wildfire adds the following three hidden columns to every
table to keep track of the life of each record and support snap-
shot isolation as well as time travel. The column beginTS (begin
timestamp) indicates when the record is first ingested in Wildfire;
endTS (end timestamp) is the time when the record is replaced
by a new record with the same primary key; prevRID (previous
record ID) holds the RID (record ID) of the previous record with
the same key.

In order to support both OLTP and OLAP workloads effi-
ciently within the same system, Wildfire divides data into mul-
tiple zones where transactions first append their updates to the
OLTP-friendly zone, which are gradually migrated to the OLAP-
friendly zone. Figure 1 depicts the data lifecycle in Wildfire across
multiple zones.



Live

Zone transaction side-logs [l

(uncommitted)
log (committed
& replicated)
persistentiog ([N B ]
groom —
Zone CiZT:d .[! I = I -\ % ﬁ1adcexees

(e
; T T o | %indexes

post-groom
Post-Groomed i i
Zone ! '
' 1 % indexes
i i

partition 1 - partition 2 partition 3

Figure 1: Data Lifecycle in Wildfire

Live Zone. A transaction in Wildfire first appends uncommit-
ted changes in a transaction local side-log. Upon commit, the
transaction tentatively sets beginTS for each record using the
local wall clock time (beginTS is reset later in the groomed zone),
and appends its side-log to the committed transaction log, which
is also replicated for high-availability. The committed log is kept
in memory for fast access, and also persisted on the local SSDs
using the Parquet columnar-format. Since this zone has the latest
ingested/updated data, it is called the live zone.

Groomed Zone. To bound the growth of the committed log
and resolve conflicts from different replicas, each shard in Wild-
fire has a designated groomer which periodically (e.g., every
second) invokes a groom operation to migrate data from the live
zone to the groomed zone.

The groom operation merges, in the time order, transaction
logs from shard replicas, resolves conflicts by setting the mono-
tonic increasing beginTS for each record, and creates a Parquet
columnar-format data file, called a groomed block, in the shared
storage as well as the local SSD cache. Each groomed block is
uniquely identified by a monotonic increasing ID called groomed
block ID. Note that the beginTS set by the groomer is composed
of two parts. The higher order part is based on the groomer’s
timestamp, while the lower order part is the transaction commit
time in the shard replica. Thus, the commit time of transactions in
Wildfire is effectively postponed to the groom time. The groomer
also builds indexes over the groomed data.

Post-Groomed Zone. The groomer only sets the beginTS for
each record. EndTS and prevRID still need to be set to support
snapshot isolation and time travel. In addition, up to the groomed
zone, data is still organized according to the sharding key, and
they need yet to be re-organized based on the more analytics-
friendly partition key. To achieve these tasks, another separate
process, called post-groomer, periodically (e.g., every 10 minutes)
performs post-groom operations to evolve the newly groomed
data to the post-groomed zone.

The post-groom operation first utilizes the post-groomed por-
tion of the indexes to collect the RIDs of the already post-groomed
records that will be replaced by the new records from the groomed
zone. Then, it scans the newly groomed blocks to set the prevRID
fields using the RIDs collected from the index, and re-organizes
the data into post-groomed blocks on the shared storage accord-
ing to the OLAP-friendly partition key. The post-groomer also
uses the same set of RIDs from the index to directly locate the
to-be-replaced records and sets their endTS fields. Since the post-
groomer is carried out less frequently than the groomer, it usually
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generates much larger blocks, which results in better access per-
formance on shared storage. At the end, the post-groomer also
notifies the indexer process to build indexes on the newly post-
groomed blocks.

While both groomed and post-groomed blocks reside in the
shared storage, based on the access patterns of a node, they are
also cached in the local SSDs of that node, similarly to the indexes.

2.2 LSM-tree

Since Umzi employs an LSM-like structure, here we brief intro-
duce the background of LSM-trees. Interested readers can refer
to [27] for a survey of recent research on LSM-trees. The Log-
Structured Merge-tree (LSM-tree) is a write-optimized persistent
index structure. It first appends all writes into a memory table.
When the memory table is full, it is flushed into disk as a sorted
run using sequential I/Os. A query over an LSM-tree has to look
up all runs to perform reconciliation, i.e., to find the latest version
of each key.

As runs accumulate, query performance tends to degrade. To
address this, runs are periodically merged together to improve
query performance and reclaim disk spaced occupied by obsolete
entries. Two LSM merge policies are commonly used in practice,
i.e., leveling and tiering [27]. In both merge policies, runs are
organized into levels, where a run at level L + 1 is T times larger
than the run at level L. The leveling policy optimizes for queries
by limiting only one run per level. A run is merged with the one
at the higher level when its size reaches a threshold. In contrast,
the tiering policy optimizes for write amplification by allowing
multiple runs at each level. Multiple runs at level L are merged
together into a new run at level L + 1.

3 UMZI OVERVIEW

In Wildfire, depending on the freshness requirement, a query
may need to access data in the live zone, groomed zone, and/or
the post-groomed zone. We choose to build indexes over the
groomed zone and the post-groomed zone. Indexing does not
cover the live zone for a few reasons. First, since groomer runs
very frequently, data in the live zone is typically small, which
alleviates the need for indexing. Secondly, to support fast data
ingestion, we cannot afford maintaining the index on a record
basis.

In a nutshell, Umzi employs an LSM-like [31] structure with
multiple runs. Each groom operation produces a new index run,
and runs are merged over time to improve query performance.
Even though Umuzi is structurally similar to LSM, it has signifi-
cant differences from existing LSM-based indexes. First, existing
LSM-based indexes either store the records directly into the in-
dex itself, e.g., LevelDB [6] and RocksDB [9], or store the records
separately with the assumption that each record has a fixed RID,
e.g., WiscKey [25] !. However, both approaches do not work well
in Wildfire. Storing records into the LSM-tree incurs too much
write amplification during merges, significantly affecting inges-
tion performance. While for the second approach, as data evolve
from one zone to another, RIDs also change.z To accommodate
the multi-zone design and the evolving nature, Umzi divides
index runs into multiple zones accordingly. Runs in each zone
are chained and merged, as in LSM indexes. When data evolve
from one zone to another, Umzi performs the evolve operation

The same assumption is generally held by non-LSM-based indexes as well
2In Wildfire, an RID is identified by the combination of zone, block ID, and record
offset.



to migrate affected index entries to the target zone accordingly.
Since data evolution in Wildfire is accomplished by a number
of loosely-coupled distributed processes, it is critical for index
evolve operations to require minimum coordination among dis-
tributed processes and incur negligible overhead for queries.

Furthermore, Umzi targets at multi-tier storage hierarchies
in distributed environment, including memory, SSD and shared
storage. Index runs are persisted on shared storage for durability,
while Umzi aggressively exploits local memory and SSD as a
caching layer to speed up index queries. Umzi dynamically ad-
justs cached index runs based on the space utilization and the
age of the data, even without ongoing queries. To improve merge
performance and avoid frequent rewrites on shared storage, Umzi
allows certain lower levels to be non-persisted, i.e., their runs are
only stored in local memory and optionally SSD.

Even though we present Umzi with two zones, i.e., groomed
zone and post-groomed zone, this structure does not limits the
applicability of Umzi to other systems. It is straightforward to ex-
tend Umzi to support other HTAP systems with arbitrary number
of zones. To this end, one needs to structure Umzi with multiple
run lists, each of which corresponds to one zone of data. When
data evolves from one zone to another, the indexing process
should be notified to trigger an index evolve operation to migrate
index entries accordingly.

As mentioned in Section 2, a table shard is the basic unit of
groomer and post-groomer processes in Wildfire. This is also the
case for indexing. In the distributed setting of Wildfire, each Umzi
index structure instance serves a single table shard. There are a
number of indexer daemons running in the cluster. Each runs
independently, and is responsible for building and maintaining
index for one or more index structure instances. As a result, this
paper describes the Umzi index design from the perspective of
one table shard.

The following four sections describe the detailed design of
Umzi and its index maintenance operations. Without loss of
generality, we assume Umzi is used as a primary index throughout
the paper.

4 INDEX STRUCTURE

This section details the internal structure of Umzi. We first de-
scribe the index definition of Umzi, followed by the singe-run
storage format and multi-run structure respectively.

4.1 Index Definition

Umzi is designed for supporting both equality queries and range
queries, as well as facilitating index-only access plans if possible.
Index definitions in Umzi reflect these design goals. An index
is defined with key columns plus optionally included columns.
Index key columns can be a composition of equality columns
(for equality predicates) and sort columns (for range predicates).
Included columns are extra columns to enable efficient index-
only queries. If equality columns are specified, we also store the
hash value of equality column values to speed-up index queries,
which makes Umzi a combination of hash and range index. In
an example IoT application, the user can define the deviceID
as the equality column, while the message number as the sort
column. As a special case, the user could leave out the equality
column(s), which makes Umzi a complete range index. Similarly,
omitting the sort columns would turn Umzi into a hash index. The
flexibility of this index structure helps Umzi to answer equality

hash device | msg | beginTS | RID offset
0 | 00000101 | 1 1 100 000 0
1| 00100011 | 8 2 101 001 1
2 | 10010001 | 4 1 97 010 2
3 | 1001 0001 | 4 1 94 011 2
4 | 1001 0001 | 4 2 102 100 2
5 | 10010001 | 5 1 97 101 6
6 | 1110 0000 | 3 0 103 110 6
7 | 1110 0000 | 3 1 104 111 6

(a) Example Run Data (b) Offset Array

#data blocks: 2

merge level: 0

groomed block IDs: [0, 1]
synopsis: msg: [0, 2], device: [1, 8]
offset array: 0,1,2,2,2,6,6,6

header block

00001010 | 1 | 1 [100|| 10010001 | 5 | 1 [o7
.. | 00000011 [ 8 [ 2 ][ ... ] 11000000 | 3 | 0
101] ... [ 10010001 | 4 |[103] ... [ 11100000 | 3
1 [o7]...] 10010001 | 1 [104] ... ]

41 oa]...] 1001

0001 [ 4|2 [107 ...

data block 0 data block 1

(c) Physical Layout of An Index Run

Figure 2: Example Index Run: device is the equality col-
umn, msg is the sort column, and there is no included
columns. For simplicity, we assume the hash value takes
only one byte.

queries, range queries, and combinations of the two, with one
index.

4.2 Run Format

Each run in Umzi can be logically viewed as a sorted table con-
taining the hash column, index key columns, included columns,
beginTS and RID. As mentioned before, the hash column stores
the hash value of equality columns (if any) to speed up queries
with equality predicates. The beginTS column indicates the times-
tamp when the indexed record is inserted, which is generated
by groomers in Wildfire (Section 2). The RID column defines the
exact location of the indexed record. Index entries are ordered by
the hash column, equality columns, sort columns, and descend-
ing order of beginTS. We sort the beginTS column in descending
order to facilitate the access of more recent versions. All ordering
columns, i.e., the hash column, equality columns, sort columns
and beginTSs, are stored in lexicographically comparable formats,
similar to LevelDB [6], so that keys can be compared by sim-
ply using memory compare operations when processing index
queries. Figure 2 shows an example index run, where device is the
equality column and msg is the sort column. There is no included
columns in this example, and we assume the hash value takes
only one byte. Figure 2a shows the index rows in this run, where
the hash value is shown in the binary format.

An index run is physically stored as a header block plus one
or more fixed-size data blocks. The header block contains the
metadata information of the index run, such as the number of
data blocks, the merge level this run belongs to (Section 5), and
the range of groomed block IDs to which this run corresponds.



To prune irrelevant runs during index queries, we also store a
synopsis in the header block. The synopsis contains the range
(min/max values) of each key column stored in this run. A run
can be skipped by an index query if the input value of some key
column does not overlap with the range specified by the synopsis.
Figure 2c shows an example index run layout which contains
one header block and two data blocks.

When equality columns are specified in the index definition,
we store in the header block an offset array of 2" integers to
facilitate index queries. The offset array maps the value of the
most significant n bits of hash values to the offset in the index
run. When processing index queries, the offset array can be used
to provide a more compact start and end offset for binary search.
For example, Figure 2b shows the offset array with the most
significant 3 bits of hash values from Figure 2a.

4.3 Multi-Run Structure

An example multi-run structure of Umzi is shown in Figure 3.
Similar to LSM indexes, Umzi contains multiple runs. A groom op-
eration produces a new run to level 0, and runs from lower levels
are gradually merged into higher levels to improve query perfor-
mance. Each run is further labeled with the range of groomed
block IDs, where larger IDs correspond to newer groomed blocks.

In this meanwhile, to accommodate the multi-zone design
and data evolving nature of the HTAP systems, Umzi divides
index runs in multiple zones accordingly. For concurrency control
purpose, runs in each zone are chained together based on their
recency into a list, where the header points to the most recent
run. We will further discuss concurrency control of Umzi in
Section 5.1. Based on this multi-zone design, Umzi only merges
runs within the same zone. When data evolves from one zone to
another, an index evolve operation is triggered to migrate index
entries to the target zone accordingly.

The assignment of levels to zones are configurable in Umzi. For
example in Figure 3, levels 0 to 5 are configured as the groomed
zone, while levels 6 to 9 are configured as the post-groomed zone.

5 INDEX MAINTENANCE

In this section we describe index maintenance operations in Umzi,
including index build, merge, and evolve. Before presenting the
details of index maintenance operations, we first discuss con-
currency control in Umzi since index maintenance is performed
concurrently with queries. Finally, we also briefly discuss how
recovery is performed in Umzi.

5.1 Concurrency Control

Umzi aims at providing non-blocking and lock-free access for
queries. To this end, Umzi relies on atomic pointers and chains
runs in each zone together into a linked list, where the header
points to the most recent run. All maintenance operations are
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Figure 3: Multi-Run Structure in Umzi
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Figure 4: Index Merge Example

carefully designed so that each index modification, i.e., a pointer
modification, always results in a valid state of the index. As a
result, queries can always traverse run lists sequentially without
locking to get correct results. To minimize contentions caused by
concurrent index maintenance operations, each level is assigned
a dedicated index maintenance thread. A short duration lock
is acquired when modifying the run list to prevent concurrent
modifications. Note that the locking overhead is negligible since
locks are only used to prevent concurrent modifications to the
run list, which happens infrequently. Moreover, these locks never
block any index queries.

5.2 Index Build

After a groom operation is completed, Umzi builds an index run
over the newly groomed data block. This is done by simply scan-
ning the data block and sorting index entries in ascending order
of hash values, sort columns, equality columns and descending
order of beginTS. Along with writing sorted index entries back
to data blocks, the offset array can be computed on-the-fly. Fi-
nally, the new run becomes the new header of the run list for the
groomed zone. Note that the order of pointer modifications is
important to guarantee the correctness for concurrent queries,
where the new run must be set to point to the header before the
header pointer is modified.

5.3 Index Merge

In order to easily trade-off write amplification and query perfor-
mance, Umzi employs a hybrid merge policy similar to [20]. This
policy is controlled by two parameters K, the maximum number
of runs per level, and T, the size ratio between runs in adjacent
levels. Each level L maintains the first run as an active run, while
the remaining runs are inactive. Incoming runs from level L — 1
are always merged into the active run of level L. When the active
run in level L is full, i.e., its size is T times larger than an inactive
run in level L — 1, it is marked inactive and a new active run is
created. Finally, when level L contains K inactive runs, they are
merged together with the active run in level L + 1.

After a merge, the new run replaces old runs in the run list. As
shown in Figure 4, this is done by first setting the new run point
to the next run of the last merged run, and then set the previous
run before the first merged run point to the new run. A lock over
the run list is acquired during the replacement, since otherwise
pointers could be concurrently modified by other maintenance
threads. There is no need for a query to acquire any locks when
traversing the list; it sees correct results no matter whether the
old runs or the new run are accessed.

5.4 Index Evolve

In Wildfire, the post-groomer periodically moves groomed data
blocks to the post-groomed zone. After a post-groom opera-
tion, groomed data blocks are marked deprecated and eventually



deleted to reclaim storage space. As a result, index entries in Umzi
must be migrated as well so that deprecated groomed blocks are
no longer referenced. However, index evolving in distributed
HTAP systems is non-trivial due to the following problems.

First, HTAP systems like Wildfire are often composed of sev-
eral loosely-coupled distributed processes. The post-groomer in
Wildfire is a separate process running on a different node from
the indexer process. In a distributed environment, one require-
ment for index evolving is to minimize the coordination among
multiple processes. Second, an index evolve operation must apply
multiple modifications to the index. This requires index evolve
operations to be carefully designed to ensure the correctness for
concurrent queries without blocking them.

To tackle the first problem, an index evolve operation in Umzi
is performed asynchronously by the indexer process with mini-
mum coordination, as shown in Figure 5. Each post-groom oper-
ation is associated with a post-groom sequence number (PSN).
After a post-groom operation, the post-groomer publishes the
metadata for this operation and updates the maximum PSN. In the
meanwhile, the indexer keeps track of the indexed post-groom
sequence number, i.e., IndexedPSN, and keeps polling the max-
imum PSN. If IndexedPSN is smaller than the maximum PSN,
the indexer process performs an index evolve operation for In-
dexedPSN+1, which guarantees the index evolves in a correct
order, and increments IndexedPSN when the operation is finished.
Note that asynchronous index evolution has no impact on index
queries since a post-groom operation only copies data from one
zone to another without producing any new data. For a query, it
makes no difference to access a record from the groomed zone
or post-groomed zone.

For the concurrency control issue, we decompose the index
evolve operation into a sequence of atomic sub-operations. Each
sub-operation is guaranteed to result in a valid state of the index,
ensuring that concurrent queries always see correct results when
traversing the run lists. Specifically, an index evolve operation
for a given PSN is performed as follows. First, the indexer builds
an index run for post-groomed data blocks associated with this
PSN, and adds it atomically to the post-groomed run list. Note
that this run still contains the range of groomed block IDs it
corresponds to. Second, the indexer atomically updates the max-
imum groomed blocked ID covered by the post-groomed run
list, based on the newly built run. All runs in the groomed run
list with end groomed block ID no larger than this value would
be automatically ignored by queries since entries in these runs
are already covered by the post-groomed run list. Finally, these
obsolete runs are garbage collected from the groomed run list.
Note that during each step, a lock over the run list is acquired
when modifying a run list to prevent concurrent modifications
by other maintenance threads.
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Figure 5: Interaction between Post-groomer and Indexer

evolve if IndexedPSN < MaxPSN

We further illustrate the index evolve operation with an ex-
ample depicted in Figure 6. Suppose the groomed blocks 11 to 18
have been post-groomed, and the indexer now performs an index
evolve operation for this post-groom operation accordingly. First,
the indexer builds a new run labeled 11-18 for the newly post-
groomed data, and atomically adds it to the post-groomed run
list. The indexer then atomically updates the maximum groomed
blocked ID of the post-groomed run list from 10 to 18. At this mo-
ment, run 11-15 will be ignored by subsequent queries since it is
fully covered by run 11-18. Finally, this obsolete run is garbage col-
lected from the groomed list, which concludes this index evolve
operation.

It is straightforward that each step of an evolve operation only
makes one modification to the index, and is thus atomic. Between
any two of the above three steps, the index could contain dupli-
cates, i.e., a record with the same version could appear in both a
groomed run and a post-groomed run. Moreover, even after the
last step of the index evolve operation, the index may still contain
duplicates since groomed blocks consumed by a post-groom op-
eration may not align perfectly with the boundaries of index runs.
However, duplicates are not harmful to index queries. Since a
query only returns the most recent version of each key, duplicates
are removed on-the-fly during query processing (Section 7).

5.5 Recovery

We assume runs in Umzi are persisted in shared storage. After
each index evolve operation, the maximum groomed blocked ID
for the post-groomed run list and IndexedPSN are also persisted.
However, an indexer process could crash, losing all data struc-
tures in the local node. To recover an index, we mainly need to
reconstruct run lists based on runs stored in shared storage, and
cleanup merged and incomplete runs if any.

A run list can be recovered by examining all runs in shared
storage. Runs are first sorted in descending order of end groomed
blocked IDs, and are added to the run list one by one. If multiple
runs have overlapping groomed block IDs, the one with largest
range is selected, while the rest are simply deleted since they
have already been merged.

6 UMZI ON MULTI-TIER STORAGE
HIERARCHY

Recall that Umzi is designed for large-scale distributed HTAP
systems running on multi-tier storage hierarchy, i.e., memory,
SSD, and distributed shared storage. Even though shared storage
provides several key advantages for distributed HTAP systems
such as fault tolerance and high availability, it brings signifi-
cant challenges when designing and implementing an indexing
component. Shared storage generally does not support in-place
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updates and random I/Os, and prefers a small number of large
files to reduce metadata overhead. Furthermore, accessing shared
storage through networks is often costly, incurring high latency
for index queries.

So far, we only discussed how Umzi eliminates random I/Os
and in-place updates by adopting an LSM-like structure. In this
section, we present solutions adopted by Umzi to improve storage
efficiency in a multi-tier storage hierarchy.

6.1 Non-Persisted Levels

In a traditional LSM design, on-disk runs of all levels are per-
sisted on disk equivalently. Even though this design garbage
collects olds runs after a merge, it introduces a large overhead
on shared storage because of writing a large number of (poten-
tially small) files. To avoid frequently rewriting a large number of
small files on shared storage, Umzi supports non-persisted levels,
i.e., certain low levels of the groomed zone can be configured as
non-persisted.

Runs in persisted levels are always stored in shared storage
for fault tolerance and can be cached in local memory and SSD to
speedup queries. However, runs in non-persisted levels are only
cached in local memory and optionally spilled to SSD if memory
is full, but they are not stored in shared storage for efficiency.

Introducing non-persisted levels complicates the recovery pro-
cess of Umzi, since after a failure all runs in non-persisted levels
could be lost. To address this, Umzi requires level 0 must be per-
sisted to ensure that we do not need to rebuild any index runs
from groomed data blocks during recovery. Moreover, if level L
to K are configured as non-persisted, runs in level L-1 cannot be
deleted immediately after they are merged into level L. Other-
wise, if the node crashes, we would again lose index runs since
the new run is not persisted in shared storage. To handle this,
when merging into non-persisted levels, old runs from level L-1
are not deleted but rather recorded in the new run. When the
new run is finally merged into a persisted level again, i.e., level
K+1, its ancestor runs from level L-1 can be safely deleted.

6.2 Cache Management

As mentioned before, accessing shared storage through networks
is often costly and incurs high latencies for index queries. To
address this, Umzi aggressively caches index runs using local
memory and SSD, even without ongoing queries. We assume
most frequently accessed index runs fit into the local SSD cache
so that shared storage is mainly used for backup. However, when
the local SSD cache is full, Umzi has to remove some index runs to
free up the cache space. For this purpose, we assume recent data is
accessed more frequently. As the index grows, Umzi dynamically
purges old runs, i.e., runs in high levels, from the SSD cache
to free up the cache space. In contrast, when the local SSD is
spacious, Umzi aggressively loads old runs from shared storage
to speedup future queries.

To dynamically purge and load index runs, Umzi keeps track
of the current cached level that separates cached and purged
runs, as shown in Figure 7. When the SSD is nearly full, the index
maintenance thread purges some index runs and decrements the
current cached level if all runs in this level have been purged.
When purging an index run, Umzi drops all data blocks from
the SSD while only keeps the header block for queries to locate
data blocks. On the contrary, when the SSD has free space, Umzi
loads recent runs (in the reverse direction of purging) into SSD,
and increments the current cached level when all runs in the
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Figure 7: Cache Management in Umzi

current cached level have been cached. Umzi further adopts a
write-through cache policy when creating new index runs during
merge or evolve. That is, a new run is directly written to the SSD
cache if it is below (lower than) the current cache level.

7 INDEX QUERY

In this section, we discuss how to process index queries on Umzi.
Since Umzi is a multi-version index, a query has to specify a
query timestamp (queryTS), and only the most recent version
for each matching key is returned, i.e., the version with largest
beginTS such that beginTS < queryTS. In general, two types
of index queries are supported. The range scan query specifies
values for all equality columns (if any) and bounds for the sort
columns, and returns the most recent version of each matching
key. The point lookup query specifies the entire index key (i.e.,
the primary key), and at most one matching record is returned.

A query first collects candidate runs by iterating the run lists
and checking run synopses. A run is considered as a candidate
only if all column values as specified in the query satisfy the
column ranges in the synopsis. Also note that all runs are read
from the SSD cache. In case that a query must access purged
runs, we first transfer runs from shared storage to the SSD cache
on a block-basis, i.e., the entire run data block is transferred at
a time, to facilitate future accesses. After the query is finished,
the cached data blocks are released, which are further dropped
in case of cache replacement. Depending on the query type, the
details of query processing are as follows.

7.1 Range Scan Query

For a range scan query, we first discuss how to search a single
run to get matching keys. Results returned from multiple runs are
further reconciled, since results from newer runs could override
those from older runs, to guarantee only the most recent version
is returned for each matching key.

7.1.1  Search Single Run. Searching a single run returns the
most recent version for each matching key in that run. Since
a run is a table of sorted rows, the query first locates the first
matching key using binary search with the concatenated lower
bound, i.e., the hash value, equality column values, and the lower
bound of sort column values. If the offset array is available, the
initial search range can be narrowed down by computing the
most significant n bits of the hash value (denoted as i) and taking
the i-th value in the offset array.

After the first matching key is determined, index entries are
then iterated until the concatenated upper bound is reached, i.e.,
the concatenation of the hash value, equality column values, and
the upper bound of sort column values. During the iteration, we
further filter out entries failing timestamp predicate beginTS <
queryTS. For the remaining entries, we simply return for each



key the entry with the largest beginTS, which is straightforward
since entries are sorted on the index key and descending order
of beginTS.

Consider again the example run in Figure 2. Recall that device
is the equality column, while msg is the sort column. Consider a
range scan query with device = 4,1 < msg < 3, and queryTS = 100.
We first take the most significant 3 bits of hash(4) = 1001 0001,
i.e,, 100, to obtain the initial search range from the offset array,
i.e,, 2 to 6. The first matching key is still entry 2 after binary
search with the input lower bound (1001 0001, 4, 1). We then
iterate index entries starting from entry 2. Entry 2 is returned
since it is the most recent version for key (4, 1), while entry 3 is
filtered out since it is an older version of entry 2. However, entry
4 is filtered out because its beginTS 102 is beyond the queryTS
100. We stop the iteration at entry 5, which is beyond the input
upper bound (1001 0001, 4, 3).

7.1.2  Reconcile Multiple Runs. After searching each run in-
dependently, we have to reconcile results returned from multiple
runs to ensure only the most recent version is returned for each
matching key. In general, two approaches can be used for recon-
ciliation: the set approach and the priority queue approach.

Set Approach. In the set approach, the query searches from
the newest to the oldest runs sequentially, and maintains a set of
keys which have already been returned to the query. If a key has
not been returned before, i.e., not in the set, it is added to the set
and the corresponding entry is returned to the query; otherwise,
the entry is simply ignored since we have already returned a more
recent version from the newer runs. The set approach mainly
works well for small range queries since it requires intermediate
results to be kept in memory during query processing.

Priority Queue Approach. In the priority queue approach,
the query searches multiple runs together and feeds the results
returned from each run into a priority queue to retain a global
ordering of keys, which is similar to the merge step of merge sort.
Once keys are ordered, we can then simply select the most recent
version for each key and discard the rest without remembering
the intermediate results.

7.2 Point Lookup Query

The point lookup query can be viewed as a special case of the
range scan query, where the entire primary key is specified such
that at most one entry is returned. As an optimization, one can
search from newest runs to oldest runs sequentially and stop the
search once a match is found. Here we can use exactly the same
approach from above to search the single run, where the lower
bound and upper bound of sort column values are the same.

For a batch of point lookups, we first sort the input keys by
the hash value, equality column values, and sort column values,
to improve search efficiency. The sorted input keys are searched
against each run sequentially from newest to oldest, one run at
a time, until all keys are found or all runs to be searched are
exhausted. This guarantees that each run is accessed sequentially
and only once.

8 EXPERIMENTAL EVALUATION

In this section, we report the experimental evaluation of Umzi.
We first evaluate the index build performance, index query per-
formance, and further study the end-to-end query performance
with concurrent data ingestion. We first outline the general ex-
periment setup, then report and discuss the experimental results.

As mentioned in Section 3, there are a distributed cluster of
indexer daemons running in Wildfire, each independently re-
sponsible for building and maintaining index for one or more
Umzi index structure instances (one per table shard). As a result,
Umazi scales up and down nicely with more or less indexer dae-
mons. Since the goal of our experiments is to demonstrate the
performance of Umzi index structure, we focus on a single shard
setting for our experiments.

Note that since all experiments were conducted inside Wild-
fire, which is closely tied to an IBM product, we cannot report
absolute performance numbers. As a result, we report normalized
performance numbers, with the normalization process explained
for each experiment.

8.1 Experiment Setup

All experiments are performed against a single table shard on
a single node using a dual-socket Intel Xeon E5-2680 server
(2.40GHZ) with 14 cores in a socket (28 with hyper-threading)
and 1.5TB of RAM. The operating system is Ubuntu 16.04.2 with
Linux kernel 4.4.0-62. The node uses an Intel 750 Series SSD as
the SSD cache. For end-to-end experiments, we use GlusterFS [2]
as the shared storage layer.

We use a synthetic data generator to generate keys with in-
clude columns used in all experiments, where keys can be se-
quential or random. Note that our index only stores key and
include columns instead of entire records, thus a key generator
is sufficient for our experiments. Throughout the experiments,
we consider three different index definitions as below:

e I1: one equality column, one sort column, and one include
column

o 12: two equality columns and one include column

e 13: one equality column and one include column

Each column is a long type with 8 bytes. Unless otherwise noted,
we use index definition I1 as the default case. Each of the follow-
ing experiments was reported for three times, and the average
number is reported.

Moreover, for the scope of this paper, we only focus on the time
of index lookups, while omitting the time of retrieving records
based on the fetched RIDs, since the latter depends on the record
storage format and is orthogonal to the indexing method.

8.2 Index Building Performance

In the first set of experiments, we evaluate the performance of
building index runs, which is the primitive operation for Umzi’s
index maintenance after a groom or post-groom cycle. Figure 8
shows the results for the time it takes to build an index run
using the three different index definitions mentioned above as
we increase the number of entries in a run. The running time is
normalized against the time of building a run with 1000 tuples
using I1. As the graph shows, index building almost scales linearly
with the number of rows. Furthermore, the index building time
for index I3 is always faster than I1 and I2, since I3 has one fewer
key column. The impact of the number of indexed columns on
the index building time, however, is negligible, compared to the
overhead of sorting entries during index building.

8.3 Index Query Performance

Next set of experiments evaluate the performance of querying
Umzi under various settings. By default, an index contains 20
runs, where each index run has 100000 entries. We execute index
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Figure 8: Index Building Performance

queries in a batch, where the default batch size is 1000. All index
runs used in this set of experiments are cached in the local SSD.

We consider two kinds of entry characteristics for the follow-
ing experiments, i.e., ingested with sequential keys or random
keys. Sequential keys are sequentially generated by our synthetic
key generator to simulate the time correlated keys, while random
keys are randomly sampled from a uniform distribution with-
out any temporal correlation. We further consider two kinds of
key distribution in index queries: sequential and random. As the
name suggests, sequential and random queries use sequentially
and randomly generated keys in a batch, respectively.

