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Foreword

The International Conference on Extending Database Technology (EDBT) is an established and renowned
forum for the exchange of the latest research results and advances in data management. This year, the 22nd
edition of EDBT takes place in Lisbon, Portugal, from March 26 to March 29, 2019. It is jointly organized with
the International Conference on Database Theory (ICDT). In a world where increasingly many aspects of our
lives and society are data-driven, data management technology continues to broaden its reach and extends its
tradition of contributing models, algorithms, and architectures to novel applications adapted to new hardware
and software.
As in previous years, EDBT 2019 solicited contributions both on novel research results and on experience and
analysis results that focus on a comprehensive and detailed performance evaluation. For the first time, EDBT
2019 further solicited papers that describe innovative systems as part of its main research track. We also con-
tinued the recently established short paper track, offering a forum to present research in progress and visionary
ideas during plenary poster sessions of the conference. To complement the scientific program, EDBT further
solicited demonstrations of research prototypes, descriptions of industrial and application achievements, and
proposals for tutorials.
The EDBT 2019 program committee reviewed 157 full research papers, of which 36 were accepted. For short
papers, 28 papers out of 122 were selected. Among the 24 submissions to the industry and application track,
8 papers were accepted. The 21 demonstrations presented at the conference were selected among 42 demon-
stration proposals. Finally, we accepted 3 out of 10 tutorials. All these contributions will be presented at
the conference. The program additionally features five workshops, an EDBT/ICDT joint session on research
challenges, and four invited EDBT/ICDT joint keynotes.
Shaping the exciting program of EDBT 2019 is the result of a large community effort, and I take this opportunity
to thank all persons involved. First, I would like to thank all authors for their high-quality submissions and
contributions. I also would like to thank all reviewers who served on the EDBT 2019 program committee and
the chairs responsible for our different tracks, namely Berthold Reinwald (IBM, United States) who chaired
the industrial and application track, Carsten Binnig (TU Darmstadt, Germany) who served as demonstration
chair, our tutorial chair Irini Fundulaki (ICS FORTH, Greece), and Paolo Papotti (EUROCOM, France) who
served as workshop chair. The special session on joint EDBT/ICDT research challenges was organized by Julia
Stoyanovich (NYU, USA). I also thank Laura Haas (UMass Amherst, USA) and Alon Halevy, who generously
accepted to serve on the Test of Time Award Committee. Many thanks also to Paolo Atzeni (Universita’ Roma
Tre, Italy), Wei Wang (UNSW Sydney, Australia), and Jeffrey Xu Yu (Chinese University of Hong Kong) for
serving on the Best Paper Award committee.
The conference would not have been possible without the tireless effort of the general chair Helena Galhardas
(INESC-ID and IST, Universidade de Lisboa, Portugal) and the local organization team. Special thanks to the
finance chair Manuel J. Fonseca (Universidade de Lisboa, Portugal), the local executive chairs José Borbinha
and Luís Rodrigues, the sponsorship chairs João Garcia and Miguel Pardal, the publicity chair Paolo Romano,
the student volunteers chair Hugo Nicolau (all from INESC-ID and IST, Universidade de Lisboa, Portugal), and
the website chair António Higgs (INESC-ID, Portugal). These proceedings have been produced thanks to our
proceedings chair Zoi Kaoudi (QCRI, Qatar). Norman Paton was most helpful in advising and coordinating
with the EDBT Executive Board.
I really look forward to an interesting program and exciting conference on March 26–29, 2019 and to meeting
you in Lisbon.

Melanie Herschel
EDBT 2019 Program Chair
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Test-of-Time Award

Established in 2014, the Test-of-Time Award awarded by the Extended Database Technology (EDBT) Confer-
ence recognizes papers presented at EDBT Conferences that have had the most impact in terms of research,
methodology, conceptual contribution, or transfer to practice over the past ten years.
The 2019 Test-of-Time Award committee was formed by Laura Haas (University of Massachusetts, USA), Alon
Halevy, and Melanie Herschel, the EDBT 2019 PC chair. The committee was charged with selecting a paper
from the EDBT 2009 Proceedings.
After careful consideration, the Test-of-Time Award committee decided for the following paper from the 2009
EDBT Conference held in Saint Petersburg, Russia to receive the award:

Shore-MT: a scalable storage manager for the multicore era
by Ryan Johnson, Ippokratis Pandis, Nikos Hardavellas, Anastasia Ailamaki, and Babak Falsafi

published in the EDBT 2009 Proceedings, pp. 24–35, DOI: 10.1145/1516360.1516365.

The committee members agreed that this paper clearly stands out in terms of methodology, impact, and influ-
ence. It has catalyzed and enabled substantial follow-up research and has demonstrated its high relevance to
industry.
Abstract:
Historically, database engines focused on the ability to efficiently overlap many requests over a small number
processor cores, with I/O latencies and scalability as the main design driver. However, the advent of increas-
ingly multicore hardware circa 2000 brought new challenges because concurrent transactions begin to stress
the limits of the storage manager’s thread scalability by accessing its internal structures simultaneously and
in large numbers. This EDBT 2009 paper shows the results of experiments running benchmarks on four (then
and still) popular open-source storage managers (Shore, BerkeleyDB, MySQL, and PostgreSQL) on a multi-
core machine. The results show that all systems suffer from scalability bottlenecks at the storage engine level.
From that research emerged Shore-MT, an open-source multithreaded and highly scalable storage manager,
built with Shore as a base. We learned that designers should favor scalability over single-thread performance,
and we identified several other key principles for architecting scalable storage engines.
Ten years later, Shore-MT work has concluded, although the system still serves as a research platform in
the space. Meanwhile, research on transaction processing scalability continues to mature, the move to main-
memory transaction processing and their higher TPS increased the need for scalable storage managers, while
the popular open-source systems, such as MySQL and PostgreSQL, significantly improved their scalability. In
particular, a significant amount of research and industrial developments in the ten years since the Shore-MT
paper focused on improving the scalability of individual components of a storage manager, such as latches, the
logging subsystem and access methods. This research was partly carried out by our research group as follow-
on work, but other research groups and database vendors have made important contributions as well. Another
significant amount of effort has focused on scalable concurrency control protocols, again both within and
outside our research group. The knowledge that we have gained from building Shore-MT has been invaluable
in maintaining scalability in this new, multi-dimensional ecosystem.

The EDBT Test-of-Time award for 2019 will be presented during the EDBT/ICDT 2019 Conference as part of
the Awards session on Wednesday, March 27, 2019, by Anastasia Ailamaki (EPFL, Switzerland).
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ABSTRACT
The rising demands of real-time analytics have emphasized the
need for Hybrid Transactional and Analytical Processing (HTAP)
systems, which can handle both fast transactions and analyt-
ics concurrently. Wildfire is such a large-scale HTAP system
prototyped at IBM Research - Almaden, with many techniques
developed in this project incorporated into the IBM’s HTAP
product offering. To support both workloads efficiently, Wild-
fire organizes data differently across multiple zones, with more
recent data in a more transaction-friendly zone and older data
in a more analytics-friendly zone. Data evolve from one zone to
another, as they age. In fact, many other HTAP systems have also
employed the multi-zone design, including SAP HANA, Mem-
SQL, and SnappyData. Providing a unified index on the large
volumes of data across multiple zones is crucial to enable fast
point queries and range queries, for both transaction processing
and real-time analytics. However, due to the scale and evolving
nature of the data, this is a highly challenging task. In this pa-
per, we present Umzi, the multi-version and multi-zone LSM-like
indexing method in the Wildfire HTAP system. To the best of
our knowledge, Umzi is the first indexing method to support
evolving data across multiple zones in an HTAP system, provid-
ing a consistent and unified indexing view on the data, despite
the constantly on-going changes underneath. Umzi employs a
flexible index structure that combines hash and sort techniques
together to support both equality and range queries. Moreover, it
fully exploits the storage hierarchy in a distributed cluster envi-
ronment (memory, SSD, and distributed shared storage) for index
efficiency. Finally, all index maintenance operations in Umzi are
designed to be non-blocking and lock-free for queries to achieve
maximum concurrency, while only minimum locking overhead
is incurred for concurrent index modifications.

1 INTRODUCTION
The popularity of real-time analytics, e.g., risk analysis, online
recommendations, and fraud detection etc., demands data man-
agement systems to handle both fast concurrent transactions
(OLTP) and large-scale analytical queries (OLAP) over fresh data.
These applications ingest data at high-speed, persist them into
disks or shared storage, and run analytical queries simultaneously
over newly ingested data to derive insights promptly.

The necessity of real-time analytics prompts the emergence
of Hybrid Transactional and Analytical Processing (HTAP) sys-
tems, e.g., MemSQL [7], SnappyData [28], SAP HANA [21], and
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among others. HTAP systems support both OLTP and OLAP
queries in a single system, thus allowing real-time analytics over
freshly ingested data. Wildfire [15] is a large-scale HTAP system,
prototyped at IBM research - Almaden. Many of the techniques
developed in this research project have been incorporated into
the IBMDb2 Event Store offering [4].Wildfire leverages the Spark
ecosystem [10] to enable large-scale data processing with differ-
ent types of complex analytical requests (SQL, machine learning,
graph analysis, etc), and compensates Spark with an underlying
engine that supports fast transactions with snapshot isolation
and accelerated analytics queries. Furthermore, it stores data in
open format (Parquet [8]) on shared storage, so that other big
data systems can access consistent snapshots of data in Wildfire.
The back-end shared storage that Wildfire supports includes dis-
tributed file systems like Hadoop Distributed File System (HDFS)
and GlusterFS [2], as well as object-based storage on cloud like
Amazon S3 and IBM Cloud Object Storage.

To support efficient point lookups and range queries for high-
speed transactional processing and real-time analytics, fine-grained
indexing is mandatory in a large-scale HTAP system likeWildfire.
However, indexing large volumes of data in an HTAP system is
highly non-trivial due to the following challenges.

Challenges due to shared storage. First of all, for large-
scale HTAP, memory-only solutions are not enough. As a result,
most HTAP systems, including Wildfire, persist data in highly-
available fault-tolerant shared storage, like HDFS and Amazon S3,
etc. However, most of these shared storage options are not good
at random access and in-place update. For example, HDFS only
supports append-only operations and optimizes for block-level
transfers, and object storage on cloud allows neither random
access inside an object nor update to an object. To accommodate
the unique characteristics of shared storage, index operations,
e.g., insert, update and delete, have to leverage sequential I/Os
without in-place updates. Naturally, LSM-like index structures
are more appealing.

Furthermore, a typical shared storage prefer a small number of
large files to a large number of small files. This is not only because
of the overhead in metadata management, e.g., the maximum
number of files supported by an HDFS cluster is determined
by how much memory is available in the namenode, but more
importantly because of the reduced seek time overhead when
accessing larger files.

Finally, accessing remote shared storage through networks
for index lookups is costly. Thus, indexing methods on HTAP
must fully exploit the storage hierarchy in a distributed cluster
environment for efficiency. Particularly, nowadays, we can take
advantage of large memories and SSDs in modern hardware. Due
to the large scale of data inHTAP systems, however, only themost
frequently accessed portions of indexes can be cached locally,
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while leaving cold entries in shared storage. Effective caching
mechanisms must be developed to facilitate index lookup.

Challenge due to evolving nature of data. Since HTAP
systems have to support both transactional and analytical work-
loads efficiently, many of them [7, 14, 21, 23, 28] store data in
different organizations, typically one organization good for trans-
actions on the more recent data and one organization good for
analytics on the older data. We call the different data organi-
zations zones. As data age in the system, they evolve from the
transaction-friendly zone to the analytics-friendly zone. In Wild-
fire, transactions first append writes into a transaction log, which
is then groomed into columnar data blocks. The groomed data is
further periodically post-groomed to a more analytics-friendly
organization that is optimal for queries by creating data versions,
data partitioning, and larger data blocks. SAP HANA organizes
data into a read-optimized main store and a write-optimized
delta store. Writes are first buffered into the row-major delta
store, which is further transformed into the columnar main store
to facilitate analytical queries. Some loosely-coupled HTAP so-
lutions employ NoSQL stores, like HBase [3] or Cassandra [1],
for operational workloads, and periodically copy data from the
NoSQL stores into files in columnar format like Parquet or ORC-
File on the shared storage, so that SQL-on-Hadoop engines, like
Hive [35] or SparkSQL [13], can efficiently query them. The data
evolution across different zones in these HTAP systems/solutions
is constantly on-going, posing a significant challenge to building
and maintaining indexes.

Existing indexing solutions on multi-zone HTAP systems ei-
ther support index on the transaction-friendly zone only, like
in SnappyData [28] and the loosely coupled HTAP solutions, or
support separate indexes on different zones, like in MemSQL [7].
First of all, being able to efficiently query historical data is very
important for real-time analytics, especially for analytical queries
that are part of a transaction in the true HTAP scenario. As a re-
sult, the index needs to cover both recent data and historical data.
Secondly, having separate indexes on different zones exposes
a divided view of data. This requires queries to perform extra
work to combine index query results that span multiple zones. In
particular, with the constant evolving nature of HTAP data, it is
non-trivial for queries to make sure that there is no duplicate or
missing data in the final results. Therefore, it is highly desirable
to have a consistent and unified index across the different zones
in an HTAP system.

Contributions.To tackle the challenges of indexing in a large-
scale HTAP system,we present Umzi, themulti-version andmulti-
zone LSM-like index in the context of Wildfire. Umzi provides
a consistent and unified indexing view across the groomed and
post-groomed zones in Wildfire. To the best of our knowledge,
Umzi is the first unified multi-zone indexing method for large-
scale HTAP systems.

Umzi employs an LSM-like structure with lists of sorted index
runs to avoid in-place updates. A novel index-run format that
combines hash and sort techniques is introduced to flexibly an-
swer equality/range queries as well as the combination of both
using the index. Runs are organized into multiple levels as in
today’s NoSQL systems, e.g., LevelDB [6] and RocksDB [9]. A
new run is added into the lowest level, i.e., level 0, and runs are
periodically merged into higher levels within a zone. However,
when data evolve from one zone to another, an index evolve op-
eration is introduced to build new index runs in the new zone
and garbage-collect obsolete index runs from the old zone in a
coordinated way, so that the entire index is always in a consistent

state. To fully exploit the storage hierarchy, lower index levels
can be made non-persistent to speed up frequent merges, and we
dynamically adjust cached index runs from memory and SSD to
speed-up index lookups and transactional processing. In Umzi,
all operations are carefully designed to be non-blocking such
that readers, i.e., index queries, are always lock-free while only
negligible locking overhead is incurred for index maintenance.

Paper organization. Section 2 provides the background on
Wildfire. Section 3 describes an overview of the Umzi index.
Section 4 presents the internal structure of Umzi components.
Section 5 describes index maintenance operations in Umzi. Sec-
tion 6 discusses some design decisions of Umzi to exploit the
storage hierarchy. Section 7 introduces methods for processing
index queries, i.e., range scans and point lookups. Section 8 re-
ports the experimental evaluation of Umzi. Section 9 surveys
related work. Finally, Section 10 concludes this paper.

2 BACKGROUND
2.1 Wildfire
Wildfire [15] is a distributed multi-master HTAP system consist-
ing of two major pieces: Spark and the Wildfire engine. Spark
serves as the main entry point for the applications that Wild-
fire targets, and provides a scalable and integrated ecosystem
for various types of analytics on big data, while the Wildfire
engine adds the support for high-speed transactions, accelerates
the processing of application requests, and enables analytics on
newly-ingested data. All inserts, updates, and deletes in Wildfire
are treated as upserts based on the user-defined primary key.Wild-
fire adopts last-writer-wins semantics for concurrent updates to
the same key, and snapshot isolation of quorum-readable content
for queries, without having to read the data from a quorum of
replicas to satisfy a query.

A table in Wildfire is defined with a primary key, a sharding
key, and optionally a partition key. Sharding key is a subset of
the primary key, and it is primarily used for load balancing of
transaction processing in Wildfire. Inserted records are routed by
the sharding key to different shards. A table shard is replicated
into multiple nodes, where one replica serves as the shard-leader
while the rest are slaves. Any replica of a shard can ingest data.
A table shard is the basic unit of a lot of processes in Wildfire,
including grooming, post-grooming, and indexing (details later).
In contrast, the partition key is for organizing data in a way that
benefits the analytics queries. Typically, the sharding key is very
different from the partition key. For example, an IoT application
handling large volumes of sensor readings could use the device
ID as the sharding key, but the date column as the partition key
to speed up time-based analytical queries.

Wildfire adds the following three hidden columns to every
table to keep track of the life of each record and support snap-
shot isolation as well as time travel. The column beginTS (begin
timestamp) indicates when the record is first ingested in Wildfire;
endTS (end timestamp) is the time when the record is replaced
by a new record with the same primary key; prevRID (previous
record ID) holds the RID (record ID) of the previous record with
the same key.

In order to support both OLTP and OLAP workloads effi-
ciently within the same system, Wildfire divides data into mul-
tiple zones where transactions first append their updates to the
OLTP-friendly zone, which are gradually migrated to the OLAP-
friendly zone. Figure 1 depicts the data lifecycle inWildfire across
multiple zones.
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Figure 1: Data Lifecycle in Wildfire

Live Zone. A transaction in Wildfire first appends uncommit-
ted changes in a transaction local side-log. Upon commit, the
transaction tentatively sets beginTS for each record using the
local wall clock time (beginTS is reset later in the groomed zone),
and appends its side-log to the committed transaction log, which
is also replicated for high-availability. The committed log is kept
in memory for fast access, and also persisted on the local SSDs
using the Parquet columnar-format. Since this zone has the latest
ingested/updated data, it is called the live zone.

Groomed Zone. To bound the growth of the committed log
and resolve conflicts from different replicas, each shard in Wild-
fire has a designated groomer which periodically (e.g., every
second) invokes a groom operation to migrate data from the live
zone to the groomed zone.

The groom operation merges, in the time order, transaction
logs from shard replicas, resolves conflicts by setting the mono-
tonic increasing beginTS for each record, and creates a Parquet
columnar-format data file, called a groomed block, in the shared
storage as well as the local SSD cache. Each groomed block is
uniquely identified by a monotonic increasing ID called groomed
block ID. Note that the beginTS set by the groomer is composed
of two parts. The higher order part is based on the groomer’s
timestamp, while the lower order part is the transaction commit
time in the shard replica. Thus, the commit time of transactions in
Wildfire is effectively postponed to the groom time. The groomer
also builds indexes over the groomed data.

Post-Groomed Zone. The groomer only sets the beginTS for
each record. EndTS and prevRID still need to be set to support
snapshot isolation and time travel. In addition, up to the groomed
zone, data is still organized according to the sharding key, and
they need yet to be re-organized based on the more analytics-
friendly partition key. To achieve these tasks, another separate
process, called post-groomer, periodically (e.g., every 10 minutes)
performs post-groom operations to evolve the newly groomed
data to the post-groomed zone.

The post-groom operation first utilizes the post-groomed por-
tion of the indexes to collect the RIDs of the already post-groomed
records that will be replaced by the new records from the groomed
zone. Then, it scans the newly groomed blocks to set the prevRID
fields using the RIDs collected from the index, and re-organizes
the data into post-groomed blocks on the shared storage accord-
ing to the OLAP-friendly partition key. The post-groomer also
uses the same set of RIDs from the index to directly locate the
to-be-replaced records and sets their endTS fields. Since the post-
groomer is carried out less frequently than the groomer, it usually

generates much larger blocks, which results in better access per-
formance on shared storage. At the end, the post-groomer also
notifies the indexer process to build indexes on the newly post-
groomed blocks.

While both groomed and post-groomed blocks reside in the
shared storage, based on the access patterns of a node, they are
also cached in the local SSDs of that node, similarly to the indexes.

2.2 LSM-tree
Since Umzi employs an LSM-like structure, here we brief intro-
duce the background of LSM-trees. Interested readers can refer
to [27] for a survey of recent research on LSM-trees. The Log-
Structured Merge-tree (LSM-tree) is a write-optimized persistent
index structure. It first appends all writes into a memory table.
When the memory table is full, it is flushed into disk as a sorted
run using sequential I/Os. A query over an LSM-tree has to look
up all runs to perform reconciliation, i.e., to find the latest version
of each key.

As runs accumulate, query performance tends to degrade. To
address this, runs are periodically merged together to improve
query performance and reclaim disk spaced occupied by obsolete
entries. Two LSM merge policies are commonly used in practice,
i.e., leveling and tiering [27]. In both merge policies, runs are
organized into levels, where a run at level L + 1 is T times larger
than the run at level L. The leveling policy optimizes for queries
by limiting only one run per level. A run is merged with the one
at the higher level when its size reaches a threshold. In contrast,
the tiering policy optimizes for write amplification by allowing
multiple runs at each level. Multiple runs at level L are merged
together into a new run at level L + 1.

3 UMZI OVERVIEW
In Wildfire, depending on the freshness requirement, a query
may need to access data in the live zone, groomed zone, and/or
the post-groomed zone. We choose to build indexes over the
groomed zone and the post-groomed zone. Indexing does not
cover the live zone for a few reasons. First, since groomer runs
very frequently, data in the live zone is typically small, which
alleviates the need for indexing. Secondly, to support fast data
ingestion, we cannot afford maintaining the index on a record
basis.

In a nutshell, Umzi employs an LSM-like [31] structure with
multiple runs. Each groom operation produces a new index run,
and runs are merged over time to improve query performance.
Even though Umzi is structurally similar to LSM, it has signifi-
cant differences from existing LSM-based indexes. First, existing
LSM-based indexes either store the records directly into the in-
dex itself, e.g., LevelDB [6] and RocksDB [9], or store the records
separately with the assumption that each record has a fixed RID,
e.g., WiscKey [25] 1. However, both approaches do not work well
in Wildfire. Storing records into the LSM-tree incurs too much
write amplification during merges, significantly affecting inges-
tion performance. While for the second approach, as data evolve
from one zone to another, RIDs also change.2 To accommodate
the multi-zone design and the evolving nature, Umzi divides
index runs into multiple zones accordingly. Runs in each zone
are chained and merged, as in LSM indexes. When data evolve
from one zone to another, Umzi performs the evolve operation

1The same assumption is generally held by non-LSM-based indexes as well
2In Wildfire, an RID is identified by the combination of zone, block ID, and record
offset.
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to migrate affected index entries to the target zone accordingly.
Since data evolution in Wildfire is accomplished by a number
of loosely-coupled distributed processes, it is critical for index
evolve operations to require minimum coordination among dis-
tributed processes and incur negligible overhead for queries.

Furthermore, Umzi targets at multi-tier storage hierarchies
in distributed environment, including memory, SSD and shared
storage. Index runs are persisted on shared storage for durability,
while Umzi aggressively exploits local memory and SSD as a
caching layer to speed up index queries. Umzi dynamically ad-
justs cached index runs based on the space utilization and the
age of the data, even without ongoing queries. To improve merge
performance and avoid frequent rewrites on shared storage, Umzi
allows certain lower levels to be non-persisted, i.e., their runs are
only stored in local memory and optionally SSD.

Even though we present Umzi with two zones, i.e., groomed
zone and post-groomed zone, this structure does not limits the
applicability of Umzi to other systems. It is straightforward to ex-
tend Umzi to support other HTAP systems with arbitrary number
of zones. To this end, one needs to structure Umzi with multiple
run lists, each of which corresponds to one zone of data. When
data evolves from one zone to another, the indexing process
should be notified to trigger an index evolve operation to migrate
index entries accordingly.

As mentioned in Section 2, a table shard is the basic unit of
groomer and post-groomer processes in Wildfire. This is also the
case for indexing. In the distributed setting ofWildfire, each Umzi
index structure instance serves a single table shard. There are a
number of indexer daemons running in the cluster. Each runs
independently, and is responsible for building and maintaining
index for one or more index structure instances. As a result, this
paper describes the Umzi index design from the perspective of
one table shard.

The following four sections describe the detailed design of
Umzi and its index maintenance operations. Without loss of
generality, we assumeUmzi is used as a primary index throughout
the paper.

4 INDEX STRUCTURE
This section details the internal structure of Umzi. We first de-
scribe the index definition of Umzi, followed by the singe-run
storage format and multi-run structure respectively.

4.1 Index Definition
Umzi is designed for supporting both equality queries and range
queries, as well as facilitating index-only access plans if possible.
Index definitions in Umzi reflect these design goals. An index
is defined with key columns plus optionally included columns.
Index key columns can be a composition of equality columns
(for equality predicates) and sort columns (for range predicates).
Included columns are extra columns to enable efficient index-
only queries. If equality columns are specified, we also store the
hash value of equality column values to speed-up index queries,
which makes Umzi a combination of hash and range index. In
an example IoT application, the user can define the deviceID
as the equality column, while the message number as the sort
column. As a special case, the user could leave out the equality
column(s), which makes Umzi a complete range index. Similarly,
omitting the sort columns would turn Umzi into a hash index. The
flexibility of this index structure helps Umzi to answer equality

hash device msg beginTS RID
0 0000 0101 1 1 100 ...
1 0010 0011 8 2 101 ...
2 1001 0001 4 1 97 ...
3 1001 0001 4 1 94 ...
4 1001 0001 4 2 102 ...
5 1001 0001 5 1 97 ...
6 1110 0000 3 0 103 ...
7 1110 0000 3 1 104 ...

(a) Example Run Data

offset
000 0
001 1
010 2
011 2
100 2
101 6
110 6
111 6

(b) Offset Array

#data blocks: 2
merge level: 0
groomed block IDs: [0, 1]
synopsis: msg: [0, 2], device: [1, 8]
offset array: 0,1,2,2,2,6,6,6

header block

data block 0 data block 1

00001010 1 1 100

… 00000011 8 2

101 … 10010001 4

1 97 … 10010001

4 1 94 … 1001

0001 4 2 102 …

10010001 5 1 97

… 11000000 3 0

103 … 11100000 3

1 104 …

(c) Physical Layout of An Index Run

Figure 2: Example Index Run: device is the equality col-
umn, msg is the sort column, and there is no included
columns. For simplicity, we assume the hash value takes
only one byte.

queries, range queries, and combinations of the two, with one
index.

4.2 Run Format
Each run in Umzi can be logically viewed as a sorted table con-
taining the hash column, index key columns, included columns,
beginTS and RID. As mentioned before, the hash column stores
the hash value of equality columns (if any) to speed up queries
with equality predicates. The beginTS column indicates the times-
tamp when the indexed record is inserted, which is generated
by groomers in Wildfire (Section 2). The RID column defines the
exact location of the indexed record. Index entries are ordered by
the hash column, equality columns, sort columns, and descend-
ing order of beginTS. We sort the beginTS column in descending
order to facilitate the access of more recent versions. All ordering
columns, i.e., the hash column, equality columns, sort columns
and beginTS, are stored in lexicographically comparable formats,
similar to LevelDB [6], so that keys can be compared by sim-
ply using memory compare operations when processing index
queries. Figure 2 shows an example index run, where device is the
equality column andmsg is the sort column. There is no included
columns in this example, and we assume the hash value takes
only one byte. Figure 2a shows the index rows in this run, where
the hash value is shown in the binary format.

An index run is physically stored as a header block plus one
or more fixed-size data blocks. The header block contains the
metadata information of the index run, such as the number of
data blocks, the merge level this run belongs to (Section 5), and
the range of groomed block IDs to which this run corresponds.
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To prune irrelevant runs during index queries, we also store a
synopsis in the header block. The synopsis contains the range
(min/max values) of each key column stored in this run. A run
can be skipped by an index query if the input value of some key
column does not overlap with the range specified by the synopsis.
Figure 2c shows an example index run layout which contains
one header block and two data blocks.

When equality columns are specified in the index definition,
we store in the header block an offset array of 2n integers to
facilitate index queries. The offset array maps the value of the
most significant n bits of hash values to the offset in the index
run. When processing index queries, the offset array can be used
to provide a more compact start and end offset for binary search.
For example, Figure 2b shows the offset array with the most
significant 3 bits of hash values from Figure 2a.

4.3 Multi-Run Structure
An example multi-run structure of Umzi is shown in Figure 3.
Similar to LSM indexes, Umzi contains multiple runs. A groom op-
eration produces a new run to level 0, and runs from lower levels
are gradually merged into higher levels to improve query perfor-
mance. Each run is further labeled with the range of groomed
block IDs, where larger IDs correspond to newer groomed blocks.

In this meanwhile, to accommodate the multi-zone design
and data evolving nature of the HTAP systems, Umzi divides
index runs inmultiple zones accordingly. For concurrency control
purpose, runs in each zone are chained together based on their
recency into a list, where the header points to the most recent
run. We will further discuss concurrency control of Umzi in
Section 5.1. Based on this multi-zone design, Umzi only merges
runs within the same zone. When data evolves from one zone to
another, an index evolve operation is triggered to migrate index
entries to the target zone accordingly.

The assignment of levels to zones are configurable in Umzi. For
example in Figure 3, levels 0 to 5 are configured as the groomed
zone, while levels 6 to 9 are configured as the post-groomed zone.

5 INDEX MAINTENANCE
In this section we describe indexmaintenance operations in Umzi,
including index build, merge, and evolve. Before presenting the
details of index maintenance operations, we first discuss con-
currency control in Umzi since index maintenance is performed
concurrently with queries. Finally, we also briefly discuss how
recovery is performed in Umzi.

5.1 Concurrency Control
Umzi aims at providing non-blocking and lock-free access for
queries. To this end, Umzi relies on atomic pointers and chains
runs in each zone together into a linked list, where the header
points to the most recent run. All maintenance operations are

Level 0 Level 1
21-22 16-20 11-15

6-10 0-5
Level 6

evolve

merge

Groomed Zone

Post-Groomed Zone

23-24

Figure 3: Multi-Run Structure in Umzi

Level 0 Level 1 Level 2

Step 1Step 2

new run

Figure 4: Index Merge Example

carefully designed so that each index modification, i.e., a pointer
modification, always results in a valid state of the index. As a
result, queries can always traverse run lists sequentially without
locking to get correct results. To minimize contentions caused by
concurrent index maintenance operations, each level is assigned
a dedicated index maintenance thread. A short duration lock
is acquired when modifying the run list to prevent concurrent
modifications. Note that the locking overhead is negligible since
locks are only used to prevent concurrent modifications to the
run list, which happens infrequently. Moreover, these locks never
block any index queries.

5.2 Index Build
After a groom operation is completed, Umzi builds an index run
over the newly groomed data block. This is done by simply scan-
ning the data block and sorting index entries in ascending order
of hash values, sort columns, equality columns and descending
order of beginTS. Along with writing sorted index entries back
to data blocks, the offset array can be computed on-the-fly. Fi-
nally, the new run becomes the new header of the run list for the
groomed zone. Note that the order of pointer modifications is
important to guarantee the correctness for concurrent queries,
where the new run must be set to point to the header before the
header pointer is modified.

5.3 Index Merge
In order to easily trade-off write amplification and query perfor-
mance, Umzi employs a hybrid merge policy similar to [20]. This
policy is controlled by two parameters K , the maximum number
of runs per level, and T , the size ratio between runs in adjacent
levels. Each level L maintains the first run as an active run, while
the remaining runs are inactive. Incoming runs from level L − 1
are always merged into the active run of level L. When the active
run in level L is full, i.e., its size isT times larger than an inactive
run in level L − 1, it is marked inactive and a new active run is
created. Finally, when level L contains K inactive runs, they are
merged together with the active run in level L + 1.

After a merge, the new run replaces old runs in the run list. As
shown in Figure 4, this is done by first setting the new run point
to the next run of the last merged run, and then set the previous
run before the first merged run point to the new run. A lock over
the run list is acquired during the replacement, since otherwise
pointers could be concurrently modified by other maintenance
threads. There is no need for a query to acquire any locks when
traversing the list; it sees correct results no matter whether the
old runs or the new run are accessed.

5.4 Index Evolve
In Wildfire, the post-groomer periodically moves groomed data
blocks to the post-groomed zone. After a post-groom opera-
tion, groomed data blocks are marked deprecated and eventually

5



deleted to reclaim storage space. As a result, index entries in Umzi
must be migrated as well so that deprecated groomed blocks are
no longer referenced. However, index evolving in distributed
HTAP systems is non-trivial due to the following problems.

First, HTAP systems like Wildfire are often composed of sev-
eral loosely-coupled distributed processes. The post-groomer in
Wildfire is a separate process running on a different node from
the indexer process. In a distributed environment, one require-
ment for index evolving is to minimize the coordination among
multiple processes. Second, an index evolve operation must apply
multiple modifications to the index. This requires index evolve
operations to be carefully designed to ensure the correctness for
concurrent queries without blocking them.

To tackle the first problem, an index evolve operation in Umzi
is performed asynchronously by the indexer process with mini-
mum coordination, as shown in Figure 5. Each post-groom oper-
ation is associated with a post-groom sequence number (PSN).
After a post-groom operation, the post-groomer publishes the
metadata for this operation and updates themaximumPSN. In the
meanwhile, the indexer keeps track of the indexed post-groom
sequence number, i.e., IndexedPSN, and keeps polling the max-
imum PSN. If IndexedPSN is smaller than the maximum PSN,
the indexer process performs an index evolve operation for In-
dexedPSN+1, which guarantees the index evolves in a correct
order, and increments IndexedPSNwhen the operation is finished.
Note that asynchronous index evolution has no impact on index
queries since a post-groom operation only copies data from one
zone to another without producing any new data. For a query, it
makes no difference to access a record from the groomed zone
or post-groomed zone.

For the concurrency control issue, we decompose the index
evolve operation into a sequence of atomic sub-operations. Each
sub-operation is guaranteed to result in a valid state of the index,
ensuring that concurrent queries always see correct results when
traversing the run lists. Specifically, an index evolve operation
for a given PSN is performed as follows. First, the indexer builds
an index run for post-groomed data blocks associated with this
PSN, and adds it atomically to the post-groomed run list. Note
that this run still contains the range of groomed block IDs it
corresponds to. Second, the indexer atomically updates the max-
imum groomed blocked ID covered by the post-groomed run
list, based on the newly built run. All runs in the groomed run
list with end groomed block ID no larger than this value would
be automatically ignored by queries since entries in these runs
are already covered by the post-groomed run list. Finally, these
obsolete runs are garbage collected from the groomed run list.
Note that during each step, a lock over the run list is acquired
when modifying a run list to prevent concurrent modifications
by other maintenance threads.

Post-groomer

Indexer

groomed blocks post-groomed block

MaxPSN

IndexedPSN
poll

post-groom

evolve if IndexedPSN < MaxPSN

groomed run list

post-groomed run list

PSN

Figure 5: Interaction between Post-groomer and Indexer

We further illustrate the index evolve operation with an ex-
ample depicted in Figure 6. Suppose the groomed blocks 11 to 18
have been post-groomed, and the indexer now performs an index
evolve operation for this post-groom operation accordingly. First,
the indexer builds a new run labeled 11-18 for the newly post-
groomed data, and atomically adds it to the post-groomed run
list. The indexer then atomically updates the maximum groomed
blocked ID of the post-groomed run list from 10 to 18. At this mo-
ment, run 11-15 will be ignored by subsequent queries since it is
fully covered by run 11-18. Finally, this obsolete run is garbage col-
lected from the groomed list, which concludes this index evolve
operation.

It is straightforward that each step of an evolve operation only
makes one modification to the index, and is thus atomic. Between
any two of the above three steps, the index could contain dupli-
cates, i.e., a record with the same version could appear in both a
groomed run and a post-groomed run. Moreover, even after the
last step of the index evolve operation, the index may still contain
duplicates since groomed blocks consumed by a post-groom op-
eration may not align perfectly with the boundaries of index runs.
However, duplicates are not harmful to index queries. Since a
query only returns the most recent version of each key, duplicates
are removed on-the-fly during query processing (Section 7).

5.5 Recovery
We assume runs in Umzi are persisted in shared storage. After
each index evolve operation, the maximum groomed blocked ID
for the post-groomed run list and IndexedPSN are also persisted.
However, an indexer process could crash, losing all data struc-
tures in the local node. To recover an index, we mainly need to
reconstruct run lists based on runs stored in shared storage, and
cleanup merged and incomplete runs if any.

A run list can be recovered by examining all runs in shared
storage. Runs are first sorted in descending order of end groomed
blocked IDs, and are added to the run list one by one. If multiple
runs have overlapping groomed block IDs, the one with largest
range is selected, while the rest are simply deleted since they
have already been merged.

6 UMZI ON MULTI-TIER STORAGE
HIERARCHY

Recall that Umzi is designed for large-scale distributed HTAP
systems running on multi-tier storage hierarchy, i.e., memory,
SSD, and distributed shared storage. Even though shared storage
provides several key advantages for distributed HTAP systems
such as fault tolerance and high availability, it brings signifi-
cant challenges when designing and implementing an indexing
component. Shared storage generally does not support in-place

Post-groomer

Indexer

11 18 11-18

groomed blocks post-groomed block
post-groom

23-24 21-22 16-20 11-15

6-10 0-5

groomed run list

post-groomed run list (10 → 18)

……

11-18

step1: build new run
step 2: update max groomed block ID

step 3: GC old run

Figure 6: Index Evolve Example
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updates and random I/Os, and prefers a small number of large
files to reduce metadata overhead. Furthermore, accessing shared
storage through networks is often costly, incurring high latency
for index queries.

So far, we only discussed how Umzi eliminates random I/Os
and in-place updates by adopting an LSM-like structure. In this
section, we present solutions adopted by Umzi to improve storage
efficiency in a multi-tier storage hierarchy.

6.1 Non-Persisted Levels
In a traditional LSM design, on-disk runs of all levels are per-
sisted on disk equivalently. Even though this design garbage
collects olds runs after a merge, it introduces a large overhead
on shared storage because of writing a large number of (poten-
tially small) files. To avoid frequently rewriting a large number of
small files on shared storage, Umzi supports non-persisted levels,
i.e., certain low levels of the groomed zone can be configured as
non-persisted.

Runs in persisted levels are always stored in shared storage
for fault tolerance and can be cached in local memory and SSD to
speedup queries. However, runs in non-persisted levels are only
cached in local memory and optionally spilled to SSD if memory
is full, but they are not stored in shared storage for efficiency.

Introducing non-persisted levels complicates the recovery pro-
cess of Umzi, since after a failure all runs in non-persisted levels
could be lost. To address this, Umzi requires level 0 must be per-
sisted to ensure that we do not need to rebuild any index runs
from groomed data blocks during recovery. Moreover, if level L
to K are configured as non-persisted, runs in level L-1 cannot be
deleted immediately after they are merged into level L. Other-
wise, if the node crashes, we would again lose index runs since
the new run is not persisted in shared storage. To handle this,
when merging into non-persisted levels, old runs from level L-1
are not deleted but rather recorded in the new run. When the
new run is finally merged into a persisted level again, i.e., level
K+1, its ancestor runs from level L-1 can be safely deleted.

6.2 Cache Management
As mentioned before, accessing shared storage through networks
is often costly and incurs high latencies for index queries. To
address this, Umzi aggressively caches index runs using local
memory and SSD, even without ongoing queries. We assume
most frequently accessed index runs fit into the local SSD cache
so that shared storage is mainly used for backup. However, when
the local SSD cache is full, Umzi has to remove some index runs to
free up the cache space. For this purpose, we assume recent data is
accessed more frequently. As the index grows, Umzi dynamically
purges old runs, i.e., runs in high levels, from the SSD cache
to free up the cache space. In contrast, when the local SSD is
spacious, Umzi aggressively loads old runs from shared storage
to speedup future queries.

To dynamically purge and load index runs, Umzi keeps track
of the current cached level that separates cached and purged
runs, as shown in Figure 7. When the SSD is nearly full, the index
maintenance thread purges some index runs and decrements the
current cached level if all runs in this level have been purged.
When purging an index run, Umzi drops all data blocks from
the SSD while only keeps the header block for queries to locate
data blocks. On the contrary, when the SSD has free space, Umzi
loads recent runs (in the reverse direction of purging) into SSD,
and increments the current cached level when all runs in the

Level 0 Level 1

Level 6

Groomed Zone

Post-Groomed Zone

current cache level
purge load

cached runs

purged runs

Figure 7: Cache Management in Umzi

current cached level have been cached. Umzi further adopts a
write-through cache policy when creating new index runs during
merge or evolve. That is, a new run is directly written to the SSD
cache if it is below (lower than) the current cache level.

7 INDEX QUERY
In this section, we discuss how to process index queries on Umzi.
Since Umzi is a multi-version index, a query has to specify a
query timestamp (queryTS), and only the most recent version
for each matching key is returned, i.e., the version with largest
beginTS such that beginTS ≤ queryTS. In general, two types
of index queries are supported. The range scan query specifies
values for all equality columns (if any) and bounds for the sort
columns, and returns the most recent version of each matching
key. The point lookup query specifies the entire index key (i.e.,
the primary key), and at most one matching record is returned.

A query first collects candidate runs by iterating the run lists
and checking run synopses. A run is considered as a candidate
only if all column values as specified in the query satisfy the
column ranges in the synopsis. Also note that all runs are read
from the SSD cache. In case that a query must access purged
runs, we first transfer runs from shared storage to the SSD cache
on a block-basis, i.e., the entire run data block is transferred at
a time, to facilitate future accesses. After the query is finished,
the cached data blocks are released, which are further dropped
in case of cache replacement. Depending on the query type, the
details of query processing are as follows.

7.1 Range Scan Query
For a range scan query, we first discuss how to search a single
run to get matching keys. Results returned frommultiple runs are
further reconciled, since results from newer runs could override
those from older runs, to guarantee only the most recent version
is returned for each matching key.

7.1.1 Search Single Run. Searching a single run returns the
most recent version for each matching key in that run. Since
a run is a table of sorted rows, the query first locates the first
matching key using binary search with the concatenated lower
bound, i.e., the hash value, equality column values, and the lower
bound of sort column values. If the offset array is available, the
initial search range can be narrowed down by computing the
most significant n bits of the hash value (denoted as i) and taking
the i-th value in the offset array.

After the first matching key is determined, index entries are
then iterated until the concatenated upper bound is reached, i.e.,
the concatenation of the hash value, equality column values, and
the upper bound of sort column values. During the iteration, we
further filter out entries failing timestamp predicate beginTS ≤

queryTS. For the remaining entries, we simply return for each
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key the entry with the largest beginTS, which is straightforward
since entries are sorted on the index key and descending order
of beginTS.

Consider again the example run in Figure 2. Recall that device
is the equality column, while msg is the sort column. Consider a
range scan query with device = 4, 1 ≤ msg ≤ 3, and queryTS = 100.
We first take the most significant 3 bits of hash(4) = 1001 0001,
i.e., 100, to obtain the initial search range from the offset array,
i.e., 2 to 6. The first matching key is still entry 2 after binary
search with the input lower bound (1001 0001, 4, 1). We then
iterate index entries starting from entry 2. Entry 2 is returned
since it is the most recent version for key (4, 1), while entry 3 is
filtered out since it is an older version of entry 2. However, entry
4 is filtered out because its beginTS 102 is beyond the queryTS
100. We stop the iteration at entry 5, which is beyond the input
upper bound (1001 0001, 4, 3).

7.1.2 Reconcile Multiple Runs. After searching each run in-
dependently, we have to reconcile results returned from multiple
runs to ensure only the most recent version is returned for each
matching key. In general, two approaches can be used for recon-
ciliation: the set approach and the priority queue approach.

Set Approach. In the set approach, the query searches from
the newest to the oldest runs sequentially, and maintains a set of
keys which have already been returned to the query. If a key has
not been returned before, i.e., not in the set, it is added to the set
and the corresponding entry is returned to the query; otherwise,
the entry is simply ignored since we have already returned amore
recent version from the newer runs. The set approach mainly
works well for small range queries since it requires intermediate
results to be kept in memory during query processing.

Priority Queue Approach. In the priority queue approach,
the query searches multiple runs together and feeds the results
returned from each run into a priority queue to retain a global
ordering of keys, which is similar to the merge step of merge sort.
Once keys are ordered, we can then simply select the most recent
version for each key and discard the rest without remembering
the intermediate results.

7.2 Point Lookup Query
The point lookup query can be viewed as a special case of the
range scan query, where the entire primary key is specified such
that at most one entry is returned. As an optimization, one can
search from newest runs to oldest runs sequentially and stop the
search once a match is found. Here we can use exactly the same
approach from above to search the single run, where the lower
bound and upper bound of sort column values are the same.

For a batch of point lookups, we first sort the input keys by
the hash value, equality column values, and sort column values,
to improve search efficiency. The sorted input keys are searched
against each run sequentially from newest to oldest, one run at
a time, until all keys are found or all runs to be searched are
exhausted. This guarantees that each run is accessed sequentially
and only once.

8 EXPERIMENTAL EVALUATION
In this section, we report the experimental evaluation of Umzi.
We first evaluate the index build performance, index query per-
formance, and further study the end-to-end query performance
with concurrent data ingestion. We first outline the general ex-
periment setup, then report and discuss the experimental results.

As mentioned in Section 3, there are a distributed cluster of
indexer daemons running in Wildfire, each independently re-
sponsible for building and maintaining index for one or more
Umzi index structure instances (one per table shard). As a result,
Umzi scales up and down nicely with more or less indexer dae-
mons. Since the goal of our experiments is to demonstrate the
performance of Umzi index structure, we focus on a single shard
setting for our experiments.

Note that since all experiments were conducted inside Wild-
fire, which is closely tied to an IBM product, we cannot report
absolute performance numbers. As a result, we report normalized
performance numbers, with the normalization process explained
for each experiment.

8.1 Experiment Setup
All experiments are performed against a single table shard on
a single node using a dual-socket Intel Xeon E5-2680 server
(2.40GHZ) with 14 cores in a socket (28 with hyper-threading)
and 1.5TB of RAM. The operating system is Ubuntu 16.04.2 with
Linux kernel 4.4.0-62. The node uses an Intel 750 Series SSD as
the SSD cache. For end-to-end experiments, we use GlusterFS [2]
as the shared storage layer.

We use a synthetic data generator to generate keys with in-
clude columns used in all experiments, where keys can be se-
quential or random. Note that our index only stores key and
include columns instead of entire records, thus a key generator
is sufficient for our experiments. Throughout the experiments,
we consider three different index definitions as below:

• I1: one equality column, one sort column, and one include
column

• I2: two equality columns and one include column
• I3: one equality column and one include column

Each column is a long type with 8 bytes. Unless otherwise noted,
we use index definition I1 as the default case. Each of the follow-
ing experiments was reported for three times, and the average
number is reported.

Moreover, for the scope of this paper, we only focus on the time
of index lookups, while omitting the time of retrieving records
based on the fetched RIDs, since the latter depends on the record
storage format and is orthogonal to the indexing method.

8.2 Index Building Performance
In the first set of experiments, we evaluate the performance of
building index runs, which is the primitive operation for Umzi’s
index maintenance after a groom or post-groom cycle. Figure 8
shows the results for the time it takes to build an index run
using the three different index definitions mentioned above as
we increase the number of entries in a run. The running time is
normalized against the time of building a run with 1000 tuples
using I1. As the graph shows, index building almost scales linearly
with the number of rows. Furthermore, the index building time
for index I3 is always faster than I1 and I2, since I3 has one fewer
key column. The impact of the number of indexed columns on
the index building time, however, is negligible, compared to the
overhead of sorting entries during index building.

8.3 Index Query Performance
Next set of experiments evaluate the performance of querying
Umzi under various settings. By default, an index contains 20
runs, where each index run has 100000 entries. We execute index
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Figure 8: Index Building Performance

queries in a batch, where the default batch size is 1000. All index
runs used in this set of experiments are cached in the local SSD.

We consider two kinds of entry characteristics for the follow-
ing experiments, i.e., ingested with sequential keys or random
keys. Sequential keys are sequentially generated by our synthetic
key generator to simulate the time correlated keys, while random
keys are randomly sampled from a uniform distribution with-
out any temporal correlation. We further consider two kinds of
key distribution in index queries: sequential and random. As the
name suggests, sequential and random queries use sequentially
and randomly generated keys in a batch, respectively.

8.3.1 Single Run. We first evaluate the index query perfor-
mance against a single run. For brevity, we only report experi-
ment results with sequentially ingested keys in this experiment.
Since entries in a run are sorted on hash values, there is no dif-
ference to use sequentially or randomly ingested data. Figure 9
shows the normalized lookup time with varying run sizes and
index definitions.

The time is normalized against the index lookup time of the
sequential query over the run with 1000 tuples under the index
definition I1. In general, the query time increases with larger in-
dex runs, since search keys spread across the run and potentially
more I/Os are required to process the query batch when the run
size increases. However, the impact of run size is limited because
we use the hash offset array to locate the initial search range, and
further use binary search to locate the exact location. Moreover,
index lookup performance of index definition of I1 is comparable
to that of I3, but index lookup performance of index definition
I2 is generally slower since I2 contains two equality columns,
making the hash offset array less effective in terms of locating
the initial search range.

8.3.2 Multiple Runs with Sequential Keys. In this section we
evaluate the index query performance against multiple index
runs with sequentially ingested keys. We vary the query batch
size and the number of index runs for the lookup queries, and
the scan range for the range queries. The experiment results are
shown in Figure 10.

Figure 10a shows the impact of the batch size on the index
lookup performance. The index lookup time per key is normalized
against the lookup time of the sequential query with batch size
one. In general, sequential queries perform much better than
random ones since the run synopsis enables pruning most of
the irrelevant runs and leaving only a small fraction of the runs
need to be searched (except for the case of batch size 1, where
the sequential queries take longer because of some variances in
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Figure 9: Single Run Query Performance

the experiments). Furthermore, batching greatly improves index
lookup performance, since once an index block is fetched into
memory for a the lookup of a particular key, no additional I/O is
required to fetch that block again for looking up other keys in
the batch.

Figure 10b shows the index lookup performance with varying
number of index runs. The query time is normalized against the
time it takes to complete the sequential query against one run. As
the result shows, the number of runs has limited impact over the
sequential queries, since most irrelevant runs are simply pruned
because of the run synopsis. However, the time of the random
queries grows almost linearly with more runs, since more runs
need to be searched to complete the batch of lookups.

Finally, the performance of the range scan queries using the
priority queue method is in Figure 10c. The time is normalized
against the query time of the sequential query with range one.
In general, the query time of the range scan query grows lin-
early with the query range, since larger ranges require more
time to read index entries and output matching keys. Moreover,
sequential or random ranges have little impact over the query
performance, since the time of locating start position is negligible
compared to scanning the index entries.

8.3.3 Multiple Runs with Random Keys. After investigating
the index query time using sequentially ingested keys, this sec-
tion evaluates the query performance against multiple index runs
with randomly ingested keys. The results are shown in Figure 11.
The numbers on the y-axes are normalized the same way as the
corresponding numbers in Figure 10. In general, random keys
render the run synopsis less useful, which decreases the perfor-
mance of sequential queries since more runs need to be searched.
However, the impact on the random queries is almost negligible,
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Figure 11: Query performance of multiple runs with randomly ingested keys

since the pruning capability of the run synopses is anyway lim-
ited when we have random keys in the query batch. As a result,
the performance of sequential queries becomes similar to that of
random queries.

8.4 End-to-end Experiments
The last set of experiments evaluates the end-to-end performance
of Umzi in Wildfire as we perform data ingest and index lookups
concurrently while Umzi’s index maintenance operations are also
handled in the background. By default, for each experiment, we
ingest roughly 100000 random records per second. The groomer
runs every second, and the post-groomer runs every 20 seconds.
We also submit batches of 1000 random index lookup queries
continuously. Each experiment lasts for 100 seconds.

For this set of experiments, we generate data with update rates
that mimic a realistic IoT application, where the recent data are
updated more frequently. The update rates are calculated based
on the groom cycles: the ingested data for the latest groom cycle
updates p% of data from the last groom cycle, and 0.1 × p% of
data from the last 50 cycles, and 0.01 × p% of data in the last 100
cycles. By default, we set p% = 10%.

With this experimental setup, we investigate the impact of
concurrent readers, percentage of updates, purged runs, and
index evolve operations on index lookup time. The results are
summarized and discussed below.

8.4.1 Concurrent Readers. Figure 12 shows how varying the
number of concurrent readers impact the average index lookup
time. Each reader thread submits batches of 1000 lookup queries
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Figure 12: Performance with concurrent readers

continuously. For brevity, we show results for only 4, 16, 28,
40, and 52 readers, and the experiment results are normalized
against the lookup time with 1 reader from the beginning of the
experiment. In addition, Figure 12 zooms into a 30 second period
from the middle of the overall experiment to focus on the impact
of concurrency as opposed to the index behavior over time as
the index grows. As one can see, more concurrent readers have
small impact on the query performance, which demonstrates
the advantages of Umzi’s lock-free design for the readers. The
varying performance of the index lookup operation in this graph
(and the rest of the graphs in this section) is due to the random
input keys we generate for the index lookup requests. Based on
the distribution of these random keys, the search for a key can
lead to reading fewer or more index runs, which impacts the
performance of a point lookup as seen previously.
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8.4.2 Updates. Figure 13 analyzes the impact of varying level
of updates in a workload on the query performance. We change
the update rate p% from 0% (read-only workload) to 100% (all
ingested records are updates after the first groom cycle). As the
graph demonstrates, updates have limited impact on the average
query performance. The slightly increasing lookup time over
time, which can be observed in all the experiments in this section,
is due to the growing of the index run chain of Umzi.

8.4.3 Purged Runs. The impact of purged runs on the query
performance is shown in Figure 14, where we manually set the
purge level to control the percentage of purged runs. The run-
ning time is normalized against the performance of the no-purge
case in the beginning of this experiment. As expected, Figure 14
emphasizes the significance of the SSD cache on the query per-
formance. The latency of the lookup queries is much lower when
all the index runs are cached (none) compared to the cases where
the half or all of the runs are purged. Moreover, when some runs
are purged, we observe unpredictable latency spikes. The reason
is that when purged runs are first accessed after being merged or
evolved, they have to be fetched from the shared storage into the
local SSD cache on a block by block basis as the queries require
them.

8.4.4 Index Evolve Operations. Finally, we evaluate the impact
of the index evolve operations on the query performance by
enabling/disabling the post-groomer. The results are shown in
Figure 15. The running time is normalized against the lookup
time in the beginning of the experiment where the post-groomer
(including index evolution), is enabled. As the graph illustrates,
the index evolve operation has certain overhead over the query
performance, since often the query may experience several cache
misses after runs have been evolved. However, the overhead again
is limited, since in the meanwhile the index evolve operation
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reduces the total of number of runs, which in turn improves the
query performance.

9 RELATEDWORK
In this section, we survey related work in indexing methods for
HTAP systems, as well as LSM-like indexes.

Indexing in HTAP Systems. To satisfy the demand of fast
transactions and analytical queries concurrently, many HTAP
systems and solutions have been proposed recently. A recent
survey of HTAP systems can be found in [32]. In-memory HTAP
engines, e.g., SAP HANA [21], HyPer [22], Pelaton [14], Oracle
TimesTen [23] and DBIM [29] take unique advantage of large
main memories, e.g., random writes and in-place updates, while
large-scale HTAP systems that go beyond the memory limit have
to face inherently different challenges in the presence of disks and
shared storage. MemSQL [7] supports skip-list or hash indexes
over the in-memory row store, and LSM-like indexes over the
on-disk column store. However, column store indexes cannot be
combined with row indexes to provide a unified view for queries.
SnappyData [28] only supports indexes over row tables, while
providing no indexing support for column tables.

Another category of HTAP solutions typically glue multiple
systems together to handle OLTP and OLAP queries. For example,
one typical solution is to use a key-value store, such as HBase [3]
or Cassandra [1], as the updatable storage layer, while resorting
to SQL-on-Hadoop systems such as Spark-SQL [13] to process
analytical queries with the help of data connectors. Other sys-
tems directly build upon updatable storage engines to handle
both transactional and analytical queries, such as Hive [35] on
HBase [3] and Impala [16] on Kudu [5]. In these solutions, in-
dexes, if any, are exclusively managed by the storage engine to
support efficient point lookups. However, none of these solutions
support both fast ingestion and data scans, which is different
from our system where ingested data evolves constantly to be
more analytics-friendly.

LSM-like Index.The LSM-tree [31] is a persistent index struc-
ture optimized for write-heavy workloads. Instead of updating
entries in place, which potentially requires a random I/O, the
LSM-tree batches inserts into memory and flushes the data to
disk using sequential I/O when the memory is full. It was sub-
sequently adopted by many NoSQL systems, such as HBase [3],
Cassandra [1], LevelDB [6] and RocksDB [9], for its superior
write performance. Many variations of the original LSM-tree
have been proposed as well. LHAM [30] is a multi-version data
access method based on LSM for temporal data. FD-tree [24] is
designed for SSDs by limiting random I/Os and uses fractional
cascading [18] to improve search performance. bLSM [34] uses
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bloom filters to improve point lookup performance, and proposes
a dedicated merge scheduler to bound write latencies. Aster-
ixDB [12] proposes a general framework for using LSM-tree as
secondary indexes. Ahmad and Kemme [11] present an approach
to improve the merge process by offloading merge to dedicated
nodes and a cache warm-up algorithm to alleviate cache misses
after merge. LSM-Trie [36] organizes runs using a prefix tree-like
structure to improve point lookup performance by sacrificing the
ability to do range queries. WiscKey [25] reduces write amplifi-
cation by only storing keys in the LSM tree while leaving values
in a separate log. The work [26] presented efficient maintenance
strategies for LSM-based auxiliary structures, i.e., secondary in-
dexes and filters, to facilitate query processing. Monkey [19]
is an analytical approach for automatic performance tuning of
LSM trees. Dostoevsky [20] presents a lazy leveling merge pol-
icy for better trade-offs among query cost, write cost and space
amplification. Accordion [17] optimizes LSM on large memo-
ries by in-memory flushes and merges. SlimDB [33] optimizes
LSM-based key-value stores for managing semi-sorted data.

Different from existing work on LSM indexes, which focuses
on a key-value store setting, Umzi is an end-to-end indexing
solution in distributed HTAP systems. It supports the multi-zone
design commonly adopted by large-scale HTAP systems, and
evolves itself as data migrates without blocking queries. We fur-
ther discuss how Umzi is designed to accommodate the multi-tier
storage hierarchy, i.e., memory, SSD, and shared storage, to im-
prove storage efficiency.

10 CONCLUSION
This paper describes Umzi, the first unified multi-version and
multi-zone indexing method for large-scale HTAP systems in the
context of Wildfire. Umzi adopts the LSM-like design to avoid
random I/Os in shared storage, and supports timestamped queries
for multi-version concurrency control schemes. Unlike existing
LSM indexes, Umzi addresses the challenges posed by the multi-
zone design of modern HTAP systems, and supports migrating
index contents as data evolves from one zone to another. It also
utilizes an interesting combination of hash and sort techniques to
enable both equality and range queries using one index structure.
Furthermore, it fully exploits the multi-level storage hierarchy
of HTAP systems for index persistence and caching.

In the future, we plan to extend Umzi to build and maintain
secondary indexes in HTAP systems. Then, we would like to
perform more experimental evaluation on Umzi to study its per-
formance under various workloads. Finally, we would also like
to study other SSD cache management strategies, and evaluate
their impact on query performance.
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ABSTRACT
Answering exact shortest path distance queries is a fundamental
task in graph theory. Despite a tremendous amount of research
on the subject, there is still no satisfactory solution that can
scale to billion-scale complex networks. Labelling-based meth-
ods are well-known for rendering fast response time to distance
queries; however, existing works can only construct labelling
on moderately large networks (million-scale) and cannot scale
to large networks (billion-scale) due to their prohibitively large
space requirements and very long preprocessing time. In this
work, we present novel techniques to efficiently construct dis-
tance labelling and process exact shortest path distance queries
for complex networks with billions of vertices and billions of
edges. Our method is based on two ingredients: (i) a scalable la-
belling algorithm for constructingminimal distance labelling, and
(ii) a querying framework that supports fast distance-bounded
search on a sparsified graph. Thus, we first develop a novel la-
belling algorithm that can scale to graphs at the billion-scale.
Then, we formalize a querying framework for exact distance
queries, which combines our proposed highway cover distance
labelling with distance-bounded searches to enable fast distance
computation. To speed up the labelling construction process, we
further propose a parallel labelling method that can construct
labelling simultaneously for multiple landmarks. We evaluated
the performance of the proposed methods on 12 real-world net-
works. The experiments show that the proposed methods can
not only handle networks with billions of vertices, but also be
up to 70 times faster in constructing labelling and save up to 90%
of labelling space. In particular, our method can answer distance
queries on a billion-scale network of around 8B edges in less than
1ms, on average.

1 INTRODUCTION
Finding the shortest-path distance between a pair of vertices is
a fundamental task in graph theory, and has a broad range of
applications [5, 11, 20, 26, 30, 31, 33]. For example, in web graphs,
ranking of web pages based on their distances to recently visited
web pages helps in finding the more relevant pages and is re-
ferred to as context-aware search [30]. In social network analysis,
distance is used as a core measure in many problems such as
centrality [11, 26] and community identification [5], which re-
quire distances to be computed for a large number of vertex pairs.
However, despite extensive efforts in addressing the shortest-path
distance problem for many years, there is still a high demand for
scalable solutions that can be used to support analysis tasks over
large and ever-growing networks.
∗Produces the permission block, and copyright information

© 2019 Copyright held by the owner/author(s). Published in Proceedings of the
22nd International Conference on Extending Database Technology (EDBT), March
26-29, 2019, ISBN 978-3-89318-081-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Traditionally, one can use the Dijkstra algorithm [27] for
weighted graphs or a breadth-first search (BFS) algorithm for un-
weighted graphs to query shortest-path distances. However, these
algorithms are not scalable, i.e., for large graphs with billions of
vertices and edges, they may take seconds or even longer to find
the shortest-path distance between one pair of vertices, which
is not acceptable for large-scale network applications where dis-
tances need to be provided in the order of milliseconds. To im-
prove query time, a well-established approach is to precompute
and store shortest-path distances between all pairs of vertices
in an index, also called distance labelling, and then answer a
distance query (i.e., find the distance between two vertices) in
constant time with a single lookup in the index. Recent work [15]
shows that such labelling-based methods are the fastest known
exact distance querying methods on moderately large graphs
(million-scale) having millions of edges, but still fail to scale to
large graphs (billion-scale) due to quadratic space requirements
and unbearable indexing construction time.

Thus, the question is still open as to how scalable solutions
to answer exact distance queries in billion-scale networks can
be developed. Essentially, there are three computational factors
to be considered concerning the performance of algorithms for
answering distance queries: construction time, index size, and
query time. Much of the existing work has focused on exploring
trade-offs among these computational factors [1–4, 8, 12, 14, 15,
17, 19, 22, 23, 29, 32], especially for the 2-hop cover distance
labelling [3, 9]. Nonetheless, to handle large graphs, we believe
that a scalable solution for answering exact distance queries
needs to have the following desirable characteristics: (1) the
construction time of a distance labelling is scalable with the size
of a network; (2) the size of a distance labelling is minimized so
as to reduce the space overhead; (3) the query time remains in
the order of milliseconds, even in graphs with billions of nodes
and edges.

In this work, we aim to develop a scalable solution for exact dis-
tance queries which can meet the aforementioned characteristics.
Our solution is based on two ingredients: (i) a scalable labelling
algorithm for constructing minimal distance labelling, and (ii) a
querying framework that supports fast distance-bounded search
on a sparsified graph. More specifically, we first develop a novel
labelling algorithm that can scale to graphs at the billion-scale.
We observed that, for a given number of landmarks, the distance
entries from these landmarks to other vertices in a graph can
be further minimized if the definition of 2-hop cover distance
labelling is relaxed. Thus, we formulate a relaxed notion for la-
belling in this paper, called the highway cover distance labelling,
and develop a simple yet scalable labelling algorithm that adds
a significantly small number of distance entries into the label
of each vertex. We prove that the distance labelling constructed
by our labelling algorithm is minimal, and also experimentally
verify that the construction process is scalable.
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Method Ordering- 2HC- HWC- Parallel?dependent? minimal? minimal?
HL (ours) no n/a yes landmarks
FD [15] no no no neighbours
IS-L [12] yes no no no
PLL [3] yes yes no neighbours
HDB [16] yes no no no
HHL [2] yes no no no

Figure 1: High-level overview of the state-of-the-art methods and our proposedmethod (HL) for exact distance queries: (a)
performance w.r.t. query time and labelling size on networks of size up to 400M, (b) scalability w.r.t. labelling construction
time and network size, and (c) several important properties related to labelling methods.

Then, we formalize a querying framework for exact distance
queries, which combines our proposed highway cover distance
labelling with distance-bounded searches to enable fast distance
computation. This querying framework is capable of balancing
the trade-off between construction time, index size and query
time through an offline component (i.e. the proposed highway
cover distance labelling) and an online component (i.e. distance-
bounded searches). The basic idea is to select a small number
of highly central landmarks that allow us to efficiently compute
the upper bounds of distances between all pairs of vertices using
an offline distance labelling, and then conduct distance-bounded
search over a sparsified graph to find exact distances efficiently.
Our experimental results show that the query time of distance
queries within this framework is still in millionseconds for large
graphs with billions of vertices and edges.

Figure 1 summarizes the performance of the state-of-the-art
methods for exact distance queries [2, 3, 8, 12, 15, 16, 21, 27], as
well as our proposed method in this paper, denoted as HL. In
Figure 1(a)-1(b), we can see that, labelling-based methods PLL
[3], HDB [16], and HHL [2] can answer distance queries in a
considerably small amount of time. However, they have very
large space requirements and very long labelling construction
time. On the contrary, traditional online search methods such as
Dijkstra [27] and bidirectional BFS (denoted as Bi-BFS) [21] are
not applicable to large-scale networks where distances need to be
provided in the order of milliseconds because of their very high
response time. The hybrid methods FD [12], IS-L [15] and HL
(our method) combine an offline labelling and an online graph
traversal technique, which can provide better trade-offs between
query response time and labelling size. In Figure 1(b), we can also
see that only our proposed method HL can handle networks of
size 8B, and is scalable to perform distance queries on networks
with billions of vertices and billions of edges.

Figure 1(c) presents a high-level overview for several impor-
tant properties of labelling methods. The column ordering de-
pendent refers to whether a distance labelling depends on the
ordering of landmarks when being constructed by a method.
Only our method HL and FD are not ordering-dependent. The
columns 2HC-minimal and HWC-minimal refer to whether a
distance labelling constructed by a method is minimal in terms
of the 2-hop cover (2HC) and highway cover (HWC) properties,
respectively. PLL is 2HC-minimal, but not HWC-minimal. Our
method HL is the only method that is HWC-minimal. The column
Parallel refers to what kind of parallelism a method can sup-
port. FD and PLL support bit-parallelism for up to 64 neighbours

of a landmark. Our method HL supports parallel computation
for multiple landmarks, depending on the number of processors.
Other methods did not mention any parallelism.

In summary, our contributions in this paper are as follows:
• We introduce a new labelling property, namely highway
cover labelling, which relaxes the standard notion of 2-
hop cover labelling. Based on this new labelling property,
we propose a highly scalable labelling algorithm that can
scale to construct labellings for graphs with billions of
vertices and billions of edges.
• We prove that the proposed labelling algorithm can con-
struct HWC-minimal labellings, which is independent of
any ordering of landmarks. Then, due to this determinstric
nature of labelling, we further develop a parallel algorithm
which can run parallel BFSs from multiple landmarks to
speed up labelling construction.
• We combine our novel labelling algorithm with online
bounded-distance graph traversal to efficiently answer
exact distance queries. This querying framework enables
us to balance the trade-offs among construction time, la-
belling size and query time.
• We have experimentally verified the performance of our
methods on 12 large-scale complex networks. The results
that our methods can not only handle networks with bil-
lions of vertices, but also be up to 70 times faster in con-
structing labelling and save up to 90% of labelling space.

The rest of the paper is organized as follows. In Section 2, we
present basic notations and definitions used in this paper. Then,
we discuss a novel labelling algorithm in Section 3, formulate
the querying framework in Section 4, and introduce several op-
timization techniques in Section 5. In Section 6 we present our
experimental results and in Section 7 we discuss other works that
are related to our work here. The paper is concluded in Section 8.

2 PRELIMINARIES
Let G = (V ,E) be a graph where V is a set of vertices and E ⊆
V ×V is a set of edges. We have n = |V | andm = |E |. Without
loss of generality, we assume that the graph G is connected and
undirected in this paper. Let V ′ ⊆ V be a subset of vertices of G.
Then the induced subgraphG[V ′] is a graph whose vertex set is
V ′ and whose edge set consists of all of the edges in E that have
both endpoints in V ′. Let NG (v) = {u ∈ V |(u,v) ∈ E} denote a
set of neighbors of a vertex v ∈ V in G.

The distance between two vertices s and t in G, denoted as
dG (s, t), is the length of the shortest path from s to t . We consider
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dG (s, t) = ∞, if there does not exist a path from s to t . For any
three vertices s,u, t ∈ V , the following triangle inequalities are
satisfied:

dG (s, t) ≤ dG (s,u) + dG (u, t) (1)
dG (s, t) ≥ |dG (s,u) − dG (u, t)| (2)

Ifu belongs to one of the shortest paths from s to t , thendG (s, t) =
dG (s,u) + dG (u, t) holds.

Given a special subset of vertices R ⊆ V ofG, so-called land-
marks, a label L(v) for each vertex v ∈ V can be precomputed,
which is a set of distance entries {(u1,δL(u1,v)), . . . , (un ,δL(un ,v)
)} where ui ∈ R and δL(ui ,v) = dG (ui ,v) for i = 1, . . . ,n. The
set of labels L = {L(v)}v ∈V is called a distance labeling over G.
The size of a distance labelling L is defined as size(L)=Σv ∈V |L(v)|.

Using such a distance labeling L, we can query the distance
between any pair of vertices s, t ∈ V in graph G as follows,

Q(s, t ,L) = min{δL(u, s) + δL(u, t)|(u,δL(u, s)) ∈ L(s),

(u,δL(u, t)) ∈ L(t)} (3)

We define Q(s, t ,L) = ∞, if L(s) and L(t) do not share any land-
mark. If Q(s, t ,L) = dG (s, t) holds for any two vertices s and t of
G, L is called a 2-hop cover distance labeling over G [2, 9].

Given a graph G and a set of landmarks R ⊆ V , the distance
querying problem is to efficiently compute the shortest path dis-
tance dG (s, t) between any two vertices s and t in G, using a
distance labeling L over G in which labels may contain distance
entries from landmarks in R.

3 HIGHWAY COVER LABELLING
In this section, we formulate the highway cover labelling prob-
lem and propose a novel algorithm to efficiently construct the
highway cover distance labelling over graphs. Then, we provide
theoretical analysis of our proposed algorithm.

3.1 Highway Cover Labelling Problem
We begin with the definitions of highway and highway cover.

Definition 3.1. (Highway) A highwayH is a pair (R,δH ), where
R is a set of landmarks and δH is a distance decodinд f unction,
i.e. δH : R × R → N+, such that for any {r1, r2} ⊆ R we have
δH (r1, r2) = dG (r1, r2).

Given a landmark r ∈ R and two vertices s, t ∈ V \R (i.e.
V \R = V − R), a r -constrained shortest path between s and t is a
path between s and t satisfying two conditions: (1) It goes through
the landmark r , and (2) It has the minimum length among all
paths between s and t that go through r . We use Pst to denote
the set of vertices in a shortest path between s and t , and Prst
to denote the set of vertices in a r -constrained shortest path
between s and t .

Definition 3.2. (Highway Cover) LetG = (V ,E) be a graph and
H = (R,δH ) a highway. Then for any two vertices s, t ∈ V \R and
for any r ∈ R, there exist (ri ,δL(ri , s)) ∈ L(s) and (r j ,δL(r j , t)) ∈
L(t) such that ri ∈ Pr s and r j ∈ Pr t , where ri and r j may equal
to r .

If the label of a vertex v contains a distance entry (r ,δL(r ,v)),
we also say that the vertex v is covered by the landmark r in the
distance labelling L. Intuitively, the highway cover property guar-
antees that, given a highwayH with a set of landmarks R and r ∈
R, any r -constrained shortest path distance between two vertices

s and t can be found using only the labels of these two vertices
and the given highway. A distance labelling L is called a highway
cover distance labelling if L satisfies the highway cover property.

Example 3.3. Consider the graph G depicted in Figure 2(a),
the highway H has three landmarks {1, 5, 9} as highlighted in
red in Figure 2(b). Based on the graph in Figure 2(a) and the
highway in Figure 2(b), we have ⟨11, 1, 4⟩ which is a shortest
path between the vertices 11 and 4 constrained by the landmark
1, i.e. 1-constrained shortest path between 11 and 4. In contrast,
neither of the paths ⟨11, 10, 9, 1, 4⟩ and ⟨11, 4⟩ is a 1-constrained
shortest path between 11 and 4.

In Figure 2(b), the outgoing arrows from each landmark point
to vertices inG that are covered by this landmark in the highway.
The distance labelling in Figure 2(c) satisfies the highway cover
property because for any two vertices that are not landmarks
and any landmark r ∈ {1, 5, 9}, we can find the r -constrained
shortest path distance between these two vertices using their
labels and the highway.
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Figure 2: An illustration of highway cover distance la-
belling: (a) an example graphG, (b) a highway structure H
and (c) a distance labelling that fulfills the highway cover
property over (G,H ).

Definition 3.4. (Highway Cover Labelling Problem) Given a
graph G and a highway H over G, the highway cover labelling
problem is to efficiently construct a highway cover distance la-
belling L.

Several choices naturally come up: (1) One is to add a distance
entry for each landmark into the label of every vertex inV −R, as
the approach proposed in [15]; (2) Another is to use the pruned
landmark labelling approach [3] to add the distance entry of a
landmark r into the labels of vertices in V − R if the landmark
has not been pruned during a BFS rooted at r ; (3) Alternatively,
we can also extend the pruned landmark labelling approach to
construct the highway cover labeling by replacing the 2-hop
cover pruning condition with the one required by the highway
cover as defined in Definition 3.2 at each step of checking possible
labels to be pruned.

In all these cases, the labelling construction process would not
be scalable nor be suitable for large-scale complex networks with
billions of vertices and edges. Moreover, these approaches would
potentially lead to the construction of distance labellings with
different sizes. A question arising naturally is how to construct
a minimal highway cover distance labelling without redundant
labels? In a nutshell, it is a challenging task to construct a highway
cover distance labelling that can scale to very large networks,
ideally in linear time, but also with the minimal labelling size.
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3.2 A Novel Algorithm
We propose a novel algorithm for solving the highway cover
labelling problem, which can construct labellings in linear time.

The key idea of our algorithm is to construct a label L(v) for
vertexv ∈ V \R such that the distance entry (ri ,δL(ri ,v)) of each
landmark ri ∈ R is only added into the label L(v) iff there does
not exist any other landmark that appears in the shortest path
between ri and v , i.e. Priv ∩ R = {ri }. In other words, if there is
another landmark r ∈ R and ri is in the shortest path between r
and v , then (ri ,δL(ri ,v)) is added into L(v) iff ri is the “closest"
landmark to v . To compute such labels efficiently, we conduct a
breadth-first search from every landmark ri ∈ R and add distance
entries into labels of vertices that do not have any other landmark
in their shortest paths from ri .

Example 3.5. Consider vertex 7 in Figure 2(c), the label L(7)
contains the distance entries of landmarks {5, 9}, but no dis-
tance entry of landmark 1. This is because 5 and 9 are the closest
landmarks to vertex 7 in the shortest paths ⟨5, 7⟩ and ⟨9, 7⟩, re-
spectively. However, for either of two shortest paths ⟨1, 9, 7⟩ and
⟨1, 5, 7⟩ between 1 and 7, there is another landmark (i.e. 5 or 9)
that is closer to 7 compared with 1 in these shortest paths. Thus
the distance entry of landmark 1 is not added into L(7).

Our highway cover labelling approach is described in Algo-
rithm 1. Given a graphG and a highway H overG , we start with
an empty highway cover distance labelling L, where L(v) = ∅ for
every v ∈ V \R. Then, for each landmark ri ∈ R, we compute the
corresponding distance entries as follows. We use two queues
Qlabel and Qprune to process vertices to be labeled or pruned
at each level of a breadth-first search (BFS) tree, respectively. We
start by processing vertices in Qlabel . For each vertexu ∈ Qlabel
at depth n, we examine the children of u at depth n + 1 that are
unvisited. For each unvisited child vertex v ∈ NG (u) at depth
n + 1, if v ∈ R then we prune v , i.e., we do not add a distance
entry of the current landmark ri into L(v) and we also enqueue
v to the pruned queue Qprune (Line 11). Otherwise, we add
(ri ,δBFS (ri ,v)) to the label of v , i.e., we add it into L(v) and we
also enqueue v to the labeled queue Qlabel (Lines 13-14). Here,
δBFS (ri ,v) refers to BFS decoded distance from root ri tov . Then
we process the pruned vertices in Qprune . These vertices are ei-
ther landmarks or have landmarks in their shortest paths from
ri , and thus do not need to be labeled. Therefore, for each vertex
v ∈ Qprune at depth n, we enqueue all unvisited children of v
at depth n + 1 to the pruned queue Qprune . We keep processing
these two queues, one after the other, until Qlabel is empty.

Example 3.6. We illustrate how our algorithm conducts pruned
BFSs in Figure 3. The pruned BFS from landmark 1 is depicted
in Figure 3(a), which labels only four vertices {4, 11, 13, 14} be-
cause the other vertices are either landmarks or contain other
landmarks in their shortest paths to landmark 1. Similarly, in the
pruned BFS from landmark 5 depicted in Figure 3(b), only ver-
tices {7, 2, 12, 3, 8} are labelled, and none of the vertices 4, 11, 13
and 14 is labelled because of the presence of landmark 1 in their
shortest paths to landmark 5. Indeed, we can get the distance
between landmark 5 to these vertices by using the highway, i.e.
δH (5, 1), and distance entries in their labels to landmark 1. The
pruned BFS from landmark 9 is depicted in Figure 3(c), which
works in a similar fashion.

Note that, although a highway H is given in Algorithm 1, we
can indeed compute the distances δH for a given set of landmarks
R along with Algorithm 1.

Algorithm 1: Constructing the highway cover labelling L
Input: G = (V .E), H = (R,δH )
Output: L

1 L(v) ← ∅,∀v ∈ V \R
2 foreach ri ∈ R do
3 Qlabel ← ∅

4 Qprune ← ∅

5 n ← 0
6 Enqueue ri to Qlabel and set ri as the root of BFS
7 while Qlabel is not empty do
8 foreach u ∈ Qlabel at depth n do
9 foreach unvisited child v of u at depth n + 1 do

10 if v is a landmark then
11 Enqueue v to Qprune
12 else
13 Enqueue v to Qlabel
14 Add {(ri , δBFS (ri ,v))} to L(v)
15 end
16 end
17 end
18 n ← n + 1
19 foreach v ∈ Qprune at depth n do
20 Enqueue unvisited children of v at depth n + 1

to Qprune
21 end
22 end
23 end
24 return L
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Figure 3: An illustration of the highway cover labelling al-
gorithm: (a), (b) and (c) describe the pruned BFSs that are
rooted at the landmarks 1, 5 and 9, respectively, where yel-
low vertices denote roots, green vertices denote those be-
ing labeled, red vertices denote landmarks, and white ver-
tices are not labelled. LS and ET at the top right corner de-
note the labelling size and the number of edges traversed
during the pruned BFSs, respectively.

3.3 Correctness
Here we prove the correctness of our labelling algorithm.

Lemma 3.7. In Algorithm 1, for each pruned BFS rooted at ri ∈ R,
(ri ,δL(ri ,v)) is added into the label of a vertex v ∈ V \R iff there is
no any other landmark appearing in the shortest path between ri
and v , i.e., Priv ∩ R = {ri }.

Proof. Suppose that Algorithm 1 is conducting a pruned BFS
rooted at ri and v is an unvisited child of another vertex u in
Qlabel (start from Qlabel = {ri }) (Lines 6-9). If v ∈ R (Line 10),
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then we have (Priw ∩R) ⊇ {ri ,v} (Lines 11, 19-21), (ri ,δL(ri ,w))
cannot be added into the label of any child w of v , i.e., put w
into Qprune . Otherwise, by v < R and v is an unvisited child of
a vertex u in Qlabel (Lines 8-9), we know that Priv ∩ R = {ri }
and thus (ri ,δL(ri ,v)) is added into L(v) (lines 12-14). □

Then, by Lemma 3.7, we have the following corollary.

Corollary 3.8. Let r ∈ R be a landmark,v ∈ V \R a vertex, and
L a distance labelling constructed by Algorithm 1, if (r ,δL(r ,v)) <
L(v), then there must exist a landmark r j such that (r j ,δL(r j ,v)) ∈
L(v) and dG (r ,v) = δL(r j ,v) + δH (r , r j ).

Theorem 3.9. The highway cover distance labelling L over
(G,H ) constructed using Algorithm 1 satisfies the highway cover
property over (G,H ).

Proof. To prove that, for any two vertices s, t ∈ V \R and for
any r ∈ R, there exist (ri ,δL(ri , s)) ∈ L(s) and (r j ,δL(r j , t)) ∈ L(t)
such that ri ∈ Pr s and r j ∈ Pr t , we consider the following
4 cases: (1) If r ∈ L(s) and r ∈ L(t), then r = ri = r j . (2) If
r ∈ L(s) and r < L(t), then ri = r and by Lemma 3.8, there
exists another landmark r j such that r j is in the shortest path
between t and r and (r j ,δL(r j , t)) ∈ L(t). (3) If r < L(s) and
r ∈ L(t), then similarly we have r j = r , and by Lemma 3.8, there
exists another landmark ri such that ri is in the shortest path
between s and r and (ri ,δL(ri , s)) ∈ L(s). (4) If r < L(s) and
r < L(t), then by Lemma 3.8 there exist another two landmarks
ri and r j such that ri is in the shortest path between s and r and
(ri ,δL(ri , s)) ∈ L(s), and r j is in the shortest path between t and
r and (r j ,δL(r j , t)) ∈ L(t). The proof is done. □

3.4 Order Independence
In previous studies [1–3, 9], given a graphG , a distance labelling
algorithm builds a unique canonical distance labelling subject to a
labelling order (i.e., the order of landmarks used for constructing
a distance labelling). It has been well known that such a labelling
order is decisive in determining the size of the constructed dis-
tance labelling [24]. For the same set of landmarks, when using
different labelling orders, the sizes of the constructed distance
labelling may vary significantly.

The following example shows how different labelling orders
in the pruned landmark labelling approach [3] can lead to the
distance labelling of different sizes.

Example 3.10. In Figure 4, the size of the distance labelling
constructed using the labelling order ⟨1, 5, 9⟩ in Figure 4(a)-4(c) is
different from the size of the distance labelling constructed using
the labelling order ⟨9, 5, 1⟩ in Figure 4(d)-4(f). In both cases, the
first BFS adds the distance entry of the current landmark into all
the vertices in the graph. Then, the following BFSs check each
visited vertex whether the shortest path distance between the
current landmark and the visited vertex can be computed via the
2-hop cover property based on their labels added by the previous
BFSs. A distance entry is only added into the label of a vertex
if the shortest path distance cannot be computed by applying
the 2-hop cover over the existing labels. Thus, the choice of the
labelling order could affect the size of labels significantly. Take
the vertex 11 for example, its label contains only one distance
entry (1, 1) using the labelling order depicted in Figure 4(a)-4(c),
but contains three distance entries (1.1), (5, 2), and (9, 2) when
the labelling order depicted in Figure 4(d)-4(f) is used.

Unlike all previous approaches taken with distance labelling,
our highway cover labelling algorithm is order-invariant. That
is, regardless of the labelling order, the distance labellings con-
structed by our algorithm using different labelling orders over
the same set of landmarks always have the same size. In fact, we
can show that our algorithm has the following stronger property:
the distance labelling constructed using our algorithm is deter-
ministic (i.e., the same label for each vertex) for a given set of
landmarks.

Lemma 3.11. Let G = (V ,E) be a graph and H = (R,δH ) a
highway over G. For any two different labelling orders over R, the
highway cover distance labellings L1 and L2 over (G,H ) constructed
by these two different labelling orders using Algorithm 1 satisfy
L1(v) = L2(v) for every v ∈ V \R.

Proof. LetOL1 andOL2 be two different labelling orders over
R. For any landmark r in OL1 and OL2 , Algorithm 1 generates
exactly the same pruned BFS tree. This implies that, for each
vertex v ∈ V \R, either the same distance entry (r ,δBFS (r ,v))
is added into L1(v) and L2(v), or no distance entry is added to
L1(v) and L2(v). Thus, Algorithm 1 satisfy L1(v) = L2(v) for
every v ∈ V \R. □

3.5 Minimality
Here we discuss the question of minimality, i.e., whether the
highway cover distance labelling constructed by our algorithm
is always minimal in terms of the labelling size. We first prove
the following theorem.

Theorem 3.12. The highway cover distance labelling L over
(G,H ) constructed using Algorithm 1 is minimal, i.e., for any high-
way cover distance labelling L′ over (G,H ), size(L′) ≥ size(L)
must hold.

Proof. We prove this by contradiction. Let us assume that
there is a highway cover distance labelling L′ with size(L′) <
size(L). Then, this would imply that there must exist a vertex
v ∈ V \R and a landmark r ∈ R such that r ∈ L(v) and r < L′(v).
By Lemma 3.7 and r ∈ L(v), we know that there is no any other
landmark in R that is in the shortest path between r and v . How-
ever, by the definition of the highway cover property (i.e. Defini-
tion 3.2) and r < L′(v), we also know that theremust exist another
landmark (ri ,δL(ri ,v)) ∈ L(v) and ri ∈ Prv , which contradicts
with the previous conclusion that there is no any other landmark
in the shortest path between r and v . Thus, size(L′) ≥ size(L)
must hold for any highway cover distance labelling L′. □

The state-of-the-art approaches for distance labelling is pri-
marily based on the idea of 2-hop cover [1, 3, 12]. One may ask
the question: how is the highway cover labelling different from
the 2-hop cover labelling, such as the pruned landmark labelling
[3]? It is easy to verify the following lemma that each pruned
landmark labelling satisfies the highway cover property for the
same set of landmarks.

Lemma 3.13. Let L be a pruned landmark labelling over graph
G constructed using a set of landmarks R. Then L also satisfies the
highway cover property over (G,H ) where H = (R,δH ).

As the pruned landmark labelling algorithm [3] prunes labels
based on the 2-hop cover property, but our highway cover label-
ing algorithm prunes labels based on the property described in
Lemma 3.7, by Theorem 3.12, we also have the following corol-
lary, stating that, for the same set of landmarks, the size of the
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Figure 4: An illustration of the pruned landmark labelling algorithm [3]: (a)-(c) show an example of constructing labels
through pruned BFSs from three landmarks in the labelling order ⟨1, 5, 9⟩; (d)-(f) show an example of constructing labels
using the same three landmarks but in a different labelling order ⟨9, 5, 1⟩. Yellow vertices denote landmarks that are the
roots of pruned BFSs, green vertices denote those being labeled, grey vertices denote vertices being visited but pruned, and
red vertices denote landmarks which have already been visited.

highway cover labelling is always smaller than the size of any
pruned landmark labelling.

Corollary 3.14. For a highway cover distance labelling L1
produced by Algorithm 1 over (G,H ), where H = (R,δH ), and a
pruned landmark labelling L2 overG using any labelling order over
R, we always have |L1 | ≤ |L2 |.

Example 3.15. Figure 4 shows the labelling size (LS) of the
pruned landmark labelling at the top right corner, which is con-
structed using two different orderings. The first ordering ⟨1, 5, 9⟩
labels 25 vertices whereas the second ordering ⟨9, 5, 1⟩ labels 30
vertices. On the other hand, the LS of the highway cover dis-
tance labelling is 13 as shown in Figure 3. Note that the LS of the
highway cover distance labelling does not change, irrespective of
ordering. Since the highway cover distance labelling constructed
by our algorithm is always minimal, the LS of the highway cover
distance labelling in Figure 3 is much smaller than the LS of either
pruned landmark labelling in Figure 4.

4 BOUNDED DISTANCE QUERYING
In this section, we describe a bounded distance querying frame-
work that allows us to efficiently compute exact shortest-path
distances between two arbitrary vertices in a massive network.

4.1 Querying Framework
We start with presenting a high-level overview of our querying
framework. To compute the shortest path distance between two
vertices s and t in graph G, our querying framework proceeds
in two steps: (1) an upper bound of the shortest path distance
between s to t is computed using the highway cover distance
labelling; (2) the exact shortest path distance between s to t is
computed using a distance-bounded shortest-path search over a
sparsified graph from G.

Given a graph G and a highway H = (R,δH ) over G, we can
precompute a highway cover distance labelling L using the land-
marks in R, which enables us to efficiently compute the length
of any r -constrained shortest path between two vertices in V \R.
The length of such a r -constrained shortest path must be greater
than or equal to the exact shortest path distance between these
two vertices and can thus serve as an upper bound in Step (1). On
the other hand, since the length of such a r -constrained short-
est path between two vertices in V \R can always be efficiently
computed by the highway cover distance labelling L, the distance-
bounded shortest-path search only needs to be conducted over a

sparsified graph G ′ by removing all landmarks in R from G, i.e.
G ′ = G[V \R].

More precisely, we define the bounded distance querying prob-
lem in the following.

Definition 4.1. (Bounded Distance Querying Problem) Given a
sparsified graph G ′ = (V ′,E ′), a pair of vertices {s, t} ∈ V ′, and
an upper (distance) bound d⊤st , the bounded distance querying
problem is to efficiently compute the shortest path distance dst
between s and t over G ′ under the upper bound d⊤st such that,

dst =

{
dG′(s, t), if dG′(s, t) ≤ d⊤st
d⊤st , otherwise

In the following, we discuss the two steps of this framework
in detail.

4.2 Computing Upper Bounds
Given any two vertices s and t , we can use a highway cover dis-
tance labelling L to compute an upper bound d⊤st for the shortest
path distance between s and t as follows,

d⊤st = min{δL(ri , s) + δH (ri , r j ) + δL(r j , t)|

(ri ,δL(ri , s)) ∈ L(s),

(r j ,δL(r j , t)) ∈ L(t)} (4)

This corresponds to the length of a shortest path from s to
t passing through landmarks ri and r j , where δL(ri , s) is the
shortest path distance from ri to s in L(s), δH (ri , r j ) is the shortest
path distance from ri to r j through highway H , and δL(r j , t) is
the shortest path distance from r j to t in L(t).

Example 4.2. Consider the graph in Figure 2(a), wemay use the
labels L(2) and L(11) to compute the upper bound for the shortest
path distance between two vertices 2 and 11. There are two cases:
(1) for the path ⟨2, 5, 1, 11⟩ that goes through landmarks 5 and 1,
we have δL(5, 2) + δH (5, 1) + δL(1, 11) = 1 + 1 + 1 = 3, and (2)
for the path ⟨2, 9, 1, 11⟩ that goes through landmarks 9 and 1, we
have δL(9, 2)+ δH (9, 1)+ δL(1, 11) = 2+ 1+ 1 = 4. Thus, we take
the minimum of these two distances as the upper bound, which
is 3 in this case.

4.3 Distance-Bounded Shortest Path Search
We conduct a bidirectional search on the sparsified graphG[V \R]
which is bounded by the upper boundd⊤st from the highway cover
distance labelling. For a pair of vertices {s, t} ⊆ V \R, we run
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breadth-first search algorithm from s and t , simultaneously [15].
Algorithm 2 shows the pseudo-code of our distance-bounded
shortest path search algorithm. We use two sets of vertices Ps
and Pt to keep track of visited vertices from s and t . We use two
queues Qs and Qt to conduct both a forward search from s and
a reverse search from t . Furthermore, we use two integers ds and
dt to maintain the current distances from s and t , respectively.

During initialization, we set Ps and Pt to {s} and {t}, and
enqueue s and t into Qs and Qt , respectively. In each iteration,
we increment ds or dt and expand Ps or Pt by running either
a forward search (FS) or a reverse search (RS) as long as Ps
and Pt have no any common vertex or ds + dt is equal to the
upper bound d⊤st , and Qs and Qt are not empty. In the forward
search from s , we examine the neighbors NG[V \R](v) of each
vertex v ∈ Qs . Suppose we are visiting a vertexw ∈ NG[V \R](v),
if w is included in vertex set Pt , then it means that we find a
shortest path to vertex t of length ds + 1+dt , because the reverse
search from t had already visited w with distance dt . At this
stage, we return ds + 1+dt as the answer since we already know
ds + dt + 1 ≤ dG (s, t) ≤ d⊤st . Otherwise, we add vertex w to Ps
and enqueuew into a new queue Qnew . When we could not find
the shortest distance in the iteration, we replace Qs with Qnew
and increase ds by 1, and check if ds + dt = d⊤st . If it holds, then
we return d⊤st since d

⊤
st ≤ dG (s, t) ≤ ds + dt + 1.

Algorithm 2: Distance-Bounded Shortest Path Search
Input: G[V \R], s , t , d⊤st
Output: dG[V \R](s, t)

1 Ps ← {s}, Pt ← {t}, ds ← 0, dt ← 0
2 Enqueue s to Qs , t to Qt
3 while Qs and Qt are not empty do
4 if |Ps | ≤ |Pt | then
5 f ound ← FS(Qs )

6 else
7 f ound ← RS(Qt )

8 end
9 if found = true then

10 return ds + 1 + dt
11 else if ds + dt = d⊤st then
12 return d⊤st
13 end
14 end
15 return∞

Example 4.3. In Figure 5(b), the upper distance bound between
vertices 2 and 11 is 3, as computed in Example 4.2. Suppose that
we run BFSs from vertices 2 and 11 respectively. First, a forward
search from 2 enqueues its neighbors 7, 12 and 14 into Q2 and
increases d2 by 1. Then a reverse search from 11 enqueues 4 and
10 into Q11 and also sets d11 to 1. At this stage, we have not
found any common vertex between Q2 and Q11, and d2 +d11 = 2
which is less the upper bound 3. Therefore, we continue to start
a search from the vertices in Q11, which enqueues 5 into Q11 and
increments d11 to 2. Now, we have d2 + d11 == 3 reaching the
upper bound, hence we do not need to continue our search.

4.4 Correctness
The correctness of our querying framework can be proven based
on the following two lemmas. More specifically, Lemma 4.4 can
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Figure 5: An illustration of the distance-bounded shortest
path search algorithm [15]: (a) shows the sparsified graph
after removing three landmarks {1, 5, 9} from the graph
in Figure 2(a); (b) shows an example of computing the
bounded distance between vertices 2 and 11 as highlighted
in yellow, and green vertices denote the visited vertices in
the forward and reverse searches.

be derived by the highway cover property and the definition of
d⊤st . Lemma 4.5 can also be proven by the property of shortest
path and the definition of the sparsified graph G[V \R].

Lemma 4.4. For a highway cover distance labelling L over (G,H ),
we have d⊤st ≥ dG (s, t) for any two vertices s and t ofG , where d⊤st
is computed using L and H .

Lemma 4.5. For any two vertices {s, t} ⊆ V \R, if there is a
shortest path between s and t inG that does not include any vertex
in R, then dG (s, t) = dG[V \R](s, t) holds.

Thus, the following theorem holds:

Theorem 4.6. Let G = (V ,E) be a graph, H a highway over G
and L a highway cover distance labelling. Then, for any two vertices
{s, t} ⊆ V , the querying framework over (G,H ,L) yields dG (s, t).

Proof. We consider two cases: (1) Pst contains at least one
landmark. In this case, By Lemma 4.4 and the definition of the
highway cover property, we have d⊤st = dG (s, t). (2) Pst does not
contain any landmark. By Lemma 4.5, we have dG[V \R](s, t) =
dG (s, t). □

5 OPTIMIZATION TECHNIQUES
In this section, we discuss optimization techniques for label con-
struction, label compression, and query processing.

5.1 Label Construction
A technique called Bit-Parallelism (BP) has been previously used
in several methods [3, 15] to speed up the label construction
process. The key idea of BP is to perform BFSs from a given
landmark r and up to 64 of its neighbors simultaneously, and
encode the relative distances (-1, 0 or 1) of these neighbors w.r.t.
the shortest paths between r and each vertex v into a 64-bit
unsigned integer. In the work [3], BP was applied to construct bit-
parallel labels from initial vertices without pruning, which aimed
to leverage the information from these bit-parallel labels to cover
more shortest paths between vertices. Then, both bit-parallel
labels and normal labels are constructed in the pruned BFSs. The
work in [15] also used BP to construct thousands of bit-parallel
shortest-path trees (SPTs) because it is very costly to construct
thousands of normal SPTs in memory owing to their prohibitively
large space requirements and very long construction time.

In our work, we develop a simple yet rigorous parallel algo-
rithm (HL-P) which can run parallel BFSs from multiple land-
marks (depending on the number of processors) to construct

19



Table 1: Datasets, where |G | denotes the size of a graph G with each edge appearing in the forward and reverse adjacency
lists and being represented by 8 bytes.

Dataset Network Type n m m/n avg. deg max. deg |G | Sources
Skitter computer undirected 1.7M 11M 6.5 13.081 35455 85 MB [28]
Flickr social undirected 1.7M 16M 9.1 18.133 27224 119 MB [28]
Hollywood social undirected 1.1M 114M 49.5 98.913 11467 430 MB [6, 7]
Orkut social undirected 3.1M 117M 38.1 76.281 33313 894 MB [28]
enwiki2013 social directed 4.2M 101M 21.9 43.746 432260 701 MB [6, 7]
LiveJournal social directed 4.8M 69M 8.8 17.679 20333 327 MB [28]
Indochina web directed 7.4M 194M 20.4 40.725 256425 1.1 GB [6, 7]
it2004 web directed 41M 1.2B 24.9 49.768 1326744 7.7 GB [6, 7]
Twitter social directed 42M 1.5B 28.9 57.741 2997487 9.0 GB [6, 7]
Friendster social undirected 66M 1.8B 22.5 45.041 4006 13 GB [18]
uk2007 web directed 106M 3.7B 31.4 62.772 979738 25 GB [6, 7]
ClueWeb09 computer directed 2B 8B 5.98 11.959 599981958 55 GB [25]

labelling in an extremely efficient way for massive networks,
with much less time as will be demonstrated in our experiments.

5.2 Label Compression
The choice of the data structure for labels may significantly affect
the performance of index size and memory usage. As noted in
[19], some works [2, 10] did not elaborate on what data structure
they have used for representing labels. Nonetheless, for the works
that are most relevant to ours, such as FD [15] and PLL [3], they
used 32-bit integers to represent vertices and 8-bit integers to
represent distances for normal labels. In addition to this, they
also used 64-bits to encode the distances from a landmark to up to
64 of its neighbors in their shortest paths to other vertices. Since
our approach only selects a very small number of landmarks
to construct the highway cover labelling (usually no more than
100 landmarks), we may use 8 bits to represent landmarks and
another 8 bits to store distances for labels. In order to fairly
compare methods from different aspects, we have implemented
our methods using both 32 bits and 8 bits for representing vertices
in labels. However, different from the BP technique that uses 64-
bits to encode the distance information of up to 64 neighbours of
a landmark, our parallel algorithm (HL-P) does not use a different
data structure for labels constructed in parallel BFSs.

5.3 Query Processing
We show that computing the upper bound d⊤st can be optimized
based on the observation, captured by the following lemma.

Lemma 5.1. For a highway cover distance labelling L over (G,H ),
where G = (V ,E) and H = (R,δH ), and any {s, t} ⊆ V \R, if a
landmark r appears in both L(s) and L(t), then δL(r , s)+δL(r , t) ≤
δL(r , s) + δH (r , r

′) + δL(r
′, t) holds for any other r ′ ∈ R.

Proof. By the definition of the highway cover property, we
know that r is not in the shortest path between r ′ and t . Then by
triangle inequality in Equation 1, this lemma can be proven. □

Thus, in order to efficiently compute the upper bound d⊤st , for
any landmarks that appear in both L(s) and L(t), we compute
the r -constrained shortest path distance between s and t using
Equation 2, while for a landmark r ′ that only appear in one of
L(s) and L(t), we use Equation 4 to calculate the r ′-constrained
shortest path distance between s and t . This would lead to more
efficient computations for queries when the landmarks appear in
both labels of two vertices.

6 EXPERIMENTS
To compare the proposed method with baseline approaches, we
have implemented our method in C++11 using STL libraries and
compiled using gcc 5.5.0 with the -O3 option. We performed all
the experiments using a single thread on a Linux server (having
64 AMD Opteron(tm) Processors 6376 with 2.30GHz and 512GB
of main memory) for sequential version of the proposed method
and up to 64 threads for parallel version of the proposed method.
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Figure 6: Distance distribution of 100,000 random pairs of
vertices on all the datasets.

6.1 Datasets
In our experiments, we used 12 large-scale real-world complex
networks, which are detailed in Table 1. These networks have
vertices and edges ranging from millions to billions. Among
them, the largest network is ClueWeb09 which has 2 billions of
vertices and 8 billions of edges. We included this network in our
experiments for the purpose of evaluating the robustness and
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Table 2: Comparison of construction times and query times between our methods, i.e., HL-P and HP, and the state-of-the-
art methods, where CT denotes the CPU clock time in seconds for labelling construction, QT denotes the average query
time in milliseconds, and ALS denotes the average number of entries per label.

Dataset CT[s] QT[ms] ALS
HL-P HL FD PLL IS-L HL FD PLL IS-L Bi-BFS HL FD PLL IS-L

Skitter 2 13 30 638 1042 0.067 0.043 0.008 3.556 3.504 12 20+64 138+50 51
Flickr 2 14 41 1330 8359 0.015 0.028 0.01 33.760 4.155 10 20+64 290+50 50
Hollywood 3 17 107 31855 DNF 0.047 0.075 0.051 - 6.956 12 20+64 2206+50 -
Orkut 10 62 366 DNF DNF 0.224 0.251 - - 21.086 11 20+64 - -
enwiki2013 9 77 308 22080 DNF 0.190 0.131 0.027 - 19.423 10 20+64 471+50 -
LiveJournal 9 77 166 DNF 20583 0.088 0.111 - 56.847 17.264 13 20+64 - 69
Indochina 8 50 144 9456 DNF 1.905 1.803 0.02 - 9.734 5 20+64 441+50 -
it2004 66 304 1623 DNF DNF 2.684 2.118 - - 92.187 10 20+64 - -
Twitter 133 1380 1838 DNF DNF 1.424 0.432 - - 426.949 14 20+64 - -
Friendster 135 2229 9661 DNF DNF 1.091 1.435 - - 534.576 19 20+64 - -
uk2007 110 1124 6201 DNF DNF 11.841 18.979 - - 355.688 8 20+64 - -
ClueWeb09 4236 28124 DNF DNF DNF 0.309 - - - - 2 - - -

Table 3: Comparison of labelling sizes between our meth-
ods, i.e., HL(8) and HL, and the state-of-the-art methods.

Dataset HL(8) HL FD PLL IS-L
Skitter 42MB 102MB 202MB 2.5GB 507MB
Flickr 34MB 81MB 178MB 3.7GB 679MB
Hollywood 28MB 67MB 293MB 13GB -
Orkut 70MB 170MB 756MB - -
enwiki2013 83MB 200MB 743MB 12GB -
LiveJournal 123MB 299MB 778MB - 3.8GB
Indochina 81MB 192MB 999MB 21GB -
it2004 855MB 2GB 5.6GB - -
Twitter 1.2GB 2.8GB 4.8GB - -
Friendster 2.5GB 5.2GB 11.8GB - -
uk2007 1.8GB 4.3GB 14.1GB - -
ClueWeb09 4.7GB 9GB - - -

scalability of the proposed method. In previous works, the largest
dataset that has been reported is uk2007 which has only around
100 millions of vertices and 3.7 billions of edges. For all these
networks, we treated them as undirected and unweighted graphs.

To investigate the query time of finding the distance between
two vertices, we randomly sampled 100,000 pairs of vertices from
all pairs of vertices in each network, i.e., V × V . The distance
distribution of these 100,000 randomly sampled pairs of vertices
are shown in Figure 6(a)-6(b), from which we can confirm that
most of pairs of vertices in these networks have a small distance
ranging from 2 to 8.

6.2 Baseline Methods
We compared our proposed method with three state-of-the-art
methods. Two of these methods, namely fully dynamic (FD) [15]
and IS-L [12], combine a distance labelling algorithmwith a graph
traversal algorithm for distance queries on complex networks.
The third one is pruned landmark labelling (PLL) [3] which is
completely based on distance labelling to answer distance queries.
Besides these, there are a number of other methods for answering
distance queries, such as HDB [16], RXL and CRXL [10], HCL [17],
HHL [2] and TEDI [32]. However, since the experimental results
of the previous works [3, 15] have shown that FD outperforms

HDB, RXL and CRXL, and PLL outperforms HCL, HHL and TEDI,
we omit the comparison with these methods.

In our experiments, the implementations of the baseline meth-
ods FD, IS-L and PLL were provided by their authors, which were
all implemented in C++. We used the same parametric settings
for running these methods as suggested by their authors. For
instance, the number of landmarks is chosen to 20 for FD [15],
the number of bit-parallel BFSs is set to 50 for PLL [3], and k is 6
for graphs larger than 1 million vertices for IS-L [12].

6.3 Comparison with Baseline Methods
To evaluate the performance of our proposed approach, we com-
pared our approach with the baseline methods in terms of the
construction time of labelling, the size of labelling, and querying
time. The experimental results are presented in Tables 2 and 3,
where DNF denotes that a method did not finish in one day or
ran out of memory. In order to make a consistent comparison
with the baseline methods [3, 12, 15], we chose top 20 vertices
as landmarks after sorting based on decreasing order of their
degrees, and also used 32-bit integers to represent vertices and
8-bit integers to represent distances.

6.3.1 Construction Time. As shown in Table 2, our proposed
method (HL) has successfully constructed the distance labelling
on all the datasets for a significantly less amount of time than
the state-of-the-art methods. As compared to FD, our method is
on average 5 times faster and have results on all the datasets. In
contrast to this, FD failed to construct labelling for the largest
dataset ClueWeb09. PLL failed for 7 out of 12 datasets, including
the datasets Orkut and LiveJournal which have less than 120
millions of edges, due to its prohibitively high preprocessing time
and memory requirements for building labelling. IS-L failed to
construct labelling for all the datasets that have edges more than
100 million due to its very high cost for computing independent
sets on massive networks, i.e. failed for 9 out of 12 datasets. We
can also see from Table 2 that the parallel version of our method
(HL-P) is much faster than the sequential version (HL). Compared
with FD, HL-P is more than 50-70 times faster for the two large
datasets Friendster and uk2007. This confirms that our method
can construct labelling very efficiently and is scalable on large
networks with billions of vertices and edges.
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Figure 7: (a)-(d) Construction times using our method HL under 10-50 landmarks on all the datasets; (e)-(g) Query times
using our method HL under 10-50 landmarks on all the datasets.

6.3.2 Labelling Size. As we can see from Table 3 that the
labelling sizes of all the datasets constructed by the proposed
method are significantly smaller than the labelling sizes of FD and
much smaller than PLL and IS-Label. Specifically, our labelling
sizes using 32-bits representation of vertices (HL) are 2-5 times
smaller than FD except for ClueWeb09 (as discussed before, FD
failed to construct labelling for ClueWeb09), 7 times smaller than
IS-Label on Skitter, Flickr and LiveJournal and more than 60 times
smaller than PLL for Skitter, Flickr, Hollywood, enwiki2013 and
Indochina. The compressed version of our method that uses 8-bits
representation of vertices (i.e. HL(8)) produces further smaller
index sizes as compared to uncompressed version (HL). Here,
It is important to note that the labelling sizes of almost all the
datasets are also significantly smaller than the original sizes of
the datasets shown in Table 1. This also shows that our method is
highly scalable on large networks in terms of the labellng sizes.

6.3.3 Query Time. The average query times of our method
(HL) are comparable with FD and PLL and faster than IS-L. Par-
ticularly, the average query time of our method on Hollywood is
even faster than FD and PLL. This is due to a very small average
labelling size (i.e., 12) as compared with FD and PLL (i.e., 20+64
and 2206+50, respectively) and a very small average distance.
The average query time of HL on Twitter is 3 times slower than
FD. This may be due to a large portion of covered pairs by FD
as shown in Figure 9 which contributes towards an effective
bounded traversal on the sparsified network since the landmarks
of Twitter have very high degrees and the average distance is also
very small. Moreover, the average query times of HL and FD on
Indochina, it2004, Friendster and uk2007 are more than 1ms due
to comparatively large average distances than other datasets as
shown in Figure 6(b). Note that all the baseline methods are not
scalable enough to have results for ClueWeb09 and the average
query time on ClueWeb09 of our method HL is small because of a
very large portion of covered pairs and a small average label size.
We also reported the average query time for online bidirectional
BFS algorithm (Bi-BFS) using randomly selected 1000 pairs of
vertices in Table 2. As we can see that Bi-BFS has considerably

long query times, which are not practicable in applications for
performing distance queries in real time.

6.4 Performance under Varying Landmarks
We have also evaluated the performance of our method (HL) by
varying the number of landmarks between 10 and 50, which are
again selected based on highest degrees.

6.4.1 Construction Time. The construction times of ourmethod
HL against different numbers of landmarks (from 10 to 50) are
shown in Figure 7(a)-7(d). We can see that the construction times
are linear in terms of the number of landmarks, which confirms
the scalability of our method. In Figure 7(a)-7(b), our method is
able to construct labelling for 7 datasets under 50 landmarks from
20 seconds to 2 minutes, which is not possible with any state-of-
the-art methods. In Figure 7(c), the construction time using 50
landmarks of Friendster is 3 times faster and the construction
time of uk2007 is 4 times faster than FD using only 20 landmarks
as shown in Table 2. Figure 7(d) shows the construction time
for ClueWeb09 which has 2 billion vertices and 8 billion edges.
The significant improvement in construction time allows us to
compute labelling for a large number of landmarks, leading to
better pair coverage ratios to tighten upper distance bounds (will
be further discussed in Section 6.4.4).

6.4.2 Labelling Size. Figure 8 shows the labelling sizes of HL
using 10, 20, 30, 40 and 50 landmarks on all the dataset, and
of FD using only 20 landmarks on all the datasets except for
ClueWeb09 (as discussed before, FD failed to construct labeling
for ClueWeb09). It can be seen that the labelling sizes of HL
increase linearly with the increased number of landmarks, and
even the labelling sizes of HL using 50 landmarks are almost
always smaller than the labelling sizes constructed by FD using
only 20 landmarks. This reduction in labelling sizes enables us
to save space and memory, thus makes our method scalable on
large networks.

6.4.3 Query Time. Figure 7 shows the impact of using differ-
ent numbers of landmarks between 10 and 50 on average query
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Figure 8: Labelling sizes using our method HL under 10-50 landmarks and using FD on all the datasets.
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Figure 9: Pair coverage ratios using our method HL under 10-50 landmarks and using FD on all the dataset.

time of our method. The average query times either decrease
or remain the same when the number of landmarks increases,
except for Orkut when using 30 landmarks and for Friendster
when using landmarks greater than 20. In particular, on Friend-
ster, labelling sizes are very large as shown in Figure 8 and the
fraction of covered pairs (i.e., pair coverage ratio) is very small
as shown in Figure 9, which may have slowed down our query
processing due to a longer time for computing upper distance
bounds and ineffective use of bounded-distance traversal.

6.4.4 Pair Coverage. Figure 9 presents the ratios of pairs of
vertices covered by at least one landmark (i.e., pair coverage ra-
tios) in HL using 10-50 landmarks and in FD using 20 landmarks.
As we can observe that the pair coverage ratios for HL increase
when the number of landmarks increases and 40 turns out to be
the better choice on the number of landmarks for most of the
datasets. Specifically, pair coverage ratios on Orkut, enwiki2013,
Indochina and uk2007 with 40 landmarks are good, resulting in
better query times than using 20 landmarks, as shown in Figure 7.
On datasets such as Hollywood and it2004, 30 landmarks are a bet-
ter option than 40 landmarks because they only slightly differ in
the pair coverage ratios and query times w.r.t. using 40 landmarks,
but with reduced labelling sizes. The pair coverage ratios by FD
are greater than HL on all the datasets except for ClueWeb09,
which may be the reason behind its better query times for some
datasets as shown in Table 2. Note that, on ClueWeb09, we obtain
almost hundred percentage for pair coverage due to its very high
degree landmarks.

7 RELATEDWORK
A naive solution for exact shortest-path distance computation
is to run the Dijkstra search for weighted graphs or BFS for un-
weighted graphs, from a source vertex to a destination vertex
[27]. To improve search efficiency, a bidirectional scheme can
be used to run two such searches: one from the source vertex
and the other from the destination vertex [21]. Later on, Gold-
berg et al. [13] combined the bidirectional search technique with

the A* algorithm to further improve the search performance. In
their method, they precomputed labeling based on landmarks to
estimate the lower bounds, and used that estimate with a bidi-
rectional A* search for efficient computation of shortest-path
distances. However, this method is known to work only for road
networks and do not scale well on complex networks [15].

To efficiently answer exact shortest-path distance queries on
graphs, labelling-based methods have been developed with great
success [1–3, 12, 17, 19]. Most of them construct a labeling based
on the idea of 2-hop cover [9]. It has also been shown that com-
puting a minimal 2-hop cover labeling is NP-hard [2, 9]. In [1],
the authors proposed a hub-based labeling algorithm (HL) which
constructs hub labelling by processing contraction hierarchies
(CH) and is among the fastest known algorithms for distance
queries in road networks. However, the method is not feasible
for complex networks as reported by the same authors and they
thus proposed a hierarchical hub-labeling (HHL) algorithm for
complex networks in [2]. In this work, a top-down method was
used to maintain a shortest-path tree for every vertex in order
to indicate all uncovered shortest-paths at each vertex. Due to
very high storage and computation requirements, the method
is also not scalable for handling large graphs. Another method
called Highway Centric Labeling (HCL) was proposed by Jin
et al. [17] which exploits highway structure of a graph. This
method aimed to find a spanning tree which can assist in opti-
mal distance labelling and used that spanning tree as a highway
to compute a highway-based 2-hop labelling for fast distance
computation. After that, in [3], Akiba et al. proposed the pruned
landmark labeling (PLL) method which precomputes a distance-
aware 2-hop cover index by performing a pruned breadth-first
search (BFS) from every vertex. The idea is to prune vertices
whose distance information can be obtained using a partially
available 2-hop index constructed via previous BFSs. This work
helps to achieve low construction cost and smaller index size
due to reduced search space on million-scale networks. It has
been shown that PLL outperforms other state-of-the-art methods

23



available at the time of publication, including HHL [2], HCL [17]
and TEDI [32]. However, PLL is still not feasible for constructing
2-hop cover indices for billion-scale networks due to a very high
memory requirement for labelling construction.

Fu et al. [12] proposed IS-Label (IS-L) which gained significant
scalability in precomputing 2-hop cover distance labellings for
large graphs with hundreds of millions of vertices and edges. IS-L
uses the notion of an independent set of vertices in a graph. First,
it computes an independent set of vertices from a graph, then it
constructs a graph by removing the independent set of vertices
from the previous graph recursively and augments edges that pre-
serve distance information after the removal of the independent
set of vertices. All the vertices in the remaining graph preserve
their distance information to/from each other. Generally, IS-L is
regarded as a hybrid method that combines distance labelling
with graph traversal for complex networks [19]. Following the
same line of thought, very recently, Akiba et al. [15] proposed
a method to accelerate shortest-path distances computation on
large-scale complex networks. To the best of our knowledge, this
work is most closely related to our work presented in this paper.
The key idea of the method in [15] is to select a small set of
landmarks R and precompute shortest-path trees (SPTs) rooted at
each r ∈ R. Given any two vertices s and t , it first computes the
upper bound by taking the minimum length among the paths that
pass through R. Then a bidirectional BFS from s to t is conducted
on the subgraphG\R to compute the shortest-path distances that
do not pass through R and take the minimum of these two results
as the answer to an exact distance query. The experiments in
[15] showed that this method can scale to graphs with millions of
vertices and billions of edges, and outperforms the state-of-the-
art exact methods PLL [3], HDB [16], RXL and CRXL [10] with
significantly reduced construction time and index size, while the
query times are higher but still remain among 0.01-0.06 for most
of graphs with less than 5M vertices.

Although the method proposed in [15] has been tested on
a large network with millions of vertices and billions of edges,
it still fails to construct labelling on billion-scale networks in
general, particularly with billions of vertices. In contrast, our
proposed method not only constructs labellings linearly with the
number of landmarks in large networks with billions of vertices,
but also enables the sizes of labellings to be significantly smaller
than the original network sizes. In addition to these, the determin-
istic nature of labelling allows us to achieve further gains in com-
putational efficiency using parallel BFSs over multiple landmarks,
which is highly scalable for handling billion-scale networks.

8 CONCLUSION
We have presented a scalable solution for answering exact short-
est path distance queries on very large (billion-scale) complex
networks. The proposed method is based on a novel labelling
algorithm that can scale to graphs at the billion-scale, and a query-
ing framework that combines a highway cover distance labelling
with distance-bounded searches to enable fast distance compu-
tation. We have proven that the proposed labelling algorithm
can construct HWC-minimal labellings that are independent of
the ordering of landmarks, and have further developed a parallel
labelling method to speed up the labelling construction process
by conducting BFSs simultaneously for multiple landmarks. The
experimental results showed that the proposed methods signifi-
cantly outperform the state-of-the-art methods. For future work,
we plan to investigate landmark selection strategies for further
improving the performance of labelling methods.
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ABSTRACT
Stratified random sampling (SRS) is a widely used sampling tech-

nique for approximate query processing. We consider SRS on

continuously arriving data streams, and make the following con-

tributions. We present a lower bound that shows that any stream-

ing algorithm for SRS must have (in the worst case) a variance

that is Ω(r ) factor away from the optimal, where r is the number

of strata. We present S-VOILA, a streaming algorithm for SRS

that is locally variance-optimal. Results from experiments on real

and synthetic data show that S-VOILA results in a variance that is
typically close to an optimal offline algorithm, which was given

the entire input beforehand. We also present a variance-optimal

offline algorithm VOILA for stratified random sampling. VOILA
is a strict generalization of the well-known Neyman allocation,
which is optimal only under the assumption that each stratum is

abundant, i.e. has a large number of data points to choose from.

Experiments show that VOILA can have significantly smaller vari-

ance (1.4x to 50x) than Neyman allocation on real-world data.

1 INTRODUCTION
Random sampling is a widely-used method for data analysis, and

features prominently in the toolbox of virtually every approxi-

mate query processing system. The power of random sampling

lies in its generality. For many important classes of queries, an

approximate answer whose error is small in a statistical sense

can be efficiently obtained through executing the query over

an appropriately derived random sample. Sampling operators

are part of all major database products, e.g., Oracle, Microsoft

SQL Server, and IBM Db2. The simplest method for random sam-

pling is uniform random sampling, where each element from

the entire data (the “population”) is chosen with the same prob-

ability. Uniform random sampling may however lead to a high

variance in estimation. For instance, consider a population D =
{1, 2, 4, 2, 1, 1050, 1000, 1200, 1300}, and suppose we wanted to

estimate the population mean. A uniform random sample of

size two leads to an estimate with a variance of approximately

1.6 × 10
5
.

An alternative sampling method is stratified random sampling
(SRS), where the population is partitioned into subgroups called

“strata”. From within each stratum, uniform random sampling

is used to select a per-stratum sample. All per-stratum samples

are combined to derive the “stratified random sample”. Suppose

that the population is divided into two strata, one with elements

{1, 2, 4, 2, 1} and the other with elements {1000, 1050, 1200, 1300}.

A stratified random sample of size two that chooses one element

from each stratum yields an estimate with variance 2.47 × 10
3
,

much smaller than a uniform random sample of the same size.
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SRS provides the flexibility to emphasize some strata over

others through controlling the allocation of sample sizes; for

instance, a stratum with a high standard deviation can be given

a larger allocation than another stratum with a smaller standard

deviation. In the above example, if we desire a stratified sample

of size three, it is best to allocate a smaller sample of size one to

the first stratum and a larger sample size of two to the second

stratum, since the standard deviation of the second stratum is

higher. Doing so, the variance of estimate of the population mean

further reduces to approximately 1.23 × 10
3
. The strength of

SRS is that a stratified random sample can be used to answer

queries not only for aggregates such as the mean, and sum of the

entire population, but also of subsets of the population defined

by selection predicates that are provided at query time. SRS has

been used widely in database systems for approximate query

processing [1–3, 8, 14, 30, 31].

A problem with handling large streaming data is that current

methods for SRS are predominantly offline methods that assume

all data is available before sampling starts. As a result, systems

that rely on SRS (e.g., [3, 14, 31]) cannot easily adapt to new data

and have to recompute stratified random samples from scratch,

as more data arrives. With the advent of streaming data ware-

houses such as Tidalrace [29], it is imperative to have methods for

SRS that work on dynamic data streams, and maintain stratified

random samples in an incremental manner.

We address the shortcoming of current methods through a

study of SRS on streaming data. The difficulty of SRS on stream-

ing data is that there are two logical processes simultaneously

at work. One is sample size allocation, which allocates samples

among the different strata in a manner that minimizes the vari-

ance of an estimate. The second is the actual sampling of elements

from within each stratum. While each of these two steps, sam-

ple size allocation and sampling, can be done individually in a

streaming fashion, it is far more challenging to do them simulta-

neously. We present lower bounds as well as algorithms for the

task of maintaining a stratified random sample on a data stream.

The quality of a stratified random sample is measured using the

variance of an estimate of a population statistic, computed using

the sample.

1.1 Our Contributions
– Streaming Lower Bound:We present a lower bound showing

that in the worst case, any streaming algorithm for SRS that uses

a memory ofM records must have a variance that is Ω(r ) away
from the variance of the optimal offline algorithm that uses the

same memory ofM records, where r is the number of strata. We

show that this lower bound is tight, by construction.

–Practical StreamingAlgorithm for SRS:Wepresent S-VOILA
(Streaming Variance OptImaL Allocation) a streaming algorithm

for SRS that is locally variance-optimal. Upon receiving new ele-

ments, it (re-)allocates sample sizes among strata so as to obtain

the smallest variance among all possible re-allocations. S-VOILA
can also deal with the case when a minibatch of multiple data
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items is seen at a time, as in systems such as Spark streaming [42].

Re-allocations made by S-VOILA are locally optimal with respect

to the entire minibatch, and the quality of re-allocations improve

as the minibatch size increases. Since S-VOILA can deal with mini-

batches of varying sizes, it is well-suited to real-world streams

that may have bursty arrivals.

– Variance-Optimal Sample Size Reduction: The streaming

algorithm (S-VOILA) re-allocates sample sizes based on a novel

method for reducing the size of an existing stratified random

sample down to a desired target size in a variance-optimal man-

ner. This novel technique for sample size reduction may be of

independent interest in other tasks, e.g., sub-sampling from a

given stratified random sample.

– Sampling from a SlidingWindow of a Stream:We present

an algorithm for sampling from a sliding window of the most

recent elements in a stream. This algorithm uses memory much

smaller than the size of the window, and results in a sample

whose variance is close to that obtained by an optimal offline

algorithm that is allowed multiple passes through data in the

window.

– Variance Optimal Offline SRS: We present the first offline

algorithm for variance-optimal SRS. Our algorithm VOILA com-

putes an allocation with provably optimal variance among all

possible allocations of sample sizes to strata. The well known

Neyman Allocation [36] (NeyAlloc), which originated from

the statistics literature, assumes that each stratum has an abun-

dance of data to choose from. However, this assumption may not

hold in databases, since each stratum is a subset of a database ta-

ble, and the size of a stratum may be small. VOILA does not make

such assumptions, and computes a variance optimal allocation

no matter how large/small the sizes of the strata. Hence, VOILA
is a strict generalization of NeyAlloc. In addition, VOILA does

not make any assumption on how data is stratified.

– Experimental Evaluation: We present a detailed experimen-

tal evaluation using real and synthetic data, considering both

the quality of sample and accuracy of query answers using the

sample. In our experimental study, we found that (a) the variance

of S-VOILA is typically close to that of the optimal offline algo-

rithm VOILA, and the allocation of S-VOILA also closely tracks

that of VOILA. S-VOILA also improves significantly upon prior

work [5]. The variance of S-VOILA improves as the size of the

minibatch increases, and a minibatch of size 100 provides most

of the benefits of S-VOILA. (b) Samples produced using S-VOILA
yield accurate answers to a range of queries that involve a selec-

tion followed by aggregation, where the selection predicate is

provided at query time, and the aggregation function can be one

of sum, average, and standard deviation
1
. (c) In the offline setting,

VOILA can have significantly smaller variance than NeyAlloc.

1.2 Related Work
Sampling has been widely used in approximate query process-

ing on both static and streaming data [17, 28, 33, 38, 39]. The

reservoir sampling [34, 41] algorithm for uniform sampling from

a stream has been known for decades, and many variants and

generalizations have been considered, such as weight-based sam-

pling [11, 22], insertion and deletion of elements [25], distinct

1
Note that a query for the variance or standard deviation of data is distinct from

the variance or standard deviation of an estimate.

sampling [26], sampling from a sliding window [9, 12, 23], time-

decayed sampling [19, 20], and distributed streaming sampling [15,

16, 18, 40].

SRS in the online setting can be viewed as weight-based reser-

voir sampling where the weight of each stream element depends

on the stratum it belongs to. Since the weight of a stream el-

ement changes dynamically (even after it has been observed)

prior work on weighted reservoir sampling [22] does not ap-

ply, since it assumes that the weight of an element is known at

the time of observation and does not change henceforth. Meng

[35] considered streaming SRS using population-based alloca-

tion. Al-Kateb et al. [4, 5] considered streaming SRS using power

allocation, based on their prior work on adaptive reservoir sam-

pling [6]. Lang et al. [32] consider machine learning methods for

determining the per-item probability of inclusion in a sample.

This work is meant for static data, and can be viewed as a version

of weighted random sampling where the weights are learnt using

a query workload. Prior work on streaming SRS neither considers

provable guarantees on the quality of the resulting samples, nor

lower bounds for streaming SRS, like we do here.

A majority of prior work on using SRS in approximate query

processing [1–3, 8, 14, 30, 31] has assumed static data. With the

emergence of data stream processing systems [7] and data stream

warehousing systems [29], it is important to devise methods for

streaming SRS with quality guarantees.

2 PRELIMINARIES
Stratified sampling can be viewed as being composed of three

parts – stratification, sample allocation, and sampling. Stratifi-

cation is a partitioning of the universe into a number of disjoint

strata. Equivalently, it is the assignment of each data element

to a unique stratum. In database applications, stratification is

usually a pre-defined function of one or more attributes of the

data [17]. For example, the works of Chaudhuri et al. [14] and

Agarwal et al. [3] on approximate query answering stratify tuples

in a database table based on the set of selection predicates in the

query workload that the tuple satisfies, and the work of Kandula

et al. [31] on approximate query answering stratify rows of a

table using the group ids derived from a group-by query. Note

that our methods do not assume that stratification is performed

in any specific manner, and work regardless of the method used

to stratify data.

Our work considers sample allocation, the partitioning of the

available memory budget ofM samples among the different strata.

In streaming SRS, the allocation needs to be continuously re-

adjusted as more data arrives, and the characteristics of different

strata change. In offline sampling, allocation needs to be done

only once, after knowing the data in its entirety.

The final sampling step considers each stratum and chooses

the assigned number of samples uniformly at random. In offline

stratified sampling, the sampling step can be performed in a

second pass through the data using reservoir sampling on the

subset of elements belonging to each stratum, after a first pass has

determined the sample size allocation. In the case of streaming

sampling, the sampling step needs to occur simultaneously with

sample (re-)allocation, which may change allocations to different

strata over time.

Variance-Optimal Allocation. The quality of a stratified

random sample is measured through the variance of an esti-

mate that is derived using the sample. Consider a data stream
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R = {v1,v2, . . . ,vn } of current size n, whose elements are strat-

ified into r strata, numbered 1, 2, . . . , r . Let ni denote the num-

ber of elements in stratum i . For each i = 1 . . . r , let Si be a

uniform random sample of size si drawn without replacement

from stratum i . Let S = {S1, S2, . . . , Sn } denote the stratified ran-

dom sample. The sample mean of each per-stratum sample Si is:

ȳi =
∑
v∈Si v
si . The population mean of R, µR can be estimated as:

ȳ =
∑r
i=1

ni ȳi
n . It can be shown that the expectation of ȳ equals

µR . Given a memory budget of M ≤ n elements to store all the

samples, so that

∑
i si = M , the following question of variance-

optimal allocation of sample sizes has been considered in prior

work [36]: How to split the memory budget M among the si s to
minimize the variance of ȳ? The variance of ȳ can be computed

as follows (e.g. see Theorem 5.3 in [17]):

V = V (ȳ) =
1

n2

r∑
i=1

ni (ni − si )
σ 2

i
si
=

1

n2

r∑
i=1

n2

i σ
2

i
si
−

1

n2

r∑
i=1

niσ
2

i

(1)

While the theory around SRS in both statistics and database com-

munities has used the variance of the population mean as a mini-

mization metric, variance-optimal SRS is useful for other types of

queries as well, including predicate-based selection queries, sum

queries across a subset of the strata, queries for the variance, and

combinations of such queries [3, 14] – also see our experiments

section.

NeyAlloc for Abundant Strata. Prior studies on variance-

optimal allocation have primarily considered static data. Addi-

tionally, they assume that every stratum has a very large volume

of data, so that there is no restriction on the size of a sample

that can be chosen from this stratum. This may not be true

for the scenario of databases. Especially in a streaming con-

text, each stratum starts out with very little data. Given a col-

lection of data elements R, we say that a stratum i is abundant
if ni ≥ M · (niσi )/

(∑r
j=1

njσj
)
. Otherwise, the stratum i is said

to be bounded. Under the assumption that each stratum is abun-

dant, the popularly used “Neyman Allocation” NeyAlloc [17, 36]
minimizes the variance V , and allocates a sample size for stra-

tum i as M · (niσi )/
(∑r

j=1
njσj

)
. We note that NeyAlloc is no

longer optimal if one or more strata are bounded. Our meth-

ods of sample size reduction and online (S-VOILA) and offline

(VOILA) algorithms do not have this restriction and work under

the general case whether or not strata are bounded.

Our solution to streaming SRS consists of two parts – sample

size re-allocation, and per-stratum random sampling. Both parts

execute continuously and in an interleaved manner. Sample size

re-allocation is achieved using a reduction to a “sample size re-

duction” in a variance-optimal manner. Given a stratified random

sample S1 of size larger than a targetM , sample size reduction

seeks to find a stratified sample S2 of size M that is a subset of

S1 such that the variance of S2 is as small as possible.

Roadmap: In Section 3, we consider streaming SRS, and

present a tight lower bound for any streaming algorithm, fol-

lowed by S-VOILA an algorithm for streaming SRS. This uses as

a subroutine a variance-optimal sample size reduction method

that we describe in Section 4. We start with SingleElementSSR
for reducing the size of the sample by one element, followed by

a general algorithm SSR for reducing the size by β ≥ 1 elements.

We then present an algorithm MultiElementSSR with a faster

runtime. We then consider the case of sliding windows in Sec-

tion 5, followed by the optimal offline algorithm in Section 6. We

present an experimental study of our algorithms in Section 7.

3 STREAMING SRS
We now consider SRS from a data stream, whose elements are

arriving continuously. As more elements are seen, the allocations

as well as samples need to be dynamically adjusted. We first

note there is a simple two-pass streaming algorithm with optimal

variance that uses O(k + r ) space, where k is the desired sample

size and r the number of strata. In the first pass, the size, mean,

and standard deviations of each stratum are computed usingO(r )
space, constant space for each stratum. At the end of the first

pass, the allocations to different strata are computed using an

optimal offline algorithm, say VOILA. In the second pass, since

the desired sample sizes are known for each stratum, samples are

computed using reservoir sampling within the substream of ele-

ments belonging to each stratum. The above two-pass algorithm

cannot be converted into a one-pass algorithm. The difficulty is

that as more elements are seen, allocations to different strata

may change, and the sampling rate within a stratum cannot in

general be (immediately) dynamically adjusted in order to satisfy

variance optimality. We first show a lower bound that it is in

general not possible for any streaming algorithm to have optimal

variance compared with an offline algorithm that is given the

same memory.

3.1 A Lower Bound for Streaming SRS
Given a data stream R with elements belonging to r strata, and a
memory budget ofM elements, letV ∗ denote the optimal sample

variance that can be achieved by an offline algorithm for SRS

that may make multiple passes through data. Clearly, the sample

produced by any streaming algorithm must have variance that

is either V ∗ or greater. Suppose a stratified random sample R is

computed by a streaming algorithm usingmemory ofM elements.

Let V (R) denote the variance of this sample. For α ≥ 1, we say R
is an SRS with multiplicative error of α , if: (1) the sample within
each stratum in R is chosen uniformly from all elements in the
stratum, and (2) V (R) ≤ α ·V ∗.

Theorem 3.1. Any streaming algorithm for maintaining an
SRS over a stream with r strata using a memory of M elements
must, in the worst case, result in a stratified random sample with a
multiplicative error Ω(r ).

The idea in the proof is to construct an input stream with r
strata where the variance of different strata are the same un-

til a certain point in time, at which the variance of a single

stratum starts increasing to a high value – a variance-optimal

SRS will respond by increasing the allocation to this stratum.

However, we show that a streaming algorithm is unable to do

so quickly. Though a streaming algorithm may compute the

variance-optimal allocation to different strata in an online man-

ner, it cannot actually maintain these dynamically sized samples

using limited memory.

Proof. Consider an input stream where for each i = 1 . . . r ,
the ith stratum consists of elements in the range [i, i + 1). The

stream so far has the following elements. For each i, 1 ≤ i ≤ r ,
there are (α − 1) copies of element i and one copy of (i + ε) where
ε = 1/(r − 1) and α ≥ 3. After observing these elements, for

stratum i we have ni = α , µi =
(
i + ε

α
)
, and it can be verified

that σi =
√
α−1

α ε .
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Since the total memory budget isM , at least one stratum (say,

Stratum 1) has a sample size no more than M/r . Suppose an

element of value (2 − ε) arrives next. This element belongs to

stratum 1. Let n′
1
, µ ′

1
, and σ ′

1
denote the new size, mean, and

standard deviation of stratum 1 after this element arrives. We

have n′
1
= α + 1 and µ ′

1
= 1 + 1

α+1
. It can be verified that

σ ′
1
=

√
ε2+(1−ε )2− 1

α+1

α+1
. It follows that:

(α + 1)

√
1

2
− 1

α+1

α + 1

≤ n′
1
σ ′

1
≤ (α + 1)

√
1 − 1

α+1

α + 1

(2)

=⇒

√
α

2

≤ n′
1
σ ′

1
≤
√
α (Note: α > 2) (3)

In 2, the left inequality stands when ε = 1/2 and the right in-

equality stands when ε = 0 or 1. We also have:

∑r
i=2

niσi =

(r − 1)α
√
α−1

α ε =
√
α − 1, where we have used ε = 1

r−1
. Thus,

√
α

2

≤

r∑
i=2

niσi ≤
√
α (Note: α > 2) (4)

Let V denote the sample variance of A after observing the

stream of (rα + 1) elements. Let V ∗ denote the smallest sample

possible with a stratified random sample of sizeM on this data.

Let ∆ =
(
n′

1
σ ′2

1
+

∑r
i=2

niσ
2

i

) /
n2
.

We observe that after processing these (rα + 1) elements, the

sample size s1 ≤ M/r + 1. Using this fact and the definition of

sample variance in Eq 1:

V =
1

n2

(
n′2

1
σ ′2

1

s1

+

r∑
i=2

n2

i σ
2

i
si

)
−∆ ≥

1

n2

(
n′2

1
σ ′2

1

M
r + 1

+

r∑
i=2

n2

i σ
2

i
M
r−1

)
−∆

≥
1

n2

(
α/4
M
r + 1

+

r∑
i=2

(α − 1)ε2

M/(r − 1)

)
−∆ =

1

n2

(
α/4
M
r + 1

+
α − 1

M

)
−∆

On the other hand, the smallest sample varianceV ∗ is achieved
by using Neyman allocation. By Inequalities 3 and 4, we know

that if Neyman allocation is for the current stream of rα + 1

elements, stratum 1 uses at leastM/3 memory space, whereas all

other strata equally share at leastM/3 elements since all niσi are
equal for i = 2, 3, . . . , r . Using these observations into Equation 1:

V ∗ ≤
1

n2

(
n′2

1
σ ′2

1

M/3
+

r∑
i=2

n2

i σ
2

i
M/(3(r − 1))

)
− ∆

≤
1

n2

(
α

M/3
+

r∑
i=2

(α − 1)ε2

M/(3(r − 1))

)
− ∆ =

(
1

n2

6α − 3

M

)
− ∆

Since ∆ ≥ 0 andM > r , we have: V
V ∗ ≥

V+∆
V ∗+∆ = Ω(r ). □

We note that the above lower bound is tight (up to constant

factors). Consider the algorithm which always allocates M/r
memory to each of r strata that have been observed so far. It

can be verified that this algorithm has a variance within an O(r )
multiplicative factor of the optimal. While theoretically such

an algorithm (which we call the “senate” algorithm due to allo-

cating every stratum the same resources) meets the worst case

lower bound, it performs poorly in practice, since it treats all

strata equally, irrespective of their volume or variance (see the

experiments section).

3.2 S-VOILA: Streaming Algorithm for SRS
We now present a streaming algorithm S-VOILA that can main-

tain a stratified random sample on a stream with a good (though

not optimal) variance. Given amemory budget ofM items, S-VOILA
maintains a SRS of sizeM with the following properties: (1) the

samples within each stratum are chosen uniformly from all the

stream elements seen in the stratum so far, (2) the sizes of sam-

ples allocated to different strata adapt to new stream elements

by making “locally optimal” decisions that lead to the best alloca-

tions given the new stream elements. S-VOILA conceptually has

to solve two problems. One is sample size re-allocation among

strata, and the second is uniform sampling within each stratum.

Let R denote the stream observed so far, and Ri the elements in

R that belong to stratum i .
We first consider sample size re-allocation. Suppose due to

the addition of new elements, the stream went from R1
to R2

,

and suppose that the stratified random sample at R1
allocated

sample sizes to strata in a specific manner, S1
. Due to the new

elements, the sizes and variances of different strata change, and as

a result, the optimal allocation of samples in R2
may be different

from the previous allocation S1
. Our approach is to first add

new elements to the sample, and then re-allocate sample sizes

using a “variance-optimal sample size reduction” optimization

framework. Given a current allocation of sample sizes to different
strata, suppose new elements are added to the sample, causing it to
exceed a memory thresholdM . What is a way to reduce the current
sample to a sample of size M such that the variance of the new
sample is as small as possible? In the following section (Section 4),

we present algorithms for sample size reduction.

The second issue is to maintain a uniform random sample Si
of Ri when si , the size of the sample is changing. A decrease

in an allocation to si can be handled easily, through discarding

elements from the current sample Si until the desired sample size

is reached.What if we need to increase the allocation to stratum i?
If we simply start sampling new elements according to the higher

allocation to Si , then recent elements in the streamwill be favored

over the older ones, and the sample within stratum i is no longer
uniformly chosen. In order to ensure that Si is always chosen
uniformly at random from Ri , newly arriving elements in Ri
need to be held to the same sampling threshold as older elements,

even if the allotted sample size si increases. S-VOILA resolves

this issue in the following manner. An arriving element from Ri
is assigned a random “key” drawn uniformly from the interval

(0, 1). The sample is maintained using the following invariant: Si
is the set of si elements with the smallest keys among all elements so
far in Ri . It is easy to verify that this is indeed a uniform sample

drawn without replacement from Ri . The consequence of this

strategy is that if we desire to increase the allocation to stratum i ,
it may not be accomplished immediately, since a newly arriving

element in Ri may not be assigned a key that meets this sampling

threshold. Instead, the algorithm has to wait until it receives an

element in Ri whose assigned key is small enough. To ensure

the above invariant, the algorithm maintains for each stratum i a
variable di that tracks the smallest key of an element in Ri that

is not currently included in Si . If an arriving element in Ri has a

key that is smaller than or equal to di , it is included within Si ;
otherwise, it is not.

Algorithms 1 and 2 respectively describe the initialization

and insertion of a minibatch of elements. S-VOILA supports the
insertion of a minibatch of any size b > 0, where b can change

from one minibatch to another. As b increases, we can expect
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Algorithm 1: S-VOILA: Initialization
Input:M – total sample size, r – number of strata.

// Si is the sample for stratum i, and Ri is the

substream of elements from Stratum i

1 Load the firstM stream elements in memory, and partition

them into per-stratum samples, S1, S2, . . . , Sr , such that Si
consists of (e,d) tuples from stratum i , where e is the
element, d is the key of the element, chosen independently

and uniformly at random from (0, 1).

2 For each stratum i , compute ni , σi . Initialize di ← 1 ; // di
tracks the smallest key among all elements in
Ri not selected in Si

Algorithm 2: S-VOILA: Process a new minibatch B of b ele-

ments. Note that b need not be known in advance, and can

vary from one minibatch to the other.

1 β ← 0; // #selected elements from B

2 for each e ∈ B do
3 Let α = α(e) denote the stratum of e

4 Update nα and σα ; // per-stratum mean and std.

dev. maintained in a streaming manner

5 Assign a random key d ∈ (0, 1) to element e;

6 if d ≤ dα then // element e is sampled
7 Sα ← {e}

⋃
Sα ; β ← β + 1;

/* Variance-optimal reduction by β elements */

8 if β = 1 then // faster for evicting 1 element
9 ℓ ← SingleElementSSR(M);

10 Delete one element of largest key from Sℓ ;

11 dℓ ← smallest key discarded from Sℓ ;

12 else if β > 1 then
13 L ← MultiElementSSR(M);

14 for i = 1 . . . r do // Actual element evictions
15 if L[i] < si then
16 Delete si − L[i] elements from Si with the

largest keys;

17 di ← smallest key discarded from Si ;

S-VOILA to have a lower variance, since its decisions are based

on greater amount of data. Lines 2–7 make one pass through the

minibatch to update the mean and standard deviations of the

strata, and store selected elements into the per-stratum samples.

If β > 0 elements from the minibatch get selected into the sample,

in order to balance the memory budget atM , β elements need to

be evicted from the stratified random sample using the variance-

optimal sample size reduction technique from Section 4.

A sample size reduction algorithm takes a current allocation

to a stratified random sample, the statistics (volume, mean, and

variance) of different strata, and a target sample size M , and

returns the final allocation whose total size isM . For the special

case of evicting one element, we can use the faster algorithm

SingleElementSSR; otherwise, we can use MultiElementSSR.
Lemma 3.2 shows that the sample maintained by S-VOILAwithin
each stratum is a uniform random sample, showing this is a valid

stratified sample, and Lemma 3.3 presents the time complexity

analysis of S-VOILA. Proofs are omitted due to space constraints.

Lemma 3.2. For each i = 1, 2, . . . , r sample Si maintained by
S-VOILA (Algorithm 2) is selected uniformly at random without
replacement from stratum Ri .

Lemma 3.3. If the minibatch size b = 1, then the worst-case time
cost of S-VOILA for processing an element is O(r ). The expected
time for processing an element belonging to stratum α is O(1 +
r · sα /nα ), which is O(1) when r · sα = O(nα ). If b > 1, then
the worst-case time cost of S-VOILA for processing a minibatch is
O(r log r + b).

We can expect S-VOILA to have an amortized per-item pro-

cessing time of O(1) in many circumstances. When b = 1: After

observing enough stream elements from stratum α , such that

r · sα = O(nα ), the expected processing time of an element be-

comes O(1). Even if certain strata have a very low frequency,

the expected time cost for processing a single element is still

expected to be O(1), because elements from an infrequent stra-

tum α are unlikely to appear in the minibatch. When b > 1: The

per-element amortized time cost of S-VOILA is O(1), when the

minibatch size b = Ω(r log r ).

4 VARIANCE-OPTIMAL SAMPLE SIZE
REDUCTION

Suppose it is necessary to reduce a stratified random sample (SRS)

of total sizeM to an SRS of total sizeM ′ < M . This will need to

reduce the size of the samples of one or more strata in the SRS.

Since the sample sizes are reduced, the variance of the resulting

estimate will increase. We consider the task of variance-optimal
sample size reduction (VOR), i.e., how to partition the reduction

in sample size among the different strata in such a way that the

increase in the variance is minimized. Note that once the new

sample size for a given stratum is known, it is easy to subsample

the stratum to the target sample size.

Consider Equation 1 for the variance of an estimate derived

from the stratified random sample. Note that, for a given data

set, a change in the sample sizes of different strata si does not
affect the parameters n, ni , and σi . VOR can be formulated as the

solution to the following non-linear program.

Minimize

r∑
i=1

n2

i σ
2

i
s ′i

(5)

subject to constraints:

r∑
i=1

s ′i = M ′ and 0 ≤ s ′i ≤ si for each i = 1, 2, . . . , r , (6)

In the rest of this section, we present efficient approaches for

computing the VOR.

4.1 Sample Size Reduction by One Element
We first present an efficient algorithm for the case where the

size of a stratified random sample is reduced by one element.

An example application of this case is in designing a streaming

algorithm for SRS, when stream items arrive one at a time. The

task is to choose a stratum i (and discard a random element from

the stratum) such that after reducing the sample size si by one,

the increase in variance V (Equation 1) is the smallest.

Our solution is to choose stratum i such that the partial deriva-

tive ofV with respect to si is the largest over all possible choices
of i .

∂V

∂si
= −

n2

i σ
2

i
n2

1

s2

i
.
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Given a memory budget M and stratum i , let Mi = M ·
niσi/

∑r
j=1

njσj denote the amount of memory that NeyAlloc

would allocate to stratum i . We choose stratum ℓ where:

ℓ = arg max

i

{
∂V

∂si

���� 1 ≤ i ≤ r

}
= arg min

i

{
niσi
si

���� 1 ≤ i ≤ r

}
Lemma 4.1. When required to reduce the size of a stratified

random sample by one, the increase in variance of the estimated
population mean is minimized if we reduce the size of Sℓ by one,

where ℓ = arg mini

{
niσi
si

��� 1 ≤ i ≤ r
}
.

In the casewherewe havemultiple choices for ℓ using Lemma 4.1,

we choose the one where the current sample size sℓ is the largest.
Algorithm SingleElementSSR for reducing the sample by a sin-

gle element is a direct implementation of the condition stated in

Lemma 4.1. We omit the pseudocode due to space constraints. It

is straightforward to observe this can be done in time O(r ).

4.2 Reduction by β ≥ 1 Elements
We now consider the general case, where the sample needs to

be reduced by β ≥ 1 elements. A possible solution idea is to re-

peatedly apply the one-element reduction algorithm (Algorithm

SingleElementSSRfrom Section 4.1) β times. Each iteration, a

single element is chosen from a stratum such that the overall

variance increases by the smallest amount. However, this greedy

approach may not yield a sample with the smallest variance. On

the other hand, an exhaustive search of all possible evictions is

not feasible either, since the number of possible ways to partition

a reduction of size β among r strata is
(β+r−1

r−1

)
, which can be very

large. For instance, if r = 10, this is Θ(β10). We now present effi-

cient approaches to VOR. We first present a recursive algorithm,

followed by a faster iterative algorithm. Before presenting the

algorithm, we present the following useful characterization of a

variance-optimal reduction.

Definition 4.2. We say that stratum i is oversized under mem-

ory budgetM , if its allocated sample size si > Mi . Otherwise, we

say that stratum i is not oversized.

Lemma 4.3. Suppose that E is the set of β elements that are to be
evicted from a stratified random sample such that the variance V
after eviction is the smallest possible. Then, each element in E must
be from a stratum whose current sample size is oversized under the
new memory budgetM ′ = M − β .

Proof. We use proof by contradiction. Suppose one of the

evicted elements is deleted from a sample Sα such that the sample

size sα is not oversized under the new memory budget. Because

the order of the eviction of the β elements does not impact the

final variance, suppose that element e is evicted after the other

β − 1 evictions have happened. Let sα denote the size of sample

Sα at the moment t right after the first β − 1 evictions and before

evicting e . The increase in variance caused by evicting an element

from Sα is

∆ =
1

n2

(
n2

ασ
2

α
sα (sα − 1)

)
=

(∑r
i=1

niσi

nM ′

)2

M ′2α
sα (sα − 1)

>

(∑r
i=1

niσi

nM ′

)2

whereM ′α = M ′ nα σα∑r
i=1

niσi
. The last inequality is due to the fact

that Sα is not oversized under budgetM ′ at time t , i.e., sα ≤ M ′α .
Note that an oversized sample exists at time t , since there are a

total ofM ′+ 1 elements in the stratified random sample at time t ,

Algorithm 3: SSR(A,M,L): Variance-Optimal Sample Size

Reduction

Input: A – set of strata under consideration.

M – target sample size for all strata in A.

Output: For i ∈ A, L[i] is the final size of sample for

stratum i .
1 O ← ∅ // oversized samples

2 for j ∈ A do
3 Mj ← M · njσj/

∑
t ∈A ntσt // Neyman allocation

if memory M divided among A

4 if (sj > Mj ) then O ← O ∪ {j}
5 else L[j] ← sj // Keep current allocation

6

7 if O = A then
// All samples oversized. Recursion stops.

8 for j ∈ A do L[j] ← Mj

9 else
// Recurse on O, under remaining mem budget.

10 SSR(O,M −
∑
j ∈A−O sj ,L)

and the memory target isM ′. Instead of evicting e , if we choose
to evict another element e ′ from an oversized sample Sα ′ , the
resulting increase in variance will be:

∆′ =
1

n2

(
n2

α ′σ
2

α ′

sα ′(sα ′ − 1)

)
=

(∑r
i=1

niσi

nM ′

)2 M ′2α ′

sα ′(sα ′ − 1)

<

(∑r
i=1

niσi

nM ′

)2

where M ′α ′ = M ′
nα ′σα ′∑r
i=1

niσi
The last inequality is due to the fact

that Sα ′ is oversized under budget M ′ at time t , i.e., sα ′ > M ′α ′ .
Because ∆′ < ∆, at time t , evicting e ′ from Sα ′ leads to a lower
variance than evicting e from Sα . This is a contradiction to the

assumption that evicting e leads to the smallest variance, and

completes the proof. □

Lemma 4.3 implies that it is only necessary to reduce samples

that are oversized under the target memory budgetM ′. Samples

that are not oversized can be given their current allocation, even

under the new memory targetM ′. Our algorithm based on this

observation first allocates sizes to the samples that are not over-

sized. The remaining memory now needs to be allocated among

the oversized samples. We note that this can again be viewed as

a sample size reduction problem, while focusing on a smaller set

of (oversized) samples, and accomplish it using a recursive call

under a reduced memory budget; See Lemma 4.4 for a formal

statement of this idea. The base case for this recursion is when

all samples under consideration are oversized, in which case we

can simply use NeyAlloc under the reduced memory budgetM ′

(Observation 1). Our algorithm SSR is shown in Algorithm 3.

Let S = {S1, S2, . . . , Sr } be the current stratified random sam-

ple. LetA denote the set of all strata under consideration, initial-

ized to {1, 2, . . . , r }. Let O denote the set of oversized samples,

under target memory budget for S, andU = S − O denote the

collection of samples that are not oversized. When the context is

clear, we use O, U, andA to refer to the set of stratum identifiers

as well as the set of samples corresponding to these identifiers.
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Table 1: An example of variance-optimal sample size re-
duction from 400 × 10

6 down to 200 × 10
6.

i 1 2 3 4 5 6

niσi (×10
9) 10 8 30 20 8 24

si (×10
6) 15 50 50 45 60 180

round 1Mi (×10
6) 20 < 50 60 < 45 < 60 < 180

round 2Mi (×10
6) - < 50 - 45 < 60 < 180

round 3Mi (×10
6) - 18 - - 18 54

s ′i (×10
6) 15 18 50 45 18 54

Lemma 4.4. A variance-optimal eviction of β elements from S
under memory budgetM ′ requires a variance-optimal eviction of
β elements from O under memory budgetM ′ −

∑
j ∈U sj .

Proof. Recall that s ′i denotes the final size of sample Si after β
elements are evicted. Referring to the varianceV from Equation 1,

we know a variance-optimal sample size reduction of β elements

from S under memory budgetM ′ requires minimization of∑
i ∈A

n2

i σ
2

i
s ′i
−

∑
∈A

n2

i σ
2

i
si

(7)

By Lemma 4.3, we know si = s
′
i for all i ∈ U. Hence, minimiz-

ing Formula 7 is equivalent to minimizing∑
i=O

n2

i σ
2

i
s ′i
−

∑
i ∈O

n2

i σ
2

i
si

(8)

The minimization of Formula 8 is exactly the result obtained

from a variance-optimal sample size reduction of β elements

from oversized samples under the new memory budget M ′ −∑
i ∈U si . □

Observation 1. In the case every sample in the stratified ran-
dom sample is oversized under target memoryM ′, i.e., S = O, the
variance-optimal reduction is to reduce the size of each sample
Si ∈ S toM ′i under the new memory budgetM ′.

The following theorem summarizes the correctness and time

complexity of Algorithm SSR.

Theorem 4.5. Algorithm 3 (SSR) finds a variance-optimal re-
duction of the stratified random sample A under new memory
budgetM . The worst-case time of SSR isO(r2), where r is the num-
ber of strata.

Proof. Correctness follows from Lemmas 4.3–4.4 and Obser-

vation 1. The worst-case time happens when each recursive call

sees only one stratum that is not oversized. In such a case, the

time of all recursions of SSR on a stratified random sample across

r strata is: O(r + (r − 1) + . . . + 1) = O(r2). □

An Example (Table 1). Suppose we have 6 strata with their

statistics (niσi ) and current sample sizes (si ) showin in Table 1

using a total size of

∑
6

i=1
si = 400. Suppose that we wish to

reduce the sample size down to 200 by reducing each si to the

target sample size s ′i . The computation involves a sequence of

recursive rounds. In the initial round, we allocate 200 samples

among all 6 strata using Neyman allocation. Strata 1 and 3 turn

out to be not oversized (M1 ≥ s1, M3 ≥ s3), and therefore we

set s ′
1
= s1 and s ′

3
= s3. In Round 2, we exclude strata 1 and

3 from consideration, and the available memory budget which

now becomes 200 − 15 − 50 = 135. This is allocated among

strata 2, 4, 5, and 6 using Neyman allocation. Stratum 4 is not

Algorithm 4: MultiElementSSR(A,M): A fast implementa-

tion of Sample Size Reduction without using recursion.

Input: The strata under consideration is A = {1, 2, . . . , r },
and the volumes and standard deviations.M is the

target total sample size.

Output: For 1 ≤ i ≤ r , L[i] is set to the final size of sample

for stratum i , such that the increase of the variance

V is minimized.

1 Allocate L[1..r ], an array of numbers

2 Allocate Q[1..r ], an array of (x ,y, z) tuples

3 for i = 1 . . . r do Q[i] ← (i,niσi , si/(niσi ));

4 Sort array Q in ascending order on the z dimension

5 for i = (r − 1) down to 1 do
6 Q[i].y ← Q[i].y +Q[i + 1].y

7 Mnew ← M ; D ← Q[1].y

8 for i = 1 . . . r do
9 MQ [i].x ← M · nQ [i].xσQ [i].x /D

10 if sQ [i].x > MQ [i].x then break

11 L[Q[i].x] ← sQ [i].x ]
12 Mnew ← Mnew − sQ [i].x

// Check the next sample, which must exist.

13 MQ [i+1].x ← M · nQ [i+1].xσQ [i+1].x /D

14 if sQ [i+1].x > MQ [i+1].x then // oversized
15 M ← Mnew ; D ← Q[i + 1].y

// Reduce sample size to target.

16 for j = i ..r do
// Desired size for SQ [j].x

17 L[Q[j].x] ← M · nQ [j].xσQ [j].x /D

18 return L

oversized (M4 ≥ s4) and therefore we set s ′
4
= s4. At the next

round 3, we further exclude stratum 4 from consideration, and

the available memory budget now becomes 135 − 45 = 90. When

this is allocated among the remaining strata, it turns out that all

of them are oversized (Mi < si , i = 2, 5, 6). We simply set s ′i = Mi
for each i ∈ {2, 5, 6}, and the recursion exits. Each stratum i
now has a new sample size s ′i such that s ′i ≤ si for every i , and∑

6

i=1
s ′i = 200.

Faster Sample Size Reduction. We present a faster algorithm for

variance-optimal sample size reduction, MultiElementSSR, with
time complexity O(r log r ). MultiElementSSR shares the same

algorithmic foundation as SSR, but uses a faster iterative method

based on sorting. We omit proofs due to space constraints.

Theorem 4.6. (1) The MultiElementSSR procedure in Algo-
rithm 4 finds the correct size of each sample of a stratified random
sample, whose memory budget is reduced to M , such that the in-
crease of the variance V is minimized. (2) The worst-case time cost
of MultiElementSSR on a stratified random sample across r strata
is O(r log r ).

5 STREAMING SRS OVER A SLIDING
WINDOW

We consider the maintenance of an SRS drawn from a sequence-
based slidingwindow of themost recent elements from the stream.

Given a window sizeW , the sliding window consists of theW
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most recent elements observed in the data stream. We consider

the case when the window sizeW is very large, so that it is not

feasible to store the entire window in memory. Similar to the

algorithm for infinite window, there are two parts to the algo-

rithm, sample re-allocation and sampling, which are interleaved

with each other. We provide the algorithm idea and omit detailed

descriptions.

For re-allocating sample sizes, we need the current statistics of

each stratum within the sliding window. The mean and variance

of a given stratum in an infinite window can be maintained in

O(1) space easily in a single pass. However, maintaining the mean

and variance over a sliding window is much harder. In fact, it is

known that exact computation of the mean and variance over a

sliding window requires memory linear in the stream size [21] –

thus, if we require these statistics exactly, we have to store the

entire window, just to maintain the statistics of different strata!

Fortunately, it is possible to approximate these statistics using

space poly-logarithmic in the size of the stream; for the mean,

see [21, 27], and for the variance [43].

Random sampling over a sliding window is also quite different

from the case of infinite windows, and there is significant prior

work on this e.g. [9, 13, 24]. We adapt algorithms from prior

work to assign to each arriving element a random key, chosen

uniformly in [0, 1]. The random sample of a certain size within a

stratum is defined to be those elements in the stratum that have

the smallest keys. Borrowing from prior work [9], we maintain

additional recent elements within the window even if they don’t

belong to the set of keys that are currently the smallest – the

reason is that these elements may become the elements with the

smallest keys once the window slides and other elements with

smaller keys “expire” from the window. The additional space

required by these keys is a logarithmic factor in the size of the

window (Section 2 in [9]). For each stratum, the algorithm con-

tinuously monitors the smallest key that has been discarded from

the window.

When new elements arrive in the stream, these are sampled

into the SRS, which may cause the size of the sample to increase

beyond the memory allocated to the stratum. When this happens,

we rely on variance-optimal sample size reduction (Algorithm

MultiElementSSR) to give us new sample size allocations to

different strata, and different strata are sub-sampled according

to the new allocations (sub-sampling within a given stratum is

handled through selecting only the elements with the smallest

keys that are active in the window).

6 VOILA: VARIANCE-OPTIMAL
OFFLINE SRS

Wenow present an algorithm for computing the variance-optimal

allocation of sample sizes in the general case when there may be

strata that are bounded. Note that once the allocation of sample

sizes is determined, the actual sampling step is straightforward

for the offline algorithm – samples can be chosen in a second pass

through the data, using reservoir sampling within each stratum.

Hence, in the rest of this section, we focus on determining the

variance-optimal allocation. Consider a static data set R of n
elements across r strata, where stratum i hasni elements, and has

standard deviation σi . How can a memory budget ofM elements
be partitioned among the strata in a variance-optimal manner?
We present VOILA (Variance-OptImaL Allocation), an efficient

offline algorithm for variance-optimal allocation that can handle

strata that are bounded.

Algorithm 5: VOILA (M): Variance-optimal stratified ran-

dom sampling for bounded data

Input:M is the memory target

1 for i = 1 . . . r do
2 si ← ni // assume total memory of n

3 L ← MultiElementSSR(M)

4 return L /* L[i] ≤ ni is the sample size for
stratum i in a variance-optimal stratified
random sample. */

NeymanAllocation assumes there are no bounded strata (strata

with small volumes). Note that it is not possible to simply elim-

inate strata with a low volume, by giving them full allocation,

and then apply Neyman allocation on the remaining strata. The

reason is as follows: suppose bounded strata are removed from

further consideration. Then, remainingmemory is divided among

the remaining strata. This may lead to further bounded strata

(which may not have been bounded earlier), and Neyman alloca-

tion again does not apply.

The following two-step process reduces variance-optimal of-

fline SRS to variance-optimal sample size reduction.

Step 1: Suppose we start with a memory budget of n, sufficient

to store all data. Then, we will just save the whole data set in the

stratified random sample, and thus each sample size si = ni . By
doing so, the variance V is minimized, since V = 0 (Equation 1).

Step 2:Given the stratified random sample from Step 1, we reduce

the memory budget from n toM such that the resulting variance

is the smallest. This can be done using variance-optimal sample

size reduction, by calling SSR or MultiElementSSR with target

sample sizeM .

VOILA (Algorithm 5) simulates this process. The algorithm only

records the sample sizes of the strata in arrayL, without creating

the actual samples. The actual sample from stratum i is created
by choosing L[i] elements from stratum i , using a method for

uniform random sampling without replacement.

Theorem 6.1. Given a data set R with r strata, and a memory
budget M , VOILA (Algorithm 5) returns in L the sample size of
each stratum in a variance-optimal stratified random sample. The
worst-case time cost of VOILA is O(r log r ).

Proof. The correctness follows from the correctness of The-

orem 4.6, since the final sample is the sample of the smallest

variance that one could obtain by reducing the initial sample

(with zero variance) down to a target memory of sizeM . The run

time is dominated by the call to MultiElementSSR, whose time

complexity is O(r log r ). □

7 EXPERIMENTAL EVALUATION
We present the results of an experimental evaluation. The input

for our experiment is a (finite) stream of records from a data

source, which is either processed by a streaming algorithm or

by an offline algorithm at the end of computation. A streaming

sampler must process data in a single pass using limited memory.

An offline sampler has access to all data received, and can com-

pute a stratified random sample using multiple passes through

data. We evaluate the samplers in two ways. The first is a direct

evaluation of the sample quality through the resulting allocation

and the variance of estimates obtained using the samples. The

second is through the accuracy of approximate query processing

using the maintained samples for different queries.
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(a) Relative (cumulative) frequencies of dif-
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points observed so far.
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(b) Relative (cumulative) standard devia-
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Figure 1: Characteristics of the OpenAQ dataset.

7.1 Sampling Methods
We compared our stream samplingmethod S-VOILA to Reservoir,
ASRS and Senate sampling. Reservoir is a well-known stream

sampling method that maintains a uniform random sample cho-

sen without replacement from the stream - we expect the number

of samples allocated to stratum i by Reservoir to be proportional
to ni . Senate [1] is a stratified sampling method that allocates

each stratum an equal amount of sample space. For each stratum,

Reservoir sampling is used to maintain a uniform sample.

ASRS is an adaptive stratified sampling algorithm due to Al-

kateb et al. (Algorithm 3 in [5]). Their algorithm considers re-

allocations of memory among strata using a different method,

based on power allocation [10], followed by reservoir sampling

within each stratum. We chose the power allocation parameter

to be 1 in order to obtain a sample of the entire population.

We also implemented three offline samplers VOILA, NeyAlloc,
and an offline version of Senate. Each uses two passes to com-

pute a stratified random sample of a total size ofM records. The

first pass is to determine strata characteristics used to allocate the

space between strata. The second pass is to collect the samples

accordingly to the computed allocation.

7.2 Data
We used a real-world dataset called OpenAQ [37], which con-

tains more than 31 million records of air quality measurements

(concentrations of different gases and particulate matter) from

7, 923 locations in 62 countries around the world in 2016. Data

is replayed in time order to generate the stream and is stratified

based on the country of origin and the type of measurement,

e.g., all measurements of carbon monoxide in the USA belong

to one stratum, all records of sulphur dioxide in India belong to

another stratum, and so on. The total number of strata at differ-

ent points in time are shown in Figure 1c. We also experimented

with another method of stratifying data, based only on the city

of origin, whose results are shown at the end of this section. We

also experimented with a synthetic dataset. The results obtained

were qualitatively similar to the real-world data, and we omit

these results due to space constraints.

Each stratum begins with zero records, and in the initial stages,

every stratum is bounded. Asmore data are observed, many of the

strata are not bounded anymore. As Figure 1c shows, new strata

are added as more sensors are incorporated into the data stream.

Figures 1a and 1b respectively show the cumulative frequency

and standard deviation of the data over time; clearly these change

significantly with time. As a result, the variance-optimal sample-

size allocations to strata also change over time, and a streaming

algorithm needs to adapt to these changes.

7.3 Allocations of Samples to Strata
We measured the allocation of samples to different strata. Unless

otherwise specified, the sample sizeM is set to 1 million records.

For all experiments on allocations or variance, each data point is

the mean of five independent runs. The allocation can be seen as a

vector of numbers that sum up toM (or equivalently, normalized

to sum up to 1), and we observe how this vector changes as more

elements arrive.

Figures 2a, 2b and 2c show the change in allocations over time

resulting from VOILA, S-VOILA with single element processing,

and S-VOILA with minibatch processing. Unless otherwise spec-

ified, in the following discussion, the size of a minibatch is set

to equal one day’s worth of data. Visually, the allocations pro-

duced by the three methods track each other over time, showing

that the streaming methods follow the allocation of VOILA. To
understand the difference between the allocations due to VOILA
and S-VOILA quantitatively, we measured the cosine distance

between the allocation vectors from VOILA and S-VOILA. While

detailed results are omitted due to space constraints, our results

show that allocation vectors due to S-VOILA and VOILA are very

similar, and the cosine distance is close to 0 most of the time and

less than 0.04 at all times.

7.4 Comparison of Variance
We compared the variance of the estimates (Equation 1) produced

by different methods. The results are shown in Figures 3 and

4. Generally, the variance of the sample due to each method

increases over time, since the volume of data and the number of

strata increase, while the sample size is fixed.

The comparison of different streaming algorithms is shown

in Figure 4. Among the streaming algorithms, we first note that

both variants of S-VOILA have a variance that is lower than

ASRS, and typically close to the optimal (VOILA). The variance
of S-VOILA with minibatch processing is typically better than

with single element processing. We note that the variances of

both variants of S-VOILA are nearly equal to that of VOILA until

March, when they start increasing relative to VOILA, and then

converge back. From analyzing the underlying data, we see that

March is the time when a number of new strata appear in the data

(Figure 1c), causing a substantial change in the optimal allocation

of samples to strata. An offline algorithm such as VOILA can

resample more elements at will, since it has access to all earlier

data from the stratum. However, a streaming algorithm such as

S-VOILA cannot do so and must wait for enough new elements

to arrive in these strata before it can “catch up” to the allocation

of VOILA. Hence, S-VOILA with single element as well as with

minibatch processing show an increasing trend in the variance

at such a point. When data becomes stable again the relative
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Figure 2: Change in allocation over time. OpenAQ data.
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Figure 3: Variance of VOILA compared to NeyAlloc and
Senate. Sample size: 1M records, OpenAQ data.

0.000

0.001

0.002

0.003

0.004

Va
ria

nc
e

VOILA S-VOILA, One-day Batch S-VOILA, Single ASRS
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Figure 5: Impact of Minibatch Size on Variance, OpenAQ.

performance of S-VOILA improves. In November and December,

new strata appear again, and the relative performance is again

affected.

Among offline algorithms, we observe from Figure 3 that

Senate performs poorly, since it blindly allocates equal space

to all strata. NeyAlloc results in a variance that is larger than

VOILA, by a factor of 1.4x to 50x. While NeyAlloc is known to be

variance-optimal under the assumption of having all strata being

abundant, these results show that it is far from variance-optimal

for bounded strata.

Impact of Sample Size: To observe the sensitivity to the

sample size, we conducted an experiment where the sample size

is varied from 5000 to 1 million.We fixed the minibatch size to 100

thousand records. As expected, in both S-VOILA and VOILA, with

single element and minibatch processing, the variance decreases

when the sample size increases. The general trend was that the

variance decreased by approximately a factor of 10 when the

sample size increased by a factor of 10. We omit detailed results

due to space constraints.

Impact of Minibatch Size: We further conducted an experi-

mentwhere theminibatch size is chosen from {1, 10, 10
2, 10

3, 10
4}.

The results are shown in Figure 5. Aminibatch size of 10 elements

yields significantly better results than single element S-VOILA. A
minibatch size of 100 or greater makes the variance of S-VOILA
nearly equal to the optimal variance.

7.5 Query Performance, Infinite Window
We now evaluate the quality of these samples indirectly, through

their use in approximate query processing. Samples constructed

using S-VOILA and VOILA are used to approximately answer a

variety of queries on the data so far. For evaluating the approxi-

mation error, we also implement an exact (but expensive) method

for query processing Exact that stores all records in a MySQL

database. Identical queries are made at the same time points in

the stream to the different streaming and offline samplers, as well

as to the exact query processor.

A range of queries are used. Each query selects a subset of data
through a selection predicate supplied at query time, and applies
an aggregate. This shows the flexibility of the sample, since it

does not have any a priori knowledge of the selection predicate.

We have chosen predicates with selectivity equal to one of 0.25,

0.50, and 1.00. We consider four aggregation functions: SUM, the

sum of elements; SSQ, the sum of squares of elements; AVG, the

mean of elements; and STD, the standard deviation. Each data

point is the mean of five repetitions of the experiment with the

same configuration. Each query was executed over all received

data after one month of data arrived, up to entire year of 2016 in

the OpenAQ dataset with thirty-one million records.

Figures 6 and 7 show the relative errors of different aggrega-

tions as the size of streaming data increases, while the sample

size is held fixed. Both figures show that S-VOILA outperforms

other streaming samplers across queries with different aggrega-

tion and selectivity. This result shows that S-VOILA maintains

a better quality of stratified sample to answer an aggregation

over a subset of data accurately. In addition, S-VOILA performs

very closely to its offline version, VOILA, which samples from the

entire received data. We note that when ASRS evicts elements

from per-stratum samples, there may not always be new elements

to take their place, hence it often does not use its full quota of

allocated memory.

AlternateMethods of Stratification.We also experimented

with the OpenAQ data set stratified in a different manner, us-

ing the city where the observation was made. Sample results

are shown in Figure 8. We still see that S-VOILA outperforms
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Figure 6: Streaming samplers. SUM with different selectivities, sample size = 1 million. OpenAQ data.
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Figure 7: Streaming samplers. SSQ, AVG, and STD with selectivity 0.50, sample size = 1 million. OpenAQ data.
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Figure 8: Streaming samplers, data stratified by the city
(SUM with selectivity 0.5)

Reservoir, Senate, and ASRS. This supports our observation
that the sample maintained by S-VOILA is of a higher quality

than other streaming samplers, no matter how data is stratified.

Impact of Sample Size. We also explored different sample

sizes varied from 500, 000 to 1 million. All methods benefit from

increased sample size and the relative performance between dif-

ferent methods remains the same across different sizes.

Impact of Minibatch Size. Figure 9 shows the impact of the

minibatch size on the accuracy of streaming samplers for the

SUM query with selectivity 0.5. The sample size is set to one

hundred thousand for each sampler. S-VOILAwith different mini-

batch sizes has an error less that 1%, often much smaller, while

Reservoir has an error that is often 3% or larger. In addition, we

observe that S-VOILA with different minibatch sizes is very close

to VOILA.

7.6 Sliding Window Streaming
We experimented with streaming algorithms Reservoir and

S-VOILA with a sliding window of sizeW = 10
6
. The version of

Reservoir that was used here maintains a uniform sample over

the window by sampling each record with the same selection

probability of
M
W , so it may be more accurately termed “Bernoulli

sampling”. S-VOILA uses stratified sampling with single element

processing, as described in Section 5. As the window slides, we

periodically ask for sum of the value attribute in the current win-

dow. We report the error by compare the estimates from samples
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Figure 9: Streaming samplers, impact of minibatch size,
sample size = 100,000. (SUM with selectivity 0.5)
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Figure 10: Sample error of window sum query, streaming
data with sliding window of 10

6 and sample size of 10
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records, OpenAQ data.

with the ground-truth answer. Figure 10 shows the average errors

of 5 runs. With a 10% sample rate, as expected, S-VOILA provide

an answer with less than 1% error, while Reservoir has an error

of about 2-3%.

7.7 Offline Sampling
We also compared VOILAwith other offline samplers for the SUM

query with different selectivities. Figure 11 shows that VOILA
always has better performance than Senate and NeyAlloc. Our
experiments with other aggregations also showed similar results.
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Figure 11: Offline samplers. SUM with different selectivities, sample size = 1 million. OpenAQ data.

8 CONCLUSIONS
We presented S-VOILA, an algorithm for streaming SRS with

minibatch processing, which interleaves a continuous, locally

variance-optimal re-allocation of sample sizes with streaming

sampling. Our experiments show that S-VOILA results in variance
that is typically close to VOILA, which was given the entire input

beforehand, and which is much smaller than that of algorithms

due to prior work. We also show an inherent lower bound on

the worst-case variance of any streaming algorithm for SRS –

this limitation is not due to the inability to compute the optimal

sample allocation in a streaming manner, but is instead due to the

inability to increase sample sizes in a streaming manner, while

maintaining uniformly weighted sampling within a stratum. Our

work also led to a variance-optimal method VOILA for offline SRS

from data that may have bounded strata. Our experiments show

that on real and synthetic data, an SRS obtained using VOILA
can have a significantly smaller variance than one obtained by

Neyman allocation.

There are several directions for future research, including

(1) restratification in a streaming manner, (2) handling group-by

queries and join queries, (3) incorporating general versions of

time-decay, and (4) SRS on distributed data.

Acknowlegdment: Nguyen and Tirthapura were supported in

part by NSF grants 1527541 and 1725702.

REFERENCES
[1] S. Acharya, P. Gibbons, and V. Poosala. 2000. Congressional Samples for

Approximate Answering of Group-by Queries. In Proc. SIGMOD. 487–498.
[2] S. Acharya, P. B. Gibbons, V. Poosala, and S. Ramaswamy. 1999. The Aqua

Approximate Query Answering System. In Proc. SIGMOD. 574–576.
[3] S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden, and I. Stoica. 2013.

BlinkDB: Queries with Bounded Errors and Bounded Response Times on Very

Large Data. In Proc. EuroSys. 29–42.
[4] M. Al-Kateb and B. S. Lee. 2010. Stratified Reservoir Sampling over Heteroge-

neous Data Streams. In Proc. SSDBM. 621–639.

[5] M. Al-Kateb and B. S. Lee. 2014. Adaptive stratified reservoir sampling over

heterogeneous data streams. Information Systems 39 (2014), 199–216.
[6] M. Al-Kateb, B. S. Lee, and X. S. Wang. 2007. Adaptive-Size Reservoir Sampling

over Data Streams. In Proc. SSDBM. 22.

[7] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. 2002. Models and

Issues in Data Stream Systems. In Proc. PODS. 1–16.
[8] B. Babcock, S. Chaudhuri, and G. Das. 2003. Dynamic Sample Selection for

Approximate Query Processing. In Proc. SIGMOD. 539–550.
[9] B. Babcock, M. Datar, and R. Motwani. 2002. Sampling from aMovingWindow

over Streaming Data. In SODA.
[10] M. D Bankier. 1988. Power allocations: determining sample sizes for subna-

tional areas. The American Statistician 42, 3 (1988), 174–177.

[11] V. Braverman, R. Ostrovsky, and G. Vorsanger. 2015. Weighted Sampling

Without Replacement from Data Streams. Inf. Process. Lett. 115, 12 (2015),

923–926.

[12] V. Braverman, R. Ostrovsky, and C. Zaniolo. 2009. Optimal Sampling from

Sliding Windows. In Proc. PODS. 147–156.
[13] V. Braverman, R. Ostrovsky, and C. Zaniolo. 2009. Optimal Sampling from

Sliding Windows. In PODS.
[14] S. Chaudhuri, G. Das, and V. Narasayya. 2007. Optimized Stratified Sampling

for Approximate Query Processing. ACM TODS 32, 2 (2007).

[15] Y. Chung and S. Tirthapura. 2015. Distinct Random Sampling from a Dis-

tributed Stream. In IPDPS. 532–541.
[16] Y. Chung, S. Tirthapura, and D. Woodruff. 2016. A Simple Message-Optimal

Algorithm for Random Sampling from a Distributed Stream. IEEE TKDE 28, 6

(2016), 1356–1368.

[17] W. G. Cochran. 1977. Sampling Techniques (third ed.). John Wiley & Sons,

New York.

[18] G. Cormode, S. Muthukrishnan, K. Yi, and Q. Zhang. 2012. Continuous Sam-

pling from Distributed Streams. JACM 59, 2 (2012).