8.3.1 Single Run. We first evaluate the index query perfor-
mance against a single run. For brevity, we only report experi-
ment results with sequentially ingested keys in this experiment.
Since entries in a run are sorted on hash values, there is no dif-
ference to use sequentially or randomly ingested data. Figure 9
shows the normalized lookup time with varying run sizes and
index definitions.

The time is normalized against the index lookup time of the
sequential query over the run with 1000 tuples under the index
definition I1. In general, the query time increases with larger in-
dex runs, since search keys spread across the run and potentially
more I/Os are required to process the query batch when the run
size increases. However, the impact of run size is limited because
we use the hash offset array to locate the initial search range, and
further use binary search to locate the exact location. Moreover,
index lookup performance of index definition of I1 is comparable
to that of I3, but index lookup performance of index definition
12 is generally slower since I2 contains two equality columns,
making the hash offset array less effective in terms of locating
the initial search range.

8.3.2 Multiple Runs with Sequential Keys. In this section we
evaluate the index query performance against multiple index
runs with sequentially ingested keys. We vary the query batch
size and the number of index runs for the lookup queries, and
the scan range for the range queries. The experiment results are
shown in Figure 10.

Figure 10a shows the impact of the batch size on the index
lookup performance. The index lookup time per key is normalized
against the lookup time of the sequential query with batch size
one. In general, sequential queries perform much better than
random ones since the run synopsis enables pruning most of
the irrelevant runs and leaving only a small fraction of the runs
need to be searched (except for the case of batch size 1, where
the sequential queries take longer because of some variances in
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Figure 9: Single Run Query Performance

the experiments). Furthermore, batching greatly improves index
lookup performance, since once an index block is fetched into
memory for a the lookup of a particular key, no additional I/O is
required to fetch that block again for looking up other keys in
the batch.

Figure 10b shows the index lookup performance with varying
number of index runs. The query time is normalized against the
time it takes to complete the sequential query against one run. As
the result shows, the number of runs has limited impact over the
sequential queries, since most irrelevant runs are simply pruned
because of the run synopsis. However, the time of the random
queries grows almost linearly with more runs, since more runs
need to be searched to complete the batch of lookups.

Finally, the performance of the range scan queries using the
priority queue method is in Figure 10c. The time is normalized
against the query time of the sequential query with range one.
In general, the query time of the range scan query grows lin-
early with the query range, since larger ranges require more
time to read index entries and output matching keys. Moreover,
sequential or random ranges have little impact over the query
performance, since the time of locating start position is negligible
compared to scanning the index entries.

8.3.3 Multiple Runs with Random Keys. After investigating
the index query time using sequentially ingested keys, this sec-
tion evaluates the query performance against multiple index runs
with randomly ingested keys. The results are shown in Figure 11.
The numbers on the y-axes are normalized the same way as the
corresponding numbers in Figure 10. In general, random keys
render the run synopsis less useful, which decreases the perfor-
mance of sequential queries since more runs need to be searched.
However, the impact on the random queries is almost negligible,



since the pruning capability of the run synopses is anyway lim-
ited when we have random keys in the query batch. As a result,
the performance of sequential queries becomes similar to that of
random queries.
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8.4 End-to-end Experiments 2 ——16 readers

The last set of experiments evaluates the end-to-end performance 1 _‘213 ::gzz

of Umzi in Wildfire as we perform data ingest and index lookups 0 ——52 readers
concurrently while Umzi’s index maintenance operations are also 0 6 1 18 24
handled in the background. By default, for each experiment, we time (sec)

ingest roughly 100000 random records per second. The groomer

runs every second, and the post-groomer runs every 20 seconds. Figure 12: Performance with concurrent readers
We also submit batches of 1000 random index lookup queries

continuously. Each experiment lasts for 100 seconds.

For this set of experiments, we generate data with update rates continuously. For brevity, we show results for only 4, 16, 28,
that mimic a realistic IoT application, where the recent data are 40, and 52 readers, and the experiment results are normalized
updated more frequently. The update rates are calculated based against the lookup time with 1 reader from the beginning of the
on the groom cycles: the ingested data for the latest groom cycle experiment. In addition, Figure 12 zooms into a 30 second period
updates p% of data from the last groom cycle, and 0.1 X p% of from the middle of the overall experiment to focus on the impact
data from the last 50 cycles, and 0.01 X p% of data in the last 100 of concurrency as opposed to the index behavior over time as
cycles. By default, we set p% = 10%. the index grows. As one can see, more concurrent readers have

With this experimental setup, we investigate the impact of small impact on the query performance, which demonstrates
concurrent readers, percentage of updates, purged runs, and the advantages of Umzi’s lock-free design for the readers. The
index evolve operations on index lookup time. The results are varying performance of the index lookup operation in this graph
summarized and discussed below. (and the rest of the graphs in this section) is due to the random

input keys we generate for the index lookup requests. Based on

84.1 Concurrent Readers. Figure 12 shows how varying the the distribution of these random keys, the search for a key can
number of concurrent readers impact the average index lookup lead to reading fewer or more index runs, which impacts the
time. Each reader thread submits batches of 1000 lookup queries performance of a point lookup as seen previously.

10
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Figure 14: Performance with various purge levels

8.4.2 Updates. Figure 13 analyzes the impact of varying level
of updates in a workload on the query performance. We change
the update rate p% from 0% (read-only workload) to 100% (all
ingested records are updates after the first groom cycle). As the
graph demonstrates, updates have limited impact on the average
query performance. The slightly increasing lookup time over
time, which can be observed in all the experiments in this section,
is due to the growing of the index run chain of Umzi.

8.4.3 Purged Runs. The impact of purged runs on the query
performance is shown in Figure 14, where we manually set the
purge level to control the percentage of purged runs. The run-
ning time is normalized against the performance of the no-purge
case in the beginning of this experiment. As expected, Figure 14
emphasizes the significance of the SSD cache on the query per-
formance. The latency of the lookup queries is much lower when
all the index runs are cached (none) compared to the cases where
the half or all of the runs are purged. Moreover, when some runs
are purged, we observe unpredictable latency spikes. The reason
is that when purged runs are first accessed after being merged or
evolved, they have to be fetched from the shared storage into the
local SSD cache on a block by block basis as the queries require
them.

8.4.4 Index Evolve Operations. Finally, we evaluate the impact
of the index evolve operations on the query performance by
enabling/disabling the post-groomer. The results are shown in
Figure 15. The running time is normalized against the lookup
time in the beginning of the experiment where the post-groomer
(including index evolution), is enabled. As the graph illustrates,
the index evolve operation has certain overhead over the query
performance, since often the query may experience several cache
misses after runs have been evolved. However, the overhead again
is limited, since in the meanwhile the index evolve operation
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Figure 15: Impact of index evolve operations

reduces the total of number of runs, which in turn improves the
query performance.

9 RELATED WORK

In this section, we survey related work in indexing methods for
HTAP systems, as well as LSM-like indexes.

Indexing in HTAP Systems. To satisfy the demand of fast
transactions and analytical queries concurrently, many HTAP
systems and solutions have been proposed recently. A recent
survey of HTAP systems can be found in [32]. In-memory HTAP
engines, e.g., SAP HANA [21], HyPer [22], Pelaton [14], Oracle
TimesTen [23] and DBIM [29] take unique advantage of large
main memories, e.g., random writes and in-place updates, while
large-scale HTAP systems that go beyond the memory limit have
to face inherently different challenges in the presence of disks and
shared storage. MemSQL [7] supports skip-list or hash indexes
over the in-memory row store, and LSM-like indexes over the
on-disk column store. However, column store indexes cannot be
combined with row indexes to provide a unified view for queries.
SnappyData [28] only supports indexes over row tables, while
providing no indexing support for column tables.

Another category of HTAP solutions typically glue multiple
systems together to handle OLTP and OLAP queries. For example,
one typical solution is to use a key-value store, such as HBase 3]
or Cassandra [1], as the updatable storage layer, while resorting
to SQL-on-Hadoop systems such as Spark-SQL [13] to process
analytical queries with the help of data connectors. Other sys-
tems directly build upon updatable storage engines to handle
both transactional and analytical queries, such as Hive [35] on
HBase [3] and Impala [16] on Kudu [5]. In these solutions, in-
dexes, if any, are exclusively managed by the storage engine to
support efficient point lookups. However, none of these solutions
support both fast ingestion and data scans, which is different
from our system where ingested data evolves constantly to be
more analytics-friendly.

LSM-like Index. The LSM-tree [31] is a persistent index struc-
ture optimized for write-heavy workloads. Instead of updating
entries in place, which potentially requires a random I/O, the
LSM-tree batches inserts into memory and flushes the data to
disk using sequential I/O when the memory is full. It was sub-
sequently adopted by many NoSQL systems, such as HBase [3],
Cassandra [1], LevelDB [6] and RocksDB [9], for its superior
write performance. Many variations of the original LSM-tree
have been proposed as well. LHAM [30] is a multi-version data
access method based on LSM for temporal data. FD-tree [24] is
designed for SSDs by limiting random I/Os and uses fractional
cascading [18] to improve search performance. bLSM [34] uses



bloom filters to improve point lookup performance, and proposes
a dedicated merge scheduler to bound write latencies. Aster-
ixDB [12] proposes a general framework for using LSM-tree as
secondary indexes. Ahmad and Kemme [11] present an approach
to improve the merge process by offloading merge to dedicated
nodes and a cache warm-up algorithm to alleviate cache misses
after merge. LSM-Trie [36] organizes runs using a prefix tree-like
structure to improve point lookup performance by sacrificing the
ability to do range queries. WiscKey [25] reduces write amplifi-
cation by only storing keys in the LSM tree while leaving values
in a separate log. The work [26] presented efficient maintenance
strategies for LSM-based auxiliary structures, i.e., secondary in-
dexes and filters, to facilitate query processing. Monkey [19]
is an analytical approach for automatic performance tuning of
LSM trees. Dostoevsky [20] presents a lazy leveling merge pol-
icy for better trade-offs among query cost, write cost and space
amplification. Accordion [17] optimizes LSM on large memo-
ries by in-memory flushes and merges. SlimDB [33] optimizes
LSM-based key-value stores for managing semi-sorted data.

Different from existing work on LSM indexes, which focuses
on a key-value store setting, Umzi is an end-to-end indexing
solution in distributed HTAP systems. It supports the multi-zone
design commonly adopted by large-scale HTAP systems, and
evolves itself as data migrates without blocking queries. We fur-
ther discuss how Umyzi is designed to accommodate the multi-tier
storage hierarchy, i.e., memory, SSD, and shared storage, to im-
prove storage efficiency.

10 CONCLUSION

This paper describes Umzi, the first unified multi-version and
multi-zone indexing method for large-scale HTAP systems in the
context of Wildfire. Umzi adopts the LSM-like design to avoid
random I/Os in shared storage, and supports timestamped queries
for multi-version concurrency control schemes. Unlike existing
LSM indexes, Umzi addresses the challenges posed by the multi-
zone design of modern HTAP systems, and supports migrating
index contents as data evolves from one zone to another. It also
utilizes an interesting combination of hash and sort techniques to
enable both equality and range queries using one index structure.
Furthermore, it fully exploits the multi-level storage hierarchy
of HTAP systems for index persistence and caching.

In the future, we plan to extend Umzi to build and maintain
secondary indexes in HTAP systems. Then, we would like to
perform more experimental evaluation on Umzi to study its per-
formance under various workloads. Finally, we would also like
to study other SSD cache management strategies, and evaluate
their impact on query performance.
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ABSTRACT

Answering exact shortest path distance queries is a fundamental
task in graph theory. Despite a tremendous amount of research
on the subject, there is still no satisfactory solution that can
scale to billion-scale complex networks. Labelling-based meth-
ods are well-known for rendering fast response time to distance
queries; however, existing works can only construct labelling
on moderately large networks (million-scale) and cannot scale
to large networks (billion-scale) due to their prohibitively large
space requirements and very long preprocessing time. In this
work, we present novel techniques to efficiently construct dis-
tance labelling and process exact shortest path distance queries
for complex networks with billions of vertices and billions of
edges. Our method is based on two ingredients: (i) a scalable la-
belling algorithm for constructing minimal distance labelling, and
(ii) a querying framework that supports fast distance-bounded
search on a sparsified graph. Thus, we first develop a novel la-
belling algorithm that can scale to graphs at the billion-scale.
Then, we formalize a querying framework for exact distance
queries, which combines our proposed highway cover distance
labelling with distance-bounded searches to enable fast distance
computation. To speed up the labelling construction process, we
further propose a parallel labelling method that can construct
labelling simultaneously for multiple landmarks. We evaluated
the performance of the proposed methods on 12 real-world net-
works. The experiments show that the proposed methods can
not only handle networks with billions of vertices, but also be
up to 70 times faster in constructing labelling and save up to 90%
of labelling space. In particular, our method can answer distance
queries on a billion-scale network of around 8B edges in less than
1ms, on average.

1 INTRODUCTION

Finding the shortest-path distance between a pair of vertices is
a fundamental task in graph theory, and has a broad range of
applications [5, 11, 20, 26, 30, 31, 33]. For example, in web graphs,
ranking of web pages based on their distances to recently visited
web pages helps in finding the more relevant pages and is re-
ferred to as context-aware search [30]. In social network analysis,
distance is used as a core measure in many problems such as
centrality [11, 26] and community identification [5], which re-
quire distances to be computed for a large number of vertex pairs.
However, despite extensive efforts in addressing the shortest-path
distance problem for many years, there is still a high demand for
scalable solutions that can be used to support analysis tasks over
large and ever-growing networks.
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Traditionally, one can use the Dijkstra algorithm [27] for
weighted graphs or a breadth-first search (BFS) algorithm for un-
weighted graphs to query shortest-path distances. However, these
algorithms are not scalable, i.e., for large graphs with billions of
vertices and edges, they may take seconds or even longer to find
the shortest-path distance between one pair of vertices, which
is not acceptable for large-scale network applications where dis-
tances need to be provided in the order of milliseconds. To im-
prove query time, a well-established approach is to precompute
and store shortest-path distances between all pairs of vertices
in an index, also called distance labelling, and then answer a
distance query (i.e., find the distance between two vertices) in
constant time with a single lookup in the index. Recent work [15]
shows that such labelling-based methods are the fastest known
exact distance querying methods on moderately large graphs
(million-scale) having millions of edges, but still fail to scale to
large graphs (billion-scale) due to quadratic space requirements
and unbearable indexing construction time.

Thus, the question is still open as to how scalable solutions
to answer exact distance queries in billion-scale networks can
be developed. Essentially, there are three computational factors
to be considered concerning the performance of algorithms for
answering distance queries: construction time, index size, and
query time. Much of the existing work has focused on exploring
trade-offs among these computational factors [1-4, 8, 12, 14, 15,
17, 19, 22, 23, 29, 32], especially for the 2-hop cover distance
labelling [3, 9]. Nonetheless, to handle large graphs, we believe
that a scalable solution for answering exact distance queries
needs to have the following desirable characteristics: (1) the
construction time of a distance labelling is scalable with the size
of a network; (2) the size of a distance labelling is minimized so
as to reduce the space overhead; (3) the query time remains in
the order of milliseconds, even in graphs with billions of nodes
and edges.

In this work, we aim to develop a scalable solution for exact dis-
tance queries which can meet the aforementioned characteristics.
Our solution is based on two ingredients: (i) a scalable labelling
algorithm for constructing minimal distance labelling, and (ii) a
querying framework that supports fast distance-bounded search
on a sparsified graph. More specifically, we first develop a novel
labelling algorithm that can scale to graphs at the billion-scale.
We observed that, for a given number of landmarks, the distance
entries from these landmarks to other vertices in a graph can
be further minimized if the definition of 2-hop cover distance
labelling is relaxed. Thus, we formulate a relaxed notion for la-
belling in this paper, called the highway cover distance labelling,
and develop a simple yet scalable labelling algorithm that adds
a significantly small number of distance entries into the label
of each vertex. We prove that the distance labelling constructed
by our labelling algorithm is minimal, and also experimentally
verify that the construction process is scalable.

10.5441/002/edbt.2019.03
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Figure 1: High-level overview of the state-of-the-art methods and our proposed method (HL) for exact distance queries: (a)
performance w.r.t. query time and labelling size on networks of size up to 400M, (b) scalability w.r.t. labelling construction
time and network size, and (c) several important properties related to labelling methods.

Then, we formalize a querying framework for exact distance
queries, which combines our proposed highway cover distance
labelling with distance-bounded searches to enable fast distance
computation. This querying framework is capable of balancing
the trade-off between construction time, index size and query
time through an offline component (i.e. the proposed highway
cover distance labelling) and an online component (i.e. distance-
bounded searches). The basic idea is to select a small number
of highly central landmarks that allow us to efficiently compute
the upper bounds of distances between all pairs of vertices using
an offline distance labelling, and then conduct distance-bounded
search over a sparsified graph to find exact distances efficiently.
Our experimental results show that the query time of distance
queries within this framework is still in millionseconds for large
graphs with billions of vertices and edges.

Figure 1 summarizes the performance of the state-of-the-art
methods for exact distance queries [2, 3, 8, 12, 15, 16, 21, 27], as
well as our proposed method in this paper, denoted as HL. In
Figure 1(a)-1(b), we can see that, labelling-based methods PLL
[3], HDB [16], and HHL [2] can answer distance queries in a
considerably small amount of time. However, they have very
large space requirements and very long labelling construction
time. On the contrary, traditional online search methods such as
Dijkstra [27] and bidirectional BFS (denoted as Bi-BFS) [21] are
not applicable to large-scale networks where distances need to be
provided in the order of milliseconds because of their very high
response time. The hybrid methods FD [12], IS-L [15] and HL
(our method) combine an offline labelling and an online graph
traversal technique, which can provide better trade-offs between
query response time and labelling size. In Figure 1(b), we can also
see that only our proposed method HL can handle networks of
size 8B, and is scalable to perform distance queries on networks
with billions of vertices and billions of edges.

Figure 1(c) presents a high-level overview for several impor-
tant properties of labelling methods. The column ORDERING DE-
PENDENT refers to whether a distance labelling depends on the
ordering of landmarks when being constructed by a method.
Only our method HL and FD are not ordering-dependent. The
columns 2HC-MINIMAL and HWC-MINIMAL refer to whether a
distance labelling constructed by a method is minimal in terms
of the 2-hop cover (2HC) and highway cover (HWC) properties,
respectively. PLL is 2HC-minimal, but not HWC-minimal. Our
method HL is the only method that is HWC-minimal. The column
PArRALLEL refers to what kind of parallelism a method can sup-
port. FD and PLL support bit-parallelism for up to 64 neighbours
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of a landmark. Our method HL supports parallel computation
for multiple landmarks, depending on the number of processors.
Other methods did not mention any parallelism.

In summary, our contributions in this paper are as follows:

e We introduce a new labelling property, namely highway
cover labelling, which relaxes the standard notion of 2-
hop cover labelling. Based on this new labelling property,
we propose a highly scalable labelling algorithm that can
scale to construct labellings for graphs with billions of
vertices and billions of edges.

e We prove that the proposed labelling algorithm can con-
struct HWC-minimal labellings, which is independent of
any ordering of landmarks. Then, due to this determinstric
nature of labelling, we further develop a parallel algorithm
which can run parallel BFSs from multiple landmarks to
speed up labelling construction.

e We combine our novel labelling algorithm with online
bounded-distance graph traversal to efficiently answer
exact distance queries. This querying framework enables
us to balance the trade-offs among construction time, la-
belling size and query time.

e We have experimentally verified the performance of our
methods on 12 large-scale complex networks. The results
that our methods can not only handle networks with bil-
lions of vertices, but also be up to 70 times faster in con-
structing labelling and save up to 90% of labelling space.

The rest of the paper is organized as follows. In Section 2, we
present basic notations and definitions used in this paper. Then,
we discuss a novel labelling algorithm in Section 3, formulate
the querying framework in Section 4, and introduce several op-
timization techniques in Section 5. In Section 6 we present our
experimental results and in Section 7 we discuss other works that
are related to our work here. The paper is concluded in Section 8.

2 PRELIMINARIES

Let G = (V,E) be a graph where V is a set of vertices and E C
V XV is a set of edges. We have n = |V| and m = |E|. Without
loss of generality, we assume that the graph G is connected and
undirected in this paper. Let V/ C V be a subset of vertices of G.
Then the induced subgraph G[V’] is a graph whose vertex set is
V'’ and whose edge set consists of all of the edges in E that have
both endpoints in V’. Let Ng(v) = {u € V|(u,v) € E} denote a
set of neighbors of a vertex v € V in G.

The distance between two vertices s and ¢ in G, denoted as
dg(s, t), is the length of the shortest path from s to t. We consider



dg(s,t) = oo, if there does not exist a path from s to t. For any
three vertices s, u, t € V, the following triangle inequalities are
satisfied:

dg(s,t) < dg(s,u) +dg(u,t) (1)
dg(s,t) 2 ldg(s,u) — dg(u, 1) ()

If u belongs to one of the shortest paths from s to ¢, then dg (s, t) =
dg(s,u) + dg(u, t) holds.

Given a special subset of vertices R C V of G, so-called land-
marks, a label L(v) for each vertex v € V can be precomputed,
which is a set of distance entries {(u1, 81 (u1,v)), . . ., (un, 6. (un, V)
)} where u; € R and 6 (u;,v) = dg(ui,v) fori = 1,...,n. The
set of labels L = {L(v)}y ey is called a distance labeling over G.
The size of a distance labelling L is defined as size(L)=2,cv |L(v)|.

Using such a distance labeling L, we can query the distance
between any pair of vertices s, t € V in graph G as follows,

Q(s, t,L) = min{Sr(u,s) + o (u, t)|(u, 6. (u, s)) € L(s),
(u,6p(u, 1)) € L)} (3)

We define Q(s, t, L) = oo, if L(s) and L(t) do not share any land-
mark. If Q(s, t, L) = dg(s, t) holds for any two vertices s and ¢ of
G, Lis called a 2-hop cover distance labeling over G [2, 9].

Given a graph G and a set of landmarks R C V, the distance
querying problem is to efficiently compute the shortest path dis-
tance dg(s, t) between any two vertices s and ¢ in G, using a
distance labeling L over G in which labels may contain distance
entries from landmarks in R.

3 HIGHWAY COVER LABELLING

In this section, we formulate the highway cover labelling prob-
lem and propose a novel algorithm to efficiently construct the
highway cover distance labelling over graphs. Then, we provide
theoretical analysis of our proposed algorithm.

3.1 Highway Cover Labelling Problem
We begin with the definitions of highway and highway cover.

Definition 3.1. (Highway) A highway H is a pair (R, d57), where
R is a set of landmarks and Sy is a distance decoding function,
i.e. g : RX R — N*, such that for any {ry,r2} C R we have
Ou(r1,r2) = dg(r1,r2).

Given a landmark r € R and two vertices s,t € V\R (i.e.
VA\R =V — R), a r-constrained shortest path between s and t is a
path between s and ¢ satisfying two conditions: (1) It goes through
the landmark r, and (2) It has the minimum length among all
paths between s and t that go through r. We use Pg; to denote
the set of vertices in a shortest path between s and ¢, and P},
to denote the set of vertices in a r-constrained shortest path
between s and t.

Definition 3.2. (Highway Cover) Let G = (V, E) be a graph and
H = (R, 8y ) a highway. Then for any two vertices s, t € V\R and
for any r € R, there exist (r;, 81(ri,s)) € L(s) and (rj, 6.(rj, t)) €
L(t) such that r; € Prs and rj € Py¢, where r; and r; may equal
tor.

If the label of a vertex v contains a distance entry (r, dr(r, v)),
we also say that the vertex v is covered by the landmark r in the
distance labelling L. Intuitively, the highway cover property guar-
antees that, given a highway H with a set of landmarks Rand r €
R, any r-constrained shortest path distance between two vertices
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s and t can be found using only the labels of these two vertices
and the given highway. A distance labelling L is called a highway
cover distance labelling if L satisfies the highway cover property.

Example 3.3. Consider the graph G depicted in Figure 2(a),
the highway H has three landmarks {1, 5,9} as highlighted in
red in Figure 2(b). Based on the graph in Figure 2(a) and the
highway in Figure 2(b), we have (11, 1,4) which is a shortest
path between the vertices 11 and 4 constrained by the landmark
1, i.e. 1-constrained shortest path between 11 and 4. In contrast,
neither of the paths (11, 10,9, 1,4) and (11, 4) is a 1-constrained
shortest path between 11 and 4.

In Figure 2(b), the outgoing arrows from each landmark point
to vertices in G that are covered by this landmark in the highway.
The distance labelling in Figure 2(c) satisfies the highway cover
property because for any two vertices that are not landmarks
and any landmark r € {1, 5,9}, we can find the r-constrained
shortest path distance between these two vertices using their
labels and the highway.

Label
L(2)
L(3)
L(4)
L(6)
L(7)
L(®)
L(10)
L(11)
L(12)
L(13)
L(14)

Distance Entries
G1)92)
61
€%

[CA)]
(5.2) (9.1)
61
[CRY)
an

G
an

an

(€Y

(b) ©

Figure 2: An illustration of highway cover distance la-
belling: (a) an example graph G, (b) a highway structure H
and (c) a distance labelling that fulfills the highway cover
property over (G, H).

Definition 3.4. (Highway Cover Labelling Problem) Given a
graph G and a highway H over G, the highway cover labelling
problem is to efficiently construct a highway cover distance la-

belling L.

Several choices naturally come up: (1) One is to add a distance
entry for each landmark into the label of every vertex in V —R, as
the approach proposed in [15]; (2) Another is to use the pruned
landmark labelling approach [3] to add the distance entry of a
landmark r into the labels of vertices in V' — R if the landmark
has not been pruned during a BFS rooted at r; (3) Alternatively,
we can also extend the pruned landmark labelling approach to
construct the highway cover labeling by replacing the 2-hop
cover pruning condition with the one required by the highway
cover as defined in Definition 3.2 at each step of checking possible
labels to be pruned.

In all these cases, the labelling construction process would not
be scalable nor be suitable for large-scale complex networks with
billions of vertices and edges. Moreover, these approaches would
potentially lead to the construction of distance labellings with
different sizes. A question arising naturally is how to construct
a minimal highway cover distance labelling without redundant
labels? In a nutshell, it is a challenging task to construct a highway
cover distance labelling that can scale to very large networks,
ideally in linear time, but also with the minimal labelling size.



3.2 A Novel Algorithm

We propose a novel algorithm for solving the highway cover
labelling problem, which can construct labellings in linear time.

The key idea of our algorithm is to construct a label L(v) for
vertex v € V\R such that the distance entry (r;, d.(ri, v)) of each
landmark r; € R is only added into the label L(v) iff there does
not exist any other landmark that appears in the shortest path
between r; and v, i.e. Pr,;, N R = {r;}. In other words, if there is
another landmark r € R and r; is in the shortest path between r
and v, then (r;, 81 (r;, v)) is added into L(v) iff r; is the “closest”
landmark to v. To compute such labels efficiently, we conduct a
breadth-first search from every landmark r; € R and add distance
entries into labels of vertices that do not have any other landmark
in their shortest paths from r;.

Example 3.5. Consider vertex 7 in Figure 2(c), the label L(7)
contains the distance entries of landmarks {5, 9}, but no dis-
tance entry of landmark 1. This is because 5 and 9 are the closest
landmarks to vertex 7 in the shortest paths (5, 7) and (9, 7), re-
spectively. However, for either of two shortest paths (1,9,7) and
(1,5,7) between 1 and 7, there is another landmark (i.e. 5 or 9)
that is closer to 7 compared with 1 in these shortest paths. Thus
the distance entry of landmark 1 is not added into L(7).

Our highway cover labelling approach is described in Algo-
rithm 1. Given a graph G and a highway H over G, we start with
an empty highway cover distance labelling L, where L(v) = 0 for
every v € V\R. Then, for each landmark r; € R, we compute the
corresponding distance entries as follows. We use two queues
Qjapber and Qprune to process vertices to be labeled or pruned
at each level of a breadth-first search (BFS) tree, respectively. We
start by processing vertices in Qy4pe;. For each vertex u € Qjgpe;
at depth n, we examine the children of u at depth n + 1 that are
unvisited. For each unvisited child vertex v € Ng(u) at depth
n+ 1,if v € R then we prune v, i.e., we do not add a distance
entry of the current landmark r; into L(v) and we also enqueue
v to the pruned queue Qpryne (Line 11). Otherwise, we add
(ri, 6grs(ri, v)) to the label of v, i.e., we add it into L(v) and we
also enqueue v to the labeled queue Qj,p¢; (Lines 13-14). Here,
6pFrs(ri, v) refers to BFS decoded distance from root r; to v. Then
we process the pruned vertices in @pryne. These vertices are ei-
ther landmarks or have landmarks in their shortest paths from
ri, and thus do not need to be labeled. Therefore, for each vertex
v € Qprune at depth n, we enqueue all unvisited children of v
at depth n + 1 to the pruned queue Qpryne. We keep processing
these two queues, one after the other, until Q;,,; is empty.

Example 3.6. We illustrate how our algorithm conducts pruned
BFSs in Figure 3. The pruned BFS from landmark 1 is depicted
in Figure 3(a), which labels only four vertices {4, 11, 13, 14} be-
cause the other vertices are either landmarks or contain other
landmarks in their shortest paths to landmark 1. Similarly, in the
pruned BFS from landmark 5 depicted in Figure 3(b), only ver-
tices {7, 2, 12, 3, 8} are labelled, and none of the vertices 4, 11, 13
and 14 is labelled because of the presence of landmark 1 in their
shortest paths to landmark 5. Indeed, we can get the distance
between landmark 5 to these vertices by using the highway, i.e.
6y (5,1), and distance entries in their labels to landmark 1. The
pruned BFS from landmark 9 is depicted in Figure 3(c), which
works in a similar fashion.

Note that, although a highway H is given in Algorithm 1, we
can indeed compute the distances dg for a given set of landmarks
R along with Algorithm 1.
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Algorithm 1: Constructing the highway cover labelling L
Input: G = (V.E), H = (R, 8x)
Output: L

1 L(v) « 0,Yv € V\R

2 foreach r; € R do

3 | Quaper < 0

4 Qprune —0

5 n<o0

6 Enqueue r; to Qjgpe; and set r; as the root of BFS
7 while Q;,p¢; is not empty do

8 foreach u € Qj 3. at depth n do

9 foreach unvisited child v of u at depthn + 1 do
10 if v is a landmark then

11 ‘ Enqueue v to Qprune

12 else

Enqueue v to Qjape;
Add {(r;, dgFrs(ri,v))} to L(v)

13

14

15 end

16 end

17 end

18 n—n+1

19 foreach v € Qpryune at depthn do

20 Enqueue unvisited children of v at depth n + 1
to Qprune

21 end

22 end

23 end

24 return L

Figure 3: An illustration of the highway cover labelling al-
gorithm: (a), (b) and (c) describe the pruned BFSs that are
rooted at the landmarks 1, 5 and 9, respectively, where yel-
low vertices denote roots, green vertices denote those be-
ing labeled, red vertices denote landmarks, and white ver-
tices are not labelled. LS and ET at the top right corner de-
note the labelling size and the number of edges traversed
during the pruned BFSs, respectively.

3.3 Correctness

Here we prove the correctness of our labelling algorithm.

LEMMA 3.7. In Algorithm 1, for each pruned BFS rooted atr; € R,
(ri, Or(ri, v)) is added into the label of a vertex v € V\R iff there is
no any other landmark appearing in the shortest path between r;
and v, ie, Pr,o NR = {r;}.