[19] G. Cormode, V. Shkapenyuk, D. Srivastava, and B. Xu. 2009. Forward Decay:

A Practical Time Decay Model for Streaming Systems. In Proc. ICDE. 138–149.
[20] G. Cormode, S. Tirthapura, and B. Xu. 2009. Time-decaying Sketches for

Robust Aggregation of Sensor Data. SIAM J. Comput. 39, 4 (2009), 1309–1339.
[21] M. Datar, A. Gionis, P. Indyk, and R. Motwani. 2002. Maintaining stream

statistics over sliding windows. SIAM J. Comput. 31, 6 (2002), 1794–1813.
[22] P. S. Efraimidis and P. G. Spirakis. 2006. Weighted Random Sampling with a

Reservoir. Inf. Process. Lett. 97, 5 (2006), 181–185.
[23] R. Gemulla and W. Lehner. 2008. Sampling Time-based Sliding Windows in

Bounded Space. In Proc. SIGMOD. 379–392.
[24] R. Gemulla and W. Lehner. 2008. Sampling Time-based Sliding Windows in

Bounded Space. In SIGMOD.
[25] R. Gemulla, W. Lehner, and P. J. Haas. 2008. Maintaining Bounded-size Sample

Synopses of Evolving Datasets. The VLDB Journal 17, 2 (2008), 173–201.
[26] P. B. Gibbons and S. Tirthapura. 2001. Estimating Simple Functions on the

Union of Data Streams. In Proc. SPAA. 281–291.
[27] P. B. Gibbons and S. Tirthapura. 2002. Distributed streams algorithms for

sliding windows. In SPAA. 63–72.
[28] P. J. Haas. 2016. Data-Stream Sampling: Basic Techniques and Results. In Data

Stream Management. Springer, 13–44.
[29] T. Johnson and V. Shkapenyuk. 2015. Data Stream Warehousing In Tidalrace.

In Proc. CIDR.
[30] S. Joshi and C. Jermaine. 2008. Robust Stratified Sampling Plans for Low

Selectivity Queries. In Proc. ICDE. 199–208.
[31] S. Kandula, A. Shanbhag, A. Vitorovic, M. Olma, R. Grandl, S. Chaudhuri, and

B. Ding. 2016. Quickr: Lazily Approximating Complex AdHoc Queries in

BigData Clusters. In SIGMOD. 631–646.
[32] K. Lang, E. Liberty, and K. Shmakov. 2016. Stratified Sampling Meets Machine

Learning. In Proc. ICML. 2320–2329.
[33] S. L. Lohr. 2009. Sampling: Design and Analysis (2nd ed.). Duxbury Press.

[34] I. Mcleod and D. Bellhouse. 1983. A Convenient Algorithm for Drawing a

Simple Random Sample. Journal of the Royal Statistical Society. Series C. Applied
Statistics 32 (1983), 182–184.

[35] X. Meng. 2013. Scalable Simple Random Sampling and Stratified Sampling. In

Proc. ICML. 531–539.
[36] J. Neyman. 1934. On the Two Different Aspects of the Representative Method:

The Method of Stratified Sampling and the Method of Purposive Selection.

Journal of the Royal Statistical Society 97, 4 (1934), 558–625.

[37] OpenAQ [n. d.]. http://openaq.org. ([n. d.]).

[38] S. K. Thompson. 2012. Sampling (3rd ed.). Wiley.

[39] Y. Tillé. 2006. Sampling Algorithms (1st ed.). Springer-Verlag.
[40] S. Tirthapura and D. P Woodruff. 2011. Optimal random sampling from

distributed streams revisited. In DISC. 283–297.
[41] J. S. Vitter. 1983. Optimum Algorithms for Two Random Sampling Problems.

In Proc. FOCS. 65–75.
[42] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica. 2013. Discretized

streams: fault-tolerant streaming computation at scale. In SOSP. 423–438.
[43] L. Zhang and Y. Guan. 2007. Variance estimation over sliding windows. In

PODS. 225–232.

36



Boosting SimRank with Semantics
Tova Milo, Amit Somech and Brit Youngmann

Tel Aviv University

{milo,amitsome,brity}@post.tau.ac.il

ABSTRACT
The problem of estimating the similarity of a pair of nodes in an

information network draws extensive interest in numerous fields,

e.g., social networks and recommender systems. In this work we

revisit SimRank, a popular andwell studied similarity measure for

information networks, that quantifies the similarity of two nodes

based on the similarity of their neighbors. SimRank’s popularity

stems from its simple, declarative definition and its efficient,

scalable computation. However, despite its wide adaptation, it

has been observed that for many applications SimRank may yield

inaccurate similarity estimations, due to the fact that it focuses

on the network structure and ignores the semantics conveyed
in the node/edge labels. Therefore, the question that we ask

is can SimRank be enriched with semantics while preserving its
advantages?

We answer the question positively and present SemSim, a mod-

ular variant of SimRank that allows to inject into the computation

any semantic similarly measure, which satisfies three natural con-

ditions. The probabilistic framework that we develop for SemSim

is anchored in a careful modification of SimRank’s underlying

random surfer model. It employs Importance Sampling along

with a novel pruning technique, based on unique properties of

SemSim. Our framework yields execution times essentially on par

with the (semantic-less) SimRank, while maintaining negligible

error rate, and facilitates direct adaptation of existing SimRank

optimizations. Our experiments demonstrate the robustness of

SemSim, even compared to task-dedicated measures.

1 INTRODUCTION
Estimating node similarity in information networks is the corner-

stone of many applications, e.g., retrieving similar users in social

networks, and a fundamental component in numerous network

analysis algorithms, such as link prediction and clustering.

In this work we consider SimRank [13], a well-studied simi-

larity measure for information networks. The intuition behind

SimRank is that similar objects are referenced by similar objects,

and thus it quantifies node similarity based on the compound

similarity of their neighbors. SimRank’s popularity stems from

its simple declarative definition and its efficient computation,

incorporating a broad range of optimizations [15, 39]. However,

despite its wide adaptation, it has been observed that for many

applications SimRank may yield inaccurate estimations [37, 40],

as it focuses solely on the network structure and ignores the se-
mantic information conveyed in the node/edge labels. Thus, the

question we address is the following:

Can SimRank be enriched with semantics while preserving its
intuitive, declarative definition and efficient computation?

We answer the question positively, and present SemSim, a

refined variant of SimRank, that weights nodes’ structural simi-

larity with their semantic similarity and edge weights, yielding an
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Figure 1: Example information network.

effective, comprehensive measure. SemSim’s probabilistic frame-

work, anchored in a careful modification of SimRank’s underlying

random surfer model, together with dedicated optimizations, al-

lows for execution times essentially on par with the semantic-less

SimRank, while maintaining similar negligible error rates. Direct

adaptation of existing SimRank optimizations is also enabled.

We demonstrate the problem that we tackle with an illustrative

example.

Example 1.1. The simple information network depicted in

Figure 1 represents a bibliographic database. It includes nodes

describing authors, countries and research fields, with edges link-

ing authors to their co-authors, country of origin and fields of

interest. A semantic taxonomy is also reflected in this network

(pink nodes) where entities are linked to their hypernyms, as indi-

cated by the “is-a" edges. Edge weights reflect the strength of the

relations (for conciseness, some weights are omitted but should

be assumed to have an identical arbitrary default value). To visu-

ally represent the prevalence of a concept in the dataset, we use

the width of the borders surrounding the nodes (an explanation

of this quantification is provided in the sequel).

We wish to determine which of the authors, Bo or John, is

more similar to Aditi. Observe that: (1) all three collaborated with

Paul twice (as indicated by the edge weights); (2) their origin

countries are all highly prevalent (as indicated by the borders’

width), compared to the authors’ fields of interest, thus the lat-

ter is more informative and should have a greater effect on the

similarity
1
; (3) Crowdsourcing, the common field of John and

Aditi, is more particular (less prevalent) than Data Mining, the

field shared by Bo and Aditi. Hence, intuitively, Crowd Mining is

semantically closer to Spatial Crowdsourcing than to Web Data

Mining. Consequently, John is more similar to Aditi than Bo, even

though they reside in different continents. Note, however, that

ignoring semantics and considering the network structure alone
(even including edge weights), Bo and Aditi seem more similar,

1
Following standard argumentation, an estimation of similarity increases

more drastically when indicated by a less frequent event [32].
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and indeed, SimRank (like other measures [37, 43]) erroneously

derive a higher similarity score for them.

Several refinements for SimRank have been proposed in the lit-

erature (see Related Work). For instance, SimRank++ [2] is a vari-

ant of SimRank that also considers edge weights, yet semantics

is ignored, and, importantly, scalability is not addressed. Other

works (e.g. [37]) partially account for semantics by considering

only meaningfulmeta-paths (i.e. paths of a specific label patterns)
between objects. But as can be seen in the above example (and in

our experiments) this does not always suffice to accurately dif-

ferentiate objects. Alternatively, several semantic measures have

been proposed [23, 32], but they typically gauge the similarity

based on ontological information and the Information Content
(IC) of nodes, while the rest of the network structure is ignored.

In an attempt to fully account for both structure and semantics,

recent works abandon SimRank and rely instead on representa-

tion learning, using techniques such as node embedding [4, 30].

While this approach often outperforms a naive combination of

structural and semantic similarity measures, a key drawback is

that results are hard to explain and interpret, as is often the case

with machine learning. Interestingly, we show that our SimRank

variant not only retains its intuitive, declarative flavor but also

yields more accurate estimations compared to these works.

Next, we provide a brief overview of our results.

The SemSim similarity measure. We refine SimRank by weight-

ing nodes’ neighbors similarity with their semantic similarity

and edge weights. Our definition is modular and allows to inject

into the computation any semantic measure, as long as it satisfies

three intuitive conditions that are typically satisfied by existing

measures. We present SemSim iterative formulation, analogous

to SimRank iterative formulation [13]. We prove that SemSim’s

solution always exists (as was shown for SimRank), and show

that its iterative formula converges to its fix-point at least as fast

as SimRank, and possibly faster, due to an additional semantic

factor (Section 2).

Random-surfer model. SimRank’s underlying random-surfer

model serves as the basis for many of its optimizations. We es-

tablish a corresponding model for SemSim. First, we define the

notion of a Semantic-Aware RandomWalk (SARW), which refines

the traditional random walk definition, and prove that SemSim

can be computed using SARWs. This interpretation considers

the node-pair graph G2
, in which a node represents an ordered

pair of nodes from the original graphG. Interestingly, we prove
that given a threshold s.t. only similarity scores above it are of

interest, the semantics can effectively be used to reduce the size

of G2
, with the computation of SemSim over the reduced graph

yielding the same results as those computed via the full graph

G2
. Our experiments demonstrate that a significant reduction of

up to three orders of magnitude is achieved in multiple datasets

(Section 3).

Approximated similarity scores. Exact computation may still

be expensive for large graphs, despite the speed-up gained by

the graph reduction. For SimRank, the excessive size of G2
moti-

vated a battery of optimizations based on a Monte-Carlo (MC)

procedure [15, 34, 39]. SimRank basic MC framework returns an

approximated SimRank score in O(nw · t) time, where nw is the

number of walks sampled from each node and t is a bound on

their length. To efficiently approximate SemSim we develop an

analogous MC framework, thereby enabling a direct application

of SimRank optimizations. First, we show that a naïve solution

of simply replacing SimRank’s underlying uniform distribution

with the semantic-aware distribution leads to a quadratic increase

of the sample size. To overcome this, we employ Importance Sam-
pling, and devise an unbiased estimator for SemSim, which avoids

this increase and returns the estimated SemSim score in aver-

age time of O(nw · t · d2), where d is the average in-degree in

the graph G. To further reduce computation cost, we devise a

dedicated pruning technique that avoids the computations of un-

promising node-pairs and irrelevant (low probability) walks, at

the cost of a controlled additive error to the approximated scores.

While the worst-case time complexity remains the same, our

experiments show pruning to be extremely effective in practice,

yielding running times on par with SimRank (Section 4).

Experimental study. We conduct an experimental study over

real data, demonstrating the effectiveness of SemSim in multiple

practical scenarios. Our results demonstrate the robust quality of

SemSim, even compared to task-dedicated measures. The results

further exhibit the efficiency and accuracy of our framework and

its ability to boost SimRank with semantics while preserving its

performance (Section 5).

Finally, related work and conclusions are presented in sections

6 and 7, respectively. For space constraints, proofs are deferred

to a technical report [27].

2 PRELIMINARIES
We first explain the data model used in our setting, then present

our novel measure, SemSim.

2.1 Data Model
Following [36], we refer to the objects graph as a Heterogeneous
Information Network (HIN), a flexible graph model that can cap-

ture and integrate various types of data. Let V be the domain

of vertices, L the domain of labels, and R+ the domain of real

positive numbers > 0.

Definition 2.1 (Heterogeneous Information Network). A HIN is

a directed weighted graph G = (V ,E,φ,ψ,W ), where: V ⊆ V is

a finite set of vertices; E ⊆ V ×V is a set of edges; φ : V → L

and ψ : E → L are vertex and edge labeling functions, resp., and

W : E → R+ is an edge weight function.

The edge weight functionW associates each edge with a real

positive number indicating the strength of the relation. When no

knowledge about this strength is available, the weight is set to a

default value. For example, in Figure 1, weights are available only

for edges with the label co-author, where the weights reflect the
number of collaborations between authors. Since no information

about other weights is available, all other weights were set to

1. For a node v , we denote by I (v),O(v) the set of in and out

neighbors of v , resp. An individual in-neighbor is denoted as

Ii (v), for 1 ≤ i ≤ |I (v)|, if I (v) , ∅ (Oi (v), resp). Throughout
the paper we use the variables u,v,u ′,v ′

to denote nodes in V .
Here we consider directed graphs, but stress that all results can

be adapted to the undirected model with minor modifications.

In many cases, the HIN is composed of two subgraphs that are

aligned together: one consists of individual objects and their rela-

tions, e.g. authors/countries, and their collaboration/residence re-

lationships. The second, ontological-style subgraph is comprises

of semantic categories and relationships, e.g. the pink nodes and

their “is-a" relations. Objects of the former can be connected to

their corresponding categories. For example, in Figure 1 all au-

thor nodes are connected to the category Author. When semantic
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information is not included, one can enrich the graph by aligning

it with publicly available ontology [5, 26] by applying existing

entity alignment tools [28]. Ontologies typically contain a hier-

archical taxonomy of concepts, e.g., that USA “is-a" a Country in
America and Country in America “is-a" Country. Such taxonomies

are often leveraged to define semantic similarity measures.

2.2 Similarity Notions
As described above, our semantic-rich graph model contains

various types of linked entities, as well as additional knowledge

that is captured by the edge weights. Next, we devise a refined

version of SimRank [13] that effectively considers all information.

We start with a short background on SimRank, then provide the

formal definition for SemSim.

SimRank follows the intuitive assumption that: “two nodes

are similar if they are related to similar nodes". Formally, given

two nodes u,v ∈ V , their SimRank score is defined as follows. If

u = v then simrank(u,v) = 1, else: simrank(u,v) is given by the

following recursive formula without the red colored parts.
sim(u,v) = (1)

sem(u,v) · c

Nu,v

|I (u) |∑
i

|I (v) |∑
j

sim(Ii (u), Ij (v))· W (Ii (u),u) ·W (Ij (v),v)

where c is a decay factor in (0, 1), Nu,v = |I (u)| · |I (v)| and
sim(·, ·) is the SimRank score of the neighboring pair-nodes. If

I (u) or I (v) are ∅, then the score is defined to be zero.

In SimRank, the assumed graph model is an unweighted ho-

mogeneous graph, where all edges and nodes belong to a single

type, thus it ignores the labels’ semantics and edge weights. We

enrich SimRank by weighting, at each step of the computation,

the neighbors’ similarity with the edge weights and the nodes’

semantic similarity. Formally, given a semantic similarity mea-

sure sem(·, ·), the red parts indicate our refinements to SimRank

standard formula: (i) an additional semantic factor is added; (ii)

the edge weights are taken into consideration. Correspondingly,

the normalization factor is set to:

Nu,v =

|I (u) |∑
i

|I (v) |∑
j

W (Ii (u),u) ·W (Ij (v),v) · sem(Ii (u), Ij (v))

where sim(·, ·) in the refined formula denotes the refined similar-

ity of the neighbors. Here too, if I (u) or I (v) are the ∅, then the

similarity score is defined to be zero.

Note that according to our definition of similarity, the semantic

similarity of the neighboring pairs of nodes appears as well (as

the definition is recursive), and therefore, the similarity of two

nodes u,v is, in fact, proportional to the semantic similarity of

their neighbors.

Importantly, our definition of SemSim considers all neighbor-

pairs. An alternative could be to take edge labels into considera-

tion and restrict attention to neighbor-pairs that are pointed by

edges having the same label. However, while such formulation re-

quires only minimal technical changes and all our results remain

unchanged, our experiments showed it to be less accurate, as

this definition may overlook possibly important relations among

the objects. Moreover, both definitions yield essentially the same

running times and we thus omit this restriction.

Semantic Similarity. Multiple semantic measures have been

proposed in the literature [16, 20]. In general, any similarly func-

tion sem(·, ·) can be employed in SemSim, as long as it satisfies

the following constraints. For all u,v ∈ V :

(1) Symmetry. sem(u,v) = sem(v,u).
(2) Maximum self similarity. sem(u,u) = 1.

(3) Fixed value range. sem(u,v) ∈ (0, 1].

Those requirements are used to prove the soundness of Sem-

Sim (Theorem 2.3). The first two are typically satisfied by com-

mon semantic measures (e.g., [16, 23, 32]). For the third constraint,

scores can be normalized into a [0 + ϵ, 1] range, for a small ϵ > 0

value [29].

We next briefly overview a simple and effective semantic mea-

sure that we have used in our experiments (see Section 6 for a

discussion on alternatives). Lin [23] is an Information Content
(IC)-based measure that is defined over concept taxonomies. The

IC of a node v is quantify as the negative of its log likelihood:

IC(v) = − log(P[v]), where P[v] denotes the frequency of v . I.e.,
the more prevalent a concept is, the lower its IC value. Intuitively,

the similarity between concepts measures the ratio of the amount

of information needed to state their commonality to the infor-

mation needed to describe them. Given two nodes u and v in a

taxonomy, their Lin score is defined as:

Lin(u,v) =
2 · IC(LCA(u,v))

IC(u) + IC(v)
where LCA(u,v) is the lowest common ancestor of u andv in the

taxonomy.

Note that Lin satisfies the constraints, only if the IC values

are in (0, 1] (proof omitted). To estimate the IC of a concept, we

adapted the Seco formula [33] in our implementation, providing

a simple linear-time (in the size of the taxonomy) algorithm and

extended it to our setting. This adaptation ensures the IC values

lie within (0, 1] (see [27] for more details).

Entity IC value
Thing 0.001

Author, Country 0.01

Country in Asia, Country in America 0.015

China, India, US 0.02

Data Management 0.2

Data Mining 0.3

Crowdsourcing 0.85

Web data mining 0.7

Crowd Mining, Spatial Crowdsourcing 0.9

Bo, John, Aditit, Paul 1.0

Table 1: IC values for Figure 1 entities.

We next provide the full computation of SimRank and SemSim

for the example introduced in the Introduction (Example 1.1),

while using Lin as the integrated semantic measure.

Example 2.2. We computed the IC values (depicted in Table

1) on the same domain ontology used for the AMiner dataset

(which includes a taxonomy of CS terms as well as a geographic

taxonomy, see experimental results), and set absent edge weights

to 1. For both SimRank and SemSim, we set the decay factor c to
0.8 and the number of iterations k was set to 3.

We first review the relevant Lin scores: since all author-nodes

are leafs in the taxonomy, their corresponding IC values are all 1,

thus Lin(Bo,Aditi) = Lin(John,Aditi)= 0.01 (which also serves as

the upper bound on their SemSim scores). Using the IC values

above, we get: Lin(Spatial Crowdsourcing,Crowd Mining)= 0.94

and Lin(Web Data Mining,Crowd Mining)= 0.37. Next, we briefly

overview SemSim and SimRank computation. At the first itera-

tion, for both measures, R0 = 0 for all authors pairs. Iteratively,

at the next step, since all three authors share two common neigh-

bors, Author and Paul, yet the common field-of-interest of Aditi
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and John is more semantically similar than the common field of

Aditi and Bo, we get for SemSim that: R1(John,Aditi) = 0.0073,

while R1(Bo,Aditi)= 0.066. Note that in this step the semantic

similarity of common neighbors propagates into the computa-

tion. On the other hand, according to SimRank, in this step both

pairs similarity scores are equal to 0.1. At the last step, according

to SemSim R2(John,Aditi) = 0.0076, while R2(Bo,Aditi)= 0.0073,

thus, SemSim obtains the desire result that while all authors are

fairly similar, John’s similarity to Aditi is a bit greater than Bo’s.

In contrast, according to SimRank, R2(John,Aditi) = 0.12, while

R2(Bo,Aditi)= 0.16. These results are due to the fact that both

Aditi and Bo reside in the same continent.

We also computed the SimRank scores solely over the col-

laboration network (i.e., ignoring the semantic relations). Not

surprisingly, since the resulted network is symmetric, the ob-

tained similarity scores for both pairs were exactly the same.

2.3 Basic Properties of SemSim
We next show a few of SemSim’s properties which will then be

used to present a naïve algorithm for computing SemSim, that

serves as a baseline which we improve in the following sections.

Following SimRank’s iterative form [13], a solution to Equa-

tion (1) can be reached by iterating to a fix-point. For the k-th
iteration, an iterative function Rk (u,v) denotes the similarity

score of u and v in the k-th iteration. Initially, R0(u,v) is defined
as 0 if u , v and 1 otherwise. Iteratively, Rk+1(u,v) is computed

from Rk (·, ·) as follows:

R0(u,v) =

{
0,u , v
1,u = v

(2)

Rk+1(u,v) = (3)

sem(u,v) · c

Nu,v

|I (u) |∑
i

|I (v) |∑
j

Rk (Ii (u), Ij (v)) ·W (Ii (u),u) ·W (Ij (v),v)

We can prove that the iterative SemSim form has the following

properties:

Theorem 2.3. ∀u,v ∈ V and for every 0 ≤ k ∈ N:
(1) Symmetry. Rk (u,v) = Rk (v,u).
(2) Maximum self similarity.Rk (u,u) = 1.
(3) Monotonicity. 0 ≤ Rk (u,v) ≤ Rk+1(u,v) ≤ 1.
(4) Existence. The solution always exists.
0 ≤ c < min(arдminNu,v (Nu,v ), 1), the solution is unique.

First, note that the decay factor’s upper bound can be found in

average time ofO(n2 ·d2), where d is the average in-degree in the

graph, by simply iterating over all node-pairs. Second, we observe

that the uniqueness property here is a weaker version than the

one that was proven for SimRank, where the solution is unique

for every 0 ≤ c < 1. Yet, our experiments show that for real-

life networks, the upper bound is high enough to comfortably

accommodate typical c values chosen for SimRank (e.g., 0.6, as

used in [24, 39]).

We can also show (following similar proof for SimRank [46])

that not only the scores are monotone (i.e, Rk (u,v) ≤ Rk+1(u,v)),
their differences in consecutive iterations are bounded.

Proposition 2.4. For everyu,v ∈ V andk > 0: 0 ≤ Rk+1(u,v)−

Rk (u,v) ≤ sem(u,v) · ck+1

This suggests that the iterative form of SemSim converges as

fast as SimRank (where the convergence was shown to be ck+1

[46]), and possibly faster due to the additional semantic factor.

Another useful property is that sem(·, ·), the semantic similarity

of two nodes, provides a natural upper bound on their SemSim

score. This property is highly effective since, as we will show, it

can be used to prune un-promising node-pairs.

Proposition 2.5. For every two nodes u,v ∈ V : sim(u,v) ≤

sem(u,v).

To conclude, Theorem 2.3 provides a simple algorithm for

computing SemSim, that computes its iterative form to its fix-

point (or up to a required precision bound). We assume that the

computation of a single-pair semantic similarity score can be

done in constant time (possibly after pre-processing), without

materializing the n×nmatrix of scores. Indeed, this is the case for

numerous semantic measures [16, 32], Lin’s measure included.

Given this, the complexity of the iterative algorithm is equivalent

to SimRank’s complexity [13]: The time complexity isO(k ·d2 ·n2),
wheren = |V |,d is the average in-degree inG andk is the number

of iterations. The worst case complexity for a given k is O(n4).

3 RANDOM SURFER-PAIRS MODEL
The iterative algorithm provided in the previous section has two

main disadvantages: (i) it computes all pair-wise scores, even if

one is interested only in a single-pair, and (ii) its complexity is pro-

hibitive for large graphs. To address these issues, we provide an

alternative interpretation to SemSim, based on the random surfer
model for SimRank, then, explain how SemSim can be computed

efficiently. In essence, we show that with careful adjustments,

an analogous random surfer model can be establish for SemSim.

The key challenge is to incorporate semantics. We show that

SemSim measures how soon two random surfers are expected to

meet, if they start in two nodes and randomly walk on the graph

backward, while being aware of both edge weights and semantics.

We define Semantic-Aware Random Walks (SARW), then prove

that SemSim can be computed using them. Interestingly, we will

see that semantics can be leveraged to speed up the computation.

3.1 Semantic-Aware RandomWalks (SARW)
Following [13], we use the definition of a node-pair graph G2

, in

which each node represents an ordered pair of nodes fromG . An
edge e = ((u,u ′), (v,v ′)) ∈ G2

iff both (u,v) and (u ′,v ′) are ∈ G.
We extend the definition with an assignment of weights: The

weight of an edge e = ((u,u ′), (v,v ′)) is defined as:WG2 (e) :=
W (u,v) ·W (u ′,v ′). For simplicity, we use the notation ofW (e) to
indicate an weight in both G and G2

, when the context is clear.

Let us assume that all edges in G have been reversed. For

example, Figures 2a and 2b display a graph G and all out-edges

from (A,B) (after reversal). For simplicity, all edge weights are

set to 1. We call a node (u,v) ∈ V 2
a singleton node if u = v . In

SimRank, a surfer chooses the next node uniformly at random out

of all out-neighbors of the current node. To incorporate semantics

and weights, we devise the following distribution.

Definition 3.1 (Semantic-Aware Probability Distribution). The
probability a random surfer travelingG2

in a current node (u,u ′)
would next move to its out-neighbor (v,v ′) is:

P[(u,u ′) → (v,v ′)] :=
W ((u,u ′), (v,v ′)) · sem(v,v ′)

|O ((u,u′)) |∑
i=1

W ((u,u ′),Oi (u,u ′)) · sem(Oi (u,u ′))

Using the distribution above, we define SARWs as follows. A

walk in G2
represents a pair of walks in G. Letw = ⟨w1, ...,wk ⟩

denote a walk in G2
, wherew1, ...,wk ∈ V 2

, and l(w) = |w |. The

walk w has the probability P[w] of traveling within it, where

P[w] :=
k−1∏
i=1

P[wi → wi+1].
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Importantly, this distribution defines a positive probability to

all paths in G2
. However, as the choice of the next step relies on

the semantic similarity of node-pairs, pairs of higher semantic

similarity are preferred over pairs of low similarity (typically,

pairs whose nodes belong to different categories). Namely, paths

that share the same edge label in each step, are likely to get higher

probabilities. Nonetheless, even paths that do not share the same

labels are considered, as they may also provide relevant informa-

tion
2
. We provide here an illustrative example for a computation

of SARWs.

Example 3.2. Consider again Figure 2b. Observe that author

A’s current country is Canada, and author B’s origin country is

the USA. Noticeably, even though the two edges do not share the

same label, this information may be important when assessing

similarity. According to our definition we get that since the enti-

tiesCanada andUSA are semantically similar (Lin(Canada,USA) =
0.8), the probability that a random surfer in the node (A,B) will
move next to its neighbor (Canada, USA) is:

P[(A,B)→(Canada,USA)]=
0.8

0.8+0.2+0.2+1.0
= 0.36

On the other hand, as the two entities Author and the USA are not

semantically similar (Lin(Author ,USA) = 0.2), the corresponding

probability is lower:

P[(A,B)→(Author ,USA)]=
0.2

0.8+0.2+0.2+1.0
= 0.09

The SimRank score of a node (u,v) ∈ V 2
can be computed

using all walks from it leading to a singleton node in G2
. Analo-

gously, we prove that SemSim can be computed using all semantic-

aware walks from (u,v) leading to singleton nodes inG2
. LetW =

{(u,v) (x ,x)} be the set of all walks in G2
form (u,v) to any

singleton node (x ,x). If no such paths exist, thenW = ∅. By defini-

tion, (x ,x) is the only singleton node inw (after the first meeting,

the two surfers halt). Let: s ′(u,v) = sem(u,v)
∑
w ∈W P[w] · cl (w )

.

Theorem 3.3 provides an alternative way to compute the SemSim

score of a single pair.

Theorem 3.3. ∀u,v , given c which ensures the uniqueness of
sim(·, ·): s ′(u,v) = sim(u,v)

Using our refined model, one may compute (single pair or all

pairs) SemSim scores overG2
. However, for large graphs, its size

may be too large. We next explain how the semantics can be

effectively employed to reduce the size of G2
.

3.2 Reducing the Size ofG2

In many practical applications one is interested only in node-

pairs whose similarity scores are above a given threshold. Se-

mantics provides an efficient tool to prune G2
in such situations.

Intuitively, Prop. 2.5 provides a semantic-based upper bound on

the similarity scores, which can be used to avoid materializing

un-promising node-pairs. We devise a reduced version of G2
on

which the computation of SemSim (for node-pairs with similarity

scores are above a given threshold) yields the same result as that

computed via the full graphG2
. Indeed, our experimental results

demonstrate a significant reduction in the size of G2
.

Given a threshold 0 < θ < 1, we define the graph G2

θ , which

includes only pairs s.t. their semantic scores are > θ . However,
simply omitting nodes from G2

directly affects the similarity

scores, thus, may lead to inaccurate scores. We therefore incor-

porate omitted paths by refining the edge weights and possibly

2
In contrast to the meta-path approach [37] that restricts attention only to same-

labels paths.

adding new edges. Intuitively, each omitted path is replaced by

a corresponding edge, whose weight reflects its probability. If

such an edge already exists in G2
, the omitted edge’s weight

is added to the existing edge weight. Moreover, the weight of

omitted path is further weighted by the decay factor c , to ensure

the similarity scores would not be affected. Last, to ensure that

the probability of choosing a neighbor remains the same as in the

original graph G2
, the graph G2

θ includes a new vertex D, that

has only in-neighbors, and serves as a “drain".

Definition 3.4. [G2

θ ] Given a node-pair graph G2
and a thresh-

old 0 < θ < 1, G2

θ = (Vθ ∪ {D},Eθ ,Wθ ), where: Vθ ⊆ V 2
is a set

of nodes and D is a new node, Eθ ⊆ (Vθ ∪ {D} ×Vθ ∪ {D}) is the
edges set andWθ is a weight function, defined as follows.

• Nodes: A node (u,v) ∈ Vθ iff sem(u,v) > θ .
• Edges: An edge e = ((u,u ′), (v,v ′)) ∈ Eθ iff at least one

of the following conditions holds

(1) The nodes (u,u ′), (v,v ′) are adjacent in G2
.

(2) There exists awalk inG2
, wherew = ⟨(u,u ′),w1, . . . ,wk , (v,v

′)⟩

and the node-pairsw1 . . . ,wk < Vθ .
• Weights: The weight of an edge e = ((u,u ′), (v,v ′)) is

defined asWθ (e) =W1(e) +W2(e) where:W1(e) =WG2 (e)
if e ∈ G2

and (u,u ′), (v,v ′) ∈ Vθ and 0 otherwise, and

W2(e) =
∑
w :(u,u′) (v,v ′) P[w] · cl (w )−1

, where

t = ⟨(u,u ′),w1, ...,wk , (v,v
′)⟩ is a path in G2

and the

node-pairsw1, ...,wk < Vθ .
• Edges to D: Edges to the vertex D are added as follows:

∀(u,u ′) ∈ Vθ if the sum of all out-edges of (u,u ′) in the

graphG2

θ is different then the sum of all out-edges of (u,u ′)

in the graph G2
, then ((u,u ′),D) ∈ Eθ andWθ ((u,u

′),D)
is set to be the difference.

In the last point, to ensure that all weights are strictly positive,

we can prove that for every node in G2

θ , the sum of out-edges in

the original graph G2
is always ≥ than the sum of out-edges in

the reduced graph G2

θ . Additional edge pruning can be done by

the removal of all out-edges from singleton nodes. Since only the

first meeting point of the surfers affects similarity scores, such

edges can be omitted without changing scores (proof omitted).

For example, Figures 2b and 2c depict a partial graph G2
and its

reduced version G2

θ (faded nodes are dropped).

The similarity scores over G2

θ , denoted as sθ (·, ·), are defined
as the result of the random surfing computation on the reduced

graph. I.e., if (u,v) < Vθ then sθ (u,v) = 0, else: sθ (u,v) =

sem(u,v)
∑
w :(u,v) (x,x ) P[w] · cl (w )

, where w is a path in G2

θ
and l(w) is its length. We can now provide an alternative way to

compute SemSim scores over the graph G2

θ .

Theorem 3.5. ∀(u,v) ∈ Vθ : sθ (u,v) = sim(u,v)

In conclusion, as we show in our experiments, the size of

the graph G2

θ is considerably smaller than that of G2
and con-

sequently, computing SemSim over G2

θ requires exploring far

less and shorter paths, hence it is more efficient. However, when

considering very large graphs, even this compact representation

might still be excessively large. To that end, in the next section,

we present an alternative approach that simulates two random

surfers directly over G.

4 APPROXIMATED SEMSIM
We next present an alternative approach for an efficient compu-

tation of SemSim, based on a solution originally proposed for
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(a) Sample graph G . (b) All paths from (A,B) in G2. (c) All paths from (A,B) in G2

θ .

Figure 2: Example graph G, its reversed graph G2 and its reduced version G2

θ (θ = 0.3, c = 0.8).

SimRank [9]. First, we prove that a naïve solution of simply replac-

ing the underlying uniform distribution with the semantic aware

distribution leads to a quadratic increase in the sample size. To

overcome this, we employ Importance Sampling. As employing it

still entails a computational overhead, we provide a complemen-

tary pruning technique that significantly speeds up computation

while maintaining low error rates. We first recall SimRank op-

timizations while addressing the emerging challenges of their

implementation in SemSim, then present our refined framework.

4.1 SimRank’s Basic MC Framework
Suppose that we have two reverse walks w1 and w2 from the

nodes u,v ∈ V , resp., and they first meet at the τ -th step. I.e.,

the τ -th steps of w1 and w2 are identical, but for any l < τ
their l-th steps are different. If the walks do not meet, then τ →

∞. Given two random walks of length k − 1, w1 = ⟨u1, ...,uk ⟩
and w2 = ⟨v1, ...,vk ⟩, let w denote their coupled random walk,
wherew = ⟨(u1,v1), ..., (uk ,vk )⟩. It has been shown in [13] that

simrank(u,v) = E[cτ ]. The authors of [9] suggested a Monte
Carlo (MC) approximation framework, utilizing this equality,

by sampling separated random walks, and approximating the

similarity score using the average meeting distance. Specifically,

to approximate SimRank, the framework precomputes a set of

reversed random walks from each node in G, s.t (i) each set has

nw walks, and (ii) each walk is truncated at step t . Then the

estimated SimRank score of u and v is defined as:

1

nw

nw∑
l=1

cτl

where τl denotes the step at which the two walks, sampled from

u and v resp., first met, and ∞ otherwise. The space and pre-

processing time complexities of this framework are both O(n ·

nw ·t), and the method takesO(nw ·t) time to answer a single-pair

SimRank query.

An important observation underlying SimRank’s MC frame-

work is the fact that the probability of a coupled random walk

sampled from G2
, can be computed by simply multiplying the

two marginal probabilities of the separate walks, sampled from

G. Formally, given a coupled walkw = ⟨(u1,v1), ..., (uk ,vk )⟩, its
probability is:

Pr [w] =

k−1∏
i=1

1

|O(ui ,vi )|

Considering its probability using the separated walks sampled

from G, we get:
k−1∏
i=1

1

|O(ui )|

k−1∏
i=1

1

|O(vi )|
=

k−1∏
i=1

1

|O(ui )| |O(vi )|
=

k−1∏
i=1

1

|O(ui ,vi )|

That is, in SimRank, one can simply sample walks from each

node separately, directly from G, without materializing G2
. We

will next show that this is not the case for SemSim, and present

a refined sampling method for the SARWs.

4.2 Naïve MC framework for SemSim
Analogously, for SemSim we have: sim(u,v) = sem(u,v) ·EP [c

τ ],

where P is the semantic-aware probability. Note that when using

the semantic-aware probability, one can no longer sample the

walks separately. To account for the semantic similarity during

the sampling process, one must consider a pair of nodes in each

step. A naïve solution would be to generate a set of SARWs

from every node-pair, then directly apply the MC framework.

Namely, we can get an adjusted framework for SemSim with the

same time complexity and error rate as in SimRank (because the

time complexity depends on the number of walks from each pair

of nodes, and this solution has the same number, nw , of walks
from each pair). However, in SimRank, the sampling set is of

size O(nw · t · n), whereas this solution requires a much larger

sampling set, i.e. O(nw · t · n2) walks, as it samples nw walks for

each pair. To avoid this quadratic increase of data storage, we

use importance sampling [10].

4.3 IS-based MC framework for SemSim
The core idea of our solution is to sample separate walks directly

from G, using a different distribution than the “unknown" dis-

tribution P , then, apply importance sampling to estimate the

desired similarity scores [10]. For completeness of this paper, we

provide a short overview on the importance sampling technique,

then present our adjusted framework.

Importance sampling is a general technique for estimating

properties of a distribution while only having samples generated

from a different one. For a single pair u,v ∈ V , we wish to

estimate the expected value of sem(u,v) · cl (w )
, where w is a

coupled random walk drawn from P , i.e.,

EP [sem(u,v) · cl (x )] = sem(u,v) ·
∑

P(w) · cl (w )

Given nw samplesw1, ...,wnw of coupled random walks drawn

from P , an empirical estimate of EP [sem(u,v) · cl (w )] is:

EP [sem(u,v) · cl (w )] ≈ sem(u,v) ·
1

nw

nw∑
i=1

cl (wi )

Using a simple manipulation we get:

EP [c
l (w )] =

∑ P(w) ·Q(w) · cl (w )

Q(w)
≈

1

nw

nw∑
i=1

cl (wi )
P(wi )

Q(wi )

where Q is a distribution s.t ∀w if Q(w) = 0 then P(w) = 0.

Namely, we get an unbiased estimator of the function cl (w )
under

the distribution P , using samples drawn from Q . In our case, we

can only sample separated walks from G (to avoid materializing

G2
), while the desired distribution is defined over walks fromG2

.

Indeed, the expected value of the new estimator is equal to the

desired one, that is, for every node-pair u,v we have:

sem(u,v) · EQ [
P(w) · cl (w )

Q(w)
] = (4)

sem(u,v) · EP [c
l (w )] = sim(u,v)
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where w is a coupled random walk from u and v , P is the

semantic-aware distribution and Q is the proposal distribution.

Note that this equality holds for any choice of Q and sem(·, ·).

Let ŝQ (u,v) denote the score obtained using the MC simulation

with a distribution Q . We can prove the following proposition,

that ensures the approximation method has a bounded error (as

was proven for SimRank [9]).

Proposition 4.1. For a node-pairu,v , with at least 1−2e−nw · ϵ2
2·(1+ϵ/3)

probability: |E[ŝQ (u,v)] − ŝQ (u,v)| ≤ ϵ , where nw is the number
of walks from each node and ϵ is the error rate.

However, we note that E[ŝQ (u,v)] , sim(u,v), due to the

truncation imposed on the sampled walks. To address this issue,

following the analysis provided in [39] we get:

|E[sim(u,v)] − ŝQ (u,v)| =

|E[sem(u,v) · cτ ] − sem(u,v) · Pr [τ ≤ t]E[cτ |τ ≤ t]| =

sem(u,v)· |Pr [τ > t]· E[cτ |τ > t]| ≤ sem(u,v) · ct+1 ≤ ct+1

By Prop. 4.1 and the inequality above, using union bound, we

can prove the following.

Proposition 4.2. For any node-pair u,v and 0 < ϵ,δ < 1, if
t > loдc (

ϵ
2
) and nw ≥ 14

3ϵ 2 (loд(
2

δ ) + 2loд(n)), with at least 1 − δ

probability: |ŝQ (u,v) − sim(u,v)| ≤ ϵ

Furthermore, we can prove that the probability of interchang-

ing two nodes in the similarity ranking of a node u converges to

zero exponentially in the number of sampled walks nw .

Proposition 4.3. For every nodes u,v and v ′, such that δ =
sim(u,v) − sim(u,v ′) > 0 we have:

Pr [ŝQ (u,v) < ŝQ (u,v
′)] ≤ 2e

−
nw ·δ 2

2+2 δ
3

Note, however, that the accuracy of estimation depends on the

variance of the estimator, Var (ŝQ (u,v)), which in turn depends

on the distributionQ . In general,Var (ŝQ (·, ·)) is bounded in [0, 1],
since the similarity scores are bounded in [0, 1]. Therefore, we

wish to find a distributionQ s.t. (i) the sampling process and prob-

abilities computation can be done efficiently and (ii)Var (ŝQ (·, ·))
is minimal. Here, since we do not have a-priori knowledge on

either the semantic similarity or the meeting points of coupled

walks, we choose Q to be the uniform distribution. See [27] for a

discussion of other possible choices.

We are now ready to present Algorithm 1, an MC framework

for computing single-pair SemSim scores, assuming, w.l.o.g., that

Q is the uniform distribution. Ignore, for now, the lines high-

lighted in red. At preprocessing, we generate nw random walks

from each node, drawn from Q . Then, when a single-pair query

arrives, sim(u,v), we consider the set of coupled random walks

starting from u and v . For each coupled walk, if the two walks in-

deed meet, the probability of their prefix until the meeting point

is computed according to the distributions P andQ (lines 10−16).

Then, the obtained score is added to the total similarity score

(line 19). Finally, the estimated score is divided by the number of

samples nw (line 20).

Proposition 4.4. For every u,v ∈ V , the expected output of
Algorithm 1 is sim(u,v), and the average time complexity isO(nw ·

d2 · t), where nw is the number of sampled walks from each node,
t is their length and d is the average in-degree in the graph G.

That is, an additional factor of d2 is added to our framework’s

running-time. However, as wewill show next, we can compensate

for this by employing a pruning-based optimization.

Algorithm 1: IS-based MC framework for SemSim.

Input :nw walks of length t from each node, a decay

factor c , and a threshold θ .

1 sim = 0

2 if sem(u, v) ≤ θ then
3 return 0
4 for i = 1,...,nw do
5 Letwi denote the coupled walk of the i-th walks from u and

v
6 Let k be the samllest offset s.t the i-th walk from u and from

v meet

7 if such k exists then
8 Let τ (wi ) denote the prefix of wi up to offset k
9 Denote τ (wi ) = ⟨(u1, v1), ..., (uk , vk )⟩, Pw = 1,

QW = 1, simw = 1.

10 for i = 1, ..., k − 1 do
11 Pw · = sem(ui+1, vi+1) ·W (ui+1, ui ) ·W (vi+1, vi ),

SO = 0

12 for Ij (ui ) in I (ui ) do
13 for Iz (vi ) in I (vi ) do
14 SO+ =W (Ij (ui ), ui ) ·W (Iz (vi ), vi ) ·

sem(Ij (ui ), Iz (vi ))
15 Pw/= SO , QW · = |I (ui ) | · |I (vi ) |
16 simw = simw · Pw

QW
· c

17 if simw ≤ θ then
18 break

19 sim = sim + simw

20 return sem(u,v )·sim
nw

4.4 Pruning
Similarly to the idea presented for G2

, we provide a pruning

technique for the MC framework, avoiding the similarity compu-

tation of low probability walks. Recall that for G2

θ the suggested

technique ensures that scores above a given threshold would not

be effected. Here, the approximation error may increase up to a

controlled threshold. While in G2
it is good pruning-wise to use

high thresholds, here, if we use too high value the error grows

and the scores may become meaningless, thus lower values are

advisable. As opposed to the unbiased estimator we devised in

the previous section, our pruning technique adds a one-sided

additive error to scores. However, as we demonstrate in our ex-

periments, it accelerates the performance significantly, while

successfully distinguishing highly similar pairs from the rest.

For a coupled random walkw , let s(w) denote the contribution

ofw to the similarity score. Since in every estimation we consider

nw coupled walks, it follows that:

s(w) =
1

nw
·
P[w] · c(l (w ))

Q[w]

Instead of computing the exact score of s(w), our idea is to upper

bound it. Concretely, given a coupled walkw = ⟨w1, ..,wk ⟩, with

a closer look on s(w) we get:

s(w) =

k−1∏
i=1

P[wi → wi+1] · c

Q[wi → wi+1]
≤

l∏
i=1

P[wi → wi+1] · c

Q[wi → wi+1]

where 0 < l < k −1. Namely, s(w) can be bounded in each step in

the chain. Therefore, given a threshold θ , we can avoid computing

the exact score, if in a certain step, the obtained score is smaller

than the bound θ , as from this step on the score can only decrease.

Formally, given a threshold θ ∈ [0, 1] and a coupled walkw , we

define ŝ(w) as follows:
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Table 2: Datasets.

Dataset Size Tasks
AMiner |V| = 0.35M |E| =3M Entity Resolution

Amazon |V| = 0.6M |E| =6M Link Prediction

Wikipedia |V| = 4.7K |E| =101K Relatedness

WorNet |V| = 82K |E| =128K Relatedness

Definition 4.5 (Approximated coupled walk score). The approxi-
mated score of a coupled walkw is defined as:

ŝ(w) :=

l∏
i=1

P[wi → wi+1] · c

Q[wi → wi+1]
≤ θ

where l is the smallest index this equation holds. If no such l
exists, then ŝ(w) = s(w).

As in the pruning done forG2

θ , we can avoid computing scores

of all pairs u,v s.t. sem(u,v) < θ (and again, obtain an error

bounded by θ ). In such cases, the result score is set to 0.

Consider again Algorithm 1. The highlighted red lines indicate

our pruning refinements. In particular, in lines 2 − 3, similarity

scores of node-pairs with low semantic scores are set to 0, and in

lines 17 − 18 we ensure that scores of coupled walks are above θ ,
and otherwise, are bounded. We can prove that given θ ∈ [0, 1],

the additional additive error is bounded by θ .

Proposition 4.6. Given θ ∈ [0, 1], the additional additive error
of the IS-based MC framework with pruning is bounded by θ .

To ensure the estimated scores lies in [0, 1], we add the follow-

ing constraint on θ .

Lemma 4.7. For every θ ∈ [0, 1 − c] and u,v ∈ V , the ap-
proximated similarity score ŝQ (u,v) obtained by Algorithm 1 with
pruning lies in [0, 1], where c ∈ [0, 1).

This lemma implies that the MC framework with pruning can

efficiently capture big differences among similarity scores. But

when it comes to small differences, the error of approximation

obscures the actual similarity ranking, and an almost arbitrary

reordering is possible. However, for many similarity search appli-

cations it is sufficient to distinguish between very similar, mod-

estly similar, and dissimilar nodes. In terms of run-time, while

the worst-case time complexity remains the same (no pruning is

done), our experiments show pruning to be extremely effective

in practice, yielding running times on par with SimRank.

Concluding, as mentioned in the Introduction, multiple opti-

mizations techniques have been developed for SimRank based

on SimRank’s MC framework. Our framework extends for them

as well. We discuss this in more details in our technical report

[27], providing several examples, and also demonstrate this in

our experimental study.

5 EXPERIMENTAL RESULTS
We complement our work with an experimental study, conducted

to examine the performance of our measure as well as its use-

fulness in capturing objects’ similarity, compared to measures

proposed in previous work.

5.1 Experimental setup
We implemented SemSim in Java 7, and demonstrate its perfor-

mance using Lin as the integrated semantic measure. All experi-

ments were conducted on a Linux machine with 96GB of memory.

We next describe the graph datasets we examined, then detail

the parameters setting.

Datasets. We used several graph datasets, commonly used in

the literature, which suitably include objects possessing both

structural information and semantic meaning, as depicted in

Table 2. Unless stated otherwise, all edge weights were set to 1.

AMiner. This graph was extracted from [1], and contains data

on 1.5M academic papers. We extracted a weighted co-author

graph focused on 30 database conferences. From each paper, we

extracted its authors and relevant terms. In addition, we incor-

porated a domain taxonomy, built by aligning the terms with

concepts from DBpedia [5]. The graph includes edges of three

types: (1) collaboration edges (with weights reflecting the num-

ber of collaborations between two authors); (2) terms-authors

edges (where weights correspond to the prevalence of the term

in a given author’s papers) and (3) taxonomy edges.

Amazon. This dataset was obtained from [18]. It contains

0.5M items from different categories, a domain taxonomy (ob-

tained from Amazon product categorization), and information

about co-purchased items. The edge types are: (1) edges between

co-purchase items (with weights reflecting the number of times

two items were bought together) and (2) taxonomy edges, linking

between products to their categories, as well as categories to their

super-categories.

Wikipedia. This dataset, obtained from [18], contains 4.7K

Wikipedia articles, each is represented by a node. The domain

taxonomy was built from Wikipedia categories. The edge types

are: (1) links between articles and (2) taxonomy edges.

WordNet. This dataset is the noun sub-part of the lexical

base WordNet [26]. The edge types are:(1) part-of relations, the

non-hierarchical relations in WordNet and (2) taxonomy edges.

For both AMiner and Amazon datasets, we extracted a smaller

versions to be used in the execution of the costly iterative forms

of SemSim and SimRank. In AMiner, the small version includes

the top 7K authors by number of publications, and in Amazon it

includes the top 5K most bought items.

Parameter setting. For all datasets, we found the upper bound

on the decay factor c by iterating on all node-pairsu,v computing

Nu,v . We report that in all cases this value was > 0.6, a com-

monly used value for the decay factor in SimRank [24, 39]. Unless

mentioned otherwise, for both SemSim and SimRank we used the

following system parameters: The decay factor (c) was set to 0.6,

and for the probabilistic framework, a set of 150 random walks

of length 15 was sampled from each node. As for the threshold

parameter θ used for pruning, we set θ = 0.05. According to

our experiments, this choice of the parameters allows for fast

execution times, while maintaining negligible error rate.

5.2 Performance Evaluation
We review the performance of SemSim from five aspects: The

convergence rate of its iterative form, the size of the reduced

graph G2

θ compared to the full graph G2
, the performance of

Algorithm 1, in terms of execution times and error rate and the

preprocessing phase.

Convergence. Our experiments validate empirically Prop. 2.4,

showing that SemSim converges as fast as, and even faster than

SimRank. We measured the average relative and absolute dif-

ferences between similarity scores at consecutive iterations, for

both SemSim and SimRank iterative forms, on different datasets.

Results are depicted in Figure 3. Indeed, SemSim converged faster
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Figure 3: Scores differences in consecutive iterations.

Dataset G 2 G 2
θ
, θ = 0.90 G 2

θ
, θ = 0.95

AMiner

# nodes 60M 14K 9K

#edges 2.2B 39M 7.8M

Avg. # of paths

to singletons

17 10 5

Avg. paths’ length 4 3 3

Wikipedia

# nodes 22M 10K 6K

#edges 10.2B 23.5M 4.7M

Avg. # of paths

to singletons

19 10 6

Avg. paths’ length 5 4 3

Table 3: The size of G2 and G2

θ for θ = 0.9 (top ≈ 5K) or
θ = 0.95 (top ≈ 1K).

than SimRank, and in all experiments it converged after 5 itera-

tion, i.e., the average (relative and absolute) difference between

similarity scores was smaller than 10
−
3.

Size of G2

θ . We analyze the effectiveness of the G2
pruning,

demonstrating that when only highly similar objects are of inter-

est (e.g., top-k queries), pruning with high θ values (e.g., 0.9, 0.95)

is highly effective, and reduces the size of G2
significantly. We

refer the reader to Table 3, depicting a detailed comparison be-

tween the reduced graphG2

θ (while setting θ = 0.9 and θ = 0.95),

and the original graph G2
, constructed from the Amazon and

Wikipedia datasets. In addition to the significant reduction in the

number of nodes and edges, one can see that the average length

of a path and the number of paths leading to singleton nodes

(i.e., the number of paths that are considered while computing

SemSim) were greatly reduced as well. However, while the mea-

sured size of G2

θ is smaller than G2
in approximately 3 orders of

magnitude, this approach does not trivially scale for immense

networks, in which the approximated framework is preferable.

Execution Times. We examine the running time of our MC

framework (with and without pruning) as a function of the num-

ber of walks, nw , and the truncation point t , compared to Sim-

Rank MC framework. Figure 4 depicts the average measured

running times on the Amazon dataset (the results obtained over

the other dataset demonstrated similar trends, and thus omitted

from presentation). Not surprisingly, without pruning, the aver-

age time of SemSim is indeed slower than of SimRank: 0.217 ms

and 0.0035 ms for SemSim and SimRank, resp. However, the run-

ning times with pruning are significantly faster, becoming close

to those of SimRank (in average 0.0038 ms, where θ = 0.05).

Additionally, we examined the performance of both measures,

using SLING optimization [39] recently suggested for SimRank

(described in our technical report [27]), while storing probabili-

ties only for node-pairs with semantic similarity scores >= 0.1.

For both measures we achieved a significant improvement in
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Figure 4: Average running times for single-pair
similarity query.

Dataset
SemSim

with pruning
θ = 0.05

SemSim SimRank

AMiner

Pearson’s r

Mean var

Max var

Mean rel. err

Max rel. err

Mean abs. err

Max abs. err

0.89

0.001

0.025

0.405

0.478

0.063

0.080

0.91

0.001

0.027

0.397

0.468

0.019

0.035

0.92

0.0004

0.004

0.274

0.364

0.018

0.029

Amazon

Pearson’s r

Mean var

Max var

Mean rel. err

Max rel. err

Mean abs. err

Max abs. err

0.92

0.001

0.022

0.366

0.428

0.056

0.075

0.93

0.001

0.021

0.320

0.399

0.020

0.027

0.93

0.0005

0.006

0.298

0.389

0.020

0.025

Table 4: Accuracy of approximation.

times - 0.00021 ms and 0.00023 ms for SimRank and SemSim

resp., with a memory consumption induced by the SLING index

of size 1.1GB and 3.2GB, resp.

Approximation Error. We compared SemSim and SimRank ap-

proximated scores to scores computed by their iterative forms, to

asses the cost of incorporating semantics. We then evaluated the

error of approximation in terms of Pearson’s r -correlation (by

comparing approximated scores to the ground truth), variance,

and error size. We report the error of approximation as measured

for the (larger versions of) Amazon and AMiner dataset. In each

experiment, we randomly selected 1K node-pairs, and computed

the approximated similarity scores in 100 runs (rebuilding the

random walks index before each run). The results, provided in

Table 4, depict the Pearson’s r -correlation values (achieved by

comparing the approximated scores to the ground truth ones, ob-

tained by the iterative forms), the (mean and maximal) variance

of the estimators, and the (mean and maximal, relative and ab-

solute) errors, as obtained by SemSim (with or without pruning)

and SimRank.

As expected, SemSim’s mean error is slightly higher than

that of SimRank, yet both are in the same order of magnitude

(0.366, 0.32, 0.298 for SemSimwith pruning, without pruning, and

SimRank, resp.). As discussed in Section 5.2, while the error of

approximation for SemSim (with and without pruning) is slightly

higher than for SimRank, the number of interchanges between

the approximated scores and ground truth ones, as measured by

the Pearson r -correlation3, is significantly low and essentially

equivalent to SimRank’s (with or without pruning). This positive

3
The Pearson r -correlation measures the “strength" of the linear association be-

tween ground truth scores and approximated ones.
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result indicates that applying IS does not cause far apart scores

to interchange, while maintaining execution times essentially

on-par with SimRank.

Preprocessing. We complement the running times experiments

by providing details regarding preprocessing time and the space

costs of our framework. The offline processing, in which random

walks are sampled, took approximately 2.5 minutes (in average

over all datasets). While the sampling procedure performed as

in SimRank, SemSim requires an additional work due to the

semantic similarity measure. Following [11], we processed the

taxonomical subpart of the graphs to facilitate constant-time

Lin semantic similarity computations at run time. In all cases,

the processing time took less 10 minutes. For example: In the

Amazon dataset, where the taxonomy contains 2.5M edges, this

phase took approximately 7 minutes.

The memory consumption of SemSim’s MC framework is

prominently due to the random walk index
4
. Additional memory

costs for SemSim were due to the Lin semantic measure: storing

the IC values and the data structure that allows for a constant time

similarity computation (as described in [11]). Overall, the storage

size was varied between 5 − 9MB, for all datasets, depending on

the size of the taxonomical subpart of the particular graph.

5.3 Quality Evaluation
We examine the usefulness of SemSim compared to an exten-

sive set of alternative measures for assessing node similarity,

demonstrating the utility of SemSim when used in typical tasks,

in which a similarity measure is required.

We used the following baselines from three common approaches

for similarity assessment:

I. Structural-based measures: SimRank [13], SimRank++ [2],

a weighted variant of SimRank which ignores semantic infor-

mation, and Panther [43], a random-walks based measure which

considers edge weights as well.

II. Semantic similarity measures: Lin measure [23], as de-

scribed in Section 2.2.

III. Measures combining structural and semantic informa-
tion:. First, we employed LINE [38], an ML, node embedding-

based similarity measure which accounts for latent semantic

relations among the graph nodes. This serves a representative

example for the state-of-the-art approach for assessing node sim-

ilarity. Additionally, we tested PathSim [37], a HIN-dedicated

similarity measure, which considers edge labels, and Related-
ness [25] a semantic-aware measure which considers the prop-

erties’ relating concepts. Last, we employed the Multiplication
and Average competitors, returning the product (resp., average)

of independent structural and semantic scores obtained by Sim-

Rank and Lin. These measures serve as baselines to our approach

that interweaves structure and semantics throughout a recursive

computation.

These baselines were examined in typical tasks in which a sim-

ilarity measure is required: Term Relatedness, a problem requiring

a measure aware of both semantic and structural knowledge,

(tested on Wikipedia and WordNet datasets); Link Prediction, in
which we used the measures to predict co-purchases in Amazon

dataset, and Entity Resolution was tested on AMiner dataset, to

detect duplication of entities. A ground truth was defined for

4
Storage optimization techniques previously developed for SimRank can be directly

applied in our settings as well (e.g. [14, 34]).

Method r (Wiki) p (Wiki) r (WN) p (WN)
Panther 0.323 0.0376 0.206 10

−3

PathSim 0.293 0.0662 0.332 10
−3

Simrank 0.295 0.0641 0.397 10
−4

Simrank++ 0.296 0.0644 0.395 10
−4

Average 0.36 0.0514 0.401 10
−4

Multiplication 0.37 0.0508 0.409 10
−4

Lin 0.485 0.0015 0.449 10
−4

LINE 0.493 0.0001 0.470 10
−4

Relatedness 0.510 0.0007 0.488 10
−4

SemSim 0.585 0.0001 0.501 10
−4

Table 5: Pearson’s r and p-value in the WordsSim-test on
Wikipedia (Wiki) and WordNet (WN).

each task, used to quantitatively evaluate the effectiveness of

each competitor.

Term Relatedness. Relatedness between terms is a well studied

problem that requires a measure aware of both semantic and

structural knowledge. To examine the adequacy of SemSim for

capturing relatedness, we used two datasets that contain relations

between terms: Wikipedia and WordNet. The ground truth was

defined by the WordsSim-353 test [8], a public and commonly

used benchmark containing pairs of words alongside their relat-
edness scores, as computed by people (e.g. “computer-keyboard”

has the score of 0.76). We then compared the scores obtained

by each competitor, using the Pearson correlation measure (a

commonly used measure to evaluate the accuracy result for this

benchmark [25]).We removed pairs of words that weremissing in

the graph from the benchmark, retaining 40 pairs for Wikipedia

and 342 for WordNet. Table 5 depicts the results for all baselines.

We note that other corpus-based designated methods were sug-

gested for this task (e.g., [42]), but they require external sources

besides the input graph, thus we did not include them in our

benchmark. Observe that the structural based measures (e.g.,

SimRank, SimRank++ and Panther) demonstrate inferior results,

as this task greatly relies on the semantic relations among the

concepts. Furthermore, naïve semantic measures such as Lin,

that perform a rather simplistic similarity comparison (i.e., rely

only on the taxonomy “is-a" edges), surpassed both the structural

measures, and the the Average and Multiplication competitors,

yet were outperformed by LINE and the Relatedness measure,

which better combine the structural and semantic aspects, and

consider all edges in the graph. The Relatedness measure, desig-

nated specifically for this task, exceeded the ML-based measure

LINE, yet interestingly, it was surpassed by SemSim.

Link Prediction. We next demonstrate how SemSim may be

used to predict co-purchases in the Amazon dataset. To com-

pare between different baselines, we omitted 7.5K edges between

items from the original dataset, and examined how well the mea-

sures can be used to predict those missing links as follows: Given

an endpoint of a removed link, we performed a top-k search to

find similar nodes to the given endpoint. If, for a given measure,

the returned k nodes include the pair endpoint, we counted a

“hit", and otherwise a “miss". A similar idea was employed to

evaluate similarity search in [43]. The results are depicted in

Figure 5(a). For compactness, we omitted measures with partic-

ularly low scores. As opposed to the Relatedness task, this task
relies mostly on structural knowledge, hence structural-based

measures (e.g., SimRank++, Panther) outperformed the semantic-

based ones (e.g., Lin). Here, LINE was able to outperform most

competitors, yet SemSim managed to obtain a slight advantage,
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Figure 5: Prediction in top-k

due to the additional semantic information it accounts for which

LINE ignores (i.e., the IC values and the taxonomy relations).

Entity Resolution. Last, we used the similarity measures to

identify multiple distinct entries representing the same author

(e.g, Susan B. Davidson and Susan Davidson), or the same term (e.g,

Data structures and Data structure). Using the Levenshtein string

distance, we identified 30 pairs representing the same entry (24

term-pairs and 6 author-pairs), and used the baselines to predict

duplicate nodes following similar lines to the link-prediction task

(i.e., a top-k similarity search). The results are depicted in Fig-

ure 5(b), reporting for each baseline the precision in top k , for
various values of k , (here again, measures with particularly low

were omitted). First, note that the results for all baselines are not

particularly high, since information commonly used for entity

resolution (such asmail addresses, affiliations, string edit distance,

etc.) was not included in the graph. As in the link-prediction task,

the structural based measures outperformed the semantic based

one (omitted from presentation). This stems from the particular

characteristics of the AMiner graph, in which the semantic simi-

larity of all authors nodes is identical (i.e., all authors nodes “is-a”

Author). Hence, the semantic similarity between authors in this

setting is not informative. Here again, the Multiplication/Average

baselines demonstrate inferior results. It should be pointed out

that PathSim outperforms most competitors, as it is a structural

measure that also considers the edge labels, thus accounts for

some semantics. However, SemSim managed to get an advantage,

even if sometimes marginal, for all tested values of k .

In summery, as demonstrated, SemSim outperformed the com-

petitors in all tasks mentioned above. In some tasks the advantage

was marginal compared to the second-best for a specific task, yet

we note that the second-best competitor was different in each

task, illustrating the robustness of SemSim. For the rest of the

baselines, results varied depending on the amount of semantics

conveyed in the dataset, and of the degree to which the task is

semantically complex. To conclude, the experiments indicate that

even in cases where only partial semantics is available, SemSim

serves as a robust measure and exploits this information to get

an edge over the competitors.

6 RELATEDWORK
SimRank is a popular measure and its potency was demonstrated

in various scenarios [2, 6]. Several extensions that enrich it with

more information (e.g. edge weights [2], particular paths [6] or

second order walks [41]) were suggested, but they do not make

full use of semantics available and thus, as illustrated in our

experiments, yield less accurate estimations in semantic-sensitive

tasks. Moreover, the optimization technique used in SimRank++

was build on matrix multiplication rather than random walks,

and consequently, scalability issues were ignored. One of the

contributions of this work is an efficient computation scheme,

applicable also to several of these variants (e.g. [2, 45]).

As mentioned, a prominent body of work has focused on

SimRank approximation techniques. These works are categorized

into (a) matrix-based approaches [19], and (b) randomwalk-based

approaches [14, 39]. A recent survey [44] advocates that the latter

approach is more scalable, compatible with updates in the graph,

and can be trivially parallelized. Therefore, we chose to extend it

in accordance with our setting. As mentioned in Section ??, the
contributions of these works are applicable for SemSim, requiring

only minor adaptations.

In our experiments we use Lin [23], a simple and effective

Information Content (IC)-based semantic measure. However, as

explained in Section 2, any other measure can be incorporated,

given that it satisfies three intuitive constraints. Examples of

other applicable semantic measures include: (i) IC-based mea-

sures [32], (ii) Edge-counting measures, which use the length

of the shortest path between nodes in the estimation of similar-

ity [31], and (iii) Feature-based measures [20, 42]. The former

two regard a domain ontology, while the latter usually involves

additional sources (e.g. textual corpus [20]).

Heterogeneous Information Network (HIN) is a ubiquitous

model for real-world data, as it enables enriching simple graphs

with additional useful information [36]. This, however, makes the

assessment of node similarity challenging, as HIN paths convey

latent semantic information. The majority of existing similarity

measures for general networks do not consider all available infor-

mation in theHIN. Specifically, measures such as [13, 43, 45] focus

solely on the network structure, while measures suggested in

[23, 32] concern only with the semantic information as implied by

hierarchical relations. More recent works propose HIN-dedicated

measures [35, 37], advocate considering only meaningful meta-

paths between objects. But the choice of appropriate paths is

made a-priori, and requires intimate knowledge of the dataset

and the specific information needs
5
[22]. In contrast, SemSim is

a generic measure that encompasses all available information,

and automatically prioritizes meaningful paths.

As opposed to the declarative approach, recent work in the

field of representation learning [4, 30] suggests embedding tech-

niques that discover low-dimensional representations of graph

nodes in a vector space. While this approach often outperforms

5
Otherwise, an average of all paths can be taken, resulting in inferior results.
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dedicated similarity measures for HINs (as demonstrated), a key

disadvantage is that the results are hard to explain and interpret.

Moreover, as we showed, SemSim not only retains its declarative

definition but also yields more accurate similarity estimations in

multiple tasks.

Incorporating semantic and structural information when de-

termining relations between graph objects has also been proven

useful in several related domains. Works in ontology matching
and entity resolution suggest using both taxonomy edges and

structural properties of nodes to properly align entities [12, 28].

However, their goal is different, as they aim to identify equiv-

alent representations of the same entity, thus some of the core

techniques employed (e.g., string matching) cannot be directly ap-

plied for measuring similarity between different objects. It would

be interesting to investigate in future work whether SemSim can

be employed in such contexts. An example domain where we

showed such incorporation to be successful is similarity estima-

tion for images that convey semantics, as we illustrated in [7], a

demo that employed SemSim for the retrieval of similar Internet

Memes.

7 CONCLUSION AND FUTUREWORK
In this paper we present SemSim, a similarity measure that refines

SimRank with semantics, while preserving its intuitive defini-

tion and scalable computation. We introduce Semantic-Aware

Random Walks, an extension of the traditional notion of random

walks, that preserves properties necessary for applying existing

SimRank’s optimizations. Our probabilistic framework employs

Importance Sampling along with an effective pruning technique,

and maintains a negligible error rate. Our experiments further

demonstrate the quality and robustness of SemSim in multiple

practical scenarios, as well as the efficiency of our algorithms.

Several interesting directions are left for future research. First,

in practice, information networks are often dynamic and may in-

duce uncertainty, hence it would be important to extend SemSim

to such settings. The use of parallelism and compact indexing

mechanisms [3, 21], to achieve further computation speedup,

are also an interesting direction for future work. Last, we have

focused here only on single-pair queries. We intend on develop-

ing optimizations facilitating single-source and top-k similarity

queries, inspired by [17, 46].
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ABSTRACT
Deciding whether a query graph is a subgraph of some other
in a very large database of small graphs is a problem of major
interest in many application domains. As an example, it arises in
the searching for specific molecular substructures in currently
available molecular databases, whose sizes may reach levels close
to one hundred million. State of the art methods to solve this
problem follow a filter-then-verify (FTV) paradigm, where an
indexing technique is first used in a filtering stage to obtain
result candidates and a subgraph isomorphism algorithm is next
applied to the candidates in a verification stage to obtain the
final result. Among all the available techniques of the state of the
art, two of them have demonstrated better performance when
applied to large datasets, namely, the GraphGrepSX (GGSX) and
CT-Index (CTI). In this paper, three new indexing techniques, one
based on GGSX and two based on CTI, are proposed. In particular,
Bitmap GGSX (BM-GGSX) leverages the use of bitmaps in the
trie structure used by GGSX to achieve performance gains of
around 90% in the filtering stage. Column-Wise CT-Index (CW-
CTI) exploits a column-wise representation of the fingerprints
(bitmaps) used by CT-Index to reduce the filtering times around
80% for small queries (8 edges). Finally, K-Means CT-Index (KM-
CTI), constructs a binary tree of bitmaps from the CT-Index
fingerprints to reach filtering time reductions of around 70% for
medium queries (20 edges) and 75% for large queries (40 edges).

1 INTRODUCTION
Graph database research is a topic to which much attention has
been paid by the data management community during the last
decade. Two major types of graph databases may be found in real
problems. In a first type, the database consists of just one very
large graph. This is, for example, the kind of database available
in the semantic web. Amongst the required query functional-
ity, many applications need to identify all the instances of a
specific subgraph that occurs inside the database graph. This NP-
complete problem, known in the literature as subgraph matching,
is solved through the application of subgraph isomorphism algo-
rithms [4, 12, 20, 21, 26, 27].

© 2019 Copyright held by the owner/author(s). Published in Proceedings of the
22nd International Conference on Extending Database Technology (EDBT), March
26-29, 2019, ISBN 978-3-89318-081-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

A second type of database contains a very large number of
small graphs. Typical examples of this type of databases are
molecular databases. For each molecule recorded in such a data-
base it is recorded, among other properties, its structure, i.e., a
small graph whose vertices are atoms and whose edges are bonds
between atoms. The current size of these databases is already very
large, reaching levels close to one hundred million molecules,
like in the PubChem dataset1, and it is increasing. Among other
queries of interests, it is important to provide functionality to
find all the molecules whose molecular structure (graph) contains
a specific query substructure (subgraph) [5, 6].

Finding all the graphs in a database that contain a specific sub-
graph is known in the literature as the subgraph decision problem.
A straightforward strategy to solve this problem is a linear search,
i.e., the application of a subgraph isomorphism algorithm to each
graph of the database. This strategy could be the appropriate
for not selective queries that return most of the database graphs.
Besides, given its simplicity, it is also straightforward to a obtain
parallel implementation following this strategy. However, in the
general case, a filter-then-verify (FTV) strategy based on index-
ing will get much better performance. In FTV approaches, query
processing is split in tho stages, namely filtering and verification.
In the filtering stage, an index structure is searched to obtain an
initial set of candidate graphs. In the second stage, a subgraph
isomorphism algorithm is applied to each candidate to refine
the final result. Many FTV methods have been proposed in the
literature [2, 3, 8, 15, 20, 24, 25, 28, 29].

Among the proposed FTV solutions, GraphGrepSX (GGSX) [2]
and CT-Index (CTI) [15] have demonstrated an excellent perfor-
mance when applied to large datasets of small graphs, as it is the
case of molecular databases. Both of them rely on the encoding,
in the index structures used during the filtering stage, of features
contained in the graph, such as paths, trees, and cycles. In partic-
ular, GGSX generates a trie structure with all the paths contained
in each graph up to a maximum length. Each node of the trie
represents a specific path and references all the graphs of the
database that contain such path, storing also the number of times
that the path is repeated in each graph. During the filtering stage,
the database trie is used to obtain all the graphs that contain
all the paths of the query up to a maximum length, at least the
number of times that the path is contained in the query.

The indexing technique used by CTI is completely different.
CTI generates a fingerprint (bitmap) for each database graph

1https://pubchem.ncbi.nlm.nih.gov/
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as follows. First, graph features are extracted. CTI may work
with either paths or trees, and with cycles. Each feature of the
graph up to a maximum length is extracted, and represented
in a canonical string format. A hash function is next applied to
each extracted string to obtain integer numbers that range from
0 to the fingerprint length. The bits of the fingerprint located
at the positions defined by those integers are set to 1. In the
filtering stage, bitmap containment is tested between the query
fingerprint and the fingerprint of each database graph.

In this paper, three new FTV solutions are proposed for sub-
graph search in large databases of small graphs. The paper focus
on the filtering stage, improving GGSX and CTI structures and
algorithms to obtain filtering time reductions between 70% and
80%, whereas the verification stage of the three techniques re-
lies on the parallel execution in a multi-thread architecture of
a improved version of the VF2 [4] subgraph isomorphism al-
gorithm already proposed by CTI [15]. In particular, the main
contributions of the present work are summarized as follows.

(1) Bitmap GGSX (BM-GGSX) takes advantage of the incor-
poration of compressed bitmaps in the representation of
graph references in the GGSX trie nodes. This enables a
drastic reduction of the filtering time (around 90% less
than GGSX), maintaining the index size and building time
almost unaltered. When compared with the techniques
based on CT-Index also proposed in this paper, BM-GGSX
offers good response times for medium and large queries,
but it is worse for small queries. Besides, BM-GGSX is also
much worse in both index size and building time.

(2) Column-Wise CT-Index (CW-CTI) adopts a column-wise
storage structure for the CT-Index fingerprints, where the
same bit position of all the fingerprints of all the graphs
are recorded together in a compressed bitmap. During the
filtering stage, only the bit positions with a 1 in the query
fingerprint have to be accessed, which makes the filtering
time dependent on the query size. Regarding index size
and building time, CW-CTI gets the best results.

(3) K-Means CT-Index (KM-CTI) applies recursively the K-
Means clustering method on CT-Index fingerprints to con-
struct a bitmap binary tree that is used to discard sets of
fingerprints during the filtering stage. KM-CTI index size
and building time is worse than CW-CTI, but better than
BM-GGSX. Regarding filtering time, it is competitive with
BM-GGSX in medium and large queries, thus it is a good
complement of CW-CTI.

(4) An extensive evaluation of the performance of all the tech-
niques is undertaken using real databases of molecular
graphs of different sizes. A first experiment is conducted to
determine the best parameter values to tune the methods.
The objective of the second experiment is to test the scala-
bility of the techniques with increasing database sizes. Real
databases with sizes ranging from 200000 to one million
molecules were built from the PubChem dataset. Notice
that those sizes are much larger than even the synthetic
datasets used in previous surveys [11, 13].

The remainder of this paper is organized as follows. Section 2
reviews related work, with special attention to the original GGSX
and CT-Index methods. The proposed BM-GGSX, CW-CTI and
KM-CTI methods are described in detail in Sections 3, 4 and 5,
respectively. Section 6 is devoted to the discussion of the evalua-
tion experiments and, finally, Section 7 concludes the paper and
outlines some lines of potential future work.

2 RELATEDWORK
The current state of the art classifies the subgraph querying
problem into two different subproblems. The first one, named
matching problem, deals with extracting all subgraph isomorphic
embeddings of a query graph q in a single graph G. The second
one, usually called decision problem, is focused in retrieving the
ID of every graph g, stored in a given dataset G, which satisfies
that the query graph q is a subgraph of g.

The matching problem has been widely studied over the years,
and there are several proposals to solve it. As mentioned in the
introduction, a subgraph isomorphism algorithm must be applied
to ensure that the verified graph contains at least one subgraph
that matches exactly the query graph. In [16], the authors provide
a performance comparison of six of the most relevant solutions
at the time. Among these algorithms, Ullmann [21], VF2 [4],
and QuickSI [20] were originally designed for handling small
graphs, while GraphQL [12], GADDI [26], and SPath [27] were
designed for handling large graphs. The tests were accomplished
in four real-world datasets with different size and characteristics,
containing two of them multiple and small graphs, and the other
two single and relatively large graphs. The study concluded that
GraphQL was the only algorithm that completed all the queries,
while QuickSI performed the best for both small and large data
graphs, even though it was designed for handling small graphs,
since the cost of its recursive call is the lowest. The study also
concluded that all existing algorithms had problems in their join
order selections. Since the survey was published, new algorithms
designed for handling large graphs have been proposed [10, 19],
showing an improvement in the performance by addressing the
issues of matching order selection. Recently, a new approach [1]
proposes a new framework to minimize the redundant Cartesian
products.

The decision problem is typically arising in the scope of ap-
plications with big datasets of small graphs. Since this is a NP-
complete problem, and datasets contain often a large number of
graphs, deciding whether a query graph q is contained in every
graph g in the dataset G, by applying one by one a subgraph iso-
morphism algorithm would be very costly. Due to this, a pruning
phase must be undertaken in an early stage of the process in
order to select a reasonable number of candidates to be tested
with a subgraph isomorphism algorithm. This idea is carried out
by the techniques based in the filter-then-verify (FTV) paradigm.
FTV techniques rely in building an index of the graph dataset,
through decomposing each graph into features (i.e., paths, trees,
cycles, etc.), and store them in an appropriate structure (e.g., trie,
fingerprints, etc.). The search algorithm of FTV techniques is
divided into two different stages. The first stage, called filtering
stage, aims at obtaining a candidate set of graphs. To do this, the
query graph q is decomposed into its corresponding features,
according to the applied technique, which are used to retrieve
from the index a reduced candidate set with the graphs that con-
tain all the query features. The candidate set is tested finally with
a subgraph isomorphism algorithm in the second stage, called
verifying stage.

A performance comparison of different indexing techniques [3,
20, 24, 25, 28, 29] for subgraph query processing is provided
in [11]. The above survey is extended in [13], by including three
new algorithms [2, 8, 15] and also by performing an exhaustive
performance and scalability study, varying different dataset fea-
tures such as number of nodes and graphs. According to the con-
clusions of [13], CT-Index [15] and gCode [29] have the smallest
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index size. Regarding query processing time, this study concludes
that the approaches that build the index with graph features
(Grapes [8], GraphGrepSX [2], and CT-Index [15]) outperform
the others, and, among them, those that use simpler features
(Grapes and GraphGrepSX) obtain the best results. The tech-
niques that show a better scalability are GraphGrepSX, Grapes,
and CT-Index. However, Grapes, fails to build an index for large
datasets due its memory requirements. Finally, the survey shows
that algorithms based in mining techniques (gIndex [24] and
Tree+∆ [28]) are only competitive for small datasets.

Recently, two new methods that employ caching on top of ex-
isting FTV techniques have been proposed (iGQ [22] and Graph-
Cache [23]). They take advantage of the fact that, in real-world
scenarios, most current queries have subgraph or super-graph
relations with the future ones. Therefore, they use a caching sys-
tem with past queries and their answers, including some novel
replacing strategies, to improve the performance of existingmeth-
ods. Another recent work [14], after analyzing both matching
and decision problems, it concludes that there exist algorithm
specific straggler queries that are challenging only for specific
approaches. Based on the above observation, a novel framework
is proposed in [14] that leverages parallel execution and query
rewriting to achieve better overall performance.

Based on the conclusions of [13], we select GraphGrepSX and
CT-Index as the base of the present work, to develop improved
indexing structures to solve the decision problem. Notice that
our experiments consider databases whose size is between 10 and
20 times larger than those of [13], and, therefore, we discarded
Grapes due to its problems with large databases. Finally, the
results of the present work may be incorporated in complex
query processing frameworks, as the one proposed in [14], which
may also leverage in caching techniques [22, 23].

2.1 GraphGrepSX
GraphGrepSX, GGSX for short henceforth, decomposes each
graph in paths up to a maximum length p specified by the user.
Repeated paths are taken into account. With these paths, in the
index building stage, GGSX incrementally builds a trie with a
depth equal to the maximum path length p. Each node of the trie
represents a path from the root to that node, and stores a list of
key-value pairs, where the key represents the ID of a graph in
the dataset that contains the path represented by the node, and
the value is the number of times that the path appears in the
graph. Figure 1 shows an example of a small trie. Each node of
the trie records a large list of key-values pairs, although only two
of them are depicted in the figure due to space limitations. Thus,
as it is represented at the bottom left node of the trie, path “CCC”
is contained 4 times in graphG1, 5 times in graphG3 and 3 times
in graphGn . Notice that the size of the main structure of the trie
is completely dependent on the chosen maximum path length p,
which in practice is a short value. On the other hand, the lists of
key-value pairs recorded in each node increase their size linearly
with the size of the database.

In GGSX, as in any other FTV technique, subgraph query
processing is divided into two stages: filtering and verification.
In the filtering stage, a trie is built using all the paths of the query
whose length is lower or equal to the chosen maximum length p.
The number of repetitions of each path is only recorded now for
leaf nodes. The filtering algorithm performs a joint breadth-first
traversal of query and database tries. When a query leaf node
is reached, the number of repetitions r recorded in the query
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Figure 1: Trie structure used as indexing in GGSX.

trie node is compared with the list of repetitions recorded in the
database trie node, obtaining the set of graphs that contain at
least r times the relevant path. Such list of graphs is maintained to
be intersected with subsequent lists obtained from the remainder
query trie leaf nodes. The final list of graphs resulting from all
the intersections is tested, in the verification stage, using the VF2
subgraph isomorphism algorithm.

Overall, it is expected that the chosen p value should have
an impact in different aspects: the index size (should increase
with p), the index construction time (should increase with p), the
filtering time (should increase with p) and the verification time
(should decrease with p). To the best of our knowledge, there is
not, currently, any mathematical model for the determination of
the best expected p value for a given dataset, therefore, it has to
be chosen based on some benchmarking.

2.2 CT-Index
CT-Index uses a list of bitmaps of a fixed size f called fingerprints,
for indexing purposes in the filtering phase. Roughly speaking,
either paths or trees, and cycles of each graph are hashed to
integers between 0 and f , which are next used to activate bits in
the graph fingerprint. To generate all the possible either paths
or subtrees, and cycles, a maximum length p is again considered.
Figure 2 illustrates the creation of a fingerprint from a given
graph. First, all possible features, either paths or trees, and cycles
of a maximum length p are generated from the graph. A specific
tree contained in a graph is depicted in Figure 2(a). Next, the
extracted features are encoded in a canonical string format (see
Figure 2(b)). A hash function is next applied to the generated
canonical string to obtain an integer. Integer number 27 is ob-
tained from the string in the example of Figure 2(c). Finally, the
relevant bit of the graph fingerprint is set to 1 (see Figure 2(d)). It
has to be noticed that the hash function may generate the same
integer for different features (collisions). Such collision have a
negative effect, decreasing the number of pruned graphs in the
filtering stage.

CT-Index is also a FTV technique, with relevant filtering and
verification stages. In the filtering stage, a fingerprint is obtained
for the query graph as described above, using the same finger-
print size 2f and the same feature maximum length p. The query
fingerprint is then tested for bitmap containment with each fin-
gerprint in the index. Bitmap containment is performed by first
splitting both fingerprints (query FQ and database FD) into a
sequence of long integers (query LQ and database LD), and then
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Figure 2: Fingerprint construction process. In (a) a tree fea-
ture is selected. In (b) the feature is transformed into a
canonical string. It is hashed in (c). In (d) the hashed value
is set in the fingerprint.

testing bitmap containment between each pair of (LQ,LD) using
bitmap operations (LQ ∧ LD = LQ).

CT-Index uses, in the verification stage, a version of the VF2
subgraph isomorphism algorithm, improvedwith additional heuris-
tics.

It is noticed that with this technique, two parameters may
be chosen to construct the index, namely, the maximum feature
length p and the fingerprint size 2f . It is expected that the maxi-
mum feature length should not have an impact either in the index
size or in the filtering time. However, increasing p should have
a positive impact in the verification time (more graphs should
be discarded in the filtering phase) and should have a negative
impact in the index construction time (more and larger features
have to be processed). Regarding the fingerprint size 2f , on one
hand, it has clearly a negative impact in the index size, and there-
fore in the filtering time (larger fingerprints have to be compared).
On the other hand, however, it should have a positive impact
in the verification time, by reducing the number of collisions
generated by the hash function.

3 BITMAP GGSX
In this section, an evolution of the GGSX method, called Bitmap-
GGSX (BM-GGSX), is explained in detail. We modify the original
GGSX method in the following three aspects: i) The labels of
the graph edges are now considered, improving the performance
of the method in graphs such as molecule structures, whose
edges contain bound type information (simple bound, double
bound, etc.). ii) Very large compressed bitmaps are now exploited
to provide a more compact and efficient representation of the
list of pairs (graph id, repetitions) recorded in each trie node.
iii) The original VF2 subgraph isomorphism algorithm used in
the verification stage was replaced by the parallel execution,
in a multi-thread architecture, of the improved version of VF2
algorithm provided by the CT-Index implementation.

The original GGSX method discards the edge labels during
the construction of the trie structure. On one hand, this reduces
the size of the structure, and as a consequence it reduces also the
filtering time. But, on the other hand, it increases the number of
candidates for the verification stage, which is in general more
costly. To incorporate edge labels in the trie, we modify the
structure of the trie nodes by adding a new field that records
edge labels. Now, the interpretation of a trie node changes from
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Figure 3: Comparison between (a) GGSX and (b) BM-GGSX
graph repetitions storage technique.

interpreting it as a graph node of a path, as it is in the original
GGSX, to interpreting it as the combination of a graph node with
the edge that precedes it in the path. Obviously, given that paths
start at node and not at edges, the nodes of the first level of the
trie have always null edges. Clearly, this new trie structure has
more nodes in each level, enabling the representation of a larger
number of different paths of the same length.

In the original GGSX method each node of the tree records a
list of pairs (i, r ), where i is an identifier of a graph (integer index)
that contains the path represented by the trie node and r is the
number of times that such path appears in the graph. Such lists
are replaced in BM-GGSX by an structure that exploits the use
of bitmaps. In particular, each trie node records now an array of
bitmaps. The bitmap recorded at the index r of the array has a 1
in its position i if, and only if, the graph with identifier i contains
the path represented by the trie node at least r times. Figure 3
illustrates the difference between the representation of graph
references and repetition in both GGSX and BM-GGSX. Bitmaps
are compressed in BM-GGSX using the Enhanced Word-Aligned
Hybrid method [17].

The algorithm of the filtering stage that exploits the above
structure is illustrated in Figure 4. First, as it is shown in the
left part of the figure, the query is processed to obtain its trie
structure. Remember that, now, each node contains a pair of
(node label, edge label) and that the number of repetitions in the
query trie is recorded only in the leaf nodes. As in the case of
GGSX, a joint breadth-first traversal of both query and database
tries is performed, obtaining now, for each leaf node of the query
trie, the bitmap recorded in the position of the array whose index
matches the number or repetitions recorded in the leaf node. This
is illustrated in the central part of the figure. Finally, a binary
AND operation is performed between all the compressed bitmaps,
to obtain the result bitmap, which will contain a 1 in the positions
of all the graphs containing, at least the number of times required,
all the paths of maximum length of the query.

Notice that, as it is shown in Figure 3, if the bitmap recorded at
the index r of the array of a trie node has a 1 in position i , then all
the bitmaps recorded in indices lower than r must also have a 1
at position i . This inserts redundant information in the structure,
but, as a consequence, it also enables better performance during
query processing, since only one of the bitmaps of each candidate
node of the trie has to be accessed.

4 COLUMN-WISE CT-INDEX
The index structure used by CT-Index consists of one fingerprint
for each graph of the database. Those fingerprints are sequen-
tially generated and recorded during the index construction and
sequentially processed during the query evaluation. The collec-
tion of all fingerprints might be seen as a matrix, where each
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Figure 5: Example of a new graph(ID = 5) insertion in the
CW-CTI index.

row is a fingerprint and each column a bit position inside the
fingerprint. It is noticed that such matrix is recorded row-wise in
CT-Index. The Column-Wise CT-Index, in short CW-CTI, lever-
ages the use of compressed bitmaps by recording and processing
the fingerprints column-wise. Thus, if 2f is the chosen size for
the fingerprints, then the index of CW-CTI is a sequence of 2f
bitmaps, such that fingerprint number b has a 1 at position i if,
and only if, the fingerprint of molecule number i has a 1 in the po-
sitionb of its fingerprint. The bitmaps of CW-CTI are much larger
than the fingerprints of CT-Index, and they are likely to contain
larger sequences of repeated bits, so, they are good candidates for
the use of bitmap compression. Enhanced Word-Aligned Hybrid
compression [17] is used in the present implementation, which
enables the reduction of index size compared to the original
CT-Index.

The building stage of CW-CTI is similar to that of CT-Index.
Each fingerprint is constructed exactly in the same way, however,
now each bit of the obtained fingerprint is appended to the end
of each corresponding CW-CTI bitmap. This process is illustrated
in Figure 5 for a specific graph G5.

Figure 6 illustrates the algorithm of the filtering stage of CW-
CTI. It is noticed that the algorithm is completely different from
the one of CT-Index. First, the fingerprint of the query is obtained
in the same way that it is obtained for CT-Index. Next, for each 1
in the query fingerprint, the compressed bitmap recorded at the
relevant column of the CW-CTI structure is obtained. Remember
that such compressed bitmap contains a 1 for each graph whose
fingerprint has a 1 in the same position. Finally, all the obtained
bitmaps are intersected to produce the final result of the filtering
stage. The result compressed bitmap will contain a 1 for each
candidate graph, i.e., each graph whose fingerprint is binary
contained in the query fingerprint.

The verification stage in CW-CTI performs a subgraph isomor-
phism test to the final candidate set of graphs with the improved
version of the VF2 used in the CT-Index method, except that now
this algorithm is executed in parallel in a multi-thread architec-
ture.

As it was already stated, CW-CTI requires, in general, less
storage than the original CTI-Index, due to the use of bitmap
compression. The number of candidates obtained from the filter-
ing stage is exactly the same as the one obtained by CTI, however,
the verification time should be better, due to the use of a parallel
execution of the VF2 algorithm. Regarding the filtering time, it
is noticed that the number of binary AND operations between
compressed bitmaps required is directly determined by the num-
ber of 1s in the query, i.e., by the number of different features in
the query, which is higher as the query size increases. Therefore,
it is expected to behave better with smaller queries.

5 K-MEANS CT-INDEX
In this section K-Means CT-Index (KM-CTI), a new proposal
based in the CT-Index method, is described. This new method
was constructed with the aim of reducing the number of finger-
print comparisons made in the filtering stage of the CT-Index
algorithm. It is reminded that CT-Index performs a comparison
between the query fingerprint and each of the fingerprints of
the database, therefore, it is expected that the filtering time will
increase linearly with the database size. KM-CTI uses a binary
tree of bitmaps, where the leaf nodes correspond to the database
fingerprints, and parent nodes are constructed by performing
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Figure 6: Example of filtering stage in CW-CTI.

the binary OR operation between two children. If the compari-
son between the query fingerprint and a given node of the tree
returns false, then the whole branch below the node may be
directly discarded. Thus, if the database is large enough, then
searching the KM-CTI binary tree will require less comparisons
than the number of database fingerprints, reducing the time of
the filtering stage.

An example of the use of a KM-CTI binary tree to evaluate the
fingerprint of an input query is illustrated in Figure 7. It is noticed
that, in the binary tree, all the fingerprints are in the leaf nodes,
and each parent node contains the binaryOR of its children. The
query is first comparedwith the root node. Given that the query is
binary contained in the root node, then it has to be comparedwith
each of the two children. The comparison with the left children
is positive, and therefore the process has to continue through
the left branch. However, the comparison with the right child is
negative, therefore the whole branch may be discarded. In the
figure, highlighted nodes have been compared with the query and
nodes of dark color represent positive results in the comparison.
Therefore, in this example, the algorithm performs 7 comparisons
(instead of the 8 comparisons that the original CI-Index would
require) to select two fingerprint candidates for the verification
stage. Again, the chosen algorithm for the verification stage is
the VF2 version proposed by the original CT-Index method, and
again, this algorithm is executed in parallel in a multi-thread
architecture.

The KM-CTI binary tree will offer a good performance if the
internal nodes discard large numbers of fingerprints with few
comparisons. To achieve this, pairs of bitmaps have to be com-
bined under parent nodes in a way that minimizes as much as
possible the number of 1s in those internal nodes. This behav-
ior during the tree construction is achieved in KM-CTI through
the application of the K-Means [7, 18] clustering algorithm, re-
cursively to the original set of fingerprints, as it is explained
below.

In general, K-Means is used to distribute a set of elements
in K clusters, in a way that a given distance measure is mini-
mized between the elements of each cluster. Broadly speaking,
the algorithm works as follows. First, K elements of the set are
aleatory chosen as centroids of theK clusters. Next, each element
is assigned to the cluster corresponding to its nearest centroid.
Once the first cluster have been defined, a new centroid is chosen
for each cluster by computing some kind of mean between the
elements of the cluster. The processes of assigning elements to
their nearest neighbor centroid and computing new centroid are
iteratively repeated until the elements of each cluster do not
change in two consecutive iterations.

To construct the tree, K-Means is first applied with K = 2 to
the original set of fingerprints, to obtain two clusters. The binary

OR of the elements of each cluster is computed to obtain the two
children of the root node of the tree. This process is recursively
repeated inside each cluster until one of the two following con-
ditions hold: i) the elements per cluster reach two (two original
fingerprints), ii) the K-Means method cannot subdivide the clus-
ter further. At this stage the tree is completed. The number of
fingerprints contained in a leaf node may be greater than two if
they are either equal, or so similar that they cannot be subdivided
further.

To be able to apply K-Means to sets of bitmaps, both a distance
measure and a mean calculation method have to be defined. The
number of 1s in common between elements of the same cluster
must be maximized, in order to to minimize the 1s in the binary
OR. If b1 and b2 are two bitmaps, then the distance between b1
and b2, denoted d(b1,b2), is defined in the current proposal as
follows.

d(b1,b2) =
{
0, if b1 ⊆ b2 ∨ b2 ⊆ b1.

count1s(b1 ⊕ b2), otherwise.
(1)

In the above definition, bi ⊆ bj is used to denote that bi
is binary contained in bj , i.e., bi ∧ bj = bi . The XOR binary
operation between two bitmaps bi and bj is denoted by bi ⊕ bj ,
and count1s(b) denotes the number of 1s of a bitmap b. It is
noticed that the above definition of distance between bitmaps is
based on the well-known Hamming distance [9], that counts the
number of 1s in the XOR of the bitmaps.

The mean calculation method enables obtaining a representa-
tive centroid bitmap from all the bitmaps of a cluster. If zeros(i)
is the number of 0s in position i of all the bitmaps of the cluster
and ones(i) is the number of 1s in position i of all the bitmaps of
the cluster, then value of the bit at position i of the mean of the
bitmaps of the cluster is 0 if zeros(i) > ones(i) and 1 otherwise.

The calculation of distance and mean between bitmaps if illus-
trated in Figure 8 through various examples. Note that KM-CTI is
an in-memory index, therefore a binary tree is expected to offer
better results than trees of higher order. The value of K , however,
can be increased to obtain an structure suitable for secondary
storage, as it is the B-tree.

As it is the case of the tree based indexes of conventional
alphanumerical data, KM-CTI is expected to improve the perfor-
mance of the sequential search adopted by CT-Index, if the query
is selective enough. Therefore, it is expected that KM-CTI will
behave better with large query graphs than with small ones.

6 EVALUATION
In this section, the experiments performed and their results are
described and discussed. The system setup, datasets and queries
are described in a first subsection. Next, the benchmark under-
taken to select the appropriate values for maximum path length
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Figure 8: Example of distance and mean measures be-
tween bitmaps used in KM-CTI.

and fingerprint size is described. Finally, the last subsection is
devoted to the comparison of the performance of the various
techniques, with different query and database sizes.

6.1 System Setup, Datasets and Queries
The experiments were performed on a CentOS Linux release
7.4.1708, with 2 processors Intel(R) Xeon(R) CPU E5-2630 v4 (2.20
GHz, 10 cores) and 384 GB RAM. The GGSX implementation in
C++ was obtained from the authors, and reimplemented in Java.
For the CT-Index method, a jar was obtained from one of the
authors website, and then a reverse engineering technique was
applied in order to obtain the code. All the new methods were
implemented in Java, reusing the above two base implementa-
tions. The experiment executions were executed using a JVM
with 32GB. The verification stage in BM-GGSX, CW-CTI, and
KM-CTI methods was performed using 10 threads.

Two different datasets were used to construct databases of
different sizes for the experiments. The AIDS2 dataset has al-
ready been used to evaluate other previous works of the state of
the art [2, 8, 13, 15, 16]. It is composed of 42689 graphs, with an
average of 45.70 vertices and 47.71 edges per graph. PubChem3

is a molecular dataset that has currently around 96 million com-
pounds, with an average of 41.40 vertices and 42.16 edges per
graph.

In both experiments queries of sizes ranging from 4 to 40
edges (4, 8, 12, 16, 20, 24, 28, 32, 36, 40) were used. For each size,
a set of 1000 query graphs was constructed. The construction
of the queries was performed in the same way as in previous
works [13, 15], by extracting subgraphs from the dataset. For
each query, a graph was randomly selected according to a uni-
form distribution. A vertex of the graph was randomly selected
according to a uniform distribution to act as starting point from
which to make the query graph grow. From this starting vertex, a
random tree was created until the desired size was reached. The
size of the query was given by the number of edges of its graph.

2https://cactus.nci.nih.gov/download/nci/
3https://pubchem.ncbi.nlm.nih.gov/

Two different sets of queries were constructed. One for the AIDS
dataset, and the other for the PubChem dataset.

6.2 Parameter Selection
The objective of this first experiment was twofold. The first aim
is to test the behavior of the different techniques, including the
two methods obtained from the state of the art (GGSX and CT-
Index), and the three new proposals, with two different datasets
and query sizes. At the same time, the experiment aims at testing
the performance of each technique with different values of its
parameters, including maximum path length for all the methods
and fingerprint size for those based in CT-Index.

The experiment was executed on two databases, AIDS on the
one hand and 200k molecular structures obtained from PubChem
(PubChem200k) on the other hand. The 1000 queries extracted
from each dataset were evaluated 5 times with each method,
and the experiment was repeated 4 times at different moments.
As it was expected, the size and building time of the BM-GGSX
trie structure increases with the maximum path length used.
Regarding the CT-Index based methods, the size of the indexes
is only affected by the fingerprint size, whereas both fingerprint
size and maximum path length have a negative impact on the
index building time.

Regarding query response time, Figure 9(a) shows the com-
parison (subdivided into filtering, query building and verifica-
tion times) between the original GGSX and BM-GGSX on the
AIDS database, using different maximum path lengths and query
sizes. As it is shown in the figure, the reduction in filtering time
achieved by BM-GGSX is huge (around 90% of reduction in many
cases). Due to this large difference, the original GGSX method
was not considered for subsequent experiments. As it can be
observed in the figure, using different values for the maximum
path length (4, 5, 6 and 7) does not show to have a significant
impact in the query response time.

Figures 9(b-d) show the query response times obtained with
the three CT-Index based methods on the AIDS database, using
different maximum path lengths, fingerprint sizes and query
sizes. In general, for small queries, where the query building
time is not important, a maximum path length higher than 4
offers better results, whereas the fingerprint size does not show
a significant impact in the response time. For larger queries, the
query building time becomes very significant, due to the few
candidates retrieved from such a small database, and therefore,
increasing the maximum path length impacts negatively in the
response time.

The results of the experiment on the PubChem200k database
are illustrated in Figures 10(a-d). In particular, Figure 10(a) shows
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(a) Comparison of response times (ms) between GGSX and BM-GGSX on AIDS for different maximum path lengths and query sizes.

(b) Response times (ms) of CT-Index on AIDS for different fingerprint sizes, maximum tree lengths and query sizes.

(c) Response times (ms) of CW-CTI on AIDS for different fingerprint sizes, maximum tree lengths and query sizes.

(d) Response times (ms) of KM-CTI on AIDS for different fingerprint sizes, maximum tree lengths and query sizes.
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Figure 9: Response times of the methods on the AIDS database using different parameters.
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(a) Response times (ms) of BM-GGSX on Pubchem200k for different fingerprint sizes, maximum tree lengths and query sizes.

(b) Response times (ms) of CT-Index on Pubchem200k for different fingerprint sizes, maximum tree lengths and query sizes.

(c) Response times (ms) of CW-CTI on Pubchem200k for different fingerprint sizes, maximum tree lengths and query sizes.

(d) Response times (ms) of KM-CTI on Pubchem200k for different fingerprint sizes, maximum tree lengths and query sizes.
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Figure 10: Response times of the methods on the PubChem200k database using different parameters.
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the response times obtained by BM-GGSX, with different maxi-
mum path lengths and with different query sizes. As it may be
observed, the way the queries are constructed and the the much
larger size of the database, compared to AIDS, causes the veri-
fication time to be the most significant one in this experiment.
Again, the maximum path length does not show a clear impact
in the total response time for BM-GGSX. Regarding the methods
based on CT-Index (see Figures 10(b-d)), again, significant differ-
ences cannot be observed in general between different values of
fingerprint size and maximum path length, although maximum
path lengths higher than 4 provide slightly better results in most
cases.

Based on the above experimental results, and also taking into
account relevant decisions made in a previous survey [13], in
the subsequent experiment we decided to use the same values of
6 for the maximum path length and of 4096 for the fingerprint
size, for all the methods. The objective of such new experiment
is the comparison of the performance of all the methods (except
the discarded original GGSX), for increasing database and query
sizes and the results and relevant discussion are given in the next
subsection.

6.3 Performance comparison
In this section, the results of the performance comparison of all
the methods (except the discarded GGSX) are discussed. As it
was already stated, a maximum path length of 6 and a finger-
print size of 4096 were chosen. First, the results of the experi-
ments described in the previous subsection are used to compare
the performance of all the methods on the AIDS database. Fig-
ures 11(a-c) show the filtering, query building and verification
times of queries of different sizes on the AIDS database. As it
may be observed in Figure 11(a), CW-CTI has the best perfor-
mance for small queries, both in filtering time and also in total
response time. This is due to the few intersections between com-
pressed bitmaps that the technique has to perform when few
1s are present in the query fingerprint. However, as the query
size increases, the performance of CW-CTI deteriorates, reach-
ing the same performance of CTI for large queries, whereas the
performance of KM-CTI improves. The reason is that, with large
queries, with many 1s in their fingerprints, many branches of
the KM-CTI binary tree of bitmaps will be discarded during the
filtering stage.

A second experiment was undertaken to compare all the meth-
ods, except the discarded GGSX, with increasing database and
query sizes. To achieve this, 10 databases with sizes ranging from
100k to one million graphs were extracted from the PubChem
dataset. All the index structures were created for each database,
and relevant index size and index building time results were ob-
tained. Figure 12 shows the index size and index building time for
each of the analyzed methods. Index building time scales well for
CT-Index and CW-CTI methods, growing linearly, and ranging
from less than 6 minutes to index 100k graphs, to around 1 hour
to index the largest dataset of one million graphs. KM-CTI index
building time grows linearly as well, but with a higher slope than
CT-Index and CW-CTI methods, being more than 3 times slower
for the largest dataset. This is due to the recursive application of
the K-Means method to construct the binary tree of bitmaps. BM-
GGSX has the worst performance of all methods, taking more
time to index 200k graphs, than CT-Index and CW-CTI methods
to index one million. Its index building time increases drastically
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Figure 11: Performance comparison of themethods on the
AIDS database.

with the size of the dataset, and it needed more than 14 hours to
index the largest database of one million graphs.

Regarding the index size, BM-GGSX performs again the worst
among all the proposed methods, showing a big slope in its scal-
ability plot, going from 155MB in the shortest dataset to almost
1.4GB in the largest one. CW-CTI performs the best, scaling
slightly better than CT-Index method, due to the use of com-
pressed bitmaps in its storage structure. KM-CTI doubles the
space of CW-CTI and CT-Index, due to the additional bitmaps
stored in the internal nodes of its binary tree. However, its size
is still almost half of that required by BM-GGSX.
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(a) Index Building Time (b) Index Size
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Figure 12: Index Size and Building Time for increasing database sizes.
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Figure 13: Filtering time and total query response time for increasing database and query sizes.

Once the indexes were created, the 1000 queries of each size
(from 4 edges to 40 edges), generated for the previous experiment
from the 200k PubChem database, were executed four times for
each database size, and the whole experiment was repeated three
times in different moments. Figures 13(a-c) depict the filtering
time of each method. It is reminded that the main contribution of
the present work is on the index structures used in the filtering
stage of the methods. BM-GGSX and CW-CTI obtain the fastest
filtering time for small queries (around 80% of reduction with
respect to CTI), as it is shown in Figure 13(a), whereas KM-CTI
and CTI offer a similar performance. It is reminded that CW-CTI
was expected to behave well with small queries that have few
1s in their fingerprints. On the other hand, small not selective
queries, with few 1s in their fingerprints, do not leverage the
binary tree of KM-CTI. As the query size increases, CTI and
BM-GGSX keep their performance figures, however, CW-CTI
and KM-CTI invert their positions. With queries of large sizes,

with many 1s in their fingerprints, CW-CTI has to perform many
intersections between large compressed bitmaps. On the other
hand, KM-CTI behaves better, as many branches of its binary
tree are discarded during the evaluation. This situation is clearly
shown in Figures 13(b) (around 70% of reduction with respect
to CTI) and 13(c) (around 75% of reduction with respect to CTI).
These results are completely aligned with those already described
for the AIDS database above.

To complete the analysis of the results, the total query response
times are shown in Figures 13(d-f). First, looking at the scale of
the total response times, it is noticed that, in these databases,
contrary to what it was observed with AIDS, the filtering time
does not have a great impact on the total response time, since
the verification time is the largest one by difference. In spite of
this, it is shown how the three methods proposed in the present
work outperform the CT-Index method. This is mainly due to
the parallel execution in a multi-thread architecture of the VF2
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subgraph isomorphism algorithm. It is also noticed that, BM-
GGSX, which had the best results in filtering time for all the
query sizes, does not show a good total response time for small
queries. The reason for this lost of performance is the use of paths
as graph features in BM-GGSX, contrary to the use of trees in CT-
Index based techniques, which enable the generation of a larger
number of different features in small graphs, reducing the number
of candidates to verify. The small differences between CW-CTI
and KM-CTI are caused by the already mentioned differences in
filtering time, since both the effectiveness of their filtering stage
and their verification stage are identical.

7 CONCLUSIONS
In this paper, three new FTV methods for subgraph search on
large databases of small graphs are proposed. The methods are
based on already existing state of the art solutions, namely GGSX
and CT-Index, and provide improvements both in filtering and
verification response times. BM-GGSX improves GGSX through
the incorporation of compressed bitmaps for the representation
of graph references, and reaches the best filtering times for all
types of queries and the best total response times for medium and
large queries. However, it does not improve the bad figures that
GGSX already have in both index size and index building time.
CW-CTI exploits also compressed bitmap inside a column-wise
structure for the storage of the CT-Index fingerprints, obtaining
very good performance for small size queries. KM-CTI uses the K-
Means clustering method on CT-Index fingerprints to construct a
binary tree of bitmaps, which is used during the filtering stage to
reduce the required fingerprint comparisons. KM-CTI has very
good performance for medium and large queries, with the cost
of increasing the index size and building time with respect to
the original CT-Index, but keeping the figures much lower than
those reached by BM-GGSX. Thus, a combination of CW-CTI
and KM-CTI covers all the query sizes with performances either
similar of better than those of BM-GGSX, but keeping both index
size and building times inside a reasonable range.

Future research work is related to the implementation of the
proposed techniques in distributed large scale data processing
architectures, to reach reasonable performances for databases of
sizes larger than 100 million graphs, as it will be the case of the
PubChem dataset in the near future. The results will be incorpo-
rated in a query engine prototype that is being implemented in
the scope of the NEXTCHROM project, co-funded by the Spanish
government and the company Mestrelab Research S.L.
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ABSTRACT
Knowledge Graphs (KGs) have become ubiquitous in organisa-

tions. They provide a unified and structured model to store the

data as well as facilitate effective search to fulfill many complex

information needs. One of the ways to query these KGs is to use

SPARQL queries over a database engine. Since SPARQL follows

exact match semantics, the queries may return too few or no

results. Recent works have proposed query relaxation where the

query engine judiciously replaces a query predicate with similar

predicates using weighted relaxation rules mined from the KG.

However, the space of possible relaxations is potentially too large

to fully explore and users are typically interested in only top-k
results, so such query engines use top-k algorithms for query pro-

cessing. Nevertheless, they still process all the relaxations, many

of whose answers do not contribute towards top-k answers. We

propose Spec-QP, a query planning framework that speculatively

determines which relaxations will have their results in the top-k
answers. This reduces the computational overheads and gives

faster response times with good precision over top-k results. We

tested Spec-QP over two database engines, PostgreSQL and Vir-

tuoso, with two datasets – XKG and Twitter – to demonstrate the

efficiency of our planning framework at supporting relaxations

in query engines.

1 INTRODUCTION
Knowledge Graphs (KGs) such as YAGO [34], DBPedia [2] and

Freebase [5] are typically stored as RDF triples of ⟨s p o⟩ where
s is the subject, o is the object and p is the predicate. These

RDF KGs are queried using the SPARQL query language, that,

at its core consists of triple patterns. For example, the following

SPARQL query asks: “Which singers also write lyrics and play

guitar and piano?”.

SELECT ?s WHERE{
?s ‘rdf:type’ <singer>.
?s ‘rdf:type’ <lyricist>.
?s ‘rdf:type’ <guitarist>.
?s ‘rdf:type’ <pianist>

}
where ?s is a variable to be bound in each of the four triple

patterns and to be returned as a result.

∗
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Original Relaxations
<singer> <vocalist>,<jazz_singer>, <artist>
<lyricist> <writer>
<guitarist> <musician>, <instrumentalist>
<pianist> <percussionist>

Table 1: Example relaxations

An exhaustive list of such singers in the KG can be computed,

but users who issue such queries typically want only the top-k ,
ranked results. Ranking of SPARQL query results has been stud-

ied before in [9, 12, 23] and they typically make use of scores for
each triple in the KG

1
. However, a problem that users sometimes

face when they issue such queries is low recall. That is, the KG
may not have k results to return (in some cases, the KG may

have zero results if one or more of the triple patterns do not

have a match). In these cases, it is desirable to relax the query

by replacing one or more of the triple patterns, while ensuring

that the query still reflects the original information need. For

example, a possible relaxation of the query above is to change the

triple pattern ⟨?s ‘rdf:type’ <singer>⟩ to ⟨?s ‘rdf:type’
<vocalist>⟩. Previous works have dealt with doing these re-

laxations automatically and ranking the corresponding results

[10, 18, 31, 42]. In this paper, we address the problem of efficiently
evaluating these relaxed queries.

Query Processing. Processing queries and their relaxations to

return top-k results is computationally expensive. For example,

assuming that every triple pattern in the above query has relax-

ations as shown in Table 1, would lead to a total of 48 unique

queries (that is, original query, query with one relaxation, query

with two relaxations, etc.). A naive method would compute the

results to each query, sort the results by score and return the

top-k .
Since the user is looking for only top-k answers, the naive

method can be improved upon by using top-k operators. They

can compute results from all relaxations simultaneously, but

in a way that drastically reduces wasteful computations. The

following two top-k operators can be employed for achieving

this: Incremental Merge [35] (to process the relaxations for a

given triple pattern) and Rank Join [19] (to compute (partial)

join results in sorted order). However, this method still results in

wasted resources, since not all relaxations contribute a result to

the top-k .

1
The scores could be based on confidence values, popularity, etc.
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Approach and contributions. In this paper, we propose a specu-
lative approach for pruning the space of possible relaxations for

a given query. We make use of precomputed statistics about the

distribution of scores of the matches to triple patterns in order

to speculate on the requirement of relaxations for each triple

pattern in order to get top-k results. This precomputed metadata

is an approximation of the score distribution of the answers from

the corresponding triple pattern and not the actual scores. This

is like computing histograms, or simpler. Each of these statistics

can be computed in one pass as part of the statistics collection

phase of any database system that does cost-based optimization

of queries.

When a user enters a query, we estimate the top answer scores

that can be achieved using the possible relaxations. This estima-

tion is done using the score distributions and the join cardinality

estimates. We then prune those relaxations which are unlikely to

contribute triples to the top-k answers based on the top score es-

timates. This results in reduced computation and faster response

times. Also, the amount of search space traversed is reduced

by pruning unnecessary relaxations and this, in turn, leads to

reduction in memory requirements. The runtime reduction com-

bined with reduced memory requirements leads to an overall

improvement on memory consumed over time. This is especially

beneficial for servers where the total resource consumption per

query is important, as it is inversely proportional to the achiev-

able throughput. Or equivalently, the cost of running the server

for a given load is proportional to the cost per query and this

improvement implies that the server can run the service with

lesser budget in terms of money. Note that our work is orthogonal
to any query engine as it can be deployed on top of any existing
RDF-specific database engine.

Our main contributions are summarized as follows.

i. A model for the score distribution of individual triple pat-

terns.

ii. A technique to estimate the scores of answers to a query

using the above model and using it to predict the presence of

answers from each triple pattern’s relaxations in the top-k .
iii. Pruning the space of relaxations to achieve significantly

faster response timeswhilemaintaining high accuracy, thereby

aiding cost-effective exploration of KGs.

iv. Thorough experimental evaluation of the proposed technique

over two database engines – PostgreSQL and Virtuoso – with

two real world datasets to demonstrate its efficiency over the

baseline.

Organisation. The rest of the paper is organised as follows:

section 2 introduces useful definitions and explains the top-k
operators based query processing approach. Section 3 outlines

Spec-QP, the proposed speculative approach to query planning

and its execution. Section 4 discusses the experimental results.

Section 5 lists the related work and finally section 6 concludes

the paper with future work directions.

2 PRELIMINARIES
This section introduces some preliminary definitions that will be

used henceforth.

Definition 2.1. Knowledge Graphs (KGs)
Given a set of entities E and predicates P, a triple t is a tuple

t =⟨s p o⟩ such that, t ∈ E× P× E, s ∈ E, p ∈ P and o ∈ E. Here,
s is called the “subject”, p is the “predicate” and o is the “object”

of the triple t . Each triple is associated with a score, denoted by

S (t ). These scores represent confidence values or popularity of

the triples as previously studied in [9, 12, 23]. A set of such tuples

can be represented as a graph, which we call a Knowledge Graph,

KG ⊆ E × P × E.

Definition 2.2. Triple pattern query
A triple pattern is of the form q =⟨SPO⟩, where S, P and O could
either be entities or predicates from the KG or variables. Vari-

ables are always prefixed with a question mark. A triple pattern

matches any triple in the KG having the same values in the des-

ignated field. The variables are then bound to the corresponding

values in the triple. A triple pattern query is a set of triple patterns,

Q = {q1,q2, ...qn }.

Definition 2.3. Answer for a Triple pattern query
Given a triple pattern queryQ and a KG, an answer for the query,

denoted by A, is a mapping of the variables in Q to values in

the KG such that the application of this mapping to each triple

pattern qi ∈ Q, denoted A(qi ), results in a triple in the KG. The

set of all the answers to a query is denoted by the set, A. That is,

A(qi ) = {A(qi ) : A ∈ A} (1)

Definition 2.4. Score of an answer
The relative score of a triple t which matches the triple pattern q
is denoted by S (t |q) and is computed as follows:

S (t |q) =
S (t )

max

ti ∈A(q )
(S (ti ))

(2)

The value ranges between 0 and 1. The score of an answer

A to a query Q is the aggregation of the relative scores of the

triples resulting from applying the answer mapping to each triple

pattern qi in the query. That is,

S (A|Q) =
∑
qi ∈Q

S (A(qi ) |qi ) (3)

The triple and answer scores have been studied previously in

[10, 18, 31, 42].

Definition 2.5. Weighted relaxation rule
A weighted relaxation rule r is a triple r = (q,q′,w ) which im-

plies that triple pattern q can be relaxed to q′, and w ∈ [0,1]

denotes the reduction in scores of the triples matching the re-

laxed triple pattern. Automatic computation of relaxations and

the corresponding weights have been studied in [10, 42].

For example, ⟨?x ‘rdf:type’ <singer>⟩ could be relaxed to
⟨?x ‘rdf:type’ <vocalist>⟩with a weight of 0.8, i.e., r = (⟨?x
‘rdf:type’ <singer>⟩, ⟨?x ‘rdf:type’ <vocalist>⟩, 0.8).

Definition 2.6. Relaxed Query
Given a query Q and a relaxation r = (q,q′,w ), we say that r
applies toQ if q ∈ Q. The result of applying r toQ is a new query

Q′ = (Q \ q) ∪ q′ called the relaxed query. The relaxed query so

obtained can further be relaxed by relaxing any of Q′ \ q′ triple
patterns. The score of an answerA obtained through relaxation r
applied to a query Q is equal tow ×S (A|Q′).The score is reduced
further for each subsequent relaxation in a similar manner. Since

the same answer could be obtained from multiple relaxed queries,

the score of an answer A with respect to the original query and

a space of possible relaxations is defined as the maximum score

obtained through any (relaxed) query,

S (A) = max

Q′
(w × S (A|Q′))

, wherew = 1 for the original query, Q.
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2.1 Non-Speculative Query Processing
(NSpec-QP)

Incr. Merge

q1 q'1 q''1 q2 q'2 q3 q'3

Rank Join

Rank Join

Top-k

Incr. Merge Incr. Merge

Figure 1: Query plan generated by NSpec-QP for the query
Q = {q1,q2,q3}. One incremental merge operator is re-
quired for each triple pattern and its relaxations. A rank
join operator takes in two sorted lists and produces a
ranked list of (partial) answers from the join.

As mentioned in the Introduction, we can compute results

from all relaxations simultaneously using two top-k operators:

Incremental Merge [35] and Rank Join [19]. The execution strategy
is essentially a variant of the Fagin’s NRA algorithm [11]. It

computes the exact top-k as it computes all applicable relaxations.

It has been used by systems supporting relaxations such as TriniT

[42].

Given the query Q = {q1,q2,q3}, and the relaxations, r1 =
(q1,q

′
1
,w1), r2 = (q1,q

′′
1
,w2), r3 = (q2,q

′
2
,w3) and r4 = (q3,q

′
3
,w4),

Figure 1 shows the query plan generated using this approach. In-

cremental Merge is used to efficiently scan the list of matches to

a triple pattern and all its relaxations to output only one merged

list sorted in descending order of scores. Each of the three incre-

mental merge operators in the example takes as inputs the sorted

lists of matches
2
for each triple pattern, q1, q2 and q3 and their

relaxations, each multiplied by their relaxation weights. Each

of them outputs a combined sorted list of triples for each triple

pattern along with its relaxations. The rank join computes a join

of the two sorted inputs in an incremental manner until enough

results have been produced, while minimising the number of an-

swers read from each list to get top-k answers. This helps avoid

computing the entire join and then sorting over it. The inputs

for Rank Joins are either the outputs of Incremental Merges or

Rank Joins. Both operators use priority queues for already seen

answers and maintain upper bounds to estimate scores of other

answers that can be obtained by reading further into the lists

at any given point. This avoids accessing entire lists of (partial)

answers and aids early termination.

However, the top-k operators still process relaxations from

all the triple patterns, many of which do not contribute triples

towards the top-k answers. Our technique aims to eliminate this

inefficiency.

2
Recall that each triple is associated with a score.

3 SPEC-QP – THE SPECULATIVE
FRAMEWORK FOR OPTIMIZING QUERY
PLANS

We propose Spec-QP, a speculative query planning framework

which speculates the useful relaxations for a query. It uses a pre-

dictor to predict whether the relaxations of a triple pattern in a

query are likely to be required for producing the top-k answers.

We eliminate the relaxations for those triple patterns which are

predicted to be not required. The predictor uses an expected score

estimator to estimate the expected scores at given ranks for a

(relaxed) query and then, predicts the requirement of relaxations

of a triple pattern for getting top-k answers based on the esti-

mates. The estimator is based on precomputed statistics about

the distribution of the scores for triple pattern matches. We first

describe the estimator and then give details of the speculative

planning approach.

3.1 Expected score estimator
The expected score estimator is based on order statistics and

estimates the expected scores at given ranks for the original as

well as relaxed queries. These are used by the query planner to

predict the presence of answers from a relaxation in top-k .
Them matching triples for a triple pattern, qi , have scores rep-

resented by the independent and identically distributed (i.i.d.) ran-

dom variablesXi1,Xi2, ...,Xim , each with a common distribution,

fi (x ). Here, fi (x ) is the probability distribution for the scores

of the answers for a triple pattern (or relaxation), qi , from the

KG . The cumulative distribution function (cdf) is represented by

Fi (x ). The set {Xi1,Xi2, ...,Xim } is a sample of sizem taken from

the distribution Fi (x ). The set of the observed values of answer

scores {xi1,xi2, ...,xim } of random variables {Xi1,Xi2, ...,Xim } is

called a realization of the sample. Xi (1) ,Xi (2) , ...,Xi (m) are ran-

dom variables resulting from arranging the values of each of

Xi1,Xi2, ...,Xim in increasing order, and Xi (j ) is called the jth

order statistic.

Given these random variables and their distributions, we need

to estimate the score distribution for the answers of the query,

Q. XQ1,XQ2, ...,XQn are the random variables representing the

scores of the n answers to the query, Q (possibly composed of a

single triple pattern). XQ (1) is the first order statistic correspond-

ing to the lowest scoring answer among all the n answers of Q,
and XQ (n) is the n-th (or largest) order statistic corresponding to

the highest scoring answer (ranked 1). A relaxed answer would

appear in top-k only when its expected highest score (XQ ′ (n′) )

amongst its n′ answers exceeds the expected kth highest score

of the original query (XQ (n−k+1)
3
). In order to compute the ex-

pected value at a given rank, we use the result given in [7]:

For i.i.d. random variables,X1,X2, ...,Xm each with a common

distribution, f (x ), the expected value of ith order statistic, X (i )
can be approximated as E (X (i ) ) ≈ F−1 ( i

m+1 ) where F (x ) denotes
the cdf andm is the size of the sample.

Using this, the expectation of XQ (i ) can be approximated as

E (XQ (i ) ) ≈ F−1Q ( i
n+1 ) where FQ (x ) denotes the cdf of the scores

for the answers to the query, Q and n is the no. of answers of Q .

We now give the details of the construction of the probability

density function (pdf) of these random variables.

3
Note that it is n − i + 1 and not i since the nth order statistic represents the

highest value with rank 1.
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3.1.1 Score Distributions for the matches to Triple Patterns:
For every triple pattern qi in the KG, we store the following

4 precomputed statistics about the scores σ i
of the matching

triples:

• mi : the total number of triples matching the triple pattern.

• σ ir : the score of the answer at rank r where r represents
the rank within which 80% of the score mass is contained

for the triple pattern matches.

• Sir : the cumulative score of the answers over all the ranks

1 through r .
• Simi

: the cumulative score of the answers over all the ranks

1 throughmi .

We now estimate the score distribution for answers to triple

pattern qi .
4 fi (x ) and Fi (x ) are used to denote the pdf and cdf

respectively.

The pdf can be modelled as a 2-bucket histogram in the fol-

lowing way:

fi (x ) =
Simi
− Sir

Simi

1

σ ir
for 0 ≤ x < σ ir

Sir

Simi

1

1 − σ ir
for σ ir ≤ x ≤ 1

This pdf gives us the following cdf:

Fi (x ) =ax for 0 ≤ x < σ ir

bx + c for σ ir ≤ x ≤ 1

where

a =
Simi
− Sir

Simi

1

σ ir
and b =

Sir

Simi

1

1 − σ ir

and c =
Simi
− Sir

Simi

−
Sir

Simi

σ ir

1 − σ ir

Our technique depends on statistical estimates – specifically,

what the score of the kth result is for a specific (original) query.

This estimate can be made as accurate as possible, provided suffi-

cient space and time are available. At one extreme, we can assume

uniform distribution for the score of a triple pattern and at the

other, we could consider every single data point (the actual dis-

tribution). In particular, if we had every single data point as a

single-bucket histogram, that would then give us 100% accuracy

on the kth score. But this would be no different from actually

computing the result. Our solution of 2-bucket approximation

strives for the sweet spot on this spectrum and is based on the

fact that even though datasets are different, their score distribu-

tions typically follow a power law distribution – a “fat” head, and

a “long” tail. The narrow and tall bucket represents the interval

which has 80% of the score mass. The longer bucket represents

the long tail having only 20% of the score mass.

3.1.2 Score Distribution for the Triple Pattern Query: The
score of an answer for the triple pattern query is the sum of

the scores of the individual triples in the answer. Since each

triple is contributed by one triple pattern in the query and we

have estimates for their scores, we can estimate the scores for

answers to the query using the following approach.

4
Note that the ranks will not be explicitly reflected here, it is just the distribution of

the answer score values from which each score in {Xi1, Xi2, ..., Xim } is assumed

to be independently sampled.

Input: The query Q = {q1,q2, ...qn }.
Output: The query plan, QP
QP← {{Q1}}, where Q1 = Q
fQ (x ) ← f1 ∗ f2 ∗ .. ∗ fn (x )

Get EQ (k ) from “expected score estimator”.

for qi ∈ Q do
q′i ← top-weighted relaxation for qi
Q′ ← Q − {qi } ∪ {q′i }
fQ′ (x ) ← f1 ∗ f2 ∗ ... ∗ f

′
i ∗ .. ∗ fn (x )

Get EQ′ (1) from “expected score estimator”.

if EQ′ (1) > EQ (k ) then
QP = {{Q1} − {qi }, {qi }}

end
end
return QP

Algorithm 1: PLANGEN generates the query plan.

Let us assume our triple pattern query, Q ={q1,q2}. {X11, X12,

..., X1m } represents them triples matching q1 and {X21, X22, ...,

X2m′ } represents them
′
triples matchingq2. The scores for triples

matching these triple patterns have the distributions f1 (x ) and
f2 (x ) respectively, as defined earlier. The scores of Q’s n answers

are represented by the random variablesXQ1,XQ2, ...,XQn . Each

of these is a sum of two random variables, one from {X11, X12, ...,

X1m } and another from {X21,X22, ...,X2m′ }. The pdf for the sum

of the random variables is given by the convolution of the two

individual pdfs, f1 ∗ f2 (x ). Hence, the pdf for the scores of the
answers to the query is given by the convolution of the pdf’s

of the scores for matches to the constituent triple patterns. The

resulting pdf is a multi-piece-wise linear function. Given the

number of results in the combined distribution, n =m12, we can

estimate σ 12

r , S12r and S12n using the expected score computation

from order statistics. This again results in a two-bucket histogram

for the distribution of the scores of the answers to the query. For

the computation ofm12, we use the estimates for join selectivity
5
,

ϕ12 asm12 =m ∗m
′ ∗ ϕ12. For three or more triple patterns, we

repeat the above process the required number of times to get the

final histogram representing the score distribution for answers

to the query.

3.1.3 Score prediction. Once we have constructed the pdf and
cdf representing the scores for the answers of a given query, we

can estimate the expected score, XQ (n−i+1) at a given rank i as

E (XQ (n−i+1) ) ≈ F−1Q ( n−i+1n+1 ) where FQ (x ) denotes the cdf of the

query answer scores and n is the no. of answers for Q. Given
these estimates for scores at various ranks, we now generate the

query plan.

3.2 Query Planning
Query Plan: Given a query Q, a query plan consists of subsets

of triple patterns Q1,Q2, ....,Qs where

i. each Qi consists of one or more triple patterns from Q,
ii. the Qi’s are pairwise disjoint, and
iii. the union of Qi’s equals Q.

For example, a query plan for the queryQ = {q1,q2,q3}, will be
{{q1,q3}, {q2}}. The singletons correspond to the triple patterns

which require relaxations.

5
Traditional database systems use multiple heuristics to estimate join selectivity.

For the purpose of this work, we have taken exact join selectivity values.
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q1
q3 q2 q'2

top-k

Incr. Merge

Rank Join

Rank Join

Figure 2: Query Plan when Q = {q1,q2,q3} and only q2’s re-
laxations are predicted to be in top-k . Only q2 requires an
incremental merge. q1 and q3 are joined using a rank join
over the sorted answer lists for each of them. One rank
join is required to join these results.

3.2.1 Query plan generation. The key task in the planning ap-

proach is to identify the triple patterns whose relaxations do not

contribute towards the top-k answers. We save on computations

over such triple patterns by never processing their relaxations.

For each triple pattern, only the top-weighted relaxation has the

highest top score due to normalization of scores as per Definition

2.4, i.e, the top score from each relaxation is equal to its weight.

Hence, we need to check only the top-weighted relaxation for

each triple pattern for its potential to contribute answers towards

top-k .
Given a query Q and the score distribution for each triple

pattern, the query plan is generated as outlined in Algorithm

1. PLANGEN first predicts the requirement of relaxations for

each triple pattern. For prediction, the query planner uses the

“expected score estimator” described in Section 3.1, which gives

estimates of the expected scores at kth rank for the original

query, EQ (k ) and top rank for the highest weighted relaxed query,
EQ′ (1) (for a given triple pattern at a time). If the topmost score

from the relaxed query obtained by relaxing a given triple pattern

exceeds the kth score from the original query, it predicts that the

triple pattern’s relaxations are required. Note that our estimator

takes into account join score distributions and join cardinalities

for estimating the expected score for a given query.

The query plan, QP returned by PLANGEN will have at most

one subquery, Q1 of size > 1, called the “join group” (non-relaxed

triple patterns), the rest will be only singletons (triple patterns

to be relaxed).

3.2.2 Query Execution. Given a speculative query plan QP =
{Q1,Q2, ..,Qs} with s subsets generated by the speculative query

planner, we execute it in the following manner.

(1) The join group, Q1 is executed as (left-deep) rank joins

over the answer lists (sorted by score) for each triple pat-

tern. Note that, none of the triple patterns in this group

are relaxed.

(2) The singletons are processed by Incremental Merge oper-

ator for each.

(3) Rank joins are performed over the join group and single-

tons.

Figure 2 illustrates this approach for the queryQ = {q1,q2,q3},
when we predict that only q2 needs to be relaxed. The query plan

to be executed is {{q1, q3}, {q2}}. We use a rank join to compute

the join between sorted lists of matches for q1 and q3 and require
incremental merge only for q2 and its relaxations. One rank join

is required to join these results. The equivalent NSpec-QP plan for

this query will be {{q1}, {q2}, {q3}}, i.e., all triple patterns occur as
different subsets and each of them are processed by incremental

merges followed by rank joins over all these incremental merges

(refer Figure 1).

4 EXPERIMENTAL EVALUATION
This section discusses the experimental evaluation performed for

demonstrating the performance of the speculative planner.

4.1 Setup
Baseline. We compare Spec-QP with the NSpec-QP system

(refer Section 2.1) which involves Incremental Merges for relax-

ations and Rank Joins for joins. It processes all the relaxations and
outputs the true top-k . Existing works which focus on optimized

computation of top-k joins without relaxations or on determining

relaxations for user queries are orthogonal to our work. The scor-

ing scheme used by the existing systems supporting relaxations

do not use fine-grained scores (scores for individual triples). For

our setting, NSpec-QP is the closest baseline to the best of our

knowledge. We have not shown comparisons with the naive

method (i.e., compute answers to all combinations of relaxations

and then sort them to get top-k) because it is obvious that it is
the most inefficient technique.

Datasets. We have evaluated over the following two datasets:

i. Extended Knowledge Graph (XKG)[42]:

a. Format: RDF format dataset consisting of YAGO2s triples

and “textual” content triples constructed from Clueweb by

using OpenIE techniques and Named Entity Disambigua-

tion (NED). The triple scores for YAGO2s triples are equal

to the number of inlinks into the subject. Triple score for

Clueweb data is equal to the number of times a particular

triple was encountered during extraction.

b. Size: XKG has about 105 million triples.

ii. Twitter:

a. Format: Constructed from trending tags over the month

of April 2017 using Twitter Streaming API. The triples are

of the form: ⟨tID,hasTaд,T ⟩ where tID is the unique ID

for a tweet containing term T . The score for each triple

is equal to the number of retweets for the tweet in that

triple.

b. Size: 18 million unique triples.

Queries and relaxations. The evaluation queries and relax-

ations for the datasets are as follows:

i. XKG: We evaluated on 65 queries which were manually con-

structed so as to have non-empty result sets. Each query had

2-4 triple patterns and each triple pattern had at least 10

relaxations. The relaxations were obtained using the scheme

outlined in [42].

ii. Twitter: A query over this dataset queries for IDs of those

tweets which have all the queried terms. For example, the

following query queries for IDs of all those tweets which con-

tain the terms ‘#intoyouvideo’, ‘#ariana’ and ‘dangerous’:
SELECT ?s WHERE{

?s <hasTag> <#intoyouvideo>.
?s <hasTag> <#ariana>.
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k XKG Twitter
10 0.7 0.72

15 0.88 0.78

20 0.91 0.8

Table 2: Precision over each dataset.

?s <hasTag> <dangerous>
}
The testset of 50 queries was constructed manually using

combinations of most frequent tags and terms. Each query

had either 2 or 3 triple patterns, with each triple pattern

having at least 5 relaxations. The relaxations were gener-

ated using the co-occurrence frequencies i.e. the relaxation

weight,w for the relaxation, r = (⟨?s <hasTag> <T1>⟩,⟨?s
<hasTag> <T2>⟩,w ) will be equal to:

w =
#tweets_havinд_T1_and_T2

#tweets_havinд_T1

For example, a possible relaxation for <#intoyouvideo> is
<video>.

Note that the number of results decrease on increasing the

number of triple patterns in a query. Due to this, we have re-

stricted our testsets to have only 2-4 triple patterns’ queries with

non-empty result sets. Also, even though each triple pattern has

at least 5-10 relaxations, relaxing only one or two triple patterns

alone generates about 100 additional answers. Our planner aims

to be able to predict the useful relaxations.

Metrics. We measure the following metrics for each query to

demonstrate the quality and efficiency of our technique:

i. Quality:

a. Precision: The fraction of true top-k results (of NSpec-QP)

in the top-k results of Spec-QP. Note that precision and

recall have identical values in our setup, because they

have the same denominator k .
b. Prediction accuracy: The number of queries for which we

could identify all and only correct relaxations.

c. Score error: The average of absolute error for Spec-QP vs.

NSpec-QP top-k scores, i.e.,

1

k
∑
i=1..k

����score
NSpec−QP
i − score

Spec−QP
i

����
We also note the standard deviation.

ii. Efficiency:

a. Runtimes: We measure the time taken to plan and execute

each query.

b. Memory used: We measure the total no. of answer objects

created as it directly corresponds to the amount of search

space traversed to arrive at top-k answers. This number

includes all the intermediate answer objects encountered

by Incremental Merges and Rank Joins.

System setup. The experiments were conducted on a Dell

Blade server with 24 Intel(R) Xeon(R) CPU E5-2420 @ 1.90GHz

processors and 32GB RAM. The database engine was used to

retrieve the matches for triple patterns in sorted order. Each

query was evaluated using both the techniques- NSpec-QP and

Spec-QP, over two database engines, postgresql-9.5 and Virtuoso,

for three values of k , namely 10, 15 and 20. To have a warm cache,

we conducted 5 consecutive runs for each query and considered

the average of the last 3 runs for each technique.

4.2 Quality evaluations
We first discuss the quality of results obtained by Spec-QP and

then provide the statistics for runtimes and memory consump-

tions. Note that the quality of results will be the same over any
database engine as it depends only on the accuracy of our specula-
tive technique.

4.2.1 Precision. The precision values for the datasets are

given in Table 2. The precision is about 0.7-0.9 for both the

datasets, i.e., about 80% of the answers belonged to true top-k .
Also, since the answers are sorted according to the scores, the

answers outside the true top-k appeared at lower ranks. That

is, for a query having a precision value of 0.8 for k=10, top-8

answers belonged to the true top-10.

4.2.2 Prediction Accuracy. A detailed analysis of the number

of queries for which we could predict the correct relaxation(s)

over each dataset is given in Table 3. Each query required some

triple patterns to be relaxed to generate top-k answers. The pre-

diction accuracy is at least 70% for all types of queries over XKG

and queries requiring 3 relaxations over Twitter. As the value for

k was increased, queries increasingly required relaxations to gen-

erate sufficient answers. For Twitter, most of the queries required

all triple patterns to be relaxed. This is due to the absence of suf-

ficient triples corresponding to each term and fewer relaxations

(predicate is not relaxed) for each triple pattern. Nevertheless,

we were able to identify the requirement of all the relaxations in

such a scenario.

4.2.3 Average score error. To judge the quality of approximate

results returned by Spec-QP, we computed the score deviations

of the approximate answers at each rank given by Spec-QP from

the true top-k . The average score deviations for various values
of k are given in Table 4. The percentages in brackets show the

average percentage deviation from the original scores. Note that

the maximum possible score for an answer to a 2 triple pattern

query can be 2, for a 3 triple pattern query, it will be 3 and so

on.
6

XKG. Even though k=10 has lowest precision, the score de-

viations from true top-k answers are low (about 0.1 for 2 triple

pattern queries). That is, for a query with 2 triple patterns if the

actual answer at a given rank has a score of 1.5, the score of the

approximate answer would be about 1.4. The deviations are even

lower (only about 0.01) for higher values of k and tolerable for

achieving faster runtimes.

Twitter. There is only one 2 triple pattern query that required

both triple patterns to be relaxed but had a wrong speculation

of relaxations for all values of k . However, its score deviation is

constant over all values of k as it has only 11 results (including re-

laxations). The deviations are only 0.5 for 3 triple pattern queries

with k = 10, which is only 16% deviation from the original scores.

The deviations for higher values of k are very low being only 6%

in the best case. For k=20, for a query with 3 triple patterns if the

actual answer at a given rank has a score of 2.5, the score of the

approximate answer is about 2.32.

4.3 Efficiency evaluations
The average runtimes and memory values over PostgreSQL and

Virtuoso for XKG grouped by the number of triple patterns in

6
This is because the maximum score for a matching triple for each triple pattern

can be 1.
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Dataset XKG Twitter

k 10 15 20 10 15 20

queries requiring 1 relaxation 5(6) 5(5) -(-) - - -

queries requiring 2 relaxations 21(30) 22(26) 18(19) 1(2) 1(2) 1(2)

queries requiring 3 relaxations 12(18) 16(19) 27(31) 35(48) 38(48) 39(48)

queries requiring 4 relaxations 7(11) 14(15) 14(15) - - -

Table 3: Prediction accuracy for various values of k grouped by the number of triple patterns requiring relaxations in the
queries to generate true top-k results. The number indicates the number of queries for which Spec-QP could identify all
and only these relaxations. The numbers in brackets show the total number of such queries.

Dataset XKG Twitter

k

#TP

2 3 4 2 3

10 0.1(5%)±0.1 0.2(8%)±0.3 0.1(3%)±0.2 0.16(8%)±0.0 0.5(16%)±0.5

15 0.08(4%)±0.08 0.1(3%)±0.2 0.01(1%)±0.04 0.16(8%)±0.0 0.32(10%)±0.3

20 0.07(4%)±0.06 0.07(2%)±0.1 0.01(1%)±0.03 0.16(8%)±0.0 0.18(6%)±0.1

Table 4: Avg. score deviations for the approximate top-k from the true top-k grouped by the number of triple patterns
(#TP) in the queries. The percentages in brackets show avg. percentage deviation from the score of the true answer at that
rank.

the queries and the number of relaxations required by them have

been given in Figures 3 and 4 respectively. The graphs for Twitter

are given in Figures 5 and 6.

4.3.1 Runtime comparisons. It is evident from the runtime

graphs (refer Figures 3 and 5) that Spec-QP is faster than NSpec-

QP in all cases. It avoids unnecessary computation of all relax-
ations when only few relaxations are capable of giving top-k
answers. Most of the queries require only 2 or 3 relaxations

(Refer Table 3) to produce top-k answers and Spec-QP either

identifies the correct relaxation(s) or gives good quality approx-

imate results. Also, fewer the number of relaxations required,

faster is Spec-QP over NSpec-QP. For k=15 and k=20, the gain

margin lowers but Spec-QP is still faster than NSpec-QP. This is

because on seeking more answers, the original query is insuffi-

cient to get top-k answers and needs multiple relaxations. It is

especially prominent for XKG queries with 4 triple patterns; for

k=15 and k=20, none of the queries could get top-k answers with

less than 3 relaxations. The difference in the runtimes however

clearly demonstrates the savings achieved by eliminating the

requirement of even 1 relaxation. In particular, Spec-QP outper-

forms NSpec-QP by a factor of upto 1.5 for queries with 3 triple

patterns.

Note that the key optimization for sorted access, in any data-

base engine, is to use ordered index scans. This is what Post-

greSQL does too. Also, even if the underlying database system

is further optimized for sorted results, both techniques would

benefit and therefore the gains of Spec-QP over NSpec-QP would

be of the same order. PostgreSQL is faster than Virtuoso as it

uses indices intensively for optimized retrieval. We have shown

results over Virtuoso to demonstrate the practical applicability

of our technique over any quad store.

4.3.2 Memory requirement comparisons. We measured the

total number of answer objects created as it directly corresponds

to the amount of search space traversed to arrive at top-k an-

swers. This number includes all the intermediate answer objects

encountered by the incremental merges and rank joins.

The memory comparison graphs are given in Figures 4 and

6 for XKG and twitter respectively. We found that NSpec-QP

consumes the most memory for all the cases. This is because it

traverses a significant amount of the search space, consisting

of the original query and all its possible relaxations, in order to

compute the top-k . Spec-QP consumes upto 2-3x less memory to

compute top-k answers as it prunes a significant amount of the

search space. The savings by Spec-QP is achieved by eliminating

the need for processing relaxations of triple patterns which do

not contribute triples towards top-k answers. This is particularly

evident for the cases where the queries with 3 triple patterns

require only 1 or 2 relaxations. The memory requirements reduce

by a factor of 2.5 over both the datasets.

4.4 Discussion and remarks
We showed that Spec-QP prunes unnecessary relaxations and has

faster response times over the baseline for various values of k . It
predicts the correct relaxations 70-80% of the time with good ap-

proximations for answers outside top-k . Our technique depends

on statistical estimates – specifically, what the score of the kth

result is for a specific (original or relaxed) query. Our solution

of 2-bucket approximation strives for the sweet spot between

assuming a uniform distribution and the actual distribution (ev-

ery single data point in individual buckets of the histogram), and

is built on the fact that even though datasets are different, their

score distributions typically follow a power law distribution – a

“fat” head, and a “long” tail.

The strategic pruning of relaxations using our model also

reduces the search space traversed and in turn, the memory

requirements for each query. Spec-QP is especially useful for

servers where the total resource consumption per query is in-

versely proportional to the achievable throughput. The cost per

query determines the cost of running the server for a given load.

For instance, the queries having 3 triple patterns have 1.5x faster

response times and 2.5x less memory requirements resulting in

an overall 4x gain. This implies that the server can run the service

with 4x less money. Hence, Spec-QP provides cost-efficient sup-

port for flexible querying using relaxations over SPARQL query
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(c) Runtimes for k=20.

Figure 3: Runtimes comparisons over XKG queries for k=10, 15 and 20 grouped by the no. of triple patterns (#TP) in the
query and the number of relaxations required. All the legends in the graphs for efficiency have ‘NS’ for NSpec-QP and ‘S’
for Spec-QP.

engines. This, in turn, aids effective exploration of knowledge

graphs by new users.

5 RELATEDWORK
Top-k query processing
FRPA [13] and Hash Rank-Join (HRJN*) [20] represent the state-

of-the-art relational rank-join algorithms. HRJN* has been shown

to perform well in practice, however, FRPA showed that it was

not instance-optimal for a variant of the rank join problem that

they considered. HRJN[21] is based on ripple join algorithm. It

maintains two hash tables in-memory for storing the input tu-

ples seen so far, the stored input tuples are used for finding join

results. These results are then given as inputs to a priority queue,

which outputs them in the order specified by the ranking func-

tion. Nested Loops Rank Join (NRJN) [19] is similar to HRJN

except that unlike HRJN it does not store input tuples, but rather

follows a nested-loop strategy. Pull/Bound Rank Join (PBRJ) [33]

is an algorithm template that generalized previous rank join algo-

rithms and provided tight upper bounds. DRJN [8] is an efficient

algorithm for computing rank joins in distributed systems. This

body of work is orthogonal to our problem.

Theobald et. al. [37] dealt with top-k query evaluation for

joins over multiple index lists with pruning providing probabilis-

tic guarantees. It uses histograms and dynamic convolutions to

predict the top-k . Our case, however differs in that we consider
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Figure 4: Memory comparisons over XKG queries for k=10, 15 and 20 grouped by the no. of triple patterns (#TP) in the
query and the number of relaxations required. All the legends in the graphs for efficiency have ‘NS’ for NSpec-QP and ‘S’
for Spec-QP.

graph structured data and also, support multiple relaxations. The

IO-Top-k [4] deals with top-k query evaluation with pruning

using sorted access (SA) scheduling. Other works include top-

k processing over xml data [36] and for data distributed over

multiple nodes [44].

Top-k queries on graphs
Only few works address the problem of top-k processing over

RDF graphs. The SPARQL-RANK framework proposed by [27]

makes use of different index permutations used in native triple-

stores for fast random access and early termination. Another

framework introduced byWang et al. [41] used MS-tree-based fil-

tering and pattern-matching functions to evaluate top-k answers.

The work in [43] uses an approach similar to HRJN[21] for com-

puting top-k star joins. However for RDF data, SPARQL-RANK

showed experimentally that it outperformed HRJN. The perfor-

mance gain was attributed to the unsorted nature of numerical

attributes present in indexes build by RDF engines. QUARK-X

[25] proposes using extra indexes and metadata to process top-

k queries on RDF graphs. All of these works however do not

optimize over possible relaxations.

Query Reformulation in IR
Various strategies have been proposed to reformulate queries in

IR over documents. These include measures of query similarity

[3], or using summary information included in the query-flow

graph [1]. Another approach by Hristidis et. al. [16] relies on
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Figure 5: Runtimes comparisons over Twitter for k=10, 15 and 20 grouped by the no. of triple patterns (#TP) in the query
and the number of relaxations required. All the legends in the graphs for efficiency have ‘NS’ for NSpec-QP and ‘S’ for
Spec-QP.

suggesting keyword relaxations by relaxing those which are least

specific based on their idf score. These reformulations can be

used as relaxations for our setting.

Faceted Search (Many answers problem)
A related optimization problem is the one encountered when we

have many-answers, i.e. those where given an initial query that

returns a large number of answers, the objective is to design an ef-

fective drill-down strategy to help the user find acceptable results

with minimum effort [22, 26, 32]. We solve a related problem,

where we try to solve both empty-answer and many-answers

problem in an efficient manner by generating additional scored

answers using relaxations.

Query Relaxation in relational databases
Query relaxation in relational databases is quite common. The

work [24] relaxes joins and selections in relational databases by

suggesting alternative queries based on the “minimal” shift from

the original query. Another work [40] suggests user ranking of

the query edges so as to generate relevant differential queries

withminimum deviation. “WhyNot” queries are studied in [6, 38],

where, given a query Q that did not return a set of tuples S that

the user was expecting to be returned, they design an alternate
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Figure 6: Memory comparisons over Twitter for k=10, 15 and 20 grouped by the no. of triple patterns (#TP) in the query
and the number of relaxations required. All the legends in the graphs for efficiency have ‘NS’ for NSpec-QP and ‘S’ for
Spec-QP.

query Q’ that (a) is very similar to Q, and (b) returns the missing

tuples S, however the rest of the returned tuples should not be too

different from those returned by Q. The paper [28] relaxes one

constraint at a time and is interactive. It also tries to minimize

the cost by suggesting low cost relaxations which lead to non-

empty answers. DebEAQ [39] first tries to debug why the query is

returning empty answer and then tries to relax it with minimum

change to the original query. It is also limited only to property

graphs.

Query Relaxation over graphs
The closest to our works are those which deal with relaxations

over graphs. The work in [15, 29–31] considers query relaxation

for conjunctive regular path queries. Users are allowed to spec-

ify query predicates which can have approximations and/or re-

laxations (using APPROX and RELAX operators respectively)

during query time. The system then computes the approxima-

tions/relaxations with their relative evaluation costs to support

query rewriting. Another work [17] computes approximate an-

swers using a Bayesian network to rank and score relaxed queries.

Two algorithms are described in [18]. The first algorithm is based
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on best-first strategy and relaxed queries are executed in order.

They prune relaxations which do not give new results. The other

algorithm executes the relaxed queries as a batch and avoids

the unnecessary execution cost. The idea of Maximal Succeed-

ing Subqueries (MSSs) is exploited in [14] using Lattice-based

and Matrix-based approaches to minimally refine the user query.

The scoring scheme used by these existing systems supporting

relaxations however, do not use fine-grained scores (scores for

individual triples) as in our case. TriniT [42] proposes the notion

of eXtended Knowledge Graphs (XKG) with fine-grained scores

for triples and allows relaxations for queries over them. It uses a

technique similar to NSpec-QP to evaluate the queries.

6 CONCLUSION AND FUTUREWORK
We have proposed Spec-QP, a strategy for top-k query processing

in a scenario where a query can have multiple relaxations. To

achieve this, we have used a speculative approach for pruning

the relaxations which are not likely to contribute answers to the

top-k results. The speculation is based on precomputed statistics

about the distribution of scores for triple pattern matches. The

relaxations of triple patterns predicted to not contribute towards

top-k answers are not processed, thereby reducing top-k compu-

tations and leading to faster response times and reduced memory

requirements.

We have experimented over two real world datasets – XKG

and Twitter – to show that Spec-QP is a cost-efficient technique

for supporting relaxations. This is especially useful for servers

in aiding exploratory querying over knowledge graphs by new

users without an exponential increase in the budget. We also

demonstrated the practical usability of our technique by imple-

menting it over two popular database engines – PostgreSQL and

Virtuoso. As future work, we would like to support more compli-

cated relaxations for the queries like replacing a triple pattern

with a chain of triple patterns, etc. Another orthogonal area of

work is to find meaningful and useful relaxations for a given

triple pattern.
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ABSTRACT
Mutual Information (MI) is an established measure for linear and

nonlinear dependencies between two variables. Estimating MI

is nontrivial and requires notable computation power for high

estimation quality. While some estimation techniques allow trad-

ing result quality for lower runtimes, this tradeoff is fixed per

task and cannot be adjusted. If the available time is unknown

in advance or is overestimated, one may need to abort the esti-

mation without any result. Conversely, when there are several

estimation tasks, and one wants to budget computation time

between them, there currently is no efficient way to adjust it

dynamically based on certain targets, e.g., high MI values or MI

values close to a constant. In this article, we present an itera-

tive estimator of MI. Our method offers an estimate with low

quality near-instantly and improves this estimate in fine grained

steps with more computation time. The estimate also converges

towards the result of a conventional estimator. We prove that

the time complexity for this convergence is only slightly slower

than non-iterative estimation. Additionally, with each step our

estimator also tightens statistical guarantees regarding the con-

vergence result, i.e., confidence intervals, progressively. These

also serve as quality indicators for early estimates and allow to

reliably discern between attribute pairs with weak and strong

dependencies. Our experiments show that these guarantees can

also be used to execute threshold queries faster compared to

non-iterative estimation.

1 INTRODUCTION
Motivation. Detecting and quantifying dependencies between

variables is an essential task in the database community [10, 13,

20, 30]. Conventional methods such as correlation coefficients

and covariance matrices only detect linear or monotonous depen-

dencies.Mutual Information (MI) in turn is an index that captures

any linear and nonlinear dependency [1, 5]. Probability distri-

butions of the variables in question serve as input to compute

the MI. For real-world data however, these distributions are not

available. In this case, MI must be estimated based on samples.

Various estimators for MI have been proposed [15, 23, 33], and

some offer good results even for small samples [15]. However,

continuous variables with an unknown distribution continue to

be challenging, since their multivariate distribution is substituted

only by a limited sample. A prominent approach for estimation

of MI between continuous variables without assumption of the

distribution is the nearest-neighbor based method by Kraskov et

al. (KSG) [19].

While good estimators are available, they are very rigid in their

time requirements and regarding the estimation quality. Once the

computation has started, they impose a fixed time requirement

and do not yield aby preliminary result if they are terminated
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Figure 1: MI estimation with dynamic time allocation.

prematurely. They also are unable to exploit ‘easier’ queries like

whether the MI value is above a certain threshold but instead

determined the value. Such features are highly relevant for high-

dimensional data and data streams with irregular arrival rate as

we showcase with the following two scenarios.

Scenario 1. Consider a modern production plant with smart

meters installed on each machine. A first step in data exploration

is determining which attributes are strongly dependent. For in-

stance dependencies among currents or energy consumption

may offer insights into production sequences. For this first step, a

query like “Which pairs of measurements have a MI value above

the thresholdMIT ?” often suffices. With conventional MI estima-

tors, each pair either induces high computational costs, or results

are uncertain because of low estimation quality.

Scenario 2. Think of a database with financial data and its real-

time analysis. To maintain a diverse portfolio, it is important to

track the relationships between stocks. Because bids and trades

happen irregularly, new information and market prices arrive at

irregular speed. Thus, it is not known how much time is available

to monitor stock relationships in the presence of incoming data.

Current MI estimators cannot adapt during execution. They risk

not producing a result in time, or estimates are of low quality.

To improve upon these shortcomings, we study estimation of

MI with dynamic allocation of computation time. Ideally, such

an estimator should not only offer preliminary results, but also

indicate its remaining uncertainty. Figure 1 shows exemplary pro-

gression over time of such an estimator based on our experiments

with real data. The black line indicates the preliminary estimate

after a certain runtime, and the gray area shows the (expected)

maximum error of the preliminary estimate. To obtain the defin-

itive result MIfin, a user would require time tfin. However, he
could also stop the estimator as soon as the estimate is above a

threshold MIT with certainty, or he can use the preliminary result

available after time t.
In this work, we focus on iterative estimation of MI in order to

offer this functionality. Here, ‘iterative’ means quickly providing

an estimate, but with the option to improve the estimation if

there is time left. In other words, improving the estimate with
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some time available is what we call an iteration. At the same

time, an iterative estimator can terminate the estimation, i.e.,

stop iterating, when the result is good enough. For efficiency, it

is important that computations from previous iterations remain

useful and are not repeated or discarded in a later iteration. So

far, efficient iterative estimators for MI do not exist.

Challenges. The most significant feature of an estimator is its

quality of estimation. This is even more so for iterative methods

because both “preliminary” and “final” estimation quality are

important. In other words, the estimate should already be useful

after a few iterations, and estimation quality must level up to the

one of conventional estimators after many iterations. Ideally, this

convergence should happen after a known, finite number of iter-

ations. In this article, we target at respective formal guarantees.

Next, the quality of preliminary estimates is crucial for us-

ability. Determining if a preliminary result is “good enough” or

interesting enough to merit additional computation time requires

some information on its certainty. The number of iterations alone

is insufficient, as the result quality depends on many other fac-

tors such as data characteristics, required accuracy and time con-

straints. Instead, each estimate requires an individual indicator

of the uncertainty remaining.

While the time spent to improve the estimate iteratively is

committed dynamically, it must of course be used efficiently.

Many conventional estimators use data structures that are ex-

pensive to build and cheap to use, such as space-partitioning

trees [19, 31, 32]. Such an upfront activity is undesirable for an

iterative estimator whose first estimate must arrive soon. At the

same time, runtime and scalability do remain important charac-

teristics of the estimator. In other words, an iterative estimator

must feature guaranteed efficiency for both individual iterations

and final estimates.

Contributions. In this article, we present IMIE, our Iterative

Mutual Information Estimator. To prove its practical usefulness,

we establish several features both formally and experimentally.

Quality of Estimation. In Section 4, we propose a design for

IMIE such that estimates converge to the same value as with the

KSG. To make early iterations useful, IMIE also offers statistical

error bounds for its early estimates. More precisely, an early

estimate provides a confidence interval for the final estimate. We

describe the specifics and the statistical soundness in Section 4.3.

Complexity. We study the time complexity of initialization and

of individual iterations of IMIE. In Section 5 we establish an amor-

tized time complexity for IMIE and the nearest-neighbor search

used. This complexity is competitive with existing non-iterative

estimators. To be precise, we show that iterating IMIE until con-

vergence is only slightly slower in terms of time complexity than

computing the KSG directly with optimal algorithms.

Experimental Validation. We show that IMIE complements the

formal guarantees established so far with good actual perfor-

mance. To do so, we perform extensive experiments using both

synthetic and real data sets in Section 6. On the one hand, we

show that the concrete runtime and estimation results of IMIE are

comparable to the ones of conventional estimation methods. On

the other hand, the experiments show the practical benefits of the

early results from IMIE. For instance, IMIE finds attribute pairs

above a threshold value significantly faster than non-iterative

estimators.

2 RELATEDWORK
Iterative estimation ofMI is interesting from two perspectives. On

the one hand, it is methodically interesting, as it can be considered

an anytime algorithm. On the other hand, it is interesting to

consider the benefits it provides over current methods in different

settings. Important application scenarios are dependency analysis

in high dimensional data and data streams, cf. Scenario 1 and 2.

Anytime Algorithms. Anytime algorithms [36] use available

time to increase their result quality. One can obtain a low-quality

result after a short time and a better one when waiting longer.

In data analysis, anytime algorithms exist for clustering [22],

classification [35] and outlier detection [2]. So far however, there

is no anytime algorithm to estimate MI. So while there is no direct

competitor, IMIE extends the set of tools available as anytime

algorithms. Additionally, there has been more general work on

the optimal use of available anytime algorithms [11, 18], which

may improve the performance of IMIE in larger systems.

MI on Data Streams. Estimating MI on streams has received

some attention recently. The MISE framework [14] summarizes

a bivariate stream such that the MI for arbitrary time frames can

be queried. To this end, MISE offers parameters for the balance

between accuracy of older queries and resource requirements

both in terms of memory and computation time. In contrast, the

DIMID estimator [4] processes a bivariate stream as sliding win-

dow for monitoring tasks. This approach provides fast updates

between time steps by approximation with random projection.

MI estimation in sliding windows has also been the focus of

[32]. That paper provides lower bounds for estimates using Equa-

tion 5 both in general and for updates in sliding windows. It also

features two dynamic data structures, DEMI and ADEMI, to main-

tain such estimates using either simple or complex algorithms

and data structures.

These approaches have limitations. First, they all impose the

necessary execution time, i.e., one cannot adapt this time after

the start of stream processing. If the rate of new items increases,

the estimator may be unable to keep up. If it decreases, the es-

timator cannot use this time to improve results. Second, the ap-

proaches are all focused on bivariate streams. While MI is defined

for exactly two variables, the number of attribute pairs grows

quadratically in the number of dimensions. In contrast, the only

information IMIE maintains on a stream is based on individual di-

mensions and thus scales linearly with the dimensionality. Third,

the approximate results of MISE and DIMID are difficult to use.

Their estimation quality is only known on average; this average

defines the perceived quality of individual estimates. So if one

estimate has a very small error, it is less likely to be appreciated,

while the error of a particularly bad estimate may be assumed to

be smaller.

Dependencies in High Dimensional Data. Even though MI is de-

fined for exactly two variables, it hasmany applicationswith high-

dimensional data. Prominent ones are image registration [25],

which uses MI between two high-dimensional variables, and fea-

ture selection [24], which targets at the MI between attributes

and a classification label. But estimating the MI between all pairs

of attributes has received little attention, despite being the non-

linear equivalent of correlation matrices. [26] uses a different

approach, i.e., kernel density estimation, and removes redundant

computations that arise when using this estimator for each pair.

This approach has a worse computational complexity than a pair-

wise application of the KSG estimator, without offering better
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Figure 2: Illustration of terms used for the KSG.

results [15, 23]. While both scale quadratically in the number

of attributes, their approach is also quadratic in the number of

points. The complexity of the KSG in turn is Θ(n logn) [32]. Ad-
ditionally, it does not expose any parameter to modify the result

quality. Consequently, there would not be any benefit of a direct

experimental comparison with IMIE.

3 FUNDAMENTALS
We first cover the background of MI and its estimation.

Mutual Information. Shannon has introduced the notion of

entropy [28] to quantify the expected information gained from ob-

serving a value of a random variable.H (X ) stands for the entropy
of a random variable X . The expected information of observing

two random variables X and Y is the joint entropy H (X ,Y ). Mu-

tual Information quantifies the amount of information that is

shared or redundant between the two variables. It is defined as

I (X ;Y ) = H (X ) + H (Y ) − H (X ;Y ). (1)

With the definition of entropy for continuous variables [6], the

MI of two continuous random variables is

I (X ;Y ) =

∫
X

∫
Y
pXY (x,y) log

(
pXY (x,y)

pX (x)pY (y)

)
dx dy, (2)

where pX ,pY and pXY are the marginal and joint probability

density functions of X and Y . The type of logarithm used in

Equation 2 determines the unit of measurement. In this work we

use the natural logarithm. This means that MI is measured in the

natural unit of information (nat).

Estimation. One can perceive many sources of data, e.g., smart

meters or market prices, as random variables with unknown dis-

tribution. Since Equation 2 requires probability density functions,

we cannot compute the MI of such sources exactly. Instead, we

can only estimate the MI based on available samples. The popular

estimator that will serve as foundation of our work is the one by

Kraskov, Stögbauer and Grassberger [19], which we call KSG. It is

based on the estimator for probability densities by Loftsgaarden

and Quesenberry [21], which Kozachenko and Leonenko have

studied further in the context of entropy [17]. In the following,

we briefly review the terms and computation of the KSG.

Let P = {p1 = (xp1 ,yp1 ), . . . ,pn = (xpn ,ypn )} ⊆ R
2
be a

sample from a random variable with two attributes. Figure 2

illustrates the notions that we define in the following using

the sample P = {(1, 5), (6, 1), (5, 4), (4, 7), (3, 3), (8, 2)}. Let X =

{xp1 , . . . , xpn } and Y = {yp1 , . . . ,ypn } be the set of values per
attribute. For each point p ∈ P , its k ∈ N+ nearest neighbors in P
using the maximum distance form the set kNN (p). More formally,

it is

kNN (p) = argmin

S ⊆(P\{p }) s .t . |S |=k
max

s ∈S
∥p, s∥∞, (3)

with ∥p, s∥∞ = max(|xp − xs |, |yp − ys |). We define the largest

distance between xp and any x-value among the k nearest neigh-

bors of p as δxk (p) = maxs ∈kNN (p) |xp −xs |. We use this distance

δxk (p) to define the x-marginal count

MCx
k (p) = |{x ∈ (X \ xp ) : |x − xp | ≤ δ

x
k (p)}|, (4)

which is the number of points whose x-value is “close to p”. In
Figure 2, vertical dashed lines mark the area of points whose

x-values are at least as close as the nearest neighbor of p3. Since
this area contains three points excluding p3, it is M

x
1
(p3) = 3.

The distance δ
y
k (p) and the y-marginal count MCx

k (p) are defined

analogously. Note that δxk (p) and δ
y
k (p) may differ, which results

in differently sized areas for the marginal counts, as seen in

Figure 2. Using these counts, the KSG estimate is defined as

Î (P) = ψ (n)+ψ (k)−
1

k
−
1

n

n∑
i=1

ψ
(
MCx

k (pi )
)
+ψ

(
MC

y
k (pi )

)
, (5)

where ψ is the digamma function. This is ψ (z) = −C +
∑z−1
t=1

1

t
for z ∈ N+ and C ≈ 0.577 being the Euler-Mascheroni constant.

While k is a parameter of this estimator, it is generally rec-

ommended [15, 16, 19] to use a small k , that is k ≤ 10. Gao et

al. [9] have proven that the KSG is a consistent estimator for fixed

k , that is, it converges towards the true value with increasing

sample size.

4 ITERATIVE ESTIMATION
In this section we present IMIE, our iterative estimator for MI.

The core concept of our approach is considering the KSG estimate

itself as the mean of a random variable with a finite population.

Using subsamples of this population for early estimates offers

beneficial properties such as an expected value equal to the KSG

estimate and convergence to the KSG for large sample sizes.

We first present IMIE and its underlying data structure as

well as the algorithms for the initialization and for subsequent

iterations. Then we describe our approach for nearest neighbor

search, which is better for iterative algorithms than the standard

procedures. Finally, we describe the statistical bounds that IMIE

provides with its estimates.

4.1 IMIE
For brevity, we introduce some notation in addition to the one

from Section 3. For a pointp ∈ P , we define the pointwise estimate

Ψ(p) = ψ
(
MCx

k (p)
)
+ψ

(
MC

y
k (p)

)
. (6)

The set of all pointwise estimates is ρ = {Ψ(p1), . . . ,Ψ(pn )}.
Seeing ρ as a finite population of size n with mean µρ , Equation 5

can be rewritten as

Î (P) = ψ (n) +ψ (k) −
1

k
− µρ . (7)

Using a (random) subsample ϱ ⊆ ρ, its mean µϱ is an (unbiased)

estimation of µρ . This in turn yields an (unbiased) estimate of

Î (P),

Îϱ (P) = ψ (n) +ψ (k) −
1

k
− µϱ . (8)
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Data Structure 1: IMIE

struct {
Point[] P
Real Mean, Var

Int k,m
Int[] OrderR , Orderx , Ordery
Real Offset

};

Algorithm 2: Init (P,k)

1 Persist k and P O(n)

2 Mean, Var,m ← 0 O(1)

3 OrderR , Orderx , Ordery ← (0, 1, . . . , |P | − 1) O(n)

4 Sort Orderx and Ordery O(n logn)

5 Offset← ψ (|P |) +ψ (k) − 1

k O(1)

The variance σ 2ϱ of our subsample serves as a quality indicator

of this approximation, which we further discuss in Section 4.3.

The idea of IMIE is to maintain a subsample ϱ and use Îϱ (P) to

estimate Î (P). Each iteration then increases the sample size of ϱ
by one, to improve the estimate. Starting with an empty set, this

means there are exactly |P | iterations before IMIE yields exactly

the same result as the KSG, i.e., Îϱ (P) = Î (P).

Data Structure. IMIE uses and stores P and k as well as some

additional information listed in Data Structure 1. In the following

we use the zero-indexed array notation P[i] = pi+1. Contrary
to the original data sample P , we do not store ϱ explicitly. In-

stead we store its mean Mean, its variance Var and size, which is

the number of performed iterationsm. To maintain the current

variance efficiently, we use the online algorithm by Welford [34].

To ensure that ϱ is a random subsample of ρ, we need to draw

without replacement. To this end, IMIE maintains an array of

indices OrderR , where index i at position j means that Ψ(pi ) is
added to ϱ in the j-th iteration. The positions of this array are

randomly swapped during iterations to perform the random se-

lection. This enables a fast selection of a random element without

replacement in each iteration. In addition, we maintain two ar-

rays Orderx and Ordery containing references to all points in P
ordered by their x- and y-value, respectively. For instance, in-
dex i at Orderx [0] means that pi has the smallest x-value in P ,
i.e., pi = argminp∈P xp . These ordered arrays are used to find

nearest neighbors, as described in Section 4.2. Finally, we store

the Offset = ψ (n) + ψ (k) − 1

k . With this, the (preliminary) MI

estimate is available as Îϱ (P) = Offset −Mean.

Methods. We now present the two methods Init and Iterate.

See Algorithms 2 and 3, together with amortized time complexi-

ties, derived in Section 5. Init ensures the proper state of Data

Structure 1 before the first iteration, i.e., preparing all variables

assuming that |ϱ | = 0. Observe that Init is a straightforward

method for the simple case of static data with two attributes.

For other scenarios, such as high-dimensional or streaming data,

some adjustments to the initialization may be appropriate, as

discussed in Section 5.3.

Iterate increases the size of sample ϱ by one. This requires

computing Ψ(p) for a random p ∈ P with Ψ(p) < ϱ. Iterate
consists of three phases. In the first one (Lines 1-3), we select
a random point p of P that has not been selected earlier. After

Algorithm 3: Iterate

1 ID← Draw random integer from [m,n − 1] O(1)

2 Swap values of OrderR [m] and OrderR [ID] O(1)

3 p ← P[OrderR [m]] O(1)

4 kNN (p) ← NNSearch(p) (see Algorithm 4) O(
√
n)

5 Compute δxk (p), δ
y
k (p) O(1)

6 ComputeMCx
k (p),MC

y
k (p) O(logn)

7 Ψ(p) ← ψ
(
MCx

k (p)
)
+ψ

(
MC

y
k (p)

)
O(1)

8 m ←m + 1 O(1)

9 Diff
old
← Ψ(p) − Mean O(1)

10 Mean← Mean +
Diff

old

m O(1)

11 Diff new ← Ψ(p) − Mean O(1)

12 Var ←
Var·(m−1)+Diff

old
·Diff

new

m O(1)

m − 1 iterations, we swap the index at position m of OrderR
with the index at a random position behindm − 1. This ensures
that we do not use any index twice, since positions before m
are not considered, and that each unused index has the same

probability of being selected. This random swap is one step of the

Fisher-Yates Shuffle in the version of Durstenfeld [8], which fully

randomizes the order of a sequence. The second phase (Lines 4-7)
computes Ψ(p) using the ordered lists Orderx and Ordery . The

last phase (Lines 8-12) performs the online algorithm [34] to

maintain mean and variance of a sample, in our case ϱ.

Example 4.1. Disregarding the dashed lines for now, Figure 3

illustrates the state of Data Structure 1 after initialization and

before the first iteration. For the first iteration, we draw an in-

teger ID from {0, . . . ,n − 1}. Suppose that we drew 5. We swap

the content of OrderR [0] and OrderR [5]. OrderR [0] now contains

6. This means that this iteration adds Ψ(p6) to our implicit sam-

ple ϱ. We then determine its nearest neighbor 1NN (p6) = {p15},
the distances δx

1
(p6) and δ

y
1
(p6) as well as the marginal counts

MCx
1
(p6) = 1 andMC

y
1
(p6) = 3. The dashed lines in Figure 3 illus-

trate the area of counted points in x and y-direction, respectively,
identically to Figure 2. It follows that Ψ(p6) = ψ (1)+ψ (3) = 0.346.

Substituting the appropriate variables, the remaining values are

set accordingly, i.e.,m = 0+ 1 = 1,Mean = 0+ 0.346
1
= 0.346 and

Var = 0·0+0·0.346
1

= 0. The second iteration is analogous, draw-

ing ID = 6 at random from {1, . . . ,n − 1}, thus choosing p7. Its
nearest neighbor is p8, and the marginal counts areMCx

1
(p7) = 1

andMC
y
1
(p7) = 6, cf. the dashed lines in Figure 4. As a result, it is

Ψ(p7) = ψ (1)+ψ (6) = 1.129. Analogously to the first iteration, the

remaining values arem = 1+1 = 2,Mean = 0.346+ 0.783
2
= 0.738

and Var = 0·1+0.783·0.391
2

= 0.153. Figure 4 graphs the state of

Data Structure 1 after both iterations, and the new MI estimate

is 1.164 − 0.738 = 0.426.

4.2 Nearest-Neighbor Search
A computation-intensive step in Iterate is the computation of

nearest neighbors, which also is a key step for static estima-

tion with the KSG. The classic solution [19, 31] is using space-

partitioning trees, which are optimal in terms of computational

complexity [32]. This efficiency is achieved because the slow

tree construction is performed once, and each nearest-neighbor

search afterwards is fast. Contrary to the traditional KSG esti-

mation, it is not known beforehand how many nearest-neighbor

searches IMIE performs. Constructing such a tree for IMIE would
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Figure 3: State of IMIE after initialization.
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Figure 4: State of IMIE after two iterations (Ψ(p6) and
Ψ(p7)).

not only delay the first estimate, but may also be an inefficient

choice overall if only few iterations take place. The opposite, i.e.,

searching nearest neighbors without any preparation, is a linear

search. Each iteration would then require time linear in the num-

ber of data points. Since IMIE should offer both fast iterations

and preliminary estimates after a short time, our approach is a

compromise between these two options. The general idea is to

use sorted arrays to perform a “guided” linear search that offers a

good amortized time complexity (cf. Section 5). In the following,

we elaborate on our NNSearch approach.

Let p be the point whose nearest neighbor we are searching for

and q the nearest neighbor we have found so far. Then any point

r with |xp −xr | > ∥p−q∥∞ cannot be a nearest neighbor with the

maximum norm. This means that we only have to consider the

interval [xp − ∥p−q∥∞, xp + ∥p−q∥∞] in the sorted array Orderx .

When we find a closer point during the search, this interval gets

smaller, and fewer points need to be considered. For the y-values,
this is analogous. To reduce the number of worst-case scenarios,

we perform this search simultaneously in both directions and

terminate when either one terminates. See Algorithm 4 for an

algorithmic description of NNSearch.

Example 4.2. Figure 5 illustrates an exemplary run of this

procedure for k = 1. The figure shows four states corresponding

to the variables of NNSearch(p) after 0, . . . , 3 loops. The query
point p is the filled square, and a projection of the points to their

x- and y-coordinates is shown at the bottom and the left side,

respectively. These projections indicate the order of points in

Orderx and Ordery , respectively. Each state after the first loop

also illustrates the variables of NNSearch. The nearest neighbor

found so far is marked with a circle and is labeled NN , and the

distance δmax = ∥p − NN ∥∞ is used for the dashed lines that

highlight the remaining area of nearest neighbor candidates.

Points accessed via Orderx in a previous iteration are marked

with a diagonal stripe from the upper left to the lower right. This

is done analogously for Ordery . Each loop considers the next

loops = 0

X

Y

p

loops = 0

X

Y

δmax
∆y−
∆y+

∆y−

∆x+

∆x−

p

loops = 1

NN

NN

loops = 0

X

Y

∆y+

∆y−

∆x+

∆x−

p

loops = 2

δmax

NN

loops = 0

X

Y

∆y+

∆y−

∆x+

∆x−

p
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Figure 5: Illustration of Algorithm 4 for each loop.

unmarked point in both directions for both Orderx and Ordery .

Additionally, the small arrows illustrate the minimal distances

∆◦± for any further point accessed when iterating over Orderx
or Ordery in the respective direction. After the third loop, the

arrows of ∆y+ and ∆y− both exceed the area of the remaining

candidates, represented by the dashed lines. This means that all

relevant candidates have been considered via Ordery , and that

the current nearest neighbor is correct.

4.3 Statistical Quality Indicators
Finally we present statistical guarantees for early estimates by

IMIE. Since ϱ is a subsample of ρ, statistical tests with µϱ and σ 2ϱ
yield statistically significant assertions regarding µρ . Equations 7

and 8 give way to analogous assertions for Î (P).

Theorem 4.3 ([27]). Let ρ be a finite population of size n with

mean µρ and a variance σ 2ρ . When drawing an i.i.d. sample ϱ of size

m from ρ, the sample mean µϱ has an expected value of E(µϱ ) = µρ

and a variance of σ 2µϱ =
σ 2

ρ
m

( n−m
n−1

)
.

Proof. See [27]. �

While the classic version of the Central Limit Theorem is not

formulated for finite populations, it has been proven that some

variations are applicable, and that µϱ is approximately normally

distributed [27]. In other words, drawing a sample of sizem with

a sample mean µ is as likely as drawing µ from N(µρ ,σµϱ ) with

σµϱ =
√
σ 2µϱ . So we can estimate the probability that a sample

mean µϱ is off by more than a specified value ϵ > 0 by using

the cumulative distribution function Φ of the standard normal

distributionN(0, 1). This is illustrated in Figure 6 and is formally

described as

Pr[|µϱ − µρ | ≥ ϵ] = 2 · Φ

(
−ϵ

σµϱ

)
. (9)
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Algorithm 4: NNSearch(p)

1 ix , iy ← index of p in Orderx , Ordery , respectively

2 ∆x+,∆x−,∆y+,∆y−, loops← 0

3 δmax ←∞

4 NN ← {}

5 while min(∆x−,∆x+) < δmax ∧min(∆y−,∆y+) < δmax

do
6 loops← loops + 1

7 if ∆x+ < δmax then
8 ∆x+ ← |xp − xData[Orderx [ix+loops]] |

9 UpdateNN(P[Orderx [ix + loops]])

10 if ∆x− < δmax then
11 ∆x− ← |xp − xData[Orderx [ix−loops]] |

12 UpdateNN(P[Orderx [ix − loops]])

13 if ∆y+ < δmax then
14 ∆y+ ← |yp − yData[Ordery [iy+loops]] |

15 UpdateNN(P[Ordery [iy + loops]])

16 if ∆y− < δmax then
17 ∆y− ← |yp − yData[Ordery [iy−loops]] |

18 UpdateNN(P[Ordery [iy − loops]])

19 return NN

function UpdateNN(q)
1 if ∥p − q∥∞ < δmax then
2 insert q into NN

3 if |NN| > k then
4 remove argmaxr ∈NN ∥r − p∥∞ from NN

5 if |NN| = k then
6 δmax ← maxr ∈NN ∥r − p∥∞

µρµρ-3σµ% µρ-2σµ% µρ-σµ% µρ+σµ% µρ+2σµ% µρ+3σµ%
0 1 2 3-1-2-3

µ%

p
(µ
%
)

µρ − ε
−ε
σµ%

µρ + ε
ε

σµ%

Figure 6: Illustration of the normal distributions
N(µρ ,σµϱ ) (upper labels) and N(0, 1) (lower labels).

Alternatively, one can specify a tolerated error probability α
and obtain a confidence interval. Let Φ−1 be the inverse cumu-

lative distribution function of the standard normal distribution,

i.e., Φ(Φ−1(α)) = α . Then the mean of a sample deviates with

probability 1 − α by at most |Φ−1(α
2
)| · σµϱ from µρ . This is be-

cause both tails of the distributions have to be considered. More

formally, it is

Pr

[
µϱ −

���Φ−1 (α
2

)���σµϱ ≤ µρ ≤ µϱ + ���Φ−1 (α
2

)���σµϱ ] ≈ 1 − α .

(10)

Lastly, there are two more considerations necessary to obtain

these statistical guarantees from IMIE. One is that the variance

σ 2ρ , which is used to determine σ 2µϱ in Theorem 4.3, is not known.

Using the approximation σ 2ρ ≈ σ 2ϱ
m(n−1)
(m−1)n yields the unbiased

approximation σ 2µϱ ≈
σ 2

ϱ (n−m)
(m−1)n , see [27]. The other point is the

multiple testing problem. The probabilities for errors only hold

for individual tests. But when performing multiple tests to obtain

a statistically significant result, the chance of an erroneous result

in one test is higher. For instance, this occurs when the response

to a statistically insignificant test result is to perform another test,

evaluating the result without considering the first, inconclusive

result. We illustrate this effect with an example.