Proor. Suppose that Algorithm 1 is conducting a pruned BFS
rooted at r; and v is an unvisited child of another vertex u in
Qaper (start from Qpgpe; = {ri}) (Lines 6-9). If v € R (Line 10),



then we have (Pyr,» NR) 2 {r;, v} (Lines 11, 19-21), (r;, S.(r;, w))
cannot be added into the label of any child w of v, i.e., put w
into Qpryne. Otherwise, by v ¢ R and v is an unvisited child of
a vertex u in Q,p; (Lines 8-9), we know that Pr,, "R = {r;}
and thus (r;, 81 (ri, v)) is added into L(v) (lines 12-14). O

Then, by Lemma 3.7, we have the following corollary.

COROLLARY 3.8. Letr € R be alandmark, v € V\R a vertex, and
L a distance labelling constructed by Algorithm 1, if (r, 6.(r,v)) ¢
L(v), then there must exist a landmark rj such that (rj, 81(rj,v)) €
L(v) and dg(r,v) = 6(rj,v) + O (r,rj).

THEOREM 3.9. The highway cover distance labelling L over
(G, H) constructed using Algorithm 1 satisfies the highway cover
property over (G, H).

Proor. To prove that, for any two vertices s, t € V\R and for
any r € R, there exist (r;, 61.(ri,s)) € L(s) and (rj, 5.(rj, t)) € L(t)
such that r; € Prs and rj € Pys, we consider the following
4 cases: (1) If r € L(s) and r € L(t), thenr = r; = rj. (2) If
r € L(s) and r ¢ L(t), then r; = r and by Lemma 3.8, there
exists another landmark r; such that r; is in the shortest path
between t and r and (r, 8. (rj,t)) € L(t). 3) If r ¢ L(s) and
r € L(t), then similarly we have r; = r, and by Lemma 3.8, there
exists another landmark r; such that r; is in the shortest path
between s and r and (rj, 81.(ri,s)) € L(s). (4) If r ¢ L(s) and
r ¢ L(t), then by Lemma 3.8 there exist another two landmarks
r; and r; such that r; is in the shortest path between s and r and
(ri, 61(ri,5)) € L(s), and rj is in the shortest path between t and
rand (rj, 8.(rj, t)) € L(t). The proof is done. ]

3.4 Order Independence

In previous studies [1-3, 9], given a graph G, a distance labelling
algorithm builds a unique canonical distance labelling subject to a
labelling order (i.e., the order of landmarks used for constructing
a distance labelling). It has been well known that such a labelling
order is decisive in determining the size of the constructed dis-
tance labelling [24]. For the same set of landmarks, when using
different labelling orders, the sizes of the constructed distance
labelling may vary significantly.

The following example shows how different labelling orders
in the pruned landmark labelling approach [3] can lead to the
distance labelling of different sizes.

Example 3.10. In Figure 4, the size of the distance labelling
constructed using the labelling order (1, 5, 9) in Figure 4(a)-4(c) is
different from the size of the distance labelling constructed using
the labelling order (9,5, 1) in Figure 4(d)-4(f). In both cases, the
first BFS adds the distance entry of the current landmark into all
the vertices in the graph. Then, the following BFSs check each
visited vertex whether the shortest path distance between the
current landmark and the visited vertex can be computed via the
2-hop cover property based on their labels added by the previous
BFSs. A distance entry is only added into the label of a vertex
if the shortest path distance cannot be computed by applying
the 2-hop cover over the existing labels. Thus, the choice of the
labelling order could affect the size of labels significantly. Take
the vertex 11 for example, its label contains only one distance
entry (1, 1) using the labelling order depicted in Figure 4(a)-4(c),
but contains three distance entries (1.1), (5, 2), and (9, 2) when
the labelling order depicted in Figure 4(d)-4(f) is used.
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Unlike all previous approaches taken with distance labelling,
our highway cover labelling algorithm is order-invariant. That
is, regardless of the labelling order, the distance labellings con-
structed by our algorithm using different labelling orders over
the same set of landmarks always have the same size. In fact, we
can show that our algorithm has the following stronger property:
the distance labelling constructed using our algorithm is deter-
ministic (i.e., the same label for each vertex) for a given set of
landmarks.

LEmMMA 3.11. Let G = (V,E) be a graph and H = (R,dy) a
highway over G. For any two different labelling orders over R, the
highway cover distance labellings L1 and Ly over (G, H) constructed
by these two different labelling orders using Algorithm 1 satisfy
Li(v) = Ly(v) for everyv € V\R.

Proor. Let O, and Oy, be two different labelling orders over
R. For any landmark r in Op, and Op,, Algorithm 1 generates
exactly the same pruned BFS tree. This implies that, for each
vertex v € V\R, either the same distance entry (r, Sgrs(r, v))
is added into Li(v) and Ly(v), or no distance entry is added to
Li(v) and La(v). Thus, Algorithm 1 satisfy L1(v) = L(v) for
every v € V\R. O

3.5 Minimality

Here we discuss the question of minimality, i.e., whether the
highway cover distance labelling constructed by our algorithm
is always minimal in terms of the labelling size. We first prove
the following theorem.

THEOREM 3.12. The highway cover distance labelling L over
(G, H) constructed using Algorithm 1 is minimal, i.e., for any high-
way cover distance labelling L’ over (G, H), size(L") > size(L)
must hold.

Proor. We prove this by contradiction. Let us assume that
there is a highway cover distance labelling L’ with size(L") <
size(L). Then, this would imply that there must exist a vertex
v € V\R and a landmark r € R such that r € L(v) and r ¢ L' (v).
By Lemma 3.7 and r € L(v), we know that there is no any other
landmark in R that is in the shortest path between r and v. How-
ever, by the definition of the highway cover property (i.e. Defini-
tion3.2) and r ¢ L’(v), we also know that there must exist another
landmark (r;, 81.(ri,v)) € L(v) and r; € Py, which contradicts
with the previous conclusion that there is no any other landmark
in the shortest path between r and v. Thus, size(L") > size(L)
must hold for any highway cover distance labelling L’. O

The state-of-the-art approaches for distance labelling is pri-
marily based on the idea of 2-hop cover [1, 3, 12]. One may ask
the question: how is the highway cover labelling different from
the 2-hop cover labelling, such as the pruned landmark labelling
[3]? It is easy to verify the following lemma that each pruned
landmark labelling satisfies the highway cover property for the
same set of landmarks.

LEmMA 3.13. Let L be a pruned landmark labelling over graph
G constructed using a set of landmarks R. Then L also satisfies the
highway cover property over (G, H) where H = (R, 8f).

As the pruned landmark labelling algorithm [3] prunes labels
based on the 2-hop cover property, but our highway cover label-
ing algorithm prunes labels based on the property described in
Lemma 3.7, by Theorem 3.12, we also have the following corol-
lary, stating that, for the same set of landmarks, the size of the
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Figure 4: An illustration of the pruned landmark labelling algorithm [3]: (a)-(c) show an example of constructing labels
through pruned BFSs from three landmarks in the labelling order (1, 5, 9); (d)-(f) show an example of constructing labels
using the same three landmarks but in a different labelling order (9,5, 1). Yellow vertices denote landmarks that are the
roots of pruned BFSs, green vertices denote those being labeled, grey vertices denote vertices being visited but pruned, and
red vertices denote landmarks which have already been visited.

highway cover labelling is always smaller than the size of any
pruned landmark labelling.

COROLLARY 3.14. For a highway cover distance labelling Ly
produced by Algorithm 1 over (G, H), where H = (R, 0y ), and a
pruned landmark labelling Ly over G using any labelling order over
R, we always have |L1| < |La|.

Example 3.15. Figure 4 shows the labelling size (LS) of the
pruned landmark labelling at the top right corner, which is con-
structed using two different orderings. The first ordering (1, 5, 9)
labels 25 vertices whereas the second ordering (9, 5, 1) labels 30
vertices. On the other hand, the LS of the highway cover dis-
tance labelling is 13 as shown in Figure 3. Note that the LS of the
highway cover distance labelling does not change, irrespective of
ordering. Since the highway cover distance labelling constructed
by our algorithm is always minimal, the LS of the highway cover
distance labelling in Figure 3 is much smaller than the LS of either
pruned landmark labelling in Figure 4.

4 BOUNDED DISTANCE QUERYING

In this section, we describe a bounded distance querying frame-
work that allows us to efficiently compute exact shortest-path
distances between two arbitrary vertices in a massive network.

4.1 Querying Framework

We start with presenting a high-level overview of our querying
framework. To compute the shortest path distance between two
vertices s and ¢ in graph G, our querying framework proceeds
in two steps: (1) an upper bound of the shortest path distance
between s to t is computed using the highway cover distance
labelling; (2) the exact shortest path distance between s to ¢ is
computed using a distance-bounded shortest-path search over a
sparsified graph from G.

Given a graph G and a highway H = (R, 0y ) over G, we can
precompute a highway cover distance labelling L using the land-
marks in R, which enables us to efficiently compute the length
of any r-constrained shortest path between two vertices in V\R.
The length of such a r-constrained shortest path must be greater
than or equal to the exact shortest path distance between these
two vertices and can thus serve as an upper bound in Step (1). On
the other hand, since the length of such a r-constrained short-
est path between two vertices in V\R can always be efficiently
computed by the highway cover distance labelling L, the distance-
bounded shortest-path search only needs to be conducted over a
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sparsified graph G’ by removing all landmarks in R from G, i.e.
G’ = G[V\R].

More precisely, we define the bounded distance querying prob-
lem in the following.

Definition 4.1. (Bounded Distance Querying Problem) Given a
sparsified graph G’ = (V’, E’), a pair of vertices {s, ¢} € V’, and
an upper (distance) bound d/,, the bounded distance querying
problem is to efficiently compute the shortest path distance ds;
between s and t over G’ under the upper bound d;'—t such that,

o {d(,v(s, 1), ifde(s,t) <dJ,
st= T

ot otherwise

In the following, we discuss the two steps of this framework
in detail.

4.2 Computing Upper Bounds

Given any two vertices s and t, we can use a highway cover dis-
tance labelling L to compute an upper bound d_, for the shortest
path distance between s and t as follows,

d;r, =min{dr(ri,s) + Sy (ri, rj) + (5L(rj, t)|
(ri,0L(ri,5)) € L(s),
(rj,or(rj, 1)) € L(t)} 4)

This corresponds to the length of a shortest path from s to
t passing through landmarks r; and rj, where 61(r;,s) is the
shortest path distance from r; to s in L(s), g (14, 1) is the shortest
path distance from r; to rj through highway H, and 6(rj, t) is
the shortest path distance from r; to ¢ in L(t).

Example 4.2. Consider the graph in Figure 2(a), we may use the
labels L(2) and L(11) to compute the upper bound for the shortest
path distance between two vertices 2 and 11. There are two cases:
(1) for the path (2,5, 1, 11) that goes through landmarks 5 and 1,
we have 67.(5,2) + 6g(5,1) +6(1,11) = 1+ 1+ 1 = 3, and (2)
for the path (2,9, 1, 11) that goes through landmarks 9 and 1, we
have 61.(9,2) + 6(9,1) + 6.(1,11) = 2+ 1+ 1 = 4. Thus, we take
the minimum of these two distances as the upper bound, which
is 3 in this case.

4.3 Distance-Bounded Shortest Path Search

We conduct a bidirectional search on the sparsified graph G[V\R]
which is bounded by the upper bound d/, from the highway cover
distance labelling. For a pair of vertices {s,t} C V\R, we run



breadth-first search algorithm from s and ¢, simultaneously [15].
Algorithm 2 shows the pseudo-code of our distance-bounded
shortest path search algorithm. We use two sets of vertices Ps
and P; to keep track of visited vertices from s and t. We use two
queues Qs and Q; to conduct both a forward search from s and
areverse search from t. Furthermore, we use two integers ds and
d; to maintain the current distances from s and ¢, respectively.

During initialization, we set Ps and #; to {s} and {t}, and
enqueue s and ¢ into Qg and @y, respectively. In each iteration,
we increment ds or d; and expand Ps or $; by running either
a forward search (FS) or a reverse search (RS) as long as Ps
and P; have no any common vertex or ds + d; is equal to the
upper bound d/;, and @, and Q; are not empty. In the forward
search from s, we examine the neighbors Ng[y\g|(v) of each
vertex v € Q. Suppose we are visiting a vertex w € Ng[y\g(v),
if w is included in vertex set #;, then it means that we find a
shortest path to vertex ¢ of length ds + 1 + d;, because the reverse
search from t had already visited w with distance d;. At this
stage, we return ds + 1+ d; as the answer since we already know
ds +dy +1 <dg(s,t) < d;'—t. Otherwise, we add vertex w to Ps
and enqueue w into a new queue Qe+ . When we could not find
the shortest distance in the iteration, we replace Qs with Qpevy
and increase ds by 1, and check if ds + d; = d;r[. If it holds, then
we return dJ, since dJ, < dg(s,t) < dg +d; + 1.

Algorithm 2: Distance-Bounded Shortest Path Search
Input: G[V\R], s, t, d],
Output: dg[y\g|(s, 1)

1 Py —{s}, Pr —{t},ds < 0,dy <0

2 Enqueue s to Qs, t to Q;

3 while Qg and Q; are not empty do

4 if |Ps| < |P;| then

5 ‘ found — FS(Qs)
6 else

7 ‘ found «— RS(Q;)
8 end

9 if found = true then
10 ‘ returnds +1+d;
11 elseif ds +d; = d;'—t then
12 ‘ returnd],

13 end

14 end

15 return oco

Example 4.3. In Figure 5(b), the upper distance bound between
vertices 2 and 11 is 3, as computed in Example 4.2. Suppose that
we run BFSs from vertices 2 and 11 respectively. First, a forward
search from 2 enqueues its neighbors 7, 12 and 14 into Q2 and
increases d by 1. Then a reverse search from 11 enqueues 4 and
10 into Q7 and also sets dq; to 1. At this stage, we have not
found any common vertex between Q; and Q11,and dy +d11 = 2
which is less the upper bound 3. Therefore, we continue to start
a search from the vertices in Qq1, which enqueues 5 into Q7 and
increments di1 to 2. Now, we have dy + di1 3 reaching the
upper bound, hence we do not need to continue our search.

4.4 Correctness

The correctness of our querying framework can be proven based
on the following two lemmas. More specifically, Lemma 4.4 can
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Figure 5: An illustration of the distance-bounded shortest
path search algorithm [15]: (a) shows the sparsified graph
after removing three landmarks {1,5,9} from the graph
in Figure 2(a); (b) shows an example of computing the
bounded distance between vertices 2 and 11 as highlighted
in yellow, and green vertices denote the visited vertices in
the forward and reverse searches.

be derived by the highway cover property and the definition of
d;r,. Lemma 4.5 can also be proven by the property of shortest
path and the definition of the sparsified graph G[V\R].

LEMMA 4.4. For a highway cover distance labelling L over (G, H),
we have d], > dg(s, t) for any two vertices s and t of G, where dJ,
is computed using L and H.

LEMMA 4.5. For any two vertices {s,t} C V\R, if there is a

shortest path between s and t in G that does not include any vertex
inR, thendg(s,t) = dG[V\R](s, t) holds.

Thus, the following theorem holds:

THEOREM 4.6. Let G = (V,E) be a graph, H a highway over G
and L a highway cover distance labelling. Then, for any two vertices
{s,t} C V, the querying framework over (G, H, L) yields dg(s, t).

Proor. We consider two cases: (1) Ps; contains at least one
landmark. In this case, By Lemma 4.4 and the definition of the
highway cover property, we have d{, = dg(s, t). (2) Ps; does not
contain any landmark. By Lemma 4.5, we have dg[y\g)(s, ) =
dg(s, t). O

5 OPTIMIZATION TECHNIQUES

In this section, we discuss optimization techniques for label con-
struction, label compression, and query processing.

5.1 Label Construction

A technique called Bit-Parallelism (BP) has been previously used
in several methods [3, 15] to speed up the label construction
process. The key idea of BP is to perform BFSs from a given
landmark r and up to 64 of its neighbors simultaneously, and
encode the relative distances (-1, 0 or 1) of these neighbors w.r.t.
the shortest paths between r and each vertex v into a 64-bit
unsigned integer. In the work [3], BP was applied to construct bit-
parallel labels from initial vertices without pruning, which aimed
to leverage the information from these bit-parallel labels to cover
more shortest paths between vertices. Then, both bit-parallel
labels and normal labels are constructed in the pruned BFSs. The
work in [15] also used BP to construct thousands of bit-parallel
shortest-path trees (SPTs) because it is very costly to construct
thousands of normal SPTs in memory owing to their prohibitively
large space requirements and very long construction time.

In our work, we develop a simple yet rigorous parallel algo-
rithm (HL-P) which can run parallel BFSs from multiple land-
marks (depending on the number of processors) to construct



Table 1: Datasets, where |G| denotes the size of a graph G with each edge appearing in the forward and reverse adjacency

lists and being represented by 8 bytes.

l Dataset Network  Type H n m m/n avg.deg max. deg |G| H Sources ‘
Skitter computer undirected || 1.7M  11IM 6.5 13.081 35455 85 MB [28]
Flickr social undirected || 1.7M  16M 9.1 18.133 27224 119 MB [28]
Hollywood  social undirected || 1.IM 114M 495 98.913 11467 430 MB [6, 7]
Orkut social undirected || 3.1IM 117M 38.1 76.281 33313 894 MB [28]
enwiki2013  social directed 42M 101IM 219 43.746 432260 701 MB (6, 7]
LiveJournal social directed 48M 69M 838 17.679 20333 327 MB [28]
Indochina  web directed 7.4M  194M 204 40.725 256425 1.1GB [6, 7]
1t2004 web directed 41M 1.2B 249 49.768 1326744 7.7 GB [6, 7]
Twitter social directed 42M  15B 289 57.741 2997487 9.0 GB [6, 7]
Friendster  social undirected 66M  1.8B 225 45.041 4006 13 GB [18]
uk2007 web directed 106M 3.7B 314 62.772 979738 25 GB [6, 7]
ClueWeb09  computer directed 2B 8B 5.98 11.959 599981958 55 GB [25]

labelling in an extremely efficient way for massive networks,
with much less time as will be demonstrated in our experiments.

5.2 Label Compression

The choice of the data structure for labels may significantly affect
the performance of index size and memory usage. As noted in
[19], some works [2, 10] did not elaborate on what data structure
they have used for representing labels. Nonetheless, for the works
that are most relevant to ours, such as FD [15] and PLL [3], they
used 32-bit integers to represent vertices and 8-bit integers to
represent distances for normal labels. In addition to this, they
also used 64-bits to encode the distances from a landmark to up to
64 of its neighbors in their shortest paths to other vertices. Since
our approach only selects a very small number of landmarks
to construct the highway cover labelling (usually no more than
100 landmarks), we may use 8 bits to represent landmarks and
another 8 bits to store distances for labels. In order to fairly
compare methods from different aspects, we have implemented
our methods using both 32 bits and 8 bits for representing vertices
in labels. However, different from the BP technique that uses 64-
bits to encode the distance information of up to 64 neighbours of
alandmark, our parallel algorithm (HL-P) does not use a different
data structure for labels constructed in parallel BFSs.

5.3 Query Processing

We show that computing the upper bound d{, can be optimized
based on the observation, captured by the following lemma.

LEMMA 5.1. For a highway cover distance labelling L over (G, H),
where G = (V,E) and H = (R, 8), and any {s,t} C V\R, ifa
landmark r appears in both L(s) and L(t), then 81.(r,s) + 8L (r,t) <
8p(rys) + 8y (r,r’) + 61(r’, t) holds for any otherr’ € R.

Proor. By the definition of the highway cover property, we
know that r is not in the shortest path between r” and ¢. Then by
triangle inequality in Equation 1, this lemma can be proven. O

Thus, in order to efficiently compute the upper bound d,,

any landmarks that appear in both L(s) and L(¢), we compute
the r-constrained shortest path distance between s and ¢t using
Equation 2, while for a landmark r’ that only appear in one of
L(s) and L(t), we use Equation 4 to calculate the r’-constrained
shortest path distance between s and ¢. This would lead to more
efficient computations for queries when the landmarks appear in
both labels of two vertices.

for
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6 EXPERIMENTS

To compare the proposed method with baseline approaches, we
have implemented our method in C++11 using STL libraries and
compiled using gce 5.5.0 with the -O3 option. We performed all
the experiments using a single thread on a Linux server (having
64 AMD Opteron(tm) Processors 6376 with 2.30GHz and 512GB
of main memory) for sequential version of the proposed method
and up to 64 threads for parallel version of the proposed method.
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Figure 6: Distance distribution of 100,000 random pairs of
vertices on all the datasets.

6.1 Datasets

In our experiments, we used 12 large-scale real-world complex
networks, which are detailed in Table 1. These networks have
vertices and edges ranging from millions to billions. Among
them, the largest network is ClueWeb09 which has 2 billions of
vertices and 8 billions of edges. We included this network in our
experiments for the purpose of evaluating the robustness and



Table 2: Comparison of construction times and query times between our methods, i.e., HL-P and HP, and the state-of-the-
art methods, where CT denotes the CPU clock time in seconds for labelling construction, QT denotes the average query
time in milliseconds, and ALS denotes the average number of entries per label.

Dataset CT[s] QT [ms] ALS

HL-P HL FD PLL IS-L HL FD PLL IS-L [ Bi-BFS | HL FD PLL IS-L
Skitter 2 13 30 638 1042 0.067 0.043 0.008 3.556 3.504 12 20+64 138+50 51
Flickr 2 14 41 1330 8359 0.015 0.028 0.01 33.760 4.155 10 20+64 290+50 50
Hollywood 3 17 107 31855 DNF 0.047 0.075 0.051 - 6.956 12 20+64 2206+50 -
Orkut 10 62 366 DNF DNF 0.224 0.251 - - 21.086 11 20+64 - -
enwiki2013 9 77 308 22080 DNF 0.190 0.131 0.027 - 19.423 10 20+64 471+50 -
LiveJournal 9 77 166 DNF 20583 0.088 0.111 - 56.847 17.264 13 20+64 - 69
Indochina 8 50 144 9456 DNF 1.905 1.803 0.02 - 9.734 5 20+64 441+50 -
it2004 66 304 1623 DNF DNF 2.684 2.118 - - 92.187 10 20+64 - -
Twitter 133 1380 1838 DNF DNF 1.424 0.432 - - | 426.949 14  20+64 - -
Friendster 135 2229 9661 DNF DNF 1.091 1.435 - - | 534.576 19 20+64 - -
uk2007 110 1124 6201 DNF DNF | 11.841 18.979 - - | 355.688 8 20+64 - -
ClueWeb09 4236 28124 DNF DNF DNF 0.309 - - - - 2 - - -

Table 3: Comparison of labelling sizes between our meth-
ods, i.e., HL(8) and HL, and the state-of-the-art methods.

[ Dataset  [| HL(8) HL FD  PLL IS |
Skitter 42MB 102MB 202MB 2.5GB 507MB
Flickr 34MB 81IMB 178MB 3.7GB 679MB
Hollywood 28MB  67MB  293MB  13GB -
Orkut 70MB 170MB 756MB - -
enwiki2013 83MB 200MB 743MB  12GB -
LiveJournal || 123MB 299MB 778MB - 3.8GB
Indochina 81MB 192MB 999MB  21GB -
it2004 855MB 2GB 5.6GB - -
Twitter 1.2GB  2.8GB  4.8GB - -
Friendster 25GB  5.2GB 11.8GB - -
uk2007 1.8GB 43GB 14.1GB - -
ClueWeb09 4.7GB 9GB - - -

scalability of the proposed method. In previous works, the largest
dataset that has been reported is uk2007 which has only around
100 millions of vertices and 3.7 billions of edges. For all these
networks, we treated them as undirected and unweighted graphs.

To investigate the query time of finding the distance between
two vertices, we randomly sampled 100,000 pairs of vertices from
all pairs of vertices in each network, i.e., V x V. The distance
distribution of these 100,000 randomly sampled pairs of vertices
are shown in Figure 6(a)-6(b), from which we can confirm that
most of pairs of vertices in these networks have a small distance
ranging from 2 to 8.

6.2 Baseline Methods

We compared our proposed method with three state-of-the-art
methods. Two of these methods, namely fully dynamic (FD) [15]
and IS-L [12], combine a distance labelling algorithm with a graph
traversal algorithm for distance queries on complex networks.
The third one is pruned landmark labelling (PLL) [3] which is
completely based on distance labelling to answer distance queries.
Besides these, there are a number of other methods for answering
distance queries, such as HDB [16], RXL and CRXL [10], HCL [17],
HHL [2] and TEDI [32]. However, since the experimental results
of the previous works [3, 15] have shown that FD outperforms
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HDB, RXL and CRXL, and PLL outperforms HCL, HHL and TED],
we omit the comparison with these methods.

In our experiments, the implementations of the baseline meth-
ods FD, IS-L and PLL were provided by their authors, which were
all implemented in C++. We used the same parametric settings
for running these methods as suggested by their authors. For
instance, the number of landmarks is chosen to 20 for FD [15],
the number of bit-parallel BFSs is set to 50 for PLL [3], and k is 6
for graphs larger than 1 million vertices for IS-L [12].

6.3 Comparison with Baseline Methods

To evaluate the performance of our proposed approach, we com-
pared our approach with the baseline methods in terms of the
construction time of labelling, the size of labelling, and querying
time. The experimental results are presented in Tables 2 and 3,
where DNF denotes that a method did not finish in one day or
ran out of memory. In order to make a consistent comparison
with the baseline methods [3, 12, 15], we chose top 20 vertices
as landmarks after sorting based on decreasing order of their
degrees, and also used 32-bit integers to represent vertices and
8-bit integers to represent distances.

6.3.1 Construction Time. As shown in Table 2, our proposed
method (HL) has successfully constructed the distance labelling
on all the datasets for a significantly less amount of time than
the state-of-the-art methods. As compared to FD, our method is
on average 5 times faster and have results on all the datasets. In
contrast to this, FD failed to construct labelling for the largest
dataset ClueWeb09. PLL failed for 7 out of 12 datasets, including
the datasets Orkut and LiveJournal which have less than 120
millions of edges, due to its prohibitively high preprocessing time
and memory requirements for building labelling. IS-L failed to
construct labelling for all the datasets that have edges more than
100 million due to its very high cost for computing independent
sets on massive networks, i.e. failed for 9 out of 12 datasets. We
can also see from Table 2 that the parallel version of our method
(HL-P) is much faster than the sequential version (HL). Compared
with FD, HL-P is more than 50-70 times faster for the two large
datasets Friendster and uk2007. This confirms that our method
can construct labelling very efficiently and is scalable on large
networks with billions of vertices and edges.
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Figure 7: (a)-(d) Construction times using our method HL under 10-50 landmarks on all the datasets; (e)-(g) Query times
using our method HL under 10-50 landmarks on all the datasets.

6.3.2 Labelling Size. As we can see from Table 3 that the
labelling sizes of all the datasets constructed by the proposed
method are significantly smaller than the labelling sizes of FD and
much smaller than PLL and IS-Label. Specifically, our labelling
sizes using 32-bits representation of vertices (HL) are 2-5 times
smaller than FD except for ClueWeb09 (as discussed before, FD
failed to construct labelling for ClueWeb09), 7 times smaller than
IS-Label on Skitter, Flickr and LiveJournal and more than 60 times
smaller than PLL for Skitter, Flickr, Hollywood, enwiki2013 and
Indochina. The compressed version of our method that uses 8-bits
representation of vertices (i.e. HL(8)) produces further smaller
index sizes as compared to uncompressed version (HL). Here,
It is important to note that the labelling sizes of almost all the
datasets are also significantly smaller than the original sizes of
the datasets shown in Table 1. This also shows that our method is
highly scalable on large networks in terms of the labellng sizes.

6.3.3 Query Time. The average query times of our method
(HL) are comparable with FD and PLL and faster than IS-L. Par-
ticularly, the average query time of our method on Hollywood is
even faster than FD and PLL. This is due to a very small average
labelling size (i.e., 12) as compared with FD and PLL (i.e., 20+64
and 2206+50, respectively) and a very small average distance.
The average query time of HL on Twitter is 3 times slower than
FD. This may be due to a large portion of covered pairs by FD
as shown in Figure 9 which contributes towards an effective
bounded traversal on the sparsified network since the landmarks
of Twitter have very high degrees and the average distance is also
very small. Moreover, the average query times of HL and FD on
Indochina, it2004, Friendster and uk2007 are more than 1ms due
to comparatively large average distances than other datasets as
shown in Figure 6(b). Note that all the baseline methods are not
scalable enough to have results for ClueWeb09 and the average
query time on ClueWeb09 of our method HL is small because of a
very large portion of covered pairs and a small average label size.
We also reported the average query time for online bidirectional
BFS algorithm (Bi-BFS) using randomly selected 1000 pairs of
vertices in Table 2. As we can see that Bi-BFS has considerably
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long query times, which are not practicable in applications for
performing distance queries in real time.

6.4 Performance under Varying Landmarks

We have also evaluated the performance of our method (HL) by
varying the number of landmarks between 10 and 50, which are
again selected based on highest degrees.

6.4.1 Construction Time. The construction times of our method
HL against different numbers of landmarks (from 10 to 50) are
shown in Figure 7(a)-7(d). We can see that the construction times
are linear in terms of the number of landmarks, which confirms
the scalability of our method. In Figure 7(a)-7(b), our method is
able to construct labelling for 7 datasets under 50 landmarks from
20 seconds to 2 minutes, which is not possible with any state-of-
the-art methods. In Figure 7(c), the construction time using 50
landmarks of Friendster is 3 times faster and the construction
time of uk2007 is 4 times faster than FD using only 20 landmarks
as shown in Table 2. Figure 7(d) shows the construction time
for ClueWeb09 which has 2 billion vertices and 8 billion edges.
The significant improvement in construction time allows us to
compute labelling for a large number of landmarks, leading to
better pair coverage ratios to tighten upper distance bounds (will
be further discussed in Section 6.4.4).

6.4.2 Labelling Size. Figure 8 shows the labelling sizes of HL
using 10, 20, 30, 40 and 50 landmarks on all the dataset, and
of FD using only 20 landmarks on all the datasets except for
ClueWeb09 (as discussed before, FD failed to construct labeling
for ClueWeb09). It can be seen that the labelling sizes of HL
increase linearly with the increased number of landmarks, and
even the labelling sizes of HL using 50 landmarks are almost
always smaller than the labelling sizes constructed by FD using
only 20 landmarks. This reduction in labelling sizes enables us
to save space and memory, thus makes our method scalable on
large networks.

6.4.3 Query Time. Figure 7 shows the impact of using differ-
ent numbers of landmarks between 10 and 50 on average query
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Figure 9: Pair coverage ratios using our method HL under 10-50 landmarks and using FD on all the dataset.

time of our method. The average query times either decrease
or remain the same when the number of landmarks increases,
except for Orkut when using 30 landmarks and for Friendster
when using landmarks greater than 20. In particular, on Friend-
ster, labelling sizes are very large as shown in Figure 8 and the
fraction of covered pairs (i.e., pair coverage ratio) is very small
as shown in Figure 9, which may have slowed down our query
processing due to a longer time for computing upper distance
bounds and ineffective use of bounded-distance traversal.