Example 4.4. Consider an instance of IMIE that has performed

some iterations so far. We use the current mean and var to per-

form a statistical test whether Î (P) is above a threshold t . We

accept an error chance of 10%. Let us assume that the result of the

first test is not significant enough, i.e., the probability is less than

90% based on the current sample. We iterate our estimate a few

times and perform a second test, which achieves the desired prob-

ability of 90%. However, if Î (P) is below t , the likelihood that a

test reports false certainty based on an unlikely sample increases

with each sample. For two tests, the probability of obtaining false

certainty is then Pr [Î (P) < t] = 1 − (1 − 0.1)2 = 0.19.

To account for this problem, we use the correction due to

Šidák [29]: To obtain an overall error chance of α , the error

chance allowed for the c-th test is αtest = 1 − (1 − α)
1

c .

To summarize this section, we present the full formula for

the c-th statistical test whether Î (P) is greater than a threshold t ,
using variables from IMIE.

Pr[̂I (P) > t] ≈ 1 −
©­­«1 − Φ

©­­«
Offset −Mean − t√

Var·( |P |−m)
(m−1) |P |

ª®®¬
ª®®¬
c

(11)

Since we approximate σ 2ρ , this equation is not exact. On the

other hand, the Šidák-correction is very conservative in our case.

Namely, when iterating IMIE, the new sample is a superset of the

previous sample. This means that the tests based on these samples

are dependent, and that the effect of the multiple testing problem

is less pronounced. Ultimately, we do not have any formal result

to which degree these effects do cancel each other out. In all our

experiments in Section 6 however, the error rate never exceeds

the bounds established in this section.

5 TIME COMPLEXITY
Now we derive the time complexity of IMIE. First, we do so for

our nearest-neighbor search. We then use this result to derive the

complexity for initializing and iterating IMIE. Finally, we discuss

potential improvements for specific scenarios.

5.1 Nearest-Neighbor Search
We establish the time complexity of Algorithm 4. Each call of

UpdateNN(q) takes time inO(k) to compute the (arg) maxr ∈NN
∥r −p∥∞. Additionally, let I(p) be the number of loops performed

by NNSearch(p) before terminating. Then the time complexity

is inO(logn + I(p) · k). Namely, the only other step that is not an

elementary assignment is computing the indices of p in Orderx
andOrdery with binary search, inO(logn). However, I(p) is linear
in n for the worst case. Figure 7 shows such a degenerative case,

where all points except for p and q are equally distributed among
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Figure 7: A degenerative case for NNSearch.

the two grey areas. In this case, NNSearch(p) cannot discover
the nearest neighbor q via Orderx or Ordery with fewer than

n−2
2

loops. However, we prove the nontrivial bound

∑
p∈P I(p) ≤

(4 ·
√
n · k + 1) · n below.

To prove this bound, we first introduce some additional no-

tation and properties for the several executions of Algorithm 4.

For each point p ∈ P , let Vx (p) and Vy (p) be the set of positions
of Orderx and Ordery , respectively, accessed by NNSearch(p).

Additionally, let Pos
p
x be the position of Orderx containing the

reference to a point p, i.e., P[Orderx [Pos
p
x ]] = p. The set of points

that access this position during NNSearch(q) is Rx (p) = {q ∈

P : Pos
p
x ∈ Vx (q)}. Pos

p
y and Ry (p) are defined analogously using

Ordery instead of Orderx . By definition, it is∑
p∈P
|Vx (p)| =

∑
p∈P
|Rx (p)|, (12)

as both count the total number of accesses of Orderx across all

searches.

Note that NNSearch(q) for points q ∈ Rx (p) often performs

several loops before accessing Pos
p
x . In particular, there are

only two points q+ and q− such that NNSearch(q+) and

NNSearch(q−) access Pos
p
x during their first loop. These two

points are the points corresponding to the neighboring positions

of Pos
p
x , i.e., q

+/q− = P[Orderx [Pos
p
x ± 1]]. More specifically, for

each c ∈ N0, there exist at most two points whose positions are

exactly c steps away. This is because Orderx is a linear order of a

finite set of elements. As a result, Rx (p) defines a lower bound
for

∑
q∈Rx (p) I(q). Formally, for each p ∈ P it is

2·

Rx (p)−1
2∑

i=1
i ≤ 0+0+1+1+· · ·+

⌊
Rx (p) − 1

2

⌋
≤

∑
q∈Rx (p)

I(q). (13)

Next, we also consider the properties ofVy (·) andRy (·). During
each loop of a search NNSearch(p), it is min(∆y−,∆y+) < δmax.

This means that NNSearch(p) accesses at least one new position

of Ordery in Line 14 or Line 17. It follows that

I(p) ≤ |Vy (p)| (14)

and with Equation 13, it is

2 ·

Rx (p)−1
2∑

i=1
i ≤

∑
q∈Rx (p)

|Vy (q)|. (15)

Now, we use the fact that NNSearch stops accessing new

positions in a certain direction when this direction cannot offer

a closer nearest neighbor. In the following lemma, we use this

pattern to limit the number of points p where NNSearch(p)
accesses certain positions of Orderx and Ordery . That is, for each
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(c)

r1
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Figure 8: Illustration of arrangements in Claim 5.1. (a) Par-
titioning ofR2 based on (xp ,yp ). (b),(c) Two cases of layouts
of RU .

combination of a position of Orderx and Ordery , there is only a

small number of points whose nearest neighbor search accesses

both.

Lemma 5.1. For any two points p,q ∈ P , it is |Rx (p) ∩ Ry (q)| ≤
4 · k .

Proof. We consider a partitioning ofR2 into four axis-aligned
quadrants RU ,RD, LD and LU centered at (xp ,yq ), as illustrated
in Figure 8a. To ensure that any point r ∈ P \ {p,q} is in exactly

one partition, equalities such as xr = xp andyr = yq are resolved

by their ordering in orderx and ordery , respectively. For the sake

of contradiction, suppose that there arek+1 points {r0, . . . , rk } =
RRU ⊆ Rx (p) ∩ Ry (q) in the area RU . We discern between two

cases regarding the arrangement of these points.

In the first case, it is maxr ,s ∈RRU |xr −xs | ≥ maxr ,s ∈RRU |yr −
ys |. That is, the largest difference in x-values among points in

RU is at least as large as any difference in y-values among RU .

For all r in RRU , it is Pos
r
x > Pos

p
x . Without loss of generality,

let r0 be the point closest to p and rk the furthest from p in

Orderx , respectively. Formally, r0 = argminr ∈RRU Pos
r
x and rk =

argmaxr ∈RRU Pos
r
x . This implies that |xrk − xr0 | ≥ ∥rk − r ∥ for

all r ∈ RRU . As illustrated in Figure 8b, NNSearch(rk ) accesses

Pos
r
x for all r ∈ RRU \ {rk } before accessing Pos

p
x . After accessing

Pos
r0
x and calling UpdateNN(r0), it holds for the variables in

NNSearch(rk ) that δmax = ∆x−. The dashed line in Figure 8b

illustrates this. This means that NNSearch(rk ) does not access
further positions of Orderx in this direction, and thus there is a

contradiction to rk ∈ Rx (p).

The second case, maxr ,s ∈RRU |xr −xs | < maxr ,s ∈RRU |yr −ys |,
is symmetric to the first one using Ordery instead of Orderx .

With r0 and rk being the closest and furthest point from q in Or-

dery , NNSearch(rk ) also accesses all positions corresponding to

other points in RRU before Pos
q
y . Analogously, it is δmax = ∆y−

after calling UpdateNN(r0), as illustrated in Figure 8c. Thus

NNSearch(rk ) does not access the position Pos
q
y , which contra-

dicts rk ∈ Ry (q).

As a result there are at most k points from Rx (p) ∩ Ry (q) in
RU . By symmetry, the same is true for RD, LD, LU . This yields

the lemma. �

Combining this lemma with other equations introduced in

this section yields the following limit for the total number of

iterations performed by all searches.

Lemma 5.2. For a set P ⊆ R2 of points, the total number of

iterations performed by NNSearch(p) for all p ∈ P is bounded as∑
p∈P I(p) ≤ (4 ·

√
n · k + 1) · n.
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Proof. Following Lemma 5.1, each position of Ordery is ac-

cessed at most 4 · k times by searches accessing one specific

position of Orderx . More formally, with Equation 15, it is for

each p ∈ P

4 · k · n ≥
∑

q∈Rx (p)

|Vy (q)| ≥ 2 ·

Rx (p)−1
2∑

i=1
i

= 2 ·

Rx (p)−1
2
(
Rx (p)−1

2
+ 1)

2

≥

(
Rx (p) − 1

2

)
2

2

√
k · n ≥

Rx (p) − 1

2

4 ·
√
k · n ≥ Rx (p) − 1 (16)

Combining Equations 12, 14 and 16 yields∑
p∈P
I(p) ≤

∑
p∈P
|Vx (p)| =

∑
p∈P
|Rx (p)| ≤ (4 ·

√
k · n + 1) · n. (17)

�

Because k is a small constant, the time complexity of perform-

ing NNSearch for all points is in O(n ·
√
n). So the complexity

for each individual search is in amortized O(
√
n).

Theorem 5.3. NNSearch has an amortized time complexity of

O(
√
n).

5.2 Init and Iterate
We derive the time complexity for initializing and iterating IMIE.

In Init, most operations are assignments, of constant size

(Lines 2, 4) or of linear size (Lines 1, 3). The only exception

is sorting Orderx and Ordery , which is O(n logn). So the overall

runtime of Init isO(n logn). However, we show in the following

section that more efficient variants are possible for scenarios

encompassing more than one estimation task. Furthermore, our

experiments in Section 6 indicate that the actual runtime of Init

often is negligible in comparison to Iterate.

As for the runtime of Iterate, there are only two steps that

are not elementary assignments of constant size. One step is com-

puting the marginal countsMCx
k (p) andMC

y
k (p) (Line 6). It can

take place in O(logn), with binary searches on the sorted arrays

as follows. Let i be the smallest integer in {0, . . . , |P | − 1} with
xP [Orderx [i]] ≥ xp −δ

x
k (p). Similarly, let j be the largest integer in

{0, . . . , |P | − 1} with xP [Orderx [j]] ≤ xp + δ
x
k (p). Because Orderx

contains all points sorted by x-coordinate, it is MCx
k (p) = j − i .

The other marginal countMC
y
k (p) is available analogously, using

Ordery ,yp and δ
y
k (p) instead. The other step is the nearest neigh-

bor search (Line 4), which has an amortized time complexity of

O(
√
n) by Theorem 5.3. As a result, Iterate also has an amortized

time complexity ofO(
√
n). Since P and thus ρ contain n elements,

IMIE requires time in O(n
√
n) to reach the final estimate, the

one equal to the KSG estimate. This means that IMIE is only

slightly slower in reaching the final result than the lower bound

O(n logn) for algorithms without preliminary results [32].

5.3 Scenario-specific Improvements
The initialization procedure presented in Section 4 explains the

core concept and properties. Init has been described in a way

that is always applicable. However, in many scenarios a user has

more than one estimation task based on the same or similar data.

Think of estimating the MI for overlapping attribute pairs when

searching for strongly dependent attributes. In such a case, it

may not be necessary for each instance of IMIE to sort the arrays

from scratch, which is the primary computational burden of Init.

In this section we present the improvements possible for IMIE

in scenarios with high-dimensional data as in Scenario 1 and

with streaming data as in Scenario 2. We consider benefits over

both the naïve initialization of IMIE as well as the non-iterative

estimation.

High Dimensional Data. The number of attribute pairs grows

quadratically with the number of attributes. If the data has d

attributes, the number of pairs is
d ·(d−1)

2
. We now consider using

one instance of IMIE for each pair to obtain the pairwise MI

estimates. A naïve initialization of these instances would require

time in O(d2 · n logn). However, we only need to sort the points

once per attribute to use the respective sorted arrays for several

attribute pairs. This reduces the time complexity for initialization

to O(d · n logn).
Non-iterative estimators for the KSG use two-dimensional

space-partitioning trees [19, 31, 32]. This means that each at-

tribute pair requires a different tree, which prohibits a similar

improvement. In addition, non-iterative estimators must commit

the computation time beforehand. IMIE in contrast can budget

computation time between different pairs of attributes, depending

on which pairs a user finds interesting, based on the preliminary

estimates.

Data streams. With data streams, new data is arriving contin-

uously, and computation time is limited. We consider estimating

the current MI using all points whenever new data arrives. This

means that most data points remain unchanged. When maintain-

ing up-to-date MI estimates, IMIE can reuse the instance of Data

Structure 1 used for the previous estimate instead of another ini-

tialization. Considering Data Structure 1, only the adjustment of

Orderx , Ordery and OrderR does not incur constant costs when

a new data point arrives. Adjusting Orderx and Ordery to ac-

commodate new data can take place in O(logn).1 Since OrderR
is shuffled randomly during the estimation, IMIE can also start

off with a (partially) shuffled order and only needs the addition

of new indices for new data items. This means that initialization

of a new estimator on a data stream can take place in O(logn)
instead of O(n logn).

Additionally, if the delays between items from the data streams

are irregular in length, IMIE automatically offers the best estimate

for the time available. Previous work regarding efficient, non-

iterative MI estimation on streams [4, 14, 32] imposes a fixed

computation time, and there is no easy adjustment if items arrive

faster.

Takeaway. While the time complexity of Init may appear

prohibitively large in the previous section, we have demonstrated

in this section that concrete settings can allow for more efficient

solutions. Note that the improvements described are not mutually

exclusive. This means that both improvements can be combined

when dealing with high-dimensional data in the form of streams.

Table 1 summarizes the impact of these techniques on the ini-

tialization of IMIE for pairwise MI estimation between d data

streams.

1
From a technical perspective, this time complexity requires Orderx and Ordery to

be implemented as binary search trees. For simplicity we keep calling them sorted

arrays.
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Optimization Time Complexity

Naïve application O(d2 · n logn)
Reuse previous data structure O(d2 · logn)
Reuse sorted dimensions O(d · n logn)
Both O(d · logn)

Table 1: Impact of optimization techniques for initializing
IMIE for pairwise MI of d data streams.

6 EXPERIMENTS
In this section we investigate the performance of IMIE in terms

of runtime and estimation quality. We also perform experiments

to test the potential benefits from the statistical guarantees and

the anytime property of IMIE.

As reference for the performance of IMIE we use the KSG (see

Equation 5), because it offers high-quality estimations, and it is

the basis of IMIE. To ensure competitive runtime of the KSG we

use KD-Trees for its nearest-neighbor search, resulting in the

optimal computation complexity ofO(n logn) [32]. As a reference
point for faster estimates with lower estimation quality, we use

the KSG on subsamples of the data. Since the number of points

subsampled can be expressed as a percentile of all points or as

an absolute number, we introduce a notation for both. Using a

random sample of p% from all data points to compute the KSG is

denoted as KSG%p. Subsampling exactly q points at random from

all data points to compute the KSG on this subsample is denoted

as KSG@q.

Setup. All approaches and experiments are implemented in

C++ and compiled using the Microsoft
®
C/C++ Optimizing Com-

piler Version 19.00. We use the non-commercial ALGLIB
2
im-

plementation of KD-Trees for the KSG. We also use the non-

commercial ALGLIB
2
implementation of the cumulative density

function of the standard normal distribution Φ and its inverse

Φ−1 when computing our statistical guarantees. All experiments

are conducted on Windows 10 using a single core of an Intel
®

Core™ i5-6300U processor clocked at 2.4 GHz and 20GB RAM.

6.1 Data
In our experiments we use both synthetic and real-world data. As

synthetic data, we use dependent distributions with noise used

to compare MI estimators, see [15], uniform distributions used

to compare MI with the maximal coefficient, see [16], as well as

independent uniform and normal distributions. As real data, we

use smart meter readings from an industrial plant (HIPE) [3],

recorded smart phone sensors to recognize human activities

(HAR) [7], and physical quantities for condition monitoring of

hydraulic systems (HYDRAULIC) [12]. As proposed by the inven-

tors of the KSG [19], we prevent duplicate points in real-world

data by adding noise with minimal intensity. Beginning with

real-world data, we now briefly describe the data specifics.

HIPE. This data set, available online
3
, contains high-resolution

smart meter data from 10 production machines over 3 months.

This data has over 2000 attributes total and over 1.5 million data

points. We consider a reduced data set containing the first 1000

data points of themachines “PickAndPlaceUNIT”, “ScreenPrinter”

and “VacuumPump2” with a grand total of 333 attributes.

2
ALGLIB (www.alglib.net)

3
https://www.energystatusdata.kit.edu/hipe.php

10

1
E

X

Y

10

1
F

X

Y

10

1
G

X

Y

10

1
A

X

Y

10

1
B

X

Y

10

1
C

X

Y

10

1
D

X

Y

Figure 9: An overview of the uniform distributions used.

HAR. This data set, available at the UCI ML repository
4
, fea-

tures accelerometer and gyroscope sensor readings from smart-

phones to classify the activity of the human carrying the phone.

The data set contains 561 attributes and a total of 5744 data points.

HYDRAULIC. This data set, available at the UCI ML reposi-

tory
5
, features recordings of several physical quantities such as

temperature, vibrations and efficiency factors at different sam-

pling rates. For our experiments we use all quantities with a

sampling rate of 10 Hz. As a result, each of the 2205 data points

has 480 attributes.

For synthetic data, we use the following distributions with

known MI values [16, 23]. For distributions with a noise parame-

ter σr , we vary σr between 0.1 and 1.0.

Linear To construct the point pi ∈ P , we draw the value

xi from the normal distribution N (0, 1). Additionally, we
draw some noise ri from the normal distribution N (0,σr ),
where σr is the noise parameter of the distribution. This

yields the point pi = (xi , xi + ri ).
Quadratic This distribution is generated analogously to the

linear distribution, except that the point ispi = (xi , x
2

i +ri ).
Periodic For each point pi ∈ P , we draw the value xi from

the uniform distributionU [−π , π ]. Additionally, we draw
some noise ri from the normal distributionN (0,σr ), where
σr is the noise parameter. This yields the point pi =
(xi , sin(xi ) + ri ).

Uniform The uniform distributions A to G we use are illus-

trated in Figure 9. Note that the striped areas contain twice

as many points as the dotted areas. For these distributions,

each striped area with size 0.25 · 0.25 contains 25% of all

points, while dotted areas of the same size contain 12.5%

of all points.

Independent Lastly, we use the distributionsUInd andNInd,

where each point consists of two values drawn indepen-

dently fromU [0, 1] and N (0, 1), respectively.

6.2 Synthetic Benchmarks
We first evaluate the concrete runtimes of IMIE. While we have

established in Section 5 that the time complexity is competitive,

actual runtimes may have constant factors that time complexity

does not capture.We also look at the estimation quality offered by

IMIE after a variable number of iterations. Since the true MI value

of real data is unknown, we perform these experiments using

4
http://archive.ics.uci.edu/ml/datasets/Smartphone+Dataset+for+Human+

Activity+Recognition+(HAR)+in+Ambient+Assisted+Living+(AAL)

5
http://archive.ics.uci.edu/ml/datasets/Condition+monitoring+of+hydraulic+

systems
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Figure 10: Average runtime depending on the data size for
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synthetic data. Each synthetic data set corresponds to one pair

of attributes, for which we produce samples of varying sizes. For

each pair, sample size and estimator, we perform 100 estimates

and average the runtime and mean absolute error (MAE).

Figure 10 shows the average runtime of IMIE with various

numbers of iterations and the KSG with various subsampling set-

tings. Note that the concrete performance of IMIE when iterating

until convergence and KSG%100 is very similar. This means that

computing the exact KSG in the conventional way with a KD-tree

and without preliminary results is not faster than using IMIE.

Another point to observe is the difference in runtime between

IMIE with only the initialization and IMIE that has performed

some iterations. Even with only 5% of the iterations, IMIE already

consumes more than double the time used for initialization. This

shows that the time used for iterations quickly dominates the

time required for initialization, even though Init has a high time

complexity.

Figure 11 graphs the MAE of subsampling and IMIE depending

on the runtime. The plot shows curves per estimator correspond-

ing to a specific sample size, and the time is measured relative to

the runtime of the naive KSG estimation for this size. Each point

corresponds to the average runtime and absolute error of 100 esti-

mations with the same number of iterations or subsampling size,

respectively. In other words, the leftmost point corresponds to

subsampling 5% or iterating 5% respectively, while the rightmost

point uses all points or iterates until convergence, respectively.

The result is that IMIE and KSG with subsampling offer the same

time-quality-tradeoff for data of size 1000, with IMIE being some-

what faster for smaller data and somewhat slower for larger data.

However, this assumes “optimal” subsampling, in the sense that

it is known beforehand which subsampling size is desired. In

cases where it is not clear how much time is available or how

much time an estimate for a given subsample size takes, this is

not given. The time spent finding a good subsampling size is

discussed in Section 6.4.

6.3 Statistical Quality Indicators
Next, we investigate the practical relevance of the statistical

guarantees. The scenario considered is high-dimensional data. A

common information need for high-dimensional data is finding

highly dependent attributes. In our experiments we want to know

for each of the
d ·(d−1)

2
pairs of attributes whether it is above or

below a threshold τ . For IMIE we keep iterating the estimate

and perform the test from Equation 11. To be precise, one test is

performed for I (P) > τ , and one test is performed for I (P) < τ . To
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Figure 11: MAE of IMIE and subsampling depending on
the runtime relative to KSG for the same data.

reduce the necessary Šidák-correction for our significance level

αtest we perform these two tests only every 10 iterations. We start

with a minimum sample size of 30 to reduce effects of minimal

sample sizes. The exact choice of initial iterations and iterations

between tests is arbitrary as long as they are not extreme, e.g.,

performing statistical tests with sample size one or iterating

|P |
4

times between tests. Regarding the target significance level,

we test different values α ∈ {0.1, 0.05, 0.01, 0}. We use fixed

percentile subsamples for comparison, i.e., KSG%5, KSG%25 and

KSG%50.

Figure 12 shows the results for the three real-world data sets

with τ varying between 0 and 1. The figure contains two plots

per data set. The “Error Rate” shows the number of pairs falsely

classified over or under τ as a relative count of all pairs (left axis)

and as absolute count (right axis). The “Run Time” shows the

total execution time relative to the "naïve" estimation using the

KSG (left axis) and as absolute time (right axis). The behavior

depending on τ is different per data set. This is because the

dependencies in the data are distributed differently. The closer

τ is to the actual MI value, the easier it is for an approximate

result to be above the threshold while the actual value is below,

or vice versa. So it is harder to obtain statistical certainty that

the actual value is above or below. To illustrate, the attributes

in HIPE are largely independent. This yields MI values close to

zero, resulting in high error rates for subsampling approaches

and longer execution times for IMIE. Conversely, the attributes

of HYDRAULIC are highly dependent. This in turn increases

error rates and computation times, for subsampling and IMIE

respectively, for higher threshold values.

Nevertheless, there are several common patterns. One is that

IMIE does offer better time-quality-tradeoffs than subsampling.

I.e., for each subsampling rate there is an α such that IMIE yields

fewer errors using less time. A second pattern is that IMIE does

adapt to “tough threshold values” by increasing the computation

time used. Subsampling in turn makes more false claims. A third

interesting pattern is that IMIE with α = 0 is almost always faster

than the naïve KSG estimation. IMIE can speed up such queries

significantly with essentially no risk of error.
6

6.4 Anytime Experiments
Now we test the performance of IMIE as anytime algorithm. In

other words, the available time is not known beforehand. To

6
Technically there could still be errors due to rounding, numerical evaluation of

Φ−1 and the approximation in Section 4.3. However, no such error has occurred in

any of our experiments.
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Figure 12: Time and error rate of IMIE and subsampling
variants, depending on the chosen threshold τ .

mimic the behaviour of IMIE to improve the estimate with addi-

tional time, we also examine two strategies based on subsampling.

KSGLin consecutively computes KSG%10, KSG%20, . . . , KSG%100

as long as time is available. We also consider KSGExp, which com-

putes KSG@10, KSG@20, KSG@40, KSG@80, etc. until no time is

left.

For this experiment we randomly select 100 pairs of attributes

from each real-world data set and estimate MI using IMIE, KSGLin

and KSGExp. After some time the estimate is interrupted, and the

most recent result is used. Since IMIE and subsampling appear

most comparable in our synthetic benchmarks for data size n =
1000, we use the first 1000 data points of each attribute pair. Given

the small scale of time per estimate (cf. Figure 10), we use 1000

estimators in parallel for each pair. One “iteration” then performs

the next computation sequentially for each of these estimators.

Figure 13 shows the mean absolute error compared to a KSG

estimate using 1000 points as well as the mean standard devi-

ation of estimates for the same attribute pair. Additionally, for

each estimate from IMIE we use the statistical quality indicator

to determine the distance ϵ . Additionally, the plot displays the
average value ϵ such that our preliminary estimate is wrong
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Figure 13: Mean absolute error (MAE) and mean standard
deviation (MSD) of anytime approaches as well as the
mean ϵ of IMIE.

by at most ϵ with a confidence of 95%. This value is obtained

for each estimate using Equation 10. Note that KSGLin does not

consistently produce estimates with time less than 0.3 ms per

estimate, and IMIE does not consistently finish the first iteration

in 0.1 ms.

A result of this experiment is that IMIE has smaller errors

on average than the subsampling approaches, even though they

are comparable in Figure 11. This is because the subsampling

strategies are not efficient for iterative estimation. Estimates

from previous iterations are discarded without further benefit,

and iteration steps are less granular. This means that only a

part of the overall time available is spent on the estimate that is

ultimately presented.

6.5 Discussion
To summarize this section, IMIE offers a time-quality tradeoff

similar to the one when estimating the KSGwith varying subsam-

pling settings. The time necessary for IMIE to converge towards

the KSG result is slightly lower for small data and slightly higher

for larger data, compared to the naive KSG estimation. But IMIE

also offers preliminary results and achieves this time-quality

tradeoff even if the time available is not known beforehand. This

means that IMIE offers significant benefits for tasks that use

these features, such as threshold queries or irregular data-stream

processing, without notable drawbacks for regular tasks.

7 CONCLUSIONS
In this work, we have studied the iterative estimation of Mutual

Information (MI). The goal has been to provide an estimator that

offers a first estimate quickly and improves the estimation with

additional time. It should also use the available time efficiently,

even if the time available is not known beforehand. To this end,

we have proposed IMIE.

By design, IMIE converges towards the same result as the pop-

ular MI estimator (KSG) by Kraskov et al. [19] after sufficiently

many iterations. Before convergence, the preliminary results of

IMIE also offer helpful statistical quality indicators which one

can use to infer information regarding the final estimate, i.e., the

KSG result. This can take the form of confidence intervals or the

probability of surpassing a certain threshold. In addition to these

formal results on estimation quality, we also have studied the

time complexity of IMIE both in general and when tailored to-

wards specific use cases. One result is that this complexity when

computing the exact KSG estimate is only slightly larger than an
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optimal implementation to compute the KSG that does not offer

any preliminary result.

Using extensive experiments, we have evaluated the practical

performance of IMIE in terms of concrete runtimes and quality

on real data. Among other results, IMIE remains competitive with

its estimation quality per time, even when being compared to

approaches without preliminary results. The experiments also

demonstrate a significant runtime improvement when searching

for attribute pairs with high MI in high-dimensional data.
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ABSTRACT
We introduce Functional Geometric Monitoring (FGM), a substan-
tial theoretical and practical improvement on the core ideas of

Geometric Monitoring. Instead of a binary constraint, each site

is provided with a non-linear function, which, applied to its local

summary vector, projects it to a real number. The sites collec-

tively monitor the sum of these one-dimensional projections and

as long as the global sum is subzero, the monitoring bounds are

guaranteed. We demonstrate that FGM is as generally applicable

as Geometric Monitoring, and provides substantial benefits in

terms of performance, scalability, and robustness. In addition, in

FGM it is possible to prove worst-case results, under standard

monotonicity assumptions on the monitoring problem. In terms

of performance, the salient quality of FGM is that it can adapt

naturally to adverse changes in the monitored problem, such as

lack of monotonicity or very tight monitoring bounds, where

no method can deliver asymptotically good performance. We

provide formal proofs for many of the properties of FGM, and

present an extensive empirical performance evaluation under

adverse conditions, on real data.

KEYWORDS
distributed functional monitoring, geometric monitoring, dis-

tributed streaming

1 INTRODUCTION
The explosion in the amount of data generated online is entering

its next phase, as the Internet of Things (IoT) is set to increase

the number of networked data sources by orders of magnitude in

the near future. Thus, there is a clear need for ever more scalable

techniques for distributed stream processing, where the tsunami

of data generated by networked nodes is filtered and summarized

in near-real time at (or, near) the source, drastically reducing the

required communication costs.

Motivated by such needs, there has been significant research

effort on the distributed functional monitoring problem, over

the past decade. Much effort has concentrated on worst-case

communication complexity for particular types of important

queries, such as frequency moments, heavy hitters, percentiles,

distinct elements etc. Early on, it became apparent that many

of these problems can have very bad worst-case performance,

unless certain assumptions were made, in particular with respect

to monotonicity, about the input streams and/or the monitored

functions.

A problem not yet addressed by previous work on monitoring

algorithms, is that it can be a challenge to integrate them into

large stream processing frameworks, such as STORM and Spark,

or even more targeted systems such as Gorilla and InfluxDB.
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Indeed, while such frameworks are a staple of modern infor-

mation systems, the algorithmic work on distributed functional

monitoring has not yet found practical adoption in them. Part

of the reason is, we believe, lack of uniformity; each distributed

monitoring algorithm imposes different requirements on the sys-

tem architecture and its communication patterns. Historically,

this was also the case with databases, until adoption of the rela-

tional model (its limitations notwithstanding) created a vibrant

industrial and research ecosphere.

A technique—to our knowledge, the only one—intended to

be applicable to arbitraty continuous queries is Geometric Moni-

toring (GM) [27]. A strong appeal of GM is that it separates the

complexities of the monitored query operator, from the commu-

nication protocol that executes the monitoring. Unfortunately,

although it can be very successful at reducing the communcation

cost in real-world applications, its performance can degenerate

under certain circumstances, such as high stream variability, or

skew between the relative rates of local streams. On the theoret-

ical side, the GM is not known to provide any cost guarantees,

even under monotonicity assumptions.

RelatedWork. After the introduction of (centralized) streaming

algorithms in the mid ’90s, several works proposed distributed
streaming techniques for particular important problems, such as

linear functions [16, 17, 23], top-k queries [3, 24], ratio threshold-

ing queries [15], and polynomials of scalar variables [26]. Of par-

ticular importance is the problem of tracking sketch synopses [7]

of local streams, which can be applied to the approximation of

self-join and join aggregates [5, 6].

The first (and, to our knowledge, only) general-purpose tech-

nique, Geometric Monitoring (GM), was first proposed in [27, 28].

This paper ignited a rich line of work, part of which related to

improving the basic method [14, 18–22], and also utilizing it in

important applications (e.g., [4, 11, 12, 25] to name but a few).

Interestingly, despite the rich mathematical techniques employed

in this body of work, to date there have been no analytical re-

sults on the communication cost of the method, even under strict

assumptions.

Starting with the fundamental results of Cormode et al. [9], the

problem of continuous query tracking over distributed streams

has also been studied in a theoretical setting in recent years,

within the broad framework of communication complexity; the

minimum amount of bits that needs to be exchanged between a

group of communicating parties, each party observing incremen-

tally a local dataset, so that a global function on the union of the

data possessed by all players can be continuously tracked with

some bounded error. Much of the work has concentrated on the

hardness of the problem. It has been shown [1] that the worst-

case communication cost of distributed function monitoring can

hardly improve upon the baseline method of centralizing all local

data, unless restrictive assumptions are made; this is true even for

the trivial problem of maintaining a distributed counter. Despite

the general negative results, there are also positive results for par-

ticular problems of interest, e.g., [1, 9, 29, 30] to name but a few.
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In particular, [9] provides optimal results on the communication

complexity of monitoring a linear monotone function, while sub-

sequent papers [1, 29] prove strong lower-bounds showing that

guaranteeing better than linear worst-case communication costs

is probably impossible for complex, non-linear query functions.

Our Contributions. We propose Functional Geometric Monitor-
ing (FGM), a technique which can conceptually be applied to any

monitoring problem, in order to perform distributed monitoring

with communication costs that are lower (often by orders of mag-

nitude) compared to centralizing all data to a coordinator. The

FGM comprises of a distributed algorithm which is independent

of the monitoring problem. In order to perform a monitoring task,

the FGM must be parameterized by a problem-specific family

of functions (termed safe functions later in the paper); to this

end, the FGM draws on and can utilize the extensive previous

work on distributed monitoring, where such functions have been

proposed for a large variety of monitoring problems [11, 13, 21].

Combined with these previous results, FGM is a technique that

is ready to be utilized to real distributed monitoring applications.

The strict separation of concerns between distributed sys-

tems issues and the monitoring problem, is critically important

to anyone wishing to implement distributed monitoring on a

general-purpose middleware platform. In addition, despite this

strict separation, the FGM offers significant improvements to

the communication cost of distributed monitoring, compared to

previous monitoring techniques, notably the GM. In particular,

FGM has provably better performance than GM, regardless of

the monitoring problem. In fact, under FGM it is possible to pro-

vide good worst-case guarantees on the communication cost of

specific monitoring problems, comparable to the best known the-

oretical results on distributed functional monitoring. By contrast,

no such results are known for GM. In this paper, we provide such

worst case analytical results for monitoring frequency norms.

Another issue that has not been treated uniformly—and has

often been ignored—by previous techniques, is the detection and

response of the monitoring algorithm to circumstances where

the monitored constraints (thresholds) are too “tight”; in such

occasions, any distributed monitoring algorithm would be unable

to do better than to naively centralize all data to a coordinator.

Such situations occur frequently in practice, and practical mon-

itoring algorithms should be able to smoothly transition their

operation for handling such loads. An important fetaure of FGM

is that it can adapt to these high variability situations seamlessly;

that is, in a problem-independent manner, and within the logic

of the basic protocol.

In addition, FGM’s performance is resilient to the presense

of skew in the distribution of data among distributed nodes, as

well as in the relative rates of local streams; its performance is

fundamentally determined by the characteristics of the global

stream (i.e., the union of all distributed streams). Again, this is a

novel feature; the performance of previous techniques, notably

of GM, is adversely affected in the presense of skew. We have

performed extensive experiments that demonstrate and quantify

the resilience of FGM both in adverse streaming conditions of

high variability, and in the presense of skew.

2 FUNCTIONAL GEOMETRIC
MONITORING

The focus of this section is to present the basic principles and pro-

tocol of Functional Geometric Monitoring (FGM). Our discussion

employs standard notation and terminology from functional anal-

ysis: Vectors are denoted by boldface letters, and sets of vectors

are added by Minkowski addition:

A + B = {x +y | x ∈ A, y ∈ B}.

We write x +A instead of {x}+A; also, λA = {λx |x ∈ A}. Finally,
in some proofs, we assume some familiarity with the properties of

convex functions and sets; in particular, the biconjugate (convex

hull of a function), norms and semi-norms, gauge functions and

convex cones. The convex hull of A is convA.

2.1 Background: Approximate Query
Monitoring

We adopt the standard data model for distributed data streams.

Assume that there are k distributed sites, and that at each site, a

local stream is generated or collected, denoted as a (very high-

dimensional) vector in vector space RD . This vector can be the

frequency vector of the stream records, or a linear sketch thereof,

and changes as stream updates arrive. Let Si (t), i = 1 . . .k denote

the local state vectors. Every site communicates with a coordi-

nator, where users pose queries on the global stream. Without

loss of generality, assume that the global stream state is the av-

erage of the local stream states, i.e., S(t) = 1

k
∑k
i=1 Si (t). (Other

linear formulas, e.g., sum, can be treated by multiplying local

state vectors with scalars as needed.)

We consider two types of queries on this model. In the one-shot
query, the coordinator needs tomonitor for the eventQ(S(t)) ≤ T ,
whereQ is a query function andT a threshold. On the other hand,

for a continuous query, the coordinator needs to maintain at all

times a close estimate Q(E(t)) of the true value of the query

Q(S(t), so that

Q(S(t)) ∈ (1 ± ε)Q(E(t)). (1)

This guarantee is maintained by the local sites periodically

flushing the updates received to their local streams. In particular,

the coordinator maintains, for each site i , an estimated state

vector Ei . When a flush occurs, the site transmits its drift vector
X i (t) = Si (t) − Ei , and the coordinator updates Ei by adding X i
to it, while the site resets X i to 0. Then, the coordinator updates

the global estimate E = 1

k
∑k
i=1 Ei .

Note that a site can transmit its drift X i either as a vector of

size D, or as a list of the records that arrived since the previous

flush (whichever is smaller), therefore the total communication

cost for flushing is never worse than tranmitting all data to the

coordinator.

In geometric monitoring, the correctness criterion is described

as a geometric constraint, of the form S ∈ A, where A ⊆ RD is

the admissible region, that is, the set of global stream states where

the constraint holds. That is,

A =
{
x ∈ RD |Q(x) ≤ T

}
one-shot queries (2)

A =
{
x ∈ RD |Q(x) ∈ (1 ± ε)Q(E)

}
continuous queries(3)

2.2 Communication costs
We assume that each message consists of a sequence of words,
of sufficient size. In particular, we assume that each word can

store a real number; all our protocols are robust against finite

precision, so this is not an unrealistic assumption.

We distinguish two directions in communication. Downstream
communication consists of messages from local nodes to the coor-

dinator, while upstream communication consists of messages from
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the coordinator to local nodes. We do not consider a multicast

capability, although our work can be adapted to such settings.

2.3 Safe functions
Our starting point relates to the representation of a safe con-
figuration, in a monitoring algorithm. The configuration of the

system of k sites is a is a (kD)-dimensional vector consisting of

the concatenation of the k local drift vectors, X i . The system is

in a safe state as long as E +
∑k
i=1 X i
k = S ∈ A.

To guarantee that a configuration is safe, FGM employs a real

function ϕ : RD → R, depending on A, E and k . Each site tracks

its ϕ-value, ϕ(X i ), as X i is updated. System safety is guaranteed

by tracking the sign of the sum ψ =
∑k
i=1 ϕ(X i ). In particular,

we need to guarantee thatψ ≤ 0 implies S ∈ A.

Definition 2.1 ((A,E,k)-safe function). A function ϕ : RD → R

is safe for admissible region A ⊆ RD , vector E ∈ RD , and k ≥ 1,

if, ϕ(0) < 0 and, for all X i ∈ R
D , i = 1, . . . ,k ,

k∑
i=1

ϕ(X i ) ≤ 0 =⇒ E +

∑k
i=1X i

k
∈ A.

Much of previous work on distributed monitoring has pro-

posed safe functions for specific problems. Since we indend to

explore the FGM in terms of its generality, we are interested in

properties of safe functions as a class.

First, note that safety is preserved under common pointwise

operations: positive scaling, addition and pointwise supremum.

Consequently, (A,E,k) safety is monotone under pointwise dom-

inance, i.e., if ϕ is (A,E,k)-safe and ∀x ,ϕ(x) ≤ ϕ ′(x), then ϕ ′ is
also (A,E,k)-safe.

In fact, more can be said about addition and pointwise supre-

mum of safe functions; they can be employed to compose safe
functions for an admissible region A, defined by a set-algebraic

expression over some family of admissible regions {Ai }, when a

safe function ϕi for each Ai is available.

Theorem 2.2. Let ϕi be (Ai ,E,k)-safe, for each i ∈ I respec-
tively. Then,

• supi ∈I ϕi is (
⋂
i ∈I Ai ,E,k)-safe, and

•
∑
i ∈I ϕi is (

⋃
i ∈I Ai ,E,k)-safe, provided that I is finite.

On the dependence on k , note that, for any divisor k ′ of k , a
k-safe function is also k ′-safe , and 1-safe in particular. Therefore

a necessary condition for k-safety is that the 0-sublevel L(ϕ) =
{x |ϕ(x) ≤ 0}, shifted by E, be a subset of A:

E + L(ϕ) ⊆ A.

2.3.1 Safe functions and convexity. Intuitively, we can “im-

prove” a safe function ϕ by finding a function ϕ ′ ≤ ϕ that is still

safe; ϕ ′ is improved in the sense that the set of configurations

whereψ ≤ 0 is larger for ϕ ′ than for ϕ.
In this respect, of particular interest are functions that are

safe for all k (and fixed A, E). We denote such functions as (A,E)-
safe. The salient property of (A,E)-safe functions is that they can
always be “improved” into dominated, convex safe functions.

Theorem 2.3. If a functionϕ is (A,E)-safe, there exists a convex
function ζ ≤ ϕ which is also (A,E)-safe.

Proof. Ommitted due to space constraints. □

Convex safe functions are appealing because they admit a very

simple criterion for (A,E)-safety.

Lemma 2.4. A convex function ζ with ζ (0) < 0 is (A,E)-safe, if
and only if, E + L(ζ ) ⊆ A.

Proof. We have already seen that E+L(ζ ) ⊆ A is necessary for

safety. Sufficiency follows directly from the convexity of ζ . □

2.3.2 Quality of safe functions. Consider the set C ⊆ RkD of

safe configurations of a monitoring problem

C =
{
(X 1, . . . ,Xk ) | E +

1

k

k∑
i=1

X i ∈ A
}

(4)

The FGM protocol under-approximates this set by the set of

configurations, where ψ ≤ 0. Call this the quiescent region Qϕ ,

which is determined by the choice of safe function ϕ. We would

like to characterize ϕ so that Qϕ is as large (inclusion-wise) as

possible, in order to improve the approximation of C. Such a

characterization is possible if we restrict our attention to (A,E)-
safe (and by virtue of the above theorem, convex) functions.

Intuitively, the issue that we examine can be presented with

an example: assume that A = {x |∥x ∥ ≤ 1} is the unit ball, and

take E = 0. It is easy to see that both convex functions ∥x ∥ − 1

and ∥x ∥2 − 1 are suitable safe functions. However, the former

choice is superior to the latter, when the size of the quiescent

region is taken into account. To see this, note that (1/2)(∥x ∥2−1)

strictly dominates ∥x ∥ − 1; therefore, a configuration say, (0,p)
with ∥p∥ =

√
3 is quiescent for ∥x ∥ − 1 but not for ∥x ∥2 − 1.

It turns out that safe functions that are best, are those that are

level-minimal, that is, they do not strictly dominate any function

with equal level set.

Theorem 2.5. A (A,E)-safe function ϕ has maximal quiescent
region, among all (A,E)-safe functions, for every k , iff,

• ϕ is convex
• L(ϕ) is a maximal convex subset of A, and
• ϕ is level-minimal

Proof. Ommitted due to space constraints. □

The above results highlight the centrality of convexity in the

monitoring problem; starting from very broad principles, we

have shown that convexity enters in a natural way from the

definition of safety, and furthermore, we have formally identified

the requirement of level minimality, in order to maximize the

quiescent region in FGM.

We will return to the issue of safe functions, with respect to

the communication costs they entail, after we present the FGM

distributed protocol.

2.4 The basic FGM protocol
The FGM protocol works in rounds. Monitoring the threshold

condition

k∑
i=1

ϕ(X i ) ≤ 0, (5)

over the duration of the round is performed along the lines of

the algorithm in [9].

At the beginning of a round, the coordinator knows the current

state of the system E = S . It selects an (A,E,k)-safe function ϕ.

At each point in time, letψ =
∑k
i=1 ϕ(X i ). The round’s steps are:

(1) At the beginning of a round, the coordinator ships ϕ to

every site (it is sufficient to ship vector E, sinceA can then

be determined from it). Local sites initialize their drift

vectors to 0. With these settings, initially it isψ = kϕ(0).
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(2) Then, the coordinator initiates a number of subrounds,

to be described below. At the end of all subrounds, ψ >
ϵψ kϕ(0), for some small ϵψ (Note that ϵψ is not related to

the desired accuracy for the monitored query, ε , but only
to the desired quantization for monitoring ψ . We have

used ϵψ = 0.01 in our experiments).

(3) Finally, the coordinator ends the round by collecting all

drift vectors and updating E.

2.4.1 Execution of subrounds. The goal of each subround is to

monitor the conditionψ ≤ 0 coarsely, with a precision of roughly

θ , performing as little communication as possible. Subrounds are

executed as follows:

(1) At the beginning of a subround, the coordinator knows

the value ofψ . It computes the subround’s quantum θ =
−ψ/(2k), and ships θ to each local site. Also, the coordi-

nator initializes a counter c = 0. Each local site records

its initial value zi = ϕ(Xi ), where 2kθ = −
∑k
i=0 zi . Also,

each local site initializes a counter ci = 0.

(2) Each local site i maintains its local drift vector X i , as

it processes stream updates. When Xi is updated, site i
updates its counter

ci := max{ci ,
⌊ϕ(X i ) − zi

θ

⌋
}.

If this update increases the counter, the local site sends a

message to the coordinator, with the increase to ci .
(3) When the coordinator receives a message with a counter

increment from some site, it adds the increment to its

global counter c . If the global counter c exceeds k , the
coordinator finishes the subround by collecting all ϕ(X i )

from all local sites, recomputing ψ . If ψ ≥ ϵψ kϕ(0), the
subrounds end, else another subround begins.

The following simple statement guarantees the correctness of

the protocol.

Proposition 2.6. During the execution of a subround, if c ≤ k

then
∑k
i=1 ϕ(X i ) < 0.

Proof. At each point in time and for any site, it must be

ϕ(X i ) − zi
θ

− 1 <
⌊ϕ(X i ) − zi

θ

⌋
≤ ci .

Summing both sides, we get
1

θ
(
ψ +2kθ

)
−k < c , which simplifies

to

∑k
i=1 ϕ(X i ) < (c − k)θ ≤ 0. □

2.5 Performance analysis
Apart from the communication incurred during the subrounds of

the FGM protocol, the communication cost of a round consists of

two parts; an upstream cost Θ(kD) for shipping E to all sites at

the beginning of a round, and a downstream costO(min{kD,τ }),
for shipping drift vectors to the coordinator at the end of the

round. Here, τ stands for the total number of stream updates

processed by all sites during a round—as mentioned before, sites

that received few stream updates during a round, can ship them

verbatim to the coordinator.

2.5.1 The cost of subrounds. Each subround itself costs only

3k + 1 one-word messages: k messages to broadcast quantum θ ,
k messages to collect ζ -values at the end of a subround, and up

to k + 1 downstream messages carrying counter updates.

The problem of monitoringψ ≤ 0 is of course an instance of

the non-monotone distributed counting problem. As shown in

[9], if ψ is an increasing function of time, then the number of

subrounds is at most log
2

1

ϵψ
.

In general, there is no guarantee that ψ will be increasing;

therefore we also provide an analysis within the framework of

variability, as set out in [10]. In this framework, the cost of track-

ing a non-monotone counter f (t) within accuracy ε is shown

to take O(kε Vf ) messages, where Vf (t) =
∑t
τ=0min{1,

|δ f (t ) |
|f (t ) | }.

They provide space-plus-time lower bounds for the tracking prob-

lem that match the communication cost.

In our setting, we are not interested in tracking the value ofψ .
Still, the definition of variability during a round can be given as

follows: let the sequenceψn represent the value ofψ at the end

of the n-th subround. Also, define the set of values that ϕ(X i )

takes, during subround n, as

Φi,n = {ϕ(X i (t)) | ∀t during subround n}
Then the change ∆ψn is

∆ψn =
k∑
i=1

supΦi,n − inf Φi,n

Finally, theψ -variability over a round with q subrounds is

V =

q∑
n=1

|∆ψn |

|ψn |
.

Theorem 2.7. The communication cost of all subrounds of a
round is O(kV ) words.

Proof. Consider then-th subround, with quantumθ = −ψn−1/2k .
If the counter of site i is ci , then, at some point during this sub-

round we had

⌊
ϕ(X i ) − zi

θ
⌋ = ci .

We conclude that, since c > k ,

∆ψn ≥ (k + 1)θ =
k + 1

2k
|ψn−1 | ≥

|ψn−1 |

2

.

On the other hand, |ψn −ψn−1 | ≤ ∆ψn , thus the variability has

increased by at least 1/3 during this subround. Therefore, the

total cost of all subrounds is at most (9k + 3)V words. □

At this point, we should report that in our extensive experi-

ments with complex non-monotone functions over sketches and

streams created from real data with deletions (using windows),

the number of subrounds per round q was always at most 10,

and almost always 7 ≈ log
2

1

0.01 . In fact, the total cost O(kq) of
all subrounds in a round, was dominated by several orders of

magnitude, by the upstream cost Θ(kD). This good fortune is

possibly due to tight monitoring bounds in our experiments, but

still, it is an interesting observation, considering how bad the

worst-case costs are.

An interesting open question is to relateψ -variability to the

variability of the query functionQ , and in particular derive lower

bounds based on this concept.

We should also discuss the role of ϵψ . Note that this bound is

unrelated to the approximation bound ε of themonitored queryQ .

It is simply a threshold of accuracy, with which the value ofψ is

approximated. In practice, a fixed value of 0.01 seemed to suffice.

The choice of ϵψ can be understood as the precision to which

ϕ(X i ) are evaluated; their values are quantized to ϵψϕ(0) absolute
error. Selecting a different value depends on the geometry of a

particular problem; we omit the details.
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2.5.2 Comparison to classic geometric monitoring. Both the

FGM protocol and the standard protocol of geometric monitoring

(GM) are generally applicable. The two protocols can be rendered

comparable; when FGM is used together with convex safe func-

tions, the condition ϕ(x) ≤ 0 is akin to testing membersip in a

convex Safe Zone [22]. However, the GM protocol adopts a much

stricter safeness condition, equivalent to

max

i=1, ...,k
ϕ(X i ) < 0. (6)

When the above condition is violated, the GM protocol performs

substantial communication (either a partial, or a full synchroniza-

tion, by flushing the local state vectors). By contrast, the FGM

is much more patient; in fact, it is easy to see that, if the two

protocols start from the same estimate E at the beginning of a

round, as long as safeness condition (6) holds, the first subround

of FGM has not yet finished.

Proof. As long as ϕ(X i ) < 0, it is 1 − ϕ(X i )/ϕ(0) < 1. The

quantum of the first FGM subround is θ = −ϕ(0)/2, therefore,
for each site i , it is

⌊
ϕ(X i ) − ϕ(0)
−ϕ(0)/2

⌋ = ⌊2(1 −
ϕ(X i )

ϕ(0)
)⌋ ≤ 1,

and thus the coordinator has received at most k bits. □

The advantage of FGM over GM becomes more apparent by

considering the size of the quiescent regions for these protocols.

Each protocol will synchronize (flush local sites) as soon as the

system escapes the quiescent region. It is therefore advantageous

to admit a quiescent region that better approximates the set of

safe configurations C.

Fig. 1 depicts the situation for D = 1 and k = 2. Without loss

of generality, we are assuming A = [−1, 1]. The quiescent region

for GM is simply A × A, whereas for FGM the region depends

on the choice of ϕ. Choosing ϕ(x) = |x |p − 1 will be correct for

every p ≥ 1, but naturally the best function is the level-maximal

function |x | − 1 (i.e., p = 1). In fact, it can be seen in Fig. 1 that as

X1

X2

C
Q |x |−1
Q |x |2−1
QGM

Figure 1: Configuration space for A = [−1, 1] ⊆ R and k = 2,
depicting the set of safe configurations C, the FGM qui-
escent regions Q |x |p−1 for p = 1, 2 and the GM quiescent
region QGM.

p grows, the benefit of FGM over GM decreases; however, FGM

will never be inferior to GM.

3 COMPLEXITY RESULTS FOR Fp
MOMENTS

We now turn to an analysis of the worst-case communication

cost of FGM for Fp moments. In this analysis, it is necessary

to introduce monotonicity assumptions about the studied prob-

lems; otherwise, even the simplest problems can have very bad

worst case complexity. In particular, we assume that all local

state vectors and drifts are frequency vectors with nonnegative

coefficients; this assumption is compatible with an insert-only

stream.

Similar complexity results were obtained by [9], by an algo-

rithm which is similar to FGM; under monotonicity, each round

of their algorithm is essentially a round similar to ours, but with

carefully selected thresholds. Here, we will strive for a simpler

approach.

Since the functions to be monitored are convex, and in fact the

Fp (x) moment of a frequency vector x is just the norm ∥x ∥
p
p , we

use safe functions of the form ∥x+E∥p−T . Note that selecting not
to raise the norm to p yields better quiescent regions, although it

does not make much difference to the asymptotic results under

monotonicity.

We begin by examining the effect of a single FGM round. In

such a round, we start from some global state E and we allow the

protocol to proceed to termination, under an admissible region

of the form {x |∥x ∥p ≤ T }, where T depends on whether we are

interested in an one-shot query or a continuous one.

Lemma 3.1. Assume the problem of monitoring admissible re-
gion A = {x |∥x ∥p ≤ T } for p ≥ 1, starting at some E ∈ A.

Under monotonicity assumptions, at the end of a single FGM
round with safe function ϕ = ∥x + E∥p −T , the final stream state
S will have

∥S ∥
p
p ≥ (1 −

1

kp−1
)∥E∥

p
p +

1

kp−1
T̃p ,

where T̃ = T (1 − ϵψ ) + ϵψ ∥E∥p ≈ T .

Proof. At the end of the round, the value of ψ has become

greater than ϵψ kϕ(0). Therefore, under our safe function, at the
end of the round, the coordinator collected drift vectors X i , with

T̃ ≤
1

k

k∑
i=1

∥X i + E∥p .

From Hölder’s inequality (thinking of the sum as an inner

product with vector 1 = (1, 1, . . . , 1)), we get

k∑
i=1

∥X i + E∥p ≤ ∥1∥q

( k∑
i=1

∥X i + E∥
p
p

)
1/p
,

where q = p/(p − 1) is the Hölder conjugate of p. Combining the

above inequalities by raising to p, and noting that ∥1∥pq = kp−1,
we get

k∑
i=1

∥X i + E∥
p
p ≥ kT̃p . (7)

To proceed, first observe that kS = kE +
∑k
i=1X i . Consider the

following real inequality (over nonnegative numbers):

(
ke +

k∑
i=1

xi
)p
=
( k∑
i=1

(xi + e)
)p

≥

k∑
i=1

(xi + e)
p + (kp − k)ep .

When applied to each coordinate of E and X i , it follows from 7

that

kp ∥S ∥
p
p ≥ kT̃p + (kp − k)∥E∥

p
p .

Dividing both sides with kp finishes the proof. □
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Observe from the above lemma that the effect of ϵψ is localized

in reducing slightly the threshold T in each round; however, as

∥E∥p → T , the effect dissappears; this case makes apparent

that ϵψ does not affect the accuracy of the monitoring; it only

increases (slightly) the number of rounds. We do not discuss ϵψ
any further.

We can consider two scenaria for monitoring the Fp norm.

3.0.1 One-shot query. In this scenario, which is exactly the

framework of ditributed functional monitoring, we set an initialT
and we estimate the number of rounds needed until ∥S ∥p exceeds

(1 − ε)T , starting at E = 0. By solving a simple linear recurrence,

we get the following

Theorem 3.2. For safe function ∥x ∥p −T , the FGM protocol can
monitor the Fp moment of a monotone stream in O(kp−1 log 1

ε )

rounds.

For the actual communication cost, when using sketches or

other summaries for Fp norms, we refer to the discussion of [9].

3.0.2 Continuous query. In this case, the thresholdT given to

the FGM protocol at each round is set to (1 + ε)∥E∥p , that is, it
changes with each round. To describe the communication cost in

the continuous setting, we express the number n of rounds as a

function of a starting query value Q0 and an ending query value

Qn . Ommitting the easy details, we have

Theorem 3.3. For safe function ∥x ∥p −T , the FGM protocol can
monitor continuously the Fp moment of a monotone stream, as it

transitions from value O0 to Qn in O(k
p−1

ε log
Qn
Q0

) rounds.

3.0.3 Discussion. The above complexity results match those

of the original paper by Cormode et al. [9]. Our proofs show that

they can be obtained without resorting to a special-purpose pro-

tocol like the one proposed in [9]. By contrast, the FGM protocol

is built along the lines of greedy relaxation: setting a safe zone

and letting the protocol iterate to completion. Naturally, there

is nothing to forbid a clever coordinator algorithm to set more

precise targets, in order to achieve better results.

The real limitation of FGM comes from the fact that in FGM,

local nodes are memoryless; once a local drift is transmitted, the

node has no memory of its past state. It should not come as a

surpsise that better communication complexity can be achieved

with stateful nodes. In particular, the results of [29] on very good

upper bounds for frequency moments require nodes to retain

much information for a long time. On the other hand, this may

be quite undesirable from an implementation point of view. Thus,

such results are important in the context of communication com-

plexity with unrestricted parties, but arguably not immediately

practical.

Another point compares the implementation cost of algo-

rithms; arguably, the algorithms presented in [9] and elsewhere,

are harder to adapt to more general setting. To illustrate the point,

consider the problem of monitoring, say, the F2 moment, in a

stream allowing deletions as well as insertions. With FGM, it

suffices to augment the safe function: starting at state E, a good
safe function for admissible region A = {x |∥x ∥2 ≥ (1 − ε)∥E∥}
is defined as a half space, tangent to ball A at the projection of E
ontoA. Then, the safe functions for upper and lower bound of the
F2 moment can be combined via the pointwise-max operation:

ϕ(x) = max{−ε ∥E∥ − x
E

∥E∥
, ∥x + E∥ − (1 + ε)∥E∥}.

If the above function is employed in an insertion-only setting, it

will retain the cost guarantees proved above.

4 ROBUSTNESS UNDER ADVERSE
CONDITIONS

We now turn our attention to features of the FGM that allow it to

handle gracefully adverse streaming conditions. These conditions

can arise from a number of factors, such as:

• Setting the monitoring accuracy ε to a very low value,

resulting in tight thresholds for monitoring.

• In the absense of monotonicity, handling local streams

which tend to cancel each other (this is a multidimensional

version of the problem of non-monotone counter).

• Handling cases where the local stream rates are very un-

even (e.g., following a power-law distribution).

To handle the above situations, the FGM protocol offers a num-

ber of enhancements; the effect of these enhancements is quite

apparent in our experiments, but to our knowledge they do not

provide asymptotic improvements in communication cost.

The guiding intuition in the following is the observation that,

under a greedy view, it is preferable to have FGM rounds last

longer (consuming more stream updates), since then, not only

the streams are better summarized in local state vectors, but also,

the upstream overhead of shipping E to local sites at the the

beginning of a round is paid less often.

4.1 Rebalancing
Our starting point is the observation that

∑k
i=1 ϕ(X i ) > 0 does

not generally imply that ϕ( 1k
∑k
i=1X i ) is also positive, or even

much different than ϕ(0), i.e., often, at the end of a round, the

global stream state S has not moved significantly far from E.
Therefore, the current safe function ϕ may still be quite useful,

and we would like to avoid the overhead of shipping a new safe

function to the sites.

Rebalancing is an important technique in classic Geometric

Monitoring. The idea in GM is to flush a subset of the local

sites, and then ship them the average of their previous drifts. A

straightforward adaptation of the rebalancing method of GM,

could benefit FGM. Unfortunately, the method is highly uncer-

tain as to the benefit it provides, versus the added upstream

communication overhead (which is a multiple of O(D)).
A simple approach to rebalancing, that incurs negligibly small

additional upstream communication cost, is to ship to the sites a

scaling factor, with which to scale their local drifts. We restrict

the discussion to convex safe functions.

In our rebalancing scheme, the coordinator holds an extra

state vector, the balance vector B, which is used to aggregate

drift vectors from local sites, without ending the round. At the

beginning of a round, the balance vector is set to 0. During the
round, sites update their drift vectors as local stream updates

arrive. However, with rebalancing allowed, it is possible for a

site to flush its current drift vector to the coordinator, during the

round. When a flush occurs, the coordinator updates the balance,

by adding X i to it. After drift vector X i is flushed, it is reset to 0.
Therefore, the global drift is always equal to

B/k +
1

k

k∑
i=1

X i . (8)
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This can be rewritten as

µ
B

µk
+
λ

k

k∑
i=1

X i
λ

(9)

for some λ > 0, µ ≥ 0, with λ + µ = 1 (note that we allow µ = 0

when B = 0, namely at the beginning of a round).

If ϕ is a convex (A,E)-safe function, known to the sites, we

can adapt the safety condition by applying ϕ to Eq. 9. Define

ψ =
k∑
i=0

λϕ(
X i
λ
) and ψB =

{
(1 − λ)kϕ( B

(1−λ)k ) λ < 1,

0 λ = 1.

Theorem 4.1. If ϕ is convex (A,E)-safe, then, for any λ ∈ (0, 1],

ψ +ψB ≤ 0 =⇒ E +
B +

∑k
i=1X i

k
∈ A.

Proof. Let µ = 1 − λ. By convexity,

kϕ(
B +

∑k
i=1X i

k
) ≤ µkϕ(

B

µk
) + λkϕ(

∑k
i=1X i

λk
) ≤ ψB +ψ .

Sincekϕ is (A,E)-safe, and dominated byψ+ψB , the claim follows.

□

Tomonitor conditionψ+ψB ≤ 0, the only modification needed

to the FGM algorithm during subrounds, is in the selection of a

suitable quantum θ at the beginning of each subround, so that

2kθ = −(ψ +ψB ). (10)

4.1.1 Rebalancing FGM protocol. The extended protocol be-

gins exactly as described in §2.4, with λ = 1. At the end of all

subrounds, it is ψ > ϵψ kϕ(0). Where the basic protocol would

start a new round, the rebalancing protocol restores the invariant

ψ +ψB ≤ 0 as follows:

(1) The coordinator asks some or all of the sites to flush their

local drift vectors, and updates B. There are many possible

heuristics that can be employed to do this as conserva-

tively as possible, dealying flushes and thus giving the

opportunity to local streams to summarize their results

better.

(2) When all drift vectors have been received, the coordinator

recomputes ψB and ψ , choosing a new value for λ, or
failing. The choice of λ is discussed below.

(3) If conditionψ +ψB ≤ ϵψ kϕ(0) is restored, a new subround

is started with quantum θ = −(ψ +ψB )/(2k),
(4) else, the round finishes and a new round starts by comput-

ing the new E and shipping it to all sites.

4.1.2 Selection of λ. The choice of a good λ is a generally

dependent on the statistics of the monitored streams. Consider

the “ideal” case, where B was shipped back to the sites; then, the

sites could instead monitor function ϕ(x + B/k) (we would have

ψB = 0). This is “ideal” in the sense that for any λ > 0,

k∑
i=1

ϕ(X i +B/k) ≤
k∑
i=1

λϕ(X i/λ)+ µkϕ(B/(µk)) = ψ +ψB . (11)

Scaling the input streams. Let Z = L(ϕ). Geometrically, the

level set of ϕ(x + B/k) is Z − B/k , that is, it is a shift of Z along

the B-direction. The new safe zone, by our choice of λ has to be

a subset of this set. We could then “scale down” Z to λZ , so that

λZ ⊆ Z − B/k , and their boundaries touch at a point along the

axis of the shift, that is, at B/(µ∗k), where

µ∗ = inf{µ > 0 | ϕ(B/(µk)) = 0}.

This value of µ∗ can easily be found iteratively by bisection. Then,
λ = 1 − µ∗. This heuristic is well-behaved in practice and is the

one we have used in our experiments.

4.1.3 Discussion. To assess the effect of rebalancing on round

duration, assume that the statistics of the global stream are such

that the global state vector S maintains a rougly constant “veloc-

ity” over the stream data. Under this “statistical inertia” assump-

tion, which is often a realistic approximation of stream statistics,

our rebalancing protocol achieves a round duration at least 1/2

of the ideal maximum: if τ stream updates were processed, then

processing another τ updates would lead the total drift outside

the safety bounds (i.e., outside L(ϕ)). In such conditions, rebal-

ancing ameliorates the presence of skew in the trends and rates

of local streams.

4.2 Adaptively shipping safe zones to local
sites

In order to amortize the upstream cost of a round with commu-

nication benefits, it is necessary for a round to last for at least

twice this many updates totally; that is, the round must last for at

least 2kD updates, if the total communication cost of the round

is to be better than the naive method. This minimum duration

of a round (in terms of local stream updates) may not be not be

achievable when overall variability is high.

Another practical issue, even with low variability, is the case

where the stream rates of individual sites are highly unequal, e.g.,

they follow a 98-2 power law. Then, the cost of shipping safe

zones to 98% of the sites is probably wasteful; those sites could

just forward their local streams to the coordinator, and a protocol

should try to save communication on those 2% of the sites which

provide 98% of the stream updates.

Many previous protocols for distributed monitoring, includ-

ing much of the previous work on Geometric Monitoring, do

not adapt well to such problematic situations. In this section,

we introduce an enhancement the FGM protocol, where such

situations are handled within the protocol’s basic logic. There

are two subproblems addressed by our solution; (a) a systematic

way to eliminate the upstream cost of shipping E to selected sites

at the beginning of a round, and (b) a cost-based way to select

those sites.

4.2.1 Reducing the upstream costs. One simplistic way to

avoid shipping E to a site at the beginning of a round, is to put

this site into “promiscuous mode”, that is, to let it ship all local

stream updates to the coordinator, which can then “simulate” the

local node, and otherwise execute the protocol as is.

Naturally, this simplistic method will create many small mes-

sages, which we would like to avoid. This can be done if we

ship to the site a cheaper safe function, such as some function of

the form b(x) = ∥x ∥
q
p + a, which takes only 3 words (carrying

p,q,a) to tramsmit. To maintain correctness, it is sufficient to

guarantee simply that ϕ ≤ b. Given such a function, a site can

participate normally in the FGM protocol. Naturally, the fact that

this site is not equipped with the full function ϕ may cause it to

end subrounds prematurely (sending many bits rapidly) and thus

interfering with other sites. Although this is certainly possible,

our experiments revealed that, under adverse monitoring con-

ditions, the coordinator will often decide to ship the cheap safe

function to every site, in which case the interference problem

vanishes.
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Selecting a function b ≥ ϕ depends on the analytic properties

ofϕ, and can in general be done easily. In general, we should avoid
higher-degree functions, as they grow too quickly; this is possible

if the degree of ϕ itself is small (which, is important for achieving

better quiescent region for ϕ, as discussed previously). In order

to keep our exposition simple, we do not discuss this issue in full

analytic generality. Instead, we note that a 1-degree requirement

can be met, if the safe zone function ϕ is nonexpansive:

∀x ,y ∈ V , |ϕ(x) − ϕ(y)| ≤ ∥x −y∥. (12)

This property is well-known in functional analysis, and is also

known as Lipschitz continuity. It is easy to see that, in this case,

|ϕ(x) − ϕ(0)| ≤ ∥x ∥,

which implies that

ϕ(x) ≤ ∥x ∥ + ϕ(0).

An important class of safe functions that are non-expansive are

the Signed Distance Functions of convex sets. Also, the gauge

functions with bounded level-set (including all norms and semi-

norms) can be scaled to be nonexpansive.

Selecting the sites which will use the “cheap” function b is

crucial.We propose a solution based on a cost model and some col-

lected statistics, much in the spirit of database query optimization.

In the rest of this section, we will ignore the FGM rebalancing

protocol, and instead focus on the basic FGM protocol. This is

done for the sake of keeping our optimization algorithm simple.

However, once the “plan” for a round is selected, the full FGM

protocol with rebalancing can be executed for the round.

4.2.2 Modeling the communication cost of a round. Assume

that the coordinator is at the beginning of a round, with current

estimate E and has selected a non-expansive safe function ϕ. Let
di , i = 1, . . . ,k be indicator variables; di is equal to 1 when the

full safe function ϕ is to be shipped to local site i , and 0 if the

cheap safe function is to be used. In other words, di encodes the
optimized “query plan” for the upcoming round. Let d denote the

vector of di values. Our goal is to select the pland that maximizes

the gain of the round.

Assume that, based on the decision d , the length of the next

round is going to be τ . Furthermore, assume that a fraction γiτ of

these updates arrives at local stream i . The benefit of the round
in terms of summarizing τ updates in the local state vectors, is

д0 = τ −
k∑
i=1

min{γiτ ,D}, (13)

where min{γiτ ,D} reflects the downstream cost of site i , which
will ship γiτ raw updates, instead of the D-dimensional drift

vector, if γiτ < D. In addition, the upstream cost of the round

is D
∑k
i=1 di (where we assume that the difference in the cost of

shipping ϕ vs. b isD). Therefore, we must selectd so as maximize

the round’s gain,

д = τ −
k∑
i=1

min{γiτ ,D} − D
k∑
i=1

di . (14)

The challenge is to predict τ (d), given a choice for d . To this

end, considerψ as function of “time” (updates):

ψ (t) =
∑
di=1

ϕ(Xi (t)) +
∑
di=0

∥X i (t)∥ − ϕ(0) (15)

The current round can be seen as the transition of the system

from a state whereψ = kϕ(0) to a state whereψ = 0. Of course,

this transition will in general follow a complicated, non-linear

trajectory in the quiescent region. However, we adopt a simplistic

linear estimate. In particular, we model the behaviour of each

local stream i by two rates, αi and βi , assuming simplistically

that

ϕ(X i (t)) ≈ ϕ(0) + |ϕ(0)|αi t (16)

∥X i (t)∥ + ϕ(0) ≈ ϕ(0) + |ϕ(0)|βi t (17)

We shall assume that 0 < αi < βi .
Based on this simple-mindedmodel, the prediction of a round’s

length τ , as a function of d , based on Eq. 15, is

τ =
k

βtot − d · θ
, (18)

where βtot =
∑k
i=1 βi and θ is the vector of values θi = βi − αi .

4.2.3 Maximizing the gain of a round. It is required to find

the value of d that maximizes the gain д (Eq. 14). An exhaustive

search of the solution space would require time O(2k ), which
would not scale well to large k . Thankfully, it turns out that a
simple greedy algorithm is sufficient to maximize д. The key

observation is that д0(τ ) (from Eq. 13) is non-decreasing in τ . Fix
some number 0 ≤ n ≤ k . We wish to find a feasible solution

d∗, with
∑
i d

∗
i = n, which maximizes д among all solutions d ′

with

∑
i d

′
i = n. But since д(d

∗) = д0(τ (d
∗)) − nD, and д0 is non-

decreasing in τ , it suffices to maximize τ (d∗). To do this, simply

set d∗i = 1, iff θi is among the n largest coordinates of θ (ties

are broken arbitrarily). Now, д can be optimized by comparing

among k+1 solutions, one for each value of n. Furthermore, since

an optimal solution for n + 1 subsumes an optimal solution for

n, the whole computation can be performed in O(k logk) steps
(essentially for sorting vector θ ).

4.2.4 Obtaining estimates for local streams. It remains to dis-

cuss the estimation of αi , βi and γi in each round. In this paper,

we explored the simplest possible alternative: simply use the

data collected at the end of the previous round, to obtain fresh

estimates of all three parameters. Since at the end of a round the

coordinator has received each drift X i , together with a count of

updates to each local stream during the round, all three param-

eters can be computed directly, more or less from Eqs. 16 and

17.

Some care must be taken, to ensure 0 < αi < βi ; in particular,

Eq. 16 may yield a non-positive value. If this occurs, then simply

set αi to a small positive value (so that θi is minimum among the

components of vector θ . Also, when βi = 0 or γi = 0 (there were

no updates to the site in the previous round), simply set di = 0

and ignore this site in the optimization process.

4.2.5 Discussion. Our estimates for modeling local streams

are simple to acquire in practice, but may yield estimates which

may not represent well the evolution of the system. After all,

predictions are hard, especially about the future! Thankfully,

our approach, of estimating τ in order to decide on the next

round’s plan, is relatively insensitive to the exact value of τ , as it
is essentially a based of thresholds, determined by local stream

rate predictions, which can be predicted much more accurately.

In practice the algorithm managed to perform quite well, mak-

ing the FGM protocol quite robust in adverse situations of very

high variability, compared to executions that shipped a safe func-

tion to every site. Most of the time, the selection of d values

either resulted in almost all 1s (when variability was low) or in

almost all 0s (during high variability). Also, during periods of
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medium variability, the algorithm would alternate between these

two decisions for a few rounds.

Improving on this algorithm is certainly an interesting prob-

lem. On the prediction side, higher-order polynomial models in

place of Eqs. (16–17) can in principle be constructed. Whether

these more elaborate modeling would benefit the final communi-

cation cost in real data settings, remains to be seen.

5 EXPERIMENTAL EVALUATION
We performed an extensive experimental study of the FGM pro-

tocol, over a variety of datasets and streaming parameters, with

emphasis on validating our claims of resilience to adverse si-

tuiations. For lack of space, we only present results from the

WorldCup dataset [2], which contains log traces of all requests

sent to the 1998 World Cup web site, consisting of 33 mirrors

spread around the globe and receiving 1.3 billion http requests.

Our experiments used only data from day 46, during which 50.3

million requests where received by 27 mirror sites. From this data,

we constructed stream records over the schema R(CID, TYPE),

where CID is the (anonymized) client address of the http request,

and TYPE is the type of file requested (HTML, image etc).

On this stream, we approximately monitored two continuous

queries. Both queries operate on Fast-AGMS sketches [8] on the

input streams. A Fast-AGMS sketch S is stored as a d×w matrix S
of integer counters, and can be used to estimate join and self-join

sizes within accuracyΘ(1/
√
w)with probability at least 1−2−Θ(d ).

Each stream update changes the sketch by modifying one cell in

each row vector S[i] (totally, d cells) by ±1, according to certain

hash functions.

The first query monitors the self-join size of R ZCID R. To
estimate this query, an AGMS sketch is used as the state vector

to summarize all records. The query function is the self-join size

estimate,

Q1(S) = median

i=1, ...,d
{

w∑
j=1

S[i, j]2} = median

i=1, ...,d
{S[i]2}.

The second query monitors the join size of

σTYPE=HTML(R) ZCID σTYPE,HTML(R).

For this query, the state vector consisted of the concatenation of

two sketches, S1 and S2. The monitored query function is

Q2(S1S2) = median

i=1, ...,d
{

w∑
j=1

S1[i, j]S2[i, j]} = median

i=1, ...,d
{S1[i]S2[i]}.

Note that query functionQ2 is muchmore challenging than query

Q1 in terms of variability.

5.1 Experimental setup
We explored the space of four parameters: AGMS sketch size,

size of sliding window over the streams, monitoring accuracy ε
and the number of sites k .

We evaluated queries Q1 and Q2 both in the cash-register

model (each record was inserted one at a time), and also in the

turnstile model, where we used a time-based sliding window

(ranging from 1hr to 4hrs) to generate record deletions. Naturally,

the variability of our queries decreases as the time window in-

creases. Also, time-based windows yield higher variability than

fixed-size ones. We allowed the monitoring accuracy to vary as

ε ∈ [0.02, 0.1].

Finally, in order to study the effect of k (the number of sites)

on performance, we created synthetic streams by hashing the

original 27 local site ids to fewer site ids, fork ∈ [2 : 20]. Naturally,

we also used the original (real) data, for k = 27.

Note that, in all experiments presented, the “global” stream

was identical, and we simply changed the distribution of the data

in time (by sliding windows), and among local streams.

5.1.1 Safe functions employed. We implemented nonexpan-

sive, convex safe functions for queries Q1 and Q2 following the

technique of [13]. To monitor query Q1 for estimate sketch E we

need to ensure that (1 − ε)|Q1(E)| ≤ Q1(S) ≤ (1 + ε)|Q1(E)|.
We can rewrite it compactly (applying properties of the me-

dian) as

±
(
Q1(S) −T±

)
= median

i=1, ...,d
{±(S[i]2 −T±)} ≤ 0.

where, for ± ∈ {+,−}, T± = (1 ± ε)|Q1(E)|, respectively.
The safe function ϕ(X ) we used is composed as

ϕ(X ) = max

(
ϕ−(X ),ϕ+(X )

)
,

where ϕ± is safe for condition ±
(
Q1(S) −T±

)
≤ 0 respectively.

Following the methodology of [13] for the median, we used

ϕ±(X ) = max

I ∈( D±

|D± |−(d−1)/2)

∑
i ∈I |ϕ

±
i (0)| · ϕ

±
i (X [i])√∑

i ∈I |ϕ
±
i (0)|

2

,

where D± = {i | 1 ≤ i ≤ d and ± (E[i]2 −T±) < 0}. Note that

the notation I ∈
(D
n
)
means “I ranges over all n-subsets of D”.

Functions ϕ±i (x), i = 1, . . . ,d , must be safe for conditions

±(S[i]2 −T±) ≤ 0 respectively. We used

ϕ+i (x) = ∥x+E[i]∥−
√
T+ and ϕ−i (x) =

√
T−−

E[i]

∥E[i]∥
(E[i]+x).

The same methodology was applied to derive the safe func-

tions for theQ2 query; the derivation is very similar to the above,

however, the actual formulas for ϕ±i for conditions ±(S1[i]S2[i] −
T±) ≤ 0 are a bit involved and are omitted due to space con-

straints; we refer the reader to [13] (Section 6.3) for details, as

well as for the justification of the above steps.

5.1.2 Tested protocols. In order to compare the performance

of the FGM protocol to previous work, we implemented a well-

studied version of the GM protocol, based on Safe Zones [22],

with a rebalancing policy along the lines of [28]. The Safe Zones

used where defined using the safe functions of the FGM described

above, so as to fairly contrast the inherent communication costs

of the GM and FGM protocols.

To study the effect of our cost-based optimizer, we ran versions

of FGM with and without it. Overall, the acronyms of the 3

protocols tested are as follows:

Acronym Protocol

GM classic GM protocol with rebalancing.

FGM FGM protocol without cost-based optimizer.

FGM/O FGM protocol with cost-based optimizer.

5.2 Performance in typical workloads
Our first set of experiments concerns the behaviour of the pro-

tocols in a non-adverse scenario (using a 4ht window over the

data), monitoring accuracy ε = 0.1, and sketch sizes, D = 7000.

The results depicted in Figs. 2 and 3 (corresponding to semi-join

and join queries) depict this cost as a function of k , both in the

turnstile and in the cash-register model.

With respect to communication cost, observe that, as k grows,

the FGM protocols exhibit 2–3 times lower communication cost
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Figure 2: Performance of the GM and FGM protocols,
monitoring a self-join query, over k . The top row shows
the cost in the tunrstile model (with a window over the
streams) and the bottom row show the cost in the cash-
register model.

query Q2 (join) ε = 0.1, D = 7000, turnstile model TW = 4hrs
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query Q2 (join) ε = 0.1, D = 7000, cash-register model
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Figure 3: Performance of the GMand FGMprotocols, mon-
itoring a join query, over k . The top row shows the cost in
the tunrstile model (with a window over the streams) and
the bottom row show the cost in the cash-register model.
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Figure 4: Communication cost for queries Q1,Q2, under a
difficult workload. Observe that, except for FGM/*O, all
protocols exhibit much higher communication cost that
the size of the streamed data. Here, k = 27, D = 35000,
TW = 1hr .

than the GM protocols. On the other hand, for small values of k ,
the difference is not as pronounced.

The graphs on the right side, depicting upsteam communica-

tion costs as a percentage of total communication cost, reveals

the cause of this behaviour. It is shown that the upstream cost

of the standard geometric method grows as a percent of total, as

the number of sites increases. This is due to two causes: first, as

more sites partake in the monitoring, the strictness of the GM’s

monitoring condition causes frequent violations of the safety

invariant of GM, while most of these violations are false posi-

tives. The rebalancing strategy of GM algorithms is unable to

overcome this increase (note that, without rebalancing, the GM

algorithm’s total cost increases even faster, as each false violation

would cause a full synchronization).

By contrast, the upstream cost of FGM decreases (as a percent
of total communication). This is the case both with and without

the cost-based optimizer. When k is small, upstream and down-

stream costs are roughly similar, which is true for the GM as well.

As k increases however, the total cost (which increases with k nat-

urally) is dominated by the downstream cost, of shipping data to

the coordinator. This is both due to the improved safety condition

of FGM, but also to the ovehead-free rebalancing performed.

Note finally the effect of cost-based optimization, which tries

to aggressively minimize the upstream cost, even at the expense

of downstream cost. Although total cost does not change much,

the upstream percentage reduces much further. This is because

the cost-based optimizer will decide not to ship safe functions

to the sites in many rounds. This choice worsens the quality of

summarization at the local nodes, increasing downstream costs,

but manages to keep upstream costs low, while achieving good

total cost.

5.3 Performance in adverse conditions
We now evaluate the performance of FGM and GM protocols

under an adverse scenario, on the real WorldCup dataset, where

k = 27. We have a large D = 35, 000, and the stream’s window is

1hr, leading to high variability. Fig. 4.

Under these conditions, round lengths are too short to amor-

tize the cost of shipping safe zones to the sites. Therefore, all

methods except for FGM/O incur excessive communication costs,

in fact several times over the size of the streamed data. This
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Figure 5: Communication cost for queriesQ1 (left column)
and Q2 (right column), over varying sliding windows (Tw ,
top row) and sketch size (D, bottom row). In all cases, it
was k = 27 and ε = 0.06.

is not unexpected; consider that, shipping safe zones to all 27

sites, transmits roughly 3.8 Mbytes of data. Combined with short

rounds due to high variability and low values of ε results in

excessive overhead.

By contrast, the cost-based optimizer, although it did not de-

liver significant gains compared to the size of the streamed data,

managed to keep the total cost quite low. This was achieved by

selecting to avoid the overhead of shipping safe functions in most

of the rounds.

5.3.1 Dependence on size of state vectors and on variability.
The effect of variability, which decreases as the time window

sliding over the stream becomes wider, is quite strong on per-

formance. The top row of plots in Fig. 5 demonstrates this for

turnstile queries, where the time window TW changed from 1

hour to 4 hours. In particular, for the Q2 function, using the cost

model improved performance by two times over FGM (and by 4

over the GM methods), when TW =1hr.

Similarly strong is the effect of D on performance, as depicted

in the bottom row of plots of Fig. 5. In fact, the cost grows linearly

with D, except for the case of FGM/O, where the cost-based

optimizer switched to the cheap safe functions, achieving a small

amount of compression.

5.4 The effect of skew
In order to evaluate the behaviour of our protocols under the

presense of skew, we contrast the change in communicationwhen

the (real) dataset becomes more skewed. To introduce skew, we

constructed a new dataset as follows: we selected 8 sites (out of a
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Figure 6: Communication cost for queries Q1 (top) and Q2

(bottom), over varying accuracy ε . For each protocol, two
curves are shown, one for the real dataset and one for the
skewed dataset. For both plots: k = 27, D = 7000, turnstile
model (TW =4hrs)

total of 27), namely those with local streams of greatest size. Then,

we replaced the local stream of one of these sites—which will

be referred to as the hot site—by the union of all 8 local streams,

while the 7 remaining sites received empty local streams. In this

skewed dataset, one local stream now provides almost half the

data to the system, while 7 out of 27 local streams provide no data.

However, at each point in time, the global stream of the skewed

dataset is identical to the global stream of the real dataset.

Fig. 6 depicts the effect of skew on the communication cost.

Each protocol was run with both the real and the skewed dataset.

Unsuprisingly, the GM protocol’s communication cost increases

as skew is introduced; this is a well-known weakness of the

classic geometric method. The source of the increased cost is a

substantial increase in the upstream cost, because of frequent

local violations at the hot site.

The FGM prococol without the cost-based optimizer on the

other hand, shows resilience in the presence of skew; in fact,

the communication cost improves slightly under skew. The key

reason is that theψ -value of the system under the real dataset,

is always equal to theψ -value of the system under the skewed

dataset. Therefore, the coordinators in the two systems will per-

form the exact same number of rounds. The slight improvement

is due to a reduction in the downstream cost among the 8 sites;

the downstream cost of the hot site has not increased substan-

tially (since the number of rounds remains the same), but the

downstream costs of the 7 sites whose local stream vanished has

decreased to almost 0 (since these sites will not ship local vectors

to the coordinator).
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The introduction of the cost-based optimizer is again largely

beneficial to the performance. In previous experiments under

adverse conditions (e.g., Fig. 4), the benefit of the optimizer was

in keeping the upstream cost from becoming too large. In this

scenario where skew is introduced, the benefit of the cost-based

optimizer materializes more consistently when ε ≥ 0.05, where

significant benefit to the upstream cost of a round accrues, since

the coordinator will undoubtedly choose the cheap safe functions

for the 7 sites with empty local streams. Note that, in this scenario,

theψ -values of the constrasted systems are no longer equal (since

different optimizer choices affect the actualψ ).
In this experiment, one can also observe the somewhat erratic

effect of the cost-based optimizer, due to the crudeness of model-

ing local stream behaviour (interestingly, in the presense of skew,

the behaviour is less erratic). The erratic behaviour is observed

in the transition between the two extremes of small and large val-

ues of ε ; for values of ε around 0.05, it seems that the cost-based

optimizer will often be fooled into making sub-optimal choices.

However, this is preferable to not using it at all.

Overall, our experimental results demonstrate that the FGM

protocol manages to ameliorate the shortcomings of classic GM

protocols, both under adverse conditions as well as in the pre-

sense of skew in the distributed stream.

6 CONCLUSIONS AND IMPLICATIONS FOR
PRACTICE

We have proposed Functional Geometric Monitoring, a novel

method for distributed stream monitoring, which offers signifi-

cant improvements over previous techniques in terms of perfor-

mance, scalability and robustness. FGM is generally applicable,

it can provide worst-case guarantees for problems that were

hitherto provided only by problem-specific algorithms, and it is

robust in high variability and skew situations, curing an impor-

tant shortcoming of previous general techniques.

Real-world stream-processing engines are typically customized

by providing data-handling code (e.g., mapper/reducer functions

in Hadoop, spouts and bolts in STORM, etc), which is indepen-

dent of distributed execution concerns. The engine orchestrates

the distributed execution of this code on a distributed platform,

applying complex execution policies (resource allocation, load

balancing, networking patterns, failure tolerance, etc).

The salient practical feature of FGM is that it fits this pattern

extremely well, as it strictly encapsulates the specifics of moni-

tored queries into data-handling code, namely, routines and data

structures—such as sketches—to summarize local streams, and

safe function implementations on these summaries. This code

is platform-agnostic and an FGM implementation can deploy it

on a distributed platform and execute it in a black-box fashion,

under any desired execution policy.

Other aspects of FGM are alse important in practice. Although

high-quality safe functions for complex query operators can be

hard to derive, safe function composition can ease the burden

many cases. Furthermore, the FGM protocol is resilient to loss

of precision due to computational round-off errors. In addition,

since local nodes are memoryless from one round to the next,

the FGM protocol is compatible with relatively simple and cheap

failure recovery policies.
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ABSTRACT
Window aggregation is a core operation in data streamprocessing.
Existing aggregation techniques focus on reducing latency, elim-
inating redundant computations, and minimizing memory usage.
However, each technique operates under different assumptions
with respect to workload characteristics such as properties of ag-
gregation functions (e.g., invertible, associative), window types
(e.g., sliding, sessions), windowing measures (e.g., time- or count-
based), and stream (dis)order. Violating the assumptions of a tech-
nique can deem it unusable or drastically reduce its performance.

In this paper, we present the first general stream slicing tech-
nique for window aggregation. General stream slicing automat-
ically adapts to workload characteristics to improve performance
without sacrificing its general applicability. As a prerequisite, we
identify workload characteristics which affect the performance
and applicability of aggregation techniques. Our experiments
show that general stream slicing outperforms alternative con-
cepts by up to one order of magnitude.

1 INTRODUCTION
The need for real-time analysis shifts an increasing number of
data analysis tasks from batch to stream processing. To be able
to process queries over unbounded data streams, users typically
formulate queries that compute aggregates over bounded subsets
of a stream, called windows. Examples of such queries on win-
dows are average vehicle speeds per minute, monthly revenue
aggregations, or statistics of user behavior for online sessions.

Large computation overlaps caused by sliding windows and
multiple concurrent queries lead to redundant computations and
inefficiency. Consequently, there is an urgent need for general
and efficient window aggregation in industry [7, 41, 50]. In this
paper, we contribute a general solution which not only improves
performance but also widens the applicability with respect to win-
dow types, time domains, aggregate functions, and out-of-order
processing.Our solution is generally applicable to all data flowsys-
temswhich adopt a tuple-at-a-timeprocessingmodel (e.g., Apache
Storm, Apache Flink, and other Apache Beam-based systems).

To calculate aggregates of overlapping windows, the database
community has been working on aggregation techniques such as
B-Int [3], Pairs [28], Panes [30], RA [42] and Cutty [10]. These
techniques compute partial aggregates for overlapping parts of
windowsand reuse thesepartial aggregates to computefinal aggre-
gates for overlapping windows. We believe that these techniques
are not widely adopted in open-source streaming systems for two
main reasons: first, the literature on streaming window aggre-
gation is fragmented and, second, every technique has its own
assumptions and limitations. As a consequence, it is not clear
for researchers and practitioners under which conditions which
streaming window aggregation techniques should be used.

© 2019 Copyright held by the owner/author(s). Published in Proceedings of the 22nd
International Conference on Extending Database Technology (EDBT), March 26-29,
2019, ISBN 978-3-89318-081-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

General purpose streaming systems require a window operator
which is applicable to many types of aggregation workloads. At
the same time, the operator should be as efficient as specialized
techniques which support selected workloads only.

As our first contribution we identify the workload character-
istics which may or may not be supported by existing specialized
window aggregation techniques. Those characteristics are: i)win-
dow types (e.g., sliding, session, tumbling), ii)windowing measures
(e.g., time or tuple-count), iii) aggregate functions (e.g., associative,
holistic), and iv) stream order. We then conduct an extensive liter-
ature survey and classify existing techniques with respect to their
underlying concepts and their applicability.

We identify stream slicing as a common denominator on top of
which window aggregation can be implemented efficiently. Con-
sequently, our secondmain contribution is a general stream slicing
technique. Existing slicing-based techniques do not support com-
plex window types such as session windows [28, 30], do not con-
sider out-of-order processing [10], or limit the type of aggregation
functions [10, 28, 30].Withgeneral streamslicing,weprovidea sin-
gle, generally applicable, and highly efficient solution for stream-
ingwindow aggregation. Our solution inherits the performance of
specialized techniques, which use stream slicing, and generalizes
stream slicing to support diverse workloads. Because we integrate
all workloads into one general solution, we enable computation
sharing among all queries with different window types (sliding,
sessions, user-defined, etc.) and window measures (e.g., tuple-
count or time). General stream slicing is available open source and
can be integrated into streaming systems directly as a library1.

General stream slicing breaks down slicing into three opera-
tions on slices, namely merge, split, and update. Specific work-
load characteristics influence what each operation costs and how
often operations are performed. By taking into account the work-
load characteristics, our slicing technique i) stores the tuples them-
selves only when it is required which saves memory and ii) mini-
mizes thenumberof slices that are created, stored, and recomputed.
One can extend our techniques with additional aggregations and
window types without changing the three core slicing operations.
Thus, these core operationsmay be tuned by system experts while
users can still implement customwindows and aggregations.

The contributions of this paper are as follows:
(1) We identify the workload characteristics which impact

the applicability and performance limitations of existing
aggregation techniques (Section 4).

(2) We contribute general stream slicing, a generally applicable
and highly efficient solution for streaming window aggre-
gation in dataflow systems (Section 5).

(3) We evaluate the performance implications of different use-
case characteristics and show that stream slicing is gen-
erally applicable while offering better performance than
existing approaches (Section 6).

The remainder of this paper is structured as follows: We first pro-
vide background information in Section 2 and present concepts of
aggregation techniques in Section 3. We then present our contri-
butions in Section 4, 5, and 6 and discuss related work in Section 7.

1Open Source Link: https://github.com/TU-Berlin-DIMA/scotty-window-processor
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Figure 1: CommonWindow Types.

2 PRELIMINARIES
Streamingwindowaggregation involves special terminologywith
respect towindow types, timing, streamorder, and data expiration.
This section revisits terms and definitions, which are required for
the remainder of this paper.
WindowTypes.Awindowtype refers to the logicbasedonwhich
systems derive finite windows from a continuous stream. There
exist diverse window types ranging from common sliding win-
dows to more complex data-driven windows [17]. We address the
diversity of window types with a classification in Section 4.4. For
now, we limit the discussion to tumbling (or fixed), sliding, and
sessionwindows (Figure 1) which we use in subsequent examples.
A tumbling window splits the time into segments of equal length
l . The end of one window marks the beginning of the next win-
dow. Sliding windows, in addition to the length l , also define a
slide step of length ls . This length determines how often a new
window starts. Consecutive windows overlap when ls < l . In this
case, tuples may belong to multiple windows. A sessionwindow
typically covers a period of activity followed by a period of inactiv-
ity [1]. Thus, a session window times out (ends) if no tuple arrives
for some time gap lд . Typical examples of sessions are taxi trips,
browser sessions, and ATM interactions.
Notion of Time.One can define windows on different measures
suchas times and tuple-counts. The event-time of a tuple is the time
when an event was captured and the processing-time is the time
when an operator processes a tuple [1, 9]. Technically, an event-
time is a timestamp stored in the tuple and processing-time refers
to a systemclock. If not indicatedotherwise,we refer to event-time
windows in our examples because applications typically define
windows on event-time.
StreamOrder. Input tuples of a stream are in-order if they arrive
chronologically with respect to their event-times, otherwise, they
are out-of-order [1, 33]. In practice, streams regularly contain
out-of-order tuples because of transmission latencies, network
failures, or temporary sensor outages. We differentiate in-order
tuples from out-of-order tuples and in-order streams from out-of-
order streams. Let a stream S consist of tuples s1, s2, s3, ...where
the subscripts denote the order in which an operator processes
the tuples. Let the event-time of any tuple sx be te (sx ).
• A tuple sx is in-order if te (sx ) ≥ te (sy ) ∀y < x .
• A stream is in-order iff all its tuples are in-order tuples.

Punctuations, Watermarks, and Allowed Lateness. Punctu-
ations are annotations embedded in a data stream [47]. Systems
use punctuations for different purposes: low-watermarks (in short
watermarks) indicate that no tuple will arrive with a timestamp
smaller than the watermark’s timestamp [1]. Many systems use
watermarks to control how long they wait for out-of-order tuples
before they output a window aggregate [2].Window punctuations
markwindowstarts andendings in the stream[14, 20].Theallowed
lateness, specifieshow long systems storewindowaggregates. If an
out-of-order tuple arrives after the watermark, but in the allowed
lateness, we output updated aggregates.
Partial Aggregates and Aggregate Sharing. The key idea of
partial aggregation is to compute aggregates for subsets of the

Memory Usage Example
1. Tuple
Buffer

| | ·size( )

2.
Aggregate

Tree

| | ·size( )

+( | |−1) ·size( )

3. Agg.
Buckets

|win| ·size( )

+|win| ·size( )

4. Tuple
Buckets

|win| ·[avg( per win.)

·size( ) +size( )]
5. Lazy
Slicing

| | ·size( )

6. Eager
Slicing

| | ·size( )

+( | |−1) ·size( )

7. Lazy
Slicing
on tuples

| | ·size( )

+| | ·size( )

8. Eager
Slicing
on tuples

| | · size( )

+| | ·size( )

+( | |−1) ·size( )

Legend: Tuple Aggregate Slice incl. Aggregate Bucket

Table 1: Memory Usage of Aggregation Techniques.

stream as intermediate results. These intermediate results are
shared among overlapping windows to prevent repeated compu-
tation [3, 28, 51]. In addition, one can compute partial aggregates
incrementally when tuples arrive [42]. This reduces the memory
footprint if a technique stores few partial aggregates instead of all
stream tuples in the allowed lateness. It also reduces the latency
because aggregates are pre-computed when windows end.

3 WINDOWAGGREGATIONCONCEPTS
In this section, we survey concepts for streaming window aggre-
gation and give an intuition for each solution’s memory usage,
throughput, and latency. We provide a detailed comparison of all
concepts in our experiments. Techniques which support out-of-
order streams store values for an allowed lateness (see above). In
the following discussion, we refer to allowed lateness only. Tech-
niques which do not process out-of-order tuples, store values for
the duration of the longest window.

Table 1 provides an overview of all techniqueswe discuss in the
following subsections. We write | | for the number of values (i.e.,
tuples), | | for the number of slices, and |win| for the number
of windows in the allowed lateness.

3.1 Tuple Buffer
A tuple buffer (Table 1, Row 1) is a straightforward solution which
does not share partial aggregates.

The throughput of a tuple buffer is fair as long as there are few
or no concurrent windows (i.e., no window overlaps), and there
are few or no out-of-order tuples. Window overlaps decrease the
throughput because of repeated aggregate computations. Out-of-
order tuples decrease the throughput because of memory copy
operations which are required for inserting values in the middle
of a sorted ring buffer.

The latency of a tuple buffer is high because aggregates are com-
puted lazilywhenwindows end. Thus, all aggregate computations
contribute to the latency at the window end.

A tuple buffer stores all tuples for the allowed lateness, which
is | | ·size( ). Thus, the more tuples we process per time, the
higher thememory consumption and the higher thememory copy
overhead for out-of-order tuples.
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Figure 2: Example Aggregation with Stream Slicing.

3.2 Aggregate Trees
Aggregate trees such as FlatFAT [42] and B-INT [3] store partial
aggregates in a tree structure and share them among overlapping
windows (Table 1, Row 2). FlatFAT stores a binary tree of partial
aggregates on top of stream tuples (leaves) which roughly doubles
the memory consumption.

In-order tuples requirelog( | |) updates of partial aggregates in
the tree. Thus, the throughput is decreased logarithmically when
the number of tuples in the allowed lateness increases. Out-of-
order tuples decrease the throughput drastically: they require
the same memory copy operation as in tuple buffers. In addition,
they cause a rebalancing of the aggregate tree and the respective
aggregate updates.

The latency of aggregate trees is much lower than for tuple
buffers because they can compute final aggregates for windows
from pre-computed partial aggregates. Thus, only a few final ag-
gregation steps remain when windows end [39].

3.3 Buckets
Lietal. introduceWindow-ID (WID)[31–33], abucket-per-window
approach which is adopted bymany systems with support for out-
of-order processing [1, 2, 9]. Each window is represented by an
independent bucket. A system assigns tuples to buckets (i.e., win-
dows) based on event-times, independently from the order in
which tuples arrive [33]. Buckets do not utilize aggregate sharing.
Instead, they compute aggregates for each bucket independently.

Systemscancomputeaggregates forbuckets incrementally [42].
This leads tovery low latencies because thefinalwindowaggregate
is pre-computed when windows end.

We consider two versions of buckets. Tuple buckets keep in-
dividual tuples in buckets (Table 1, Row 4). This leads to data
replication for overlapping buckets.Aggregate buckets store par-
tial aggregates in buckets plus some overhead (e.g., start and end
times), but no tuples (Table 1, Row 3).

We prefer to store aggregates only in order to save memory.
However, some use-cases (e.g., holistic aggregates over count-
based windows) require us to keep individual tuples.

Buckets process in-order tuples as fast as out-of-order tuples
for most use-cases: they assign the tuple to buckets and incre-
mentally compute the aggregate of these buckets. The throughput
bottleneck for buckets are overlappingwindows. For example, one
sliding windowwith l =20s and ls =2s results in 10 overlapping
windows (i.e., buckets) at any time. This causes 10 aggregation
operations for each input tuple.

3.4 Stream Slicing
Slicing techniques divide (i.e., slice) a data stream into non-over-
lapping chunks of data (i.e., slices) [28, 30]. The system computes
a partial aggregate for each slice. When windows end, the system
computes window aggregates from slices.

We show stream slicing with an example in Figure 2. Slicing
techniques compute partial aggregates incrementally when tu-
ples arrive (bottom of Figure 2). We showmultiple intermediate
aggregates per slice to illustrate the workflow.

Partial aggregates (i.e., slices) are shared among overlapping
windowswhichavoids redundantcomputations. InFigure2,dashed
arrows mark multiple uses of slices. In contrast to aggregate trees
and buckets, slicing techniques require just one aggregation op-
eration per tuple because each tuple belongs to exactly one slice.
This results in a high throughput.

Similar to aggregate trees, the latency of stream slicing tech-
niques is low because only a few final aggregation steps are re-
quired when a window ends. We consider a lazy and an eager
version of stream slicing. The lazy version of stream slicing stores
slices including partial aggregates (Table 1, Row 5). The eager ver-
sion stores a tree of partial aggregates on top of slices to further re-
duce latencies (Table 1, Row 6). Both variants compute aggregates
of slices incrementally when tuples arrive. The term lazy refers
to the lazy computation of aggregates for combinations of slices.

There are usually many tuples per slice (| |≪ | |) which
leads to huge memory savings compared to aggregate trees and
tuple buffers. Some use-cases such as holistic aggregates over
count-based windows require us to keep individual tuples in ad-
dition to aggregates (Table 1, Row 7 and 8). In these cases, stream
slicing requires more memory than tuple buffers, but saves mem-
ory compared to buckets and aggregate trees.

In this paper, we focus on stream slicing because it offers a good
combination of high throughputs, low latencies, and memory sav-
ings. Moreover, our experiments show that slicing techniques
scale to many concurrent windows, high ingestion rates, and high
fractions of out-of-order tuples.

4 WORKLOADCHARACTERIZATION
In this section, we identify workload characteristics which either
limit the applicability of aggregation techniques or impact their
performance. These characteristics are the basis for subsequent
sections in which we generalize stream slicing.

4.1 Characteristic 1: StreamOrder
Out-of-order streams increase the complexity of window aggrega-
tion because out-of-order tuples can require changes in the past.
For example, tuple buffers and aggregate trees process in-order
tuples efficiently using a ring buffer (FIFO principle) [42]. Out-of-
order tuples break the FIFO principle and require memory copy
operations in buffers.

We differentiate whether or not out-of-order processing is re-
quired for a use-case. For techniques which support out-of-order
processing, we study how the fraction of out-of-order tuples and
the delay of such tuples affect the performance.

4.2 Characteristic 2: Aggregation Function
We classify aggregation functions with respect to their algebraic
properties. Our notation splits the aggregation in incremental
steps and is consistent with related works [10, 42]. We write input
values as lower case letters, the operation which adds a value
to an aggregate as ⊕, and the operation which removes a value
from an aggregate as ⊖. We first adopt three algebraic properties
used by Tangwongsan et al. [42]. These properties focus on the
incremental computation of aggregates:
(1) Associativity: (x ⊕ y) ⊕ z = x ⊕ (y ⊕ z) ∀ x ,y, z
(2) Invertibility: (x ⊕ y) ⊖ y = x ∀ x ,y
(3) Commutativity: x ⊕ y =y ⊕ x ∀ x ,y

Stream slicing requires associative aggregate functions because
it computes partial aggregates per slice which are shared among
windows. This requirement is inherent for all techniques which
share partial aggregates [3, 10, 28, 30, 42]. Our general slicing ap-
proachdoesnot require invertibilityor commutativity, but exploits
these properties if possible to increase performance.
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We further adopt the classification of aggregations in distribu-
tive, algebraic, and holistic [16]. Aggregations such as sum, min,
and max are distributive. Their partial aggregates equal the final
aggregates of partials and have a constant size. An aggregation
is algebraic if its partial aggregates can be summarized in an inter-
mediate result of fixed size. The final aggregate is computed from
this intermediate result. The remainder of aggregations, which
have an unbounded size of partial aggregates, is holistic.

4.3 Characteristic 3:WindowingMeasure
Windows can be specified using different measures (also called
time domains [8] or WATTR [31]). For example, a tumbling window
can have a length of 5 minutes (time-measure), or a length of 10
tuples (count-measure). To simplify the presentation, we refer to
timestamps in the rest of the paper. However, bear in mind that
a timestamp can actually be a point in time, a tuple count, or any
other monotonically increasing measure [10]:
• Time-Based Measures: Common time-based measures are
event-time and processing-time as introduced in Section 2.
• ArbitraryAdvancingMeasures are ageneralizationof event-
times. Typically, it is irrelevant for a stream processor if "times-
tamps" actually represent a time or another advancing measure.
Examples of other advancingmeasures are transaction counters
in a database, kilometers driven by a car, and invoice numbers.
• Count-BasedMeasures (also called tuple-based [31] or tuple-
driven [8]) refer to a tuple counter. For example, a window
can start at the 100th and end at the 200th tuple of a stream.
Count-based measures cause challenges when combined with
out-of-order processing: If tuples are ordered with respect to
their event-times and a tuple arrives out-of-order, it changes
the count of all other tuples which have a greater event-time.
This changes the aggregates of all count-based windows which
start or end after the out-of-order tuple.
If we process multiple queries which use different window-

measures, timestamps are represented as vectors which contain
multiple measures as dimensions. This representations allows
for slicing the stream with respect to multiple dimensions (i.e.,
measures) while slices are still shared among all queries [10].

4.4 Characteristic 4:Window Type
We classify window types with respect to the context (or state)
which is required to know where windows start and end. We
adopt theclassification incontext free (CF), forward-context aware
(FCA), and forward-context free (FCF) introduced by Li et al. [31].
Here we present those classes along with the most common win-
dow types belonging to those classes.
• Context Free (CF). Awindow type is context free if one can
tell all start and end timestamps ofwindowswithout processing
any tuples. Common sliding and tumbling windows are context
free because we can compute all start and end timestamps a
priori based on the parameters l and ls .
• Forward Context Free (FCF).Windows are forward context
free, if one can tell all start and end timestamps of windows up
to any timestamp t , once all tuples up to this timestamp t have
been processed. An example are punctuation-based windows
where punctuations mark start and end timestamps [14]. Once
we processed all tuples up to t (including out-of-order tuples),
we also processed all punctuations before t and, thus, we know
all start and end positions up to t .
• ForwardContextAware(FCA).Theremainingwindowtypes
are forward context aware. Such window types require us to
process tuples after a timestamp t in order to know all window
start and end timestamps before t . An example of suchwindows

Figure 3: Architecture of General Stream Slicing

areMulti-Measure Windows which define their start and end
timestamps on different measures. For example, output the last
10 tuples (count-measure) every 5 seconds (time-measure) is for-
ward context aware: we need to process tuples up to a window
end in order to compute the window begin.

5 GENERAL STREAM SLICING
We now present our general stream slicing technique which sup-
ports high-performance aggregation for multiple queries with
diverse workload characteristics. General stream slicing replaces
alternative operators for window aggregation without changing
their input or output semantics. Our technique minimizes the
number of partial aggregates (saving memory), reduces the final
aggregation steps when windows end (reducing latency), and
avoids redundant computation for overlapping windows (increas-
ing throughput). The main idea behind our technique is to exploit
workload characteristics (Section 4) and to automatically adapt ag-
gregation strategies. Such adaptivity is a highly desired feature of
an aggregation framework: current non-adaptive techniques fail
to support multiple window types, process in-order streams only,
cannot share aggregates amongwindowsdefinedondifferentmea-
sures, lack support for holistic aggregations, or incur dramatically
reduced performance in exchange for being generally applicable.

ApproachOverview. Figure 3 depicts an overviewof our general
slicing and aggregation technique. Users specify their queries in a
high-level language such as a flavor of stream SQL or a functional
API. The query translator observes the characteristics of a query
(i.e., window type, aggregate function, and windowmeasure) as
well as the characteristics of input streams (in-order vs. out-of-
order streams) and forwards them to our aggregator. Once those
characteristics aregiven toouraggregator, ourgeneral slicing tech-
nique adapts automatically to the given workload characteristics.

More specifically, general slicing detects if individual tuples
need to be kept in memory (to ensure generality) or if they can
be dropped after computing partial aggregates (to improve per-
formance). We further discuss this in Section 5.1. Queries can be
added or removed from the aggregator and due to that, the work-
load characteristics can change. To this end, our aggregator adapts
when one adds or removes queries. Weather we need to keep tu-
ples in memory or not solely depends onworkload characteristics.
Thus, there isnoneed toadaptonchanges in the inputdata streams
such as a changing ratio of out-of-order tuples. When processing
input tuples, the stream slicing component automatically decides
when it needs to apply our three fundamental slicing operations:
merge, split, and update (discussed in Section 5.2). General slicing
has extension points that can be used to implement user-defined
window types and aggregations (discussed in Section 5.4).

5.1 Storing Tuples vs. Partial Aggregates
General aggregation techniques [3, 42] achieve generality by stor-
ing all input tuples and by computinghigh-level partial aggregates.
Specialized techniques, on the other hand, only store (partial) ag-
gregates.Ageneral slicing techniqueneeds to decidewhen to store
what, according to workload characteristics of each of the queries
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Figure 4: Decision Tree - Which workload characteristics
require storing individual tuples inmemory?

that it serves. In this section, we discuss howwematch the perfor-
mance of specialized techniques, by choosing on-the-fly whether
to keep tuples for a workload or to store partial aggregates only.

For example, consider an aggregation function which is non-
commutative (∃x ,y : x ⊕ y , y ⊕ x) defined over an unordered
stream.When an out-of-order tuple arrives, we need to recompute
aggregates from the source tuples in order to retain the correct
order of the aggregation. Thus, one would have to store the actual
tuples for possible later use. Storing all tuples for the whole dura-
tion of the allowed lateness requires more memory but allows for
computing arbitrary windows from stored tuples. The decision
tree in Figure 4 summarizeswhen storing source tuples is required
depending on different workload characteristics.
In-order Streams. For in-order streams, we drop tuples for all
context free and forward context free windows but must keep
tuples if we process forward context aware windows. For such
windows, forward context leads to additional window start or end
timestamps. Thus, we must be able to compute partial aggregates
for arbitrary timestamp ranges from the original stored tuples.
Out-of-order Streams. For out-of-order streams, we need to
keep tuples if at least one of the following conditions is true:
(1) The aggregation function is non-commutative.

An out-of-order tuple changes the order of the incremental
aggregation, which forces us to recompute the aggregate using
source tuples. For in-order processing, the commutativity of
aggregation functions is irrelevant because tuples are always
aggregated in-order. Thus, there is no need to store source
tuples in addition to partial aggregates.

(2) The window is neither context free nor a session window.
In combinationwith out-of-order tuples, all context awarewin-
dows require tuples to be stored. This is because out-of-order
tuples change backward context which can lead to additional
window start or end timestamps. Such additional start and
end timestamps require to split slices and to recompute the
respective partial aggregates from the original tuples. Session
windows are an exception, because they are context aware, but
never require recomputing aggregates [46].

(3) The query uses a count-based windowmeasure.
An out-of-order tuple changes the count of all succeeding tu-
ples. Thus, the last tuple of each count-based window shifts to
a succeeding window.

5.2 SliceManagement
Stream slicing is the fundamental concept that allows us to build
partial aggregates and share them among concurrently running
queries and overlapping windows. In this section, we introduce
three fundamental operations which we can perform on slices.
Slice Metadata. A slice stores its start timestamp (tstart), its
end timestamp (tend), and the timestamp of the first (tfirst) and
last tuple it contains (tlast). Note that the timestamps of the first

Figure 5: Decision Tree.
Are splits required?

Figure 6: Decision Tree.
How to remove tuples?

and last tuples do not need to conincide with the start and end
timestamps of a slice. For instance, consider a sliceA that starts at
tstart (A) = 1 and ends at tend (A) = 10 but the first (earliest) tuple
contained is timestamped as tfirst (A) = 2 and its last/latest one
as tlast (A) = 9.We remind the reader that the timestamp can refer
not only to actual time, but to anymeasure presented in Section 4.3.

We identify three fundamental operations which we perform
on stream slices. These operations are i ) merging of two slices
into one, ii ) splitting one slice into two, and iii ) updating the state
of a slice (i.e., aggregate and metadata updates). In the following
paragraphs, we discuss merge, split, and update as well as the
impact of our workload characteristics on each operation. We use
upper case letters to name slices and corresponding lower case
letters for slice aggregates.
Merge.Merging two slicesA and B happens in three steps:

1. Update the end ofA such that tend (A) ← tend (B).
2. Update the aggregate ofA such that a ← a ⊕ b.
3. Delete slice B, which is nowmerged intoA.

Steps one and three have a constant computational cost. The com-
plexity of the second step (a ← a ⊕ b) depends on the type of
aggregate function. For instance, the cost is constant for algebraic
and distributive functions such as sum, min, and avg because they
require just a few basic arithmetic operations. Holistic functions
such as quantiles can be more complex to compute. Except from
the type of aggregation function, no other workload character-
istics impact the complexity of the merge operation. However,
stream order and window types influence when and how oftenwe
merge slices. We discuss this influence in Section 5.3.
Split. Splitting a sliceA at timestamp t requires three steps:

1. Add slice B: tstart (B)←t +1 and tend (B)←tend (A).
2. Update the end ofA such that tend (A) ← t .
3. Recompute the aggregates ofA and B.

Note that splitting slices is an expensive operation because it re-
quires recomputing slice aggregates from scratch. Moreover, if
splitting is required, we need to keep individual tuples in memory
to enable the recomputation.

We show in Figure 5 when split operations are required. For
in-order streams, only forward context aware (FCA) windows re-
quire split operations. For suchwindows, we split slices according
to a window’s start and end timestamp as soon as we process the
required forward context. In out-of-order data streams, all con-
text aware windows require split operations because out-of-order
tuples possibly contain relevant backward context. We never split
slices for context free windows such as tumbling and sliding ones.
Update. Updating a slice can involve adding in-order tuples,
addingout-of-order tuples, removing tuples, or changingmetadata
(tstart, tend, tfirst, and tlast).

Metadata changes are simple assignments of new values to
the existing variables. Adding a tuple to a slice requires one in-
cremental aggregation step (⊕), with the exception of processing
out-of-order tupleswith a non-commutative aggregation function.

101



Figure 7: The Stream Slicing and Aggregation Process

For this, we recompute the aggregate of the slice from scratch to
retain the order of aggregation steps.

For some workloads we need to remove tuples from slices. We
show in Figure 6when andhowwe remove tuples from slices. Gen-
erally, a remove operation is required only if a window is defined
on a count-based measure and if we process out-of-order tuples.
An out-of-order tuple changes the count of all succeeding tuples.
This requires us to shift the last tuple of each slice one slice further
starting at the slice of the out-of-order tuple. If the aggregation
function is invertible, we exploit this property by performing an
incremental update. Otherwise, we have to recompute the slice
aggregate from scratch. If the out-of-order tuple has a small delay,
such that it still belongs to the latest slice, we can simply add the
tuple without performing a remove operation.

5.3 Processing Input Tuples
The stream slicing and aggregation logic (bottom of Figure 3) con-
sistsof fourcomponentswhichweshowinFigure7.TheAggregate
Store is our shared data structure which is accessed by the Stream
Slicer to create new slices, by the Slice Manager to update slices,
and by theWindowManager to compute window aggregates.

The input stream can contain in-order tuples, out-of-order tu-
ples, and watermarks. Note that in-order tuples can either arrive
from an in-order stream (i.e., one that is guaranteed to never con-
tain an out-of-order tuple) or from an out-of-order stream (i.e.,
one that does not guarantee in-order arrival). If the the stream
is in-order (i.e., all tuples are in-order tuples), there is no need
to ingest watermarks. Instead, we output windows directly since
there is no need to wait for potentially delayed tuples.

Step 1 - The Stream Slicer. The Stream Slicer initializes new
slices on-the-fly when in-order tuples arrive [28]. In an in-order
stream, it is sufficient to start slices when windows start [10]. In
an out-of-order stream, we also need to start slices whenwindows
end to allow for updating the last slice of windows later on with
out-of-order tuples. We always cache the timestamp of the next
upcoming window edge and compare in-order tuples with this
timestamp. As soon as the timestamp of a tuple exceeds the cached
timestamp, we start a new slice and cache the timestamp of the
next edge. This is highly efficient because the majority of tuples
do not end a slice and require just one comparison of timestamps.

The Stream Slicer does not process out-of-order tuples and
watermarks but forwards them directly to the Slice Manager. This
is possible because the slices for out-of-order tuples have already
been initialized by previous in-order tuples.

Step 2 - The Slice Manager. The Slice Manager is responsible
for triggering all split, merge, and update operations on slices.

First, the Slice Manager checks whether a merge or split op-
eration is required. We always merge and split slices such that all
slice edges match window edges and vice versa. This guarantees
that we maintain the minimum possible number of slices [10, 46].

In an out-of-order stream, context aware windows can cause
merges or splits. In an in-order stream, only forward context
awarewindows can cause these operations. Context freewindows
never require merge or split operations, as the window edges
are known in advance and slices never need to change.

In-order tuples can be part of the forward context which indi-
cates window start or end timestamps earlier in the stream.When
processing forward context aware windows, we check if the new
tuple changes the context such that it introduces or removes win-
dowstart or end timestamps. In such case,weperform the required
merge and split operation to match the new slice and window
edges. Out-of-order tuples can change forward and backward con-
text such that a merge operation or split operation are required.

If thenewcontext causesnewwindowedges and, thus,mergeor
split operations, we notify theWindowManager which outputs
window aggregates up to the current watermark.

Finally, the Slice Manager adds the new tuple to its slice and
updates the slice aggregate accordingly. In-order tuples always
belong to the current slice and are added with an incremental
aggregate update [42]. For out-of-order tuples, we look up the
slice which covers the timestamp of the out-of-order tuple and
add the tuple to this slice. For commutative aggregation functions,
we add the new tuple with an incremental aggregate update. For
non-commutative aggregation functions, we need to recompute
the aggregate from individual tuples to retain the correct order.

Step 3 - The Window Manager. The Window Manager com-
putes the final aggregates for windows from slice aggregates.

When processing an in-order stream, the Window Manager
checks if the tuple it processes is the last tuple of a window. There-
fore, each tuple can be seen as a watermark which has the times-
tamp of the tuple. If a window ended, the windowmanager com-
putes and outputs the window aggregate (final aggregation step).

For out-of-order streams, we wait for the watermark (see Sec-
tion 2) before we output results of windows which ended before
a watermark.

The Slice Manager notifies theWindows Manager when it per-
forms split, merge, or update operation on slices. Upon such
notification, theWindowManager performs two operations:
(1) If an out-of-order tuple arrives within the allowed lateness but

after the watermark, the tuple possibly changes aggregates
of windows which were output before. Thus, the Window
Manager outputs updates for these window aggregates.

(2) If a tuple changes the context of context aware windows such
that newwindows end before the current watermark, the win-
dowmanager computes and outputs the respective aggregates.

Parallelization.We parallelize stream processing with key parti-
tioning which is the common approach used in stream processing
systems [21] such as Flink [9], Spark [4], and Storm [44]. Key
partitioning enables intra-node as well as inter-node parallelism
and, thus, results in good scalability. Since our generic window
aggregation is a drop in replacement for the window aggregation
operator, the input and output semantics of the operator remains
unchanged. Thus, neither the query interface nor optimizations
unrelated to window aggregations are affected.

5.4 User-DefinedWindows and Aggregations
Our architecture decouples the general logic of streamslicing from
the concrete implementation of window types and aggregation
functions. Thismakes it easy to addwindowtypes andaggregation
functions as no changes are required in the slicing logic. In this
section, we describe how we implement aggregation functions
and window types.

5.4.1 ImplementingAggregation Functions. Weadopt the same
approach of incremental aggregation introduced byTangwongsan
et al. [42]. Each aggregation type consists of three functions: lift,
combine, and lower. In addition, aggregations may implement an
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invert function. We now discuss the concept behind these func-
tions, and refer the reader to the original paper for an overview
of different aggregations and their implementation.

Lift. The lift function transforms a tuple to a partial aggregate.
For example, consider an average computation. If a tuple ⟨t ,v⟩
contains its timestamp t and a valuev , thelift functionwill trans-
form it to ⟨sum←v, count←1⟩, which is the partial aggregate of
that one tuple.
Combine. The combine function (⊕) computes the combined ag-
gregate from partial aggregates. Each incremental aggregation
step results in one call of the combine function.
Lower. The lower function transforms a partial aggregate to a
final aggregate. In our example, the lower function computes the
average from sum and count: ⟨sum, count⟩ 7→ sum/count.
Invert. The optional invert function removes one partial aggre-
gate from another with an incremental operation.

In this work, we consider holistic aggregation functions which
have an unbounded size of partial aggregates. Awidely used holis-
tic function is the computation of quantiles. For instance, win-
dowedquantiles are the basis for billingmodels of content delivery
networks and transit-ISPs [13, 23]. For quantile computations, we
sort tuples in slices to speed up succeeding merge operations and
apply run length encoding to save memory [37].

5.4.2 Implementing Different Window Types. We use a com-
mon interface for the in-order slicing logic of all windows. We
extend this interface with additional methods for context-aware
windows. One can add additional window types by implementing
the respective interface.

Context FreeWindows. The slicing logic for context free win-
dows depends on in-order tuples only. When a tuple is processed,
the slicingcore initializesall slicesup to the timestampof that tuple.
Our interface for context free windows has twomethods: The first
method has the signature long getNextEdge(long timestamp).
It receives a timestamp as parameter and returns the next window
edge (begin or end timestamp) after this timestamp.We use this
method to retrieve the next window edge for on-the-fly stream
slicing (Step 1 in Section 5.3). For example, a tumbling window
with length l would return timestamp + l − (timestamp mod l ).

The second method triggers the final window aggregation ac-
cording to a watermark and has the following signature:
void triggerWin(Callback c, long prevWM, long currWM).
TheWindowManager calls this method when it processes a wa-
termark. c is a callback object, prevWM is the timestamp of the
previous watermark and currWM is the timestamp of the current
watermark.Themethodreports allwindowswhichendedbetween
prevWM and currWM by calling c.triggerWin(long startTime,
long endTime). This callback to theWindowManager triggers
the computation and output of the final window aggregate.
ContextAwareWindows.Contextawarewindowsuse thesame
interface as context free windows to trigger the initialization of
slices when processing in-order tuples. In addition, context aware
windows require to keep a state (i.e., context) in order to derive
window start and end timestamps when processing out-of-order
tuples. We initialize context aware windows with a pointer to
the Aggregate Store. This prevents redundancies among the state
of the shared aggregator and the window state. When the Slice
Manager processes a tuple, it notifies context aware windows
bycallingwindow.notifyContext(callbackObj, tuple). This
method can then add and remove window start and end times-
tamps through the callback object and the SliceManager splits and
merges slices as required to match window start and end times-
tamps.We detect whether or not a window is context aware based

on the interface which is implemented by the window specifica-
tion. We provide examples for different context free and context
aware window implementations in our open source repository.

6 EVALUATION
In this section, we evaluate the performance of general stream
slicing and compare stream slicing with alternative techniques
introduced in Section 3.
6.1 Experimental Setup
Setup.We implement all techniques on Apache Flink v1.3. We
run our experiments on a VM with 6 GB main memory and 8
processing cores with 2.6 GHz.
Metrics. In our experiments, we report throughput, latency, and
memory consumption. Wemeasure throughput as in the Yahoo
Streaming Benchmark implementation for Apache Flink [12, 48].
We determine latencies with the JMH benchmarking suite [35].
JMH provides precise latency measurements on JVM-based sys-
tems. We use the ObjectSizeCalculator of Nashorn to determine
memory footprints [36].
Baselines.We compare an eager and a lazy version of general
stream slicing with non-slicing techniques from Section 3: As
representative for aggregate trees, we implement FlatFAT [42].
For the buckets technique, we use the implementation of Apache
Flink [9]. For tuple buffers, we use an implementation based on
a ring buffer array. We also include Pairs [28] and Cutty [10] as
specialized slicing techniques where possible.
Data.We replay real-world sensor data from a football match [34]
and from manufacturing machines [25]. The original data sets
track the position of the football with 2000 and the machine states
with 100 updates per second. We generate additional tuples based
on the original data to simulate higher ingestion rates. We add 5
gaps perminute to separate sessions. This is representative for the
ball possessionmoving fromone player to another. If not indicated
differently, we show results for the football data. The results for
other data sets are almost identical because the performance de-
pends onworkload characteristics rather than data characteristics.
Queries.Webase our queries (i.e.,window length, slide steps, etc.)
on the workload of a live-visualization dashboard which is built
for the football datawe use [45]. If not indicated differently, we use
the sum aggregation in Sections 6.2 and Section 6.3. In Section 6.4,
we use the M4 aggregation technique [26] to compress the data
stream for visualization. M4 computes four algebraic aggregates
per window (i.e., minimum, maximum, first and last value of each
window). We show in Section 6.3.2 how the performance differs
among diverse aggregation functions. Because we do not change
the input and output semantics of thewindow and aggregation op-
eration, there is no impact on upstreamor downstreamoperations.
We ensure that windowing and aggregation are the bottleneck
and, thus, wemeasure the performance of aggregation techniques.

We do not alternate between tumbling and sliding windows
because they lead to identical performance: For example, 20 con-
current tumblingwindowqueries cause 20 concurrentwindows (1
window for each query at any time). This is equivalent to a single
sliding window with a window length of 20 seconds and and a
slide step of one second (again 20 concurrent windows). In the
following, we refer to concurrent windows instead of concurrent
tumbling window queries. Sliding window queries yield identical
results if they imply the same number of concurrent windows.
Structure.We split our evaluation in three parts. First, we com-
pare streamslicingandalternativeapproacheswith respect to their
throughput, latency, and memory footprint (Section 6.2). Second,
we study the impact of each workload characteristic introduced
in Section 4 (Section 6.3). Third, we integrate general slicing in
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Figure 8: In-order Processing with Context FreeWindows.

Apache Flink and show the performance gain for a concrete appli-
cation (Section 6.4). Sections 6.2 and 6.3 focus on the performance
per operator instance. Section 6.4 studies the parallelization.

6.2 Stream Slicing Compared to Alternatives
We now compare stream slicing with alternative techniques dis-
cussed in Section 3. We first study the throughput for in-order
processing on context-free windows in Section 6.2.1. Our goal
is to understand the performance of stream slicing compared to
alternative techniques, including specialized slicing techniques.
In Section 6.2.2, we evaluate how the throughput changes in the
presence of out-of-order tuples and context-aware windows. In
Section6.2.3,weevaluate thememory footprintand inSection6.2.4
the latency of different techniques.

6.2.1 Throughput.

Workload. We execute multiple concurrent tumbling window
queries with equally distributed lengths from 1 to 20 seconds.
Thesewindow lengths are representative of window aggregations
which facilitate plotting line charts at different zoom levels (Ap-
plication of Section 6.3). We chose Pairs [28] and Cutty [10] as
example slicing techniques because Pairs is one of the first and
most cited techniques and Cutty offers a high generality with
respect to window types.

Results.We show our results in Figure 8. All three slicing tech-
niques process millions of tuples per second and scale to large
numbers of concurrent windows.

Buckets achieves orders of magnitude less throughput than
Slicing techniques and does not scale to large numbers of concur-
rent windows. The reason is that we must assign each tuple to
all concurrent buckets (i.e., windows). Thus, tuples belong to up
to 1000 buckets causing 1000 redundant aggregation steps per tu-
ple. In contrast, slicing techniques always assign tuples to exactly
one slice. Similar to buckets, the tuple buffer causes redundant
aggregation steps for each window as we compute each window
independently. Aggregate Trees show a throughput which is or-
ders of magnitude smaller than the one of slicing techniques. This
is because each tuple requires several updates in the tree.

Summary.We observe that slicing techniques outperform alter-
native concepts with respect to throughput and scale to large
numbers of concurrent windows.

6.2.2 Throughput under Constraints. We now analyze the
throughput under constraints, i.e., including out-of-order tuples
and context-aware windows.

Workload. The workload remains the same as before but we add
a time-based session window (lд = 1sec.) as representative for
a context-aware window. We add 20% out-of-order tuples with
random delays between 0 and 2 seconds.

101 102 103
103
104
105
106

concurrent windows

th
ro
ug

hp
ut

[tu
pl
es
/s
]

Lazy Slicing Eager Slicing Buckets
Agg. Tree Tuple Buffer

(a) Football data set [34].

101 102 103
103
104
105
106

concurrent windows

th
ro
ug

hp
ut

[tu
pl
es
/s
]

(b) Machine data set [25].

Figure 9: Increasing the number of concurrent windows
including 20% out-of-order tuples and session windows.

Results. We show the results in Figure 9. Slicing techniques
achieve an order of magnitude higher throughput than alterna-
tive techniques which do not use stream slicing. Moreover, slic-
ing scales to large numbers of concurrent windows with almost
constant throughput. This is because the per-tuple complexity
remains constant: we assign each tuple to exactly one slice. Lazy
Slicing has the highest throughput (1.7Million tuples/s) because it
uses stream slicing and does not compute an aggregate tree. Eager
Slicing achieves slightly lower throughput than Lazy Slicing. This
is due to out-of-order tuples which cause updates in the aggregate
tree. Buckets show the same performance decrease as in the previ-
ous experiment. The performance decrease for the Tuple Buffer is
intensified due to out-of-order inserts in the ring buffer array. Ag-
gregateTreesprocess less than1500 tuples/swith 20%out-of-order
tuples. This is because out-of-order tuples require expensive leaf
inserts in the aggregate tree (rebalance and update of inner nodes).
Eager slicing seldom faces this issue because it stores slices instead
of tuples in the aggregate tree. Themajority of out-of-order tuples
falls in anexisting slicewhichprevents rebalancing.Weexemplary
show our results on two different datasets for this experiment.
Because the performance depends on workload characteristics
rather than data characteristics, the results are almost identical.
We omit similar results for different data sets in the following
experiments and focus on the impact of workload characteristics.

Summary. For workloads including out-of-order tuples and
context-aware windows, we observe that general stream slicing
outperforms alternative concepts with respect to throughput and
scales to large numbers of concurrent windows.

6.2.3 Memory Consumption. We now study the memory con-
sumption of different techniques with four plots: In Figures 10a
and 10c, we vary the number of slices in the allowed lateness and
fix the number of tuples in the allowed lateness to 50 thousand.
In Figures 10b and 10d, we vary the number of tuples and fix the
number of slices to 500. We experimentally compare time-based
and count-basedwindows.Ourmeasurements include allmemory
required for storing partial aggregates and metadata such as the
start and end times of slices.

Results for Time-BasedWindows. Figures 10a and 10b show
the memory consumption for time-based windows, which do not
require to store individual tuples. For Stream Slicing and Buckets,
the memory footprint increases linearly with the number of slices
in theallowed lateness.Thememory footprint is independent from
the number of tuples. The opposite holds for Tuple Buffers andAg-
gregate Trees. Slicing techniques store just one partial aggregate
per slice, while buckets store one partial aggregate per window.
Tuple Buffers and Aggregate Trees store each tuple individually.
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Figure 10: Memory Experiments with Unordered Streams.

Results for Count-BasedWindows. Figures 10c and 10d show
the memory consumption for count-based windows, which re-
quire individual tuples to be stored. The experiment setup is the
same as in Figures 10a and 10b.

The memory consumption of all techniques increases with the
number of tuples in the allowed lateness because we need to store
all tuples for processing count-based windows on out-of-order
streams (Figure 10d). Starting from 1000 tuples in the allowed
lateness, the memory consumed by tuples dominates the over-
all memory requirement. Accordingly, all curves become linear
and parallel. Buckets show a stair shape because of the under-
lying hash map implementation [49]. Slicing techniques start at
roughly 105 byte which is the space required to store 500 slices.
The memory footprint of buckets also increases with the number
of slices because more slices correspond to more window buckets
(Figure 10c). Each bucket stores all tuples it contains which leads
to duplicated tuples for overlapping buckets.

Summary.When we can drop individual tuples and store partial
aggregates only (Figure 10a and 10b), the memory consumptions
of slicing and buckets depends only on the number of slices in the
allowed lateness. In this case, stream slicing and buckets scale to
high ingestion rates with almost constant memory utilization. If
we need to keep individual tuples (Figure 10c and 10d), storing
tuples dominates the memory consumption.

6.2.4 Latency. The output latency for window aggregates de-
pends on the aggregation technique, the number of entries (tuples
or slices) which are stored, and the aggregation function. In Fig-
ure 11, we show the latency for different situations.

DistributiveandAlgebraicAggregation. For the sumaggrega-
tion (Figure 11a), Lazy Slicing and Tuple Buffer exhibit up to 1ms
latency for 105 entries (no matter if 105 tuples or 105 slices). Eager
Slicing and Aggregate Trees show latencies below 5µs. Buckets
achieve latencies below 30ns. Lazy aggregation has higher laten-
cies because it computes final aggregates upon request. Eager
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Figure 11: Output Latency of Aggregate Stores

Aggregation uses precomputed partial aggregates from an aggre-
gate treewhich reduces the latency. Buckets pre-compute the final
aggregate of each window and store aggregates in a hash map
which leads to the lowest latency.

Holistic Aggregation. The latencies for the holistic median ag-
gregation (Figure 11c) are in the same order of magnitude and
follow the same trends. Buckets exhibit the same latencies as be-
fore because they precompute the aggregate for each bucket. Thus,
amore complex holistic aggregation decreases the throughput but
does not increase the latency. The latency of slicing techniques in-
creases for themedian aggregation becausewe combine partial ag-
gregates tofinal aggregateswhenwindows end. This combine step
is more expensive for holistic aggregates than for algebraic ones.

Summary.We observe a trade-off between throughput and la-
tency. Lazy aggregation has the highest throughput and the high-
est latency. Eager aggregationhas a lower throughput but achieves
microsecond latencies. Buckets provide latencies in the order of
nanoseconds but have an order of magnitude less throughput.

6.3 StudyingWorkload Characteristics
Wemeasure the impact of the workload characteristics from Sec-
tion 4 on the performance of general slicing. For comparison, we
also show the best alternative techniques.

6.3.1 Impact of Stream Order. In this experiment, we inves-
tigate the impact of the amount of out-of-order tuples and the
impact of the delay of out-of-order tuples on throughput (Fig-
ure 12). We use the same setup as for the throughput experiments
in Section 6.2.2 with 20 concurrent windows.

Out-of-order Performance. In Figure 12a, we increase the frac-
tion of out-of-order tuples. Slicing and Buckets process out-of-
order tuples as fast as in-order tuples. The throughput of the other
techniques decreases when processing more out-of-order tuples.

Slicing techniques process out-of-order tuples efficiently be-
cause they perform only one slice update per out-of-order tuple.
Eager slicing also updates its aggregate tree. This update has a
low overhead because there are just a few hundred slices in the
allowed lateness and, accordingly, there are just a few tree levels
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Figure 12: Impact of StreamOrder on the Throughput.

which require updates. Aggregate Trees on tuples have a much
larger number of tree levels because they store tuples instead of
slices as leaf nodes.

Buckets have a constant throughput as in the previous exper-
iments. Tuple Buffers and Aggregate Trees exhibit a through-
put decay when processing out-of-order tuples. Tuple Buffers
require expensive out-of-order inserts in the sorted buffer array.
Aggregate Trees require inserting past leaf nodes in the aggregate
tree. This causes a rebalancing of the tree and the respective re-
computation of aggregates. Eager Slicing seldom faces this issue
(see Section 6.2.2).

Delay Robustness. In Figure 12b, we increase the delay of out-
of-order tuples. We use equally distributed random delays within
the ranges specified on the horizontal axis.

All techniques except Tuple Buffers are robust against increas-
ing delays. Slicing techniques always update one slice when they
process a tuple. Small delays can sightly increase the throughput
compared to longer delays if out-of-order tuples still belong to the
most recent slice. In this case, we require no lookup operations
to find the correct slice. The throughput of Buckets is indepen-
dent of the delay because Flink stores buckets in a hashmap. The
throughput of the tuple buffer decreases with increasing delay of
out-or-order tuples, because the lookup and update costs in the
sorted buffer array increase.

Summary. Stream slicing and Buckets scale with constant
throughput to large fractions of out-of-order tuples and are robust
against high delays of these tuples.

6.3.2 Impact of Aggregation Functions. We now study the
throughput of different aggregation functions using the same
setup as before (20 concurrent windows, 20% out-of-order tuples,
delays between0 and2 seconds) in Figure 13.Wedifferentiate time-
basedandcount-basedwindows to showthe impactof invertibility.
We implement the same aggregation functions as Tangwongsang
et al. [42]. The original publication provides a discussion of these
functions and an overview of their algebraic properties. We addi-
tionally study the median and the 90-percentile as examples for
holistic aggregation. Moreover, we study a naive version of the
sum aggregation which does not use the invertibility property.
This allows for making a deduction with respect to not invertible
aggregations in general.

Time-BasedWindows. For time-based windows, the through-
put is similar for all algebraic and distributive aggregations with
small differences due to different computational complexities of
the aggregations.Holistic aggregations (medianand90-percentile)
show amuch lower throughput because they require to keep all
tuples in memory and have a higher complexity.
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Figure 13: Impact of Aggregation Types on Throughput.
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Figure 14: Throughput forMedian Aggregation.

Count-Based Windows. We observe lower throughputs than
for time-based windows, which is because of out-of-order tuples.
For count-based windows, an out-of-order tuple changes the se-
quence id (count) of all later tuples. Thus, we need to shift the
last tuple of each slice to the next slice. This operation has low
overhead for invertible aggregations because we can subtract and
add tuples from aggregates. The operation is costly for not in-
vertible aggregations because it requires the recomputation of
the slice aggregate. Time-based windows do not require an invert
operation because out-of-order tuples only change the sequence
id (count) of later tuples but not the timestamps.

Impact of invertibility. There is a big difference between the
performance for different not invertible aggregations on count-
basedwindows.AlthoughMin,Max,MinCount,MaxCount,ArgMin,
and ArgMax are not invertible, they have a small throughput decay
compared to time-basedwindows (Figure 13). This is becausemost
invert operations do not affect the aggregate and, thus, do not re-
quire a recomputation. For example, it is unlikely that the tuplewe
shift to the next slice is the maximum of the slice. If the maximum
remains unchanged, max, MaxCount, and ArgMax do not require a
recomputation. In contrast, the sum w/o invert function shows
the performance decay for a not invertible function which always
requires a recomputation when removing tuples.

Impact ofHolistic Aggregations. In Figure 13, we observe that
holistic aggregations have a much lower throughput than alge-
braic and distributive aggregations. In Figure 14, we show that
stream slicing still outperforms alternative approaches for these
aggregations. The reason is that stream slicing prevents redun-
dant computations for overlapping windows by sorting values
within slices and by applying run length encoding. In contrast,
Buckets and Tuple Buffer compute each window independently.
The machine data set shows slightly higher throughputs because
the aggregated column has only 37 distinct values compared to
84232 distinct values in the football dataset. Fewer distinct values
increase the savings achieved by run length encoding. Aggregate
trees (not shown) can hardly compute holistic aggregates. They
maintainpartial aggregates for all innernodes of a large treewhich
is extremely expensive for holistic aggregations.
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Summary.On time-based windows, stream slicing performs di-
verse distributive and algebraic aggregations with similarly high
throughputs. Considering count-based windows and out-of-order
tuples, invertible aggregations lead to higher throughputs than
not invertible ones.

6.3.3 Impact of Window Types. The window type impacts
the throughput if we process context-aware windows because
these windows potentially require split operations. Note that con-
text aware windows cover arbitrary user-defined windows which
makes it impossible to provide a general statement on the through-
put for all these windows. Thus, we evaluate the time required
to recompute aggregates for slices of different sizes when a split
operation is performed (Figure 15). Given a context awarewindow,
one can estimate the throughput decay based on the number of
split operations required and the time required for recomputing
aggregates after splits. We show the sum aggregation as represen-
tative for an algebraic function and the median as example for a
holistic function.

The processing time for the recomputation of an aggregate
increases linearly with the number of tuples contained in the ag-
gregate. If split operations are required to process a context aware
window, a system should monitor the overhead caused by split
operations and adjust the maximum size of slices accordingly.
Smaller slices requiremorememory and cause repeated aggregate
computationwhen calculating final aggregates forwindows. In ex-
change, the aggregates of smaller slices are cheaper to recompute
when we split slices.

6.3.4 Impact of WindowMeasures. We compare different win-
dowmeasures in Figure 16. We use the same setup as before (20%
out-of-order tuples with delays between 0 and 2 seconds).

Time-BasedWindows. For time-based windows, the through-
put is independent from the number of concurrent windows as
discussed in our throughput analysis in Section 6.2.2. The through-
put for arbitrary advancingmeasures is the same as for time-based
measures because they are processed identically [10].

Count-BasedWindows. The throughput for count-based win-
dows is almost constant for up to 40 concurrent windows and de-
cays linearly for larger numbers. For up to 40 concurrentwindows,
most slices are larger than the delay of tuples. Thus, out-of-order
tuples still belong to the current slice and require no slice updates.
The more windows we add, the smaller our slices become. Thus,
out-of-order tuples require an increasing number of updates for
shifting tuples between slices which reduces the throughput. Tu-
ple buffers are the fastest alternative to Slicing in our experiment.
For 1000 concurrentwindows, slicing is still an order ofmagnitude
faster than tuple buffers.
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Figure17:Parallelizingtheworkloadofa live-visualization
dashboard (80 concurrentwindows per operator instance).

Summary. The throughput of time-based windows stays con-
stant whereas the throughput of count-based windows decreases
with a growing number of concurrent windows.

6.4 Parallel Stream Slicing
In this experiment, we study stream slicing on the example of our
dashboard application [45] which uses the M4 aggregation [26].
We vary the degree of parallelism to show the scalability with
respect to the number of cores. We compare Lazy Slicing with
Buckets which are used in Flink.
Results. In Figure 17, we increase the number of parallel operator
instances of the windowing operation (degree of parallelism). The
throughput scales linearly up to a degree of parallelism of four
(Figure 17a). Up to this degree, each parallel operator instance runs
on a dedicated core with other tasks (data source operator, writing
outputs, operating system overhead, etc.) running on the remain-
ing four cores. For higher degrees of parallelism the throughput
and the CPU load increase logarithmically, approaching the full
800% CPU utilization (Figure 17b). Slicing achieves an order of
magnitude higher throughput than buckets, because it prevents
assigning tuples to multiple buckets (cf. Section 6.2.1). The mem-
ory consumption scaled linearly with the degree of parallelism
for both techniques.
Summary. We conclude that stream slicing and buckets scale
linearly with the number of cores for our application.

7 RELATEDWORK
OptimizingWindow Aggregations.Our general slicing tech-
niques utilizes features of existing techniques such as on-the-
fly slicing [28], incremental aggregation [42], window group-
ing [18, 19], and user-defined windows [10]. However, general
stream slicing offers a unique combination of generality and per-
formance. We base our general slicing implementation on a spe-
cialized techniquewhichwepresented earlier as a poster [46]. One
can extend other slicing techniques based on this paper to reach
similar generality and performance. Existing slicing techniques
such as Pairs [28] and Panes [30] are limited to tumbling and slid-
ing windows. Cutty can process user-defined window types, but
does not support out-of-order processing [10]. Several publica-
tions optimize sliding window aggregations focusing on different
aspects such as incremental aggregation [6, 15, 42] or worst-case
constant time aggregation [43]. Hirzel et al. conclude that one
needs to decide on a concrete algorithm based on the aggregation,
window type, latency requirements, stream order, and sharing
requirements because each specialized algorithm addresses a dif-
ferent set of requirements [22]. Instead of alternating between
different algorithms, we provide a single solution which is gen-
erally applicable and allows for adding aggregation functions and
window types without changing the core of our technique.
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Stream Processing in Batches. In contrast to our techniques,
whichadoptsa tuple-at-a-timeprocessingapproach, severalworks
split streams in batches of data which they process in parallel [5,
27, 52]. SABER introduceswindow fragments to decouple slide and
range of sliding windows from the batch size [27]. However, in
contrast to our work, SABER does not consider aggregate shar-
ing among queries. Balkesen et al. use panes to share aggregates
among overlapping windows [5]. None of these works addresses
the general applicability with respect to workload characteristics.
Complementary Techniques. Weaving optimizes execution
plans to reduce the overall computation costs for concurrent win-
dow aggregate queries [18, 19, 38]. We use a similar approach to
fusewindowaggregationquerieswhenwindowedgesmatch. This
optimization is orthogonal to the generalization of slicing which
is the focus of this paper. Huebsch et al. study multiple query op-
timization when aggregating several data streams which arrive
at different nodes [24]. General stream slicing complements this
work with an increased per-node performance. Truviso proposes
an alternative technique based on independent stream partitions
to correct outputs when tuples arrive after the watermark [29].
While our work focuses on slicing streams and computing partial
aggregations for slices, recent publications of Shein et al. further
accelerate the final aggregation step which is required when win-
dows end [39, 40]. Trill [11] is an analytics system that supports
streaming, historical, and exploratory queries in the same system.
Trill supports incremental aggregation and performs aggregations
on snapshots, the state of the window at a certain point in time.
Zeuch et al. [53] integrate stream slicing in a lock-free window ag-
gregation operator to optimize throughput on modern hardware.

8 CONCLUSION
Stream slicing is a technique for streaming window aggregation
which provides high throughputs and low latencies with a small
memory footprint. In this paper, we contribute a generalization of
stream slicing with respect to four key workload characteristics:
Stream (dis)order, aggregation types, window types, and window
measures. Our general slicing technique dynamically adapts to
these characteristics, for example, by exploiting the invertibility
of an aggregation or the absence of out-of-order tuples.

Our experimental evaluation reveals that general slicing is
highly efficient without limiting generality. It scales to a large
number of concurrent windows, and consistently outperforms
state-of-the-art techniques in terms of throughput. Furthermore,
it efficiently supports application scenarios with large fractions of
out-of-order tuples, tupleswith high delays, time-based and count-
based windowmeasures, context-aware windowing, and holistic
aggregation functions. Finally,we observed that the throughput of
general slicing scales linearlywith the number of processing cores.
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ABSTRACT
Dictionary-based entity extraction from documents is an important
task for several real applications. To improve the effectiveness
of extraction, many previous studies focused on the problem of
approximate dictionary-based entity extraction, which aims at
finding all substrings in documents that are similar to pre-defined
entities in the reference entity table. However, these studies only
consider syntactical similarity metrics, such as Jaccard and edit
distance. In the real-world scenarios, there are many cases where
syntactically different strings can express the same meaning. For
example, MIT and Massachusetts Institute of Technology refer
to the same object but they have a very low value of syntactic
similarity. Existing approximate entity extraction work fails to
identify such kind of semantic similarity and will definitely suffer
from low recall.

In this paper, we come up with the new problem of approximate
dictionary-based entity extraction with synonyms and propose
an end-to-end framework Aeetes to solve it. We propose a new
similarity measure Asymmetric Rule-based Jaccard (JACCAR)
to combine the synonym rules with syntactic similarity metrics
and capture the semantic similarity expressed in the synonyms. We
propose a clustered index structure and several pruning techniques
to reduce the filter cost so as to improve the overall performance.
Experimental results on three real world datasets demonstrate
the effectiveness of Aeetes. Besides, Aeetes also achieves high
performance in efficiency and outperforms the state-of-the-art
method by one to two orders of magnitude.

1 INTRODUCTION
Dictionary-based entity extraction [11] identifies all substrings
from a document that match predefined entities in a reference
entity table i.e. the dictionary. Compared with other kinds in-
formation extraction approaches, such as rule-based, machine
learning and hybrid ones, dictionary-based entity extraction is
good at utilizing extra domain knowledge encoded in the dictio-
nary [24]. Therefore, it has been widely adopted in many real
world applications that required Named entity recognition (NER),
such as academic search, document classification, and code auto-
debugging.

A typical application scenario is the product analysis and re-
porting system [10]. These systems maintain a list of well-defined
products and require to find the mentions of product names in
the online acquired documents. More precisely, these systems
receive many consumer reviews, then they extract the substrings

© 2019 Copyright held by the owner/author(s). Published in Proceedings of the 22nd
International Conference on Extending Database Technology (EDBT), March 26-29,
2019, ISBN 978-3-89318-081-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Figure 1: Example of institution name extraction.

that mentioned reference product names from those reviews. Such
mentions of referenced entities serve as a crucial signal for further
analyzing the review documents, such sentiment analysis, opin-
ion mining and recommendation. High-quality extraction of such
mentions will significantly improve the effectiveness of these sys-
tems. Furthermore, the large volume of documents such systems
receive turns improving the efficiency of extraction into a critical
requirement.

To provide high-quality entity extraction results and improve
the recall, some prior work [12, 13, 35] studied the problem of Ap-
proximate dictionary-based Entity Extraction (AEE). As entities
in the dictionary are represented as strings, they employ syntactic
similarity functions (e.g. Jaccard and Edit Distance) to measure
the similarities between entities and substrings from a document.
The goal is to find not only the exactly matched substrings but
also those similar to entities in the dictionary.

Though prior work has achieved significant degree of success
in identifying the syntactic similar substrings from documents,
they would still miss some substrings that are semantically similar
to entities. In many cases, syntactically different strings can have
very close semantic meaning. For example, consider a substring

“Mitochondrial Disease” in a biomedical document and an entity
“Oxidative Phosphorylation Deficiency” in the dictionary. Prior
studies on AEE problems [13, 35] would fail in identifying this
substring since they have very low similarity score under any
syntactic similarity metric. However, “Mitochondrial Disease”
and “Oxidative Phosphorylation Deficiency” actually refer to the
same disease and they are expected to be included in the result.
Therefore, it is necessary to propose a new framework to take
both syntactic similarity and semantics carried by synonyms into
consideration.

We can capture such synonyms by applying synonym rules on
the basis of syntactic similarity. A synonym rule r is a pair of
strings with the form ⟨ lhs⇔ rhs⟩ that express the same semantics.
Here both lhs and rhs are token sequences. For example ⟨ Big
Apple⇔ New York⟩ is a synonym rule as “Big Apple” is actually a
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nickname for “New York”. Example 1.1 shows a real-life scenario
demonstrating the effectiveness of applying synonym rules in
entity extraction.

Example 1.1. Figure 1 provides an example document which
contains PVLDB 2018 PC members. The dictionary includes a
list of institution names, and the synonym rule table contains a list
of synonym rules. The exact match approach only finds s3 as it is
the only one having an exact match in the dictionary. AEE based
approaches like Faerie [13] can find s3 and s2 but misses s1 and s4.
By applying rules, we can find all similar results s1, s2, s3 and s4.

As motivated above, applying synonym rules can significantly
improve the effectiveness of approximate entity extraction. In this
paper, we formally introduce the problem of Approximate Entity
Extraction with Synonym (AEES) from dictionaries.

Though the application of synonym rules could improve ef-
fectiveness, it also brings significant challenges in computational
performance. To address this issue, we study and propose new
solutions for the AEES problem, along with techniques that opti-
mize the performance. In fact, we propose an end-to-end frame-
work called Approximate Dictionary-based Entity Extraction with
Synonyms (Aeetes) that effectively and efficiently solves the
AEES problem. We first propose a new similarity metric Asym-
metric Rule-based Jaccard (JACCAR) to evaluate the similarity
between substrings in documents and entities in the dictionary
by considering both syntactic similarity and semantic relevance
brought by synonyms. By properly designing the similarity mea-
sure, we can reduce the overhead of applying the synonym rules
and capture the rich semantics at the same time. To support ef-
ficient extraction, we devise a clustered inverted index structure
which enables skipping dissimilar entities when traversing the
index. We also apply efficient sliding-window based pruning tech-
niques to accelerate the filtering process by leveraging the overlaps
between adjacent substrings in the document. We evaluate our
proposed methods on three popular datasets with real application
scenarios. Experimental results demonstrate the superiority of our
method in both effectiveness and efficiency.

To summarize, we make the following contributions.
• We identify and formally define a new problem dictionary-

based Approximate Entity Extraction from documents with
Synonyms. And we propose an end-to-end framework
Aeetes to efficiently address the problem.
• We devise a clustered index structure and several pruning

techniques to improve the performance. Specifically, we
proposed a dynamic prefix maintenance algorithm and a
lazy candidate generation method to take advantage of the
shared computation between substrings in a document so
as to reduce the filter cost.
• We conduct an extensive empirical evaluation on three real-

world datasets to evaluate the efficiency and effectiveness
of the proposed algorithms. Experimental results demon-
strate the effectiveness of our method. In addition, our
method also achieved good efficiency: it outperforms the
baseline methods by one to two orders of magnitude in
extraction time.

The rest of this paper is organized as follows. We formalize
the problem of AEES and introduce the overall framework in Sec-
tion 2. We propose a clustered inverted index structure in Section 3.
We devise the sliding window based filter techniques in Section 4.
We make necessary discussions about some important issues in
Section 5. The experimental results are reported in Section 6. We

summarize the related work in Section 7. Finally, conclusions are
made in Section 8.

2 PRELIMINARY
In this section, we first define some basic terminology to describe
our work (Section 2.1). We then formulate the AEES problem and
justify its definition (Section 2.2). Finally we provide an overview
of our framework (Section 2.3).

2.1 Basic Terminology
Entity. An entity e is modeled as a token sequence, i.e, e =
e[1], ..., e[|e |] where |e | is the number of tokens in e. For example,
the entity e2 =“Purdue University USA” in Figure 1 has three to-
kens and e2[3] = “USA”. We use e[i, j] to denote the subsequence
of tokens e[i], ..., e[j] of e.
Applicable synonym rule. Given an entity e, a synonym rule r is
an applicable rule for e if either lhs or rhs is a subsequence
of e. In some cases, if two applicable rules have overlapping tokens
and cannot be applied simultaneously, we call them conflict
rules. For example, r4 and r5 are conflict rules as they have an
overlapping token “UW”. In order to generate derived entities, we
need to obtain the optimal set of non-conflict rules, which includes
all possible combinations. Unfortunately, finding the optimal set
of non-conflict rules requires exponential time. To improve the
performance, we propose a greedy algorithm to select the set of
non-conflict rules whose cardinality is as large as possible (details
in Section 5). We useA (e ) to denote the sets of non-conflict rules
of the entity e.
Derived entity. Given an entity e and one applicable rule r (⟨
lhs⇔ rhs⟩), without the loss of generality, we assume lhs is a
subsequence of e. Applying r to e means replacing the lhs in
the subsequence of e with rhs in r . The ith new generated entity
ei is called derived entity of e. And e is called origin
entity of ei . And the set of all derived entities of e is denoted
as D (e ).

According to the previous study [3], we get a derived entity ei

of e by applying rules in a subset of A (e ). In this process, each
original token is rewritten by at most one rule 1. Similar to pre-
vious studies [3, 29], different combination of rules in A (e ) will
result in different different derived entities. Following this routine,
we can get D (e ) by enumerating the combination of applicable
rules. The cardinality of |D (e ) | is O (2n ) where |A (e ) | = n.

Consider the example data in Figure 1 again. For the entity
e3=“UQ AU” in the dictionary, the applicable rules A (e3) =
{r1, r3}. Thus, D (e4) can be calculated as following: {“UQ AU”,

“University of Queensland AU”, “UQ Australia”, “University of
Queensland Australia”}.

For a dictionary of entities E0, we can generate the derived
dictionary E =

⋃
e ∈E0

D (e ).

2.2 Problem Formulation
For the problem of approximate string join with synonyms (ASJS),
previous studies have already defined some synonym-based simi-
larity metrics, such as JaccT [3], SExpand [19] and pkduck [29].
In the problem setting of ASJS, we know the threshold in off-line
step and need to deal with synonym rules and two collections of
strings in the on-line step. So the above similarity metrics apply

1As shown in [3], if a new generated token is allowed to apply rules again, then it
becomes a non-deterministic problem.
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the synonym rules on both strings during the join processing. Sup-
pose the lengths of two strings involved in join is S1 and S2, then
the search space for joining the two strings is O (2S1 · 2S2 )

However, for our AEES problem, we obtain the entity dictio-
nary and synonym rules in the off-line step but need to deal with
the documents and threshold in the on-line step. Moreover, the
length of a document will be much larger than that of entities.
Unlike ASJS which computes the similarity between two strings,
AEES aims at identifying substrings from a document that
are similar to entities. Therefore, applying rules onto documents
in the on-line step will be too expensive for the AEES problem.
Suppose the size of a document is D and the length of an entity is
e, if we directly use the similarity metrics of ASJS problem, the
search space for extracting e would be O (2D · 2e ). While r and
s will always be similar in ASJS problem, in AEES problem the
value of D is usually 10-20 times larger than e. Therefore such a
complexity is not acceptable.

Based on the above discussion, we devise our asymmetric simi-
larity metric JACCAR (for Asymmetric Rule-based Jaccard).
Unlike previous studies on the ASJS problem, we only apply the
synonym rules on the entities to generate derived entities in the
off-line step. In the on-line extraction step, instead of applying
rules on substrings in the document, we just compute the similarity
between the substrings and all derived entities which have been
generated in the off-line step. Here we use Jaccard to evaluate the
syntactic similarity. Our techniques can also be easily extended
to other similarity metrics, such as Overlap, Cosine and Dice. To
verify the JACCAR value between an entity e and a substring s
from the document, we first find A (e ) and generate all derived
entities of e. Then for each ei ∈ D (e ), we calculate the value of
JAC (ei , s). Finally we select the maximum JAC (ei , s) as the
value of JACCAR (e,s). The detailed definition is formalized in
Definition 2.1.

Definition 2.1 (Asymmetric Rule-based Jaccard). Given an
entity e in the dictionary and a substring s in the document, let
D (e ) be the full set of derived entities of e by applying rules in
A (e ). Then JACCAR(e, s )) is computed as follows:

JACCAR(e, s ) = max
e i ∈D (e )

JAC(ei , s ) (1)

We want to highlight that the main difference between previous
synonym-based similarity metrics for ASJS and JACCAR is that
previous approaches apply synonyms on both records that are in-
volved into the join process; while JaccAR only applies synonyms
on the entities in the dictionary. Recall the above time complexity,
by using JACCAR instead of similarity metrics for ASJS problem,
we can reduce the time complexity from O (2D · 2e ) to O (D · 2e ).
The intuition behind JACCAR is that some rules have the same
lhs/rhs, which might lead to potentially dissimilar derived entities.
In order to identify a similar substring, we should focus on the
derived entity that is generated by the set of synonym rules that is
related to the context of substrings. By selecting the derived entity
with the largest syntactic similarity, we can reach the goal of using
the proper set of synonym rules to extract similar substrings from
a document. JACCAR can achieve such a goal by avoiding the
synonym rules which would decrease the similarity and applying
those which increases the similarity.

Using the definition of Asymmetric Rule-based Jaccard,
we can now characterize the AEES problem by Definition 2.2
below. Following previous studies of ASJS [3, 19], it is safe to
assume that the set of synonym rules are given ahead of time. As

Figure 2: Architecture of Aeetes.

many studies can effectively discover synonyms 2, our work can
be seamlessly integrated with them. Although a recent study [29]
supports discovering rules from dataset, it can only deal with
abbreviations while our work here needs to support the general
case of synonyms.

Definition 2.2 (AEES). Given a dictionary of entities E0, a set
of synonym rules R, a document d, and a threshold of Asym-
metric Rule-based Jaccard τ , the goal of AEES is to return all
the (e, s ) pairs where s is a substring of d and e ∈ E0 such that
JACCAR(e, s ) ≥ τ .

Consider the dataset in Figure 1 again. Assume the threshold
value is 0.9, then AEES returns the following pairs as results:
(e2, s2), (e1, s3), (e3, s4). The JACCAR scores of the above three
pairs are all 1.0.

2.3 Overview of Framework
As shown in Figure 2, Aeetes is an end-to-end framework which
consists of two stages: off-line preprocessing and on-line extrac-
tion. The whole process is displayed in Algorithm 1. In the off-line
preprocessing stage, we first find applicable synonym rules for
each entity in the dictionary. Then we apply them to entities and
generate the derived dictionary (line: 3). Next we create a clustered
inverted index for the derived entities, which will be explained
later in Section 3 (line: 4).

In the on-line extraction stage, we have a similarity threshold
τ and a document d as input, and the goal is to extract all similar
substrings from d . To this end, we propose a filter-and-verification
strategy. In the filter step, if a derived entity ei is similar to a
substring s ∈ d, we will regard its corresponding origin entity
e as the candidate of s (line: 5). In this way, we can adopt the
filter techniques of Jaccard to get candidates for JACCAR. We
propose effective pruning techniques in Section 4 to collect such
candidates. In the verification phase, we verify the real value of
JACCAR for all candidates (lines: 6-9).

3 INDEX CONSTRUCTION
In this section, we first review the length and prefix filter tech-
niques, which serves as the cornerstone of our approaches (Sec-
tion 3.1). Then we devise a clustered inverted index to facilitate
the filter techniques (Section 3.2).

3.1 Filtering Techniques Revisit
In order to improve the performance of overall framework, we
need to employ effective filtering techniques. As the length of
a document is much larger than that of an entity, we should be
able to exactly locate mentions of entities in the documents and
avoid enumerating dissimilar candidates. To describe the candidate
substrings obtained from the document, we use the following
terminologies in this paper. Given a document d, we denote a
2These are introduced in Section 7, whereas generalizations of this approach are
further discussed in Section 5.
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Algorithm 1: Aeetes (E0, R, d, τ )
Input: E0: The dictionary of entities; R: The set of synonym

rules; d: The given Docuemnt; τ : The threshold of
Asymmetric Rule-based Jaccard

Output:H = {< e, s > | e ∈ E ∧ s ∈ d ∧ JACCAR(e, s ) ≥ τ }
begin1

InitializeH as ∅;2

Generate a derived dictionary E using E0 and R;3

Construct the inverted index for all derived entities in E;4

Traverse substrings s ∈ d and the inverted index, generate5

a candidate set C of < s, e > pairs;
for each pair < s, e >∈ C do6

Verify the value of JACCAR(s, e );7

if JaccAR(s, e ) ≥ τ then8

Add < s, e > intoH ;9

returnH ;10

end11

substring with start position p and length l asWl
p . A token

t ∈ d is a valid token if there exists a derived entity e
j
i ∈ E

containing t . Otherwise it is an invalid token. We call a group
of substrings with the same start position p in the document as a
window, denoted asWp . Suppose the maximum and minimum
length of substrings in Wp is lmax and lmin respectively, this
window can further be denoted asWp (lmin , lmax ).

One primary goal of the filter step is to prune dissimilar can-
didates. To this end, we employ the state-of-the-art filtering tech-
niques: length filter [25] and prefix filter [9].
Length filter. The basic idea is that if two strings have a large
difference between their lengths, they cannot be similar. Specifi-
cally, given two strings e, s and a threshold τ , if |s | < ⌊|e | ∗ τ ⌋ or
|s | > ⌈ |e |τ ⌉, then we have JAC(s, e ) < τ .

Suppose in the derived dictionary E, the minimum and maxi-
mum lengths of derived entities are denoted as |e |⊥ = min{|e | |e ∈
E} and |e |⊤ = max{|e | |e ∈ E}, respectively. Then given a thresh-
old τ , we can safely claim that only the substring s ∈ d whose
length |s | is within the range [E⊥ E⊤] could be similar to the
entities in the dictionary where E⊥ = ⌊|e |⊥ ∗ τ ⌋, E⊤ = ⌈

|e |⊤
τ ⌉.

Prefix filter. It first fixes a global order O for all tokens from the
dataset (details in next subsection). Then for a string s, we sort
all its tokens according to O and use Psτ to denote the τ -prefix
of string s. Specifically, for Jaccard similarity, we can filter out
dissimilar strings using Lemma 3.1.

LEMMA 3.1 (PREFIX FILTER [9]). Given two strings e, s and
a threshold τ , the length of Psτ (Peτ ) is ⌊(1 − τ ) |s | + 1⌋ (⌊(1 −
τ ) |e | + 1⌋). If Psτ ∩ P

e
τ = ∅, then we have JAC(s, e ) < τ .

3.2 Index structure
With the help of length filter and prefix filter, we can check quickly
whether a substring s ∈ d is similar to an entity e ∈ E0. However,
enumerating s with all the entities one by one is time consuming
due to the huge number of derived entities.

To accelerate this process, we build a clustered inverted index
for entities in the derived dictionary. The inverted index of t ,
denoted as L[t], is a list of (ei ,pos ) pairs where ei is the identifier
of a derived entity containing the token t and pos is the position
of t in the ordered derived entity. For all tokens in the derived
entities, we assign a global order O among them. Then for one
derived entity, we sort its tokens by the global order and pos is the

Figure 3: Index structure.

Figure 4: Example of index structure.

position of t in ei under this order. Here as is same with previous
studies [5, 36], we use the ascending order of token frequency as
the global order O. It is natural to deal with invalid tokens: in the
on-line extraction stage, if a token t ∈ d is an invalid token, we
will regard its frequency as 0. With the help of pos, we can prune
dissimilar entities with the prefix filter.

According to a recent experimental survey [21], the main over-
head in set-based similarity queries comes from the filter cost. To
reduce such overhead caused by traversing inverted index, we can
skip some dissimilar entries by leveraging length filter: in each
L[t], we group all the (ei ,pos ) pairs by the length l = |ei |. And
such a group of derived entities is denoted as Ll [t]. Then when
scanning L[t] for t ∈ s, if l and |s | does not satisfy the condition
of length filter, we can skip Ll [t] in batch to reduce the number
of accessed entries in the inverted index.

In addition, by leveraging the relationship between origin and
derived entities, we can further cluster ei ∈ D (e ) within each
group Ll [t] according to their original entity. Here we denote the
group of entries with origin entity e and length l as Lel . When
looking for candidate entities for a substring s, if a derived entity
ei is identified as a candidate, we will regard its origin entity e
rather than the derived entity itself as the candidate of s. If an
origin entity e has already been regarded as the candidate of s,
we can skip Lel [t] in batch when traversing L[t] where t ∈ s.
Figure 3 visualizes the index structure.

Example 3.2. To have a better understanding of the index struc-
ture, we show the index (in Figure 4) built for the example data in
Figure 1. As we can see, the token t=“University” appears in five
derived entities e12 , e33 , e43 , e24 , and e34 . And the positions of “Uni-
versity” in the corresponding ordered derived entities are 2, 3, 3, 2,
and 2. Therefore, we store five (id, pos) pairs, i.e., (e12 , 2), (e

3
3 , 3),

(e43 , 3), (e
2
4 , 2) and (e34 , 2), in the inverted list L[University]. The

five pairs are organized into three groups (see the blue boxes)
based on their original entities. For instance, (e33 , 3) and (e43 , 3) are
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Algorithm 2: Index Construction(E0, R)
Input: E0: The dictionary of entities; R: The set of synonym

rules.
Output: CI: The Clustered Inverted Index of entities
begin1

Generate a derived dictionary E using E0 and R;2

Initilize CI = ∅ and obtain the global order O;3

foreach derived entitiy e ′ ∈ E do4

l ← |e ′ |, e ← origin entity of e ′;5

foreach token t ∈ e ′ do6

Add the pair (e ′,pos ) into the corresponding7

group in inverted list Lel [t];

foreach L[t] do8

CI = CI ∪ L[t]9

return CI;10

end11

grouped together as both e33 and e43 derived entities are from the
same original entity e3. In addition, they are further clustered into
a group based on their lengths (see the red boxes). In this example,
these five pairs are grouped into a length-4 group as the length of
the derived entities are 4.

Algorithm 2 gives the details of constructing an inverted index.
It first applies synonyms to the entities in the dictionary to get a
derived dictionary (line 2). Then for each token t in the derived
entities, it stores a list of (e ′,pos ) pairs where e ′ is the identifier
of a derived entity containing t and pos is the position of t in this
derived entity according to the global order O (line: 4-7). The
(e ′,pos ) pairs in each list are organized into groups based on the
length l and their corresponding origin entity e (line 5). Finally,
we aggregate all the inverted lists and get the clustered index (line:
9).

4 SLIDING WINDOW BASED FILTERING
Based on the discussion in Section 3, we can come up with a
straightforward solution for the AEES problem: we slide the win-
dowWp (E⊥, E⊤) ∈ d from the beginning position of document
d. For each window, we enumerate the substrings and obtain the
prefix of each substring. Next, we recognize the valid tokens from
the prefix for each substring and scan the corresponding inverted
lists to obtain the candidates. Finally, we verify the candidates and
return all truly similar pairs.

Although we can prune many dissimilar substrings by directly
applying length filter and prefix filter with the help of inverted in-
dex, the straightforward method needs to compute the prefix for a
large number of substrings. Thus it would lead to low performance.
In this section, we propose a sliding window based filtering mech-
anism to efficiently collect the candidates from a given document.
To improve the overall efficiency, we devise effective techniques
based on the idea of sharing computations between substrings and
windows. We first devise a dynamic (incremental) prefix computa-
tion technique to take advantage of the overlaps between adjacent
substrings and windows in Section 4.1. Next we further propose
a lazy strategy to avoid redundant visits on the inverted index in
Section 4.2.

4.1 Dynamic Prefix Computation by Shared
Computation

We have the following observations w.r.t the windows and sub-
strings. On the one hand, for two substrings in the same window

with different length i.e. Wli
p and Wlj

p (E⊥ ≤ li < lj ≤ E⊤),
they share li common tokens. On the other hand, two adjacent
windowsWp (E⊥, E⊤) andWp+1 (E⊥, E⊤) share E⊤−1 common
tokens. This is very likely that there is a large portion of common
tokens between the prefixes ofWli

p andWlj
p and those ofWli

p

andWli
p+1.

Motivated by these observations, we can improve the perfor-
mance of the straightforward solution by dynamically comput-
ing the prefix for substrings in the document. Here we use Pp,lτ
to denote the set of tokens of the τ -prefix(i.e., prefix of length
⌊(1 − τ ) ∗ l + 1⌋) of substringWl

p . Then we can obtain the prefix
of one substring by utilizing that of a previous one. Specifically,
for a given windowWp , we first directly obtain Pp,0τ and then

incrementally compute Pp,lτ on the basis of Pp,l−1τ . Then for each
substringWl

p ∈ Wp , we scan the inverted lists of the valid to-
kens and collect the candidate entities. Similarly, for a substring
Wl

p+1 ∈ Wp+1, we can obtain its prefix Pp+1,lτ from Pp,lτ . Then
we can collect the candidate entities for each substring inWp+1
with the same way above.

To reach this goal, we propose two operations Window Ex-
tend and Window Migrate to dynamically compute the prefix of
substrings and collect candidate pairs for the above two scenarios.

Window Extend This operation allows us to obtain Pp,l+1τ

from Pp,lτ . Figure 5(a) gives an example of extending the window
Wl

p toWl+1
p . As shown, when performing Window Extend, the

length of the substring increases by 1. In this case, the length of
the τ -prefix ofWl+1

p (i.e. ⌊(1−τ ) ∗ (l +1)+1⌋) can either increase
by 1 or stay the same compared with the length of the τ -prefix of
Wl

p (i.e. ⌊(1 − τ ) ∗ l + 1⌋). Then we can perform maintenance on
the prefix accordingly:
• If the length of τ -prefix stays the same, we need to check

whether the newly added token d[p + l + 1] will replace
a token in Pp,lτ . If so, we need to replace a lowest ranked
token t ∈ Wl

p with d[p+l+1] in the new prefix. Otherwise,

there is no change in the prefix i.e. Pp,l+1τ = P
p,l
τ .

• If the length of τ -prefix increases by 1, then we need to
discuss whether the newly added token d[p + l + 1] belongs
to the new prefix Pp,l+1τ . If so, we can just have Pp,l+1τ =

P
p,l
τ ∪ d[p + l + 1]. Otherwise, we should find a token

t ∈ Wl
p and t < P

p,l
τ with the highest rank. Then we have

P
p,l+1
τ = P

p,l
τ ∪ t .

Example 4.1. Assume τ = 0.8, when extending window from
W3

3 to W4
3 (see Figure 6(a)), |P3,3

τ | = ⌊(1 − 0.8) ∗ 3 + 1⌋ = 1
and |P3,4

τ | = ⌊(1 − 0.8) ∗ 4 + 1⌋ = 1. So the length of τ -prefix
stays the same. P3,3

τ = {t4} as t4 has the highest rank in window
W3

3 . The rank of new token t6 in windowW4
3 is 18, so t6 will

not replace a token in P3,3
τ , so P3,4

τ = P
3,3
τ = {t4}. If the rank of

t6 is 2 instead of 18, then t6 will replace a token in P3,3
τ . In this

case, P3,4
τ = P

3,3
τ − {t4} ∪ {t6} = {t6}.

Now let’s see the example in Figure 6(b) where we extend
window fromW4

3 toW5
3 . The length of P3,4

τ is ⌊(1 − 0.8) ∗ 4 +
1⌋ = 1 and P3,4

τ = {t4}. But the length of P3,5
τ now is ⌊(1 −

0.8) ∗ 5 + 1⌋ = 2. The newly added token t7 with rank 2 is in
P
3,5
τ , so P3,5

τ = P
3,4
τ ∪ {t7} = {t4, t7}. If the rank of t7 is 10

instead of 2, then t7 should not be a token in P3,5
τ . In this case,
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Figure 5: Example of window extend and window migrate.

Figure 6: Example of the Window Extend operator and the
Window Migrate operator. Values in the boxes are the ranks
of tokens according to a global order. Value k means the rank-
ing of the token is top-k.

P
3,5
τ = P

3,4
τ ∪ {t5} = {t4, t5} as t5 has the highest rank, t5 ∈ W4

3
and t5 < P

3,4
τ .

Window Migrate This operation allows us to obtain the prefix of
Wl

p+1 from that ofWl
p . Figure 5(b) shows an example of migrat-

ing the windowWl
p toWl

p+1. We can see that when performing
Window Migrate, the length of substring will stay the same. In
this case, for a substringWl

p+1, the token told = d[p] will be
removed and the token tnew = d[p + 1+ l] will be inserted. Then
we discuss the maintenance of prefix according to told : .
• If told < P

p,l
τ , it makes no influence on the prefix, we only

need to check whether tnew will replace a token in Pp,lτ to
form Pp+1,lτ . If so, we need to replace the lowest ranked
token t ∈ Wl

p with tnew in Pp+1,lτ . Otherwise, we have

P
p,l+1
τ = P

p,l
τ .

• If told ∈ P
p,l
τ , we still need to check whether tnew will

appear in Pp+1,lτ in a similar way. If so, we need to replace
told with tnew to generate Pp+1,lτ ; Otherwise, we need to
replace told with a token t s.t. t ∈ Wl

p and t < P
p,l
τ with

the highest rank.

Example 4.2. Consider the case when migrating window from
W4

3 toW4
4 (see Figure 6(c)), bothW4

3 andW4
4 have the length

⌊(1 − 0.8) ∗ 3 + 1⌋ = 1 (assume τ = 0.8). P3,4
τ = {t4} as t4 has

the highest rank in windowW4
3 . After this migration, we have

told = t3 (with rank 10) and tnew = t7 (with rank 2). Then we
know told < P

3,4
τ and tnew will replace a token in P3,4

τ , thus we
have P4,4

τ = P
3,4
τ − {t4} ∪ {t7} = {t7}. If the rank of t7 is 10 rather

than 2 (see the blocks with gray color), then tnew will not replace
a token in P3,4

τ and P4,4
τ = P

3,4
τ = {t4}.

Further, if the rank of t3 is 1 instead of 10 (see the blocks with
yellow color), then P3,4

τ = {t3} as now t3 has the highest rank in
the windowW4

3 . Then we know told ∈ P
3,4
τ and tnew (with rank

2) will occur in P4,4
τ , so P4,4

τ = P
3,4
τ − {told } ∪ {tnew } = {t7}. If

the rank of t7 is 10 rather than 2 (see the blocks with gray color),
then we need to replace told with t4 as t4 has the highest rank
such that t4 ∈ W4

3 and t4 < P
3,4
τ . Therefore, P4,4

τ = {t4}.

We show the steps of candidate generation with dynamic prefix
computation in Algorithm 3. To implement the operations defined
above, we need to use some helper functions. First, we define
the function ScanInvetedIndex which takes the inverted index
and Pp,lτ as input and return all the candidate entities ofWl

p by
visiting the inverted indexes that are corresponding to valid tokens
in Pp,lτ . For a valid token t ∈ P

p,l
τ , we can obtain the candidates

from the inverted index L[t]. Note that since we have grouped all
items in the inverted index by length, for a group Lle [t] ∈ L[t],
if le and l does not satisfy the length filter, we can skip Lle [t] in
batch. Similarly, if the position of t is beyond the τ -prefix of a
derived entity ei , we can also discard ei .

Then we devise the function ExtCandGeneration to support
the Window Extend operation. It first derives the prefix of the
current substring from the prefix of previous substring according
to the above description; then it obtains the candidates for the cur-
rent substring. Similarly, we also devise the MigCandGeneration
function to support Window Migrate operation. Due to the space
limitation, we omit their pseudo codes here.

Algorithm 3: Candidate Generation(CI, d, τ )
Input: CI: The Inverted Index; d: The given Document; τ :

The threshold of Asymmetric Rule-based Jaccard
Output: C: The set of candidate pairs
begin1

Initialize C ← ∅, p ← 1;2

Obtain the prefix Pp,E⊥τ ;3

C = C∪ ScanInvetedIndex(CI,Pp,E⊥τ );4

for len ∈ [E⊥ + 1, E⊤] do5

Clenp , Pp,lenτ ← ExtCandGeneration(Pp,len−1τ );6

C = C ∪Clen ;7

while p < |d | − E⊥ do8

if Cp−1 , ∅ then9

for len ∈ [E⊥, E⊤] do10

C = C∪MigCandGeneration(Pp−1,lenτ );11

else12

Obtain the candidates of Cp in the same way of13

line 6 to line 7;
p ← p + 1;14

Perform Window Extend on the last window with length15

|d | − E⊥ + 1 to collect candidates;
return C;16

end17
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The whole process of the algorithm is as follows. We first
initialize the candidate set C and start from the first position of the
document (line: 2). Here we denote the candidates from window
Wp as Cp . For the first window, we perform Window Extend and
collect all the candidates of substringsWl

0 (line: 4-line: 7). Next
we enumerate the start position of the window and look at the
previous window. If the previous window has candidate substrings,
we will perform Window Migrate on the previous window to
obtain the prefix for each substring in the current window and
then collect the candidates for each substring (line: 9). Otherwise,
we will obtain the prefix of each substring with Window Extend
(line: 12). Such processes are repeated until we reach the end of
the document. Finally, we return all the candidates and send them
to the verification step (line: 16).

Example 4.3. Consider the example data in Figure 1 again. We
have E⊥ = 1 and E⊤ = 5. Assume document d has 1000 tokens.
The total number of the function calls of ExtCandGeneration
and MigCandGeneration is 1000×(E⊤−E⊥) = 4000. Notice that,
both ExtCandGeneration and MigCandGeneration compute
the prefix incrementally. However, the straightforward method
needs to compute the prefix for 500, 500 substrings, as it requires
to enumerate all possible substrings and compute the prefix for
each of them independently.

4.2 Lazy Candidate Generation
With the dynamic prefix computation method, we avoid obtaining
the prefix of each substring from scratch. However, there is still
room for improvement. We can see that in Algorithm 3, we need
to traverse the inverted indexes and generate candidates for all
the valid tokens after obtaining the prefix. As substrings within
the same window could have a large overlap in their prefix, they
could also share many valid tokens. Moreover, a valid token t is
also likely to appear anywhere within the same document. Even
if t belongs to disjoint substrings, the candidate entities are still
from the same inverted index L (t ).

To further utilize such overlaps, we come up with a lazy strategy
for candidate generation. The basic idea is that after we compute
the prefix of a substring, we will not traverse the inverted indexes
to obtain candidates immediately. Instead, we just collect the
valid tokens for each substring and construct a global set of valid
tokens T . Finally, we will postpone the visits to inverted indexes
after we finish recognizing all the valid tokens and corresponding
substrings. In this way, for each valid token t ∈ T , we only need
to traverse its associated inverted index Lt once during the whole
process of extraction for one document.

The difficulty of implementing the lazy strategy is two-fold.
The first problem, i.e. the one of large space overhead required
is discussed next, whereas the second one, i.e. the one related
to different substring lengths is discussed later. Since we do not
collect candidates immediately for each substring, we need to
maintain the valid tokens for each substring. As the number of
substrings is rather large, there will be heavy space overhead. To
solve this problem, we take advantage of the relationship between
substrings within the same window. Here we denote the valid
token set of a substringWl

p as Φp (l ). For one windowWp , we
only keep the full contents of Φp (E⊥). To obtain Φp (l ), l > E⊥,
we utilize a light-weighted structure delta valid token,
which is represented as a tuple < t , ◦ >. Here t is the valid token
that is different from the previous substring; ◦ is a symbol to
denote the operation on t . If ◦ is + (−), it means we need to insert
t into(remove t from) the previous valid token set. We denote the

set of delta valid tokens of substringWl
p as ∆ϕ (l ). And then we

have:

Φp (l + 1) = Φp (l )
⊎

∆ϕ (l ) (2)

where
⊎

means applying all operations of the corresponding token
in ∆Φ(l ) on the given valid token set. If ∆ϕ (l ) = ∅, it means that
Φp (l + 1) = Φp (l ). Then we can obtain all valid tokens and the
corresponding candidate substrings of windowWp as:

Ψ(p) =
⋃

l ∈[E⊥,E⊤]
<Wl

p ,Φp (E⊥)
⊎

Σli=E⊥∆ϕp (i ) > (3)

Example 4.4. Consider the example document in Figure 6
again. Assume we have E⊥ = 1, E⊤ = 4 and τ = 0.6. Φ3 (1) = {t3}
as t3 is the only valid token in P3,1

τ . Then Φ3 (2) = Φ3 (1)
⊎
{<

t3,− >, < t4,+ >} as t3 is not a valid token for W2
3 but t4 is.

Similarly, we have Φ3 (3) = Φ3 (2)
⊎
{< t5,+ >} and Φ3 (4) =

Φ3 (3). Therefore, according to Equation 3, the valid tokens and
the corresponding candidate substrings of window W4

3 can be
expressed as:

Ψ(3) = <W1
3 , {t3} >

⋃
<W2

3 , {t4} >
⋃

<W3
3 , {t4, t5} >

⋃
<W4

3 , {t4, t5} >

The second issue follows from the fact that the candidate sub-
strings have different lengths. For one valid token t ∈ T , it might
belong to multiple Φp (l ) with different values of l . Then we should
be able to identifyWl

p with different l by scanningL[t] only once.
To reach this goal, we propose an effective data structure to con-
nect the candidate substrings and list of entities. Specifically, after
moving to the end of the document using Window Extend and
Window Migrate, we collect the first valid token set Φp (E⊥)
and delta valid token sets ∆ϕ (l ) for all windows Wp . Next we
obtain Ψ(p) using Equation 3 and construct an inverted index I
for candidate substrings. Here a substringWl

p ∈ I[t] means that

Wl
p is a candidate for entities in L[t]. Then to meet the condition

of length and prefix filter, we also groupWl
p ∈ I[t] by length

l , denoted as Il [t]. For substrings s ∈ Il [t], only the entities in
groups L |e |[t] s.t. |e | ∈ [⌊l ∗ τ ⌋, ⌈ lτ ⌉] can be candidate of s. In
this way, we can obtain the entity for allWl

p with t ∈ Φp (l ) by

scanning L[t] only once. Then for a candidate substringWl
p , the

set of entities can be obtained by
⋃

t ∈Wl
p

L |e |[t].

Algorithm 4 demonstrates the steps of lazy candidate gener-
ation. We first collect Φp (0) and ∆ϕp (l ) for each window using
the same method in Algorithm 3. We then initialize the global
token dictionary and inverted index for substrings (line: 3). But
unlike Algorithm 3, here we only track the valid tokens for each
substring instead of generating the candidates. Next, we generate
the valid token set for each substring using Equation 2 (line: 4).
And we can collect all the valid tokens and their corresponding
substrings from them (line: 5- 7). With such information, we can
build a mapping between the groups with different lengths |e |
in the inverted index and the candidate substrings with different
lengths l s.t. ⌊|e | ∗ τ ⌋ ≤ l ≤ ⌈ |e |τ ⌉(line: 9). Then we scan the
inverted list only once and collect the candidates. Finally, the enti-
ties for a candidate substring can be obtained from the union of the
inverted indexes of all its valid tokens (line: 11). We summarize
the correctness of Lazy Candidate Generation in Theorem 4.5.

THEOREM 4.5 (CORRECTNESS). The Lazy Candidate Gener-
ation method will not involve any false negative.
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Algorithm 4: Lazy Candidate Generation(CI, d, τ )
Input: CI: The Inverted Index; d: The Document; τ : The

threshold of JAC
Output: C: The candidates
begin1

Use similar methods in Algorithm 3 to generate Φp (0)2

and ∆ϕp (l ) for each windowWp .
Initialize T and I;3

Generate all valid token set ϕl (p) using Equation 2;4

foreach ϕp (l ) do5

collect the valid tokens, update T ;6

Construct the inverted index for substrings I;7

foreach t ∈ T do8

Map entities in L |e |[t] with candidate substrings in9

Il [t] s.t. length filter;
Scan L[t], obtain candidates for each l ;10

C = C∪ <Wl
p ,
⋃
t ∈Wl

p
L |e |[t] >;11

return C;12

end13

5 DISCUSSION
In this section, we discuss about the scope as well as the general-
ization of our work.
Gathering Synonym Rules We first discuss about the way to
obtain synonym rules. In our work, we make an assumption that
the set of synonyms are known ahead of time. But it will not influ-
ence the generalization of our Aeetes framework. For a collection
of documents, there are multiple sources of the synonyms rules.
We list some of them below:

• Firstly, the synonym rules can come from common sense
as well as knowledge bases. For example, we can use the
synonyms provide by WordNet 3 as the input of Aeetes.
The common sense knowledge can also provide rich source
of synonyms, such as the abbreviation of institutes, address
and locations used in our DBWorld and USJob datasets.
• Secondly, some domain specific applications provided the

set of synonyms. For example, in the PubMed dataset,
the synonyms are created by domain experts, which are
very important information in understanding the medical
publications. Therefore, performing AEES on such kinds
of applications is with great values of practical application.
• Lastly, we can also discover the synonyms from docu-

ments with existing systems. For example, the output of [7]
and [22] can be utilized directly as the input of our frame-
work.

There are also some previous studies about data transformation
and learning by example, which are summarized in Section 7.
These studies are orthogonal to our work as they focused on
detecting high-quality set of rules while our problem is about how
to perform approximate entity extraction with predefined synonym
rules. The synonyms discovered by them can also be used as the
input of our framework.
Generation of Non-conflict Rule Set Given an entity e, let
Ac (e ) be the set of complete applicable rules of e and lhsi be the
left-hand of the rule ri (⟨ lhsi⇔ rhsi ⟩). Without loss of generality,
we assume the lhs of an applicable rule is a subsequence of the
entity. Two rules ri and r j are conflict rules if lhsi ∩ lhsj , ∅. Our

3https://wordnet.princeton.edu/

Figure 7: Hypergraph for the applicable rules of the entity
{a,b, c,d }.

goal is to choose a non-conflict setA (e ) ⊆ Ac (e ) such that (i) all
rules in A (e ) are non-conflict and (ii) the cardinality of A (e ) is
as large as possible.

The non-conflict rule set can be obtained in the following way:
(1) First build a hypergraph G = (V ,E,W ) for Ac (e ). Each

vertex v ∈ V corresponds to a set of applicable rules whose
left-hands are the same. The number of rules in the vertex
v is the weight w of v. There is an edge e ∈ E between two
vertices whose rules are non-conflict.

(2) With such a hypergraph, we can obtain the set of non-
conflict rules by finding the maximum weighted clique in
the hypergraph G.

Example 5.1. Consider the set of complete applicable rules
Ac (e ) for the entity e = {a,b, c,d } in Figure 7(a). The correspond-
ing hypergraphG is shown in Figure 7(b). For instance,v1 contains
{r1, r2, r3} as they have identical left-hands, i.e., {a,b}. There is an
edge between v1 and v2 since {a,b} ∩ {c} = ∅. In this hypergraph,
{v1,v2,v3} is the maximal weighted clique. Therefore, the final
non-conflict applicable rules A (e ) = {r1, r2, r3, r4, r5}.

Unfortunately, finding the maximal weighted clique is a well-
known NP-Complete problem. In order to efficiently find A (e )
with large enough cardinality, we adopt a greedy algorithm with
the following steps. Firstly, we choose the vertex v∗ with maximal
weight as a start point. Next we pick the next vertex v with the
maximal weight among the unseen vertices such that adding v to
the current clique is still a clique. Then we repeat step 2 until no
more vertex can be added into the result set.

Example 5.2. Consider the set of complete applicable rules
Ac (e ) for entity e = {a,b, c,d } in Figure 7 again. The greedy
algorithm first chooses v1 as it has the maximal weight. Then
the algorithm picks v2 since , it is still a clique after adding
v2. Similarly, v3 is also added. Finally, the clique is {v1,v2,v3}
and the corresponding non-conflict applicable rules are A (e ) =
{r1, r2, r3, r4, r5}. Here the greedy algorithm achieves the optimal
result.

6 EXPERIMENTS
6.1 Environment and Settings
In this section, we evaluated the effectiveness and efficiency of all
proposed algorithms on three real-life datasets:
• PubMed. It is a medical publication dataset. We selected
100, 000 paper abstracts as documents and keywords from
10, 000, 000 titles as entities to construct the dictionary. In
addition, we collect 50, 476 synonym Mesh 4 (Medical
Subject Headings)5 term pairs, which are provided by the
domain experts.

4https://www.ncbi.nlm.nih.gov/mesh
5Mesh is the NLM controlled vocabulary thesaurus used for indexing articles for
PubMed.
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• DBWorld. We collected 1, 000 message contents as docu-
ments and keywords in 1, 414 titles as entities in the dictio-
nary. We also gather 1076 synonym rules including confer-
ence names, university names and country names which
are common sense knowledge.
• USJob. We chosen 22, 000 job descriptions as documents,

and 1, 000, 000 keywords in the job titles as entities in the
dictionary. In addition, we collected 24, 305 synonyms in-
cluding the abbreviations of company names, state names
and the different names of job positions.

Table 1 gives the statistics of datasets, including the average num-
ber of tokens in documents (avg |d |), average number of tokens in
entities (avg |e |), and average number of applicable rules on one
entity (avg |A (e ) |).

Table 1: Dataset statistics.

# docs # entities # synonyms avg |d | avg |e | avg |A (e ) |

PubMed 8, 091 370, 836 24, 732 187.81 3.04 2.42
DBWorld 1, 414 113, 288 1, 076 795.89 2.04 3.24

USJob 22, 000 1, 000, 000 24, 305 322.51 6.92 22.7

All experiments were conducted on a server with an Intel(R)
Xeon(R) CPU processor (2.7 GHz), 16 GB RAM, running Ubuntu
14.04.1. All the algorithms were implemented in C++ and com-
piled with GCC 4.8.4.

6.2 Evaluation of Effectiveness
First, we evaluate the effectiveness of our metric JACCAR by
comparing with the state-of-the-art syntactic similarity metrics.
Ground truth For our task, there is no ground truth on these
datasets. Borrowing the idea from previous studies on ASJS prob-
lem [19, 29], we manually create the ground truths as following:
We marked 100 substrings in the documents of each dataset such
that each of the marked substrings has one matched entity in
the origin entity dictionary. Each pair of marked substring and
the corresponding entity is a ground truth. For example, (Pri-
mary Hypertrophic Osteoarthropathy, Idiopathic Hypertrophic
Osteoarthropathy), (Univ. of California Berkeley USA, UC Berke-
ley USA), and (SDE in FB, software development engineer in
Facebook) are ground truths in PubMed, DBWorld and USJob
dataset respectively.

Baseline methods To demonstrate the effectiveness of applying
synonym rules, we compare JACCAR with two state-of-the-art
syntactic similarity metrics: (i) Jaccard, which is the original Jac-
card similarity; and (ii) Fuzzy Jaccard (FJ), which is proposed
in [32]. As they are just based on syntactic similarity, they cannot
make use of the synonym rules.

We evaluate the effectiveness of all the similarity measures by
testing the Precision (short for “P”), Recall (short for “R”), and
F-measure (short for “F”), where F-measure = 2×P×R

P+R on the three
datasets.

Results Table 2 reports the precision, recall and the F-measure
of all similarity measures on three datasets. We have the following
observations. Firstly, JACCAR obtains higher F-measure scores
than Jaccard and FJ. The reason is that JACCAR can use synonym
rules to detect the substrings that are semantically similar to the
entities, which indicates the advantage of integrating syntactic
metrics with synonyms in the entity extraction problem. Secondly,
FJ has higher Precision scores than Jaccard as FJ can identify

tokens with minor typos. However, Jaccard has higher Recall
scores than FJ because FJ may increase the similarity score for
substrings that are not valid ground truth.

We present a sample of ground truth for each dataset in Fig-
ure 8 to perform a case study on the quality of three similarity
metrics. We can see that in PubMed, both Jaccard and FJ are
equal to 0. This is because the ground truth substring has no com-
mon (or similar) tokens with the entity. JACCAR =1.0 as JACCAR
can apply the second synonym to the entity. In DBWorld, FJ has
higher similarity score than Jaccard. The reason is that Jaccard can
only find three common tokens “The University of ” between the
substring and the entity. But FJ can get extra benefit by identifying
“Aukland” in the document is similar to “Auckland” in the entity
(as their edit-distance is only 1). JACCAR achieves the highest
score as JACCAR can apply the first synonym on the entity to ob-
tain two more common tokens, i.e., “New Zealand”. Similarly, in
USJob, FJ has a higher score than Jaccard and JACCAR achieves
the highest score.

6.3 Evaluation of Efficiency
Next we look at the efficiency of proposed techniques. We use
the average extraction time per document as the main metric for
evaluation.
End-to-end performance First we report the end-to-end perfor-
mance. As there is no previous study on the AEES problem, we
extend Faerie [13], which reports the best performance in AEE
task, and propose FaerieR to serve as the baseline method. In
order to let FaerieR handle the AEES problem, for each dataset
we perform a preprocessing by using all applicable synonym rules
to all entities in the dictionary so as to construct a derived dictio-
nary. Then we use such a derived dictionary as the input of Faerie.
After that, we conduct post-processing to recognize the pairs of
origin entity and substrings in the document. For FaerieR, we
omit the preprocessing and post-processing time and only report
the extraction time by the original Faerie framework. For the
implementation of Faerie, we use the code obtained from the
original authors.

We compare the overall performance of Aeetes and FaerieR
with different threshold values ranging from 0.7 to 0.9 on all three
datasets. As shown in Figure 9, Aeetes outperforms FaerieR
by one to two orders of magnitudes. The main reason is that
we proposed a series of pruning strategies to avoid duplication
computation came from applying synonyms and the overlaps in
documents.

In the experiment, we observe that the bottleneck of memory
usage is index size. And we report it for Aeetes and FaerieR as
following. In PubMed, the index sizes of Aeetes and FaerieR
are 10.6 MB and 6.9 MB, respectively. In DBWorld, the index
sizes of Aeetes and FaerieR are 4.2 MB and 1.9 MB, respec-
tively. While in USJob, the results are 113.2 MB and 54.3 MB,
respectively. We can see that compared with FaerieR, the clus-
tered inverted index of Aeetes has around twice larger size than
FaerieR. The main reason is that we need to record the group
relation for clustered index and use hashing tables to accelerate
the query processing. But Aeetes can achieve much better perfor-
mance by proper designing the search algorithm and utilizing the
memory space smartly.

Optimizations Techniques We evaluate the filtering techniques
proposed in Section 4. We implement four methods: Simple is the
straightforward method to directly apply length and prefix filter
by enumerating substrings; Skip is the method that adopts the
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Table 2: Quality of similarity measures (P: short for Precision, R: short for Recall, F: short for F-measure).

PubMed DBWorld USJob

θ
Jaccard FJ JaccAR Jaccard FJ JaccAR Jaccard FJ JaccAR

P R F P R F P R F P R F P R F P R F P R F P R F P R F
0.7 0.24 0.73 0.36 0.35 0.73 0.47 0.96 0.89 0.92 0.24 0.67 0.35 0.39 0.68 0.50 0.92 0.91 0.92 0.20 0.71 0.31 0.37 0.77 0.50 0.94 0.94 0.94
0.8 0.14 0.88 0.24 0.34 0.77 0.47 0.95 0.93 0.94 0.24 0.89 0.38 0.36 0.84 0.50 0.90 0.94 0.92 0.20 0.83 0.32 0.29 0.85 0.43 0.92 0.97 0.94
0.9 0.12 0.92 0.21 0.28 0.85 0.42 0.95 0.98 0.96 0.23 0.92 0.37 0.35 0.90 0.50 0.88 0.93 0.90 0.18 0.90 0.30 0.25 0.86 0.39 0.92 0.98 0.95

Figure 8: Three examples to illustrate the quality of similarity measures. The substrings with red font in the documents are
marked as ground truth results.
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Figure 9: End-to-end performance

clustered inverted index to skip dissimilar groups; Dynamic is the
method that dynamically computes the prefix for substrings in a
document; Lazy is the method that generates candidates in a lazy
manner.

The results of the average extraction time are shown in Fig-
ure 10. We can see that Lazy achieves the best results. This is
because it only needs to scan the inverted index of each token
once. Although it requires some extra processing to allocate the
candidate substrings with entities, the overhead can be very slight
with proper implementation. The performance of Dynamic ranks
second as it can dynamically maintain the prefix and does not need
to compute from scratch. The reason it has worse performance
than Lazy is that if a valid token exists in different windows, it
needs to scan the same inverted index multiple times, which leads
to heavy filter cost. Skip performs better than Simple as it utilizes
the clustered inverted index to avoid visiting groups of entities
that do not satisfy the requirement of length filter.

To further demonstrate the effect of filter techniques, we report
in Figure 11 the average number of accessed entries in the inverted
indexes, which provides a good metric to evaluate the filter cost.
We can see that the results are consistent with those in Figure 10.
For example, on the PubMed dataset when τ = 0.8, Simple needs
to access 326, 631 inverted index entries per document; Skip re-
duces the number to 126, 895; while the numbers of Dynamic and

Lazy are 16, 002 and 6, 120, respectively.

Scalability Finally, we evaluate the scalability of Aeetes. In
Figure 12, we vary the number of entities in each dataset and test
the average search time for different threshold values. We can see
that as the number of entities increased, Aeetes scales very well
and achieves near linear scalability. For example, on the USJob
dataset for τ = 0.75, when the number of entities ranges from
200, 000 to 1, 000, 000, the average running time is 43.26, 48.82,
62.71, 80.43 and 125.52 ms respectively.

7 RELATED WORK
Approximate dictionary-based Entity Extraction Previous
studies focusing on this problem only consider syntactic simi-
larity. Chakrabarti et al. [8] proposed a hash-based method for
membership checking. Wang et al. [35] proposed a neighborhood
generation-based method for AEE with edit distance constraint,
while Deng et al. [12] proposed a trie-based framework to im-
prove the performance. Deng et al. [13] proposed Faerie, an
all-purposed framework to support multiple kinds of similarity
metrics in AEE problem. Wang et al. [34] addressed the local
similarity search problem, which is a variant of AEE problem but
with more limitations. All above methods only support syntactic
similarity and cannot take synonyms into consideration.
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Figure 10: Effect of Filtering techniques: Query Time
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Figure 11: Effect of Filtering techniques: Number of Accessed Entries
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Figure 12: Scalability: varying number of entities.

String Transformation and Synonym Discovery In some sce-
narios, the synonym rules may not exist, and it is impractical for a
human to manually create a large set of rules. To solve this prob-
lem, some previous studies learn the rules using both supervised
and unsupervised techniques. Arasu et al. [4] learned general syn-
tactic rules from a small set of given matched records. Singh et
al. improved the performance by leveraging language models [27]
and semi-supervised learning [26]. Abedjan at al. [1] proposed the
DataXFormer system to discover general transformations from
web corpus. Singh et al. [28] addressed the same problem using
program synthesis rules. Chakrabarti et al. [7] proposed novel
similarity functions for synonym discovery from web scale data
while He et al. [16] focused on finding synonyms in web tables.
Qu et al. [22] discovered synonyms from text corpus with the help
of knowledge base.

Entity Matching Entity matching has been a popular topic for
decades. An extensive survey is conducted in [14]. Bilenko et
al. [6] treated entity matching as a classification problem and
proposed machine learning based solutions. Argrawal et al. [2]
improved the quality of entity matching by considering errors

in words and proposed efficient indexing techniques to improve
performance. Wang et al. [33] proposed a learning-based frame-
work to automatically learn the rules for entity matching. Firmani
et al. [15] adopted a graph based model to develop an on-line
framework for entity matching. Verroios et al. [30] integrated hu-
man ratings into entity matching and designed a crowdsourcing
framework. Lin et al. [18] proposed a novel ranking mechanism
to investigate the combinations of multiple attributes. Such stud-
ies mainly worked on collections of entities, while our problem
requires to recognize approximate matching entities from docu-
ments. It could be an interesting direction of the future work to
extend our framework to support other semantic similarity func-
tions proposed here.
String Similarity Query Processing Approximate dictionary-
based Entity Extraction (AEE) is a typical application in the field
of string similarity query processing. There are also many studies
on string similarity queries. Most of them only support syntactic
similarity metrics. Among them some are designed for token-
based similarity metrics, i.e. Jaccard, Cosine and Overlap, such
as [9, 23, 36, 39, 40]; Others are designed for character-based sim-
ilarity metrics i.e. edit distance, [17, 31, 37, 38]. Wang et al. [32]
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combined above two categories of similarity metrics and proposed
an efficient framework to support string similarity join. Some
previous works tried to support synonym rules in the problem of
string similarity join. They proposed some similarity functions to
integrate the semantic of synonym rules into Jaccard similarities,
such as JaccT [3], SExpand [19, 20] and pkduck [29]. However,
they cannot be applied in the AEES problem as we have discussed
in Section 2.

8 CONCLUSION AND FUTURE WORK
In this paper, we formally introduced the important problem of Ap-
proximate dictionary-based Entity Extraction with Synonyms and
proposed an end-to-end framework Aeetes as the solution. We
proposed a new similarity metrics to combine syntactic similarity
metrics with synonyms and avoid the large overhead of on-line
processing documents. We then designed and implemented a filter-
and-verification strategy to improve the efficiency. Specifically,
for the filtering step, we proposed a dynamic prefix computing
mechanism and a lazy candidate generation method to reduce the
filter cost. Experimental results on real world dataset demonstrated
both the efficiency and effectiveness of our proposed framework.

For future work, we will (i) devise techniques to improve the
verification step; (ii) extend our framework to support character-
based similarity functions such as Edit Distance for tolerating
typos in documents; (ii) support weighted synonym rules by as-
signing different weights to different rules; and (iii) integrate our
techniques into open-source database systems.
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ABSTRACT
Social event planning has received a great deal of attention in recent
years where various entities, such as event planners and marketing
companies, organizations, venues, or users in Event-based Social Net-
works, organize numerous social events (e.g., festivals, conferences,
promotion parties). Recent studies show that “attendance” is the most
common metric used to capture the success of social events, since
the number of attendees has great impact on the event’s expected
gains (e.g., revenue, artist/brand publicity). In this work, we study
the Social Event Scheduling (SES) problem which aims at identifying
and assigning social events to appropriate time slots, so that the num-
ber of events attendees is maximized. We show that, even in highly
restricted instances, the SES problem is NP-hard to be approximated
over a factor. To solve the SES problem, we design three efficient and
scalable algorithms. These algorithms exploit several novel schemes
that we design. We conduct extensive experiments using several real
and synthetic datasets, and demonstrate that the proposed algorithms
perform on average half the computations compared to the existing
solution and, in several cases, are 3-5 times faster.

1 INTRODUCTION
The event planning industry has grown enormously in the past decade,
with large event planning and marketing companies (e.g., MKG, GPJ),
organizing and managing a variety of social events (e.g., multi-themed
festivals, promotion parties, conferences). In addition to companies,
social events are also organized by venues (e.g., theaters, night clubs),
organizations (e.g., ACM, TED), as well as users in Event-based
Social Networks (e.g., Meetup, Eventbrite, Plancast).

The Event Marketing Benchmark Report 2017,1 where marketing
decision-makers from large organizations participate, indicates that
“attendance” is the most common metric used to measure the success
of social events, since the number of attendees has a great influence on
the event’s expected gains (e.g., revenue, artist publicity). Therefore,
achieving maximum attendance is the organizers first challenge, as
also indicated in the Event Marketing Trends 2018 study.2

Examples of events organization include large festivals and confer-
ences where a large number of (multi-themed) events are organized
over several stages and sessions attracting several thousands of people.
For example, Summerfest Festival has performances from over 800
bands, attracting more than 800K people each year. Beyond music

1www.certain.com/blog/certain-presents-the-event-marketing-benchmark-report-
spring-2017
2https://welcome.bizzabo.com/event-marketing-2018
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concerts, numerous multi-themed events take place, ranging from art-
makings and theatrical performances to fitness activities and parties.
In such scenarios, successful event planning is extremely challenging,
since various factors need to be taken into account, such as the large
number of events and available time slots, the diversity of events’
themes and user interests, the presence of overlapped events, the
available resources (e.g., available stages), etc.

Assume the following scenario. On Monday two events are sched-
uled to take place during a festival: (1) a rock concept from 19:00 to
22:00; and (2) a fashion show between 19:00 and 21:00. Additionally,
from 18:00 to 20:00 a music concert of a rock singer is taking place
in a nearby (competing) venue. Consider that Alice enjoys listening
to rock music, and is a fashion lover. Although Alice is interested in
all three events, she is only able to attend one of them.

In this work, we study the Social Event Scheduling (SES)
problem [4]. Given a set of candidate events, a set of time inter-
vals and a set of users, SES assigns events to time intervals, in order
to maximize the overall number of participants. The assignments are
determined by considering several events’ and users’ factors, such as
user preferences and habits, events’ spatiotemporal conflicts, etc.

Recently, several studies have been published examining the prob-
lem of assigning users (i.e., participants) to a set of pre-scheduled
events in Event-based Social Networks [6, 12, 26–29, 31]. The ob-
jective in these works is to find the user-event assignments that maxi-
mizes the satisfaction of the users. Here, in contrast to existing works,
we study a substantially different problem. Briefly, instead of assign-
ing users to events, we assign events to time intervals. The objective
here is to find the event-time assignments that maximize the number
of event’s attendees. More or less, the SES problem studies the “sat-
isfaction” (e.g., revenue, publicity) of the entities involved in event
organization (e.g., organizer, artist, sponsors, services’ providers).
In other words, SES is an “organizer-oriented” problem, while the
existing works are “participant-oriented”. Overall, the objective, the
solution and the setting of the SES problem are substantially different
from the related works.

The SES problem was recently introduced in [4] where a greedy
algorithm was proposed. In the proposed solution, in each assignment
selection, the algorithm recomputes (i.e., updates) the scores for a
large number of assignments. Additionally, in each selection the al-
gorithm has to examine (e.g., check for validity) all the assignments.
The aforementioned result to poor performance of this solution. In
this work, we design three efficient and scalable algorithms which are
implemented on top of the following novel schemes. First, we pro-
pose an incremental updating scheme in which a reduced number of
score computations are performed in an incremental manner. Further,
we design an assignment organization scheme which significantly
reduces the number of assignments that are examined. Finally, an
assignment selection policy is proposed, minimizing the impact of
performing a part of the required score computations, on the quality
of the results. In our extensive experiments, we illustrate that the pro-
posed algorithms perform about half the computations and, in several
cases, are 3-5× faster compared to the method proposed in [4].
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Event Location

e1 Stage 1
e2 Stage 1
e3 Room A
e4 Stage 2

(a) Candidate Events

t1 = ⟨Friday 8–11pm⟩

t2 = ⟨Sat. 6–9pm⟩

(b) Time Intervals

c1 ⟨Friday 6–9pm⟩, tc1 = t1

c2 ⟨Sat. 8–10pm⟩, tc2 = t2

(c) Competing Events

Event Interest Comp. Ev. Interest Activ. Prob.

User e1 e2 e3 e4 c1 c2 t1 t2

u1 0.9 0.3 0 0.6 0.8 0.3 0.8 0.5
u2 0.2 0.6 0.1 0.6 0.4 0.7 0.5 0.7

(d) Users

Figure 1: Running example (4 Candidate events, 2 Intervals, 2 Competing events, 2 Users)

Further, examining the theoretical aspects of the SES problem,
we study its approximation, showing that even in highly restricted
instances, it is NP-hard to be approximated over a factor larger than
(1 − ϵ).

Contributions. The main contributions of this work are summarized
as follows: (1) We show that the SES problem is NP-hard to be
approximated over a factor larger than (1 − ϵ). (2)We design three
efficient and scalable approximation algorithms. These algorithms
outperform the existing algorithm by exploiting a series of schemes
that we develop. (3)We conduct an detailed experimental analysis
using several real and synthetic datasets.

2 SOCIAL EVENT SCHEDULING PROBLEM
In this section we first define the Social Event Scheduling (SES)
problem; and then we study its approximation. In what follows, we
present a simple example that introduces the main entities involved
in SES problem.

Example 1. [Running Example] Figure 1 outlines our running exam-
ple involving four candidate events (e1–e4), two time intervals (t1, t2),
two competing events (c1, c2), and two users (u1, u2).

The location of each candidate event is presented in Figure 1a
We notice that both e1 and e2 are going to be hosted at Stage 1.
Hence, these events cannot be scheduled to take place during the
same time period. Figure 1c presents the competing events along
with the time periods during which these are scheduled to take place.
For example, c1 is schedule to take place on Friday between 6:00
and 9:00pm (at a nearby competing venue). Further, in Figure 1b we
observe that there is the candidate time interval t1 defined on the
same day between 8:00 and 11:00pm. Thus, due to overlapping time
periods, a user cannot attend both c1 and a candidate event that will
be possibly scheduled to take place during t1.

Finally, Figure 1d shows, for each user, the interest values
(i.e., affinity) for the events, as well as the social activity probability
(e.g., based on user habits) during the time periods defined by the two
intervals. For example, u1 has high social activity probability (equals
to 0.8) at t1, since Friday night u1 does not work and usually goes out
and participates in social activities.

2.1 Problem Definition
In our problem, we assume an organizer (e.g., company, venue)
managing the events’ organization. Each organizer possesses a num-
ber of available resources θ ∈ R+. These are abstractions used to
refer to staff, materials, budget or any other means related to event
organization.

Further, let T be a set of candidate time intervals, representing
time periods that are available for organizing events.

Assume a set E of available events to be scheduled, referred as
candidate events. Each e ∈ E is associated with a location ℓe
representing the place (e.g., a stage) that is going to host the event.

Further, each event e requires a specific amount of resources ξe ∈ R+0
for its organization, referred as required resources.

An assignment α te denotes that the candidate event e ∈ E is
scheduled to take place at t ∈ T . An event schedule S is a set of
assignments, where there exist no two assignments referring to the
same event. Given a schedule S, we denote as E(S) the set of all can-
didate events that are scheduled by S, i.e., E(S) = {e | ate ∈ S}; and
Et (S) the candidate events that are scheduled by S to take place at t
(i.e., assigned to t). Further, for a candidate event e ∈ E(S), we
denote as te (S) the time interval on which S assigns e.

A schedule S is said to be feasible if the following constraints
are satisfied: (1) ∀t ∈ T holds that @ei , ej ∈ Et (S) with ℓei = ℓej
(location constraint); and (2) ∀t ∈ T holds that

∑
∀e ∈Et (S)

ξe ≤ θ

(resources constraint). In analogy, an assignment α te is said to be
feasible if the aforementioned constraints hold for t . Further, we
call valid assignment, an assignment α te when the assignment is
feasible and e < E(S).

Let C be a set of competing events, with C ∩E = ∅. As compet-
ing events we define events that have already been scheduled by third
parties, and will possibly attract potential attendees of the candidate
events. Based on its scheduled time, each competing event c ∈ C is
associated with a time interval tc ∈ T . Further, as Ct we denote the
competing events that are associated with the time interval t .

Consider a set of users U, for each user u ∈ U and event
h ∈ E ∪ C, there is a function µ : U × (E ∪ C) → [0, 1], denoted as
µu ,h , that models the interest of user u over h. The interest value
(i.e., affinity) can be estimated by considering a large number of
factors (e.g., preferences, social connections).

Moreover, we define the social activity probability σ tu , rep-
resenting the probability of user u participating in a social activity
at t . This probability can be estimated by examining the user’s past
behavior (e.g., number of check-ins).

Assume a user u and a candidate event e ∈ E that is scheduled by
S to take place at time interval t ; ρtu ,e denotes the probability of
u attending e at t . Considering the Luce’s choice theory [17], the
probability ρtu ,e is influenced by the social activity probability σ of
u at t , and the interest µ of u over e, Ct and Et (S). We define the
probability of u attending e at t as:

ρtu ,e = σ
t
u

µu ,e∑
∀c∈Ct

µu ,c +
∑

∀p∈Et (S)
µu ,p

(1)

Furthermore, considering all usersU, we define the expected atten-
dance for an event e scheduled to take place at t as:

ωt
e =

∑
∀u∈U

ρtu ,e (2)

The total utility for a schedule S, denoted as Ω(S), is computed
by considering the expected attendance over all scheduled events:
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Ω(S) =
∑

∀e∈E(S)

ωte (S)
e (3)

The Social Event Scheduling (SES) problem is defined as follows: 3

Social Event Scheduling Problem (SES). Given an positive inte-
ger k , a set of candidate time intervals T ; a set of competing events C;
a set of candidate events E; and a set of usersU; our goal is to find a
feasible schedule Sk that determines how to assign k candidate events
such that the total utility Ω is maximized; i.e., Sk = argmaxΩ(S)
and |S| = k.

Note that, by performing trivial modifications to the algorithms
proposed here, additional factors and constraints to those defined
in SES, can be easily handled. For example, include event’s orga-
nization cost/fee (to define a “profit-oriented” version of the SES
problem), associate events with duration, or define weights over the
users (e.g., based on their influence).

2.2 Approximation Hardness
Here, we show that even in highly restricted instances the SES prob-
lem is NP-hard to be approximated over a factor. Therefore, SES does
not admit a Polynomial Time Approximation Scheme (PTAS).

Theorem 1. There exists an ϵ > 0 such that it is NP-hard to approx-
imate the SES problem within a factor larger than (1 − ϵ). Thus,
SES does not admit a PTAS. 4

PROOF SKETCH. In our proof we reduce the 3-Bounded
3-Dimensional Matching problem (3DM-3) [10] to a restricted in-
stance of SES. The following is an instance of the 3DM-3 problem.
Given a set T ⊆ X × Y × Z , with |X | = |Y | = |Z | = n, |T | = m
and with each element of X ∪ Y ∪ Z appearing at most 3 times as a
coordinate of an element of T . A matching in T is a subset M ⊆ T ,
such that no elements in M agree in any coordinate. In our proof, we
exploit the following result: [10] showed that in 3DM-3 there exists
an ϵ0 > 0 such that it is NP-hard to decide whether an instance has a
matching of size n or if every matching has size at most (1 − ϵ0)n.

Consider the following associations between 3DM-3 and SES:
edges д in T to time intervals; and elements in X ,Y ,Z to candidate
events, with required resources ξ = 1. Let the aforementioned candi-
date events form a set E1 (i.e., |E1 | = 3n).

Further, in the proof, we consider the following restricted instance
of SES: (1) The available resources are three. (2) There are no lo-
cation constraints. (3) There is only one competing event in each
time interval. (4) The social activity probability is the same for each
user and time interval. (5) The users are as many as the candidate
events. (6) There is a set E2 that containsm − n additional (w.r.t. E1)
candidate events, with ξ = 3. Thus, the candidate events E in the
restricted instance is E = E1 ∪ E2, with E1 ∩ E2 = ∅. (7) Regarding
the interest function we assume two disjoint sets of users |U1 | = 3n
and |U2 | = m − n, a well as the following: (7a) Each user u1 ∈ U1
likes only one event e1 ∈ E1 (as a result, each e1 is liked only by one
user u1), with µu1,e1 = 0.25. (7b) Regarding the competing events and
the users U1 we have the following. Fix a positive constant δ < 1

12 .

3Several of the problem’s involved factors (e.g., user interest, activity and attendance
probability) can be computed using event-based mining methods, e.g., [5, 7, 13, 19, 21,
36, 37, 40, 41]. However, this is beyond the scope of this work.
4Due to lack of space, we only include proof sketches, while in simple cases, the proof
sketch is also omitted.

Let up ∈ U1 the user that likes the event ep , where ep corresponds
to the element yp in 3DM-3. Then, if yp is included in the edge дt
(i.e., yp ∈ дt ), the interest of up in the competing event c that ap-
pears in the interval t (which in 3DM-3 corresponds to edge дt ) is
µup ,c = 0.25(0.75− δ )/(0.25+ δ ) and 0.75, otherwise. (7c) Each user
u2 ∈ U2 likes only one event e2 ∈ E2 (as a result, each e2 is liked only
by one user u2), with µu2,e2 = 0.75. (7d) For each competing event c
and user u2 ∈ U2, we have µu2,c = 0.

We can verify that, for each matching in 3DM-3, we can obtain a
schedule in SES with total utility 3(0.25 + δ ), by assigning 3 events
of E1 in a same interval. Then, if 3DM-3 has a matching of size n,
we can verify that the total utility in SES is 3n(0.25 + δ ) +m − n.
Otherwise, if every matching has size at most (1 − ϵ0)n, the total
utility in SES is 1 − ϵ0−12δϵ0

12δ+3 < 1 − 1
3ϵ0. �

3 ALGORITHMS
SES is known to be strongly NP-hard, even in highly restricted in-
stances [4]. Due to its hardness, it is computationally prohibitive to
find an optimal solution even in small problem sizes. Particularly,
in the worst case, we have to enumerate an exponential number of
possible assignments, where each assignment requires always |U|
computations. For example, the greedy algorithm proposed in [4], in
several cases in our experiments, took more than 5 hours to solve
the problem in the default parameters setting, while more than 31
hours in larger settings. To this end, to cope with the hardness of the
SES problem we design three efficient and scalable approximation
algorithms which perform about half the computations and, in several
cases, are 3-5 times faster compared to the method proposed in [4].

3.1 Existing Solution
Here, we outline the previously proposed algorithm. First, we define
the assignment score. Given a schedule S and an assignment α tr ,
as assignment score (also referred as score) of an assignment α tr ,
denoted as α tr .S , we define the gain in the expected attendance by in-
cluding α tr in S. The assignment score (based on Eq. 2) is defined as:

α tr .S =
∑
∀ej ∈

Et (S)∪{r }

ω′ tej −
∑
∀ei ∈
Et (S)

ωt
ei (4)

Given a set of assignments, the term top assignment refers to the
assignment with the largest score.

In [4], a simple greedy algorithm is outlined, referred here as ALG.
This method starts by initially generating assignments between all
pairs of events and intervals. Then, in each iteration, the assignment
with the largest score (i.e., top assignment) is selected. After selecting
an assignment, a subset of the assignment’s scores need to be updated.
Recall that, the assignment’s score is defined w.r.t. the events assigned
in the assignment’s interval (Eq. 4). Hence, when an assignment α te
is selected, then the scores of the assignments referring to interval t
need to be recomputed (updated). The time complexity of ALG is
O(|U||C| + |E | |T | |U| + k |E | |T | + k |E | |U| − k2 |T | − k2 |U|); and
the space complexity is O(|E | |T |).

Example 2. [ALG Algorithm] Based on our running example, Fig-
ure 2 outlines the execution of the ALG algorithm. In this, as well
as in the rest of the examples, we assume that k = 3. That is, three
out of four events have to be scheduled. Each row represents the
selection of a single assignment. Rows include the assignment scores
(Eq. 4), as well as the selected assignment (presented in bold red
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α
t1
e1 α

t1
e2 α

t1
e3 α

t1
e4 α

t2
e1 α

t2
e2 α
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e2 α
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t1
e3

③ – ✚✚❩❩0.52 0.05 – – 0.16 0.03 – → α
t2
e2 –

Figure 2: ALG algorithm example

font) and the assignments that have to be updated after the selection.
Initially (i.e., ① selection), the algorithm selects the assignment with
the largest score (i.e., α t2e4 ). Thus, after this selection the assignments
referring to e4 have to be omitted (marked with /), and the assign-
ments referring to t2 have to be updated. After the second selection,
the algorithm has to update only α t1e3 since α t1e2 is no longer feasible
(marked with ×) due to location constraint. Note that, for the sake of
simplicity, the resources constraint has been omitted from the running
example. Finally, the schedule contains α t2e4 , α t1e1 and α t2e2 .

3.2 Incremental Updating Algorithm (INC)
The ALG algorithm proposed in [4], has the following shortcoming:
(1) each time ALG selects an assignment, it has to recompute (i.e., up-
date) from scratch all the scores for all the assignments associated
with the selected assignment’s interval. This process is referred to
assignment updating or simply as updates; and (2) in each step, ALG
has to examine (and traverse) all the available assignments in order
to perform its tasks (e.g., select assignment, perform updates).

Considering the aforementioned issues, we design the Incremental
Updating algorithm (INC). Regarding the first issue, INC exploits an
incremental updating scheme, performing incremental assignment up-
dates. Incremental updating allows INC, to provide the same solution
as ALG, while, in each step, INC performs only a part of the updates
(i.e., score computations). Regarding the second issue, INC attempts
to reduce the number of assignments that should be examined in
each step, i.e., search space. To this end, we devise an assignment
organization that takes into account the incremental updating scheme.
In several cases in our experiments, INC is more than three times
faster than the existing algorithm.

Essentially, INC follows a similar assignment selection process to
ALG, selecting the top assignment in each step, in a greedy fashion.
However, in INC the assignments’ update process has been designed
based on the introduced incremental updating scheme.

3.2.1 Incremental Updating
In the proposed scheme, the updates are computed in an incremen-

tal manner, where after each assignment selection only a part of the
updates are performed. As a result, during the algorithm execution,
some of the assignments may not be up-to-date.

An assignment is denoted as updated, if its score has been com-
puted by considering all the (previously) selected assignments, and
not updated otherwise. In analogy, a set of assignment is referred
as updated, when all its assignments are updated, and partially
updated, otherwise.

The basic idea of our scheme is that we can determine a subset
of the not updated assignments that have to be updated before each
selection. First we show that, from the available assignments A, we
can find a set B⊆A which includes the next algorithm selection χ .
Then, we also show that the not updated assignments included in B
are the only not updated assignments that have to be updated in order
to find χ .

Assignments Sorted by Score (“+" / “−” : Updated/Not updated ) Select Φ Update

① α
t2+
e4 ✚✚α

t1+
e4 α

t1+
e1 α
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t1+
e3 α
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e1 .S –
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e2 ✚✚α

t2−
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e2 α
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e3 α

t2−
e3 → α

t1
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Figure 3: Incremental updating scheme example

In order to specify B, we use a numeric bound Φ. As shown next,
the value of Φ is the score of the top, updated and valid assignment of A.

Proposition 1. Let Φ be the score of the top, updated and valid
assignment of the available assignments A. Then, the next selected
assignment χ is one of the assignments that in A have score larger
or equal to Φ; i.e., χ ∈ B, where B = {α te ∈ A | a

t
e .S ≥ Φ}.

PROOF SKETCH. First, we show that the score of a not updated
assignment is always larger or equal to the score of the assignment
resulted by its update. Note that the proof for this is not trivial for
arbitrary numbers of candidate and competing events. Based on the
aforementioned, the not updated assignments of A, having score
lower than Φ, also have score lower than Φ in A ′, where A ′ be the
set of assignments resulting from A by updating its not updated
assignments. Further, the score of each updated assignment of A
remains the same in A ′. So, both the updated and the not updated
assignments of A have scores lower than Φ; their scores in A ′ also
remain lower than Φ. Thus, the Proposition 1 holds. �

Based on Proposition 1, since χ is included in B, we can easily
verify that, χ is the top assignment of B′, where B′ results from B
by updating its not updated assignments. Thus, in order to find χ ,
we have to update the not updated assignments of B. Based on the
aforementioned, the following corollary describes the incremental
updating process.

Corollary 1. In each step, in order to select the next assignment,
only the not updated assignments having score larger or equal to Φ
have to be updated.

Example 3. [Incremental Updating Scheme] Figure 3 illustrates the
utilization of the incremental updating scheme. For clarity of presen-
tation, we omit the assignment scores since these are the same as
in Example 2. To better understand the procedure, in each row the
assignments are presented in descending order, based on their score.
The +/- notation is used to denote that the assignment is updated, or
not updated, respectively. After the first selection, Φ is equal to α t1e1 .S
(i.e., top, updated and valid assignment), and all the assignments
referring to t2 change to not updated. Further, since all the not up-
dated assignments have score lower than Φ, none of the assignments
have to be updated. Then (② selection), after selecting α t1e1 , all the
assignments become not updated; so Φ becomes unavailable. Next,
the algorithm updates α t2e2 and sets Φ equal to its score (0.16). In the
last selection, since the current Φ is larger than the scores (0.10 and
0.9) of the not updated assignments α t1e3 and α t2e3 , the algorithm does
not have to update it. Compared to the ALG algorithm (Example 2)
which performs four updates, our scheme performs only one.

3.2.2 Assignments Organization over Incremental Updating

In each step, the algorithm needs to examine and traverse all the
available assignments, in order to perform the following main tasks:
(1) select the top assignment; (2) perform updates; and (3) maintain
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the bound. In order to accomplish these tasks, for each of the available
assignments, the algorithm has to perform numerous computations.
Indicatively, it has to check validity constraints, compare scores,
consider bounds and possibly compute the new assignment score, etc.

Given the above, we introduce an interval-based assignment or-
ganization that incorporates with our incremental updating scheme.
This organization attempts to reduce the number of assignments that
are accessed and examined, i.e., search space. Using our organization,
in most cases in our experiments, INC examines slightly more than
half assignments compared to the existing algorithm.

Search Space Reduction in Assignment Updates. Here, we de-
scribe how we reduce the assignments that should be examined in
order to perform the updates. An interval-based assignment organi-
zation allows to access at the interval-level, only the assignments
that should be examined for update. Adopting this organization in a
simple (not incremental) updating process, like in ALG, in each step,
the algorithm needs only to access the assignments of one interval in
order to performs the updates. On the other hand, in the incremental
updating setting, several intervals become partially updated during
the execution. In this scenario, in order to identify the assignments
that need to be updated, we have to examine all the assignments
included in partially updated intervals. As a result, in our setting, a
simple interval-based organization will not be effective, since it will
allow to skip accessing only the updated intervals.

Beyond ignoring only the updated intervals, in order to further
reduce the search space, we have to be able to identify (and skip) the
partially updated intervals whose assignments are not going to be
updated. In our organization scheme, this is addressed by defining a
score over each interval. Particularly, for each interval t ∈ T , a value
Mt is defined, where Mt is equal to the score of the top, updated and
valid assignment of interval t . Exploiting Mt , we can directly identify
the partially updated intervals that have to be accessed through the
updating process. Particularly, it is easy to verify that we have to
access all the partially updated intervals t ∈ T for which Mt ≤ Φ.

Search Space Reduction in Assignment Selection and Bound
Maintenance. The organization described so far allows to reduce
the search space during the assignment updating process. However,
after performing the updates, the algorithm has to accomplish also
the tasks of selecting the next assignment and maintaining the bound
Φ, which in turn enforce the examination of all the available assign-
ments. In what follows, we show how to perform all the tasks without
examining any further assignments beyond the ones examined during
the updating process.

The intuition is that, in each step, only a subset of the assignments
is updated, while the rest remain the same as in the previous step,
referred here as static. Therefore, it is reasonable to assume that the
algorithm is able to accomplish all of its tasks by utilizing “informa-
tion” previously captured from the static assignmentsW. So, if this
“information” is known, then, after performing the updates, we can
ignoreW (i.e., avoid access). As shown next, this “information” can
be captured by two numeric values Iχ and IΦ determined fromW.
Briefly, Iχ is exploited to specify the next selected assignment χ , and
IΦ to compute the new Φ.

Proposition 2. Given a set of static assignmentsW. Let Iχ and IΦ
be the scores of the first and the second larger top, updated and
valid assignment ofW, respectively. Then, if Iχ and IΦ are know,
the algorithm can ignoreW.

Algorithm 1. INC (k , T, E, C, U)
Input: k : number of scheduled events; T: time intervals;

E: candidate events; C: competing events; U: users;
Output: S: feasible schedule containing k assignments
Variables: Li : assignment list for interval i ; Φ: bound;M: top, valid and updated assign list

1 S ← ∅; M ← ∅; Li ← ∅, Li .U ← updated 1 ≤ i ≤ |T |
2 foreach (e , t ) ∈ E × T do //generate assignments
3 compute α te .S ; α te .U ← updated; //by Eq. 4

4 insert α te into Lt //initialize assignment lists

5 M[t ] ← getBetterAssgn(M[t ], α
t
e ) //initializeM with the top assignment from each interval

6 while |S | < k do
7 α

tp
ep ← getTopAssgn(M) //select the top, valid & updated assignment

8 insert α
tp
ep into S //insert into schedule

9 remove α
tp
ep from Ltp ; Ltp .U ← prtl updated; //update Ltp status

10 α te .U ← prtl updated, ∀α te ∈ Ltp
11 foreach α te ∈ M do //updateM list based on selected assignment
12 if t = tp then
13 α te ← ∅ //i.e., αte .S ← −∞
14 else if e = ep then
15 α te ← getTopAssgn(Li )

16 Φ← score of topM //set bound
17 for i = 1 to |T | do //update assignments
18 if Li .U = prtl updated andM[i ] .S ≤ Φ then //check for updates

19 foreach α te ∈ Li do
20 if α te is not valid then
21 remove α te from Li
22 else if α te .U = prtl updated and α te .S ≥ Φ then
23 compute new α te .S ; α te .U ← updated; //by Eq. 4

24 M[i ] ← getBetterAssgn(M[i ], α
t
e ) //update top assignment

25 Φ← getBetterAssgn(Φ, α te .S ) //update bound

26 if all α te ∈ Li is updated then Li .U = updated;

27 return S

In our interval-based scheme implementation, the static assign-
ments W correspond to a set of static intervals TW ⊆ T . Both
Iχ and IΦ can be be directly computed based on the values ofMt of the
static intervals TW . Particularly, Iχ = max

∀t ∈TW
Mt and Iϕ = max

∀t ∈{TW\tχ }
Mt ,

where tχ is the interval of Iχ . Therefore, based on Proposition 2, in
each step, the algorithm needs to access only intervals that have been
updated (i.e., subset of partially updated intervals).

Assignment Organization Summary. To sum up, the presented or-
ganization allows: (1) the reduction of the assignments that are exam-
ined during the updating process; and (2) skipping the examination
of any further assignments beyond the updated ones.

3.2.3 INC Algorithm Description & Analysis

Algorithm Description. Algorithm 1 describes the INC algorithm;
INC receives the same inputs as ALG. Additionally, INC employs |T |
lists, with each listLi filled with the assignments of interval i. Further,
each assignment α te and list Li , use a flag U (denoted as α te .U ) to
define its update status. Finally, the algorithm uses a listM that holds
the top, valid and updated assignments of each interval. Initially,
like ALG, INC calculates the scores for all possible assignments
(loop in line 2). At the same time, the assignments are inserted into
the corresponding list Li (line 3-4). Note that, the getBetterAssgn
function returns the assignment with the larger score.

Then, at the beginning of each iteration (line 6), the algorithm
selects the top assignment from M, and inserts it into schedule
(lines 7-8). Also, the algorithm has to revise the information related
to update status (lines 9-10). After the assignment’s selection phase,
the algorithm performs score updates. Initially, the bound Φ is defined
by the top updated assignment (line 16). Then, the algorithm traverses
the lists Li , using as upper bound theM[i].S , to identify the lists that
have to be checked for updates (line 18). From the verified lists, the
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t2
e2
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e3 α

t2
e2 α
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Figure 4: HOR algorithm example

algorithm performs incremental updates (lines 22-23), updating also
M and Φ (lines 24-25).

INC vs. ALG Solution. The following proposition states that both
INC and ALG, return the same solutions.

Proposition 3. INC and ALG always return the same solution.

Complexity Analysis. The cost in the first loop (line 2) is O(|E | |T ||U|).
Note that, each assignment score (Eq. 4) is computed inO(|U|). Then,
the second loop (line 6) performs k iterations. The overall cost for the
getTopAssgn operation (line 7) is O(

∑k−1
i=0 |T |). Further, the loop in

line 11 performs |T | iterations, whereas in the worst case, in |T | − 1
of these iterations, INC performs a getTopAssgn operation which
costs O(|E | − (i + 1)), with 0 ≤ i ≤ k − 1. Thus, the overall cost for
this getTopAssgn operation is O(

∑k−1
i=0 (|T | − 1)(|E | − i − 1)). Next

(line 17), in the worst case, all the not updated assignments are up-
dated (same as ALG). Note that, in the Best case, INC does not
perform any computations for assignment updates, while in ALG, in
every case, the cost for updates is O(|U|

∑k−2
i=0 |E | − i − 1).

Hence, in the worst case, the overall cost of INC is same as ALG;
i.e., O(|U||C| + |E | |T | |U| + k |E | |T | + k |E | |U| − k2 |T | − k2 |U|).
Finally, the space complexity is O(|E | |T | + |T |).

3.3 Horizontal Assignment Algorithm (HOR)
In this section we propose the Horizontal Assignment algorithm
(HOR), which in general, is more efficient than the ALG and INC
algorithms and in most cases in practice provides same solutions. The
goal of HOR is twofold. First, to reduce the number of updates by
performing only a part of the required updates; and, at the same time,
minimize the impact of not regular updates, in the solution quality. In
HOR both of these issues are realized by the policy that are employed
to select the assignments. In our experiments, in several cases HOR
is around 5 and 3 times faster than ALG and INC, respectively. Also,
in more than 70% of our experiments, HOR reports the same solution
as ALG, while in the rest cases the difference is marginal.

Horizontal Selection Policy. The key idea of HOR is that it adopts
a selection policy, named horizontal selection policy, that selects
assignments in a “horizontal” fashion. In this policy, in each iteration
the algorithm selects a set of assignments consisting of one assign-
ment from each interval. Particularly, the top assignment from each
interval is selected. This way, essentially, a layer of assignments is
generated in each iteration. For example, consider the scenario where
k > |T | (and the assignments are feasible in all cases). In the first
iteration, HOR will assign one event in each interval; equally, in the
nth iteration, n events will have been assigned in each interval.5

This policy allows HOR to avoid performing updates after each
assignment selection. This holds, since, in each iteration at most one
assignment per interval is selected. Thus, during an iteration, when an

5With an exception in the last iteration l , in which if k mod |T | , 0, then,
|T | − (k mod |T |) intervals will have l − 1 events.

Algorithm 2. HOR (k , T, E, C, U)
Input: k : number of scheduled events; T: time intervals;

E: candidate events; C: competing events; U: users;
Output: S: feasible schedule containing k assignments
Variables: Li : assignment lists for interval i ; M: top assignments list

1 S ← ∅; M ← ∅;
2 while |S | < k do
3 Li ← ∅; 1 ≤ i ≤ |T |
4 foreach (e , t ) ∈ {E\E(S)} × T do //generate assignments
5 if α te is valid then
6 compute α te .S ; //by Eq. 4

7 insert α te into Lt //initialize assignment lists

8 M[t ] ← getBetterAssgn(M[t ], α
t
e ) //insert intoM the top assignment from each interval

9 whileM , ∅ and |S | < k do //select assignments fromM

10 α
tp
ep ← popTopAssgn(M)

11 if ep < S then
12 insert α

tp
ep into S //insert into schedule

13 else //assignment is invalid; select the top valid from Ltp and insert it intoM

14 insert the top assignment α
tp
ei from Ltp intoM, s.t. ei < S

15 return S

assignment is selected for an interval, the algorithm stops examining
the selection of further assignments for this interval. As a result, there
is no need to perform any updates until the end of each iteration,
where the scores for all the assignments have to recomputed.

In what follows we outline the intuition behind the horizontal
selection policy. Considering that the users’ attendance is shared
between the events that take place during the same or overlapping time
intervals. The horizontal policy assigns the same number of events
to each interval, ignoring the possibility that it may be preferable to
assign a different number of events to some intervals.

Example 4. [HOR Algorithm] Figure 4 outlines the execution of
the HOR algorithm, presenting assignments following an interval-
based organization. Initially, HOR selects the assignment with the
largest score. Since the first selected assignment refers to t2, in the
next selection, HOR will select the top assignment from t1. After
selecting assignments from both intervals, HOR has to update all
the available assignments in order to perform the third selection.
Therefore, HOR performs three updates, whereas it finds the same
schedule as ALG/ INC.

Algorithm Description. Algorithm 2 presents the pseudocode of
HOR. Note that, since the horizontal selection policy performs selec-
tions at the interval-level, we implement interval-based assignment
organization. Finally, similarly to INC, HOR uses the |T | lists Li
and the listM. At the beginning of each iteration the algorithm cal-
culates the scores for all possible assignments (loop in line 4) and
initializesM (line 8). In the next phase (line 9), the algorithm selects
the assignments based onM. Particularly, in each step, the top valid
assignment fromM is selected.

3.3.1 HOR Algorithm Analysis

ALG vs. HOR Score Computations Analysis. Here we study the
number of score computations, comparing the ALG and the HOR
algorithms. The following proposition specifies the cases where HOR
performs less score computations than ALG.

Proposition 4. HOR performs less score computations than ALG
when k ≤ |T | or |E | < k

2 (3|T | + 1).
PROOF SKETCH. In case that k ≤ |T |, HOR computes only the
scores for the initial assignments (i.e., |T | |E |) without performing
any updates. In case that k > |T |, HOR computes the same initial
assignments, as well as the scores for

∑(k/ |T |)−1
i=0 |T |(|E |−i |T |− |T |)

updates. On the other hand, in the ALG algorithm, in any case, we
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have to compute the same number of initial assignments as in HOR,
as well as k |E | + k

2 −
k2

2 − |E| updates. �

From Proposition 4 we can infer that in “rational/typical” (i.e., real-
world) scenarios, HOR perform fewer computations than ALG. Partic-
ularly, even in cases that k > |T |, it should also hold that
|E | ≥ k

2 (3|T | + 1) in order for HOR to perform more computations.
Considering the setting of our problem, the second relation is diffi-
cult to hold in practice. For example, consider the scenario where
|T | = 10 and k = 20. Then, in order for HOR to perform more
computations, it should hold that |E | ≥ 301, which seems unrealistic
due to the noticeable difference between the number of scheduled
(k = 10) and candidate events (|E | ≥ 301).

Worst Case w.r.t. k and |T |. Considering the horizontal selection
policy, beyond the size of the input (e.g., |E |, |U|, k), the number
of computations in HOR is also influenced by the ratio between pa-
rameters k and |T |. During the execution, HOR performs ⌈k/|T |⌉
iterations. At the beginning of each iteration, it computes the scores
according to which |T | assignments are selected. In the last itera-
tion, if k mod |T | , 0, then only k mod |T | assignments need to be
selected, while the algorithm has already performed the computations
that are required to select |T | assignments. Thus, in this case, HOR
has performed more computations than the ones required for select-
ing its assignments. For example, assume that we have |T | = 10 and
k = 11. In this case, the score computations performed by HOR are
the same as in the case that we have k = 20.

The case in which the difference between the number of computed
assignment selections and the number of the selections that need to be
performed is maximized, is referred as worst case w.r.t. k and T . Note
that, even in the worst case, in our experiments, HOR outperforms
INC in several cases.

Proposition 5. In HOR, the worst case w.r.t. k and |T | occurs when
k > |T | and k mod |T | = 1.

Complexity Analysis. In the first while loop (line 2), HOR performs
⌈k/|T |⌉ iterations. In each iteration, in the worst case, there are
|E | − i |T | available events, where 0 ≤ i ≤ k

|T |
. Thus, in each itera-

tion, it computes |T |(|E | − i |T |) assignments (line 6). The overall
cost for computing the assignments isO(|U|

∑k/ |T |
i=0 |T |(|E | − i |T |)).

Further, in each iteration of the first loop (line 2), the nested loop
(line 9) performs |T | iterations (referred as nested iterations). In each
nested iteration, in the worst case, HOR performs two popTopAssgn
operations (lines 10 & 14). The cost for the first and the second
popTopAssgn operations is O(|T |) and O(|E | − i |T |), respectively.
Hence, in sum, the cost for popTopAssgn operations is
O(

∑k/ |T |
i=0 |T |(|T | + |E | − i |T |)). The worst case can occur when

all the assignments contained inM refer to the same event.
Thus, the overall cost of HOR is
O(|U||C|+ |E | |T | |U|+k |E | |U|+ |T |2−k |T | |U|−k2 |U|). Finally,

the space complexity is O(|E | |T | + |T |).

3.4 Horizontal Assignment with Incremental
Updating Algorithm (HOR-I)

This section introduces the Horizontal Assignment with Incremental
Updating algorithm (HOR-I). HOR-I combines the basic concepts
from the INC and HOR algorithms, in order to further reduce the
computations performed by HOR. Particularly, HOR-I adopts an

Algorithm 3. HOR-I (k , T, E, C, U)
Input: k : number of scheduled events; T: time intervals;

E: candidate events; C: competing events; U: users;
Output: S: feasible schedule containing k assignments
Variables: Li : assignment lists for interval i ; Φ: bound;M: top assignments list

1 S ← ∅; M ← ∅; Li ← ∅ 1 ≤ i ≤ |T |
2 while |S | < k do
3 if S = ∅ then //first iteration
4 foreach (e , t ) ∈ {E\E(S)} × T do //generate assignments
5 compute α te .S ; α te .U ← updated; //by Eq. 4

6 insert α te into Lt //initialize assignment lists

7 M[t ] ← getBetterAssgn(M[t ], α
t
e )

8 else //incremental assignments updating
9 for i = 1 to |T | do

10 Φ← 0 //initialize bound
11 foreach α te ∈ Li do
12 if α te is valid then
13 if α te .S ≥ Φ then
14 compute new α te .S ; α te .U ← updated;
15 Φ← getBetterAssgn(Φ, α te .S ) //update bound
16 else
17 α te .U ← prtl updated //partially updated

18 else
19 remove α te from Li
20 M[i ] ← Φ //update top assignment

21 whileM , ∅ and |S | < k do //select assignments fromM

22 α
tp
ep ← popTopAssgn(M)

23 if ep < S then
24 insert α

tp
ep into S //insert into schedule

25 else //select the top, valid & updated from Ltp and insert it intoM

26 α
tp
ep ← top & updated assignment from Ltp , s.t. ep < S

27 if α
tp
ep = ∅ and ∃α te ∈ Ltp s.t. α te is valid then

28 · //incremental updates in interval p
29 · Same as lines 10 to 20, with i = p
30 ·

31 return S

incremental updating scheme, similar to INC (Sect. 3.2.1), as well as
the horizontal selection policy employed by HOR (Sect. 3.3). Note
that, in several cases, in our experiment HOR-I performs about half
computations and is up to two times faster compared to HOR.

Recall that, at the beginning of each iteration, HOR calculates the
scores for all available assignments. Particularly, in the first iteration,
the algorithm generates the assignments and calculates their (initial)
scores, while in each of the following iterations the scores for all the
assignments are updated. On the other hand, after the first iteration,
HOR-I instead of updating all the assignments, uses an incremental
updating scheme. This way, in each iteration, a reduced number of
updates are performed.

Note that since the updates are performed after the first iteration, it
is obvious that HOR-I is identical to HOR in cases where only one
iteration is required (i.e., k ≤ |T |).

Example 5. [HOR-I Algorithm] The difference between HOR-I and
HOR example (Example 4), appears at the third selection, where from
t2 only the α t2e2 is updated. This happens because after updating α t2e2 ,
its score (0.16) is the current bound for this interval. Then, when
checking α t2e3 for update, its score (0.09) is lower than the bound, so
there is no need to update it. Hence, HOR-I performs two of the three
updates performed by HOR.
Algorithm Description. Algorithm 3 presents HOR-I; HOR-I uses
the same structures as HOR, as well as a bound Φ. At the first itera-
tion (loop in line 4), as is the case with HOR, HOR-I generates the
assignments and initializesM. In the next iterations (loop in line 9),
it performs incremental updates for each interval, determining a dif-
ferent bound Φ for each interval. Then, similarly to HOR, HOR-I
performs the assignment selection based onM (loop in line 21). In
contrast to HOR, HOR-I has also to examine the update status of the
assignments. In case that there is not a valid and updated assignment
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left on an interval (lines 27-30), HOR-I has to perform incremental
updates in this interval.

3.4.1 HOR-I Algorithm Analysis

HOR-I Solution & Worst Case w.r.t. k and |T |. The following
propositions state that both HOR-I and HOR return the same solutions
and also have the same worst case w.r.t. k and |T |.

Proposition 6. HOR-I and HOR always return the same solution.

Proposition 7. In HOR-I, the worst case w.r.t. k and |T | occurs
when k > |T | and k mod |T | = 1.

Complexity Analysis. In the worst case, the computation cost in
HOR-I, is the same as HOR. Particularity, in the worst case, the bound
employed by HOR-I cannot prevent any of the assignment updates
(line 9). This case arises, when the assignments in each interval list Li
are sorted in ascending order by its score, and there are no assignments
having the same score. Thus, the computation cost for HOR-I is
O(|U||C| + |E | |T | |U| + k |E | |U| + |T |2 − k |T | |U| − k2 |U|). Note
that, in the Best case HOR-I does not perform any computations for
updates, while in HOR, in any case (where k > |T |), the cost for
updates is O(

∑(k/ |T |)−1
i=0 |U||T |(|E | − i |T | − |T |)). Finally, the space

complexity is O(|E | |T | + |T |).

4 EXPERIMENTAL ANALYSIS
4.1 Setup

Datasets. In our experimental evaluation we present the results from
four datasets, two real and two synthetic. The first real is the Meetup
dataset (Meetup) from [21], which contains data from California,
and is the dataset used in [4]. We follow the same approach as in
[4, 26–28, 31], in order to define the interest of a user to an event.
After preprocessing, we have the Meetup dataset containing 42,444
users and about 16K events.

The next real dataset (Concerts) which is the largest, is related
to music and provided from Yahoo! (“Music user ratings of musical
tracks, albums, artists and genres dataset”). Concerts is used to
demonstrate the scenario of music festival organization. Particularly,
Concerts contains data for several music entities (i.e., tracks, albums,
artists, genres), as well as ratings of users over these entities. In
this dataset, we consider albums to represent the events (i.e., music
concerts). We select the albums that are associated with at least one
genre, which results to 89K albums. Further, as users we select the
users that have rated at least 10 genres, which result to 379,391 users.

In order to compute user interest over the albums, we consider
the users ratings over the music genres, as well as the genres that
are associated with the music albums. Let a user u, Ru denote the
set of ratings ri over genres, where ri ∈ [0, 1] is the rating over
the i genre. Also, let Ga be a set of genres associated with a music
album a. Here, we define the interest of a user u over the album a as
(
∑
∀д∈Ga rд)/|Ga |, where rд = 1 if the genre д is not specified in Ru .

Note that, similar results are reported using alternative methods, such
as setting rд = 0 for genres not specified in Ru , or considering only
the common user-album genres.

Finally, regarding synthetic datasets (Table 1), we generate the
users’ interest values for the events, following the three distribution
types examined in the related literature [12, 26–28, 31]: Uniform
(Unf), Normal (Nrm) and Zipfian (Zip). Note that, for brevity, the
results for the Normal distribution are not presented here since they

Table 1: Parameters
Description (Parameter) Values

Synthetic & Real Datasets
Num of scheduled events (k ) 50, 70, 100, 200, 500
Num of candidate events ( |E |) k , 2k , 3k , 5k , 10k
Num of time intervals ( |T |) k

5 , k2 , k , 3k
2 , 2k , 3k

Competing events per interval Uniform: [1, 4], [1, 8], [1, 16], [1, 32], [1, 64]
Num of available locations 5, 10, 25, 50, 70
Num of available resources (θ ) 10, 20, 30, 50, 100
Num of required resources per event (ξe ) Uniform: [1, θ4 ], [1,

θ
3 ], [1,

θ
2 ], [1,

3θ
4 ], [1, θ ]

Distribution of social activity probability (σ tu ) Uniform, Normal (0.5, 0.25)

Synthetic Datasets
Num of users ( |U |) 10K, 50K, 100K, 500K, 1M
Distribution of interest (µu ,e ) Uniform, Normal (0.5, 0.25), Zipfian: 1, 2, 3

are similar to Uniform. Further for Zipfian, we present only the results
with parameter equal to 2 which are similar to those of 1 and 3.

Parameters. Table 1 summarizes the parameters that we vary and
the range of values examined; default values are presented in bold.

Adopting the same setting as in the related works [4, 12, 26–28,
31], we set the the default and maximum value of the of scheduled
events k, to 100 and 500, respectively. In order to select the values
for the number of competing events per interval, we analyze the
two Meetup datasets used in our evaluation [21]. Particularly, we are
interested in the number of events taking place during overlapped
time intervals. As event interval we consider the period spanning
from one hour before to two hours after the event’s scheduled time.
From the analysis, we found that, on average, 8.1 events are taking
place during overlapping intervals. Therefore, in the default setting
the number of competing events per interval is selected by a uniform
distribution having 8.1 as mean value. Further, we vary the mean
value from 2 to 32 (Table 1). In our experiments, the reported results
are similar to the default setting, with the utility score being slightly
lower for larger numbers of competing events, as expected (results
are omitted due to lack of space).

In order to select the default and the examined values for the num-
ber of available events’ locations, we consider the percentage of pairs
of events that are spatio-temporally conflicting, as specified in [26].
Also, we vary the number of required resources for each event, as well
as the number of available resources (Table 1). Here, as resources
we consider agents (i.e., organizer’s staff). In the aforementioned
experiment, the methods are marginally affected by the examined
parameters. Thus, due to lack of space, the results are omitted. Finally,
regarding the social activity probability, we use Uniform and Normal
distribution. Note that, the results for Normal distribution are not
presented here, since they are the same as in Uniform.

Methods. In our evaluation we study the three proposed algorithms
(INC, HOR, HOR-I), as well as the ALG algorithm proposed in [4].
Further, we include the baselines used in [4]. The first, denoted as
TOP, computes the assignment scores for all the events and selects
the events with top-k score values. Since TOP computes the scores
only once, TOP is always performing the minimum number of com-
putations. The second, RAND assigns events to intervals, randomly.
Note that, since the objective, the solution and the setting of our prob-
lem are substantially different (see Sect. 1) from the related works
[6, 12, 26–29, 31], the existing methods cannot be used to solve the
SES problem.
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Figure 5: Varying the number of scheduled events k

Metrics & Implementation. In each experiment, we measure: (1) the
total utility score; (2) the execution time; and (3) the number of com-
putations for assignment scores (|U| per assignment score). All algo-
rithms were written in C++ and the experiments were performed on
an 2.67GHz Intel Xeon E5640 with 32GB of RAM.

4.2 Results
Recall that, the HOR and HOR-I algorithms return the same solutions
(i.e., equal utilities); the same also holds for the ALG and INC algo-
rithms. Hence, only the former utility plots are presented. Further,
in cases where k < |T |, the HOR-I algorithm is identical to HOR
(Sect. 3.4); thus, in these cases only the HOR results are included in
the plots.

4.2.1 Effect of the Number of Scheduled Events
In the first experiment, we study the effect of varying the number of
scheduled events k.

Utility. In terms of utility (Fig. 5a–5d), we observe that, in all cases,
our HOR method has the same utility score as the ALG (details are
presented in Sect. 4.2.8). Further, the difference between RAND
and the other methods increases, as k increases. This is reasonable
considering the fact that the larger the k, the larger the number of
“better”, compared to random, selected assignments.

Regarding the Unf dataset (Fig. 5c), we observe the following.
First, the difference between the random and the other methods is the
smallest one, compared to the other datasets. Second, the difference
between the methods is roughly the same for all k values. The reason
for the aforementioned is that the uniform distribution results to
utility values being very close, for all assignments. Thus, an effective
assignment selection cannot significantly improve the overall utility.

Finally, we can observe that TOP reports considerably low utility
scores in all cases (which is also observed in the following experi-
ments). The reason is that TOP assigns the events to a small number
of intervals. This results to a large number of parallel events which
“share” assigned interval’s utility.

Computations. Regarding the number of computations (Fig. 5e–5h),
we should mention that, the computations that are performed due
to updates increases with k, while the number of initially computed
scores is the same for all k. Thus, the difference between the ALG
and our methods increases with k . Overall, we can observe that, in all
cases, ALG reports the larger number of computations, while HOR-I
the lower (excluding the TOP baseline).

Regarding our methods, comparing HOR with HOR-I, we can ob-
serve that the difference between our HOR versions increases with k ,
with HOR-I performing noticeably less computations compared to
HOR for large k. An exception is reported in Unf dataset (Fig. 5g),
in which all bound-based methods (INC, HOR-I) report poor perfor-
mance (as explained later).

Further, comparing the HOR with INC, for k < 200, HOR performs
less computations than INC. However, in the remaining cases where
k ≥ 200, INC outperforms HOR (with an exception in Unf). The
reason why INC performs better than HOR for k ≥ 200 is that, in
these cases HOR performs update computations; while, for the cases
where k ≤ |T | only the initial computations are performed.

In the Unf dataset (Fig. 5g), we can observe that the bound-based
methods (i.e., INC, HOR-I) demonstrate poor performance, with
HOR-I performing same as HOR, and INC performing worse than
both of them. The reason lies to the uniform distribution, where, as
previously stated, the scores are very close for all assignments. As
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Figure 6: Varying the number of time intervals |T |

a result, the values of the bounds are larger than a small number of
assignments’ scores. Hence, a small number of score updates can be
avoided by exploiting bounds.

Time. In terms of execution time (Fig. 5i–5l), we can observe that
time is determined by the number of computations performed. HOR-I
outperforms the other methods in all cases with HOR-I being around
4 times faster than ALG (for large k in real datasets).

4.2.2 Effect of the Number of Time Intervals
In this experiment (Fig. 6), we vary the number of time intervals |T |.
Due to lack of space, for this and the following experiments, the plots
presenting the number of computations are omitted.

Utility. Regarding utility (Fig. 6a –6d), similarly to the previous ex-
periment, our HOR algorithm performs the same as the ALG. We
observe that, as the number of intervals increases, the utility of all
methods increases too. This happens since the increase of available
intervals results to a smaller number of events assigned in the same
interval, as well as to a larger number of candidate assignments. The
former results to the assignment scores (in general) being larger in
cases where fewer parallel events take place. The latter offers more
options, which possibly result to better assignments.

Time. As for execution time (Fig. 6e–6h), excluding TOP, the HOR-I
is the most efficient in the cases which differs from HOR
(i.e., |T | < 100); while in the rest cases, HOR is the most efficient.
Notice that, in general, HOR performs very close to TOP. Overall,
HOR and HOR-I are about 2 to 4 times faster than the ALG, and
around 5 times faster for a small number of intervals. Finally, as
explained in the previous experiment, we can observe that, also in
this experiment, the bound-based methods (i.e., INC, HOR-I) are less
effective in Unf.

4.2.3 Effect of the Number of Candidate Events
We next study the effect of varying the number of candidate events |E |.
Note that, in this experiment, since k < |T |, HOR-I is identical to
HOR. Due to lack of space, in this experiment, the plots for the
Meetup and Zip are not presented, since they are similar to Concerts.
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Figure 7: Varying the number of candidate events |E |

Utility. Also in this experiment (Fig. 7a–7b) our HOR method has the
same utility score as the ALG in all cases. We observe that the utility
of ALG and HOR increases with |E | (with an exception in Unf). On
the other hand, for RAND it is either stable or is decreasing. This hap-
pens since the increase of |E | results to more candidate assignments.
So, there are more options for the ALG and HOR methods, while
for RAND it is less possible to select “good” assignments. Notice
that, in the Unf case (Fig. 7b), the utility for the non-random methods
remains stable. The reason is that increasing the number of “similar”
events (as previously explained) cannot result to better assignments.

Time. Also in this experiment (Fig. 7c–7d), our HOR method out-
performs the other, with INC having noticeably bad performance in
Unf, compared to HOR (as in the previous experiments). Further, the
difference between ALG and our methods increases with |E |, due to
the increasing number of update computations. Overall, in general
HOR is around 3 to 4 times faster than ALG, and up to 5 times faster
in Zip dataset specifically.
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Figure 8: Varying the number of users |U| (Unf Dataset)

4.2.4 Effect of the Number of Users
We then study the effect of varying the number of users (Fig. 8).
Results for the Zip dataset are omitted since they are similar to the
ones reported for Unf. Here, the HOR-I algorithm cannot be defined
with the default parameters setting (k = 100,T = 150). Hence, in
order to also study HOR-I, we examine a supplementary experiment
(Fig. 8b), where T = 65. Note that, this setting (k = 100,T = 65)
corresponds to the average case for the HOR and HOR-I algorithms
(w.r.t. the relation between k and |T |; see Sect. 3.3.1 & 3.4.1).

In terms of utility (the plot is omitted due to lack of space), as
expected, the utility increases with the number of users. The HOR
and ALG methods have the same utility scores in all cases. Regarding
performance, in the first experiment (Fig. 8a), HOR performs increas-
ingly better than INC and ALG, as the number of users increases.
In the second experiment (Fig. 8b), for larger numbers of users
(i.e., |U| > 100K), INC performs close to ALG. On the other hand,
HOR and HOR-I outperforms INC, with the difference increases with
|U|. Overall, in the first experiment, HOR is around 3 to 4 times
faster than ALG; in the second one, HOR and HOR-I are around
2 times faster than ALG.

4.2.5 Effect of the Number of Available Locations
In this experiment we vary the number of available locations of
each candidate event (Fig. 9). The results correspond to the Unf
dataset; though, similar results are reported in all datasets. We can
observe, that the utility score (Fig. 9a) remains almost unaffected
for the ALG and HOR methods, while TOP and RAND perform
slightly better in 5 locations. This is expected, since, as the number
of locations decreases, the number of feasible assignments decreases
too. Regarding the execution time (Fig. 9b), in all methods, increases
with number of locations. This is due to the fact that the number of
feasible assignments (as well as the computations) increases too.

4.2.6 HOR & HOR-I Worst Case w.r.t. k and |T |
Here, we consider the setting that corresponds to the worst case
w.r.t. k and |T | for the HOR and HOR-I algorithms (Sect. 3.3.1 &
3.4.1). Thus, for k = 100, the worst case corresponds to |T | = 99.
Fig. 10a presents the execution time for all datasets. We can observe
that even in the worst case, HOR-I outperforms all methods in all
cases (excluding the TOP). Also, in synthetic datasets, where the INC
demonstrates poor performance, HOR is more efficient.

4.2.7 Search Space
In this experiment (Fig. 10b) we study the effectiveness of the pro-
posed assignment organization (Sect. 3.2.2). We measure the number
of assignments examined by the ALG and our INC algorithm, vary-
ing the main parameters (k, |T |, |E |). In all cases, INC accesses
noticeable less assignments. Also, in each parameter, the differences
between INC and ALG increases in large parameter values. Overall,
in most cases, INC examines slightly more than half assignments that
ALG accesses.
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Figure 9: Varying the number of locations (Unf, |T | = 65)
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4.2.8 Summary
In what follows, we summarize our findings: (1) Between the datasets
used, with the exception of Unf, all the methods report similar re-
sults. In the Unf dataset, the bound-based methods (INC & HOR-I)
demonstrate lower performance than in other datasets.
(2) Regarding utility score, in all cases, our HOR (and HOR-I) algo-

rithm achieves almost the same utility score as ALG. Particularly, in
more than 70% of the performed experiments (including the experi-
ments omitted from the manuscript), HOR and ALG report the same
utility scores, while in the rest of the cases, the difference in utility
is on average 0.008%; with the largest difference being 1.3%. Recall
that, the INC algorithm always return the same solution as ALG.
(3) Comparing ALG [4] with our methods, in several cases: (i) our

HOR and HOR-I methods are around 5× faster and perform less than
half of the computations. (ii) INC is more than 3× faster, performs
less than half of the computations.
(4) Comparing our methods: (i) HOR-I is always faster than the

other methods. In several cases, HOR-I is around 3 and 2 times faster
than INC and HOR, respectively. (ii) HOR outperforms INC in terms
of time and computations, with some exceptions, in cases where
k > |T |. Overall, in several cases, HOR is around 3× faster than INC.

5 RELATED WORK
Event Management & Mining. The SES problem studied in this
work was recently introduced in [4], where a simple greedy algorithm
was proposed. Compared to [4], here we show that SES is hard to be
approximated over a factor and we design three efficient and scalable
algorithms which perform on average half the computations compared
the method presented in [4] and, in most cases, are 3 to 5 times faster
(more details in Sect. 1).

Recently, a number of studies have been proposed in the context
of event-participant planing. These works examine the problem of
finding assignments between a set of users and a set of pre-scheduled
events. The determined assignments aim to maximize the satisfaction
of the users while satisfying several constraints. Particularly, [12]
assigns one event to each user, based on her interests and social
relations. [27] finds an user-event arrangement by assigning users to
events. The latter work is extended in [28], where the online setting of
the problem is examined. A similar user-event arrangement problem
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is defined in a more advanced setting [26], where more factors are
considered (e.g., complex spatio-temporal factors, travel cost). This
work is extended in [6], in which participation lower bounds on event
and potential changes induced either by event organizer or by users
(e.g., changes on event location) are considered. In the same context,
[31] tries to maximize the satisfaction of the least satisfied user. In
an online scenario, [29] exploits the user feedback (i.e., accept or
reject the assigned events) in order to adaptively learn user interests.
This work tries to maximize the number of accepted assigned events.
Compared to our work, as discussed in Sect. 1, the objective, the
solution and the setting of our problem substantially differ from the
aforementioned approaches.

In a different context, [8, 9] attempt to find influential event orga-
nizers and promoters from online social networks. [25] studies the
influence of early respondents in online event scheduling process.
Further, a number of works [5, 7, 36, 41] analyze several factors form
(Event-based) Social Networks data in order to study user attendance
and provide event recommendations. Our work studies a different
problem compared to the aforementioned approaches. However, some
of the aforementioned methods can be exploited in our problem to
estimate the user attendance probability.

Assignment & Matching Problems. The problem studied shares
common characteristics with the Generalized assignment (GAP) and
Multiple knapsack (MKP) problems. Particularly, our problem is
a generalized case of the GAP and MKP problems with identical
bin capacities [18]. A major difference of SES compared to GAP
and MKP is that in SES the expected attendance (resp. profit) of
assigning an event (resp. item) to an interval (resp. bin) is deter-
mined based on the other events assigned to this interval. Also, be-
yond the event and interval entities which are also considered in
the aforementioned problems, in our problem further core entities
are involved (e.g., users, organizer, competing events). Additionally,
assignment/matching problems (similar to bipartite matching) have
been studied in spatial context [16, 30, 32, 35]. In general, the main
differences of these works compared to SES, are the same as the ones
that hold in GAP and MKP problems (see above).

Recommender Systems. Numerous approaches have been proposed
in the context of location and event recommendations. Particularly,
several works recommend events to users [13, 19, 21, 37, 40], while
others offer location-based recommendations [2, 11, 14, 15, 34, 38,
39]. Further, in a more general setting, approaches have been proposed
for recommending locations or items to groups of people (i.e., group
recommendations) [1, 3, 20, 22–24, 33]. Compared to our work,
the aforementioned approaches study a different problem, that is,
recommending objects (e.g., venues, events) to users.

6 CONCLUSIONS
This paper studied the Social Event Scheduling (SES) problem, which
assigns a set of events to time intervals, so that the number of atten-
dees is maximized. We showed that SES is NP-hard to be approx-
imated over a factor, and we proposed three efficient and scalable
algorithms. The proposed algorithms are evaluated over several real
and synthetic datasets, outperforming the existing solution three to
five times in several of cases.
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ABSTRACT
We present GroupTravel, a framework that generates cus-
tomized travel packages (TPs) for a group of individuals.
GroupTravel implements different consensus functions pro-
posed in group recommendation to reach agreement among
members. Given a group whose members provide a travel
query, GroupTravel returnsk Composite Items (CIs) of Points
Of Interest (POIs) that are valid, representative, cohesive and
personalized. Validity is achieved by satisfying the query
expressed by the group. Representativity ensures good cov-
erage of a city. Cohesiveness reflects geographic proximity
of POIs forming a CI. Personalization is achieved by choos-
ing POIs that best match the travel preferences of group
members. Additionally, group members can interact with
generated TPs to customize them. With extensive synthetic
experiments and user studies, we examine the benefit of
personalization and the impact of different group consensus
on user satisfaction. We also show that providing the ability
to interact with TPs and reflecting that in the consensus
yields better TPs.

1 INTRODUCTION
The ability to generate a travel package (TP) that best fits a
traveler’s profile is a longstanding problem that has been
studied for years (e.g., [1–3]). In this work, we develop
GroupTravel, a framework that generates TPs for a group
of individuals traveling together. A TP is a set of k Com-
posite Items (CIs), each of which is formed by Points of
Interest (POIs) in a city. GroupTravel personalizes TPs based
on a group profile that is computed as an aggregation of
its members’ preferences. GroupTravel allows travelers in a
group to further customize the proposed TP via interaction.
GroupTravel extends recent work that focused on a single
traveler at a time [4] to reach consensus between multiple
travelers [5, 6].

Travel Packages as Composite Items. A TP is a set of k
CIs. CIs are useful in planning a city tour, selecting books
for a reading club, or organizing a movie rating contest [1, 7–
15]. Each CI satisfies a query that specifies desired POI cate-
gories and a budget constraint [13]. An objective function
is defined to build a TP containing k valid, representative,
cohesive, and personalized CIs. Validity ensures that each
CI satisfies the query. Representativity enforces that the
k CIs “cover” the city. Cohesiveness forms CIs containing
geographically close POIs. Finally, personalization ensures
that the CIs contain POIs that match the members’ travel
preferences. We use a fuzzy clustering algorithm to find the
best k CIs forming a TP.

© 2019 Copyright held by the owner/author(s). Published in Proceedings
of the 22nd International Conference on Extending Database Technology
(EDBT), March 26-29, 2019, ISBN 978-3-89318-081-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Com-
mons license CC-by-nc-nd 4.0.

For example, a group wishing to visit Paris may request
a TP consisting of five CIs, one per day. The group specifies
a query which dictates CI validity: each CI must contain
an accommodation, a restaurant, three attractions and one
transportation mode, and such that the overall cost of vis-
iting POIs in a CI is no more than $100. Figure 1 shows
the TP returned by GroupTravel. Each CI contains a set of
co-located POIs that can be visited in one day. In addition,
the TP formed by the set of 5 CIs, provides a good coverage
of Paris and the POIs in each CI match the group members’
travel preferences.

In this paper, we make three contributions. We formalize the
problem of building a TP for a group of travelers. We define
how group members can interact with the generated TP to
further customize it. We run synthetic experiments and user
studies to validate GroupTravel’s effectiveness in generating a
satisfying TP for groups.

First contribution: TPs for groups. GroupTravel takes
as input a query and individual travel profiles. It outputs
a personalized TP for the group. The preference of a group
for an item must reflect the degree to which the item is pre-
ferred by all group members. The group preference must also
capture the level at which members disagree or agree with
each other. All other conditions being equal, an item that
draws high agreement should have a higher score than an
item with a lower overall group agreement. The different
ways of aggregating group preference and group disagree-
ment result in different group consensus methods ranging
from average preference, to least misery and disagreement-
based methods [16–18]. We leverage those definitions to
generate a group travel profile from individual preferences.

Second contribution: interactive TPs. In [4], we exam-
ined the benefits of letting a user interact with a TP to
customize it. The rationale is that even though the k CIs
are valid, representative, cohesive, and personalized, a user
may still want to intervene after seeing the travel options
available in a city. We showed that providing interaction
primitives to the user enabled expressing additional contex-
tual preferences such as exploring some neighborhoods in a
city or requesting a new CI which contains a specific POI. In
this paper, we examine the benefit of interactivity in Group-
Travel, i.e., for a group of individuals traveling together. To
achieve that, we define the impact of each operation on a
TP and on the profile of a group.

Figure 2 illustrates the flow of GroupTravel. Given a
group of travelers and a consensus function, a group profile
is generated from individual profiles. Our fuzzy clustering
algorithm admits a geographic region (e.g., a city), a query
and the group profile. It generates a TP that is shown to
the travelers who can modify CIs, delete CIs, or generate
new CIs. This interaction is reflected in the group’s profile
by updating the overall group preferences according to the
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Requested query contains one 
accommodation, one 
transportation, one restaurant, 
and three attractions, with a 
budget of $100.

DAY 1

DAY 2

DAY 3

DAY 4

DAY 5

Figure 1: A 5-day travel package (TP) in Paris consisting of 5 Composite Items (CIs) of POIs for the group query
⟨1 accommodation, 1 transportation, 1 restaurant, 3 attractions, $100⟩. Letters A, T, R, and H on POIs represent categories
of accommodation, transportation, restaurant, and attraction, respectively.

Figure 1: A 5-day travel package (TP) in Paris consisting of 5 Composite Items (CIs) of POIs for the group query
h1 accomodation, 1 transportation, 1 restaurant , 3 attractions, $100i

consensus functions proposed for group recommendation
in the context of group travel, and (2) examine the ben-
e�t of interactive customization for groups. Summarize
�ndings.

The paper is organized as follows. In Section 2, we de-
scribe our data model. Our approach for building group
travel packages using Composite Items is described in Sec-
tion 3. Experiments are reported in Section ??. The related
work is reviewed in Section 5. We conclude with a summary
of our work and a discussion of future work in Section 6.

2 DATA MODEL
2.1 Items
Our travel packages are built using Points Of Interest (POIs)
in a city. Table 1 shows sample POIs in Paris. In our exper-
iments, we use the TourPedia dataset.1 It consists of POIs
in eight cities which are divided into four main categories
(cat for short): 1) accommodation (acco), 2) transportation
(trans), 3) restaurant (rest ) and 4) attraction (attr ). Each
POI or item i has a unique id, a name, a longitude and a
latitude. To be able to set the rest of the attributes for the
items in our dataset, we augment it with additional infor-
mation extracted from Foursquare.2 Using the Foursquare
API, we retrieved the type of each item i . For instance, in
the case of an accommodation item i , i .t�pe will be set to
either a hotel, a hostel, a motel, a college residence hall, etc.
Similarly, for a transportation item i , we set i .t�pe to its
transportation mode which can be a tram station, a train
station, a car rental, a bike rental and so on. To set i .ta�s
for an item i , we retrieved all the tags provided by users on
Foursquare for item i . Finally, the cost of visiting item i or
i .cost was estimated as lo�(#checkins(i)) where #checkins(i)
is the number of people that checked in POI i on Foursquare.
The intuition behind this is that the more people check in
POI i , the more crowded it is likely to be and hence the more
expensive it will be [15].

1http://tour-pedia.org/about/
2https://foursquare.com/

2.2 User Pro�le
Our goal is to provide a group of users with personalized
travel packages. To do that, we build a group travel pro�le
which captures the preferences of group members for di�er-
ent types of POIs. We start by de�ning a single-user pro�le
and then explain how we aggregate the pro�les of di�erent
users to generate a group pro�le.

Each user u is associated with a pro�le for each POI
category c (i.e., acco, trans , rest or attr ), which is a vector
de�ned as follows:

Æu = hu1, · · · ,uni
where n is the number of di�erent POI types in category c
and each uj , 1  j  n is a score between 0 and 1.

One way to set the vector Æu is to ask the user to state
her preferences for the di�erent types of POIs. In case the
POI types are not su�cient to capture all the dimensions
of travel preferences for users, we can try to learn these
other dimensions from the data. For accommodation and
transportation, the types are well-de�ned (e.g., Bicycle, Bus,
Tram for transportation and Hotel, Hostel, Resort for accom-
modation). For restaurants and attractions, we leverage their
tags to capture information such as cuisine and ambiance
for restaurants, or type and entrance fee for attractions.
Particularly, we rely on Latent Dirichlet Allocation (LDA)
applied to tags to identify latent topics for restaurants and
attractions [19]. This results in several types such as "art
gallery, museum, library" and "garden, park, event hall" for
attractions, and "Japanese, sushi" and "beer, wine, bistro" for
restaurants.

To set the individual components of the vector Æu, we do
the following. For the case of transportation and accommo-
dation, we ask the user to provide a rating r j between 0 and 5
for each accommodation or transportation type sj . Similarly,
for restaurants and attractions, we ask the user to provide
a rating r j between 0 and 5 for each latent topic sj where
each topic is represented by representative tags. Finally, we
set the score uj in the user pro�le as the normalized rating
over all types or topics. That is,

uj = r jPn
k=1 rk

user 1

Figure 1: A 5-day travel package (TP) in Paris consisting of 5 Composite Items (CIs) of POIs for the group query
h1 accomodation, 1 transportation, 1 restaurant , 3 attractions, $100i
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�ndings.
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work is reviewed in Section 5. We conclude with a summary
of our work and a discussion of future work in Section 6.
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latitude. To be able to set the rest of the attributes for the
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ent types of POIs. We start by de�ning a single-user pro�le
and then explain how we aggregate the pro�les of di�erent
users to generate a group pro�le.
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category c (i.e., acco, trans , rest or attr ), which is a vector
de�ned as follows:
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where n is the number of di�erent POI types in category c
and each uj , 1  j  n is a score between 0 and 1.

One way to set the vector Æu is to ask the user to state
her preferences for the di�erent types of POIs. In case the
POI types are not su�cient to capture all the dimensions
of travel preferences for users, we can try to learn these
other dimensions from the data. For accommodation and
transportation, the types are well-de�ned (e.g., Bicycle, Bus,
Tram for transportation and Hotel, Hostel, Resort for accom-
modation). For restaurants and attractions, we leverage their
tags to capture information such as cuisine and ambiance
for restaurants, or type and entrance fee for attractions.
Particularly, we rely on Latent Dirichlet Allocation (LDA)
applied to tags to identify latent topics for restaurants and
attractions [19]. This results in several types such as "art
gallery, museum, library" and "garden, park, event hall" for
attractions, and "Japanese, sushi" and "beer, wine, bistro" for
restaurants.

To set the individual components of the vector Æu, we do
the following. For the case of transportation and accommo-
dation, we ask the user to provide a rating r j between 0 and 5
for each accommodation or transportation type sj . Similarly,
for restaurants and attractions, we ask the user to provide
a rating r j between 0 and 5 for each latent topic sj where
each topic is represented by representative tags. Finally, we
set the score uj in the user pro�le as the normalized rating
over all types or topics. That is,
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user m

group consensus 
methods 
average preference 

least misery 

pair-wise disagreement 

disagreement variance

travel group !

i .id i .name i .cat i .coor i .type i .tags i .cost
1 Le Burgundy acco h48.8679, 2.3256i hotel luxury suites cognac champagne bar gastronomic

restaurant spa
3.00

2 The Bicycle Store trans h48.8642, 2.3658i bike shop accessoires velo beach cruiser bicycle paris �xed
gear

2.71

3 Un Zèbre à Mont-
martre

rest h48.886, 2.3348i french bankers bar brunch cafe comedy �replace frat
hipsters liquor margaritas

3.20

4 Les Arts Décoratifs a�r h48.8632, 2.3334i museum arts contemporary decorative exhibition fashion
gallery mode modern museum

3.86

Table 1: Sample points of interest in Paris

2.3 Group Pro�le
Similar to users, a group of users is associated with a group
pro�le for each POI category c (i.e., acco, trans , rest or attr ),
which is a vector de�ned as follows:

Æ� = h�1, · · · ,�ni
where n is the number of di�erent POI types in category c ,
and each �j , 1  j  n is a score between 0 and 1. �j re�ects
the preference of group G for a POI type by aggregating the
preferences of group members.

To compute each�j , we need to aggregate the preferences
uj of each user u 2 G. To do so, we leverage consensus
functions that were previously proposed in the context of
group recommendation [16, 17]. A consensus function is
used to aggregate two components: group preference and
group disagreement. Intuitively, to compute �j , we need to
re�ect the degree to which the jth POI type in a given category
is preferred by all group members, and capture the level at
which members disagree or agree with each other about the
jth POI type in a given category. All other conditions being
equal, a POI that draws high agreement should have a higher
score than a POI with a lower overall group agreement. We
revisit the de�nitions we introduced in [18] to compute
group consensus as a combination of group preference and
group disagreement.

Group preference. The degree to which the ith POI type
in a given category is preferred by all group members is
denoted pj , and is computed using one of two common
preference aggregation functions:

(1) Average Preference: pj = 1
|G |

P
u 2G

uj

(2) Least-Misery Preference: pj = min
u 2G

uj

Group disagreement. The level at which members dis-
agree or agree with each other about the jth POI type in a
given category is denoted dj , and is computed using one of
two common disagreement computation functions:

(1) Average Pair-wise Disagreement:
dj = 2

|G |( |G |�1)
P

u,� 2G
(|uj ��j |,

(2) Disagreement Variance:
dj = 1

|G |
P

u 2G
(uj � µ j )2 where µi = 1

|G |
P

u 2G
uj

The average pair-wise disagreement function computes
the average of pair-wise di�erences in individual prefer-
ences for the jth POI type among group members, while
the variance disagreement function computes the mathe-
matical variance of individual preferences. Intuitively, the
closer the preferences between usersu and� , the lower their
disagreement.

Group consensus. We are now ready to compute a single
group consensus score �j for the jth POI type in a given
category . We do that by combining group preference and
disagreement as follows:

�j = w ⇥ pj + (1 �w) ⇥ dj

where 0  w  1 and it speci�es the relative importance of
preference and disagreement in the overall group consen-
sus. We hence have four possible consensus functions that
combine preference and disagreement to compute a single
score �j in the group pro�le.

Example. Consider a family (a couple with three kids)
which forms a travel group � of size 4. Their preferences for
visiting the museum of Les Arts Décoratifs in Paris (item
with id = 4 in Table 1) are 4, 5, 3, and 1, for the father,
mother, the teenage child, and the kid, respectively. Using
average preference method, the group preference of this
item for � becomes p4 = 3.25. However the group prefer-
ence towards the museum gets as low as 1.00 using the least
misery method. Least misery favors the most unhappy user
in the group, hence the preference of the kid dominates oth-
ers’. On the other hand, the average pair-wise disagreement
between �’s members becomes d4 = 2.17. Also, the disagree-
ment variance becomes d4 = 2.19. Given w = 0.5, �’s con-
sensus for the museum becomes �4 = 2.71 by considering
average preference and average pairwise disagreement as
the group preference and group disagreement components,
respectively.

3 BUILDING GROUP TRAVEL
PACKAGES

In this section, we de�ne and solve the problem of building
personalized travel packages for groups. We start by intro-
ducing Composite Items and travel packages, and formulate
building travel packages as a fuzzy clustering problem. We
then discuss how groups can interact with travel packages
to customize them using our system GroupTravel.

3.1 Composite Items
A Composite Item is a set of POIs of di�erent types. To be
able to de�ne what constitutes a CI, we rely on a group
query which is a vector de�ned as follows:

Æq = h#c1, · · · , #cm ,Bi
wherem is the number of POI categories (4 in our dataset),
#c j , 1  j  m speci�es the number of items for POI cate-
gory c j , and B is a total budget.

A query indicates which categories of POIs, and how
many of them, should constitute a CI. For example, the
query Æq = h1 acco, 1 trans, 2 rest , 1 attr , $120i represents a

generate travel 
packages for 

groups

personalized travel 

package for group !

group query qgroup profile

points of interest

customizing the 
travel package

Figure 2: GroupTravel framework

requested changes. The new group profile can then be used
to generate other TPs in the same or in a different city and
test the “robustness” of the updated profile across cities.

Third contribution: experiments. The purpose of our
experiments is two-fold: (1) study the utility of consensus
functions from group recommendation in the context of
GroupTravel, and (2) examine the benefit of interactive cus-
tomization for groups. We run two extensive sets of exper-
iments. In the first, we generate synthetic data to exam-
ine the relationship between group characteristics (group
size, agreement between members, and consensus meth-
ods) and optimization dimensions (representativity, cohe-
siveness, and personalization). In the second, we run an
extensive user study with real users from Figure-Eight1 and
Amazon Mechanical Turk2. Our study evaluates the use-
fulness of GroupTravel by asking actual users about their
satisfaction with TPs before and after customization.

Our findings extend previous work for single travelers [4]
and in group recommendation [5, 6]. In particular, we find
that customization makes travel profiles more robust. Ad-
ditionally, we find that disagreement-based consensus per-
forms best in terms of all optimization dimensions, and for
all different group variants (uniform and non-uniform as
well as small, medium and large). Least misery, on the other
hand, is more successful at satisfying the median user in
larger groups with diverse tastes.

We also observe that TPs for non-uniform groups are
more cohesive than TPs for uniform groups. This result

1http://www.figure-eight.com/
2https://www.mturk.com/

generalizes previous work where a tension between per-
sonalization and cohesiveness was observed for individual
users: the more personalized a TP is, the less likely it is to be
cohesive, and vice versa [4]. Non-uniform groups contain
members with diverse preferences. This diversity dilutes
personalization (the aggregated profile expresses lower pref-
erences than individual profiles). Given that, cohesiveness
is likely to be higher for non-uniform groups. Similarly, the
cohesiveness of uniform groups increases with group size,
while their personalization decreases.

Our user study validates our objective function by show-
ing that personalized TPs perform well and are liked bet-
ter than non-personalized and random TPs. We also find
that TPs obtained using average preference and least mis-
ery are best for uniform groups, whereas TPs obtained us-
ing disagreement-based methods are best for non-uniform
groups. Similarly, incorporating inter-member disagreements
is shown to be the best way to reach a consensus within
diverse groups.

The paper is organized as follows. In Section 2, we de-
scribe our data model. Our approach for building group
travel packages and interacting with them is described in
Section 3. Experiments are reported in Section 4. The related
work is reviewed in Section 5. We conclude with a summary
of our work and a discussion of future work in Section 6.
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i .id i .name i .cat i .coordinates i .type i .tags i .cost
1 Le Burgundy acco ⟨48.8679, 2.3256⟩ hotel luxury suites cognac champagne bar gastronomic

restaurant spa
3.00

2 The Bicycle Store trans ⟨48.8642, 2.3658⟩ bike shop accessoires vélo beach cruiser bicycle paris fixed
gear

2.71

3 Un Zèbre à Mont-
martre

rest ⟨48.886, 2.3348⟩ french bankers bar brunch café comedy fireplace frat
hipsters liquor margaritas

3.20

4 Les Arts Décoratifs attr ⟨48.8632, 2.3334⟩ museum arts contemporary decorative exhibition fashion
gallery mode modern museum

3.86

Table 1: Sample Points Of Interest in Paris

2 DATA MODEL
2.1 Items
Our travel packages are built using Points Of Interest (POIs)
in a city. Table 1 shows sample POIs in Paris. In our exper-
iments, we use the TourPedia dataset.3 It consists of POIs
in eight cities which are divided into four main categories
(cat for short): (1) accommodation (acco), (2) transportation
(trans), (3) restaurant (rest ) and (4) attraction (attr ). Each
POI or item i has a unique id, a name, a longitude and a
latitude. To be able to set the rest of the attributes for the
items in our dataset, we augment it with additional infor-
mation extracted from Foursquare.4 Using the Foursquare
API, we retrieved the type of each item i . For instance, in
the case of an accommodation item i , i .type will be set to
either a hotel, a hostel, a motel, a college residence hall, etc.
Similarly, for a transportation item i , we set i .type to its
transportation mode which can be a tram station, a train
station, a car rental, a bike rental, and so on. To set i .taдs
for an item i , we retrieved all the tags provided by users on
Foursquare for item i . Finally, there are may ways of setting
the cost of visiting an item i or i .cost including declarative
data.

2.2 User Profile
Our goal is to provide a group of users with personalized
travel packages. To do that, we build a group travel profile
which captures the preferences of group members for differ-
ent types of POIs. We start by defining a single-user profile
and then explain how we aggregate the profiles of different
users to generate a group profile.

Each user u is associated with a profile for each POI
category c (i.e., acco, trans, rest or attr), which is a vector
defined as follows:

®u = ⟨u1, · · · ,un⟩
where n is the number of different POI types in category c
and each uj , 1 ≤ j ≤ n is a score between 0 and 1.

To simplify our notation, c does not appear in ®u. One way
to set the vector ®u is to ask the user to state her preferences
for the different types of POIs. In case the POI types are
not sufficient to capture all the dimensions of travel prefer-
ences for users, we can try to learn these other dimensions
from the data. For accommodation and transportation, the
types are well-defined (e.g., Bicycle, Bus, Tram for trans-
portation, and Hotel, Hostel, Resort for accommodation).
For restaurants and attractions, we leverage their tags to

3http://tour-pedia.org/about/
4https://foursquare.com/

capture information such as cuisine and ambiance for restau-
rants, or type and entrance fee for attractions. Particularly,
we rely on Latent Dirichlet Allocation (LDA) applied to tags
to identify latent topics for restaurants and attractions [19].
This results in several types such as “art gallery, museum,
library” and “garden, park, event hall” for attractions, and
“Japanese, sushi” and “beer, wine, bistro” for restaurants.

To set the individual components of the vector ®u, we do
the following. For the case of transportation and accommo-
dation, we ask the user to provide a rating r j between 0 and 5
for each accommodation or transportation type sj . Similarly,
for restaurants and attractions, we ask the user to provide
a rating r j between 0 and 5 for each latent topic sj where
each topic is represented by representative tags. Finally, we
set the score uj in the user profile as the normalized rating
over all types or topics, i.e.,

uj = r j∑n
k=1 rk

2.3 Group Profile
Similar to users, a group of users G is associated with a
group profile for each POI category c (i.e., acco, trans, rest
or attr), which is a vector defined as follows:

®д = ⟨д1, · · · ,дn⟩
where n is the number of different POI types in category c ,
and each дj , 1 ≤ j ≤ n is a score between 0 and 1. The
value дj reflects the preference of group G for a POI type
by aggregating the preferences of group members.

To compute each дj , we need to aggregate the prefer-
ences uj of each user u ∈ G. To do so, we leverage consensus
functions that were previously proposed in the context of
group recommendation [17, 18]. A consensus function is
used to aggregate two components: group preference and
group disagreement. Intuitively, to compute дj , we need to
reflect the degree to which the jth POI type in a given category
is preferred by all group members, and capture the level at
which members disagree or agree with each other about the jth

POI type in a given category. All other conditions being equal,
a POI that draws high agreement should have a higher score
than a POI with a lower overall group agreement. We re-
visit the definitions we introduced in [16] to compute group
consensus as a combination of group preference and group
disagreement.

Group preference. The degree to which the jth POI type
in a given category is preferred by all group members is
denoted pj , and is computed using one of two common
preference aggregation functions:
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(1) Average Preference: pj = 1
|G |

∑
u ∈G

uj

(2) Least-Misery Preference: pj = min
u ∈G

uj

Group disagreement. The level at which members dis-
agree or agree with each other about the jth POI type in a
given category is denoted dj , and is computed using one of
two common disagreement computation functions:

(1) Average Pair-wise Disagreement:
dj = 2

|G |( |G |−1)
∑

u,v ∈G
(|uj −vj |),

(2) Disagreement Variance:
dj = 1

|G |
∑

u ∈G
(uj − µ j )2 where µ j = 1

|G |
∑

u ∈G
uj

The average pair-wise disagreement function computes
the average of pair-wise differences in individual prefer-
ences for the jth POI type among group members, while
the variance disagreement function computes the mathe-
matical variance of individual preferences. Intuitively, the
closer the preferences between usersu andv , the lower their
disagreement.

Group consensus. We are now ready to compute a single
group consensus score дj for the jth POI type in a given
category. We do that by combining group preference and
disagreement as follows:

дj = w1 × pj +w2 × (1 − dj )

where 0 ≤ w1,w2 ≤ 1, w1 + w2 = 1, and they specify the
relative importance of preference and disagreement in the
overall group consensus, respectively. We hence have four
possible consensus functions that combine preference and
disagreement to compute a single score дj in the group
profile.

Example. Consider a family (a couple with three kids)
which forms a travel group G of size 4. Their preferences
for visiting museums are 0.8, 1.0, 0.6, and 0.2, for the fa-
ther, mother, the teenage child, and the kid, respectively,
where 1.0 reflects the highest preference. Using average
preference method, the group preference for this POI type is
p = 0.65. However the group preference towards museums
gets as low as 0.2 using the least misery method. Least mis-
ery favors the most unhappy user in the group, hence the
preference of the kid dominates others’. On the other hand,
the average pair-wise disagreement between G’s members
is d = 0.43. Also, the disagreement variance is d = 0.088.
Given w1 = 0.5 (hence w2 = 0.5), G’s consensus for mu-
seums is д = 0.61 by considering average preference and
average pair-wise disagreement as the group preference and
group disagreement components, respectively.

3 BUILDING GROUP TRAVEL
PACKAGES

In this section, we define and solve the problem of building
personalized travel packages for groups. We start by intro-
ducing Composite Items (CIs) and Travel Packages (TPs),
and formulate building travel packages as a fuzzy clustering
problem. We then discuss how groups can interact with
travel packages to customize them using GroupTravel.

3.1 Composite Items
A Composite Item is a set of POIs of different categories. To
be able to define what constitutes a CI, we rely on a group
query which is a vector defined as follows:

®q = ⟨#c1, · · · , #cm ,B⟩
wherem is the number of POI categories (4 in our dataset),
#c j , 1 ≤ j ≤ m specifies the number of items for POI cate-
gory c j , and B is a total budget.

A query indicates which categories of POIs, and how
many of them, should constitute a CI. For example, the
query ®q = ⟨1 acco, 1 trans, 2 rest, 1 attr, $120⟩ represents a
CI with 1 accommodation, 1 transportation, 2 restaurants
and 1 attraction for a daily budget of $120.

The query is used to define valid CIs as follows. Given
a set of items I and a query ®q = ⟨#c1, · · · , #cm ,B⟩, a valid
CI ⊆ I is a set of items such that (1) their categories
correspond to the requested categories in the group query,
and (2) the total budget of items forming the CI is at most B,
i.e.,




(i) ∀j ∈ {1, · · · ,m},
∑
i ∈CI

1(i .cat , c j ) = #c j

(ii)
∑
i ∈CI

i .cost ≤ B

where 1 is an indicator function which is equal to 1 if the
category of item i is c j and 0 otherwise. We refer to the set
of valid CIs as V .

3.2 Travel Packages
We are now ready to define the notion of a group travel
package and formulate building travel packages as a fuzzy
clustering problem. Given a group G, a set of items I, and
a query ®q, we define a group travel package as a set of k
Composite Items TP = {CI1,CI2, · · · ,CIk } where eachCIj ⊆
I is a valid Composite Item.

A travel package is formed by valid and cohesive CIs that
are representative of the set of available items in the city. The
validity of a CI is expressed in terms of a query ®q as defined
in Section 3.1. Its cohesiveness must reflect how close the
items forming a CI are to each other. The intuition is that
each CI represents things to do in a given area of a city and
must thus have POIs that are geographically close to each
other. Finally, the representativity of a travel package serves
the purpose of providing a good coverage of the city [13].
KFC, the algorithm that solves that problem in [13], relies
on fuzzy clustering to position k centroids that “cover” the
whole dataset. CIs are then formed in the vicinity of these
centroids, which ensures that they provide a good summary
of the dataset. In the context of this work, we may want to
see a given item in different CIs. For example, a user’s hotel
could belong to multiple CIs. The same applies to a museum
if the user wants to go back to the museum (as is the case for
the “Louvre museum” in Paris that requires more than one
visit). Contrary to hard clustering, fuzzy clustering allows
each data point to participate in multiple clusters [20]. Thus,
KFC is a natural choice for us to generate travel packages.

To be able to generate CIs, we define an item vector for
each POI i as follows:

®i = ⟨i1, · · · , in⟩
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where n is the number of types for the POI category that
item i belongs to, and each i j , 1 ≤ j ≤ n is a score between
0 and 1. The item vector ®i is set based on the category of the
item i . For accommodation and transportation items (i.e.,
i .cat = acco or i .cat = trans), we set i j as follows:

i j =
{

1, if i .type = tj

0, otherwise

where tj is the jth type in the category that item i belongs
to. For restaurants and attractions, the item vector ®i is set
to the topic distribution vector for item i obtained from
applying LDA.

To generate a personalized travel package TP for a group G,
we optimize the following objective function:

arдmax
M,W

α
k∑
j=1

∑
i ∈I

w
f
i j (1 − Euclidean(i, µ j ))+

k∑
j=1

max
CIj ∈V

(
β

∑
i ∈CIj

(1 − Euclidean(i, µ j ))+

γ
∑
i ∈CIj

Cosine(®i, ®д)
)

s .t . ∀i ∈ I,
k∑
j=1

wi j = 1

(1)

In Equation 1, we use a normalized geographic Euclidean
distance between two items, and Cosine similarity between
an item vector and the group profile vector for the category
the item belongs to. Euclidean distance is an an approxi-
mation of Haversine calculations on a spherical space (to
measure the distance in miles/kilometers between two lat-
itudes and longitudes) with Equirectangular calculations
on a Euclidean space to gain performance. This approxima-
tion makes sense for short distances within a city as we
have experimentally observed that our performance gain
is 30x with only 0.1% of precision loss. To obtain a normal-
ized Euclidean distance, we divide all distance values by the
largest observed distance value. M = {µ1, µ2, · · · , µk } is a
set of k centroids,W is a weight matrix of size |I |×k which
contains the wi j weights indicating which item belongs to
which cluster. α and β are user-dependent parameters con-
trolling the weight of the optimization objectives, and f ≤ 1
is the weighting exponent used in fuzzy clustering.

The two components of the objective function are inher-
ited from KFC [13] and capture cohesiveness and represen-
tativity by choosing items i that are close to the centroid µ j
of each of the k clusters, where closeness is based on the
geographic distance. Those components serve to identify
cluster centroids µ j that are representative of the complete
dataset, while ensuring that the centroids obtained are close
to some valid CI (i.e., ∈ V). Maximizing the sum of the
similarities of all items in a CI to its centroid additionally
ensures the cohesiveness of the valid CI considered.

The last component, weighted with γ , captures person-
alization by comparing the similarity of the group’s profile
vector ®д to the item vector ®i . This allows the algorithm to
focus on producing CIs that are valid, cohesive and that
contain personalized items that matter to the group, rather
than any items.

3.3 Customizing Travel Packages
In order to customize travel packages, we provide group
members with a GUI where all the CIs forming a travel
package are displayed on an interactive map of the city. We
define five atomic operations to allow groups to refine their
preferences and produce customized TPs. Our operations
are:
(1) REMOVE(i ,CI ): remove POI i from Composite Item CI .
(2) ADD(i ,CI ): add POI i to a Composite Item CI . The user

can filter the POIs by category and type and the closest
items to CI satisfying the user filter are displayed for
the user to choose from.

(3) REPLACE(i ,CI ): replace POI i in CI with another POI. In
that case, the system recommends to the user the closest
POI j in terms of geographic distance and such that
i .cat = j .cat .

(4) GENERATE(RECTANGLE(x ,y,w,h)): generate a new CI that
is centered in the area enclosed by a rectangle whose
upper-left point is (x ,y), and with width w and height h.
The generated CI is both valid and cohesive.

Using the above set of operations, group members can
customize the generated travel package until they are sat-
isfied with it. For example, a member can drop or add a
set of POIs in a given CI. She can also replace POIs with
others that the system recommends to ensure that the CI
remains as cohesive as possible. Finally, a group member
can completely delete a CI by iteratively removing items
in that CI until it is empty. Similarly, a group member can
generate a new CI by selecting an area in the map. The
group interactions with the CIs provide us with additional
information about the group travel preferences. Particularly,
they are useful in refining the group travel profile.

remove(T,CI)
replace(H,CI)

generate(rectangle(x,y,w,h))

The system suggests 
Bibliothèque de l’Arsenal as 

a replacement.

add(“Tour Monparnasse”, CI)

(x,y)

w
h

Figure 3: Customization operators

Figure 3 illustrates examples of customization operators
in Paris. For instance, a REMOVE operator is requested to dis-
card a bus stop in the area of “Invalides”. It is also requested
to ADD “Monparnasse tower” to the travel package as an
attraction. In response to a REPLACE operator, the system
suggests “Arsenal library” to replace “Pompidou library”.
Also a GENERATE operation is requested by defining an area
from “L’église de la Madeleine” to “Palais Royal”, where a
potential attraction POI is “Place Vendôme”.

Refining the group profile. The interactions of group
members with the provided CIs serve as implicit feedback
that can be used to update the group’s travel profile. This
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refinement serves two purposes: (1) make the group profile
robust so that fewer interactions will be needed in the future
including in other cities, (2) build long-lasting profiles for non-
ephemeral groups. We define two strategies for updating
the group profile: individual and batch strategies. The indi-
vidual strategy was defined for single travelers [4]. It first
refines each group member profile based on that member’s
interactions with the TP, if that member customized the TP.
It then aggregates all individual profiles into a new group
profile. The batch strategy gathers interactions performed
by all group members and directly refines the group profile.
We describe the batch strategy that is a direct adaptation of
the individual strategy.

Let ®д be the current group profile for POI category c .
Furthermore, assume a group member added a set of POIs
I+ that belong to category c . Also, assume a group member
removed a set of POIs I− that belong to category c . Now the
group vector ®д for category c can be updated as follows:

®д = ®д + ®д+ − ®д−
where

®д+ = 1
|I + |

∑
i ∈I + ®i

and ®i is the item vector of item i as defined in Section 3.2.
The value ®д− will be set the exact same way as ®д+ by

replacing I+ with I− above. Finally, if any of the compo-
nents of the updated vector ®д falls below 0, the value of this
component will be set to 0.

4 EXPERIMENTS
We provide two sets of experiments. First, we generate syn-
thetic data to examine the relationship between group char-
acteristics (group size, uniformity, and consensus methods)
and optimization dimensions (representativity, cohesive-
ness, and personalization). As we do not recruit real partici-
pants in this experiment, we focus on dissecting the objec-
tive function of GroupTravel. In the second experiment, we
describe our user study which evaluates the usefulness of
GroupTravel by asking group members about their satisfac-
tion with the generated travel packages, before and after
customization.

4.1 Setup

Group composition. We build groups by aggregating pro-
files of individual users. In our synthetic experiment, user
profiles are generated at random. In our user study, user
profiles capture the travel preferences of the participants.

We form different groups by varying their size (the num-
ber of users in a group) and uniformity. Intuitively, a group
is more uniform if its members have similar preferences
with respect to POI types. The uniformity of a group G is a
value between 0 and 1 and is computed as the average pair-
wise Cosine similarity between profile vectors of all G’s
members, i.e.,

uniformity(G) = 2
|G | |G−1 |

∑
u,v ∈G

Cosine(®u, ®v)

We consider three categories of group sizes, i.e., small groups
having 5 members, medium groups having 10 members, and
large groups having 100 members. We also consider two
categories of group uniformity, i.e., uniform groups having
a uniformity value larger then 0.85, and non-uniform groups
having a uniformity value smaller than 0.20.

Group consensus. Recall from Section 2.3 that for a group G,
we aggregate the individual user profiles to generate a group
profile by applying a group consensus as follows:

дj = w1 × pj +w2 × (1 − dj )
where pj represents a group preference for POI type j and dj
represents group disagreement for POI type j. We employ
the following variants of group consensus in our experi-
ments:
• Average preference, where pj is average preference and
w1 = 1.0 (i.e., group disagreement is not considered).

• Least misery, where pj is least misery and w1 = 1.0 (i.e.,
again group disagreement is not considered).

• Average preference with average disagreement, where pj
is average preference, dj is average pair-wise disagreement
and w1 = 0.5. Hereinafter, we call this method “pair-wise
disagreement” for simplicity.

• Average preference with disagreement variance, where pj
is average preference, dj is disagreement variance andw1 =
0.5. Hereinafter, we call this method “disagreement vari-
ance” for simplicity.

4.2 Optimization dimensions
Once a TP is computed for a group, we measure each com-
ponent of our optimization objective, representativity, co-
hesiveness and personalization (Section 3.2).

Representativity measures the collective coverage of POIs
in a TP over a region of interest, e.g., a city. The farther CIs in
a TP are from each other, the higher the TP’s representativity.
Representativity is measured as follows:

representativity(TP) =
k∑
l=1

k∑
j=l

Euclidean(µl , µ j ) (2)

where µl is the centroid of the composite item Cl , and
Euclidean(µl , µ j ) measures the Euclidean distance between
the centroids µl and µ j . Recall from Section 3.2 that the
Euclidean distance is an an approximation of Haversine
calculations.

Cohesiveness measures the geographical compactness of
CIs in a TP, i.e., how close the POIs in a CI are to each other.
It is measured as follows:

cohesiveness(TP) = S −
( ∑
CI ∈TP

∑
i, j ∈CI

Euclidean(i, j)
)

(3)

where Euclidean(i, j) measures the Euclidean distance be-
tween the geographical coordinates of POIs i and j . The con-
stant S defines the maximum possible sum of distances over
CIs in a TP. In our synthetic experiment, we set S = 221.79
as the largest observed value for aggregated distances.

While representativity and cohesiveness evaluate TPs
in a geographical domain, personalization evaluates them
in terms of preferences (using the profile vector ®д for the
group G). Personalization is measured as follows:

personalization(TP,G) =
∑

CI ∈TP

∑
i ∈CI

Cosine(®i, ®д) (4)
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average preference least misery pair-wise
disagreement

disagreement
variance

R C P R C P R C P R C P

uniform
groups

small 100% 69% 95% 38% 0% 74% 100% 74% 99% 99% 79% 100%
medium 94% 70% 94% 75% 57% 73% 95% 77% 98% 96% 80% 98%

large 85% 73% 72% 76% 76% 68% 96% 87% 97% 97% 84% 96%

non-uniform
groups

small 17% 89% 75% 21% 76% 07% 98% 94% 98% 97% 90% 98%
medium 25% 90% 83% 14% 76% 7% 98% 98% 99% 98% 94% 98%

large 32% 96% 98% 13% 79% 00% 95% 100% 96% 95% 96% 93%
Table 2: Synthetic experiment for travel groups. Optimization dimensions are abbreviated as R for representativ-
ity, C for cohesiveness, and P for personalization.

4.3 Synthetic Data Experiment
Our goal in the synthetic data experiment is to examine
the relationship between group characteristics and our op-
timization dimensions. Preferences of real people will be
verified later in the user study (Section 4.4). Groups are
characterized by their uniformity, i.e., similarity between
members, size, and the consensus function used to aggregate
individual preferences.

4.3.1 Setup. We describe how we generate user and
group profiles and other settings in the synthetic exper-
iments.

Group profiles. We generate user profiles in an indepen-
dent roll-and-dice process. Each profile is a vector whose
cells contain preference values for different types of POIs.
We assign a random value between 0 and 1 to each cell in
the user profile vector. A group G is a matrix of |G| user pro-
files, where |G|∈ {5, 10, 100}. For each combination of group
size and group uniformity (uniform and non-uniform), we
generated 100 different random groups. For each generated
group, we computed a group profile using the four different
consensus methods. As a result, we obtained 2400 distinct
group profiles in total.

Query and objective function. We generate a TP for each
group profile. Each TP contains exactly 5 CIs that are valid
with respect to a default query, i.e., ⟨1 acco, 1 trans, 1 rest, 3
attr⟩. Also, we specify an infinite budget to ensure that all
popular POIs are included in the CIs. Regarding the weights
in our objective function (Equation 1), we always set γ = 1.0
for personalization, and we assign random values to α and β
in the range [0, 1] for representativity and cohesiveness, re-
spectively, in order to prevent bias towards an optimization
objective.

Optimization dimensions. For the TPs generated for group
profiles, we report representativity, cohesiveness, and per-
sonalization as defined in Equations 2, 3, and 4, respectively.
The values obtained for all dimensions are normalized in
the range [0, 1] in min-max style:

normalized_value(o) = value(o) − min(o)
max(o) − min(o)

where min(o) and max(o) are the smallest and highest
values of an optimization dimension o, respectively. Before
normalization, the values of representativity, cohesiveness,
and personalization were spread in the ranges [0.03, 41.39],
[19.29, 221.79], and [0.01, 0.16], respectively.

Validation of observations. We validate all our observa-
tions on optimization dimensions in terms of statistical sig-
nificance using the One-way ANOVA procedure, with the F -
measure of MSB/MSE5 and the significance level of p = 0.05.
ANOVA results are reported as F (n,k) = x given p < 0.05,
where n and k are the first and second degrees of freedom,
respectively, and x is the value obtained for the F -measure.
Fully-independent generation of user and group profiles en-
sures that the F -measure captures truly significant results.

We also compute the Pearson correlation coefficient (PCC)
to validate linear correlations between attributes. PCC has
a value between +1 and −1, where +1 reflects a totally posi-
tive linear correlation, 0 means no linear correlation, and −1
represents a totally negative linear correlation.

4.3.2 Summary of results. Table 2 reports the values of
the optimization dimensions averaged over 100 generated
groups. Overall, we observe that disagreement-based con-
sensus functions, whether pair-wise or variance, perform
best in terms of all optimization dimensions, and for all
different group variants. Least misery appears to be the
worst aggregation method. We also observe that TPs for
non-uniform groups are more cohesive than uniform groups.
However, the cohesiveness of uniform groups increases with
group size, while their personalization decreases. We also
note that there is a tension between personalization and
cohesiveness where more personalized TPs are less likely
to be cohesive.

Additionally, we report the similarity between the TP of a
group and its median user (Table 3). Overall, we observe that
the similarity decreases in larger groups. For non-uniform
groups, the best similarity values are achieved using least
misery, while for uniform groups, disagreement-based meth-
ods are superior.

4.3.3 Interpretation of results. We discuss the influence
of consensus functions, group uniformity, and group size,
on the optimization dimensions and the agreement between
individuals and groups.

Influence of consensus functions. We observe in Table 2
that TPs are generally more personalized when their associ-
ated group profile is built using a disagreement-based con-
sensus (variance disagreement and pair-wise disagreement).
Least misery is the worst consensus method for person-
alization. This shows that optimizing towards one single
group member is not an effective personalization strategy.
Incorporating inter-member disagreements is therefore the
5MSB: Mean Square Between, MSE: Mean Square Error
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average preference least misery pair-wise
disagreement

disagreement
variance

R C P R C P R C P R C P

uniform
groups

small 99% 31% 93% 38% 98% 75% 98% 26% 99% 98% 20% 99%
medium 86% 55% 85% 93% 66% 75% 87% 47% 99% 98% 45% 99%

large 99% 71% 94% 98% 68% 71% 98% 57% 99% 97% 61% 99%

non-uniform
groups

small 15% 73% 59% 83% 76% 64% 13% 74% 38% 14% 72% 37%
medium 21% 67% 28% 83% 81% 88% 21% 59% 14% 21% 63% 14%

large 5% 26% 2% 48% 44% 54% 2% 22% 1% 2% 23% 5%
Table 3: Agreement between median users and groups, where the value 100% represents the highest degree of
agreement. The symbol R stands for representativity, C for cohesiveness, and P for personalization.

best way to obtain POIs that satisfy everyone in a group,
regardless of group uniformity. We also observe that aver-
age preference and disagreement-based methods result in
similar representativity values, validating that fuzzy cluster-
ing achieves good representativity overall by strategically
placing centroids on a map.

Influence of group uniformity. We observe in Table 2
that TPs for non-uniform groups are always more cohesive
than TPs for uniform groups. This result generalizes pre-
vious work where a tension between personalization and
cohesiveness was observed for single-member groups: the
more personalized a TP is, the less likely it is to be cohe-
sive [4]. Non-uniform groups contain members with diverse
preferences. This diversity makes personalization weaker
(the aggregated profile expresses lower preferences than
individual profiles). Given that, cohesiveness is likely to be
higher for non-uniform groups.

Influence of group size. In Table 2, we observe that re-
gardless of the consensus function, cohesiveness increases
as uniform groups grow in size. The values of PCC are +0.98,
+0.73, +0.73, and +0.99 for average preference, least misery,
variance disagreement, and pair-wise disagreement, respec-
tively. As groups grow in size, their uniformity decreases
yielding a weaker personalization effect, which in turn fa-
vors cohesiveness. We also observe an inverse correlation
between personalization and group size for uniform groups.
The values of PCC are −0.99, −0.99, −0.89, and −0.89 for av-
erage preference, least misery, variance disagreement, and
pair-wise disagreement, respectively. That is explained by
the fact that in larger groups, the preferences of individ-
uals fade out and personalization decreases. This is also
compatible with the previous single-user study [4].

Agreement between individuals and groups. Table 3 re-
ports the similarity of individuals (the median user in each
group) and groups they belong to. The goal is to measure
the sacrifice of individuals when joining groups. For this aim,
we compute a median profile for each of the 600 previously
generated groups. The sum of Cosine values between the
profile of the median user u and all other members of u’s
group is the highest. We generate a TP for each median
user and compute the optimization dimensions for that TP.
Table 3 reports the similarity between the values of opti-
mization dimensions of a group and its median user. The
higher that value, the better it is from that median user’s
perspective.

A general observation is that group size and group uni-
formity play an important role. In large groups, preferences
of individuals fade out and returned TPs are farther from the
the median user’s preferences. Concerning cohesiveness, the
highest similarity is obtained with least misery. It is also the
case for personalization. Least misery yields higher similar-
ity between the median user and the group for non-uniform
groups. Both findings are consistent with previous work on
group recommendation [5, 6], where least misery is more
successful at satisfying the median user in larger groups
with diverse tastes. For uniform groups, disagreement-based
methods are best for personalization.

4.4 User Study
The goal of our user study is to observe how GroupTravel
helps users obtain and refine a TP when traveling with
others. The study consists of two parts. First, we focus on
personalization aspects of GroupTravel and compare per-
sonalized and non-personalized TPs together. Second, we
shed light on customization and observe how enabling in-
teraction with TPs and their refinement can help improve
the group travel profile, which consequently means more
satisfactory TPs.

4.4.1 Setup. We recruited 3000 participants for our user
study. To ensure diversity, we gathered 2000 of them from
Figure-Eight platform6, and the remaining 1000 from Ama-
zon Mechanical Turk7. After pruning profiles with invalid
email addresses and/or identifiers, we retained 90.1% and
96.6% of the participants in the aforesaid platforms, respec-
tively. We based our choice for the number of study partici-
pants on Equation 5, that uses the central limit theorem [21].

Sample size =
z2×p(1−p)

e2

1 + ( z
2×p(1−p)
e2N )

(5)

We describe the parameters in Equation 5 as follows.
• N = 200, 000 is the population size, i.e., the number of

contributors on Figure-Eight and Amazon Mechanical
Turk platforms [22].

• e = 3% is the margin of error, i.e., the percentage of devia-
tion in result in the sample size compared with the total
population.

• z = 95% is the confidence level, i.e., if the job is repeated
100 times, 95 times out of 100 the result would lie within
the margin of error.

6http://www.figure-eight.com/
7https://www.mturk.com/
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random non
personalized

average
preference

least
misery

pair-wise
disagreement

disagreement
variance

uniform
small 3.42 3.59 3.54 3.53 3.77 3.65

medium 3.43 3.48 3.69 3.47 3.56 3.65
large 3.52 3.58 3.72 3.62 3.78 3.70

non-uniform
small 3.01 2.68 3.28 3.28 3.23 3.19

medium 3.01 2.94 3.17 3.19 3.21 3.26
large 3.05 3.00 3.14 2.84 3.09 3.12

Table 4: Independent evaluation of user study

• p = 50% is the percentage value, i.e., the expected result
value of the experiment. It is advised to put it at 50% when
the result is not known.
Our sample size rounded up to at least 1062 participants

based on the above formula. We recruited almost three times
more participants to allow flexibility in forming groups and
account for contributors who might quit the study before
fully completing it.

We built travel profiles for the recruited participants by
asking them to state their preferences on POI categories
using Google Forms8. We then used the generated user pro-
files to build groups with varying characteristics, i.e., size
and uniformity. For uniform groups, we generated 5 groups
of each size (small, medium, and large). We gathered assess-
ments from all members of small and medium groups, and
from 30 random members for large groups. For non-uniform
groups, we generated 3 groups for each size, and gathered
assessments from all members of small and medium groups,
and between 19 and 30 members for large groups. Each par-
ticipant was paid $0.01 for profile collection and $0.50 for
evaluating TPs.

4.4.2 Summary of results. Regarding personalization, we
observe that participants liked personalized TPs more than
non-personalized and random TPs. We also observe that
TPs associated with average preference and least misery are
the best performers for uniform groups, and TPs associated
with disagreement-based methods are highly appreciated by
members of non-uniform groups. Regarding customization,
we noticed the supremacy of the batch strategy over the
individual strategy in almost all cases.

4.4.3 Exploring personalization. In this part of the study,
we aim to evaluate how satisfied users are with personalized
TPs. We build personalized packages in the city of Paris.
Similarly to the synthetic data experiment, each TP contains
exactly 5 CIs that are valid with respect to a default query,
i.e., ⟨1 acco, 1 trans, 1 rest, 3 attr⟩. Also, we specify an infinite
budget to ensure that all popular POIs are included in the CIs.
We conduct two evaluations, independent and comparative.

Independent evaluation. We asked members of the formed
groups to evaluate TPs. The TPs under evaluation were ei-
ther non-personalized, or personalized with one of the four
group consensus methods. Non-personalized TPs were gen-
erated by setting the weight of the personalization dimen-
sion to 0 in the objective function. In addition, to filter unde-
sired participants, we injected a random TP which included
invalid CIs, and discarded input from participants who pre-
ferred that TP (23 participants). For each TP out of the 6 TPs
8https://docs.google.com/forms

to be evaluated (random, non-personalized, and personal-
ized with the four different consensus methods), we asked
the remaining 326 participants to indicate their interest in
visiting POIs in the TP with other members of the group, us-
ing a score between 1 and 5. A score of 1 means that there
are very few POIs that the participant is interested in, and a
score of 5 means that the participant is interested in almost
all of the POIs. To prevent bias, we did not share with par-
ticipants any details about the characteristics and members
of the group they are involved in.

Table 4 illustrates the results of our independent evalu-
ation. The average interest of participants who were not
filtered out is reported for groups with different sizes and
uniformity categories. The results validate our objective
function (Equation 1), because they show that personalized
TPs perform well and are liked better than non-personalized
and random TPs. We also observe that scores for uniform
groups remain fairly stable as groups become larger. How-
ever for non-uniform groups, scores decrease by group size.
This is in-line with our findings in the synthetic experi-
ment where the preferences of individual members in non-
uniform groups fade out as groups grow in size, resulting
in less-personalized TPs.

Comparative evaluation. We also presented the partici-
pants of our study with a pair of TPs among the 6 afore-
mentioned TPs, and asked them to choose the one that
they prefer the most, and to state a reason behind their
choice. Table 5 reports results for each pair-wise compari-
son in terms of the percentage of supremacy. For instance,
for small uniform groups, AVTP is preferred over LMTP
in 48% of the time implying that LMTP is preferred over
AVTP in 52% of the time. We observe that TPs associated
with average preference and least misery (AVTP and LMTP
in Table 5) are winners for uniform groups, whereas TPs
associated with disagreement-based methods (ADTP and
DVTP) are winners for non-uniform groups. This finding is
in-line with previous work on group recommendation [5, 6],
where recommendations aggregated with either average
preference or least misery are preferred for uniform groups
where preferences are homogeneous. Similarly, incorporat-
ing inter-member disagreements is shown to be the best
way to reach a consensus within diverse groups.

We also reviewed the statements that the participants
provided to justify their choices. First we focused on cases
where personalized TPs are not preferred. In these cases,
participants often justified their choice only as a tie-breaker:
“I like this TP a little more”, “I think this TP is a bit better”.
For uniform groups, participants mentioned that they prefer
TPs with average preference and least misery because those
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AVTP vs. LMTP vs. ADTP vs. DVTP vs.
LMTP ADTP DVTP NPTP ADTP DVTP NPTP DVTP NPTP NPTP

uniform
small 48% 56% 64% 48% 56% 56% 64% 36% 36% 40%

medium 56% 42% 42% 54% 62% 56% 70% 42% 56% 42%
large 47% 52% 44% 50% 51% 54% 55% 46% 52% 55%

non-uniform
small 27% 27% 66% 60% 40% 73% 40% 60% 60% 47%

medium 43% 73% 46% 53% 73% 66% 67% 46% 43% 67%
large 54% 42% 48% 49% 51% 36% 42% 64% 57% 48%

Table 5: Comparative evaluation of user study. AVTP, LMTP, ADTP, and DVTP refer to personalized TPs obtained
with average preference, least misery, average disagreement, and disagreement variance, respectively, and NPTP
refers to the non-personalized TP.

TPs reflect their personal preferences better: “this TP seems
to me more interesting for my taste”, “with this TP, I can
move around the city more”. We observe the same type of
statements for non-uniform groups in case of disagreement-
based methods, e.g., “there are types of places in this TP that
I want to visit”.

4.4.4 Exploring customization. In this experiment, we
aim to validate the benefit of customization by allowing
group members to interact with travel packages. More pre-
cisely, we want to assess if interacting with personalized TPs
will refine the group profile in such a way that subsequent
TPs are more relevant. To do so, we displayed personalized
TPs on the map of Paris and asked participants to interact
with the CIs forming those TPs by adding, removing, re-
placing POIs or generating new CIs (see the interface in
Figure 3). We then refined the group profile based on the in-
teractions of all group members. We compare the individual
and batch strategies defined in Section 3.3.

With the refined group profile in Paris using either strat-
egy, we built a customized travel package in a comparable
city, namely Barcelona. We then asked our participants to
evaluate the generated TP for Barcelona both in independent
and comparative evaluations. Similar to the personalization
study case in Section 4.4.3, to filter undesired participants,
we injected a random TP which included invalid CIs, and
discarded input from participants who preferred that TP.
Participants were asked to rate the TPs in a scale of 1 to 5. A
total of 18 workers participated in this study. That allowed
us to build one uniform group with 11 members and one
non-uniform group with 7 members. We recruited workers
with an approval rate superior to 90%.

Independent evaluation. Participants in each group were
asked to evaluate three different TPs in Barcelona: the first
one was non-personalized, the second personalized and
customized using the individual strategy, and the third per-
sonalized and customized with the batch strategy. Table 6
reports average ratings. Results are comparable across TPs.
Overall, all travelers were equally satisfied with the POIs in
all the TPs.

Comparative evaluation. Participants in each group were
asked to compare a pair of TPs built from a non-personalized
TP, a personalized and customized TP using the individual
strategy, and a personalized and customized TP with the
batch strategy. Table 6 reports results for each pair-wise
comparison in terms of the percentage of supremacy. For
instance, the batch strategy is preferred over the individual
one in 82% of the time for uniform groups, implying that

the individual strategy is preferred over the batch one only
18% of the time. The batch strategy is by far the best. That
is particularly true for uniform groups. That is in-lined with
the independent study. The intuition is that refining group
profiles directly yields better TPs.

5 RELATED WORK
5.1 Itineraries and Personalization
The extraction of travel itineraries from Flickr photos was
first proposed in [1] and their personalization in [2] to build
customized city tours. Tailored itineraries are extracted from
Flickr using an objective function that combines POI popu-
larity with the actual user preferences over POI categories.
This approach is not directly applicable to ours, since the
personalization is merely a filtering of extracted trajectories.
In our case, it is the POI composition itself that is person-
alized using the query and travel profile. That makes our
problem computationally more challenging. Another differ-
ence is that unlike itineraries, POIs forming a CI are not
ordered, and hence, their generation relies on a different
model and algorithm (clustering instead of graph traversal).
Finally, in this work we are also interested in generating
travel packages for groups of users traveling together rather
than just a single user.

The idea of learning travel packages was recently ex-
plored in [3]. This work proposed learning topics condi-
tioned on both the tourists and the intrinsic features (i.e.,
locations and travel seasons) of landscapes. As a result, pref-
erences on which landscapes to visit, in which season, and
how to travel from one point to another (transportation
modes), are extracted. This work does not propose inter-
active refinement of one’s travel preferences and does not
support group travel.

5.2 Composite Items
Composite retrieval was studied with different semantics in
recent work [1, 7–10, 13–15, 23]. Most existing algorithms
rely on a two-stage process that decouples the query (e.g., a
CI must contain one museum and 2 restaurants) from the
optimization goal (e.g., each CI is a set of close landmarks in
a city). In [13], it was shown that an integrated approach pro-
duces better representative CIs than a two-stage approach.
We hence build on that and extend it to build personalized
CIs for groups.
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TP type uniform (11 members) non-uniform (7 members)
individual 3.45 3.69

batch 2.91 3.8
non-personalized 3.37 3.83

Table 6: Independent evaluation of customized travel packages.

batch vs. individual vs.
individual non-personalized non-personalized

uniform 82% 63% 54%
non-uniform 72% 57% 14%

Table 7: Comparative evaluation of customized travel packages.

5.3 Recommendation and Interactivity
Out of the multitude of itinerary recommendation approaches
[24–27], only a few are interactive. In [24], a user provides
feedback on the next set of POIs to visit, the system then rec-
ommends the best itineraries and further suggests new POIs,
with optimal utility, to solicit feedback for. In GroupTravel,
the system recommends POIs to replace those unwanted by
a user or to form a CI with some selected POIs. We do not
assume any prior knowledge about a city. Additionally, we
focus on enabling group-based interaction with TPs.

MOBI is a collaborative itinerary planning framework [28].
Each user provides preferences and constraints in the form
of “I want {at most, at least, exactly} [number] {activities,
hours} of {cat1, cat2, · · · , catn }”, which resembles our query.
Users interact with proposed itineraries and are told which
constraints remain to be satisfied. In our work, users in-
tervene in a second stage to refine the package. We have
shown that helping bootstrap travel package construction
is preferred as it induces fewer interactions.

Finally, in our previous work [4], we studied the benefit of
interactivity in the generation of customized travel packages
for a single user. We found that while personalization helps
the selection of relevant POIs to include in a travel package,
customization is necessary to allow users to customize their
travel packages as they explore the alternatives the city has
to offer. Customization has also been shown to help refine
users’ profiles based on their interactions with travel pack-
ages. In this current work, we extend the approaches and
techniques we proposed for generating customized travel
packages to support group travel.

6 CONCLUSION
We develop GroupTravel, a framework that generates travel
package for groups. GroupTravel aggregates individual pref-
erences into a single group preference using consensus meth-
ods developed for group recommendation. GroupTravel re-
lies on a fuzzy clustering algorithm to generate k valid,
representative, cohesive and personalized composite items
that form a travel package. Travelers can interact with the
generated travel package to further customize it. We run
extensive synthetic and real data experiments and show
that our findings are consistent with previous work in gen-
erating travel packages for single users [4] and in group
recommendation [5, 6].

This work opens several research directions. One im-
mediate challenge is to incorporate different collaboration
models into the primitives used to interact with the TPs.
We are examining different models such as the star model
where a designated traveler moderates all requests from oth-
ers in the same group, the sequential model where a TP is
customized in a pipeline fashion, and a hybrid model where
different primitives are requested in parallel by different
travelers. This additional expressiveness raises new algo-
rithmic questions and new ways of conducting user studies
at scale.
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ABSTRACT
Personal Data Management Systems are flourishing allowing an
individual to integrate all her personal data in a single place and
use it for her benefit and for the benefit of the community. This
leads to a significant paradigm shift since personal data become
massively distributed. In this context, an important issue needed
to be addressed is: how can users/applications execute queries
and computations over this massively distributed data in a secure
and efficient way, relying exclusively on peer-to-peer (P2P) in-
teractions? In this paper, we motivate and study the feasibility of
such a pure P2P personal data management system and provide
efficient and scalable mechanisms to reduce the data leakage to
its minimum with covert adversaries. In particular, we show that
data processing tasks can be assigned to nodes in a verifiable
random way, which cannot be influenced by malicious colluding
nodes. Then, we propose a generic solution which largely mini-
mizes the verification cost. Our experimental evaluation shows
that the proposed protocols lead to minimal private informa-
tion leakage, while the cost of the security mechanisms remains
very low even with a large number of colluding corrupted nodes.
Finally, we illustrate our generic protocol proposal on three data-
oriented use-cases, namely, participatory sensing, targeted data
diffusion and more general distributed aggregative queries.

1 INTRODUCTION
The time of individualized management and control over one’s
personal data is upon us. Thanks to smart disclosure initiatives
(e.g., BlueButton [9] and GreenButton in US, MesInfos [16] in
France, Midata [25] in UK) and new regulations (e.g., the Europe’s
new General Data Protection Regulation [27]), users can access
their personal data from the companies or government agencies
that collected them. Concurrently, Personal Data Management
System (PDMS) solutions are flourishing [4] both in the academic
(e.g., Personal Data Servers [1], Personal Information Manage-
ment Systems, Personal Data Stores [14], Personal Clouds [20])
and industry [12, 26, 33]. Their goal is to offer a data platform
allowing users to easily store and manage into a single place
data directly generated by user devices (e.g., quantified-self data,
smart home data, photos, etc.) and data resulting from user in-
teractions (e.g., user preferences, social interaction data, health,
bank, telecom, etc.). Users can then leverage the power of their
PDMS to benefit from their personal data for their own good
and in the interest of the community. Thus, the PDMS paradigm
holds the promise of unlocking new innovative usages.

Let us consider three emblematic distributed applications based
on large user communities which could greatly benefit from the
PDMS paradigm: (1) mobile participatory sensing apps [36], in
whichmobile users produce sensed geo-localized data (e.g., traffic,
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air quality, noise, health conditions) to compute spatially aggre-
gated statistics benefiting the whole community; (2) subscription-
based or profile-based data diffusion apps [38], in which PDMS
users provide preferences or exhibit profiles in order to selec-
tively receive pertinent information; and (3) distributed query
processing over the personal data of large sets of individuals
[37], in which users contribute with their personal data and is-
sue queries over the globally contributed data (e.g., computing
recommendations, participative studies).

However, these exciting perspectives should not eclipse the
security issues raised by the PDMS paradigm. Indeed, each PDMS
can store potentially the entire digital life of its owner, thereby
proportionally increasing the impact of a leakage. Hence, cen-
tralizing all users’ data into powerful servers is risky since these
data servers become highly desirable targets for attackers: huge
amounts of personal data belonging to millions of individuals
could be leaked or lost as illustrated by the recent massive attacks
(e.g., Facebook, Yahoo or Equifax). Besides, such a centralized
solution makes little sense in the PDMS context in which data is
naturally distributed at the users’ side [19].

Alternatively, recent works [4, 14, 20, 33] propose to let the
user data distributed on personal trustworthy platforms under
users’ control. Such platforms can be built thanks to the combi-
nation of (1) a Trusted Execution Environment (TEE) (i.e., secure
hardware such as smart cards [1] or secure micro-controllers
[4, 5, 20], ARM TrustZone [18], or Intel SGX [29]) and (2) specific
software (e.g., minimal Trusted Computing Base and information
flow control [22, 29]). In this paper, we follow this approach and
consider that a PDMS is a dedicated personal device that the user
possesses and is secured thanks to TEE hardware.

In addition, as in many academic and commercial approaches
[33], we assume that the PDMS personal device offers a rather
good connectivity and availability like, for instance, home-cloud
solutions [4, 12, 26, 33] (e.g., a set-top box or a plug computer
[4]). Thus, PDMSs can establish peer-to-peer (P2P) connections
with other PDMSs, and can be used as data processor in order
to provide part of the processing required in distributed applica-
tions. Hence, our objective is to study solutions based on a full
distribution of PDMSs (called nodes interchangeably) which can
act as data sources and data processors and communicate in a
peer-to-peer fashion. We discard solutions requiring recentraliz-
ing the distributed personal data during its processing, since this
would dynamically create a personal data concentration leading
to a similar risk as with centralized servers.

Incorporating TEEs greatly increases the protection against
malicious PDMS owners. However, since no security measure can
be considered as unbreakable, we cannot exclude having some
corrupted nodes in the system and, even worse, those corrupted
nodes can collude and might very well be undistinguishable from
honest nodes, acting as covert adversaries [7]. Also, since data
processing relies exclusively on PDMS nodes, and given the very
high scale of the distribution which disqualifies secure multi-
party computation (MPC) protocols [31], sensitive data leaks are
unavoidable in the presence of corrupted nodes, i.e., some data
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might be disclosed whenever a corrupted node is selected as a
data processor.

The goal of this paper is to assess the feasibility of building a se-
cure and efficient data processing system over a fully distributed
network of PDMS housing covert adversaries. To achieve it we
provide mechanisms to reduce the data leakage to its minimum,
and make the following contributions:

(1) We propose a P2P architecture of PDMSs, called SEP2P
(for Secure and Efficient P2P), based on classical Distributed
Hash Tables (DHT) and analyze potential data leakages of data
sources and data processors. We show that (i) data tasks should be
assigned to nodes in a verifiable random way, i.e., the assignment
cannot be influenced by malicious colluding nodes; and (ii) any
data-oriented task, whether it is storage or computation, should
be atomic, i.e., reduced to a maximum such that it minimizes the
quantity of sensitive data accessible by the task.

(2) We focus on the verifiable random assignment problem and
propose a generic solution (i.e., independent of the distributed
computation tasks) which largely minimizes the verification cost
(e.g., 8 asymmetric crypto-operations with a SEP2P network of
1M nodes of which 10K are colluding corrupted nodes).

(3) We experimentally evaluate the quality and efficiency of
the proposed protocols. The verifiable random assignment pro-
tocol leads to minimal private information leakage, i.e., linear
with the number of corrupted nodes, while the cost of the secu-
rity mechanisms remains very low even with a large number of
colluding corrupted nodes.

(4) We address the task atomicity subproblem by providing
sketches of solutions for the three classes of applications indi-
cated above. We do not propose full solutions since task atomicity
is dependent on the considered class of distributed computation
and as such needs to be studied in detail.

Sections 2 to 5 present these four contributions respectively.
We finally discuss the related work in Section 6 and conclude the
paper in Section 7.

2 SEP2P ARCHITECTURAL DESIGN
2.1 Base System Architecture
SEP2P is a peer-to-peer system and only relies on the PDMS
nodes to enable the aforementioned applications. Consequently,
each node may play several roles for SEP2P applications:
Node role 1. Each node is a potential data source. For instance,
producing sensed geo-localized data about the local traffic speed,
or sharing grades used to compute recommendations.
Node role 2. Given the fully-decentralized nature of SEP2P, each
node is a potential data processor, also called actor, providing
part of the required processing.
Node role 3. The initiator of a distributed processing is called
the triggering node (T ).T could be any node with participatory
sensing applications, or the query issuer in distributed query or
data diffusion applications.

2.2 Efficient P2P Data Processing
Relying on a fully-distributed system induces several problems,
e.g., integrating new nodes, maintaining a coherent global state,
making nodes that do not know each other interact, handling
churn, maintaining some metadata. It thus requires a communica-
tion overlay allowing for efficient node discovery, data indexing

and search. Fortunately, these problems have already been exten-
sively studied in the literature and the Distributed Hash Tables
(DHTs) appear to be the solution reaching consensus.
Background 1. A distributed hash table (DHT) [23, 30, 34]
in a P2P network offers an optimized solution to the problem
of locating the node(s) storing a specific data item. The DHT
offers a basic interface allowing any node of the network to
store data, i.e., store(key,value), or to search for certain data,
i.e., lookup(key) → value . DHTs proposals [23, 30, 34] share
the concepts of keyspace or DHT virtual space (e.g., a 224 bits
string obtained by hashing the key or the node ID), space par-
titioning (mapping space partitions to nodes, using generally a
distance function), and overlay network (set of routing tables
and strategies allowing reaching a node, given its node ID). For
instance, the virtual space is represented as a multi-dimensional
space in CAN [30], as a ring in Chord [34] or as a binary tree
in Kademlia [23] and is uniformly divided among the nodes in
the network. Thus, each node is responsible for the indexing of
all the (key,value) pairs where the key falls in the subspace it
manages. Both the data storage and the lookup operations are
thus fully distributed in a DHT. DHTs have interesting properties:
uniform repartition of the data, scalability, fault tolerance and do
not require any central coordination.

Hence, SEP2P leverages the classical DHT techniques as a
basis for communication efficiency and scalability.

2.3 Security Considerations
In this paper, we use the terminology of ARM [35] to designate
the three attack levels on a PDMS node, i.e., hack, shack and lab
attacks. A hack attack is a software attack in which the attacker
(the PDMS owner or remote attacker) downloads code on the de-
vice to control it. A shack attack is a low-budget hardware attack,
i.e., using basic equipment and knowledge. Finally, a lab attack
is the most advanced, comprehensive and invasive hardware at-
tack for which the attacker has access to laboratory equipment,
can perform reverse engineering of a device and monitor analog
signals. Note that shack and lab attacks require a physical access
to the device and that TEEs are designed to at least resist hack
and shack attacks.

Our threat model considers three security assumptions:
Assumption 1. Each PDMS is locally secured by using TEE-like
technology flourishing nowadays (e.g., [18, 20, 29]). This assump-
tion is reasonable considering that a PDMS is supposed to store
the entire digital life of its owner. A major security feature of
TEE technology is to provide isolation, i.e., strong guarantees
that the local computation inside the TEE cannot be spied upon,
even in the presence of an untrusted computational environment.
Hence, to break to confidentiality barrier of a TEE, a lab attack
is mandatory. This has an important consequence: an attacker
cannot conduct a successful attack on a remote node, i.e., not under
her possession.
Assumption 2. Each PDMS device is supplied with a trustworthy
certificate attesting that it is a genuine PDMS. Without this as-
sumption, an attacker can easily emulate nodes in the network,
and conduct a Sybil attack [11], mastering a large proportion
of nodes (e.g., playing the role of data processor nodes), thus
defeating any countermeasure. Note that this does not require
an online PKI (the certificate can be attached to the hardware
device and not to the device owner).
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Assumption 3. Corrupted nodes by a lab attack behave like covert
adversaries, i.e., they derive from the protocol to obtain private
information only if they cannot be detected [7], as detected mali-
cious behavior leads to an exclusion from the system.

2.4 Threat Model
The above considered assumptions already offer a certain level of
security at the node and system levels. Yet, no hardware security
can be described as unbreakable. Therefore, our threat model
considers that an attacker (e.g., one or several colluding malicious
users) can possess several PDMSs and conduct lab attacks on
these devices, thus mastering several corrupted nodes which can
collude. For simplicity, we will call them colluding nodes.

It is important to notice that the worst-case attack is repre-
sented by the maximum number of colluding nodes in the system
(i.e., controlled by a single entity). Corrupting few nodes can lead
to some private data disclosure, but this will be very limited in a
well-designed system with a large number of nodes. Therefore,
an attacker needs to increase the collusion range to fully benefit
from the attack (i.e., access a significant amount of private data).

Thereby, the remaining question is: howmany colluding nodes
could an attacker control in the system? The main difficulty for
an attacker is that colluding nodes must remain indistinguishable
from honest nodes (see Assumption 3). Since PDMSs are associ-
ated to “real” individuals (e.g., by delivering the device only to
real users proving their identity), collusions between individu-
als remains possible (hidden groups) but such collusions cannot
scale without being minimally advertised, hence breaking the
indistinguishability mentioned above. Thus, wide collusions are
extremely difficult to build since it requires significant organi-
zation between a very large number of users, which in practice
requires an extremely powerful attacker as well as extreme dis-
cretion, and are thus the equivalent of a state-size attack. Finally,
note that considering a large proportion of colluding nodes (e.g.,
10%) is vain as it would inexorably lead to large disclosure what-
ever the protocol having a reasonable overhead (e.g., outside the
MPC scope). Hence, in this paper we consider that a very pow-
erful attacker could control up to a small percentage (e.g., 1%)
of the nodes, which corresponds to a wide collusion requiring a
lab attack on these nodes as well as a highly organized collusion
between the owners of those nodes.

What does the system protect? The objective of SEP2P is to
offer the maximum possible confidentiality protection of the user
private data under the above considered threat model. Many other
issues related to statistical databases (e.g., inferences from results,
determining the authorized queries, query replay, fake data in-
jection, etc.) or to network security (e.g., message drop/delay,
routing table poisoning [39]) are complementary to this work
and fall outside of the scope of this paper. Similarly, we leave
aside the problems related to the attestation and integrity of the
code executing distributed computations (e.g., against corrupted
nodes that maliciously modify the computation results).

2.5 SEP2P Requirements
Given the considered threat model, we derive in this section
the requirements that a SEP2P must address to protect the data
privacy of the users. Since we cannot exclude having colluding
nodes in the system and since the colluding nodes behave like
covert adversaries, private information leakage is unavoidable.
Under these conditions, the best countermeasures one can take
are: (i) minimize the risk of a data leakage, i.e., reduce at most the

probability of a leakage to happen; and (ii) minimize the impact
of a data leakage, i.e., reduce at most the leakage size. Obviously,
these countermeasures should not generate overheads that render
the system unpractical. This leads to:
Requirement 1 (security). Random actor selection. Ensure
that colluding nodes cannot influence the selection of the data
processor nodes.
Requirement 2 (security). Task atomicity. Data tasks should
be atomic, i.e., reduced to a maximum such that it minimizes the
required sensitive data to execute the task.
Requirement 3 (efficiency). Security overheads. Minimize
the number of costly operations, e.g., cryptographic signature
verifications or communication overhead, and ensure system scal-
ability with an increasing number of nodes or colluding nodes.

The task atomicity requirement is similar to the principle of
compartmentalization in information security, which consists in
limiting the information access to the minimum amount allowing
an entity to execute a certain task. Typically, a node can execute
a subtask without knowing the purpose or the scope of the global
task. Dividing a given distributed computation in atomic tasks
obviously depends on the precise definition of that computa-
tion. Hence, we restrict our analysis in Section 5 to sketches
of solutions for the three application classes considered in this
paper.

Independently of the distributed protocol chosen to imple-
ment some given application, the system must delegate the data-
oriented tasks to randomly selected nodes. Therefore, the random
selection protocol is generic and constitutes the security basis of
any distributed protocol in our system. However, given the con-
sidered threat model, it is challenging to design an actor selection
protocol that is both secure and efficient. Section 3 addresses this
problem while section 4 evaluates the proposed solution.

3 SECURE ACTOR SELECTION
Let us first detail some useful classical cryptographic tools focus-
ing on the properties used in our protocol.
Background 2. A cryptographic hash function [24] is a one-
way function that maps a data of arbitrary size to a fixed size bit
string (e.g., 224 bits) and is resistant to collision. An interesting
property of hash functions is that output distribution is uniform.
In the following, hash() refers to cryptographic hash.
Background 3.A cryptographic signature [24] can be used by
a noden to prove that a datad was produced byn (authentication)
and has not been altered (integrity). The signature is produced
by encrypting hash(d) using the private key of n. Any node can
verify the signature by decrypting it using the public key of n
and comparing the result with hash(d). The signature includes
the signer public key certificate, certn (see Assumption 2).

We consider a system of N nodes, in which we want to ran-
domly select A actors, despite wide collusion attacks from C
colluding nodes. The main notations are summarized in Table 1.

3.1 Effectiveness, Cost and Optimal Bounds
Ideally, we would want to ensure that all A actors are honest, but
this is impossible, since colluding nodes are indistinguishable
from honest nodes. Therefore, the best achievable protection is
obtainedwhen actors are randomly selected and the selection can-
not be influenced by C colluding nodes, i.e., the average number
of corrupted selected actors in the ideal case isAidealC = A×C/N
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N Total number of nodes in the SEP2P system
A Number of actor nodes (data processors)
C Maximum number of colluding nodes (C ≥ 1)
AC Average number of corrupted actors for a given protocol

AidealC Average number of corrupted actors for an ideal protocol
T Triggering node (starting the execution)
k Security degree
α Security threshold
S Execution Setter node, computing actor list

Ri , rsi DHT region Ri of size rsi
Table 1: Main notations for Sections 3.1 and 3.2

(AidealC > 0). Thus, the impact of a collusion attack remains pro-
portional with the number of colluding nodes, which is the best
situation given our context. This guarantees that the attacker
cannot obtain more private information than what she can pas-
sively get from observing the information randomly reaching its
colluding nodes.

The following definitions quantify the security effectiveness
and security cost of an actor selection protocol.
Definition 1. The security effectiveness of an actor selection
protocol is defined as the ratio between AidealC and the average
number of corrupted selected actors for the measured protocol
(AC ), i.e., security effectiveness = AidealC /AC . The security ef-
fectiveness has maximum value (i.e., 1) when AC = AidealC and
minimum value (i.e. C/N ) when all the actors are corrupted.
Definition 2. A verifier node is a node who needs verifying
the actor list before delivering sensitive data, e.g., a data source.
Definition 3. The security cost of an actor selection protocol is
defined as the number of asymmetric cryptographic operations,
e.g., signature verification, required by verifier nodes to check
the selected actor list.

Note that the security cost considers only the verification of
the actor list and not the cost of building the list. The rationale
is that the verification cost has a larger impact on the overall
performance since the number of verifier nodes can be high in
a large distributed system: data sources need to verify the actor
list before delivering their data. Other performance related issues
(cost of the actor list generation, load balancing, maintenance
costs) are discussed in Section 3.6 and 4.
Optimal bounds. The best possible case one could expect in
terms of security effectiveness and cost in our context can be
achieved using an idealized trusted server that knows all the
nodes and provides a different random actor list for each system
computation. This ideal solution reaches a maximal security ef-
fectiveness and a security cost of 1, since any verifier node must
only check the signature of the trusted entity.

Evidently, this solution in not acceptable since it represents a
highly desirable target for attackers, i.e., a central point of attack
and contradicts the fully distributed nature of SEP2P. Therefore,
we need distributed solutions relying only on the nodes. To un-
derline the existing tension between security effectiveness and
cost, we discuss two basic distributed protocols for the actor se-
lection, focusing either on the security cost or on the security
effectiveness. To simplify the protocols description, we initially
assume a full mesh network overlay, i.e., each node knows the
complete list of nodes in the system and its evolution over time.
Baseline cost-optimal protocol. The triggering node (T ) se-
lects randomly the actors. The security effectiveness is minimal:

AC = min(A,C) since T may be corrupted (which is the case
when any node can trigger a computation). There is thus no
necessity to provide any signature: the security cost is 0.
Baseline security-optimal protocol. Proposing an optimal
protocol in terms of security is challenging in a decentralized
architecture (without any supporting trusted party) and consid-
ering covert adversaries. This conjunction leads to a situation
where no single node in the system can claim to securely provide
a list of actors (the provider itself can be corrupted). The work
in [8] proposes the CSAR protocol which provides a secure way
to generate a verifiable random value under the condition that
there is at least one honest node participating in the distributed
protocol. Applying to our context, we can ensure generating a
real random value only if there are at least C + 1 participating
nodes. Also, once we obtain a verifiable random value, we can
derive up to A random values by repeatedly hashing the initial
value A − 1 times. The final step is to map the set of A random
values to the nodes. This can be easily done, e.g., by sorting the
nodes on their public key and associating the random value to
a rank in the sorted list. This protocol has an optimal security
effectiveness, i.e., 1, since the actors are guaranteed to be selected
randomly. On the other hand, checking the CSAR results requires
one signature verification per participant. Thus, the security cost
is C + 1 asymmetric cryptographic operations per verifier node.
Since C can be large, such a solution cannot scale with large sys-
tems and wide collusion attackers as it would lead to an extreme
verification cost.

Moreover, to achieve these security bounds, both protocols
require a full mesh network overlay which is also extremely
costly to maintain in practice, especially for large networks. This
contradicts the efficiency and scalability requirement formulated
in Section 2.5. Using a DHT overlay instead of a full mesh solves
the problem of communication efficiency/scalability. However,
this will impact the optimal bounds of both protocols. For the
first protocol, the security cost increases from 0 to up to A since
a verifier node which does not “know” any of the actors has to
verify their certificates to be sure that the actors are genuine
PDMSs (to avoid Sybil attacks). Similarly, for the second protocol,
the security cost increases to 2(C + 1) +A for the same reason,
i.e., checking that participant and selected actors are genuine
PDMSs. Even worse, the optimal security effectiveness can no
longer be guaranteed since with a DHT, there is no secure way of
associating the random values to the nodes unless using secure
DHT techniques [39] with a large impact on performance.

3.2 Overview of the Proposed Solution
To address all these problems, we propose a protocol that reaches
maximal security effectiveness at a verification cost of 2k . k is
called the security degree and is very small. Also, our protocol
builds directly on a classical, efficient DHT overlay without re-
quiring any modifications. We describe some important features
in SEP2P which make this possible and then sketch the protocol.
Imposed and uniform distribution of node location: the
node ID, used when inserting a node in the DHT, is imposed
in SEP2P, in a way that leads to a uniformly distributed node
location in the DHT virtual space. Consequently, colluding nodes
are also evenly distributed in the DHT, thus avoiding spatial
clusters. We use extensively this property to drastically reduce
the cost of security by taking localized decisions (see below), i.e.,
limited to the nodes situated in “small” regions in the virtual space.
Achieving imposed node location is easy, based on the public
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key of the certificate of each node. We compute a cryptographic
hash of this key, which is, by construction, uniformly distributed,
and use this hash for insertion in the DHT virtual space. The
advantages of using the public key are (i) its uniqueness; and
(ii) the node location can be checked with a single signature
verification.
Probabilistic guarantees: Given the imposed, uniform node
location which applies indistinctly to honest and colluding nodes,
we can have probabilistic guarantees on the maximum number
of colluding nodes in a DHT subspace of a given size, called DHT
region hereafter. We can compute the probability of having at
least k colluding nodes (see Section 3.3) and choose the DHT
region size such that the probability is very close to 0. In our
context, wewant to have a probability smaller thanα , the security
threshold. The main idea is to set α so that the probability of
having k colluding nodes in the same region becomes so low
that we can consider that it “never happens”, e.g., α = 10−6 (see
Section 4.1). Such a guarantee is used in the protocol sketched
below and then detailed in the following subsection.

R1

R2

R3

1 Generating

verifiable

random

Actors list

builders are in R

Locating S

Selecting the

actors in R

2

3

4

5

2

3

Figure 1: Sketch of verifiable selection

Sketch of verifiable selection protocol of A actors (see Figure 1)

(1) Run a distributed protocol inspired from CSAR [8] to generate a
verifiable random value, i.e., proven to have been truly randomly
generated by k nodes if at least one is honest (see Section 3.4). The k
nodes are selected in a DHT region R1, centered on the triggering
node (T ), whose region size r s1 is set such that we have probabilistic
guarantees to “never” (probability < α ) have k or more colluding
nodes, i.e., at least one of the k nodes is honest.

(2) Map the hash of that random value into coordinates to define a
location p in the DHT virtual space and contact through the DHT
the node, called execution Setter (S ), managing this location.

(3) S then selects k nodes (the actor list builders) in a region R2, centered
on p , using probabilistic guarantees, such that we “never” have k or
more colluding nodes. Given the uniform distribution of the node on
the virtual space, we have rs2 = rs1.

(4) Each actor list builder then selects A nodes in a region R3, centered
on p , whose size rs3 is such that R3 includes at least A nodes with
high probability (see Section 3.6 and Section 4.3 for r s3 tuning).

(5) Run a distributed verifiable selection protocol in the spirit of [8]
such that the k nodes selected in (3) can: (i) check the validity of
the random value generated in (1); (ii) build the actor list securely;
(iii) sign both the random value and the list of A actors. This step is
detailed in Section 3.5.

The result is a list ofA actors that is signed by k nodes, among
which at least one is honest. Doing so reduces the verification
cost to 2k asymmetric cryptographic operations: k to check the
certificate of the k list builders, verifying that they belong to
region R2, centered on p; and k to check each builder signature.

3.3 Providing Probabilistic Guarantees
To generate verifiable random values or validate the query actor
selection, SEP2P employs distributed computations between a
small subset of the nodes thanks to the notion of node legitimacy
and probabilistic guarantees defined below using the notations
in Table 2.

kpubn Public key of node n
certn Trustworthy certificate of node n
signn Signature by node n (includes certn )
TLi execution Trigger Legitimate node i
RNDi Random number generated by TLi

(V ) RNDT (Verifiable) random generated by T
SLj execution Setter Legitimate node j

RNDS Random generated by S
CLj Partial candidate list of legitimate nodes w.r.t. R3
CL Candidate List of legitimate nodes

(V )AL (Verifiable) Actor List
Table 2: Main notations for Sections 3.3 – 3.5

Definition 4. Legitimate nodes.Given a region R in the virtual
space of a DHT, for any node i we say that node i is legitimate
w.r.t. R iff hash(kpubi ) ∈ R.

To be able to provide probabilistic guarantees as explained in
Section 3.2, we need to estimate the number of nodes in a region:
Lemma. Let R be a DHT region of size rs in a virtual space of
a DHT of total size 1 (i.e., normalized) and let N be the total
number of network nodes with a uniform distribution of the
node location in the virtual space. The probability, PL, of having
at leastm legitimate nodes in R is:

PL(≥m ,N , rs) =
N∑
i=m

(
N

i

)
· rsi ·(1 − rs)N−i (1)

Proof (sketch): Let us consider a partition of the N nodes into
two subsets containing i and N − i nodes. Since the distribution
of nodes is uniform in space, the probability of having the i
nodes inside R and the N − i nodes outside R is rsi ·(1 − rs)N−i

and there are
(N
i
)
possible combinations of generating this node

partitioning. The probability of having at least m nodes in R
is equal to the probability of having exactly m nodes plus the
probability of having exactlym+1 plus. . . the probability of having
N , which leads to the equation in (1).
Application to colluding nodes: Let C < N be the maximum
number of colluding nodes. We can apply formula 1 to compute
the probability, PC of having at least k colluding nodes in R:

PC(≥k ,C, rs) =
C∑
i=k

(
C

i

)
· rsi · (1 − rs)C−i (2)

We can notice that this probability only depends on C . It does
not depend on the region center since we have a uniform distri-
bution of the nodes on the virtual space.

3.4 Verifiable Random Generation
Our goal is to generate a random value, using k nodes and to
guarantee that none of the k nodes can choose the final computed
random value (or any of its bits). Any node in the system should
be able to check the validity of this random value (i.e., to have
proofs that it has been correctly generated). This is possible as
soon as at least one of the k nodes is honest, this guarantee being
obtained thanks to equation (2) by choosing the adequate size
for the DHT region R and by using k legitimate nodes w.r.t. R.
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A node T wanting to generate a verifiable random, selecting a
region of size rs1 with PC(rs1) < α centered on itself, executes:

Verifiable random number generation protocol

(1) T contacts any k legitimates nodes TLi (i ∈ [1, k ]) w.r.t. R1.
(2) Each TLi sends hash(RNDi ) to T , where RNDi is a random number

(on the same domain as the hash function, e.g., 224 bits) TLi generates.
(3) Once T has received the k hashes, it sends back the list L of hashes

to the TLi s; L = (hash(RNDi ))i∈[1,k ].
(4) Each TLi checks that hash(RNDi ) ∈ L, and, in the positive case,

returns signi (L) and RNDi .
(5) T gathers the k messages and builds the verifiable random:

VRNDT = (certT , (signi (L), RNDi )i∈[1,k ]).

T TLi

1

2

3

4

5

Figure 2: Verifiable random

The above random generation protocol is adapted from [8]
which includes a formal proof. Note that the protocol in [8] does
not include the notion of node legitimacy and thus needs C + 1
participating nodes instead of k . Intuitively, the nodes commit on
their selected random value by sending its hash (Step 2), and all
the hash values are known by each of the k nodes before provid-
ing the final signature (Step 4). Therefore, an attacker controlling
k − 1 TLi nodes cannot influence the final random value since
these nodes cannot change their random values (committed at
Step 2). Thus, the correct random value of a single honest node
is enough to obtain a truly random final value RNDT .

To obtain and check the verifiable random value, any node
must: (i) check certT and compute L by hashing all RNDi ; (ii) for
i ∈ [1,k], check certi , check the legitimacy of TLi using certT
and validate signi (L). The final random value is RNDT = RND1 ⊕
RND2 ⊕ · · · ⊕ RNDk .

In (i), we verify that T is a genuine PDMS, retrieve the center
of the region R1 and compute L, both being necessary for the next
verification; (ii) starts by confirming that each TLi is genuine,
then it ensures that they are legitimate w.r.t the location of T
and R1, after which it confirms the hash list by checking the
signatures, and finally, it computes RNDT .

3.5 Distributed Secure Selection Protocol
The main goal of the proposed protocol is to select the A actors
such that this selection cannot be influenced by colluding nodes.
Definition 5. The execution Setter (S) is chosen randomly
based on a verifiable random generated by T . Its role is to coor-
dinate the selection of the computation actors and to setup the
execution by sending the appropriate information to each actor.

In the following, we assume that each node n in SEP2P keeps
a node cache, called cachen , of the IP address and certificate
of legitimate nodes w.r.t. a region of size rs3 centered on node
n location. The cache size and the cache maintenance cost are
discussed in Section 3.6 and evaluated in Section 4.3.

SEP2P distributed secure actor selection protocol

(1) Generates the verifiable random VRNDT (see Section 3.4).
(2) Maps hash(RNDT ) into coordinates and contact S through the DHT.
(3) S contacts any k legitimates nodes w.r.t. R2, SLj (j ∈ [1, k ]) and

sends to each VRNDT (see Section 3.4).
(4) Each SLj sends hash(RNDj ∥ CLj ) to S , where RNDj is a random

number SLj generates, and CLj is the set of nodes from Cachej which
are legitimate w.r.t. R3.

(5) Once S has received the k hashes, it sends back the list L1 of hashes
to all SLj ; L1 = (hash(RNDj ∥ CLj ))j∈[1,k ].

(6) Each SLj checks that its own hash(RNDj ∥ CLj ) ∈ L1 and, in the
positive case, returns RNDj and CLj .

(7) S gathers the k messages and sends to all SLj the list
L2 = ((RNDj , CLj )j∈[1,k ]).

(8) Each SLj does the following:
(a) Checks VRNDT and computes RNDT (see Section 3.4).
(b) Checks that each (RNDj , CLj ) from L2 is consistent with the

corresponding hash(RNDj ∥ CLj ) from L1.
(c) Computes the union, after removing possible duplicates, of all

CLj to obtain a candidate list of legitimate nodes CL.
(d) Computes the RNDS = RND1 ⊕ RND2 ⊕ · · · ⊕ RNDk .
(e) Sorts CL on kpubn ⊕ RNDS (where kpubn is the public key of

a node n ∈ CL) and selects the A first candidates to build the
actor list AL.

(f) Checks the legitimacy of AL nodes w.r.t. R3.
(g) Signs (RNDT , AL) and sends it to S .

(9) S gathers k results and builds the verifiable actor lists:
VAL = (RNDT , AL, (signj (RNDT , AL)))j∈[1,k ].

The goal of steps 1 and 2 is to displace the DHT region,
where actors will be selected, from T to S with three benefits: (1)
T is likely to be corrupted (as any node is allowed to trigger a
computation) while S is chosen randomly using the verifiable
random protocol; (2) it distributes the potential leaks in a different
region for each computation; (3) it balances the load on the whole
SEP2P network thus improving the overall performance.

Steps 3 to 6 are similar to steps 1 to 4 of the verifiable random
protocol, except that the signature by SLj is delayed to Step 8.g.
Delaying the signature allows SLj s to check and attest the validity
of VRNDT (step 8.a). The protocol cost is increased (since k nodes
verify VRNDT ) but the verifying cost is reduced accordingly since
having k SLj s signing RNDT (step 8.g) means that it is correct
(remind that at least one of the k SLj s is honest).