6.4.4  Pair Coverage. Figure 9 presents the ratios of pairs of
vertices covered by at least one landmark (i.e., pair coverage ra-
tios) in HL using 10-50 landmarks and in FD using 20 landmarks.
As we can observe that the pair coverage ratios for HL increase
when the number of landmarks increases and 40 turns out to be
the better choice on the number of landmarks for most of the
datasets. Specifically, pair coverage ratios on Orkut, enwiki2013,
Indochina and uk2007 with 40 landmarks are good, resulting in
better query times than using 20 landmarks, as shown in Figure 7.
On datasets such as Hollywood and it2004, 30 landmarks are a bet-
ter option than 40 landmarks because they only slightly differ in
the pair coverage ratios and query times w.r.t. using 40 landmarks,
but with reduced labelling sizes. The pair coverage ratios by FD
are greater than HL on all the datasets except for ClueWeb09,
which may be the reason behind its better query times for some
datasets as shown in Table 2. Note that, on ClueWeb09, we obtain
almost hundred percentage for pair coverage due to its very high
degree landmarks.

7 RELATED WORK

A naive solution for exact shortest-path distance computation
is to run the Dijkstra search for weighted graphs or BFS for un-
weighted graphs, from a source vertex to a destination vertex
[27]. To improve search efficiency, a bidirectional scheme can
be used to run two such searches: one from the source vertex
and the other from the destination vertex [21]. Later on, Gold-
berg et al. [13] combined the bidirectional search technique with
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the A* algorithm to further improve the search performance. In
their method, they precomputed labeling based on landmarks to
estimate the lower bounds, and used that estimate with a bidi-
rectional A* search for efficient computation of shortest-path
distances. However, this method is known to work only for road
networks and do not scale well on complex networks [15].

To efficiently answer exact shortest-path distance queries on
graphs, labelling-based methods have been developed with great
success [1-3, 12, 17, 19]. Most of them construct a labeling based
on the idea of 2-hop cover [9]. It has also been shown that com-
puting a minimal 2-hop cover labeling is NP-hard [2, 9]. In [1],
the authors proposed a hub-based labeling algorithm (HL) which
constructs hub labelling by processing contraction hierarchies
(CH) and is among the fastest known algorithms for distance
queries in road networks. However, the method is not feasible
for complex networks as reported by the same authors and they
thus proposed a hierarchical hub-labeling (HHL) algorithm for
complex networks in [2]. In this work, a top-down method was
used to maintain a shortest-path tree for every vertex in order
to indicate all uncovered shortest-paths at each vertex. Due to
very high storage and computation requirements, the method
is also not scalable for handling large graphs. Another method
called Highway Centric Labeling (HCL) was proposed by Jin
et al. [17] which exploits highway structure of a graph. This
method aimed to find a spanning tree which can assist in opti-
mal distance labelling and used that spanning tree as a highway
to compute a highway-based 2-hop labelling for fast distance
computation. After that, in [3], Akiba et al. proposed the pruned
landmark labeling (PLL) method which precomputes a distance-
aware 2-hop cover index by performing a pruned breadth-first
search (BFS) from every vertex. The idea is to prune vertices
whose distance information can be obtained using a partially
available 2-hop index constructed via previous BFSs. This work
helps to achieve low construction cost and smaller index size
due to reduced search space on million-scale networks. It has
been shown that PLL outperforms other state-of-the-art methods



available at the time of publication, including HHL [2], HCL [17]
and TEDI [32]. However, PLL is still not feasible for constructing
2-hop cover indices for billion-scale networks due to a very high
memory requirement for labelling construction.

Fu et al. [12] proposed IS-Label (IS-L) which gained significant
scalability in precomputing 2-hop cover distance labellings for
large graphs with hundreds of millions of vertices and edges. IS-L
uses the notion of an independent set of vertices in a graph. First,
it computes an independent set of vertices from a graph, then it
constructs a graph by removing the independent set of vertices
from the previous graph recursively and augments edges that pre-
serve distance information after the removal of the independent
set of vertices. All the vertices in the remaining graph preserve
their distance information to/from each other. Generally, IS-L is
regarded as a hybrid method that combines distance labelling
with graph traversal for complex networks [19]. Following the
same line of thought, very recently, Akiba et al. [15] proposed
a method to accelerate shortest-path distances computation on
large-scale complex networks. To the best of our knowledge, this
work is most closely related to our work presented in this paper.
The key idea of the method in [15] is to select a small set of
landmarks R and precompute shortest-path trees (SPTs) rooted at
each r € R. Given any two vertices s and t, it first computes the
upper bound by taking the minimum length among the paths that
pass through R. Then a bidirectional BFS from s to ¢ is conducted
on the subgraph G\R to compute the shortest-path distances that
do not pass through R and take the minimum of these two results
as the answer to an exact distance query. The experiments in
[15] showed that this method can scale to graphs with millions of
vertices and billions of edges, and outperforms the state-of-the-
art exact methods PLL [3], HDB [16], RXL and CRXL [10] with
significantly reduced construction time and index size, while the
query times are higher but still remain among 0.01-0.06 for most
of graphs with less than 5M vertices.

Although the method proposed in [15] has been tested on
a large network with millions of vertices and billions of edges,
it still fails to construct labelling on billion-scale networks in
general, particularly with billions of vertices. In contrast, our
proposed method not only constructs labellings linearly with the
number of landmarks in large networks with billions of vertices,
but also enables the sizes of labellings to be significantly smaller
than the original network sizes. In addition to these, the determin-
istic nature of labelling allows us to achieve further gains in com-
putational efficiency using parallel BFSs over multiple landmarks,
which is highly scalable for handling billion-scale networks.

8 CONCLUSION

We have presented a scalable solution for answering exact short-
est path distance queries on very large (billion-scale) complex
networks. The proposed method is based on a novel labelling
algorithm that can scale to graphs at the billion-scale, and a query-
ing framework that combines a highway cover distance labelling
with distance-bounded searches to enable fast distance compu-
tation. We have proven that the proposed labelling algorithm
can construct HWC-minimal labellings that are independent of
the ordering of landmarks, and have further developed a parallel
labelling method to speed up the labelling construction process
by conducting BFSs simultaneously for multiple landmarks. The
experimental results showed that the proposed methods signifi-
cantly outperform the state-of-the-art methods. For future work,
we plan to investigate landmark selection strategies for further
improving the performance of labelling methods.

24

REFERENCES

[1] Ittai Abraham, Daniel Delling, Andrew V Goldberg, and Renato F Werneck.
2011. A hub-based labeling algorithm for shortest paths in road networks. In
SEA. 230-241.

[2] Ittai Abraham, Daniel Delling, Andrew V Goldberg, and Renato F Werneck.
2012. Hierarchical hub labelings for shortest paths. In ESA. 24-35.

[3] Takuya Akiba, Yoichi Iwata, and Yuichi Yoshida. 2013. Fast exact shortest-path
distance queries on large networks by pruned landmark labeling. In ACM
SIGMOD. 349-360.

[4] Takuya Akiba, Christian Sommer, and Ken-ichi Kawarabayashi. 2012. Shortest-
path queries for complex networks: exploiting low tree-width outside the core.
In EDBT. 144-155.

[5] Lars Backstrom, Dan Huttenlocher, Jon Kleinberg, and Xiangyang Lan. 2006.
Group formation in large social networks: membership, growth, and evolution.
In ACM SIGKDD. 44-54.

[6] Paolo Boldi, Marco Rosa, Massimo Santini, and Sebastiano Vigna. 2011. Lay-
ered Label Propagation: A MultiResolution Coordinate-Free Ordering for
Compressing Social Networks. In WWW. 587-596.

[7] Paolo Boldi and Sebastiano Vigna. 2004. The WebGraph Framework I: Com-
pression Techniques. In WWW. 595-601.

[8] Lijun Chang, Jeffrey Xu Yu, Lu Qin, Hong Cheng, and Miao Qiao. 2012. The
exact distance to destination in undirected world. The VLDB Journal 21, 6
(2012), 869-888.

[9] Edith Cohen, Eran Halperin, Haim Kaplan, and Uri Zwick. 2003. Reachability

and distance queries via 2-hop labels. SIAM J. Comput. 32, 5 (2003), 1338-1355.

Daniel Delling, Andrew V Goldberg, Thomas Pajor, and Renato F Werneck.

2014. Robust distance queries on massive networks. In ESA. 321-333.

Linton C Freeman. 1977. A set of measures of centrality based on betweenness.

Sociometry (1977), 35-41.

Ada Wai-Chee Fu, Huanhuan Wu, James Cheng, and Raymond Chi-Wing

Wong. 2013. Is-label: an independent-set based labeling scheme for point-to-

point distance querying. VLDB 6, 6 (2013), 457-468.

Andrew V Goldberg and Chris Harrelson. 2005. Computing the shortest path:

A search meets graph theory. In SODA. 156-165.

Andrey Gubichev, Srikanta Bedathur, Stephan Seufert, and Gerhard Weikum.

2010. Fast and accurate estimation of shortest paths in large graphs. In CIKM.

499-508.

Takanori Hayashi, Takuya Akiba, and Ken-ichi Kawarabayashi. 2016. Fully

Dynamic Shortest-Path Distance Query Acceleration on Massive Networks.

In CIKM. 1533-1542.

Minhao Jiang, Ada Wai-Chee Fu, Raymond Chi-Wing Wong, and Yanyan Xu.

2014. Hop doubling label indexing for point-to-point distance querying on

scale-free networks. VLDB 7, 12 (2014), 1203-1214.

Ruoming Jin, Ning Ruan, Yang Xiang, and Victor Lee. 2012. A highway-centric

labeling approach for answering distance queries on large sparse graphs. In

ACM SIGMOD. 445-456.

Jure Leskovec and Andrej Krevl. 2015. SNAP Datasets:Stanford Large Network

Dataset Collection. (2015).

Ye Li, Man Lung Yiu, Ngai Meng Kou, et al. 2017. An experimental study on

hub labeling based shortest path algorithms. VLDB 11, 4 (2017), 445-457.

Silviu Maniu and Bogdan Cautis. 2013. Network-aware search in social tagging

applications: instance optimality versus efficiency. In CIKM. 939-948.

Ira Pohl. 1971. Bi-derectional search. Machine intelligence 6 (1971), 127-140.

Michalis Potamias, Francesco Bonchi, Carlos Castillo, and Aristides Gionis.

2009. Fast shortest path distance estimation in large networks. In CIKM.

867-876.

Miao Qiao, Hong Cheng, Lijun Chang, and Jeffrey Xu Yu. 2014. Approximate

shortest distance computing: A query-dependent local landmark scheme. IEEE

TKDE 26, 1 (2014), 55-68.

Yongrui Qin, Quan Z Sheng, Nickolas JG Falkner, Lina Yao, and Simon Parkin-

son. 2017. Efficient computation of distance labeling for decremental updates

in large dynamic graphs. WWW 20, 5 (2017), 915-937.

Ryan A. Rossi and Nesreen K. Ahmed. 2015. The Network Data Reposi-

tory with Interactive Graph Analytics and Visualization. In AAAL http:

//networkrepository.com

Gert Sabidussi. 1966. The centrality index of a graph. Psychometrika 31, 4

(1966), 581-603.

Robert Endre Tarjan. 1983. Data structures and network algorithms. Vol. 44.

Siam.

KONECT the Koblenz Network Collection. 2017.

uni-koblenz.de/networks/

Konstantin Tretyakov, Abel Armas-Cervantes, Luciano Garcia-Bafiuelos, Jaak

Vilo, and Marlon Dumas. 2011. Fast fully dynamic landmark-based estimation

of shortest path distances in very large graphs. In CIKM. 1785-1794.

Antti Ukkonen, Carlos Castillo, Debora Donato, and Aristides Gionis. 2008.

Searching the wikipedia with contextual information. In CIKM. 1351-1352.

Monique V Vieira, Bruno M Fonseca, Rodrigo Damazio, Paulo B Golgher, Davi

de Castro Reis, and Berthier Ribeiro-Neto. 2007. Efficient search ranking in

social networks. In CIKM. 563-572.

Fang Wei. 2010. TEDI: efficient shortest path query answering on graphs. In

ACM SIGMOD. 99-110.

Sihem Amer Yahia, Michael Benedikt, Laks VS Lakshmanan, and Julia Stoy-

anovich. 2008. Efficient network aware search in collaborative tagging sites.

VLDB 1, 1 (2008), 710-721.

(13]

(14

(15

=
&

=
=

(18]

[24

(25]

(26

&
=

[28

(2017).  http://konect.

(29

(30

(31

(32]

(33]



O

proceedings

Stratified Random Sampling from Streaming and Stored Data

Trong Duc Nguyen
Iowa State University, USA

Srikanta Tirthapura
Iowa State University, USA

ABSTRACT

Stratified random sampling (SRS) is a widely used sampling tech-
nique for approximate query processing. We consider SRS on
continuously arriving data streams, and make the following con-
tributions. We present a lower bound that shows that any stream-
ing algorithm for SRS must have (in the worst case) a variance
that is Q(r) factor away from the optimal, where r is the number
of strata. We present S-VOILA, a streaming algorithm for SRS
that is locally variance-optimal. Results from experiments on real
and synthetic data show that S-VOILA results in a variance that is
typically close to an optimal offline algorithm, which was given
the entire input beforehand. We also present a variance-optimal
offline algorithm VOILA for stratified random sampling. VOILA
is a strict generalization of the well-known Neyman allocation,
which is optimal only under the assumption that each stratum is
abundant, i.e. has a large number of data points to choose from.
Experiments show that VOILA can have significantly smaller vari-
ance (1.4x to 50x) than Neyman allocation on real-world data.

1 INTRODUCTION

Random sampling is a widely-used method for data analysis, and
features prominently in the toolbox of virtually every approxi-
mate query processing system. The power of random sampling
lies in its generality. For many important classes of queries, an
approximate answer whose error is small in a statistical sense
can be efficiently obtained through executing the query over
an appropriately derived random sample. Sampling operators
are part of all major database products, e.g., Oracle, Microsoft
SQL Server, and IBM Db2. The simplest method for random sam-
pling is uniform random sampling, where each element from
the entire data (the “population”) is chosen with the same prob-
ability. Uniform random sampling may however lead to a high
variance in estimation. For instance, consider a population D =
{1,2,4,2,1,1050, 1000, 1200, 1300}, and suppose we wanted to
estimate the population mean. A uniform random sample of
size two leads to an estimate with a variance of approximately
1.6 X 10°.

An alternative sampling method is stratified random sampling
(SRS), where the population is partitioned into subgroups called
“strata”. From within each stratum, uniform random sampling
is used to select a per-stratum sample. All per-stratum samples
are combined to derive the “stratified random sample”. Suppose
that the population is divided into two strata, one with elements
{1,2,4,2, 1} and the other with elements {1000, 1050, 1200, 1300}.
A stratified random sample of size two that chooses one element
from each stratum yields an estimate with variance 2.47 x 10,
much smaller than a uniform random sample of the same size.
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SRS provides the flexibility to emphasize some strata over
others through controlling the allocation of sample sizes; for
instance, a stratum with a high standard deviation can be given
a larger allocation than another stratum with a smaller standard
deviation. In the above example, if we desire a stratified sample
of size three, it is best to allocate a smaller sample of size one to
the first stratum and a larger sample size of two to the second
stratum, since the standard deviation of the second stratum is
higher. Doing so, the variance of estimate of the population mean
further reduces to approximately 1.23 x 10%. The strength of
SRS is that a stratified random sample can be used to answer
queries not only for aggregates such as the mean, and sum of the
entire population, but also of subsets of the population defined
by selection predicates that are provided at query time. SRS has
been used widely in database systems for approximate query
processing [1-3, 8, 14, 30, 31].

A problem with handling large streaming data is that current
methods for SRS are predominantly offline methods that assume
all data is available before sampling starts. As a result, systems
that rely on SRS (e.g., [3, 14, 31]) cannot easily adapt to new data
and have to recompute stratified random samples from scratch,
as more data arrives. With the advent of streaming data ware-
houses such as Tidalrace [29], it is imperative to have methods for
SRS that work on dynamic data streams, and maintain stratified
random samples in an incremental manner.

We address the shortcoming of current methods through a
study of SRS on streaming data. The difficulty of SRS on stream-
ing data is that there are two logical processes simultaneously
at work. One is sample size allocation, which allocates samples
among the different strata in a manner that minimizes the vari-
ance of an estimate. The second is the actual sampling of elements
from within each stratum. While each of these two steps, sam-
ple size allocation and sampling, can be done individually in a
streaming fashion, it is far more challenging to do them simulta-
neously. We present lower bounds as well as algorithms for the
task of maintaining a stratified random sample on a data stream.
The quality of a stratified random sample is measured using the
variance of an estimate of a population statistic, computed using
the sample.

1.1 Our Contributions

- Streaming Lower Bound: We present a lower bound showing
that in the worst case, any streaming algorithm for SRS that uses
a memory of M records must have a variance that is Q(r) away
from the variance of the optimal offline algorithm that uses the
same memory of M records, where r is the number of strata. We
show that this lower bound is tight, by construction.

- Practical Streaming Algorithm for SRS: We present S-VOILA
(Streaming Variance OptImal Allocation) a streaming algorithm
for SRS that is locally variance-optimal. Upon receiving new ele-
ments, it (re-)allocates sample sizes among strata so as to obtain
the smallest variance among all possible re-allocations. S-VOILA
can also deal with the case when a minibatch of multiple data
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items is seen at a time, as in systems such as Spark streaming [42].
Re-allocations made by S-VOILA are locally optimal with respect
to the entire minibatch, and the quality of re-allocations improve
as the minibatch size increases. Since S-VOILA can deal with mini-
batches of varying sizes, it is well-suited to real-world streams
that may have bursty arrivals.

— Variance-Optimal Sample Size Reduction: The streaming
algorithm (S-VOILA) re-allocates sample sizes based on a novel
method for reducing the size of an existing stratified random
sample down to a desired target size in a variance-optimal man-
ner. This novel technique for sample size reduction may be of
independent interest in other tasks, e.g., sub-sampling from a
given stratified random sample.

- Sampling from a Sliding Window of a Stream: We present
an algorithm for sampling from a sliding window of the most
recent elements in a stream. This algorithm uses memory much
smaller than the size of the window, and results in a sample
whose variance is close to that obtained by an optimal offline
algorithm that is allowed multiple passes through data in the
window.

- Variance Optimal Offline SRS: We present the first offline
algorithm for variance-optimal SRS. Our algorithm VOILA com-
putes an allocation with provably optimal variance among all
possible allocations of sample sizes to strata. The well known
Neyman Allocation [36] (NeyAlloc), which originated from
the statistics literature, assumes that each stratum has an abun-
dance of data to choose from. However, this assumption may not
hold in databases, since each stratum is a subset of a database ta-
ble, and the size of a stratum may be small. VOILA does not make
such assumptions, and computes a variance optimal allocation
no matter how large/small the sizes of the strata. Hence, VOILA
is a strict generalization of NeyAlloc. In addition, VOILA does
not make any assumption on how data is stratified.

— Experimental Evaluation: We present a detailed experimen-
tal evaluation using real and synthetic data, considering both
the quality of sample and accuracy of query answers using the
sample. In our experimental study, we found that (a) the variance
of S-VOILA is typically close to that of the optimal offline algo-
rithm VOILA, and the allocation of S-VOILA also closely tracks
that of VOILA. S-VOILA also improves significantly upon prior
work [5]. The variance of S-VOILA improves as the size of the
minibatch increases, and a minibatch of size 100 provides most
of the benefits of S-VOILA. (b) Samples produced using S-VOILA
yield accurate answers to a range of queries that involve a selec-
tion followed by aggregation, where the selection predicate is
provided at query time, and the aggregation function can be one
of sum, average, and standard deviation?. (c) In the offline setting,
VOILA can have significantly smaller variance than NeyAlloc.

1.2 Related Work

Sampling has been widely used in approximate query process-
ing on both static and streaming data [17, 28, 33, 38, 39]. The
reservoir sampling [34, 41] algorithm for uniform sampling from
a stream has been known for decades, and many variants and
generalizations have been considered, such as weight-based sam-
pling [11, 22], insertion and deletion of elements [25], distinct

!Note that a query for the variance or standard deviation of data is distinct from
the variance or standard deviation of an estimate.
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sampling [26], sampling from a sliding window [9, 12, 23], time-
decayed sampling [19, 20], and distributed streaming sampling [15,
16, 18, 40].

SRS in the online setting can be viewed as weight-based reser-
voir sampling where the weight of each stream element depends
on the stratum it belongs to. Since the weight of a stream el-
ement changes dynamically (even after it has been observed)
prior work on weighted reservoir sampling [22] does not ap-
ply, since it assumes that the weight of an element is known at
the time of observation and does not change henceforth. Meng
[35] considered streaming SRS using population-based alloca-
tion. Al-Kateb et al. [4, 5] considered streaming SRS using power
allocation, based on their prior work on adaptive reservoir sam-
pling [6]. Lang et al. [32] consider machine learning methods for
determining the per-item probability of inclusion in a sample.
This work is meant for static data, and can be viewed as a version
of weighted random sampling where the weights are learnt using
a query workload. Prior work on streaming SRS neither considers
provable guarantees on the quality of the resulting samples, nor
lower bounds for streaming SRS, like we do here.

A majority of prior work on using SRS in approximate query
processing [1-3, 8, 14, 30, 31] has assumed static data. With the
emergence of data stream processing systems [7] and data stream
warehousing systems [29], it is important to devise methods for
streaming SRS with quality guarantees.

2 PRELIMINARIES

Stratified sampling can be viewed as being composed of three
parts — stratification, sample allocation, and sampling. Stratifi-
cation is a partitioning of the universe into a number of disjoint
strata. Equivalently, it is the assignment of each data element
to a unique stratum. In database applications, stratification is
usually a pre-defined function of one or more attributes of the
data [17]. For example, the works of Chaudhuri et al. [14] and
Agarwal et al. [3] on approximate query answering stratify tuples
in a database table based on the set of selection predicates in the
query workload that the tuple satisfies, and the work of Kandula
et al. [31] on approximate query answering stratify rows of a
table using the group ids derived from a group-by query. Note
that our methods do not assume that stratification is performed
in any specific manner, and work regardless of the method used
to stratify data.

Our work considers sample allocation, the partitioning of the
available memory budget of M samples among the different strata.
In streaming SRS, the allocation needs to be continuously re-
adjusted as more data arrives, and the characteristics of different
strata change. In offline sampling, allocation needs to be done
only once, after knowing the data in its entirety.

The final sampling step considers each stratum and chooses
the assigned number of samples uniformly at random. In offline
stratified sampling, the sampling step can be performed in a
second pass through the data using reservoir sampling on the
subset of elements belonging to each stratum, after a first pass has
determined the sample size allocation. In the case of streaming
sampling, the sampling step needs to occur simultaneously with
sample (re-)allocation, which may change allocations to different
strata over time.

Variance-Optimal Allocation. The quality of a stratified
random sample is measured through the variance of an esti-
mate that is derived using the sample. Consider a data stream



R ={v1,v,...,v,} of current size n, whose elements are strat-
ified into r strata, numbered 1,2, ...,r. Let n; denote the num-
ber of elements in stratum i. For each i = 1...r, let S; be a
uniform random sample of size s; drawn without replacement
from stratum i. Let S = {S1, Sz, ..., Sy} denote the stratified ran-
dom sample. The sample mean of each per-stratum sample S; is:

gi = Z%f’v The population mean of R, yig can be estimated as:
7= w It can be shown that the expectation of § equals

uR. Given a memory budget of M < n elements to store all the
samples, so that }}; s; = M, the following question of variance-
optimal allocation of sample sizes has been considered in prior
work [36]: How to split the memory budget M among the s;s to
minimize the variance of §? The variance of § can be computed
as follows (e.g. see Theorem 5.3 in [17]):

1 r 0'.2 r 2 2 r
V=V(@) = pzni(”i —Si)j =

i=1

2
1

(1)
While the theory around SRS in both statistics and database com-
munities has used the variance of the population mean as a mini-
mization metric, variance-optimal SRS is useful for other types of
queries as well, including predicate-based selection queries, sum
queries across a subset of the strata, queries for the variance, and
combinations of such queries [3, 14] — also see our experiments
section.

NeyAlloc for Abundant Strata. Prior studies on variance-
optimal allocation have primarily considered static data. Addi-
tionally, they assume that every stratum has a very large volume
of data, so that there is no restriction on the size of a sample
that can be chosen from this stratum. This may not be true
for the scenario of databases. Especially in a streaming con-
text, each stratum starts out with very little data. Given a col-
lection of data elements R, we say that a stratum i is abundant

ifn; > M- (njo;)/ (Z;Zl njO'j). Otherwise, the stratum i is said
to be bounded. Under the assumption that each stratum is abun-
dant, the popularly used “Neyman Allocation” NeyAlloc [17, 36]
minimizes the variance V, and allocates a sample size for stra-
tumias M - (niai)/(zjr.zl l’le'j). We note that NeyAlloc is no
longer optimal if one or more strata are bounded. Our meth-
ods of sample size reduction and online (S-VOILA) and offline
(VOILA) algorithms do not have this restriction and work under
the general case whether or not strata are bounded.

Our solution to streaming SRS consists of two parts — sample
size re-allocation, and per-stratum random sampling. Both parts
execute continuously and in an interleaved manner. Sample size
re-allocation is achieved using a reduction to a “sample size re-
duction” in a variance-optimal manner. Given a stratified random
sample S; of size larger than a target M, sample size reduction
seeks to find a stratified sample S; of size M that is a subset of
S; such that the variance of Sy is as small as possible.

Roadmap: In Section 3, we consider streaming SRS, and
present a tight lower bound for any streaming algorithm, fol-
lowed by S-VOILA an algorithm for streaming SRS. This uses as
a subroutine a variance-optimal sample size reduction method
that we describe in Section 4. We start with SingleElementSSR
for reducing the size of the sample by one element, followed by
a general algorithm SSR for reducing the size by f > 1 elements.
We then present an algorithm MultiElementSSR with a faster

1
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runtime. We then consider the case of sliding windows in Sec-
tion 5, followed by the optimal offline algorithm in Section 6. We
present an experimental study of our algorithms in Section 7.

3 STREAMING SRS

We now consider SRS from a data stream, whose elements are
arriving continuously. As more elements are seen, the allocations
as well as samples need to be dynamically adjusted. We first
note there is a simple two-pass streaming algorithm with optimal
variance that uses O(k + r) space, where k is the desired sample
size and r the number of strata. In the first pass, the size, mean,
and standard deviations of each stratum are computed using O(r)
space, constant space for each stratum. At the end of the first
pass, the allocations to different strata are computed using an
optimal offline algorithm, say VOILA. In the second pass, since
the desired sample sizes are known for each stratum, samples are
computed using reservoir sampling within the substream of ele-
ments belonging to each stratum. The above two-pass algorithm
cannot be converted into a one-pass algorithm. The difficulty is
that as more elements are seen, allocations to different strata
may change, and the sampling rate within a stratum cannot in
general be (immediately) dynamically adjusted in order to satisfy
variance optimality. We first show a lower bound that it is in
general not possible for any streaming algorithm to have optimal
variance compared with an offline algorithm that is given the
same memory.

3.1 A Lower Bound for Streaming SRS

Given a data stream R with elements belonging to r strata, and a
memory budget of M elements, let V* denote the optimal sample
variance that can be achieved by an offline algorithm for SRS
that may make multiple passes through data. Clearly, the sample
produced by any streaming algorithm must have variance that
is either V* or greater. Suppose a stratified random sample R is
computed by a streaming algorithm using memory of M elements.
Let V(R) denote the variance of this sample. For @ > 1, we say R
is an SRS with multiplicative error of a, if: (1) the sample within
each stratum in R is chosen uniformly from all elements in the
stratum, and (2) V(R) < a - V*.

THEOREM 3.1. Any streaming algorithm for maintaining an
SRS over a stream with r strata using a memory of M elements
must, in the worst case, result in a stratified random sample with a
multiplicative error Q(r).

The idea in the proof is to construct an input stream with r
strata where the variance of different strata are the same un-
til a certain point in time, at which the variance of a single
stratum starts increasing to a high value - a variance-optimal
SRS will respond by increasing the allocation to this stratum.
However, we show that a streaming algorithm is unable to do
so quickly. Though a streaming algorithm may compute the
variance-optimal allocation to different strata in an online man-
ner, it cannot actually maintain these dynamically sized samples
using limited memory.

Proor. Consider an input stream where for eachi=1...r,
the ith stratum consists of elements in the range [i, i + 1). The
stream so far has the following elements. For each i,1 < i <r,
there are (@ — 1) copies of element i and one copy of (i + ¢) where
€ = 1/(r — 1) and a > 3. After observing these elements, for
stratum i we have n; = a, y; = (i + 5), and it can be verified

_ Va-1

that oy = ~—e.




Since the total memory budget is M, at least one stratum (say,
Stratum 1) has a sample size no more than M/r. Suppose an
element of value (2 — ¢) arrives next. This element belongs to
stratum 1. Let ni, ,u{, and 0'1’ denote the new size, mean, and
standard deviation of stratum 1 after this element arrives. We

have n] = a +1 and pp =1+ a'+1 It can be verified that
! = £ +(1ai)1 . It follows that:
1_ ;
(a+ 1|2 1+ <njo] <(a+1) f;l )
= \/TE < n{o’f <Va (Note: a > 2) (3)

In 2, the left inequality stands when ¢ = 1/2 and the right in-
equality stands when ¢ = 0 or 1. We also have: }_, njo; =

(r —1DaY2=¢ = Va — 1, where we have used ¢ = ril . Thus,
r
g < Zniai < Va (Note: & > 2) 4)
i=2

Let V denote the sample variance of A after observing the
stream of (ra + 1) elements. Let V* denote the smallest sample
possible with a stratified random sample of size M on this data.
Let A = (nia’% +20, nioiz) /n?.

We observe that after processing these (ra + 1) elements, the
sample size s; < M/r + 1. Using this fact and the definition of
sample variance in Eq 1:

2 12 r 2.2 12 12 ro2 2
1 [n'fc’ néo 1 [n'Sc nso:
V:_z( ! 1+ZA)—A2—2( L ’M’)—A
O R = A P\ 1 5
r 1.2
Zl al4 Z(a 1)e —A:l al4 -1
n* \ M4 41 M/(r-1) n? 1)—”+1

On the other hand, the smallest sample variance V* is achieved
by using Neyman allocation. By Inequalities 3 and 4, we know
that if Neyman allocation is for the current stream of ra + 1
elements, stratum 1 uses at least M/3 memory space, whereas all
other strata equally share at least M/3 elements since all n;0; are
equalfori = 2,3,...,r. Using these observations into Equation 1:

2 12 2 .2
V* < i n,lo—,l +Zr: ;i 0; _
Tn?\ M3 & M/B(r-1)

1 - -1 1 6a—3

1 L+Z& _ao[Loa=3)_

n? \ M/3 izzM/(3(r—l)) n2 M
SinceAZOandM>r,wehave:%2 ‘Yf;AA = Q(r). O

We note that the above lower bound is tight (up to constant
factors). Consider the algorithm which always allocates M/r
memory to each of r strata that have been observed so far. It
can be verified that this algorithm has a variance within an O(r)
multiplicative factor of the optimal. While theoretically such
an algorithm (which we call the “senate” algorithm due to allo-
cating every stratum the same resources) meets the worst case
lower bound, it performs poorly in practice, since it treats all
strata equally, irrespective of their volume or variance (see the
experiments section).
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3.2 S-VOILA: Streaming Algorithm for SRS

We now present a streaming algorithm S-VOILA that can main-
tain a stratified random sample on a stream with a good (though
not optimal) variance. Given a memory budget of M items, S-VOILA
maintains a SRS of size M with the following properties: (1) the
samples within each stratum are chosen uniformly from all the
stream elements seen in the stratum so far, (2) the sizes of sam-
ples allocated to different strata adapt to new stream elements
by making “locally optimal” decisions that lead to the best alloca-
tions given the new stream elements. S-VOILA conceptually has
to solve two problems. One is sample size re-allocation among
strata, and the second is uniform sampling within each stratum.
Let R denote the stream observed so far, and R; the elements in
R that belong to stratum i.