Steps (8.b) to (8.e) are dedicated to the actor list building
(AL) based on the candidate list (CL) and deserve a more detailed
explanation: in our context, in order to securely build the actor
list, the k participants first have to agree on a common basis and
then execute, in parallel, a procedure that is unpredictable and
gives identical results to all participants. Since it is unpredictable
we are certain that the inputs cannot be manipulated beforehand
so as to influence the rest of the procedure. Since it gives identical
results for all actor list builders, and since at least one node is
honest, we are sure that no colluding node can alter the results.
By sorting the nodes in CL using a verifiable random number
and the public keys of the nodes fulfills both requirements: the
random number takes care of the unpredictability, while the
commitment of each SLj on their intermediary lists in step 4,
coupled with the XOR operation on the public keys of CL nodes,
is a simple yet effective way of producing identical results.

In steps 8.f and 8.g, k SLj s check the validity of the result,
i.e., that any actor of AL belongs to R3 and attest it by signing
the results. Note that this check is not necessary for any actor n
in AL that was found in k CLj since this fact attests that at least
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one honest node possesses n in its Cachej . Assuming Cachej
contains only genuine nodes (we say that Cachej is valid - see
Section 3.6) and since rs3 > rs2, most of the actors in AL will be
found in k CLj , thus diminishing drastically the actor list building
cost. Actually the validity of Cachej is necessary to ensure that
a colluding node selected as SL cannot hide honest nodes with
the hope of having a larger proportion of colluding nodes in AL.
Indeed, at least one of the SL is honest and will provide its full
Cachej that will be thus included in CL. We can observe that
Cachej can be actually seen as the relevant part (for node j) of a
full mesh network, which offers its benefits without paying the
whole maintenance cost.

To check the verifiable actor list (VAL), any verifier node must
do: for j ∈ [1,k], check cert j , check the legitimacy of SLj using
RNDT and validate signj (AL). Thus, the verifying cost is limited
to k certificate verifications and k signature verifications, i.e., 2k
asymmetric crypto-operations. We show in Section 4 that k is
generally lower than 6.

3.6 Protocol Implementation Details
In this section we discuss a few important implementation issues
of the proposed actor selection protocol.

Despite the uniform distribution of nodes on the DHT virtual
space, there is no absolute guarantee of not having sparse DHT
regions. This can have two negative impacts on the SEP2P pro-
tocol: during the selection of k TLs in R1 (or k SLs in R2) and A
actors in R3. Both cases exhibit interesting trade-offs:
Choosing R1 (or R2) region size: on the one hand, a small rs
leads to a smaller k value, which in turn reduces the protocol
verification cost. On the other hand, setting rs too small can
lead to situations in which nodes have less than k legitimate
nodes in their R region and as such cannot participate in the
actor selection protocol (as triggering node or execution setter)
which is problematic. For this reason, in SEP2P we provide a
table of couples (ki , rsi ), named k-table, which allows any node
to find ki legitimate nodes in the region of associated rsi size.
The k-table is computed thanks to PL and PC (equations (1) and
(2)) to ensure that whatever the couple chosen, the probability of
having k or more colluding nodes remains equal. The largest k of
the k-table corresponds to the region size allowing any node to
find those legitimate nodes with a very high probability, i.e., 1-α ,
while lower values allow to reduce the security cost in denser
network regions. Thus, the k-table optimizes the overall cost of
the SEP2P protocol and warrants that any node can be selected
as triggering node or execution setter.
Choosing R3 region size: Choosing a too small rs3 has a neg-
ative impact on the system performance. If the SLs cannot find
enough nodes in R3, they can attest it (e.g., in Step 8.c in SEP2P
protocol) and S can use the k signatures to displace the actor
selection to another region (e.g., selected by rehashing the ini-
tial RNDT ). This mechanism allows the protocol to be executed
successfully even if some network regions are sparser. However,
there are two drawbacks. First, the cost of the actor selection
increases since (part of) SEP2P protocol must be executed twice
(or more times). Second, this also introduces an unbalance in the
system load since the sparse regions cannot fully take part in data
processing. Finally, setting rs3 to very large values (see Section
4.3) is not an option since the maintenance cost of the cache
increases proportionally when nodes join or leave the network.
Joining the network and Cachej validity: Due to space limita-
tion, we only sketch the joining procedure in the case of a Chord

DHT (leaving the network can be easily deduced). As mentioned
above, any node must maintain a consistent node cache despite
the natural evolution of the network. Thus, a node joining the
network must ask its successors and predecessors (Chord DHT)
to provide their node cache attested by k legitimate nodes in
a region of size rs1 centered on their location. The new node
can then make the union of these caches and keep only legiti-
mate nodes w.r.t R3 centered on its location. The resulting cache
contains only genuine nodes and is thus valid since it has been
attested by at least k nodes in a region of size rs1 centered on the
successors or predecessors of the new node (a recurrence proof
can be established).
Reusing an actor list: If there is no mechanism that prevents
an attacker from reusing an actor list, then she only has to keep
generating such lists until she obtains one she deems satisfactory.
To counter this behavior, we put in place two mechanisms: (i) a
timestamp and (ii) a limit to the number of triggered executions
a node can make. With (i) we prevent any node from reusing an
actor list:TLs and SLs add a timestamp to their signatures which
will respectively be checked by the SLs and the data sources. If the
timestamp is too distant, the computation is cancelled. Enforcing
(ii) is possible thanks to the node cache and the k-table: the TLs
solicited by T first check if T chose the smallest possible number
ofTLs (as their node cache contains, by construction, R1 centered
on T , they are capable of judging), thus forcing T to choose the
same TLs. They then only have to monitor and limit the number
of queries T does in a given amount of time.
Failures and disconnections: In the most complex case of node
failures (i.e., unexpected disconnection) of a TL, SL or S , ei-
ther RNDT or AL cannot be computed and the protocol must
be restarted (i.e., T generates a new RNDT ). However, the proba-
bility of failures during the execution of the secure actor selection
being low in our context, such restarts do not lead to severe ex-
ecution limitations as mentioned above. The case of “graceful”
disconnections is easier: we can safely force nodes involved in
the actor selection process to remain online until its completion,
thus avoiding the restarts. If a node, selected as actor wants to dis-
connect (or fails), the impact will be mainly on the result quality
since part of the results will be missing.

4 EXPERIMENTAL EVALUATION
This section evaluates the effectiveness, efficiency, scalability and
robustness of the SEP2P actor selection protocol.

4.1 Experimental Setting
Reference methods. To better underline our contributions and
to provide a comparison basis, we implemented three strategies
in addition to the SEP2P actor selection protocol. We discarded
the baseline cost-optimal and security-optimal protocols from the
evaluation since the former does not provide any security while
the latter is much too costly and not scalable (w.r.t. N andC) to be
used in practice. Hence, we used for comparison more advanced
actor selection strategies based on these protocols but using our
verifiable random generation protocol with k participants (see
Section 3.4).

The first two strategies use the verifiable random to designate
the execution Setter (S) which freely chooses the actor list (as
in the cost-optimal protocol). These strategies differ only in the
verification process. The first one, ES.NAV (for Execution Setter,
No Actor Verification) requires verifying the legitimacy of S but
not of the actors. The second one, ES.AV requires, in addition,
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to verify that actors are genuine PDMSs. ES.AV is expected to
provide better security effectiveness than ES.NAV at a higher
verification cost. The third strategy, M.Hash (for Multiple Hash)
is derived from the security optimal protocol, but uses a DHT
instead of a full mesh network. Verifiers must check that actors
are genuine PDMSs and that they are “near” the random values
determined by the initial verifiable random, hashed as many
times as there are actors.

Strategy Description
ES.NAV Execution Setter with No Actor Verification
ES.AV Execution Setter with Actor Verification
M.Hash Multiple Hash (with Actor Verification)
SEP2P Proposed protocol (Section 3.5)
Param. Description Values(default)
N Number of nodes 10K; 100K; 10M
C% % of colluding nodes 0.001%; 0.01%; 0.1%; 1%; (10%)
A Number of actors 8; 16; 32; 64; 128; 256
α Security threshold 10−4; 10−6; 10−10
| Cachej | Node cache size 48 or varying from 8 to 32K
MTBF Mean time betw. failure from 1h to 5 days
Metrics Unit(s) & comments
Security effectiveness Ratio (1 = ideal, C/N = worst)
Verification cost Number of asymmetric crypto-operations
Latency of setup cost Number of exchanged messages and

number of asymmetric crypto-operations
(per minute for the maintenance overhead)

Total work setup cost
Maintenance overhead
Security degree (k ) Ratio (1 = ideal, C/N = worst)

Table 3: Strategies, parameters and metrics

Simulation platform.We identified all the parameters that may
impact the security and efficiency of the proposed strategies and
considered all the metrics (see Table 3) that are worth evaluating
to analyze the strengths and weaknesses of the proposed strate-
gies, i.e., security effectiveness and cost, setup cost, scalability,
robustness w.r.t. failure or disconnections. Let us note that a real
implementation of the SEP2P distributed system is not very use-
ful if we consider the above listed objectives of the evaluation.
Also, measuring the scalability for very large systems (e.g., 10M
nodes) with many parameters is practically impossible. There-
fore, as in most of the works on distributed systems [30, 34], we
base our evaluation on a simulator and objective metrics. That
is, the latency is measured as the number of asymmetric crypto-
operations and exchanged messages between peers instead of
absolute time values. This allows for a more precise assessment
of the system performance than time latency, which can greatly
vary in our context because of the node heterogeneity (e.g., TEE
resources or network performance).

Our simulator is built on top of a DHT network. Currently, we
implemented Chord and CAN as DHT overlays and use Chord
for the results presented in this paper. The simulator allows to
force choosing a given Execution Setter (by artificially fixing
the RNDT value). We used this feature to obtain the exhaustive
set of cases for a given network setting, each node being the
Execution Setter, and then capture the average, maximum and
standard deviation values for our metrics. The parameters and
metrics of the simulator are described in Table 3. Values in bold
are the default choices and their tuning is discussed throughout
the Section. Note that (1) the verification cost is given by verifier
node; (2) the latency indicates the “duration” of the protocol
executed in parallel; (3) the total work indicates the cumulative
number of cryptographic operations and communications during
the execution of a protocol.

Security threshold value: Generating several networks and
varying the security threshold α , we experimentally observed
that for α = 10−4, an attacker never controls k or more nodes.
However, given the importance of this parameter for the system
security, we set α = 10−6 and show in Figure 6 the impact of
choosing α = 10−10 on a small (10K) and large (10M) network.
Indeed, if an attacker could master by chance k colluding nodes in
a region of size rs1 = rs2, then she could completely circumvent
the security mechanism of SEP2P since, for example, she can
obtain k signatures from these regrouped colluding nodes for
an actor list of her willing. Note that increasing α reduces the
probability accordingly but increases the verification cost in a
logarithmic way (as discussed below in Section 4.3).

4.2 Security Effectiveness versus Efficiency
Figure 3 represents the security effectiveness (Y axis) versus the
verification cost (X axis) for the four measured strategies and
with C% varying from 0.001% to 10%. Note that the value of 10%
is not realistic: it would lead to large disclosure even with an
optimal random actor selection protocol, and as mentioned in
Section 2.4, is equivalent to state-size attack. We have however
run the simulation with 10% to understand its impact on the
security effectiveness and cost.
Security effectiveness: SEP2P achieves an ideal security effec-
tiveness, i.e. as good as a trusted server, independently of the
number of colluding nodes. Indeed, the selection of actors is truly
random, thus providing the same results as the ideal case. In
addition, the verification cost (2k) is also very low (4 to 8 asym-
metric crypto-operations forC% ≤ 1%). Not surprisingly ES.NAV
has the same verification cost than SEP2P, but the cost of ES.AV
or M.Hash is much larger (2k + A + 1 and 2k + A respectively)
since both must check the certificate of each actor in the list. This
check allows ES.AV to have better security effectiveness than
ES.NAV when C is very small (C < A). With respect to security
effectiveness, ES.NAV, ES.AV and M.Hash are far from offering
an adequate protection. Let us explain the cause for the poor
security effectiveness: while RNDT value is correctly chosen, an
attacker mastering a corrupted node located “sufficiently near”
from hash(RNDT ) can claim to be the Execution Setter and then
select a list of actors including a maximum number of colluding
nodes. Here, “sufficiently near” means that it satisfies the check
made by the verifiers. Note that we tuned the system parameters
such that we can be “sure” to have always a node sufficiently
near of any random value to allow executing the actor selection
protocol for any RNDT . The same problem arrives with M.Hash
for each new random destination, thus explaining the poor secu-
rity effectiveness. Hence, increasing the number of verifications
or selecting each actor in a different network region does not
solve the intrinsic limitation of these strategies. Note also that
this behavior does not affect SEP2P. Indeed, even if the Execu-
tion Setter is a corrupted node, it cannot influence the actor list
selection since it is done by k SLs (S only routes the messages
between the SLs).
Setup costs: Figures 4 and 5 show the setup costs (Y axis in log
scale) in terms of asymmetric crypto-operations and exchanged
messages respectively, once more with respect to the verification
cost (X axis). Curves with empty symbols represent latency while
plain symbols represent total work. The results show that SEP2P
is the slowest in latency and has the higher total setup cost for
crypto-operations. These “bad” results are the consequence of
two design choices: (1) to increase the security effectiveness, we
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Figure 5: Setup communication costs 
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Figure 7: Setup costs varying R3 size 
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run our protocol on k SL nodes thus increasing the total setup
cost; and (2) we voluntarily make most of the checks during the
setup (e.g., checking the actor certificates or verifying their avail-
ability) in order to reduce, as much as possible, the subsequent
verification cost. Since this verification process will potentially
be performed by a (very) large set of nodes (e.g., data sources), it
is in our best interest to reduce it to avoid overloading the entire
system. Figures 4 and 5 illustrate this aspect: our non-optimal
setup cost is balanced by an optimized verification cost (and ideal
disclosure in Figure 3). Note also that most operations are done
in parallel (either by k TLs or SLs), thus leading to a reasonable
setup latency (around 20 crypto-operations and 30 exchanged
messages). We can also note in Figure 5 that M.Hash achieves
the worst total work for setup (exchanged messages), because
of the A routings in the DHT. Finally, we can remark the almost
identical latency of ES.NAV, ES.AV and M.Hash on both metrics.
Indeed, they all run the same initial protocol to compute RNDT .
With respect to communication, the results are also identical
because all DHT routings for M.Hash are done in parallel.

4.3 Scalability and Robustness
We now concentrate on SEP2P to study its scalability and its
robustness to node failure.
Scalability: To study the scalability, we compute the averaged
k value varying C and N . Indeed, k is the main factor in the
verification cost, setup latency and total work (since everything
is done k times). As seen in Section 3.6, depending onC andN , we
can compute a k-table which gives several increasing values of k
with increasing region size. We have considered small (10K) to
very large (10M) networks and four values forC%, leading to eight
different SEP2P network configurations. For each configuration,
we have computed, for each node, the minimal value for k with
respect to the k-table and then averaged the results. Figure 6
shows the average k (Y axis) versus the C% (X Axis in log scale)
for several network size considering two values for α : 10−6 and
10−10. We also plot on the same figure the value of k without

k-tables (the grey curve) to highlight the benefit brought by k-
tables (only shown for the large network with α = 10−10). This
figure offers many insights. (1) SEP2P is highly scalable w.r.t.
N : Indeed, k values are identical for small and large networks
independently of α if we consider the percentage of colluding
nodes and not the absolute value (e.g., 1% colluding nodes is
equivalent to absolute values of C = 100 and C = 100K for
the small and large networks). Indeed, scaling N and C in the
same proportion leads to reduce rs1 = rs2 size accordingly. Note
that with a single corrupted node, the k optimization is useless
(k = C + 1 in that case) regardless of the α value. (2) k increases
slowly whenC% < 1%: k remains smaller than 6 even with α =
10−10. For N = 10M and C% = 1%, the k-optimization reduces
the number of participants in the verifiable random generation
from 100K to 6. (3) α has a small influences on k: increasing
α by four orders of magnitude increases k from 1 unit (e.g., 1K
colluding nodes for N = 10M) to 5 units (e.g., 1K colluding nodes
for N = 10K or 1M colluding nodes for N = 10M). (4) the k-
table optimization is important: k-tables allow reducing k by
1 unit up to 9 units (for 10% colluding nodes).
Number of actors:We also studied the impact of the variation
of the number of actors. Overall, this results in a linear increase
in the total work in terms of communications as the k SLs must
check for the availability of A legitimate nodes to construct their
respective CLs. For the sake of brevity, we omit here these results.
Node cache size:We now focus on adapting the node cache size
to the maximum number of required actors. Our goal is to evalu-
ate the impact of the cache size on the global performances. To
do so we take a reference network with N = 100K , C% = 1% and
A = 32 and vary the average cache size on the whole network (we
compute rs3 easily dividing the cache size by N ). Figure 7 shows
the results (Y axis in log-scale). For each cache size, we simulated
an execution on each node of the network and computed the
average values for our metrics. Our measures show that with a
very small cache, the probability of relocating the actor selection
process is high (the SLs do not find enough legitimate nodes in
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their cache w.r.t. R3), which then leads to an increased latency
and total work. Choosing a cache size greater thanA, the query is
almost never relocated (see Figure 7), giving better performances.
This would lead to choose the largest possible cache. However,
constructing such a cache also means maintaining it.
Maintenance costs: We also evaluated the impact of the cache
size in the presence of node disconnections and, more generally,
the impact of disconnections. To observe it, we simulated dis-
connections and measured their cost depending on the size of
the node cache (Cachej ) using the default values for C , N , α and
resulting k . We then considered those costs as a baseline and
computed the global impact in a network where nodes discon-
nect (and reconnect) every x hours (mean time before failure or
MTBF). We represent this cost in terms of asymmetric crypto-
graphic operations (see Figure 8 - Y axis in log scale). The number
of exchanged messages is not shown because graphs are very
similar. We also computed these metrics for large node cache
sizes (up to 32K ) to confirm that full mesh networks cannot be an
alternative to DHT. Our results show that an overestimated cache
is excessively costly even with an MTBF of 5 days: it consumes a
large portion of the overall computing power of the entire system
just to maintain it up to date. With small MTBFs, the network
would be probably not maintainable. Since the number of actors
for a computation is likely to be relatively small (e.g., few hun-
dred, see Section 5), we can safely set the node cache size around
512 which leads to a reasonable maintenance cost (less than 1
signature per node per minute on average for MTBF = 1 day) and
never trigger relocations (see Figure 7).

5 TASK ATOMICITY
5.1 Proposed Use Cases
We now focus on requirement 2, illustrating task atomicity on
the use cases proposed in Section 1.
Use case 1: Mobile participatory sensing is used in many
smart city applications for urban monitoring such as traffic mon-
itoring (e.g., Waze or Navigon), evaluating the quality of road in-
frastructures, finding available parking spaces or noise mapping
[36]. In these scenarios, the community members act as mobile
probes and contribute to spatial aggregate statistics (density, av-
eraged measures by location and time, spatial interpolation [36])
which in turn, benefit the whole community. As an alternative
to the classical centralized architecture, the distributed PDMS
paradigm increases the privacy guarantees for the users, thus
encouraging their participation. A mobile user can generate sens-
ing data (e.g., using her smartphone or vehicular systems) which
is securely transmitted and recorded into her PDMS (e.g., a home
box). This way each PDMS becomes a potential data source in
the system. These data can then be aggregated by a small subset
of data processor nodes to produce the required spatial aggregate
statistics, which can be broadcasted to all the participating nodes.
Use case 2: Users can subscribe to information flows based
on their preference or user profile (e.g., RSS feeds, specific
product promotions or ads, etc.). A user profile can be represented
by a set of concepts associating metadata terms (e.g., location, age,
occupation, income, etc.) to values specific to each user. These
associations are traditionally stored at a publication server to
allow targeting the interested nodes. Instead, we propose to dis-
tributively store and index those profiles in SEP2P, thus greatly
improving users’ privacy. We call a concept index, an index as-
sociating for each concept the list of node addresses having this

concept. Storing and searching this concept index is straightfor-
ward with a DHT. Each node does a store(concept , IPaddress)
for each concept in its profile. To find all the nodes matching
a certain target profile (e.g., a logical expression of concepts), a
DHT search is launched for each concept in the profile. Then, a
set of randomly selected data processors are used to pick up the
scattered pieces of the concept index, apply the logical expres-
sion of the target profile and compute the matching target nodes
(TN ), i.e., their IP addresses. Finally, the information is sent to
the selected targets.
Use case 3:We consider queries over the personal data con-
tributed by a large set of individuals, e.g., to compute recom-
mendations, make participative studies. To achieve a high degree
of pertinence and avoid flooding the system, such queries should
target only a specific subset of the nodes, i.e., the nodes exposing
a given user profile. Query examples are numerous, e.g., get the
top-10 ranked movies by academics from Paris, or find the aver-
age number of sick leave days of pilots in their forties. The query
processing is done in two steps which roughly correspond to the
use case 2 combined with use case 1. First, the relevant subset
of nodes, which match the query profile, must be discovered
(use case 2). Then, the selected subset of target nodes become
data sources which supply the required data (e.g., number of sick
leave days) to compute the query result (use case 1). The main
differences are that only the selected nodes provide data and that
the result is transmitted only to the querier node and not to the
entire system.

5.2 Detailed Node Roles
From the above description, we can define new node roles:
Node role 4. Ametadata indexer (MI ) stores part of the meta-
data shared by the nodes, allowing pertinent and efficient dis-
tributed data processing.
Node role 5. A target finder (TF ), applies a logical expression
on its input to produce a list of target nodes.
Node role 6. A data aggregator (DA) applies an aggregative
function to its input and produces partially aggregated results.

Node role 7. A main data aggregator (MDA) aggregates its
input and produces the final result.

T 

MI MI MI ��� 

TF TF ��� 

��� TN TN TN TN TN 

✓ ✓ ✓

T 

DA DA ��� 

MDA 

MI MI MI ��� 

TF TF ��� 

��� TN TN TN TN TN 

✓ ✓ ✓

✓ ✓ ✓ ✓ ✓

DA DA ��� 

MDA 

��� DS DS DS DS DS ✓ ✓ ✓ ✓ ✓

broadcast 
or 

publication 

Use case 1 Use case 2 Use case 3 

Figure 9: Distributed execution plans for the use cases

These roles allow designing distributed execution plans for
the three use cases as shown in Figure 9. The nodes that must be
chosen using the SEP2P protocol are shown in pink, and we used
the symbol

√
to denote that a node is a verifier (as specified in

Section 3.6). This must be done each time a node discloses some
sensitive data, thus on data sources and metadata indexers.
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5.3 Towards Task Atomicity
The node roles and DEP proposed above already provide some
task compartmentalization dividing thewhole processing in tasks.
However, much more can be done to minimize the impact of data
leakage. In this section we present a few methods to achieve task
atomicity. Our objective is mainly to show that task atomicity
can be indeed performed and that it can significantly improve
the system security when used in conjunction with the secure
random actor selection. Given the space limitation, a detailed
study of task atomicity is left for future work.
Metadata index protection: The concept index design already
exhibits some form of task atomicity: (1) it is evenly distributed
among all the nodes using the DHT mechanisms; (2) the imposed
location of nodes in the DHT (see Section 3.2) leads to a random-
ized association between concepts and MI nodes. Nevertheless,
a single corrupted node could disclose all the index information
it owns. Further security improvements can be obtained by split-
ting each concept into s shares using the Shamir’s secret sharing
technique [32] which requires knowing at least p (p ≤ s) shares
to reconstruct the secret. Disclosing a single concept will now
require p colluding nodes randomly selected.
User data protection:We consider here sensed data in use case
1 or the result of queries performed on a single PDMS in use
case 2. Considering several DAs already reduces the impact of
potential data leakage by a corrupted DA node. A simple way
to reduce further this impact is to realize the aggregation on
anonymized data (e.g., average traffic speed without user iden-
tity) or data without semantics (e.g., averaging data, a salary for
instance, without knowing its meaning) or even encrypted data
(with deterministic encryption). Note also that aggregation is
continuous in the mobile sensing use case and that selected DA
node will change at each iteration.
User identity protection: User’s PDMS actively participate in
the DEP either by receiving information (use case 2) or queries
(use case 3) or by sending information (use cases 1 and 3). They
thus communicate with DA nodes or receive messages from TF
nodes, both being potentially corrupted. The reception / trans-
mission task should be “isolated” to make one more step towards
task atomicity. This can be achieved using the notion of proxy-
forwarder that we illustrate for the TN -DA communication in
the use case 3. The TN (which is actually a data source) must
transmit its local result (e.g., number of sick leave days) to the
DA node. TN can choose randomly any node P in the system and
send the data, encrypted with the public key of the DA (known
from the Verifiable Actor List). P will receive this data and trans-
mit it to the DA. Thus, DA will have the data without knowing
the sender, while P will know the sender but not the data. Note
that (1) TN has good reasons to choose randomly P since it is the
most interested in protecting its data; (2) the probability that both
DA and P to be colluding nodes is extremely low (≈ (C/N )2); and
(3) we could use several proxies, thus mimicking anonymization
network techniques (e.g., Tor).

6 RELATEDWORK
DHT security. Several works focus on DHT security [40] consid-
ering the following attacks: (i) Sybil attack: an attacker generates
numerous false DHT nodes to outnumber the honest nodes. Intro-
ducing an (offline) certificate authority, is deemed to be among the
most effective defenses against the Sybil attack [11]. (ii) Routing
table poisoning (eclipse attack): an attacker attempts to control

most of the neighbors of honest nodes to isolate them. According
to [40] the best strategy against such attacks is to constrain the
DHT node identifiers. Again, using a central authority to provide
verifiable identifiers is the simplest yet most effective way of
achieving this goal [34]. (iii) Routing and storage attacks: Sybil
and eclipse attacks do not directly impact the DHT, they are
mainly necessary means for future attacks, like various denials
of service (DoS). For instance, the objectives might be to prevent
a lookup request from reaching its destination, denying the ex-
istence of a valid key, or impersonating another node to deliver
false data. These DoS attacks are usually classified as routing and
storage attacks and most of the mechanisms employed to negate
them are based on redundancy at the storage and routing levels
[40]. Thus, none of these works consider the secure and efficient
actor selection for distributed processing as in SEP2P.
Secure Multi-party Computation and differential privacy.
Cryptographic protocols have been proposed to protect the users’
privacy in distributed computations with a focus on data confi-
dentiality enforcement in personal data aggregation. Examples
of computations related to this work are personal time-series
clustering [2], kNN similarity queries [17], and location-based
aggregate statistics [28]. However, MPC raises major scalability
issues which in practice limit such protocols to specific types of
computations [31].

Although it yields interesting results in privacy protection
[15], differential privacy generally requires a central trusted ag-
gregating node and ad-hoc adaptations depending on the targeted
queries. As we search to provide a generic framework and ex-
clude having a central actor to avoid a single point of failure,
both requirements cannot be met by differential privacy. Even
though local differential privacy [13] tries to address our first
requirement, the solutions offered until now are still not generic,
while the pertinence or the quality of the results may still be prob-
lematic with some applications [13]. Also, differential privacy
exhibits intrinsic limitations with applications requiring contin-
uous data flow aggregation (e.g., such as mobile participatory
sensing) because of temporal correlation between consecutive
data batches [10].
Distributed data aggregationusing secure hardware.To over-
come the limitations of MPC or differential privacy, several works
propose using secure hardware at the user-side. Several secure
protocols have been proposed for SQL aggregation [37], spatio-
temporal aggregation [36], top-k full-text search [21], or privacy-
preserving data publishing [3]. SEP2P also considers a secure
PDMS at the user-side but our attack model considers having
many colluding nodes. Moreover, the focus in SEP2P is on the
secure and efficient random node selection. Differently, existing
work focus on data aggregation or publishing and consider that
all the nodes in the network participate in the protocol with their
data being thus complementary to SEP2P.
Secure server-centric approaches. The above cited solutions
are based on fully-distributed (P2P) or hybrid architectures. Al-
ternatively, one could envision a solution based on a secured
centralized server [6]. However, this raises important issues. First,
users are exposed to sophisticated attacks, whose cost-benefit is
high on a centralized database. Second, centralizing all users’ data
into one powerful server makes little sense in the PDMS context
in which data is naturally distributed at the users’ side. Hence,
users might be reluctant to use such a massively centralized data
service. Finally, new legislation such as the European GDPR [27]
may hinder the development of such centralized solutions.
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7 CONCLUSION
Personal Data Management Systems arrive at a rapid pace allow-
ing users to share their personal data within large P2P communi-
ties. While the benefits are unquestionable, the important risks
of private personal data leakage and misuse represent a major
obstacle on the way of the massive adoption of such systems.
This paper is one of the first efforts to deal with this impor-
tant and challenging issue. To this end, we proposed SEP2P, a
fully-distributed P2P system laying the foundation for secure,
efficient and scalable execution of distributed computations. By
considering a realistic threat model, we analyzed the fundamental
security and efficiency requirements of such a distributed system.
We showed that the secure selection of random actor nodes is the
basis of security for any distributed computation. Then, we pro-
posed secure and highly efficient protocols to address the actor
selection problem. Our simulation-based experimental evaluation
indicates that our protocol leads to minimal private information
leakage, i.e., increasing linearly with the number of colluding
nodes. At the same time, the cost of the security mechanisms
depends only on the maximum number of colluding nodes and
remains very low even with wide collusion attacks.

This work opens the way for several interesting research prob-
lems. In particular, to further minimize the impact of a private
data leakage, the random actor selection needs complemented
with task atomicity, i.e., decompose the computation process
such that it minimizes the amount of sensitive data the processor
nodes have access to. To underline this requirement, we discussed
in this paper three types of representative applications in the
PDMS context and provided sketches of solutions to achieve task
atomicity. Certainly, this problem deserves a deeper look and
constitutes our main objective as future work.
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ABSTRACT
A key service in vehicular transportation is routing according to
estimated travel times. With the availability of massive volumes
of vehicle trajectory data, it has become increasingly feasible to
estimate travel times, which are typically modeled as probability
distributions in the form of histograms. An earlier study shows
that use of a carefully selected, context-dependent subset of avail-
able trajectories when estimating a travel-time histogram along
a user-specified path can significantly improve the accuracy of
the estimates. This selection of trajectories cannot occur in a
pre-processing step, but must occur online—it must be integrated
into the routing itself. It is then a key challenge to be able to select
very efficiently the "right" subset of trajectories that offer the best
accuracy when the cost of a route is to be assessed. To address
this challenge, we propose a solution that applies novel indexing
to all available trajectories and that then is capable of selecting
the most relevant trajectories and of computing a travel-time
distribution based on these trajectories. Specifically, the solution
utilizes an in-memory trajectory index and a greedy algorithm to
identify and retrieve the relevant trajectories. The paper reports
on an extensive empirical study with a large real-world GPS data
set that offers insight into the accuracy and efficiency of the
proposed solution. The study shows that the proposed online
selection of trajectories can be performed efficiently and is able
to provide highly accurate travel-time distributions.

1 INTRODUCTION
Vehicular transportation is an important global phenomenon
that impacts the lives of virtually all of us. We rely on it for
mobility, and we are affected by congestion, accidents, and air
and noise pollution. Its influence can be expected to continue
into the foreseeable future. For example, in the European Union
alone, more than 75% of all freight transport and more than
80% of passenger transport rely on the road networks [8]. The
availability of high-resolution GPS trajectories allows for reliable
map-matching to a road network. The resulting trajectories are
called network-constrained trajectories (NCT) and can be used to
obtain travel-time estimates for paths in the network, thus mak-
ing transportation more predictable, safe, and environmentally
friendly.

When using such a data set, the most straightforward ap-
proach to computing a travel-time estimate for a path is to com-
pute a real-valued estimate for each segment in the path and

© 2019 Copyright held by the owner/author(s). Published in Proceedings of the
22nd International Conference on Extending Database Technology (EDBT), March
26-29, 2019, ISBN 978-3-89318-081-3 on OpenProceedings.org.
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license CC-by-nc-nd 4.0.

then sum up these to obtain an estimate for the full path. This
approach can be refined by collecting travel-time histograms for
each segment and then combine them by means of convolution
to obtain a travel-time histogram for the full path. This improves
the accuracy of estimates since travel times are better modeled
as distributions than real valued. Further, the distributions often
do not follow a parameterized distribution, e.g., normal or uni-
form, and are therefore better estimated with histograms. This
segment level approach can also be extended to computing differ-
ent histograms for different times of day, e.g., the 96 15-minute
intervals of the day, to account for changing congestion through-
out the day. These histograms can be used as edge weights by
routing algorithms to compute better results. All of the above
approaches, however, only consider travel-time estimates at the
segment level. These approaches fail to take into account fac-
tors like the times it takes to pass through intersections, going
straight or turning left or right, which are hard to model accu-
rately. An earlier study [26] shows that travel-time estimates for
a given path can be improved considerably when they are com-
puted from trajectories that strictly follow the path, as opposed
to computing them from segment-level estimates. This type of
path-based estimate relies on efficiently processing strict path
queries (SPQ) as proposed by Krogh et al. [14], which is a query
on a trajectory set that only returns trajectories which traversed
a given path without detours.

We propose a system that can compute time-varying and per-
sonal travel-time histograms for any path in a network based
on a large trajectory set. It would be infeasible and impracti-
cal to pre-compute and store these time-varying and personal
weights for any path in a network before routing occurs. For
example, given even a moderately sized road network of a mil-
lion segments, for all 15-minute windows, nearly a 100 million
histograms would be needed to just cover every single segment,
with the storage requirements increasing dramatically when con-
sidering larger path lengths. We therefore obtain the weights for
a path on-the-fly by expressing them as a series of SPQs, which
we can efficiently process using our in-memory NCT index. If
any of these sub-queries fails to retrieve a sufficient number of
matching trajectories, we apply a greedy algorithm that relaxes
the SPQ’s predicates until the retrieved trajectory set has a speci-
fied cardinality. Since performance is crucial in our setting, we
also implement a cardinality estimator for SPQs to prevent unnec-
essary index traversals. We also show that carefully choosing the
initial set of SPQs increases the accuracy of the path weights and
increases the performance of the query. We perform extensive
experiments using a real-world trajectory data set containing 1.4
million trajectories from Northern Denmark, which shows that
our approach is suitable for real-time applications.
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The main contributions of this paper are the following:
• An adapted NCT index that supports efficient computation
of travel-time histograms for SPQs.
• A greedy algorithm that enables efficient processing of
any SPQ in periodic time intervals.
• A cardinality estimator for SPQs.
• A detailed analysis of the accuracy and performance of
the solution and its components.

The rest of the paper is structured as follows. Section 2 pro-
vides an overview of prior work, preliminaries, and a detailed
problem description. Section 3 describes the query processing
method, while Section 4 details the construction and use of the
NCT index. Section 5 outlines the experimental setup and the
evaluation metrics. Section 6 reports on the results of the experi-
ments, and Section 7 concludes.

2 PROBLEM FORMULATION
This section provides an overview of prior work, preliminaries,
and a problem definition.

2.1 Related Work
We review approaches to travel-time estimation and then, we
review network-constrained trajectory indexing with a focus on
indexes supporting SPQs.

2.1.1 Travel-Time Estimation. Earlier studies on travel-time
estimation compute histograms for single segments [15], which
still requires to model turn costs [27], or for short pre-defined
paths with considerable traffic [4], which are then convolved
at query time. In our approach, travel-times are computed for
sub-paths instead of only for individual segments. This approach
implicitly handles turn costs within sub-paths, and turn costs only
need to be modeled explicitly in-between sub-paths if applicable.
Other approaches based on tensor decomposition [25], support
vector regression [28], variance-entropy-based clustering [29],
or deep neural networks [24] have also been proposed. But they
either do not provide travel-time distributions or do not provide
estimates for specific paths but only for origin-destination pairs.

2.1.2 NCT Indexing. Several indexes for network-constrained
trajectories based on R-trees [5, 6, 9] or B+-trees [20] have been
proposed, but they are often only optimized for range queries or
nearest neighbor queries.

Two indexes have been proposed to support strict path queries,
NETTRA [14] and the SNT-index [12]. NETTRA is a disk-based in-
dex designed to answer SPQs with minimal I/O and also supports
efficient updates of the index, but may return false positives due
to hash collisions. The SNT-index uses data structures adapted
from string matching to efficiently identify matching trajectories.
This index was originally designed to retrieve all matching trajec-
tory IDs in a given time interval that fulfill the SPQ requirement.
We extend it to accommodate travel-time retrieval as well.

2.2 Network Graph & Trajectories

Figure 1: Example Road Network

Table 1: Example of F and Function estimateTT

e c z sl l estimateTT
A motorway rural 110 900 29.5 s
B primary city 50 120 8.6 s
C secondary city 30 40 4.8 s
D secondary city 30 80 9.6 s
E primary city 50 100 7.2 s
F primary rural 80 800 36.0 s

A spatial network is modeled as a directed graphG = (V , E, F ),
where V is a vertex set, E ⊆ V ×V is a set of edges that repre-
sent road segments, and F : E → Cat × Z × SL × L is a set
of functions, where Cat is the set of road categories, Z is the
set of different types of zones the segments are located in, SL
is the set of speed limits in kilometers per hour (or 1000

3600 meters
per second), and L is the set of segment lengths in meters. From
this we can derive the function estimateTT (ei) = 3.6 F(ei ).l

F(ei ).sl
that

returns the traversal time in seconds if the segment is traversed
at the speed limit. This function is used as a fallback so that we
can return a result even if no data is available for a segment.
Every edge e ∈ E has a category that captures the road type of
the segment it represents and a zone type describing its location.
Figure 1 shows the graph representation of the road network we
use in examples. Table 1 shows the mapping of each segment to
categories c ∈ Cat = {motorway, primary, secondary} and zones
z ∈ Z = {city, rural}.

A traversable sequence of segments P = ⟨e0, e1, . . . , el−1⟩
is called a path, with |P | = l . A sub-path ⟨ei , . . . , ej−1⟩, with
0 ≤ i < j ≤ l , of P is denoted as P[i, j). The set of trajectories is
given as T ⊆ D ×U ×S, whereD is the set of all trajectory ids,
U is the set of all drivers. Further, S : Nl → E × TS × C is the
domain of functions from the set consisting of the first l natural
numbers to the range of triples consisting of an edge e ∈ E, a
timestamp t ∈ TS, and a time duration TT ∈ C. This domain of
functions encodes finite sequences of length l .

A trajectory tr ∈ T of a user u with the id d is therefore
denoted as (d,u, s), where s ∈ S is a sequence of 3-tuples:

s = ⟨(e0, t0,TT0), (e1, t1,TT1), . . . , (el−1, tl−1,TTl−1)⟩,

where t0, .., tl−1 are the timestamps when a segment was entered
with ∀i∀j(i < j ⇒ ti < tj ), TTi > 0 is the duration of the
traversal of ei , and l is the number of segments traversed.

The path of trajectory tr is called Ptr , and its starting time is
tr .t0. The duration function Dur(tr , P) = TT0 +TT1 + . . .+TTl−1
returns the sum of all segment traversal times aPtr of a path P
by a trajectory. If a trajectory path Ptr does not contain P as a
sub-path , Dur(tr , P) is undefined. A trajectory set in our example
road network from Figure 1 is shown below:

tr0 : (0,u1) →⟨(A, 0, 3), (B, 3, 4), (E, 7, 4)⟩
tr1 : (1,u2) →⟨(A, 2, 4), (C, 6, 2), (D, 8, 4), (E, 12, 5)⟩
tr2 : (2,u2) →⟨(A, 4, 3), (B, 7, 3), (F , 10, 6)⟩
tr3 : (3,u1) →⟨(A, 6, 3), (B, 9, 3), (E, 12, 4)⟩

2.3 Travel-Time Query
To address the shortcomings of the segment-level approach, we
employ the strict path query Q = spq(P, I , f , β) that returns a
travel-time histogram H . The histogram can be derived from the
traversal times of the set of trajectories T P ⊆ T that traverse
path P without stops or detours in the time interval I , and fulfill
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additional filter predicates f :

T P = {tr ∈ T |∃i, j (Ptr [i, j) = P ∧ tr .s .ti ∈ I ∧ f (tr ))},

where I = [ts , te ) denotes a temporal predicate with a size α =
te − ts and β is a cardinality requirement for T P , i.e., we only
proceed if |T P | ≥ β . If β is omitted all eligible trajectories are
retrieved. The temporal predicate can either cover a fixed time
interval, e.g., all trajectories from December 1st 2017 until May
1st 2018, or a periodic time-of-day interval denoted as IR =
⟨. . . ,

[
ts − 24 hours, te − 24 hours

)
,
[
ts , te

)
,
[
ts + 24 hours, te +

24 hours
)
, . . . ,

[
ts + n (24 hours), te + n (24 hours)

)
⟩, e.g., all

trajectories from 8:00 until 8:30 on every day. Parameter f is an
additional non-temporal filter predicate that trajectories in T P

have to fulfill, e.g., being from a specified driver.
Using such a queryQ for a typical trip path, which can consist

of dozens of segments, may not return a sufficient number of
trajectories to derive accurate travel-time estimations. To address
this problem, we split Q into k sub-queries ⟨Q1,Q2, . . . ,Qk ⟩ =

⟨spq(P1, I1, f1, β), spq(P2, I2, f2, β), . . . , spq(Pk , Ik , fk , β)⟩ that re-
turn the trajectory sets {T1,T2, . . . ,Tk }, where Pi are sub-paths
that partition P . These can then be used to compute a set of k
histograms {H1,H2, . . . ,Hk } if ∀i |Ti | ≥ β . Their convolution we
call H = H1 ∗H2 ∗ . . . ∗Hk , where ∗ is the discrete convolution
operator andH is a travel-time histogram that covers the full path
P . The intuition behind partitioning into k sub-queries is, that
different sub-paths often provide better estimates with different
predicates, e.g., user predicates mainly improve accuracy outside
of cities [26]. Another advantage of partitioning the query is the
increased number of eligible trajectories.

How this partitioning into sub-queries is performed and how
the sub-queries are processed is discussed in Sections 3 and 4.

An example query for our example trajectory set could be
Q = spq(⟨A,B, E⟩, [0, 15),u = u1, 2). This would return T P =

{tr0, tr3} yielding a histogram with H = {[10, 11) : 1; [11, 12) : 1}
since Dur(tr0, ⟨A,B, E⟩) = 11 and Dur(tr3, ⟨A,B, E⟩) = 10. But if
a larger cardinality is required, Q could be split into two queries
Q1 = spq(⟨A,B⟩, [0, 15), ∅, 3) and Q2 = spq(⟨E⟩, [0, 15), ∅, 3) that
yield the histogramsH1 = {[6, 7) : 2; [7, 8) : 1} andH2 = {[4, 5) : 2;
[5, 6) : 1}, fromwhich the convolutionH = {[10, 11) : 4; [11, 12) : 4;
[12, 13) : 1} can be obtained.

3 QUERY PROCESSING
This section describes the architecture of the system, the pro-
cessing of travel-time queries, and the greedy algorithm used for
relaxing sub-query predicates.

3.1 Architecture
Figure 2 shows the overall system architecture, where boxes
with dotted lines indicate pre-existing components, dashed lines
indicate modified components, and solid lines indicate new com-
ponents. At first, a GPS data set is map-matched off-line to tra-
jectories and loaded into the modified SNT-index consisting of a
collection of temporal indexes and a spatial index.

Once the trajectory set is loaded, a user is able to dispatch a
strict path queryQ to the Sub-query Module where the query is
initially partitioned intok sub-queries by the Query Partitioner
according to a simple heuristic called π , e.g., sub-paths of a fixed
length, or sub-paths that have the same segment category. Each
sub-query is then assigned temporal and trajectory filter pred-
icates. Next, the Cardinality Estimator uses the Histogram
Store and the SNT-Index to estimate the cardinality β̂ of the

trajectory set Ti returned by the sub-query spq(Pi , Ii , fi , β). If β̂
is smaller than the desired cardinality β , the sub-query is mod-
ified by the Sub-query Splitter using a splitting function σ
that relaxes the predicates. If the sub-query’s cardinality esti-
mate meets the requirement, it is dispatched to the index, and
a trajectory set Ti is obtained. If |Ti | ≥ β , it is forwarded to the
Histogram Builder. If the cardinality is still below the threshold,
it is modified again by the Sub-query Splitter.

Once all trajectory sets {T1,T2, . . . ,Tk } are obtained, their
travel-time sets {X1,X2, . . . ,Xk } are extracted, with Xi =
{Dur(tr , Pi )|tr ∈ Ti }. From those, a set of histograms H =

{H1,H2, . . . ,Hk } is computed, and they are convolved into a
single histogram H = H1 ∗ H2 ∗ . . . ∗ Hk that estimates the
travel-time distribution for the complete path P .

3.2 Partitioning Methods
For the initial partitioning of queries, we propose five different
methods. We use the query Q = spq(P, I , f , β) with path P =
⟨A,C,D, E⟩ from the network in Figure 1 as example. The initial
periodic time interval IRi is identical for all sub-queries and is
always chosen so that te−ts = αmin , whereαmin is theminimum
time interval size, which is chosen by the system. The predicate
f is also initially identical for all sub-queries but may be modified
by the splitting method (cf. Section 3.3).

3.2.1 Regular (πp ). The regular partitioning creates sub-queries
for paths of length p, i.e., every query is partitioned into k = ⌈ lp ⌉
sub-queries, i.e., the sub-queries πp (Q) = ⟨spq(P[0,p), IR1 , f1, β),
spq(P[p, 2p), IR2 , f2, β), . . . , spq(P[p⌊

l
p ⌋, l), I

R
k , fk , β)⟩ are created.

In our experiments we chose π1, π2 and π3, which for our exam-
ple path yield the paths ⟨⟨A⟩, ⟨C⟩, ⟨D⟩, ⟨E⟩⟩, ⟨⟨A,C⟩, ⟨D, E⟩⟩, and
⟨⟨A,C,D⟩, ⟨E⟩⟩, respectively.

3.2.2 Segment Category (πC ). The segment type partition-
ing creates partitions of sub-paths with identical segment cate-
gories, i.e., two neighboring segments ei and ei+1 are split unless
F (ei ).c = F (ei+1).c . For our example query, this results in the
sub-paths ⟨⟨A⟩, ⟨C,D⟩, ⟨E⟩⟩.

3.2.3 Zone Type (πZ ). The zone type partitioning creates
partitions of sub-paths within the same zone type, i.e., two neigh-
bouring segments ei and ei+1 are split unlessF (ei ).z = F (ei+1).z.
For our example query, this results in the sub-paths ⟨⟨A⟩, ⟨C,D, E⟩⟩.

3.2.4 Zone Type & Segment Category (πZC ). The zone type
and segment category partitioning creates partitions of sub-paths
within the same zone type and segment category combination, i.e.,
two neighboring segments ei and ei+1 are split unless F (ei ).z =
F (ei+1).z ∧ F (ei ).c = F (ei+1).c . For our example query, this
results in the sub-paths ⟨⟨A⟩, ⟨C,D⟩, ⟨E⟩⟩.

3.2.5 None (πN ). No initial partitioning is attempted, and the
query is processed according to one of the splitting strategies
described below. For our example query, this results in the single
sub-path ⟨⟨A,C,D, E⟩⟩.

3.3 Splitting Methods
If a sub-query spq(P, I , f , β) does not return the desired cardi-
nality, it is modified by a splitting function σ described in Pro-
cedure 1 that takes a query and the list of time interval sizes
A = ⟨α1, . . . ,αn⟩, with ∀i∀j (i < j ⇒ αi < α j ), and α1 = αmin
and αn = αmax as arguments.
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Figure 2: Overall Architecture

At first the procedure tries to increase the sample size by
increasing the size of the time interval for the path by choosing
the next largest size from the list A and widening the periodic
interval withwiden([ts , te )R ,αi+1) = [ts−

αi+1−αi
2 , te+

αi+1−αi
2 )R .

After A has been exhausted, the path is split, and two new sub-
queries with the smallest allowed time interval size αmin are
created.

We propose two types of splitting and again use the path
P = ⟨A,C,D, E⟩ in examples.

σR Regular splitting cuts the path in half, i.e., P1 = P[0, ⌊ l2 ⌋)
and P2 = P[⌊ l2 ⌋, l), so splitting the example path P results
in P1 = ⟨A,C⟩ and P2 = ⟨D, E⟩.

σL Longest prefix splitting creates two sub-paths P1 = P[0,m)
and P2 = P[m, l), with 1 ≤ m < l , where the maximum
value form for which |T P1 | ≥ β holds is chosen.

If a sub-path cannot be split further, any non-temporal filter
predicates are dropped (Line 10). As a fallback, all temporal filters
and the β parameter are dropped as well, i.e., for a single segment,
all available trajectories are considered in the fixed time interval
[0, tmax ) (Line 12).

Procedure 1Modify a sub-query spq to increase sample size (σ ):
Input: Sub-query spq(P, I , f , β), time interval sizes A
Output: a sequence of sub-queries ⟨Q1, . . . ,Qk ⟩

1: αi ← te − ts
2: if αi < αmax then
3: I ′R ← widen(IR ,αi+1)
4: return ⟨spq(P, I ′R , f , β)⟩
5: else if |P | > 1 then
6: m ← split(P)
7: I ′R ← shrink(IR ,αmin )

8: return ⟨spq(P[0,m), I ′R , f , β), spq(P[m, l), I ′R , f , β)⟩
9: else if f , ∅ then
10: return ⟨spq(P, IR , ∅, β)⟩
11: else
12: return ⟨spq(P, [0, tmax ), ∅)⟩

13: end if

4 THE INDEX
This section describes the SNT-index and how we adapt and opti-
mize it to support travel-time queries using an example trajectory
set.

4.1 SNT-Index
Koide et al. [12] proposed the SNT-index for strict path queries
using the FM-index as a spatial index and a forest of B+-trees
as a temporal index. The advantage of the FM-index over R-
tree-based methods is that by representing the trajectory set T
as a string T and adapting a method from substring matching,
evaluating spatial queries is only dependent on the size of the
spatial network (|E |) and not on the size of the trajectory set
(|T |). In addition, it can be established from just the FM-index
whether a given path is traversed at all, often saving a costly
temporal index traversal. While the original index returns a set
of trajectory ids given the query spq(P, I ), where P is the path
and I is a time interval, our index returns the traversal times
of the trajectories for P , which can be stored in a histogram.
Sections 4.1.1 and 4.1.2 recap the previously described SNT-index
and the remaining section describes our modifications to it to
facilitate the efficient retrieval of travel-times.

4.1.1 The Spatial FM-Index. For our example we are indexing
the trajectory set T = {tr0, tr1, tr2, tr3} introduced earlier.

To index the trajectories, we first need to compute the trajec-
tory string T from the alphabet Σ = E ∪ {$} where the symbol $
denotes the end of a trajectory and where ∀e ∈ E (e > $) andT =
Ptr0 $Ptr1 $ . . . $Ptrn−1 $, ∀tr ∈ T . With our example trajectory
set, this yields the trajectory string T = ABE$ACDE$ABF$ABE$.

From this trajectory string, we compute an array S of all suf-
fixes of T , where S[i] = T [i,n), where 0 ≤ i < n = |T |. These
suffixes are then sorted lexicographically to obtain the suffix ar-
ray SA as shown in Figure 3, where SA[j] contains the index
of the j-th smallest suffix. From SA, we can then compute the
inverse suffix array ISA where SA[j] = i and ISA[i] = j [17].
Every substring (or in our case, subpath) P of length l there-
fore has a range of ISA values R(P) = [st, ed) that is defined as
R(P) = {i | S[SA[i]] [0, l) = P}, e.g., the ISA range of the path
⟨A⟩ is R(⟨A⟩) = [4, 8) since four trajectories contain A and they
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Figure 3: The Suffix Array and Burrows-Wheeler-Transform

Procedure 2 Calculate ISA range [st, ed) for a path P of length l
(getISARange):
Input: Burrows-Wheeler transformTbwt of the trajectory string

T , symbol counts C , path P = p0...pl−1
Output: ISA range [st, ed) that matches P
1: c ← pl−1
2: st ← C[c]
3: ed ← C[c + 1]
4: for i ← 2 to l do
5: c ← pl−i
6: st ← C[c] + rankc (Tbwt , st)
7: ed ← C[c] + rankc (Tbwt , ed)
8: if st ≥ ed then
9: return [0, 0)
10: end if
11: end for
12: return [st, ed)

appear at the start of the suffixes S[SA[st]] to S[SA[ed − 1]], and
the range for R(⟨A,B⟩) is [4, 7) as only three trajectories traverse
this path.

The ISA range of a path can be obtained efficiently from two
data structures that comprise the FM-index:

C an array that stores the number of lexicographically smaller
characters in the trajectory string for every member of the
alphabet Σ, e.g., C[′B′] = 8 since there exist 8 characters
in T that are lexicographically before ′B′.

Tbwt the Burrows-Wheeler transform [3] of the trajectory string
T that is defined asTbwt [i] = T [SA[i]−1], with 0 ≤ i < |T |.
For our example, this yields the string EFEE$$$$AAAA−
CBDBB.

We define the rank operation rankc (Tbwt , i) that counts the
occurrences of the character c in Tbwt [0, i). As an example of
computing the ISA range, we compute the range for the path
P = ⟨A,B⟩ as described in Procedure 2. At first, the segment

c ← B is set in Line 1, and st ← 8 and ed ← 11 are initialized in
Lines 2 and 3. For the first (and in this case the only) iteration
of the loop from Line 4 to 11, c ← A, st ← 4 + rankA(Tbwt , 8),
and ed ← 4 + rankA(Tbwt , 11), which yields the ISA range [4, 7),
since the ranks are 0 and 3, respectively.

The Burrows-Wheeler transform is stored in a wavelet tree
to enable rank queries in O(loд |Σ|) time [10]. Therefore, obtain-
ing the ISA range [st, ed) of any path P can be performed in
O(|P | loд |Σ|) time, which does not depend on the size of T .

4.1.2 The Temporal Indexes. The temporal indexes F = {Φe |
e ∈ E} contain a B+-tree for every segment in the network. Each
tree indexes the records r ∈ Φ by the timestamp t when a trajec-
tory entered the segment. A leaf node entry r for a timestamp t
contains the ISA index (isa) and the trajectory identifier (d).

The original SNT-index is only capable of retrieving the tra-
jectory ids, which would then have to be processed in turn to
obtain the traversal times of the query path.

4.1.3 Extensions to the SNT-Index. To support travel-time
histogram construction directly using the SNT-index, we add the
following information to each leaf node in a temporal index:
• The traversal time TT of the segment in seconds.
• The sequence number seq of the segment in the trajectory.
• The sum of the travel-times aseq =

∑seq
i=0TTi from the start

of the trajectory and up to and including the segment.
Figure 4 shows the contents of the temporal index ΦA of seg-

ment A for our example trajectory set where each leaf is a record r ,
mapping a timestamp t to a tuple (isa,d,TT ,a, seq). Furthermore,
we add an associative container U that maps every trajectory id
d to its respective user id u to check the filter predicate f . With
those fields, we can build a hash table during the scan of the
index of the first segment with the trajectory id and sequence
number as the key (d, seq) and the aggregate of the preceding
segment of the trajectory (a0 − TT0), as value as described in
Procedure 3. The sequence number is included to guard against
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Figure 4: Extended Temporal Index

trajectories with circular paths. The spatial filtering is performed
with the ISA range [st, ed) obtained from Procedure 2 during the
index scan in Line 3. The filter predicate f can be evaluated in
constant time with the associative container U . The cardinality
parameter β is used to reduce the processing time since not all
eligible trajectories are necessary to obtain a good estimate, and
the buildMap procedure terminates as soon as β trajectories are
found (Line 6). When scanning the temporal index of the last
segment in the query, we can obtain the traversal time of the
query path by al−1 − (a0 −TT0) as described in Procedure 4.

4.2 Travel-Time Query
When used together, the previous three procedures make it pos-
sible to obtain the set of travel times for any path, as shown in
Procedure 5, to answer the sub-query spq(P, I , f , β). To obtain all
trajectories that traversed a path P during a given time interval
I , an ISA range is first obtained from the FM-index in Line 1. If a
non-empty range is returned, a range scan on the index of the
first (Line 6) and last segment (Line 11) of the path are performed
for I and filtered by the ISA index in the leafs. If no matching
trajectories exist or no periodic time interval with more than β
trajectories is found (Line 7) the query returns the empty set. If
the sub-query provided by Procedure 1 has a fixed time interval,
the query is processed regardless of β . If that still yields no tra-
jectories, an estimate based on the speed limit of the segment is
provided (Line 13).

Procedure 6 shows how a full query is partitioned and pro-
cessed. For longer trips, the periodic interval IRi is adapted with
the shift-and-enlarge procedure (Line 4) suggested by Dai et
al. [4], that shifts the beginning of the interval ts by the sum of
all previous minimums Si =

∑j=i−1
j=1 Hmin

j and enlarges it by the

sum of all previous ranges Ri =
∑j=i−1
j=1 (H

max
j − Hmin

j ).

4.3 Optimizations
4.3.1 CSS-Trees. The cache sensitive search tree (CSS-tree)

proposed by Rao and Ross is a low memory overhead pointer-
less index that speeds up searches in sorted arrays [21]. In our
system, we use it as an append-only replacement for the temporal
B+-tree forest (cf. Section 4.1.2) to speed up Procedures 3 and 4
and to reduce memory consumption. Furthermore, its ability to
efficiently compute the size of a key range in logarithmic time
is used to improve the accuracy of the cardinality estimator (cf.
Section 4.4). The CSS-tree is optimized to reduce the number of

Procedure 3 Create a mapping of trajectory identifier and se-
quence number (d, seq) to an antecedent travel time diff for the
first β trajectories matching the predicates (buildMap):
Input: Temporal index Φ of the first segment of the query path,

ISA range [st, ed), time interval I , predicate f , and cardinality
parameter β

Output: a mapping of (d, seq) to (a −TT )
1: M ← ∅
2: for all r ∈ Φ do
3: if r .t ∈ I ∧ st ≤ r .isa < ed ∧ f (r .d) then
4: diff ← r .a − r .TT
5: M ← M ∪ {(r .d, r .seq) → diff }
6: if |M | ≥ β then
7: return M
8: end if
9: end if
10: end for
11: return M

Procedure 4 Compute the travel times for all eligible trajectories
over the path identified in the buildMap function (probeMap):
Input: Temporal index Φ of the last segment of the query path,

path length l , and probe tableM
Output: a list of travel times X
1: X ← ∅
2: for all r ∈ Φ do
3: b ← M[(r .d, r .seq + 1 − l)]
4: if b , ∅ then
5: X ← X ∪ {r .a − b.diff }
6: end if
7: end for
8: return X

Procedure 5 Retrieve all travel-times X = ⟨x0, ..., xβ−1⟩ of tra-
jectories in I that meet predicate f for a path P (getTravelTimes):
Input: Burrows-Wheeler transform of the trajectory stringTbwt ,

temporal indexes F , symbol counts C , path P = p0...pl−1,
time interval I , predicate f , and cardinality parameter β

Output: a set of travel-times X
1: [st, ed) ← getISARange(Tbwt ,C, P)
2: if st ≥ ed then
3: return ∅
4: end if
5: Φ0 ← F [p0]
6: M ← buildMap(Φ0, [st, ed), I , f , β)
7: if |M | < β and isPeriodic(I ) then
8: return ∅
9: end if
10: Φl−1 ← F [pl−1]
11: X ← probeMap(Φl−1, l,M)
12: if X = ∅ and |P | = 1 then
13: return {estimateTT (p0)}

14: end if
15: return X

cache misses during a search by using the processor’s cache line
size as its node size. Since it indexes sorted arrays, only appends
can be performed efficiently. We deem this an acceptable trade
off because inserting additional trajectories would also require a
re-computation of the entire FM-index, making the index mostly
suited for batch updates.
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Procedure 6Compute a histogramH for the query spq(P, I , f , β)
(tripQuery):
Input: Burrows-Wheeler transform of the trajectory stringTbwt ,

temporal indexes F , symbol counts C , query spq(P, I , f , β),
time interval sizes A, partitioning method π , and splitting
method σ

Output: a histogram H
1: ⟨Q1, . . . ,Qk ⟩ ← π (Q);H ← ∅
2: for all Qi ∈ ⟨Q1, . . . ,Qk ⟩ do
3: if isPeriodic(Ii) and i > 1 then
4: Ii ← [ts + Si , te + Ri )

R

5: end if
6: Xi ← getTravelTimes(Pi , Ii , fi , β)
7: if Xi , ∅ then
8: H ← H ∪ createHistogram(Xi )
9: else
10: ⟨Qi+1, . . . ,Qk ⟩ ← ⟨Qi+1, . . . ,Qk ⟩ ∪ σ (Qi )

11: end if
12: end for
13: H ← H1
14: for all i > 1 ∧ Hi ∈ H do
15: H ← H ∗ Hi
16: end for
17: return H

4.3.2 Temporal Partitioning. Temporal partitioning of the
SNT-index was originally proposed here [13], but not evalu-
ated. It allows more efficient updates to the index without ne-
cessitating a complete re-computation of the FM-index which
does not efficiently support updates or appends. Partitioning
requires to split the trajectory set T into T1, . . . ,TW , where
∀i < j

(
�tri ∈ Ti

(
∀tr j ∈ Tj (tri .t0 ≥ tr j .t0)

) )
. From those

trajectory sets,W trajectory strings T 1, . . . ,TW are then com-
puted, and Procedure 2 is modified return a collection of ISA
ranges from the Burrows-Wheeler transforms T 1

bwt , . . . ,T
W
bwt

using separate segment counters C1, . . . ,CW . Temporal parti-
tioning also requires adding the partition identifier w to every
leaf in the temporal indexes since every partition’s FM-index can
return a different ISA range for the same path.

4.4 Cardinality Estimator
Cardinality estimators are widely used in DBMSs to improve
query plans. In our case, we want to avoid costly scans of our
temporal indexes if the required sample size β cannot be met.
We require a function card(Q) that returns an estimate β̂ for the
cardinality of the return trajectory set T and if β̂ < β , we apply
the split function σ to Q without running a costly query. The
cardinality estimator relies on a time-of-day histogram for every
segment and fast computation of the ISA range [st, ed), which
is enabled by Procedure 2. The exact count of all trajectories
traversing a path cP = ed − st is efficiently retrieved. After that,
the selectivity of the temporal filters needs to be estimated. The
easiest way is to assume a uniform distribution throughout the
day and to divide the size of a periodic interval by the length of
the day, which yields the time-of-day selectivity:

seltod = sel(P, IR = [ts , te )R ) =
te − ts

24 hours
(1)

The uniformity assumption, however, usually does not hold so,
the selectivity estimate can be improved by maintaining a time-
of-day histogram He for every segment e . Then the selectivity

can be estimated using the following formula:

sel(P, IR = [ts , te )R ) =
B
(
He0 , [ts , te )

)
B
(
He0 , [0, 24 hours)

) , (2)

where B
(
H , [ts , te )

)
counts the elements of all buckets inH in the

range [ts , te ). In addition to being constrained by the time-of-day
a user might wish to limit the query to a certain time frame, e.g.,
only considering trajectories within the past year. The selectivity
can be estimated naively with the following formula:

selt f = sel(P, I = [ts , te )) =
te − ts

F [e0]max − F [e0]min
, (3)

where F [e0]min and F [e0]max are the earliest and latest traversal
times of segment e0. When using the CSS-tree, the number of
entries for which ts ≤ t < te can be obtained exactly in log-
arithmic time and seltf can be computed exactly. To compute
the selectivity of user predicates selu , we use the default of 1

10
suggested by Selinger et al. [22]. To obtain the estimate for a
query, we combine these selectivity factors to obtain our esti-
mate β̂ = seltod ∗ seltf ∗ selu ∗ cP .

We define five different modes for the cardinality estimator:
ISA only uses the size of the ISA range cP as estimate β̂
BT-Fast uses formulas 1 and 3 to estimate the selectivity
BT-Acc uses formulas 2 and 3 to estimate the selectivity
CSS-Fast uses formula 1 and a fast lookup in the CSS-tree to

estimate the selectivity
CSS-Acc uses formula 2 and a fast lookup in the CSS-tree to

estimate the selectivity

5 EXPERIMENTAL SETUP
This section describes the data set and quality metrics we use to
evaluate our system.

5.1 Datasets
5.1.1 OpenStreetMap. Our network graph is based on the

OpenStreetMap data of the road network of Northern Denmark,
which contains around 750,000 road segments. When converted
to a spatial network graph, this graph has around 1.46 million di-
rected edges [19]. Each edge represents a direction on a segment
and has one of 17 different segment categories. This categoriza-
tion is available for all OpenStreetMap maps and makes segment
category-based partitioning possible for other map-matched tra-
jectory datasets as well. The OpenStreetMap data also includes
the speed limits for many segments, which we use as a fallback if
no trajectory data is available. If the speed limit is not known, we
use the median of all known speed limits of its segment category.

5.1.2 Zone Dataset. To distinguish rural and urban areas, we
use the zoning map published by the Danish Business Author-
ity [7] that consists of 4,259 zone geometries, each of which
assigns one of three categories to an area:
• city: segments within city limits
• rural: segments in rural areas
• summer house: segments in areas zoned for summer house
usage

A spatial join is used to assign a zone type to every segment
in the map. A fourth category that we call ambiguous is assigned
to segments located in more than one zone type.

5.1.3 ITSP Dataset. The "ITS Platform" dataset contains over
1.1 billion GPS points sampled at 1 Hertz collected from 458
vehicles in Aalborg and the surrounding region during the period
from May 2012 to December 2014 [1].
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In a preprocessing step, the GPS points are map-matched [18]
to obtain in excess of 79 million segment traversals that form
around 1.4 million trajectories, where a new trajectory is created
if more than a 180 seconds have elapsed since the last GPS point.
The map-matching algorithm also discards GPS points at the
beginning and end of a trip if too few points are matched to
the start and end segments of the trajectory. This is done so the
durations of the segment traversals are meaningful. Each GPS
record contains the trajectory ID, the vehicle ID, a segment ID,
the time and date the segment was entered (minute resolution),
and the time on segment (second resolution). Since the cars in
our dataset are privately owned, we treat the vehicle ID as the
user ID. The segment IDs are derived from the unique mapping
of OpenStreetMap segment key and the driving direction. The
time on a segment is also computed during the preprocessing
step.

5.2 Query
We derive our query set Q from a random sample TS ⊂ T from
our trajectory set:

Q = {spq(Ptr , Itr , f , β)|tr ∈ TS } ,

with either f = {u = tr .u} or f = ∅ if no user filters are used
and different values of β being used in the experiments. For
the time interval Itr , either the periodic time interval IRtr =
[tr .s .t0 −

αmin
2 , tr .s .t0 +

αmin
2 )

R or or the fixed time interval
Itr = [0, tr .s .t0) is used.

For the interval size we use the values 15 min, 30 min, 45 min,
60 min, 90 min, and 120 min.

5.3 Accuracy Metric
5.3.1 sMAPE. To evaluate the accuracy of the retrieved tra-

versal times, we use the symmetric mean absolute percentage
error [2] of the sum of the means of all sub-paths.

sMAPE =
100%
|Q|

|Q |∑
i=1

|
∑k
j=1 X̄ j − atri |

1
2 (
∑k
j=1 X̄ j + atri )

,

where k is the respective number of sub-queries of each query
Q ∈ Q and X̄ j is the travel-time mean retrieved with the sub-
query.

5.3.2 Weighted Error. The weighted error, which we derive
from sMAPE, considers the accuracy of the sub-query results and
weighs them according to their fraction of the path length.

wE =
100%
|Q|

|Q |∑
i=1

k∑
j=1

w j
|X̄ j − a

Pj
tri |

1
2 (X̄ j + a

Pj
tri )
,

with w j =
∑e∈Pj F(e).l∑e∈P F(e).l

, where P is the query path and Pj is
the sub-query path.

5.3.3 Log-Likelihood. To evaluate the quality of the histograms,
we compute the average log-likelihood of the travel-times atri
with a discrete probability density function derived from the
result histogram Hi .

For each trajectory with a result histogram H with a bucket
width h, we compute the average log-likelihood logL:

1
|Q|

|Q |∑
i=1

logL(atri ,Hi ),

where the likelihoodL(x,H ) is defined by the discrete probability
density function

pH (x) = γ f (x,H ) + (1 − γ )U (x),

where U (x) is a uniform distribution defined for [tmin, tmax ),
0 < γ < 1 and

f (x,H ) =
B
(
H , [⌊ xh ⌋, ⌊

x
h ⌋ + h)

)
B(H , [tmin, tmax ))

.

The smoothing with the uniform distributionU (x) is performed
so that pH (x) ∀x ∈ [tmin, tmax ) never reaches zero.

5.3.4 Q-Error. To evaluate the accuracy of the cardinality
estimator, we use the q-error proposed by Moerkotte et al. [16].
To estimate the quality of our cardinality estimate β̂ , we compare
it to the actual cardinality of the retrieved trajectory set n = |T |.
For every estimate, we obtain the q-error q = max(β̂ ′/n′,n′/β̂ ′)
with n′ = max(n, 1) and β̂ ′ = max(β̂, 1). This is done to handle
estimations for empty sets as proposed by Stefanoni et al. [23].
The q-error shows the difference in orders of magnitude between
the real cardinality and the estimate.

6 EVALUATION
This section reports on the experimental results. For all experi-
ments, a query set Q is generated from the trajectory set |TS | =
6,942, which is a random 1% sample of all trajectories in T that
occur after the 8th of September 2013, the median of the times-
tamps in the ITSP data set. This is to ensure that every query has
more than a year of trajectory data available. On average, the
paths of the query set have a length of 13.7 kilometers, consist
of 55 segments, and last 800 seconds.

In our study we evaluate three types of queries:
Temporal Filters that use a periodic time interval and no user

filter (spq(Ptr , IRtr , ∅, β))
User Filters that use a periodic time interval and a user filter

(spq(Ptr , IRtr , {u = tr .u}, β))
SPQ Only that use a fixed time interval and no user filter

(spq(Ptr , [0, tmax ), ∅, β))

6.1 Qualitative Assessment
Figures 5 to 8 show the results of accuracy measured with sMAPE,
the weighted error, and the log-likelihood and the average sub-
query length. The figures show the results for different types of
partitioning and splitting methods and filter predicates.

The regular partitioning method πp (cf. Section 3.2.1) is used
as a baseline with p = 1, 2, and 3 because they are the sub-path
lengths for which histograms can still be pre-computed at a
reasonable overhead and because no known histogram-based
methods perform better. For the user filter queries, we also eval-
uate the πMDM method that partitions queries like πC but only
applies user filters to sub-queries with paths on main roads like
motorways or other major roads connecting cities. This parti-
tioning method is derived from the results of a previous study of
travel-time estimation methods [26].

Figure 5a shows the average error for seven different parti-
tioning methods with temporal filters. Here, π1 performs worst,
followed π2 and π3, and they achieve their highest accuracy at
β = 30. If only the speed limits are used to estimate the travel
time, sMAPE is 34.3% and if all available trajectories for each
segment are used, the error is 13.8%. The partitioning methods
based on the segment category and/or zone (πC , πZ , and πZC )
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Figure 5: sMAPE
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Figure 6: Weighted Error
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Figure 7: Sub-query Path Length
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together with πN achieve very similar accuracy. Here, the accu-
racy peaks at β = 20. Category-based partitioning is the most
stable in terms of accuracy, and zone-based partitioning provides
the overall best result. The queries using user filters shown in
Figure 5b perform equally well, but with the exception of πZ
do not degrade as much with higher values of β and also obtain
their lowest error at β = 20 and exhibit very similar accuracy
to the queries without user filters. The SPQ Only methods in
Figure 5c methods did not manage to outperform the baseline
because it does not use periodic intervals that can observe chang-
ing congestion, e.g., longer travel-times during rush hours. In
nearly all cases with regular splitting (σR ) achieves considerably
better accuracy than longest prefix splitting (σL). In most cases

A similar picture to the sMAPE results can be seen for the
temporal filter queries in Figure 6a, with πN having the lowest
weighted error. If only the speed limits are used to make an esti-
mate, the weighted error is 36.9%, and if all available trajectories
for each segment are used, the error is 24.0%. For the user filter
queries in Figure 6b, only πMDM manages to consistently out-
perform the baseline. The SPQ only queries shown in Figure 6c
show the lowest error with the coarsest partitioning methods.
The low error of the SPQ only methods is due to sub-query results
being weighted according to the length of the sub-paths and not
relative to the share of travel time. Estimates for paths on long
segments with high speed limits, e.g., motorways, exhibit already
low estimation errors and also tend to improve the most when
custom predicates are used [26]. In all cases, σL has a higher
error than σR . Figure 7 shows the average path lengths of the
final sub-queries. We can see that there is an inverse relationship
between the weighted error and the sub-query paths. We can also
see that πZ provides the coarsest partitioning with the exception
of πN , which initially provides none.

Figures 8a to 8c show the average log-likelihood with f (x,H )
derived form a histogram with a bucket size of h = 10s and
different values for β and γ = 0.99. The queries with only tempo-
ral filters and πZ and πZC return the most accurate histograms,
and the coarser the partitioning method the less accurate the
histograms are with low sample sizes. Among the User Filter
queries πMDM consistently outperforms the other three parti-
tioning methods. The queries run with πN do not even outper-
form the baseline for β < 30. In all cases, σL performs worse than
σR . We evaluated several values for γ (from 0.90 to 0.99) but the
qualitative results did not change.

6.2 Efficiency
The index is implemented in C++17 and compiled with g++ 7.2.0
with the -O3 -march=native flags. For the performance test,
the SNT-index with a CSS-forest and only a single partition is
used. The FM-index is implemented using sdsl-lite’s integer-
alphabet Huffman-shaped wavelet tree implementation, and the
suffix array is computed with Yuta Mori’s sais-lite library [17].
The performance test ran on a server with AMD Opteron 6376
processors and 512 GiB RAM. For the processing time, the average
runtime in milliseconds of 6,942 queries is reported in Figure 9.

The temporal filter queries shown in Figure 9a perform very
similar to the baseline, with πC and πZC being slightly faster
than regular partitioning. The combination of πC and σL has
been omitted in the figure for reasons of scaling since the results
are in the range of 50 to 65 ms. In Figure 9b, it can be seen that the
average user filter query takes around 4 to 5 times longer than
the temporal filter queries; and with πMDM , queries only take

around twice as long since it applies non-temporal predicates
only selectively. SPQ only queries have much lower processing
times than do the other two query types, and all consistently out-
perform the baseline. The reason for their low processing times
can be seen in Figure 7c and Procedure 5. Since their sub-queries
tend to cover comparatively long paths, SPQ only queries need
to perform considerably fewer temporal index scans than the
other query types, which need to be split into more sub-queries
to fulfill the cardinality requirements. The average runtime of
πN with σL , which is between 30 to 35 ms, has been omitted in
Figure 9c. In all cases σL performed poorly in comparison to σR .

6.3 Temporal Partitioning
Figure 10 shows the effect of the temporal partitioning defined
in Section 4.3.2 on memory consumption and setup time. The
figures show the results for partition sizes of 7, 30, 90, and 365
days, resulting in a 138, 33, 11, and 3 partitions, respectively. We
also examine the case where only one partition is used (FULL).
Where applicable, the performance of the index with a B+-forest
(BT) is reported as well. For the in-memory B+-trees, we use
the btree_multimap from Google’s cpp-btree library [11]. Fig-
ure 10a shows the memory consumption of the different index
components, where Forest is thememory consumption of the CSS-
tree or B+-tree forest, respectively. The size of the forest is not
impacted by different partition sizes, but if the partition feature
is removed from the index, the memory saved in the tree leafs
by omitting the partition identifierw is around 300 MiB for our
data set. We can also see that the in-memory B+-tree forest has
slightly higher memory requirements than the CSS-forest. The
associative containerU used to enable user filtering (user) is also
not affected by the partitioning and takes up around 65 MB for
our data set. The two data structures that comprise the FM-index,
the wavelet tree (WT) and the segment counter (C), are affected
considerably by partitioning. The segment counter grows lin-
early with the number of partitions from less than 6 MB to nearly
600 MB since a separate segment count needs to be maintained
for every wavelet tree. The compression rate of the wavelet tree
degrades considerably with smaller trajectory strings, which for
the 7 day partitioning are only a few MBs per partition as op-
posed to several hundred in a single partition and it grows from
around 280 MB to over 4 GB. The memory requirements of the
time-of-day histograms required for the cardinality estimator are
affected considerably if a histogram is maintained for every non-
empty partition for every segment, and the memory required for
the histograms soon exceeds the amount required for the index.
Figure 10b shows the memory consumption for three different
bucket sizes h (1, 5, and 10 minutes).

The setup times for the index shown in Figure 10c are not
significantly affected by the different partition sizes or tree types
and always remain between 425 and 475 seconds. For the setup,
the trajectory and map data are loaded from disk.

6.4 Cardinality Estimator
Figure 10 shows the results for the cardinality estimator. In all
cases the results for partitioning method πZ with regular split-
ting and β = 20 are shown. Figure 11a shows the q-error of the
five different cardinality estimator modes. Here, 5,000 queries
are run, after which their cardinalities n are compared with es-
timate β̂ . The simplest estimate using just the ISA range is on
average off by an order of magnitude. The four other modes pro-
vide considerably more reliable estimates, with the histogram
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Figure 11: Cardinality Estimator

based methods performing better than the fast ones and the CSS-
tree based methods performing slightly better than their B+-tree
counterparts.

Since the selectivity estimates of the estimators might under-
estimate cardinalities of queries, a query might be split despite
covering a sufficient sample size. This may affect the quality of
the overall travel-time estimate. Figure 11c, however, shows that
the effects on quality are minuscule compared to the baseline
(ISA) and might even yield slight improvements in accuracy.

Figure 11b shows that partitioning as well as using the car-
dinality estimators can impact performance significantly. For
single, yearly, and quarterly partitions, the query performance
changes little, and use of the cardinality estimator reduces query
processing times by around 50%. For smaller partitions, however,
the effects of using the cardinality estimator diminish; and with
weekly partitioning, the B+-tree version of the index performs

worse with the estimators. The histogram-based CSS-tree version
(CSS-Acc) performs worse than the fast version (CSS-Fast), which
is most likely due to the amount of time-of-day histograms that
have to be scanned to obtain the selectivity seltod .

6.5 Implications
Overall our data shows that after a certain β is reached no sig-
nificant gains in accuracy are obtained by increasing it further
indicating smaller result sets obtained from fewer SPQs of long
paths provide more accurate estimates than larger result sets
obtained with short paths. One can also see that evaluating non-
temporal predicates comes with a considerable overhead and for
the user predicates provides no improvement in quality over the
purely temporal methods. If such methods are however applied
selectively (e.g. πMDM ) the performance overhead is mitigated
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and the accuracy improves. The naive regular splitting method
does not only achieve better accuracy but also has a considerably
shorter runtime, making it more suitable for a real-time queries.
The CSS-tree version of the index is as least as fast or faster than
the B+-tree-based version, but the improvements become less
noticeable when using the index in conjunction with a cardinal-
ity estimator. CSS-trees reduce the memory consumption of the
index as well and improve the accuracy of the cardinality estima-
tor with their efficient range lookups. We have also shown that
temporal partitioning of the index is viable in some cases, but
that using time-of-day histograms to estimate the selectivity of
periodic time intervals, despite slight improvements in estimator
accuracy and query performance, is hardly worth the memory
overhead for the evaluated data set. Additional experiments with
larger data sets may offer additional insight into this trade off,
but no larger trajectory data sets with user information were
available to us. Our results show that modifications aimed at
improving query performance often also improve the accuracy
of the estimates.

7 CONCLUSIONS & OUTLOOK
Travel-time estimations in road networks can be improved con-
siderable by utilizing large NCT data sets not only to provide
estimates on a segment level, but also for full paths in the network.
To our knowledge no current system supports these path-based
estimations which cannot rely on pre-computations. We there-
fore propose a system that computes travel-time estimations
based on trajectories selected at runtime and is able to improve
upon the accuracy of existing histogram-based methods by ex-
pressing them as a series of strict path queries and adapting their
predicates automatically to ensure accurate estimates. The SPQs
are processed by our adapted SNT-index which is able to retrieve
the traversal times for any path directly from the index. We have
shown that the queries can be processed fast enough for real-time
applications by utilizing specialized in-memory data structures
and cardinality estimators tailored to SPQs. We evaluate our
system with a large real-world trajectory data set and find that
optimizing queries for performance is not preclusive of accuracy.

Our proposed system leaves several avenues of future work.
The current greedy algorithm used for identifying a suitable parti-
tioning and splitting of an SPQ is based on fairly simple heuristics
and could be augmented by more sophisticated machine learn-
ing methods to improve accuracy of estimations. Approaches
that use different values of the parameter β for each sub-query,
e.g., smaller sample size requirements in rural zones, could be
evaluated. While the processing time of single query might not
considerably improve through parallelization the overall query
throughput of the system most likely could, making it suitable
for online routing applications that support a large number of
users. Our approach also does not fully address the issue of data
sparseness apart from providing relaxing the predicates if their
selectivity is too low. Several approaches to solving the problem
of data sparseness have been suggested [25, 30] and could be com-
bined with our system to provide time-dependent travel-time
estimates for paths where data is sparse.
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ABSTRACT
We present the BB-Tree, a fast and space-efficient index struc-
ture for processing multidimensional read/write workloads in
main memory. The BB-Tree uses a k-ary search tree for pruning
and searching while keeping all data in leaf nodes. It linearizes
the inner search tree and manages it in a cache-optimized ar-
ray, creating the need for occasional re-organizations when data
changes. To reduce the frequency of such re-organizations, the
BB-Tree introduces a novel architecture for leaf nodes, called
bubble buckets, which can automatically morph between differ-
ent representations depending on their fill degree and are thus
able to buffer a large number of insertions or deletions in-place.
We compare the BB-Tree to scanning, main-memory variants
of the R∗-tree, the kd-tree, and the VA-file, and the recent PH-
tree using different multidimensional workloads over real and
synthetic data sets. The BB-Tree is the fastest access method for
range queries up to a selectivity of around 20% (after which it is
only beaten by scanning), the fastest method in read/write work-
loads, and achieves an exact-match query performance similar
to that of the best point access method. In addition, it is the most
space-efficient method of all considered index structures. We also
describe a parallel range query operator and show that it scales
with the number of physical cores.

1 INTRODUCTION
Many data sets are inherently multidimensional, with typical
dimensionalities ranging from two to a few dozen. We give three
examples: (1) Precision Medicine is based on the comparison of
a patient’s mutational landscape to that of background popula-
tions and disease cohorts. Each mutation is a multidimensional
object [13], with dimensions like genomic location, type of the
mutation, prevalence in a population, functional impact, etc. On-
cologists query such data seeking for mutations with certain
properties to discover commonalities across diseases or treat-
ment results [21]. (2) In modern machine surveillance, a battery
of sensors measure multiple properties of parts of engines, such
as temperature, vibration, electric currents, humidity, accelera-
tions in all three spatial dimensions, etc. Analyzing such data
for specific events or situations often induces executing series of
multidimensional range queries (MDRQ) [20]. (3) In data ware-
housing, commercially relevant events are described by multiple,
often hierarchically organized dimensions, leading to the famous
OLAP cube [11]. Slicing such a cube, i.e., selecting (aggregated)
events based on values of certain dimensions, often boils down
to MDRQ, for instance selecting all sales in a certain date and
price range.

© 2019 Copyright held by the owner/author(s). Published in Proceedings of the
22nd International Conference on Extending Database Technology (EDBT), March
26-29, 2019, ISBN 978-3-89318-081-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Searching multidimensional data can be sped up by using
multidimensional index structures (MDIS). MDIS can support
different types of queries; in this work we focus on range queries
over all (complete-match MDRQ) or a subset of the dimensions
of a data space (partial-match MDRQ). MDIS are different from
one-dimensional index structures because they cannot exploit a
natural sort order in the data. Especially partial-match queries
require MDIS to treat all dimensions equally, which typically is
achieved by building and maintaining some, often hierarchical,
structure on top of the data [26]. Navigation of such a structure
necessitates inefficient random access patterns, which quickly
leads to the situation that MDIS are outperformed by scans when
queries are less selective, irrespective of whether data are held
on disk [34] or in main memory [28]. The aim of this research is
thus to create an MDIS that can efficiently support exact-match
and range queries, that has low memory overhead, that performs
gracefully in mixed read/write workloads, that is robust against
the dimensionality of the data (up to a certain point) and that is
faster than scans even for less selective queries.

In this paper, we present the BB-Tree, a novel main-memory
MDIS which fulfills these requirements. Conceptually, a BB-Tree
is an almost-balanced k-ary search tree, where inner nodes re-
cursively split the data space into k partitions according to a
delimiter dimension and k − 1 delimiter values. Data objects are
stored in leaf nodes (buckets). When too many data points are
inserted (or deleted) and buckets overflow (or underflow), the
structure is rebuilt to achieve a balance that is beneficial regard-
ing the depths of leaves. Within this general and well-known
layout, the BB-Tree combines a number of advanced techniques
that yield its superior performance.

As the main contribution, BB-Trees introduce elastic buckets,
called bubble buckets (BB), that can efficiently handle strongly
fluctuating bucket fill degrees and that significantly reduce the
frequency of index rebuilds. BB automatically morph between
different representations, depending on their number of stored
data objects. We distinguish between regular and super BB. Reg-
ular BB can hold up to bmax data objects and are implemented
using arrays. Super BB are composites and consist of a routing
node and a set of up to k regular BB, hence, they locally add a
further level to the tree. BB can dynamically grow and shrink:
Overflowing regular BB let them morph into super BB, and un-
derflowing super BB let them morph back into regular BB. Both
operations leave the rest of the BB-Tree unchanged. Since over-
flows create k new leaf buckets, a BB can cater for a rather large
number of inserts. Eventually, the tree must be rebuilt when a
super BB overflows. In workloads with hammered inserts, i.e., se-
ries of insertions into the same small region of the space, BB help
to significantly reduce the number of rebuilds and thus greatly
improve the performance of writes with only minimal influence
on query performance though a locally slightly deeper tree.
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BB help to keep the inner search tree (IST) of the BB-Tree
stable over long periods of data changes, which enables an adap-
tation of the inner nodes to cache lines, the basic unit of data
transfers between main memory and on-die CPU caches. We
always choose k depending on how many delimiter values fit
into one cache line to improve cache line utilization. For instance,
when implementing delimiter values with four-byte floats and
running on a machine with 64-byte cache lines, k is set to 17.
Furthermore, we store the inner nodes of the BB-Tree in a flat
and static array to avoid pointer chasing during search, to de-
crease random access patterns, and thus to reduce cache misses,
especially at the last cache level. Typically, such an optimiza-
tion either makes the index structure completely static [15, 27]
or creates the need to manage delta stores [19, 23]. In contrast,
BB-Trees manage all changes in-place and also can, due to the
separation between the IST and the leaves and due to the concept
of BB, manage a large number of updates without index rebuilds.
Additionally, eliminating pointers improves space efficiency.

We furthermore describe and evaluate a special technique for
the parallelization of MDIS queries, which effectively avoids com-
plicated data partitioning. In the parallel range query operator,
search queries are evaluated by first navigating the IST to deter-
mine all buckets that may hold matching data objects. This step
is performed by a single thread as the tree, due to its high fan
out, is quite low even for very large data sets. In the next step,
which strongly dominates the runtime of queries, all qualifying
BB are scanned in parallel. As a result, the performance of the
parallel range query operator scales with the number of physical
cores.

In a comprehensive evaluation, we compared the BB-Tree to
sequential and parallel scans and to four other MDIS, namely the
recent PH-tree [35], andmain-memory adapted variants of the R∗-
tree [12], the kd-tree [4], and the VA-file [34]. We used different
real and synthetic data sets of different sizeswith dimensionalities
between three and 100. We evaluated complete-match and partial-
match range and exact-match queries, and also considered mixed
read/write workloads. The BB-Tree is the fastest method for
range queries up to a selectivity of around 20% after which it
is only outperformed by a scan. For exact-match queries, the
BB-Tree is almost as fast as the best point access method, the
PH-tree; for more than ten dimensions it even shows a superior
performance. It is the fastest MDIS regarding insertions and the
overall fastest method regarding deletions. Its performance is
virtually unaffected by the dimensionality of the data. The BB-
Tree has the best space efficiency among all MDIS, an important
property for in-memory data structures.

A preliminary version of this work will appear in [29]. Here,
we extend [29] by dynamic updates, parallel execution of range
queries and provide extended experiments.

2 RELATEDWORK
We structure our discussion of relatedwork into two parts: (1)Main-
memory indexing and (2) multidimensional indexing.

Main-Memory Indexing.The recent focus onmain-memory
database systems led to the development of several main-memory
index structures. A popular example is the adaptive radix tree
(ART) [18], designed for efficient execution of exact-match queries
especially over longer keys. However, ART does not support mul-
tidimensional data and executing range queries requires a costly
traversal of its radix tree. The cache-sensitive skip list [30] is a

main-memory index focussing on range queries. It uses a CPU-
friendly data layout aligned with the sizes of cache lines, a tech-
nique that was previously suggested by other one-dimensional
index structures, such as FAST [15] or the KISS-Tree [17]. Schlegel
et al. [27] showed how to linearize k-ary search trees in a read-
only in-memory setting, a technique we also use for the BB-Tree.
We introduced bubble buckets to handle updates efficiently. None
of the aforementioned index structures is able to index multidi-
mensional data for partial-match range queries.

Multidimensional Indexing. MDIS have been researched
for decades, leading to a multitude of different methods [10].

One of the most popular MDIS is the kd-tree [4], which orga-
nizes multidimensional point objects in a binary search tree by
splitting the data space at each node using one of the dimensions
as delimiter. It is integrated into several mature database systems,
e. g., PostgreSQL1. K-D-B-trees [25] combine the concepts of B-
trees [2] and kd-trees to optimize I/O behaviour. Quadtrees [9]
are similar to kd-trees, but split the space in all dimensions at
each node, which is less efficient for high dimensionalities. The
Vector Approximation-file (VA-file) [34] is a mixture between an
MDIS and a sequential scan that divides the space into cells of
equal size using hash functions to allow for efficient pruning. All
of these approaches were originally developed for disk-based data
storage but can be adapted to main-memory settings [28]. Only
the K-D-B-tree keeps its structure balanced when data changes,
whereas the VA-file is an essentially immutable index. A recent
main-memory based MDIS is the PH-tree [35], which integrates
the concepts of PATRICIA-tries and hypercubes.

The R-tree [12] is probably the most prominent access method
for handling spatially extended objects, but is also frequently
used for storing point objects [14]. It uses minimum bounding
rectangles (MBR) to represent all objects belonging to a certain
subtree. These MBR are used for pruning. The R∗-tree [3] is an
R-tree variant that improves partitioning by aggressively reinsert-
ing data objects leading to a more efficient search performance.
It is employed by several database systems to manage spatial
data, e. g., SQLite2. PR-trees [1] optimize I/O in disk-based sys-
tems, and X-trees [5] target data of very high dimensionality. The
CR-tree [16] is an R-tree variant that compresses inner nodes to
pack more entries into MBR, which increases space and cache
efficiency. Recently, Qi et al. [24] proposed a novel R-tree pack-
ing technique that provides asymptotically optimal I/O search
complexity. However, their technique is restricted to static data
and requires a complete reconstruction of the index with every
update. Accordingly, the latter three approaches are not directly
relevant for our work.

There also exist a number of interesting works, which are
further away from our own research. Wang et al. [32, 33] ex-
ploit the characteristics of observational data, e. g., immutabil-
ity, continuous dimension values, and append-only insertions,
to achieve high query efficiency. In contrast, the BB-Tree is a
general-purposeMDIS that supports updates in any order. ELF [6]
executes multi-column selection predicates on in-memory data,
but requires delta stores to handle updates.

3 THE BB-TREE INDEX STRUCTURE
In a nutshell, a BB-Tree is a main-memory optimized MDIS for
point data. It combines the pruning power of an almost-balanced
k-ary search tree with the efficiency of scans in main memory.

1https://www.postgresql.org/docs/9.6/static/spgist.html
2https://sqlite.org/rtree.html
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Notation Description

n Size of the data set.
m Dimensionality of the data set.
h Tree height.
k Inner nodes split the space into k subparts

according to a delimiter dimension and k − 1
delimiter values.

t Number of available hardware threads.
Bmatch Number of bubble buckets that need to be

scanned to evaluate a certain range query.

Parameter Description

bmax Capacity of a regular bubble bucket.
Rsamples When reorganizing the inner search tree, we

use Rsamples% of all data as samples.

Table 1: Frequently used notations and input parameters.

The inner search tree (IST) is linearized and stored in a cache-
optimized yet immutable array. Data objects are stored in special
leaf nodes, the bubble buckets (BB), which are able to digest a
large number of insertions or deletions without affecting the IST
and without hurting the tree balance considerably. Nevertheless,
in case of long series of hammered inserts or deletions, the BB-
Tree must be rebuilt to keep its balance. In this case, the structure
of the novel tree is determined using random sampling. In the
following, we describe the different components and techniques
of the BB-Tree in detail; Table 1 summarizes our notation.

3.1 Data Organization
A BB-Tree consists of two components: A k-ary search tree and a
set of bubble buckets. Inner nodes of the search tree recursively
split the data space into k disjoint subsets according to a delimiter
dimension and k − 1 delimiter values. All data are kept in BB,
which initially hold up to bmax m-dimensional data objects, but
can dynamically expand and shrink to cope with varying number
of objects in the region they represent. When searching in a BB-
Tree, the inner nodes are navigated to reduce the data space. Once
all certainly irrelevant regions (or subtrees) have been pruned,
the remaining BB are scanned to determine the true query results.

Inner search tree. The entire IST is implemented as a single,
immutable array. This has several advantages: (1) Cache lines
are the basic unit for transferring data between main memory
and CPU caches. By choosing an appropriate value for k , the
BB-Tree tailors its inner nodes to the individual cache line size of
the CPU, which increases cache line utilization and reduces the
amount of data transferred through the cache hierarchy. (2) Us-
ing a single dense array for representing a balanced IST makes
pointers superfluous. Array indexes of child nodes are calculated
in constant time based on the current tree level and the fan out
k . The BB-Tree linearizes inner nodes in a breadth-first order,
which reduces memory pressure and increases cache efficiency
during traversals. (3) By using an array representation, searching
a specific delimiter value within an inner node (as necessary
during searching) can be efficiently implemented using a binary
search, which requires only loд2 (k − 1) instead of (k − 1) com-
parisons. Note that all these accesses occur within a single cache
line, which means that they do not produce any cache miss.

Leaf nodes. All data objects are stored in bubble buckets. The
elasticity property of BB is described in Section 3.2. For now, we
assume that every BB has a maximum capacity of bmax objects.
bmax is an important parameter of the BB-Tree as it determines,
at query time, the balance between time spent in tree searching,
resulting in pruning, and time spent in scanning, producing the
query results. A high value leads to large leaf nodes storing more
objects, which in turn requires less inner nodes and thus a less
deep tree. Such a structure is preferable for less selective query
workloads: More work is put on scans where the comparison of
the data objects with the query lead to many matches, whereas
less time is spent in pruning which, for less selective queries, is
not effective anyway. In contrast, a lower BB capacity results in
smaller leaf nodes and a deeper tree structure, which is beneficial
for highly selective queries as more time is invested in successful
pruning and less in scans producing almost no matches.

Delimiter values. For a good search performance, it is cru-
cial that delimiters allow to prune subtrees and non-relevant
BB as early as possible. When being rebuilt, BB-Trees choose
their delimiter dimensions in the order of the number of distinct
values of a dimension, moving dimensions with a high cardinal-
ity and thus a presumably higher pruning power to the top. If
a dimension has more than k different values, delimiter values
are determined such that each subtree features a roughly equal
number of objects. If the number of inner node levels,h, is smaller
than the dimensionality of the data set,m, BB-Trees thus omit
the dimensions with the smallest cardinalities in the IST. Note
that this scenario is quite frequent due to the high fan out of the
tree which makes the BB-Tree rather flat even for very large data
sets. As an example, assume a BB-Tree over one Billion objects,
a fan out of k = 17, a bmax value of 1,000, and a fill degree of
50%. Adressing the resulting two million BB requires only six
IST levels. Thus, low-cardinality dimensions, which are anyway
problematic in terms of pruning power, do not clutter the tree. On
the other hand, if h is larger thanm, we employ dimensions mul-
tiple times as delimiters in a round-robin fashion. This scenario
occurs especially for data sets with a dimensionality between two
and four (depending on the number of objects). A special case
occurs when low-cardinality dimensions are used as delimiters
(see Section 3.5).

Example. Figure 1 illustrates a BB-Tree with k = 3, h = 2
(two tree levels), and nine BB managing three-dimensional data
objects (buckets three to six are not displayed). Each (regular) BB
can hold up to bmax = 4 data objects. Individual data objects are
identified by tids. At the first level, the shown BB-Tree splits the
data space into k = 3 partitions according to the first dimension.
All data objects having a value of three or less in this dimension
are held in the left subtree. All data objects having a value of
seven or less, but larger than three, in this dimension are held
in the middle subtree; all other data objects can be found in the
right subtree. At the next level, the data space is recursively split
according to the second dimension. Note that this example uses
two dimensions as delimiter, althoughm = 3. Given a fan out of
k = 3, two tree levels are sufficient for distinguishing between
nine BB. Figure 2 illustrates the linearization of the IST. We link
the linearized IST with the corresponding BB by maintaining an
array of pointers, where entry i references the i-th BB.

SIMD. Although processing inner nodes with Single Instruc-
tion Multiple Data (SIMD) instructions sounds promising at first
glance, especially because the tree is linearized and packed into a
dense array, we were not able to obtain any performance benefits
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Figure 1: A BB-Tree (k = 3, bmax = 4) of height h = 2 man-
aging n = 36 data objects of dimensionalitym = 3; buckets
three to six are omitted.
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Figure 2: Linearized storage of the inner search tree.

through SIMD parallelism. Compared to a binary search, scan-
ning inner nodes with SIMD instructions does not save many
comparisons yet incurs overhead. For instance, when employing
16 delimiter values, which perfectly fit into one 64-byte cache
line, a binary search requires loд2 (16) = 4 comparisons, while
a SIMD search on 256-bit registers needs two comparisons (or
four comparisons if only 128-bit SIMD registers are available).
These small savings are outweighed by the overhead induced by
SIMD scans, especially data transfers between regular and vector
registers [7], and the necessary scalar evaluation of the results
of SIMD instructions.

3.2 Bubble Buckets
Until now, we described the BB-Tree as a static index structure
and omitted the treatment of overflowing or underflowing leaf
buckets. We lift this restriction and describe two techniques to
cope with changing data, namely bubble buckets (this section)
and index rebuilds (next section).

All leaf nodes are implemented as elastic bubble buckets. There
exist two types of BB: A regular BB is implemented as a C++
std::vector, which is a dynamically growing and shrinking array,
and takes inserts up to its maximum capacity bmax . In contrast,
a super BB locally adds a further level to the tree. It consists of an
inner node and a set of k regular nodes. The inner node holds a
delimiter dimension and a set of delimiter values. As usual, super
BB employ the dimension that has the largest number of distinct
values as delimiter, and the k −1 delimiter values are chosen such
that the data objects are as evenly distributed as possible among
the k regular child BB. Super BB morph into regular BB upon
underflow, and regular BB morph into super BB upon overflow.

Inserts. The complete procedure for inserting objects is as
follows: We first traverse over the inner nodes to determine the
bucket that is responsible for the new object. If the chosen BB is a
regular BB and has free space, we insert the object and are done. If
there is no free space, wemorph the BB into a super BB, and insert
the data object; this also happens when the chosen BB already is
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Figure 3: Assuming that a new data object (3 8 7) with tid
42 gets inserted into the BB-Tree from Figure 1, the second
BBmorphs into a superBB that consists ofk regular nodes;
dimension two is employed as delimiter.

a super BB. To insert into a super BB, we first check whether the
super BB currently contains less than k ∗ bmax objects. If this is
the case, we determine the appropriate child BB, which must be
a regular BB, and insert the object; otherwise we reorganize the
index.

BB can thus accommodate up to k ∗bmax inserts into the same
region before the index needs a rebuild. If objects are deleted dur-
ing insert-heavy workloads, this period gets even longer. Within
this time, the IST of the BB-Tree is stable, and the local depth
is increased by at most one. However, to keep the algorithms
simple we currently do not balance the size of the child nodes of
a super BB, which, in theory, could lead to cases where all inserts
accumulate in one child node. This would for instance happen
when objects of an one-dimensional data set are inserted in a
certain sort order; for such situations, other index structures are
more appropriate, such as [18].

Deletes.When deleting an object, we first search the IST to
determine the responsible BB and delete the object there. In the
case of a regular BB, no further processing is performed. This
implies that a BB-Tree may have empty leaf buckets; however,
due to the dynamic size of their implementation, the memory
overhead is minimal. We nevertheless rebuild the index when
more than 10% of all BB are empty to get rid of superfluous inner
nodes. If we delete from a child of a super BB, this bucket checks
the total number of objects it contains and morphs into a regular
BB in case the number is smaller than p ∗ bmax . In the default
setting, we set p = 0.5 to prevent pathological cases of constantly
morphing BB when the bmax -th object is inserted and deleted
iteratively.

Example. Consider again the BB-Tree from Figure 1. When
we insert a new data object (3 8 7), the second bucket overflows
and morphs into the super BB shown in Figure 3. Here, the super
BB uses the third dimension as delimiter.

3.3 Building and Reorganizing a BB-Tree
A BB-Tree is initialized with one regular BB. After bmax objects
have been inserted, this regular BB morphs into a super BB. With
more inserts, this super BB eventually overflows, triggering a
rebuild of the index. All operations, except for the very first,
operate on a BB-Tree that was the result of an index rebuild.

Such a rebuild consists of four steps. First, we determine how
many regular BB are needed to hold the current data, while
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leaving capacity for new inserts. From this number, we also derive
the necessary number of levels of the IST. By default, we set the
number of BB to n/(10% ∗ bmax ) allowing each node to ingest
further 90%∗bmax data objects until it overflows. This parameter
may be changed if the expected workload consists of many inserts
(lower value, less rebuilds, deeper tree) or few inserts (higher
value, less deep tree). Second, we randomly sample Rsamples ∗ n
data objects as representatives of the whole data set. By scanning
the sample data, we estimate the cardinality of each dimension.
Dimensions are sorted by cardinality and assigned to the h IST
levels in descending order. Third, we recursively determine the
delimiter values for the inner nodes. Using the sample data, we
compute an equi-depth histogram with k buckets, reflecting the
distribution of the dimension values of the current level. Using
that histogram, we obtain k−1 delimiter values such that the data
are divided into k partitions of rougly equal size. In the case of a
delimiter value, which occurs with a much higher frequency than
the others, the derived partitions will be of unequal size. Clearly,
this procedure fails for low-cardinality dimensions containing
less than k distinct values. In the last step, all objects are inserted
into their respective BB.

Obviously, index reorganization is an expensive operation. A
random sample must be determined which is scanned multiple
times, a new IST is constructed, and data objects must be moved
to new locations. We chose pragmatic and fast methods for these
steps, which come at certain drawbacks. First, equally splitting a
subtree by one dimension is not always possible, which, in the
worst case, may lead to an unbalanced BB-Tree (see Section 3.4),
where subtrees at the same depth contain an unequal number
of data objects. Second, we globally assign dimensions to tree
levels, which again can lead to imbalances when dimensions are
strongly correlated. Third, we compute the IST structure only
on a sample. If the sample is small, the tree is found quickly yet
might not optimally represent the data. Contrary, if the sample
is large, building the tree needs more time yet probably leads
to a better tree structure. We make two notes regarding these
issues. First, they are shared by most other updateable MDIS. For
instance, the structure of kd-trees strongly depends on the order
of the insertions. The K-D-B-tree turns kd-trees into balanced
search trees, but at the price of complicated and slow update
operations. Second, though we cannot give formal guarantees,
for the data sets we used in our evaluation, we never observed any
notable imbalance. We are thus confident that unbalanced BB-
Trees, which are possible in theory, remain very rare in practice.

3.4 Search Algorithms
BB-Trees focus on partial- and complete-match range queries,
but also support exact-match queries.

All search queries have in common that they first exploit the
linearized inner nodes to efficiently find those BB that may hold
data objects relevant for the search querywhile pruning all others.
This step is followed by sequential scans over all candidate BB
to determine the data objects matching the query. Evaluation
of search queries may have to follow multiple paths through
the tree: Partial-match range queries must consider multiple
paths whenever a node splits on a dimension which is not part
of the query. Complete-match range queries have to consider
multiple paths when the range covers more than one subtree.
Even exact-match queries need to consider multiple paths when
a low-cardinality dimension (with less than k distinct values) is
used as delimiter.

Assuming the usual case, where the navigation of the IST
results in only one candidate BB, exact-match queries have a
complexity of O (h ∗ loд(k ) + bmax ∗m): They first perform h
times a binary search within inner nodes and eventually scan
one BB holding up to bmax objects, where a comparison between
the query and a data object requiresm value comparisons. The
tree height (h) depends on the number of stored data objects, the
BB capacity and the fan out: h = loдk (n/bmax ). Note that the
tree height is increased by one in case the search leads to a super
BB. The complexity of exact-match queries is dominated by the
scans of leaf nodes, calling for small values of bmax . On the other
hand, every change of a level during IST traversal may result in
a cache miss, making these operations more costly in practice.

Note that the worst-case complexity of the BB-Tree is linear in
n. First, this is trivially the case when queries select all indexed
objects. Second, this case occurs when less than Bmax objects are
indexed, as these are all stored in one bucket preventing pruning.
Third, the worst case also applies, when BB-Trees consist of only
one super BB and most data objects are inserted into the same
child BB due to a inaptly-chosen delimiter dimension. However,
once the super BB overflows, the data objects are distributed
to multiple regular BB and the search complexity (for queries
requiring only one BB) converges to the formulas given above.

For less selective range queries, scans are more attractive as
more of their comparisons actually lead to matches, without any
tree navigation in-between. However, determining an optimal
bmax value would only be possible if all queries had the same,
a-priori known selectivity across the entire data space, an as-
sumption that is rather impractical. In practice, every setting of
bmax implements an expectation on the average selectivities of
queries in the future workload. In our evaluation, we will show
that our default value leads to a performance that is almost on-
par with MDIS specialized in exact-match queries while clearly
outperforming all competitors for MDRQ.

3.5 Low-Cardinality Dimensions
We consider a dimension of a data set to have a low cardinal-
ity when its number of distinct values is smaller than k . Low-
cardinality dimensions are common in real-world data sets and
challenge MDIS because they make partitioning generally hard
and equal partitions impossible. The problem is less severe for
the BB-Tree, as it sorts delimiter dimensions by the number of
distinct values, which usually keeps low-cardinality dimensions
completely out of the IST. However, if a data set contains less
than h dimensions and these dimensions have low cardinalities, a
low-cardinality dimension will be chosen as delimiter dimension
of an inner node, making it impossible to find distinct delimiter
values such that the data is split into k subparts of equal size. In
the worst case, where a delimiter dimension features only one
distinct value, the IST loses all its pruning power and searching
the BB-Tree degenerates to a sequential scan over all leaf nodes.

4 PARALLEL EVALUATION OF RANGE
QUERIES

The parallel range query operator uses multiple threads to exe-
cute search queries and consists of two phases.

The first phase navigates the inner nodes with a single thread
to determine the candidate BB. Traversing over the linearized
inner nodes in parallel is complicated, as an optimal scheme
would require solving a non-trivial load balancing problem due
to different pruning effects in different subtrees. At the same
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Figure 4: Parallel evaluation of an exemplary range query
defined by lower boundary [1,0,3] and upper boundary
[3,7,6].

time, there is only little to gain as the tree usually is rather flat
due to its high fan out.

In the second phase, all candidate BB are scanned in parallel.
Let Bmatch denote the number of candidate BB that have been
determined by the first phase (super BB are considered asmultiple
BB). If Bmatch ≥ t , we divide the candidate BB into t partitions
of size Bmatch/t . Each partition is processed by a distinct thread
using the same algorithm as in the regular, single-threaded BB-
Tree. Hence, if Bmatch = t , we obtain the perfect degree of
parallelism. If Bmatch < t , some threads would remain idle when
sticking to the one-thread-per-bucket assignment. In this case,
we assign multiple threads to single BB allowing to divide the
data objects of one BB into partitions and scan these partitions
in parallel.

Example. Figure 4 illustrates the parallel evaluation of a range
query in a BB-Tree. The shown search query retrieves all data
objects that match the lower boundary [1,0,3] and the upper
boundary [3,7,6]. The first, single-threaded phase of the query
execution determines that the first three BBmay hold data objects
matching the range boundaries (the search path is marked in
red). In the second, multi-threaded phase, these BB are searched
concurrently with one CPU thread per bucket assuming that our
imaginary machine features three threads (Bmatch = t ).

5 EVALUATION
In a comprehensive evaluation, we compare the BB-Tree with
state-of-the-art approaches to general-purpose indexing of mul-
tidimensional data by executing synthetic and real-world query
workloads over synthetic and real-world data sets. Specifically,
we aim to answer the following questions: (1) Does the perfor-
mance of the BB-Tree depend on data set- or workload-specific
characteristics, e. g., data dimensionality, data skew, or query
selectivity (see Sections 5.4 to 5.7)? (2) How does the BB-Tree
perform on mixed workloads that contain both reads and writes
(see Section 5.9)? (3) What is the effect of parallelization (see
Section 5.10)? (4) How efficient does the BB-Tree utilize memory
space (see Section 5.11)?

5.1 Experimental Setup
Hardware.We executed all experiments on a server equipped
with two Intel Xeon E5-2620 CPUs (2 GHz clock rate, 64-byte

cache lines, six cores, 12 hardware threads) and 32 GB of RAM.
In total, the machine features 12 cores and 24 hardware threads.
Most experiments are single-threaded, some experiments inves-
tigate the parallel range query operator and therefore make use
of multiple threads.

Methodology. In our evaluation, the competitors are com-
pletely kept in main memory. All data sets are inserted in random
order. All experiments measure the average execution time of
an operation, e. g., range query. We run experiments three times
and present the arithmetic mean.

Competitors. We compare the BB-Tree with multiple ap-
proaches to general-purpose multidimensional indexing: the
kd-tree [4], the PH-tree [35], the R∗-tree [3], the VA-file [34]
and the sequential scan [28]. Section 2 provides a brief descrip-
tion of the competitors; for more details we refer the interested
reader to the original papers or surveys, like [10], or bench-
marks, like [28]. For the R∗-tree, we used an open-source, main
memory implementation (https://libspatialindex.github.io/) and
relied on the default configuration, but slightly adjusted the node
capacities such that nodes are aligned to cache lines. For the
PH-tree, which is a main-memory MDIS by design, we used a
publicly available implementation shared by the authors (https:
//github.com/tzaeschke/phtree-1). For the kd-tree, the VA-file
and the sequential scan, we used our own implementations based
on the original publications, but adapted them to main-memory
storage following techniques described in [28]. Most contestants,
including the BB-Tree, use 32-bit floating-point values to manage
dimension data. The R∗-tree implementation uses 64-bit floating-
point values; the PH-tree implementation uses 64-bit integer
values. We evaluated the BB-Tree with k = 17, because k −1 = 16
four-byte floating-point values fit into one cache line of the evalu-
ation machine. Based on the observations described in Section 5.3,
we empirically set bmax = 2,500. For reorganization, we use
Rsamples = 10% of all objects as samples to estimate the current
data distribution.

Software. All software was implemented in C++ and was
compiled with GCC using optimization flag -O3. We measured
hardware performance counters with PAPI (http://icl.cs.utk.edu/
papi/) and space consumptionwith valgrind (http://valgrind.org/).
For the parallel range query operator, we used an open-source
thread pool library (https://github.com/vit-vit/CTPL) to enable
the reuse of POSIX threads. Our implementation of the BB-
Tree is freely available (https://www2.informatik.hu-berlin.de/
~sprengsz/bb-tree/).

5.2 Data Sets and Workloads
We evaluate the competitors on four data sets. Table 2 provides
the number of data objects (n), the dimensionality (m), the number
of distinct values per dimension (for UNIFORM and CLUST, we
provide averages over all dimensions), and the raw size of each
data set. We primarily use synthetic workloads. Unless noted
otherwise, we generate synthetic range queries by randomly
choosing two objects from the data set and, for each dimension,
we use the smaller (larger) value of both objects as lower (upper)
boundary. For GENOMIC, we execute a realistic workload, the Ge-
nomicMultidimensional Range Query Benchmark (GMRQB) [28],
consisting of eight partial- and complete-match MDRQ templates
of varying selectivity.
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Data Set n m Distinct Values Raw Size
per Dimension

UNIFORM 10k 5 10k (avg) 0.19MB
100k 5 95k (avg) 1.91MB
1M 5 632k (avg) 19.07MB
10M 5-100 1M (avg) 190.74MB-3,814.7MB
10M 5 4-64 190.74MB

CLUST 10k 5 10k (avg) 0.19MB
100k 5 95k (avg) 1.91MB
1M 5 632k (avg) 19.07MB
10M 5 1M (avg) 190.74MB

POWER 10k 3 10k; 1k; 1k 0.11MB
100k 3 100k; 2k; 2k 1.14MB
1M 3 1M; 4k; 5k 11.44MB
10M 3 10M; 6k; 8k 114.44MB

GENOMIC 10k-10M 19 1-63,883 0.72MB-724.79MB

Table 2: Data sets used in our experiments.

UniformData (UNIFORM). Synthetic data facilitates experi-
ments with arbitrary data set sizes, dimensionalities and query se-
lectivities. We generate uniformly distributed data objects within
the domain [0,1].

ClusteredData (CLUST).The five-dimensional data set CLUST
features up to 20 clusters.We used a generator provided byMüller
et al. [22] to generate CLUST within the domain [0,1]. Within
clusters, data are uniformly distributed.

Sensor Data (POWER). POWER is obtained from the DEBS
2012 challenge (http://debs.org/?p=38) and resembles real-world
sensor data of hi-tech manufacturing equipment. As in previous
studies [28, 33], we index three dimensions.

GenomicData (GENOMIC).GENOMIC consists of real-world
genomic variant data obtained from the 1000Genomes Project [31].
We transformed the raw data, originally provided as text files,
into 19-dimensional data objects, which can be indexed by the
competitors (some attributes were provided as text and had to
be converted into floating-point values). As shown in Table 2,
the dimensions of GENOMIC have a highly varying cardinality,
ranging from one to 63,883 distinct values. We previously de-
fined the Genomic Multidimensional Range Query Benchmark
(GMRQB) in [28], which consists of eight realistic partial- and
complete-matchMDRQ templates restricting between two and 19
dimensions of the data space. The templates are instantiated with
concrete values obtained from the 1000 Genomes Project data
and have an average selectivity between 10.76% and 0.00001%.

5.3 Impact of Bubble Bucket Capacities
The capacity of BB, as defined bybmax , controls the ratio between
index probing (navigation of IST) and scanning (evaluation of
leaf nodes) when searching in BB-Trees. While small BB put more
work on index probing, large BB increase the relative time spent
on scanning. As shown in previous work [28, 34], index probing
is beneficial for highly selective queries and scanning is superior
for less selective workloads.

We study the impact of bmax on the performance of range
queries with varying selectivities (1%, 10%, 20%) when applied to
ten million five-dimensional objects from UNIFORM and CLUST.
Our goal is to find a pragmatic configuration providing a robust
performance for a wide range of query selectivities and data
distributions. Figure 5 shows the results.

For uniform distributions, this experiment confirms that small
(large) capacities are beneficial for highly (less) selective queries.
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Figure 5: Performance of BB-Trees with different BB ca-
pacities (Bmax ) when executing range queries with vary-
ing selectivities (1%, 10%, and 20%) (n=10M, m=5, UNIFOR-
M/CLUST).

While small BB capacities are more efficient than large BB capac-
ities for queries with an average selectivity of 1%, they become
less efficient with increasing query selectivity (10% and 20%). For
the selectivies considered here, BB holding up to 2,500 objects
provide the best performance.

Clustered data lead to a less optimal partitioning, which lessens
the pruning power of the IST and puts more work on scanning. As
a result, small BB capacities become less efficient, even for small
selectivities, because less BB can be pruned. Also for clustered
data, BB with a maximum capacity of 2,500 objects provide either
the best performance or are on a par with other configurations.

Taking the results of this experiment into account, we set
bmax = 2,500 for all following experiments.

5.4 Exact-Match Queries
Figure 6 shows the average execution time of exact-match queries
for the four data sets depending on the number of data objects.
We execute n exact-match queries on the contestants given that
n denotes the data set size. Each exact-match query retrieves a
randomly-chosen, existing data object. To manage 104 objects,
the BB-Tree does not need an IST, but employs one super BB
consisting of k = 17 regular nodes (bmax = 2,500). In general,
for exact-match queries, the performance of the BB-Tree is very
similar to that of the kd-tree and the PH-tree. It clearly outper-
forms the R∗-tree, the VA-file and the sequential scan for all data
sets, often by multiple orders of magnitude. For the largest in-
stance of GENOMIC (107 objects), inner nodes at the lowest tree
level feature duplicate delimiter values, which require scanning
multiple candidate BB and result in minor performance drops.

Typically, MDIS achieve a better exact-match query perfor-
mance than sequential scans, because they can prune large parts
of the data while scans need to consider all data. Although the
BB-Tree needs to scan over data objects stored in BB it achieves
a very competitive performance. The BB-Tree exploits the lin-
earized inner nodes to effectively reduce the amount of data to
consider for query evaluation.

5.5 Insertions and Deletions
Figure 7 presents the average time a contestant needs to ingest a
data object. The shown results include the reorganizations of the
BB-Tree; in a real system, we would advise to handle rebuilds in
background jobs, which strongly increases insert performance.
We do not insert entire data sets at once, but load object by
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Figure 6: Performance of exact-match queries on synthetic and real-world data depending on the number of data objects.
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Figure 7: Performance of insert operations on synthetic and real-world data depending on the number of data objects.
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Figure 8: Performance of delete operations on synthetic and real-world data depending on the number of data objects.

object. Thus, this experiment does not include the VA-file, which
supports only bulk inserts, because it requires to know the data
distribution beforehand. For instances of GENOMIC with more
than 105 objects, the space needs of the PH-tree exceeded the
available 32 GB of memory.

The scan achieves the highest insert performance, because it
implements inserts by appending new data objects to a dynamic
array and does not require to deal with node overflows, like the
R∗-tree. Notably, the BB-Tree shows a better insert performance
than the kd-tree and the PH-tree and clearly outperforms the
R∗-tree. The concept of elastic BB effectively reduces the fre-
quency of rebalancing operations. When dynamically inserting
ten million data objects, regardless of the data set, the BB-Tree
needed only three reorganizations, which took 6.55s on average
(standard deviation σ = 8.75s). Smaller data sets require even less
reorganizations.

Figure 8 shows the average time needed for deleting an object
from the four data sets depending on data set size. The used imple-
mentation of the PH-tree did not provide a delete operator. The
delete performance of the BB-Tree correlates with its exact-match
query performance, because it first locates the to-be-deleted data
object and then removes it from the corresponding BB. The BB-
Tree outperforms all other competitors in deleting data objects,
even scans, except for the largest instance of GENOMIC.

5.6 Range Queries
Figure 9 shows the average execution time of complete-match
MDRQ that we generated by randomly choosing two objects from
the data set. Depending on the data distribution, the obtained
MDRQ objects have a varying average selectivity; UNIFORM:
0.4% (σ = 0.9%), CLUST: 19.8% (σ = 19.7%), POWER: 12.6%
(σ = 13.1%), GENOMIC: 0.2% (σ = 0.2%). For CLUST, one range
query may span multiple clusters, therefore average selectivities
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Figure 9: Performance of synthetic complete-match range queries on synthetic and real-world data depending on the
number of data objects. Due to the technique used to generate MDRQ (see Section 5.2), average selectivities are as follows:
UNIFORM: 0.4% (σ = 0.9%), CLUST: 19.8% (σ = 19.7%), POWER: 12.6% (σ = 13.1%), GENOMIC: 0.2% (σ = 0.2%).

Query Template 1
avg. selectivity =

10.76%

Query Template 3
avg. selectivity =

5.36%

Query Template 2
avg. selectivity =

2.19%

Mixed Workload
avg. selectivity =

1.58%

Query Template 4
avg. selectivity =

0.22%

Query Template 5
avg. selectivity =

0.20%

Query Template 6
avg. selectivity =

0.11%

Query Template 7
avg. selectivity =

0.05%

Query Template 8
avg. selectivity =

0.00001%

100

102

104

106

Av
g.
Ex
ec
.T

im
e
(m

s)
[l
og
ar
it
hm

ic
sc
al
e]

BB-Tree kd-tree R∗-tree VA-file Sequential Scan

Figure 10: Performance of eight realistic MDRQ templates, including a mixed workload, from GMRQB; query templates
are ordered by selectivity (n=10M, m=19, GENOMIC).

are higher than for UNIFORM although both data sets have an
identical size and both are generated within [0,1]. The BB-Tree
achieves the best overall performance and outperforms the other
contestants, sometimes by up to three orders of magnitude. For
UNIFORM, the R∗-tree shows a performance similar to that of
the BB-Tree. For GENOMIC, the kd-tree performs similar to the
BB-Tree. We omit the PH-tree for all range query experiments
on GENOMIC, because the implementation given by the authors
crashed with failing C++ assertions.

Figure 10 presents the average execution time of the GMRQB
on ten million data objects from GENOMIC. Note that most query
templates, except query templates 7 and 8, have their first selec-
tion predicate in the second level of the BB-tree, which means
that the GMRQB workload is rather unfavorable for our index.
Nonetheless, BB-Trees consistently achieve the best performance
for query templates 1-7, which are partial-matchMDRQ querying
5.81 dimensions on average (σ = 4.11), and a mixed workload
consisting of all query templates randomly mixed together. Only
for query template 8, which resembles an exact-match query
as it selects a single data object on average, they are beaten by
kd-trees. For data of high(er) dimensionality, such as GENOMIC,
R∗-trees lose their pruning power and show a worse performance
than scans.

Figure 11 shows the performance of range queries on ten
million objects from UNIFORM depending on query selectivity.
We omit the kd-tree because, compared to the other competitors,
its execution time was orders of magnitude higher for queries
selecting more than 1% of the data. The BB-Tree outperforms
all other MDIS regardless of the query selectivity. It also beats
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Figure 11: Performance of range queries depending on
query selectivity; kd-tree is omitted as its performance de-
creases severely for less selective queries, strongly impair-
ing the readability of the figure (n=10M, m=5, UNIFORM).

the scan for queries with a selectivity of up to 20%. For less
selective queries, the performance of the BB-Tree remains close
to that of a scan. Furthermore, the BB-Tree achieves a very high
cache efficiency, almost as good as that of a sequential scan, and
follows most predicted branches leading to few pipeline flushes
(see Table 3).

5.7 Impact of Dimensionality
Wemeasure the performance of exact-match and complete-match
range queries on ten million data objects from UNIFORM depend-
ing on data set dimensionality. We generate complete-match
range queries with an average selectivity of 1% (σ = 0.7%). With a
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BB-Tree kd-tree PH-tree R∗-tree VA-file Scan

CPU Cycles 164M 8,306M 1,908M 252M 2,934M 1,582M

LLC Accesses 1.0M 824M 1.2M 2.5M 1.8M 0.5M

LLC Misses 0.7M 0.9M 0.8M 0.5M 1.6M 0.3M

TLB Misses 0.3M 1.0M 0.3M 0.3M 0.2M 0.1M

Branch Mispr. 0.1M 0.7M 3M 0.2M 10M 7M

Table 3: Performance counters per range query (1% selec-
tivity;n=10M, m=5, UNIFORM).
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Figure 12: Performance of exact-match range queries (av-
erage selectivity = 1%, σ = 0.7%) depending on dimension-
ality (n=10M, UNIFORM).

growing dimensionality, this results in very low single-dimension
selectivities posing serious challenges to MDIS because pruning
becomes less useful. For instance, when running complete-match
MDRQ with an overall selectivity of 1% on 100-dimensional
uniformly distributed data, where dimensions are not corre-
lated, single-dimension selectivities are approximately 95.50%, as
0.955100 ≈ 0.01.

Figure 12 shows the runtimes of exact-match queries for di-
mensionalities between ten and 1003. For such workloads, all
methods except the R∗-tree are mostly unaffected by the dimen-
sionality of the data space. Similarly, Figure 13 shows the run-
times of complete-matchMDRQdepending on the dimensionality.
All methods show a performance degradation roughly propor-
tional to the dimensionality of the data space, starting at a di-
mensionality of 20, because an increasing number of dimensions
has to be compared when evaluating queries. The slow-down is
more pronounced for lower dimensionalities.

We also executed workloads on instances of CLUST featuring
five and ten dimensions (data not shown). All competitors behave
very similar as for UNIFORM: Exact-match queries are almost
unaffected by the dimensionality of the data space, whereas range
queries degrade noteably.

5.8 Low-Cardinality Dimensions
Low-cardinality dimensions are challenging for BB-Trees because
they make it impossible to find k different delimiter values, which
limits the pruning power of the IST. We first study this effect
using range queries applied to ten million five-dimensional data
objects from UNIFORM with different moderately low cardinalti-
ties for all dimensions. Results are shown in Figure 14. At these
cardinalities, none of the competitors is affected severely as the

3Note that the space requirements of the PH-tree exceeded the available 32 GB of
main memory for dimensionalities higher than ten. Similarly, the R∗-tree ran out
of space for 100 dimensions.
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Figure 13: Performance of complete-match range queries
(average selectivity = 1%, σ = 0.7%) depending on dimen-
sionality (n=10M, UNIFORM).
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Figure 14: Performance of MDRQ with a varying selectiv-
ity depending on number of distinct values per dimension
(n=10M, m=5, UNIFORM).

differences only correspond to the different query selectivities.
Note that in the cases of eight and 16 distinct values per dimen-
sion, the data space includes duplicate data objects which is not
supported by the PH-tree; therefore, we omit this method in this
experiment.

Next, we performed an experiment with extremely low cardi-
nalities (between two and 12) yet used data of higher dimension-
ality. Figure 15 shows the performance of range queries with a
selectivity of 0.00002% (σ = 0.0%), when applied to ten million
50-dimensional objects from UNIFORM. The PH-tree had to be
omitted because it produced incorrect results. This experiment
shows that the performance of most MDIS drops considerably
with lower cardinalities, whereas scans and VA-files are much
less effected. However, for such low cardinalities other index
structures, like bitmaps [8], are probably a better choice anyway.

5.9 Mixed Workload
In most applications, MDIS are loaded in bulk before running
large batches of search queries. Once built, inserts and deletes
rarely happen. This experiment studies the contestants when run-
ning such workloads on data from GENOMIC. We use ten million
data objects, of which we first insert 9,999,9004. Next, we run 100
inserts, 100 deletes, 2,800 exact-match queries and 7,000 range
queries in random order. For inserts, we use objects, which were
not bulk loaded. For exact-match queries and deletes, we ran-
domly choose objects from the data set. This may result in queries
asking for previously deleted data objects. For range queries, we
4For the VA-file, we insert all data objects at the beginning of the workload, because
it only supports bulk inserts.
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Figure 15: Performance of MDRQ with a selectivity of
0.00002% (σ = 0.0%) depending on number of distinct val-
ues per dimension; PH-tree is omitted (n=10M,m=50, UNI-
FORM).
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Figure 16: Execution times of single queries (inserts,
deletes, exact-match and range queries) from a mixed
workload in randomorder; bulk insert is not included; PH-
tree ran out of memory (n=10M, m=19, GENOMIC).

Bulk Insert (s) Average/Minimum/Maximum exec. time (ms)

BB-Tree 54.7s 262.66ms / 0.005ms / 1,866.73ms

kd-tree 236.7s 128,735.5ms / 0.011ms / 4,842,752ms

PH-tree Ran out of memory.

R∗-tree 2,316s 2,735.16ms / 0.008ms / 7,735.76ms

VA-file 38.7s 2,704.8ms / 0.004ms / 8,148.82ms

Seq. Scan 7.8s 809.83ms / 0.002ms / 3,117.46ms

Table 4: (1) Total execution time of the bulk insert and (2)
average, minimum and maximum execution time of the
remaining queries of the mixed workload.

use themixed workload fromGMRQB (avg. sel.=1.58%,σ = 3.58%),
which consists of all query templates randomly mixed together.
Once again the PH-tree ran out of memory.

Figure 16 summarizes the runtimes. It does not include the
bulk insert, because this would focus too much on inserts (ten
million inserts vs. 9,900 search queries and deletions). For most
contestants, insertions are the fastest operation, which would
move all other operations out of the 95’th percentile. Table 4
shows the runtime of the bulk insert and summarizes the execu-
tion times of the remaining 10,000 queries. The BB-Tree achieves
the highest performance in most cases. Only for the bulk insert,
it is outperformed by the scan and the VA-file. The results show
that the BB-Tree combines high search performance with fast
inserts and deletes.
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Figure 17: Performance of the mixed workload from GM-
RQB (avg. selectivity=1.58%) depending on the number of
used software threads (n=10M, m=19, GENOMIC).
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Figure 18: Space consumption of the competitors (n=10M).

5.10 Parallel Evaluation of Range Queries
Figure 17 shows the performance of the parallel range query
operator when executing the mixed workload from GMRQB over
ten million objects from GENOMIC depending on the number of
used software threads. We compare results to a single-threaded
BB-Tree, a single-threaded scan, and a parallel scan, which (1) di-
vides the data objects into t partitions, (2) concurrently scans
each partition with one thread, and (3) concatenates the results of
the individual partitions. The performance of the parallel range
query operator of the BB-Tree improves with the number of used
threads up to a barrier established by the number of available
physical cores (12 on our evaluation machine). Hyper-threading
provides only few benefits for the mostly compute-bound BB-
Tree, but is useful for memory-bound applications, like scans.
Using moderately more threads than supported by the hardware
(> 24), does neither provide benefits nor disadvantages. Scanning
(up to 10.9X speed-up) benefits more from multi-threading than
the BB-Tree (up to 5.5X speedup), because (a) the parallel scan
leverages hyper-threading and (b) scan-based MDRQ can be com-
pletely parallelized while BB-Trees navigate the IST with a single
thread. Nonetheless, BB-Trees outperform scans regardless of
the number of used threads.

5.11 Space Consumption
Figure 18 shows the space consumption of the contestants when
storing ten million data objects of the data sets used in the evalua-
tion. For GENOMIC, the PH-tree required more than the available
32 GB of main memory. The BB-Tree achieves a high space effi-
ciency, which is mainly enabled by the linearization of its inner
nodes. Compared to the other MDIS, it requires the smallest index
overhead over the scan.

179



6 CONCLUSIONS
We presented the BB-Tree as a fast and space-efficient means for
storing and querying multidimensional data in main memory.
It supports complete- and partial-match range queries, exact-
match queries, and dynamic updates. We compared the BB-Tree
with state-of-the-art MDIS using different synthetic and real-
world workloads over different synthetic and real-world data sets
with three to 100 dimensions. The BB-Tree beats all competitors
in executing range queries up to a selectivity of 20%; for less
selective queries it is only outperformed by a scan. It executes
exact-match queries almost as fast as the best competitor, the
PH-tree; for higher dimensionalities it even provides the best
performance. The BB-Tree achieves the best insert and delete
performance. We also presented a parallel variant that accelerates
range queries almost linearly with the number of available CPU
cores. Of course, BB-Trees are pure main-memory data structures;
if data does not fit in memory, disk-based MDIS should be used
like the original R*-Tree [12] or the original VA-File [34]. In
future work, we intend to support nearest neighbor search and
concurrent execution of search queries.
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ABSTRACT
Massive volumes of data continuously generated on social plat-
forms have become an important information source for users. A
primary method to obtain fresh and valuable information from
social streams is social search. Although there have been exten-
sive studies on social search, existing methods only focus on the
relevance of query results but ignore the representativeness. In
this paper, we propose a novel Semantic and Influence aware
k-Representative (k-SIR) query for social streams based on topic
modeling. Specifically, we consider that both user queries and
elements are represented as vectors in the topic space. A k-SIR
query retrieves a set of k elements with the maximum repre-
sentativeness over the sliding window at query time w.r.t. the
query vector. The representativeness of an element set comprises
both semantic and influence scores computed by the topic model.
Subsequently, we design two approximation algorithms, namely
Multi-Topic ThresholdStream (MTTS) and Multi-Topic Th-
resholdDescend (MTTD), to process k-SIR queries in real-time.
Both algorithms leverage the ranked lists maintained on each
topic for k-SIR processing with theoretical guarantees. Extensive
experiments on real-world datasets demonstrate the effectiveness
of k-SIR query compared with existing methods as well as the
efficiency and scalability of our proposed algorithms for k-SIR
processing.

1 INTRODUCTION
Enormous amount of data is being continuously generated by
web users on social platforms at an unprecedented rate. For ex-
ample, around 650 million tweets are posted by 330 million users
on Twitter per day. Such user generated data can be modeled as
continuous social streams, which are key sources of fresh and
valuable information. Nevertheless, social streams are extremely
overwhelming for their huge volumes and high velocities. It
is impractical for users to consume social data in its raw form.
Therefore, social search [7–9, 17, 19, 28, 33, 37, 39] has become the
primary approach to facilitating users on finding their interested
content from massive social streams.

Existing search methods for social data can be categorized into
keyword-based approaches and topic-based approaches based on
how they measure the relevance between queries and elements.
Keyword-based approaches [7–9, 17, 28, 33, 37] adopt the textual
relevance (e.g., TF-IDF and BM25) for evaluation. However, they
merely capture the syntactic correlation but ignore the semantic
correlation. Considering the tweets in Figure 1, if a query “soccer”
is issued, no results will be found because none of the tweets
contains the term “soccer”. It is noted that the words like “as-
roma” and “LFC” are semantically relevant to “soccer”. Therefore,
elements such as e1, e2 are relevant to the query but missing

© 2019 Copyright held by the owner/author(s). Published in Proceedings of the
22nd International Conference on Extending Database Technology (EDBT), March
26-29, 2019, ISBN 978-3-89318-081-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

from the result. Thus, overlooking the semantic meanings of user
queries may degrade the result quality, especially against social
data where lexical variation is prevalent [14].

To overcome this issue, topic-based approaches [19, 39] project
user queries and elements into the same latent space defined by a
probabilistic topic model [5]. Consequently, queries and elements
are both represented as vectors and their relevance is computed
by similarity measures for vectors (e.g., cosine distance) in the
topic space. Although topic-based approaches can better capture
the semantic correlation between queries and elements, they fo-
cus on the relevance of results but neglect the representativeness.
Typically, they retrieve top-k elements that are the most coherent
with the query as the result. Such results may not be represen-
tative in the sense of information coverage and social influence.
First, users are more satisfied with the results that achieve an
extensive coverage of information on query topics than the ones
that provide limited information. For example, a top-2 query on
topic θ1 in Figure 2 returns {e3, e4} as the result. Nevertheless,
compared with e4, e6 can provide richer information to comple-
ment the news reported by e3. Therefore, in addition to relevance,
it is essential to consider information coverage to improve the
result quality. Second, influence is another key characteristic to
measure the representativeness of social data. Existing methods
for social search [7, 8, 19, 37] have taken into account the in-
fluences of elements for scoring and ranking. These methods
simply use the influences of authors (e.g., PageRank [24] scores)
or the retweet/share count to compute the influence scores. Such
a naïve integration of influence is topic-unaware and may lead
to undesired query results. For example, e6 in Figure 1, which is
mostly related to θ1, may appear in the result for a query on θ2 be-
cause of its high retweet count. In addition, they do not consider
that the influences of elements evolve over time, when previ-
ously trending contents may become outdated and new posts
continuously emerge. Hence, incorporating a topic-aware and
time-critical influence metric is imperative to capture recently
trending elements.

To tackle the problems of existing search methods, we define
a novel Semantic and Influence aware k-Representative (k-SIR)
query for social streams based on topic modeling [5]. Specifi-
cally, a k-SIR query retrieves a set of k elements from the active
elements corresponding to the sliding windowWt at the query
time t . The result set collectively achieves the maximum repres-
entativeness score w.r.t. the query vector x, each dimension of
which indicates the degree of interest on a topic. We advocate the
representativeness score of an element set to be a weighted sum
of its semantic and influence scores on each topic. We adopt a
weighted word coverage model to compute the semantic score so
as to achieve the best information preservation, where the weight
of a word is evaluated based on its information entropy [31, 42].
The influence score is computed by a probabilistic coveragemodel
where the influence probabilities are topic-aware. In addition, we
restrict the influences within the sliding windowWt so that the
recently trending elements can be selected.

 

 

Series ISSN: 2367-2005 181 10.5441/002/edbt.2019.17

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2019.17


ID Tweet Retweets
e1 @asroma win but it’s @LFC joining @realmadrid in the #UCL final 3154
e2 #OnThisDay in 1993, @ManUtd were crowned the first #PL champion 1476
e3 @Cavs defeats @Raptors 128-110 and leads the series 2-0 in #NBAPlayoffs 2706
e4 LeBron is great! #NBAPlayoffs 2
e5 Congratulations to @LFC reaching #UCL Final!! #YNWA 2167
e6 LeBron is the 1st player with 40+ points 14+ assists in an #NBAPlayoffs game 3489
e7 Hope this post inspires us to win #PL champions again in 2018-19 4
e8 Schedule for #PL and #NBAPlayoffs tonight 25

Figure 1: A list of exemplar tweets
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The challenges of real-timek-SIR processing are two-fold. First,
the k-SIR query is NP-hard. Second, it is highly dynamic, i.e., the
results vary with query vectors and evolve quickly over time. Due
to the submodularity of the scoring function, existing submodular
maximization algorithms, e.g., CELF [16] and SieveStreaming [2],
can provide approximation results for k-SIR queries with theoret-
ical guarantees. However, existing algorithms need to evaluate
all active elements at least once for a single query and often
take several seconds to process one k-SIR query as shown in our
experiments. To support real-time k-SIR processing over social
streams, we maintain the ranked lists to sort the active elements
on each topic by topic-wise representativeness score. We first
devise the Multi-Topic ThresholdStream (MTTS) algorithm
for k-SIR processing. Specifically, to prune unnecessary evalu-
ations, MTTS sequentially retrieves elements from the ranked
lists in decreasing order of their scores w.r.t. the query vector
and can be terminated early whenever possible. Theoretically, it
provides ( 12 −ε)-approximation results for k-SIR queries and eval-
uates each active element at most once. Furthermore, we propose
the Multi-Topic ThresholdDescend (MTTD) algorithm to im-
prove upon MTTS. MTTD maintains the elements retrieved from
ranked lists in a buffer and permits to evaluate an element more
than once to improve the result quality. Consequently, it achieves
a better (1 − 1

e − ε)-approximation but has a higher worst-case
time complexity than MTTS. Despite this, MTTD shows better
empirical efficiency and result quality than those of MTTS.

Finally, we conduct extensive experiments on three real-world
datasets to evaluate the effectiveness of k-SIR as well as the effi-
ciency and scalability of MTTS and MTTD. The results of a user
study and quantitative analysis demonstrate that k-SIR achieves
significant improvements over existing methods in terms of in-
formation coverage and social influence. In addition, MTTS and
MTTD achieve up to 124x and 390x speedups over the baselines
for k-SIR processing with at most 5% and 1% losses in quality.

Our contributions in this work are summarized as follows.
• We define the k-SIR query to retrieve representative ele-
ments over social streams where both semantic and influ-
ence scores are considered. (Section 3)
• We propose MTTS and MTTD to process k-SIR queries in
real-time with theoretical guarantees. (Section 4)
• We conduct extensive experiments to demonstrate the
effectiveness of k-SIR as well as the efficiency and scal-
ability of our proposed algorithms for k-SIR processing.
(Section 5)

2 RELATEDWORK
SearchMethods for Social Streams.Manymethods have been
proposed for searching on social streams. Here, we categorize
existing methods into two types: keyword-based approaches and
topic-based approaches.

Keyword-based approaches [7–9, 17, 28, 33, 37, 40] typically
define top-k queries to retrieve k elements with the highest scores

as the results where the scoring functions combine the relevance
to query keywords (measured by TF-IDF or BM25) with other
contexts such as freshness [17, 28, 33, 37], influence [8, 37], and
diversity [9]. They also design different indices to support instant
updates and efficient top-k query processing. However, keyword
queries are substantially different from the k-SIR query and thus
keyword-based methods cannot be trivially adapted to process
k-SIR queries based on topic modeling.

As the metrics for textual relevance cannot fully represent
the semantic relevance between user interest and text, recent
work [19, 39] introduces topic models [5] into social search,
where user queries and elements are modeled as vectors in the
topic space. The relevance between a query and an element is
measured by cosine similarity. They define top-k relevance query
to retrieve k most relevant elements to a query vector. However,
existing methods typically consider the relevance of results but
ignore the representativeness. Therefore, the algorithms in [19, 39]
cannot be used to process k-SIR queries that emphasize the repr-
esentativeness of results.

Social Stream Summarization. There have been extensive
studies on social stream summarization [1, 4, 23, 25–27, 29, 36] :
the problem of extracting a set of representative elements from
social streams. Shou et al. [27, 36] propose a framework for so-
cial stream summarization based on dynamic clustering. Ren et
al. [26] focus on the personalized summarization problem that
takes users’ interests into account. Olariu [23] devise a graph-
based approach to abstractive social summarization. Bian et al. [4]
study the multimedia summarization problem on social streams.
Ren et al. [25] investigate the multi-view opinion summariza-
tion of social streams. Agarwal and Ramamritham [1] propose
a graph-based method for contextual summarization of social
event streams. Nguyen et al. [31] consider maintaining a sketch
for a social stream to best preserve the latent topic distribution.

However, the above approaches cannot be applied to ad-hoc
query processing because they (1) do not provide the query inter-
face and (2) are not efficient enough. For each query, they need
to filter out irrelevant elements and invoke a new instance of the
summarization algorithm to acquire the result, which often takes
dozens of seconds or even minutes. Therefore, it is unrealistic to
deploy a summarization method on a social platform for ad-hoc
queries since thousands of users could submit different queries at
the same time and each query should be processed in real-time.

Submodular Maximization. Submodular maximization has
attracted a lot of research interest recently for its theoretical
significance and wide applications. The standard approaches to
submodular maximization with a cardinality constraint are the
greedy heuristic [22] and its improved version CELF [16], both
of which are (1− 1

e )-approximate. Badanidiyuru and Vondrak [3]
propose several approximation algorithms for submodular maxi-
mization with general constraints. Kumar et al. [15] and Badani-
diyuru et al. [2] study the submodular maximization problem
in the distributed and streaming settings. Epasto et al. [12] and
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Wang et al. [34] further investigate submodular maximization in
the sliding window model. However, the above algorithms do not
utilize any indices for acceleration and thus they are much less
efficient for k-SIR processing than MTTS and MTTD proposed
in this paper.

3 PROBLEM FORMULATION
3.1 Data Model
Social Element. A social element e is represented as a triple
⟨ts,doc, re f ⟩, where e .ts is the timestamp when e is posted, e .doc
is the textual content of e denoted by a bag of words drawn from
a vocabulary V indexed by {1, . . . ,m} (m = |V|), and e .re f
is the set of elements referred to by e . Given two elements e
and e ′ (e ′.ts < e .ts), if e refers to e ′, i.e., e ′ ∈ e .re f , we say
e ′ influences e , which is denoted as e ′ { e . In this way, the
attribute re f captures the influence relationships between social
elements [30, 35]. If e is totally original, we set e .re f = �. For
example, tweets on Twitter shown in Table 1 are typical social
elements and the propagation of hashtags can be modeled as
references [18, 30]. Note that the influence relationships vary for
different types of elements, e.g., “cite” between academic papers
and “comment” on Reddit can also be modeled as references.

Social Stream. We consider social elements arrive continu-
ously as a data stream. A social stream E comprises a sequence
of elements indexed by {1, 2, 3, . . .}. Elements are ordered by
timestamps and multiple elements with the same timestamp may
arrive in an arbitrary manner. Furthermore, social streams are
time-sensitive: elements posted or referred to recently are more
important and interesting to users than older ones. To capture
the freshness of social streams, we adopt the well-recognized
time-based sliding window [11] model. Given the window length
T , a sliding windowWt at time t comprises the elements from
time t −T + 1 toT , i.e.,Wt = {e ∈ E |e .ts ∈ [t −T + 1, t]}. The set
of active elements At at time t includes not only the elements in
Wt but also the elements referred to by any element inWt , i.e.,
At = Wt ∪ {e

′ ∈ E |e ∈ Wt ∧ e
′ ∈ e .re f }. We use nt = |At | to

denote the number of active elements at time t .
Topic Model.We use probabilistic topic models [5] such as

LDA [6] and BTM [38] to measure the (semantic and influential)
representativeness of elements and the preferences of users. A
topic model Θ = {θ1, . . . , θz } consisting of z topics is trained
from the corpus E = {e .doc |e ∈ E} and the vocabulary V .
Each topic θi is a multinomial distribution over the words in
V , where pi (w) is the probability of a wordw distributed on θi
and

∑
w ∈V pi (w) = 1. The topic distribution of an element e is a

multinomial distribution over the topics in Θ, where pi (e) is the
probability that e .doc is generated from θi and

∑z
i=1 pi (e) = 1.

The selection of appropriate topic models is orthogonal to our
problem. In this work, we consider any probabilistic topic model
can be used as a black-box oracle to provide pi (w),∀w ∈ V and
pi (e),∀e ∈ E. Note that the evolution of topic distribution is
typically much slower than the speed of social stream [38, 41]. In
practice, we assume that the topic distribution remains stable for
a period of time. We need to retrain the topic model from recent
elements when it is outdated due to concept drift.

3.2 Query Definition
Query Vector. Given a topic model Θ of z topics, we use a z-
dimensional vector x = {x1, . . . , xz } to denote a user’s preference
on topics. Formally, x ∈ [0, 1]z and, xi indicates the user’s degree
of interest onθi .W.l.o.g., x is normalized to

∑z
i=1 xi = 1. Since it is

impractical for users to provide the query vectors directly for their
lack of knowledge about the topic model Θ, we design a scheme
to transform the standard query-by-keyword [17] paradigm in
our case: the keywords provided by a user is treated as a pseudo-
document and the query vector is inferred from its distribution
over the topics in Θ. Note that other query paradigms can also be
supported, e.g., the query-by-document [39] paradigm where a
document is provided as a query and the personalized search [19]
where the query vector is inferred from a user’s recent posts.

Definition of Representativeness. Given a set of elements
S and a query vector x, the representativeness of S w.r.t. x at time
t is defined by a function f (·, ·) : 2 |E | × [0, 1]z → R≥0 that
maps any subset of E to a nonnegative score w.r.t. a query vector.
Formally, we have

f (S, x) =
z∑
i=1

xi · fi (S) (1)

where fi (S) is the score of S on topic θi . Intuitively, the overall
score of S w.r.t. x is the weighted sum of its scores on each topic.
The score fi (S) on θi is defined as a linear combination of its
semantic and influence scores. Formally,

fi (S) = λ · Ri (S) +
1 − λ
η
· Ii ,t (S) (2)

where Ri (S) is the semantic score of S on θi , Ii ,t (S) is the influ-
ence score of S on θi at time t , λ ∈ [0, 1] specifies the trade-off
between semantic and influence scores, and η > 0 adjusts the
ranges of Ri (·) and Ii ,t (·) to the same scale. Next, we will intro-
duce how to compute the semantic and influence scores based
on the topic model Θ respectively.

Topic-specific Semantic Score. Given a topic θi , we define
the semantic score of a set of elements by the weighted word
coverage model. We first define the weight of a wordw in e .doc
on θi . According to the generative process of topic models [5],
the probability pi (w, e) that w ∈ e .doc is generated from θi is
denoted as pi (w, e) = pi (w) ·pi (e). Following [31, 42], the weight
σi (w, e) ofw in e .doc on θi can be defined by its frequency and
information entropy, i.e.,σi (w, e) = −γ (w, e)·pi (w, e)·logpi (w, e),
where γ (w, e) is the frequency ofw in e .doc . Then, the semantic
score of e on θi is the sum of the weights of distinct words in
e .doc , i.e., Ri (e) =

∑
w ∈Ve σi (w, e) where Ve is the set of distinct

words in e .doc . We extend the definition of semantic score to an
element set by handling the word overlaps. Given a set S and a
wordw , ifw appears in more than one element of S , its weight is
computed only once for the element e with the maximum σi (w, e).
Formally, the semantic score of S on θi is defined by

Ri (S) =
∑
w ∈VS

max
e ∈S

σi (w, e) (3)

whereVS = ∪e ∈SVe . Equation 3 aims to select a set of elements to
maximally cover the important words on θi so as to best preserve
the information of θi . Additionally, it implicitly captures the
diversity issue because adding highly similar elements to S brings
little increase in Ri (S).

Example 3.1. Table 1 gives a social stream extracted from
the tweets in Figure 1 and a topic model on the vocabulary
of elements in the stream. We demonstrate how to compute
the semantic score R2(S) where S = {e2, e7} on θ2. The fre-
quency of each word in any element is 1. The set of words in S is
VS = {w4,w9,w11}. The wordw9 only appears in e2. Its weight is
σ2(w9, e2) = 0.15. The wordsw4,w11 appear in both elements. As
σ2(w4, e2) = 0.18 > σ2(w4, e7) = 0.17 and σ2(w11, e2) = 0.20 >
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Table 1: Example for social stream and topic model
(a) Elements extracted from tweets in Figure 1

Elem ID Time Words θ1 θ2 References
e1 1 w1,w6,w8,w14,w16 0.2 0.8 �

e2 2 w4,w9,w11 0.26 0.74 �

e3 3 w3,w5,w10,w13 0.89 0.11 �

e4 4 w7,w10 1 0 e3
e5 5 w6,w8,w16 0.29 0.71 e1
e6 6 w2,w7,w10,w12 0.7 0.3 e3
e7 7 w4,w11 0.33 0.67 e2
e8 8 w10,w11,w15 0.51 0.49 e2, e3, e6

(b) Topic-Word distribution – I

Word ID Word θ1 θ2
w1 asroma 0 0.03
w2 assist 0.06 0.04
w3 cavs 0.09 0
w4 champion 0.1 0.09
w5 defeat 0.05 0.04
w6 final 0.11 0.12
w7 lebron 0.12 0
w8 lfc 0 0.06

(c) Topic-Word distribution – II

Word ID Word θ1 θ2
w9 manutd 0 0.07
w10 nbaplayoffs 0.11 0
w11 pl 0 0.11
w12 point 0.15 0.14
w13 raptors 0.08 0
w14 realmadrid 0 0.07
w15 schedule 0.13 0.12
w16 ucl 0 0.11

σ2(w11, e7) = 0.19, σ2(w4, e2) and σ2(w11, e2) are the weights of
w4 andw11 for S . Finally, we sum up the weights of each word in
VS and get R2(S) = 0.53. In this example, e7 has no contribution
to the semantic score because all words in e7 are covered by e2.

Topic-specificTime-critical Influence Score.Given a topic
θi and two elements e ′, e ∈ E (e ′ ∈ e .re f ), the probability of in-
fluence propagation from e ′ to e on θi is defined by pi (e ′ { e) =
pi (e

′) · pi (e). Furthermore, the probability of influence propaga-
tion from a set of elements S to e on θi is defined by pi (S { e) =
1−

∏
e ′∈S∩e .r ef

(
1−pi (e ′ { e)

)
. We assume the influences from

different precedents to e are independent of each other and adopt
the probabilistic coverage model to compute the influence prob-
ability from a set of elements to an element. To select recently
trending elements, we define the influence score in the sliding
window model where only the references observed withinWt
are considered. Let It (e ′) = {e |e ′ ∈ e .re f ∧ e ∈ Wt } be the set
of elements influenced by e ′ at time t and It (S) = ∪e ′∈S It (e ′) be
the set of elements influenced by S at time t . The influence score
of S on θi at time t is defined by

Ii ,t (S) =
∑

e ∈It (S )

pi (S { e) (4)

Equation 4 tends to select a set of influential elements on θi at
time t . The value ofIi ,t (S)will increase greatly only if an element
e is added to S such that e is relevant to θi itself and e is referred
to by many elements on θi withinWt .

Example 3.2. We compute the influence score I2,8(S) of S =
{e2, e3} in Table 1 on θ2 at time t = 8. We consider the window
lengthT = 4 andWt = {e5, e6, e7, e8}. I8(S) at time 8 is {e6, e7, e8}
and e4 expires at time 8. First, p2(S { e6) = p2(e3 { e6) = 0.03.
Similarly, p2(S { e7) = p2(e2 { e7) = 0.50. For e8, we have
p2(S { e8) = 1 −

(
1 − p2(e2 { e8)

)
·
(
1 − p2(e3 { e8)

)
= 0.40.

Finally, we acquire I2,8(S) = 0.03 + 0.5 + 0.4 = 0.93. We can
see, although e3 is referred to by several elements, its influence
score on θ2 is low because e3 and the elements referring to it are
mostly on θ1.

Query Definition.We formally define the Semantic and In-
fluence aware k-Representative (k-SIR) query to select a set of
elements S with the maximum representativeness score w.r.t. a
query vector from a social stream. We have two constraints on
the result of k-SIR query S : (1) its size is restricted to k ∈ Z+, i.e.,
S contains at most k elements, to avoid overwhelming users with
too much information; (2) the elements in S must be active at
time t , i.e., S ⊆ At , to satisfy the freshness requirement. Finally,
we define a k-SIR query qt (k, x) as follows.

Definition 3.3 (k-SIR). Given the set of active elements At
and a vector x, a k-SIR query qt (k, x) returns a set of elements

S∗ ⊆ At with a bounded size k such that the scoring function
f (·, x) is maximized, i.e., S∗ = argmaxS ⊆At : |S | ≤k f (S, x), where
S∗ is the optimal result for qt (k, x) and OPT = f (S∗, x) is the
optimal representativeness score.

Example 3.4. We consider two k-SIR queries on the social
stream in Table 1. We set λ = 0.5, η = 2 in Equation 2 and
the window length T = 4. At time 8, the set of active elements
At contains all except e4. Given a k-SIR query q8(2, x1) where
x1 = (0.5, 0.5) (a user has the same interest on two topics), S∗ =
{e1, e3} is the query result and OPT = f (S∗, x1) = 0.65. We can
see e3, e1 obtain the highest scores on θ1, θ2 respectively and they
collectively achieve the maximum score w.r.t. x1. Given an k-SIR
query q8(2, x2) where x2 = (0.1, 0.9) (the user prefers θ2 to θ1),
the query result is S∗ = {e1, e2} and OPT = 0.94. e3 is excluded
because it is mostly distributed on θ1.

3.3 Properties and Challenges
Properties of k-SIR Queries. We first show the monotonicity
and submodularity of the scoring function f (·, ·) for k-SIR query
by proving that both the semantic function Ri (·) and the influ-
ence function Ii ,t (·) are monotone and submodular.

Definition 3.5 (Monotonicity & Submodularity). A functionд(·) :
2 |E | → R≥0 on the power set of E is monotone iff д(S ∪ {e}) ≥
д(S) for any e ∈ E \ S and S ⊆ E. The function д(·) is submodular
iff д(S ∪ {e}) − д(S) ≥ д(T ∪ {e}) − д(T ) for any S ⊆ T ⊆ E and
e ∈ E \T .

Lemma 3.6. Ri (·) is monotone and submodular for i ∈ [1, z].

Lemma 3.7. Ii ,t (·) is monotone and submodular for i ∈ [1, z] at
any time t .

The proofs are given in Appendices A.1 and A.2.
Given a query vector x, the scoring function f (·, x) is a non-

negative linear combination of Ri (·) and Ii ,t (·). Therefore, f (·, x)
is monotone and submodular.

Challenges of k-SIRQueries. In this paper, we consider that
the elements arrive continuously over time. We always maintain
the set of active elementsAt at any time t . It is required to provide
the result for any ad-hoc k-SIR query qt (k, x) in real-time.

The challenges of processing k-SIR queries in such a scenario
are two-fold: (1) NP-hardness and (2) dynamism. First, the follow-
ing theorem shows the k-SIR query is NP-hard.

Theorem 3.8. It is NP-hard to obtain the optimal result S∗ for
any k-SIR query qt (k, x).

The weighted maximum coverage problem can be reduced to k-
SIR query when λ = 1 in Equation 2. Meanwhile, the probabilistic
coverage problem is a special case of k-SIR query when λ = 0 in
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Table 2: Frequently Used Notations

Notation Description

E , e , ei
E = {e1, . . . , en } is a social stream; e is an arbitrary
element in E ; ei is the i-th element in E .

T ,Wt , At
T is the window length;Wt is the sliding window at
time t ; At is the set of active elements at time t .

Θ, θi Θ is a topic model; θi is the i-th topic in Θ.
x, xi x is a z-dimensional vector; xi is the i-th entry of x.

Ri (·), Ii ,t (·)
Ri (·) is the semantic function on θi ; Ii ,t (·) is the influ-
ence function on θi at time t .

fi (·), f (·, ·)
fi (·) is the representativeness scoring function on θi ;
f (·, ·) is the scoring function w.r.t. a query vector.

qt (k , x)
qt (k , x) is a k -SIR query at time t with a bounded result
size k and a query vector x.

S∗, OPT
S∗ is the optimal result for qt (k , x); OPT = f (S∗, x) is
the optimal representativeness score.

δi (e), δ (e , x)
δi (e) = fi ({e }) is the score of e on θi ; δ (e , x) =
f ({e }, x) is the score of e w.r.t. x.

∆(e |S )
∆(e |S ) = f (S ∪ {e }, x) − f (S , x) is the marginal score
gain of adding e to S .

RLi
RLi is the ranked list maintained for the elements on
topic θi .

Equation 2. Because both problems are NP-hard [13], the k-SIR
query is NP-hard as well.

In spite of this, existing algorithms for submodular maximiza-
tion [22] can provide results with constant approximations to
the optimal ones for k-SIR queries due to the monotonicity and
submodularity of the scoring function. For example, CELF [16] is
(1 − 1

e )-approximate for k-SIR queries while SieveStreaming [2]
is ( 12 − ε)-approximate (for any ε > 0). However, both algorithms
cannot fulfill the requirements for real-time k-SIR processing ow-
ing to the dynamism of k-SIR queries. The results of k-SIR queries
not only vary with query vectors but also evolve over time for
the same query vector due to the changes in active elements
and the fluctuations in influence scores over the sliding window.
To process one k-SIR query qt (k, x), CELF and SieveStreaming
should evaluate f (·, x) for O(k · nt ) and O( logkε · nt ) times re-
spectively. Empirically, they often take several seconds for one
k-SIR query when the window length is 24 hours. To the best of
our knowledge, none of the existing algorithms can efficiently
process k-SIR queries. Thus, we are motivated to devise novel
real-time solutions for k-SIR processing over social streams.

Before moving on to the section for k-SIR processing, we
summarize the frequently used notations in Table 2.

4 QUERY PROCESSING
In this section, we introduce the methods to process k-SIR queries
over social streams. The architecture is illustrated in Figure 4.
At any time t , we maintain (1) Active Window to buffer the
set of active elements At , (2) Ranked Lists RL1, . . . ,RLz to sort
the lists of elements on each topic of Θ in descending order of
topic-wise representativeness score, and (3) Query Processor
to leverage the ranked lists to process k-SIR queries. In addition,
when the topic model is given, the query and topic inferences
become rather standard (e.g., Gibbs sampling [21]), and thus we
do not discuss these procedures here for space limitations. We
consider the query vectors and the topic vectors of elements have
been given in advance.

As shown in Figure 4, we process a social stream E in a batch
manner. E is partitioned into buckets with equal time length

Ranked Lists

Query Processor

Users

Query Inference Result

Sliding Window

… … … … … …

RL RL
z

… … … … … … …

Time

RL! RL"# 

… … … …

Active Window Topic 

Inference

Figure 4: The architecture for k-SIR query processing

L ∈ Z+ and updated at discrete time L, 2L, . . . until the end time
of the stream tn . When the window slides at time t , a bucket Bt
containing the elements between time t − L + 1 to t is received.
After inferring the topic vector of each e ∈ Bt with the topic
model, we first update the active window. The elements in Bt are
inserted into the active window and the elements referred to by
them are updated. Then, the elements that are never referred
to by any element after time t − T + 1 are discarded from the
active window. Subsequently, the ranked list RLi on each topic
θi is maintained for Bt . The detailed procedure for ranked lists
maintenance will be presented in Section 4.1.

Next, let us discuss the mechanism of k-SIR processing. One
major drawback of existing submodular maximization methods,
e.g., CELF [16] and SieveStreaming [2], on processing k-SIR
queries is that they need to evaluate every active element at
least once. However, real-world datasets often have two charac-
teristics: (1) The scores of elements are skewed, i.e., only a few
elements have high scores. For example, we compute the scores
of a sample of tweets w.r.t. a k-SIR query and scale the scores
linearly to the range of 0 to 1. The statistics demonstrate that
only 0.4% elements have scores of greater than 0.9 while 91%
elements have scores of less than 0.1. (2) One element can only be
high-ranked in very few topics, i.e., one element is about only one
or two topics. In practice, we observe that the average number of
topics per element is less than 2. Therefore, most of the elements
are not relevant to a specific k-SIR query. We can greatly improve
the efficiency by avoiding the evaluations for the elements with
very low chances to be included into the query result. To prune
these unnecessary evaluations, we leverage the ranked lists to
sequentially evaluate the active elements in decreasing order
of their scores w.r.t. the query vector. In this way, we can track
whether unevaluated elements can still be added to the query
result and terminate the evaluations as soon as possible.

Although such a method to traverse the ranked lists is similar
to the one for top-k query [39], the procedures for maintain-
ing the query results are totally different. A top-k query simply
returns k elements with the maximum scores as the result for a k-
SIR query. Although the top-k result can be retrieved efficiently
from the ranked lists using existing methods [39], its quality
for k-SIR queries is suboptimal because the word and influence
overlaps are ignored. Thus, we will propose the Multi-Topic Th-
resholdStream (MTTS) and Multi-Topic ThresholdDescend
(MTTD) algorithms for k-SIR processing in Sections 4.2 and 4.3.
They can return high-quality results with constant approxima-
tion guarantees for k-SIR queries while meeting the real-time
requirements.
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Algorithm 1: Ranked List Maintenance
Input: A social stream E, the window length T , and the

bucket length L
1 t ← 0, initialize an empty ranked list RLi for i ∈ [1, z];
2 while t ≤ tn do
3 t ← t + L,Bt ← {e ∈ E |e .ts ∈ [t − L + 1, t]};
4 foreach e ∈ Bt do
5 foreach i : pi (e) > 0 do
6 δi (e) ← Ri (e), te ← e .ts;
7 create a tuple ⟨δi (e), te ⟩ and insert it into RLi ;
8 foreach e ′ ∈ e .re f do
9 foreach i : pi (e ′) > 0 ∧ pi (e) > 0 do
10 δi (e

′) ← fi ({e
′}), te ′ ← e .ts;

11 adjust the position of ⟨δi (e ′), te ′⟩ in RLi ;
12 foreach e : e is never referred to after t −T + 1 do
13 delete the tuples of e from RLi with pi (e) > 0;

4.1 Ranked List Maintenance
In this subsection, we introduce the procedure for ranked list
maintenance. Generally, a ranked list RLi keeps a tuple for each
active element on topic θi . A tuple for element e is denoted as
⟨δi (e), te ⟩ where δi (e) = fi ({e}) is the topic-wise representati-
veness score of e on θi and te is the timestamp when e is last
referred to. All tuples in RLi are sorted in descending order of
topic-wise score.

The algorithmic description of ranked list maintenance over
a social stream is presented in Algorithm 1. Initially, an empty
ranked list is initialized for each topic θi in the topic model
Θ (Line 1). At discrete timestamps t = L, 2L, . . . until tn , the
ranked lists are updated according to a bucket of elements Bt .
For each element e in Bt , a tuple ⟨δi (e), te ⟩ is created and in-
serted into RLi for every topic θi with pi (e) > 0 (Lines 4–7).
The score δi (e) is Ri (e) because the elements influenced by e
have not been observed yet. The time te when e is last referred
to is obviously e .ts . Subsequently, it recomputes the influence
score Ii ,t (e ′) for each parent e ′ of e . After that, it updates the
tuple ⟨δi (e ′), te ′⟩ by setting δi (e ′) to fi ({e

′}) and te ′ to e .ts . The
position of ⟨δi (e ′), te ′⟩ in RLi is adjusted according to the up-
dated δi (e ′) (Lines 8–11). Finally, we delete the tuples for expired
elements from RLi (Lines 12–13).

Complexity Analysis. The cost of evaluating δi (e) for any
element e is O(l) where l = maxe ∈At (|Ve | + |It (e)|). Then, the
complexity of inserting a tuple into RLi is O(lognt ). For each
e ′ ∈ e .re f , the complexity of re-evaluating Ii ,t (e ′) is also O(l).
Overall, the complexity of maintaining RLi for element e is
O
(
P(l + lognt )

)
where P = maxe ∈At |e .re f |. As the tuples for

e may appear in O(z) ranked lists, the time complexity of ranked
list maintenance for element e is O

(
zP(l + lognt )

)
.

Operations for Ranked List Traversal.We need to access
the tuples in each ranked list RLi in decreasing order of topic-wise
score for k-SIR processing. Two basic operations are defined to
traverse the ranked list RLi : (1) RLi .first to retrieve the element
w.r.t. the first tuple with the maximum topic-wise score from RLi ;
(2) RLi .next to acquire the element w.r.t. the next unvisited tuple
in RLi from the current one. Note that once a tuple for element e
has been accessed in one ranked list, the remaining tuples for e
in the other lists will be marked as “visited” so as to eliminate
duplicate evaluations for e .

Algorithm 2:Multi-Topic ThresholdStream
Input: The ranked list RLi for each i ∈ [1, z] and a k-SIR

query qt (k, x)
Parameter: ε ∈ (0, 1)
Result: Sts for qt (k, x)

1 Φ = {(1 + ε)j |j ∈ Z}, foreach ϕ ∈ Φ do Sϕ ← �;
2 foreach i ∈ [1, z] : xi > 0 do e(i) ← RLi .first;
3 δmax , TH← 0 and UB(x) ←

∑z
i=1 xi · δi (e

(i));
4 while UB(x) ≥ TH do
5 i∗ ← argmaxi ∈[1,z] xi · δi (e(i)), e ← e(i

∗);
6 δ (e, x) ←

∑z
i=1 xi · δi (e);

7 if δ (e, x) > δmax then δmax ← δ (e, x);
8 Φ = {(1 + ε)j |j ∈ Z ∧ δmax ≤ (1 + ε)j ≤ 2 · k · δmax };
9 delete Sϕ if ϕ < Φ;

10 foreach ϕ ∈ Φ do
11 if δ (e, x) ≥ ϕ

2k ∧ |Sϕ | < k then
12 if ∆(e |Sϕ ) ≥

ϕ
2k then Sϕ ← Sϕ ∪ {e};

13 e(i
∗) ← RLi∗ .next;

14 TH← minϕ∈Φ: |Sϕ |<k
ϕ
2k , UB(x) ←

∑z
i=1 xi · δi (e

(i));
15 return Sts ← argmaxϕ∈Φ f (Sϕ , x);

4.2 Multi-Topic ThresholdStream Algorithm
In this subsection, we present the MTTS algorithm for k-SIR
processing. MTTS is built on two key ideas: (1) a thresholding
approach [15] to submodular maximization and (2) a ranked list
based mechanism for early termination. First, given a k-SIR query,
the thresholding approach always tracks its optimal representat-
iveness score OPT. It establishes a sequence of candidates with
different thresholds within the range of OPT. For any element e ,
each candidate determines whether to include e independently
based on e’s marginal gain and its threshold. Second, to prune
unnecessary evaluations, MTTS utilizes ranked lists to sequen-
tially feed elements to the candidates in decreasing order of score.
It continuously checks the minimum threshold for an element
to be added to any candidate and the upper-bound score of un-
evaluated elements. MTTS is terminated when the upper-bound
score is lower than the minimum threshold. After termination,
the candidate with the maximum score is returned as the result
for the k-SIR query.

The algorithmic description of MTTS is presented in Algo-
rithm 2. The initialization phase is shown in Lines 1–3. Given a
parameter ε ∈ (0, 1), MTTS establishes a geometric progression
Φwith common ratio (1+ε) to estimate the optimal score OPT for
qt (k, x). Then, it maintains a candidate Sϕ initializing to � for
each ϕ ∈ Φ. The threshold for Sϕ is ϕ

2k . The traversal of ranked
lists starts from the first tuple of each list. We use e(i) to denote
the element corresponding to the current tuple from RLi . MTTS
keeps 3 variables: (1) δmax to store the maximum score w.r.t. x
among the evaluated elements, (2) TH to maintain the minimum
threshold for an element to be added to any candidate, and 3)
UB(x) to track the upper-bound score for any unevaluated ele-
ment w.r.t. x. Specifically, TH is the threshold ϕ

2k of the unfilled
candidate Sϕ (i.e., |Sϕ | < k) with the minimum ϕ. We set TH = 0
before the evaluation. If δ (e, x) < TH, e can be safely excluded
from evaluation. In addition, for any unevaluated element e , it
holds that δi (e) ≤ δi (e

(i)) because the tuples in RLi are sorted
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Figure 5: Example for k-SIR processing using MTTS.

by topic-wise score. Thus, UB(x) =
∑z
i=1 xi · δi (e

(i)) can be used
as the upper-bound score of unevaluated elements w.r.t. x.

After the initialization phase, the elements are sequentially
retrieved from the ranked lists and evaluated by the candidates
according to Lines 4–14. At each iteration, MTTS selects an ele-
ment e(i∗) with the maximum xi · δi (e

(i)) as the next element e
for evaluation (Line 5). Subsequently, the candidate maintenance
procedure is performed following Lines 6–9. It first computes the
score δ (e, x) of e w.r.t. x. Second, it updates the maximum score
δmax . Third, the range of OPT is adjusted to [δmax , 2 · k · δmax ].
Fourth, it deletes the candidates out of the range for OPT. Next,
each candidate Sϕ determines whether to add e independently
according to Lines 10–12. If δ (e, x) < ϕ

2k or Sϕ has contained k
elements, e will be ignored by Sϕ . Otherwise, the marginal gain
∆(e |Sϕ ) = f (Sϕ ∪{e}, x)− f (Sϕ , x) of adding e to Sϕ is evaluated.
If ∆(e |Sϕ ) reaches

ϕ
2k , e will be added to Sϕ . Finally, it obtains the

next element in RLi∗ as e(i
∗) and updates TH, UB(x) accordingly

(Lines 13 and 14). The evaluation procedure will be terminated
when UB(x) < TH because δ (e ′, x) ≤ UB(x) < TH is satisfied for
any unevaluated element e ′, which can be safely pruned. Finally,
MTTS returns the candidate with the maximum score as the
result for qt (k, x) (Line 15).

Example 4.1. Following the example in Table 1, we show how
MTTS processes a k-SIR query q8(2, x) where x = (0.5, 0.5) in
Figure 5. We set ε = 0.3 in this example.

First of all, the traversals of RL1 and RL2 start from e3 and
e1 respectively. Initially, we have UB(x) = 0.61 and TH = 0.
Then, the first element to evaluate is e3 because x1 · δ1(e3) =
0.33 > x2 · δ2(e1) = 0.28. As δ (e3, x) = 0.34, the range of OPT is
[0.34, 1.36]. We have 0.34 ≤ 1.3−4 ≤ . . . ≤ 1.31 ≤ 1.36 and 6
candidates with j ∈ [−4, 1] are maintained. e3 can be added to
each of the candidates. After that, e6 is the next element from
RL1. UB(x) and TH are updated to 0.52 and 0.09 respectively. The
second element to evaluate is e1 from RL2. As δ (e1, x) = 0.31, the
candidate with j = 1 directly skips e1 for δ (e1, x) < ϕ

2k = 0.33.
Other candidates include e1 as ∆(e1 |Sϕ ) ≥

ϕ
2k . Then, e2 is the

next element from RL2. UB(x) decreases to 0.48 while TH increases
to 0.33. Subsequently, e6, e2 are retrieved but skipped by all can-
didates. After evaluating e2, UB(x) decreases to 0.22 and is lower
than TH. Thus, no more evaluation is needed and Sts = {e1, e3}
is returned as the result for q8(2, x).

The approximation ratio of MTTS is given in Theorem 4.2.

Theorem 4.2. Sts returned by MTTS is a ( 12 −ε)-approximation
result for any k-SIR query.

The proof is given in Appendix A.3.
Complexity Analysis. The number of candidates in MTTS

is O( logkε ) as the ratio between the lower and upper bounds for
OPT is O(k). The complexity of retrieving an element from ranked
lists is O(lognt ). The complexity of evaluating one element for
a candidate is O(ld) where l = maxe ∈At (|Ve | + |It (e)|) and d
is the number of non-zero entries in the query vector x. Thus,
the complexity of MTTS to evaluate one element is O(lognt +
ld logk

ε ). Overall, the time complexity of MTTS is O
(
n′t (lognt +

ld logk
ε )

)
where n′t is the number of elements evaluated by MTTS.

4.3 Multi-Topic ThresholdDescend Algorithm
Although MTTS is efficient for k-SIR processing, its approxi-
mation ratio is lower than the the best achievable approxima-
tion guarantees, i.e., (1 − 1

e ) [13] for submodular maximization
with cardinality constraints. In addition, its result quality is also
slightly inferior to that of CELF. In this subsection, we propose
the Multi-Topic ThresholdDescend (MTTD) algorithm to im-
prove upon MTTS. Different from MTTS, MTTD maintains only
one candidate S from � to reduce the cost for evaluation. In ad-
dition, it buffers the elements that are retrieved from ranked lists
but not included into S so that these elements can be evaluated
more than once. This can lead to better quality as the chances of
missing significant elements are smaller. Specifically, MTTD has
multiple rounds of evaluation with decreasing thresholds. In the
round with threshold τ , each element e with δ (e, x) ≥ τ is con-
sidered and will be included to S once the marginal gain ∆(e |S)
reaches τ . When S contains k elements or τ is descended to the
lower bound, MTTD is terminated and S is returned as the result.
Theoretically, the approximation ratio of MTTD is improved to
(1 − 1

e − ε) but its worst-case complexity is higher than MTTS.
Despite this, the efficiency and result quality of MTTD are both
better than MTTS empirically.

The algorithmic description of MTTD is presented in Algo-
rithm 3. In the initialization phase (Lines 1–3), the candidate S and
the element buffer E ′ are both set to �. The traversals of ranked
lists are initialized in the same way as MTTS. The initial thresh-
old τ for the first round of evaluation is the upper-bound score
for any active element w.r.t. x and the termination threshold τ ′ is
0. After initialization, MTTD runs each round of evaluation with
threshold τ following Lines 4–11. It first retrieves the set of ele-
ments Eτ whose scores potentially reach τ from the ranked lists.
The method is shown in the procedure retrieve(τ) (Lines 13–
19), which generally uses the same idea as MTTS: it traverses
each ranked list sequentially in decreasing order of topic-wise
scores and continuously adds the element with the maximum
xi · δi (e

(i)) to Eτ until the upper-bound score UB(x) is decreased
to τ . After adding Eτ to the element buffer E ′, the evaluation
procedure is started (Lines 6–10). It always considers the element
e ′ ∈ E ′ \S with the maximum ∆e ′ . If the marginal gain ∆(e ′ |S) of
adding e ′ to S is at least τ , e ′ will be included into S and deleted
from E ′. When S has contained k elements, MTTD is directly
terminated and S is returned as the result Std for qt (k, x). The
round of evaluation is finished when no elements in E ′ could
achieve a marginal gain of τ . Next, the termination threshold τ ′
is updated and the threshold τ is descended by (1 − ε) times for
the subsequent round of evaluation. Finally, when τ is lower than
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Algorithm 3:Multi-Topic ThresholdDescend
Input: The ranked list RLi for each i ∈ [1, z] and a k-SIR

query qt (k, x)
Parameter: ε ∈ (0, 1)
Result: Std for qt (k, x)

1 S, E ′ ← �;
2 foreach i ∈ [1, z] : xi > 0 do e(i) ← RLi .first;
3 τ ←

∑z
i=1 xi · δi (e

(i)), τ ′ ← 0;
4 while τ ≥ τ ′ do
5 Eτ ← retrieve(τ), E ′ ← E ′ ∪ Eτ ;
6 while ∃e ∈ E ′ \ S : ∆e ≥ τ do
7 e ′ ← argmaxe ∈E′\S ∆e ,∆e ′ ← ∆(e ′ |S);
8 if ∆e ′ ≥ τ then
9 S ← S ∪ {e ′}, E ′ ← E ′ \ {e ′};

10 if |S | = k then return Std ← S ;
11 τ ′ ← f (S, x) · εk , τ ← (1 − ε)τ ;
12 return Std ← S ;

13 Procedure retrieve(τ)
14 Eτ ← �, UB(x) ←

∑z
i=1 xi · δi (e

(i));
15 while UB(x) ≥ τ do
16 i∗ ← argmaxi ∈[1,z] xi · δi (e(i));
17 ∆e (i∗) ←

∑z
i=1 xi · δi (e

(i∗)), Eτ ← Eτ ∪ {e
(i∗)};

18 e(i
∗) ← RLi∗ .next, UB(x) ←

∑z
i=1 xi · δi (e

(i));
19 return Eτ ;
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Figure 6: Example for k-SIR processing using MTTD.

τ ′, no more rounds of evaluations are required. In this case, S
is returned as the result Std for qt (k, x) even though it contains
fewer than k elements (Line 12).

Example 4.3. In Figure 6, we illustrate the procedure forMTTD
to process a k-SIR query q8(2, x) where x = (0.5, 0.5) following
the example in Table 1. We also set ε = 0.3 in this example.