We first consider sample size re-allocation. Suppose due to
the addition of new elements, the stream went from R to R?,
and suppose that the stratified random sample at R! allocated
sample sizes to strata in a specific manner, S'. Due to the new
elements, the sizes and variances of different strata change, and as
a result, the optimal allocation of samples in R? may be different
from the previous allocation S!. Our approach is to first add
new elements to the sample, and then re-allocate sample sizes
using a “variance-optimal sample size reduction” optimization
framework. Given a current allocation of sample sizes to different
strata, suppose new elements are added to the sample, causing it to
exceed a memory threshold M. What is a way to reduce the current
sample to a sample of size M such that the variance of the new
sample is as small as possible? In the following section (Section 4),
we present algorithms for sample size reduction.

The second issue is to maintain a uniform random sample S;
of R; when s;, the size of the sample is changing. A decrease
in an allocation to s; can be handled easily, through discarding
elements from the current sample S; until the desired sample size
is reached. What if we need to increase the allocation to stratum i?
If we simply start sampling new elements according to the higher
allocation to S;, then recent elements in the stream will be favored
over the older ones, and the sample within stratum i is no longer
uniformly chosen. In order to ensure that S; is always chosen
uniformly at random from R;, newly arriving elements in R;
need to be held to the same sampling threshold as older elements,
even if the allotted sample size s; increases. S-VOILA resolves
this issue in the following manner. An arriving element from R;
is assigned a random “key” drawn uniformly from the interval
(0, 1). The sample is maintained using the following invariant: S;
is the set of s; elements with the smallest keys among all elements so
far in R;. It is easy to verify that this is indeed a uniform sample
drawn without replacement from R;. The consequence of this
strategy is that if we desire to increase the allocation to stratum i,
it may not be accomplished immediately, since a newly arriving
element in R; may not be assigned a key that meets this sampling
threshold. Instead, the algorithm has to wait until it receives an
element in R; whose assigned key is small enough. To ensure
the above invariant, the algorithm maintains for each stratum i a
variable d; that tracks the smallest key of an element in R; that
is not currently included in S;. If an arriving element in R; has a
key that is smaller than or equal to d, it is included within S;;
otherwise, it is not.

Algorithms 1 and 2 respectively describe the initialization
and insertion of a minibatch of elements. S-VOILA supports the
insertion of a minibatch of any size b > 0, where b can change
from one minibatch to another. As b increases, we can expect



Algorithm 1: S-VOILA: Initialization

Input: M - total sample size, r — number of strata.
// S;i is the sample for stratum i, and R; is the

substream of elements from Stratum i

1 Load the first M stream elements in memory, and partition
them into per-stratum samples, S1, Sz, . . ., Sy, such that S;
consists of (e, d) tuples from stratum i, where e is the
element, d is the key of the element, chosen independently
and uniformly at random from (0, 1).

2 For each stratum i, compute n;, o;. Initialize d; < 1;// d;
tracks the smallest key among all elements in
Ri not selected in S;

Algorithm 2: S-VOILA: Process a new minibatch B of b ele-
ments. Note that b need not be known in advance, and can
vary from one minibatch to the other.

1«0 // #selected elements from B
2 for eache € Bdo

3 Let a = a(e) denote the stratum of e

4 Update ny and o4 ; // per-stratum mean and std.

dev. maintained in a streaming manner
5 Assign a random key d € (0, 1) to element e;
6 if d < d, then // element e is sampled

7| L Se AP USas B B

/* Variance-optimal reduction by S elements */
8 if f =1 then // faster for evicting 1 element
9 { « SingleElementSSR(M);

10 Delete one element of largest key from Sg;

1 | dp < smallest key discarded from Sy;

12 else if § > 1 then
13 L « MultiElementSSR(M);

14 fori=1...rdo // Actual element evictions

15 if L[i] < s; then

16 Delete s; — L[i] elements from S; with the
largest keys;

17 d; < smallest key discarded from S;;

S-VOILA to have a lower variance, since its decisions are based
on greater amount of data. Lines 2-7 make one pass through the
minibatch to update the mean and standard deviations of the
strata, and store selected elements into the per-stratum samples.
If f > 0 elements from the minibatch get selected into the sample,
in order to balance the memory budget at M,  elements need to
be evicted from the stratified random sample using the variance-
optimal sample size reduction technique from Section 4.

A sample size reduction algorithm takes a current allocation
to a stratified random sample, the statistics (volume, mean, and
variance) of different strata, and a target sample size M, and
returns the final allocation whose total size is M. For the special
case of evicting one element, we can use the faster algorithm
SingleElementSSR; otherwise, we can use MultiElementSSR.
Lemma 3.2 shows that the sample maintained by S-VOILA within
each stratum is a uniform random sample, showing this is a valid
stratified sample, and Lemma 3.3 presents the time complexity
analysis of S-VOILA. Proofs are omitted due to space constraints.
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LEmMMA 3.2. Foreachi = 1,2,...,r sample S; maintained by
S-VOILA (Algorithm 2) is selected uniformly at random without
replacement from stratum R;.

LEmMMA 3.3. Ifthe minibatch sizeb = 1, then the worst-case time
cost of S-VOILA for processing an element is O(r). The expected
time for processing an element belonging to stratum a is O(1 +
r - Sq/ng), which is O(1) whenr - sq = O(ng). If b > 1, then
the worst-case time cost of S-VOILA for processing a minibatch is
O(rlogr + b).

We can expect S-VOILA to have an amortized per-item pro-
cessing time of O(1) in many circumstances. When b = 1: After
observing enough stream elements from stratum a, such that
r-sq = O(ng), the expected processing time of an element be-
comes O(1). Even if certain strata have a very low frequency,
the expected time cost for processing a single element is still
expected to be O(1), because elements from an infrequent stra-
tum « are unlikely to appear in the minibatch. When b > 1: The
per-element amortized time cost of S-VOILA is O(1), when the
minibatch size b = Q(rlogr).

4 VARIANCE-OPTIMAL SAMPLE SIZE
REDUCTION

Suppose it is necessary to reduce a stratified random sample (SRS)
of total size M to an SRS of total size M’ < M. This will need to
reduce the size of the samples of one or more strata in the SRS.
Since the sample sizes are reduced, the variance of the resulting
estimate will increase. We consider the task of variance-optimal
sample size reduction (VOR), i.e., how to partition the reduction
in sample size among the different strata in such a way that the
increase in the variance is minimized. Note that once the new
sample size for a given stratum is known, it is easy to subsample
the stratum to the target sample size.

Consider Equation 1 for the variance of an estimate derived
from the stratified random sample. Note that, for a given data
set, a change in the sample sizes of different strata s; does not
affect the parameters n, n;, and o;. VOR can be formulated as the
solution to the following non-linear program.

r 2.2
Minimize Z n"(,r" (5)
i=1 i
subject to constraints:
r
Zs{zM' and OSS{Ssiforeachi:l,Z,...,r, 6)

i=1
In the rest of this section, we present efficient approaches for
computing the VOR.

4.1 Sample Size Reduction by One Element

We first present an efficient algorithm for the case where the
size of a stratified random sample is reduced by one element.
An example application of this case is in designing a streaming
algorithm for SRS, when stream items arrive one at a time. The
task is to choose a stratum i (and discard a random element from
the stratum) such that after reducing the sample size s; by one,
the increase in variance V (Equation 1) is the smallest.

Our solution is to choose stratum i such that the partial deriva-
tive of V with respect to s; is the largest over all possible choices
of i.

2 2
gy niol 1
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Given a memory budget M and stratum i, let M; M-
niO'i/Z]r-:1 njoj denote the amount of memory that NeyAlloc
would allocate to stratum i. We choose stratum ¢ where:

{niO'i
i Si

= arg min

Si

lSiSr}

ov .
¢ = argmax { — 1<i<r
i 0
LEMMA 4.1. When required to reduce the size of a stratified
random sample by one, the increase in variance of the estimated
population mean is minimized if we reduce the size of S¢ by one,

"i‘_’i}lsiSr}.
1

where { = arg min; {S—

In the case where we have multiple choices for £ using Lemma 4.

we choose the one where the current sample size s is the largest.
Algorithm SingleElementSSR for reducing the sample by a sin-
gle element is a direct implementation of the condition stated in
Lemma 4.1. We omit the pseudocode due to space constraints. It
is straightforward to observe this can be done in time O(r).

4.2 Reduction by § > 1 Elements

We now consider the general case, where the sample needs to
be reduced by f > 1 elements. A possible solution idea is to re-
peatedly apply the one-element reduction algorithm (Algorithm
SingleElementSSRfrom Section 4.1) f times. Each iteration, a
single element is chosen from a stratum such that the overall
variance increases by the smallest amount. However, this greedy
approach may not yield a sample with the smallest variance. On
the other hand, an exhaustive search of all possible evictions is
not feasible either, since the number of possible ways to partition
p+r—1
r—1
large. For instance, if r = 10, this is @(,510). We now present effi-
cient approaches to VOR. We first present a recursive algorithm,
followed by a faster iterative algorithm. Before presenting the
algorithm, we present the following useful characterization of a
variance-optimal reduction.

areduction of size f among r strata is ( ), which can be very

Definition 4.2. We say that stratum i is oversized under mem-
ory budget M, if its allocated sample size s; > M;. Otherwise, we
say that stratum i is not oversized.

LEMMA 4.3. Suppose that E is the set of § elements that are to be
evicted from a stratified random sample such that the variance V
after eviction is the smallest possible. Then, each element in E must
be from a stratum whose current sample size is oversized under the
new memory budget M’ = M — J5.

Proor. We use proof by contradiction. Suppose one of the
evicted elements is deleted from a sample S, such that the sample
size s4 is not oversized under the new memory budget. Because
the order of the eviction of the f§ elements does not impact the
final variance, suppose that element e is evicted after the other
B — 1 evictions have happened. Let s, denote the size of sample
Sq at the moment ¢ right after the first § — 1 evictions and before
evicting e. The increase in variance caused by evicting an element
from S, is

s o (b ) (Shame’
n2 \sq(sq — 1) nM’ Sa(sq — 1)
. T nioi\’
nM’

Ny O,
where M’y = M/ <7222 —
i=1 Ni0i

that S, is not oversized under budget M’ at time ¢, i.e., so < M},
Note that an oversized sample exists at time #, since there are a
total of M’ + 1 elements in the stratified random sample at time ¢,

The last inequality is due to the fact

—_
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Algorithm 3: SSR(A, M, L): Variance-Optimal Sample Size
Reduction
Input: A - set of strata under consideration.
M - target sample size for all strata in A.
Output: For i € A, L][i] is the final size of sample for
stratum i.
1 0« 0// oversized samples
2 forje Ado
3 Mj < M - njoj/¥;ennior // Neyman allocation
if memory M divided among A
4 if(s]->Mj)thenO<—OU{j}
5 else L[j] < sj // Keep current allocation

7 if O = A then
// All samples oversized. Recursion stops.
s | forjeAdo L[j]— M,
9 else
// Recurse on O, under remaining mem budget.
B SSR(O,M — Zjeﬂ—O Sj,.ﬁ)

10

and the memory target is M”. Instead of evicting e, if we choose
to evict another element e’ from an oversized sample S,, the
resulting increase in variance will be:

)

The last inequality is due to the fact

2
M/a/

S/ (Sqr = 1)

2 2
na,(ra,

_ 1
T on2 | sg(ser = 1)

r 2

i njoj
< i=1

nM’

Ny’ Oyt
where M;, :M’%

Al

r 2
Zi:l nijoj
nM’

i=1 Nio;
that S, is oversizedlunder budget M’ at time ¢, i.e., sor > M/,.
Because A’ < A, at time ¢, evicting e’ from S, leads to a lower
variance than evicting e from S,. This is a contradiction to the
assumption that evicting e leads to the smallest variance, and

completes the proof. O

Lemma 4.3 implies that it is only necessary to reduce samples
that are oversized under the target memory budget M. Samples
that are not oversized can be given their current allocation, even
under the new memory target M’. Our algorithm based on this
observation first allocates sizes to the samples that are not over-
sized. The remaining memory now needs to be allocated among
the oversized samples. We note that this can again be viewed as
a sample size reduction problem, while focusing on a smaller set
of (oversized) samples, and accomplish it using a recursive call
under a reduced memory budget; See Lemma 4.4 for a formal
statement of this idea. The base case for this recursion is when
all samples under consideration are oversized, in which case we
can simply use NeyAlloc under the reduced memory budget M’
(Observation 1). Our algorithm SSR is shown in Algorithm 3.

Let S = {S1,S52,...,S,} be the current stratified random sam-
ple. Let A denote the set of all strata under consideration, initial-
ized to {1,2,...,r}. Let O denote the set of oversized samples,
under target memory budget for S, and U = S — O denote the
collection of samples that are not oversized. When the context is
clear, we use O, U, and A to refer to the set of stratum identifiers
as well as the set of samples corresponding to these identifiers.



Table 1: An example of variance-optimal sample size re-

duction from 400 x 10° down to 200 x 10°.

i 1 2 [ 3] 4 5 6
nijo; (x10%) 0] 8 [30] 20 8 24
s; (x109) 15] 50 [ 50 45 60 180
round 1 M; (x10%) [ 20| <5060 [ <45 <60 | <180
round 2 M; (x10%) | - [ <50 - | 45 [ <60 | <180
round 3 M; (x10°) | - [ 18 | - - 18 54
s7 (x10%) 15] 18 |50 45 18 54

LEMMA 4.4. A variance-optimal eviction of f elements from S
under memory budget M’ requires a variance-optimal eviction of
B elements from O under memory budget M' — 3’ jcqy sj-

ProOF. Recall that s} denotes the final size of sample S; after
elements are evicted. Referring to the variance V from Equation 1,
we know a variance-optimal sample size reduction of § elements
from S under memory budget M’ requires minimization of

Mo ol
Z s Z s

ieA i €A

(7)

By Lemma 4.3, we know s; = slf for all i € U. Hence, minimiz-
ing Formula 7 is equivalent to minimizing

2 2 2 2
n:o. n.o:
11 11
E i E i (8)
s/ Si

i=0 1 i€c0

The minimization of Formula 8 is exactly the result obtained
from a variance-optimal sample size reduction of § elements
from oversized samples under the new memory budget M’ —
iet Si- o

OBSERVATION 1. In the case every sample in the stratified ran-
dom sample is oversized under target memory M’, i.e., S = O, the
variance-optimal reduction is to reduce the size of each sample
Si € S to M] under the new memory budget M’.

The following theorem summarizes the correctness and time
complexity of Algorithm SSR.

THEOREM 4.5. Algorithm 3 (SSR) finds a variance-optimal re-
duction of the stratified random sample A under new memory
budget M. The worst-case time of SSR is O(r?), where r is the num-
ber of strata.

Proor. Correctness follows from Lemmas 4.3-4.4 and Obser-
vation 1. The worst-case time happens when each recursive call
sees only one stratum that is not oversized. In such a case, the
time of all recursions of SSR on a stratified random sample across
rstratais: O(r + (r — 1) + ...+ 1) = O(r). O

An Example (Table 1). Suppose we have 6 strata with their
statistics (n;0;7) and current sample sizes (s;) showin in Table 1
using a total size of Z?zl si = 400. Suppose that we wish to
reduce the sample size down to 200 by reducing each s; to the
target sample size s]. The computation involves a sequence of
recursive rounds. In the initial round, we allocate 200 samples
among all 6 strata using Neyman allocation. Strata 1 and 3 turn
out to be not oversized (M7 > s1, M3 > s3), and therefore we
set s; = s1 and s; = s3. In Round 2, we exclude strata 1 and
3 from consideration, and the available memory budget which
now becomes 200 — 15 — 50 = 135. This is allocated among
strata 2, 4, 5, and 6 using Neyman allocation. Stratum 4 is not
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Algorithm 4: MultiElementSSR(A, M): A fast implementa-
tion of Sample Size Reduction without using recursion.

Input: The strata under consideration is A = {1,2,...,r},
and the volumes and standard deviations. M is the
target total sample size.

Output: For 1 < i < r, L[i] is set to the final size of sample

for stratum i, such that the increase of the variance
V is minimized.
Allocate L[1..r], an array of numbers

-

2 Allocate Q[1..r], an array of (x, y, z) tuples

3 fori=1...rdo Q[i] « (i,njoi,si/(njoy));

4 Sort array Q in ascending order on the z dimension
5 fori=(r—1)downtoldo

s | Qlily < Qlil.y+Qli +1].y

7 Mpew < M; D « Q[1].y

s fori=1...rdo

5 | Molil.x < M- ng[i].x00[i].x/D
10 if sg[i].x > Moi].x then break
u | L[Q[i]-x] « sg[i].x]

12 Mnew < Mnew = $Q[i].x

// Check the next sample, which must exist.

13| Mo[it1).x < M nQ[it1].x00[i+1].x/D
14 if sg[is1].x > Mo[i+1].x then // oversized
15 L M — Mpew; D« Qli+1].y

// Reduce sample size to target.
16 forj=i..r do
L // Desired size for Sg;].x

L[Q[j]-x] « M - no[jl.xo0[j].x/D

18 return £

oversized (Mg > s4) and therefore we set sfl = s4. At the next
round 3, we further exclude stratum 4 from consideration, and
the available memory budget now becomes 135 — 45 = 90. When
this is allocated among the remaining strata, it turns out that all
of them are oversized (M; < s;,i = 2,5, 6). We simply set slf =M;
for each i € {2,5,6}, and the recursion exits. Each stratum i
now has a new sample size s; such that s} < s; for every i, and
2o, sl = 200.

Faster Sample Size Reduction. We present a faster algorithm for
variance-optimal sample size reduction, MultiElementSSR, with
time complexity O(rlogr). MultiElementSSR shares the same
algorithmic foundation as SSR, but uses a faster iterative method
based on sorting. We omit proofs due to space constraints.

THEOREM 4.6. (1) The MultiElementSSR procedure in Algo-
rithm 4 finds the correct size of each sample of a stratified random
sample, whose memory budget is reduced to M, such that the in-
crease of the variance V is minimized. (2) The worst-case time cost
ofMultiElementSSR on a stratified random sample across r strata
is O(rlogr).

5 STREAMING SRS OVER A SLIDING
WINDOW
We consider the maintenance of an SRS drawn from a sequence-

based sliding window of the most recent elements from the stream.
Given a window size W, the sliding window consists of the W



most recent elements observed in the data stream. We consider
the case when the window size W is very large, so that it is not
feasible to store the entire window in memory. Similar to the
algorithm for infinite window, there are two parts to the algo-
rithm, sample re-allocation and sampling, which are interleaved
with each other. We provide the algorithm idea and omit detailed
descriptions.

For re-allocating sample sizes, we need the current statistics of
each stratum within the sliding window. The mean and variance
of a given stratum in an infinite window can be maintained in
O(1) space easily in a single pass. However, maintaining the mean
and variance over a sliding window is much harder. In fact, it is
known that exact computation of the mean and variance over a
sliding window requires memory linear in the stream size [21] —
thus, if we require these statistics exactly, we have to store the
entire window, just to maintain the statistics of different strata!
Fortunately, it is possible to approximate these statistics using
space poly-logarithmic in the size of the stream; for the mean,
see [21, 27], and for the variance [43].

Random sampling over a sliding window is also quite different
from the case of infinite windows, and there is significant prior
work on this e.g. [9, 13, 24]. We adapt algorithms from prior
work to assign to each arriving element a random key, chosen
uniformly in [0, 1]. The random sample of a certain size within a
stratum is defined to be those elements in the stratum that have
the smallest keys. Borrowing from prior work [9], we maintain
additional recent elements within the window even if they don’t
belong to the set of keys that are currently the smallest — the
reason is that these elements may become the elements with the
smallest keys once the window slides and other elements with
smaller keys “expire” from the window. The additional space
required by these keys is a logarithmic factor in the size of the
window (Section 2 in [9]). For each stratum, the algorithm con-
tinuously monitors the smallest key that has been discarded from
the window.

When new elements arrive in the stream, these are sampled
into the SRS, which may cause the size of the sample to increase
beyond the memory allocated to the stratum. When this happens,
we rely on variance-optimal sample size reduction (Algorithm
MultiElementSSR) to give us new sample size allocations to
different strata, and different strata are sub-sampled according
to the new allocations (sub-sampling within a given stratum is
handled through selecting only the elements with the smallest
keys that are active in the window).

6 VOILA: VARIANCE-OPTIMAL
OFFLINE SRS

We now present an algorithm for computing the variance-optimal
allocation of sample sizes in the general case when there may be
strata that are bounded. Note that once the allocation of sample
sizes is determined, the actual sampling step is straightforward
for the offline algorithm - samples can be chosen in a second pass
through the data, using reservoir sampling within each stratum.
Hence, in the rest of this section, we focus on determining the
variance-optimal allocation. Consider a static data set R of n
elements across r strata, where stratum i has n; elements, and has
standard deviation ;. How can a memory budget of M elements
be partitioned among the strata in a variance-optimal manner?
We present VOILA (Variance-OptImaL Allocation), an efficient
offline algorithm for variance-optimal allocation that can handle
strata that are bounded.
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Algorithm 5: VOILA (M): Variance-optimal stratified ran-
dom sampling for bounded data

Input: M is the memory target
1fori=1...rdo
2 L s; < n; // assume total memory of n

3 L < MultiElementSSR(M)

4 return £ /* L]i] < n; is the sample size for
stratum i in a variance-optimal stratified
random sample. */

Neyman Allocation assumes there are no bounded strata (strata
with small volumes). Note that it is not possible to simply elim-
inate strata with a low volume, by giving them full allocation,
and then apply Neyman allocation on the remaining strata. The
reason is as follows: suppose bounded strata are removed from
further consideration. Then, remaining memory is divided among
the remaining strata. This may lead to further bounded strata
(which may not have been bounded earlier), and Neyman alloca-
tion again does not apply.

The following two-step process reduces variance-optimal of-
fline SRS to variance-optimal sample size reduction.

Step 1: Suppose we start with a memory budget of n, sufficient
to store all data. Then, we will just save the whole data set in the
stratified random sample, and thus each sample size s; = n;. By
doing so, the variance V is minimized, since V' = 0 (Equation 1).
Step 2: Given the stratified random sample from Step 1, we reduce
the memory budget from n to M such that the resulting variance
is the smallest. This can be done using variance-optimal sample
size reduction, by calling SSR or MultiElementSSR with target
sample size M.

VOILA (Algorithm 5) simulates this process. The algorithm only
records the sample sizes of the strata in array £, without creating
the actual samples. The actual sample from stratum i is created
by choosing L[i] elements from stratum i, using a method for
uniform random sampling without replacement.

THEOREM 6.1. Given a data set R with r strata, and a memory
budget M, VOILA (Algorithm 5) returns in L the sample size of
each stratum in a variance-optimal stratified random sample. The
worst-case time cost of VOILA is O(r logr).

Proor. The correctness follows from the correctness of The-
orem 4.6, since the final sample is the sample of the smallest
variance that one could obtain by reducing the initial sample
(with zero variance) down to a target memory of size M. The run
time is dominated by the call to MultiElementSSR, whose time
complexity is O(r log ). O

7 EXPERIMENTAL EVALUATION

We present the results of an experimental evaluation. The input
for our experiment is a (finite) stream of records from a data
source, which is either processed by a streaming algorithm or
by an offline algorithm at the end of computation. A streaming
sampler must process data in a single pass using limited memory.
An offline sampler has access to all data received, and can com-
pute a stratified random sample using multiple passes through
data. We evaluate the samplers in two ways. The first is a direct
evaluation of the sample quality through the resulting allocation
and the variance of estimates obtained using the samples. The
second is through the accuracy of approximate query processing
using the maintained samples for different queries.
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Figure 1: Characteristics of the OpenAQ dataset.

7.1 Sampling Methods

We compared our stream sampling method S-VOILA toReservoir,

ASRS and Senate sampling. Reservoir is a well-known stream
sampling method that maintains a uniform random sample cho-
sen without replacement from the stream - we expect the number
of samples allocated to stratum i by Reservoir to be proportional
to n;. Senate [1] is a stratified sampling method that allocates
each stratum an equal amount of sample space. For each stratum,
Reservoir sampling is used to maintain a uniform sample.

ASRS is an adaptive stratified sampling algorithm due to Al-
kateb et al. (Algorithm 3 in [5]). Their algorithm considers re-
allocations of memory among strata using a different method,
based on power allocation [10], followed by reservoir sampling
within each stratum. We chose the power allocation parameter
to be 1 in order to obtain a sample of the entire population.

We also implemented three offline samplers VOILA, NeyAlloc,
and an offline version of Senate. Each uses two passes to com-
pute a stratified random sample of a total size of M records. The
first pass is to determine strata characteristics used to allocate the
space between strata. The second pass is to collect the samples
accordingly to the computed allocation.

7.2 Data

We used a real-world dataset called OpenAQ [37], which con-
tains more than 31 million records of air quality measurements
(concentrations of different gases and particulate matter) from
7,923 locations in 62 countries around the world in 2016. Data
is replayed in time order to generate the stream and is stratified
based on the country of origin and the type of measurement,
e.g., all measurements of carbon monoxide in the USA belong
to one stratum, all records of sulphur dioxide in India belong to
another stratum, and so on. The total number of strata at differ-
ent points in time are shown in Figure 1c. We also experimented
with another method of stratifying data, based only on the city
of origin, whose results are shown at the end of this section. We
also experimented with a synthetic dataset. The results obtained
were qualitatively similar to the real-world data, and we omit
these results due to space constraints.

Each stratum begins with zero records, and in the initial stages,
every stratum is bounded. As more data are observed, many of the
strata are not bounded anymore. As Figure 1c shows, new strata
are added as more sensors are incorporated into the data stream.
Figures la and 1b respectively show the cumulative frequency
and standard deviation of the data over time; clearly these change
significantly with time. As a result, the variance-optimal sample-
size allocations to strata also change over time, and a streaming
algorithm needs to adapt to these changes.
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7.3 Allocations of Samples to Strata

We measured the allocation of samples to different strata. Unless
otherwise specified, the sample size M is set to 1 million records.
For all experiments on allocations or variance, each data point is
the mean of five independent runs. The allocation can be seen as a
vector of numbers that sum up to M (or equivalently, normalized
to sum up to 1), and we observe how this vector changes as more
elements arrive.

Figures 2a, 2b and 2c show the change in allocations over time
resulting from VOILA, S-VOILA with single element processing,
and S-VOILA with minibatch processing. Unless otherwise spec-
ified, in the following discussion, the size of a minibatch is set
to equal one day’s worth of data. Visually, the allocations pro-
duced by the three methods track each other over time, showing
that the streaming methods follow the allocation of VOILA. To
understand the difference between the allocations due to VOILA
and S-VOILA quantitatively, we measured the cosine distance
between the allocation vectors from VOILA and S-VOILA. While
detailed results are omitted due to space constraints, our results
show that allocation vectors due to S-VOILA and VOILA are very
similar, and the cosine distance is close to 0 most of the time and
less than 0.04 at all times.

7.4 Comparison of Variance

We compared the variance of the estimates (Equation 1) produced
by different methods. The results are shown in Figures 3 and
4. Generally, the variance of the sample due to each method
increases over time, since the volume of data and the number of
strata increase, while the sample size is fixed.

The comparison of different streaming algorithms is shown
in Figure 4. Among the streaming algorithms, we first note that
both variants of S-VOILA have a variance that is lower than
ASRS, and typically close to the optimal (VOILA). The variance
of S-VOILA with minibatch processing is typically better than
with single element processing. We note that the variances of
both variants of S-VOILA are nearly equal to that of VOILA until
March, when they start increasing relative to VOILA, and then
converge back. From analyzing the underlying data, we see that
March is the time when a number of new strata appear in the data
(Figure 1c), causing a substantial change in the optimal allocation
of samples to strata. An offline algorithm such as VOILA can
resample more elements at will, since it has access to all earlier
data from the stratum. However, a streaming algorithm such as
S-VOILA cannot do so and must wait for enough new elements
to arrive in these strata before it can “catch up” to the allocation
of VOILA. Hence, S-VOILA with single element as well as with
minibatch processing show an increasing trend in the variance
at such a point. When data becomes stable again the relative



40%

(b) S-VOILA with single element

2016-11

2016-09
2016-07

2016-05
2016-03
2016-01

60% 80% 100% 0%

20%

40% 60% 80% 100%

(c) S-VOILA with minibatch of size one day

Figure 2: Change in allocation over time. OpenAQ data.

2016-11 2016-11
2016-09 2016-09
2016-07 2016-07
2016-05 2016-05
2016-03 2016-03
2016-01 2016-01
0% 20%  40%  60%  80%  100% 0% 20%
(a) VOILA
1.0000
80.1000
£ 0.0100
50.0010
0.0001
0.0000

N 2 &) > 5 © 3§ $ >
TS T TS TS ST
N N N N N N

RN

SVOILA [mNeyAlloc & Senate
Figure 3: Variance of VOILA compared to NeyAlloc and
Senate. Sample size: 1M records, OpenAQ data.

0.004

» 0.003

]

£ 0002

] .

= 0.001 A

0.000 = :

R I S R S o

& &
I I I L S R S S DS

SVOILA @S-VOILA, One-day Batch @ S-VOILA, Single = ASRS

Figure 4: Variance of S-VOILA compared with ASRS and of-
fline VOILA. Sample size 1M records, OpenAQ data.

0.005
0.004

o

2 0.003

S

5 0.002

0.001
0 =

N 32 X > o © 3 & 9 QS N Y
PSS T ES TS S ES
S S S S S S
—-S-VOILA, Single —£-8-VOILA, Batch 10

S-VOILA, Batch 1K —+—S-VOILA, Batch 10K

-=-VOILA
S-VOILA, Batch 100
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performance of S-VOILA improves. In November and December,
new strata appear again, and the relative performance is again
affected.

Among offline algorithms, we observe from Figure 3 that
Senate performs poorly, since it blindly allocates equal space
to all strata. NeyAlloc results in a variance that is larger than
VOILA, by a factor of 1.4x to 50x. While NeyAlloc is known to be
variance-optimal under the assumption of having all strata being
abundant, these results show that it is far from variance-optimal
for bounded strata.

Impact of Sample Size: To observe the sensitivity to the
sample size, we conducted an experiment where the sample size
is varied from 5000 to 1 million. We fixed the minibatch size to 100
thousand records. As expected, in both S-VOILA and VOILA, with
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single element and minibatch processing, the variance decreases
when the sample size increases. The general trend was that the
variance decreased by approximately a factor of 10 when the
sample size increased by a factor of 10. We omit detailed results
due to space constraints.

Impact of Minibatch Size: We further conducted an experi-
ment where the minibatch size is chosen from {1, 10, 102, 103, 104}.
The results are shown in Figure 5. A minibatch size of 10 elements
yields significantly better results than single element S-VOILA. A
minibatch size of 100 or greater makes the variance of S-VOILA
nearly equal to the optimal variance.

7.5 Query Performance, Infinite Window

We now evaluate the quality of these samples indirectly, through
their use in approximate query processing. Samples constructed
using S-VOILA and VOILA are used to approximately answer a
variety of queries on the data so far. For evaluating the approxi-
mation error, we also implement an exact (but expensive) method
for query processing Exact that stores all records in a MySQL
database. Identical queries are made at the same time points in
the stream to the different streaming and offline samplers, as well
as to the exact query processor.

A range of queries are used. Each query selects a subset of data
through a selection predicate supplied at query time, and applies
an aggregate. This shows the flexibility of the sample, since it
does not have any a priori knowledge of the selection predicate.
We have chosen predicates with selectivity equal to one of 0.25,
0.50, and 1.00. We consider four aggregation functions: SUM, the
sum of elements; SSQ, the sum of squares of elements; AVG, the
mean of elements; and STD, the standard deviation. Each data
point is the mean of five repetitions of the experiment with the
same configuration. Each query was executed over all received
data after one month of data arrived, up to entire year of 2016 in
the OpenAQ dataset with thirty-one million records.

Figures 6 and 7 show the relative errors of different aggrega-
tions as the size of streaming data increases, while the sample
size is held fixed. Both figures show that S-VOILA outperforms
other streaming samplers across queries with different aggrega-
tion and selectivity. This result shows that S-VOILA maintains
a better quality of stratified sample to answer an aggregation
over a subset of data accurately. In addition, S-VOILA performs
very closely to its offline version, VOILA, which samples from the
entire received data. We note that when ASRS evicts elements
from per-stratum samples, there may not always be new elements
to take their place, hence it often does not use its full quota of
allocated memory.

Alternate Methods of Stratification. We also experimented
with the OpenAQ data set stratified in a different manner, us-
ing the city where the observation was made. Sample results
are shown in Figure 8. We still see that S-VOILA outperforms
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Figure 7: Streaming samplers. SSQ, AVG, and STD with selectivity 0.50, sample size = 1 million. OpenAQ data.
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Reservoir, Senate, and ASRS. This supports our observation
that the sample maintained by S-VOILA is of a higher quality
than other streaming samplers, no matter how data is stratified.

Impact of Sample Size. We also explored different sample
sizes varied from 500, 000 to 1 million. All methods benefit from
increased sample size and the relative performance between dif-
ferent methods remains the same across different sizes.

Impact of Minibatch Size. Figure 9 shows the impact of the
minibatch size on the accuracy of streaming samplers for the
SUM query with selectivity 0.5. The sample size is set to one
hundred thousand for each sampler. S-VOILA with different mini-
batch sizes has an error less that 1%, often much smaller, while
Reservoir has an error that is often 3% or larger. In addition, we
observe that S-VOILA with different minibatch sizes is very close
to VOILA.

7.6 Sliding Window Streaming

We experimented with streaming algorithms Reservoir and
S-VOILA with a sliding window of size W = 10°. The version of
Reservoir that was used here maintains a uniform sample over
the window by sampling each record with the same selection
probability of ¥, so it may be more accurately termed “Bernoulli
sampling”. S-VOILA uses stratified sampling with single element
processing, as described in Section 5. As the window slides, we
periodically ask for sum of the value attribute in the current win-
dow. We report the error by compare the estimates from samples
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Figure 9: Streaming samplers, impact of minibatch size,
sample size = 100,000. (SUM with selectivity 0.5)
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records, OpenAQ data.

with the ground-truth answer. Figure 10 shows the average errors
of 5 runs. With a 10% sample rate, as expected, S-VOILA provide
an answer with less than 1% error, while Reservoir has an error
of about 2-3%.

7.7 Offline Sampling

We also compared VOILA with other offline samplers for the SUM
query with different selectivities. Figure 11 shows that VOILA
always has better performance than Senate and NeyAlloc. Our
experiments with other aggregations also showed similar results.
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ABSTRACT

The problem of estimating the similarity of a pair of nodes in an
information network draws extensive interest in numerous fields,
e.g., social networks and recommender systems. In this work we
revisit SimRank, a popular and well studied similarity measure for
information networks, that quantifies the similarity of two nodes
based on the similarity of their neighbors. SimRank’s popularity
stems from its simple, declarative definition and its efficient,
scalable computation. However, despite its wide adaptation, it
has been observed that for many applications SimRank may yield
inaccurate similarity estimations, due to the fact that it focuses
on the network structure and ignores the semantics conveyed
in the node/edge labels. Therefore, the question that we ask
is can SimRank be enriched with semantics while preserving its
advantages?

We answer the question positively and present SemSim, a mod-
ular variant of SimRank that allows to inject into the computation
any semantic similarly measure, which satisfies three natural con-
ditions. The probabilistic framework that we develop for SemSim
is anchored in a careful modification of SimRank’s underlying
random surfer model. It employs Importance Sampling along
with a novel pruning technique, based on unique properties of
SemSim. Our framework yields execution times essentially on par
with the (semantic-less) SimRank, while maintaining negligible
error rate, and facilitates direct adaptation of existing SimRank
optimizations. Our experiments demonstrate the robustness of
SemSim, even compared to task-dedicated measures.

1 INTRODUCTION

Estimating node similarity in information networks is the corner-
stone of many applications, e.g., retrieving similar users in social
networks, and a fundamental component in numerous network
analysis algorithms, such as link prediction and clustering.

In this work we consider SimRank [13], a well-studied simi-
larity measure for information networks. The intuition behind
SimRank is that similar objects are referenced by similar objects,
and thus it quantifies node similarity based on the compound
similarity of their neighbors. SimRank’s popularity stems from
its simple declarative definition and its efficient computation,
incorporating a broad range of optimizations [15, 39]. However,
despite its wide adaptation, it has been observed that for many
applications SimRank may yield inaccurate estimations [37, 40],
as it focuses solely on the network structure and ignores the se-
mantic information conveyed in the node/edge labels. Thus, the
question we address is the following:

Can SimRank be enriched with semantics while preserving its
intuitive, declarative definition and efficient computation?

We answer the question positively, and present SemSim, a
refined variant of SimRank, that weights nodes’ structural simi-
larity with their semantic similarity and edge weights, yielding an
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effective, comprehensive measure. SemSim’s probabilistic frame-
work, anchored in a careful modification of SimRank’s underlying
random surfer model, together with dedicated optimizations, al-
lows for execution times essentially on par with the semantic-less
SimRank, while maintaining similar negligible error rates. Direct
adaptation of existing SimRank optimizations is also enabled.

We demonstrate the problem that we tackle with an illustrative
example.

Example 1.1. The simple information network depicted in
Figure 1 represents a bibliographic database. It includes nodes
describing authors, countries and research fields, with edges link-
ing authors to their co-authors, country of origin and fields of
interest. A semantic taxonomy is also reflected in this network
(pink nodes) where entities are linked to their hypernyms, as indi-
cated by the “is-a" edges. Edge weights reflect the strength of the
relations (for conciseness, some weights are omitted but should
be assumed to have an identical arbitrary default value). To visu-
ally represent the prevalence of a concept in the dataset, we use
the width of the borders surrounding the nodes (an explanation
of this quantification is provided in the sequel).

We wish to determine which of the authors, Bo or John, is
more similar to Aditi. Observe that: (1) all three collaborated with
Paul twice (as indicated by the edge weights); (2) their origin
countries are all highly prevalent (as indicated by the borders’
width), compared to the authors’ fields of interest, thus the lat-
ter is more informative and should have a greater effect on the
similarityl; (3) Crowdsourcing, the common field of John and
Aditi, is more particular (less prevalent) than Data Mining, the
field shared by Bo and Aditi. Hence, intuitively, Crowd Mining is
semantically closer to Spatial Crowdsourcing than to Web Data
Mining. Consequently, John is more similar to Aditi than Bo, even
though they reside in different continents. Note, however, that
ignoring semantics and considering the network structure alone
(even including edge weights), Bo and Aditi seem more similar,

Following standard argumentation, an estimation of similarity increases
more drastically when indicated by a less frequent event [32].
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and indeed, SimRank (like other measures [37, 43]) erroneously
derive a higher similarity score for them.

Several refinements for SimRank have been proposed in the lit-
erature (see Related Work). For instance, SimRank++ [2] is a vari-
ant of SimRank that also considers edge weights, yet semantics
is ignored, and, importantly, scalability is not addressed. Other
works (e.g. [37]) partially account for semantics by considering
only meaningful meta-paths (i.e. paths of a specific label patterns)
between objects. But as can be seen in the above example (and in
our experiments) this does not always suffice to accurately dif-
ferentiate objects. Alternatively, several semantic measures have
been proposed [23, 32], but they typically gauge the similarity
based on ontological information and the Information Content
(IC) of nodes, while the rest of the network structure is ignored.
In an attempt to fully account for both structure and semantics,
recent works abandon SimRank and rely instead on representa-
tion learning, using techniques such as node embedding [4, 30].
While this approach often outperforms a naive combination of
structural and semantic similarity measures, a key drawback is
that results are hard to explain and interpret, as is often the case
with machine learning. Interestingly, we show that our SimRank
variant not only retains its intuitive, declarative flavor but also
yields more accurate estimations compared to these works.

Next, we provide a brief overview of our results.

The SemSim similarity measure. We refine SimRank by weight-
ing nodes’ neighbors similarity with their semantic similarity
and edge weights. Our definition is modular and allows to inject
into the computation any semantic measure, as long as it satisfies
three intuitive conditions that are typically satisfied by existing
measures. We present SemSim iterative formulation, analogous
to SimRank iterative formulation [13]. We prove that SemSim’s
solution always exists (as was shown for SimRank), and show
that its iterative formula converges to its fix-point at least as fast
as SimRank, and possibly faster, due to an additional semantic
factor (Section 2).

Random-surfer model. SimRank’s underlying random-surfer
model serves as the basis for many of its optimizations. We es-
tablish a corresponding model for SemSim. First, we define the
notion of a Semantic-Aware Random Walk (SARW), which refines
the traditional random walk definition, and prove that SemSim
can be computed using SARWs. This interpretation considers
the node-pair graph G2, in which a node represents an ordered
pair of nodes from the original graph G. Interestingly, we prove
that given a threshold s.t. only similarity scores above it are of
interest, the semantics can effectively be used to reduce the size
of G2, with the computation of SemSim over the reduced graph
yielding the same results as those computed via the full graph
G?. Our experiments demonstrate that a significant reduction of
up to three orders of magnitude is achieved in multiple datasets
(Section 3).

Approximated similarity scores. Exact computation may still
be expensive for large graphs, despite the speed-up gained by
the graph reduction. For SimRank, the excessive size of G2 moti-
vated a battery of optimizations based on a Monte-Carlo (MC)
procedure [15, 34, 39]. SimRank basic MC framework returns an
approximated SimRank score in O(n,, - t) time, where n,, is the
number of walks sampled from each node and ¢ is a bound on
their length. To efficiently approximate SemSim we develop an
analogous MC framework, thereby enabling a direct application
of SimRank optimizations. First, we show that a naive solution
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of simply replacing SimRank’s underlying uniform distribution
with the semantic-aware distribution leads to a quadratic increase
of the sample size. To overcome this, we employ Importance Sam-
pling, and devise an unbiased estimator for SemSim, which avoids
this increase and returns the estimated SemSim score in aver-
age time of O(n,, - t - d%), where d is the average in-degree in
the graph G. To further reduce computation cost, we devise a
dedicated pruning technique that avoids the computations of un-
promising node-pairs and irrelevant (low probability) walks, at
the cost of a controlled additive error to the approximated scores.
While the worst-case time complexity remains the same, our
experiments show pruning to be extremely effective in practice,
yielding running times on par with SimRank (Section 4).

Experimental study. We conduct an experimental study over
real data, demonstrating the effectiveness of SemSim in multiple
practical scenarios. Our results demonstrate the robust quality of
SemSim, even compared to task-dedicated measures. The results
further exhibit the efficiency and accuracy of our framework and
its ability to boost SimRank with semantics while preserving its
performance (Section 5).

Finally, related work and conclusions are presented in sections
6 and 7, respectively. For space constraints, proofs are deferred
to a technical report [27].

2 PRELIMINARIES

We first explain the data model used in our setting, then present
our novel measure, SemSim.

2.1 Data Model

Following [36], we refer to the objects graph as a Heterogeneous
Information Network (HIN), a flexible graph model that can cap-
ture and integrate various types of data. Let V be the domain
of vertices, £ the domain of labels, and R* the domain of real
positive numbers > 0.

Definition 2.1 (Heterogeneous Information Network). A HIN is
a directed weighted graph G = (V,E, §,, W), where: V C V is
a finite set of vertices; E C V X Visaset of edges; ¢ : V — L
and : E — L are vertex and edge labeling functions, resp., and
W : E — R" is an edge weight function.

The edge weight function W associates each edge with a real
positive number indicating the strength of the relation. When no
knowledge about this strength is available, the weight is set to a
default value. For example, in Figure 1, weights are available only
for edges with the label co-author, where the weights reflect the
number of collaborations between authors. Since no information
about other weights is available, all other weights were set to
1. For a node v, we denote by I(v), O(v) the set of in and out
neighbors of v, resp. An individual in-neighbor is denoted as
Ii(v), for 1 < i < |I(v)], if I(v) # 0 (O;(v), resp). Throughout
the paper we use the variables u, v, u’,v” to denote nodes in V.
Here we consider directed graphs, but stress that all results can
be adapted to the undirected model with minor modifications.

In many cases, the HIN is composed of two subgraphs that are
aligned together: one consists of individual objects and their rela-
tions, e.g. authors/countries, and their collaboration/residence re-
lationships. The second, ontological-style subgraph is comprises
of semantic categories and relationships, e.g. the pink nodes and
their “is-a" relations. Objects of the former can be connected to
their corresponding categories. For example, in Figure 1 all au-
thor nodes are connected to the category Author. When semantic



information is not included, one can enrich the graph by aligning
it with publicly available ontology [5, 26] by applying existing
entity alignment tools [28]. Ontologies typically contain a hier-
archical taxonomy of concepts, e.g., that USA “is-a" a Country in
America and Country in America “is-a" Country. Such taxonomies
are often leveraged to define semantic similarity measures.

2.2 Similarity Notions

As described above, our semantic-rich graph model contains
various types of linked entities, as well as additional knowledge
that is captured by the edge weights. Next, we devise a refined
version of SimRank [13] that effectively considers all information.
We start with a short background on SimRank, then provide the
formal definition for SemSim.

SimRank follows the intuitive assumption that: “two nodes
are similar if they are related to similar nodes". Formally, given
two nodes u, v € V, their SimRank score is defined as follows. If
u = v then simrank(u, v) = 1, else: simrank(u, v) is given by the
following recursive formula without the red colored parts.

sim(u,v) =

1)

sem(u,v) - c HWI @)
— 2 D, simw. @) W), w) W), 0)
u,ov i J

where ¢ is a decay factor in (0,1), Ny, » = |[I(w)| - [I(v)| and
sim(-, -) is the SimRank score of the neighboring pair-nodes. If
I(u) or I(v) are 0, then the score is defined to be zero.

In SimRank, the assumed graph model is an unweighted ho-
mogeneous graph, where all edges and nodes belong to a single
type, thus it ignores the labels’ semantics and edge weights. We
enrich SimRank by weighting, at each step of the computation,
the neighbors’ similarity with the edge weights and the nodes’
semantic similarity. Formally, given a semantic similarity mea-
sure sem(-, -), the red parts indicate our refinements to SimRank
standard formula: (i) an additional semantic factor is added; (ii)
the edge weights are taken into consideration. Correspondingly,
the normalization factor is set to:

@) |1()|
Nuo= Y > Wiw,w) - W(Ij(©),0) - sem(li(w), [;(0))
i
where sim(-, -) in the refined formula denotes the refined similar-
ity of the neighbors. Here too, if I(u) or I(v) are the 0, then the
similarity score is defined to be zero.

Note that according to our definition of similarity, the semantic
similarity of the neighboring pairs of nodes appears as well (as
the definition is recursive), and therefore, the similarity of two
nodes u, v is, in fact, proportional to the semantic similarity of
their neighbors.

Importantly, our definition of SemSim considers all neighbor-
pairs. An alternative could be to take edge labels into considera-
tion and restrict attention to neighbor-pairs that are pointed by
edges having the same label. However, while such formulation re-
quires only minimal technical changes and all our results remain
unchanged, our experiments showed it to be less accurate, as
this definition may overlook possibly important relations among
the objects. Moreover, both definitions yield essentially the same
running times and we thus omit this restriction.

Semantic Similarity. Multiple semantic measures have been
proposed in the literature [16, 20]. In general, any similarly func-
tion sem(:, -) can be employed in SemSim, as long as it satisfies
the following constraints. For all u,v € V:
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(1) Symmetry. sem(u,v) = sem(v, u).

(2) Maximum self similarity. sem(u, u) = 1.

(3) Fixed value range. sem(u,v) € (0, 1].

Those requirements are used to prove the soundness of Sem-
Sim (Theorem 2.3). The first two are typically satisfied by com-
mon semantic measures (e.g., [16, 23, 32]). For the third constraint,
scores can be normalized into a [0 + €, 1] range, for a small € > 0
value [29].

We next briefly overview a simple and effective semantic mea-
sure that we have used in our experiments (see Section 6 for a
discussion on alternatives). Lin [23] is an Information Content
(IC)-based measure that is defined over concept taxonomies. The
IC of a node v is quantify as the negative of its log likelihood:
IC(v) = —log(P[v]), where P[v] denotes the frequency of v. Le.,
the more prevalent a concept is, the lower its IC value. Intuitively,
the similarity between concepts measures the ratio of the amount
of information needed to state their commonality to the infor-
mation needed to describe them. Given two nodes u and v in a
taxonomy, their Lin score is defined as:

2 - IC(LCA(u,v))

IC(u) + IC(v)
where LCA(u, v) is the lowest common ancestor of u and v in the
taxonomy.

Note that Lin satisfies the constraints, only if the IC values
are in (0, 1] (proof omitted). To estimate the IC of a concept, we
adapted the Seco formula [33] in our implementation, providing
a simple linear-time (in the size of the taxonomy) algorithm and
extended it to our setting. This adaptation ensures the IC values
lie within (0, 1] (see [27] for more details).

Lin(u,v) =

Entity IC value
Thing 0.001
Author, Country 0.01
Country in Asia, Country in America 0.015
China, India, US 0.02
Data Management 0.2
Data Mining 0.3
Crowdsourcing 0.85
Web data mining 0.7
Crowd Mining, Spatial Crowdsourcing 0.9
Bo, John, Aditit, Paul 1.0

Table 1: IC values for Figure 1 entities.

We next provide the full computation of SimRank and SemSim
for the example introduced in the Introduction (Example 1.1),
while using Lin as the integrated semantic measure.

Example 2.2. We computed the IC values (depicted in Table
1) on the same domain ontology used for the AMiner dataset
(which includes a taxonomy of CS terms as well as a geographic
taxonomy, see experimental results), and set absent edge weights
to 1. For both SimRank and SemSim, we set the decay factor ¢ to
0.8 and the number of iterations k was set to 3.

We first review the relevant Lin scores: since all author-nodes
are leafs in the taxonomy;, their corresponding IC values are all 1,
thus Lin(Bo,Aditi) = Lin(John,Aditi)= 0.01 (which also serves as
the upper bound on their SemSim scores). Using the IC values
above, we get: Lin(Spatial Crowdsourcing,Crowd Mining)= 0.94
and Lin(Web Data Mining,Crowd Mining)= 0.37. Next, we briefly
overview SemSim and SimRank computation. At the first itera-
tion, for both measures, Ry = 0 for all authors pairs. Iteratively,
at the next step, since all three authors share two common neigh-
bors, Author and Paul, yet the common field-of-interest of Aditi



and John is more semantically similar than the common field of
Aditi and Bo, we get for SemSim that: Ry (John,Aditi) = 0.0073,
while R;(Bo,Aditi)= 0.066. Note that in this step the semantic
similarity of common neighbors propagates into the computa-
tion. On the other hand, according to SimRank, in this step both
pairs similarity scores are equal to 0.1. At the last step, according
to SemSim Ry (John,Aditi) = 0.0076, while Rz (Bo,Aditi)= 0.0073,
thus, SemSim obtains the desire result that while all authors are
fairly similar, John’s similarity to Aditi is a bit greater than Bo’s.
In contrast, according to SimRank, Ry (John,Aditi) = 0.12, while
Ro(Bo,Aditi)= 0.16. These results are due to the fact that both
Aditi and Bo reside in the same continent.

We also computed the SimRank scores solely over the col-
laboration network (i.e., ignoring the semantic relations). Not
surprisingly, since the resulted network is symmetric, the ob-
tained similarity scores for both pairs were exactly the same.

2.3 Basic Properties of SemSim

We next show a few of SemSim’s properties which will then be
used to present a naive algorithm for computing SemSim, that
serves as a baseline which we improve in the following sections.

Following SimRank’s iterative form [13], a solution to Equa-
tion (1) can be reached by iterating to a fix-point. For the k-th
iteration, an iterative function Ry (u,v) denotes the similarity
score of u and v in the k-th iteration. Initially, Ro(u, v) is defined
as 0 if u # v and 1 otherwise. Iteratively, Ry 1(u, v) is computed
from Ry(-,-) as follows:

Ro(u, ) ={ e @
Riy1(u,0) = (3)
sem(u, 0) - ¢ [I(w)] [1(v)]
—_— Z Z Re(Ii(w), Ij(0)) - W(Ii(w), u) - W(I;(0), 0)

Nuo :

We can prove that the iterative SemSim form has the following
properties:

THEOREM 2.3. Yu,v € V and for every 0 < k € N:

(1) Symmetry. Ry (u,v) = R.(v, u).

(2) Maximum self similarity.Ry (u,u) = 1.

(3) Monotonicity. 0 < Ry (u,v) < Rpy1(u,v) < 1.

(4) Existence. The solution always exists.

0 < ¢ < min(argminy,, ,(Ny,0), 1), the solution is unique.

First, note that the decay factor’s upper bound can be found in
average time of O(n? - d%), where d is the average in-degree in the
graph, by simply iterating over all node-pairs. Second, we observe
that the uniqueness property here is a weaker version than the
one that was proven for SimRank, where the solution is unique
for every 0 < ¢ < 1. Yet, our experiments show that for real-
life networks, the upper bound is high enough to comfortably
accommodate typical ¢ values chosen for SimRank (e.g., 0.6, as
used in [24, 39]).

We can also show (following similar proof for SimRank [46])
that not only the scores are monotone (i.e, Ri. (4, v) < Rr,;(u,v)),
their differences in consecutive iterations are bounded.

PROPOSITION 2.4. Foreveryu,v € V andk > 0:0 < Ry ,;(u,v)—
Ri(u,v) < sem(u, v) - ck+1

This suggests that the iterative form of SemSim converges as
fast as SimRank (where the convergence was shown to be cK*1
[46]), and possibly faster due to the additional semantic factor.
Another useful property is that sem(-, -), the semantic similarity
of two nodes, provides a natural upper bound on their SemSim
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score. This property is highly effective since, as we will show, it
can be used to prune un-promising node-pairs.

PROPOSITION 2.5. For every two nodes u,v € V:sim(u,v) <
sem(u,v).

To conclude, Theorem 2.3 provides a simple algorithm for
computing SemSim, that computes its iterative form to its fix-
point (or up to a required precision bound). We assume that the
computation of a single-pair semantic similarity score can be
done in constant time (possibly after pre-processing), without
materializing the n X n matrix of scores. Indeed, this is the case for
numerous semantic measures [16, 32], Lin’s measure included.
Given this, the complexity of the iterative algorithm is equivalent
to SimRank’s complexity [13]: The time complexity is O(k-d?-n?),
where n = |V|, d is the average in-degree in G and k is the number
of iterations. The worst case complexity for a given k is O(n*).

3 RANDOM SURFER-PAIRS MODEL

The iterative algorithm provided in the previous section has two
main disadvantages: (i) it computes all pair-wise scores, even if
one is interested only in a single-pair, and (ii) its complexity is pro-
hibitive for large graphs. To address these issues, we provide an
alternative interpretation to SemSim, based on the random surfer
model for SimRank, then, explain how SemSim can be computed
efficiently. In essence, we show that with careful adjustments,
an analogous random surfer model can be establish for SemSim.
The key challenge is to incorporate semantics. We show that
SemSim measures how soon two random surfers are expected to
meet, if they start in two nodes and randomly walk on the graph
backward, while being aware of both edge weights and semantics.
We define Semantic-Aware Random Walks (SARW), then prove
that SemSim can be computed using them. Interestingly, we will
see that semantics can be leveraged to speed up the computation.

3.1 Semantic-Aware Random Walks (SARW)

Following [13], we use the definition of a node-pair graph G2, in
which each node represents an ordered pair of nodes from G. An
edge e = ((u,u’), (v,v")) € G? iff both (1, v) and (u’,v’) are € G.
We extend the definition with an assignment of weights: The
weight of an edge e = ((u,u’), (v,v")) is defined as: Wg2(e) :=
W(u,v) W(u’,v’). For simplicity, we use the notation of W (e) to
indicate an weight in both G and G?, when the context is clear.

Let us assume that all edges in G have been reversed. For
example, Figures 2a and 2b display a graph G and all out-edges
from (A,B) (after reversal). For simplicity, all edge weights are
set to 1. We call a node (u,v) € V2 a singleton node if u = v. In
SimRank, a surfer chooses the next node uniformly at random out
of all out-neighbors of the current node. To incorporate semantics
and weights, we devise the following distribution.

Definition 3.1 (Semantic-Aware Probability Distribution). The
probability a random surfer traveling G in a current node (, u’)
would next move to its out-neighbor (v, v’) is:

_ W((u,u’), (v,0")) - sem(v,v’)

T 0w
W((u, u’), 0i(u, u)) - sem(O;(u,

Pl(u,u") = (v, )]

i=1
Using the distribution above, we define SARWs as follows. A
walk in G2 represents a pair of walks in G. Let w = (wy, ..., wg)
denote a walk in G%, where wr, ..., wi € V2, and I(w) = |w|. The

walk w has the probability P[w] of traveling within it, where
k-1

P[W] = Hl P[Wi il Wi+1]~
i=

u’))



Importantly, this distribution defines a positive probability to
all paths in G?. However, as the choice of the next step relies on
the semantic similarity of node-pairs, pairs of higher semantic
similarity are preferred over pairs of low similarity (typically,
pairs whose nodes belong to different categories). Namely, paths
that share the same edge label in each step, are likely to get higher
probabilities. Nonetheless, even paths that do not share the same
labels are considered, as they may also provide relevant informa-
tion?. We provide here an illustrative example for a computation
of SARWs.

Example 3.2. Consider again Figure 2b. Observe that author
A’s current country is Canada, and author B’s origin country is
the USA. Noticeably, even though the two edges do not share the
same label, this information may be important when assessing
similarity. According to our definition we get that since the enti-
ties Canada and USA are semantically similar (Lin(Canada, USA) =
0.8), the probability that a random surfer in the node (A,B) will
move next to its neighbor (Canada, USA) is:

P[(A, B)— (Canada, USA)| = 08

0.84+0.2+0.2+1.0

On the other hand, as the two entities Author and the USA are not

semantically similar (Lin(Author, USA) = 0.2), the corresponding
probability is lower:

P[(A, B)— (Author, USA)] =

=0.36

0.2

— = 0.09
0.8+0.2+0.2+1.0

The SimRank score of a node (1, v) € V2 can be computed
using all walks from it leading to a singleton node in G. Analo-
gously, we prove that SemSim can be computed using all semantic-
aware walks from (u, v) leading to singleton nodes in G?. Let W =
{(u,v) ~ (x,x)} be the set of all walks in G? form (u, v) to any
singleton node (x, x). If no such paths exist, then W = 0. By defini-
tion, (x, x) is the only singleton node in w (after the first meeting,
the two surfers halt). Let: s’(u, v) = sem(u,v) Y,y P[w] - clw),
Theorem 3.3 provides an alternative way to compute the SemSim
score of a single pair.

THEOREM 3.3. Yu, v, given ¢ which ensures the uniqueness of
sim(-,-): s"(u,v) = sim(u, v)

Using our refined model, one may compute (single pair or all
pairs) SemSim scores over G2. However, for large graphs, its size
may be too large. We next explain how the semantics can be
effectively employed to reduce the size of G2.

3.2 Reducing the Size of G*

In many practical applications one is interested only in node-
pairs whose similarity scores are above a given threshold. Se-
mantics provides an efficient tool to prune G? in such situations.
Intuitively, Prop. 2.5 provides a semantic-based upper bound on
the similarity scores, which can be used to avoid materializing
un-promising node-pairs. We devise a reduced version of G? on
which the computation of SemSim (for node-pairs with similarity
scores are above a given threshold) yields the same result as that
computed via the full graph G%. Indeed, our experimental results
demonstrate a significant reduction in the size of G2.

Given a threshold 0 < 6 < 1, we define the graph Gé, which
includes only pairs s.t. their semantic scores are > 6. However,
simply omitting nodes from G? directly affects the similarity
scores, thus, may lead to inaccurate scores. We therefore incor-
porate omitted paths by refining the edge weights and possibly

%In contrast to the meta-path approach [37] that restricts attention only to same-
labels paths.
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adding new edges. Intuitively, each omitted path is replaced by
a corresponding edge, whose weight reflects its probability. If
such an edge already exists in G?, the omitted edge’s weight
is added to the existing edge weight. Moreover, the weight of
omitted path is further weighted by the decay factor c, to ensure
the similarity scores would not be affected. Last, to ensure that
the probability of choosing a neighbor remains the same as in the
original graph G?, the graph Gé includes a new vertex D, that
has only in-neighbors, and serves as a “drain".

Definition 3.4. [Gg] Given a node-pair graph G? and a thresh-
oldo<6<1, Gg = (Vy U {D}, Eg, Wp), where: Vy C V2 is a set
of nodes and D is a new node, Eg C (Vy U {D} X Vy U {D}) is the
edges set and Wy is a weight function, defined as follows.

o Nodes: A node (u,v) € Vy iff sem(u,v) > 0.

e Edges: An edge e = ((u,u’), (v,v")) € Eg iff at least one
of the following conditions holds
(1) The nodes (u, u’), (v, v") are adjacent in G.

(2) There exists a walk in G2, where w = ((u, u’), wy, . .
and the node-pairs wy ..., wr ¢ Vp.

e Weights: The weight of an edge e = ((u,u’), (v,v")) is
defined as Wy(e) = Wi(e) + Wa(e) where: Wi(e) = Wz (e)
if e € G% and (u,u’), (v,0") € Vg and 0 otherwise, and
Wa(e) = Zw:(u,u’)w(v, v’) Plw] - Cl(w)il’ where
t = {(w,u), wi, ..., wg, (v,0")) is a path in G? and the
node-pairs wy, ..., wi & Vy.

o Edges to D: Edges to the vertex D are added as follows:
V(u,u’) € Vy if the sum of all out-edges of (u,u’) in the
graph Gé is different then the sum of all out-edges of (u, u”)
in the graph G?, then ((u,u’), D) € Ey and Wy ((u, u’), D)
is set to be the difference.