First, MTTD initializes the threshold τ = 0.60 for the first
round and the termination threshold τ ′ = 0. The candidate S and
the element buffer E ′ are initialized to �. In Round 1 and 2 with
τ = 0.60 and 0.42, MTTD retrieves 3 elements e3, e1, e6 from RL1
and RL2 and adds them to E ′. However, they are not evaluated
in the first two rounds because ∆e3 = 0.34, ∆e1 = 0.31, and
∆e6 = 0.30, all of which are smaller than 0.42. In Round 3 with
τ = 0.30, e2 is added to E ′. Then, e3 is added to S as ∆e3 = 0.34 >
τ . Furthermore, e1 is also added to S as ∆e1 = 0.31 > τ . At this
time, S = {e1, e3} has contained two elements. Therefore, MTTD
is terminated and no more rounds are needed. Std = {e1, e3} is
returned as the result for q8(k, x).

Table 3: Statistics of datasets

Dataset AMiner Reddit Twitter
Number of Elements 1.66M 20.2M 14.8M

Vocabulary Size 580K / 71K 2.8M / 88K 3.0M / 68K
Average Length 74.5 / 49.2 24.6 / 8.6 12.6 / 5.1

Average References 3.68 0.85 0.62

The approximation ratio of MTTD is given in Theorem 4.4.

Theorem 4.4. The result Std returned by MTTD is (1 − 1
e − ε)-

approximate for any k-SIR query.

The proof is given in Appendix A.4.
Complexity Analysis. Let τ0 be the threshold τ of the first

round in MTTD. The number of rounds in MTTD is at most
⌈log1−ε ( τ

′

τ0 )⌉. Because τ
′ = f (S, x) · εk ≥ δmax ·

ε
k and τ0 ≤

d ·δmax , we have τ0
τ ′ ≤

kd
ε and the number of rounds isO( log(kd )ε2 ).

In each round, it evaluates O(n′′t ) elements where n′′t is the
number of elements in the buffer E ′ of MTTD and the eval-
uation of an element is also O(ld). Here, we use a max-heap
for E ′ and thus it costs O(logn′′t ) to dequeue the top element
from E ′. In addition, the time for retrieving an element from
ranked lists is still O(lognt ). The complexity for each round is
O
(
n′′t · (ld + lognt )

)
. Therefore, the time complexity of MTTD

is O
(
n′′t · log(kd) · ε−2 · (ld + lognt )

)
.

5 EXPERIMENTS
In this section, we conduct extensive experiments to verify the
effectiveness of k-SIR query as well as the efficiency of MTTS
and MTTD for k-SIR processing. We first introduce the experi-
mental setup in Section 5.1. Then, we show the results for the
effectiveness of k-SIR query in Section 5.2. Finally, the results for
the efficiency and scalability of MTTS and MTTD are reported
in Section 5.3.

5.1 Experimental Setup
Dataset. Three real-world datasets used in the experiments are
listed as follows.
• AMiner [32] is a collection of academic papers published
in the ACM Digital Library till 2015. We assign random
timestamps to the papers published in the same year.
• Reddit1 is a collection of submissions and comments on
Reddit from June 01, 2014 to June 14, 2014.
• Twitter2 consists of the tweets collected via the streaming
API from July 14, 2017 to July 26, 2017.

The statistics of the datasets are given in Table 3. In the prepro-
cessing, we remove stop words and noise words from the textual
contents of elements. Note that we report the vocabulary size
and the average length of elements both before and after the
preprocessing.

Topic Model. We use LDA [6] to train topic models on the
corpora of AMiner and Reddit. PLDA [21] is the implementation
of LDA for training. For topic training on the corpus of Twitter,
we use the biterm topic model [38] (BTM) because it is designed
for short texts like tweets. The corpus of each dataset consists
of e .doc of each element e . To study how the number of topics z
affects the performance of compared methods, we train 5 topic
models for each dataset with z ranging from 50 to 250. Two
Dirichlet priors α, β are set to 50

z , 0.01 for both LDA and BTM.
1https://www.reddit.com/r/datasets
2https://developer.twitter.com/en/docs
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The pre-trained topic models are loaded into memory and used
as a black-box oracle for each compared method.

Compared Methods. We compare the following methods in
Section 5.2 to evaluate the effectiveness of k-SIR query.
• Top-k Keyword Query (TF-IDF) retrieves k most rele-
vant elements to the query keywords. We adopt the log-
normalized TF-IDF weight to vectorize the elements and
queries. Cosine similarity is used as the similarity measure
between an element and a query.
• Diversity-aware Top-k Keyword Query [9] (DIV) con-
siders both textual relevance and result diversity. Given
a query q and a set of elements S , we have score(q, S) =
λ
∑
e ∈S rel(q, e) + (1 − λ)div(S), where rel(q, e) is the rel-

evance of e to q and div(S) is the average dissimilarity
between each pair of elements in S . We set λ = 0.3 follow-
ing [9]. A set ofk elements S with themaximum score(q, S)
is returned as the result for q.
• Sumblr [27] is a method for social stream summarization.
In our experiments, we use Sumblr for query processing
as follows: given a set of keywords, we select the elements
that contain at least one keyword as candidates. Then, we
run Sumblr on the candidates to generate a summary of k
elements as the query result. The parameters for k-means
clustering and LexRank are the same as [27].
• Top-k Relevance Query [39] (REL) measures the rele-
vance between an element and a query by topic modeling.
It returns k elements whose topic vectors have the highest
cosine similarities to the query vector as the result.
• k-SIR Query retrieves a set of elements S maximizing

f (S, x) w.r.t. a query vector x. The results of MTTD are
used in the effectiveness tests.

We note that TF-IDF, DIV, and Sumblr are keyword queries while
REL and k-SIR use query vectors inferred from topic models. To
compare them fairly, the queries are generated as follows: (1) draw
the keywords from the vocabulary; (2) acquire a query vector by
treating the keywords as a pseudo-document and inferring its
topic vector from the topic model. To retrieve the query results,
TF-IDF, DIV, and Sumblr receive the keywords while REL and
k-SIR receive the query vectors.

The following methods are compared in Section 5.3 to evaluate
their efficiency and scalability for k-SIR processing.
• CELF [16] is an improved version of the basic greedy algo-
rithm [22]. It is the most common batch algorithm for sub-
modular maximization and acquires (1− 1

e )-approximation
results for k-SIR queries. Note that (1 − 1

e ) is the best ap-
proximation ratio for this problem unless P=NP [13].
• SieveStreaming [2] is the state-of-the-art streaming al-
gorithm for submodular maximization. It returns ( 12 − ε)-
approximation results for k-SIR queries.
• Top-k Representative retrievesk elementswith the high-
est representativeness scores δ (e, x) w.r.t. a query vec-
tor x from ranked lists as the result, which is only 1

k -
approximate for k-SIR queries. We compare with it to
show that traditional methods for top-k queries cannot
work well for k-SIR queries.
• MTTS andMTTD are our proposed algorithms for k-SIR
processing based on ranked lists.

Query and Workload Generation. We generate a k-SIR
query as follows: (1) draw 1–5 words randomly from the vo-
cabulary; (2) acquire the query vector by inferring the topic
distribution of selected words from the topic model.

Table 4: Parameters in the experiments

Parameter Setting Default

the parameter ε in MTTS/MTTD 0.1 to 0.5 0.1
the result size k 5 to 25 10

the number of topics z 50 to 250 50
the window length T 6 hours to 30 hours 24 hours

In an experiment, we feed all elements in a dataset to compared
methods in ascending order of timestamp. The active window and
ranked lists perform batch-updates for each bucket of elements.
Then, the query workload is generated as follows: we generate
10Kk-SIR queries for each dataset and assign a random timestamp
in range [1, tn ] (tn is the end time of the stream) to each query.
The query results are retrieved at the assigned timestamps.

Parameter Setting. The parameters we examine in the ex-
periments are listed in Table 4. In addition, the factors λ,η in
Equation 2 are set to 0.5, 20 for the AMiner and Reddit datasets,
and 0.5, 200 for the Twitter dataset. The bucket length L is fixed
to 15 minutes.

Experimental Environment.All experiments are conducted
on a server running Ubuntu 16.04.3 LTS. It has an Intel Xeon
E7-4820 1.9GHz processor and 128 GB memory. All compared
methods are implemented in Java 8.

5.2 Effectiveness
To evaluate the effectiveness of our k-SIR query, we first conduct
a study on users’ satisfaction for the results returned by each
query method. We follow the methodology and procedure of
user study in previous work on social search [9]. The detailed
procedure is as follows.

First, we generate 20 queries by selecting 20 trending topics
on three datasets (e.g., “social media analysis” on AMiner, “NBA”
on Reddit, and “pop music” on Twitter) and use the topical words
of each topic as keywords. Second, we process these queries with
each method in the default setting and return a set of five ele-
ments as the results. Third, we recruit 30 volunteers who are not
related to this work and familiar with the query topics to evaluate
the result quality of compared methods. For each query, we ask 3
different evaluators to rank the quality of result sets and record
the average score on each aspect. Specifically, each evaluator is
requested to rank his/her satisfaction for the result sets on two
aspects: (1) representativeness: the relevance to query topic and
the information coverage on the query topic of its entirety (rank-
ing from “the least representative” to “the most representative”,
mapped to values 1 to 5); (2) impact: the number of citations,
comments, and retweets of selected elements (ranking from “the
lowest impact” to “the highest impact”, mapped to values 1 to 5).

The results of the user study are shown in Table 5. Follow-
ing [9], we measure the agreement between different users by
computing the Cohen’s linearly weighted kappa [10] for each
query on each aspect. The kappa values for representativeness
are between 0.5 and 0.89 (0.72 on average). The kappa values
for impact are in the range of 0.56–1.0 (0.79 on average). We
observe that k-SIR achieves the highest scores among compared
methods on both representativeness and impact in all datasets.
We also collect feedback from users for the reason of dissatisfac-
tion. “Low coverage” is the primary problem for TF-IDF and REL,
while “containing irrelevant elements” is the main reason why
the results of DIV and Sumblr are unsatisfactory.
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Table 5: Results for user study

Method TF-IDF DIV Sumblr REL k-SIR

AMiner Represent. 2.28 1.56 3.72 2.78 4.67
Impact 2.39 1.44 4.01 2.39 4.78

Reddit Represent. 2.05 3.00 3.67 1.95 4.33
Impact 1.80 2.24 3.80 2.33 4.80

Twitter Represent. 1.79 2.38 4.08 2.08 4.67
Impact 1.58 2.25 4.01 2.34 4.88

Table 6: Results for quantitative analysis

Method TF-IDF DIV Sumblr REL k-SIR

AMiner Coverage 0.1968 0.1766 0.2140 0.2400 0.2663
Influence 0.0765 0.0777 0.5470 0.1159 0.8430

Reddit Coverage 0.2387 0.2050 0.2419 0.2885 0.3162
Influence 0.0175 0.0107 0.4315 0.0143 0.5862

Twitter Coverage 0.2200 0.2118 0.2213 0.2722 0.3052
Influence 0.0295 0.0296 0.1611 0.1268 0.6516
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Figure 7: Query time with varying ε
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Figure 8: Scores with varying ε

Then, we use two quantitative metrics to evaluate the effective-
ness of k-SIR query: (1) coverage: do the result sets achieve high
information coverage on query topics? Following the metric used
in previous studies [2, 20], the coverage score of a result set S
w.r.t. a query vector x is computed by

∑
e ∈At \S maxe ′∈S rel(e, x) ·

sim(e, e ′) where rel(e, x) is the relevance of e to x and sim(e, e ′)
is the similarity of e and e ′; (2) influence: are the result sets re-
ferred by a large number of elements (e.g., citations, comments,
retweets, and so on)? We use the total number of elements refer-
ring to at least one element in the result set as the influence score.
For ease of presentation, the influence scores are linearly scaled
to [0, 1] by dividing by the influence score of top-k influential
elements. To acquire the results shown in Table 6, we sample the
result sets of 1K queries returned by each method and compute
the average scores.

We present the quantitative results for the effectiveness of
compared methods in Table 6. First, k-SIR outperforms other
query methods on information coverage, which verifies that our
semantic model is able to preserve information on query topics.
Second, as only k-SIR and Sumblr account for the influences of
elements, they naturally achieve much higher influence scores
than other methods. k-SIR further outperforms Sumblr in terms
of influence because k-SIR directly adopt the number of refer-
ences for influence computation while Sumblr only considers the
PageRank scores of authors.

Overall, the above results have confirmed that k-SIR shows
better result quality than existing methods for social search and
summarization in terms of information coverage and influence.

5.3 Efficiency and Scalability
Effect of ε . The average CPU time of MTTS and MTTD to pro-
cess one k-SIR query (i.e., query time) with varying ε is illustrated
in Figure 7. MTTS and MTTD show different trends w.r.t. ε . On
the one hand, the query time of MTTS drops drastically when
ε increases as the number of candidates in MTTS is inversely
proportional to ε . On the other hand, MTTD is not sensitive to
ε and typically takes slightly more time for a larger ε . This is
because a greater ε often leads to a smaller threshold for termina-
tion. In this case, more elements are retrieved from ranked lists
and evaluated by MTTD, which degrades the query efficiency.

The average scores of the results returned byMTTS andMTTD
with varying ε are shown in Figure 8. The scores of both methods

decrease when ε increases, which is consistent with the theoreti-
cal results of Theorem 4.2 and 4.4. However, both methods show
good robustness against ε : compared with CELF, their quality
losses are at most 5% even when ε = 0.5.

Effect of result size k . The average query time of compared
methods with varying k is presented in Figure 9. In addition, the
average ratios between the number of elements evaluated by
MTTS/MTTD and the number of active elements are shown in
Figure 10. First of all, MTTS and MTTD run at least one order
of magnitude faster than CELF and SieveStreaming for k-SIR
processing in all datasets. MTTS and MTTD can achieve up
to 124x and 390x speedups over the two baselines respectively.
Compared with them, MTTS and MTTD can prune most of the
unnecessary evaluations (at least 98% as shown in Figure 10) by
utilizing the ranked lists. Then, the query time of MTTS and
MTTD significantly grows with increasing k . The result can be
explained by the ratios of evaluated elements. From Figure 10, we
can see the ratio increases near linearly with k . As more elements
are evaluated when k increases, the query time naturally rises.
Finally, we can see MTTD outperforms MTTS in most cases
but the ratio of elements evaluated by MTTD is always higher
than MTTS. This is because MTTD only keeps one candidate but
MTTS maintains multiple candidates independently. As a result,
MTTD reduces the number of evaluations though it retrieves
more elements from ranked lists than MTTS.

The average scores of the results returned byMTTS andMTTD
with varying k are shown in Figure 11. We can see the result
quality of MTTD is always nearly equal (>99%) to CELF for dif-
ferent k . Meanwhile, MTTS can also return results with over
95% representativeness scores compared with CELF. The results
of SieveStreaming are inferior to those of CELF, MTTS, and
MTTD. Although Top-k Representative shows the best perfor-
mance among compared methods, its results are of the lowest
quality among compared methods. In addition, its result quality
degrades dramatically when k increases because the word and
influence overlaps are ignored.

Scalability. We evaluate the scalability of MTTS and MTTD
with varying the number of topics z and the window length T .
The results for query time are illustrated in Figure 12 and 13.
The query time of MTTS and MTTD drops when z increases.
Because the average number of elements on each topic deceases
with increasing z, the number of evaluated elements naturally
decreases. However, when z = 250 in the AMiner dataset, the
query time of MTTS and MTTD grows because there are more
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Figure 9: Query time with varying k
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Figure 11: Scores with varying k
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Figure 12: Query time with varying z
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Figure 13: Query time with varying T
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Figure 14: Update time with varying z and T

non-zero entries in the query vectors. The query time of all
methods increases with T since there are more active elements.
Nevertheless, MTTS and MTTD significantly outperform the
baselines in all cases.

The average CPU time elapsed to update the ranked lists per
arrival element is shown in Figure 14. We can see it takes more
update time when z orT increases. As the number of maintained
ranked lists is equal to z and the number of active elements grows
withT , the cost for ranked list maintenance inevitably rises with
increasing z or T . Nevertheless, the update time is always lower
than 0.3ms in all datasets.

Overall, the experimental results show that our proposedmeth-
ods demonstrate high efficiency and scalability for both ranked
list maintenance and k-SIR processing, which can meet the re-
quirements for real-world social streams.

6 CONCLUSION
In this paper, we defined a novel k-SIR query to retrieve a set of k
representative elements from a social stream w.r.t. a query vector.
We then proposed two algorithms, namely MTTS and MTTD,
that leveraged the ranked lists for k-SIR processing over slid-
ing windows. Theoretically, MTTS and MTTD provided ( 12 − ε)
and (1 − 1

e − ε) approximation results for k-SIR queries respec-
tively. Finally, we conducted extensive experiments on real-world
datasets to demonstrate that (1) the k-SIR query achieved better
performance in terms of information coverage and social influence
than existing query methods on social data; (2) MTTS and MTTD
had much higher efficiency and scalability than the baselines
for k-SIR processing with near-equivalent result quality. In fu-
ture work, we plan to extend our approach for supporting the
incremental updates of topic models over streams.
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A PROOFS OF LEMMAS AND THEOREMS
A.1 Proof of Lemma 3.6

Proof. First, for e ∈ E \ S and S ⊆ E, we have Ri (S ∪ {e}) −
Ri (S) ≥

∑
w ∈Ve \VS σi (w, e) ≥ 0 because −p · logp ≥ 0 for p ∈

[0, 1]. Thus, Ri (·) is monotone.
Given any e ∈ E \T and S ⊆ T ⊆ E, we use ∆(e |S) = Ri (S ∪

{e}) − Ri (S) and ∆(e |T ) = Ri (T ∪ {e}) − Ri (T ) to denote the
marginal score gains of adding e to S and T .

First, as S ⊆ T , VS ⊆ VT . We divide Ve into three disjoint sub-
setsV1 = Ve \VT ,V2 = Ve ∩(VT \VS ) andV3 = Ve ∩VS . Then, it is
obvious that ∆(e |·) = ∆(V1 |·)+∆(V2 |·)+∆(V3 |·) for S andT . ForV1,
we have ∆(V1 |S) = ∆(V1 |T ) =

∑
w ∈V1 σi (w, e) because V1 ∩VS =

� and V1 ∩ VT = �. For V2, we have ∆(V2 |S) =
∑
w ∈V2 σi (w, e)

and ∆(V2 |T ) =
∑
w ∈V2 max

(
0,σi (w, e) − maxe ′∈T σi (w, e

′)
)
as

V2 ∩VS = � and V2 ⊆ VT . Obviously, we can acquire ∆(V2 |S) ≥
∆(V2 |T ) aswell. ForV3, we have∆(V3 |S) =

∑
w ∈V3 max

(
0,σi (w, e)

−maxe ′∈S σi (w, e ′)
)
and ∆(V3 |T ) =

∑
w ∈V3 max

(
0,σi (w, e) −

maxe ′∈T σi (w, e
′)
)
because of V3 ⊆ VS ⊆ VT . Because maxe ′∈S

σi (w, e
′) ≤ maxe ′∈T σi (w, e

′) for S ⊆ T , ∆(V3 |S) ≥ ∆(V3 |T ). Ac-
cording to the above results, we prove ∆(e |S) ≥ ∆(e |T ) and thus
Ri (·) is submodular. �

A.2 Proof of Lemma 3.7
Proof. First, given any e ′ ∈ E\S and S ⊆ E, for each e ∈ It (S),

we have pi (S ∪ {e
′} { e) − pi (S { e) = 1 −

(
1 − pi (S {

e)
)
·
(
1−pi (e ′ { e)

)
−pi (S { e) = pi (e

′ { e)·
(
1−pi (S { e)

)
≥ 0

for pi (S { e) ∈ [0, 1].
Second, given any S ⊆ T ⊆ E, for each e ∈ It (T ), we have

pi (S { e) ≤ pi (T { e) for e .re f ∩ It (S) ⊆ e .re f ∩ It (T ).
Therefore, for any e ′ ∈ E \T , we have pi (S ∪ {e ′} { e) −pi (S {
e) = 1−

(
1−pi (S { e)

)
·
(
1−pi (e ′ { e)

)
−pi (S { e) = pi (e

′ {

e)·
(
1−pi (S { e)

)
≥ pi (e

′ { e)·
(
1−pi (T { e)

)
= pi (T∪{e

′} {
e) − pi (T { e). Finally, because Ii ,t (S) =

∑
e ∈It (S ) pi (S { e)

and pi (· { e) is monotone and submodular, Ii ,t (·) is monotone
and submodular as well. �
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A.3 Proof of Theorem 4.2
Proof. The sequence of estimations Φ for OPT is in range

[δmax , 2 · k · δmax ]. Due to the monotonicity and submodularity
of f (·, x), we have OPT ∈ [δmax ,k · δmax ]. Therefore, there must
exist some ϕ ∈ Φ such that (1 − ε)OPT ≤ ϕ ≤ OPT.

Next, we discuss two cases for such ϕ and Sϕ .
Case 1 (|Sϕ | = k). For each e ∈ Sϕ , we have ∆(e |S ′) ≥

ϕ
2k where S ′ is the subset of Sϕ when e is added. Therefore,
f (Sϕ , x) ≥ k ·

ϕ
2k ≥ (

1
2 − ε)OPT.

Case 2 (|Sϕ | < k). For each e ∈ S∗ \Sϕ , if e has been evaluated
by MTTS, it is excluded from Sϕ because ∆(e |S ′) < ϕ

2k where S ′
is the subset of Sϕ when e is evaluated; if e has not been evaluated
byMTTS, it holds that ∆(e |S) ≤ δ (e, x) < UB(x) < TH ≤

ϕ
2k . Thus,

OPT− f (Sϕ , x) ≤ f (S∗ ∪Sϕ , x) − f (Sϕ , x) ≤
∑
e ∈S∗\Sϕ ∆(e |Sϕ ) ≤

k ·
ϕ
2k ≤

1
2 · OPT. Equivalently, f (Sϕ , x) ≥

1
2 · OPT.

In both cases, we have f (Sts , x) ≥ f (Sϕ , x) ≥ ( 12 − ε)OPT. �

A.4 Proof of Theorem 4.4
Proof. There are two cases when MTTD is terminated. Here,

we discuss them separately.
Case 1 (|Std | = k). Let Sj = {e1, . . . , ej } (j ∈ [1,k]) be the sub-

set of Std after the first j elements are added and S0 = �. Assume
that ej+1 is added to Sj in the round with threshold τ . It holds that
∆(ej+1 |Sj ) ≥ τ and ∆(e |Sj ) <

τ
1−ε ,∀e < Sj ∪ {ej+1}. Then, we

have ∆(ej+1 |Sj ) ≥ (1−ε)∆(e |Sj ),∀e ∈ S∗ \Sj . By summing up the
above inequality for e ∈ S∗ \ Sj , we have |S∗ \ Sj | · ∆(ej+1 |Sj ) ≥
(1 − ε)

∑
e ∈S∗\Sj ∆(e |Sj ). Thus, we get ∆(ej+1 |Sj ) ≥ 1−ε

|S∗\Sj |
·∑

e ∈S∗\Sj ∆(e |Sj ) ≥
1−ε
k ·

∑
e ∈S∗\Sj ∆(e |Sj ). Due to the submod-

ularity of f (·, x), we have
∑
e ∈S∗\Sj ∆(e |Sj ) ≥ OPT − f (Sj , x).

Thus,∆(ej+1 |Sj ) = f (Sj+1, x) − f (Sj , x) ≥ 1−ε
k (OPT − f (Sj , x)).

Equivalently, we acquire f (Sj+1, x) − OPT ≥ (1 − 1−ε
k )(f (Sj , x) −

OPT). Substituting Sj+1 by Sk , . . . , S1 for k times, we prove f (Std ,
x) = f (Sk , x) ≥

(
1 − (1 − 1−ε

k )
k ) · OPT ≥ (1 − e−(1−ε ))OPT ≥

(1 − 1
e − ε)OPT.

Case 2 (|Std | < k). We have ∆(e |Std ) < τ ′ = f (Std , x) ·
ε
k ,∀e ∈ S

∗\Std . Therefore, OPT− f (Std , x) ≤
∑
e ∈S∗\Std ∆(e |Std )

≤
∑
e ∈S∗\Std f (Std , x) · εk ≤ ε · f (Std , x). Therefore, we acquire

f (Std , x) ≥ OPT
1+ε ≥ (1 − ε)OPT.

In both cases, f (Std , x) ≥ (1 − 1
e − ε)OPT. �
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ABSTRACT
Microblogging platforms constitute a popular means of real-time
communication and information sharing. They involve such a
large volume of user-generated content that their users suffer
from an information deluge. To address it, numerous recom-
mendation methods have been proposed to organize the posts
a user receives according to her interests. The content-based
methods typically build a text-based model for every individual
user to capture her tastes and then rank the posts in her time-
line according to their similarity with that model. Even though
content-based methods have attracted lots of interest in the data
management community, there is no comprehensive evaluation
of the main factors that affect their performance. These are: (i)
the representation model that converts an unstructured text into
a structured representation that elucidates its characteristics, (ii)
the source of the microblog posts that compose the user models,
and (iii) the type of user’s posting activity. To cover this gap,
we systematically examine the performance of 9 state-of-the-art
representation models in combination with 13 representation
sources and 3 user types over a large, real dataset from Twitter
comprising 60 users. We also consider a wide range of 223 plau-
sible configurations for the representation models in order to
assess their robustness with respect to their internal parameters.
To facilitate the interpretation of our experimental results, we
introduce a novel taxonomy of representation models. Our analy-
sis provides novel insights into the main factors determining the
performance of content-based recommendation in microblogs.

1 INTRODUCTION
Microblogging platforms enable the instant communication and
interaction between people all over the world. They allow their
users to post messages in real-time, often carelessly and ungram-
matically, through any electronic device, be it a mobile phone
or a personal computer. They also allow for explicit connec-
tions between users so as to facilitate the dissemination and
consumption of information. These characteristics led to the
explosive growth of platforms like Twitter (www.twitter.com),
Plurk (www.plurk.com), Sina Weibo (www.weibo.com) and Ten-
cent Weibo (http://t.qq.com).

Their popularity has led to an information deluge: the number
of messages that are transmitted on a daily basis on Twitter alone
has jumped from 35 million tweets in 2010 to over 500 million
in 2017 [29]. Inevitably, their users are constantly overwhelmed

© 2019 Copyright held by the owner/author(s). Published in Proceedings of the
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with information. As we also show in our experiments, this sit-
uation cannot be ameliorated by presenting the new messages
in chronological order; the relatedness with users’ interests is
typically more important than the recency of a post. Equally
ineffective is the list of trending topics, where the same messages
are presented to all users, irrespective of their personal interests.

A more principled solution to information deluge is offered
by Personalized Microblog Recommendation (PMR). Its goal is to
capture users’ preferences so as to direct their attention to the
messages that better match their personal interests. A plethora
of works actually focuses on Content-based PMR [6, 13, 15, 31,
40, 41, 45], which typically operates as follows: first, it builds a
document model for every individual post in the training set by
extracting features from its textual content. Then, it constructs
a user model by assembling the document models that capture
the user’s preferences. Subsequently, it compares the user model
to the models of recommendation candidates (documents) with
a similarity measure. The resulting similarity scores are used
to rank all candidates in descending order, from the highest to
the lowest score, thus placing the most relevant ones at the top
positions. Finally, the ranked list is presented to the user.

Content-based PMR is a popular problem that has attracted
a lot of attention in the data management community [1, 15,
29–31, 55]. However, the experimental results presented in the
plethora of relevant works are not directly comparable, due to
the different configurations that are used for several important,
yet overlooked parameters.

The core parameter is the representation model that is used
for converting a set of unstructured texts into a structured rep-
resentation that reveals their characteristics. The available op-
tions range from traditional vector space models [41, 65] to topic
models [39, 50]. Also crucial is the representation source, i.e.,
the source of the microblog posts that compose user models.
Common choices include the user’s tweets [36] together with
their retweets [17, 23, 41, 56] as well as the posts of followers
[31, 50, 65] and followees [15, 31, 39]. Another decisive factor is
the posting activity of a user, i.e., whether she is an information
producer or seeker [5, 35]. Other parameters include the novel
challenges posed by the short, noisy, multilingual content of mi-
croblogs as well as the external information that enriches their
textual content, e.g., concepts extracted from Wikipedia [41] or
the content of a Web page, whose URL is mentioned in a post [1].

Despite their significance, little effort has been allocated on
assessing the impact of these parameters on Content-based PMR.
To cover this gap, we perform a thorough experimental analysis
that investigates the following questions:Which representation
model is the most effective for recommending short, noisy, multilin-
gual microblog posts? Which is the most efficient one? How robust
is the performance of each model with respect to its configuration?
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Which representation source yields the best performance? How does
the behavior of individual users affect the performance of Content-
based MPR? We leave the investigation of external information as
a future work, due to the high diversity of proposed approaches,
which range from language-specific word embeddings like Glove
[49] to self-reported profile information [21].

To investigate the above questions, we focus on Twitter, the
most popular microblogging service worldwide, with over 335
million active users per month.1 We begin with a categorization
of the representation sources and the users it involves, based on
its special social graph: every user u1 is allowed to unilaterally
follow another user u2, with u1 being a follower of u2, and u2 a
followee foru1; ifu2 follows backu1, the two users are reciprocally
connected. Then, we list the novel challenges posed by the short,
noisy, user-generated tweets in comparison with the long and
curated content of traditional documents. We also introduce a
taxonomy of representation models that provides insights into
their endogenous characteristics. Based on it, we briefly present
nine state-of-the-art representation models and apply them to a
dataset of 60 real Twitter users (partitioned into three different
categories) in combination with 223 parameter configurations,
three user types and 13 representation sources. Finally, we discuss
the experimental outcomes in detail, interpreting the impact of
every parameter on the performance of Content-based PMR.

In short, we make the following contributions:
• We perform the first systematic study for content-based

recommendation in microblogging platforms, covering nine rep-
resentation models, 13 representation sources and three user
types. We have publicly released our code along with guidelines
for our datasets2.

•We organize the main representation models according to
their functionality in a novel taxonomy with three main cate-
gories and two subcategories. In this way, we facilitate the un-
derstanding of our experimental results, given that every (sub-
)category exhibits different behavior.

•We examine numerous configurations for every representa-
tion model, assessing their relative effectiveness, robustness and
time efficiency. Our conclusions facilitate their fine-tuning and
use in real recommender systems.

The rest of the paper is structured as follows: Section 2 pro-
vides background knowledge on Twitter and formally defines the
recommendation task we are tackling in this work. In Section 3,
we present our taxonomy of representation models and describe
the state-of-the-art models we consider. We present the setup
of our experiments in Section 4 and their results in Section 5.
Section 6 discusses relevant works, while Section 7 concludes the
paper along with directions for future work.

2 PRELIMINARIES
Representation Sources. We consider five sources of tweets
for modeling the preferences of a Twitter user, u:

(i) The past retweets of u, R(u), which are the tweets she has
received from her followees and has reposted herself. Apparently,
their subjects have captured u’s attention so intensely that she
decided to share them with her followers.

(ii) All past tweets of u except her retweets,T (u). They enclose
themes u is interested in chatting or in informing her followers.

(iii) All (re)tweets of u’s followees, E(u) = ⋃
ui ∈e(u)(R(ui ) ∪

T (ui )), where e(u) = {u1, . . . ,uk } is the set of her followees. E(u)

1https://en.wikipedia.org/wiki/Twitter, last accessed on 14 January 2019.
2See https://github.com/efikarra/text-models-twitter for more details.

models a user as an information seeker, who actively and explicitly
follows accounts providing interesting information [15, 31, 39].

(iv) All (re)tweets of u’s followers, F (u) = ⋃
ui ∈f (u)(R(ui ) ∪

T (ui )), where f (u) = {u1, . . . ,um } stands for the set of her fol-
lowers. Given that they have actively decided to follow u, due to
the interest they find in her posts, F (u)modelsu as an information
producer [31, 50, 65].

(v)All (re)tweets ofu’s reciprocal connections,C(u)=E(u)∩F (u).
Unlike the unilateral following relationship in Twitter, recipro-
cal connections may indicate users with very high affinity, thus
providing valuable information for user modeling.

Note that all these atomic representation sources are com-
plementary, as they cover different aspects of the activity of a
particular user and her network. For this reason,T (u) is typically
combined with R(u) [17, 23, 41, 56], with only rare exceptions like
[36], which considersT (u) in isolation. In this work, we consider
not onlyT (u) ∪ R(u) (TR for short), but also the seven remaining
pairwise combinations, which give rise to the following compos-
ite representation sources: T (u) ∪ E(u), R(u) ∪ E(u), E(u) ∪ F (u),
T (u)∪F (u),R(u)∪F (u),T (u)∪C(u), andR(u)∪C(u). For simplicity,
we denote them by TE, RE, EF, TF, RF, TC and RC, respectively.

Twitter Challenges. Tweets have some special characteris-
tics that distinguish them from other conventional domains and
pose major challenges to representation models [17, 44, 48].

(C1) Sparsity. Tweets are short, comprising up to 280 characters
for most languages, except for Chinese, Korean and Japanese,
where the length limit is 140 characters. As a result, they lack
sufficient content for user and document modeling.

(C2) Noise. The real-time nature of Twitter forces users to
tweet quickly, without taking into account the frequent grammar
errors and misspellings; these are corrected in subsequent tweets.

(C3) Multilingualism. The global popularity of Twitter has led
to a high diversity in tweet languages. This renders inapplica-
ble most language-specific pre-processing techniques, such as
stemming and lemmatization. Even tokenization becomes dif-
ficult: unlike the European ones, many Asian languages, such
as Chinese, Japanese, and Korean, do not use spaces or other
punctuation in order to distinguish consecutive words.

(C4) Non-standard language.Tweets offer an everyday informal
communication, which is unstructured, ungrammatical or simply
written in slang; words are abbreviated (e.g., “gn” instead of
“goodnight”), or contain emoticons, such as :), hashtags like #edbt
and emphatic lengthening (e.g., “yeeees” instead of “yes”).

We consider the above challenges when discussing the out-
comes of our experimental analysis in Section 5.

User Categories. Twitter users are typically classified into
three categories [5, 35]: (i) Information Producers (IP) are those
users who tweet and retweet more frequently than they receive
updates from their followees, (ii) Information Seekers (IS) are
those users who are less active compared to their followees, and
(iii) Balanced Users (BU) are those exhibiting a symmetry between
the received and the posted messages.

To quantify these categories, we use the ratio of outgoing
to incoming tweets. For a particular user u, the former involve
the tweets and retweets she posts, R(u) ∪T (u), while the latter
comprise the tweets and retweets of her followees, E(u). Dividing
the outgoing with the incoming tweets, we get the posting ratio.
Apparently, BU is the set of users with a posting ratio close to
1, i.e., |R(u) ∪ T (u)| ≃ |E(u)|. To ensure significantly different
behavior for the other two categories, we define IP as the set of
users with a posting ratio higher than 2, thus indicating that they
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post at least twice as many tweets as they receive. Symmetrically,
we define IS as the set of users with a posting ratio lower than
0.5, receiving at least twice as many tweets as those they publish.

Problem Definition. The task of Content-based PMR aims
to distinguish a user’s incoming messages, R∪T, into irrelevant
and relevant ones. A common assumption in the literature [17,
33, 41, 56], which allows for large-scale evaluations, is that the
relevant messages are those that are retweeted by the user that
receives them, an action that implicitly indicates her interests –
intuitively, a user forwards a tweet to her followers after carefully
reading it and appreciating its content.

In this context, Content-based PMR is usually addressed via
a ranking-based recommendation algorithm [11, 17, 20], which
aims to rank relevant posts higher than the irrelevant ones. More
formally, let D denote a set of documents,U a set of users andM
the representation space, which is common for both users and
microblog posts (e.g.,M could be the real vector space). Given a
user modelUM : U→M and a document model DM : D→M , we
define this type of recommendation algorithms as follows:

Definition 2.1. Content-based Personalized Microblog
Recommendation learns a ranking model RM : M × M →
R, which, given a user u and a set of testing posts Dtest (u) =
{d1, . . . ,dk } ⊆ E(u), calculates the ranking scores RM(UM(u),
DM(di )),∀i ∈ {1 . . .k}, and returns a list with Dtest (u) ranked
in decreasing score.

We consider a user u as the set of documents that stem from
a particular representation source s , i.e., s(u), and we build a
differentUMs (u) for each s . Given a set of usersU along with a
representation source s = {s(u) : u ∈ U } and a set of labeled data
Ds
tr = {Ds

tr (u) : u ∈ U }, where Ds
tr (u) = {(di , li ),di ∈ s(u), li ∈

L} and Ds
tr (u) ∩ Dtest (u) = ∅, the recommendation algorithm is

trained as follows for each individual source s : (i) for each u ∈ U ,
we learn UMs (u) and DM(di ) for each di ∈ Ds

tr (u), and (ii) we
train RM on

⋃
u ∈U {(UMs (u),DM(di )) : i ∈ {1, . . . |Ds

tr (u)|}.
As a recommendation algorithm, we employ the one com-

monly used in the literature for ranking-based PMR [15, 31, 40]:
in essence, RM is a similarity function and RM(UM(u),DM(di ))
measures the similarity of document model di and user model u.

3 REPRESENTATION MODELS
3.1 Taxonomy
We first present a taxonomy of the state-of-the-art representation
models based on their internal functionality, i.e., the way they
handle the order of n-grams. Figure 1 presents an overview of
their relations, with every edge A → B indicating that model B
shares the same n-grams with A, but uses them in a different
way when representing users and documents. Based on these
relations, we identify three main categories of models:

(i) Context-agnostic models disregard the order of n-grams
that appear in a document, when building its representation.
E.g., the token-based models of this category yield the same
representation for the phrases “Bob sues Jim” and “Jim sues Bob”.

(ii) Local context-aware models take into account the rela-
tive order of characters or tokens in the n-grams that lie at the
core of their document representations. Yet, they lose contextual
information, as they ignore the ordering of n-grams themselves.
Continuing our example, the token-based models of this category
are able to distinguish the bigram “Bob sues” from “sues Bob”,
but cannot capture the bigrams that precede or follow it.

Character N-
gram Graphs [25] 

Token N-gram 
Graphs [53] 

Vector Space Model [43] 

Character  
N-grams [43] 

Token 
N-grams [43] 

PLSA [32] 

Labeled 
LDA [51] 

LDA [10] 

HDP [60] HLDA [8,16] 

BTM 
[18,61] 

n
=2

 

character-based models  

graph models  

topic models  

nonparametric models  

context-agnostic models 

global context-aware models 

bag models  

local context-aware models 

Figure 1: Taxonomy of representation models.

(iii) Global context-aware models incorporate into their
representations both the relative ordering of tokens or characters
in an n-gram and the overall ordering between n-grams in a
document. Continuing our example, models of this category dis-
tinguish “Bob sues” from “sues Bob” and know that the former is
followed by “sues Jim”, while the latter is preceded by “Jim sues".

The first category comprises the topic models [9]. These are
representation models that uncover the latent semantic structure
of texts by determining the topics they talk about. The topics and
their proportions in a document are considered as the hidden
structure of a topic model, which can be discovered by exclusively
analyzing the observed data, i.e., the individual tokens (words)
in the original text. In general, they regard each document as a
mixture ofmultiple topics, where each topic constitutes a set of co-
occurring words. As a result, topic models are typically described
in terms of probabilistic modeling, i.e., as generative processes
that produce documents, words and users from distributions over
the inferred topics [7].

A subcategory of context-agnostic (topic) models pertains to
nonparametric models [16, 60], which adapt their representations
to the structure of the training data. They allow for an unbounded
number of parameters that grows with the size of the training
data, whereas the parametric models are restricted to a param-
eter space of fixed size. For example, the nonparametric topic
models assume that the number of topics is a-priori unknown,
but can be inferred from the documents themselves, while the
parametric ones typically receive a fixed number of topics as an
input parameter before training.

The category of local context-aware models encompasses the
bag models [43], which impose a strict order within n-grams:
every n-gram is formed by a specific sequence of characters
or tokens and, thus, two n-grams with different sequences are
different, even if they involve the same characters or tokens;
for example, the bigrams “ab” and “ba” are treated as different.
The only exception is the token-based vector model with n=1,
which essentially considers individual words; its context-agnostic
functionality actually lies at the core of most topic models.

Finally, the category of global context-aware models includes
the n-gram graph models, which represent every document as a
graph in a language-agnostic way [25]: every node corresponds
to an n-gram and edges connect pairs of n-grams co-located
within a window of size n, with their weights indicating the co-
occurrence frequency. These weighted edges allow graph models
to capture global context, going beyond the local context of the
bag models that use the same n-grams. Recent works suggest
that the graph models outperform their bag counterparts in vari-
ous tasks [42], which range from Information Retrieval [53] to
Document Classification [48].
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It should be stressed at this point that the bag and graphmodels
share the second subcategory of our taxonomy: the character-
based models. These operate at a finer granularity than their
token-based counterparts, thus being more robust to noise [48].
For example, consider the words “tweet” and “twete”, where the
second one is misspelled; they are considered different in all
types of token-based models, but for character bi-gram mod-
els, they match in three out of four bigrams. In this way, the
character-based models capture more precisely the actual simi-
larity between noisy documents.

In the following, we collectively refer to local and global
context-aware models as context-based models.

3.2 State-of-the-art Models
We now elaborate on the main representation models that are
widely used in the literature. To describe topic models, we use
the common notation that is outlined in Table 1, while their
generative processes are illustrated in Figures 2(i)-(vi) using plate
diagrams: shaded nodes correspond to the observed variables,
the unshaded ones to the hidden variables, the arrows connect
conditionally dependent variables, and finally, the plates denote
repeated sampling for the enclosed variables for as many times
as the number in the right bottom corner.

Bag Models [43]. There are two types of n-grams, the char-
acter and the token ones. These give rise to two types of bag
models: the character n-grams model (CN) and the token n-grams
model (TN). Collectively, they are called bag or vector space mod-
els, because they model a document di as a vector with one
dimension for every distinct n-gram in a corpus of documents D:
DM(di ) = (wi1, . . . ,wim ), wherem stands for the dimensionality
of D (i.e., the number of distinct n-grams in it), whilewi j is the
weight of the jth dimension that quantifies the importance of
the corresponding n-gram for di .

The most common weighting schemes are:
(i) Boolean Frequency (BF) assigns binary weights that indi-

cate the absence or presence of the corresponding n-gram in di .
More formally, BF (tj ,di )=1 if the n-gram tj of the jth dimension
appears in document di , and 0 otherwise.

(ii) Term Frequency (TF) sets weights in proportion to the
number of times the corresponding n-grams appear in document
di . More formally, TF (tj ,di )=fj/Ndi , where fj stands for the
occurrence frequency of tj in di , while Ndi is the number of n-
grams indi , normalizing TF so as to mitigate the effect of different
document lengths on the weights.

(iii)Term Frequency-Inverse Document Frequency (TF-IDF) dis-
counts the TF weight for the most common tokens in the en-
tire corpus D, as they typically correspond to noise (i.e., stop
words). Formally, TF -IDF (tj ,di ) = TF (tj ,di ) · IDF (tj ), where
IDF (tj ) is the inverse document frequency of the n-gram tj , i.e.,
IDF (tj ) = log |D |/(|{dk ∈ D : tj ∈ dk }| + 1). In this way, high
weights are given to n-grams with high frequency in di , but low
frequency in D.

To construct the bag model for a specific user u, we aggregate
the vectors corresponding to the documents that capture u’s in-
terests. The end result is a weighted vector (a(w1), ....,a(wm )),
where a(w j ) is the aggregation function that calculates the impor-
tance of the jth dimension for u.

The main aggregation functions are: (i) the sum of weights,
i.e., a(w j ) =

∑
di ∈D wi j . (ii) the centroid of unit (normalized)

document vectors, i.e., a(w j ) = 1
|D | ·

∑
di ∈D

wi j
| |DM (di ) | | , where

Table 1: The notation describing topic models.
Symbol Meaning
D the corpus of the input documents
|D | the number of input documents
d an individual document in D
Nd the number of words in d , i.e., the document length
U the set of users
u an individual user inU
Nd,u the number of words in document d of user u
Du the documents posted by a user u
|Du | the number of documents posted by user u
V the vocabulary of D (i.e., the set of words it includes)
|V | the number of distinct words in D
w an individual word in V
wd,n the word at position n in d
Z the set of latent topics
|Z | the number of latent topics
z an individual topic in Z
zd,n the topic assigned to the word at position n in document d
θd the multinomial distribution of document d over Z , {P (z |d )}z∈Z
θd,z the probability that topic z appears in document d , P (z |d )
ϕz the multinomial distribution of topic z over V , {P (w |z)}w∈V
ϕz,w the probability that wordw appears in topic z , P (w |z)
Dir (α ) a symmetric Dirichlet distribution parameterized by α

| |DM(di )| | is the magnitude of DM(di ). (iii) the Rocchio algo-
rithm, i.e., a(w j ) = α/|Dp | · ∑di ∈Dp wi j/| |DM(di )| | − β/|Dn | ·∑
di ∈Dn wi j/| |DM(di )| |, whereDp andDn are the sets of positive

(relevant) and negative (irrelevant) documents in D, respectively,
while α , β ∈ [0, 1] control the relative importance of positive and
negative examples, respectively, such that α + β = 1.0 [43].

To compare two bag models, DM(di ) and DM(dj ), one of the
following similarity measures is typically used:

(i) Cosine Similarity (CS) measures the cosine of the angle of
the weighted vectors. Formally, it is equal to their dot product
similarity, normalized by the product of their magnitudes:
CS(DM(di ),DM(dj )) =

∑m
k=1wikw jk/| |DM(di )| |/| |DM(dj )| |.

(ii) Jaccard Similarity (JS) treats the document vectors as sets,
with weights higher than (equal to) 0 indicating the presence
(absence) of the corresponding n-gram. On this basis, it defines as
similarity the ratio between the sizes of set intersection and union:
JS(DM(di ),DM(dj ))=|DM(di )∩DM(dj )|/|DM(di )∪DM(dj )|.

(iii) Generalized Jaccard Similarity (GJS) extends JS so that it
takes into account the weights associated with every n-gram:
G JS (DM (di ), DM (dj ))=

∑m
k=1min(wik , w jk )/

∑m
k=1max (wik , w jk ).

Note that for BF weights, GJS is identical with JS.
GraphModels [25, 53]. There are two graph models, one for

each type of n-grams, i.e., token n-gram graphs (TNG) [53] and
character n-gram graphs (CNG) [25]. Both models represent each
document d as an undirected graphGd that contains one vertex
for each n-gram in d . An edge connects every pair of vertices/n-
grams that co-occur within a window of size n in d . Every edge
is weighted according to the co-occurrence frequency of the
corresponding n-grams. Thus, the graphs incorporate contextual
information in the form of n-grams’ closeness.

To construct the model for a user u, we merge the graphs
of the documents representing u’s interests using the update
operator, which is described in [26]. To compare graph mod-
els, we can use the following graph similarity measures [25]:
(i) Containment Similarity (CoS) estimates the number of edges
shared by two graph models, Gi and G j , regardless of the corre-
sponding weights (i.e., it merely estimates the portion of com-
mon n-grams in the original texts). Formally: CoS(Gi ,G j ) =∑
e ∈Gi µ(e,G j )/min(|Gi |, |G j |), where |G | is the size of graph

G, and µ(e,G) = 1 if e ∈ G, or 0 otherwise. (ii) Value Sim-
ilarity (VS) extends CoS by considering the weights of com-
mon edges. Formally, using wk

e for the weight of edge e in Gk :
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V S (Gi , G j ) =
∑
e∈(Gi∩Gj )

min(w i
e ,w

j
e )

max (w i
e ,w

j
e )·max (|Gi |, |Gj |)

. (iii) Normal-

ized Value Similarity (NS) extends VS by mitigating the impact of
imbalanced graphs, i.e., the cases where the comparison between
a large graphwith amuch smaller one yields similarities close to 0:
NS (Gi , G j )=

∑
e∈(Gi∩Gj )min(w i

e , w
j
e )/max (w i

e , w
j
e )/min( |Gi |, |G j |).

Probabilistic Latent Semantic Analysis (PLSA) [32]. This
model assigns a topic z to every observed wordw in a documentd .
Thus, every document is modeled as a distribution over multiple
topics, assuming that the observed variablesw and d are condi-
tionally independent given the unobserved topic z: P(w |d, z) =
P(w |z). For an observed pair (w,d), the joint probability distri-
bution is: P(w,d) = P(d)·∑zP(w, z |d) = P(d)·∑zP(z |d)·P(w |z) =
P(d)·∑zθd,z ·ϕz,w , where θd,z stands for the probability that a
topic z appears in documentd , whileϕz,w denotes the probability
that a wordw appears in topic z (see Table 1).

Figure 2(i) depicts the generative process of PLSA: (1) Select
a document d with probability P(d). (2) For each word position
n ∈ {1, . . . ,Nd }: (a) Select a topic zd,n from distribution θd . (b)
Select the word wd,n from distribution ϕzd,n . Note that P(d) is
the frequency of d in the corpus, thus being uniform in practice.

In total, PLSA should estimate |D | · |Z | + |Z | · |V | parameters:
θd = {P(z |d)}z∈Z for each d ∈ D and ϕz = {P(w |z)}w ∈V for
each z ∈ Z . Consequently, the number of parameters grows lin-
early with the number of documents, leading to overfitting [10].

LatentDirichletAllocation (LDA) [10].Unlike PLSA, which
regards each document d as a list of probabilities θd , LDA assigns
a random variable of |Z | parameters with a Dirichlet prior to dis-
tribution θd . In a latter variant, a |V |-parameter variable with a
Dirichlet prior was also assigned to ϕz [28]. The number of topics
|Z | is given as a parameter to the model and raises the following
issue: the smaller the number of topics is, the broader and more
inaccurate is their content, failing to capture the diverse themes
discussed in the corpus; in contrast, for large values of |Z |, the
model is likely to overfit, learning spurious word co-occurrence
patterns [58].

Figure 2(ii) shows the generative process of LDA: (1) For each
topic z ∈ Z , draw a distribution ϕz from Dir (β). (2) For each
document d ∈ D: (a) Select a distribution θd from Dir (α). (b) For
each word position n ∈ {1, . . . ,Nd }: (i) Draw a topic zd,n from
distribution θd . (ii) Draw the wordwd,n from distribution ϕzd,n .

Note that the hyperparameters α and β of the Dirichlet priors
on θ and ϕ, respectively, distinguish LDA from PLSA. The former
denotes the frequency with which a topic is sampled for a docu-
ment, while the latter shows the frequency of a word in a topic,
before actually observing any words in D.

Labeled LDA (LLDA) [51]. This is a supervised variant of
LDA that characterizes a corpus D with a set of observed labels
Λ. Each document d is modeled as a multinomial distribution of
labels from Λd ⊆ Λ. Subsequently, each word w ∈ d is picked
from a distribution ϕz of some label z contained in Λd . Besides
the observed labels, LLDA can also use |Z | latent topics for all
documents, assigning the labels "Topic 1",. . . , "Topic |Z |" to each
document d ∈ D [50].

Figure 2(iii) presents the generative process of LLDA: (1) For
each topic z ∈ Z , draw a distribution ϕz from Dir (β). (2) For
each document d ∈ D: (a) Construct distribution Λd by selecting
each topic z ∈ Z as a label based on a Bernoulli distribution
with parameter Φz . (b) Select a multinomial distribution θd over
Λd from Dir (α). (c) For each word position n ∈ {1, . . . ,Nd }: (i)
Draw a label zd,n from distribution θd . (ii) Draw the wordwd,n
from distribution ϕzd,n . Note that the prior probability of adding

Figure 2: Plate diagrams for: (i) Probabilistic Latent Se-
mantic Analysis (PLSA), (ii) Latent Dirichlet Allocation
(LDA), (iii) Labeled LDA (LLDA), (iv) Hierarchical Dirich-
let Process (HDP), (v) Hierarchical LDA (HLDA), and (vi)
Biterm Topic Model (BTM).

a topic z to Λd (Φz ) is practically superfluous, as Λd is observed
for each document d .

Hierarchical Dirichlet Process (HDP) [60]. This Bayesian
nonparametric model is crafted for clustering the observations
of a group into mixing components. In PMR, each document
corresponds to a group, the words of the document constitute
the observations within the group, and the topics comprise the
mixing components in the form of distributions over words.

Two are the main properties of HDP: (i) The number of mix-
ing components is countably infinite and unknown beforehand.
This is achieved by assigning a random variable G j to the jth

group distributed according to DP(α ,G0), where DP stands for
a Dirichlet Process, which is a probability distribution over dis-
tributions (i.e., samples from a DP are probability distributions
themselves). G0 is the base probability distribution, playing the
role of the mean around which distributions are sampled by DP ,
while α is called concentration parameter and can be thought as
an inverse variance. G0 also follows a DP(γ ,H ). (ii) The groups
share the same components. This is achieved by linking the DPs
of all groups, under the same G0. More formally, HDP is defined
as: G0 |γ ,H ∼ DP(γ ,H ) and G j |α ,G0 ∼ DP(α ,G0) ∀j.

Figure 2(iv) shows the generative process for 1 hierarchical
level: (1) Draw G0 from DP(γ ,H ), where H is a Dir (β). G0 pro-
vides an unbounded number of ϕz distributions, i.e., topics that
can be assigned to any document d ∈ D [60]. (2) For each doc-
ument d ∈ D: (a) Associate a subset of distributions ϕz with
d , by drawing Gd from DP(α ,G0). (b) For each word position
n ∈ {1, . . . ,Nd }: (i) Pick a distribution ϕzd,n from Gd . (ii) Draw
the wordwd,n from ϕzd,n .

Note that it is straightforward to add more hierarchical lev-
els to HDP, by exploiting its recursive nature. For example, in
multiple corpora, where documents are grouped into broader cat-
egories, topics shared between categories are revealed and can be
compared with topics shared between individual documents [60].

Hierarchical LDA (HLDA) [8, 16]. This model extends LDA
by organizing the topics in Z into a hierarchical tree such that
every tree node represents a single topic. The broader a topic is,
the higher is its level in the tree, with the most specific topics
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Table 2: Statistics for each user group in our dataset.
IS BU IP All Users

Users 20 20 9 60
Outgoing tweets (TR) 47,659 48,836 42,566 192,328
Minimum per user 1,100 766 1,602 766
Mean per user 2,383 2,442 4,730 3,205
Maximum per user 6,406 8,025 17,761 17,761
Retweets (R) 27,344 32,951 38,013 140,649
Minimum per user 840 445 1,198 445
Mean per user 1,367 1,648 4,224 2,344
Maximum per user 2,486 6,814 17,761 17,761
Incoming tweets (E) 390,638 49,566 10,285 484,698
Minimum per user 8,936 696 525 525
Mean per user 19,532 2,478 1,143 8,078
Maximum per user 53,003 7,726 1,985 53,003
Follower’s tweets (F) 665,778 166,233 50,330 1,391,579
Minimum per user 1,074 110 348 110
Mean per user 33,289 8,312 5,592 23,193
Maximum per user 144,398 52,318 33,639 447,639

assigned to the leaves. Although the tree levels are fixed, the
branching factor is inferred from the data, leading to a nonpara-
metric functionality. Each document is modeled as a path from
the root to a leaf and its words are generated by the topics across
this path. Hence, every document representation is derived from
the topics of a single path, rather than all topics in Z (as in LDA).

Specifically, HLDA is based on the Chinese Restaurant Process
(CRP), which is a distribution over partitions of integers. CRP
assumes the existence of a Chinese restaurant with an infinite
number of tables. The first customer selects the first table, while
the nth customer selects a table based on the following probabil-
ities [8]: P1=P(occupied tablei |previous customers)=ni/(n-1+γ ),
P2=P(next unoccupied tablei |previous customers)=γ/(n-1+γ ),
where γ is a parameter controlling the possibility for a new cus-
tomer to sit to an occupied or an empty table, and ni are the
customers already seated on table i . The placement of M cus-
tomers produces a partition ofM integers.

In fact, HLDA relies on the nested Chinese Restaurant Process
(nCRP), which extends CRP by building a infinite hierarchy of
Chinese restaurants. It assumes that there exists an infinite num-
ber of Chinese restaurants, each with an infinite number of tables.
One of the restaurants is the root and every restaurant’s table has
a label, pointing to another restaurant – a restaurant cannot be
referred by more than one label in the hierarchy. To illustrate the
functionality of this process, assume a customer that visits the
restaurants for L days. Starting from the root, she forms a path of
L restaurants, one per day, following the labels of the tables she
has chosen to sit based on P1 and P2. The repetition of this process
forM customers yields an L-level hierarchy of restaurants.

Figure 2(v) presents the generative process of HLDA, with
T denoting an infinite tree drawn from nCRP(γ ) (i.e., the infi-
nite set of possible L-level paths): (1) For each restaurant z in
T , draw a distribution ϕz from Dir (β). (2) For each document
d ∈ D: (a) Draw an L-level path from T as follows: Let cd,1 be
the root restaurant. For each level l ∈ {2, . . . ,L} pick a table
from restaurant cd,l−1 using P1 and P2 and set cd,l−1 to refer to
the restaurant cd,l , which is indicated by that table. (b) Select a
distribution θd over {1, . . . ,L} from Dir (α). (c) For each word
position n ∈ {1, . . . ,Nd }: (i) Draw a level ld,n ∈ {1, . . . ,L} from
θd . (ii) Draw the wordwd,n from distribution ϕzd,n , where zd,n
is the topic corresponding to the restaurant cd,ld,n .

Biterm Topic Model (BTM) [18, 61]. At the core of this
model lies the notion of biterm, which is an unordered pair of
words that are located in close distance within a given text. In
short documents, close distance means that both words belong to
the same document, whereas in longer texts, it means that they
co-occur within a window of tokens that is given as a parameter
to BTM. Based on this notion, BTM addresses the sparsity in
short texts like tweets (Challenge C1) in two ways: (i) It models
the word co-occurrence for topic learning explicitly by consid-
ering biterms (rather than implicitly as in LDA, where word
co-occurrence is captured by drawing a document’s words from
topics of the same topic distribution θd ). (ii) It considers the entire
corpus D as a set of biterms B, extracting word patterns from the
entire training set (rather than an individual document). Overall,
BTM assumes that the corpus consists of a mixture of topics and
directly models the biterm generation from these topics.

Figure 2(vi) shows the generative process of BTM: (1) For each
topic z ∈ Z , draw a distribution ϕz from Dir (β). (2) For the entire
corpus D, select a multinomial distribution θ over Z from Dir (α).
(3) For each biterm position n in the entire corpus {1, . . . , |B |}: (a)
Draw a topic zn from θ . (b) Draw two wordswn,1,wn,2 from ϕzn .

Note that BTM does not contain a generation process for
documents. The distribution θd for an individual document d ∈
D is inferred from the formula P(z/d) = ∑

b ∈d P(z/b) · P(b/d),
which presumes that the document-level topic proportions can
be derived from the document-level generated biterms [18, 61].

Other models. There is a plethora of topic models in the
literature. Most of them lie out of the scope of our experimen-
tal analysis, because they encapsulate external or non-textual
information. For example, [54] and [12] incorporate temporal
information from users’ activity, while [21] proposes a representa-
tion model called badges, which combines the posting activity of
Twitter users with self-reported profile information. Other topic
models are incompatible with the ranking-based recommenda-
tion algorithm for Content-based PMR. For example, Twitter-LDA
[64] and Dirichlet Multinomial MixtureModel [47] assign a single
topic to every tweet, thus yielding too many ties when ranking
document models in decreasing similarity score - all tweets with
the same inferred topic are equally similar with the user model.

Using Topic Models. To build a topic model for a particular
user u, we average the distributions corresponding to the docu-
ments that capture her preferences. To compare user models with
document models, we use the cosine similarity. To address the
four Twitter challenges, which hamper the functionality of topic
models due to the scarcity of word co-occurrence patterns, we
apply two different pooling schemes to the training data: (i) the
aggregation on users, called User Pooling (UP), where all tweets
posted by the same user are considered as a single document,
and (ii) the aggregation on hashtags, called Hashtag Pooling (HP),
where all tweets annotated with the same hashtag form a sin-
gle document (the tweets without any hashtag are treated as
individual documents). We also consider No Pooling (NP), where
each tweet is considered as an individual document. Finally, we
estimate the parameters of all topic models using Gibbs Sampling
[24], except for PLSA, which uses Expectation Maximization [19].

4 EXPERIMENTAL SETUP
All methods were implemented in Java 8 and performed in a
server with Intel Xeon E5-4603@2.20 GHz (32 cores) and 120GB
RAM, running Ubuntu 14.04.
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Table 3: The 10 most frequent languages in our dataset, which collectively cover 1,879,470 tweets (91% of all tweets).

English Japanese Chinese Portuguese Thai French Korean German Indonesian Spanish
Total Tweets 1,710,919 71,242 35,356 14,416 13,964 12,895 10,220 5,038 4,339 1,081
Relative Frequency 82.71% 3.44% 1.71% 0.70% 0.68% 0.62% 0.49% 0.24% 0.21% 0.05%

Our dataset was derived from a large Twitter corpus that
captures almost 30% of all public messages published on Twitter
worldwide between June 1, 2009 and December 31, 2009 [62].
Although slightly dated, recent studies have verified that core
aspects of the users activity in Twitter remain unchanged over
the years (e.g., retweet patterns for individual messages and
users) [29]. Most importantly, this dataset can be combined with
a publicly available snapshot of the entire social graph of Twitter
as of August, 2009 (https://an.kaist.ac.kr/traces/WWW2010.html).
Given that every record includes the raw tweet along with the
corresponding usernames and timestamps, we can simulate the
tweet feed of every user during the second half of 2009 with
very high accuracy. To ensure that there is a critical mass of
tweets for all representation sources and a representative set of
testing documents for every user, we removed from our dataset
those users that had less than three followers and less than three
followees. We also discarded all users with less than 400 retweets.

From the remaining users, we populated each of the three user
types we defined in Section 2 with 20 users. For IS, we selected the
20 users with the lowest posting ratios, for BU the 20 users with
the closest to 1 ratios, and for IP, the 20 users with the highest
ratios. The difference between the maximum ratio for IS (0.13)
and the minimum one for BU (0.76) is large enough to guarantee
significantly different behavior. However, the maximum ratio
among BU users is 1.16, whereas the minimum one among IP
users is 1.20, due to the scarcity of information providers in
our dataset. This means that the two categories are too close, a
situation that could introduce noise to the experimental results.
To ensure distinctive behavior, we placed in the IP group the nine
users that have a posting ratio higher than 2. The remaining 11
users with the highest ratios are included in the group All Users,
which additionally unites IS, BU and IP to build a large dataset
with 2.07 million tweets and 60 users, in total. The technical
characteristics of the four resulting user groups appear in Table 2.

Each user has a different train set, which is determined by the
representation source; for example, the train set for T contains
all tweets of a user, except for her retweets. In contrast, the test
set of every user is independent of the representation source and
contains her incoming tweets; the retweeted ones constitute the
positive examples and the rest are the negative examples [17, 33, 41,
56]. However, the former are sparse and imbalanced across time
in our dataset. Following [17], we retain a reasonable proportion
between the two classes for each user by placing the 20% most
recent of her retweets in the test set. The earliest tweet in this
sample splits each user’s timeline in two phases: the training
and the testing phase. Based on this division, we sampled the
negative data as follows: for each positive tweet in the test set,
we randomly added four negative ones from the testing phase
[17]. Accordingly, the train set of every representation source is
restricted to all the tweets that fall in the training phase.

Based on this setup, we build the user models as follows: for
the bag and graph models, we learn a separate model UMs (u)
for every combination of a user u and a representation source
s , using the corresponding train set. For the topic models, we
first learn a single model M(s) for each representation source,
using the train set of all 60 users. Then, we use M(s) to infer

the distributions over topics for the training tweets of u that
stem from s . Finally, the user model UMs (u) is constructed by
computing the centroid of u’s training vectors/tweets [50].

Note that for all models, we converted the raw text of all
training and testing tweets into lowercase. For all token-based
models, we tokenized all tweets on white spaces and punctuation,
we squeezed repeated letters and we kept together URLs, hash-
tags, mentions and emoticons. We also removed the 100 most
frequent tokens across all training tweets, as they practically cor-
respond to stop words. We did not apply any language-specific
pre-processing technique, as our dataset is multilingual.

In more detail, Table 3 presents the 10 most frequent languages
in our dataset along with the number of tweets that correspond to
them. To identify them, we first cleaned all tweets from hashtags,
mentions, URLs and emoticons in order to reduce the noise of non-
English tweets. Then, we aggregated the tweets per user (UP) to
facilitate language detection. Finally, we automatically detected
the prevalent language in every pseudo-document (i.e., user) [46]
and assigned all relevant tweets to it. As expected, English is
the dominant language, but our corpus is highly multilingual,
with 3 Asian languages ranked within the top 5 positions. This
multilingual content (Challenge C3) prevents us from boosting
the performance of representation models with language-specific
pre-processing like stemming, lemmatization and part-of-speech
tagging, as is typically done in the literature [4, 17, 65]. Instead,
our experimental methodology is language-agnostic.

Performance Measures.We assess the effectiveness of rep-
resentation models using the Average Precision (AP) of a user
modelUMs (u), which is the average of the Precision-at-n (P@n)
values for all retweets. Formally [17, 41]:AP(UMs (u)) = 1/|R(u)|·∑N
n=1P@n · RT (n), where P@n is the proportion of the top-n

ranked tweets that have been retweeted, RT (n)=1 if n is a retweet
and 0 otherwise, N is the size of the test set, and |R(u)| is the
total number of retweets in the test set. Thus, AP expresses the
performance of a representation model over an individual user.
To calculate the performance of a user group U , we define Mean
Average Precision (MAP) as the average AP over all users inU .

To assess the robustness of a representation model with re-
spect to its internal configuration, we consider itsMAP deviation,
i.e., the difference between the maximum and the minimumMAP
of the considered parameter configurations over a specific group
of users. The lower the MAP deviation, the higher the robustness.

To estimate the time efficiency of representation models, we
employ two measures: (i) The training time (TTime) captures
the aggregated modeling time that is required for modeling all
60 users. For topic models, this also includes the time that is
required for training once the modelM(s) from the entire train
set. (ii) The testing time (ETime) expresses the total time that is
required for processing the test set of all 60 users, i.e., to compare
all user models with their testing tweets and to rank the latter in
descending order of similarity. For a fair comparison, we do not
consider works that parallelize representation models (e.g., [16,
57, 63]), as most models are not adapted to distributed processing.

Parameter Tuning. For each representation model, we tried
a wide range of meaningful parameter configurations. They are
reported in Tables 4 and 5. In total, we employed 223 different
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Table 4: Configurations of the 5 context-agnostic (topic)
models. CS, NP, UP and HP stand for cosine similarity, no
pooling, user pooling and hashtag pooling, respectively.

LDA LLDA BTM HDP HLDA

#Topics {50,100,150,200} - -
#Iterations {1,000, 2,000} 1,000
Pooling {NP, UP, HP} UP

α 50/#Topics 1.0 {10, 20}
β 0.01 {0.1, 0.5}
γ - - - 1.0 {0.5, 1.0}
Aggregation function {centroid, Rocchio}
Similarity measure CS

Fixed parameters - - r=30 - levels=3

#Configurations 48 48 24 12 16

configurations – excluding those violating thememory constraint
(the memory consumption should be less than 32GB RAM), or the
time constraint (TTime should be less than 5 days). As a result, we
excluded PLSA from our analysis, since it violated the memory
constraint for all configurations we considered.

In total, 9 representation models were tested in our experi-
ments. For LDA, LLDA and BTM, α and β were tuned according
to [58]. For LLDA, the number of topics refers to the latent topics
assigned to every tweet in addition to the tweet-specific labels.
For the latter, we followed [50], using: (i) one label for every
hashtag that occurs more than 30 times in the training tweets,
(ii) the question mark, (iii) 9 categories of emoticons (i.e., “smile”,
“frown”, “wink”, “big grin”, “heart”, “surprise”, “awkward” and
“confused”), and (iv) the @user label for the training tweets that
mention a user as the first word. Most of these labels were quite
frequent in our corpus and, thus, we considered 10 variations for
them, based on [50]. For example, “frown” produced the labels:
:(-0 to :(-9. The only labels with no variations are the hashtag ones
and the emoticons “big grin”, “heart”, “surprise” and “confused”.

For HLDA, we did not employ the pooling strategies NP and
HP and more than three hierarchical levels, as these configura-
tions violated the time constraint. Hence, we only varied α and γ .

For BTM, we selected 1,000 iterations following [61]. For indi-
vidual tweets, we set the context window (r ), i.e., the maximum
distance between two words in a biterm, equal to the size of the
tweet itself. For the large pseudo-documents in user and hashtag
pooling, we set r=30 based on [61]; for greater values, BTM con-
veys no significant improvement over LDA, since the larger the
distance between the words in a biterm is, the more irrelevant
are their topics. Larger window sizes yield higher TTime , too.

For bag models, some configuration combinations are invalid:
JS is applied only with BF weights, GJS only with TF and TF-IDF,
and the character-based n-grams, CN, are not combined with
TF-IDF. Also, BF is exclusively coupled with the sum aggregation
function, which in this case is equivalent to applying the boolean
operator OR among the individual document models. For the
Rocchio algorithm, we set α=0.8 and β=0.2, and we used only the
CS similarity measure in combination with the TF and TF-IDF
weights for those representation sources that contain both posi-
tive and negative examples, namely C, E, TE, RE, TC, RC and EF.

5 EXPERIMENTAL ANALYSIS
Effectiveness & Robustness. To assess the performance of the
9 representation models, we measure their Mean MAP, Min MAP
and Max MAP, i.e., their average, minimum and maximum MAP,

Table 5: Configurations of the 4 context-based models. Re-
member that BF and TF stand for boolean and term fre-
quency weights, respectively, while (G)JS, CoS, VS, and
NS denote the (generalized) Jaccard, the containment, the
value and the normalized value graph similarities, resp.

TN CN TNG CNG

n {1,2,3} {2,3,4} {1,2,3} {2,3,4}
Weighting scheme {BF,TF,TF-IDF} {BF,TF} - -
Aggregation function {sum, centroid, Rocchio} - -
Similarity measure {CS, JS, GJS} {CoS, VS, NS}

#Configurations 36* 21* 9 9
* excluding invalid configuration combinations

respectively, over all relevant configurations for a particular com-
bination of a user type and a representation source. The outcomes
for All Users are presented in Figure 3, which considers the 5
individual representation sources along with the 3 combinations
that achieve the best average performance. Due to space limita-
tions, the remaining 5 combinations along with the figures for
IP, BU and IS are only presented in the extended version of the
paper [59]. Nevertheless, we consider them in the discussion of
our experimental results.

Every diagram also reports the MAP for two baseline methods:
(i) the Chronological Ordering (CHR), which ranks the test set
from the latest tweet (first position) to the earliest one (last posi-
tion), and (ii) the Random Ordering (RAN), which sorts the test
set in an arbitrary order. For RAN, we performed 1,000 iterations
per user and considered the overall average per user type.

Starting with All Users in Figure 3, we observe that TNG con-
sistently outperforms all other models across all representation
sources. Its Mean MAP fluctuates between 0.625 (EF) and 0.784
(T). The second most effective model is TN, whose Mean MAP
ranges from 0.541 (EF) to 0.673 (T). The dominance of TNG over
TN is statistically significant (p<0.05) and should be attributed
to its ability to capture the relations between neighboring token
n-grams through the weighted edges that connect them. In this
way, TNG incorporates global contextual information into its
model and inherently alleviates sparsity (Challenge C1). Instead,
TN exclusively captures local contextual information in the form
of token sequences. The same holds for Challenges C2 and C4:
both models fail to identify misspelled or non-standard token
n-grams, but TNG is better suited to capture their patterns by
encapsulating their neighborhood.

Regarding robustness, TN is more sensitive to its configuration.
Its MAP deviation ranges from 0.359 (TF, RF) to 0.444 (EF), while
for TNG, it fluctuates between 0.096 (T) and 0.281 (EF). In all cases,
the difference between the two models is statistically significant
(p<0.05). TNG is superior, because its performance is fine-tuned
by just two parameters: the size of n-grams (n) and the similarity
measure. TN additionally involves the aggregation function and
the weighting scheme, increasing drastically its possible con-
figurations. In general, every configuration parameter acts as a
degree of freedom for a representation model; the higher the overall
number of parameters is, the more flexible the model gets and the
less robust it is expected to be with respect to its configuration.

Comparing the character-based instantiations of bag and graph
models, we notice that their difference in Mean Map is statisti-
cally insignificant. For CNG, it fluctuates between 0.368 (TF) and
0.477 (R), while for CN, it ranges from 0.334 (TF) to 0.436 (RC).
This implies that there is no benefit in considering global contextual
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Figure 3: Effectiveness of the nine representation models over All Users in combination with the five individual represen-
tation sources and their three best performing pairwise combinations with respect to MAP. Higher bars indicate better
performance. The red line corresponds to the performance of the best baseline, RAN.

information for representation models that are based on character
n-grams. The strength of these models lies in the local contextual
information that is captured in the sequence of characters.

Regarding robustness, the relative sensitivity of character-
based models exhibits the same patterns as their token-based
counterparts: the bag models are significantly less robust than
the graph ones, due to their larger number of parameters and con-
figurations. In more detail, the MAP deviation ranges from 0.061
(T) to 0.114 (RF) for CNG and from 0.077 (T) to 0.476 (RC) for CN.

Concerning the topic models, we observe that BTM consis-
tently achieves the highest effectiveness across all representation
sources. Its Mean MAP fluctuates between 0.340 (EF) and 0.434
(R). All other topic models exhibit practically equivalent perfor-
mance: their highest Mean MAP ranges from 0.337 (forHDPwith
TR) to 0.360 (for LLDA with R), whereas their lowest Mean MAP
fluctuates between 0.265 (for HDP over F) and 0.270 (for LLDA
over TF). As a result, HDP, LDA, LLDA and HLDA outperform
only CHR to a large extent. This indicates that recency alone
constitutes an inadequate criterion for recommending content in
microblogging platforms. Any model that considers the personal
preferences of a user offers more accurate suggestions.

Compared to the second baseline (RAN),HDP, LDA, LLDA and
HLDA are more effective, but to a minor extent. The Mean MAP
of RAN amounts to 0.270, thus, some configurations of these
topic models perform consistently worse than RAN, across all
representation sources. Most of these configurations correspond
to the absence of pooling (NP), where every tweet is considered as
an individual document. In these settings, these four topic models
fail to extract distinctive patterns from any representation source,
producing noisy user and document models. This suggests that
sparsity is the main obstacle to most topic models.

Regarding robustness, we can distinguish the 5 topic mod-
els into two categories: the first one involves 3 models that are
highly sensitive to their configuration, namely LDA, LLDA and
HDP. Their MAP deviation starts from 0.119, 0.075, and 0.077,
respectively, and raises up to 0.250, 0.264 and 0.211, respectively.
These values are extremely high, when compared to their ab-
solute Mean MAP. This means that extensive fine-tuning is re-
quired for successfully applying most topic models to text-based

PMR. In contrast, MAP deviation fluctuates between 0.034 and
0.109 for both HLDA and BTM. For the former, this is probably
caused by the limited number of configurations that satisfied our
time constraint, while for the latter, it should be attributed to its
Twitter-specific functionality.

Discussion. We now discuss the novel insights that can be
deduced from our experimental analysis. We start by comparing
token- with character-based models. We observe that the former
are significantly more effective than the latter for both bag and
graph models. At first, this seems counter-intuitive, as CNG
and CN are in a better position to address Challenge C1: they
extract more features from sparse documents than TNG and
TN, respectively [48]. They are also better equipped to address
Challenges C2 and C4: by operating at a finer granularity, they
can identify similarities even between noisy and non-standard
tokens. Yet, the character-based models seem to accumulate noise
when aggregating individual tweet models into a user model.
Their similarity measures fail to capture distinctive information
about the real interests of a user, yielding high scores for many
irrelevant, unseen documents. The lower n is, the more intensive
is this phenomenon. In fact, most bigrams are shared by both
relevant and irrelevant examples, which explains why the poorest
performance corresponds to n=2 for both CNG and CN. The
only advantage of character-based models over their token-based
counterparts is their higher robustness. However, their lower
values for MAP deviation are probably caused by their lower
absolute values for MAP.

Among the topic models, BTM consistently performs best with
respect to effectiveness and robustness. Its superiority stems from
the two inherent characteristics that optimize its functionality
for the short and noisy documents in Twitter: (i) it considers
pairs of words (i.e., biterms), instead of individual tokens, and (ii)
it bypasses sparsity (Challenge C1) by capturing topic patterns
at the level of entire corpora, instead of extracting them from in-
dividual documents. Compared to context-based models, though,
BTM is significantly less effective than the token-based bag and
graph models. Its performance is very close to the character-
based models, especially CNG, with their difference in terms of
effectiveness and robustness being statistically insignificant.
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Table 6: Performance of all 13 representation sources over the 4 user types with respect to Min(imum), Mean and
Max(imum) MAP across all configurations of the 9 representation models. The rightmost column presents the average
performance per user type.

R T E F C TR RE RF RC TE TF TC EF Average

Min MAP 0.225 0.217 0.196 0.208 0.199 0.222 0.205 0.199 0.212 0.201 0.205 0.201 0.198 0.207
All Users Mean MAP 0.456 0.429 0.392 0.378 0.410 0.448 0.402 0.386 0.427 0.387 0.377 0.406 0.377 0.406

Max MAP 0.796 0.816 0.771 0.764 0.768 0.797 0.775 0.758 0.783 0.775 0.764 0.776 0.780 0.779

Min MAP 0.193 0.199 0.192 0.191 0.196 0.212 0.199 0.195 0.188 0.200 0.192 0.195 0.195 0.196
IS Mean MAP 0.415 0.383 0.351 0.336 0.364 0.407 0.357 0.340 0.374 0.347 0.342 0.357 0.336 0.362

Max MAP 0.776 0.818 0.733 0.699 0.732 0.790 0.732 0.699 0.733 0.732 0.699 0.733 0.736 0.739

Min MAP 0.212 0.174 0.168 0.192 0.168 0.198 0.168 0.182 0.178 0.167 0.179 0.171 0.175 0.179
BU Mean MAP 0.474 0.430 0.400 0.376 0.420 0.453 0.419 0.389 0.443 0.391 0.381 0.406 0.376 0.412

Max MAP 0.733 0.775 0.747 0.746 0.745 0.753 0.746 0.741 0.753 0.746 0.741 0.743 0.741 0.747

Min MAP 0.243 0.220 0.200 0.198 0.186 0.242 0.200 0.202 0.182 0.189 0.212 0.198 0.208 0.206
IP Mean MAP 0.524 0.446 0.460 0.458 0.488 0.493 0.470 0.467 0.497 0.428 0.443 0.444 0.440 0.466

Max MAP 0.878 0.857 0.854 0.858 0.839 0.854 0.854 0.856 0.854 0.854 0.858 0.857 0.854 0.856

Generally, we can conclude that all topic models fail to im-
prove the token-based bag and graph models in the context of
Content-based PMR. Both TN and TNG achieve twice as high
Mean MAP, on average, across all representation sources. The
poor performance of topic models is caused by two factors: (i)
they disregard the contextual information that is encapsulated
in word ordering, and (ii) the Challenges C1 to C4 of Twitter.
Indeed, most topic models were originally developed to extract
topics from word co-occurrences in individual documents, but
the sparse and noisy co-occurrence patterns in the short text of
tweets reduce drastically their effectiveness.

User Types.We notice that the relative performance of repre-
sentationmodels for IP, BU and IS remains practically the same as
in Figure 3. Yet, there are significant differences in their absolute
performance. On average, across all models and representation
sources, IP users have higher Mean MAP than IS and BU users
by 30% and 13% respectively, while BU surpasses IS by 15%. Com-
pared to All Users, IP increases Mean MAP by 12%, BU by just 1%,
while IS decreases it by 11%, on average, across all models and
representation sources. These patterns are also demonstrated
in the rightmost column of Table 6, which essentially expresses
the average values for Min(imum), Mean and Max(imum) MAP
per user type across all combinations of representation models,
configurations and representation sources.

Therefore, we can conclude that the more information an indi-
vidual user produces, the more reliable are the models that represent
her interests, and vice versa: taciturn users are the most difficult to
model. This should be expected for R and T, since the posting ac-
tivity of a user increases the content that is available for building
their models. However, this pattern applies to the other repre-
sentation sources, too, because IP users are typically in closer
contact with their followees, followers and reciprocal users, who
thus can represent their interests effectively. The opposite holds
for IS users. In the middle of these two extremes lie BU users,
which exhibit a balanced activity in all respects.

Overall, these patterns suggest that the user categories we
defined in Section 2 have a real impact on the performance of
Content-based PMR. Therefore, they should be taken into account
when designing a Content-based PMR approach, as different user
types call for different recommendation methods.

Representation Sources. We now examine the relative ef-
fectiveness of the five representation sources and their eight
pairwise combinations. Table 6 reports the performance for ev-
ery combination of a user type and a representation source with
respect to Min(imum), Mean and Max(imum) MAP over all con-
figurations of the nine representation models.

Starting with individual representation sources, we observe
that R consistently achieves the highest Mean MAP across all
user types. This suggests that retweets constitute the most effective
means of capturing user preferences under all settings, as users
repost tweets that have attracted their attention and approval.

The second best individual source is T. This applies to all
user types, except for IP, where T actually exhibits the worst
performance across all individual sources. These patterns suggest
that the tweets of a user offer valuable information for her interests
as long as her posting ratio is lower than 2; such users post their
messages thoughtfully, when they have something important to
say. Instead, the IP users are hyperactive, posting quite frequently
careless and noisy messages that do not reflect their preferences,
e.g., by engaging into irrelevant discussions with other users.

Among the remaining individual sources, C achieves the best
performance, followed by E and F. This pattern is consistent
across all user types, with the differences being statistically sig-
nificant in most cases. We can deduce, therefore, that the recip-
rocal connections in Twitter reflect friendships between users that
share common interests to a large extent. Instead, the one-way
connections offer weaker indications of common tastes among
users, especially when they are not initiated by the ego user: the
followers’ posts (F) invariably result in noisy user models.

For the eight pairs of sources, we observe the following pat-
terns: (i) All combinations of R with another source X result in
higher performance for X, with the difference being statistically
significant. Hence, R is able to enrich any representation source
with valuable information about user preferences. (ii) All combi-
nations of Twith another source result in a (usually insignificant)
lower performance in all cases but two, namely TF over IS and BU.
This means that T typically conveys noisy, irrelevant information.
(iii) For both R and T, all pairwise combinations degrade their
own performance. The only exception is TR, which improves the
effectiveness of T.

On the whole, we can conclude that a user’s retweets (R) should
be used as the sole information source for building her model. There
is no need to combine it with T.

Time Efficiency. Figures 4(i) and (ii) depict the minimum, av-
erage and maximum values for TTime and ETime , respectively,
for every representation model across all configurations, repre-
sentation sources and users. The vertical axes are logarithmic,
with lower values indicating better performance.

Among the global context-aware models, we observe that on
average, TNG is faster than CNGwith respect to both ETime and
TTime by 1 and 2 orders of magnitude, respectively. Similarly,
among the local context-aware models, TN is faster than CN
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Figure 4: Time efficiency of the 9 representation models with respect to (i) Training Time (TTime), and (ii) Testing Time
(ETime), on average across all configurations, representation sources and users. Lower bars indicate better performance.

by 4 and 3 times, respectively. The reason in both cases is the
relative dimensionality of token- and character-based models.
Typically, the latter yield a much larger feature space than the
former, depending, of course, on the size of the n-grams – the
larger n is, the more character n-grams are extracted from a
corpus [48] and the more time-consuming is their processing.

Among the topic models, BTM exhibits the highest TTime .
The reason is that it operates on the level of biterms, which result
in a much higher dimensionality than the individual tokens that
lie at the core of the other topic models. However, our analysis
does not consider the most time-consuming configurations of the
second worst model (HLDA), as they violated the time constraint.
In practice, HLDA is expected to be slower than BTM, since
its nonparametric nature lies in exploring the possible L-level
hierarchical trees during topic inference. On the other extreme,
LDA is the fastest topic model, while LLDA is almost 5 times
faster than HDP, on average, due to its simpler models.

These patterns are slightly altered in the case of ETime . The
worst performance by far corresponds to HLDA, due to its non-
parametric functionality, while BTM turns out to be the fastest
model. Unlike the other topic models, which perform Gibbs sam-
pling for topic inference, BTM simply iterates over the biterms
in a document d in order to calculate P(z |d) for each topic z ∈ Z .

Comparing the model categories between them, we observe
that the graph models are more time-consuming than their bag
counterparts: on average, TNG and CNG are 1 and 2 orders
of magnitude slower than TN and CN, respectively, for both
TTime and ETime . This should be attributed to the contextual
information they incorporate in their edges, whose number is
much larger in the case of CNG. Similarly, most topic models are
at least 1 order of magnitude slower than their base model, TN, for
both time measures, due to the time required for topic inference.
Overall, TN is consistently the most efficient representation model,
due to the sparsity of tweets and the resulting low dimensionality.

These patterns are consistent across all user types and repre-
sentation sources. For the latter, we also observed that the size of
the train set affects directly TTime for all representation models:
the more tweets are used to build a user model, the more patterns
are extracted, degrading time efficiency.

6 RELATEDWORK
There has been a bulk of work on recommender systems over
the years [2, 3]. Most recent works focus on microblogging plat-
forms and Social Media, employing the bag model in order to
suggest new followees [13], URLs [15] and hashtags [40]. Others
employ topic models for the same tasks, e.g., hashtag recommen-
dations [27]. In the latter case, emphasis is placed on tackling
sparsity through pooling techniques, which aggregate short texts
that share similar content, or express similar ideas into lengthy
pseudo-documents [4, 44]. E.g., Latent Dirichlet Allocation [10]
and the Author Topic Model [52] are trained on individual mes-
sages and on messages aggregated by user and hashtag in [33].

Content-based PMR has attracted lots of interest in the data
management community [14, 16, 22, 55, 63], where many works
aim to improve the time efficiency of topic models. [16] paral-
lelizes the training of HLDA through a novel concurrent dynamic
matrix and a distributed tree. [14] scales up LDA through the
WarpLDA algorithm, which achieves O(1) time complexity per-
token and fits the randomly accessed memory per-document in
the L3 cache. Alongwith other state-of-the-art LDA samplers, this
work is incorporated into LDA*, a high-end system that scales
LDA training to voluminous datasets, using different samplers
for various types of documents [63]. Another approach for the
massive parallelization of LDA is presented in [57]. Other works
facilitate real-time content recommendations in Twitter. This is
done either by partitioning the social graph across a cluster in
order to detect network motifs in parallel [30], or by holding
the entire graph in the main memory of a single server in order
to accelerate random walk-based computations on a bipartite
interaction graph between users and tweets [55].

On another line of research, external resources are employed
in order to augment text representation and improve their per-
formance in various tasks. For short text clustering, Dual Latent
Dirichlet Allocation learns topics from both short texts and aux-
iliary documents [37]. For personalized Twitter stream filtering,
tweets can be transformed into RDF triples that describe their
author, location and time in order to use ontologies for build-
ing user profiles [38]. User profiles can also be enriched with
Wikipedia concepts [41] and with concepts from news articles
that have been read by the user [34]. These approaches lie out
of the scope of our analysis, which focuses on recommendations
based on Twitter’s internal content.

To the best of our knowledge, no prior work examines system-
atically Content-based PMR with respect to the aforementioned
parameters, considering a wide range of options for each one.

7 CONCLUSIONS
We conclude with the following five observations about Content-
based Personalized Microblog Recommendation: (i) The token-
based vector space model achieves the best balance between ef-
fectiveness and time efficiency. In most cases, it offers the second
most accurate recommendations, while involving the minimum
time requirements both for training a user model and applying
it to a test set. On the flip side, it involves four parameters (i.e.,
degrees of freedom), thus being sensitive to its configuration.
(ii) The token n-gram graphs achieve the best balance between
effectiveness and robustness. Due to the global contextual in-
formation they capture, they consistently outperform all other
representation models to a significant extent, while exhibiting
limited sensitivity to their configuration. Yet, they are slower than
the vector space model by an order of magnitude, on average.
(iii) The character-based models underperform their token-based
counterparts, as their similarity measures cannot tackle the noise
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that piles up when assembling document models into user mod-
els. (iv) The topic models exhibit much lower effectiveness than
the token-based bag models for three reasons: 1) most of them
are not crafted for the sparse, noisy and multilingual content
of Twitter, 2) they depend heavily on their configuration, and
3) they are context-agnostic, ignoring the sequence of words
in documents. Their processing is time-consuming, due to the
inference of topics, requiring parallelization techniques to scale
to voluminous data [16, 57, 63]. (v) All representation models per-
form best when they are built from the retweets of hyperactive
users (information producers).

In the future, we plan to expand our comparative analysis to
more recommendation tasks for microblogging platforms.

REFERENCES
[1] F. Abel, Q. Gao, G.-J. Houben, and K. Tao. Analyzing user modeling on twitter

for personalized news recommendations. In UMAP, pages 1–12, 2011.
[2] G. Adomavicius and A. Tuzhilin. Toward the next generation of recommender

systems: A survey of the state-of-the-art and possible extensions. IEEE TKDE,
17(6):734–749, 2005.

[3] C. C. Aggarwal. Recommender Systems - The Textbook. Springer, 2016.
[4] D. Alvarez-Melis and M. Saveski. Topic modeling in twitter: Aggregating

tweets by conversations. In ICWSM, pages 519–522, 2016.
[5] M. Armentano, D. Godoy, and A. Amandi. Topology-based recommendation

of users in micro-blogging communities. J. Comp. Sci. Tech., 27(3):624–634,
2012.

[6] M. Balabanović and Y. Shoham. Fab: content-based, collaborative recommen-
dation. Communications of the ACM (CACM), 40(3):66–72, 1997.

[7] D. M. Blei. Probabilistic topic models. CACM, 55(4):77–84, 2012.
[8] D. M. Blei, T. L. Griffiths, M. I. Jordan, and J. B. Tenenbaum. Hierarchical topic

models and the nested chinese restaurant process. In NIPS, pages 17–24, 2003.
[9] D. M. Blei and J. D. Lafferty. Topic models. Text mining: classification, clustering,

and applications, 10(71):34, 2009.
[10] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. Journal of

Machine Learning Research, 3:993–1022, 2003.
[11] C. Chen, D. Wu, C. Hou, and X. Yuan. Facet-based user modeling in social

media for personalized ranking. In ECIR, pages 443–448, 2014.
[12] C. Chen, X. Zheng, C. Zhou, and D. Chen. Making recommendations on

microblogs through topic modeling. In WISE Workshops, pages 252–265, 2013.
[13] J. Chen, W. Geyer, C. Dugan, M. Muller, and I. Guy. Make new friends, but

keep the old: recommending people on social networking sites. In SIGCHI,
pages 201–210, 2009.

[14] J. Chen, K. Li, J. Zhu, and W. Chen. Warplda: a cache efficient O(1) algorithm
for latent dirichlet allocation. PVLDB, 9(10):744–755, 2016.

[15] J. Chen, R. Nairn, L. Nelson, M. Bernstein, and E. Chi. Short and tweet:
experiments on recommending content from information streams. In SIGCHI,
pages 1185–1194, 2010.

[16] J. Chen, J. Zhu, J. Lu, and S. Liu. Scalable training of hierarchical topic models.
PVLDB, 11(7):826–839, 2018.

[17] K. Chen, T. Chen, G. Zheng, O. Jin, E. Yao, and Y. Yu. Collaborative personalized
tweet recommendation. In SIGIR, pages 661–670, 2012.

[18] X. Cheng, X. Yan, Y. Lan, and J. Guo. Btm: Topic modeling over short texts.
IEEE Transactions on Knowledge and Data Engineering, 26(12):2928–2941, 2014.

[19] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from
incomplete data via the em algorithm. Journal of the royal statistical society.
Series B (methodological), pages 1–38, 1977.

[20] Y. Duan, L. Jiang, T. Qin, M. Zhou, and H.-Y. Shum. An empirical study on
learning to rank of tweets. In COLING, pages 295–303, 2010.

[21] K. El-Arini, U. Paquet, R. Herbrich, J. V. Gael, and B. A. y Arcas. Transparent
user models for personalization. In SIGKDD, pages 678–686, 2012.

[22] A. El-Kishky, Y. Song, C. Wang, C. R. Voss, and J. Han. Scalable topical phrase
mining from text corpora. PVLDB, 8(3):305–316, 2014.

[23] W. Feng and J. Wang. Retweet or not?: personalized tweet re-ranking. In
WSDM, pages 577–586, 2013.

[24] S. Geman and D. Geman. Stochastic relaxation, gibbs distributions, and the
bayesian restoration of images. IEEE TPAMI, (6):721–741, 1984.

[25] G. Giannakopoulos, V. Karkaletsis, G. Vouros, and P. Stamatopoulos. Summa-
rization system evaluation revisited: N-gram graphs. ACM Transactions on
Speech and Language Processing (TSLP), 5(3):5, 2008.

[26] G. Giannakopoulos and T. Palpanas. Content and type as orthogonal modeling
features: a study on user interest awareness in entity subscription services.
International Journal of Advances on Networks and Services, 3(2), 2010.

[27] F. Godin, V. Slavkovikj, W. De Neve, B. Schrauwen, and R. Van de Walle. Using
topic models for twitter hashtag recommendation. In WWW (Companion
Volume), pages 593–596, 2013.

[28] T. L. Griffiths and M. Steyvers. Finding scientific topics. PNAS, 101(suppl
1):5228–5235, 2004.

[29] Q. Grossetti, C. Constantin, and et al. An homophily-based approach for fast
post recommendation on twitter. In EDBT, pages 229–240, 2018.

[30] P. Gupta, V. Satuluri, A. Grewal, S. Gurumurthy, V. Zhabiuk, Q. Li, and J. J. Lin.
Real-time twitter recommendation: Online motif detection in large dynamic
graphs. PVLDB, 7(13):1379–1380, 2014.

[31] J. Hannon, M. Bennett, and B. Smyth. Recommending twitter users to follow
using content and collaborative filtering approaches. In ACM RecSys, pages
199–206, 2010.

[32] T. Hofmann. Probabilistic latent semantic analysis. In UAI, pages 289–296,
1999.

[33] L. Hong and B. D. Davison. Empirical study of topic modeling in twitter. In
Proceedings of the first workshop on social media analytics, pages 80–88, 2010.

[34] W. IJntema, F. Goossen, F. Frasincar, and F. Hogenboom. Ontology-based
news recommendation. In Proceedings of the EDBT/ICDT Workshops, 2010.

[35] A. Java, X. Song, T. Finin, and B. Tseng. Why we twitter: understanding
microblogging usage and communities. In SNA-KDD, pages 118–138, 2007.

[36] M. Jiang, P. Cui, F. Wang, W. Zhu, and S. Yang. Scalable recommendation with
social contextual information. IEEE TKDE, 26(11):2789–2802, 2014.

[37] O. Jin, N. N. Liu, K. Zhao, Y. Yu, and Q. Yang. Transferring topical knowledge
from auxiliary long texts for short text clustering. In CIKM, pages 775–784,
2011.

[38] P. Kapanipathi, F. Orlandi, A. P. Sheth, and A. Passant. Personalized filtering
of the twitter stream. In SPIM, pages 6–13, 2011.

[39] Y. Kim and K. Shim. TWITOBI: A recommendation system for twitter using
probabilistic modeling. In IEEE ICDM, pages 340–349, 2011.

[40] S. M. Kywe, T.-A. Hoang, E.-P. Lim, and F. Zhu. On recommending hashtags
in twitter networks. In SocInfo, pages 337–350, 2012.

[41] C. Lu, W. Lam, and Y. Zhang. Twitter user modeling and tweets recommen-
dation based on wikipedia concept graph. In AAAI Workshops, pages 33–38,
2012.

[42] F. D. Malliaros, P. Meladianos, and M. Vazirgiannis. Graph-based text repre-
sentations: Boosting text mining, nlp and information retrieval with graphs.
In WWW Tutorials, 2018.

[43] C. D. Manning, P. Raghavan, and H. Schütze. Introduction to Information
Retrieval. Cambridge University Press, 2008.

[44] R. Mehrotra, S. Sanner, W. Buntine, and L. Xie. Improving lda topic models for
microblogs via tweet pooling and automatic labeling. In SIGIR, pages 889–892,
2013.

[45] R. J. Mooney and L. Roy. Content-based book recommending using learning
for text categorization. In ACM Conference on Digital Libraries, pages 195–204,
2000.

[46] F. R. Nakatani Shuyo, Fabian Kessler and R. Theis. Language detector.
https://github.com/optimaize/language-detector, 2018.

[47] K. Nigam, A. K. McCallum, S. Thrun, and T. Mitchell. Text classification from
labeled and unlabeled documents using em. Machine Learning, 39(2-3), 2000.

[48] G. Papadakis, G. Giannakopoulos, and G. Paliouras. Graph vs. bag representa-
tion models for the topic classification of web documents. World Wide Web,
19(5):887–920, 2016.

[49] J. Pennington, R. Socher, and C. D. Manning. Glove: Global vectors for word
representation. In Empirical Methods in Natural Language Processing (EMNLP),
pages 1532–1543, 2014.

[50] D. Ramage, S. T. Dumais, and D. J. Liebling. Characterizing microblogs with
topic models. In ICWSM, 2010.

[51] D. Ramage, D. Hall, R. Nallapati, and C. D. Manning. Labeled lda: A supervised
topic model for credit attribution in multi-labeled corpora. In EMNLP, pages
248–256, 2009.

[52] M. Rosen-Zvi, T. Griffiths, M. Steyvers, and P. Smyth. The author-topic model
for authors and documents. In UAI, pages 487–494, 2004.

[53] F. Rousseau and M. Vazirgiannis. Graph-of-word and TW-IDF: new approach
to ad hoc IR. In CIKM, pages 59–68, 2013.

[54] J. Sang, D. Lu, and C. Xu. A probabilistic framework for temporal usermodeling
on microblogs. In ACM CIKM, pages 961–970, 2015.

[55] A. Sharma, J. Jiang, P. Bommannavar, B. Larson, and J. J. Lin. Graphjet: Real-
time content recommendations at twitter. PVLDB, 9(13):1281–1292, 2016.

[56] K. Shen, J. Wu, Y. Zhang, Y. Han, X. Yang, L. Song, and X. Gu. Reorder user’s
tweets. ACM TIST, 4(1):6:1–6:17, 2013.

[57] A. J. Smola and S. M. Narayanamurthy. An architecture for parallel topic
models. PVLDB, 3(1):703–710, 2010.

[58] M. Steyvers and T. Griffiths. Probabilistic topic models. Handbook of latent
semantic analysis, 427(7):424–440, 2007.

[59] E. K. Taniskidou, G. Papadakis, G. Giannakopoulos, and M. Koubarakis. Com-
padrative analysis of content-based personalized microblog recommendations
- experiments and analysis. CoRR, abs/1901.0549, 2019.

[60] Y. W. Teh, M. I. Jordan, M. J. Beal, and D. M. Blei. Hierarchical dirichlet
processes. J. Amer. Stat. Assoc., 101(476):1566–1581, 2006.

[61] X. Yan, J. Guo, Y. Lan, and X. Cheng. A biterm topic model for short texts. In
WWW, pages 1445–1456, 2013.

[62] J. Yang and J. Leskovec. Patterns of temporal variation in online media. In
WSDM, pages 177–186, 2011.

[63] L. Yu, B. Cui, C. Zhang, and Y. Shao. Lda*: A robust and large-scale topic
modeling system. PVLDB, 10(11):1406–1417, 2017.

[64] W. X. Zhao, J. Jiang, J. Weng, J. He, E.-P. Lim, H. Yan, and X. Li. Comparing
twitter and traditional media using topic models. In ECIR, pages 338–349,
2011.

[65] X. Zhao and K. Tajima. Online retweet recommendation with item count
limits. In IEEE/WIC/ACM WI-IAT, pages 282–289, 2014.

204



Crowdsourced Truth Discovery in the Presence of Hierarchies
for Knowledge Fusion

Woohwan Jung

Seoul National University

whjung@kdd.snu.ac.kr

Younghoon Kim

Hanyang University

yhkim7951@gmail.com

Kyuseok Shim
∗

Seoul National University

shim@kdd.snu.ac.kr

ABSTRACT
Existing works for truth discovery in categorical data usually

assume that claimed values are mutually exclusive and only one

among them is correct. However, many claimed values are not

mutually exclusive even for functional predicates due to their

hierarchical structures. Thus, we need to consider the hierarchi-

cal structure to effectively estimate the trustworthiness of the

sources and infer the truths. We propose a probabilistic model

to utilize the hierarchical structures and an inference algorithm

to find the truths. In addition, in the knowledge fusion, the step

of automatically extracting information from unstructured data

(e.g., text) generates a lot of false claims. To take advantages

of the human cognitive abilities in understanding unstructured

data, we utilize crowdsourcing to refine the result of the truth

discovery. We propose a task assignment algorithm to maximize

the accuracy of the inferred truths. The performance study with

real-life datasets confirms the effectiveness of our truth inference

and task assignment algorithms.

1 INTRODUCTION
Automatic construction of large-scale knowledge bases is very

important for the communities of database and knowledge man-

agement. Knowledge fusion (KF) [8] is one of the methods used

to automatically construct knowledge bases (a.k.a. knowledge

harvesting). It collects the possibly conflicting values of objects

from data sources and applies truth discovery techniques for re-

solving the conflicts in the collected values. Since the values are

extracted from unstructured or semi-structured data, the col-

lected information exhibits error-prone behavior. The goal of

the truth discovery used in knowledge fusion is to infer the true

value of each object from the noisy observed values retrieved

from multiple information sources while simultaneously estimat-

ing the reliabilities of the sources. Two potential applications

of knowledge fusion are web source trustworthiness estimation

and data cleaning [10]. By utilizing truth discovery algorithms,

we can evaluate the quality of web sources and find systematic

errors in data curation by analyzing the identified wrong values.

Truth discovery with hierarchies: As pointed out in [6, 8, 25],

the extracted values can be hierarchically structured. In this case,

there may be multiple correct values in the hierarchy for an ob-

ject even for functional predicates and we can utilize them to

find the most specific correct value among the candidate values.

For example, consider the three claimed values of ‘NY’, ‘Liberty

Island’ and ‘LA’ about the location of the Statue of Liberty in Ta-

ble 1. Because Liberty Island is an island in NY, ‘NY’ and ‘Liberty

∗
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Table 1: Locations of tourist attractions

Object Source Claimed value
Statue of Liberty UNESCO NY

Statue of Liberty Wikipedia Liberty Island

Statue of Liberty Arrangy LA

Big Ben Quora Manchester

Big Ben tripadvisor London

Island’ do not conflict with each other. Thus, we can conclude

that the Statue of Liberty stands on Liberty Island in NY.

We also observed that many sources provide generalized val-

ues in the real-life. Figure 1 shows the graph of the general-

ized accuracy against the accuracy of the sources in the real-life

datasets BirthPlaces and Heritages used for experiments in Sec-

tion 5. The accuracy and the generalized accuracy of a source are

the proportions of the exactly correct values and hierarchically-

correct values among all claimed values, respectively. If a source

claims exactly correct values without generalization, it is located

at the dotted diagonal line in the graph. This graph shows that

many sources in real-life datasets claim with generalized values

and each source has its own tendency of generalization when

claiming values.

Most of the existing methods [7, 9, 30, 38, 39] simply regard the

generalized values of a correct value as incorrect. Thus, it causes

a problem in estimating the reliabilities of sources. According to

[8], 35% of the false negatives in the data fusion task are produced

by ignoring such hierarchical structures. Note that there aremany

publicly available hierarchies such as WordNet [32] and DBpedia

[1]. Thus, a truth discovery algorithm to incorporate hierarchies

is proposed in [2]. However, it does not consider the different

tendencies of generalization and may lead to the degradation of

the accuracy. Another drawback is that it needs a threshold to

control the granularity of the estimated truth.

We propose a novel probabilistic model to capture the different

generalization tendencies shown in Figure 1. Existing probabilis-

tic models [7, 9, 30, 39] basically assume two interpretations of a

claimed value (i.e., correct and incorrect). By introducing three

interpretations of a claimed value (i.e., exactly correct, hierarchi-

cally correct, and incorrect), our proposed model represents the

generalization tendency and reliability of the sources.

Figure 1: Generalization tendencies of the sources
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Figure 2: Crowdsourced truth discovery in KF

Crowdsourced truth discovery: It is reported in [8] that upto

96% of the false claims are made by extraction errors rather than

by the sources themselves. Since crowdsourcing is an efficient

way to utilize human intelligence with low cost, it has been

successfully applied in various areas of data integration such as

schema matching [12], entity resolution [34], graph alignment

[17] and truth discovery [39, 41]. Thus, we utilize crowdsourcing

to improve the accuracy of the truth discovery.

It is essential in practice to minimize the cost of crowdsourc-

ing by assigning proper tasks to workers. A popular approach

for selecting queries in active learning is uncertainty sampling
[3, 18, 19, 39]. It asks a query to reduce the uncertainty of the con-

fidences on the candidate values the most. However, it considers

only the uncertainty regardless of the accuracy improvement.

QASCA algorithm [41] asks a query with the highest accuracy

improvement, but measures the improvement without consider-

ing the number of collected claimed values. It can be inaccurate

since an additional answer may be less informative for an object

which already has many records and answers.

Assume that there are two candidate values of an object with

equal confidences. If only a few sources provide the claimed

values for the object, an additional answer from a crowd worker

will significantly change the confidence distribution. Meanwhile,

if hundreds of sources already provide the claimed values for

the object, the influence of an additional answer is likely to be

very little. Thus, we need to consider the number of collected

answers as well as the current confidence distribution. Based

on the observation, we develop a new method to estimate the

increase of accuracy more precisely by considering the number

of collected records and answers. We also present an incremental

EM algorithm to quickly measure the accuracy improvement and

propose a pruning technique to efficiently assign the tasks to

workers.

An overview of our truth discovery algorithm: By combin-

ing the proposed task assignment and truth inference algorithms,

we develop a novel crowdsourced truth discovery algorithm using
hierarchies. As illustrated in Figure 2, our algorithm consists of

two components: hierarchical truth inference and task assignment.
The hierarchical truth inference algorithm finds the correct val-

ues from the conflicting values, which are collected from different

sources and crowd workers, using hierarchies. The task assign-

ment algorithm distributes objects to the workers who are likely

to increase the accuracy of the truth discovery the most. The

proposed crowdsourced truth discovery algorithm repeatedly alter-

nates the truth inference and task assignment until the budget

of crowdsourcing runs out. As discussed in [20], some workers

answer slower than others and increase the latency. However, we

do not investigate how to reduce the latency in this work since

we can utilize the techniques proposed in [13].

Our contributions: The contributions of this paper are sum-

marized below.

• We propose a truth inference algorithm utilizing the hi-

erarchical structures in claimed values. To the best of our

knowledge, it is the first work which considers both the re-

liabilities and the generalization tendencies of the sources.

• To assign a task which will most improve the accuracy, we

develop an incremental EM algorithm to estimate the ac-

curacy improvement for a task by considering the number

of claimed values as well as the confidence distribution.

We also devise an efficient task assignment algorithm for

multiple crowd workers based on the quality measure.

• We empirically show that the proposed algorithm outper-

forms the existing works with extensive experiments on

real-life datasets.

2 PRELIMINARIES
In this section, we provide the definitions and the problem formu-

lation of crowdsourced truth discovery in the presence of hierarchy.

2.1 Definitions
For the ease of presentation, we assume that we are interested

in a single attribute of objects although our algorithms can be

easily generalized to find the truths of multiple attributes. Thus,

we use ‘the target attribute value of an object’ and ‘the value of

an object’ interchangeably.

A source is a structured or unstructured database which con-

tains the information on target attribute values for a set of objects.

In this paper, a source is a certain web page or website and a

worker represents a human worker in crowdsourcing platforms.

The information of an object provided by a source or a worker is

called a claimed value.

Definition 2.1. A record is a data describing the information

about an object from a source. A record on an object o from

a source s is represented as a triple (o, s,vso ) where v
s
o is the

claimed value of an object o collected from s . Similarly, if a worker

w answers that the truth on an object o is vwo , the answer is

represented as (o,w,vwo ).

Let So be the set of the sources which claimed a value on the

object o and Vo be the set of candidate values collected from So .
Each worker inWo answers a question about the object o by

selecting a value from Vo .
In our problem setting, we assume that we have a hierarchy

tree H of the claimed values. If we are interested in an attribute

related to locations (e.g., birthplace), H would be a geographi-

cal hierarchy with different levels of granularity (e.g., continent,

country, city, etc.). We also assume that there is no answer with

the value of the root in the hierarchy since it provides no in-

formation at all (e.g., Earth as a birthplace). We summarize the

notations to be used in the paper in Table 2.

Example 2.2. Consider the records in Table 1. Since the source

Wikipedia claims that the location of the Statue of Liberty is

Liberty Island, it is represented by vso =‘Liberty Island’ where

o =‘Statue of Liberty’ and s =‘Wikipedia’. If a human worker

‘Emma Stone’ answered Big Ben is in London, it is represented

by vwo =‘London’ where o =‘Big Ben’ andw =‘Emma Stone’.

2.2 Problem Definition
Given a set of objects O and a hierarchy tree H , we define the

two subproblems of the crowdsourced truth discovery.
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Figure 3: A graphical model for truth inference

Definition 2.3 (Hierarchical truth inference problem). For a set
of records R collected from the sources and a set of answers A
from the workers, we find the most specific true value v∗o of each

object o ∈ O among the candidate values in Vo by using the

hierarchy H .

Definition 2.4 (Task assignment problem). For each workerw
in a set of workersW , we select the top-k objects from O which

are likely to increase the overall accuracy of the inferred truths

the most by using the hierarchy H .

We present a hierarchical truth inference algorithm in Sec-

tion 3 and a task assignment algorithm in Section 4.

3 HIERARCHICAL TRUTH INFERENCE
For the hierarchical truth inference, we first model the trust-

worthiness of sources and workers for a given hierarchy. Then,

we propose a probabilistic model to describe the process of gen-

erating the set of records and the set of answers based on the

trustworthiness modeling. We next develop an inference algo-

rithm to estimate the model parameters and determine the truths.

3.1 Our Generative Model
Our probabilistic graphical model in Figure 3 expresses the con-

ditional dependence (represented by edges) between random

variables (represented by nodes). While the previous works [5,

15, 31, 35] assume that all sources and workers have their own

reliabilities only, we assume that each source or worker has its

generalization tendency as well as reliability. We first describe

how sources and workers generate the claimed values based on

their trustworthiness. We next present the model for generating

the true value. Finally, we provide the detailed generative process

of our probabilistic model.

Model for source trustworthiness: For an object o, let v∗o be

the truth and vso be the claimed value reported by a source s .

Table 2: Notations

Symbol Description

s A data source

w A crowd worker

vso Claimed value from s about o
vwo Claimed value from w about o

R Set of all records collected from the set of sources S
A Set of all answers collected from the set of workersW
Vo Set of candidate values about o

So Set of sources which post information about o
Wo Set of workers who answered about o
Os Set of objects that source s provided a value

Ow Set of objects that worker w answered to

Go (v)
Set of values in Vo which are ancestors of a value v
except the root in the hierarchy H

Do (v) Set of values in Vo which are descendants of v

Recall that Vo is the set of candidate values for an object o. Fur-
thermore, we let Go (v) denote the set of candidate values which
are ancestors of a value v except for the root in the hierarchy H .

There are three relationships between a claimed value vso and

the truth v∗o : (1) v
s
o = v∗o , (2) v

s
o ∈ Go (v

∗
o ) and (3) otherwise.

Let ϕs = (ϕs,1,ϕs,2,ϕs,3) be the trustworthiness distribution of a

source s where ϕs,i is the probability that a claimed value of the

source s corresponds to the i-th relationship. In each relationship,

a claimed value is generated as follows:

• Case 1 (vso = v∗o ): The source s provides the exact true
value with a probability ϕs,1.
• Case 2 (vso ∈ Go (v

∗
o )): The source s provides a general-

ized true value vso with a probability ϕs,2. In this case, the

claimed value is an ancestor of the truth v∗o in H . We as-

sume that the claimed value is uniformly selected from

Go (v
∗
o ).

• Case 3 (otherwise): The source s provides a wrong value

vso not even in Go (v
∗
o ). The claimed value is uniformly

selected among the rest of the candidate values in Vo .

The probability distribution ϕs is an initially-unknown model

parameter to be estimated in our inference algorithm. Accord-

ingly, the probability of selecting an answervso among the values

in Vo for an object o is represented by

P (vso |v
∗
o, ϕs ) =


ϕs,1 if vso = v

∗
o ,

ϕs,2/ |Go (v∗o ) | if vso ∈ Go (v∗o ),
ϕs,3/( |Vo | − |Go (v∗o ) | − 1) otherwise.

(1)

For the prior of the distribution ϕs , we assume that it follows a

Dirichlet distribution Dir (α), with a hyperparameter α = (α1,α2,
α3), which is the conjugate prior of categorical distributions.

LetOH be the set of objects who have an ancestor-descendant

relationship in their candidate set. In practice, there may exist

some objects whose candidate values do not have an ancestor-

descendant relationship. In this case, the probability of the sec-

ond case (i.e., ϕs,2) may be underestimated. Thus, if there is no

ancestor-descendant relationship between the claimed values

about o (i.e., o < OH ), we assume that a source generates its

claimed value vso with the following probability

P (vso |v
∗
o, ϕs ) =

{
ϕs,1 + ϕs,2 if vso = v

∗
o ,

ϕs,3/( |Vo | − 1) otherwise.

(2)

Model for worker trustworthiness: Let vwo be the claimed

value chosen by a workerw among the candidates in Vo for an

object o. Similar to the model for source trustworthiness, we

also assume the three relationships between a claimed value

vwo and the truth v∗o : (1) v
w
o = v∗o , (2) v

w
o ∈ Go (v

∗
o ) and (3)

otherwise. Each worker w has its trustworthiness distribution
ψw = (ψw,1,ψw,2,ψw,3) where ψw,i is the probability that an

answer of the workerw corresponds to the i-th relationship. We

assume that the trustworthiness distribution is generated from

Dir (β) with a hyperparameter β = (β1, β2, β3).
Since it is difficult for the workers to be aware of the correct

answer for every object, a worker can refer to web sites to answer

the question. In such a case, if there is a widespread misinforma-

tion across multiple sources, the worker is also likely to respond

with the incorrect information. Similar to [9, 30], we thus ex-

ploit the popularity of a value in Cases 2 and 3 to consider such

dependency between sources and workers.

• Case 1 (vwo = v∗o ): The workerw provides the exact true

value with a probabilityψw,1.

• Case 2 (vwo ∈ Go (v
∗
o )): The workerw provides a general-

ized true value with a probability ψw,2. We assume that
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f vo,s =
P(vso |v

∗
o =v,ϕs )·µo,v∑

v ′∈Vo P(v
s
o |v
∗
o =v

′,ϕs )·µo,v ′

f vo,w =
P(vwo |v

∗
o =v,ψw )·µo,v∑

v ′∈Vo P(v
w
o |v
∗
o =v

′,ψw )·µo,v ′

д1o,s =
ϕs,1 ·µo,vso∑

v∈Vo P(v
s
o |v
∗
o =v,ϕs )·µo,v

д2o,s =


∑
v∈Do (vso )

ϕs,2
|Go (v )|

·µo,v∑
v∈Vo P (v

s
o |v∗o=v,ϕs )·µo,v

if o ∈ OH

ϕs,2 ·µo,vso∑
v∈Vo P (v

s
o |v∗o=v,ϕs )·µo,v

otherwise

д3o,s =

∑
v ∈¬Do (vso )

ϕs,3
|Vo−Go (v) |−1

· µo,v∑
v ∈Vo P(v

s
o |v
∗
o =v,ϕs ) · µo,v

д1o,w =
ψw,1 · µo,vwo∑

v ∈Vo P(v
w
o |v
∗
o =v,ψw ) · µo,v

д2o,w =


∑
v∈Do (vwo )

ψw,2 ·Pop2(vwo |v
∗
o=v)·µo,v∑

v∈Vo P (v
w
o |v∗o=v,ψw )·µo,v

if o ∈ OH

ψw,2 ·µo,vwo∑
v∈Vo P (v

w
o |v∗o=v,ψw )·µo,v

otherwise

д3o,w =

∑
v ∈¬Do (vwo )ψw,3 · Pop3(v

w
o |v
∗
o =v) · µo,v∑

v ∈Vo P(v
w
o |v
∗
o =v,ψw ) · µo,v

Figure 4: E-step for the proposed truth inference algorithm

the claimed value vwo is selected according to the popu-

larity Pop2(v
w
o |v
∗
o ) =

| {s |s ∈So,vso=v } |
| {s |s ∈So,vso ∈Go (v∗o )} |

which is the

proportion of the records whose claimed value is vwo out

of the records with generalized values of v∗o .
• Case 3 (otherwise): The claimed value is selected from the

wrong values according to the popularity Pop3(v
w
o |v
∗
o ) =

| {s |s ∈So,vso=v } |
| {s |s ∈So,vso<Go (v∗o ),vso,v∗o } |

.

By the above model, the probability of selecting an answervwo
for the truth v∗o of an object o is formulated as

P (vwo |v
∗
o, ψw )=


ψw,1 if vwo = v

∗
o ,

ψw,2 · Pop2(vwo |v
∗
o ) if vwo ∈ Go (v∗o ),

ψw,3 · Pop3(vwo |v
∗
o ) otherwise.

(3)

Similar to the model for source trustworthiness, if there is no

ancestor-descendant relationship in the candidate values of an

object o, the probability of selecting a claimed value vwo is

P (vwo |v
∗
o, ψw ) =

{
ψw,1 +ψw,2 if vwo = v

∗
o ,

ψw,3 · Pop3(vwo |v
∗
o ) otherwise.

(4)

Model for truth: We introduce the probability distribution over

the candidate answers to determine the truth, called confidence
distribution. Each object o has a confidence distribution µo =
{µo,v }v ∈Vo where µo,v is the probability that the value v ∈ Vo
is the true answer for o. We also use a dirichlet prior Dir (γo )
for the confidence distribution µo where γo = {γo,v }v ∈Vo is a

hyperparameter.

Based on the above three models, the generative process of

our model works as follows.

Generative process: Given a set of objects O , a set of sources
S and a set of workersW , our proposed model assumes the fol-

lowing generative process for the set of records R and the set of

answers A:

(1) Draw ϕs ∼ Dir (α) for each source s ∈ S

(2) Drawψw ∼ Dir (β) for each workerw ∈W

(3) For each object o ∈ O

(a) Draw µo ∼ Dir (γo )

(b) Draw a true value v∗o ∼ Cateдorical(µo )

(c) For each source s ∈ So

(i) Draw a value vso following P(vso |v
∗
o ,ϕs )

(d) For each workerw ∈Wo

(i) Draw a value vwo following P(vwo |v
∗
o ,ψw )

3.2 Estimation of Model Parameters
We now develop an inference algorithm for the generative model.

Let Θ = ϕϕϕ ∪ψψψ ∪ µµµ be the set of all model parameters where

ϕϕϕ= {ϕs |s ∈S},ψψψ = {ψw |w ∈W } and µµµ= {µo |o ∈O}. We propose an

EM algorithm to find the maximum a posteriori (MAP) estimate

of the parameters in our model.

The maximum a posteriori (MAP) estimator: Recall that
R = {(o, s,vso )} is the set of records from the sources and A =
{(o,w,vwo )} is the set of answers from the workers. For every

object o, each source s ∈ So and each workerw ∈Wo generates

its claimed values independently. Then, the likelihood of R and

A based on our generative model is

P (R, A |Θ)=
∏
o∈O

∏
s∈So

P (vso |ϕs , µo ) ·
∏
o∈O

∏
w∈Wo

P (vwo |ψw , µo )

where the probability of generating a claimed value by a source

or a worker becomes

P (vso |ϕs , µo ) =
∑
v∈Vo

P (vso |ϕs , v
∗
o = v) · µo,v (5)

P (vwo |ψw , µo ) =
∑
v∈Vo

P (vwo |ψw , v∗o = v) · µo,v . (6)

Consequently, the MAP point estimator is obtained by maximiz-

ing the log-posterior as

Θ̂ = argmax

Θ
{log P(R,A|Θ) + log P(Θ)} = argmax

Θ
F (7)

where the objective function F is

F =
∑
o∈O

∑
s∈So

log

∑
v∈Vo

P (vso |ϕs , v
∗
o = v) · µo,v

+
∑
o∈O

∑
w∈Wo

log

∑
v∈Vo

P (vwo |ψw , v∗o = v) · µo,v (8)

+
∑
s∈S

logp(ϕs |α )+
∑
w∈W

logp(ψw |β )+
∑
o∈O

logp(µo |γo ).

Note that although we assumed that each claimed value is

generated independently according to its probability distribution

defined in Eq. (5) and (6), the dependencies between sources and

workers are already considered in Pop2(v
w
o |v
∗
o ) and Pop3(v

w
o |v
∗
o ).

The EM algorithm: We introduce a random variable Cv to rep-

resent the type of the relationship between the claimed value v
and the truth v∗o . It is defined as follows:

Cv =


1 if v = v∗o ,

2 if v ∈ Go (v
∗
o ),

3 otherwise.

In the E-step, we compute the conditional distributions of the

hidden variables Cvso , Cvwo and v∗o under our current estimate of

the parameters Θ. Let f vo,s , f
v
o,w , д

t
o,s and д

t
o,w denote the con-

ditional probabilities P(v∗o =v |v
s
o , µo ,ϕs ), P(v

∗
o =v |v

w
o , µo ,ψw ),

P(Cvso = t |µo ,ϕs ) and P(Cvwo = t | µo ,ψw ), respectively. Using
Bayes’ rule, we can update the conditional probabilities as shown

in Figure 4 where Do (v) = {v
′ |v ∈ Go (v

′) ∧ v ′ ∈ Vo } is the set
of descendants of v among the candidate values and ¬Do (v) =
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Vo−Do (v)−{v} is the set of candidate values each of which is

neither a descendant of the value v nor the v itself.

In theM-step, we find the model parameters Θ that maximize

our objective function F. We first add Lagrange multipliers to

enforce the constraints of model parameters.

L = F+
∑
s∈S

λϕ,s

(
1−

3∑
t=1

ϕs,t

)
+

∑
w∈W

λψ ,w

(
1−

3∑
t=1

ψw,t

)
+

∑
o∈O

λµ,o
©­«1−

∑
v∈Vo

µo,v
ª®¬

We obtain the following equations for updating the model

parameters Θ by taking the partial derivative of the Lagrangian

L with respect to each model parameter and setting it to zero:

µo,v =

∑
s∈So f

v
o,s +

∑
w∈Wo f

v
o,w + γo,v − 1

|So | + |Wo | +
∑
v ′∈Vo

(
γo,v ′ − 1

) (9)

ϕs,t =

∑
o∈Os д

t
o,s + αt − 1

|Os | +
∑

3

t ′=1 (αt ′ − 1)
(10)

ψw,t =

∑
o∈Ow дto,w + βt − 1

|Ow | +
∑

3

t ′=1 (βt ′ − 1)
(11)

where Os and Ow are the sets of objects claimed by s and w ,

respectively. We infer the truth by choosing the value with the

maximum confidence among the candidate values as

v∗o = argmax

v ∈Vo
µo,v . (12)

Extension to numerical data: In the world wide web, numer-

ical data also have an implicit hierarchy due to the significant

digits which carry meaning contributing to its measurement reso-

lution. For example, even though the area of Seoul is 605.196km2
,

different websites may represent the area in various forms de-

pending on the significant figures (e.g., 605.2km2
, 605km2

). An ex-

isting algorithm [21] to handle numerical data utilizes a weighted

sum of the claimed values to consider the distribution of the

claimed values. However, such method is sensitive to outliers

and thus need a proper preprocessing to remove the outliers. To

overcome the drawbacks, we generate the underlying hierarchy

in the numerical data by assuming thatvd is a descendant ofva if

a value va can be obtained by rounding off a value vd . Then, we
can use our TDH algorithm to find the truths in numerical data

by taking into account the relationship between the values in the

implicit hierarchy. Our algorithm is also robust to the outliers

with extremely small or large value since we estimate the truth

by selecting the most probable value from the candidate values

rather than computing a weighted average of the claimed values.

4 TASK ASSIGNMENT TOWORKERS
In this section, we propose a task assignment method to select

the best objects to be assigned to the workers in crowdsourcing

systems. We first define a quality measure of tasks called Expected
Accuracy Increase (EAI) and develop an incremental EM algorithm

to quickly estimate the quality measure. Finally, we present an

efficient algorithm for assigning the k questions to each worker

w in a set of workersW based on the measure.

4.1 The Quality Measure
Given a workerw , our goal is to choose an object to be assigned

to the workerw which is likely to increase the accuracy of the

estimated truths the most. Thus, we define a quality measure for

a pair of worker and an object based on the improvement of the

accuracy. As discussed in [41], the improvement of the accuracy

by a task can be estimated by using the difference between the

highest confidence as follows:

(Accuracy improvement ) = {max

v
µo,v |w −max

v
µo,v }/ |O | (13)

where µo,v |w is the estimated confidence on v if the worker w
answers about an object o.

The quality measure used by QASCA: The QASCA[41] algo-
rithm calculates the estimated confidence by using the current

confidence distribution and the likelihood of the answervwo given

the truth v∗o = v as

µo,v |w ∝ µo,v · p(v
w
o = v

′ |v∗o = v)

where v ′ is a sampled claimed value. There are two drawbacks

in the quality measure of QASCA. First, since it computes the

estimated confidence µo,v |w based on a sampled answer vwo = v ,
the value of the quality measure is very sensitive to the sam-

pled answer. In addition, QASCA does not consider the number

of claimed values collected so far and the estimated confidence

µo,v |w may not be accurate. For instance, assume that there exist

two objects which have identical confidence distributions. If one

of the objects already has many collected claimed values, an addi-

tional answer is not likely to change the confidence significantly.

Thus, task assignment algorithms should select another object

who has a smaller number of collected records and answers.

Our quality measure: To avoid the sensitiveness caused by

sampling answers, we develop a new quality measure Expected
Accuracy Improvement (EAI) which is obtained by taking the

expectation to Eq. (13). That is,

EAI (w, o) = {E[max

v
µo,v |w ] −max

v
µo,v }/ |O |. (14)

By the definition of expectation, E[maxv µo,v |w ] becomes

E[max

v
µo,v |w ]=

∑
v ′∈Vo

P (vwo =v
′ |ψw , µo ) ·max

v
µo,v |vwo =v ′ . (15)

where µo,v |vwo =v ′ is the conditional confidence when a worker

w answers with v ′ about the object o.
Since P(vwo = v

′ |ψw , µo ) can be computed by Eq. (6), to com-

pute E[maxv µo,v |w ] by Eq. (15), we need the estimation of the

conditional confidence µo,v |vwo =v ′ with an additional answer

vwo = v ′. Recall that the estimated confidence computed by

QASCA may not be accurate because it does not consider the

collected records and answers so far. To reduce the error, we

use them to compute the conditional confidence µo,v |vwo =v ′ . We

can compute the conditional confidence µo,v |vwo =v ′ by applying

the EM algorithm in Section 3.2 with the collected records and

answers including vwo = v
′
. However, since it is computationally

expensive, we next develop an incremental EM algorithm.

4.2 The Incremental EM Algorithm
Let Fvwo =v ′ be the objective function in Eq. (7) after obtaining an

additional answer (o,w,v ′). Then, we have

Fvwo =v ′ = F + log
∑
v ∈Vo

P(vwo = v
′ |ψw ,v

∗
o = v) · µo,v

by adding the related term of the additional answer (log likeli-

hood of the additional answer) to Eq. (8). Instead of running the

iterative EM algorithm in Section 3.2, we incrementally perform

a single EM-step to speed up for only the additional answer with

the current model parameters and the above objective function.

E-step: Since we use the current model parameters, the proba-

bilities of the hidden variables for collected records and answers

are not changed. Thus, we only need to compute the conditional

probabilities of the hidden variable given the additional answer

as

f vo,w |vwo =v ′
=

P(vwo =v
′ |v∗o=v,ψw ) · µo,v∑

v ′′∈Vo P(v
w
o =v

′ |v∗o =v
′′,ψw ) · µo,v ′′

(16)
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based on the equation for f vo,w used at the E-step in Figure 4.

M-step: For the objective function Fvwo =v ′ , we obtain the fol-

lowing equation of the M-step for the confidence distribution µo
with the additional answer vwo = v

′

µo,v |vwo =v ′ =

∑
s ∈So f vo,s+

∑
w ′∈Wo f vo,w ′+ f

v
o,w |vwo =v ′

+γo,v −1

|So |+ |Wo |+1+
∑
v ′′∈Vo

(
γo,v ′′ − 1

)
by adding the related terms f vo,w |vwo =v ′

and 1 to the numerator

and the denominator of the update equation in Eq. (9), respec-

tively. Let No,v and Do be the numerator and the denominator in

Eq. (9), respectively. Then, the above equation can be rewritten

as

µo,v |vwo =v ′ =
No,v + f vo,w |vwo =v ′

Do + 1
. (17)

By substituting f vo,w |vwo =v ′
in Eq. (17) with Eq. (16), the condi-

tional confidence becomes

µo,v |vwo =v ′ =
No,v +

P (vwo =v
′ |v∗o=v,ψw )·µo,v∑

v′′∈Vo P (v
w
o =v ′ |v∗o=v ′′,ψw )·µo,v′′

Do + 1
. (18)

Since No,v and Do are proportional to the number of the existing

claimed values, the confidence will be changed very little if there

are many claimed values already. Thus, we can overcome the

second drawback of QASCA. Since No,v s and Dos are repeatedly

used to compute µo,v |vwo =v ′ , our truth inference algorithm keeps

No,v s and Dos in main memory to reduce the computation time.

Time complexity analysis: To calculate E[maxv µo,v |w ] by
Eq. (15), P(vwo = v

′ |ψw , µo ) is computed |Vo | times and µo,v |vwo =v ′

is calculated for every pair ofv andv ′ (i.e.,O(|Vo |
2) times). More-

over, computing P(vwo = v
′ |ψw , µo ) and µo,v |vwo =v ′ take O(|Vo |)

time. Thus, it takesO(|Vo |
3) time to compute EAI (w,o) by Eq. (14).

In reality, |Vo | is very small compared to |O |,|S | and |W |. In addi-

tion, by utilizing the pruning technique in the next section, we

can significantly reduce the computation time. Therefore, the

task assignment step can be performed within a short time com-

pared to the truth inference. The execution time for each step

will be presented in the experiment section.

4.3 The Task Assignment Algorithm
To find the k objects to be assigned to each worker, we need

to compute EAI (w,o) for all pairs of w and o. To reduce the

number of computing EAI (w,o), we develop a pruning technique
by utilizing an upper bound of EAI (w,o).

An upper bound of EAI: We provide the following lemma

which allows us to compute an upper boundUEAI (o).

Lemma 4.1. (Upper Bound of Expected Accuracy Increase) For
an object o and a workerw , we have

EAI (w,o) ≤ UEAI (o) =
1 −maxv µo,v
|O | · (Do + 1)

. (19)

Proof. From Eq. (18), since

∑
v ′ P(v

w
o =v

′ |ψw , µo )=1, we get

E[max

v
µo,v |w ] =

∑
v ′∈Vo

P (vwo =v
′ |ψw , µo ) ·max

v
µo,v |vwo =v ′

≤ max

v,v ′
µo,v |vwo =v ′ ·

∑
v ′∈Vo

P (vwo =v
′ |ψw , µo )

= max

v,v ′
µo,v |vwo =v ′ . (20)

Moreover, from Eq. (17), we obtain

µo,v |vwo =v ′ =
No,v + f vo,w |vwo =v ′

Do + 1
≤

No,v + 1
Do + 1

. (21)

Algorithm 1 Task Assignment

Input: set of workersW , number of questions k
1: Compute the upper boundUEMCI (o) for o ∈ O
2: hU B ← BuildMaxHeap({⟨UEAI (o), o ⟩|o ∈ O })

3: Sort workers in the decreasing order ofψw,1

(i.e.,ψ1,1 ≥ψ2,1 ≥ · · · ≥ψ |W |,1).
4: forw = 1 to |W | do
5: hEAI [w ] ← BuildMinHeap({})

6: while True do
7: ⟨UEAI (o), o ⟩ ← hU B .extractMax()

8: if hEAI [ |W |].size =k and hEAI [w ].min >UEAI (o) for allw then
9: break
10: forw = 1 to |W | do
11: if w already answered on o or hEAI [w ].min >UEAI (o) then
12: continue
13: Compute EAI (w, o)
14: hEAI [w ].insert(⟨EAI (w, o), o ⟩)
15: if hEAI [w ].size ≤ k then
16: break
17: o ← hEAI [w ].extractMin().value()

By substituting Eq. (21) for µo,v |vwo =v ′ in Eq. (20), we derive

E[max

v
µo,v |w ] ≤ max

v,v ′
µo,v |vwo =v ′ ≤

maxv No,v + 1
Do + 1

. (22)

In addition, by applying Eq. (22) to Eq. (14), we get

EAI (w, o) ≤ (maxv No,v+1
Do+1

−maxv µo,v )/ |O |.

Since µo,v =
No,v
Do

, we finally obtain the upper bound ofEAI (w,o).

EAI (w, o) ≤ (
maxv No,v+1

Do+1
−

maxv No,v
Do

)/ |O |

=
1−

maxv No,v
Do

|O |·(Do+1)
=

1−maxv µo,v
|O |·(Do+1)

= UEAI (o).

�

We devise an algorithm to assign the best k objects to each

available worker in crowdsourcing systems. Since a single answer

is sufficient to find the correct value for some objects, we assign

an object to only a single worker in each round. If the answer is

not sufficient to find the correct value of the object, we assign

the object to another worker in the next round.

Our task assignment algorithm sequentially assigns each ob-

ject to a worker by scanning the objects o with non-increasing

order of the upper bound UEAI (o). To allocate an object to a

worker, sinceψw,1 is the probability of answering the truth, we

consider the workersw with non-increasing order ofψw,1. After

assigning an object to a worker w , if the number of assigned

objects to the workerw exceeds k , we remove the object o with
the minimum EAI (w,o) and assign the deleted object to the next

worker and perform the same step. While scanning the objects,

we stop the assignment if the upperboundUEAI (o) is smaller than

the minimum EAI (w,o′) among the EAI (w,o′)s of all assigned
objects and each worker has k assigned objects. The reason is

that the EAI (w,o) of the remaining objects o can be larger than

that of any assigned object.

The pseudocode: It is shown in Algorithm 1. We first compute

the upper bound UEAI (o) for every object o ∈ O by Lemma 4.1

and build a maxheap hU B of all objects by usingUEAI (o) as the
key to assign the objects to workers in the decreasing order of

UEAI (o) (in lines 1-2). The workers are sorted in the decreasing

order ofψw,1 to give a higher priority to reliable workers (in line

3). We next initialize a minheap hEAI [w] for each worker w to

contain the k assigned objects (in lines 4-6). Then, we repeatedly

extract an object from hU B and assign the object to a worker

in the sorted order ofψw,1 (in lines 12-18). Before assigning an

object o, if the heaps hEAI [w]s of all workers are full and the
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minimum value of EAI (w,o′) of the objects o′ in all hEAI [w]s is
larger than the upper boundUEAI (o), we stop immediately.

5 EXPERIMENTS
The experiments are conducted on a computer with Intel i5-7500

CPU and 16GB of main memory.

Datasets:We collected the two real-life datasets publicly avail-

able at http://kdd.snu.ac.kr/home/datasets/tdh.php.

BirthPlaces: We crawled 13,510 records about the birthplaces of

6,005 celebrities from 7 websites (sources). For the gold standard

data to evaluate the correctness of discovered birthplaces, we

used IMDb biography which is available at http://www.imdb.com.

Moreover, the geographical hierarchy was created by using the

IMDb data. For example, if there is a person who was born in

‘LA, California, USA’, we assigned ‘LA’ as a child of ‘California’

and ‘California’ as a child of ‘USA’. The hierarchy contains 4,999

nodes (e.g., countries, cities and etc.) and its height is 5.

Heritages: This is a dataset of the locations of World Heritage

Sites provided by UNESCO World Heritage Centre, available

at http://whc.unesco.org. We queried about the locations of 785

World Heritage Sites with Bing Search API and obtained 4,424

claimed values from 1,577 distinct websites. The hierarchy was

created in the same way as we did for BirthPlaces and it has 1,027
nodes. The height of this hierarchy tree is 6.

Quality Measures: We use Accuracy, GenAccuracy and AvgDis-
tance to evaluate the truth discovery algorithms. Let to be the

truth of the object o in the gold standard and v∗o be the estimated

truth by an algorithm. Note that to may not exist in the set of

candidate values. In this case, the most specific candidate value

among the ancestors of the truth is assumed to be to . Accuracy is

the proportion of objects that the algorithm discovers the truth

exactly. It is actually used in [10, 39–41] to evaluate truth discov-

ery algorithms.

(Accuracy) = Σo∈O I (v
∗
o = to )/|O |

The ancestors of to are less informative but still correct values.

Thus, we develop an evaluation measure named GenAccuracy
which is the proportion of objects o whose estimated truth v∗o is

either the truth to or an ancestor of the truth.

(GenAccuracy) = Σo∈O I (v
∗
o ∈GH (to )∪{to })/|O |

Ancestors of the truth have a different level of informativeness

depending on the distance to the truth. For example, ‘New York’

is more informative than ‘USA’ as the location of the Statue

of Liberty. Thus, we utilize another evaluation measure named

AvgDistance which weights the estimated truth based on the

distance from the ground truth. More specifically, it is the average

number of edges d(v∗o , to ) between the truth to and the estimated

truth v∗o in the hierarchy H .

(AvgDistance) = Σo∈Od(v
∗
o , to )/|O |

AvgDistance is robust to the case where the ground truth is less

specific than the estimated truth. The estimated truth is regarded

as a wrong value when we compute Accuracy and GenAccuracy
even though the estimate truth is correct and more specific. Since

the distance between the less specific ground truth and the es-

timated truth is generally small, AvgDistance compensates the

drawback of Accuracy and GenAccuracy.

Settings for simulated crowdsourcing: To evaluate the truth

discovery algorithms with varying the quality of the answers

from workers, we conducted experiments with simulated crowd

Table 3: Performance of truth inference algorithms

Dataset

BirthPlaces Heritages
Algorithm Accuracy GenAccuracy AvgDistance Accuracy GenAccuracy AvgDistance

TDH 0.8913 0.8988 0.3151 0.7414 0.8726 0.5210
VOTE 0.7900 0.8924 0.4961 0.6892 0.8994 0.6382

LCA 0.8834 0.8923 0.3414 0.6930 0.8866 0.6611

DOCS 0.8828 0.8916 0.3409 0.6904 0.8866 0.6599

ASUMS 0.8543 0.8571 0.4573 0.6229 0.7414 1.2000

MDC 0.8263 0.8432 0.5320 0.7254 0.8087 0.6869

ACCU 0.8137 0.8296 0.6063 0.5834 0.7656 1.0637

POPACCU 0.8133 0.8300 0.6070 0.6561 0.8586 0.7554

LFC 0.8085 0.8743 0.4669 0.6803 0.8076 0.8076

CRH 0.8083 0.8271 0.6120 0.6841 0.8828 0.6688

workers. In our simulation, we assumed that each simulated

worker answers a question correctly with its own probability pw
and randomly selects an answer from the candidate values with

probability 1−pw . We sampled the probability pw from a uniform

distribution ranging from πp−0.05 to πp+0.05 where the default
value of πp is 0.75. In the experiments, each of 10 worker answers

5 questions for each round.

5.1 Implemented Algorithms
We implemented 10 truth inference algorithms and 4 task assign-

ment algorithms in Python for comparative experiments. The

truth inference algorithms are referred to as follows:

• TDH: This is our algorithm proposed in Section 3. For the

prior distribution Dir (α), we set the hyperparameter α =
(3, 3, 2) since correct values are more frequent than wrong

values for most of the sources. For the other hyperparameters

β and γ , we set every dimension of β and γ to 2.

• ACCU: It is the algorithm proposed in [7] which considers

the dependencies between sources to find the truths. The al-

gorithm exploits Bayesian analysis to find the dependencies.

• POPACCU: This denotes the algorithm in [9] which extends

ACCU. It computes the distribution of the false values from

the records while ACCU assumes that it is uniform.

• LFC: This algorithm is proposed in [31] and utilizes a confu-

sion matrix to model a source’s quality.

• CRH: It is proposed in [22] to resolve conflicts in heteroge-

neous data containing categorical and numerical attributes.

• LCA: It is a probabilistic model proposed in [30]. We select

GuessLCA to be compared in this paper which is one of the

best performers among the 7 algorithms proposed in [30].

• ASUMS: This is proposed in [2] by adapting an existing

method SUMS [29] to hierarchical truth discovery.

• MDC: This denotes the truth discovery method designed for

medical diagnose from non-expert crowdsourcing in [24].

• DOCS: This is the state-of-the-art technique presented in

[39] that suggests the domain-sensitive worker model.

• VOTE: This is a baseline that selects a value with the highest

frequency in the claimed values.

We implemented the following task assignment algorithms.

• EAI : This is our proposed algorithm in Section 4.

• MB: It is the task assignment algorithm used by DOCS [39].

• QASCA: It is a task assignment algorithm proposed in [41].

• ME: This is our baseline algorithm which utilizes an uncer-

tainty sampling. It selects an object o∗ whose confidence dis-
tribution has the maximum entropy. (i.e., o∗ = arдmaxo∈O
(−

∑
v ∈Vo µo,v · log µo,v ))
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Figure 5: Source reliability distribution in BirthPlaces

Note that EAI and MB are the task assignment algorithms

specially designed to work with TDH and DOCS, respectively.
QASCA can work with truth inference algorithms based on prob-

abilistic models such as TDH, DOCS, LCA, ACCU and POPACCU.
All the truth inference algorithms can be combined with ME.

5.2 Truth Inference
We first provide the performances of the truth inference algo-

rithms without using crowdsourcing in Table. 3.

BirthPlaces: Our TDH outperforms all other algorithms in

terms of all quality measures since TDH finds the exact truths by

utilizing the hierarchical relationships. Since TDH estimates the

reliabilities of the sources and workers by considering the hierar-

chies, it does not underestimate the reliabilities of the sources and

workers. Thus, TDH also finds more correct values including the

generalized truths. We will discuss the reliability estimation in

detail at the end of this section by comparing TDH with ASUMS.

LCA is the second-best performer and VOTE shows the lowest

Accuracy among all compared algorithms. However, in terms

of GenAccuracy, VOTE performs the second-best. It is because

many websites claim the generalized values rather than the most

specific value.

Heritages: In terms of AvgDistance and Accuracy, TDH performs

the best among those of the compared algorithms. VOTE shows

the highest GenAccuracy because many sources provide the gen-

eralized truths. In fact, a high GenAccuracy with low Accuracy
and AvgDistance can be easily obtained by providing the most

general values for the truths. However, such values usually are

not informative. Since our algorithm shows much higher Accu-
racy and much lower AvgDistance than VOTE, we can see that

the estimated truth by TDH is more accurate and precise than

the result from VOTE. Heritages contains many sources and most

of the sources have a few claims. Thus, it is very hard to estimate

the reliability of each source accurately. Therefore, most of the

compared algorithms show worse performance than VOTE in

terms of AvgDistance. In particular, ACCU has the lowest Ac-
curacy. The reason is that ACCU requires many shared objects

between two sources in order to accurately determine the depen-

dency between the sources. The average accuracy of the sources

in Heritages is 58.0% while that of the sources in BirthPlaces is
72.1%. Thus, every algorithm shows a lower Accuracy in this

dataset than in BirthPlaces.

Comparison with ASUMS: Since ASUMS [2] is the only ex-

isting algorithm which utilizes hierarchies for truth inference,

we show the statistics related to the reliability distributions esti-

mated by TDH and ASUMS for BirthPlaces dataset in Figure 5.

Accuracy and GenAccuracy represent the actual reliabilities of

each source computed from the ground truths. Recall that ϕs,1
and ϕs,2 are the estimated probabilities of providing a correct

value and a generalized correct value respectively for a source

s by our TDH, as defined in Section 3. In addition, t(s) is the
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Figure 6: Evaluation of task assignment algorithms

estimated reliability of a source s by ASUMS which ignores the

generalization level of each source. The reliabilities of the sources

4, 5 and 7 computed by ASUMS (i.e. t(s)) are quite different from
the actual reliabilities (i.e., Accuracy). As we discussed in Sec-

tion 1, for a pair of sources that provide different claimed values

with an ancestor-descendant relationship in a hierarchy, existing

methods may assume that one of the claimed values is incorrect.

Thus, the reliability of the source with the assumed wrong value

tends to become lower by the existing methods. ASUMS suffers

from the same problem and underestimates the reliabilities of

the sources 4, 5 and 7 which provide a small number of claimed

values. Meanwhile, our proposed algorithm TDH accurately esti-

mates the reliabilities of the sources by introducing another class

of the claimed values (generalized truth).

5.3 Task Assignment
Before providing the full comparison of all possible combinations

of truth inference algorithms and task assignment algorithms, we

first evaluate the task assignment algorithms with our proposed

truth inference algorithm.We plotted the averageAccuracy of the
truth discovery algorithms with different task assignment algo-

rithms for every 5 round in Figure 6. The points at the 0-th round

represent the Accuracy of the algorithms without crowdsourcing.

All algorithms show the same Accuracy at the beginning since

they use the same truth inference algorithm TDH. As the round

progresses, the Accuracy of TDH+EAI increases faster than those

of all other algorithms. The Accuracy of TDH+ME is the lowest

since ME selects a task based only on the uncertainty without

estimating the accuracy improvement by the task.

As discussed in Section 4.1, our task assignment algorithm EAI

estimates the accuracy improvement by considering the num-

ber of existing claimed values and the confidence distribution

whereas QASCA considers the confidence distribution only. We

plotted the actual and estimated accuracy improvements by EAI

and QASCA in Figure 7. The graphs show that the estimated

accuracy improvement by EAI is similar to the actual accuracy

improvement while QASCA overestimates the accuracy improve-

ment at every round. On average, the absolute estimation errors

Table 4: Accuracy of the algorithms after the 50th round

BirthPlaces Heritages

EAI MB QASCA ME EAI MB QASCA ME

TDH 0.9601 - 0.9500 0.9109 0.9304 - 0.8999 0.8884
DOCS - 0.9052 0.9341 0.8842 - 0.7546 0.7661 0.7631

LCA - - 0.8823 0.9089 - - 0.7136 0.8507

POPACCU - - 0.9295 0.8987 - - 0.7512 0.8336

ACCU - - 0.8468 0.8257 - - 0.5796 0.5896

ASUMS - - - 0.8700 - - - 0.7427

CRH - - - 0.9000 - - - 0.8459

MDC - - - 0.8254 - - - 0.7241

LFC - - - 0.8287 - - - 0.7327

VOTE - - - 0.8261 - - - 0.8634
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Figure 7: Actual and estimated accuracy improvement by EAI and QASCA
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Figure 8: Accuracy with crowdsourced truth discovery
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Figure 9:GenAccuracy with crowdsourced truth discovery
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Figure 10:AvgDistance with crowdsourced truth discovery

from EAI are 0.08 and 0.26 percentage points (pps) while those

errors from QASCA are 0.28 and 2.66 pps in BirthPlaces and
Heritages datasets, respectively. This result confirms that EAI

outperforms QASCA by effectively estimating the accuracy im-

provement. In terms of the other quality measures GenAccuracy
and AvgDistance, our proposed EAI also outperforms the other

task assignment algorithms in both datasets. Due to the lack of

space, we omit the results with the other quality measures.

5.4 Simulated Crowdsourcing
We evaluate the performance of crowdsourced truth discovery

algorithms with the simulated crowdsourcing.

For all possible combinations of the implemented truth in-

ference and task assignment algorithms, we show the Accuracy
after 50 rounds of crowdsourcing in Table 4 where the impossible

combinations are denoted by ‘-’. As expected, TDH+EAI has the

highest Accuracy in both datasets for all possible combinations.

The result also shows that both TDH and EAI contribute to in-

creasing Accuracy. The improvement obtained by EAI can be esti-

mated by comparing the result of TDH+EAI to that of the second

performer TDH+QASCA. The accuracies of TDH+EAI in Birth-
Places and Heritages datasets are 1 and 3 percentage points (pps)

higher than those of TDH+QASCA, respectively. In addition, for

each combined task assignment algorithm, the improvement by

TDH can be inferred by comparing the results with those of other

truth inference algorithms. In both datasets, TDH shows the high-

est Accuracy among the applicable truth inference algorithms

for each task assignment algorithm. For example, TDH+QASCA

shows 2.6 and 13 pps higherAccuracy in BirthPlaces andHeritages
datasets, respectively, than the second performer DOCS+QASCA

among the combinations with QASCA. In the rest of the paper,

we report Accuracy, GenAccuracy and AvgDistance of TDH+EAI,
DOCS+MB, DOCS+QASCA, LCA+ME and VOTE+ME only since

these combinations are the best or the second-best for each task

assignment algorithm.

Cost efficiency:We plotted the average Accuracy of the tested

algorithms for every 5 rounds in Figure 8. TDH+EAI shows

the highest Accuracy for every round in both datasets. For the

BirthPlaces dataset, DOCS+QASCA was the next best performer

which achieved 0.9341 ofAccuracy at the 50-th round. Meanwhile,

TDH+EAI only needs 17 rounds of crowdsourcing to achieve the

sameAccuracy. Thus, TDH+EAI saved 66% of crowdsourcing cost

compared to the second-best performer DOCS+ QASCA. Like-

wise, TDH+EAI reduced the crowdsourcing cost 74% in Heritages
dataset compared to the next performer. In terms of GenAccu-
racy and AvgDistance, TDH+EAI also outperforms all the other

algorithms as plotted in Figure 9 and Figure 10. The results con-

firm that TDH+EAI is the most efficient as it achieves the best

qualities in terms of both Accuracy and GenAccuracy.

Varying πp :We plotted the average Accuracy of all algorithms

with varying the probability of correct answer πp of simulated

workers for BirthPlaces and Heritages datasets in Figure 11(a) and

Figure 11(b), respectively. As we can easily expect, the accuracies

increase with growing πp for most of the algorithms. For both

datasets, TDH+EAI achieves the best accuracy with all values of

πp . In Heritages dataset, a source provided less than 10 claims

on average and it makes difficult for truth discovery algorithms

to estimate the reliabilities of sources. Therefore, the baseline

VOTE+ME shows good performance on Heritages dataset. Mean-

while, the performance of the state-of-the-art DOCS is signifi-

cantly degraded on the Heritages dataset.

Execution times: We plotted the average execution times of

the tested algorithms over every round in Figure 12. VOTE,

CRH+ME, DOCS+MB and TDH+EAI run in less than 2.0 sec-

onds per round on average for both datasets. Other algorithms

except for ACCU+ME, POPACCU+ME and LFC+ME also take

less than 5 seconds, which is acceptable for crowdsourcing. Since

LFC builds the confusion matrix whose size is the square of the

number of candidate values, LFC is the slowest with BirthPlaces
data. On the other hand, for Heritages dataset which is collected
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Figure 13: Execution time for task assignment per round

from much more sources than BirthPlaces dataset, ACCU and

POPACCU take longer time for truth inference to calculate the

dependencies between sources.

Effects of the filtering for task assignments: To test the scal-
ability of our algorithm, we increase the size of both datasets

by duplicating the data by upto 15 times. In Figure 13, with in-

creasing data size, we plotted the execution times of our task

assignment algorithm EAI with and without exploiting the upper

bound proposed in Section 4.3. The filtering technique saved 78%

and 94% of the computation time for the task assignment at the

scale factor 15. The graphs show that the proposed upper bound

enables us to scale for large data effectively. For the total exe-

cution time, including the truth inference, the filtering reduced

21% and 6% of the execution time on BirthPlaces and Heritages
respectively at the scale factor 15.

5.5 Crowdsourcing with Human Annotators
We evaluated the performance of the truth discovery algorithm

by crowdsourcing real human annotations. For this experiment,

we selected DOCS+QASCA, DOCS+MB and LCA+ME for com-

parison with the proposed algorithm TDH+EAI. This is because

they are the best existing algorithms for each task assignment

algorithm. We conducted this experiment with 10 human an-

notators for 20 rounds on our own crowdsourcing system. For

each worker, we assigned 5 tasks in each round. Figure 14,15 and

16 show the performances of the algorithms against the rounds.
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Figure 14: Accuracy with human annotations
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Figure 15: GenAccuracy with human annotations
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Figure 16: AvgDistance with human annotations

For both of the datasets, the results confirm that the proposed

TDH+EAI algorithm outperforms the compared algorithms as

in the previous simulations. Without crowdsourcing, the other

algorithms show a higher GenAccuracy than TDH for Heritages
dataset, because these algorithms tend to estimate the truths

with more generalized form than TDH does. However, TDH+EAI

shows the highest GenAccuracy after the 3rd round because it

correctly estimates the reliabilities and the generalization levels

of the sources by using the hierarchy. For BirthPlaces dataset,
Accuracies of the algorithms increase a little bit faster than those

in the experiment with simulated crowdsourcing. However, for

Heritages dataset, Accuracies of the algorithms increase much

slower than in the experiment with simulated crowdsourcing. It

seems that finding the locations of a world heritages is a quite

harder task than finding the birthplaces of celebrities because

the birthplaces are often big cities (such as LA), which are famil-

iar to workers, but World Cultural Heritages and World Natural

Heritages are often located in unfamiliar regions.

5.6 Crowdsourcing with AMT
We evaluate the performances of TDH+EAI, DOCS+QASCA,

DOCS+MB and LCA+ME based on the answers collected from

Amazon Mechanical Turk (AMT). We collected answers for all

objects in Heritages dataset from 20 workers in AMT. We made

the collected answers available at http://kdd.snu.ac.kr/home/

datasets/tdh.php. To evaluate the algorithms based on the col-

lected answers, we assign 5 tasks for each worker in a round. We

plotted the performance of the algorithms in Figure 17. Since we

use more workers than we did in Section 5.5, the performances
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Figure 17: Crowdsourced truth discovery in Heritages

improve a little bit faster, but the trends are very similar to those

with 10 human annotators in the previous section. We observe

that our TDH+EAI outperforms all compared algorithms even

with a commercial crowdsourcing platform.

5.7 Multi-truths Discovery Algorithms
Since there are multiple correct values including generalized val-

ues, we also implement multi-truth discovery algorithms such

as DART[27], LFC[31] and LTM[38] to compare with our TDH

algorithm. Since the multi-truths discovery algorithms indepen-

dently generate the correct values, they may output the true

values where there exist a pair of true values without ancestor-

descendant relationship in the hierarchy. For example, from the

given claimed values in Table 1, the multi-truth algorithms can

answer that the ‘Statue of Liberty‘ is located in LA and Liberty

island. In this case, we cannot evaluate the result by our evalu-

ation measures Accuracy, GenAccuracy and AvgDistance. Thus,
to evaluate the performance of the tested algorithms, we utilize

precision, recall and F1-score which are the evaluation measures

typically used for multi-truths discovery. To use the multi-truths

algorithms and the evaluation measures, we treat the ancestors

of v and v itself as the multi-truths of v . LFC can work as either

a single truth algorithm or a multi-truths algorithm. We refer to

the multi-truth version of LFC as LFC-MT to avoid the confusion.

Table 5: Performance of truth discovery algorithms

Dataset

BirthPlaces Heritages
Algorithm Precision Recall F1 Precision Recall F1

Single

truth

TDH 0.899 0.921 0.910 0.873 0.795 0.832
VOTE 0.892 0.804 0.846 0.899 0.717 0.798

LCA 0.892 0.913 0.903 0.878 0.711 0.786

DOCS 0.892 0.913 0.902 0.887 0.722 0.796

ASUMS 0.857 0.888 0.872 0.741 0.660 0.698

POPACCU 0.847 0.858 0.852 0.859 0.694 0.768

LFC 0.874 0.838 0.856 0.808 0.727 0.765

MDC 0.844 0.853 0.848 0.807 0.792 0.800

ACCU 0.830 0.842 0.836 0.766 0.631 0.692

CRH 0.827 0.833 0.830 0.883 0.716 0.791

Multi

-truths

LFC-MT 0.763 0.723 0.742 0.898 0.684 0.777

DART 0.590 0.855 0.698 0.357 0.994 0.525

LTM 0.780 0.472 0.588 0.871 0.672 0.759

Table 6: Performance evaluation for numerical data

Change rate Open price EPS

Algorithm MAE R/E MAE R/E MAE R/E

TDH 0.0006 0.1011 0.0195 0.0354 0.0352 1.9513
LCA 0.0006 0.1011 0.0195 0.0354 0.3831 16.2212

CRH 0.0020 1.6339 0.0195 0.0354 0.0610 1.9882

CATD 0.0104 2.3529 0.0211 0.0395 0.0803 3.2059

VOTE 0.0006 0.1011 0.0195 0.0354 0.0765 2.8402

MEAN 0.2837 30.8747 0.4047 0.5782 0.1762 7.3937

Table 5 shows the performance of the truth discovery algo-

rithms in terms of precision, recall and F1-score. For both datasets,

the TDH algorithm is the best in terms of F1-score. Recall that

the VOTE algorithm tends to find a generalized value of the ex-

act truth. Since a generalized truth generates a small number of

multi-truths, the VOTE algorithm shows the highest precision in

Heritages dataset. However, since its recall is much lower than

that of our TDH algorithm, the F1-score of the VOTE algorithm

is lower than that of the TDH algorithm. Similarly, although

the DART algorithm has the highest recall in Heritages dataset,
the precision of the DART algorithm is the smallest among the

precisions of all compared algorithms.

5.8 Performance on a Numerical Dataset
To evaluate the extension to numerical data, we conducted an

experiment on the stock datatset [23] which is trading data of

1000 stock symbols from 55 sources on every work day in July

2011. The detailed description of the data can be found in [23].

As we discussed at the end of Section 3.2, we can utilize our TDH

algorithm for numeric dataset with implied hierarchy. We select

three attributes ‘change rate’, ‘open price’ and ‘EPS’ of the dataset,

and compared our TDH algorithmwith the LCA, CRH, CATD[21],

VOTE and MEAN algorithms. Among the second best performers

DOCS and LCA in Table 4, we use only LCA for this experiment

since DOCS requires the domain information while it is not

available for this dataset. In addition to LCA, we implemented

and tested the two algorithms CRH[22] and CATD[21] which are

designed to find the truth in numerical data. Recall that VOTE is

a baseline algorithm which selects the candidate value collected

frommajority sources.We also implemented a baseline algorithm,

called MEAN, which estimates the correct value as the average

of the claimed numeric values.

Table 6 shows the mean squared error (MAE) and the relative

error (R/E) of the tested algorithms. The TDH algorithm performs

the best for every attribute. The MEAN and CATD algorithms

show worse performance than the other algorithms. Since they

utilize an average or a weighted average of the claimed values,

they are sensitive to outliers. The result confirms that our TDH

algorithm is effective even for numerical data.

6 RELATEDWORK
The problem of resolving conflicts from multiple sources (i.e.,

truth discovery) has been extensively studied [4, 5, 5, 7, 9, 16,

22, 24, 26, 27, 31, 33, 35–39, 42]. Truth discovery for categorical

data has been addressed in [5, 7, 9, 22, 24, 31, 36, 39]. According

to a recent survey [40], LFC[31] and CRH[22] perform the best

in an extensive experiment with the truth discovery algorithms

[4, 5, 16, 21, 35, 40, 42]. There exist other interesting algorithms

[7, 9, 24, 39] which are not evaluated together in [40]. Accu[7] and

PopAccu[9] combine the conflicting values extracted from differ-

ent sources for the knowledge fusion [8]. They consider the de-

pendencies between data sources to penalize the copiers’ claims.

DOCS[39] utilizes the domain information to consider the differ-

ent levels of worker expertises on various domains. MDC[24] is a

truth discovery algorithm devised for crowdsourcing-based med-

ical diagnosis. The works in [26, 33, 37] studied how to resolve

conflicts in numerical data from multiple sources.

The truth discovery algorithms in [30, 37–39] are based on

probabilistic models. Resolving the conflicts in numerical data is

addressed in [37] and discovering multiple truths for an object

is studied in [38]. Probabilistic models for finding a single truth
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for each object is proposed in [30, 39]. However, none of those

algorithms exploit the hierarchical relationships of claimed values

for truth discovery. The work in [2] adopts an existing algorithm

to consider hierarchical relationships.

Task assignment algorithms[3, 11, 14, 28, 39, 41] in crowd-

sourcing have been studied widely in recent years. The works in

[3, 39, 41] can be applied to our crowdsourced truth discovery.

For task assignment, AskIt[3] selects the most uncertain object

for a worker. Meanwhile, the task assignment algorithm in [39]

selects the object which is expected to decrease the entropy of

the confidence the most. QASCA [41] chooses an object which

is likely to most increase the accuracy. Since QASCA outper-

forms AskIt in the experiments presented in [39, 41], we do not

consider AskIt in our experiments. In [14], task assignment for

binary classification was investigated but it is not applicable to

our problem to find the correct value among multiple conflicting

values. Meanwhile, the task assignment algorithm is proposed

in [28] for the case when the required skills for each task and

the skill set of every worker is available. However, it is not appli-

cable to our problem. A task assignment algorithm proposed in

[11] assigns every object to a fixed number of workers. However,

since we already have claimed values from sources, we do not

have to assign all objects to workers.

7 CONCLUSION
In this paper, we first proposed a probabilistic model for truth

inference to utilize the hierarchical structures in claimed values

and an inference algorithm for the model. Furthermore, we pro-

posed an efficient algorithm to assign the tasks in crowdsourcing

platforms. The performance study with real-life datasets confirms

the effectiveness of the proposed algorithms.
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ABSTRACT
Location-based apps provide users with personalized services
tailored to their geographical position. This is highly-beneficial
for mobile users, who are able to find points of interest close to
their location, or connect with nearby friends. However, sharing
location data with service providers also introduces privacy con-
cerns. An adversary with access to fine-grained user locations can
infer private details about individuals. Geo-indistinguishability
(GeoInd) adapts the popular differential privacy (DP) model to
make it suitable for protecting users’ location information. How-
ever, existing techniques that implement GeoInd have major draw-
backs. Some solutions, such as the planar Laplace mechanism,
significantly lower data utility by adding excessive noise. Other
approaches, such as the optimal mechanism, achieve good utility,
but only work for small sets of candidate locations due to the
use of computationally-expensive linear programming. In most
cases, locations are used to answer online queries, so a quick
response time is essential. In this paper, we propose a technique
that achieves GeoInd and scales to large datasets while preserving
data utility. Our central idea is to use the composability property
of GeoInd to create a multiple-step algorithm that can be used
in conjunction with a spatial index. We preserve utility by ap-
plying accurate GeoInd mechanisms and we achieve scalability
by pruning the solution search space with the help of the index
when seeking high-utility outcomes. Our extensive performance
evaluation on top of real location datasets from social media apps
shows that the proposed technique outperforms significantly the
benchmark in terms of utility and/or computational overhead.

1 INTRODUCTION
The unprecedented growth in the area of mobile apps allows users
to enjoy personalized services and receive information customized
to their locations. In return for sharing their locations with the
service provider, users can find restaurants and shopping malls
nearby, can plan their travel itinerary with ease, or can connect
with nearby friends. While the benefits of personalized location
services are clear, there are also increasing risks associated with
the sharing of fine-grained individual locations. A significant body
of research [15–17, 21] shows that uncontrolled sharing of users’
whereabouts can lead to a wide range of attacks, from stalking and
assault, to various privacy breaches that may disclose sensitive
personal details such as one’s health status, political or religious
orientation, etc.

The need for protecting users’ locations has been the subject of
intense study by the research community for more than a decade.
Initial approaches considered cloaking of user locations to de-
crease the precision of coordinate reporting. However, it has been

© 2019 Copyright held by the owner/author(s). Published in Proceedings of the 22nd
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2019, ISBN 978-3-89318-081-3 on OpenProceedings.org.
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license CC-by-nc-nd 4.0.

shown [15, 17] that this category of solutions does not provide suf-
ficient protection, especially when dealing with sophisticated ad-
versaries with access to background knowledge. Another category
of techniques uses encryption [15]. While the privacy strength
achieved with encryption is high, there are two drawbacks: first,
only simple queries (e.g., nearest-neighbors) can be answered; sec-
ond, the computational overhead of processing encrypted queries
is high and requires extensive server-side changes.

The prominent model of differential privacy (DP) [13] has be-
come the de-facto standard for data protection in the last few years.
While there is work that shows how location can be protected with
DP, these solutions (and in fact, the model itself) assume an aggre-
gate release, where data are pooled together from a population of
users over a period of time, and then aggregates are disclosed cov-
ering various regions of the dataspace. The objective of this publi-
cation model is to hide the presence of an individual in a released
dataset, but cannot be used in operational mode (i.e., to protect
the location attributes of a specific user asking a query). The more
recent model of Geo-indistinguishability (GeoInd) [1, 2, 5] ex-
tends DP with a new distinguishability metric [6] which captures
precisely the operational setting, and prevents the association of
a user with an exact location. Specifically, GeoInd adds random
noise to the actual user location in a way that prevents an adver-
sary from inferring with high probability the user’s whereabouts,
regardless of the amount of background knowledge available to
the attacker. Its powerful semantic protection guarantees derived
from DP make GeoInd the only viable approach available at the
present time for protecting locations in the operational setting1.

Despite GeoInd being a promising model, existing techniques
that implement it have some important drawbacks. We provide a
simplified argument, without going into technical details, as the
formal aspects of GeoInd will only be introduced in Section 2. In
essence, GeoInd achieves protection by adding noise, but noise
also decreases data utility. In addition, the protection achieved is
independent of the adversary’s background knowledge, further
referred to as prior. However, an interesting result in [2] shows
that, if one is aware of the adversary’s prior, then it is possible
to construct a GeoInd mechanism that improves utility consider-
ably, while still providing protection for any prior. This result is
important, because in practice locations where a user is expected
to be are not random. For instance, datasets derived from social
media apps show that users check in (i.e., report their location) at
a set of well-defined points of interests (POI). This discrete set of
POI, combined with some other background knowledge factors
(e.g., popularity of various POI) effectively functions as the adver-
sary’s prior. One can construct mechanisms for enforcing GeoInd
in two ways: at one extreme, completely ignore the prior, and
simply generate a reported location by adding (planar) Laplace
noise to the actual location [1]. This approach is very efficient
computationally, but can yield poor utility by generating large

1Another model exists which functions in the operational setting [24], but it only
works against a well-defined set of adversarial prior knowledge. Constructing such a
detailed prior is often not feasible in practice.
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noise. At the other extreme, one can take into account the prior
and attempt to add the optimal amount of noise to any possible
user location such that the expected distance between actual and
reported locations is minimized (while still preserving GeoInd).
The latter is called optimal mechanism [2] and is implemented
using linear programming (LP).

Consider a regular grid on top of a set of locations of interest
in a city area (grid partitioning is used for ease of presentation,
the concept we convey remains valid for any set of discrete, or
logical locations [12]). Each cell has a certain prior value, cor-
responding, for instance, to the weighted popularity of all POI
in the respective cell. An optimal GeoInd protection mechanism
will produce an output given by a linear program that considers
all possible combinations of actual and reported cells, with spe-
cific constraints related to location protection. The computational
complexity is cubic to the number of cells. Even for a relatively
small search space, such as 12 × 12 = 144 cells, the execution
time for LP solvers can be in the order of hours (we provide exact
measurement results in Section 6). Such an approach is too slow.

Our proposed approach uses a multi-step algorithm that applies
GeoInd recursively along a data indexing structure, according
to the composability property of DP (see Section 2 for details).
We illustrate this in Figure 1, on a three-level index. The actual
location is the black dot. LevelA consists of nine cells, and assume
A5 is selected by the mechanism in the first step. In step two, we
“zoom in” cellA5, and re-apply the mechanism on top of a four-cell
grid this time. Finally, at the third level, C3 is chosen for release.
The privacy budget is split across the three levels. Our approach
can work with a relatively fine-grained grid at the leaf level; in this
example, at the leaf level we obtain 144 cells, same as in the non-
hierarchical case. However, in our case the size of the problem
at each step consists of nine, four and four cells, respectively, so
our approach will perform much faster. Also, since index node
selection is performed at each step according to the output of the
mechanism at the previous index level, GeoInd is preserved. Note
that, the actual location may fall outside the selected cell at each
level, but that is less likely to occur at the higher (i.e., coarser)
index levels, so utility will not suffer significantly.

Although the underlying concept is simple, our approach raises
a number of difficult challenges. Specifically, one must take care-
fully into account several factors that affect utility and perfor-
mance, such as: how to determine the parameters of the index,
such as height and fan-out; and how to decide how to split the
privacy budget across distinct index levels. We provide an analyti-
cal model to synthesize important relationships between system
parameters on one hand, and performance metrics such as utility
and computational overhead on the other.

Our specific contributions include:

• We identify important drawbacks of existing techniques for
geo-indistinguishability in terms of utility and/or computa-
tional overhead.
• We propose a multi-step algorithm that applies GeoInd

mechanisms in conjunction with an index data structure
in order to prune the search space when seeking optimal
solutions.
• We develop an analytical cost model to characterize the

utility-performance trade-off, and to select an appropriate
set of parameter values for our approach.
• We perform an extensive experimental evaluation to mea-

sure utility and execution time on real datasets, and we
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Figure 1: Multi-Step Approach Overview

show that the proposed approach significantly outperforms
the benchmark.

The rest of the paper is organized as follows: Section 2 provides
essential background information, followed by an overview of our
approach in Section 3. We provide the details of our algorithm in
Section 4. We derive an analytical model for performance char-
acterization in Section 5 and we present a detailed experimental
evaluation in Section 6. We survey related work in Section 7 and
conclude with directions for future research in Section 8.

2 PRELIMINARIES
We introduce fundamental concepts used in the rest of the paper,
such as the privacy model we adopt, and the mechanisms that
implement it. We also discuss utility metrics, as well as the impor-
tant property of composability on which our proposed multi-step
algorithm for location protection relies.

2.1 GeoInd Definition
Geo-indistinguishability (GeoInd) was first introduced in [1],
and extends the popular protection model of differential privacy
(DP) [13]. DP is designed to prevent an adversary from learning
with significant probability whether an individuals’ data is present
or not in a dataset. DP is achieved by adding random noise to the
result of aggregate queries (e.g., count or sum). The fundamental
concept behind DP is to bound the probability of distinguishing
between the results of computations performed on neighboring
datasets, defined as sets of records that differ in at most one en-
try. More formally, when the Hamming distance between two
candidate datasets D1 and D2 is 1, then an adversary cannot deter-
mine with significant probability whether D1 or D2 was used to
produce a certain result. The corresponding probabilities P1 and
P2 are similar within a small multiplicating factor eε , where ε is
called privacy budget (lower ε values correspond to tighter privacy
settings).

However, DP is not suitable to protect the locations of mobile
users in the online setting, for two reasons: first, DP works only
for aggregate queries, and cannot be directly used for sanitizing
individual records; second, DP can hide the presence of an individ-
ual record in a dataset, but it cannot protect the attribute values of
individual data records, due to the distinguishability metric used
(Hamming distance). The work in [4] extends DP by proposing a
more flexible distinguishability metrics, resulting to the GeoInd
definition.

Consider a set X of possible user locations, a setZ of possible
reported locations (the two sets X and Z may coincide), and a
distance metric dX . A probabilistic mechanism K : X → P(Z)
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takes as input a location in X, and obfuscates it to produce some
locationZ, which is reported to a location-based service (since
K is a probabilistic function, its co-domain is the power-set ofZ,
as it assigns each output location a probability of being reported).
Mechanism K is said to achieve geo-indistinguishability with
privacy level ε if for all x ,x ′ ∈ X, z ∈ Z:

K(x)(z) ≤ eεdX (x,x
′) · K(x ′)(z) (1)

Intuitively, Eq. (1) specifies that, given a reported value z, an
adversary cannot distinguish whether the user location is x or
x ′ by a factor larger than eεdX (x,x

′). In practice, one appropriate
choice for the dX metric is the Euclidean distance, denoted in
the rest of the paper as d(·, ·). Effectively, geo-indistinguishability
enforces a constraint on the distributions K(x), K(x ′) produced
by two different points x ,x ′. The authors in [5] also propose a
practical interpretation of this definition: for all locations x ′ within
a radius r from x , the user enjoys εr -indistinguishability. For small
values of r , the adversary gains little information, i.e., s/he cannot
pinpoint the user within a small region of a city (e.g., specific bar,
restaurant, building). However, for large r values, the probability
of locating the user within a circle of radius r increases, which
preserves utility of location reporting. In other words, the mobile
user is still able to retrieve information relevant to her current city
or neighborhood, at a coarser granularity.

2.2 Utility and Composability
Utility. In order to enforce GeoInd, actual user locations must be
perturbed through addition of random noise. Inherently, there is
utility loss associated to this process: location-based services will
return information relevant to the reported location, instead of the
actual one. Ideally, a GeoInd mechanism should add the minimum
amount of noise to achieve the GeoInd constraints, so utility is
maximized and the deterioration in the quality of service received
by the user is constrained. Inspired from previous work [1, 2, 5]
we use the following practical measures of utility loss2:

• Euclidean distance d: this utility metric measures the Eu-
clidean distance between the reported and actual user lo-
cations. It is a natural metric to describe the additional
distance traveled by the user as a result of location obfus-
cation (assuming free-space movement). For instance, the
nearest-neighbor Italian restaurant of the reported location
could be several hundred meters away from the user loca-
tion, even though there is another one situated only meters
away from the user.
• Squared Euclidean distance d2: the square of the Euclidean

distance between reported and actual locations is also im-
portant, as it estimates the number of results that a user
receives in a certain area. In practice, the user—knowing
that the location will be obfuscated—may ask for more
results. For instance, instead of asking for restaurants in
a 200 meters radius, the user may increase the range to
increase the chance that a nearby POI is actually returned.
The size of the result set, and the effort required to filter the
results, are estimated to increase linearly with the area of
search, so the squared Euclidean distance may be a good
predictor of utility loss.

2We emphasize that a utility loss metric is a different concept than a distinguishability
metric. Although the Euclidean distance can serve as both, the purpose of the two
types of metrics is different: distinguishability metrics characterize the ability of
an adversary to attack location privacy, whereas utility loss metrics measure the
decrease in quality experienced by the user.

Composability. An important property of GeoInd (inherited from
its parent model DP) is composability. Specifically, if two mech-
anisms are applied in succession with budgets ε1 and ε2, the net
amount of privacy obtained is equivalent to a privacy budget
(ε1 + ε2). Conversely, given a total privacy budget ε, we can split
it into several terms and assign each term to a separate processing
step, effectively obtaining a combined multiple-step algorithm
that achieves the same amount of protection.

2.3 GeoInd Mechanisms
The GeoInd definition specifies the constraints that a protection
technique must satisfy in order to obtain strong privacy guarantees.
A GeoInd mechanism is a specific construction that achieves the
GeoInd requirements. Next, we enumerate the most prominent
mechanisms that implement GeoInd, introduced in [1, 5]. These
mechanisms achieve various trade-offs in terms of performance
and utility.
Planar Laplace Mechanism (PL). The simplest approach to pre-
serving GeoInd is the Laplace mechanism [1]. The key idea is to
perturb the exact user location by additive random noise drawn
from a bi-variate Laplacian distribution with density defined as:

Dε (x , z) =
ε2

2π
e−εd (x,z) (2)

Drawing an element from this distribution can be done by (i)
switching to polar coordinates, (ii) selecting an angle θ uniformly
from [0, 2π ), and (iii) selecting a radius r from the Gamma dis-
tribution Γ−1ε (p), where Γ−1ε (p) = 1 − (1 + εp)(−εp), and p is
uniformly chosen from (0,1). Finally, the reported location is
z = x + (r cosθ , r sinθ ).

If only a restricted set of reported locations is allowed (e.g.,
discrete set Z), the location produced by the mechanism can
be mapped back to the closest element in the set. Although the
Laplace mechanism provides an easy and practical way of achiev-
ing geo-indistinguishability, its utility may be low, as it introduces
large noise.
Optimal Mechanism (OPT). While the PL mechanism is simple
to implement and efficient to execute, it does not provide any opti-
mality guarantees for utility. As a result, its resulting utility may
be low in practice. To address this issue, the optimal mechanism
of GeoInd (denoted further by OPT) has been introduced in [2].
We provide the details of OPT in Section 3.2. In a nutshell, OPT
uses information about an adversary’s prior knowledge, such as
the likelihood of a user being present at a certain location. For in-
stance, a user is more likely to be found in a city center area where
there is a high concentration of POI, rather than in a secluded
area near a suburb. OPT uses such prior information to produce a
reported location z that minimizes utility loss. The disadvantage
of OPT is that it has high computational overhead, as it requires
solving a linear program with complexity cubic in the number of
possible locations. In contrast, our multi-step algorithm allows
us to reduce overhead by applying OPT recursively on an index
structure.