In the last point, to ensure that all weights are strictly positive,
we can prove that for every node in Gé, the sum of out-edges in
the original graph G? is always > than the sum of out-edges in
the reduced graph G¢29' Additional edge pruning can be done by
the removal of all out-edges from singleton nodes. Since only the
first meeting point of the surfers affects similarity scores, such
edges can be omitted without changing scores (proof omitted).
For example, Figures 2b and 2c depict a partial graph G? and its
reduced version G‘Z9 (faded nodes are dropped).

The similarity scores over G2, denoted as sg(:,+), are defined
as the result of the random surfing computation on the reduced
graph. Le., if (u,v) ¢ Vp then sg(u,v) = 0, else: sp(u,v) =
sem(u, ) Xay:(u, v)wr(x, x) PIW] - ™), where w is a path in Gg
and I(w) is its length. We can now provide an alternative way to
compute SemSim scores over the graph Gé.

THEOREM 3.5. Y(u,v) € Vy : sg(u,v) = sim(u, v)

In conclusion, as we show in our experiments, the size of
the graph Gg is considerably smaller than that of G? and con-
sequently, computing SemSim over Gé requires exploring far
less and shorter paths, hence it is more efficient. However, when
considering very large graphs, even this compact representation
might still be excessively large. To that end, in the next section,
we present an alternative approach that simulates two random
surfers directly over G.

4 APPROXIMATED SEMSIM

We next present an alternative approach for an efficient compu-
tation of SemSim, based on a solution originally proposed for
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Figure 2: Example graph G, its reversed graph G? and its reduced version Gé (6 =0.3,c=0.3).

SimRank [9]. First, we prove that a naive solution of simply replac-
ing the underlying uniform distribution with the semantic aware
distribution leads to a quadratic increase in the sample size. To
overcome this, we employ Importance Sampling. As employing it
still entails a computational overhead, we provide a complemen-
tary pruning technique that significantly speeds up computation
while maintaining low error rates. We first recall SimRank op-
timizations while addressing the emerging challenges of their
implementation in SemSim, then present our refined framework.

4.1 SimRank’s Basic MC Framework

Suppose that we have two reverse walks w; and wy from the
nodes u,v € V, resp., and they first meet at the z-th step. Le.,
the 7-th steps of w; and wy are identical, but for any I < 7
their I-th steps are different. If the walks do not meet, then 7 —
co. Given two random walks of length k — 1, w; = (uy, ..., ug)
and wy = (vy, ..., Ug), let w denote their coupled random walk,
where w = ((u1,v1), ..., (U, U )). It has been shown in [13] that
simrank(u,v) = E[c"]. The authors of [9] suggested a Monte
Carlo (MC) approximation framework, utilizing this equality,
by sampling separated random walks, and approximating the
similarity score using the average meeting distance. Specifically,
to approximate SimRank, the framework precomputes a set of
reversed random walks from each node in G, s.t (i) each set has
n,, walks, and (ii) each walk is truncated at step t. Then the
estimated SimRank score of u and v is defined as:
Ny

— N

S
where 7; denotes the step at which the two walks, sampled from
u and v resp., first met, and oo otherwise. The space and pre-
processing time complexities of this framework are both O(n -
N, -t), and the method takes O(n,, - t) time to answer a single-pair
SimRank query.

An important observation underlying SimRank’s MC frame-
work is the fact that the probability of a coupled random walk
sampled from G2, can be computed by simply multiplying the
two marginal probabilities of the separate walks, sampled from
G. Formally, given a coupled walk w = ((u1,v1), ..., (U, vg)), its
probability is:

k-1 1
rrivt = | oo

Considering its probability using the separated walks sampled
from G, we get:

k-1 1 k-1 1 k-1 1 k-1 1
QIO(W)IBIO(MI glo(ui)llO(Ui)l glo(ui,vi)l
That is, in SimRank, one can simply sample walks from each
node separately, directly from G, without materializing G%. We
will next show that this is not the case for SemSim, and present

a refined sampling method for the SARWs.
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4.2 Naive MC framework for SemSim

Analogously, for SemSim we have: sim(u, v) = sem(u,v) -Ep[c7],
where P is the semantic-aware probability. Note that when using
the semantic-aware probability, one can no longer sample the
walks separately. To account for the semantic similarity during
the sampling process, one must consider a pair of nodes in each
step. A naive solution would be to generate a set of SARWs
from every node-pair, then directly apply the MC framework.
Namely, we can get an adjusted framework for SemSim with the
same time complexity and error rate as in SimRank (because the
time complexity depends on the number of walks from each pair
of nodes, and this solution has the same number, n,,, of walks
from each pair). However, in SimRank, the sampling set is of
size O(n,, - t - n), whereas this solution requires a much larger
sampling set, i.e. O(n,y - t - n%) walks, as it samples n,, walks for
each pair. To avoid this quadratic increase of data storage, we
use importance sampling [10].

4.3 IS-based MC framework for SemSim

The core idea of our solution is to sample separate walks directly
from G, using a different distribution than the “unknown" dis-
tribution P, then, apply importance sampling to estimate the
desired similarity scores [10]. For completeness of this paper, we
provide a short overview on the importance sampling technique,
then present our adjusted framework.

Importance sampling is a general technique for estimating
properties of a distribution while only having samples generated
from a different one. For a single pair u,v € V, we wish to
estimate the expected value of sem(u,v) -
coupled random walk drawn from P, i.e.,

Ep[sem(u, v) - /)] = sem(u, v) - ZP(W) - clw)

Given n,, samples wi, ...

cl(w), where w is a

, Wn,, of coupled random walks drawn

w

from P, an empirical estimate of Ep[sem(u, v) - ()] is:
1 Ny

Ep[sem(u,v) - cl(w)] ~ sem(u,v) - — Z clwi)
Mw i3

Using a simple manipulation we get:

w P(w) - Q(w) - c!™) 1 % Pwi)
Bl 1= o T 2 o

where Q is a distribution s.t Yw if Q(w) = 0 then P(w) = 0.
Namely, we get an unbiased estimator of the function c! (W) under
the distribution P, using samples drawn from Q. In our case, we
can only sample separated walks from G (to avoid materializing
Gz), while the desired distribution is defined over walks from G2.
Indeed, the expected value of the new estimator is equal to the
desired one, that is, for every node-pair u, v we have:

P(w) - clw)

Q(w)

sem(u,v) - Ep[c!™)] = sim(u, v)

sem(u,v) - EQ[ (4)



where w is a coupled random walk from u and v, P is the
semantic-aware distribution and Q is the proposal distribution.
Note that this equality holds for any choice of Q and sem(:, ).
Let $0(u, v) denote the score obtained using the MC simulation
with a distribution Q. We can prove the following proposition,
that ensures the approximation method has a bounded error (as
was proven for SimRank [9]).

2
— €
PROPOSITION 4.1. For a node-pairu, v, with at least 1-2e T 2 irer)

probability: [E[$o(u, v)] — $o(u, v)| < €, where n,, is the number
of walks from each node and € is the error rate.

However, we note that E[$g(u,v)] # sim(u,v), due to the
truncation imposed on the sampled walks. To address this issue,
following the analysis provided in [39] we get:

[E[sim(u, v)] = 3o (u,v)| =

|E[sem(u,v) - ¢*] — sem(u,v) - Pr[t < t]E[c"|r < t]| =

sem(u, v)- |Pr[r > t]- E[c% |t > t]| < sem(u,v) - ¢! F! < ¢

By Prop. 4.1 and the inequality above, using union bound, we
can prove the following.

PROPOSITION 4.2. For any node-pair u,v and 0 < €,8 < 1, if
t > loge(§) and nyy > %(log(%) + 2log(n)), with at least 1 — 8
probability: |30 (u, v) — sim(u,v)| < €

Furthermore, we can prove that the probability of interchang-
ing two nodes in the similarity ranking of a node u converges to
zero exponentially in the number of sampled walks n,,.

PROPOSITION 4.3. For every nodes u,v and v’, such that § =
sim(u,v) — sim(u,v’) > 0 we have:
_ nw-52

2428

Prl$o(u,v) < $o(u,v")] < 2e

Note, however, that the accuracy of estimation depends on the
variance of the estimator, Var(Sg(u,v)), which in turn depends
on the distribution Q. In general, Var(sg(:, -)) is bounded in [0, 1],
since the similarity scores are bounded in [0, 1]. Therefore, we
wish to find a distribution Q s.t. (i) the sampling process and prob-
abilities computation can be done efficiently and (i) Vaar(3o(, 1))
is minimal. Here, since we do not have a-priori knowledge on
either the semantic similarity or the meeting points of coupled
walks, we choose Q to be the uniform distribution. See [27] for a
discussion of other possible choices.

We are now ready to present Algorithm 1, an MC framework
for computing single-pair SemSim scores, assuming, w.l.o.g., that
Q is the uniform distribution. Ignore, for now, the lines high-
lighted in red. At preprocessing, we generate n,, random walks
from each node, drawn from Q. Then, when a single-pair query
arrives, sim(u, v), we consider the set of coupled random walks
starting from u and v. For each coupled walk, if the two walks in-
deed meet, the probability of their prefix until the meeting point
is computed according to the distributions P and Q (lines 10 — 16).
Then, the obtained score is added to the total similarity score
(line 19). Finally, the estimated score is divided by the number of
samples n,, (line 20).

PROPOSITION 4.4. For every u,v € V, the expected output of
Algorithm 1 is sim(u, v), and the average time complexity is O(n,, -
d? - t), where n,, is the number of sampled walks from each node,
t is their length and d is the average in-degree in the graph G.

That is, an additional factor of d? is added to our framework’s
running-time. However, as we will show next, we can compensate
for this by employing a pruning-based optimization.
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Algorithm 1: IS-based MC framework for SemSim.

Input :n,, walks of length ¢ from each node, a decay
factor ¢, and a threshold 6.

1 sim=0
2 if sem(u, v) < 0 then
3 ‘ return 0
4 fori=1,..,n, do
5 Let w; denote the coupled walk of the i-th walks from u and
v
6 Let k be the samllest offset s.t the i-th walk from u and from
v meet
7 if such k exists then
8 Let 7(w;) denote the prefix of w; up to offset k
9 Denote 7(w;) = ((u1, v1), --., (U, VE)), Pw =1,
Qw =1,sim,, =1.
10 fori=1,....,k—-1do
11 Pw- = sem(uis1, Vit1)  W(tir1, ui) - W(vit1, 0i),
SO =0
12 for I;(u;) in I(u;) do
13 for I,(v;) in I(v;) do
14 SO+ = W(I(u;), u;) - W(I(v;), v;) -
sem(Ij(u;), Iz (v;))
15 Pw/=50, Qw- = [I(u;)] - [I(v;)|
16 SiMqy = SiMm,y, - 5;:’/ -c
17 if sim,, < 0 then
18 ‘ break
19 Sim = sim + Sim,,

sem(u,v)-sim

20 return
My

4.4 Pruning

Similarly to the idea presented for G2, we provide a pruning
technique for the MC framework, avoiding the similarity compu-
tation of low probability walks. Recall that for GZ the suggested
technique ensures that scores above a given threshold would not
be effected. Here, the approximation error may increase up to a
controlled threshold. While in G? it is good pruning-wise to use
high thresholds, here, if we use too high value the error grows
and the scores may become meaningless, thus lower values are
advisable. As opposed to the unbiased estimator we devised in
the previous section, our pruning technique adds a one-sided
additive error to scores. However, as we demonstrate in our ex-
periments, it accelerates the performance significantly, while
successfully distinguishing highly similar pairs from the rest.

For a coupled random walk w, let s(w) denote the contribution
of w to the similarity score. Since in every estimation we consider
n,, coupled walks, it follows that:
Plw] - W)

Qlw]

Instead of computing the exact score of s(w), our idea is to upper
bound it. Concretely, given a coupled walk w = (wy, .., wi.), with

a closer look on s(w) we get:
_ = Plw; = wiy1]-c d Plw; = wit1] - ¢
s(w) = < 1_[
i1 Qlwi = win] 711 Qlwi = wiy]

where 0 < | < k— 1. Namely, s(w) can be bounded in each step in
the chain. Therefore, given a threshold 6, we can avoid computing
the exact score, if in a certain step, the obtained score is smaller
than the bound 0, as from this step on the score can only decrease.
Formally, given a threshold 6 € [0, 1] and a coupled walk w, we
define §(w) as follows:

s(w) = %




Table 2: Datasets.

Dataset Size Tasks
AMiner [V|=0.35M [E| =3M | Entity Resolution
Amazon [V] = 0.6M [E| =6M Link Prediction
Wikipedia | [V| = 4.7K |[E| =101K Relatedness
WorNet [V| = 82K |[E| =128K Relatedness

Definition 4.5 (Approximated coupled walk score). The approxi-
mated score of a coupled walk w is defined as:
1
§(w) = ]_[
i=1
where [ is the smallest index this equation holds. If no such [
exists, then §(w) = s(w).

Plw; = wiy1] - ¢

Olwi = wir1] ~

As in the pruning done for G2, we can avoid computing scores
of all pairs u,v s.t. sem(u,v) < 6 (and again, obtain an error
bounded by 6). In such cases, the result score is set to 0.

Consider again Algorithm 1. The highlighted red lines indicate
our pruning refinements. In particular, in lines 2 — 3, similarity
scores of node-pairs with low semantic scores are set to 0, and in
lines 17 — 18 we ensure that scores of coupled walks are above 6,
and otherwise, are bounded. We can prove that given 6 € [0, 1],
the additional additive error is bounded by 6.

PROPOSITION 4.6. Given 6 € [0, 1], the additional additive error
of the IS-based MC framework with pruning is bounded by 6.

To ensure the estimated scores lies in [0, 1], we add the follow-
ing constraint on 6.

LEMMA 4.7. For every § € [0,1 — ¢] and u,v € V, the ap-
proximated similarity score $o(u, v) obtained by Algorithm 1 with
pruning lies in [0, 1], where ¢ € [0, 1).

This lemma implies that the MC framework with pruning can
efficiently capture big differences among similarity scores. But
when it comes to small differences, the error of approximation
obscures the actual similarity ranking, and an almost arbitrary
reordering is possible. However, for many similarity search appli-
cations it is sufficient to distinguish between very similar, mod-
estly similar, and dissimilar nodes. In terms of run-time, while
the worst-case time complexity remains the same (no pruning is
done), our experiments show pruning to be extremely effective
in practice, yielding running times on par with SimRank.

Concluding, as mentioned in the Introduction, multiple opti-
mizations techniques have been developed for SimRank based
on SimRank’s MC framework. Our framework extends for them
as well. We discuss this in more details in our technical report
[27], providing several examples, and also demonstrate this in
our experimental study.

5 EXPERIMENTAL RESULTS

We complement our work with an experimental study, conducted
to examine the performance of our measure as well as its use-
fulness in capturing objects’ similarity, compared to measures
proposed in previous work.

5.1 Experimental setup

We implemented SemSim in Java 7, and demonstrate its perfor-
mance using Lin as the integrated semantic measure. All experi-
ments were conducted on a Linux machine with 96GB of memory.
We next describe the graph datasets we examined, then detail
the parameters setting.
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Datasets. We used several graph datasets, commonly used in
the literature, which suitably include objects possessing both
structural information and semantic meaning, as depicted in
Table 2. Unless stated otherwise, all edge weights were set to 1.

AMiner. This graph was extracted from [1], and contains data
on 1.5M academic papers. We extracted a weighted co-author
graph focused on 30 database conferences. From each paper, we
extracted its authors and relevant terms. In addition, we incor-
porated a domain taxonomy, built by aligning the terms with
concepts from DBpedia [5]. The graph includes edges of three
types: (1) collaboration edges (with weights reflecting the num-
ber of collaborations between two authors); (2) terms-authors
edges (where weights correspond to the prevalence of the term
in a given author’s papers) and (3) taxonomy edges.

Amazon. This dataset was obtained from [18]. It contains
0.5M items from different categories, a domain taxonomy (ob-
tained from Amazon product categorization), and information
about co-purchased items. The edge types are: (1) edges between
co-purchase items (with weights reflecting the number of times
two items were bought together) and (2) taxonomy edges, linking
between products to their categories, as well as categories to their
super-categories.

Wikipedia. This dataset, obtained from [18], contains 4.7K
Wikipedia articles, each is represented by a node. The domain
taxonomy was built from Wikipedia categories. The edge types
are: (1) links between articles and (2) taxonomy edges.

WordNet. This dataset is the noun sub-part of the lexical
base WordNet [26]. The edge types are:(1) part-of relations, the
non-hierarchical relations in WordNet and (2) taxonomy edges.

For both AMiner and Amazon datasets, we extracted a smaller
versions to be used in the execution of the costly iterative forms
of SemSim and SimRank. In AMiner, the small version includes
the top 7K authors by number of publications, and in Amazon it
includes the top 5K most bought items.

Parameter setting. For all datasets, we found the upper bound
on the decay factor ¢ by iterating on all node-pairs u, v computing
Ny, ». We report that in all cases this value was > 0.6, a com-
monly used value for the decay factor in SimRank [24, 39]. Unless
mentioned otherwise, for both SemSim and SimRank we used the
following system parameters: The decay factor (c) was set to 0.6,
and for the probabilistic framework, a set of 150 random walks
of length 15 was sampled from each node. As for the threshold
parameter 6 used for pruning, we set § = 0.05. According to
our experiments, this choice of the parameters allows for fast
execution times, while maintaining negligible error rate.

5.2 Performance Evaluation

We review the performance of SemSim from five aspects: The
convergence rate of its iterative form, the size of the reduced
graph Gé compared to the full graph G2, the performance of
Algorithm 1, in terms of execution times and error rate and the
preprocessing phase.

Convergence. Our experiments validate empirically Prop. 2.4,
showing that SemSim converges as fast as, and even faster than
SimRank. We measured the average relative and absolute dif-
ferences between similarity scores at consecutive iterations, for
both SemSim and SimRank iterative forms, on different datasets.
Results are depicted in Figure 3. Indeed, SemSim converged faster
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Dataset G? Gf), 6 =0.90 Gf}, 6 =0.95
# nodes 60M 14K 9K
#: . .
AMiner - ;(igfes - 2.2B 39M 7.8M
& 7 OlPAS g 10 5
to singletons
Avg. paths’ length 4 3 3
# nodes 22M 10K 6K
Wikipedia #edges 10.2B 23.5M 4.7M
Avg. # of paths
. 19 10 6
to singletons
Avg. paths’ length 5 4 3

Table 3: The size of G* and Gz for 0 = 0.9 (top ~ 5K) or
0 = 0.95 (top =~ 1K).

than SimRank, and in all experiments it converged after 5 itera-
tion, i.e., the average (relative and absolute) difference between
similarity scores was smaller than 1073.

Size of Gz. We analyze the effectiveness of the G? pruning,
demonstrating that when only highly similar objects are of inter-
est (e.g., top-k queries), pruning with high 6 values (e.g., 0.9, 0.95)
is highly effective, and reduces the size of G significantly. We
refer the reader to Table 3, depicting a detailed comparison be-
tween the reduced graph Gé (while setting 6 = 0.9 and 6 = 0.95),
and the original graph G2, constructed from the Amazon and
Wikipedia datasets. In addition to the significant reduction in the
number of nodes and edges, one can see that the average length
of a path and the number of paths leading to singleton nodes
(i.e., the number of paths that are considered while computing
SemSim) were greatly reduced as well. However, while the mea-
sured size of G2 is smaller than G? in approximately 3 orders of
magnitude, this approach does not trivially scale for immense
networks, in which the approximated framework is preferable.

Execution Times. We examine the running time of our MC
framework (with and without pruning) as a function of the num-
ber of walks, n,,, and the truncation point ¢, compared to Sim-
Rank MC framework. Figure 4 depicts the average measured
running times on the Amazon dataset (the results obtained over
the other dataset demonstrated similar trends, and thus omitted
from presentation). Not surprisingly, without pruning, the aver-
age time of SemSim is indeed slower than of SimRank: 0.217 ms
and 0.0035 ms for SemSim and SimRank, resp. However, the run-
ning times with pruning are significantly faster, becoming close
to those of SimRank (in average 0.0038 ms, where 6 = 0.05).
Additionally, we examined the performance of both measures,
using SLING optimization [39] recently suggested for SimRank
(described in our technical report [27]), while storing probabili-
ties only for node-pairs with semantic similarity scores >= 0.1.
For both measures we achieved a significant improvement in
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Figure 4: Average running times for single-pair
similarity query.
SemSim
Dataset with pruning SemSim SimRank
0 =0.05
Pearson’s r 0.89 0.91 0.92
Mean var 0.001 0.001 0.0004
Max var 0.025 0.027 0.004
AMiner Mean rel. err 0.405 0.397 0.274
Max rel. err 0.478 0.468 0.364
Mean abs. err 0.063 0.019 0.018
Max abs. err 0.080 0.035 0.029
Pearson’s r 0.92 0.93 0.93
Mean var 0.001 0.001 0.0005
Max var 0.022 0.021 0.006
Amazon Mean rel. err 0.366 0.320 0.298
Max rel. err 0.428 0.399 0.389
Mean abs. err 0.056 0.020 0.020
Max abs. err 0.075 0.027 0.025

Table 4: Accuracy of approximation.

times - 0.00021 ms and 0.00023 ms for SimRank and SemSim
resp., with a memory consumption induced by the SLING index
of size 1.1GB and 3.2GB, resp.

Approximation Error. We compared SemSim and SimRank ap-
proximated scores to scores computed by their iterative forms, to
asses the cost of incorporating semantics. We then evaluated the
error of approximation in terms of Pearson’s r-correlation (by
comparing approximated scores to the ground truth), variance,
and error size. We report the error of approximation as measured
for the (larger versions of) Amazon and AMiner dataset. In each
experiment, we randomly selected 1K node-pairs, and computed
the approximated similarity scores in 100 runs (rebuilding the
random walks index before each run). The results, provided in
Table 4, depict the Pearson’s r-correlation values (achieved by
comparing the approximated scores to the ground truth ones, ob-
tained by the iterative forms), the (mean and maximal) variance
of the estimators, and the (mean and maximal, relative and ab-
solute) errors, as obtained by SemSim (with or without pruning)
and SimRank.

As expected, SemSim’s mean error is slightly higher than
that of SimRank, yet both are in the same order of magnitude
(0.366,0.32, 0.298 for SemSim with pruning, without pruning, and
SimRank, resp.). As discussed in Section 5.2, while the error of
approximation for SemSim (with and without pruning) is slightly
higher than for SimRank, the number of interchanges between
the approximated scores and ground truth ones, as measured by
the Pearson r-correlation, is significantly low and essentially
equivalent to SimRank’s (with or without pruning). This positive

3The Pearson r-correlation measures the “strength” of the linear association be-
tween ground truth scores and approximated ones.



result indicates that applying IS does not cause far apart scores
to interchange, while maintaining execution times essentially
on-par with SimRank.

Preprocessing. We complement the running times experiments
by providing details regarding preprocessing time and the space
costs of our framework. The offline processing, in which random
walks are sampled, took approximately 2.5 minutes (in average
over all datasets). While the sampling procedure performed as
in SimRank, SemSim requires an additional work due to the
semantic similarity measure. Following [11], we processed the
taxonomical subpart of the graphs to facilitate constant-time
Lin semantic similarity computations at run time. In all cases,
the processing time took less 10 minutes. For example: In the
Amazon dataset, where the taxonomy contains 2.5M edges, this
phase took approximately 7 minutes.

The memory consumption of SemSim’s MC framework is
prominently due to the random walk index?*. Additional memory
costs for SemSim were due to the Lin semantic measure: storing
the IC values and the data structure that allows for a constant time
similarity computation (as described in [11]). Overall, the storage
size was varied between 5 — 9MB, for all datasets, depending on
the size of the taxonomical subpart of the particular graph.

5.3 Quality Evaluation

We examine the usefulness of SemSim compared to an exten-
sive set of alternative measures for assessing node similarity,
demonstrating the utility of SemSim when used in typical tasks,
in which a similarity measure is required.

We used the following baselines from three common approaches
for similarity assessment:
L. Structural-based measures: SimRank [13], SimRank++ [2],
a weighted variant of SimRank which ignores semantic infor-
mation, and Panther [43], a random-walks based measure which
considers edge weights as well.
II. Semantic similarity measures: Lin measure [23], as de-
scribed in Section 2.2.
III. Measures combining structural and semantic informa-
tion:. First, we employed LINE [38], an ML, node embedding-
based similarity measure which accounts for latent semantic
relations among the graph nodes. This serves a representative
example for the state-of-the-art approach for assessing node sim-
ilarity. Additionally, we tested PathSim [37], a HIN-dedicated
similarity measure, which considers edge labels, and Related-
ness [25] a semantic-aware measure which considers the prop-
erties’ relating concepts. Last, we employed the Multiplication
and Average competitors, returning the product (resp., average)
of independent structural and semantic scores obtained by Sim-
Rank and Lin. These measures serve as baselines to our approach
that interweaves structure and semantics throughout a recursive
computation.

These baselines were examined in typical tasks in which a sim-
ilarity measure is required: Term Relatedness, a problem requiring
a measure aware of both semantic and structural knowledge,
(tested on Wikipedia and WordNet datasets); Link Prediction, in
which we used the measures to predict co-purchases in Amazon
dataset, and Entity Resolution was tested on AMiner dataset, to
detect duplication of entities. A ground truth was defined for

4 Storage optimization techniques previously developed for SimRank can be directly
applied in our settings as well (e.g. [14, 34]).
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Method r (Wiki) p (Wiki) r(WN) p(WN)
Panther 0.323 0.0376 0.206 1073
PathSim 0.293 0.0662 0.332 1073
Simrank 0.295 0.0641 0.397 1074
Simrank++ 0.296 0.0644 0.395 1074
Average 0.36 0.0514 0.401 1074
Multiplication ~ 0.37 0.0508 0.409 1074
Lin 0.485 0.0015 0.449 1074
LINE 0.493 0.0001 0.470 1074
Relatedness 0.510 0.0007 0.488 1074
SemSim 0.585 0.0001 0.501 1074

Table 5: Pearson’s r and p-value in the WordsSim-test on
Wikipedia (Wiki) and WordNet (WN).

each task, used to quantitatively evaluate the effectiveness of
each competitor.

Term Relatedness. Relatedness between terms is a well studied
problem that requires a measure aware of both semantic and
structural knowledge. To examine the adequacy of SemSim for
capturing relatedness, we used two datasets that contain relations
between terms: Wikipedia and WordNet. The ground truth was
defined by the WordsSim-353 test [8], a public and commonly
used benchmark containing pairs of words alongside their relat-
edness scores, as computed by people (e.g. “computer-keyboard”
has the score of 0.76). We then compared the scores obtained
by each competitor, using the Pearson correlation measure (a
commonly used measure to evaluate the accuracy result for this
benchmark [25]). We removed pairs of words that were missing in
the graph from the benchmark, retaining 40 pairs for Wikipedia
and 342 for WordNet. Table 5 depicts the results for all baselines.
We note that other corpus-based designated methods were sug-
gested for this task (e.g., [42]), but they require external sources
besides the input graph, thus we did not include them in our
benchmark. Observe that the structural based measures (e.g.,
SimRank, SimRank++ and Panther) demonstrate inferior results,
as this task greatly relies on the semantic relations among the
concepts. Furthermore, naive semantic measures such as Lin,
that perform a rather simplistic similarity comparison (i.e., rely
only on the taxonomy “is-a" edges), surpassed both the structural
measures, and the the Average and Multiplication competitors,
yet were outperformed by LINE and the Relatedness measure,
which better combine the structural and semantic aspects, and
consider all edges in the graph. The Relatedness measure, desig-
nated specifically for this task, exceeded the ML-based measure
LINE, yet interestingly, it was surpassed by SemSim.

Link Prediction. We next demonstrate how SemSim may be
used to predict co-purchases in the Amazon dataset. To com-
pare between different baselines, we omitted 7.5K edges between
items from the original dataset, and examined how well the mea-
sures can be used to predict those missing links as follows: Given
an endpoint of a removed link, we performed a top-k search to
find similar nodes to the given endpoint. If, for a given measure,
the returned k nodes include the pair endpoint, we counted a
“hit", and otherwise a “miss". A similar idea was employed to
evaluate similarity search in [43]. The results are depicted in
Figure 5(a). For compactness, we omitted measures with partic-
ularly low scores. As opposed to the Relatedness task, this task
relies mostly on structural knowledge, hence structural-based
measures (e.g., SimRank++, Panther) outperformed the semantic-
based ones (e.g., Lin). Here, LINE was able to outperform most
competitors, yet SemSim managed to obtain a slight advantage,
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due to the additional semantic information it accounts for which
LINE ignores (i.e., the IC values and the taxonomy relations).

Entity Resolution. Last, we used the similarity measures to
identify multiple distinct entries representing the same author
(e.g, Susan B. Davidson and Susan Davidson), or the same term (e.g,
Data structures and Data structure). Using the Levenshtein string
distance, we identified 30 pairs representing the same entry (24
term-pairs and 6 author-pairs), and used the baselines to predict
duplicate nodes following similar lines to the link-prediction task
(i-e., a top-k similarity search). The results are depicted in Fig-
ure 5(b), reporting for each baseline the precision in top k, for
various values of k, (here again, measures with particularly low
were omitted). First, note that the results for all baselines are not
particularly high, since information commonly used for entity
resolution (such as mail addresses, affiliations, string edit distance,
etc.) was not included in the graph. As in the link-prediction task,
the structural based measures outperformed the semantic based
one (omitted from presentation). This stems from the particular
characteristics of the AMiner graph, in which the semantic simi-
larity of all authors nodes is identical (i.e., all authors nodes “is-a”
Author). Hence, the semantic similarity between authors in this
setting is not informative. Here again, the Multiplication/Average
baselines demonstrate inferior results. It should be pointed out
that PathSim outperforms most competitors, as it is a structural
measure that also considers the edge labels, thus accounts for
some semantics. However, SemSim managed to get an advantage,
even if sometimes marginal, for all tested values of k.

In summery, as demonstrated, SemSim outperformed the com-
petitors in all tasks mentioned above. In some tasks the advantage
was marginal compared to the second-best for a specific task, yet
we note that the second-best competitor was different in each
task, illustrating the robustness of SemSim. For the rest of the
baselines, results varied depending on the amount of semantics
conveyed in the dataset, and of the degree to which the task is
semantically complex. To conclude, the experiments indicate that
even in cases where only partial semantics is available, SemSim
serves as a robust measure and exploits this information to get
an edge over the competitors.

6 RELATED WORK

SimRank is a popular measure and its potency was demonstrated
in various scenarios [2, 6]. Several extensions that enrich it with
more information (e.g. edge weights [2], particular paths [6] or
second order walks [41]) were suggested, but they do not make
full use of semantics available and thus, as illustrated in our
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experiments, yield less accurate estimations in semantic-sensitive
tasks. Moreover, the optimization technique used in SimRank++
was build on matrix multiplication rather than random walks,
and consequently, scalability issues were ignored. One of the
contributions of this work is an efficient computation scheme,
applicable also to several of these variants (e.g. [2, 45]).

As mentioned, a prominent body of work has focused on
SimRank approximation techniques. These works are categorized
into (a) matrix-based approaches [19], and (b) random walk-based
approaches [14, 39]. A recent survey [44] advocates that the latter
approach is more scalable, compatible with updates in the graph,
and can be trivially parallelized. Therefore, we chose to extend it
in accordance with our setting. As mentioned in Section ??, the
contributions of these works are applicable for SemSim, requiring
only minor adaptations.