A remarkable property of GeoInd related to the OPT mecha-
nism is the following: even if the mechanism is tuned for a specific
prior, it still preserves the privacy constraint for any prior. If the
prior is not known by a GeoInd mechanism, then the utility cannot
be improved significantly compared to PL. If the prior is known,
then it can boost utility. Furthermore, GeoInd is satisfied even if
the assumed prior and the adversary’s background knowledge are
different. In contrast, privacy models such as the one in [24] can
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Table 1: Summary of Notations

Notation Definition
x Actual user location
z Reported user location
X,Z Set of actual and reported user locations
G,Gi Set of grid cells (global, and at index level i)
x̂ Actual location cell of user
ẑ Reported location cell of user
д Grid granularity
L Side length of the square spatial region
h Height of hierarchical grid index
ϵi Privacy budget for grid level i
B Array storing budget at each index level
d(x , z) Euclidean distance between locations x and z

only provide protection if the assumed prior and the adversary’s
knowledge coincide.

3 APPROACH OVERVIEW
In Section 3.1 we provide an overview of our system model; in
Section 3.2 we introduce a baseline approach that applies the
optimal mechanism of GeoInd on top of a regular grid. Table 1
summarizes the notations used in our presentation.

3.1 System Model
We consider an online scenario where mobile users are interested
in retrieving points of interest relevant to their current location
from an untrusted server. Based on the actual user location x ∈ X,
the sanitization algorithm computes a reported location z ∈ Z.
Both X andZ are assumed to be discrete and finite sets. Discrete
locations, also called logical locations [12], are often used in the
location privacy literature. In practice, this can be achieved by
snapping continuous coordinates to an arbitrary granularity grid.
We note that, in many existing geosocial network applications, the
reported locations take the form of check-ins at discrete sets of
two-dimensional coordinates corresponding to restaurants, coffee
shops or other POIs. Our model is fully compatible with that
setting.

In our model, the location sanitization is performed online at
the user’s mobile device. This approach is made possible by the
properties of the GeoInd model, and it is an important advan-
tage compared to other types of solutions that require a trusted
centralized service, such as spatial k-anonymity (SKA) [16, 21].
Thus, the system model is much simpler, and it does not rely
on unrealistic security assumptions, such as the presence of a
trusted third party that performs anonymization, or the presence
of a collaborating set of other mobile users who participate in the
formation of cloaking regions. Furthermore, there are no changes
required on the processing side at the server, which is an advan-
tage compared to approaches that use encryption [15]. However,
due to the fact that location protection is performed at the mobile
device, the computational overhead incurred by sanitization is a
very important concern. In our design, we focus on this constraint.

The mobile device will execute our sanitization technique be-
fore reporting its location (i.e., at runtime), and will also download
in advance (offline) a set of objects that are required to support
our technique, such as a set of maps annotated with additional
pre-computed information (e.g., the properties of a certain city
map and associated details required to construct a balanced index

structure, as discussed in Section 5). This offline component is
common for many software packages that support location-based
apps, e.g., navigation services. Furthermore, in our approach, the
amount of data that needs to be downloaded offline is small (in
the order of tens of megabytes).

3.2 Baseline Approach
We provide a detailed description of the optimal GeoInd mecha-
nism OPT [2] adapted to a regular grid. OPT is used as a building
block in our multi-step approach, and also as a baseline in our
evaluation. OPT produces the maximum utility achieveable un-
der a given prior while preserving GeoInd. Specifically, given a
privacy budget ε, a distinguishability metric dX(·, ·), a utility (or
quality) metric dQ (·, ·), and a prior Π defined over set X, OPT
determines mechanism K as the solution to the following linear
programming problem:

Minimize: ∑
x ∈X,z∈Z

Πx · K(x)(z) · dQ (x , z) (3)

Subject to:

K(x)(z) ≤ eϵdX (x,x
′) · K(x ′)(z) x ,x ′, z ∈ X (4)∑

z∈X

K(x)(z) = 1 x ∈ X (5)

K(x)(z) ≥ 0 x , z ∈ X (6)

This linear optimization problem can be solved by using stan-
dard techniques such as the Simplex or the Interior Point meth-
ods. However, the number of linear constraints in the program is
O(|X|2 × |Z|) (or cubic in the total number of locations, assuming
that actual and reported locations belong to the same set). As a
result, the method is unfeasible even when the set of locations has
low cardinality (i.e., several hundred). In previous work [5] the
cardinality of X is reduced by using a coarser grid, and locations
in X are snapped to the centers of the grid cells. Let L denote the
side length of the dataset (assumed to be a square, but any rectan-
gular region can be scaled to suit the assumption). Grid granularity
д is achieved by splitting the data domain into a regular grid with
д × д cells, each with dimensions L/д × L/д. While this approach
reduces computational overhead, it also decreases utility, as all
locations are snapped to the coarse grid.

K(x1)(Z) : 0.31 0.100.31 0.10 0.05 0.040.05 0.04... ...
z1 z2 z8 z9

...

 Eq(5): K(x1)(z1) + … + K(x1)(z9) = 1
K(x4)(Z) :

0.03 0.030.03 0.03 0.11 0.370.11 0.37

... ...

K(x9)(Z) :

...

Eq(4): K(x1)(z2)  ≤  exp(εd(x1,x9)) x K(x9)(z2)

Figure 2: An instance of K(X)(Z) for a 3 × 3 grid.

Next, we focus on the application of OPT on top of a grid.
Denote by G the set of grid cells, which represent the logical loca-
tions from which both actual and reported locations are selected,
i.e., X = Z = G. The prior is also defined with respect to G. We
can abstract an invocation of the OPT mechanism as a function
call with the following parameters: OPT(ϵ , G, Π,dQ ).

To provide an in-depth understanding of how OPT works, we
consider the example of a regular grid of granularity д = 3, i.e.,

220



a total of nine cells. We illustrate in Figure 2 the layout of the
stochastic matrix K(X)(Z) from Eq.(4). We represent three of
the nine rows of matrix K , corresponding to cells x1, x4 and x9.
The box at the top of the diagram illustrates the constraint in
Eq. (5), representing the normalization condition, namely: the
sum of probabilities in each matrix row must be 1 (each input
cell must be mapped to some output cell). Likewise, the box in
the middle of the diagram illustrates one of the |X|3 = 81 ε-geo-
indistinguishability constraints corresponding to Eq. (4) in the
linear program of the optimal mechanism.

The main drawback of OPT is its prohibitively high computa-
tional cost. To illustrate this drawback, we show in Figure 3 the
trade-off between performance and utility when varying granular-
ity, using a state-of-the-art commercial linear program solver on
the Gowalla dataset (please see Section 6 for experimental setup
details). As grid granularity increases, the utility improves but
at the expense of a sharp rise in computation time. For the next
higher granularity д = 12 (not shown in the graph), the optimiza-
tion program was terminated after 24 hours without a solution.

The objective of our approach is to address these conflicting
trends between utility and performance. Next, we present our
multi-step mechanism (MSM) which operates on top of a hierar-
chical index structure and achieves a good compromise between
utility and performance.
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Figure 3: Effect of д on utility and running time of OPT

4 MULTI-STEP MECHANISM (MSM)
We introduce the multi-step mechanism (MSM) which operates
over a GeoInd-preserving Hierarchical Index (GIHI) and trans-
forms the user location according to OPT at each index level. The
user inputs the total privacy budget ε to the algorithm, according
to her privacy requirement. A separate component of our solution,
the budget allocation strategy (discussed in detail in Section 5),
determines how to distribute the privacy budget among the index
levels. The output of the budget allocation procedure consists of
the index height h, and the amount of privacy budget allocated
to each level Bi ∈ B, where B is the set of budget amounts per
level, and h = |B|. In the rest of the section, we focus on how the
mechanism operates given the index height and budget splits.

Given granularity д and height parameter h, a GIHI is con-
structed over a data domain of size L2 in a top-down fashion3.
Each intermediate cell points to д2 cells at the lower level that lie

3If the input dataset domain is not square, it can be scaled in advance of executing
our algorithm to equalize the range in each dimension.
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Figure 4: GeoInd preserving Hierarchical Index (GIHI)

inside its spatial extent. Figure 4 illustrates the index structure4

for д = 2 and h = 3. The cells in the hierarchical grid are labeled
per level, and also within each level, as shown for level 1 in the
diagram (to improve readability, we do not include the labels at
lower levels). For instance, the leaf cell C33,0 is a child of C21,0,
which in turn is a child of nodeC10,0. MSM iteratively visits each
level of the hierarchical structure, starting with the virtual root
node that covers the entire region. The root node is not a level in
the tree, but it serves the purpose of simplifying the presentation,
so that the algorithm can be expressed recursively starting from
a single node. We denote as x̂i the logical location of the user
snapped to the center of the enclosing cell in the grid of granularity
дi × дi at level i. Likewise, ẑi denotes the logical location of the
user output by the mechanism at level i. We define two simple
procedures: EnclosingCell(x , i), which returns the cell at level i
enclosing the input location x , and centerOf(C), which takes as
input a cell C and returns the logical location at its center.

Algorithm 1 presents the pseudo-code of our multi-step iterative
process of location sanitization. In each iteration, the algorithm
takes as input the location ẑi−1 selected in the previous iteration
(in the first iteration it is set to the center of the virtual root node)
and determines the cell that encloses ẑi−1, denoted byC (lines 4-6).
Next, it translates the user’s actual location x to a logical location
x̂i in the current level (lines 7-8) and constructs a partial grid
Gi of д2 cells within the spatial extent of C. Next (lines 11-13),
MSM computes the matrix K(Xi )(Zi ) as the solution to a linear
optimization problem over the logical locations Xi ,Zi ∈ Gi ,
consuming the privacy budget εi allocated to level i. MSM marks
the end of the iteration at the current level by outputting ẑi as a
sample from the distribution K(x̂i )(Zi ). These iterations repeat
for the entire height of the GIHI, consuming the entire privacy
budget ε = ε1 + ... + εh . After the final iteration (at the leaf level

4For simplicity, we focus in this paper on an hierarchical grid, but the MSM concept
applies to any hierarchical data structure without node overlap, e.g., R+-trees or
k-d-trees.
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of the index), the output is the sanitized location that is reported
to the service provider (line 14).

Note that, the actual location x may fall outside the selected cell
at one or more levels of the index. This is an effect of the privacy
requirement imposed by GeoInd, and thus a necessary aspect of
protecting locations. However, it may also increase utility loss,
as the distance between reported and actual cell may be large.
To control the amount of utility loss, the objective of our budget
allocation strategy (Section 5) is to split the budget in such a
way that it is less likely for this event to occur at the higher (i.e.,
coarser) index levels. If this objective is achieved, utility will not
decrease significantly.

Algorithm 1 Multi-Step Mechanism (MSM)

Input: ϵ , д, Π, dQ
Output: ẑ

1: procedure PRIVATELYREPORTLOCATION(x)
2: B ← getGridParameters(ϵ , д)
3: h ← |B|
4: ẑ0 ← RootNode ▷ stores output cell of each iteration
5: for i ← 1,h do
6: C ← EnclosingCell(ẑi−1, i − 1)
7: Gi ← set of д × д cells in the spatial bounds of C
8: x̂i = centerOf (EnclosingCell(x ,i))
9: if x̂i < Xi then ▷ Xi ,Zi ∈ Gi

10: x̂i ← a random location in Xi
11: ϵi ← B[i]
12: K(Xi )(Zi ) ← OPT(ϵi , Gi , Π(Xi ),dQ (.))
13: ẑi ← sample from distribution K(x̂i )(Zi )

14: return location ẑ to the service provider

We illustrate the proposed mechanism with a running example
over the GIHI structure from Figure 4. The exact location of
the user x is depicted as a red-colored dot, while the logical
locations (snapped to cell centers) x̂ are shown as red colored
squares. The shaded cells depict the cells enclosing the output
location (ẑ) of each iteration. The algorithm first takes as input
the entire dataspace domain (represented as the root node), and
splits it into a grid G1 consisting of cells {C1i, j : 0 ≤ i, j ≤
1 ∧C1i, j ∈ RN }. Next, it maps the user’s exact location x to x̂1 at
the center of its enclosing cell at level 1, i.e., C10,0. Then, MSM
computes K(X1)(Z1), and outputs a location ẑ1 sampled from the
distribution K(x̂1)(Z1).

Denote the selected cell as ẑ1 = centerOf(C10,0). In the next
iteration, G2 is composed of the set of д × д cells within the
spatial extent of C10,0, which is the enclosing cell of the output in
the previous iteration. Location ẑ2 is selected as output. Suppose
ẑ2 =centerOf(C20,0), which implies that for the purposes of the
last iteration, the actual location x falls outside the spatial extent
of the cell enclosing ẑ2. In this situation the user’s location is
assumed to be a random cell (e.g., C31,1) in {C3i, j : 0 ≤ i, j ≤
1}. The remainder part of the iteration continues by outputting
ẑ3 =centerOf(C31,0). Finally, ẑ3 is reported to the service provider,
with a quality loss dQ (x , ẑ3).

A consequence of the grid based discretization scheme is that,
the position of every user is always approximated by the center
of the enclosing cell before being obfuscated by the mechanism.
For example, consider that a user with his exact coordinates at
a random location in a 1km2 cell, requests the nearest bar to his
position. In this case, he will receive an answer that is tailored, in
the best case, to the center of his cell, which is on average 0.38km

[14] away from the current location of the user. It is clear that
the situation gets more problematic as the grid cells are larger,
i.e., at coarser granularities. This is often the case when applying
the conventional optimal mechanism [2] over a coarse grid (as
discussed in Section 3.2, OPT can work only for very coarse grids,
otherwise the execution time is extremely high). In contrast, our
approach operates on a much finer-grained grid at the leaf level,
thus gaining significantly in terms of utility. MSM also limits
the size of the linear optimization problem, given that there are
exactly д2 logical locations at each step. This enables efficient
computation of the linear program, making the overall execution
time practical.

We end this section by informally discussing the fact that MSM
preserves GeoInd. MSM is a textbook example of applying the
composability property [19, 20] of differential privacy. The initial
iteration of MSM takes as input the real user location, and the
final iteration outputs the perturbed location. At each index level
i, the OPT mechanism is applied with a fraction εi of the total
privacy budget ε. The output of each MSM step (i.e., level) is
pipelined into the input of the following step (at the next level).
According to the composability property introduced in Section 2,
MSM satisfies GeoInd with budget

∑h
i=1 εi = ε.

5 BUDGET ALLOCATION STRATEGY
The utility of MSM depends on important system parameters such
as the height of the index and the budget allocation across levels.
In this section, we provide an analytical cost model of utility
that guides our decision on how to choose GIHI parameters. We
assume we are given as input the size of the data domain specified
as side length L, the grid granularity д (corresponding to a fanout
of д2 at each level), and the total budget ε. The objective is to
determine index height h and the budget allocation εi for each
level i, 1 ≤ i ≤ h.

A fundamental factor that guides our allocation strategy is the
observation that if the actual location is mapped to a reported loca-
tion in another cell, the utility loss is likely to be larger when the
grid cell size is also large. Consequently, the utility loss is much
larger when this event occurs near the root of the index, compared
to the case when it occurs at the leaf level. Intuitively, the impact
on utility of the event occurring at level i is д times higher than
the same event occurring at level i + 1. Consider a stochastic ob-
fuscation mechanism that satisfies geo-indistinguishability, and
denote its probability of mapping location (i.e., cell) x to z by
Pr [z |x]. The probability density function of the output is indeed
the distribution K(x)(z), as discussed in Section 2. The proposed
budget allocation strategy aims to precisely control Pr [x |x], i.e.
the probability of reporting cell x when the actual location is also
within x . Based on the earlier observation, to reduce utility loss
it is important to maintain Pr [x |x] high at the upper levels of the
index.

To calculate Pr [x |x] precisely, we can solve the |X|3 constraints
in the linear optimization program of Eq. (3), according to the
input prior Π. However, estimating Pr [x |x] in isolation poses a
challenge, since it is not feasible to narrow down the effect on
a single location of all other cells (as per Eq. (4)). Hence, we
devise a method to estimate this value to an arbitrary precision.
We denote the approximation of Pr [x |x] as Φ(x), and compute it
by estimating its complement, i.e., the probability of mapping x
to another grid cell.
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Φ(x) =
1∑

n exp (− εLд
√
n)

n = a2 + b2, (a,b) ∈ Z2 (7)

where Z2 denotes the 2-dimensional infinite integer lattice whose
points are tuples of integers. Switching to coordinates with origin
at zero, and defining 0̂ ≜ x , the denominator can be understood
to be the sum over the exponents of the multiplicative distances
between Pr [0̂|0̂] and Pr [0̂|n̂]. Φ(x) is constrained to the integer
lattice to ensure that the probability mass of the entire cell is
assigned to the center of the cell, giving us a close estimate of our
desired probability.

While Φ(x) needs to be summed over the infinite lattice, the
function T (ε,д) ≜

∑
n exp (−εL/д

√
n) converges quickly. In or-

der to approximate this value within a factor of exp (−N ) for any
arbitrarily large N , we need only O(N 2 f /εL) terms. However,
when the value of ε is small, which is often the case in differential
privacy literature (with values of ε ≤ 0.5 being the most common
settings to achieve a reasonable privacy protection), straightfor-
ward computation of this value can be prohibitive. To this end,
we can apply the two-dimensional Poisson summation to expand
the series, followed by taking its Fourier transform, to obtain an
efficient approximation when 0 ≤ ε ≤

2πд
L :

T (ϵ,д) =
2πд2

ε2L2
+

∞∑
k=1

c2k−1(
εL

д
)2k−1 (8)

where the coefficients c1, c3, c5, . . . are given by

c2k−1 = 4
(
−3/2
k − 1

)
(2π )−2kζ

(
k +

1
2
)
L
(
k +

1
2
, χ4

)
. (9)

where ζ is the Riemann zeta function [23] and L(·, χ4) is the
Dirichlet L-series[25] of the non-principal Dirichlet character χ4
(mod 4), which is known to converge absolutely as

L(s, χ4) =
∞∑
n=0

(−1)n

(2n + 1)s
= 1 −

1
3s
+

1
5s
−

1
7s
+ − · · · . (10)

Since we can approximate T (ε,д) efficiently, the same is true of
Φ(x). In order to configure the budget at each level of the grid, we
formulate our problem as follows:

PROBLEM 1. Given a desired value of Pr [x |x] as ρ, and the
grid parameters: side length L, and the granularity д, estimate
the minimum budget εi that ensures at least ρ percent chance
of remaining within the boundaries of the current cell at level
i. The budget εi can be calculated according to the following
optimization problem:

Minimize:

Privacy Budget ε (11)

Subject to: (∑
n

exp (−
εL

д

√
n)
)−1
− ρ ≥ 0,

ε > 0,
0 ≤ ρ ≤ 1

(12)

Since T (ε,д) can not be written in a closed form, solving di-
rectly for ε is not achievable. Nevertheless, the expression in
Eq. (12) is monotonic in ε, hence we can utilize a simple branch-
and-bound technique [10] to efficiently get an answer with arbi-
trary precision.

Algorithm 2 summarizes the functionality of the proposed bud-
get allocation strategy. Procedure getGridParameters calculates

Algorithm 2 Grid Configuration

Input: ε, д
Output: height h, budgets ε1, ε2, · · · , εh

1: procedure GETGRIDPARAMETERS

2: υ ← ε ▷ stores the remaining budget
3: i ← 1 ▷ denotes the current grid level
4: B ← ∅ ▷ stores the budget for each level
5: while true do
6: B[i] = εi ← max{solution to Problem 1,v}
7: υ = υ − εi
8: i = i + 1
9: if υ ≤ 0 then ▷ budget expended

10: return B

the minimum budget required for each level of the grid, such that
with probability at least ρ a location enclosed within cell x is
mapped to the same grid cell. For every iteration of the while loop,
the procedure determines if there is any budget remaining for
additional levels of the multi-step mechanism. Finally, the process
halts when it expends all the budget, returning the height h and
the budget allocated at each level of the grid.
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Figure 5: Accuracy of estimated Φ for varying д

We conclude this section by providing a numerical result to val-
idate our analytical model. We illustrate the precision with which
our budget allocation algorithm estimates an effective configura-
tion of the grid for MSM (we defer the details of the experimental
setup to Section 6.1). We plot the probability Pr [x |x] for various
levels of ρ and granularity д using the Gowalla dataset. Figure 5
shows the results, assuming a uniform global prior as input. Ex-
cluding the case when the granularity is 2, the predicted value
of Φ is within ±5 percent of Pr [x |x] reported in K(X,Z), thus
validating the efficacy of the budget allocation scheme.

6 EXPERIMENTAL EVALUATION
In this section we evaluate the performance of our proposed Multi-
Step Mechanism (MSM) in terms of utility and computational
overhead. In Section 6.1 we present the details of the experimental
setup. We provide the results of comparison with benchmarks in
Section 6.2, followed by an in-depth analysis of MSM behavior
when varying system parameters in Section 6.3.
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6.1 Experimental Setup
Datasets. We use two real datasets collected from the operation
of two prominent geo-social apps, namely Gowalla and Yelp.
Each dataset consists of a set of user check-ins. Every check-in is
described by a record consisting of user identifier, the latitude and
longitude of the check-in location. The Gowalla dataset is a subset
of the user check-ins collected by the SNAP project [9] from a
location based social networking website. In our experiments, to
simulate a realistic environment of a city and its suburbs, we focus
on check-ins within a single urban area, namely Austin, Texas. In
particular, we consider a large geographical region covering a 20×
20km2 area bounded to the South and North by latitudes 30.1927
and 30.3723, and to the West and East by longitudes −97.8698 and
−97.6618. The selected data contains a total of 265, 571 check-ins
from 12, 155 unique users during a time period between February
2009 and October 2010. The Yelp dataset was made available to the
public by Yelp, Inc [3] as part of a dataset challenge, and contains
user ratings for various points of interest. Again, to simulate a
typical urban area, we utilize location data within the city of Las
Vegas, NV and its surroundings. The filtered dataset contains
81, 201 check-ins from 7, 581 unique users within a 20 × 20km2

area bounded between latitudes 36.0645, 36.2442 and longitudes
−115.291, −115.069.

Implementation. All algorithms were implemented in C++ on
a Ubuntu Linux 14.04 LTS operating system, and executed on
an Intel Core 2 Duo 2.0 GHz CPU with 4GB RAM. All data
and indices are stored in main memory. For the computation of
the linear optimization problem, we utilize the C++ interface
of the state-of-the-art commercial linear program solver in the
Gurobi Optimization Suite [22]. We used the dual simplex method
of solving linear programs throughout our evaluation since it
consistently outperformed the primal simplex and interior-point
methods in terms of numerical stability.

Prior Modeling. We compute a global prior for the Gowalla
and Yelp dataset partitions with the help of a regular grid super-
imposed on top of the data domains. The grid granularity varies
to match the grid structure used in each specific experiment. For a
given granularity, we count the number of check-ins in every cell
relative to total number of check-ins in the entire grid (a similar
approach was taken in [2, 5]). The global prior Π describes the
behavior of an average user (as a vector of probabilities for each
grid cell), and is used in the computation of the optimal mecha-
nism. We store a global prior on the finest effective granularity
grid used in the experiments and aggregate this information to
obtain priors on coarser grids. This procedure mimics the scenario
where the aggregate information about past users of the service is
made available from the service provider.

6.2 Comparison with Benchmarks
We evaluate our proposed MSM approach in comparison with two
benchmarks: the basic optimal mechanism OPT introduced in [2]
and described in detail in Section 3.2; and the planar Laplace
(PL) mechanism, for which we also include a post-processing (or
re-mapping) step by projecting its output to the grid (as discussed
in [5]).

All evaluated mechanisms are constructed to satisfy GeoInd
with privacy budget ε ranging from 0.1 to 0.9, which is a common
range used in the majority of differential privacy work [11]. Re-
call from Section 2 that a smaller ε value corresponds to stronger
privacy. Values higher than 1.0 are typically considered insuffi-
cient in terms of privacy (i.e., the attacker’s gain in distinguishing

Table 2: MSM comparison against OPT, Gowalla dataset

Granularity Utility Loss (in km) Time (in sec)
OPT MSM OPT MSM OPT MSM

4 2 2.29 2.63 0.04 0.008
9 3 1.97 2.22 205.7 0.009
16 4 — 2.02 72hrs+ 0.53

among candidate locations becomes significant). We consider sev-
eral granularities of the grid index structure, ranging from д = 2
up to д = 6 (recall that for our method, the effective fanout is
д × д at each level). We consider a value range for the probability
of hashing the user location in the same cell at a certain level
(see Section 5 for details) between ρ = 0.5 and ρ = 0.9 (default
value is set to ρ = 0.8). In all experiments, we measure the utility
loss experienced by a user of a location-based service over a set
of 3, 000 requests randomly selected from the set of check-ins
corresponding to each dataset. We consider in turn both Euclidean
(dQ = d) and squared Euclidean (dQ = d2) utility metrics. The
default value of ε is set to 0.5.

First, we compare the proposed MSM approach with the opti-
mal mechanism OPT. Due to the high overhead of OPT, we are
only able to perform the comparison in a restricted setting, for
which the linear program completes within reasonable time. Table
2 presents the utility loss and execution time values of OPT and
MSM for the same effective grid granularity (e.g., 9 × 9 granu-
larity for OPT corresponds to a 3 × 3 granularity for our method,
where the second level of MSM will have the same number of
cells as the OPT grid). We focus on the Gowalla dataset for this
experiment. We were not able evaluate the performance of OPT
for the granularity of 16 (i.e., 256 locations) because the program
did not complete within 72 hours. For 121 locations (i.e., 11 × 11
grid) OPT took 3.3 hours to complete (see Figure 3). Even for
a granularity of 9, the optimal method would be completely un-
feasible for online queries, given its running time of 205 seconds,
whereas our approach achieves sub-second processing times in all
runs. In terms of utility, for the same granularity at the leaf level
OPT does outperform MSM. This result is not surprising, since
our execution time gain is obtained by pruning the search space.
However, the additional loss of MSM compared to OPT is not
large. Furthermore, in practice, our approach is able to increase
utility by using much finer-grained grids (as we show in the next
section), whereas OPT can only function for coarse-grained grids.
In the rest of our evaluation, we no longer consider OPT, since it
is clearly not feasible in practical settings.

Next, we focus on the comparison between MSM and the pla-
nar Laplace mechanism (PL). Figures 6a and 6b plot the utility
loss of MSM and PL for varying levels of privacy on both Gowalla
and Yelp datasets, using d as utility metric. As expected, utility
loss decreases for both mechanisms as ε grows: a larger budget
corresponds to a weaker privacy requirement, hence less noise is
added. The proposed MSM approach clearly outperforms PL in
terms of utility, especially at low ε values, which are more impor-
tant because they provide appropriate privacy. As ε approaches
1, the utility obtained by the two methods becomes similar, but
as mentioned earlier, ε = 1 or higher does not provide sufficient
protection. The gain of our approach over PL is more pronounced
at low ε settings. For ε = 0.1, MSM utility loss is three times
better than the one achieved by PL.

A similar trend can be observed when comparing MSM and PL
using the squared Euclidean distance as utilty metric (Figures 7a
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Figure 6: Effect of ϵ on utility loss (Euclidean utility metric).
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Figure 7: Effect of ϵ on utility loss (squared Euclidean utility
metric).
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Figure 8: Effect of varying granularity on the utility loss (Eu-
clidean utility metric).

and 7b). This time, the gap between the two approaches is even
larger, with MSM outperfoming PL by a factor of 5 at the low end
of the privacy budget range. PL does however catch up with our
method earlier than in the case of Euclidean utility metric (around
the ε = 0.5 threshold). Still, MSM remains clearly superior in the
range of tight privacy settings.

Our results show that MSM outperforms significantly the PL
benchmark in terms of utility loss. As discussed in Section 2, PL
is very fast in terms of execution time, and it takes on average
10 milliseconds to complete. In contrast, our method is more
expensive. Still, the execution time is always below 1 second in the
worst case (which occurred for the highest considered granularity
case д = 6 and a large ε value). In most cases, the average runtime
of our method is in the range of 100 − 200 milliseconds. Even
though this is higher than PL, 100 − 200 milliseconds per query
is a small price to pay in order to increase utility significantly.
Furthermore, recall that this cost will be incurred at the client
side, so there is no danger of the server being overloaded due to a
spike in request. In terms of user experience, the additional time
required for sanitizing locations is barely noticeable.

For the rest of the evaluation, we no longer consider PL, and
we focus on analyzing the performance of the proposed MSM
method when varying its system parameters values.

6.3 MSM System Parameter Analysis
Next, we evaluate the utility of MSM when varying grid granular-
ity, while also considering several settings of ρ (shown as distinct
lines in each graph). Recall that, for MSM the fanout at each level
is д × д, hence the first level (below the single virtual root node)
has granularity д × д, the second level granularity д2 × д2, and
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Figure 9: Effect of varying granularity on the utility loss
(squared Euclidean utility metric).

so on. Figures 8a and 8b show the obtained results for the two
datasets under Euclidean distance utility metric. The general trend
is that of a “U”-shaped dependency: utility loss decreases initially
as granularity increases, which intuitively is a result of a higher
precision in reporting locations. However, after a certain point, the
utility loss starts to increase, as a high granularity will determine
more cases where the reported and actual locations are in different
cells. As a side effect, as the area of each grid cell decreases, more
budget is required at a certain level to maintain the same required
probability ρ, which can starve lower index levels of privacy bud-
get. We notice that the ideal granularity may also vary with the
dataset, as data density typically affects accuracy. For the Gowalla
dataset the best-performing granularity is at д = 5, whereas for
the Yelp dataset it is д = 4. For a given granularity, we note that a
higher value of ρ typically results in better utility, although there
are some exceptions: for instance, at д = 4, the ρ = 0.7 case
outperforms the ρ = 0.9 setting, for the reason explained above,
namely the top level uses most of the budget, and the lower levels
do not receive sufficient budget to accurately execute the linear
program.

A similar trend is observed when using squared Euclidean
distance as utility metric, as shown in Figures 9a and 9b. A higher
ρ results in better utility in the majority of cases.

Finally, we measure the effect of varying parameter ρ, with
several distinct settings of granularity (shown as different lines
in each graph). Figures 10a and 10b summarize the results for
Euclidean distance, whereas results for the squared Euclidean dis-
tance are shown in Figures 11a and 11b. For the lowest granularity
д = 2, we note a clear decreasing trend in utility loss. As the grid
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Figure 10: Effect of varying probability ρ on the utility loss
(Euclidean utility metric).
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Figure 11: Effect of varying probability ρ on the utility loss
(squared Euclidean utility metric).
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granularity grows gradually from one level to another, the algo-
rithm for budget allocation is able to allocate budget in a smoother
fashion, leading to steady progress as ρ grows (we emphasize
that although the trend is more pronounced, the absolute value of
utility is worse for the д = 2 setting compared to the rest). For
the other settings of д, due to the fact that the transition from one
level to the other is more abrupt, the net effect of ρ exhibits a
not-so-well defined trend. The д = 4 case still shows a decreasing
trend initially, but then utility loss starts to increase as ρ grows,
as a result of budget starvation at lower index levels. In the case
of д = 6, the budget starvation seems to manifest even at lower ρ
values, so the trend is constant to slightly increasing. Note that,
starvation is not necessarily a negative effect, in the sense that the
utility can still be better than the other settings. Starving lower
levels of budget may be a worthwhile choice, as long as the higher
levels keep the reported cell close to the actual cell, and in effect
the utility loss is low. We insist on the starvation concept mostly to
describe the observed trends. We do, however, note that excessive
starvation can sometime increase utility loss: in the case of the
Yelp dataset for instance, we observe that the utility loss obtained
at a finer granularity (д = 6) is higher than that obtained with
д = 4.

7 RELATED WORK
In the past decade, a vast amount of research focused on preserv-
ing location privacy. The earliest approaches used dummy genera-
tion [18, 27] to protect locations of users who issue location-based
queries. In [18], the user issues a number of redundant (fake)
queries at random locations, thus decreasing the probability that
an adversary guesses which is the real location. The work in [27]
chooses an anchor around the real location, and focuses on how
query processing can be done around the anchor in such a way that
precise results are obtained with respect to the real location (e.g.,
exact nearest-neighbor queries). Both approaches are vulnerable
to background-knowledge attacks: an adversary who knows the
map features or the patterns of user movement can filter out the
fake locations and reveal the real one.

The spatial k-anonymity (SKA) concept has been introduced
in [16] to address the limitations of dummy generation. The main
idea behind SKA is to construct a cloaking region (CR) that en-
closes at least k real users. This way, it is more difficult for the
adversary to filter out locations and narrow down the query source.
The work in [21] showed how SKA can be implemented on top
of a spatial index, but may be subject to reverse engineering at-
tacks because the CR generation algorithm is deterministic and
takes as seed the location of the querying user. Later on, [17]
introduced the reciprocity property, which shows that as long as
the same CR is generated for all k users in an anonymity set, the
adversary’s probability of identifying the user issuing a query is
bounded above by 1/k. However, all SKA approaches no longer
provide protection when users move, or when some users in the
anonymity sets disconnect. In addition, they may reveal the exact
user locations: for instance, if k users are situated inside a hospital,
it is possible for the CR to be completely enclosed by the hospital
area. Even if the attacker cannot identify which user issued the
query, s/he learns that all users are in a hospital, which is a seri-
ous privacy breach. Some later work considered spatial diversity
[12, 26], which attempted to enlarge cloaking regions such that
association with sensitive features (e.g., hospitals, nightclubs) is
reduced. However, the limitations of SKA remain in place for
spatial diversity when users move or disconnect.

The introduction of the novel semantic model of differential pri-
vacy (DP) changed the landscape of location privacy approaches.
DP is a statistical model designed to address the scenario of ag-
gregate queries, where the presence of an individual in a dataset
must be hidden. Therefore, it is not directly applicable in the con-
text of online location reporting, which is our problem setting.
However, DP can be used in the context of publishing histori-
cal datasets of locations or trajectories. For instance, the work in
[11] shows how spatial indexes can be used to release geospatial
datasets at different granularities. The authors consider quadtrees
and k-d-trees, and propose a cost model to help allocate budget
across different structure levels. While we also consider multiple
index levels, our context is a completely different one (that of
geo-indistinguishability). Furthermore, their model shows that it
is best to allocate smaller budgets towards the root of the index,
and preserve a larger proportion of the budget for the leaf level,
whereas our findings for the GeoInd setting are exactly the oppo-
site. Due to the fact that an error at the root of the structure has
more impact on data utility, we found that it is important to allo-
cate a higher proportion of the budget at the higher index structure
levels. Some other work in the context of DP [7, 8] focuses on
releasing trajectories using noisy counts of prefixes or n-grams
in a trajectory, but similar to [11], the results apply to the offline
setting only.

Geo-indistinguishability [1, 2, 5] is a novel and promising se-
mantic model that inherits the powerful guarantees of DP, but
adapts them to the setting of online location protection. Since its
introduction in 2013, several research efforts focused on finding ef-
ficient and utility-preserving techniques for implementing GeoInd.
Closest to our work is the research in [5], which proposed several
mechanisms and post-processing algorithms to improve utility.
However, as we show in our extensive performance evaluation,
those techniques are either fast and inaccurate (planar Laplace in
conjunction with remapping to grid), or they only work for very
small sets of candidate locations (as is the case with the optimal
mechanism). In contrast, our multiple-step approach is able to
achieve high utility with very reasonable computational overhead.

8 CONCLUSION
We proposed a multiple-step algorithm for protecting location
privacy according to the geo-indistinguishability model. By using
a multi-level index structure, we are able to prune the solution
search space of expensive GeoInd mechanisms, and achieve high
utility with low performance overhead. We also derived cost mod-
els that show how to judiciously allocate the available privacy
budget, and how to choose important index parameters to improve
accuracy. The resulting approach outperforms significantly ex-
isting benchmarks. In future work, we plan to investigate more
advanced cost models to better capture prior information, and
thus further improve the accuracy of our approach. We will also
investigate more complex index structures (e.g., k-d-trees and R+

trees) which can adjust better to skewed distributions of priors.
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ABSTRACT
We study the problem of graph similarity search with a graph edit

distance (GED) constraint. Existing solutions adopt a filtering-

and-verification framework, with a focus on the filtering phase

where a feature-based index is used to reduce the number of

candidate graphs to be verified. These solutions suffer from a

computationally expensive verification phase. In this paper, we

develop a novel technique called Inves that can significantly

reduce the time of verifying a candidate graph. Its main idea

is to judiciously and incrementally partition a candidate graph

based on the query graph, and use the results to compute a lower

bound of their distance. If a full GED computation is needed, Inves
utilizes the collected information, and uses novel methods and an

A* algorithm to search in the space of possible vertex mappings

between the graphs to compute their GED efficiently. A main

advantage of Inves is that it can be adopted by a plethora of graph
similarity search algorithms. Our extensive experiments on both

real and synthetic datasets show that Inves can significantly

improve the performance of existing techniques by an order of

magnitude.

1 INTRODUCTION
Graph data models are widely used in representing complex

objects, such as chemical compounds, social networks, and bio-

logical structures. Graph search, which finds all occurrences of a

query graph in a database of graphs, is a fundamental operation

needed in many applications. To tolerate data inconsistency, nat-

ural noises, and different data representations in graph search,

very often these applications require finding graphs similar to a

given query graph. Various similarity measures have been pro-

posed, such as maximum common subgraphs [2, 15], missing

edges and features [23, 28], and graph alignment [17]. Among

them, one of the commonly used metric is graph edit distance

(GED) [5, 6, 22], which can capture the structural difference be-

tween graphs, and can be applied to many types of graphs [22, 24].

The GED between two graphs is the minimum number of graph

edit operations to transform one to the other, where a graph edit

operation is insertion, deletion, or substitution of a single vertex

or edge.

The problem of graph similarity search is to find graphs in a

database whose GED to a query graph is within a given threshold.

This problem is challenging because GED computation between

two graphs is NP-hard [22]. Generally, a scan-based approach

that directly computes the GED between each data graph and

the query graph is computationally prohibitive. Many existing

solutions adopt a filtering-and-verification framework. An in-

dex structure is typically used to generate candidate graphs in
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the filtering phase, and each candidate is compared with the

query graph to find if it is a true match in the verification phase.

Existing studies mainly focus on developing a feature-based in-

dex to generate candidates in the filtering phase. For example,

c-star [22] and k-AT [19] extract tree-structured features from

data graphs and build an inverted index on the extracted features.

GSimSearch [25, 26] builds an inverted index on path-based fea-

tures of graphs. Pars [24] and MLIndex [12] utilize partitions of
graphs as features to be indexed.

The performance of existing solutions can suffer from too

many candidates and an expensive verification phase. Table 1

shows the performance of 100 queries using one of the index-

based search algorithms, Pars [24], on an AIDS dataset containing
42,687 graphs (see Section 5 for details). In the table, we use the

number of data graphs that have passed a primitive filter named

the global label filter (refer to [25] and Section 3.5 for details of the

filter). The number of candidates denotes those candidates that

require full GED computations. For example, when the threshold

τ = 5, only 15.5% of data graphs are filtered from the index-based

filtering phase. Experiments on other solutions show similar

behaviors.

Table 1: Performance of Pars

GED threshold τ 1 2 3 4 5

# of data graphs 574 3,335 12,669 34,774 74,937

# of candidates 142 591 4,931 22,846 63,301

# of answers 105 135 161 221 278

Filtering ratio 75.3% 82.3% 61.1% 34.3% 15.5%

To solve this problem, in this paper we develop a novel verifi-

cation technique, called Inves1. Given a set of candidate graphs

generated from a filtering phase, the proposed technique can

effectively reduce the time for verifying if the GED between each

candidate graph and the query graph is within a given threshold.

Its main idea is to judiciously and incrementally partition the

candidate graph based on the query graph, and use the results

to try to prune this pair. If a full GED computation is needed,

Inves utilizes the collected information, and uses novel methods

and an A* algorithm to search in the space of possible vertex

mappings between the graphs to compute their GED efficiently.

A main advantage of Inves is that it can be adopted by a plethora

of graph similarity search algorithms.

The following are our contributions:

• We propose Inves as a novel incremental partitioning-based

verification technique. Given a candidate graph and a query

graph with a GED threshold, Inves incrementally isolates sub-

graphs of the candidate graph that cause mismatches with the

query graph. If the number of isolated subgraphs is greater than

1
It stands for Incremental partitioning-based verification technique for graph edit
similarity search.
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the threshold, Inves filters out this pair since their GED cannot

be within the threshold. In Section 3, we present the details of

the incremental partitioning-based verification framework.

• If the pair of graphs cannot be pruned using the generated

subgraphs, Inves employs efficient methods based on a well-

known A* algorithm for GED computation [14]. It also takes

advantage of the partitioning results by first considering those

vertices that cause edit errors. In this way, it can significantly

reduce the search space of the A* algorithm, thus improve the

performance of GED computation (Section 4).

• We conduct extensive experiments to evaluate Inves on both

real and synthetic data sets (Section 5). The results show the

benefits of the various optimization methods in the technique.

In addition, by adopting Inves in existing index-based algo-

rithms, we can significantly reduce the total running time by

an order of magnitude.

The rest of the paper is organized as follows: Section 2 provides

preliminaries and reviews related work. Section 3 presents the

proposed verification framework, and Section 4 provides our GED

computation methods. Section 5 presents experimental results,

and Section 6 concludes the paper.

2 PRELIMINARIES AND RELATEDWORK
2.1 Graph Similarity Search Problem
We focus on undirected labeled simple graphs defined as follows.

An undirected labeled simple graph д is a triple (Vд , Eд , Lд ),
whereVд is a set of vertices, Eд ⊆ {(u,v ) |u ∈ Vд∧v ∈ Vд∧u , v}
is a set of edges, and Lд is a labeling function that maps vertices

and edges to labels. Lд (v ) and Lд (u,v ) respectively denote the

label of a vertexv and the label of an edge (u,v ). If there is no edge
between u and v , Lд (u,v ) returns a unique value λ distinguished

from all other edge labels. There are no self-loops nor more than

one edge between two vertices. For simplicity, in the rest of the

paper, we use graph to denote undirected labeled simple graph.

The graph edit distance (or GED for short) between two graphs

x and y, denoted by дed (x ,y), is the minimum number of graph

edit operations that transform x to y. A graph edit operation is

one of the following: (1) insertion of an isolated labeled vertex;

(2) deletion of an isolated labeled vertex; (3) substitution of the

label of a vertex; (4) insertion of a labeled edge; (5) deletion of a

labeled edge; or (6) substitution of the label of an edge.

EXAMPLE 1. Figure 1 shows two graphs x and y, which include
vertex labels representing atom symbols and edge labels (i.e., single
and double lines) representing chemical bonds. Besides vertex labels,
the graphs also include vertex identifiers. To transform x into y, we
can do the following three graph edit operations on x : insertion of
a single-bond edge between u3 and u5, and substitutions of labels
of u2 and u8. Therefore, дed (x ,y) is 3.

We formalize the problem of graph edit similarity search as

follows.

DEFINITION 1 (Graph Similarity Search Problem). For a graph
database D = {x1, . . . ,xn } and a query graph y with a GED
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Figure 1: Two example graphs

threshold τ , the graph edit similarity search finds every data graph
xi ∈ D such that дed (xi ,y) ≤ τ .

2.2 A* algorithm for GED Computation
In this section, we review themost widely used algorithm for GED

computation [14], which is based on A*. Given a pair of graphs

x and y, the A* algorithm basically traverses all possible vertex

mappings between x and y in a best-first fashion. It maintains a

priority queue that contains states in its state-space tree, where

each state in the tree represents a partial vertex mapping between

the pair. The priority (or edit distance) of a state is determined by

the sum of (1) the existing distance д: the edit operations detected
from the initial state to the current state; and (2) an estimated

distance h: a heuristic estimation of the edit operations from the

current state to the goal. The A* algorithm guarantees that it

finds an optimal mapping if h is not overestimated.

Algorithm 1: GED(x , y, τ )
input :x and y are graphs; τ is a GED threshold.

output : if дed (x ,y) ≤ τ , дed (x ,y); otherwise, τ+1

1 O ← order the vertices in x ;

2 Q ← ∅; Q .push(∅);
3 while Q , ∅ do
4 M ← Q .pop();
5 if complete(M) then return existingDistance(M );

6 u ← next unmapped vertex in Vx ∪ {ε } as per O;

7 foreach v ∈ (Vy ∪ {ε }) s.t. v < M do
8 д ← existingDistance(M ∪ {u → v});

9 h ← estimateDistance(M ∪ {u → v});

10 if д + h ≤ τ then Q .pushQueue(M ∪ {u → v});

11 return τ + 1;

The GED computation algorithm is outlined in Algorithm 1. It

first determines the order of vertices in x , and pushes the initial

state, i.e., an empty mapping, into the queue (Lines 1–2). In the

main loop, it removes a mapping M from the queue that has a

minimum edit distance (Line 4). If M contains all vertices of x
and y, it returns the existing distance ofM (Line 5). Otherwise,

it expands its state-space tree by mapping the next unmapped

vertex u in x (Line 6) to each unmapped vertex v in y (Line 7). It

pushes each expanded state into the queue if the edit distance of

the state is not greater than τ (Lines 8–10). In the algorithm, ε
is used to denote an insertion or a deletion of a vertex. If it fails

to find any mapping whose edit distance is not greater than τ , it
returns τ + 1 (Line 11).

2.3 Related Work
Previous work on the graph similarity search utilizes small over-

lapping substructures to establish a filtering condition between

dissimilar graphs. Motivated by the gram idea used in string

similarity searches, the k-AT algorithm [19] defines a q-gram
as a tree rooted at a vertex v with all vertices reachable to v in

q hops. A star structure, which is 1-gram defined by k-AT, has
been proposed to set up a filtering condition through bipartite

matching between star structures [22]. SEGOS [20] is a two-level
index structure proposed to efficiently search star structures. The

main focus of these approaches has been on the filtering phase

to develop efficient index-based filtering methods using those

substructures.
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GSimSearch [25, 26] proposed a path-based q-gram and devel-

oped an index-based filtering technique based on the observation

of the algorithm called ED-join [21] in string search. To further

reduce the number of candidates, GSimSearch proposed local

label filtering in its verification phase. However, this technique

is based on small fixed-size substructures of graphs, thus edit

errors are mainly captured from label differences, and structural

differences are considered inside small substructures only.

There is recent work that makes use of large disjoint sub-

structures of graphs to capture structural differences between

graphs. Pars [24] partitions data graphs into disjoint subgraphs,

and makes an index on the partitioned subgraphs. Using the in-

dex, it identifies data graphs having partitions contained in the

query graph, and generates them as candidate graphs. It employs

a random-graph-partitioning strategy and refines initial parti-

tioning results based on a query workload. It also dynamically

rearranges indexed partitions in a restricted way while searching

its index structure. MLIndex [12] was proposed to reduce the

number of candidates by indexing a few alternative partitioning

results of data graphs. It defines a selectivity of a partition based

on vertex and edge label frequencies, and divides a graph in a

way to increase selectivities of partitions. Despite the efforts in

the previous approaches, their filtering power of partitions is

inherently limited because partitions of data graphs are deter-

mined offline, and one or a few rigid partitionings of a data graph

cannot work well for all queries.

Other related work includes Mixed [27] and LBMatrix [3].

Mixed generates candidates by using small and large disjoint

substructures of a query graph. LBMatrix has proposed a q-gram-

based matrix index structure that can be stored in external mem-

ory to handle very large datasets.

3 INVES: VERIFICATION FRAMEWORK
In this section, we propose the Inves verification framework

aiming to efficiently verify if the GED between a pair of graphs is

within a given threshold. We first introduce the partition-based

verification principle, then present the details of Inves.

3.1 Partition-based Verification Scheme
Due to the high cost of GED computation, it makes the graph sim-

ilarity search impractical to directly compute the GED between

a candidate and the query when there are many candidates gen-

erated from an index-based filtering phase. To efficiently verify a

pair of graphs, in this paper we use a partition-based lower bound

of the GED between the pair before computing the exact GED.

We begin with the concept of an induced subgraph for defining

graph partitions, then present the verification scheme.

DEFINITION 2 (Induced Subgrpah Isomorphism). A graph r
is induced subgraph isomorphic to another graph s , denoted as
r ⊑ s , if there exists an injection f : Vr → Vs such that ∀u ∈
Vr , f (u) ∈ Vs ∧ Lr (u) = Ls ( f (u)) and ∀u ∈ Vr , ∀v ∈ Vr ,
Lr (u,v ) = Ls ( f (u), f (v )). In this case, the graph r is called an
induced subgraph of s .

Recall that the edge labeling function Lд (u,v ) returns a unique
value λ if there is no edge betweenu andv in a graph д. It enables
us to check the inducedness of a subgraph in Definition 2.

EXAMPLE 2. Consider the graphs p1, p2, and y in Figure 2. p1 ⊑ y,
but p2 @ y because Lp2 (u4,u6) = λ , Ly (v3,v5) = single-bond.

Given a graph д and a vertex set V ⊆ Vд , there is only one

induced subgraph p of д such that Vp = V . That is, p is uniquely
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Figure 2: Induced subgraph isomorphism

identified by V . Therefore, we use V interchangeably with the

induced subgraph of д defined by V .

DEFINITION 3 (Graph Partitioning). A partitioning of a graph
д is P (д) = {p1, . . . ,pk } such that ∀i pi ⊑ д, ∀i, j i , j ⇒ Vpi ∩

Vpj = ∅, and Vд =
⋃k
i=1Vpi .

Given a pair of graphs x and y, consider a partition p ∈ P (x ).
If p ⊑ y, we say p is matching with y. Otherwise, we say p
is mismatching with y. We also simply call p a matching (or

mismatching) partition if y is clear from the context. An induced

subgraph o of y such that Vo ⊆ Vy is called an occurrence of p
in y if and only if p ⊑ o and o ⊑ p. In Figure 2, for example,

o = {v6,v7,v8} is an occurrence of p1 in y.
With the graph partitioning, a lower bound of the GED be-

tween a pair of graphs are calculated as follows.

LEMMA 1. Consider a pair of graphs x and y with a graph parti-
tioning P (x ). lb (x ,y) = |{p | p ∈ P (x ) ∧ p @ y}| is a lower bound
of the GED between the pair.

Proof. Since partitions of x share neither a vertex nor an

edge, an edit operation on a partition does not affect to another

partition. Therefore, each mismatching partition p requires at

least one edit operation to transform x to y. □

The following corollary states the partition-based verification

scheme based on the lower bound in Lemma 1.

COROLLARY 1. Given a GED threshold τ , consider a pair of graphs
x and y with a graph partitioning P (x ). If lb (x ,y) > τ , the pair
can be pruned without the GED computation.

Partition-based lower bounds and their variants have been

extensively studied and discussed in the literature of string simi-

larity search (e.g. [8, 11]) and approximate subsequence mapping

(e.g. [1, 9, 10]). The same principle is well adopted in recent

work for graph similarity search [12, 24, 27]. Our lower bound

in Lemma 1 is a simple extension of existing partition-based

approaches. While the focus of existing work is on building a

partition-based inverted index for the filtering phase, our focus

in this paper is on the verification phase to efficiently verify a

candidate graph using the partition-based lower bound.

To obtain the lower bound in Lemma 1, we need |P (x ) | in-
duced subgraph isomorphism tests, which are generally NP-hard.

However, former studies have empirically showed that subgraph

isomorphism test is on average three orders of magnitude faster

than GED computation [12, 24], and thus it can be practically

used in deriving a partition-based lower bound.

EXAMPLE 3. Consider a pair of graphs x and y shown in Figure 1
with a GED threshold τ = 1. If we partition x into {p1,p2} as
depicted in Figure 3(a), lb (x ,y) = 2 because p1 @ y and p2 @ y.
Therefore, we can safely prune the pair without GED computation
according to Corollary 1. If we partition x into {p′

1
,p′

2
} as illustrated

in Figure 3(b), lb (x ,y) = 1 since p′
1
@ y but p′

2
⊑ y. Thus, we need

a GED computation between the pair.
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Figure 3: Two ways to partition x in Figure 1

As shown in the example above, the tightness of lb (x ,y) is
highly dependent on the way to partition x . However, the graph
partitioning problem is in general NP-hard [12, 24] and enumerat-

ing every possible partitioning to obtain an optimal partitioning

is intractable. In the next section, we introduce a measure for a

partitioning to develop a good partitioning technique.

3.2 A Qualitative Measure for a Partitioning
Consider a pair of graph x and y with a partitioning P (x ). An
inherent limitation of partition-based approaches is that the con-

tainment test of each partition is independent, and thus multiple

partitions of x can be matching with y in overlapping areas of y.
This limitation makes the partition-based bound loose. However,

it is hard to tackle the problem because lb (x ,y) can exceed the

GED if we use a non-overlapping alignment of partitions, where

a mismatching partition p is allowed to be aligned to a subgraph

of y whose size is less than the size of p. Finding a legal non-

overlapping alignment of partitions (i.e., an alignment that results

in a minimum lower bound) is computationally impractical.

Beside this fundamental limitation, the following are major

problems that make the partition-based lower bound loose.

P1 In partition-based approaches, only one edit error is counted

from a mismatching partition. A tighter bound can be cal-

culated as lb (x ,y) =
∑
p∈P (x )∧p@y sed (p,y), where sed (p,y)

denotes the subgraph edit distance [22, 26] between p and y.
P2 A substructure of x that causes insertion or deletion errors

can be divided into multiple partitions. In this case, those

edit errors can be hidden between partitions to make the

lower bound loose. They can be detected by enumerating

every subgraph of x consisting of adjacent partitions, and

investigating the subgraphs through subgraph edit distance

computations.

P3 Edit errors can be buried in edges connecting different parti-

tions and these errors also make the lower bound loose. To

precisely find them, we need to solve the problem of place-

ment of partitions into y.

Due to the complexities of subgraph edit distance and parti-

tion alignment, the problems above cannot be efficiently solved.

The hardness of the limitation and problems also prevents us

from accurately analyzing the tightness of lb (x ,y). In fact, there

is no given proof on the tightness of existing partition-based

bounds [6], and it is hard to measure the tightness of lb (x ,y) in
a quantitative manner. To the best of our knowledge, the only

theoretical analysis on the tightness lb (x ,y) is that increasing the
number of partitions has more chance to get a tighter bound [12].

However, the analysis is based on an assumption that does not

take the problem P2 into consideration. In this paper, instead of

a quantitative measure, we introduce a qualitative measure of

goodness of a partitioning as stated in the following claim.

CLAIM 1. Given two graphs x and y, a partitioning P (x ) is a
good partitioning if every mismatching partition p ∈ P (x ) meets
the following conditions.

C1 Edit errors in p are indivisible, or edit errors in p cannot be
distributed over partitions (indivisibility). Ideally, p is minimal,
that is, p loses its edit errors and become a matching partition
if any vertex in p is removed (mininality).

C2 An edit error in an edge connecting p to another partition is
captured by p, while preserving the condition C1.

The indivisibility constraint in C1 alleviates the problem P1
since each partition contains the least number of edit errors it can

have. The minimality constraint in C1 alleviates the problem P2,
because by removing unnecessary vertices that do not contribute

to edit errors from a partition, those vertices can be combined

with other vertices in another partition and cause edit errors.

Claim 1 also has the condition C2 to alleviate the problem P3.
Although we develop a qualitative measure for a partitioning,

it is hard to make a partitioning that exactly meets the measure

because a graph partitioning problem even with a simple condi-

tion tends to be intractable [24]. Nonetheless, the measure can be

a guideline for producing a partitioning to get a tighter bound. In

the following sections, we develop a novel partitioning method

based on this measure (Section 3.3 for C1 and Section 3.4 for C2).

3.3 Incremental Partitioning
In this section, we present a systematic way to produce mis-

matching partitions that approximately meet the condition C1 in

Claim 1. We begin with the definition of the incremental parti-

tioning strategy.

DEFINITION 4 (Incremental Partitioning). Given two graphs
x and y, an incremental partitioning of x is to extract mismatching
partitions from x as follows. Let Vx = {u1, . . . ,un }. We move the
vertices inVx one after another into a partition p, which is initially
empty, while p ⊑ y. Let the last vertex moved from x to p be ul .
We finally move ul+1 to p to make p @ y, and produce P (x ) =
{p,x\p}, where x\p denotes the induced subgraph s of x such that
Vs = Vx −Vp . We repeat this partitioning strategy with x\p until
either x\p ⊑ y or x\p = ∅.

A graph partitioning produced by the incremental partitioning

strategy in Definition 4 satisfies the following property.

PROPERTY 1. Given a pair of graphs x and y, if x is partitioned
into P (x ) = {p1, . . . ,pk−1,pk } using our incremental partitioning
strategy, then p1, . . . ,pk−1 are mismatching with y and the last
partition pk , which can be empty, is matching with y. Therefore,
lb (x ,y) = k − 1.

The following lemma states that the incremental partitioning

strategy generates a partitioning that exactly meets the indivisi-

bility constraint in the condition C1 in Claim 1.

LEMMA 2. Given a partitioning P (x ) = {p1, . . . ,pk−1,pk } pro-
duced by the incremental partitioning strategy in Definition 4, it
is not possible to divide any partition pi ∈ (P (x ) − {pk }) into two
partitions pi1 and pi2 such that pi1 @ y ∧ pi2 @ y.

Proof. For each pi = {ub , . . . ,ue } except pk , our incremental

partitioning scheme guarantees that (p′ = pi − {ue }) ⊑ y. Since
ue cannot be included in both pi1 and pi2, either pi1 ⊑ p′ ⊑ y or

pi2 ⊑ p′ ⊑ y should be satisfied. □

EXAMPLE 4. For a pair of graphs x andy in Figure 1, we incremen-
tally partition x by comparing it with y as follows. Assume that
vertices of x are investigated from u1 to u8. We first make P (x ) by
isolating {u1,u2} from x into p′

1
as shown in Figure 4(a), because

(p′
1
− {u2}) ⊑ y but p′

1
@ y. Given two partitions of x , we further
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partition p2 into p′
2
and p3 by isolating a mismatching partition

{u3,u4,u5} from p2, as depicted in Figure 4(b). Since p3 ⊑ y, we
cannot proceed the incremental partitioning. Hence, lb (x ,y) = 2.
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Figure 4: Incremental partitioning of x in Figure 1

When the incremental partitioning strategy produces a mis-

matching partition, an induced subgraph isomorphism test is an

essential operation. The common principle on subgraph isomor-

phism test is to visit vertices based on connectivity of vertices and

frequencies of vertices and edges [7, 16]. Following the existing

solutions, we investigate vertices of x by considering infrequent

vertices and edges early while preserving the connectivity.

Given a mismatching partition p in P (x ) generated from the

incremental partitioning strategy, we can find an induced sub-

graph of p that meets the minimality constraint in the condition

C1 as follows. Since the last vertex in p causes the mismatch, we

enumerate every induced subgraph ofp containing the last vertex
and perform an induced subgraph isomorphism test against y to

find a subgraph s such that s @ y and |Vs | is minimum. This pro-

cess is obviously time consuming. Instead of finding a minimal

one, we propose a method that refines a mismatching partition

in P (x ) to approximately meet the minimality constraint.

After we find a mismatching partition p, we rematch p against

y using an alternative vertex ordering of p to remove unneces-

sary vertices from p that do not contribute to edit errors. Let the

mismatching partition p be {u1, . . . ,uf }. Because {u1, . . . ,uf −1}
is matching with y by Definition 4, uf causes the mismatching

and edit errors are likely to be clustered in uf and vertices adja-

cent to uf . Therefore, by using the vertex uf as the start vertex

and reordering p in the same way (i.e., considering infrequent

vertices and edges early while preserving the connectivity), we

have a chance to reduce the size of the mismatching partition.

The following example illustrates rematching of a mismatching

partition to reduce the size of the mismatching partition.

EXAMPLE 5. Consider a pair of graphs x andy in Figure 5. Assume
the vertices of x is ordered as {u1,u2,u3,u4,u5,u6}. Based on the
order, we isolate {u1,u2,u3,u4} into a separate partition p. In this
case, x\p is matching with y and lb (x ,y) = 1. We reorder vertices
in the mismatching partition p into {u4,u3,u2,u1} by using u4 as
the first vertex and preserving the connectivity of the vertices. By
rematching p against y using the vertex ordering, we reduce the
mismatching partition p to {u4,u3}. From x\p, in this case, we can
find one more mismatching partition {u1,u5}, which is refined from
{u1,u2,u5} by the rematching method, and obtain a tighter bound
lb (x ,y) = 2.
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C C

N C OS
v1 v2 v3 v4

v5 v6

x y

Figure 5: Rematching a mismatching partition

Table 2: Average number of rematching

GED threshold τ 1 2 3 4 5

AIDS 1.41 1.36 1.37 1.38 1.38

PROTEIN 1.50 1.81 1.76 1.69 1.59

PubChem 1.56 1.50 1.47 1.46 1.46

To further reduce the size of a mismatching partition, we re-

peat rematching while the partition size decreases. As the edit

errors are likely to be clustered around the last vertex, we can

expect that subgraph isomorphism tests are terminated early and

the number of rematching is very small. Table 2 shows the aver-

age number of rematching for AIDS, PROTEIN, and PubChem

datasets when extracting a mismatching partition (see Section 5

for details of the datasets and queries).

Algorithm 2: IncrementalPartitioning(x , y)

input :x and y are graphs

output :a partition-based GED lower bound lb (x ,y)

1 DetermineVertexOrdering(x );
2 f ← InducedSI(x ,y, ∅);
3 if f > |Vx | then return 0 ;

4 p ← first f vertices of x ;

5 repeat
6 DetermineRematchingOrdering(p);
7 f ← InducedSI(p,y, ∅);
8 p ← first f vertices of p;

9 until |Vp | does not change;

10 x ′ ← x\p;

11 foreach connected component c ∈ x ′ do
12 if |Vc | ≤ α then x ′ ← x ′\c;

13 return 1+IncrementalPartitioning(x ′,y);

Algorithm 2 outlines the incremental partitioning algorithm.

Given a pair of graphs x and y, the algorithm computes the

lower bound lb (x ,y) by partitioning x based on the condition

C1 in Claim 1. It first determines the vertex ordering of x using

DetermineVertexOrdering (omitted, Line 1) and then perform an

induced subgraph isomorphism test of x against y based on the

ordering (Line 2). InducedSI, which will be presented at the end

of the next section, identifies and returns the least vertex position

in x that makes the matching fail. If the position is greater than

the number of vertices in x , then x ⊑ y, and return lb (x ,y) = 0

(Line 3). Otherwise, it extracts the vertices causing the mismatch

into a partition p (Line 4).

The algorithm reduces the size of the mismatching partition p
using the rematching method (Lines 5–9). DetermineRematchin-
gOrdering (omitted, Line 6) is the same with DetermineVertex-
Ordering except that it uses the last vertex in p as the start vertex.

After reordering vertices in p, the algorithm rematches p against

y (Line 7). It repeats rematching while the size of the mismatch-

ing partition p shrinks (Line 9). The algorithm finally detaches p
from x to make x ′ (Line 10).

After isolating a mismatching partition p from x , the remain-

ing part of x , which is x ′, often forms a disconnected graph. We

observed that a tiny connected component in a disconnected

graph can cause a serious performance problem in subgraph iso-

morphism test. The existing subgraph isomorphism algorithms
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assume connected graphs, and thus they do not pay attention to

this problem. To prevent this worst case in subgraph isomorphism

test, the algorithm removes each tiny connected component c
from x ′ such that |Vc | ≤ α , where α is a tunable parameter (Lines

11–12). Then, it recursively identifies the number of mismatching

partitions in x ′ and returns lb (x ,y) (Line 13).

Correctness and Complexity of Algorithm 2: Whenever

a mismatching partition is identified, the algorithm increments

the lower bound by 1 (Line 13). Therefore, the algorithm cor-

rectly returns a lower bound by Lemma 1. Assuming the number

of rematching is bound to a constant, the worst case complex-

ity is

∑
p∈P (x ) O ((γp · γp )

|Vp | ) = O ((γx · γx )
|Vx | ), which is the

same as traditional subgraph isomorphism, where γд denotes the

maximum vertex degree in a graph д.

3.4 Exploiting Bridges
In this section, we propose a novel technique to detect and exploit

edit errors buried in those edges connecting different partitions.

With the proposed technique, we develop the bridge constraint to
meet the condition C2 in our qualitative measure. We first define

bridge and then present formulas to count edit errors in bridges.

DEFINITION 5 (Bridge). Given a partition p, a bridge of a vertex
u ∈ p is an edge connecting u to a vertex u ′ < p.

LEMMA 3. Given a partition p of a graph x and an occurrence
o of p in another graph y, suppose a vertex u ∈ p is mapped to a
vertex v ∈ o.
(1) The number of edit errors between bridges of u and v is

Be (u,v ) = Γ(Lbr (u),Lbr (v )),

where Lbr (w ) denotes the label multiset of the bridges of a
vertexw , and Γ(A,B) is max( |A − B |, |B −A|).

(2) The number of edit errors in bridges of p with respect to o is

B (p,o) = B (M ) =
∑

u→v ∈M
Be (u,v ),

whereM denotes the vertex mapping between p and o, which
are identified during induced subgraph isomorphism test of p.

Proof. (1) Let D1 = Lbr (u) − Lbr (v ) and D2 = Lbr (v ) −
Lbr (u), and assume |D1 | ≥ |D2 |. To transform Lbr (u) to Lbr (v ),
we need |D2 | substitutions of labels inD1 and |D1 |−|D2 | deletions

of labels in D1. That is, we need |D2 | + |D1 | − |D2 | = |D1 | =

Γ(Lbr (u),Lbr (v )) edit operations. (2) Since no bridge can shared

by multiple vertices inp by Definition 5, the number of edit errors

inp is the sum of the number of edit errors in the bridges ofp. □

The following example illustrates the number of edit errors in

bridges of a matching partition.

EXAMPLE 6. In Example 4, consider the matching partition p3 =
{u8,u7,u6} and its occurrence o = {v3,v6,v7} in y as shown in
Figure 6. Be (u8,v3) = 3 because u8 has no bridge while v3 has 3
bridges. Likewise, Be (u7,v6) = 0 and Be (u6,v7) = 0. Therefore,
B (p3,o) = 3 + 0 + 0 = 3.
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Figure 6: Bridge errors of a matching partition in Figure 4

Given two partitions p and p′ of a graph x , suppose that a

bridge e connecting p and p′ causes one edit error with respect

to another graph y. When we count edit errors in bridges of x ,
the edit error in e is counted twice (i.e., once in p and once in

p′). Hence, we can use half of the edit errors counted in bridges

so that we do not over-count edit errors in x . Lemma 4 formally

states this observation.

LEMMA 4. Given a pair of graphs x and y, consider a matching
partition p in x and an occurrence o of p iny. The mapping between
p and o causes at least ⌊B (p,o)/2⌋ edit errors.

Proof. In this proof, we consider deletion or substitution

errors of bridges in x only. Insertion of bridges to x can be proved

similarly. Consider we have a partitioning of x such that the ith

partition pi has ei bridges. Since each bridge is shared by two

partitions, bridges should be distributed in a disjoint manner. We

distribute bridges to each partition using the following procedure.

initially, all bridges are unassigned;

p ← an arbitrary partition;

while there is an unassigned bridge in x do
if no unassigned bridge is connected to p then

p ← an arbitrary partition to which at least one

unassigned bridge connected;

e ← an unassigned bridge connected to p;

assign e to p;

p ← the partition connected to p via e;

The procedure above guarantees that at least ⌊ei/2⌋ bridges are as-
signed topi because if a partition loses a bridge, another bridge (if
exists) is always assigned to the partition. If we consider bridges

causing edit errors only (i.e., each of ei bridges causes an edit

error), pi has at least ⌊ei/2⌋ edit errors. Since there are B (p,o)
edit errors in the bridges connected to p, we can always assign

at least ⌊B (p,o)/2⌋ edit errors to p using the procedure. □

By pushing edit errors in bridges into a matching partition,

we can make a rigorous partition matching condition called the

bridge constraint as follows.

COROLLARY 2. Given a partition p of a graph x and another graph
y, p is matching with y if and only if there exists an induced sub-
graph o of y such that Vo ⊆ Vy , o ⊑ p, p ⊑ o, and B (p,o) < 2.

EXAMPLE 7. In Example 6, since o is the only occurrence of p3
in y and B (p3,o) ≥ 2, p3 is mismatching with y by Corollary 2.
Therefore, in Example 4, the graph x is divided into four partitions
(three mismatching partitions and one empty partition), and we
obtain a tighter lower bound lb (x ,y) = 3.

Notice that our bridge constraint detects edit errors much

more accurately than the half-edge subgraph isomorphism used

in existing techniques [12, 24]. For example, in Example 6 and 7,

existing techniques cannot detect any edit errors in p3 (we omit

the precise comparison in the interest of space; refer to Pars[24]
for the details of the half-edge subgraph isomorphism).

By integrating the bridge constraint with the induced sub-

graph isomorphism test, we can detect a mismatching partition

early to approximately preserve the indivisibility and minimal-

ity constraints in C1 of Claim 1. Algorithm 3 encapsulates our

induced subgraph isomorphism test with the bridge constraint.
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Algorithm 3: InducedSI(x , y,M)

input :x and y are graphs;

M is a mapping vector (initially ∅).

output : the least position in x where the matching fails.

1 iteration ← |M | + 1;

2 if iteration > |Vx | then return iteration ;

3 u ← the iterationth vertex in Vx ;

4 C ← {v | v ∈ y ∧v < M ∧ Lx (u) = Ly (v )};

5 foreach v ∈ C do
6 if ∀u ′ → v ′ ∈ M Lx (u,u

′) = Ly (v,v
′) and

B (M ∪ {u → v}) < 2 then
7 depth ← InducedSI(x , y,M ∪ {u → v});

8 if iteration < depth then iteration ← depth;

9 if iteration > |Vx | then return iteration;

10 return iteration;

Like most existing subgraph isomorphism techniques, our algo-

rithm also adopts the Ullmann’s algorithm [18] with a difference

that ours returns the least vertex position in a partition where

the induced subgraph isomorphism test fails. Given a pair of

graphs x and y, the algorithm maps the vertices in x one by one

to find a mapping M between x and y. For the current vertex
u of x (Line 3), it enumerates all unused vertices v ∈ y whose

label is equivalent to the label of u (Line 4), and test if the vertex

mapping u → v is valid (Lines 6). Then, the bridge constraint

in Corollary 2 is applied to the vertex mapping M ∪ {u → v}
(Line 6). If it is a valid mapping, the algorithm goes down to the

next vertex of x (Line 7). It keeps track of the least position (or

maximum iteration count) in x where the induced subgraph iso-

morphism will fail (Lines 1, 8), and returns the position if x @ y
(Line 10). If x ⊑ y, the algorithm returns |Vx | + 1 (Lines 2, 9).

EXAMPLE 8. Given a pair of graph x and y depicted in Figure 7,
consider we perform InducedSI(x ,y, ∅). Let us assume the vertex
ordering of x is from u1 to u6. At the first iteration, InducedSI adds
u1 → v7 into M , and considers u2 → v2 at the second iteration.
Because Lx (u2,u1) = Ly (v2,v7) andB ({u1 → v7}∪{u2 → v2}) =
1, it adds u2 → v2 into M . At the third iteration, it maps the
next vertex u3 to v3, and checks the inducedness: Lx (u3,u1) =
Ly (v3,v7) = λ and Lx (u3,u2) = Ly (v3,v2). Then, it tests the
bridge constraint and fails to find an occurrence because B ({u1 →
v7,u2 → v2} ∪ {u3 → v3}) = 2. Therefore, it returns its iteration
count 3, which denotes {u1,u2,u3} is a mismatching with y.
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Figure 7: Example of InducedSI

Correctness of Algorithm 3: Given two vertices u and v in

a graph д, Lд (u,v ) returns a unique value λ when there is no

edge between u andv . Therefore, it correctly checks the induced-
ness of x in Line 6. Mismatching caused by bridge differences is

also detected from Line 6, where the correctness is guaranteed by

Corollary 2. Because the algorithm basically follows Ullmann’s al-

gorithm except the test of inducedness, it correctly computes the

induced containment of x . It can be inductively verified the algo-

rithm correctly returns the least position where the isomorphism

test fails.

3.5 Verification Algorithm
In this section, we provide Inves verification algorithm. Given a

pair of graph x and y and a GED threshold τ , Inves incrementally

partitions x to obtain a GED lower bound, and prune the pair

if the lower bound is greater than τ . Otherwise, Inves directly
calculates the GED between x and y.

Algorithm 4: InvesVerifier(x , y, τ )
input :x and y are graphs; τ is a GED threshold.

output :a boolean value of дed (x ,y) ≤ τ

1 if Γ(LV (x ),LV (y)) + Γ(LE (x ),LE (y)) > τ then
2 return false;

3 lb ← IncrementalPartitioning(x ,y);
4 if lb > τ then return false;

5 p ← the last partition of P (x );

6 if |Vp |/|Vx | > β then
7 M ← vertex mapping between Vp and Vy ;

8 if GEDPartial(M,x ,y,τ ) ≤ τ then return true;

9 return GED(x ,y,τ ) ≤ τ ;

Algorithm 4 shows the details of Inves verification algorithm.

Using the label differences of vertices and edges, it first computes

a loose GED lower bound and prune the pair if the bound is

greater than τ , where LV (д) and LE (д) denote the label multisets

of vertices and edges in a graph д respectively (Lines 1–2). This

technique is originated from the letter-count filter in the prob-

lem of DNA read mapping [1, 4] and exploited recently in graph

similarity search as a name of the global label filter [25]. Because

the global label filter is very simple and highly selective, it is

essentially used in graph similarity search (e.g., [24, 25]). After

applying the global label filter, Algorithm 4 uses IncrementalPar-
titioning presented in Algorithm 2 to obtain a partition-based

lower bound (Line 3). If the lower bound is greater than τ , it
prune the pair (Line 4). We remark that it is obviously optimized

by pushing the threshold into IncrementalPartitioning and ter-

minating the partitioning process as soon as τ + 1 mismatching

partitions are found.

If the algorithm fails to prune the pair, the last partition p ∈
P (x ), which can be an empty partition, is matching with y ac-

cording to Property 1 (Line 5), and a vertex mappingM betweenp
and y is obtained from InducedSI (Line 7). The algorithm exploits

this mapping to compute the GED by using it as the initial state

of the A* algorithm (i.e., pushing the mapping into the queue

instead of an empty mapping in Line 2 of Algorithm 1) (GEDPar-
tial, Line 8). This procedure is called a partial GED computation.
Notice that the distance calculated by the partial GED computa-

tion is an upper bound of the GED of the pair. If it finds the pair

meets τ through the partial GED computation, therefore, it can

save the time for traversing vertices inM . To prevent frequent

invocations of partial GED computation for false positives, we

use the partial GED computation only when the size of matching

partition is big enough (the tunable parameter β in Line 6). If it
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fails to identify if дed (x ,y) ≤ τ from the partial GED computa-

tion, it finally performs a full GED computation between x and y
(Line 9).

Correctness of Algorithm 4: It can be seen GEDPartial cor-
rectly returns a GED upper bound. Hence, the correctness of the

algorithm is guaranteed by Lemma 1 and Corollary 1.

4 INVES: EFFICIENT GED COMPUTATION
In this section, we develop new methods on top of Algorithm 1 to

improve the performance of GED computation. We first propose

a method to accurately calculate an estimated distance of a vertex

mapping. We then propose a vertex ordering technique that takes

advantage of the partitioning results of InvesVerifier.
The performance of the A* algorithm in Algorithm 1 depends

on the accuracy of an estimated distance of unmapped vertices

and edges. Riesen et al. proposed a bipartite heuristic [14], which

gives a lower bound of the distance between unmapped parts

with bipartite matching.GSimSearch [25, 26] show that the lower

bound of the bipartite heuristic is exactly the same as the label

difference in unmapped parts in the unweighted case. This ap-

proach does not improve the accuracy of the estimation, but it

is significantly faster than the bipartite heuristic because the

bipartite heuristic uses the Hungarian algorithm [13] with a high

complexity of O (n3).
To improve the accuracy of the estimated distance, in this

paper we distinguish bridges of mapped vertices (i.e., edges con-

necting mapped vertices to unmapped vertices) from unmapped

edges. For a vertex mapping M , each u → v ∈ M has Be (u,v )
edit errors in bridges. Since two different mapped vertices in

a graph cannot share any bridges, the total edit errors in the

bridges ofM are B (M ). Therefore, the estimated distance ofM ,

denoted by h(M ), can be calculated by the sum of B (M ) and
the label difference in unmapped vertices and unmapped edges

except bridges. Formally:

h(M ) = B (M ) + Γ(LV (x ′),LV (y′)) + Γ(LE (x
′),LE (y

′)),

where x ′ and y′ respectively denote the unmapped part of x
and y except bridges. The following example illustrates that our

method accurately calculates an estimated distance.

EXAMPLE 9. For the graphs x andy in Figure 8, consider a vertex

mapping {u1 → v1,u2 → v2,u3 → v3,u4 → v4} is given. The
existing distance in the mapping is 1 (due to the label difference

between u2 and v2). The estimated distance can be calculated in

the following two different ways, where the first is the technique

used in the previous work while the second is ours.

(1) If we use the label difference of unmapped parts of x and y,
we calculate an estimated distance 1 because x has one more

single bond (u5,u7) in its unmapped part.

(2) If we use the bridge method, the number of edit errors in the

bridges is 2 because Be (u2,v2) = 1 and Be (u4,v4) = 1. By

using the label difference of the unmapped vertices and the

unmapped edges except the bridges, we get an additional edit

x y

u1 u2 u3 u4

u7 u6 u5

v1 v2 v3 v4

v7 v6 v5NC C NC C

ON S C BN S C

Figure 8: Estimating distance using bridges

error 1. By adding the two distances from the bridge method

and label filtering, the estimated distance becomes 3.

The second method is to reorder vertices of the graph x (Line 1

in Algorithm 1). Similar to the problem of subgraph isomorphism,

a proper vertex order is also crucial in the GED computation.

Since most candidates generated from the filtering phase are

false positives, we limit our discussion here to a false positive

only (i.e., дed (x ,y) > τ ). In general, as a vertex mappingM con-

tains more edit errors, the search space of A* algorithm is reduced.

For example, consider all edit errors in M and there is no edit

error in the remaining vertices and edges. In this case, the A* algo-

rithm can abandonM immediately. To makeM contain as many

edit errors as possible, therefore, we first consider vertices and

edges causing edit errors by placing vertices in the mismatching

partitions in the front positions. Since our partitioning method

makes the size of a mismatching partition as small as possible,

the A* algorithm accurately identifies many edit errors at higher

levels of the state-space tree. It is worth noting that our first

method is essential to detecting edit errors in those mismatching

partitions isolated due to edit errors in bridges.

Algorithm 5: GEDVertexOrder(P (x ))
input :P (x ) is the partitioning result of x .
output :O is an ordered set of vertices in x

1 O ← ∅;

2 foreach mismatch partition p ∈ P (x ) do O ← O ∪Vp ;
3 DetermineVertexOrdering(O);
4 O ← O ∪Vx \O;

5 Return O;

Another consideration is the connectivity among vertices tra-

versed by the A* algorithm. To reduce the search space, it is

important to select the next vertex (Line 8 of Algorithm 1) that

is connected to a vertex inM . Algorithm 5 is the vertex ordering

algorithm. It first pushes vertices in mismatching partitions to

O (Lines 1–2). Then, it orders the vertices in O using Determin-
eVertexOrdering, which traverses the vertices as described in

Section 3 (Line 3). It finally places the remaining vertices (i.e.,

vertices in a matching partition) at the end (Line 4).

5 EXPERIMENTS
5.1 Experimental Setup
We used the following public real datasets.

• AIDS is an antiviral screen compound dataset containing 42, 687

chemical compounds, published by National Cancer Institute
2
.

The dataset contains graphs with large size variation. It is a

popular benchmark used in many graph search techniques.

• PROTEIN is a protein dataset from the Protein Data Bank
3
,

containing 600 protein structures. It contains denser and less

label-informative graphs.

• PubChem is a chemical compound dataset from the PubChem

Project
4
. We used a subset of PubChem consisting of 22, 794

chemical compounds. Graphs in the PubChem dataset contain

repeating substructures and have less size variation compared

with the AIDS and PROTEIN datasets.

2
http://dtp.nci.nih.gov/docs/aids/aids_data.html

3
http://www.iam.unibe.ch/fki/databases/

iam-graph-database/download-the-iam-graph-database

4
http://pubchem.ncbi.nlm.nih.gov, Compound_000975001_001000000.sdf
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Figure 9: Evaluating optimization methods in Inves incremental partitioning

Table 3 summarizes the datasets, where NLv and NLe denote

the number of distinct vertex and edge labels in the dataset,

respectively.

Table 3: Statistics of datasets

Dataset |D| |V |avg |E |avg |V |max |E |max NLv NLe

AIDS 42,687 25.60 27.60 222 247 62 3

PROTEIN 600 32.63 62.14 126 149 3 5

PubChem 22,794 48.11 50.56 88 92 10 3

For the scalability test, we also used synthetic datasets (see Sec-

tion 5.3). For each dataset, we conducted experiments using a

workload of 100 queries graphs randomly sampled from the

dataset
5
. Candidates requiring GED computation, query response

time, incremental partitioning time, and GED computation time

are measured and reported on the basis of these 100 queries.

All experiments were run on a machine with 32GB RAM, and

an Intel core i7 at 3.4 GHz, running a 64-bit Ubuntu OS. We

implemented Inves in C++, and compiled it using GCC 4.4.3 with

the -O3 flag6. By scanning each dataset once, we pre-computed

vertex and edge frequencies, label multisets of vertices and edges

of each graph, and the label multiset of edges connected to each

vertex. This pre-computation was performed offline and excluded

from the query time.

5.2 Evaluating Optimization Methods in
Inves

We first evaluated various optimization methods used in Inves.
Since the technique is orthogonal to how candidates are gener-

ated, we scanned each dataset, and directly applied InvesVerifier
on each graph to measure the query time. Notice that y-axis is

log-scaled in all experiments.

5
For the PubChem dataset, we manually replaced a few queries because existing

techniques did not evaluate those queries in a reasonable amount of time.

6
The source code of Inves is available at https://github.com/JongikKim/Inves

5.2.1 Methods in Incremental Partitioning. Figure 9(a) and

(d) show the effect of the bridge constraint on the AIDS and

PubChem datasets. -BR is the InducedSI without the bridge con-
straint in Corollary 2, and +BR denotes the case where the bridge

constraint is added to InducedSI. +BR significantly improved

the performance by utilizing differences of bridges connecting

different partitions. For example, GED computation time was

reduced by 2.4 times on the AIDS dataset and 3.3 times on the

PubChem dataset when τ = 4. The significant improvement can

be explained by the number of candidates requiring GED com-

putation. Table 4 shows the results on the AIDS and PubChem

datasets. As shown in the table, +BR substantially reduced the

size of the candidates requiring GED computation.

Table 4: Bridge constraint (number of candidates)

GED threshold (τ ) 1 2 3 4 5

AIDS

–BR 135 517 4,686 21,780 60,443

+BR 125 253 1,086 6,902 30,565

PubChem

–BR 226 397 1,138 5,827 25,354

+BR 219 369 838 3,675 16,907

Figure 9(b) and (e) show the effect of the partition rematching

method on the AIDS and PubChem datasets, where +RM and -RM
denotes the results with and without the partition rematching

method, respectively. On the PubChem dataset,+RM significantly

reduced the GED computation time. For example, the GED time

of +RM was about 10, 6, 5, 6, and 3 times faster than -RM for

τ ∈ [1, 5], respectively. Table 5 shows the number of candidates

requiring GED computation with and without the rematching

method. Interestingly, the number of candidates reduced by +RM
was smaller than that of +BR, while +RM achieved a higher

performance gain on GED computation. This is because, although

-BR does not use the bridge constraint, the bridge errors are

considered in our GED algorithm and those false positives having

bridge errors are quickly pruned when computing GED. It can

also be explained by the size of mismatching partitions. Since the

rematching method reduces the size of mismatching partitions,
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Figure 10: Evaluating optimization methods in Inves GED computation

A* algorithm can identify more edit errors at higher levels of the

state-space tree and prune false positives early. Table 6 shows

average sizes of mismatching partitions on the PubChem dataset.

Table 5: Partition rematching (number of candidates)

GED threshold (τ ) 1 2 3 4 5

AIDS

–RM 129 279 1,451 8,807 36,265

+RM 125 253 1,086 6,902 30,565

PubChem

–RM 223 384 951 4,184 18,322

+RM 219 369 838 3,675 16,907

Table 6: Average mismatching partition size (PubChem)

GED threshold (τ ) 1 2 3 4 5

–RM 4.49 17.93 27.34 33.79 37.73

+RM 1.78 9.13 18.28 26.5 31.69

On the AIDS dataset, however, +RM slightly degraded the overall

performance because the GED computation on the AIDS dataset

is much faster than that on the PubChem dataset and the re-

matching overhead of +RM is greater than the performance gain

on GED computation. From the experiments, we observed that

the rematching method should be used for steady performance

even though it increases the partitioning time.

Figure 9(c) and (f) show the effect of the tunable parameter α
described in Algorithm 2 in Section 3.3. As shown in the figure,

tiny connected components greatly degraded the partitioning

performance. Without the worst-case prevention method, the

partitioning was extremely slow on the PubChem dataset and it

did not finish in a reasonable amount of time. For this reason, we

omit the result for α = 0 in Figure 9(f). Based on the experiment,

we used α = 1 for the AIDS dataset and α = 4 for the PubChem

dataset. We performed similar experiments on the PROTEIN

dataset, and chose α = 1.

5.2.2 Methods in GED Computation. Evaluation results of the

GED computation methods on the AIDS and PubChem datasets

are shown in Figure 10. Figure 10(a) and (d) show the effect of

the partial GED computation, where -PA and +PA denote In-
vesVerifier with and without this method, respectively. In our

experiments, we observed that the tunable parameter β in In-
vesVerifier is relatively insensitive, and used β = 0.7 (we omit the

results in the interest of space). +PA showed a good performance

for low GED thresholds on both datasets. When a GED thresh-

old was low, most candidates were answers, thus we had more

chances to find an answer through a partial GED computation.

As the threshold increased, however, most query time was spent

on verifying false positives, and this method provided a marginal

benefit only.

Figure 10(b) and (e) show the experimental results of our GED

computation method with and without exploiting bridge errors,

which are denoted by +BR and -BR, respectively. By precisely

calculating edit errors in bridges, +BR reduced GED computation

time up to 7 times on both datasets.

Figure 10(c) and (f) show the evaluation results of alternative

vertex orderings.VO, PO, andCO denote the original vertex order,

the vertex order considering vertices in mismatching partitions

first, and the vertex order considering connectivity of vertices

in Algorithm 5, respectively. PO significantly outperformed VO
on both datasets. For example, PO is about 1.5 to 3 times faster

than CO on the AIDS dataset. The performance on the PubChem

dataset was extremely poor when VO was used. For example, VO
was about 100 times slower than PO when τ = 3. This is because

the dataset contains graphs having repeating substructures, and

thus the A* algorithm cannot efficiently prune the state-space tree

without a proper vertex ordering. Considering the connectivity

of vertices in different partitions, CO exhibited best performance

for all the GED thresholds on both datasets.

5.3 Improving existing techniques
In this experiment, we evaluated how Inves can be adopted by

existing techniques to improve their performance.We chose three

representative techniques:
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Figure 11: Improvement of existing techniques
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Figure 12: Number of candidates

(1) GSimSearch, labeled as G in figures, is a path-based q-gram
approach proposed in [25, 26]. According to the results of

[25], we used q = 4 for the AIDS dataset and q = 3 for

the PROTEIN dataset. We conducted experiments on gram

lengths for the PubChem dataset, and used q = 4 based on

the results.

(2) Pars, labeled as P, is the state-of-the art partition-based ap-

proach [24]. For best performance, we improved Pars in the

following ways. Since sequential scanning of indexed parti-

tions was very slow, we implemented an index access method

by modifying the SwiftIndex [16]. After we generated can-

didates using the index access method, we applied their re-

cycling subgraph isomorphism test to each candidate. We

also improved its verification process by using the local la-

bel filtering and the vertex ordering based on mismatching

q-grams proposed in GSimSearch.

(3) MLIndex, labeled as M, is a multi-layered index technique

proposed in [12]. We also improved MLIndex in the same

way as Pars.

For each of the three implemented techniques, we adopted

Inves in their verification phase. We labeled the corresponding

improved techniques as PI, GI, and MI, respectively. We did not

include other existing techniques such as c-star [22], SEGOS [20]
and k-AT [19] since GSimSearch and Pars consistently outper-

formed these techniques [24–26]. We also excludedMixed [27]

because its performance results showed no significant differences

with the performance of GSimSearch as reported in [3].

Figure 11 shows the results on the AIDS and PubChem datasets

(see Figure 13(b) for the results of the PROTEIN dataset). In Fig-

ure 11(a) and (d), PV and PH denote Pars with the proposed

verifier (without our GED computation methods), and Pars with
the bridge method for GED (without the incremental partition-

ing), respectively. As shown in Figures 11, Inves improved the

performance of all these three existing techniques by up to an or-

der of magnitude. The significant improvement can be explained

by the results of PV, PH, and PI in Figure 11(a) and (d). Both

our partitioning and GED computation methods significantly

reduced the total search time. When the incremental partitioning

and GED computation methods are used together, the overall

performance improvement was even more. In Figure 11(a), for

example, when τ = 4, PV was about 2 times faster than P, and
PH was about 4 times faster than P. PI was about 25 times faster

than P. Similar results were also observed on GSimSearch and

MLIndex. Another important indicator of the improvement is the

number of candidates requiring GED computation. As shown in

Figures 12, Inves generated much smaller sets of candidates for

the AIDS and PubChem datasets.

Scalability tests: We also evaluated the scalability of the pro-

posed technique, on both the PROTEIN dataset and synthetic

datasets generated by a graph generator
7
. The generator mea-

sured the graph size in terms of the number of edges (|E |), and

7
GraphGen (http://www.cse.ust.hk/graphgen/) is a popular graph generator widely

used in related work (e.g., [12, 24, 26]) for scalability tests.
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Figure 13: Evaluating scalability

the density of a graph defined as d = 2|E |/|V |( |V | − 1). We used

|E | = 20 and d = 0.3 for the experiments, which were default

values of the generator. The cardinality of vertex and edge label

domains were set to 2 and 1, respectively. Figure 13(a) shows the

results. To evaluate the scalability, we generated five synthetic

datasets consisting of 20k, 40k, 60k, 80k, and 100k graphs. In

the experiments, 100 query graphs were randomly sampled from

each dataset and the GED threshold was fixed as 3. The query

time grew steadily and the growth ratios of query times were

similar in P and PI.
Figure 13(b) shows the scalability results of the GED threshold.

Because the PROTEIN dataset contains dense graphs, we chose

the dataset to increase τ up to 8. Since the dataset contains 600

graphs only, we separately ran Inves, denoted by I in the figure,

by scanning all the data graphs. As shown in the figure, Inves
scaled best in terms of response time and outperformed existing

techniques by up to about 65 times.

6 CONCLUSIONS
In this paper, we developed a novel technique called Inves for
verifying if the graph edit distance (GED) between two graphs

is within a threshold, an important and expensive step in graph

similarity search. Its main idea is to judiciously and incrementally

partition a candidate graph based on the query graph, and use the

results to compute a lower bound of their distance. If a full GED

computation is needed, Inves utilizes the collected information,

and uses novel methods and anA* algorithm to search in the space

of possible vertex mappings between the graphs to compute their

GED efficiently.We presented a full specification of the technique,

and conducted extensive experiments on both real and synthetic

datasets. The results showed that the technique can significantly

improve the performance of existing techniques [12, 24–26] by

an order of magnitude.
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ABSTRACT
Many real-world phenomena are best represented as interaction

networks with dynamic structures (e.g., transaction networks,

social networks, traffic networks). Interaction networks capture

flow of data which is transferred between their vertices along a

timeline. Analyzing such networks is crucial toward comprehend-

ing processes in them. A typical analysis task is the finding of

motifs, which are small subgraph patterns that repeat themselves

in the network. In this paper, we introduce network flow motifs, a
novel type of motifs that model significant flow transfer among

a set of vertices within a constrained time window. We design an

algorithm for identifying flow motif instances in a large graph.

Our algorithm can be easily adapted to find the top-k instances

of maximal flow. In addition, we design a dynamic programming

module that finds the instance with the maximum flow. We eval-

uate the performance of the algorithm on three real datasets

and identify flow motifs which are significant for these graphs.

Our results show that our algorithm is scalable and that the real

networks indeed include interesting motifs, which appear much

more frequently than in randomly generated networks having

similar characteristics.

1 INTRODUCTION
Interaction networks include a large number of highly connected

components that dynamically exchange information. Examples of

such graphs are neural networks, food webs, signal transfer path-

ways, the bitcoin network, social networks, and traffic networks.

An interaction network captures flow of data (e.g., money, mes-

sages, passengers, etc.) which is transferred between its vertices

along a timeline. In such a network, there could be multiple edges

connecting the same pair of vertices, modeling data exchange

between them at different times. Figure 1(a) shows a small exam-

ple of an interaction network, where the vertices represent users

who exchange money. The edges are annotated by timestamped

interactions; e.g., edge u1u2 with label t = 2, f = 5 denotes that

user u1 sent 5 units of flow (money) to user u2 at time 2.

Interaction networks are a powerful and versatile model, and

as such they have been studied extensively in the literature

[12, 23, 24]. In this paper, we consider the problem of finding

small characteristic patterns in the networks, such as chains,

triangles or cycles. These patterns are called network motifs. A
motif is a subgraph that appears significantly more often in a real

network than in a randomized network with similar character-

istics [15]. Finding motifs is a method of identifying functional

© 2019 Copyright held by the owner/author(s). Published in Proceedings of the
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properties of a network. Previous work mainly focused on static

motif patterns [15, 21]. Recently, there has been increasing in-

terest in analyzing temporal networks [6, 8, 9, 17, 23, 24], where

edges carry timestamps that signify the time of interaction be-

tween vertices. However, to the best of our knowledge, there is

no previous work on motif search that considers the flow of data

between connected nodes. Motivated by this, we define the con-

cept of flow motifs in temporal interaction networks and study

their identification.

Our definition of flow motifs extends a well-accepted defi-

nition of temporal motifs [17]. We define flow motifs as small

graphs whose edges are ordered; the order defines how the data

flows between the vertices. An instance of the motif is a sub-

graph of the interaction network, whose edges obey the total

order specified by the edges of the motif. Moreover, the time

difference between the temporally last and first edges should not

exceed a pre-defined threshold δ which is a parameter of the

motif. These requirements are the same as in the temporal motif

definition of [17], which however disregards the data flow in

interactions. The distinctive feature of our flow motifs is that, in

a flow motif instance, multiple edges of the graph can instantiate

a single edge of the motif, if they satisfy the order constraint with

the edges that instantiate the motif’s previous and next edges.

The flow values in the edge-set that instantiates a motif edge

are aggregated to a single value, which captures the total flow
passing through the motif edge. Theminimum aggregated flow at

any motif edge defines the flow of the instance. In order for the

instance to be valid, we require that its flow exceeds a threshold

ϕ.
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Figure 1: Example of graph, motif, and instances

Consider again the interaction network of Figure 1(a). Assum-

ing that the motif of interest is a chain of three nodes (Figure

1(b)), where the labels in edges specify the flow order and that

δ = 5 and ϕ = 5, the two subgraphs of Figures 1(c) and 1(d) are

instances of the motif because the sets of edges mapped to each

motif edge satisfy (i) the time order constraint of the motif and

(ii) thresholds δ and ϕ. For example, in Figure 1(d), both edges

that connect u2 to u3 are temporally after the edge that connects

u1 to u2 and their aggregated flow is 6 (≥ ϕ); in addition, the
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time difference between the temporally first and last edges in the

instance is 5 − 2 = 3 (≤ δ ).
Overall, a valid flowmotif instance should satisfy three require-

ments: (a) a structural constraint, defined by the graph structure

of the motif; (b) a temporal constraint defined by the temporal

window size δ ; (c) a flow constraint defined by the minimum flow

value ϕ.
Flowmotifs correspond to frequently occurring sub-structures

with high activity that appear in short time windows. Finding

instances of flow motifs is of great importance in understand-

ing interaction networks. For instance, in networks that model

money transfers, flow motifs correspond to transaction patterns

involving significant flow of money that appear more frequently

than expected. Flow motif search is of particular interest to Fi-

nancial intelligent units (FIUs); these are organizations which

identify suspicious flow patterns thatmay suggest criminal behav-

ior (e.g., money laundering). Belize FIU (fiubelize.org) and Hong

Kong’s JFIU (www.jfiu.gov.hk) indicate as suspicious patterns

which include ‘smurfing’ (i.e., numerous small-volume transfers

which aggregate to large amounts), cyclic transactions between

parties, and chains of significant money transfers within limited

time (e.g., payments out which are paid in on the same or on

the previous day). In addition, bitcoin theft has been associated

to flow patterns in [14]. In communication and social networks,

flow motifs may reveal common patterns of influence [3, 11]. For

example, the strength of the relationships between two social

network users is correlated with the frequency of online interac-

tions between them [22]. This implies that groups of users with

frequent communication between them within a short period

have high chance to influence each other.

Given a large interaction network, we propose an algorithm

that takes as input a flow motif and efficiently finds its instances

in the network. Our algorithm operates in two phases. First, the

structural matches of the motif (disregarding temporal and flow

information) are identified. Then, for each structural match, we

find the motif instances which satisfy the temporal and flow

constraints. This is achieved by sliding a time window of the

same length as the duration constraint of the motif and system-

atically finding the combinations of edges that constitute motif

instances. Compared to motif search algorithms from previous

work, our algorithm is novel in that it considers the aggregated

flow on multiple edges that connect the same pair of nodes in the

network during the construction of the motif instances. Due to

the large number of possible edge combinations, the problem is

harder compared to finding instances of motifs, by disregarding

flows and multiple edges. Our algorithm effectively uses the du-

ration and flow constraints to prune the space. We also suggest

a variant of the algorithm that identifies the top-k instances of

an input flow motif with the highest flow. Finally, we propose a

dynamic programming module for the algorithm, for the problem

of finding the motif instance with the maximum flow.

We evaluate the performance of the algorithm on three real

datasets of different nature (bitcoin user network, facebook net-

work, and Passenger flow network).We compare the performance

of our algorithm to a baseline method which builds up motif

instances by joining their components and demonstrate the supe-

riority of our approach against this alternative method. We also

show that our tested flow motifs indeed appear more frequently

in real networks than in randomized networks having the same

characteristics as the real ones.

In summary, this paper makes the following contributions:

• We propose the novel concept of flow motif. To our knowl-

edge, this is the first work that defines and studies the

search of flow motifs in interaction networks.

• We propose an efficient algorithm for finding flow motif

instances in large interaction networks and variants of it

that identify the instances of a motif with the maximum

flow.

• We evaluate our approach using three real datasets, and

demonstrate that it scales well for large data.

• We investigate the significance of the tested motifs in the

real networks.

The rest of the paper is organized as follows. Section 2 de-

scribes work related to network flow motifs, which are then

formally defined in Section 3. Our motif search algorithm is pre-

sented in Section 4. Section 5 shows how to extend our algorithm

to find the k instances of a given motif with the maximum flow.

In Section 6, we experimentally evaluate our algorithm and the

significance of the motifs by using a randomization approach.

Finally, in Section 7, we conclude our paper and give directions

for future work.

2 RELATEDWORK
There has been a lot of research interest in motif search and

mining in interaction networks [5, 20, 21]. In this section we

summarize the most representative works in static and temporal

networks.

Static Networks. Milo et al. [15] introduced the concept of

motifs and studied their identification in large graphs. They de-

fined a network motif as a “pattern of interconnections occurring
in complex networks at numbers that are significantly higher than
those in randomized networks”. They investigated motif discovery

in directed networks, which do not carry temporal information

(i.e., the motifs do not consider the time when the interactions

took place).

FANMOD [21] is an efficient tool for finding network motifs in

static networks, up to a size of eight vertices. Given a subgraph

size, the tool either enumerates all subgraphs of that size or

samples them uniformly. The identified subgraphs are grouped

into classes based on their isomorphism. The significance of

each class is finally measured by counting their frequencies in a

number of random graphs (generated by swapping edges between

vertices in the original network).

Temporal Networks. In temporal networks, the interactions
between vertices are labeled by the time when they happen.

Fundamental definitions, concepts, and problems on temporal

networks are given in [6]. For instance, the concept of time-
respecting path and its relation to network flows are defined and

studied here.

Paranjape et al. [17] define motifs in temporal networks as

small connected graphs, whose edges are temporally ordered. In-

stances of a motif are subgraphs that structurally match the motif

and their edges obey the order. In addition, the time-difference

between the temporally last and the first edges should not exceed

a motif duration constraint δ . They propose a general algorithmic

framework for computing the number of motif instances in a

graph and fast algorithms that count certain classes of tempo-

ral motifs. Our network flow motifs are similar to the temporal

motifs of [17], however, in our case (i) a motif edge can be instan-

tiated by multiple edges of the graph and (ii) we introduce and

consider a minimum flow requirement.
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Another work that defines and studies the enumeration of

temporal motifs is [8]. In the context of this work, the interactions

between vertices are not instantaneous but they carry a duration

interval. Motifs are again subgraphs whose edges are temporally

ordered. As opposed to [17], there is no δ threshold between the

last and the first edge in a motif instance. Instead, a maximum

time-difference ∆t between consecutive edges in a motif instance

is allowed.

Rocha et al. [2] also define motifs that model the information

spread in temporal networks. They study the impact of time

ordering information by comparing the instances of the motifs

by considering or not the temporal order. The flowmotifs defined

and used in [2] are different to ours, because in our case (i) we

consider the flow on edges (ii) we define the flow in a motif

differently and (iii) our input graph and the motif instances are

multigraphs.

Communication motifs are suggested as a model for capturing

the structure of human interaction in networks over time. Zhao et

al. [23] studied the evolution of such behavioral patterns in social

networks. For any two adjacent interactions, the term maximum
flow is used to characterize those interactions that are the most

probable to belong to the same information propagation path

among any such adjacent interactions. On the other hand, in

our context, flow refers to the data (e.g., money, messages, etc.)

being transferred from one node along network paths. Another

work that studies behavioral patterns in social networks by defin-

ing and mining communication motifs between people in social

networks is [4]. A scalable mining technique (called COMMIT)

for such communication motifs is proposed.

A recent work that studies the structure of social networks and

the temporal relations between entities in them is [24]. Temporal

pattern search is proposed as a tool in this direction. In order to

facilitate the efficient retrieval of pattern instances, occurrences

of small patterns are precomputed and indexed.

Flow can also be used to describe other concepts. In [9], the

authors study the information propagation problem. They try to

identify all time-respecting paths in temporal networks to model

potential pathways for information spread. Our work is differnt

in that (i) we are interested in specific motifs and (ii) we consider

the flow on edges. The identification of time-respecting paths

(as defined in [9]) that form cycles is studied in [10], where an

efficient algorithm (2SCENT) is proposed.

Motif discovery inHeterogeneous InformationNetworks (HiNs)

which carry temporal information was also recently studied [12].

In such graphs, some nodes are associated to events (which hap-

pened at a specific time). A motif is then defined by a graph and

a maximum temporal difference between the events that instan-

tiate its event nodes. As in the rest of previous work, any data

flow on the edges of the network is disregarded in the definition

and search of motifs.

3 DEFINITIONS
In this section, we formally define flow motifs and the graph

wherein they are identified. Table 1 shows the notations used

frequently in the paper.

The input to our problem is a directed multigraph G(V ,E),
where each pair of nodes u,v ∈ V can be connected by any

number of edges in E. We denote by E(u,v) the edge-set from
u ∈ V to v ∈ V . Each edge e ∈ E is annotated by a unique

timestamp t(e) in a continuous time domain T and a positive real

number f (e), called flow.

Table 1: Table of notations

Notations Description

GM (VM , EM ) graph structure of motif M
δ duration constraint of a motif

ϕ flow constraint of a motif

ℓ(e) order of edge e in a motif M
SPM spanning path of motif M

ei or SPM [i] i-th edge of motif M
SPM [i : j] subpath ei . . . ej of SPM
G(V , E) input graph

E(u, v) set of edges in G from u to v
f (e) flow on edge e
t (e) timestamp of edge e
f (GI ) flow of motif instance GI

GT (V , ET ) time-series graph equivalent to G(V , E)
(t, f ) flow interaction element on an edge of ET
R(u, v) time series on edge (u, v) ∈ ET
R(ei ) time series on edge of ET mapped to ei
S set of structural matches of a motif

Gs structural match of a motif

Figure 2 shows an example of an input graph G from a real

application, where vertices correspond to users (addresses) of the

bitcoin network and edges correspond to transactions between

them. Each edge is annotated by the timestamp of the transaction

followed by the transaction amount. For example, user u1 at

timestamps 13 and 15 sent 5 and 7 bitcoins, respectively, to u2.

Algorithm 1

• Example of Step 1:
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Figure 2: Example of an interaction graph (bitcoin user
graph)

Definition 3.1 (Flow Motif). A network flowmotifM is a triplet

(GM ,δ ,ϕ) consisting of (i) a directed graph GM (VM ,EM ) with
m = |EM | edges, where each edge e is labeled by a unique number

ℓ(e) in [1,m]; (ii) a value δ , which defines an upper-bound on the

duration of the motif; and (iii) a value ϕ, which defines a lower

bound on the flow of the motif.

The labels of the edges in the motif graph GM define a total

order of the edges that models the direction of the flow in GM .

For example, if GM consists of two edges (u,v) and (v,w) and
we have ℓ(u,v) = 1 and ℓ(v,w) = 2, this means that the flow in

the graph originates from node u, it is first transferred to v , and
then from v tow .

Figure 3 shows some examples of motifs (we only show the

motif graphs GM , but not the thresholds δ and ϕ). The numbers

in the parentheses denote the number of nodes and edges in the

motifs. For example, the motif labeled M(3, 3) models a cyclic

flow between three nodes.

We assume that the ordering of the edges according to their

labels defines a path in the graph GM . We refer to this path as

the spanning path of the motif, and we denote it as SPM . The

spanning path is not necessarily a simple path, i.e., there may be

repeated vertices in the path.We sometimes refer to a motif graph
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Figure 3: Examples of motifs.

GM by its spanning path SPM = e1e2 . . . em , i.e., the total order of

its edges, where ei denotes the edge with label i . For example, we

may refer to motifM(3, 3) in Figure 3 by the sequence SPM (3,3) =
e1e2e3 of its three edges. In addition, we use ei or SPM [i] to
denote the i-th edge of the motif, and SPM [i : j] to denote the

subsequence of edges ei . . . ej along the path. We now define

motif instances as follows.

Definition 3.2 (Flow Motif Instance). An instance of a motif

M = (GM ,δ ,ϕ) in the graph G(V ,E) is a subgraph, GI (VI ,EI ),
VI ⊆ V , EI ⊆ E of G with the following properties:

• There is a bijection µ : VM → VI from the vertex set of

the motif graph VM to the instance vertex set VI .
• For every edge (u,v) ∈ EM there is a non-empty set

of edges EI (µ(u), µ(v)) in GI , such that EI (µ(u), µ(v)) ⊆
E(µ(u), µ(v)). In addition, EI =

⋃
(u,v)∈EM EI (µ(u), µ(v)).

• The edge-sets in GI are time-respecting: For every pair of

edges (u,v) and (v,w) in EM , if l(u,v) < l(v,w), then for

every pair of edges ei ∈ EI (µ(u), µ(v)), ej ∈ EI (µ(v), µ(w)),
t(ei ) < t(ej ).
• The maximum time difference between any two edges in

EI is at most δ .
• The sum of flows of any edge-set in EI is at least ϕ.

The first two conditions express a structural requirement on

the matching subgraph, the third and fourth conditions temporal

constraints, and the last condition a minimum flow constraint.

Figure 4(a) shows an instance ofM(3, 3) in the graph of Figure 2,

assuming that δ = 10 and ϕ = 7. u3,u1, and u2 are mapped to the

first, second, and third node ofM(3, 3) according to the order of its
edges.u1 andu2 in the instance are linked by two edges which are
both temporally after the edge(s) that link u3 to u1 and before the
edge(s) that link u2 to u3. The maximum time difference between

any two edges is 8 (≤ δ ) and the aggregate flows on EI (u3,u1),
EI (u1,u2), and EI (u2,u3) are 10, 12, and 20, respectively (i.e., each
of them is at least ϕ). If we denoteM(3, 3) by its spanning path

SPM (3,3) = e1e2e3, we can express the instance of Figure 4(a) by

[e1 ← {(10, 10)}, e2 ← {(13, 5), (15, 7)}, e1 ← {(18, 20)}].
For the ease of exposition, we define the flow f (GI ) of an

instance GI of motif M as the minimum total flow among all

edge-sets EI (µ(u), µ(v)) which instantiate the edges (u,v) ofM .

Formally:

f (GI ) = min

(u,v)∈EM

∑
e ∈EI (µ(u),µ(v))

f (e) (1)

We now define the concept of motif instance maximality.

Definition 3.3 (Instance Maximality). An instance GI (VI ,EI )
of a motif M = (GM ,δ ,ϕ) is maximal iff, the addition of one
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Figure 4: Examples of motif instances

more edge to any edge-set EI (µ(u), µ(v)) of GI from the corre-

sponding edge-set E(µ(u), µ(v)) ofG violates the duration or flow

constraints of the motif.

For example, assuming that δ = 10 and ϕ = 7, Figure 4(b)

shows an instance ofM(3, 3) in the graph of Figure 2, which is not
maximal. This is because the addition of edge (13,5) to EI (u1,u2)
results in the valid instance of Figure 4(a). In this paper, we

focus on finding maximal instances of motifs only, because non-

maximal ones are redundant and considering them can mislead

towards the importance of a motif. For example, if ϕ = 0, all

combinations of subsets of the edge-sets that form a valid motif

instance are also valid (but not maximal) instances. Considering

them would exponentially increase the total number of motif

instances, potentially over-estimating its importance.

4 FINDING FLOWMOTIF INSTANCES
We now present an efficient algorithm for enumerating the max-

imal instances of a given motif M(VM ,EM ) in an input graph

G(V ,E). For the ease of presentation, we consider the input graph
G not as a temporal multi-graph, but as a graph where all original

edges from a vertex u ∈ V to a vertex v ∈ V are merged to a

single edge. The single edge (u,v) is associated with an interac-
tion time-series R(u,v) = {(t1, f1), (t2, f2), . . . }. Each pair (ti , fi )
represents a flow interaction occurring at time ti with flow trans-

fer fi from u to v . The interaction time series is ordered in time.

Figure 5 shows an example of how the edges of a multigraph G
are merged to time series. For example, the two edges from u1
to u2 are considered as a single edge; the two edges with times-

tamps 13 and 15 are now considered as a time series on a single

edge (u1,u2). The conversion of the multigraph to a graph does

not have to be explicitly performed; for each connected pair of

vertices, it suffices to consider their multiple edges ordered by

timestamp. We will use GT (V ,ET ) to denote this graph and we

will refer to it as the time series graph.

Algorithm 1
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Figure 5: From a multigraph to a time series graph

Our algorithm takes as input the multigraph G(V ,E) and a

motif M = (GM ,δ ,ϕ), and finds all instances of M in G. The
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algorithm operates on the time series graph GT and works in

two phases P1 and P2:

P1 Find the set S of all structural matches of graph GM in

graph GT , disregarding the labels on the edges and con-

straints δ and ϕ.
P2 For each Gs ∈ S , using the time series of the edges in Gs ,

find all instances of M in Gs (which should satisfy the

duration and flow constraints defined by δ and ϕ).

We now elaborate on the two phases.

Phase P1: To illustrate phase P1, as an example, consider the

graph GT of Figure 5(b) and the motifM(3, 3) shown in Figure 3.

Figure 6 shows all six structural matches ofM(3, 3) in GT found

in phase P1. The labels {e1, e2, e3} on the edges of the matches

indicate the edges of the motif on which they are mapped. For

example, edge (u1,u2) of the first match is mapped to the first

edge e1 of the motif.Time/flow agnostic instances of M(3,3)

30
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Figure 6: Structural matches ofM(3, 3) (phase P1)

Algorithmically, for phase P1, any graph pattern matching

algorithm for static graphs can be used (e.g., [21]). In our im-

plementation, we exploit the fact that the ordering of the edges

defines a path. Using a modified depth-first search algorithm on

GT , we can extract all paths of length |EM | that are structural
matches ofGM inGT . Specifically, in a loop, we map every node

in GT to the first node in GM (i.e., the origin node of the first

edge in GM ) and recursively find all paths that originate from

that node and map them to the spanning path SPM ofGM . For ex-

ample, for motifM(3, 3), the depth-first search algorithm should

make sure that the last vertex of the traversed path is the same as

the first vertex of the path. Hence, the algorithm on the graph G
of our running example would identify path u1u2u3u1 as a match

ofM(3, 3).
Phase P2: In phase P2, given the set of structural matches S , for
eachGs ∈ S , we process the time series on the edges ofGs in order

to find valid flow motif instances. In a nutshell, we slide a time

window of length δ along the set of all (ti , fi ) interactions on the

edges of Gs ; for all sets of interactions within δ time difference,

we find all combinations thereof which constitute valid motif

instances. Note that each structural matchGs from phase P1 may

produce an arbitrary number of flow motif instances, as each

time window position can generate different instances depending

on the combinations of edge flows we use.

To illustrate, consider again M(3, 3) (for δ = 10) and a pos-

sible structural match, shown in Figure 7. We will get differ-

ent flow motif instances depending on whether we consider

window [10, 20] or [15, 25]. Furthermore, even for the specific

time-window [10, 20], we can get different flow motif instances

depending on how we combine the edges in this window. For ex-

ample, one possible flow motif instance is [e1 ← {(10, 5)}, e2 ←

The case of total orders
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(13,2),
(15,3),
(18,7)

(14,4),(19,6),(24,3),(25,2)

u1
(9,4),
(11,3),
(16,3)

e1 e2
e3

10,13,15,18

14,19,24,25
11,16

10,13,15,18

14,19,24,25
11,16

10,13,15,18

14,19,24,25
11,16

10,13,15,18

14,16,19,24,25
11,17

Overcounting is not possible, because all instances should 
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Figure 7: Example for Algorithm 1

{(11, 3), (16, 3)}, e3 ← {(19, 6)}], while another flow motif in-

stance is [e1 ← {(10, 5)}, e2 ← {(11, 3)}, e3 ← {(14, 4), (19, 6)}].
Note that the flow in the former case is 5, while in the latter is 3,

meaning that the latter instance would be rejected for ϕ = 5.

Algorithm 1 is applied in phase P2 to find all instances of the

motifM in a match Gs (found in phase P1). The algorithm slides

a window T of length δ over the time domain, to find subsets

of edges in Gs that satisfy the duration constraint δ and can

generate maximal motif instances. Given a specific windowT we

run procedure FindInstances in order to generate all possible

maximal flow-motif instances that satisfy the flow constraint ϕ.
The procedure is recursive on the lengthm of the spanning path

SPM = e1e2 . . . em of the motif.

FindInstances takes as input the graph instanceGs , a span-

ning path SP , a time-window T and the threshold ϕ. Let R(ei ) be
the interaction time series on the edge ofGs which is mapped to

edge ei of the motif. If the spanning path consists of a single edge

e1, then the procedure finds the set RT (e1) ⊆ R(e1) of all elements

in R(e1), which are within the time-window T , and aggregates

their flow. If the total flow f (RT (ei )) of these elements satisfies

the flow constraint ϕ, the edge-set of G corresponding to RT (ei )
becomes an instance of SP and it is returned. For longer spanning

paths, the procedure considers again the first edge e1 = SP[1].
For every prefix Tp of the window T that contains instances of

the edge e1, it computes the set RTp (e1) ⊆ R(e1) of all (t , f ) inter-

action elements in R(e1) for which t ∈ Tp . If RTp (e1) is non-empty

and satisfies the flow constraint, then FindInstances is recur-

sively called on the rest of the spanning path SPnext = SP[2 :m],
with time windowTnext = T −Tp . This recursive call will return
the set of valid instances within time-window Tnext for the sub-
motif defined by SPnext . Each of these instances is concatenated
to RTp (e1) to create a new valid instance for SP .

The condition at line 16 of the algorithm helps us to find

invalid prefixes of the motif instances early. In other words, if a

sub-series RTp (e1) which is candidate for instantiating a motif

edge does not qualify ϕ, we do not consider the possible instances
that include the elements of RTp (e1) as an instance of e1. Hence,
the search space is effectively pruned.

Figure 7 illustrates the functionality of Algorithm 1. On top,

the figure shows motif M(3, 3) and a structural match Gs of it,

where each edge is labeled by the time series of flows between

the corresponding nodes (e.g., at time 10, u2 sent to u1 a flow of

5). The elements on the edges of Gs are illustrated (as sequences

of dots ordered by time) at the bottom of the figure, colored by
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Algorithm 1 Instance finding module

Require: δ , ϕ , time window T , structural match Gs
1: I ← ∅ ▷ set of instances of Gs in T
2: for each maximal time window T that satisfies δ do
3: I ← I ∪ FindInstances(Gs , SPM , T , ϕ)
4: end for
5: return I

6: procedure FindInstances(Gs , SP, T , ϕ)
7: I ← ∅ ▷ set of instances of Gs in T
8: if lenдth(SP ) = 1 then
9: RT (e1) ← all (t, f ) elements of R(e1) in T
10: if f (RT (e1)) ≥ ϕ then ▷ ϕ condition check

11: add RT (e1) to I
12: end if
13: else
14: for each prefix Tp of time window T do
15: RTp (e1) ← all (t, f ) elements of R(e1) in Tp
16: if f (RTp (e1)) ≥ ϕ then ▷ ϕ condition check

17: SPnext ← SP [2 :m] ▷ suffix of SP
18: Tnext ← T −Tp ▷ suffix of T
19: Inext ← FindInstances(Gs , SPnext , Tnext , ϕ)
20: for each I ∈ Inext do
21: add RTp (e1) ◦ I to I
22: end for
23: end if
24: end for
25: end if
26: return I
27: end procedure

the edge they belong to (e.g., black for e2). The first row of dots

includes all (t , f ) elements, i.e., the first black dot corresponds

to element (9, 4) on edge (u1,u2), which is mapped to the second

edge e2 ofM(3, 3). To find the motif instances that comprise of

nodes and edges in Gs , we slide a window of length δ along the

timeline. Assuming that δ = 10, the first position of the sliding

window is [10, 20]. The algorithm finds all prefixes of elements

in R(e1) that fall in this window and for each such prefix, it

generates recursively the combinations of elements from other

edges that form valid instances (according to δ ). For example,

for the prefix Tp = [10, 10], which includes just the first element

(10, 5) from e1, the 2nd and the 3rd line of dots in the figure

show the valid instances formed. Specifically, these instances

are [e1 ← {(10, 5)}, e2 ← {(11, 3)}, e3 ← {(14, 4), (19, 6)}] and
[e1 ← {(10, 5)}, e2 ← {(11, 3), (16, 3)}, e3 ← {(19, 6)}]. Note

that the ϕ constraint is applied at every prefix in order to prune

the search space if it is violated (e.g., if ϕ = 5, any instance

[e1 ← {(10, 5)}, e2 ← {(11, 3)}, . . . ] would be rejected. Note also
that there is no instancewhich contains just the first two elements

of e1 but not the third one, because there is no element from e2
which is temporally between (13, 2) and (15, 3). Finally, note that

the next position of the sliding window is [15, 25] because the

position [13, 23] which starts from the 2nd element of e1 does
not include any new elements from e3 compared to the previous

window position [10, 20]; hence, considering window position

[13, 23] would result in redundant (i.e., non-maximal) instances

and this position is skipped.

We have not explained yet how window positions are skipped

in Algorithm 1. First, only window positions which start at ele-

ments of R(e1) are considered; in-between positions (e.g., window
[11, 21] in Figure 7) would result in redundant (non-maximal)

instances because there will be a subsequent position for which

R(e1) (and the other sets) can only expand (e.g., window [13, 23]

in Figure 7). Second, from those window positions that are con-

sidered, we skip those, where R(em ) (i.e., the interaction time

series, which is mapped to the last edge em of the motif) is not

expanded with new elements, compared to the previous valid

window position. In our example, [13, 23] is skipped because no

element is added to R(e3), compared to position [10, 20]. If we

used window position [13, 23], we would generate instances that

would not be maximal because we could add to each of them ele-

ment (10, 5) of e1 without violating the δ constraint. In summary,

in consecutive window positions where module FindInstances

is applied, the first elements of R(e1) should be different and the

last elements of R(em ) should also be different.

Algorithm 1 does not miss any maximal instances because it

systematically explores the combinations of edge-sets which are

time-respecting and maximal within a window. Moreover, the

windows have maximal lengths and in each of them the produced

instances essentially include the temporally first (ti , fi ) element

that maps to e1 and the temporally last (ti , fi ) element that maps

to em . At least one of these pairs changes in the next window

position; therefore, instances produced at different windows do

not violate the maximality condition.

Complexity Analysis. In the worst case, for each Gs and each

time window, we should consider all combinations of edges in

G that instantiate the edges of the motif. For example, when

ϕ = 0, prefix-based pruning cannot be applied. In the worst case,

Gs = G and the edges inG ordered by timestamp are assigned to

the sequence of motif edges in a round-robin fashion. That is, the

temporally first edge ofG is mapped to e1, the second to e2, etc. In
this case, assuming the loosest possible constraints δ = ∞,ϕ = 0,

the number of combinations of pairs to be considered (which

all form valid motif instances) is O(|E |/m)m , i.e., exponential to

the number of edges m in the motif. In addition, the number

of structural matches is also exponential tom. In practice, GT
is sparse (or V is small) and the constraints δ and ϕ help in

pruning combinations of edges that do not form instances early,

which renders the algorithm scalable, as we will show in the

experimental evaluation.

5 TOP-K FLOWMOTIF SEARCH
Setting an appropriate value for the parameters δ and ϕ could be

hard for non-experts of the domain. Parameter δ is intuitively

easier to be set to a time constraint that makes sense to the appli-

cation (for example, the analyst could be interested in patterns

of bitcoin transactions which happen within an hour or day).

On the other hand, ϕ is less intuitive, as too large values could

result in too few or zero instances, whereas too small values

could result in thousands of instances which may overwhelm the

user. One solution to this problem is to replace the ϕ constraint

by a ranking of the motif instances GI with respect to their flow

(see Equation 1). In other words, we may opt to search for the k
instances GI of the motif (with ϕ = 0) that satisfy δ , which have

the maximum flow f (GI ).

To solve this top-k flow motif search problem, we can use our

algorithm with a small number of modifications. Phase P1 is iden-

tical; we should still find the set S of all structural matches. Then,

for each Gs ∈ S , we apply phase P2, by making the following

changes to Algorithm 1. First, we keep track in a priority queue

(heap) the top-k instances in terms of their minimum flow so far.

Second, in place of ϕ, we use the flow f (Gk
I ) of the k-th instance

Gk
I so far as a dynamic (floating) threshold.
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5.1 Finding the top motif instance
For the special case, where k=1, the top-1 motif instance search

problem can potentially be solved faster with the help of a dy-

namic programming (DP) algorithmic module. Recall that the

objective of procedure FindInstances in Algorithm 1 is to find

the motif instances in a structural match Gs , within a time win-

dowT , which qualify ϕ. We can replace this module by a dynamic

programming algorithm that finds the instance of maximum flow

within T . This DP module can be described by Algorithm 2.

Algorithm 2 DP module for top-1 instance search

Require: δ , time window T , structural match Gs
1: maxflow← 0 ▷ keeps track of max flow found at any instance

2: for each maximal time window T that satisfies δ do
3: for all timestamps ti in T do
4: compute F low ([t1, ti ], 1) = f low ([t1, ti ], 1)
5: end for
6: for κ = 2 to n do
7: for all timestamps ti in T do
8: compute F low ([t1, ti ], κ) by Eq. 2

9: end for
10: end for
11: maxflow = max (maxflow, F low ([t1, tτ ,m]))
12: end for
13: return maxflow

Specifically, let [t1, t2, . . . , tτ ] be the sequence of timestamps

in T for which there is a (t , f ) interaction element in Gs . Let

Mκ be the prefix of M which includes its fist κ edges only and

Flow([t1, ti ],κ) be the flow of the top-1 motif instance ofMκ in

the time window [t1, ti ]. Then, Flow([t1, ti ],κ) can be recursively

computed as follows:

F low ([t1,ti ],κ)=max

1< j≤i
{min(F low ([t1,tj−1],κ−1),f low ([tj ,ti ],κ))}, (2)

where f low([tj , ti ],κ) is the total flow of all (t , f ) elements of the

time series R(eκ ) on the κ-th edge ofGs , whose timestamps are in

the time interval [tj , ti ]. The Flow([t1, ti ], 1) array is initialized by
scanning the elements of the first edge ofGs inT . Then, for each
κ > 1, Flow([t1, ti ],κ) is computed using array Flow([t1, ti ],κ−1).
Finally, Flow([t1, tτ ],m) corresponds to the top-1 flow of any

motif instance in Gs within time window T . By applying this

algorithm for every window T , we can find the top instance in

Gs . Repeating this for each Gs gives us the top-1 instance ofM
in G.

Table 2 shows the steps of the DP module in the course of

finding the top-1 instance in time window [10, 20] (assuming that

δ=10) for the structural match ofM(3, 3) shown in Figure 7. The

first row shows the values of Flow([t1, ti ], 1) for the first edge
of the motif and for all values of ti (i.e., columns of the table).

(Recall that the starting timestamp t1 of the time window is 10.)

The second row shows, for the first two edges of the motif, the

value of Flow([t1, ti ], 2) for all values of ti , as well as the value
of tj , which determines Flow([t1, ti ], 2). For all ti , the value of tj
that maximizes the flow is 11 and for ti ≥ 16 the flow becomes

min(5, 3 + 3) = 5. Finally, the last row shows the maximum flow

for the best arrangement of (t , f ) pairs to all three edges of the

motif, for all prefixes of the time window. Note that the last

value corresponds to the entire window and contains the flow

of the best instance of the entire motif in [10, 20], which is 5.

The cells of the matrix in bold show how the top-1 instance, i.e.,

[e1 ← {(10, 5)}, e2 ← {(11, 3), (16, 3)}, e3 ← {(19, 6)}], can be

identified.

Table 2: Example of the DP module

ti 10 11| 13 14 15 16 18 19

κ=1 5 5| 7 7 7 7 10 10

κ=2 3 (tj =11)| 3 (tj =11) 3 (tj =11) 3 (tj =11) 5 (tj =11) 5 (tj =11) 5 (tj =11)
κ=3 | 0 (tj =13) 4 (tj =14) 4 (tj =14) 4 (tj =14) 4 (tj =14) 5 (tj =19)

Complexity Analysis. For each Gs and each time window, we

should consider all binary splits of the window at each iteration

(i.e., for each edge inM). Hence the time complexity is O(τ 2 |E |),
where τ is the number of timestamps in T for which there is an

(ti , fi ) element in Gs . The space complexity is O(τ · |E |) because
we only need all Flow([t1, ti ],κ−1) for κ−1 when we process the
κ-th edge. The overall time complexity per structural match in S
isO(|S |δτ 2 |E |), since the number of windows to be considered is

O(δ ). The number of structural matches |S | is exponential tom,

as discussed in our previous analysis.

Extensibility. The DP module can be used to solve top-1 prob-

lems at a finer granularity. In particular, it can be used to find

the top-1 instance for each structural match Gs . This may be

desirable if we want to compare the sets of entities that consti-

tute the structural instances (e.g., groups of bitcoin users) based

on their max-flow interactions. In addition, we might be inter-

ested in finding the top-1 instance for each position of the sliding

time window T . This can be part of analysis tasks that compare

the volume of interactions (according to the motif structure) at

different periods of time.

6 EXPERIMENTAL EVALUATION
The goal of our experimental evaluation is twofold: test the per-

formance and scalability of our algorithms and study the signifi-

cance of flow motifs. We implemented the algorithm presented

in Section 4 and its two variants proposed in Section 5 (top-k
instance search, dynamic programming module for top-1 search).

As a baseline, we also implemented an alternative motif instance

finding method based on finding and joining instances of motif

components in a hierarchical manner.

We evaluate the performance of all these methods on three

real networks, to be described in Section 6.1. We measure the

efficiency and scalability of the tested methods as a function of

the problem parameters δ and ϕ on the motif structures shown

in Figure 3. These graphs model representative flows of inter-

action that could be of interest to data analysts (e.g., M(3, 3)
corresponds to cyclic transactions in a money-exchange network,

M(4, 3) corresponds to paths of region-to-region movements in

a passenger flow network). We also assess the statistical signif-

icance of the tested motifs in three real graphs. All algorithms

were implemented in Python3 and we ran all the experiments on

a machine with an Intel Xeon CPU E5-2620 prossesor running

Ubuntu 18.04.1 LTS.

6.1 Dataset Description
We used three datasets extracted from real interaction networks:

the Bitcoin network, the Facebook network and a Passenger
flow network. Table 3 shows statistics of the datasets. The third

column is the distinct number of node pairs (u,v) ∈ V , for which

there is at least one edge (i.e., interaction) from u to v . This
number equals to the number |ET | of edges in the corresponding

time-series graph GT . We now provide more details about them.

Bitcoin network. We downloaded all transactions in the bit-

coin blockchain [16] in the period February 1st 2014 to November
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Figure 8: Our two-phase algorithm vs. the join algorithm

Table 3: Statistics of Datasets

Dataset #nodes #connected node pairs #edges Avg. flow per edge

Bitcoin 24.6M 88.9M 123M 4.845

Facebook 45800 264000 856000 3.014

Passenger 289 77896 215175 1.933

30 2014 and converted them to a bitcoin user graph.1 Nodes cor-
respond to users and for each transaction of f bitcoins in the

blockchain from useru to userv at time t , we added an edge from
u to v with label (t , f ). Since the same bitcoin user may control

and use multiple addresses, we applied a well-known heuristic

[1, 7] tomerge addresses that are considered to belong to the same

user to a single network node. Specifically, we merged addresses

that appear together as input in the same transaction. We did

not take into account insignificant transactions with amounts

under 0.0001 BTC. Bitcoin is a relatively sparse graph and the

cases of two nodes being connected by multiple edges is rare.

Finding motif instances in the Bitcoin network can help towards

understanding complex interactions between users and can pos-

sibly help toward identifying suspicious transactions like money

laundering and bitcoin theft [14].

Facebook network: We consider Facebook as an interaction

network between users. We divide the time into 30-second inter-

vals [ts , te ) and for each pair of users u and v we aggregate all

interactions from u to v and add an edge from u to v with label

(ts , f ), where f is the total number of interactions from u to v
in this interval. We consider as interactions the posts of likes by

u targeting v or the messages sent from u to v . We created the

Facebook user network using data from April 2015 to October

2015; the same dataset is used in [19]. The Facebook network is

relatively sparse and each pair of connected nodes have about

four edges on average. Motif search on this graph can help in

analyzing influence [3, 11] and finding important interactions

among users [13].

Passenger flow network: We processed trips of yellow taxis

in NYC in January 2018.
2
. Each record includes the pick-up and

drop-off taxi zones (regions) the date/time of the pick-up and

drop-off, and the number of passengers inside the taxi. Using

these records, we created an interaction network where the nodes

are the taxi zones; for each record, we generate an edge that links

the corresponding nodes and carries the timestamp of the activity

(i.e., the pickup time) and the corresponding flow (i.e., the number

of passengers). This Passenger flow network is dense; in addition,

each pair of connected nodes have about three edges on average.

1
data obtained from http://www.vo.elte.hu/bitcoin

2
obtained from http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml

Motif instances found in this passenger flow graph can help in

understanding the flow of movement between different regions.

6.2 Efficiency and Scalability
In this section, we evaluate the efficiency and scalability of our

algorithm when applied to find the instances of the motifs de-

picted in Figure 3. The default values for the duration constraint

δ are 600 sec., 600 sec., and 900 sec. on Bitcoin, Facebook, and

Passenger, respectively. These value represent realistic time in-

tervals for the corresponding applications. The corresponding

default values for ϕ are 5, 3, and 2, respectively.

6.2.1 Comparison to a competitor. In our first set of experi-

ments, we compare our algorithm with an alternative motif in-

stance finding algorithm which is based on progressively finding

and joining instances of motif subgraphs.

Specifically, this join algorithm starts by accessing each edge

(u,v) of the time series graph GT and finding all time-intervals

of length at most δ and their aggregated flows. For each such

interval [ts , te ] a quintuple (u,v, ts , te , f ) is generated. These
tuples are kept in two tables; C1 sorts them by starting vertex u
and C2 sorts them by ending vertex v . In the next step, C2 and

C1 are merge-joined to find all pairs (c2, c1) having c2.u = c1.v
and also satisfying c1.te − c2.ts ≤ δ . The set P of all these tuple

pairs constitute results of all sub-motifs of M which include

two consecutive edges. In the next step, P is self-joined again

to produce instances of sub-motifs ofM with three consecutive

edges. This is done by finding pairs {(c2, c1), (c
′
2
, c ′
1
)} of couples

in P for which c1 = c ′
2
and c ′

1
.te − c2.ts ≤ δ . The next steps are

applied in a similar manner until the instances of the entire motif

M are constructed. Note that for each motif or sub-motif that

closes a cycle (e.g., M(3, 3)), we check the additional condition

that the starting vertex of the first motif edge in the instance is the

same as the target vertex of the last edge. At each step, we apply a

merge join for the production of sub-motif instances, after having

sorted the tuples produced in the previous step accordingly.

Figure 8 compares the runtime cost of the join algorithm with

that of our two-phase algorithm presented in Section 4. For all

motifs, we used the default values for δ and ϕ. Our two-phase
algorithm is typically twice as fast as the join algorithm. This is

due to the fact that the join algorithm produces a large number of

intermediate results (i.e., sub-motif instances), which are avoided

by our method. Many of these sub-motif instances do not end up

as components of any instance of the complete motif, so their

generation is redundant. In the rest of this section, we do not

include additional comparisons with the join algorithm since it

was always found to be slower than our approach.
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Table 4: Number of structural matches and runtime in phase P1 of motif search

Motif M(3,2) M(3,3) M(4,3) M(4,4)A M(4,4)B M(4,4)C M(5,4) M(5,5)A M(5,5)B M(5,5)C

Bitcoin

Instances 634K 485K 484K 210K 205K 213K 145K 122K 124K 121K

Time (sec) 47.02 49.23 50.15 57.05 60 61.16 64.35 69.11 73.02 75.15

Facebook

Instances 415K 276K 272K 113K 113K 114K 97K 90K 91K 90K

Time(sec) 40.02 43.43 44.21 48.45 49.32 49.01 52.33 50.12 52.07 54.31

Passenger

Instances 27893 16455 25778 14877 14569 14903 22134 12345 12567 12009

Time(sec) 19.14 21.33 22.15 26.22 29.03 29.11 25.04 30.45 31.14 32
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Figure 9: Number of instances and time for different values of δ
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Figure 10: Number of instances and time for different values of ϕ
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6.2.2 Sensitivity to δ and ϕ. The next set of experiments eval-

uate the performance of our algorithm on the different datasets

and motifs, for various values of the constraints δ and ϕ. Table
4 shows the number of structural matches found and the time

spent by the algorithm just for its first phase, which is indepen-

dent of the δ and ϕ values (since these constraints are not used

when searching for the structural matches). This cost constitutes

a lower bound for our algorithm. Naturally, more complex motifs

require more time but they also have fewer structural matches.

Figures 9 and 10 show the number of instances and total run-

time of our algorithm for different values of δ (in seconds) and ϕ.
When we vary δ , we set ϕ to its default value and vice versa. As

expected, in all cases, when δ increases the number of instances

and the runtime increases. The algorithm scales well as its cost

increases at a lower pace compared to the results found.

When comparing the different motifs, note that the simpler

ones (e.g.,M(3, 2) andM(3, 3)) naturally have more instances and

are cheaper to search compared to the more complex ones (e.g.,

M(5, 5)A). The relative order between the motifs is similar in the

Bitcoin and Facebook networks. In both networks, cyclic flow

is quite common; i.e., motifs containing cycles have a similar

number of instances as motifs without cycles having the same

number of edges. On the other hand, in the Passenger network,

acyclic motifs dominate in terms of number of instances. This is

expected, as it is relatively rare that passengers move between

regions on a map forming cycles compared to moving along a

chain of different regions.

The behavior is also consistent to our expectation when ϕ
varies; the number of instances and the runtime drop when ϕ
increases. The algorithm becomes faster because partial motif

instances that do not qualify ϕ are pruned early.

6.2.3 Top-k flow motif instance search. We now evaluate the

results and the performance of top-k motif search on the three

datasets, when using the default values of δ . In the first experi-

ment, we run the version of our algorithm which finds the top-k
motif instances that have the maximum flow. For each run, we

record the flow of the k-th instance in Figure 11. As expected, the

flow of the k-th instance drops as k increases; the drop rate de-

creases when k becomes large (note that the x-axis is not linear).

In the second experiment, we compare the runtime of the general

top-k algorithm with its version that employs the dynamic pro-

gramming module proposed in Section 5.1. The barcharts show

that the second phase of the algorithm benefits from the use

of dynamic programming (the runtime drops 20% to 40%). The

improvement is better on the Passenger network.

6.2.4 Scalability to the dataset size. In the next experiment, we

test the performance of our algorithm on samples of the original

datasets having different sizes. For each of the three datasets, we

take samples defined by prefixes of the total period covered by

the timestamps of the edges included in the sample. Specifically,

for the Bitcoin network we define 5 samples: B1, B2, B3, B4, B5.

B1 includes all transactions happened in the first month of the

9-month period of the complete dataset. B2, B3, B4, and B5 cover

the first 2, 4, 6, and 9 months, respectively. Similarly, F1, F2, F3,

F4, and F5 cover the first 1, 2, 3, 4, and 6 months of the entire

dataset, respectively. Lastly, T1, T2, T3, and T4 cover the first 8,

16, 24, and 31 days of January 2018, respectively. Figure 13 shows

the growth in the number of instances and in the runtime of the

algorithm for the different motifs. Observe that the algorithm

scales well as its cost grows at a slower pace compared to the

number of instances and the size of the input data.

6.3 Significance of Motifs
In the last experiment, we assess the significance of the different

flow motifs in our networks. Following the standard practice

[18], we generated randomized versions of our datasets, we com-

puted the number of instances of each motif in each of these

datasets, and we compared it against the same number for the

real dataset. A large divergence between real and randomized

numbers indicates a significant motif.

Specifically, from each dataset (e.g.. Bitcoin network) we gen-

erated random datasets by keeping the structure of the corre-

sponding graph fixed, and permuting the flows on the edges.

Recall that in the original input multigraphG = (V ,E) each edge

e is associated with a timestamp t(e) and a flow value f (e). A pair

of nodes (u,v) is connected by a set of edges E(u,v). Given the

entire set of flow values { f (e) : e ∈ E}, we compute a random

permutation π of the flow values and reassign them to the graph

edges in this order. This generates a randomized datasetGr (V ,E)
with the same set of nodes and the same set of edges; each edge e
has the same timestamp t(e), and flow value π (f (e)). Hence, Gr
is derived from G by “shuffling” the flow values on the edges.

The random graph Gr has the same structure as G and the

edges in the graph appear at the same timestamps. Therefore, all

structural matches of the motifs in G will also appear in Gr . In

addition, putting aside the flow constraint ϕ, the motif instances

in the two graphs will be the same, when considering only δ .
What changes is the flow value of each motif instance, which will

result in a different number of flow motif instances in Gr com-

pared to G, for non-zero values of ϕ. Our goal is to see whether

the motif instances that satisfy the ϕ constraint in the real data

are significantly more than those in the randomized data.

We generated 20 different random graphs for each real network

according to the procedure we described above. We found the

instances of each motif in all these random datasets. In addition,

we computed the mean and standard deviation of the number

of motif instances in all 20 random graphs per real dataset. To

assess the significance of a motif in the real data, we compared

the number of instances in the real data with those in the random

data. Figure 14 shows, for each dataset and motif, the distribution

of the numbers of instances for all random graphs in a box plot,

and the corresponding number in the real graph (marked by

a diamond). Each real value is also associated with the z-score
(shown above the corresponding diamond), which is computed as

follows. For some motifM , let rM denote the number of instances

of the motif in the real data, let µM denote the mean number of

motif instances in the randomized data, and let σM denote the

standard deviation. The z-score zM of the motif is computed as

zM =
rM − µM

σM

The higher the z-score, the further the value rM from µM .

The first observation is that the number of instances in all ran-

dom graphs is much lower compared to that in the corresponding

real network and these values do not deviate much from their

mean. The empirical p-value (the fraction of random datasets

with number of instances greater than that of the real data) is

zero, indicating statistical significance of the motif occurrences in

all cases. This is consistent with the intuition that the flow is not

arbitrarily generated or consumed at the vertices of the network,

but it is transferred from one node to another. To discriminate

between the different motifs we look at the z-scores. We observe

that for the Bitcoin network, two out of the three top z-scores are
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Figure 11: Flow of k-th instance
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Figure 12: Efficiency of the dynamic programming module
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Figure 13: Scalability to input graph size

for motifs that contain cycles, indicating that large flow move-

ments that close a cycle are statistically over-represented in the

bitcoin network. A similar observation holds for the Passenger

flow network, where three out of the top-three motifs contain a

cycle. A different pattern emerges in the Facebook dataset, where

two out of the three highest z-scores are for chains of nodes. We

conjecture that this due to propagation trees of information in

the Facebook network, which result in chains with significantly
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Figure 14: Number of instances in random networks (box plots), in real networks (diamonds), and z-scores

high flow movement. It is interesting that the significance of

the discovered motifs varies in the different types of interaction

networks, indicating differences in the way flow is distributed.

7 CONCLUSION
In this paper, we introduced the novel concept of network flow
motifs. To the best of our knowledge we are the first to define

and study motifs in interaction networks, which consider both

the temporal and flow information of the interactions. We pro-

posed an efficient algorithm for enumerating flowmotif instances

in large graphs and variants of that find the top-k instances of

maximal flow. We evaluated our algorithm on three real datasets

and demonstrated its scalability. In addition, we compared it to

a baseline motif instance finding method based on joining in-

stances of motif components and showed its superiority. Finally,

we studied the statistical significance of a wide range of repre-

sentative motifs on the real graphs and showed that they indeed

appear more frequently than in random networks with the same

characteristics. This indicates that the flow is transferred from

one node to another (as opposed to being arbitrarily consumed

or generated) and that there are subgraphs in the network where

significant flow is transferred at certain periods of time.

In the future, we plan to investigate in more detail the distri-

bution of motif instances in the real networks. For example, we

can group the motif instances per structural match, in order to

identify the structural matches (i.e., sets of vertices in the graph

G) with the largest activity and how this activity is spread along

the timeline. Another direction is to improve the efficiency of

the algorithm, by processing multiple structural instances to-

gether in phase P2. Since two or more structural matches may

share the same prefix, we can compute the flow instances of their

common prefix simultaneously before expanding these instances

to complete ones for the different motifs. In addition, we will

work towards a version of the algorithm which focuses on count-

ing instances of (possibly multiple) motifs without constructing

them (along the direction of previous work [17]). Finally, we will

generalize the definition of flow motifs to capture other graph

structures besides paths (e.g., directed acyclic graphs with forks

and joins) and study their search in large networks.
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ABSTRACT

Functional dependencies (FDs) support various tasks for the man-
agement of relational data, such as schema normalization, data
cleaning, and query optimization. However, while existing FD dis-
covery algorithms regard only static datasets, many real-world
datasets are constantly changing – and with them their FDs.
Unfortunately, the computational hardness of FD discovery pro-
hibits a continuous re-execution of those existing algorithms
with every change of the data.

To this end, we propose DynFD, the first algorithm to dis-
cover and maintain functional dependencies in dynamic datasets.
Whenever the inspected dataset changes, DynFD evolves its FDs
rather than recalculating them. For this to work efficiently, we
propose indexed data structures along with novel and efficient
update operations. Our experiments compare DynFD’s incremen-
tal mode of operation to the repeated re-execution of existing,
static algorithms. They show that DynFD can maintain the FDs
of dynamic datasets over an order of magnitude faster than its
static counter-parts.

1 FUNCTIONAL DEPENDENCIES

Traditional data profiling algorithms solve the problem of discov-
ering all metadata of type X in dataset Y . However, once those
algorithms finish, the dataset usually keeps evolving, thereby
rendering the discovered metadata outdated. An incremental data
profiling algorithm, on the contrary, acknowledges the dynamic
nature of data by maintaining all metadata of some type. It takes
as input the data and its (statically profiled) metadata and, then,
updates the metadata with every change, i. e., insert, update, and
delete of the data. In this paper, we propose such an incremental
algorithm for functional dependencies.

For an instance r of a relation R, a functional dependency (FD)
X → A holds iff all records with the same values for the set of
attributesX ⊆ R also share the same value for attributeA ∈ R [5].
We say that X functionally determines A.

© 2019 Copyright held by the owner/author(s). Published in Proceedings of the
22nd International Conference on Extending Database Technology (EDBT), March
26-29, 2019, ISBN 978-3-89318-081-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Definition 1.1. The functional dependency X → A with X ⊆ R
and A ∈ R is valid for instance r of R, iff ∀ti , tj ∈ r : ti [X ] =
tj [X ] ⇒ ti [A] = tj [A]. We call X the left-hand side (Lhs) and A
the right-hand side (Rhs), respectively.

FDs often arise from real-world relationships. Consider, for
example, a relation with information about people including their
ZIP code and city name. In such a dataset, the ZIP codes func-
tionally determine the city names of the records, because ZIP
codes are a more fine-grained localization. The presence or ab-
sence of certain dependencies, in general, helps to understand
complex semantic relationships in data exploration scenarios.
Being able to track the validity of certain dependencies over
time provides even deeper insights. In a product database, for
instance, the FD num_sales→ num_shipments might hold only
overnight, because shipments are delayed in daily business. Or
the FD product → price in a pricing database was temporarily
violated at the time of a system migration. Apart from data explo-
ration, further applications for functional dependencies include
schema normalization [4], query optimization [14], data integra-
tion [11], data cleansing [2], and data translation [3]. Given that
the functional dependencies are not only known for a snapshot of
the data but over a longer period of time, it is for any of these use
cases easier to identify robust dependencies. Continuous change
patterns for non-robust dependencies, on the other hand, can be
of interest themselves; and sudden changes of thus far robust FDs
might signal data quality issues, i. e., erroneous updates.

The most interesting FDs for all such applications areminimal,
non-trivial FDs. An FD X → A is non-trivial if A < X , otherwise
it would hold on any instance r of R and, hence, would not
characterize r . An FD is minimal if no generalization, i. e., no
subset of the FD’s Lhs also describes a valid FD. More formally,
an FDX ′ → A is a generalization of another FDX → A ifX ′ ⊂ X .
On the other hand, an FD X ′′ → A is a specialization of an FD
X → A if X ⊂ X ′′, i. e., if its Lhs is a superset of the other FD’s
Lhs. Any valid, minimal FD implies that all of its specializations
are valid as well, which makes them particularly interesting. As
a result, given the complete set of minimal FDs, all other FDs can
be inferred from it. For this reason, it suffices to discover and
maintain only minimal, non-trivial FDs.
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Despite the restriction to minimal FDs, the discovery of all
such dependencies is still expensive: Liu et al. have shown that,
when using nested loops for the dependency validations, the com-
plexity of the discovery is in O

(
n2

(m
2
)2 2m )

for relations with
m attributes and n records [10]. More sophisticated, index-based
algorithms, such as [8] or [13], avoid the quadratic complexity
of the candidate validations (n2), but the algorithms’ complexity
w. r. t. the number of attributes stays exponential (2m ). This is
inevitable due to the potentially exponential number of discov-
ered FDs. The discovery problem becomes even harder when
taking data changes into account. As mentioned above, all state-
of-the-art FD discovery algorithms operate only on static datasets
and one needs to re-execute them after every change of the data
to maintain the FDs on dynamic datasets. Unfortunately, this is
computationally far too expensive in practical situations: It is not
unusual for those algorithms to take minutes or even hours to
complete.

However, the following two observations suggest that this
problem can be solved with a novel, incremental algorithm: First,
most changes affect only a small subset of records and only these
small deltas need to be investigated for causing metadata changes
– the majority of records still support the same FDs as before.
Second, most changes in the FDs are minor, meaning that a close
specialization or generalization of a former minimal FD becomes
a new minimal FD.

On the face of this opportunity, we propose DynFD, the first
algorithm that maintains the complete and exact set of minimal,
non-trivial FDs on dynamic data. The algorithm monitors data
changes, i. e., inserts, updates, and deletes, and calculates their
effect on the metadata. The changes are grouped into batches
of configurable size so that a user can specify timeliness of the
metadata (at the cost of performance). So rather than frequently
re-computing all FDs, DynFD continuously deduces FD changes
from the previous set of FDs and the batch of change operations.
In detail, our contributions are the following:

(1) FD maintenance algorithm. We present DynFD, an algorithm
that incorporates data changes, i. e., inserts, updates, and deletes,
as batches into sets of minimal functional dependencies. While
updates are simply handled as a combination of insert and delete,
the algorithm offers specialized handling strategies for inserts
and deletes (Section 2).

(2) FD maintenance data structures. To update the dependen-
cies efficiently, our DynFD algorithm needs to maintain several
data structures, such as position list indexes, dictionary-encoded
records, and FD prefix trees, over time. We explain these data
structures and how they need to change w. r. t. newly inserted
or deleted tuples. We also propose a novel cover inversion algo-
rithm to deduce an FD negative cover from an FD positive cover
(Section 3).

(3) FD maintenance pruning rules and techniques. We devise novel
pruning rules and techniques for insert and delete operations that
allow DynFD to optimize or even skip certain validations. For
validations that cannot be skipped, we propose efficient validation
methods that exploit the incremental nature of the data changes
(Section 4 and Section 5).

(4) Evaluation. We provide an exhaustive evaluation of DynFD
w. r. t. scalability and speed-up. We investigate the effectiveness
of our pruning and maintenance strategies and compare DynFD
to HyFD, the state-of-the-art FD discovery algorithm for static
data (Section 6).

Table 1: An example relation with four initial tuples. A

batch of changes inserts and deletes tuples, as indicated

by the “–” and “+” signs, respectively.

ID firstname lastname zip city
1 Max Jones 14482 Potsdam
2 Max Miller 14482 Potsdam

– 3 Max Jones 10115 Berlin
4 Anna Scott 13591 Berlin

+ 5 Marie Scott 14467 Potsdam
+ 6 Marie Gray 14469 Potsdam

2 OVERVIEW OF DYNFD

Before we discuss implementation details, we give an overview
of our proposed algorithm DynFD. This algorithm operates on a
single relation, such as the one exemplified in Table 1, which may
or may not contain an initial set of tuples (here: tuples 1–4). The
relation is then subject to a series of batches of changes. Each
batch inserts and/or deletes tuples from the relation. For instance,
Table 1 shows a batch that removes tuple 3 and inserts tuples 5
and 6. Note that tuple updates can be expressed by a delete and
an insert operation. Also, note that the size of the batches is at the
discretion of users and their use cases and allows for a trade-off
between granularity and performance of the FD maintenance
process.

As explained in Section 1, each batch can change the set of
minimal FDs in a relation. For instance, while the FD z → c
continues to be a minimal FD in Table 1 before and after the
batch has been applied, f → c becomes a new minimal FD and
f c → z ceases to be a (minimal) FD.

To discover these changes, DynFD comprises three principal
components as can be seen in Figure 1: (i) the data structures,
which are position list indexes and dictionary-encoded records,
concisely model all relevant features of the relation to determine
the currently valid FDs; (ii) the positive cover indexes all mini-
mal FDs and allows to reason on the effect of insert operations;
and (iii) the negative cover with all maximal non-FDs allows to
process delete operations analogously. If the profiled relation
contains initial tuples, we employ the static algorithm HyFD [13]
to bootstrap the data structures and the positive cover. The nega-
tive cover can then be derived from the positive cover via a cover
inversion as we describe in Section 3.2.

Having initialized all necessary data structures, DynFD be-
gins to monitor changes of the profiled relation. These changes
arrive as a stream that is first transformed and then processed
in batches, i. e., non-overlapping groups of insert, update, and
delete operations. The batches can be, e. g., equally sized groups
of change operations or, alternatively, all operations from within
a tumbling time window. Each batch is processed according to
the following observation: According to Definition 1.1, insert
operations can introduce violations to existing FDs, but never
remove them. As a result, those FDs become invalid. We can effi-
ciently retrace these changes by operating on the positive cover,
i. e., on the existing minimal FDs. Delete operations constitute
the opposite case: Exiting violations may be removed, thereby
introducing new FDs – or in other words, existing non-FDs may
become valid. Here, the negative cover is more appropriate to
efficiently reason on delete operations. For this reason, we handle
insert and delete operations separately, yet with the same basic
principles.
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Figure 1: Processing one batch of insert and delete opera-

tions with DynFD.
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Figure 1 depicts the processing pipeline in more detail. In
Step (1) of this process, DynFD efficiently updates its data struc-
tures according to the changes in the batch (see Section 3.1). In
doing so, DynFD does not need to perform potentially expensive
read operations on the database. Not accessing the database is
particularly important, also because reads would lead to race
conditions with the changes applied by the database itself, i. e., a
change that is being processed by DynFD might not have been
(fully) applied by the database, yet, or the database may have
already applied a subsequent change that DynFD has not yet
seen. In Step (2), DynFD processes all deletes in the batch by
checking whether they resolve any maximal non-FD in the nega-
tive cover (see Section 5); if a non-FD becomes a valid FD, this
change is also propagated to the positive cover. Then, in Step (3),
the algorithm processes all inserts by checking whether they
introduce a violation to any minimal FD in the positive cover
(see Section 4); in case they do, the positive cover is updated and
the changes are propagated to the negative cover. Hence, due to
the change propagation, Steps (2) and (3) may both affect both
covers. In Step (4), DynFD finally signals all changed FDs to the
user and is then ready to process the next batch.

The attentive reader may have noticed that we choose to pro-
cess deletes before inserts, although the other way around is also
possible. The decision on which type of operation to process
first is particularly important for the special but common case
of tuple updates, which we split into an insert and a delete. By
processing the delete first, we avoid operating on an interme-
diate relation that contains both the old and the new version
of the updated tuple. Such an almost duplicate tuple would vio-
late many dependencies, in particular key dependencies, for the
time of its existence. Hence, many FDs would change only to
change back when the (almost) duplicate is removed again. So in
short, processing deletes first significantly reduces the number
of temporarily changing FDs.

3 DATA STRUCTURES

Rather than recalculating the FDs of a relation after each batch
of changes, DynFD creates and maintains several data structures
from which to derive the FDs. For that matter, we discern two
types of data structures, namely those that represent the rela-
tion in a compact format that is suitable to efficiently check the
validity of FD candidates; and the positive and negative cover,
which we use to evolve the set of minimal FDs and maximal

non-FDs, respectively. In the following, we briefly describe those
data structures and how to update them in incremental scenarios.

3.1 Representing relations compactly

When validating FD candidates against a relation, the actual val-
ues within that relation are irrelevant. Instead, we merely need
to know, which tuple pairs have identical values for which at-
tributes. Therefore, it is sufficient for DynFD to represent the
relation as compressed records [13]. Consider the example in Ta-
ble 2, which represents the initial state of Table 1, i. e., before the
change. Essentially, the compressed records replace all values of
the original relation with a number that uniquely identifies that
value within its column. For instance, the city name “Potsdam”
is replaced by the value 0 and the city name “Berlin” is replaced
by the value 1. This replacement not only has a small memory
footprint but also allows for more efficient equality comparisons.
This scheme is further optimized by replacing unique values
with the value “−1”. If DynFD encounters a “−1”, it can skip all
comparisons, as by definition all other tuples must have distinct
values for the affected column.

Table 2: The dictionary-encoded example of Table 1.

ID f l z c

1 0 0 0 0
2 0 −1 0 0
3 0 0 −1 1
4 −1 −1 −1 1

While compressed records are well-suited to compare indi-
vidual tuple pairs to quickly detect FD violations and rule out
some FD candidates, they are not suitable to validate FD can-
didates as a whole. Therefore, DynFD complements the com-
pressed records with position list indexes (Plis) [13], also known
as stripped partitions [8]. In few words, a Pli lists the clusters
of tuple IDs that have the same values for a certain attribute.
For our example data from Table 1, we therefore obtain the Plis
πf =

{
{1, 2, 3}, {4}

}
for firstname, πl =

{
{1, 3}, {2}, {4}

}
for last-

name, πz =
{
{1, 2}, {3}, {4}

}
for zip, and πc =

{
{1, 2}, {3, 4}

}
for

city. The Pli πX for a set of attributes X can be computed via Pli
intersection, i. e., by intersecting all pairs of overlapping clusters
in the Plis πY and πZ withY ∪Z = X . Hence, πX = πY ∩πZ and,
for example, πf c = πf ∩ πc =

{
{1, 2}, {3}, {4}

}
. A functional

dependency X → A holds iff πX ∩ πA = πX , i. e., πA does not
split any cluster in πX so that all records with equal values in X
have also equal values in A [8]. Calculating πX ∩ πA can be done
efficiently by using the compressed records: The (well-known)
FD validation algorithm uses the Pli for some attribute A ∈ X as
an index to sets of tuples in the compressed records that are, then,
grouped by same X values and checked against their A values.
For more details and optimizations of this validation algorithm,
we refer the interested reader to [13].

Compressed records and Plis synergize well in validating FD
candidates, which has already been shown for static FD discovery.
In a static setup, however, both data structures identify each
record by its row number, i. e., position in the relational table.
These row numbers, change in the dynamic setting, because the
table grows and shrinks. For this reason, we assign a continuous
number as a surrogate key to each record to identify it. The main
challenge for using compressed records and Plis in the dynamic
case is that we need to update these data structures with every
batch of changes. For this, we propose the following:
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Insert. A newly inserted record adds an entry to both data struc-
tures: We first add its identifier to all Plis. For every attribute,
we read the attribute’s value from the new record and fetch the
attribute’s Pli from the list of Plis. We then need to find the
cluster in the Pli that corresponds to the said value and add
the record’s identifier to it. To find that cluster, the algorithm
needs to remember the value of each cluster. It does so by storing
and maintaining an additional inverted index on top of the Plis,
i. e., the inverted index points each value to the Pli cluster in
which it occurs. Following this mapping, it is easy to find the
clusters were DynFD needs to add an identifier; if some value
has no cluster in a Pli yet, it creates a new cluster. Given the
cluster numbers of all attributes for the new record, updating
the dictionary-encoded records is done by simply appending the
array of these cluster numbers to the list of dictionary-encoded
records.

Delete. To delete a record from the data structures, we follow
a similar, quick look-up strategy: For every attribute, DynFD
first retrieves the Pli cluster that corresponds to the attribute’s
value in the deleted record. Then, it removes the identifier of the
deleted record from these clusters; if a cluster becomes empty,
the algorithm deletes the cluster from the Pli entirely. After
the Pli update, DynFD also removes the record’s compressed
representation from the list of dictionary-encoded records. To
find the record, we use another additional index, the hash index,
that points the identifiers to their dictionary-encoded records.
Alternatively, one could also find the record via binary search
on the list of dictionary-encoded records, but the hash index
has an infinitesimally small memory footprint in comparison
to the other data structures and offers better performance than
binary search. Once the compressed record is determined, DynFD
deletes it from the list and the hash index.

3.2 Organizing functional dependencies

Let us now describe howDynFD organizes its discovered FDs and
non-FDs. The FD search space is usually modeled as a powerset
lattice, which is a graph representation of all possible attribute
combinations. Due to the partial order of the power set, every
two elements have a unique supremum and a unique infimum so
that the graph can connect each node X ⊆ R to its direct subsets
X \A and direct supersets X ∪ {B} (with A ∈ X , B ∈ R\X ). Every
node in the lattice represents one Lhs attribute combination for
a set of FD candidates; each such FD candidate is defined by its
Rhs attribute, which can bee seen as annotations at every node.
In this way, all 2m ·m possible FDs are covered by the lattice.
During FD discovery, we classify each annotation and, hence, the
respective Lhs→ Rhs candidate as either valid or invalid FD.

Figure 2 depicts the lattice of FD candidates for the initial state
of our example relation from Table 1 (tuples 1 to 4). The five
minimal FDs l → f , z → f , z → c , f c → z, and lc → z have
been discovered with a static profiling algorithm and we can infer
all non-minimal and invalid FDs from them. To show how valid
and invalid FDs are located in this search space visualization, all
annotations have been color coded: Green cells represent valid
FDs whereas red cells represent invalid FDs or short non-FDs.
Stronger colors denote minimality for FDs and maximality for
non-FDs. Note that a non-FD is maximal if no specialization of
it is also a non-FD. Trivial FDs are shown in grey, because they
are not of interest. So for example, we find the valid, minimal FD
f c → z as the dark green annotation for Rhs attribute Z in Lhs
node FC.

Figure 2: FD lattice for the data shown in Table 1.
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The complete set of minimal FDs is called the positive cover,
because all non-minimal FDs can be derived from it. The complete
set of maximal non-FDs, in contrast, is called negative cover,
because it defines all existing non-FDs.

DynFD stores both the negative and the positive cover as FD
prefix trees, which are technically prefix trees with annotations:
Each node in the tree represents a Lhs attribute, any path starting
from the root node represents a Lhs, and annotations on the nodes
indicate valid Rhs attributes for the respective paths [6]. FD prefix
trees are not only a compact data structure for storing FDs, they
also offer efficient look-up functions for FD generalizations and
specializations – functions that are called frequently by DynFD.

The positive cover, the Plis, and the dictionary compressed
records represent the initial input for DynFD. By running the
static FD discovery algorithm HyFD first, we can simply obtain
all three data structures directly from that algorithm; otherwise,
if only the set of minimal FDs is given, it is trivial to construct
them in a preprocessing step. What is not trivial is the calculation
of the negative cover, i. e., all maximal non-FDs, from the given
FDs. The process of calculating the positive from the negative
cover is known as cover inversion [6] or dependency induction [13],
but its inverse, the calculation of the negative from the positive
cover, has not been studied before. With Algorithm 1, we hence
present the first inversion algorithm for this step.

We start with an empty FD prefix tree nonFds (line 1). For
every attribute A of a relation R, the algorithm then adds the
most specific non-FD, which states that all other attributes do
not functionally determine A (lines 2-4). Initialized in this way,
the negative cover invalidates all possible FDs and basically states
that there are no FDs in the data. This initialization is probably
not true, but serves as a starting point for successive refinement.
Hence, the algorithm then checks for every valid FD whether it
covers some non-FD by looking up all specializations of that FD
in the negative cover (lines 5-6). This look-up is implemented as
a simple depth-first search in the FD prefix tree. If a non-FD has
been found to be a specialization of a valid FD, it must in fact be
valid. For this reason, Algorithm 1 removes it from the negative
cover (line 8). Then, we need to check all direct generalizations of
the removed non-FD for being maximal non-FDs. The inversion
algorithm creates each of these generalizations by removing one
Lhs attribute from the current non-FD’s Lhs (lines 9-11). If such
a created non-FD is maximal, i. e., if it has no specialization in the
cover, it is added to the negative cover (lines 12-13); otherwise, if
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Algorithm 1: Cover inversion
Data: relation R, positive cover fds
Result: negative cover nonFds

1 nonFds← ∅;
2 for A ∈ R do

3 initialLhs← R \ {A};
4 nonFds← nonFds ∪ {initialLhs→ A};
5 for fd ∈ fds do
6 violated← nonFds.getSpecializations(fd);
7 for nonFd ∈ violated do
8 nonFds← nonFds \ {nonFd};
9 for l ∈ fd.getLhs() do
10 newLhs← nonFd.getLhs() \ {l};
11 gen← (newLhs→ nonFd.getRhs());
12 if ¬nonFds.containsSpecialization(gen) then
13 nonFds← nonFds ∪ {gen};

14 return nonFds

it is not maximal, it is simply discarded. Repeating this for every
valid, minimal FD creates the negative cover.

Applied to the example data shown in Table 1, we start with
the assumption that f lz → c , f lc → z, f zc → l , and lzc → f
are maximal non-FDs. Because the non-FD lzc → f is a spe-
cialization of the minimal FD l → f , it needs to be removed as
a non-FD. We then generalize it to zc → f as a new maximal
non-FD candidate. This non-FD is a specialization of the minimal
FD z → f (that we check next) so we generalize it once more,
to c → f . After also applying the remaining three minimal FDs
to the negative cover, the inversion algorithms yields the final
maximal non-FDs f zc → l , f l → z, f l → c , c → f , and c → z.

4 HANDLING INSERTS

Having discussed DynFD’s principal workflow along with its ba-
sic data structures, we now present a mechanism to maintain FDs
in the light of insert operations (delete operations are discussed
in the following section). Inserts can only render previously valid
FDs invalid. Because the minimal FDs in the positive cover imply
all valid FDs, they are the starting point for our validations. To
process a batch of inserts, we validate all known minimal FDs
and specialize them in case they became invalid. To ensure mini-
mality for newly created specializations, we validate the minimal
FDs from most general to most specific. In this way, we can check
for each new specialization, if there is a valid generalization in
the positive cover; the specialization would then not be minimal,
because its generalization has already been determined to be true
(minimality pruning). We discuss this main validation process,
which is basically a lattice traversal type FD discovery approach,
in Section 4.1.

To identify invalid FDs more quickly, we add an optimization
to the validation process that, if the process becomes inefficient,
progressively searches for FD violations. If a certain amount of
FDs has been found invalid, the lattice traversal starts creating
and checking many new candidates – most of which are usually
invalid. For this situation, related work proposed dependency
induction and sampling techniques that find most such viola-
tions faster than validating all candidates individually [13]. In
Section 4.3, we propose an adapted version of these techniques
for our dynamic setup.

Algorithm 2: Lattice-based FD validation
Data: relational schema R, positive cover fds, negative

cover nonFds
Result: updated fds, nonFds

1 for level ∈ 0...|R | do
2 invalidFds← ∅;
3 for fd ∈ fds.getLevel(level) do
4 if ¬isValid(fd) then
5 invalidFds← invalidFds ∪ { f d};

6 for nonFd ∈ invalidFds do
7 fds← fds \ {nonFd};
8 nonFds.removeGeneralizations(nonFd);
9 nonFds← nonFds ∪ {nonFd};

10 rhs← nonFd.getRhs();
11 for r ∈ R \ (nonFd.getLhs() ∪ {rhs}) do
12 newLhs← nonFd.getLhs() ∪ {r };
13 spec← ⟨newLhs→ rhs⟩;
14 if ¬fds.containsGeneralization(spec) then
15 fds← fds ∪ {spec};

16 if |invalidFds| / |fds.getLevel(level)| > 0.1 then
17 progressiveViolationSearch(fds, nonFds)

18 return fds, nonFds

Note that whenever either of the two validation strategies,
i. e., the lattice traversal or the dependency induction, discovers
a non-FD, this non-FD must also be added to the negative cover.
The process for updating the negative cover with a new non-FD
covers two simple steps: First, remove all generalizations of the
new non-FD from the cover (they are not maximal any more);
then, add the new non-FD to the negative cover (without a check
for specializations, because the non-FD used to be a valid FD
before and is, therefore, inevitably maximal).

4.1 Incremental FD validation process

Algorithm 2 shows the lattice traversal-based FD validation al-
gorithm that is executed for every batch in the dynamic setting.
We start with the most general FDs in the positive cover and pro-
ceed to ever larger FDs (line 1). On each level of the lattice, the
algorithm validates all minimal FDs and stores the invalid ones
(lines 2-5). The validation function isValid() implements an opti-
mized version of the Pli intersection technique that we touched
on in Section 3.1; we discuss the optimization in Section 4.2. Iter-
ating over all found non-FDs (line 6), the algorithm first removes
each non-FD from the positive cover (line 7). As stated before,
these non-FDs must also be maximal and are, therefore, added to
the negative cover (lines 8-9). Afterwards, Algorithm 2 generates
and adds all specializations of the current non-FD to the positive
cover that are minimal w. r. t. the existing FDs (lines 10-15): To
generate the specializations, we first add each attribute that is
not already part of the Lhs or Rhs to the new Lhs (lines 11-13);
each specialization is checked for generalizations in the positive
cover before it is finally added to the cover (lines 14-15). On the
next level, Algorithm 2 automatically validates these specializa-
tions. However, before moving to the next level, we check which
fraction of validations in the current level has led to non-FDs
(line 16). If this fraction is greater than 10% (see [13] for why this
is a good threshold), then we consider the lattice traversal to be
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Figure 3: Lattice after handling inserts in Table 1.
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inefficient and start a progressive search for violations (line 17).
When the search returns, it might yield updated versions of the
positive and negative cover. Algorithm 2 then proceeds to the
next lattice level until all minimal FDs have been checked.

Applying this to our example, we have the initial candidates
z → c , z → f , l → f , lc → z, and f c → z. They are represented
by the dark green cells in Figure 2. We start at the top of the
lattice and work our way to the bottom. When validating the
most general FDs, we find that l → f is not valid anymore and,
hence, a candidate for a maximal non-FD. The only new candidate
is lc → f , since lz → f is not minimal. Validating the now most
general candidates shows that f c → z is also invalid. There are
no new candidates to be added. It also follows that c → z is no
maximal non-FD anymore and needs to be removed from the
negative cover. Because no candidates are left, we are done and
found the minimal FDs holding after inserting the new records.
The corresponding lattice is shown in Figure 3.

4.2 Cluster pruning

To validate the minimal FDs in the positive cover, we build on the
Pli-based validation algorithm presented in [13]: This algorithm
uses the single-column Plis and dictionary-encoded records to
dynamically calculate the Pli intersection of all Lhs attributes; at
the same time, the algorithm checks the resulting clusters against
the Rhs attribute clusters. If a check fails, i. e., if it reveals an FD
violation, the algorithm terminates the validation process early.
Furthermore, it performs this check for all FD candidates with
the same Lhs simultaneously.

Our DynFD algorithm enhances this validation strategy: In-
stead of validating the FD against the entire dataset, we validate
it against only the newly added and a few related records. Recall
from Definition 1.1 that an FD is invalidated by a pair of records
with equal values in the Lhs attributes but different values in the
Rhs attribute. Because for inserts we validate only previously
valid FDs, all pairs of old records still satisfy the FD. Only pairs
of records containing at least one new record might introduce
violations. Thus, the validation step for inserts needs to check
such pairs only.

We integrate this optimization into our validation algorithm as
follows: Given a fixed ordering of attributes by their respective
Pli sizes, the validation starts by iterating the clusters of the
Pli of the first Lhs attribute. For each cluster, the algorithm
dynamically calculates the intersection with all other Lhs clusters
to check the result against the Rhs clusters. At this point, which

is, before calculating the intersections, DynFD first checks if the
current cluster of the first Lhs attribute contains an identifier of
a new record. This check is very simple, because the identifier
numbers are assigned monotonically increasing (see Section 3.1)
and the identifiers in each cluster are sorted. Hence, DynFD
simply checks whether the last entry in the cluster is less than
the identifier of the first insert-record in the current batch: If
so, the cluster can be ignored; otherwise, the cluster contains at
least one new record and needs to be checked via dynamically
intersecting the Lhs attributes and probing the result against the
Rhs attribute clusters.

As a result, DynFD’s validation function isValid() (Algorithm 2
line 4) checks only the delta of the current batch for changing an
FD and not the entire dataset. This optimization significantly im-
proves the efficiency of the validation step, as many unnecessary
comparisons are saved.

4.3 Violation search

If the lattice traversal becomes inefficient (Algorithm 2 line 16-17),
DynFD switches to a strategy that we call violation search. This
strategy is a best effort approach to find violations for formerly
valid FDs via comparing records: Given two records ri and r j
with their dictionary-encoded signature, we can easily compute
the set of attributes X , in which ri and r j hold same values, and
the set of attributes Y , in which ri and r j hold different values. It
follows that X → Y are all non-FDs.

Any newly inserted record can cause violations only with
those partner records that have at least one value with the in-
serted record in common; records that do not share any value
with the inserted record need not be considered. With DynFD’s
Plis, we can easily retrieve all those partner records by simply
collecting all Pli clusters of the inserted record. Comparing the
inserted record to all records in these clusters would, in fact,
reveal all new violations, but the comparison costs are quadratic
in the number of records, which is usually too expensive. For this
reason, DynFD compares an inserted or changed record only to
a small, promising subset of partner records.

Related work has shown that record pairs with possibly many
overlapping values are promising candidates for finding new vi-
olations [13]. A sorting approach was demonstrated that moves
pairs with high overlap closer together so that near neighbor-
hoods become promising candidates. These neighborhoods are
then progressively explored by moving ever larger windows over
the sortings. If the violation search becomes inefficient, which
is when less than 10% of the comparisons reveal new violations,
the search ends. DynFD implements the exact same progressive
search, but it compares only those record pairs that include at
least one inserted (or updated) record.

For every discovered non-FD, DynFD needs to update both the
positive and the negative cover. Algorithm 3 shows the necessary
steps: It first updates the positive cover (lines 1-9) and then the
negative cover (lines 10-13). To update the positive cover, the
algorithm collects all invalidated FDs and removes them from
the cover (lines 1-3). For each of these invalidated FDs, it also
generates all direct specializations adding the minimal ones to
the positive cover (lines 4-9). To update the negative cover, Algo-
rithm 3 first checks if it contains a specialization (line 10); only if
there is no specialization, the current non-FD is maximal and we
add it to the negative cover (lines 11-12).
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Algorithm 3: Dependency induction from a non-FD
Data: relational schema R, nonFd, positive cover fds,

negative cover nonFds
Result: updated fds, nonFds

1 invalid← fds.getGeneralizations(nonFd);
2 for fd ∈ invalid do
3 fds← fds \ {fd};
4 rhs← fd.getRhs();
5 for r ∈ R \ (nonFd.getLhs() ∪ {rhs}) do
6 newLhs← fd.getLhs() ∪ {r };
7 spec← (newLhs→ rhs);
8 if ¬fds.containsGeneralization(spec) then
9 fds← fds ∪ {spec};

10 if ¬nonFds.containsSpecialization(nonFd) then
11 nonFds.removeGeneralizations(nonFd);
12 nonFds← nonFds ∪ {nonFd};
13 return fds, nonFds

5 HANDLING DELETES

To handle deletes, we propose a lattice traversal approach that
validates the non-FDs in the negative cover level-wise starting
with the most specific non-FDs and successively proceeding to
more general ones. Because the maximal non-FDs imply all other
non-FDs, the validation algorithm checks and, if necessary, gen-
eralizes only maximal non-FDs. Due to the level-wise iteration
of the lattice, we can test any newly derived generalization for
specializations in the negative cover to ensure that only maxi-
mal non-FDs are added back into the negative cover (maximality
pruning). We describe this main validation process of the nega-
tive cover in more detail in Section 5.1 and its optimizations in
Section 5.2 and Section 5.3.

5.1 Incremental non-FD validation process

Algorithm 4 shows the lattice traversal-based non-FD validation
algorithm. This algorithm basically inverts the lattice traversal
algorithm for inserts (see Algorithm 2): It operates on the negative
cover instead of the positive cover (line 3), it traverses the cover
from the most special non-FDs to the most general non-FDs
instead of from most general to most special FDs (line 1), it
transfers updates to the positive cover instead of to the negative
cover (lines 8-9), and it generalizes de-facto-valid non-FDs instead
specializing de-facto-invalid FDs (lines 10-14).

The validation function isValid() (line 4) is the same validation
function that we already introduced for the validation of FDs
in the insert scenario, but we now expect the outcomes to be
mostly non-FDs. For non-FDs, DynFD adds an additional pruning
technique to the validation that we explain in Section 5.2.

One major difference to the insert scenario, though, is that
deleted records resolve violations and do not introduce them. For
this reason, the progressive violation search, which compares
promising record pairs in the quest for new non-FDs, makes
no sense due to the lack of new non-FDs. Instead, we propose
optimistic depth-first searches if the number of valid FDs exceeds
10% of all validated non-FDs in a current level (lines 15-16). We
explain these optimistic depth-first searches in Section 5.3.

Applying the algorithm to our example, we start with the
initial candidates for maximal non-FDs f zc → l , f l → z, f l → c ,
f c → z, l → f , and c → f . They are the dark red cells in Figure 3

Algorithm 4: Lattice-based non-FD validation
Data: relational schema R, positive cover fds, negative

cover nonFds
Result: updated fds, nonFds

1 for level ∈ |R |...0 do
2 validFds← ∅;
3 for nonFd ∈ nonFds.getLevel(level) do
4 if needsValidation(nonFd) ∧ isValid(nonFd) then
5 validFds← validFds ∪ {nonFd};

6 for fd ∈ validFds do
7 nonFds← nonFds \ { f d};
8 fds.removeSpecializations(fd);
9 fds← fds ∪ { f d};

10 for r ∈ fd.getLhs() do
11 newLhs← fd.getLhs() \ {r };
12 gen← (newLhs→ fd.getRhs());
13 if ¬nonFds.containsSpecialization(gen) then
14 nonFds← nonFds ∪ {gen};

15 if |validFds| / |nonFds.getLevel(level)| > 0.1 then
16 depthFirstSearch(validFds, fds, nonFds)

17 return fds, nonFds

and we traverse the lattice from bottom to top. Starting with the
most specific candidate, nothing changes. In the next step, it
turns out that both f l → z and f l → c become valid. Thus,
they are both candidates for new minimal FDs. Furthermore, we
need to add the generalizations f → c , l → z, and l → c to
the negative cover. f → z is not maximal and therefore not a
new candidate. Validating the remaining five candidates shows
that also f → c is valid and thus a candidate for a new minimal
FD. f l → c is not a minimal FD anymore. There are no new
candidates for maximal non-FDs and we end up with six minimal
FDs. The corresponding lattice is shown in Figure 4.