In our experiments we use Lin [23], a simple and effective
Information Content (IC)-based semantic measure. However, as
explained in Section 2, any other measure can be incorporated,
given that it satisfies three intuitive constraints. Examples of
other applicable semantic measures include: (i) IC-based mea-
sures [32], (ii) Edge-counting measures, which use the length
of the shortest path between nodes in the estimation of similar-
ity [31], and (iii) Feature-based measures [20, 42]. The former
two regard a domain ontology, while the latter usually involves
additional sources (e.g. textual corpus [20]).

Heterogeneous Information Network (HIN) is a ubiquitous
model for real-world data, as it enables enriching simple graphs
with additional useful information [36]. This, however, makes the
assessment of node similarity challenging, as HIN paths convey
latent semantic information. The majority of existing similarity
measures for general networks do not consider all available infor-
mation in the HIN. Specifically, measures such as [13, 43, 45] focus
solely on the network structure, while measures suggested in
[23, 32] concern only with the semantic information as implied by
hierarchical relations. More recent works propose HIN-dedicated
measures [35, 37], advocate considering only meaningful meta-
paths between objects. But the choice of appropriate paths is
made a-priori, and requires intimate knowledge of the dataset
and the specific information needs® [22]. In contrast, SemSim is
a generic measure that encompasses all available information,
and automatically prioritizes meaningful paths.

As opposed to the declarative approach, recent work in the
field of representation learning [4, 30] suggests embedding tech-
niques that discover low-dimensional representations of graph
nodes in a vector space. While this approach often outperforms

5Otherwise, an average of all paths can be taken, resulting in inferior results.



dedicated similarity measures for HINs (as demonstrated), a key
disadvantage is that the results are hard to explain and interpret.
Moreover, as we showed, SemSim not only retains its declarative
definition but also yields more accurate similarity estimations in
multiple tasks.

Incorporating semantic and structural information when de-
termining relations between graph objects has also been proven
useful in several related domains. Works in ontology matching
and entity resolution suggest using both taxonomy edges and
structural properties of nodes to properly align entities [12, 28].
However, their goal is different, as they aim to identify equiv-
alent representations of the same entity, thus some of the core
techniques employed (e.g., string matching) cannot be directly ap-
plied for measuring similarity between different objects. It would
be interesting to investigate in future work whether SemSim can
be employed in such contexts. An example domain where we
showed such incorporation to be successful is similarity estima-
tion for images that convey semantics, as we illustrated in [7], a
demo that employed SemSim for the retrieval of similar Internet
Memes.

7 CONCLUSION AND FUTURE WORK

In this paper we present SemSim, a similarity measure that refines
SimRank with semantics, while preserving its intuitive defini-
tion and scalable computation. We introduce Semantic-Aware
Random Walks, an extension of the traditional notion of random
walks, that preserves properties necessary for applying existing
SimRank’s optimizations. Our probabilistic framework employs
Importance Sampling along with an effective pruning technique,
and maintains a negligible error rate. Our experiments further
demonstrate the quality and robustness of SemSim in multiple
practical scenarios, as well as the efficiency of our algorithms.

Several interesting directions are left for future research. First,
in practice, information networks are often dynamic and may in-
duce uncertainty, hence it would be important to extend SemSim
to such settings. The use of parallelism and compact indexing
mechanisms [3, 21], to achieve further computation speedup,
are also an interesting direction for future work. Last, we have
focused here only on single-pair queries. We intend on develop-
ing optimizations facilitating single-source and top-k similarity
queries, inspired by [17, 46].
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ABSTRACT

Deciding whether a query graph is a subgraph of some other
in a very large database of small graphs is a problem of major
interest in many application domains. As an example, it arises in
the searching for specific molecular substructures in currently
available molecular databases, whose sizes may reach levels close
to one hundred million. State of the art methods to solve this
problem follow a filter-then-verify (FTV) paradigm, where an
indexing technique is first used in a filtering stage to obtain
result candidates and a subgraph isomorphism algorithm is next
applied to the candidates in a verification stage to obtain the
final result. Among all the available techniques of the state of the
art, two of them have demonstrated better performance when
applied to large datasets, namely, the GraphGrepSX (GGSX) and
CT-Index (CTI). In this paper, three new indexing techniques, one
based on GGSX and two based on CTI, are proposed. In particular,
Bitmap GGSX (BM-GGSX) leverages the use of bitmaps in the
trie structure used by GGSX to achieve performance gains of
around 90% in the filtering stage. Column-Wise CT-Index (CW-
CTI) exploits a column-wise representation of the fingerprints
(bitmaps) used by CT-Index to reduce the filtering times around
80% for small queries (8 edges). Finally, K-Means CT-Index (KM-
CTI), constructs a binary tree of bitmaps from the CT-Index
fingerprints to reach filtering time reductions of around 70% for
medium queries (20 edges) and 75% for large queries (40 edges).

1 INTRODUCTION

Graph database research is a topic to which much attention has
been paid by the data management community during the last
decade. Two major types of graph databases may be found in real
problems. In a first type, the database consists of just one very
large graph. This is, for example, the kind of database available
in the semantic web. Amongst the required query functional-
ity, many applications need to identify all the instances of a
specific subgraph that occurs inside the database graph. This NP-
complete problem, known in the literature as subgraph matching,
is solved through the application of subgraph isomorphism algo-
rithms [4, 12, 20, 21, 26, 27].
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A second type of database contains a very large number of
small graphs. Typical examples of this type of databases are
molecular databases. For each molecule recorded in such a data-
base it is recorded, among other properties, its structure, i.e., a
small graph whose vertices are atoms and whose edges are bonds
between atoms. The current size of these databases is already very
large, reaching levels close to one hundred million molecules,
like in the PubChem dataset!, and it is increasing. Among other
queries of interests, it is important to provide functionality to
find all the molecules whose molecular structure (graph) contains
a specific query substructure (subgraph) [5, 6].

Finding all the graphs in a database that contain a specific sub-
graph is known in the literature as the subgraph decision problem.
A straightforward strategy to solve this problem is a linear search,
i.e., the application of a subgraph isomorphism algorithm to each
graph of the database. This strategy could be the appropriate
for not selective queries that return most of the database graphs.
Besides, given its simplicity, it is also straightforward to a obtain
parallel implementation following this strategy. However, in the
general case, a filter-then-verify (FTV) strategy based on index-
ing will get much better performance. In FTV approaches, query
processing is split in tho stages, namely filtering and verification.
In the filtering stage, an index structure is searched to obtain an
initial set of candidate graphs. In the second stage, a subgraph
isomorphism algorithm is applied to each candidate to refine
the final result. Many FTV methods have been proposed in the
literature [2, 3, 8, 15, 20, 24, 25, 28, 29].

Among the proposed FTV solutions, GraphGrepSX (GGSX) [2]
and CT-Index (CTI) [15] have demonstrated an excellent perfor-
mance when applied to large datasets of small graphs, as it is the
case of molecular databases. Both of them rely on the encoding,
in the index structures used during the filtering stage, of features
contained in the graph, such as paths, trees, and cycles. In partic-
ular, GGSX generates a trie structure with all the paths contained
in each graph up to a maximum length. Each node of the trie
represents a specific path and references all the graphs of the
database that contain such path, storing also the number of times
that the path is repeated in each graph. During the filtering stage,
the database trie is used to obtain all the graphs that contain
all the paths of the query up to a maximum length, at least the
number of times that the path is contained in the query.

The indexing technique used by CTI is completely different.
CTI generates a fingerprint (bitmap) for each database graph
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as follows. First, graph features are extracted. CTI may work
with either paths or trees, and with cycles. Each feature of the
graph up to a maximum length is extracted, and represented
in a canonical string format. A hash function is next applied to
each extracted string to obtain integer numbers that range from
0 to the fingerprint length. The bits of the fingerprint located
at the positions defined by those integers are set to 1. In the
filtering stage, bitmap containment is tested between the query
fingerprint and the fingerprint of each database graph.

In this paper, three new FTV solutions are proposed for sub-
graph search in large databases of small graphs. The paper focus
on the filtering stage, improving GGSX and CTI structures and
algorithms to obtain filtering time reductions between 70% and
80%, whereas the verification stage of the three techniques re-
lies on the parallel execution in a multi-thread architecture of
a improved version of the VF2 [4] subgraph isomorphism al-
gorithm already proposed by CTI [15]. In particular, the main
contributions of the present work are summarized as follows.

(1) Bitmap GGSX (BM-GGSX) takes advantage of the incor-
poration of compressed bitmaps in the representation of
graph references in the GGSX trie nodes. This enables a
drastic reduction of the filtering time (around 90% less
than GGSX), maintaining the index size and building time
almost unaltered. When compared with the techniques
based on CT-Index also proposed in this paper, BM-GGSX
offers good response times for medium and large queries,
but it is worse for small queries. Besides, BM-GGSX is also
much worse in both index size and building time.
Column-Wise CT-Index (CW-CTI) adopts a column-wise
storage structure for the CT-Index fingerprints, where the
same bit position of all the fingerprints of all the graphs
are recorded together in a compressed bitmap. During the
filtering stage, only the bit positions with a 1 in the query
fingerprint have to be accessed, which makes the filtering
time dependent on the query size. Regarding index size
and building time, CW-CTI gets the best results.
K-Means CT-Index (KM-CTI) applies recursively the K-
Means clustering method on CT-Index fingerprints to con-
struct a bitmap binary tree that is used to discard sets of
fingerprints during the filtering stage. KM-CTI index size
and building time is worse than CW-CT], but better than
BM-GGSX. Regarding filtering time, it is competitive with
BM-GGSX in medium and large queries, thus it is a good
complement of CW-CTL
(4) An extensive evaluation of the performance of all the tech-
niques is undertaken using real databases of molecular
graphs of different sizes. A first experiment is conducted to
determine the best parameter values to tune the methods.
The objective of the second experiment is to test the scala-
bility of the techniques with increasing database sizes. Real
databases with sizes ranging from 200000 to one million
molecules were built from the PubChem dataset. Notice
that those sizes are much larger than even the synthetic
datasets used in previous surveys [11, 13].

—
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The remainder of this paper is organized as follows. Section 2
reviews related work, with special attention to the original GGSX
and CT-Index methods. The proposed BM-GGSX, CW-CTI and
KM-CTI methods are described in detail in Sections 3, 4 and 5,
respectively. Section 6 is devoted to the discussion of the evalua-
tion experiments and, finally, Section 7 concludes the paper and
outlines some lines of potential future work.
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2 RELATED WORK

The current state of the art classifies the subgraph querying
problem into two different subproblems. The first one, named
matching problem, deals with extracting all subgraph isomorphic
embeddings of a query graph g in a single graph G. The second
one, usually called decision problem, is focused in retrieving the
ID of every graph g, stored in a given dataset G, which satisfies
that the query graph q is a subgraph of g.

The matching problem has been widely studied over the years,
and there are several proposals to solve it. As mentioned in the
introduction, a subgraph isomorphism algorithm must be applied
to ensure that the verified graph contains at least one subgraph
that matches exactly the query graph. In [16], the authors provide
a performance comparison of six of the most relevant solutions
at the time. Among these algorithms, Ullmann [21], VF2 [4],
and QuickSI [20] were originally designed for handling small
graphs, while GraphQL [12], GADDI [26], and SPath [27] were
designed for handling large graphs. The tests were accomplished
in four real-world datasets with different size and characteristics,
containing two of them multiple and small graphs, and the other
two single and relatively large graphs. The study concluded that
GraphQL was the only algorithm that completed all the queries,
while QuickSI performed the best for both small and large data
graphs, even though it was designed for handling small graphs,
since the cost of its recursive call is the lowest. The study also
concluded that all existing algorithms had problems in their join
order selections. Since the survey was published, new algorithms
designed for handling large graphs have been proposed [10, 19],
showing an improvement in the performance by addressing the
issues of matching order selection. Recently, a new approach [1]
proposes a new framework to minimize the redundant Cartesian
products.

The decision problem is typically arising in the scope of ap-
plications with big datasets of small graphs. Since this is a NP-
complete problem, and datasets contain often a large number of
graphs, deciding whether a query graph q is contained in every
graph g in the dataset G, by applying one by one a subgraph iso-
morphism algorithm would be very costly. Due to this, a pruning
phase must be undertaken in an early stage of the process in
order to select a reasonable number of candidates to be tested
with a subgraph isomorphism algorithm. This idea is carried out
by the techniques based in the filter-then-verify (FTV) paradigm.
FTV techniques rely in building an index of the graph dataset,
through decomposing each graph into features (i.e., paths, trees,
cycles, etc.), and store them in an appropriate structure (e.g., trie,
fingerprints, etc.). The search algorithm of FTV techniques is
divided into two different stages. The first stage, called filtering
stage, aims at obtaining a candidate set of graphs. To do this, the
query graph g is decomposed into its corresponding features,
according to the applied technique, which are used to retrieve
from the index a reduced candidate set with the graphs that con-
tain all the query features. The candidate set is tested finally with
a subgraph isomorphism algorithm in the second stage, called
verifying stage.

A performance comparison of different indexing techniques [3,
20, 24, 25, 28, 29] for subgraph query processing is provided
in [11]. The above survey is extended in [13], by including three
new algorithms [2, 8, 15] and also by performing an exhaustive
performance and scalability study, varying different dataset fea-
tures such as number of nodes and graphs. According to the con-
clusions of [13], CT-Index [15] and gCode [29] have the smallest



index size. Regarding query processing time, this study concludes
that the approaches that build the index with graph features
(Grapes [8], GraphGrepSX [2], and CT-Index [15]) outperform
the others, and, among them, those that use simpler features
(Grapes and GraphGrepSX) obtain the best results. The tech-
niques that show a better scalability are GraphGrepSX, Grapes,
and CT-Index. However, Grapes, fails to build an index for large
datasets due its memory requirements. Finally, the survey shows
that algorithms based in mining techniques (gIndex [24] and
Tree+A [28]) are only competitive for small datasets.

Recently, two new methods that employ caching on top of ex-
isting FTV techniques have been proposed (iGQ [22] and Graph-
Cache [23]). They take advantage of the fact that, in real-world
scenarios, most current queries have subgraph or super-graph
relations with the future ones. Therefore, they use a caching sys-
tem with past queries and their answers, including some novel
replacing strategies, to improve the performance of existing meth-
ods. Another recent work [14], after analyzing both matching
and decision problems, it concludes that there exist algorithm
specific straggler queries that are challenging only for specific
approaches. Based on the above observation, a novel framework
is proposed in [14] that leverages parallel execution and query
rewriting to achieve better overall performance.

Based on the conclusions of [13], we select GraphGrepSX and
CT-Index as the base of the present work, to develop improved
indexing structures to solve the decision problem. Notice that
our experiments consider databases whose size is between 10 and
20 times larger than those of [13], and, therefore, we discarded
Grapes due to its problems with large databases. Finally, the
results of the present work may be incorporated in complex
query processing frameworks, as the one proposed in [14], which
may also leverage in caching techniques [22, 23].

2.1 GraphGrepSX

GraphGrepSX, GGSX for short henceforth, decomposes each
graph in paths up to a maximum length p specified by the user.
Repeated paths are taken into account. With these paths, in the
index building stage, GGSX incrementally builds a trie with a
depth equal to the maximum path length p. Each node of the trie
represents a path from the root to that node, and stores a list of
key-value pairs, where the key represents the ID of a graph in
the dataset that contains the path represented by the node, and
the value is the number of times that the path appears in the
graph. Figure 1 shows an example of a small trie. Each node of
the trie records a large list of key-values pairs, although only two
of them are depicted in the figure due to space limitations. Thus,
as it is represented at the bottom left node of the trie, path “CCC”
is contained 4 times in graph Gy, 5 times in graph Gs3 and 3 times
in graph G, Notice that the size of the main structure of the trie
is completely dependent on the chosen maximum path length p,
which in practice is a short value. On the other hand, the lists of
key-value pairs recorded in each node increase their size linearly
with the size of the database.

In GGSX, as in any other FTV technique, subgraph query
processing is divided into two stages: filtering and verification.
In the filtering stage, a trie is built using all the paths of the query
whose length is lower or equal to the chosen maximum length p.
The number of repetitions of each path is only recorded now for
leaf nodes. The filtering algorithm performs a joint breadth-first
traversal of query and database tries. When a query leaf node
is reached, the number of repetitions r recorded in the query

51

Figure 1: Trie structure used as indexing in GGSX.

trie node is compared with the list of repetitions recorded in the
database trie node, obtaining the set of graphs that contain at
least r times the relevant path. Such list of graphs is maintained to
be intersected with subsequent lists obtained from the remainder
query trie leaf nodes. The final list of graphs resulting from all
the intersections is tested, in the verification stage, using the VF2
subgraph isomorphism algorithm.

Overall, it is expected that the chosen p value should have
an impact in different aspects: the index size (should increase
with p), the index construction time (should increase with p), the
filtering time (should increase with p) and the verification time
(should decrease with p). To the best of our knowledge, there is
not, currently, any mathematical model for the determination of
the best expected p value for a given dataset, therefore, it has to
be chosen based on some benchmarking.

2.2 CT-Index

CT-Index uses a list of bitmaps of a fixed size f called fingerprints,
for indexing purposes in the filtering phase. Roughly speaking,
either paths or trees, and cycles of each graph are hashed to
integers between 0 and f, which are next used to activate bits in
the graph fingerprint. To generate all the possible either paths
or subtrees, and cycles, a maximum length p is again considered.
Figure 2 illustrates the creation of a fingerprint from a given
graph. First, all possible features, either paths or trees, and cycles
of a maximum length p are generated from the graph. A specific
tree contained in a graph is depicted in Figure 2(a). Next, the
extracted features are encoded in a canonical string format (see
Figure 2(b)). A hash function is next applied to the generated
canonical string to obtain an integer. Integer number 27 is ob-
tained from the string in the example of Figure 2(c). Finally, the
relevant bit of the graph fingerprint is set to 1 (see Figure 2(d)). It
has to be noticed that the hash function may generate the same
integer for different features (collisions). Such collision have a
negative effect, decreasing the number of pruned graphs in the
filtering stage.

CT-Index is also a FTV technique, with relevant filtering and
verification stages. In the filtering stage, a fingerprint is obtained
for the query graph as described above, using the same finger-
print size 2/ and the same feature maximum length p. The query
fingerprint is then tested for bitmap containment with each fin-
gerprint in the index. Bitmap containment is performed by first
splitting both fingerprints (query FQ and database FD) into a
sequence of long integers (query LQ and database LD), and then
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Figure 2: Fingerprint construction process. In (a) a tree fea-
ture is selected. In (b) the feature is transformed into a
canonical string. It is hashed in (c). In (d) the hashed value
is set in the fingerprint.

testing bitmap containment between each pair of (LQ, LD) using
bitmap operations (LQ A LD = LQ).

CT-Index uses, in the verification stage, a version of the VF2
subgraph isomorphism algorithm, improved with additional heuris-
tics.

It is noticed that with this technique, two parameters may
be chosen to construct the index, namely, the maximum feature
length p and the fingerprint size of Ttis expected that the maxi-
mum feature length should not have an impact either in the index
size or in the filtering time. However, increasing p should have
a positive impact in the verification time (more graphs should
be discarded in the filtering phase) and should have a negative
impact in the index construction time (more and larger features
have to be processed). Regarding the fingerprint size 2/, on one
hand, it has clearly a negative impact in the index size, and there-
fore in the filtering time (larger fingerprints have to be compared).
On the other hand, however, it should have a positive impact
in the verification time, by reducing the number of collisions
generated by the hash function.

3 BITMAP GGSX

In this section, an evolution of the GGSX method, called Bitmap-
GGSX (BM-GGSX), is explained in detail. We modify the original
GGSX method in the following three aspects: i) The labels of
the graph edges are now considered, improving the performance
of the method in graphs such as molecule structures, whose
edges contain bound type information (simple bound, double
bound, etc.). ii) Very large compressed bitmaps are now exploited
to provide a more compact and efficient representation of the
list of pairs (graph id, repetitions) recorded in each trie node.
iii) The original VF2 subgraph isomorphism algorithm used in
the verification stage was replaced by the parallel execution,
in a multi-thread architecture, of the improved version of VF2
algorithm provided by the CT-Index implementation.

The original GGSX method discards the edge labels during
the construction of the trie structure. On one hand, this reduces
the size of the structure, and as a consequence it reduces also the
filtering time. But, on the other hand, it increases the number of
candidates for the verification stage, which is in general more
costly. To incorporate edge labels in the trie, we modify the
structure of the trie nodes by adding a new field that records
edge labels. Now, the interpretation of a trie node changes from
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Figure 3: Comparison between (a) GGSX and (b) BM-GGSX
graph repetitions storage technique.

interpreting it as a graph node of a path, as it is in the original
GGSX, to interpreting it as the combination of a graph node with
the edge that precedes it in the path. Obviously, given that paths
start at node and not at edges, the nodes of the first level of the
trie have always null edges. Clearly, this new trie structure has
more nodes in each level, enabling the representation of a larger
number of different paths of the same length.

In the original GGSX method each node of the tree records a
list of pairs (i, r), where i is an identifier of a graph (integer index)
that contains the path represented by the trie node and r is the
number of times that such path appears in the graph. Such lists
are replaced in BM-GGSX by an structure that exploits the use
of bitmaps. In particular, each trie node records now an array of
bitmaps. The bitmap recorded at the index r of the array has a 1
in its position i if, and only if, the graph with identifier i contains
the path represented by the trie node at least r times. Figure 3
illustrates the difference between the representation of graph
references and repetition in both GGSX and BM-GGSX. Bitmaps
are compressed in BM-GGSX using the Enhanced Word-Aligned
Hybrid method [17].

The algorithm of the filtering stage that exploits the above
structure is illustrated in Figure 4. First, as it is shown in the
left part of the figure, the query is processed to obtain its trie
structure. Remember that, now, each node contains a pair of
(node label, edge label) and that the number of repetitions in the
query trie is recorded only in the leaf nodes. As in the case of
GGSX, a joint breadth-first traversal of both query and database
tries is performed, obtaining now, for each leaf node of the query
trie, the bitmap recorded in the position of the array whose index
matches the number or repetitions recorded in the leaf node. This
is illustrated in the central part of the figure. Finally, a binary
AND operation is performed between all the compressed bitmaps,
to obtain the result bitmap, which will contain a 1 in the positions
of all the graphs containing, at least the number of times required,
all the paths of maximum length of the query.

Notice that, as it is shown in Figure 3, if the bitmap recorded at
the index r of the array of a trie node has a 1 in position i, then all
the bitmaps recorded in indices lower than r must also have a 1
at position i. This inserts redundant information in the structure,
but, as a consequence, it also enables better performance during
query processing, since only one of the bitmaps of each candidate
node of the trie has to be accessed.

4 COLUMN-WISE CT-INDEX

The index structure used by CT-Index consists of one fingerprint
for each graph of the database. Those fingerprints are sequen-
tially generated and recorded during the index construction and
sequentially processed during the query evaluation. The collec-
tion of all fingerprints might be seen as a matrix, where each
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Figure 5: Example of a new graph(ID = 5) insertion in the
CW-CTI index.

row is a fingerprint and each column a bit position inside the
fingerprint. It is noticed that such matrix is recorded row-wise in
CT-Index. The Column-Wise CT-Index, in short CW-CTI, lever-
ages the use of compressed bitmaps by recording and processing
the fingerprints column-wise. Thus, if 2f is the chosen size for
the fingerprints, then the index of CW-CTI is a sequence of 2/
bitmaps, such that fingerprint number b has a 1 at position i if,
and only if, the fingerprint of molecule number i has a 1 in the po-
sition b of its fingerprint. The bitmaps of CW-CTI are much larger
than the fingerprints of CT-Index, and they are likely to contain
larger sequences of repeated bits, so, they are good candidates for
the use of bitmap compression. Enhanced Word-Aligned Hybrid
compression [17] is used in the present implementation, which
enables the reduction of index size compared to the original
CT-Index.

The building stage of CW-CTI is similar to that of CT-Index.
Each fingerprint is constructed exactly in the same way, however,
now each bit of the obtained fingerprint is appended to the end
of each corresponding CW-CTI bitmap. This process is illustrated
in Figure 5 for a specific graph Gs.
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Figure 6 illustrates the algorithm of the filtering stage of CW-
CTL It is noticed that the algorithm is completely different from
the one of CT-Index. First, the fingerprint of the query is obtained
in the same way that it is obtained for CT-Index. Next, for each 1
in the query fingerprint, the compressed bitmap recorded at the
relevant column of the CW-CTI structure is obtained. Remember
that such compressed bitmap contains a 1 for each graph whose
fingerprint has a 1 in the same position. Finally, all the obtained
bitmaps are intersected to produce the final result of the filtering
stage. The result compressed bitmap will contain a 1 for each
candidate graph, i.e., each graph whose fingerprint is binary
contained in the query fingerprint.

The verification stage in CW-CTI performs a subgraph isomor-
phism test to the final candidate set of graphs with the improved
version of the VF2 used in the CT-Index method, except that now
this algorithm is executed in parallel in a multi-thread architec-
ture.

As it was already stated, CW-CTI requires, in general, less
storage than the original CTI-Index, due to the use of bitmap
compression. The number of candidates obtained from the filter-
ing stage is exactly the same as the one obtained by CTI, however,
the verification time should be better, due to the use of a parallel
execution of the VF2 algorithm. Regarding the filtering time, it
is noticed that the number of binary AND operations between
compressed bitmaps required is directly determined by the num-
ber of 1s in the query, i.e., by the number of different features in
the query, which is higher as the query size increases. Therefore,
it is expected to behave better with smaller queries.

5 K-MEANS CT-INDEX

In this section K-Means CT-Index (KM-CTI), a new proposal
based in the CT-Index method, is described. This new method
was constructed with the aim of reducing the number of finger-
print comparisons made in the filtering stage of the CT-Index
algorithm. It is reminded that CT-Index performs a comparison
between the query fingerprint and each of the fingerprints of
the database, therefore, it is expected that the filtering time will
increase linearly with the database size. KM-CTI uses a binary
tree of bitmaps, where the leaf nodes correspond to the database
fingerprints, and parent nodes are constructed by performing
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Figure 6: Example of filtering stage in CW-CTL

the binary OR operation between two children. If the compari-
son between the query fingerprint and a given node of the tree
returns false, then the whole branch below the node may be
directly discarded. Thus, if the database is large enough, then
searching the KM-CTI binary tree will require less comparisons
than the number of database fingerprints, reducing the time of
the filtering stage.

An example of the use of a KM-CTI binary tree to evaluate the
fingerprint of an input query is illustrated in Figure 7. It is noticed
that, in the binary tree, all the fingerprints are in the leaf nodes,
and each parent node contains the binary OR of its children. The
query is first compared with the root node. Given that the query is
binary contained in the root node, then it has to be compared with
each of the two children. The comparison with the left children
is positive, and therefore the process has to continue through
the left branch. However, the comparison with the right child is
negative, therefore the whole branch may be discarded. In the
figure, highlighted nodes have been compared with the query and
nodes of dark color represent positive results in the comparison.
Therefore, in this example, the algorithm performs 7 comparisons
(instead of the 8 comparisons that the original CI-Index would
require) to select two fingerprint candidates for the verification
stage. Again, the chosen algorithm for the verification stage is
the VF2 version proposed by the original CT-Index method, and
again, this algorithm is executed in parallel in a multi-thread
architecture.

The KM-CTI binary tree will offer a good performance if the
internal nodes discard large numbers of fingerprints with few
comparisons. To achieve this, pairs of bitmaps have to be com-
bined under parent nodes in a way that minimizes as much as
possible the number of 1s in those internal nodes. This behav-
ior during the tree construction is achieved in KM-CTI through
the application of the K-Means [7, 18] clustering algorithm, re-
cursively to the original set of fingerprints, as it is explained
below.

In general, K-Means is used to distribute a set of elements
in K clusters, in a way that a given distance measure is mini-
mized between the elements of each cluster. Broadly speaking,
the algorithm works as follows. First, K elements of the set are
aleatory chosen as centroids of the K clusters. Next, each element
is assigned to the cluster corresponding to its nearest centroid.
Once the first cluster have been defined, a new centroid is chosen
for each cluster by computing some kind of mean between the
elements of the cluster. The processes of assigning elements to
their nearest neighbor centroid and computing new centroid are
iteratively repeated until the elements of each cluster do not
change in two consecutive iterations.

To construct the tree, K-Means is first applied with K = 2 to
the original set of fingerprints, to obtain two clusters. The binary
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OR of the elements of each cluster is computed to obtain the two
children of the root node of the tree. This process is recursively
repeated inside each cluster until one of the two following con-
ditions hold: i) the elements per cluster reach two (two original
fingerprints), ii) the K-Means method cannot subdivide the clus-
ter further. At this stage the tree is completed. The number of
fingerprints contained in a leaf node may be greater than two if
they are either equal, or so similar that they cannot be subdivided
further.

To be able to apply K-Means to sets of bitmaps, both a distance
measure and a mean calculation method have to be defined. The
number of 1s in common between elements of the same cluster
must be maximized, in order to to minimize the 1s in the binary
OR. If by and b, are two bitmaps, then the distance between by
and by, denoted d(by, b2), is defined in the current proposal as
follows.

0,
count1s(b; @ by),

if by C by V by C by.

otherwise.

d(b1,b2) = { (1)

In the above definition, b; C bj is used to denote that b;
is binary contained in bj, i.e,, b; A bj = b;. The XOR binary
operation between two bitmaps b; and b; is denoted by b; ® b;,
and count1s(b) denotes the number of 1s of a bitmap b. It is
noticed that the above definition of distance between bitmaps is
based on the well-known Hamming distance [9], that counts the
number of 1s in the XOR of the bitmaps.

The mean calculation method enables obtaining a representa-
tive centroid bitmap from all the bitmaps of a cluster. If zeros(i)
is the number of 0s in position i of all the bitmaps of the cluster
and ones(i) is the number of 1s in position i of all the bitmaps of
the cluster, then value of the bit at position i of the mean of the
bitmaps of the cluster is 0 if zeros(i) > ones(i) and 1 otherwise.

The calculation of distance and mean between bitmaps if illus-
trated in Figure 8 through various examples. Note that KM-CTI is
an in-memory index, therefore a binary tree is expected to offer
better results than trees of higher order. The value of K, however,
can be increased to obtain an structure suitable for secondary
storage, as it is the B-tree.

As it is the case of the tree based indexes of conventional
alphanumerical data, KM-CTI is expected to improve the perfor-
mance of the sequential search adopted by CT-Index, if the query
is selective enough. Therefore, it is expected that KM-CTI will
behave better with large query graphs than with small ones.

6 EVALUATION

In this section, the experiments performed and their results are
described and discussed. The system setup, datasets and queries
are described in a first subsection. Next, the benchmark under-
taken to select the appropriate values for maximum path length
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Figure 8: Example of distance and mean measures be-
tween bitmaps used in KM-CTIL

and fingerprint size is described. Finally, the last subsection is
devoted to the comparison of the performance of the various
techniques, with different query and database sizes.

6.1 System Setup, Datasets and Queries

The experiments were performed on a CentOS Linux release
7.4.1708, with 2 processors Intel(R) Xeon(R) CPU E5-2630 v4 (2.20
GHz, 10 cores) and 384 GB RAM. The GGSX implementation in
C++ was obtained from the authors, and reimplemented in Java.
For the CT-Index method, a jar was obtained from one of the
authors website, and then a reverse engineering technique was
applied in order to obtain the code. All the new methods were
implemented in J