5.2 Validation pruning

Most FD candidates that we validate in the delete scenario are
non-FDs and the purpose of validation is to confirm that there is
still at least one violation to each candidate. Although the valida-
tion algorithm terminates as soon as it finds the first violation
to a candidate, in many cases it still checks a lot of matching

Figure 4: Lattice after validating non-FDs
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Algorithm 5: Depth first search for FDs
Data: fd, positive cover fds, negative cover nonFds
Result: updated fds, nonFds

1 for r ∈ fd.getLhs() do
2 newLhs← fd.getLhs() \ {r };
3 newFd← (newLhs→ rhs);
4 if f ds .containsGeneralization(newFD) ∨

isValid(newFd) then
5 depthFirst(newFd, fds, nonFds);

6 deduceNonFds(fd, fds, nonFds);
7 return fds, nonFds

value combinations, which is expensive. To avoid many of these
checks, DynFD stores a violating record pair, which is a pair of
two identifiers whose records contradict the FD, as a surrogate
violation for every maximal non-FD in the negative cover. As
long as these two records exist in the data, the algorithm does
not need to check the corresponding non-FD.

So what DynFD does is the following:Whenever the algorithm
creates a non-FD, it also attaches the record pair that made the FD
invalid to the respective non-FD lattice node. When this lattice
node needs to be validated (see Algorithm 4 line 4), the algorithm
first calls the function needsValidation() to check whether one of
its two attached records was deleted in the current batch. In case
both records are still present, which is usually true, no validation
is needed; otherwise, the algorithm has to run the validation to,
depending on the result, either attach a new violating record pair
or remove the non-FD.

In order to consistently attach violating record pairs to all
non-FDs in the negative cover throughout the dynamic discov-
ery process, we need to consider two procedures in DynFD that
identify new non-FDs: the candidate validation (isValid() func-
tion) and the sampling (Section 4.3). Both procedures know a
violating record pair whenever an FD candidate is invalidated
so that they can simply attach this record pair to a new non-FD.
Conversely, if records are deleted, they need to be consistently
removed from the non-FDs. For this purpose, we index all non-FD
annotations (recordID→ nonFD) and, for every batch of deletes,
remove from the negative cover all record identifiers (and their
respective partner record identifiers) if a batch deletes them. The
initial non-FD annotations in the negative cover are calculated on
the fly with the first batch, because whenever a maximal non-FD
lacks a violation annotation, Algorithm 4 validates it anyway.

5.3 Depth-first searches

If a prior non-FD becomes valid, we successively check all its
generalizations. These checks can continue for many levels in
the lattice and stretch out to an exponential number of candi-
dates (exponential in the number of attributes); this makes the
validation very expensive. The new non-FDs are, however, often
covered by only a few maximal non-FDs. Hence, we propose
optimistic depth-first searches that target maximal non-FDs of
small Lhs-arity; these non-FDs prune many candidate non-FDs
from the lattice.

If more than 10% of the non-FDs in one level of the negative
cover became true FDs (Algorithm 4 line 15), we start the op-
timistic depth-first search. This subroutine takes the validFds,
which are the former non-FDs that have been found valid, as
input. For a sample of 10% of these seed FDs, DynFD aggressively

Algorithm 6: Dependency induction from a FD
Data: fd, positive cover fds, negative cover nonFds
Result: updated fds, nonFds

1 valid← nonFds.getSpecializations(fd);
2 for nonFd ∈ valid do
3 nonFds← nonFds \ {nonFd};
4 rhs← nonFd.getRhs();
5 for r ∈ fd.getLhs() do
6 newLhs← nonFd.getLhs() \ {r };
7 gen← (newLhs→ rhs);
8 if ¬nonFds.containsSpecialization(gen) then
9 nonFds← nonFds ∪ {gen};

10 if ¬fds.containsGeneralization(fd) then
11 fds.removeSpecializations(fd);
12 fds← fds ∪ {fd};
13 return fds, nonFds

searches their generalizations for new maximal non-FDs. We
consider only a sample of the seed FDs, because the depth-first
searches are an optimistic optimization attempt and should not
change the search strategy entirely – most FDs still change only a
bit making breath-first search in general more effective. The 10%
efficiency threshold and the 10% seed sample are hard-coded pa-
rameters that have shown to be efficient settings formost datasets.
The non-FDs discovered in the depth-first searches might be new
overall maximal non-FDs and are, hence, used to update both the
negative cover nonFds and the positive cover fds.

The algorithm that performs an optimistic depth-first search
for one seed FD is depicted in Algorithm 5. It implements a
recursive depth-first traversal of the positive cover starting with
the seed FD fd. Given a valid FD, Algorithm 5 first generates all its
direct generalizations by gradually removing each attribute from
the Lhs (lines 1-3). For each generalization, the algorithm then
checks if it has an own generalization in the positive cover. In
that case, the generalization is true and it must not be validated;
otherwise, Algorithm 5 validates the generalization (line 4). For
every valid generalization, we continue the depth-first search
(line 5). After handling all generalizations, the current FD is used
to deduce new non-FDs in the negative cover (line 6). This step
is done at last, because the deduction is expensive and, if some
more general FDs have already been used for deduction in some
recursion, there is less to be deduced for the current FD.

The function deduceNonFds() updates both negative and posi-
tive cover with a new, true FD. It is basically an exact inversion
of the deduction Algorithm 3 for non-FDs as we now specialize
the negative cover and generalize the positive cover accordingly.
Technically, we switch negative and positive cover, and gen-
eralization and specialization, which yields Algorithm 6. This
algorithm starts by retrieving all non-FD specializations of the
known FD from the negative cover (line 1). All these FDs are
valid now. Hence, it then removes each such FD from the negative
cover (lines 2-3). To generalize the new valid FDs into possibly
true non-FDs, the algorithm removes each attribute of the valid
FD’s Lhs once (lines 5-7). If such a generalization is maximal, it
is added to the negative cover (lines 8-9). After updating the neg-
ative cover, Algorithm 6 also updates the positive cover with the
known FD by adding the FD to the positive cover and removing
all its specializations (lines 10-12).
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6 EVALUATION

We now evaluate the performance of our FD maintenance algo-
rithm DynFD on multiple real-world datasets. The evaluation
covers a detailed analysis of our proposed pruning rules and tech-
niques and compares DynFD to the repeated execution of HyFD,
the state-of-the-art FD discovery algorithm for static setups.

To evaluate DynFD, we need some datasets with a change
history and a special experimental setup. That is what we discuss
first. We then evaluate DynFD’s batch processing times and its
throughput. Afterwards, we analyze the algorithm’s performance
w. r. t. different batch sizes and, then, compare the batch times to
HyFD’s batch times. As a final set of experiments, we evaluate
our four main pruning strategies: cluster pruning, violation search,
validation pruning, and depth-first searches.

6.1 Datasets and experimental setup

Datasets. For our experiments, we use six real-world datasets
and their change history: The artist relation from theMusicBrainz
database [9], the claims relation from the airport baggage claims
dataset published by Homeland Security [15], and the Wikipedia
infobox relations cpu, disease, actor, and single put together by
Google [7]. The six datasets and their characteristics, i. e., number
of columns, rows, changes, and FDs, are listed in Table 3. The
insert, delete, and update percentage columns refer to the number
of changes that we have for these datasets. For each dataset, we
highlight the characteristics that make the dataset interesting:
The selection contains wide (actor) and long (artist) relations,
ones with insert (single), and update (cpu) heavy changes, and
a dataset with particularly many changes (claims and disease).
Hence, it fairly represents real-world data in general.

Changes. The six datasets are given as a series of dataset dumps
in different versions. Because DynFD requires the individual
change operations that transformed one version into its successor
version, we extracted all inserts, deletes, and updates from the
change history of each dataset. The first version in each history
serves as the initial dataset and the sequence of changes broken
down into fixed-sized batches constitutes the dynamic input for
the FD maintenance task. In practice, the size of the batches
depends on the change rate, the size of the data, and use case
specific currentness requirements; in our experiments, we test
different batch sizes and their impact on the FD maintenance
performance.

Experiments.Given the initial dataset and the batched sequence
of changes, all experiments process the entire sequence of batches
as fast as possible. This gives us an upper bound for the through-
put performance: If the actual change rate is higher, the mainte-
nance would apply back-pressure and throttle the database. The
research question is, though, what throughput we can achieve.

Hardware. All experiments have been executed on a Dell Pow-
erEdge R620 with two Intel Xeon E5-2650 2.00 GHz CPUs and
128 GB RAM. This server runs on CentOS 6.4 and uses OpenJDK
64-Bit 1.8.0_111 as Java environment.

6.2 Batch processing performance

In this first experiment, we evaluate the batch processing perfor-
mance of DynFD on all datasets by fixing the batch size to 100
and measuring the processing time of each such batch. We run
up to 100 batches of each change history, which corresponds to
10,000 changes per dataset; for cpu and actor, we process only

Figure 5: Runtime per batch (size 100) on single.

1,463 and 5,647 changes respectively, because this is their entire
change history length. The results are shown in Table 4.

The measurements show that both the accumulated runtime
and the throughput are affected by the width (#Column) and the
length (#Rows) of the data: Although single has about three times
more rows than actor, actor’s three times more columns result
in almost half the throughput performance; if the number of
rows is, however, significantly larger as for the artist dataset, the
throughput also drops significantly, i. e., to only 17 changes per
second. Considering the complexity of FD discovery, which is
also the complexity of processing each batch, this observation is
no surprise. Note that the comparably low throughput for cpu
is due to the fact that the dataset is very short (62 rows) so that
every batch (100 changes) basically rewrites the entire dataset.

The average batch times together with the percentile times
show that the batch times have many outliers, i. e., runtime spikes
that differ greatly from the average runtime of a batch. For most
batches, the set of minimal FDs does not change much and our
maintenance strategies do a good job skipping through these
batches; for some batches, however, the FDs do change, some-
times even significantly. Then, DynFD needs to evolve FDs and
invest some additional effort, which we tried to minimize with
our pruning strategies.

Figure 5 supports this observation by plotting the individual
batch times for the single dataset: The majority of batches is pro-
cessed very quickly while some batches take orders of magnitude
longer. This plot looks similar for the other datasets, namely a
default batch processing time with occasional runtime spikes.

6.3 Batch size scalability

In the previous experiment, we fixed the batch size to 100 changes
per batch. To see the impact of the batch size, we now scale it
from 10 to 1,000 changes per batch. Figure 6 shows the average
runtime of DynFD per batch w. r. t. the different batch sizes. The
average in this experiment is calculated over the first 10,000
changes per dataset and both axes of the chart are in log-scale.

Most batch processing costs, such as the costs for updating the
data structure and for checking whether the deletes resolved any
violations, scale linearly with the size of the batch. The experi-
mental results in Figure 6, however, show that 100 times more
changes in a batch cause only about 10 times longer batch times
on all datasets. This means that increasing the batch size also
increases the throughput, as the processing costs per change
decrease. This is because some batch activities, such as the ex-
pensive validation of the positive cover, constitute constant costs
per batch regardless of its size (if no FD changes). The number of
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Table 3: Characteristics of the datasets used in our evaluation.

Dataset #Columns #Rows #Changes #FDs #FDs %Inserts %Deletes %Updates
(initial) (initial) (final)

cpu 15 62 1,463 209 327 4.3 0.2 95.5

disease 13 1,600 361,828 23 29 1.0 0.6 98.4
actor 83 3,655 5,647 347 326 64.9 0.5 34.6
single 26 12,451 12,614 193 248 96.1 0.0 3.9
artist 18 1,122,887 25,470 226 278 61.8 3.7 34.5
claims 8 1054 202,913 32 3 100.0 0.0 0.0

Table 4: Performance of DynFD on all datasets.

Dataset runtime throughput avg batch time 99th percentile 95th percentile 90th percentile
[sec] [changes/sec] [ms] [ms] [ms] [ms]

cpu 1.1 1,318.0 74.0 201.4 158.8 116.8
disease 1.5 6,844.6 14.6 62.2 26.4 19.0
actor 25.9 218.0 454.5 1,375.9 1,132.2 931.0
single 26.8 373.0 268.0 2,715.8 834.1 717.1
artist 577.1 17.3 5,771.0 15,033.1 13,979.2 12,367.9
claims 1.8 5,602.2 17.9 89.6 56.2 44.1

Figure 6: Average runtime for different batch sizes.

changing FDs per batch does also not increase linearly with the
batch size: Intuitively, if we look at the data less often, we proba-
bly overlook some changes, e. g., if A→ B changes to AC → B
and then to ACD → B, we might observe only the change of
A→ B to ACD → B. Hence, we observe that the average batch
processing time increases sub-linearly when increasing the batch
size in DynFD. It is, furthermore, remarkable that the runtime
increase is similar for all datasets although they differ greatly in
size and change patterns.

6.4 Competitive evaluation

Our next experiment compares the batch processing performance
of DynFD to repeated executions of the static profiling algorithm
HyFD. For this comparison, it is especially interesting to see
for which batch sizes our dynamic algorithm exhibits superior
performance compared to a static profiling approach. For this
purpose, we now scale it up from small to excessively large. We
also now define the batch size relative to the initial dataset size,
to make the measurements comparable across differently sized
datasets: We start with a batch size containing as many changes
as 1% of the initial dataset length, i. e., 1% of #Rows, and increase
the batch size to 1000% of initial dataset size. Then, we plot the
runtime of DynFD relative to the runtime of HyFD for each
dataset, e. g., a speedup of 5 indicates that DynFD was 5 times
faster than HyFD with a particular batch size ratio on a particular

Figure 7: Speedup of DynFD relative to the runtime of

HyFD.

dataset; 1 is equally fast and speedups smaller than 1 are slower
than HyFD.

The results depicted in Figure 7 show that DynFD is more than
an order of magnitude faster than HyFD for small and medium
batch sizes. This superiority decreases as we increase the batch
size – until HyFD becomes faster for most datasets. DynFD’s
poor performance on artist is due to the fact that a batch size of
1% initial dataset size already covers 11,228 changes – about half
of the entire change history. The first batch in each experiment
is also more expensive than later batches, because this is when
DynFD collects the initial violation annotations for the negative
cover. Because 10% batch size ratio already covers the entire
change history for artist, the performance does not change after
that measurement. For cpu, we observe the opposite effect: The
dataset is so tiny that simply re-profiling it with every batch is
the best option anyway.

According to the measurements for disease, single, and actor,
the inflection point at which static profiling (with HyFD) tends to
overtake dynamic profiling (with DynFD) is at about 100% batch
size ratio, i. e., when a batch basically re-writes the entire dataset.
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cpu single disease claims artist actor

- 674.4 16749.4 20015.4 26516.4 459258.0
4.3 545.6 12790.6 20585.6 25732.2 443418.2
5.3 460.6 15359.2 19859.0 26065.2 441666.6 10717.2
4.2 641.8 14396.0 19963.8 24431.0 408986.0
5.2 607.0 20076.0 14298.0 28156.0 498740.0

4.3+5.3 427.8 13445.8 19107.2 24516.0 395145.6 10960.8
4.3+5.3+4.2 448.8 11898.8 20074.4 24021.0 361354.6 8212.8

4.3+5.3+4.2+5.2 387.0 11699.0 13957.0 25018.0 364466.0 8597.0

Figure 8: Runtimewith different sets of pruning strategies

and a fixed batch size of 1,000.

cpu single disease claims artist actor

- 11107.6 15523.6 56107.0 218269.8 47712.6
4.3 10618.4 12080.6 56588.6 218695.0 46280.0
5.3 8779.5 14456.9 54894.2 216246.6 30812.2 17001.2
4.2 10796.0 15371.0 53761.0 179788.0 45790.0
5.2 9752.5 20060.0 48473.0 202904.0 52094.0

4.3+5.3 8540.7 13460.7 53510.6 180654.4 28275.2 17370.8
4.3+5.3+4.2 8369.8 10887.4 55088.4 181156.6 26608.3 13188.0

4.3+5.3+4.2+5.2 6466.0 10315.0 45130.0 158946.0 27848.0 12404.0

Figure 9: Runtimewith different sets of pruning strategies

and a relative batch size of 10% initial dataset size.

6.5 In-depth performance analysis

DynFD proposes an FD maintenance algorithm with four major
pruning strategies. The basic algorithm performs the incremen-
tal data structure updates and the level-wise valuations of the
positive and negative cover; it basically enables the dynamic
evolution of FDs. The four pruning strategies, which are clus-
ter pruning (see Section 4.2), violation search (see Section 4.3),
validation pruning (see Section 5.2), and depth-first searches (see
Section 5.3), aim to reduce the maintenance effort as much as pos-
sible. Let us now evaluate how effective each individual strategy
is and what the performance implications are.

In this final set of experiments, we execute DynFD with differ-
ent sets of pruning strategies on all datasets. Because the violation
search is so important for the algorithm, i. e., the performance
drops significantly without any form of this strategy, we let the
baseline algorithm run a naive sampling that compares changed
records only to their direct neighbors w. r. t. some sorting. For
each combination of strategies and dataset, we measure the pro-
cessing time for all batches of fixed size 1,000 (Figure 8) and
relative size 10% (Figure 9), respectively.

The measurements for both batch sizes show that the compo-
sition of all pruning strategies performs best in general. It is not
the optimal composition of pruning strategies for all datasets,
but the performance is reliably good throughout all our datasets.
With a few exceptions, every strategy tends to improve the per-
formance a bit. One exception is the violation search (4.3) on the
disease dataset, because a naive version of this strategy is already
in use by the baseline; and the optimized version, which is the
version that runs progressively increasing windows, does not
improve upon this naive strategy. The second exception is the val-
idation pruning (5.2) that performs poorly on claims, single, and
artist: On claims, the batches simply do not contain any deletes
so that the strategy introduces the overhead of labeling non-FDs
with violations without ever needing them. On single and artist,
the annotations did not effectively prevent violations, because

Figure 10: Runtime on cpu with different sets of pruning

strategies and different batch sizes.

Figure 11: Runtime on single with different sets of prun-

ing strategies and different batch sizes.

many of the annotated violations did vanish, i. e., the violations
in these datasets are simply not stable enough to prevent enough
violations that could balance the overhead of maintaining the
violations.

The measurements in Figure 10 and Figure 11 present the run-
times of the different strategy compositions for different batch
sizes. The lines show that the composition of all pruning strate-
gies also performs reliably well, i. e., best or close to best, regard-
less of the batch size.

7 RELATEDWORK

DynFD is the first algorithm to maintain FDs under inserts, up-
dates, and deletes in dynamic data. Nonetheless, we identify two
categories of related work, namely (i) the discovery of FDs in
static data and (ii) the maintenance of metadata in dynamic data
in general.

7.1 Discovering FDs in static data

Research has brought up many FD discovery algorithms for static
data, which can be classified into column-based, row-based, and
hybrid algorithms [12]. In the following, we briefly describe one
popular representative of each class.

One of the earliest FD discovery algorithms is the column-
based algorithm Tane that models the search space, i. e., the set
of all candidate FDs, as a powerset lattice of attribute combina-
tions [8]. It traverses this lattice in a level-wise bottom-up fashion
until it arrives at the non-trivial, minimal FDs. Although, DynFD
adopts the lattice-shaped search space, it traverses it both bottom-
up and top-down in response to data changes. For the candidate
validation, Tane proposed stripped partitions (also: position list
indexes, Plis) that we also use in DynFD.
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The row-based Fdep algorithm proposes a fundamentally dif-
ferent strategy [6]: It compares all pairs of records in the input
relation to deduce the complete negative cover, i. e., all candidate
FDs that are violated by some tuple pair. The non-trivial, mini-
mal FDs are derived from the negative cover via cover inversion.
DynFD also maintains a negative cover, but for the purpose of
processing tuple deletions and not to infer the positive cover.

The hybrid algorithm HyFD combines column- and row-based
techniques to avoid possibly many ineffective candidate vali-
dations and tuple comparisons [13]. By interleaving the two
discovery principles and by having them exchange intermediate
results, HyFD significantly outperforms all non-hybrid competi-
tors. In DynFD, we tailor the hybrid discovery approach to work
on dynamic data. Our experiments show that the proposed ex-
tensions and adjustments have a great, positive impact on the
performance of the approach.

7.2 Maintaining metadata in dynamic data

Arguably, maintaining metadata in dynamic data has received
much less attention than static data profiling. Therefore, this
section widens its scope to maintaining any kind of metadata,
not only FDs.

To the best of our knowledge, the only existing FD main-
tenance algorithm was proposed by Wang et al. in [17]. The
algorithm deals only with tuple deletions and neither inserts nor
updates. Similar to DynFD, the algorithm uses bottom-up and
top-down approaches as well as indexes to evolve the FDs. Unlike
DynFD, however, it does not maintain a negative cover of non-
FDs that significantly improves and distinguishes the handling
of deletes from the static case.

The Swan algorithm by Abedjan et al. is an incremental discov-
ery algorithm for unique column combinations (UCCs), i. e., key
candidates in dynamic datasets [1]. Starting from a pre-calculated
set of UCCs, Swan actively applies all insertions and deletions
to the current metadata set. The algorithm groups change op-
erations into batches and uses various indexes to optimize the
change calculations – two principles that are also used by DynFD.
In contrast to Swan, however, DynFD operates on both a posi-
tive and a negative cover representation of the metadata, which
enable additional pruning strategies.

Lastly, Shaabani and Meinel proposed an incremental algo-
rithm to maintain inclusion dependencies (INDs) in dynamic
data [16]. The algorithm uses a concept called attribute cluster-
ing that can be used in an incremental setup to evolve INDs
w. r. t. sets of data changes. Besides the fact that this algorithm
also handles both inserts and updates in batches, it has little in
common with DynFD, because IND discovery is very different
from FD discovery.

8 CONCLUSION

In this paper, we introduced DynFD, a novel algorithm that main-
tains the functional dependencies of dynamic datasets. To evolve
the set of FDswith every batch of inserts, updates, and deletes, the
algorithm continuously adapts its validation structures as well as
a negative and a positive cover of FDs. With DynFD, we proposed
a new cover inversion algorithm and four pruning strategies that
stabilize the maintenance performance. Our evaluation shows
that, if the batch size is small, the dynamic algorithm is more
than an order of magnitude faster than repeated executions of a
state-of-the-art, static profiling algorithm.

Because profiling static data is already a challenging task,
profiling dynamic data is a research direction that has not been
studied much thus far. With DynFD, we made a first approach
to solve this task for functional dependencies. Our experiments
show that this algorithm greatly improves upon using static data
profiling algorithms in dynamic scenarios, but it leaves several
interesting research questions open:
(1) Devising a measure for interestingness could serve to track only
interesting and, hence, fewer dependencies; this would greatly
improve the maintenance performance.
(2) Incorporating knowledge about existing database constraints
into the maintenance process could help to prune further val-
idations; FDs with a key constraint on their Lhs, for instance,
cannot invalidate.
(3) Exploiting the specifics of update operations, such as the fact
that most updates do not alter all attribute values but only a few,
could help to devise further pruning rules.
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ABSTRACT
Effective data analytics on data collected from the real world
usually begins with a notoriously expensive pre-processing step
of data transformation and wrangling. Programming By Example
(PBE) systems have been proposed to automatically infer trans-
formations using simple examples that users provide as hints.
However, an important usability issue—verification—limits the
effective use of such PBE data transformation systems, since the
verification process is often effort-consuming and unreliable.

We propose a data transformation paradigm design CLX (pro-
nounced “clicks”) with a focus on facilitating verification for end
users in a PBE-like data transformation. CLX performs pattern
clustering in both input and output data, which allows the user to
verify at the pattern level, rather than the data instance level, with-
out having to write any regular expressions, thereby significantly
reducing user verification effort. Thereafter, CLX automatically
generates transformation programs as regular-expression replace
operations that are easy for average users to verify.

We experimentally compared the CLX prototype with both
FlashFill, a state-of-the-art PBE data transformation tool, and
Trifacta, an influential system supporting interactive data trans-
formation. The results show improvements over the state of the
art tools in saving user verification effort, without loss of effi-
ciency or expressive power. In a user study on data sets of various
sizes, when the data size grew by a factor of 30, the user verifica-
tion time required by the CLX prototype grew by 1.3× whereas
that required by FlashFill grew by 11.4×. In another user study
assessing the users’ understanding of the transformation logic —
a key ingredient in effective verification — CLX users achieved a
success rate about twice that of FlashFill users.

1 INTRODUCTION
Data transformation, or datawrangling, is a critical pre-processing
step essential to effective data analytics on real-world data and is
widely known to be human-intensive as it usually requires pro-
fessionals to write ad-hoc scripts that are difficult to understand
and maintain. A human-in-the-loop Programming By Example
(PBE) approach has been shown to reduce the burden for the
end user: in projects such as FlashFill [6], BlinkFill [24], and
Foofah [11], the system synthesizes data transformation pro-
grams using simple examples the user provides.

Problems — Most of existing research in PBE data transforma-
tion tools has focused on the “system” part — improving the
efficiency and expressivity of the program synthesis techniques.
Although these systems have demonstrated some success in ef-
ficiently generating high-quality data transformation programs
for real-world data sets, verification, as an indispensable in-
teraction procedure in PBE, remains a major bottleneck within

© 2019 Copyright held by the owner/author(s). Published in Proceedings of the
22nd International Conference on Extending Database Technology (EDBT), March
26-29, 2019, ISBN 978-3-89318-081-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

existing PBE data transformation system designs. The high labor
cost, may deter the user from confidently using these tools.

Any reasonable user who needs to perform data transforma-
tion should certainly care about the “correctness” of the inferred
transformation logic. In fact, a user will typically go through
rounds of “verify-and-specify" cycles when using a PBE system.
In each interaction, a user has to verify the correctness of the cur-
rent inferred transformation logic by validating the transformed
data instance by instance until she identifies a data instance mis-
takenly transformed; then she has to provide a new example for
correction. Given a potentially large and varied input data
set, such a verification process is like “finding a needle in
a haystack” which can be extremely time-consuming and
tedious.

A naïve way to simplify the cumbersome verification process
is to add explanations to the transformed data so that the user
does not have to read them in their raw form. For example, if
we can somehow know the desired data pattern, we can write a
checking function to automatically check if the post-transformed
data satisfies the desired pattern, and highlight data entries that
are not correctly transformed.

However, a data explanation procedure alone can not solve the
entire verification issue; the undisclosed transformation logic re-
mains untrustworthy to the end user. Users can at best verify that
existing data are converted into the right form, but the logic is
not guaranteed to be correct and may function unexpect-
edly on new input (see Section 2 for an example). Without good
insight into the transformation logic, PBE system users cannot
tell if the inferred transformation logic is correct, or when there
are errors in the logic, they may not be able to debug it. If the
user of a traditional PBE system lacks good understand-
ing of the synthesize program’s logic, she can only verify
it by spending large amounts of time testing the synthe-
sized program on ever-larger datasets.

Naïvely, previous PBE systems can support program explana-
tion by presenting the inferred programs to end users. However,
these data transformation systems usually design their own Do-
main Specific Languages (DSLs), which are usually sophisticated.
The steep learning curve makes it unrealistic for most users to
quickly understand the actual logic behind the inferred programs.
Thus, besides more explainable data, a desirable PBE system
should be able to present the transformation logic in a way that
most people are already familiar with.

Insight — Regular expressions (regexp) have been known to
most programmers of various expertise and regexp replace op-
erations have been commonly applied in data transformations.
The influential data transformation system, Wrangler (later
as Trifacta), proposes simplified natural-language-like regular
expressions which can be understood and used even by non-
technical data analysts. This makes regexp replace operations
a good choice for an explainable transformation language. The
challenge then is how to automatically synthesize regexp replace
operations as the desired transformation logic in a PBE system.
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A regexp replace operation takes in two parameters: an input
pattern and a replacement function. Suppose an input data set is
given, and the desired data pattern can be known, the challenge
is to determine a suitable input pattern and the replacement func-
tion to convert all input data into the desired pattern. Moreover, if
the input data set is heterogeneous with many formats, we need
to find out an unknown set of such input-pattern-and-replace-
function pairs.

Pattern profiling can be used to discover clusters of data pat-
terns within a data set that are are useful to generate regular
replace operations. Moreover, it can also serve as a data expla-
nation approach helping the user quickly understand the pre-
and post-transformation data which reduces the verification chal-
lenge users face in PBE systems.

Proposed Solution — In this project, we propose a new data
transformation paradigm, CLX, to address the two specific prob-
lemswithin our claimed verification issue. The CLX paradigm has
three components: two algorithmic components—clustering and
transformation—with an intervening component of labeling. In
this paper, we present an instantiation of the CLX paradigm. We
present (1) an efficient pattern clustering algorithm that groups
data with similar structures into small clusters, (2) a DSL for
data transformation, that can be interpreted as a set of regular
expression replace operations, (3) a program synthesis algorithm
to infer desirable transformation logic in the proposed DSL.

Through the above means, we are able to greatly ameliorate
the usability issue in verification within PBE data transformation
systems. Our experimental results show improvements over the
state of the art in saving user verification effort, along with in-
creasing users’ comprehension of the inferred transformations.
Increasing comprehension is highly relevant to reducing the veri-
fication effort. In one user study on a large data set, when the data
size grew by a factor of 30, the CLX prototype cost 1.3× more
verification time whereas FlashFill cost 11.4×more verification
time. In a separate user study accessing the users’ understand-
ing of the transformation logic, CLX users achieved a success
rate about twice that of FlashFill users. Other experiments also
suggest that the expressive power of the CLX prototype and its
efficiency on small data are comparable to those of FlashFill.

Organization — After motivating our problem with an example
in Section 2, we discuss the following contributions:
• Wedefine the data transformation problem and present the
PBE-like CLX framework solving this problem. (Section 3)
• We present a data pattern profiling algorithm to hierarchi-
cally cluster the raw data based on patterns. (Section 4)
• We present a new DSL for data pattern transformation in
the CLX paradigm. (Section 5)
• We develop algorithms synthesizing data transformation
programs, which can transform any given input pattern
to the desired standard pattern. (Section 6)
• We experimentally evaluate the CLX prototype and other
baseline systems through user studies and simulations.
(Section 7)

We explore the related work in Section 8 and finish with a dis-
cussion of future work in Section 9.

2 MOTIVATING EXAMPLE
Bob is a technical support employee at the customer service
department. He wanted to have a set of 10,000 phone numbers
in various formats (as in Figure 1) in a unified format of “(xxx)

(734) 645-8397
(734)586-7252
734-422-8073
734.236.3466
...

Figure 1: Phone numbers
with diverse formats

\({digit}3\)\ {digit}3\-{digit}4
(734) 645-8397 ... (10000 rows)
Figure 2: Patterns after
transformation

\({digit}3\){digit}3\-{digit}4
(734)586-7252 ... (2572 rows)
{digit}3\-{digit}3\-{digit}4
734-422-8073 ... (3749 rows)
\({digit}3\)\ {digit}3\-{digit}4
(734) 645-8397 ... (1436 rows)
{digit}3\.{digit}3\.{digit}4
734.236.3466 ... (631 rows)
...

Figure 3: Pattern clusters of
raw data

1 Replace '/^\(({digit}{3})\)({digit}{3})\-({digit}{4})$/'

in column1 with '($1) $2-$3'

2 Replace '/^({digit}{3})\-({digit}{3})\-({digit}{4})$/' in

column1 with '($1) $2-$3'

3 ...

Figure 4: Suggested data transformation operations
xxx-xxxx”. Given the volume and the heterogeneity of the data,
neither manually fixing them or hard-coding a transformation
script was convenient for Bob. He decided to see if there was an
automated solution to this problem.

Bob found that Excel 2013 had a new feature named FlashFill
that could transform data patterns. He loaded the data set into
Excel and performed FlashFill on them.

Example 2.1. Initially, Bob thought using FlashFill would be
straightforward: he would simply need to provide an example of
the transformed form of each ill-formatted data entry in the input
and copy the exact value of each data entry already in the cor-
rect format. However, in practice, it turned out not to be so easy.
First, Bob needed to carefully check each phone number entry
deciding whether it is ill-formatted or not. After obtaining a new
input-output example pair, FlashFill would update the transfor-
mation results for the entire input data, and Bob had to carefully
examine again if any of the transformation results were incorrect.
This was tedious given the large volume of heterogeneous data
(verification at string level is challenging). After rounds of
repairing and verifying, Bob was finally sure that FlashFill suc-
cessfully transformed all existing phone numbers in the data set,
and he thought the transformation inferred by FlashFill was
impeccable. Yet, when he used it to transform another data set, a
phone number “+1 724-285-5210” was mistakenly transformed as
“(1) 724-285”, which suggested that the transformation logic may
fail anytime (unexplainable transformation logic functions
unexpectedly). Customer phone numbers were critical informa-
tion for Bob’s company and it was important not to damage them
during the transformation. With little insight from FlashFill
regarding the transformation program generated, Bob was not
sure if the transformation was reliable and had to do more testing
(lack of understanding increases verification effort).

Bob heard about CLX and decided to give it a try.

Example 2.2. He loaded his data into CLX and it immediately
presented a list of distinct string patterns for phone numbers in
the input data (Figure 3), which helped Bob quickly tell which
part of the data were ill-formatted. After Bob selected the de-
sired pattern, CLX immediately transformed all the data and
showed a new list of string patterns as Figure 2. So far, veri-
fying the transformation result was straightforward. The
inferred program is presented as a set of Replace operations on
raw patterns in Figure 3, each with a picture visualizing the trans-
formation effect. Bob was not a regular expressions guru, but
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Notation Description
S = {s1, s2, . . . } A set of ad hoc strings s1, s2, . . . to be

transformed.
P = {p1, p2, . . . } A set of string patterns derived from S.
pi = {t1, t2, . . . } Pattern made from a sequence of tokens

ti
T The desired target pattern that all strings

in S needed to be transformed into.
L = {(p1, f1), (p2, f2), . . . } Program synthesized in CLX transforming

data the patterns of P into T .
E The expression E in L, which is a con-

catenation of Extract and/or ConstStr op-
erations. It is a transformation plan for a
source pattern. We also refer to it as an
Atomic Transformation Plan in the paper.

Q(̃t, p) Frequency of token t̃ in pattern p
G Potential expressions represented in Di-

rected Acyclic Graph.
Table 1: Frequently used notations

Token Class Regular Expression Example Notation
digit [0-9] “12” ⟨D ⟩
lower [a-z] “car” ⟨L⟩
upper [A-Z] “IBM” ⟨U ⟩
alpha [a-zA-Z] “Excel” ⟨A⟩
alpha-numeric [a-zA-Z0-9_-] “Excel2013” ⟨AN ⟩

Table 2: Token classes and their descriptions
these operations seemed simple to understand and verify. Like
many users in our User Study (Section 7.3), Bob had a deeper
understanding of the inferred transformation logic with
CLX than with FlashFill, and hence, he knew well when
and how the programmay fail, which saved him from the
effort of more blind testing.

3 OVERVIEW
3.1 Patterns and Data Transformation

Problem
A data pattern, or string pattern, is a “high-level” description of
the attribute value’s string. A natural way to describe a pattern
could be a regular expression over the characters that constitute
the string. In data transformation, we find that groups of con-
tiguous characters are often transformed together as a group.
Further, these groups of characters are meaningful in themselves.
For example, in a date string “11/02/2017”, it is useful to cluster
“2017” into a single group, because these four digits are likely
to be manipulated together. We call such meaningful groups of
characters as tokens.

Table 2 presents all token classes we currently support in our
instantiation of CLX, including their class names, regular ex-
pressions, and notation. In addition, we also support tokens of
constant values (e.g., “,”, “:”). In the rest of the paper, we represent
and handle these tokens of constant values differently from the 5
token classes defined in Table 2. For convenience of presentation,
we denote such tokens with constant values as literal tokens
and tokens of 5 token classes defined in Table 2 as base tokens.

A pattern is written as a sequence of tokens, each followed
by a quantifier indicating the number of occurrences of the pre-
ceding token. A quantifier is either a single natural number or
“+”, indicating that the token appears at least once. In the rest
of the paper, to be succinct, a token will be denoted as “⟨̃t⟩q”
if q is a number (e.g., ⟨D⟩3) or “⟨̃t⟩+” otherwise (e.g., ⟨D⟩+). If
t̃ is a literal token, it will be surrounded by a single quotation
mark, like ‘:’. When a pattern is shown to the end user, it is pre-
sented as a natural-language-like regular expression proposed by
Wrangler [13] (see regexps in Fig 4).

Labeling

Messy Raw Data

TransformingClustering

P1

P2

P3

P1

P2

P3

P2
30 1 2

Figure 5: “CLX” Model: Cluster–Label–Transform
With the above definition of data patterns, we hereby formally

define the problem we tackle using the CLX framework—data
transformation. Data transformation or wrangling is a broad
concept. Our focus in this paper is to apply the CLX paradigm
to transform a data set of heterogeneous patterns into a desired
pattern. A formal definition of the problem is as follows:

Definition 3.1 (Data (Pattern) Transformation). Given a
set of strings S = {s1, . . . , sn }, generate a program L that trans-
forms each string in S to an equivalent string matching the user-
specified desired target pattern T .

L = {(p1, f1), (p2, f2), . . . } is the program we synthesize in
the transforming phase of CLX. It is represented as a set regexp
replace operations, Replace(p, f )1, that many people are familiar
with (e.g., Fig 4).

With above definitions of patterns and data transformations,
we present the CLX framework for data transformation.

3.2 CLX Data Transformation Paradigm
We propose a data transformation paradigm called Cluster-Label-
Transform (CLX, pronounced “clicks”). Figure 5 visualizes the
interaction model in this framework.

Clustering — The clustering component groups the raw input
data into clusters based on their data patterns/formats. Compared
to raw strings, data patterns is amore abstract representation. The
number of patterns is fewer than raw strings, and hence, it can
make the user understand the data and verify the transformation
more quickly. Patterns discovered during clustering is also useful
information for the downstream program synthesis algorithm to
determine the number of regexp replace operations, as well as
the desirable input patterns and transformation functions.

Labeling — Labeling is to specify the desired data pattern that
every data instance is supposed to be transformed into. Presum-
ably, labeling can be achieved by having the user choose among
the set of patterns we derive in the clustering process assuming
some of the raw data already exist in the desired format. If no
input data matches the target pattern, the user could alternatively
choose to manually specify the target data form.

Transforming — After the desired data pattern is labeled, the
system automatically synthesizes data transformation logic that
transforms all undesired data into the desired form and also
proactively helps the user understand the transformation logic.

In this paper, we present an instantiation of the CLX paradigm
for data pattern transformation. Details about the clustering com-
ponent and the transformation component are discussed in Sec-
tion 4 and 6. In Section 5, we show the domain-specific-language
(DSL) we use to represent the program L as the outcome of
program synthesis, which can be then presented as the regexp re-
place operations. The paradigm has been designed to allow new

1p is the regular expression, and f is the replacement string indicating the operation
on the string matching the pattern p.
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algorithms and DSLs for transformation problems other than
data pattern transformation; we will pursue other instantiations
in future work.

4 CLUSTERING DATA ON PATTERNS
In CLX, we first cluster data into meaningful groups based on
their structure and obtain the pattern information, which helps
the user quickly understand the data. To minimize user effort, this
clustering process should ideally not require user intervention.

LearnPADS [4] is an influential project that also targets string
pattern discovery. However, LearnPADS is orthogonal to our
effort in that their goal is mainly to find a comprehensive and
unified description for the entire data set whereas we seek to
partition the data into clusters, each cluster with a single data
pattern. Also, the PADS language [3] itself is known to be hard
for a non-expert to read [29]. Our interest is to derive simple
patterns that are comprehensible. Besides the explainability, effi-
ciency is another important aspect of the clustering algorithm we
must consider, because input data can be huge and the real-time
clustering must be interactive.

To that end, we propose an automated means to hierarchically
cluster data based on data patterns given a set of strings. The data
is clustered through a two-phase profiling: (1) tokenization: tok-
enize the given set of strings of ad hoc data and cluster based on
these initial patterns, (2) agglomerative refinement: recursively
merge pattern clusters to formulate a pattern cluster hierarchy
that allows the end user to view/understand the pattern structure
information in a simpler and more systematic way, and also helps
CLX generate a simple transformation program.

4.1 Initial Clustering Through Tokenization
Tokenization is a common process in string processing when
string data needs to be manipulated in chunks larger than single
characters. A simple parser can do the job.

Below are the rules we follow in the tokenization phase.
• Non-alphanumeric characters carry important hints about
the string structure. Each such character is identified as
an individual literal token.
• We always choose the most precise base type to describe a
token. For example, a token with string content “cat” can
be categorized as “lower”, “alphabet” or “alphanumeric”
tokens. We choose “lower” as the token type for this token.
• The quantifiers are always natural numbers.

Here is an example of the token description of a string data record
discovered in tokenization phase.

Example 4.1. Suppose the string “Bob123@gmail.com” is to be
tokenized. The result of tokenization becomes [⟨U ⟩, ⟨L⟩2, ⟨D⟩3,
‘@’, ⟨L⟩5, ‘.’, ⟨L⟩3].

After tokenization, each string corresponds to a data pattern
composed of tokens. We create the initial set of pattern clusters
by clustering the strings sharing the same patterns. Each cluster
uses its pattern as a label which will later be used for refinement,
transformation, and user understanding.

Find Constant Tokens — Some of the tokens in the discovered
patterns have constant values. Discovering such constant values
and representing them using the actual values rather than base
tokens helps improve the quality of the program synthesized. For
example, if most entities in a faculty name list contain “Dr.”, it
is better to represent a pattern as [‘Dr.’,‘\ ’, ‘⟨U ⟩’, ‘⟨L⟩+’] than
[‘⟨U ⟩’, ‘⟨L⟩’, ‘.’, ‘\ ’, ‘⟨U ⟩’, ‘⟨L⟩+’]. Similar to [4], we find tokens

Algorithm 1: Refine Pattern Representations
Data: Pattern set P, generalization strategy д̃
Result: Set of more generic patterns Pf inal

1 Pf inal ,Praw ← ∅;
2 Craw ← {};
3 for pi ∈ P do
4 pparent ← дetParent(pi , д̃);
5 add pparent to Praw ;
6 Craw [pparent ] = Craw [pparent ] + 1 ;
7 for pparent ∈ Praw ranked by Craw from high to low do
8 pparent .child ← {pj |∀pj ∈ P,pj .isChild(pparent )};
9 add pparent to Pf inal ;

10 remove pparent .child from P;
11 Return Pf inal ;

with constant values using the statistics over tokenized strings
in the data set.

4.2 Agglomerative Pattern Cluster
Refinement

In the initial clustering step, we distinguish different patterns by
token classes, token positions, and quantifiers, the actual number
of pattern clusters discovered in the ad hoc data in tokenization
phase could be huge. User comprehension is inversely related to
the number of patterns. It is not very helpful to present too many
very specific pattern clusters all at once to the user. Plus, it can be
unacceptably expensive to develop data pattern transformation
programs separately for each pattern.

To mitigate the problem, we build pattern cluster hierarchy,
i.e., a hierarchical pattern cluster representation with the leaf
nodes being the patterns discovered through tokenization, and
every internal node being a parent pattern. With this hierarchical
pattern description, the user can understand the pattern informa-
tion at a high level without being overwhelmed by many details,
and the system can generate simpler programs. Plus, we do not
lose any pattern discovered previously.

From bottom-up, we recursively cluster the patterns at each
level to obtain parent patterns, i.e., more generic patterns, for-
mulating the new layer in the hierarchy. To build a new layer,
Algorithm 1 takes in different generalization strategy д̃ and the
child pattern set P from the last layer. Line 3-5 clusters the cur-
rent set of pattern clusters to get parent pattern clusters using the
generalization strategy д̃. The generated set of parent patterns
may be identical to others or might have overlapping expressive
power. Keeping all these parent patterns in the same layer of the
cluster hierarchy is unnecessary and increases the complexity of
the hierarchy generated. Therefore, we only keep a small subset
of the parent patterns initially discovered and make sure they
together can cover any child pattern in P. To do so, we use a
counter Craw counting the frequencies of the obtained parent
patterns (line 6). Then, we iteratively add the parent pattern
that covers the most patterns in P into the set of more generic
patterns to be returned (line 7-10). The returned set covers all pat-
terns in P (line 11). Overall, the complexity is O(n logn), where
n is the number of patterns in P, and hence, the algorithm itself
can quickly converge.

In this paper, we perform three rounds of refinement to con-
struct the new layer in the hierarchy, each with a particular
generalization strategy:

(1) natural number quantifier to ‘+’
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Leaf Nodes P 0

Parent Patterns P 1

Parent Patterns P 2

Parent Patterns P 3

...

...

<U><L>2<D>3@<L>5.<L>3

<U>+<L>+<D>+@<L>+.<L>+

<A>+<D>+@<A>+.<A>+

<AN>+@<AN>+.<AN>+

<U><L>3... ...

<L>+<D>+...

... ...

<A>+@...

Figure 6: Hierarchical clusters of data patterns

(2) ⟨L⟩, ⟨U ⟩ tokens to ⟨A⟩
(3) ⟨A⟩, ⟨N ⟩, ’-’, ‘_’ tokens to ⟨AN ⟩

Example 4.2. Given the pattern we obtained in Example 4.1,
we successively apply Algorithm 1 with Strategy 1, 2 and 3 to gen-
eralize parent patterns P1, P2 and P3 and construct the pattern
cluster hierarchy as in Figure 6.

4.3 Limitations
The pattern hierarchy constructed can succinctly profile the pat-
tern information for many data. However, the technique itself
may be weak in two situations. First, as the scope of this paper
is limited to addressing the syntactic transformation problem
(Section 5), the pattern discovery process we propose only con-
siders syntactic features, but no semantic features. This may
introduce the issue of “misclustering”. For example, a date of
format “MM/DD/YYYY” and a date of format “DD/MM/YYYY”
may be grouped into the same cluster of “⟨N ⟩2/⟨N ⟩2/⟨N ⟩4”, and
hence, transforming from the former format into the latter format
is impossible in our case. Addressing this problem requires the
support for semantic information discovery and transformation,
which will be in our future work. Another possible weakness of
“fail to cluster” is also mainly affected by the semantics issue: we
may fail to cluster semantically-same but very messy data. E.g.,
we may not cluster the local-part (everything before ‘@’) of a
very weird email address “Mike'John.Smith@gmail.com” (token
⟨AN ⟩ cannot capture ‘'’ or ‘.’). Yet, this issue can be easily resolved
by adding additional regexp-based token classes (e.g., emails).
Adding more token classes is beyond the interest of our work.

5 DATA PATTERN TRANSFORMATION
PROGRAM

As motivated in Section 1 and Section 3, our proposed data trans-
formation framework is to synthesize a set of regexp replace
operations that people are familiar with as the desired transfor-
mation logic. However, representing the logic as regexp strings
will make the program synthesis difficult. Instead, to simplify
the program synthesis, we propose a new language, UniFi, as a
representation of the transformation logic internal to CLX. The
grammar of UniFi is shown in Figure 7. We then discuss how to
explain a inferred UniFi program as regexp replace operations.

The top-level of any UniFi program is a Switch statement that
conditionally maps strings to a transformation. Match checks
whether a string s is an exact match of a certain pattern p we
discover previously. Once a string matches this pattern, it will
be processed by an atomic transformation plan (expression E in
UniFi) defined below.

Definition 5.1 (Atomic Transformation Plan). Atomic
transformation plan is a sequence of parameterized string operators
that converts a given source pattern into the target pattern.

The available string operators include ConstStr and Extract.
ConstStr(̃s) denotes a constant string s̃ . Extract(̃ti ,̃tj ) extracts

Program L := Switch((b1, E1), . . . , (bn , En ))

Predicate b :=Match(s,p)

Expression E := Concat(f1, . . . , fn )

String Expression f := ConstStr(̃s) | Extract(̃ti , t̃j )

Token Expression ti := (̃t, r,q, i)
Figure 7: UniFi Language Definition

from the ith token to the jth token in a pattern. In the rest of the
paper, we express an Extract operation as Extract(i ,j), or Extract(i)
if i = j. A token t is represented as (̃t, r,q, i): t̃ is the token class
in Table 2; r represents the corresponding regular expression of
this token; q is the quantifier of the token expression; i denotes
the index (one-based) of this token in the source pattern.

As with FlashFill [6] and BlinkFill [24], we only focus on
syntactic transformation, where strings are manipulated as a se-
quence of characters and no external knowledge is accessible, in
this instantiation design. Semantic transformation (e.g., convert-
ing “March” to “03”) is a subject for future work. Further–again
like BlinkFill [24]–our proposed data pattern transformation
language UniFi does not support loops. Without the support for
loops, UniFi may not be able to describe transformations on an
unknown number of occurrences of a given pattern structure.

We use the following two examples used by FlashFill [6] and
BlinkFill [24] to briefly demonstrate the expressive power of
UniFi, and the more detailed expressive power of UniFi would
be examined in the experiments in Section 7.4. For simplicity,
Match(s,p) is shortened asMatch(p) as the input string s is fixed
for a given task.

Example 5.1. This problem ismodified from test case “Example
3” in BlinkFill. The goal is to transform all messy values in the
medical billing codes into the correct form “[CPT-XXXX]” as in
Table 3.

Raw data Transformed data
CPT-00350 [CPT-00350]
[CPT-00340 [CPT-00340]
[CPT-11536] [CPT-11536]
CPT115 [CPT-115]

Table 3: Normalizing messy medical billing codes

The UniFi program for this standardization task is
Switch((Match("\[<U>+\-<D>+"),

(Concat(Extract(1,4),ConstStr(']')))),
(Match("<U>+\-<D>+"),
(Concat(ConstStr('['),Extract(1,3),
ConstStr(']'))))

(Match("<U>+<D>+"),
(Concat(ConstStr('['),Extract(1),
ConstStr('-'),Extract(2),ConstStr(']')))))

Example 5.2. This problem is borrowed from “Example 9”
in FlashFill. The goal is to transform all names into a unified
format as in Table 4.

Raw data Transformed data
Dr. Eran Yahav Yahav, E.
Fisher, K. Fisher, K.
Bill Gates, Sr. Gates, B.
Oege de Moor Moor, O.

Table 4: Normalizing messy employee names

A UniFi program for this task is
Switch((Match("<U><L>+\.\ <U><L>+\ <U><L>+"),

Concat(Extract(8,9),ConstStr(','),
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ConstStr(' '),Extract(5))),
(Match("<U><L>+\ <U><L>+\,\ <U><L>+\."),
Concat(Extract(4,5),ConstStr(','),

ConstStr(' '),Extract(1))),
(Match("<U><L>+\ <U>+\ <U><L>+"),
Concat(Extract(6,7),ConstStr(','),

ConstStr(' '),Extract(1))))

Program Explanation — Given a UniFi program L, we want to
present it as a set of regexp replace operations, Replace, parame-
terized by natural-language-like regexps used by Wrangler [13]
(e.g., Figure 4), which are straightforward to even non-expert
users. Each component of (b, E), within the Switch statement of L,
will be explained as a Replace operation. The replacement string
f in the Replace operation is created from p and the transforma-
tion plan E for the condition b. In f , a ConstStr(s̃) operation will
remain as s̃ , whereas a Extract(t̃i , t̃j ) operation will be interpreted
as $t̃i . . . $t̃j . The pattern p in the predicate b = Match(s,p) in
UniFi naturally becomes the regular expression p in Replace
with each tokens to be extracted surrounded by a pair of paren-
theses indicating that it can be extracted. Note that if multiple
consecutive tokens are extracted in p, we merge them as one
component to be extracted in p and change the f accordingly
for convenience of presentation. Figure 4 is an example of the
transformation logic finally shown to the user.

In fact, these Replace operations can be further explained
using visualization techniques. For example, we could add a Pre-
view Table (e.g., Figure 8) to visualize the transformation effect
in our prototype in a sample of the input data. The user study
in Section 7.3 demonstrates that our effort of outputting an ex-
plainable transformation program helps the user understand the
transformation logic generated by the system.

6 PROGRAM SYNTHESIS
We now discuss how to find the desired transformation logic as
a UniFi program using the pattern cluster hierarchy obtained.
Algorithm 2 shows our synthesis framework.

Given a pattern hierarchy, we do not need to create an atomic
transformation plan (Definition 5.1) for every pattern cluster in
the hierarchy. We traverse the pattern cluster hierarchy top-
down to find valid candidate source patterns (line 6, see Sec-
tion 6.1). Once a source candidate is identified, we discover all
token matches between this source pattern in Qsolved and the
target pattern (line 7, see Section 6.2). With the generated token
match information, we synthesize the data pattern normaliza-
tion program including an atomic transformation plan for every
source pattern (line 11, see Section 6.3).

6.1 Identify Source Candidates
Before synthesizing a transformation for a source pattern, we
want to quickly check whether it can be a candidate source pattern
(or source candidate), i.e., it is possible to find a transformation
from this pattern into the target pattern, through validate. If
we can immediately disqualify some patterns, we do not
need to go through more expensive data transformation
synthesis process for them. There are a few reasons why some
pattern in the hierarchy may not be qualified as a candidate
source pattern:

(1) The input data set may be ad hoc and a pattern in this data
set can be a description of noise values. For example, a data
set of phone numbers may contain “N/A” as a data record
because the customer refused to reveal this information.
In this case, it is meaningless to generate transformations.

Algorithm 2: Synthesize UniFi Program
Data: Pattern cluster hierarchy root PR , target pattern T
Result: Synthesized program L

1 Qunsolved , Qsolved ← [ ] ;
2 L ← ∅;
3 push PR to Qunsolved ;
4 while Qunsolved , ∅ do
5 p ← pop Qunsolved ;
6 if validate(p,T) = ⊤ then
7 G ← findTokenAlignment(p,T);
8 push {p,G} to Qsolved ;
9 else

10 push p.children to Qunsolved ;

11 L ← createProgs(Qsolved );
12 Return L

(2) We may be fundamentally not able to support some trans-
formations (e.g., semantic transformations are not sup-
ported as in our case). Hence, we should filter out certain
patterns which we think semantic transformation is un-
avoidable, because it is impossible to transform them into
the desired pattern without the help from the user.

(3) Some patterns are too general; it can be hard to determine
how to transform these patterns into the target pattern.
We can ignore them and create transformation plans for
their children. For instance, if a pattern is “⟨AN ⟩+,⟨AN ⟩+”,
it is hard to tell if or how it could be transformed into the
desired pattern of “⟨U ⟩⟨L⟩+ : ⟨D⟩+”. By comparison, its
child pattern “⟨U ⟩⟨L⟩+, ⟨D⟩+” seems to be a better fit as
the candidate source.

Any input data matching no candidate source pattern is left
unchanged and flagged for additional review, which could in-
volve replacing values with NULL or default values or manually
overriding values.

Since the goal here is simply to quickly prune those patterns
that are not good source patterns, the checking process should
be able to find unqualified source patterns with high precision
but not necessarily high recall. Here, we use a simple heuristic
of frequency count that can effectively reject unqualified source
patterns with high confidence: examining if there are sufficient
base tokens of each class in the source pattern matching the
base tokens in the target tokens. The intuition is that any source
pattern with fewer base tokens than the target is unlikely to be
transformable into the target pattern without external knowl-
edge; base tokens usually carry semantic meanings and hence
are likely to be hard to invent de novo.

To apply frequency count on the source pattern p1 and the
target pattern p2, validate (denoted asV) compares the token
frequency for every class of base tokens in p1 and p2. The token
frequency Q of a token class ⟨̃t⟩ in p is defined as

Q(⟨̃t⟩,p) =
n∑
i=1
{ti .q |t .name = ⟨̃t⟩},p = {t1, . . . , tn } (1)

If a quantifier is not a natural number but “+”, we treat it as 1 in
computing Q.

Suppose T is the set of all token classes (in our case, T =
[⟨D⟩, ⟨L⟩, ⟨U ⟩, ⟨A⟩, ⟨AN ⟩]),V is then defined as

V(p1,p2) =

{
true if Q(⟨̃t⟩,p1) ≥ Q(⟨̃t⟩,p2),∀⟨̃t⟩ ∈ T
false otherwise (2)
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Algorithm 3: Token Alignment Algorithm
Data: Target pattern T = {t1, . . . , tm }, candidate source

pattern Pcand = {t ′1, . . . , t
′
n }, where ti and t ′i denote

base tokens
Result: Directed acyclic graph G

1 η̃← {0, . . . ,n}; ηs ← 0; ηt ← n; ξ ← {};
2 for ti ∈ T do
3 for t ′j ∈ Pcand do
4 if SyntacticallySimilar(ti , t ′j ) = ⊤ then
5 e ← Extract(t ′j );
6 add e to ξ (i−1,i);

7 if ti .type = ‘literal’ then
8 e ← ConstStr(ti .name);
9 add e to ξ (i−1,i);

10 for i ∈ {1, . . . ,n − 1} do
11 ξin ← {∀ep ∈ ξ(i−1,i), ep is an Extract operation};
12 ξout ← {∀eq ∈ ξ(i,i+1), eq is an Extract operation};
13 for ep ∈ ξin do
14 for eq ∈ ξout do
15 if ep .srcIdx + 1 = eq .srcIdx then
16 e ← Extract(ep .ti , eq .tj );
17 add e to ξ (i−1,i+1);

18 G ← Daд(η̃,ηs ,ηt , ξ );
19 Return G

Example 6.1. Suppose the target pattern T in Example 5.1 is
[‘[’, ⟨U ⟩+, ‘-’, ⟨D⟩+, ‘]’], we know

Q(⟨D⟩,T) = Q(⟨U ⟩,T) = 1

A pattern [‘[’, ⟨U ⟩3, ‘-’, ⟨D⟩5] derived from data record “[CPT-
00350” will be identified as a source candidate by validate, be-
cause

Q(⟨D⟩,p) = 5 > Q(⟨D⟩,T) ∧
Q(⟨U ⟩,p) = 3 > Q(⟨U ⟩,T)

Another pattern [‘[’, ⟨U ⟩3, ‘-’] derived from data record “[CPT-”
will be rejected because

Q(⟨D⟩,p) = 0 < Q(⟨D⟩,T)

6.2 Token Alignment
Once a source pattern is identified as a source candidate in Sec-
tion 6.1, we need to synthesize an atomic transformation plan
between this source pattern and the target pattern, which ex-
plains how to obtain the target pattern using the source pattern.
To do this, we need to find the token matches for each token in
the target pattern: discover all possible operations that yield a
token. This process is called token alignment.

For each token in the target pattern, there might be multiple
different tokenmatches. Inspired by [6], we store the results of the
token alignment in Directed Acyclic Graph (DAG) represented as

aDAG(η̃,ηs ,ηt , ξ ) . η̃ denotes all the nodes in DAGwith ηs as the
source node and ηt as the target node. Each node corresponds to
a position in the pattern. ξ are the edges between the nodes in η̃
storing the source information, which yield the token(s) between
the starting node and the ending node of the edge. Our proposed
solution to token alignment in a DAG is presented in Algorithm 3.

Align Individual Tokens to Sources — To discover sources,
given the target pattern T and the candidate source pattern
Pcand , we iterate through each token ti in T and compare ti
with all the tokens in Pcand .

For any source token t ′j in Pcand that is syntactically similar
(defined in Definition 6.1) to the target token ti in T , we create a
token match between t ′j and ti with an Extract operation on an
edge from ti−1 to ti (line 2-9).

Definition 6.1 (Syntactically Similar). Two tokens ti and
tj are syntactically similar if: 1) they have the same class, 2) their
quantifiers are identical natural numbers or one of them is ‘+’ and
the other is a natural number.

When ti is a literal token, it is either a symbolic character or a
constant value. To build such a token, we can simply use a Con-
stStr operation (line 7-9), instead of extracting it from the source
pattern. This does not violate our previous assumption of not
introducing any external knowledge during the transformation.

Example 6.2. Let the candidate source pattern be [ ⟨D⟩3, ‘.’,
⟨D⟩3, ‘.’, ⟨D⟩4] and the target pattern be [‘(’, ⟨D⟩3, ‘)’, ‘ ’, ⟨D⟩3,
‘-’, ⟨D⟩4]. Token alignment result for the source pattern Pcand
and the target pattern T , generated by Algorithm 3 is shown in
Figure 9. In Figure 9, a dashed line is a token match, indicating
the token(s) in the source pattern that can formulate a token in
the target pattern. A solid line embeds the actual operation in
UniFi rendering this token match.

Combine Sequential Extracts — The Extract operator in our
proposed language UniFi is designed to extract one or more to-
kens sequentially from the source pattern. Line 4-9 only discovers
sources composed of an Extract operation generating an indi-
vidual token. Sequential extracts (Extract operations extracting
multiple consecutive tokens from the source) are not discovered,
and this token alignment solution is not complete. We need to
find the sequential extracts.

Fortunately, discovering sequential extracts is not independent
of the previous token alignment process; sequential extracts are
combinations of individual extracts. With the alignment results
ξ generated previously, we iterate each state and combine every
pair of Extracts on an incoming edge and an outgoing edge that
extract two consecutive tokens in the source pattern (line 10-
17). The Extracts are then added back to ξ . Figure 10 visualizes
combining two sequential Extracts. The first half of the figure
(titled “Before Combining”) shows a transformation plan that
generates a target pattern pattern ⟨U ⟩⟨D⟩+with two operations—
Extract(1) and Extract(2). The second half of the figure (titled
“After Combining”) showcases merging the incoming edge and
the outgoing edge (representing the previous two operations)
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and formulate a new operation (red arrow), Extract(1,2), as a
combined operation of the two.

A benefit of discovering sequential extracts is it helps yield a
“simple” program, as described in Section 6.3.

Correctness — Algorithm 3 is sound and complete, which is
proved in Appendix A in the technical report [12].

6.3 Program Synthesis using Token
Alignment Result

As we represent all token matches for a source pattern as a DAG
(Algorithm 3), finding a transformation plan is to find a path from
the initial state 0 to the final state l , where l is the length of the
target pattern T .

The Breadth First Traversal algorithm can find all possible
atomic transformation plans for this DAG. However, not all of
these plans are equally likely to be correct and desired by the end
user. The hope is to prioritize the correct plan. The Occam’s razor
principle suggests that the simplest explanation is usually correct.
Here, we applyMinimum Description Length (MDL) [23], a
formalization of Occam’s razor principle, to gauge the simplicity
of each possible program.

Suppose M is the set of models. In this case, it is the set
of atomic transformation plans found given the source pattern
Pcand and the target pattern T . E = f1 f2 . . . fn ∈ M is an
atomic transformation plan, where f is a string expression. In-
spired by [21], we define Description length (DL) as follows:

L(E,T) = L(E) + L(T |E) (3)

L(E) is the model description length, which is the length re-
quired to encode the model, and in this case, E. Hence,

L(E) = |E | logm (4)

wherem is the number of distinct types of operations.
L(T |E) is the data description length, which is the sum of the

length required to encode T using the atomic transformation
plan E. Thus,

L(T |E) =
∑
fi ∈E

logL(fi ) (5)

where L(fi ) the length to encode the parameters for a single ex-
pression. For a Extract(i) or Extract(i,j) operation,L(f ) = log |Pcand |2
(recall Extract(i) is short for Extract(i,i)). For a ConstStr(̃s), L(f ) =
log c |s̃ | , where c is the size of printable character set (c = 95).

With the concept of description length described, we define
the minimum description length as

Lmin (T ,M) = min
E∈M

[
L(E) + L(T |E)

]
(6)

In the end, we present the atomic transformation plan E with
the minimum description length as the default transformation
plan for the source pattern. Also, we list the other k transforma-
tion plans with lowest description lengths.

Example 6.3. Suppose the source pattern is “⟨D⟩2/⟨D⟩2/⟨D⟩4
”, the target pattern T is “⟨D⟩2/⟨D⟩2”. The description length of
a transformation plan E1 = Concat(Extract(1,3)) is L(E1,T) =
1 log 1 + 2 log 3. In comparison, the description length of another
transformation plan E2 =Concat(Extract(1), ConstStr(‘/’),Extract(3))
is L(E2,T) = 3 log 2+ log 32 + log 95+ log 32 > L(E1,T). Hence,
we prefer E1, a clearly simpler and better plan than E2.

6.4 Limitations and Program Repair
The target pattern T as the sole user input so far is more am-
biguous compared to input-output example pairs used in most
other PBE systems. Also, we currently do not support “semantic
transformation”. We may face the issue of “semantic ambiguity”—
mismatching syntactically similar tokens with different semantic
meanings. For example, if the goals is to transform a date of
pattern “DD/MM/YYYY” into the pattern ”MM-DD-YYYY” (our
clustering algorithm works in this case). Our token alignment
algorithm may create a match from “DD” in the first pattern to
“MM” in the second pattern because they have the same pattern of
⟨D⟩2. The atomic transformation plan we initially select for each
source pattern can be a transformation that mistakenly converts
“DD/MM/YYYY” into “DD-MM-YYYY”. Although our algorithm
described in Section 6.3 often makes good guesses about the
right matches, the system still infers an imperfect transformation
about 50% of the time (Appendix E in the technical report [12]).

Fortunately, as our token alignment algorithm is complete and
the program synthesis algorithm can discover all possible trans-
formations and rank them in a smart way, the user can quickly
find the correct transformation through program repair: replace
the initial atomic transformation plan with another atomic trans-
formation plans among the ones Section 6.3 suggests for a given
source pattern.

To make the repair even simpler for the user, we deduplicate
equivalent atomic transformation plans defined below before the
repair phase.

Definition 6.2 (Eqivalent Plans). Two Transformation
Plans are equivalent if, given the same source pattern, they al-
ways yield the same transformation result for any matching string.

For instance, suppose the source pattern is [⟨D⟩2, ‘/’, ⟨D⟩2].
Two transformation plans E1 = [Extract(3),Const(‘/’), Extract(1)]
and E2 = [Extract(3), Extract(2), Extract(1)] will yield exactly the
same output because the first and third operations are identical
and the second operation will always generate a ‘/’ in both plans.
If two plans are equivalent, presenting both rather than one of
them will only increase the user effort. Hence, we only pick the
simplest plan in the same equivalence class and prune the rest.
The methodology detecting the equivalent plans is elaborated in
Appendix B in the technical report [12].

Overall, the repair process does not significantly increase the
user effort. In those cases where the initial program is imperfect,
75% of the time the user made just a single repair (Appendix E in
the technical report [12]).

7 EXPERIMENTS
We make three broad sets of experimental claims. First, we show
that as the input data becomes larger and messier, CLX tends to
be less work to use than FlashFill because verification is less
challenging (Section 7.2). Second, we show that CLX programs
are easier for users to understand than FlashFill programs (Sec-
tion 7.3). Third, we show that CLX’s expressive power is similar
to that of baseline systems, as is the required effort for non-
verification portions of the PBE process (Section 7.4).

7.1 Experimental Setup
We implemented a prototype of CLX and compared it against
the state-of-the-art PBE system FlashFill. For ease of expla-
nation, in this section, we refer this prototype as “CLX”. Ad-
ditionally, to make the experimental study more complete, we
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had a third baseline approach, a non-PBE feature offered by
TrifactaWrangler2 allowing the user to perform string trans-
formation through manually creating Replace operations with
simple natural-language-like regexps (referred as RegexReplace).
All experiments were performed on a 4-core Intel Core i7 2.8G
CPU with 16GB RAM. Other related PBE systems, Foofah [11]
and TDE [9], target different workloads and also share the same
verification problem we claim for PBE systems, and hence, are
not considered as baselines.

7.2 User Study on Verification Effort
In this section, we conduct a user study on a real-world data set to
show that (1) verification is a laborious and time-consuming step
for users when using the classic PBE data transformation tool
(e.g., FlashFill) particularly on a large messy data set, (2) ask-
ing end users to hand-write regexp-based data transformation
programs is challenging and inefficient, and (3) the CLX model
we propose effectively saves the user effort in verification during
data transformation and hence its interaction time does not grow
fast as the size and the heterogeneity of the data increase.

Test Data Set — Finding public data sets with messy formats
suitable for our experiments is very challenging. The first ex-
periment uses a column of 331 messy phone numbers from the
“Times Square Food & Beverage Locations” data set [19].

Overview — The task was to transform all phone numbers into
the form “⟨D⟩3-⟨D⟩3-⟨D⟩4”. We created three test cases by ran-
domly sampling the data set with the following data sizes and
heterogeneity: “10(2)” has 10 data records and 2 patterns; “100(4)”
has 100 data records and 4 patterns; “300(6)” has 300 data records
and 6 patterns.

We invited 9 students in Computer Science with a basic under-
standing of regular expressions and not involved in our project.
Before the study, we educated all participants on how to use the
system. Then, each participant was asked to work on one test
case on a system and we recorded their performance.

We looked into the user performances on three systems from
various perspectives: overall completion time, number of interac-
tions, and verification time. The overall completion time gave us a

2TrifactaWrangler is a commercial product of Wrangler launched by Trifacta
Inc. The version we used is 3.2.1

quick idea of how much the cost of user effort was affected when
the input data was increasingly large and heterogeneous in this
data transformation task. The other two metrics allowed us to
check the user effort in verification. While measuring completion
time is straightforward, the other two metrics need to be clarified.
Number of interactions. For FlashFill, the number of interactions
is essentially the number of examples the user provides. For CLX
we define the number of interactions as the number of times
the user verifies (and repairs, if necessary) the inferred atomic
transformation plans. We also add one for the initial labeling
interaction. For RegexReplace, the number of interactions is the
number of Replace operations the user creates.
Verification Time. All three systems follow different interaction
paradigms. However, we can divide the interaction process of into
two parts, verification and specification: the user is either busy
inputting (typing keyboards, selecting, etc.) or paused to verify
the correctness of the transformed data or synthesized/hand-
written regular expressions.

Measuring verification time is meaningful because we hypoth-
esize that PBE data transformation systems become harder to use
when data is large and messy not because the user has to provide
a lot more input, but it becomes harder to verify the transformed
data at the instance level.

Results — As shown in Figure 11a, “100(4)” cost 1.1× more time
than “10(2)” on CLX, and “300(6)” cost 1.2×more time than “10(2)”
on CLX. As for FlashFill, “100(4)” cost 2.4× more time than
“10(2)”, and “300(6)” cost 9.1× more time than “10(2)”. Thus, in
this user study, the user effort required by CLX grew slower than
that of FlashFill. Also, RegexReplace cost significantly more
user effort than CLX but its cost grew not as quickly as FlashFill.
This shows good evidence that (1) manually writing data trans-
formation script is cumbersome, (2) the user interaction time
grows very fast in FlashFill when data size and heterogeneity
increase, and (3) the user interaction time in CLX also grows, but
not as fast.

Now, we dive deeper into understanding the causes for obser-
vation (2) and (3). Figure 11b shows the number of interactions
in all test cases on all systems. We see that all three systems
required a similar number of interactions in the first two test
cases. Although FlashFill required 3 more interactions than
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Task ID Size AvgLen MaxLen DataType
Task1 10 11.8 14 Human name
Task2 10 20.3 38 Address
Task3 100 16.6 18 Phone number
Table 5: Explainability test cases details

CLX in case “300(6)”, this could hardly be the main reason why
FlashFill cost almost 5x more time than CLX.

We take a close look at the three systems’ interactions in the
case of “300(6)” and plot the timestamps of each interaction in
Figure 11c. The result shows that, in FlashFill, as the user was
getting close to achieving a perfect transformation, it took the
user an increasingly longer amount of time tomake an interaction
with the system, whereas the interaction time intervals were
relatively stable in CLX and RegexReplace. Obviously, the user
spent a longer time in each interaction NOT because an example
became harder to type in (phone numbers have relatively similar
lengths). We observed that, without any help from FlashFill,
the user had to eyeball the entire data set to identify the data
records that were still not correctly transformed, and it became
harder and harder to do so simply because there were fewer
of them. Figure 12 presents the average verification time on all
systems in each test case. “100(4)” cost 1.0× more verification
time than “10(2)” on CLX, and “300(6)” cost 1.3×more verification
time than “10(2)” on CLX. As for FlashFill, “100(4)” cost 3.4×
more verification time than “10(2)”, and “300(6)” cost 11.4× more
verification time than “10(2)”. The fact that the verification time
on FlashFill also grew significantly as the data became larger
and messier supports our analysis and claim.

To summarize, this user study presents evidence that Flash-
Fill becomes much harder to use as the data becomes larger
and messier mainly because verification is more challenging. In
contrast, CLX users generally are not affected by this issue.

7.3 User Study on Explainability
Through a new user study with the same 9 participants on three
tasks, we demonstrate that (1) FlashFill users lack understand-
ing about the inferred transformation logic, and hence, have
inadequate insights on how the logic will work, and show that
(2) the simple program generated by CLX improves the user’s
understanding of the inferred transformation logic.

Additionally, we also compared the overall completion time
of three systems.

Test Set — Since it was impractical to give a user too many data
pattern transformation tasks to solve, we had to limit this user
study to just a few tasks. To make a fair user study, we chose tasks
with various data types that cost relatively same user effort on all
three systems. From the benchmark test set we will introduce in
Section 7.4, we randomly chose 3 test cases that each is supposed
to require same user effort on both CLX and FlashFill: Example
11 from FlashFill (task 1), Example 3 from PredProg (task 2) and
“phone-10-long” from SyGus (task 3). Statistics (number of rows,
average/max/min string length of the raw data) about the three
data sets are shown in Table 5.

Overview — We designed 3 multiple choice questions for every
task examining how well the user understood the transformation
regardless of the system he/she interacted with. All the questions
were formulated as “Given the input string as x , what is the
expected output”. All questions are shown in Appendix C in the
technical report [12].

Sources # tests AvgSize AvgLen MaxLen DataType
SyGus [26] 27 63.3 11.8 63 car model ids, human name,

phone number, university
name and address

FlashFill [6] 10 10.3 15.8 57 log entry, phone number, hu-
man name, date, name and po-
sition, file directory, url, prod-
uct name

BlinkFill [24] 4 10.8 14.9 37 city name and country, hu-
man name, product id, ad-
dress

PredProg [25] 3 10.0 12.7 38 human name, address
Prose [22] 3 39.3 10.2 44 country and number, email,

human name and affiliation
Overall 47 43.6 13.0 63

Table 6: Benchmark test cases details
During the user study, we asked every participant to partici-

pate all three tasks, each on a different system (completion time
was measured). Upon completion, each participant was asked to
answer all questions based on the transformation results or the
synthetic programs generated by the system.

Explainability Results — The correct rates for all 3 tasks using
all systems are presented in Figure 13. The result shows that the
participants were able to answer these questions almost perfectly
using CLX, but struggled to get even half correct using FlashFill.
RegexReplace also achieved a success rate similar to CLX, but
required higher user effort and expertise.

The result suggests that FlashFill users have insufficient
understanding about the inferred transformation logic and CLX
improves the users’ understanding in all tasks, which provides
evidence that verification in CLX can be easier.

Overall Completion Time — The average completion time for
each task using all three systems is presented in Figure 14. Com-
pared to FlashFill, the participants using CLX spent 30% less
time on average: ∼ 70% less time on task 1 and ∼ 60% less time
on task 3, but ∼ 40% more time on task 2. Task 1 and task 3
have similar heterogeneity but task 3 (100 records) is bigger than
task 1 (10 records). The participants using FlashFill typically
spent much more time on understanding the data formats at the
beginning and verifying the transformation result in solving task
3. This provides more evidence that CLX saves the verification
effort. Task 2 is small (10 data records) but heterogeneous. Both
FlashFill and CLX made imperfect transformation logic syn-
thesis, and the participants had to make several corrections or
repairs. We believe CLX lost in this case simply because the data
set is too small, and as a result, CLX was not able to exploit its
advantage in saving user effort on large-scale data set. The study
also gives evidence that CLX is sometimes effective in saving
user verification effort in small-scale data transformation tasks.

7.4 Expressivity and Efficiency Tests
In a simulation test using a large benchmark test set, we demon-
strate that (1) the expressive power of CLX is comparable to the
other two baseline systems FlashFill and RegexReplace, and
(2) CLX is also pretty efficient in costing user interaction effort.

Test Set —We created a benchmark of 47 data pattern transfor-
mation test cases using a mixture of public string transformation
test sets and example tasks from related research publications
(will be released upon the acceptance of the paper). The informa-
tion about the number of test cases from each source, average
raw input data size (number of rows), average/max data instance
length, and data types of these test cases are shown in Table 6.
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Baselines CLX Wins Tie CLX Loses
vs. FlashFill 17 (36%) 17 (36%) 13 (28%)

vs. RegexReplace 33 (70%) 12 (26%) 2 (4%)
Table 7: User effort simulation comparison.

A detailed description of the benchmark test set is shown in
Appendix D in the technical report [12].

Overview — We evaluated CLX against 47 benchmark tests. As
conducting an actual user study on all 47 benchmarks is not
feasible, we simulated a user following the “lazy approach” used
by Gulwani et al. [8]: a simulated user selected a target pattern
or multiple target patterns and then repaired the atomic trans-
formation plan for each source pattern if the system proposed
answer was imperfect.

Also, we tested the other two systems against the same bench-
mark test suite. As with CLX, we simulated a user on FlashFill;
this user provided the first positive example on the first data
record in a non-standard pattern, and then iteratively provided
positive examples for the data record on which the synthetic
string transformation program failed. On RegexReplace, the
simulated user specified a Replace operation with two regular
expressions indicating the matching string pattern and the trans-
formed pattern, and iteratively specified new parameterized Re-
place operations for the next ill-formatted data record until all
data were in the correct format.

Evaluation Metrics — In experiments, we measured how much
user effort all three systems required. Because systems follow
different interactionmodels, a direct comparison of the user effort
is impossible. We quantify the user effort by Step, which is defined
differently as follows
• For CLX, the total Steps is the sum of the number of cor-
rect patterns the user chooses (Selection) and the number
of repairs for the source patterns whose default atomic
transformation plans are incorrect (Repair). In the end,
we also check if the system has synthesized a “perfect”
program: a program that successfully transforms all data.
• For FlashFill, the total Steps is the sum of the number of
input examples to provide and the number of data records
that the system fails to transform.
• For RegexReplace, each specified Replace operation is
counted as 2 Steps as the user needs to type two regular
expressions for each Replace, which is about twice the
effort of giving an example in FlashFill.

In each test, for any system, if not all data records were correctly
transformed, we added the number of data records that the system
fails to transform correctly to its total Step value as a punishment.
In this way, we had a coarse estimation of the user effort in all
three systems on the 47 benchmarks.

Expressivity Results — CLX could synthesize right transfor-
mations for 42/47 (∼ 90%) test cases, whereas FlashFill reached
45/47 (∼ 96%). This suggests that the expressive power of CLX is
comparable to that of FlashFill.

There were five test cases where CLX failed to yield a perfect
transformation. Only one of the failures was due to the expres-
siveness of the language itself, the others could be fixed if there
were more representative examples in the raw data. “Example
13” in FlashFill requires the inference of advanced condition-
als (Contains keyword “picture”) that UniFi cannot currently
express, but adding support for these conditionals in UniFi is
straightforward. The failures in the remaining four test cases
were mainly caused by the lack of the target pattern examples

in the data set. For example, one of the test cases we failed is a
name transformation task, where there is a last name “McMillan”
to extract. However, all data in the target pattern contained last
names comprising one uppercase letter followed by multiple low-
ercase letters and hence our system did not realize “McMillan”
needed to be extracted. We think if the input data is large and
representative enough, we should be able to successfully capture
all desired data patterns.

RegexReplace allows the user to specify any regular expres-
sion replace operations, hence it was able to correctly transform
all the input data existed in the test set, because the user could
directly write operations replacing the exact string of an individ-
ual data record into its desired form. However, similar to UniFi,
RegexReplace is also limited by the expressive power of regular
expressions and cannot support advanced conditionals. As such,
it covered 46/47 (∼ 98%) test cases.

User Effort Results — As the Step metric is a potentially noisy
measure of user effort, it is more reasonable to check whether
CLX costs more or less effort than other baselines, rather than to
compare absolute Step numbers. The aggregated result is shown
in Table 7. It suggests CLX often requires less or at least equal
user effort than both PBE systems. Compared to RegexReplace,
CLX almost always costs less or equal user effort. A detailed
discussion about the user effort on CLX and comparison with
other systems is in Appendix E in the technical report [12].

8 RELATEDWORK

Data Transformation — FlashFill (now a feature in Excel) is
an influential work for syntactic transformation by Gulwani [6].
It designed an expressive string transformation language and pro-
posed the algorithm based on version space algebra to discover a
program in the designed language. It was recently integrated to
PROSE SDK released by Microsoft. A more recent PBE project,
TDE [9], also targets string transformation. Similar to FlashFill,
TDE requires the user to verify at the instance level and the gen-
erated program is unexplainable to the user. Other related PBE
data cleaning projects include [11, 24].

Another thread of seminal research including [21], Wran-
gler [13] and Trifacta created by Hellerstein et al. follow a
different interaction paradigm called “predictive interaction”.
They proposed an inference-enhanced visual platform supporting
many different data wrangling and profiling tasks. Based on the
user selection of columns, rows or text, the system intelligently
suggests possible data transformation operations, such as Split,
Fold, or pattern-based extraction operations.

Pattern Profiling — In our project, we focus on clustering ad
hoc string data based on structures and derive the structure in-
formation. The LearnPADS [4] project is somewhat related. It
presents a learning algorithm using statistics over symbols and
tokenized data chunks to discover pattern structure. LearnPADS
assumes that all data entries follow a repeating high-level pattern
structure. However, this assumption may not hold for some of the
workload elements. In contrast, we create a bottom-up pattern
discovery algorithm that does not make this assumption. Plus,
the output of LearnPADS (i.e., PADS program [3]) is hard for
a human to read, whereas our pattern cluster hierarchy is sim-
pler to understand. Most recently, Datamaran[5] has proposed
methodologies for discovering structure information in a data set
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whose record boundaries are unknown, but for the same reasons
as LearnPADS, Datamaran is not suitable for our problem.

Program Synthesis — Program synthesis has garnered wide
interest in domains where the end users might not have good
programming skills or programs are hard to maintain or reuse
including data science and database systems. Researchers have
built various program synthesis applications to generate SQL
queries [16, 20, 27], regular expressions [1, 17], data cleaning
programs [6, 28], and more.

Researchers have proposed various techniques for program
synthesis. [7, 10] proposed a constraint-based program synthesis
technique using logic solvers. However, constraint-based tech-
niques are mainly applicable in the context where finding a satis-
fying solution is challenging, but we prefer a high-quality pro-
gram rather than a satisfying program. Version space algebra is
another important technique that is applied by [6, 14, 15, 18]. [2]
recently focuses on using deep learning for program synthesis.
Most of these projects rely on user inputs to reduce the search
space until a quality program can be discovered; they share the
hope that there is one simple solution matching most, if not all,
user-provided example pairs. In our case, transformation plans
for different heterogeneous patterns can be quite distinct. Thus,
applying the version space algebra technique is difficult.

9 CONCLUSION AND FUTUREWORK
Data transformation is a difficult human-intensive task. PBE is
a leading approach of using computational inference to reduce
human burden in data transformation. However, we observe that
standard PBE for data transformation is still difficult to use due
to its laborious and unreliable verification process.

We proposed a new data transformation paradigm CLX to
alleviate the above issue. In CLX, we build data patterns to help
the user quickly identify both well-formatted and ill-formatted
data which immediately saves the verification time. CLX also
infers regexp replace operations as the desired transformation,
which many users are familiar with and boosts their confidence
in verification.

We presented an instantiation of CLX with a focus on data
pattern transformation including (1) a pattern profiling algorithm
that hierarchically clusters both the raw input data and the trans-
formed data based on data patterns, (2) a DSL, UniFi, that can
express many data pattern transformation tasks and can be inter-
preted as a set of simple regular expression replace operations,
(3) algorithms inferring a correct UniFi program.

We presented two user studies. In a user study on data sets of
various sizes, when the data size grew by a factor of 30, the user
verification time required by CLX grew by 1.3× whereas that
required by FlashFill grew by 11.4×. The comprehensibility user
study shows the CLX users achieved a success rate about twice
that of the FlashFill users. The results provide good evidence
that CLX greatly alleviates the verification issue.

Although building a highly-expressive data pattern transfor-
mation tool is not the central goal of this paper, we are happy to
see that the expressive power and user effort efficiency of our
initial design of CLX is comparable to those of FlashFill in a
simulation study on a large test set in another test.

CLX is a data transformation paradigm that can be used not
only for data pattern transformation but other data transfor-
mation or transformation tasks too. For example, given a set
of heterogeneous spreadsheet tables storing the same informa-
tion from different organizations, CLX can be used to synthesize

programs converting all tables into the same standard format.
Building such an instantiation of CLX will be our future work.
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ABSTRACT
The provenance of a query result details relevant parts of the in-

put data as well as the computation leading to each output tuple.

Multiple lines of work have studied the tracking and presenta-

tion of provenance, showing its effectiveness in explaining and

justifying query results. The willingness of application owners to

share provenance information for these purposes may however

be hindered by the resulting exposure of the underlying query

logic, which may be proprietary and confidential. We therefore

formalize and study the following problem: when a (small) subset

of the query results along with their provenance is given, what

information is revealed about the underlying query? Our model

is based on the provenance semiring framework and applies to

many previously proposed provenance models. We analyze two

flavors of the problem: (1) how many queries may be consistent

with a given provenance example? and (2) what is the complexity

of inferring a consistent query, or one that is a “best fit"? Our

theoretical analysis shows that there may be many (for some

models, even infinitely many in presence of self-joins) consistent

queries, yet we provide practically efficient algorithms to find

(best-fit) such queries. We experimentally show that the algo-

rithms are generally successful in correctly reverse engineering

queries, even when given only a few output examples and their

provenance.

1 INTRODUCTION
Provenance information is a form of meta-data that is associated

with query results, to describe the origin of each piece of data

and the computational process leading to its generation. In partic-

ular, provenance was shown to be useful as means of providing

explanations for query results and allowing for their validation

[6, 8, 12, 15, 16, 21, 23, 29, 30, 36]. On the other hand, query

owners who publish this information for their users may wish

to keep the original query private due to its proprietary logic

or due to criteria they wish to keep obfuscated. Thus, owners

may wonder if their query can be reverse engineered from a few

leaked outputs and their provenance w.r.t this query.

Example 1.1. Consider a bank whose clients must meet certain

criteria to have their loan requests approved: they must have

a positive credit score and one guarantor associated with the

private banking division to co-sign the loan. If a client is already

associated with the private banking division, she does not need

a guarantor.

The bank’s database contains the tables shown in Figures 1a,

1b, 1c, and 1d. The tables correspond to clients and their balance

(table B), pairs of possible guarantors and borrowers (table G),

© 2019 Copyright held by the owner/author(s). Published in Proceedings of the

22nd International Conference on Extending Database Technology (EDBT), March

26-29, 2019, ISBN 978-3-89318-081-3 on OpenProceedings.org.
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clients with positive credit score (table PCS) and clients associ-

ated with the private banking division (table PB), respectively
(ignore the prov. column for now).

The following Conjunctive Query (CQ), Qr eal , captures the

bank’s loan conditions as specified above:

Qr eal (id1,b2) : −B(id1,b1),B(id2,b2),G(id2, id1),

PCS(id1), PB(id2)

It takes the balance of two clients, specifies that the second client

is the guarantor of the first, and makes sure that the borrowing

client has a positive credit score and that the guarantor is associ-

ated with the private banking division. The output is a table of

ids and balances where for each borrower id, we show how much

security the bank has for the loan, represented as the balance of

the guarantor.

The bank may wish to explain to each applicant the reason

underlying the answer to its own request, but to avoid exposure

of the general criteria, i.e. of the queryQr eal , since these criteria

are part of the bank’s confidential business strategy. If other

clients obtain some of these explanations, they may understand

the general criteria. The question then arises: given examples of

the output and explanations provided for multiple clients, can

one infer the underlying query?

In the above example, the answers and explanations can be for-

mally defined as output and provenance examples. This leads us

to define and study for first time on the modeling and algorithmic

challenges stemming from the problem of reverse engineering

queries from output and provenance examples.

Modeling. We propose a novel formal model for the problem,

as follows. We are given output tuples, and their provenance,

represented as instances of the previously proposed semiring

model [30]. We have chosen the semiring model due to its gener-

ality: as shown in [29], many previously proposed provenance

models may be captured via corresponding choices of semirings.

Intuitively, different semirings represent different granularities

of explanations given to users (see Example 1.2 in this section).

We then formally define what it means for a CQ to be consistent

with output examples and their provenance, thus defining the

query-by-provenance problem. Intuitively, we look for a CQ that,

when evaluated with respect to the input database does not only
yield the specified example tuples, but also its derivation of these
tuples (i.e. their provenance) is “consistent" with the prescription
made by the provenance. We do not expect the full provenance

to be provided (i.e. all explanations for a loan being approved);

instead, we define “consistency" of provenance in a less restric-

tive manner, by leveraging the inclusion property of provenance

from [29]. Last, we define the notion of inclusion-minimality to

capture the idea of the query not only matching the provenance,

but rather being a “best-fit" for it.

Theoretical Analysis. We then study in depth the query-by-

provenance problem, for five different choices of semirings, namely,

provenance polynomials [29, 30], trio provenance [36], positive
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prov. ID1 Amount

a 1 1000

b 2 1000

c 3 300

(a) Balance B

prov. ID1 ID2

d 1 2

e 2 2

f 3 1

(b) Guarantor G

prov. ID1

h 1

i 2

(c) Positive Credit Score PCS

prov. ID

j 1

k 2

l 3

(d) Private Banking PB
A B N[X ] B[X ] T r io(X ) Why(X ) PosBool (X )
2 1000 2b2eik + badi j b2eik + badi j 2beik + badi j beik + badi j beik + badi j
1 300 acf hl acf hl acf hl acf hl acf hl

(e) Example Data and Provenance Via Different Semirings
Figure 1: Database Tables and Provenance Example

boolean expressions [32], and why-provenance [12]. Each semir-

ing corresponds to an explanation with a different granularity.

We next demonstrate two such provenance semirings, namely

provenance polynomials (N[X ]) and why-provenance (Why(X)),

in the context of our running example.

Example 1.2. Reconsider the query Qr eal and the database in

Example 1.1. Tuples in the database are associated with anno-

tations (a to l), intuitively serving as the tuple identifiers (note

that the annotations are not part of the relations). Figure 1e

presents two output tuples of the query when evaluated on the

database. Consider for instance the first row describing the prove-

nance of the tuple (2, 1000) (the id of the borrower with the bal-

ance of the guarantor). The N[X ] column shows the polynomial

2b2eik + badij, which consists of three monomials (a monomial

with coefficient x is considered as x monomials), each corre-

sponding to a different assignment of input tuples to the atoms of

Qr eal , or different explanations for approving the loan request of

the client with id 2. For instance, 2b2eik stems from two assign-

ments (implied by the coefficient 2) that use the tuple annotated

by b twice and the tuples annotated by e, i,k once. This expla-

nation immediately exposes the number of query atoms (5, as

is the number of annotations in the monomial) and the number

atoms from each relation. In the context of loan conditions, this

explanation exposes that a borrower can be her own guarantor

(from the double use of the tuple b). In contrast, in theWhy(X )
model, we represent each explanation as the set of tuples that
contributed to the formation of the output tuple, thus “dropping”

both coefficients and exponents: beik + badij. Considering this
kind of explanation, we no longer know the number of query

atoms and the number of atoms from each relation. In particular,

we no longer expose that a client associated with the private

banking division does not need a guarantor.

We study two factors that determine to what extent does a

set of output examples and their provenance reveal a hidden

underlying query, as follows. The first factor is the number of

possible consistent queries, and the second is the complexity of

reverse-engineering a consistent query. In more detail, when the

provenance is given in N[X ] or B[X ], we provide a bound on

the number of consistent queries which is exponential in the

sum of arities of all relations whose tuples participate in a single

provenance monomial, and provide an example where there are

indeed exponentially many consistent queries. We then show

that finding a consistent query w.r.t N[X ]\B[X ]-examples is NP-

complete in the number of attributes of the output tuple, and we

design a practically efficient algorithm.

Reconstructing queries from examples of why, trio or PosBool

provenance is more cumbersome: there may be infinitely many

consistent and inclusion-minimal queries that lead to the same

provenance (with different exponents, due to self-joins, that are

abstracted away in these models). To this end, we prove a small

world property, namely that if a consistent query exists, then

there exists such query of size bounded by some parameters of

the input. The bound by itself does not suffice for an efficient

algorithm (trying all detailed expressions of sizes up to the bound

would be inefficient), but we leverage it in devising an efficient al-

gorithm for these provenance semirings. The algorithm is similar

to the N[X ] and B[X ] case but also includes an option to expand

the monomials, gradually, generating self joins when necessary.

Experimental Analysis. We have also conducted an experimen-

tal study of our algorithms, assessing their ability to reverse en-

gineer the correct TPC-H [40] queries as well as highly complex

join queries presented as a baseline in [43]. We have executed the

queries while tracking provenance, and then showed our algo-

rithms randomly sampled portions of the output and provenance.

We report how many examples were required for the algorithms

to correctly identify the underlying query, and what were the

differences between the actual and inferred query when incorrect.

In the vast majority of the cases, our algorithms converged to

the underlying query after having viewed only a small number

of examples; when this was not the case, the inferred query was

typically similar to the actual one, e.g. containing additional con-

stants due to the same value recurring in the viewed examples.

Last, further experiments indicate the computational efficiency

of our algorithms. Our experiments show that, although theoret-

ically provenance examples may correspond to a large or even

infinite number of queries, in practice, publishing provenance

information, even for a small number of output tuples, reveals

the full logic of the query. Hence, in this respect, there is no

advantage in publishing a less detailed form of provenance.

2 RELATEDWORK
Reverse Engineering Queries from Partial/Full Output. There is

a large body of literature on learning queries from examples, in

different variants. A first axis of these variants concerns learning

a query whose output precisely matches the example (e.g. [33,

41, 43]), versus one whose output contains the example tuples

and possibly more (e.g. [33–35, 38] and the somewhat different

problem in [44]). The first is mostly useful e.g. in a use-case where

an actual query was run and its result, but not the query itself,

is available. This may be the case if e.g. the result was exported

and sent. The second, that we adopt here, is geared towards

examples provided manually by a user, who may not be expected

to provide a full account of the output. Another distinguishing

factor between works in this area is the domain of queries that

are inferred; due to the complexity of the problem, it is typical

(e.g. [10, 35, 43]) to restrict the attention to join queries, and

many works also impose further restrictions on the join graph

[17, 41]. We do not impose such restrictions and are able to infer
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complex CQs. Last, there is a prominent line of work on query-

by-example in the context of data exploration [3, 9, 10, 24, 37].

Here users typically provide an initial set of examples, leading to

the generation of a consistent query (or multiple such queries);

the queries and/or their results are presented to users, who may

in turn provide feedback used to refine the queries, and so on. In

our settings, the number of examples required for convergence

to the actual intended query was typically small. In cases where

more examples are needed, an interactive approach is expected

to be useful in our setting as well. Works along the lines of

[2, 7, 42] explored the problem of reverse engineering queries

from positive and negative examples and the general complexity

of different variations of the problem.

The fundamental difference between our work and previous

work in this field in this area is the assumed input - output

examples and provenance information (in particular no foreign

keys are known; in fact, we do not even need to know the entire

input database, but rather just tuples used in explanations).While
our approach requires more input, it greatly reduces the search
space for the query. The advantage becomes more significant as
the database size increases and the schema becomes more complex.
Furthermore, we are able to leverage the provenance information

and reconstruct the original query, or a very similar one (1) in a

highly complex setting where the underlying queries includes

multiple joins and self-joins, (2) with only very few examples (up

to 5 were typically sufficient to obtain over 90% recall, and less

than 20 in all but one case were sufficient to converge to the actual

underlying query), and (3) in split-seconds for a small number

of examples, and in 1.3 seconds even with 500 examples. No

previous work, to our knowledge, has exhibited the combination

of these characteristics.

Data Provenance. Data Provenance has been extensively stud-

ied, for different formalisms including relational algebra, XML

query languages, Nested Relational Calculus, and functional pro-

grams (see e.g. [11, 15, 25, 26, 28, 30, 36, 39]). In contrast to these

lines of work that focus on provenance tracking and usages, we

have focused on learning queries from output examples and their

partial provenance, based on the semiring framework. This in-

cludes quite a few of the models proposed in the literature, but

by no means all of them. Investigating query-by-provenance for

other provenance models is an intriguing direction for future

work.

The high-level question of what can be learned from prove-

nance has been extensively studied in the context of workflow

privacy, e.g. [13, 18–20, 27]. In contrast, we do not focus on black-

box modules, but rather on detailed fine-grained provenance

obtained from queries. This makes the technical results of these

works inapplicable to our setting. [14] describes a general frame-

work for provenance security, but, for the relational database

case, focuses on what parts of the data are disclosed, while the
underlying query is assumed to be known.

Last, we note that in [4] we have leveraged provenance in-

formation for designing a user-interactive SPARQL interface,

including a component of inferring SPARQL queries from exam-

ples and provenance. There are many differences in the model,

and consequently none of our results here follow from [4]. In

particular, our focus in [4] was on single output nodes which

if translated to the relational settings means k = 1 (recall that

k is the output arity); in that setting it is consequently PTIME

to find a consistent query (compare to our NP-hardness result).

SPARQL is also bounded to 2 attributes per relation, implying that

r = 2n, as opposed to the relational setting where the number of

attributes is not necessarily 2. Indeed, a prominent challenge in

our experimental study stemmed from the number of variables,

in particular for the TPC-H queries, where n << r .

3 PRELIMINARIES
3.1 Conjunctive Queries
We will focus in this paper on CQs (see e.g. [31]). Fix a database

schema S with relation names {R1, ...,Rn } over a domain C of

constants. Further fix a domainV of variables. A CQ Q over S

is an expression of the form T (®u ) : −R1( ®v1 ), . . . ,Rl ( ®vl ) where
T is a relation name not in S. For all 1 ≤ i ≤ n, ®vi is a vector

of the form (x1, . . . ,xk ) where ∀1 ≤ j ≤ k . x j ∈ V ∪ C. T (®u )
is the query head, denoted head(Q), and R1( ®v1 ), . . . ,Rl ( ®vl ) is
the query body and is denoted body(Q). The variables appearing
in ®u are called the head variables of Q , and each of them must

also appear in the body. We useCQ to denote the class of all CQs,

omitting details of the schema when clear from context.

We next define the notion of derivations for CQs. A derivation

α for a query Q ∈ CQ with respect to a database instance D is a

mapping of the relational atoms of Q to tuples in D that respects

relation names and induces a mapping over arguments, i.e. if

a relational atom R(x1, ...,xn ) is mapped to a tuple R(a1, ...,an )
then we say that xi is mapped to ai (denoted α(xi ) = ai ). We

require that a variable xi will not be mapped to multiple distinct

values, and a constant xi will be mapped to itself. We define

α(head(Q)) as the tuple obtained from head(Q) by replacing each
occurrence of a variable xi by α(xi ).

Example 3.1. Reconsider our example query Qr eal presented

in Example 1.2 (the database is depicted in Figures 1a, 1b, 1c, and

1d). Now, consider the result tuple (1, 300). It is obtained through

the derivation that maps the atoms to six distinct tuples from the

database to the three atoms (in order of the atoms). These are the

tuples annotated by a, c, f, h, l. The tuple (2, 1000) is obtained
through three derivations: the first (second and third) maps the

tuple annotated b (b) to the first atom, the tuple annotated by a
(b) to the second atom, the tuple annotated by d (e) to the third

atom, the tuple annotated by i (i) to the fourth, and j (k) to the

remaining atom.

3.2 Provenance
The tracking of provenance to explain query results has been

extensively studied in multiple lines of work, and [29] has shown

that different such models may be captured using the semiring
approach (originally proposed in [30]). We next overview several

aspects of the approach that we will use in our formal framework.

Commutative Semirings. A commutative monoid is an algebraic
structure (M,+M , 0M ) where +M is an associative and commuta-

tive binary operation and 0M is an identity for +M . A commutative
semiring is then a structure (K ,+K , ·K , 0K , 1K ) where (K ,+K , 0K )
and (K , ·K , 1K ) are commutative monoids, ·K is distributive over

+K , and a ·K 0K = 0 ·K a = 0K .

Annotated Databases. Wewill capture provenance through the

notion of databases whose tuples are associated (“annotated")

with elements of a commutative semiring. For a schema S with

relation names {R1, ...,Rn }, denote by Tup(Ri ) the set of all

(possibly infinitely many) possible tuples of Ri .

Definition 3.2 (adapted from [30]). A K-relation for a rela-

tion name Ri and a commutative semiring K is a function R :
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Tup(Ri ) 7→ K such that its support defined by supp(R) ≡ {t |
R(t) , 0} is finite. We say that R(t) is the annotation of t in R. A
K-database D over a schema {R1, ...,Rn } is then a collection of

K-relations, over each Ri .

Intuitively a K-relation maps each tuple to its annotation.

We will sometimes use D(t) to denote the annotation of t in its

relation in a database D. We furthermore say that a K-relation is

abstractly tagged if each tuple is annotated by a distinct element

of K (intuitively, its identifier).

Provenance-Aware Query Results. We then define CQs as map-

pings from K-databases to K-relations. Intuitively we define the

annotation (provenance) of an output tuple as a combination

of annotations of input tuples. This combination is based on

the query derivations, via the intuitive association of alternative

derivations with the semiring “+" operation, and of joint use of

tuples in a derivation with the “·" operation.

Definition 3.3 (adapted from [30]). Let D be a K-database and
let Q ∈ CQ , with T being the relation name in head(Q). For
every tuple t ∈ T , let αt be the set of derivations of Q w.r.t. D
that yield t . Q(D) is defined to be a K-relation T s.t. for every t ,
T (t) =

∑
α ∈αt

∏
t ′∈Im(α ) D(t

′). Im(α) is the image of α .

Summation and multiplication in the above definition are done

in an arbitrary semiring K . Different semirings give different

interpretations to the operations [29].

Provenance Polynomials (N[X ]). The most general form of

provenance for positive relational algebra (see [30]) is the semir-
ing of polynomials with natural numbers as coefficients, namely

(N[X ],+, ·, 0, 1). The idea is that given a set of basic annotations

X (elements of which may be assigned to input tuples), the out-

put of a query is represented by a sum of products as in Def. 3.3,

with only the basic equivalence laws of commutative semirings

in place. Coefficients serve in a sense as “shorthand" for multiple

derivations using the same tuples, and exponents as “shorthand"

for multiple uses of a tuple in a derivation. In Example 3.1, we

see that a tuple may have several derivations, serving as the ex-

planations for it. The two monomials are separated by a + sign,

as opposed to a single monomial. We address this as part of our

solution presented in Section 5.

Many additional forms of provenance have been proposed in

the literature, varying in their level of abstraction and the details

they reveal on the derivations. [29] showed that these can be

captured by congruence relations. Formally, consider the function

fK : N[X ] 7→ N[X ] as a congruence relation defined by P1 ≡ P2
if fK (P1) = fK (P2), where fK varies based on the semiring K .
We exemplify these notions using our running example of the

third row in Figure 1e.

Boolean Provenance Polynomials (B[X ]). The boolean prove-

nance semiring, (B[X ],+, ·, 0, 1), is the semiring of polynomials

over variables X , where coefficients are either 1 or 0 (intuitively

corresponding to boolean coefficients). We can think of the B[X ]
semiring as theN[X ] semiring after applying the homomorphism

fB[X ] : N[X ] 7→ N[X ] which maps all non-zero coefficients to 1.

In the third row of our example, the polynomial 2b2eik + badij
becomes b2eik + badij after mapping the two coefficients 2, 1 to

1.

In the context of our loan example, if we were to obtain the

provenance as N[X ] or B[X ], we could infer that a client can get

a loan without needing a guarantor.

Trio. This semiring can again be modeled as the image of the

surjective homomorphism ftr io : N[X ] 7→ N[X ] dropping all

exponents in the provenance polynomial. Consider again the

third row of our example. For instance, the polynomial 2b2eik +
badij becomes 2beik + badij after the function ftr io maps all

exponents to 1.

Why. A natural approach to provenance tracking, referred

to as why-provenance [12], capturing each derivation as a set
of the annotations of tuples used in the derivation. The overall

why-provenance is thus a set of such sets. As shown (in a slightly

different way) in [29], this corresponds to using provenance poly-

nomials but without “caring" about exponents and coefficients.

Formally, consider the function fwhy : N[X ] 7→ N[X ] that drops
all coefficients and exponents of its input polynomial. Using our

example again, the polynomial 2b2eik + badij is converted to

beik + badij under fwhy .

Positive Boolean Expressions. This is a semiring of positive

boolean expressions over variables X , i.e., the expressions are
composed of disjunction, conjunction, and constants which are

true or false. Formally, we define fPosBool : N[X ] 7→ N[X ]
that dropping all exponents and coefficients in the provenance

polynomial, and considers + as ∨ and · as ∧, i.e., allowing for the

absorption of monomials. For the purpose of the demonstration,

consider the abstract polynomial 2b2eik +baeik . Under fPosBool
it is converted to beik since all exponents and coefficients, and

the monomial baeik are absorbed into beik ((b ∧ b ∧ e ∧ i ∧ k) ∨
(b ∧ a ∧ e ∧ i ∧ k) ≡ b ∧ e ∧ i ∧ k).

In our running example, trio, why and PosBool provenance

reveals less information about the loan conditions, e.g., who is

the guarantor of the client with id 2 in Figure 1e.

As we demonstrated, each provenance model represents the

provenance in a specific level of detail, and all models other

than N[X ] incur some loss of information in the provenance

description.

4 QUERY-BY-PROVENANCE
We define in this section the problem of learning queries from

examples and their provenance. We first introduce the notion of

such examples, using provenance.

Definition 4.1 (Examples with provenance). Given a semiring

K , a K-example is a pair (I ,O) where I is an abstractly-tagged

K-database called the input andO is aK-relation called the output.

Intuitively, annotations in the input only serve as identifiers,

and those in the output serve as explanations – combinations of

annotations of input tuples contributing to the output.

We next define the notion of a query being consistent with

a K-example. In the context of query-by-example, a query is

consistent if its evaluation result includes all example tuples

(but maybe others as well). We resort to [29] for the appropriate

generalization to the provenance-aware settings:

Definition 4.2. Let (K ,+K , ·K , 0, 1) be a semiring and define

a ≤K b iff ∃c . a +K c = b. If ≤K is a (partial) order relation then

we say that K is naturally ordered.

Given two K-relations R1,R2 we say that R1 ⊆K R2 iff
∀t .R1(t) ≤K R2(t).

Note that if R1 ⊆K R2 then in particular supp(R1) ⊆ supp(R2),
so the notion of containment w.r.t. a semiring is indeed a faith-

ful extension of “standard" relation containment. In terms of
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provenance, we note that for N[X ] andWhy(X ), the natural or-
der corresponds to inclusion of monomials: p1 ≤ p2 if every

monomial in p1 appears in p2. The order relation has different

interpretations in other semirings.

We are now ready to define the notion of consistency with

respect to a K-example, and introduce our problem statement.

Intuitively, we look for a query whose output is contained in the

example output, and for each example tuple, the provenance is

“reflected” in the computation of the tuple by the query.

Definition 4.3 (Problem Statement). Given a K-example (I,O)

and a CQ Q we say that Q is consistent with respect to the

example ifO ⊆K Q(I ). QUERY-BY-PROVENANCE is the problem

of finding a consistent query for a given K-example.

The above definition allows multiple CQs to be consistent

with a given K-example. This is in line with the conventional

wisdom in query-by-example. Throughout the paper we will

always assume that the provenance is non-empty, since if it is

empty, we return to the setting of the classic query-by-example

problem.

A consistent query can be very general, as we demonstrate in

the following example. A natural desideratum (employed in the

context of “query-by-example"), is that the query is “inclusion-

minimal". This notion extends naturally to K-databases.

Definition 4.4. A consistent query Q (w.r.t. a given K-example

Ex ) is inclusion-minimal if for every queryQ ′ such thatQ ′ ⊊K Q
(i.e. for every K-database D it holds thatQ ′(D) ⊆K Q(D), but not
vice-versa), Q ′ is not consistent w.r.t. Ex .

We next demonstrate the notion of consistent and inclusion-

minimal queries with respect to a given K-example.

Example 4.5. We now treat Figure 1e as an N[X ]-example.

Consistent queries must derive the example tuples in the ways

specified in the polynomials (and possibly in additional ways).

The queryQr eal from Example 1.2 is of course a consistent query

with respect to it, since it generates the example tuples and the

provenance of each of them according toQr eal is the same as that

provided in the example. Qr eal is not the only consistent query,

since the following query, Qдeneral (which simply performs a

Cartesian product), is also consistent:

Qдeneral (id1,b2) : −B(id1,b1),B(id2,b2),G(id3, id4),

PCS(id5), PB(id6)

However, Qr eal is also an inclusion-minimal query, as opposed

to Qдeneral since Qr eal ⊊ Qдeneral .

In the following section we study the complexity of the above

computational problems for the different models of provenance.

Wewill analyze the complexity with respect to the different facets

of the input, notations for which are provided in Table 1.

Table 1: Notations
Ex K-example

I Input database

O Output relation and its provenance

m Total number of monomials

k Number of attributes of the output relation

n (Maximal) Number of elements in a monomial

r Sum of arities in the atoms of a query body

d Number of distinct relation names in the provenance

We list our results for the QUERY-BY-PROVENANCE problem

in Table 2. The columns of the table list: the bound for the num-

ber of possible consistent queries for each of the semirings, the

maximal length of a consistent query if one exists, and the lower

and upper bounds of finding a consistent query. Each result has

a reference to the relevant proposition. Some of the proofs are

omitted for brevity and can be found in the full version [22].

5 LEARNING FROM N[X ], B[X ]-EXAMPLES
We start our study with the case where the given provenance

consists of N[X ] expressions. This is the most informative form

of provenance under the semiring framework, and thus the most

informative explanation. In particular, we note that given the

N[X ] provenance, the number of query atoms (and the relations

occurring in them) are trivially identifiable. What remains is the

choice of variables to appear in the query atoms (body and head),

and as a consequence, decide how to order the tuples in each

monomial.

We first bound the number of possible consistent queries:

Proposition 5.1. For every choice of r ,k ∈ N, every N[X ]-
example has at mostO(Br rk2r ) consistent queries, where Br is the
Bell number of r . Furthermore, there exists anN[X ]-example whose
output tuples have arity of k , and monomials have arity of r , for
which there exists exponentially many (in both r and k) consistent
queries.

Proof. We start by analyzing the case for boolean queries, i.e.,

k = 0. Consider the set of indexes {1, . . . , r } in the query body.

Every partition of this set of indexes defines a different consistent

query, since the partition determines exactly which indexes will

have the same variable, assuming we impose an order on the

query atoms (e.g., the queryQ() : −R(x ,x ,x),R(x ,x ,x),T (x ,y) is
determined by the partition {1, 2, 3, 4, 5, 6, 7}, {8}). We can thus

say that the maximum number of consistent boolean queries w.r.t

an N[X ]-example is the number of partitions of the set {1, . . . , r }
into disjoint non-empty subsets. This number is the Bell number

Br . Each subset of the partition can then either be instantiated

with a constant or with a distinct variable. As there can be at most

r subsets in the partition, the number of options is bounded by

2
r
. In the general case, when queries are not boolean but have k

output attributes, we further have to choose which variables will

be projected to the head. Since the maximum number of unique

variables in the query body is r , there are at most rk options

to do so. Therefore the number of consistent queries can be

bounded by Br r
k
2
r
. For the second part of the claim, consider an

N[X ]-example for which a query with a single constant at every

index, both in the head of the query and its body, is consistent

(e.g. Q(1, 1) : −R(1, 1, 1),R(1, 1, 1),T (1, 1)). In this case, replacing

every subset of 1s with different variables, will also result in a

consistent query. As there are exponentially many subsets of

attributes to the query, there are exponentially many consistent

queries w.r.t the N[X ]-example. □

We have shown a bound for the number of different consistent

queries, but it is also important to note that there can be multiple

inclusion-minimal queries. It is easy to show an example where

there are may be exponentially many inclusion-minimal queries.

We next show an upper bound
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Table 2: Results for the QUERY-BY-PROVENANCE Problem

Semiring

Number of

consistent queries

Small world

query length

Lower bound Upper bound

N[X ]
O(Br r

k
2
r ) (Prop. 5.1) n (Trivial) NP-complete in k (Prop. 5.4) O(n2km + krnk ) (Prop. 5.2)

B[X ]

Trio(X )
∞ (Prop. 6.1) k + d(n − 1) (Prop. 6.5)

Find minimal sized query is

NP-complete in k (Prop. 6.4)

O(nO (k )mkr ) (Prop. 6.7)PosBool(X )
Why(X )

5.1 An Efficient Algorithm for Finding a
Query

Although the number of query atoms is known from the given

example, finding a consistent query efficiently is non-trivial. An

important observation in this respect is that we can focus on

finding atoms that “cover" the attributes of the output relation

(i.e. that include the right values of the output tuples, in the

right order), and the number of required such atoms is at most k
(the arity of the output relation). We may need further atoms so

that the query realizes all provenance tokens (eventually, these

atoms will also be useful in imposing e.g. join constraints), and

this is where care is needed to avoid an exponential blow-up

with respect to the provenance size. To this end, we observe that

we may generate a “most general" part of the query simply by

generating atoms with fresh variables, and without considering

all permutations of parts that do not contribute to the head. This

will suffice to guarantee a consistent query, but may lead to the

generation of a too general query; this issue will be addressed in

Section 5.2.

Algorithm 1: FindConsistentQuery (N[X])

input :An N[X ] example Ex = (I ,O)
output :A consistent query Q or an answer that none

exists

1 Let (t1,M1), ..., (tm ,Mm ) be the tuples and

corresponding provenance monomials of O ;

2 (V ,E) ← BuildLabeledGraph((t1,M1), (t2,M2)) ;

3 foreach consistent matchings E ′ ⊆ E s.t. |E ′ | ≤ k do
4 if ∪e ∈E′label(e) = {1, . . . ,k} then
5 Q ← BuildQueryFromMatch(E ′,Ex) ;

6 foreach 1 < j < m do
7 if not consistent(Q, tj ,Mj ) then
8 Go to next matching ;

9 return Q ;

10 Output “No consistent query exists";

We next detail the construction, shown in Algorithm 1. We

separate (line 1) monomials so that each (ti ,Mi ) is a tuple along

with a single monomial of its provenance expression. We then

start by picking two tuples and monomials (see below a heuristic

for making such a pick) and denote the tuples by t1 and t2 and
their provenance by M1 = a1 · ... · an and M2 = b1 · ... · bn
respectively. Our goal is to find all “matches" of parts of the
monomials so that all output attributes are covered. To this end,

we define (line 2) a full bipartite graphG = (V1∪V2,E)where each
ofV1 andV2 is a set ofn nodes labeled bya1, . . . ,an andb1, . . . ,bn
respectively. We also define labels on each edge, with the label

of (ai ,bj ) being the set of all attributes that are covered by ai ,bj ,
in the following sense: an output attribute A is covered if there

is an input attribute A′ whose value in the tuple corresponding

to ai (bj ), matches the value of the attribute A in t1 (respectively
t2).

We then (lines 3-4) find all matchings, of sizek or less, that cover
all output attributes; namely, that the union of sets appearing

as labels of the matching’s edges equals {1, ...,k}. As part of
the matching, we also specify which subset of the edge label

attributes is chosen to be covered by each edge (the number of

such options is exponential in k). It is easy to observe that if such
a cover (of any size) exists, then there exists a cover of size k or

less. We further require that the matching is consistent in the

sense that the permutation that it implies is consistent.

For each such matching we generate (line 5) a “most general

query" Q corresponding to it, as follows. We first consider the

matched pairs ai ,bj one by one, and generate a query atom for

each pair. This is done by assigning the same variable to the head

attribute A covered by the edge and to the attribute covering

it in the new atom A′. Note that the query generation is done

here based only on k pairs of provenance atoms, rather than all

n atoms, since we only examine the k edges of the matching.

To this end, we further generate for each provenance token ai
that was not included in the matching a new query atom with

the relation name of the tuple corresponding to ai , and fresh

variables. Intuitively, we impose minimal additional constraints,

while covering all head attributes and achieving the required

query size of n.
Each such query Q is considered as a “candidate", and its con-

sistency needs to be verified with respect to the other tuples

of the example (line 7). One way of doing so is simply by eval-

uating the query with respect to the input, checking that the

output tuples are generated, and their provenance includes those

appearing in the example. As a more efficient solution, we test

for consistency of Q with respect to each example tuple by first

assigning the output tuple values to the head variables, as well

as to the occurrences of these variables in the body of Q (by our

construction, they can occur in at most k query atoms). For query

atoms corresponding to provenance annotations that have not

participated in the cover, we only need to check that for each

relation name, there is the same number of query atoms and

of provenance annotations relating to it. A subtlety here is in

handling coefficients; for the part of provenance that has par-

ticipated in the cover, we can count the number of assignments.

This number is multiplied by the number of ways to order the

other atoms (which is a simple combinatorial computation), and

the result should exceed the provided coefficient.

Proposition 5.2. Given a N[X ]-example, Algorithm 1 finds a
consistent query if one exists.

Choosing the two tuples. For correctness and worst case com-

plexity guarantees, any choice of tuples as a starting point for

the algorithm (line 1) would suffice. Naturally, this choice still

affects the practical performance, and we aim at minimizing the
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number of candidate matchings. A simple but effective heuristic

is to choose two tuples and monomials for which the number

of distinct values (both in the output tuple and in input tuples

participating in the derivations) is maximal.
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Figure 2: Matchings for Example 5.3

Example 5.3. Reconsider our running example depicted in Fig-

ure 1e. Assume that the monomials b2eik and ac f hl were picked
for graph generation. Each monomial forms a side in the bipartite

graph. The algorithm now traverses all partial matchings of size

≤ 2, and checks whether aligning two tuples that are connected

by an edge, one below the other, forms a vector of constants

that also appears in an attribute of the two corresponding output

tuples. Figure 2a depicts a matching of size 2 which consists of

the edges (b,a), (b, c) where the first attribute of input tuples b
and a covers the first output attribute (aligning the tuple b below

the tuple a creates the constants vector

(
2

1

)
that appear in the

first attribute of the output tuple), and the second attribute of

input tuples b and c covers the second output attribute (aligning

the tuple b below the tuple c creates the constants vector
(
1000

300

)
that appears in the second attribute of the output tuple).

Generating a query based on this matching results in the query

Qдeneral from Example 4.5, since the first and second projected

variables have been set to the first and third attributes of the most

general atoms B(id1,b1) and B(id2,b2), respectively and the other
atoms remain most general with no joins and projected attributes.

The algorithm now verifies the consistency of Qдeneral with re-

spect to the other monomials by assigning the output tuple to

the head, e.g. assigning id1 and b2 to 2 and 1000 (for the output

tuple (2, 1000)), and returns Qдeneral . There are other valid par-

tial matchings of these two tuples that will yield a somewhat

different query toQдeneral . If we were to choose the monomials

badij and ac f hl , we would have the different matching shown

in Figure 2b (where the edges (b,a) and (a, c) cover the head

attributes). Note that, in general, a single edge can cover several

attributes of the output.

Qдeneral is a very general query, and is probably not the

original one. We will adapt our solution so that it finds a more

“precise” query, i.e., an inclusion-minimal query (Definition 4.4

in Section 4) in the next subsection.

Complexity. The algorithm’s complexity is O(n2km + krnk ):

at most nk matchings are considered; for each matching, a single

query is generated, and consistency is validated inO(nk ) for each
of them example tuples. Furthermore, for each of the matchings,

we scan the attributes of the tuples in the matching inO(kr ). The
exponential factor only involves k , which is much smaller than n
andm in practice. Can we do even better? We can show that if

P , NP , there is no algorithm running in time polynomial in k .

Proposition 5.4. Deciding the existence of a consistent query
with respect to a given N[X ]-example is NP-complete in k .

5.2 Achieving a tight fit
To find inclusion-minimal queries, we next refine Algorithm 1 as

follows. We do not halt when finding a single consistent query,

but instead find all of those queries obtained for some match-

ing. For each consistent query Q , we examine queries obtained

from Q by (i) equating variables and (ii) replacing variables by

constants where possible (i.e. via an exact containment mapping

[1]). We refer to both as variable equating. To explore the pos-

sible combinations of variable equatings, we use an algorithm

inspired by data mining techniques (e.g., [5]): in each iteration,

the algorithm starts from a minimal set of variable equatings that

was not yet determined to be (in)consistent with the example.

E.g., in the first iteration it starts by equating a particular pair of

variables. The algorithm then tries, one-by-one, to add variable

equatings to the set, while applying transitive closure to ensure

the set reflects an equivalence relation. If an additional equating

leads to an inconsistent query, it is discarded. Each equatings

set obtained in this manner corresponds to a homomorphism h
over the variables of the query Q , and we use h(Q) to denote the

query resulting from replacing each variable x by h(x).
Importantly, by equating variables or replacing variables by

constants we only impose further constraints and obtain no new

derivations. In particular, the following result holds, as a simple

consequence of Theorem 7.11 in [29] (note that we must keep the

number of atoms intact to be consistent with the provenance):

Proposition 5.5. Let Q be a CQ over a set of variablesV . Let
h : V 7→ V ∪ C be a homomorphism. For every N[X ]-example
Ex , if Q is not consistent with Ex , then neither is h(Q).

We can model the homomorphism process between queries,

achieved by variable equating, as a lattice whose leaves represent

a single variable equating in the query and its top element is the

query with a single variable in all atoms. Every variable equating

implies a move from the current lattice node to a parent of that

node (see next an illustration and example). By this model, the

proposition above actually determines that if a query represented

by a node in the lattice is consistent, then all of the queries

represented by the descendants of this node are also consistent

and furthermore, all queries represented by the frontier of the

lattice are consistent. We next use these observations to establish

an algorithm for finding an inclusion-minimal query.

Consequently, the algorithm finds a maximal set of variable
equatings that is consistent with the query, by attempting to

add at most O(r2) different equatings, since there are
(r
2

)
pairs

of variables (r is the sum of arities of the atoms in the body of

Q , see Table 1). We record every query that was found to be

(in)consistent – in particular, every subset of a consistent set of

equatings is also consistent – and use it in the following iterations

(which again find maximal sets of equatings).

Checking for consistency. This check may be done very effi-

ciently for query atoms that contribute to the head, since we only

need to check that equality holds for the provenance annotations

assigned to them. For other atoms we no longer have their consis-

tency as a given and in the worst case we would need to examine

all matchings of these query atoms to provenance annotations.

Example 5.6. Reconsider our running example queryQдeneral
in Example 4.5. A part of the lattice is depicted in Figure 3. The

algorithm starts by considering individually each pair of variables

as well as pairs of variables and constants co-appearing in the

two output tuples or in the tuples used in their provenance. In our

example, when considering the lattice element {id1 = id4}, the
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{{id1 = id4}, {id1 = id5}, {id1 = id6}}

{{id1 = id4}, {id1 = id5}}

{id1 = id4} {id1 = id5} {id1 = id6} {id2 = id6}

Figure 3: Part of the lattice in Example 5.6

algorithm will find that the query Qid1=id4 (i.e. Qдeneral after

equating id1 and id4), is still consistent. Next, the algorithm will

find that equating id1, id5 in Qid1=id5 also yields a consistent

query so it will proceed with Qid1=id4,id1=id5 . However, if we

try to add the equality id1 = id6, the consistency check will

discover that Qid1=id4,id1=id5,id1=id6 is not consistent anymore,

so we will not continue on this path of the lattice (marked with a

red “x” in Figure 3). Of course, multiple steps may yield the same

equivalence classes in which case we perform the computation

only once. The resulting query is Qr eal shown in Example 1.2.

Any further step with respect to Qr eal leads to an inconsistent

query, and so it is returned as output.

Proposition 5.7. Given a consistent query w.r.t anN[X ]-example,
the procedure finds an inclusion-minimal query.

For each consistent query found by Algorithm 1, there may be

multiple inclusion-minimal queries obtained in such a manner

(though the number of such queries observed in practice was not

very large, see Section 7). If we wish to provide a single query as

output, when multiple inclusion-minimal queries are obtained,

a natural heuristic that we employ is to prefer a query with the

least number of unique variables (this was implemented in our

experimental study).

Adapting the Solution for B[X ]. In the B[X ] semiring, expo-

nents are kept but coefficients are not, so we can adapt the al-

gorithm of N[X ] (Algorithm 1), omitting the treatment of coef-

ficients. In N[X ], for the part of the provenance that has partic-
ipated in the cover, we count the number of assignments and

multiply by the number of ways to order the other atoms (which

is a simple combinatorial computation), and verify that the result

exceeds the provided coefficient. In B[X ], we remove this step of

the algorithm.

6 LEARNING FROMWHY, TRIO, AND
POSBOOL EXAMPLES

We next study the problem of learning queries fromWhy(X )-
examples. This semiring is less detailed than N[X ] and thus often
easier to store and present, but is in turn more challenging for

query inference. We will adapt the solution to the Trio(X ) and
PosBool(X ) semirings.

A natural approach is to reduce the problem of learning from

aWhy(X )-example to that of learning from an N[X ]-example

(note that aWhy(X )-example without self-joins is equivalent

to an N[X ]-example). Recall that the differences are the lack of

coefficients and the lack of exponents. The former is trivial to

address (see solution for B[X ] in the previous section), but the

latter means that we do not know the number of query atoms. In

particular, forWhy(X )-examples we have:

Proposition 6.1. There exists aWhy(X )-example with an infi-
nite number of non-equivalent consistent queries.

A first plausible idea is to consider theWhy(X )-example as an

N[X ]-example, i.e., assume the number of query atoms is equal

to the number of tuples in the largest monomial of the example.

Surprisingly, we cannot be sure that this suffices:

Proposition 6.2. There exists aWhy(X ) example for which
there is no consistent CQ with n atoms (recall that n is the length
of the largest monomial, see Table 1), but there exists a consistent
CQ with more atoms.

prov. A B C

a 1 2 3

b 3 4 5

c 6 7 8

d 7 6 8

(a) Relation R

A B C prov.

1 1 5 a · b
6 7 8 c · d

(b)Why(X ) Example
Figure 4: Source andWhy(X ) Example for Prop. 6.2

Proof. Let Ex denote the example depicted in Figure 4. A con-

sistent query with two atoms can impose two possible orderings

on the tuples in each monomial. We show that both orderings do

not form a consistent query. Consider the first ordering of the tu-

ples. A consistent query needs to be satisfied by the assignments:

Q(1, 1, 5) : −R(1, 2, 3),R(3, 4, 5)

Q(6, 7, 8) : −R(6, 7, 8),R(7, 6, 8)

But no query can be satisfied by these two assignments because

the first assignment requires that the second variable in the head

will be bound by the first variable in the first atom in the body. But,

the second assignment requires that the second variable in the

head will be different from the variable in the mentioned position.

Thus, there is no query that is satisfied by both assignments.

Consider the second ordering. A consistent query needs to be

satisfied by the assignments:

Q(1, 1, 5) : −R(3, 4, 5),R(1, 2, 3)

Q(6, 7, 8) : −R(6, 7, 8),R(7, 6, 8)

Again, observe that in the first assignment, the first variable in the

head must be bound by the first variable in the second atom in the

body. But, in the second assignment, the first variable in the head

is different from the variable in the mentioned position. Thus,

again, there is no query that is satisfied by both assignments,

establishing that there is no consistent query of length 2 w.r.t Ex .
Now, consider themonomials are a ·a ·b and c ·d ·d . A consistent

query w.r.t these monomials needs to satisfy the assignments:

Q(1, 1, 5) : −R(1, 2, 3),R(1, 2, 3),R(3, 4, 5)

Q(6, 7, 8) : −R(6, 7, 8),R(7, 6, 8),R(7, 6, 8)

Hence, the following query is consistent:

Q(x ,y, z) : −R(x ,w,u),R(y,v,u),R(k,m, z)

□

However, finding one consistent query is not difficult, using a

method that takes all possible tuple alignments into account:

Proposition 6.3. If there exists a consistent query w.r.t a given
Why(X )-example, there is a consistent query of length nm .

Proof. Denote the example as Ex and the consistent query

as Q ′. Consider the query Q which has at most nm atoms and is

built in the following manner: have each tuple in Ex participate

in all possible permutations of tuples in the rows above and below

it with the same relation, imposing an order on the tuples in a
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monomial and then treat the resulting monomials as an N[X ]-
example, and create a query by replacing each unique constant

column with a variable (see previous example). We first show

thatQ is safe (note thatQ ′ is consistent, so it is in particular safe).

Suppose the atoms that have attributes projected to the head in

Q ′ are a′
1
, . . . ,a′i . Take the tuples to which they are mapped to

in each row j, t
j
1
, . . . , t

j
i , then Q also contains atoms a1, . . . ,ai

mapped to t
j
1
, . . . , t

j
i , respectively in each row j (this is because

in part of the ordering imposed on the monomials, t1
1
, . . . , tm

1

appear one below another and the same goes for t1x , . . . , t
m
x for

every 2 ≤ x ≤ i). Therefore, the same attributes of a′
1
, . . . ,a′i

exist in a1, . . . ,ai and can also be projected to the head in Q .
Furthermore, Q is consistent by the way it was built. Every atom

was created for a specific combination of tuples, so every atom

ofQ can be mapped to a specific tuple appearing in every row. In

addition, for every row j, the atoms of Q cover all tuples in this

row since an atom was created for each permutation of tuples,

and in particular, there is at least one atom that was created to

match each tuple in row j. □

Based on this result, we can find a consistent query in a

straightforward way. However, a query that has nm atoms is

very long and probably overfits the example. In general, in the

N[X ] case, the number of query atoms is set by the provenance

and the only degree of freedom is variable equatings. On the

other hand, for theWhy(X ) case, the number of query atoms is

also flexible. This calls for a different criterion of “tight fit” for

Why(X ) provenance, which is minimizing the number of atoms

in a consistent query. In general, we can show the following

result regarding this criterion:

Proposition 6.4. Given aWhy(X )-example, deciding the ex-
istence of a consistent query with ≤ n atoms is NP-complete in
k .

We can however show a “small world" property, that will guide

our solution.

Proposition 6.5. For anyWhy(X )-example, if there exists a
consistent query then there exists a consistent query withk+d ·(n−1)
atoms or less, where d is the number of distinct relation names
occurring in the provenance monomials (see Table 1).

Intuitively, there are at most k atoms contributing to the head.

The worst case is when only one “duplicated" annotation con-

tributes to the head, and then in each provenance monomial there

are at most n − 1 remaining annotations. If the query includes

a single relation name (d = 1), then a query with at most n − 1
more atoms would be consistent. Otherwise, as many atoms may

be needed for each relation name.

Together with our algorithm for N[X ], Proposition 6.5 dic-

tates a simple algorithm that exhaustively goes through all N[X ]
expressions that are compatible with theWhy(X ) expressions
appearing in the example, and whose sizes are up to k +d · (n−1).
This, however, would be highly inefficient.

Instead of the inefficient exhaustive algorithm, we next present

a much more efficient algorithm for finding a consistent query of

minimal length. The algorithm will operate greedily by duplicat-

ing atoms in the query body when a self-join is implied by one

of the provenance monomials.

The pseudo-code for an efficient algorithm for finding CQs

consistent with a givenWhy(X )-example is given in Algorithm

2. The idea is to traverse the examples one by one, trying to

“expand” (by adding atoms) candidate queries computed thus far

to be consistent with the current example. We start (line 1), as in

the N[X ] case, by “splitting” monomials if needed so that each

tuple is associated with a single monomial. We maintain a map

Q whose values are candidate queries, and keys are the parts

of the query that contribute to the head, in a canonical form

(e.g. atoms are lexicographically ordered). This will allow us to

maintain only a single representative for each such “contributing

part”, where the representative is consistent with all the examples

observed so far. For the first step (line 2) we initialize Q so that

it includes only (t1,M1) (just for the first iteration, we store an

example rather than a query). We then traverse the remaining

examples one by one (line 3). In each iteration i , we consider

all queries in Q; for each such query Q , we build a bipartite

graph (line 6) whose one side is the annotations appearing in

Mi , and the other side is the atoms of Q . The label on each edge

is the set of head attributes covered jointly by the two sides:

in the first iteration this is exactly as in the N[X ] algorithm,

and in subsequent iterations we keep track of covered attributes

by each query atom. Then, instead of looking for matchings in
the bipartite graph, we find (line 7) all sub-graphs whose edges
cover all head attributes (again specifying a choice of attributes

subset for each edge). Intuitively, having e edges adjacent to the

same provenance annotation corresponds to the same annotation

appearing with exponent e , so we “duplicate” it e times (lines

8-10). On the other hand, if multiple edges are adjacent to a single

query atom, we also need to “split” (Lines 11-13) each such atom,

i.e. to replace it by multiple atoms (as many as the number of

edges connected to it). Intuitively each copy will contribute to the

generation of a single annotation in the monomial. Now (line 14),

we construct a queryQ ′ based on the matching and the previous

query “version”Q : the head is built as in Algorithm 1, and if there

were x atoms not contributing to the head with relation name

R in Q , then the number of such atoms in Q ′ is the maximum

of x and the number of annotations in Mi of tuples in R that

were not matched. Now, we “combine” Q ′ with Q ′′ which is the

currently stored version of a query with the same contributing

atoms (lines 15- 16). Combining means setting number of atoms

for each relation name not contributing to the head to be the

maximum of this number in Q ′ and Q ′′.
Algorithm 2 stores queries according to the atoms that have the

same variables as the ones in the head. Each matching that does

not stem from the existing matchings in Q (i.e., splitting some

of the atoms in an existing cover) will not result in a consistent

query since it will not be consistent with the previous rows. The

number of combinations of size k can there be out of n different

relations is nk . Q does not store sets of contributing atoms that

are subsets of other existing keys.

Complexity. The number of keys in Q is exponential only in

k ; the loops thus iterate at mostm ·nk ·nk · (n +n2) times, so the

overall complexity is O(nO (k) ·mkr ).

Achieving a tight fit. Algorithm 2 produces a set of candidate

queries, which may not be syntactically minimal. To discard

atoms that are “clearly" redundant, we first try removing atoms

not contributing to the head, and test for consistency. We then

perform the process of variable equating as in Section 5.2.

Example 6.6. Reconsider our running example, but now with

the why-provenance given in Figure 1e. If we start from the first

monomials of the tuples (2, 1000) and (1, 300) then we generate

a bipartite graph with V1 = {b, e, i,k} and V2 = {a, c, f ,h, l},
and obtain the cover E ′ (seen in Figure 5a) where the edge (b,a)
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Algorithm 2: FindConsistentQuery (Why(X))

input :AWhy(X ) example Ex

output :A set of consistent queries (possibly empty, if

none exists)

1 Let (t1,M1), ..., (tm ,Mm ) be the tuples and

corresponding provenance monomials of Ex ;

2 Q ← {NULL : (t1,M1)} ;

3 foreach 2 ≤ i ≤ m do
4 foreach Q ∈ values(Q) do
5 Q ← Q − {Q} ;

6 (V1 ∪V2,E) ← BuildGraph(Q, (ti ,Mi )) ;

7 foreach sub-graph E ′ ⊆ E s.t. |E ′ | ≤
k and ∪e ∈E′ label(e) = {1, . . . ,k} do

8 foreach provenance annotation a inMi do
9 if a is an endpoint of more than one edge

in E ′ then
10 E ′ ← split(E ′,a) ;

11 foreach atom C ∈ Q do
12 if C is an endpoint of more than one edge

in E ′ then
13 E ′ ← split(E ′,C) ;

14 Q ′ ← BuildQuery(E ′,Q);

15 Q ′′ ← Q.дet(contribs(Q ′)) ;

16 Q.put(contribs(Q ′), combine(Q ′,Q ′′)) ;

17 return values(Q) ;

covers the first head attribute and (b, c) covers the second. The
fact that the tuple b is connected to two edges will lead to the

split of this tuple to the atoms B(id1,b1) and B(id2,b2). When

we continue with E ′, no duplication is performed, and we get

a query Q with the two atoms B(id1,b1), B(id2,b2) contributing
to the head, and three most general atoms. Then, we match Q
to the monomial badij, resulting in a sub-graph matching both

B(id1,b1) and B(id2,b2) to b and a, respectively. After variables
equating (see Subsection 5.2), we obtain the query Qr eal shown

in Example 1.2 (other covers are possible, but they will also result

in Qr eal after variable equating). If instead we start with the

monomials badij and ac f hl , the partial matching chosen will be

the edge (b,a) which covers the first head attribute and the edge

(a, c) which covers the second and forming the atoms B(id1,b1),
B(id2,b2) again. Continuing to the monomial beik , we would

split the tuple b into two tuples since the matching will include

the edges (B(id1,b1),b) that covers the first head attribute and

(B(id2,b2),b) which covers the second.

Proposition 6.7. Given aWhy(X )-example, Algorithm 2 finds
a consistent query if one exists.

Adapting the Solution forTrio(X ) and PosBool(X ). In theTrio(X )
semiring coefficients are kept but exponents are not. To handle

this case we employ Algorithm 2, with a simple modification:

upon checking consistency of a candidate query with a tuple,

then we further check that there are as many derivations that use

the tuples of the monomial as dictated by the coefficient (as done

in Section 5). In the semiring of positive boolean expressions

(PosBool(X )) + and · are interpreted as disjunction and conjunc-

tion, respectively. If the expressions are given in DNF, Algorithm

2 may be used here as well. The only difference is the possible

b

e

i

k

a

c

f

h

l

M1 M2

{1}

{2}

(a) 1st iteration in 6.6
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A2, {2}

A3, ∅

A4, ∅

A5, ∅

b

a

d

i

j

Q M3

{1}

{2}

(b) 2nd iteration in 6.6
Figure 5: Subgraphs for Example 6.6

absorption of monomials (a + a · b ≡ a), but we already assume

that only a subset of the monomials are given. If the expressions

are given in an arbitrary form there is an additional (exponential

time) pre-processing step of transforming them into DNF.

7 IMPLEMENTATION AND EXPERIMENTS
Our experimental study is composed of experiments based on

the actual output and provenance of the benchmark queries in

[40, 43] measuring both accuracy and scalability. All experiments

were performed on Windows 8, 64-bit, with 8GB of RAM and

Intel Core Duo i7 2.59 GHz processor. We have implemented

our algorithms in JAVA with MS SQL server as the underlying

database management system.

As we have shown in Sections 5 and 6, the algorithms for the

N[X ] andWhy(X ) semirings also capture the other semirings we

have studied, with slight modifications. Namely, the algorithms

forN[X ] also apply for theB[X ] semiring, ignoring the treatment

of coefficients, and the algorithms presented forWhy(X ) also cap-
ture the PosBool(X ) semiring (since there is only an absorption of

monomials), and the Trio(X ) semiring with the handling of coef-

ficients as done for N[X ] in Algorithm 1. Hence, our experiments

focus on the N[X ] andWhy(X ) models. In particular, Algorithm

1 will behave in the same manner for B[X ]-examples as forN[X ]-
examples, and Algorithm 2 will behave in the same manner for

PosBool(X )\Trio(X )-examples as forWhy(X )-examples.

To examine our approach, we have used multiple queries with

varying complexity. Namely, Q1–Q6 from [43] as well as (mod-

ified, to drop aggregation and arithmetics) the TPC-H queries

TQ2–TQ5, TQ8 and TQ10. The queries have 2–8 atoms, 18–60

variables, and multiple instances of self-joins (we show Q6 for

illustration in Figure 6; the reader is referred to [40, 43] for the

other queries).

7.1 Accuracy
We have used the system to “reverse engineer” the queries men-

tioned above. This part of the experiments had two objectives: (1)

understanding the number of examples needed to infer the exact

query (2) measure the precision and recall of the query inferred

by the systemwith comparison to the original. We have evaluated

each query using a provenance-aware query engine, and have

then sampled random fragments (of a given size that we vary)

of the output database and its provenance (we have tried both

N[X ] and Why(X)), feeding it to our system. In each experiment

we have gradually added random examples until our algorithm

has retrieved the original query. This was repeated 3 times. We

report (1) the worst-case (as observed in the 3 executions) number

of examples needed until the original query is inferred, and (2)

for fewer examples (i.e. before convergence to the actual query),
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Table 3: Results for the TPC-H query set and the queries from [43] with N[X ] provenance

Query Worst-case number of examples
to learn the original query Difference between original and inferred queries for fewer examples

Q1 (TQ3) 14

The inferred Query includes an extra join on a “status" attribute of two relations.

Only 2–3 values are possible for this attribute, and equality often holds.

Q2 2

Q3 5

For 2 examples, the inferred query contained an extra constant.

For 3 and 4 examples, it included an extra join.

Q4 19

For 2 examples, the inferred query included an extra constant.

For 3–18, it included an extra join on a highly skewed “status" attribute.

Q5 11 The inferred query included an extra join on a “name" attribute.

Q6 3 The inferred query included an extra constant.

TQ4 234

The inferred query included an extra join on “orderstatus" and “linestatus"

attributes of two relations (they have two possible values). One of the original

join conditions has led to the occurrence of the same value in these attributes

in the vast majority of joined tuples.

TQ10 4 The inferred query contained an extra constant.

TQ2 3 The inferred query contained an extra constant.

TQ5 3 The inferred query contained an extra constant.

TQ8 18

For 2 examples, the inferred query contained an extra constant. For 4-17 exam–

–ples, the query had an extra join between a “status" attribute of two relations.

ans(a, b) : −supplier (c, a, add, k, p, d, c1),
par tsupp(h, c, v, j, c2), nation(w, na2, r, c8),
par t (h, i, z, q, t, s, e, rp2, c3), r eдion(r, u, c7),
par tsupp(h, o, x, n, c4), nation(k, na1, r, c6),
supplier (o, b, y, w, p2, d2, c5)

Figure 6: Q6

the differences between the inferred queries and the actual one

in the worst-case run of the experiment.

The results are reported in Table 3. For some queries the con-

vergence is immediate, and achieved when viewing only 2–5

examples. For other queries, more examples are needed, but with

one exception (TQ4), we converge to the original query after

viewing at most 19 tuples for the different queries. For TQ4 only

a very small fraction of the output tuples reveal that an extra join

should not have appeared, and so we need one of these tuples to

appear in the sample. Furthermore, even for smaller sets of exam-

ples, the inferred query was not “far" from the actual query. The

most commonly observed difference involved extra constants oc-

curring in the inferred query (this typically happened for a small

number of examples, where a constant co-occurred by chance).

Another type of error was an extra join in the inferred query;

this happened often when two relations involved in the query

had a binary or trinary attribute (such as the “status" attribute

occurring in multiple variants in TPC-H relations), which is fur-

thermore skewed (for instance, when other join conditions almost

always imply equality of the relevant attributes). We have also

measured the precision and recall of the output of the inferred

query w.r.t. that of the original one. Obviously, when the original

query was obtained, the precision and recall were 100%. Even

when presented with fewer examples, in almost all cases already

with 5 examples, the precision was 100% and the recall was above

90%. The only exception was Q5 with 75% recall for 5 examples.

The results forWhy(X ) are shown in Table 4. For queries with

no self-join, the observed results were naturally the same as in the

N[X ] case; we thus report the results only for queries with self-

joins (some queries included multiple self joins). When presented

with a very small number of examples, our algorithm was not

always able to detect the self-joins (see comments in Table 7);

but the overall number of examples required for convergence has

only marginally increased with respect to the N[X ] case.

7.2 Execution Times
As we have established in the accuracy experiments, a small

number of examples will usually suffice to infer the original

query. To also account for the execution time of our algorithms,

we have increased the number of examples up to 500, which

is about twice as many examples needed to infer each of the

queries. The results for N[X ] provenance and Q1–Q6 exhibit

good scalability: the computation time for 500 examples was 0.4

seconds for Q1 (TQ3), 0.1 seconds for Q2, 0.7 seconds for Q3, 1

second for Q4 and 0.4 and 1.1 seconds for Q5 and Q6 respectively.

The performance for the TPC-H queries was similarly scalable:

for 500 examples, the computation time of TQ2 and TQ10 (which

are the queries with the maximum number of head attributes: 8

and 7, resp.) was 0.2 and 0.4 seconds respectively. The runtimes

for TQ4 and TQ8 were 0.1, 0.9 seconds resp. The number of

example for TQ5 was limited due to the query output size. For

15 examples, the runtime for this query was 0.2 seconds. We

have repeated the experiment usingWhy(X ) provenance. The
computation time was generally fast, and only slightly slower

than the N[X ] case, with a max runtime of 1.3 seconds for Q4

and TQ8. This is consistent with our complexity analysis.

Effect of Tuples Choice. Recall that Algorithm 1 starts by finding

consistent queries w.r.t two example tuples and explanations. In

Section 5, we have described a heuristic that chooses the two

tuples with the least number of shared values. We have measured

the effect of this optimization on Q6 and found that using the

optimization leads to a single matching in the graph, as oppose

to a random choice of tuples that has led to 4 matchings. Making

such a random choice, instead of using our optimization led to a

runtime which was more than 1.3 times slower on average.

8 DISCUSSION AND CONCLUSIONS
Wehave formalized and studied the problem of “query-by-provenance",

where queries are inferred from example output tuples and their
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Table 4: Results for the TPC-H query set and the queries from [43] containing self-joins withWhy(X ) provenance

Query Worst-case number of examples
to learn the original query Difference between original and inferred queries for fewer examples

Q2 2

Q3 5 The inferred query for 2–4 examples did not include self-joins.

Q4 19

For 2–3 examples, the inferred query did not include self-joins.

For 4–18 examples, the query had an extra join on a “status" attribute.

Q5 13 The inferred query for 2–12 examples did not include self-joins.

Q6 3 The inferred query included an extra constant.

TQ8 18

For 2–3 examples, the inferred query contained an extra constant.

For 4-17 the query had an extra join between a “status" attribute of two relations.

provenance. We have theoretically analyzed and experimentally

demonstrated the effectiveness of the approach in inferring highly

complex CQs, including ones with multiple self-joins, based on

a small number of output and provenance examples and their

provenance. Note that for UCQs, a stronger definition is needed.

A notable provenance model that we have not discussed so far

is that of lineage [16], which entails a set representation of the

provenance, i.e., the contributing input tuples’ annotations for a

given output tuple are represented as a set. The semiring model

can support lineage, and the interpretation of Definition 4.2 in

this case is simply that each output example is associated with

a subset of its contributing tuples. In general, this means that

without looking at the full input database or at least its schema,

we gain very little information (e.g. we are not guaranteed that

the given annotations come from a relation that is projected to

the head). In particular it is straightforward to show a reduction

from the classic reverse engineering query problem, which is

intractable by [42].
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ABSTRACT

Aggregation is widely used to extract useful information from
large volumes of data. In-memory databases are rising in pop-
ularity due to the demands of big data analytics applications.
Many diferent algorithms and data structures can be used for
in-memory aggregation, but their relative performance charac-
teristics are inadequately studied. Prior studies in aggregation
primarily focused on small selections of query workloads and
data structures, or I/O performance. We present a comprehen-
sive analysis of in-memory aggregation that covers baseline and
state-of-the-art algorithms and data structures. We describe 6
analysis dimensions which represent the independent variables
in our experiments: (1) algorithm and data structure, (2) query
and aggregate function, (3) key distribution and skew, (4) group
by cardinality, (5) dataset size and memory usage, and (6) concur-
rency and multithread scaling. We conduct extensive evaluations
with the goal of identifying the trade-ofs of each algorithm and
ofering insights to practitioners. We also provide a glimpse on
how the CPU cache and TLB are afected by these dimensions.We
show that some persisting notions about aggregation, such as the
relative performance of hashing and sorting, do not necessarily
apply to modern platforms and state-of-the-art implementations.
Our results show that the ideal approach in a given situation
depends on the input and the workload. For instance, sorting
algorithms are faster in holistic aggregate queries, whereas hash
tables perform better in distributive queries.

1 INTRODUCTION

Despite recent advances in processing power, storage capacity,
and transfer speeds, our need for greater query eiciency con-
tinues to grow at a rapid pace. Aggregation is an essential and
ubiquitous data operation used in many database and query pro-
cessing systems. It is considered to be the most expensive op-
eration after joins, and is an essential component in analytical
queries. All 21 queries in the popular TPC-H benchmark include
aggregate functions [12]. A common aggregation workload in-
volves grouping the dataset tuples by their key and then applying
an aggregate function to each group.

Many prior studies on in-memory aggregation limited the
scope of their research to a narrow set of algorithms, datasets,
and queries. For example, many studies do not evaluate holis-
tic aggregate functions [11, 32, 49]. The datasets used in most
studies are based on a methodology proposed by Grey et al. [18].
These datasets do not evaluate the impact of data shuling, or
enforce deterministic group-by cardinality where possible. Some
studies only evaluate a proposed algorithm against a naive imple-
mentation, rather than comparing it with other state-of-the-art
implementations [20, 45]. Other studies have focused on sec-
ondary aspects, such as optimizing query planning for aggrega-
tions [48], distributed and parallel algorithms [11, 20, 40, 49, 50],
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Figure 1: An overview of the analysis dimensions

and iceberg queries [45]. Additionally, some data structures have
been proposed for in-memory query processing or as drop-in
replacements for other popular data structures, but have not
been extensively studied in the context of aggregation workloads
[4, 26, 29]. Real-world applications cover a much more diverse
set of scenarios, and understanding them requires a broader and
more fundamental view. Due to these limitations, it is diicult to
gauge the usefulness of these studies in other scenarios.

Diferent combinations of methodologies and evaluation pa-
rameters can produce very diferent conclusions. Applying the
results from an isolated study to a general case may result in
poor performance. For example, methods and optimizations for
distributive aggregation are not necessarily ideal for holistic
workloads. Our goal is to conduct a comprehensive study on the
fundamental algorithms and data structures used for aggregation.
This paper examines six fundamental dimensions that afect main
memory aggregation. These dimensions represent well-known
parameters which can be used as independent variables in our
experiments. Figure 1 depicts an overview of the analysis dimen-
sions. Figure 12 depicts a decision low chart that summarizes
our observations.

Dimension 1: Algorithm and Data Structure. In recent years,
there have been many studies on main-memory data structures,
such as tree-based indexes and hash tables. Many of these data
structures can be used for in-memory aggregation. Aggregation
algorithms can be categorized by the data structure used to store
the data. Based on this we divide the algorithms into three main
categories: sort-based, hash-based, and tree-based algorithms.We
propose a framework that aims to cover many of the scenarios
that could be encountered in real workloads. Over the course
of this paper, we evaluate and discuss implementations from all
three categories.

Dimension 2: Query and Aggregate Function. An aggrega-
tion query is primarily deined by its aggregate function. These
functions are typically organized into three categories: distribu-
tive, algebraic, and holistic [17]. Distributive aggregate functions,
such as Count, can be independently computed in a distributed
manner. Algebraic aggregates are constructed by combining sev-
eral distributive aggregates. For example, the Average function is
a combination of Sum and Count. Holistic aggregate functions,
such asMedian, cannot be distributed in the same way as the two
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previous categories because they are sensitive to the sort order
of the data. Aggregation queries are also categorized based on
whether their output is a single value (scalar), or a series of rows
(vector). We evaluate a set of queries that cover both distributive
and holistic, and vector and scalar categories.

Dimension 3: Key Distribution and Skew. The skew and dis-
tribution of the data can have a major impact on algorithm perfor-
mance. Popular relational database benchmarks, such as TPC-H
[12], generally focus on querying data that is non-skewed and
uniformly distributed. However, it has been shown that these
cases are not necessarily representative of real-world applications
[13, 22]. Recently, researchers have proposed a skewed variant of
the TPC-H benchmark [10]. The sizes of cities and the length and
frequency of words can be modeled with Zipian distributions,
and measurement errors often follow Gaussian distributions [18].
Furthermore, skewed keys can be encountered as a result of joins
[6] and composite queries. Our datasets are based on the specii-
cations deined by [18] with a few additions. We cover the impact
of both skew and ordering.

Dimension 4: Group-by Cardinality. Group-by cardinality
is related to skew in the sense that both dimensions afect the
number of duplicate keys. However, the group-by cardinality of
a dataset directly determines the size (number of groups) of the
aggregation result set. Prior studies have indicated that group-by
cardinality has a major impact on the relative performance of
diferent aggregation methods [2, 20, 24, 32]. These studies claim
that hashing performs faster than sorting when the group-by
cardinality is low relative to the dataset size, and that this perfor-
mance advantage is reversed when the cardinality is high. We
ind that the accuracy of this claim depends on the implementa-
tion.We evaluate the performance impact of group-by cardinality,
as well as its relationship with CPU cache and TLB misses.

Dimension 5: Dataset Size and Memory Usage. Recent ad-
vances in computer hardware have encouraged the use of main-
memory database systems. These systems often focus on ana-
lytical queries, where aggregation is a key operation. Although
memory has become cheaper and denser, this is ofset by the in-
creasing demands of the industry. Our goal is to shed some light
on the trade-of between memory eiciency and performance.

Dimension 6: Concurrency andMultithreaded Scaling. Nowa-
days, query processing systems are expected to support intra-
query parallelism in addition to interquery parallelism. Con-
currency imposes additional challenges, such as reducing syn-
chronization overhead, eliminating race conditions, and mul-
tithreaded scaling. We explore the viability and scalability of
several multi-threaded implementations.

The key contributions of this paper are:

• Evaluation of aggregation queries using sort-based, hash-
based, and tree-based implementations

• Methodology to generate synthetic datasets that expands
on prior work

• Extensive experiments that include comparison of distribu-
tive and holistic aggregate functions, vector and scalar ag-
gregates, range searches, evaluation of memory eiciency
and TLB and cache misses, and multithreaded scaling

• Insights on performance trends and suggestions for prac-
titioners

The remainder of this paper is organized as follows: We de-
scribe the queries in Section 2. We elaborate on the algorithms
and data structures in Section 3. In Section 4 we specify the
characteristics of our synthetic datasets. We present and discuss

our experimental setup and evaluation results in Section 5, and
summarize our indings in Section 6. In Section 7 we categorize
and explore the related work. Finally, we conclude the paper in
Section 8.

2 QUERIES

In this section, we describe the queries used for our experiments.
In Table 1 we describe each query along with a simple exam-
ple. Our goal is to evaluate and compare diferent aggregation
variants. There are three main categories of aggregate functions:
distributive, algebraic, and holistic. Distributive functions, such
as Count and Sum, can be processed in a distributed manner.
This means that the input can be split and processed in multiple
partitions, and then the intermediate results can be combined to
produce the inal result. Algebraic functions consist of two or
more Distributive functions. For instance, Average can be broken
down into two distributive functions: Count and Sum. Holistic
aggregate functions cannot be decomposed into multiple distribu-
tive functions, and require all of the input data to be processed
together. For example, if an input is split into two partitions and
the Mode is calculated for each partition, it is impossible to accu-
rately determine the Mode for the total dataset. Other examples
of Holistic functions include Rank, Median, and Quantile.

The output of an aggregation can be either in Vector or Scalar
format. In Vector aggregates, a row is returned in the output for
each unique key in the designated column(s). These columns are
commonly speciied using the group-by or having keywords. The
output value is returned as a new column next to the group-by
column. Scalar aggregates process all the input rows and produce
a single scalar value as the result.

Sometimes it is desirable to ilter the aggregation output based
on user deined thresholds or ranges. We study an example of
a range search combined with a vector aggregate function in
Q7. In a real-world environment, it may be possible to push
the range conditions to an earlier point in the query plan, but
if several diferent range scans are desired, early iltering may
not be possible. The main purpose of this query is to evaluate
each data structure’s eiciency at performing a range search in
addition to the aggregation.

3 DATA STRUCTURES AND ALGORITHMS

In this section, we introduce the data structures and algorithms
that we use to implement aggregate queries. We divide these
algorithms into three categories: sort-based, hash-based, and
tree-based. In order to facilitate reproducibility, we have selected
open-source data structures and sort algorithms where possible.
We also consider several state-of-the-art data structures, such
as ART[26], HOT[8], and Libcuckoo[29]. Since the performance
of algorithms can shift with hardware architectures, we also
consider some of the more fundamental algorithms and data
structures, such as a B+Tree [7]. Throughout this section we
will state theoretical time complexities using n as the number of
elements and k as the number of bits per key.

The implementation of an aggregate operator can be broken
down into two main phases: the build phase and the iterate phase.
Consider this example using a hash table and a vector aggregate
function (refer to Q1 in Table 1). During the build phase, each
key (created from the group-by attribute or attributes) is looked
up in the hash table. If it does not exist, it is inserted with a
starting value of one. Otherwise, the value for the existing key
is incremented. Once the build phase is complete the iterate
phase reads the key-value pairs from the hash table and writes
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Table 1: Aggregation Queries

Query SQL Representation (example) Aggregate Function Category Output Format

Q1 SELECT product_id, COUNT(*)

FROM sales GROUP BY product_id
Count Distributive Vector

Q2 SELECT student_id, AVG(grade)

FROM grades GROUP BY student_id
Average Algebraic Vector

Q3 SELECT product_id, MEDIAN(amount)

FROM products GROUP BY product_id
Median Holistic Vector

Q4 SELECT COUNT(sale_id)

FROM sales
Count Distributive Scalar

Q5 SELECT AVG(grade)

FROM grades
Average Algebraic Scalar

Q6 SELECT MEDIAN(part_id)

FROM parts
Median Holistic Scalar

Q7

SELECT product_id, COUNT(*)

FROM sales WHERE product_id

BETWEEN 500 AND 1000

GROUP BY product_id

Count with
Range Condition

Distributive Vector

the resulting items to the output. A similar procedure is used
for tree data structures. The calculation of the aggregate value
during the build phase (early aggregation) is only possible when
the aggregate function is distributive or algebraic. As a result,
holistic aggregate values cannot be calculated until all records
have been inserted. Sort-based approaches "build" a sorted array
using the group-by attributes. As a result, all the values for each
group are placed in consecutive locations. The aggregate values
are calculated by iterating through the groups.

3.1 Sort-based Aggregation Algorithms

Sorting algorithms are a crucial building block in any query
processing system. Many popular database systems, such as Mi-
crosoft SQL and Oracle, employ both sort-based and hash-based
algorithms. We examine several algorithms designed for sorting
arrays of ixed length integers, although some of the approaches
could be adapted to variable length strings.

3.1.1 uicksort. Quicksort is a sorting method based on
the concept of divide and conquer that was invented by Tony
Hoare [19] and remains very popular to this day. The average
time complexity of Quicksort is O(n log(n)). The worst case time
complexity is considerably worse at O(n2), but this is rare, and
is mitigated on modern implementations [21, 35] .

3.1.2 Introsort. Introspective sort (Introsort) is a hybrid sort-
ing algorithm that was proposed by David Musser [33]. Introsort
can be regarded as an algorithm that builds on Quicksort and im-
proves its worst case performance. This sorting algorithm starts
by sorting the dataset with Quicksort. When the recursion depth
passes a certain threshold, the algorithm switches to Heapsort.
This threshold is deined as the logarithm of the number of ele-
ments being sorted. This algorithm guarantees a worst case time
complexity of O(n log(n)).

The GCC variant of Introsort [21] difers from the original
algorithm in two ways. Firstly, the recursion depth is set to 2 ∗
log(n). Secondly, the algorithm switches to Insertion sort, which
is fast on small data chunk, but has a time complexity of O(n2).

3.1.3 Radix Sort (MSB and LSB). Radix sorting works by
sorting the data one bit (binary digit) at a time. There are two

variants of Radix Sort, based on the order in which the bits are
processed: Most Signiicant Bit (MSB) Radix Sort, and Least Sig-
niicant Bit (LSB) Radix Sort. As the names suggest, MSB sorts
the data starting from the top (leftmost) bits, and works its way
down. In comparison, LSB starts from the bottom bits. The time
complexity of Radix sort is O(k ∗ n) where k is the key width
(number of bits in the key), and n is the number of elements.

3.1.4 Spreadsort. Spreadsort is a hybrid sorting algorithm
that combines the best traits of Radix and comparison-based sort-
ing. This algorithm was invented by Steven J. Ross in 2002 [37].
Spreadsort uses MSB Radix partitioning until the size of the par-
titions reaches a predeined threshold, at which point it switches
to comparison-based sorting using Introsort. Comparison-based
sorting is more eicient on small sequences of data compared
to Radix partitioning. The time complexity of the MSB Radix
phase is O(n log(k/s + s)) where k is the key width, and s is the
maximum number of splits (default is 11 for 32 bit integers). As
mentioned, time complexity of Introsort is O(n log(n)).

3.1.5 Sorting Microbenchmarks. In order to obtain a ba-
sic understanding of the performance of these algorithms and
how they compare, we evaluate ive integer sorting algorithms
on a variety of datasets. The tested algorithms are: Quicksort,
Introsort, MSB Radix Sort, LSB Radix Sort, and Spreadsort. We
test each algorithm on ive data distributions: random integers
between one and ive, random integers between one and one
million, random integers between one thousand and one million,
presorted sequential integers, and reverse sorted sequential in-
tegers. We measure the time to sort ten million integers from
each distribution. The results, depicted in Figure 2, show that
Introsort and Spreadsort generally outperform the other sorting
algorithms.

3.2 Hash-based Aggregation Algorithms

Hash tables are particularly eicient in workloads that require
fast random lookups, which they perform in constant time. A
hash function transforms a key into an address within the table.
However, hash tables do not generally guarantee any ordering
of the keys (lexicographical or chronological). It is possible to
pre-sort the data and construct a hash function that guarantees
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Figure 2: Sort Algorithm Microbenchmark

ordered keys (minimal perfect hashing [15, 30]). However, the
impact on query execution time would be quite severe.

Hash tables are not well-suited to gradual dynamic growth,
as growing the table may entail rehashing all existing elements
as well. In principle, a hash table’s size could be tuned to antici-
pate the dataset group-by cardinality. However, in practice it is
diicult to estimate the cardinality, particularly when there are
several group-by columns. Cardinality estimation errors result in
excessive memory usage if too high, and costly rehash operations
if too low. In our experiments we assume that only the size of the
dataset is known, hence we set the initial size of the hash tables
accordingly.

Hash tables can be categorized based on their collision res-
olution scheme. Collision resolution deines how a hash table
resolves conlicts caused by multiple keys hashing to the same
location. We now describe four collision resolution schemes and
the implementations that use them: linear probing, quadratic
probing, separate chaining, and cuckoo hashing.

3.2.1 Linear probing. Linear probing is part of the family
of collision resolution techniques called open addressing. Open
addressing hash tables typically store all the items in one con-
tiguous array. They do not use pointers to link data items. Linear
probing speciies the method used to search the hash table. An
insertion begins from the hash index and probes forward in incre-
ments of one until the irst empty bucket is found. Linear probing
hash tables do not need to allocate extra memory to store new
items as long as the table has empty slots. However, they may
encounter an issue called primary clustering, where colliding
records form long sequences of occupied slots. These sequences
displace incoming keys, and they grow each time they do so,
resulting in the high number of displacement of records.

We implement a custom linear probing hash table using several
industry best practices, such as maintaining a power of two table
size. If the desired size is not a power of two then the nearest
greater power of two is chosen. This is a popular optimization
that allows the table modulo operation to be replaced with a
much faster bitwise AND. The downside to this policy is that is
easier to overshoot the available memory. In order to resolve this,
our implementation falls back to the modulo operation and the
table size is set to the nearest prime number if possible, and the
exact size parameter is used as the inal fallback.

3.2.2 uadratic probing. Quadratic probing is an open ad-
dressing scheme that is very similar to linear probing. Like linear
probing it calculates a hash index and searches the table until
a match is found. Rather than probing in increments of one, a
quadratic function is used to determine each successive probe
index. For example, with an arbitrary hash function h(x) and
quadratic function f (x) = x2, the algorithm probes h(x), h(x)+ 1,

h(x)+4,h(x)+9 instead of a linear probe sequence ofh(x),h(x)+1,
h(x) + 2, h(x) + 3. This approach greatly reduces the likelihood
of clustering, but it does so at the cost of reducing data locality.

Google SparseHash andDenseHash [41] are based on open
addressing with quadratic probing. Sparse Hash favors memory
eiciency over speed, whereas Dense Hash targets faster speed
at the expense of higher memory usage.

3.2.3 Separate chaining. Separate chaining is a way of re-
solving collisions by chaining key-value pairs to each other with
pointers. Buckets with colliding items resemble a single linked
list. The main advantages of separate chaining include fast in-
sert performance, and relatively versatile growth. The use of
pointer-linked buckets reduces data locality, which is important
for lookups and updates. However, unlike linear probing, separate
chaining hash tables do not sufer from primary clustering.

Separate chaining hash tables remain popular in recent works
[2, 3, 9, 39]. Templated separate chaining hash tables are included
as part of the Boost and standard C++ libraries. Additionally,
the Intel TBB library provides versatile hash tables that support
concurrent insertion and iteration.

3.2.4 CuckooHashing. Cuckoo hashing was originally pro-
posed by Pagh et al. [34]. Its core concept is to store items in
one of two tables, each with a corresponding hash function (this
can be extended to additional tables). If a bucket is occupied by
another item, the existing item is displaced and reinserted into
the other table. This process continues until all items stabilize,
or the number of displacements exceeds an arbitrary threshold.
Cuckoo hashing provides a guarantee that reads take no more
than two lookups. Its main drawback is relatively slower and
less predictable insert operations, and the possibility of failed
insertions.

In [29], researchers from Intel labs presented a concurrent
cuckoo hashing technique Libcuckoo. Libcuckoo introduces im-
provements to the insertion algorithm by leveraging hardware
transactional memory (HTM). This hardware feature allows con-
current modiications of shared data structures to be atomic.
Their experimental results indicate that Libcuckoo outperforms
MemC3 [14], and Intel TBB [35].

3.3 Tree-based Aggregation Algorithms

Hash-based and sort-based aggregation approaches are very pop-
ular, mainly due to a heavy focus of past studies on "write once
read once" (WORO) aggregation workloads, as opposed to "write
once read many" (WORM). We consider several tree data struc-
tures, and assess their viability for aggregation.

Trees are commonly used to evaluate range conditions. How-
ever, aggregation benchmarks, such as TPC-H, do not include
range queries. Tree data structures are well suited to incremental
dynamic growth. The trade-of is higher time complexities for
both insert and lookup operations, compared to hash tables.

We divide the tree data structures into comparison trees and
radix trees. Comparison trees have traditionally served as index-
ing structures, but Radix trees are being increasing adopted in
recent main memory databases, such as HyPer [23] and Silo [44].
The Btree family and Ttree are comparison trees, and ART and
Judy are Radix trees.

3.3.1 Btree. The B-tree is a popular tree data structure that
was initially invented in 1971 by Bayer et al. [5], and forms the
basis for many modern variants [7, 28]. A B-tree is a balanced
m-way tree where m is the maximum number of children per
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Table 2: Data Structure Time Complexity

Data Structure Average Case Insert Worst Case Insert Average Case Search Worst Case Search

ART O(k) O(k) O(k) O(k)

Judy O(k) O(k) O(k) O(k)

Btree O(log(n)) O(log(n)) O(log(n)) O(log(n))

Ttree O(log(n)) O(log(n)) O(log(n)) O(log(n))

Separate Chaining O(1) O(n) O(1) O(n)

Linear Probing O(1) O(n) O(1) O(n)

Quadratic Probing O(1) O(log(n)) O(1) O(log(n))

Cuckoo Hashing O(1) (amortized) O(n) (rehash) O(1) O(1)

node. The B-tree is perhaps best recognized as a popular disk-
based data structure used for database indexing, although they
are also used for in-memory indexes. The deining characteristics
of B-trees are that they are shallow and wide due to using a high
fanout. This reduces the number of node lookups as each node
contains multiple data items. B-trees may also include pointers
between leaf nodes to facilitate more eicient range scans. The
time complexity for inserting n items into a B-tree is O(n log(n)).
We use a cache-optimized implementation based on the STX

B+tree [7] which we will henceforth refer to as Btree.

3.3.2 Ttree. Ttree (spelled "T-tree" in the literature) was origi-
nally proposed in 1986 by Lehman et al. [25]. Its intended purpose
was to provide an index that could outperform and replace the
disk-oriented B-tree for in-memory operations. Although the
Ttree showed a lot of promise when it was irst introduced, we
show in section 3.4 that advancements in hardware design have
rendered it obsolete on modern processors.

3.3.3 ART. ART (Adaptive Radix Tree) [26] is a Radix tree
variant with a variable fan-out. Its inventors present it as a data
structure that is as fast as a hash table, with the added bonus of
sorted output, range queries, and preix queries. ART uses SIMD
instructions to concurrently compare multiple keys in parallel.
ART saves on memory consumption by using dynamic node sizes
and merging inner nodes when possible. Radix trees have several
key advantages compared to comparison trees. The height of
a radix tree depends on the length of the keys, rather than the
number of keys. Additionally, in contrast with comparison trees,
they do not need to perform re-balancing operations.

We also considered HOT [8], which builds on the same prin-
ciples as ART. However, we found its performance with integer
keys to be noticeably worse, as its main focus is string keys.

3.3.4 Judy Arrays. Judy Arrays (henceforth referred to as
Judy) were invented by Doug Baskins [4], and deined as a type of
sparse dynamic array designed for sorting, counting, and search-
ing. They are intended to replace common data structures such
as hash tables and trees. Judy is implemented as a 256-way Radix
tree that uses variable fan out and a total of 20 compression
techniques to reduce memory consumption and improve cache
eiciency [1]. Judy is ine-tuned to minimize cache misses on 64
byte cache-lines. Like many other tree data structures, the size
of a Judy array dynamically grows with the data and does not
need to be pre-allocated.

3.4 Data Structure Microbenchmarks

We use a microbenchmark to evaluate each data structure’s ei-
ciency in a store and lookup workload. We separately measure
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the time it takes to build the data structure (build phase), and the
time to read all the items in the data structure (iterate phase). All
hash tables are sized to the number of elements. The results are
depicted in Figure 3 using the abbreviations outlined in Table 3.
With the exception of Hash_LC, the build phase is faster on all
the hash tables due O(1) insert complexity. Hash_LC performs
poorly in the build phase because it is designed as a concurrent
data structure. We evaluate its concurrent scalability in Section
5.8. Hash_LP and Hash_Dense provide the fastest overall times.
Btree is noticeably faster in the iterate phase, but it takes a rela-
tively long time to build due to the cost of balancing the tree. Due
to the relatively poor performance exhibited by Ttree in both
phases, we opt to omit it from subsequent experiments.

3.5 Time Complexity

It is a well known fact that time complexities for algorithms are
not always the best predictors of real-world performance. This is
due to a number of factors, including hidden constants and over-
heads arising from the implementation, hardware characteristics
such as CPU architecture cache and TLB, compiler optimizations,
and operating systems. On modern systems, cache misses are par-
ticularly expensive. Nevertheless, time complexity is widely used
as a mean to understand and compare the relative performance
of diferent algorithms.

Table 2 provides an overview of the known time complexities
for each of the data structures that we evaluate. Here n denotes
the number of elements, and k the number of bits in the key.

4 DATASETS

In order to efectively evaluate the algorithms, we generate a
set of synthetic datasets that vary in terms of input size, group-
by cardinality, key distribution, and key range. Our datasets
are based on the highly popular input distributions described
in prior works [11, 18, 20]. We employ several modiications to
these datasets, with the goal of expanding the data characteristics
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Table 3: Algorithms and Data Structures

Label Type Description

ART Tree Adaptive Radix Tree [26]
Judy Tree Judy Array [4]
Btree Tree STX B+Tree [7]
Hash_SC Hash std::unordered_map [21]

(Separate Chaining)
Hash_LP Hash Linear Probing (Custom)
Hash_Sparse Hash Google Sparse Hash [41]
Hash_Dense Hash Google Dense Hash [41]
Hash_LC Hash Intel libcuckoo [29]
Introsort Sort std::sort (Introsort) [21]
Spreadsort Sort Boost Spreadsort [42]

Table 4: Dataset Distributions

Abbreviation Description Cardinality

Rseq Repeating Sequential Deterministic

Rseq-Shf Rseq Uniform Shuled Deterministic

Hhit Heavy Hitter Deterministic

Hhit-Shf Hhit Uniformly Shuled Deterministic

Zipf Zipian Probabilistic

MovC Moving Cluster Probabilistic

that we evaluate. Some datasets, such as the sequential dataset,
produce very predictable patterns. For such datasets, we generate
an additional variant with uniform random shuling. In [11] it
is mentioned that the group-by cardinality is often probabilistic.
We enforce deterministic group-by cardinality in cases where the
target distribution of the dataset would not be afected.

Throughout this paper we use random to refer to a uniform
random function with a ixed seed, and shuling refers to the
use of the aforementioned function to shule all the records in
a dataset. The number of records in the dataset is denoted as n
records and the group-by cardinality is c.

In the repeating sequential dataset (RSeq), we generate a se-
ries of segments that contain multiple number sequences. The
number of segments is equal to the group-by cardinality, and the
number of records in each segment is equal to the dataset size
divided by the cardinality. A shuled variant of the repeating se-
quential dataset (RSeq-Shf ) is also generated. This dataset mimics
transactional data where the key incrementally increases.

In the heavy hitter dataset (HHit), a random key from the key
range accounts for 50% of the total keys. The remaining keys are
produced at least once to satisfy the group-by cardinality, and
then chosen on a random basis. In a variant of this dataset, the
resulting records are shuled so that the heavy hitters are not
concentrated in the irst half of the dataset. Real-world examples
of heavy hitters include top selling products, and network nodes
with the highest traic.

In the Zipian dataset (Zipf ), the distribution of the keys is
skewed using Zipf’s law [36]. According to Zipf’s law, the fre-
quency of each key is inversely proportional to its rank. We irst
generate a Zipian sequence with the desired cardinality c and
Zipf exponent e = 0.5. Then we take n random samples from
this sequence to build n records. The inal group-by cardinality is
non-deterministic and may drift away from the target cardinality
as c approaches n. The Zipf distribution is used to model many
big data phenomena, such as word frequency, website traic, and
city population.

Table 5: Experiment Parameters

Dataset Repeating Sequential, Heavy
Hitter, Moving Cluster, Zipian

Dataset Size 100M, 10M, 1M, 100k

Group-by

Cardinality

100, 1000, 10000, 100000, 1000000,
10000000

Algorithm Hash_LP, Hash_SC, Hash_LC,
Hash_Sparse, Hash_Dense, ART,
Judy, Btree, Introsort, Spreadsort,
Hash_TBBSC, Sort_BI, Sort_QSLB

Thread Count 1, 2, 3, 4, 5, 6, 7, 8 (logical core count)

Query Q1 (Vector Distributive),
Q3 (Vector Holistic),
Q6 (Scalar Distributive),
Q7 (Vector Distributive with Range)

In the moving cluster dataset (MovC), the keys are chosen
from a window that gradually slides. The i th key is randomly se-
lected from the range ⌊(c −W )i/n⌋ to ⌊(c −W )i/n +W ⌋, where
the window sizeW = 64 and the cardinality c is greater than the
window size (c >=W ). The moving cluster dataset provides a
gradual shift in data locality and is similar to workloads encoun-
tered in streaming or spatial applications.

5 RESULTS AND ANALYSIS

In this section we evaluate the eiciency of the aggregation al-
gorithms. We examine and compare the performance impact of
dataset size, group-by cardinality, key skew and distribution, data
structure algorithm, and the query and aggregation functions.
We also evaluate peak memory usage as a measure of each al-
gorithm’s memory eiciency. The experimental parameters are
outlined in Table 5.

For each experiment the input dataset is preloaded into main
memory. We do not measure the time to read the input from disk.
Throughout this paper we aim to understand how each of these
dimensions can afect main memory aggregation workloads. Due
to space constraints we only show the results for Q1, Q3, Q6 and
Q7. We start the experiments with two common vector aggre-
gation queries (Q1 and Q3) in Section 5.2. Due to the popularity
of these queries, we further analyze these queries by evaluating
cache and TLB misses in Section 5.3, memory usage for difer-
ent dataset sizes in Section 5.4, and data distributions in Section
5.5. Additionally, we evaluate range searches (Q7) in Section 5.6
and scalar aggregation queries (Q6) in Section 5.7. We examine
multithreaded scaling in Section 5.8. Finally, we summarize our
indings in Section 6. We now outline our experimental setup.

5.1 Platform Speciications

The experiments are evaluated on a machine with an Intel Core
i7 6700HQ processor at 3.5GHz, 16GB of DDR4 RAM at 2133MHz,
and a 512GB SSD. The CPU is a quad core based on the Skylake
microarchitecture, with hyper-threading (8 logical cores), 256KB
of L1 cache, 1MB of L2 cache, and 6MB of L3 cache. The TLB
can hold 64 entries in the L1 Data TLB, and 1536 entries in the
L2 Shared TLB (4KB pages). The code is compiled and run on
Ubuntu Linux 16.04 LTS, using the GCC 7.2.0 compiler, and the
-O3 and -march=native optimization lags. We now present and
discuss the experimental results.
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Figure 4: Vector Aggregation Q1 - 100M Records

5.2 Results - Vector Aggregation

We begin our experiments by evaluating Q1 and Q3 (see Table
1), which are based on commonly used aggregate functions. Due
to space constraints and the similarity between Algebraic and
Distributive functions, we do not show results for Q2. In these
experiments, we keep the dataset size at a constant 100M and
vary the group-by cardinality from 102 to 107. In each chart we
measure the query execution time for a given query and dataset
distribution, and the group-by cardinality increases from left to
right. The results for Q1 (Vector COUNT) and Q3 (Vector ME-
DIAN) are shown in Figures 4 and 5 respectively. A larger group-
by cardinality means more unique keys, and fewer duplicates. In
tree-based algorithms the data structure dynamically grows to
accommodate the group-by cardinality. This is relected in the
gradual increase in query execution time. The insert performance
of ART and Judy depends on the length of the keys, which in-
creases with cardinality. Additionally, the compression employed
by ART and Judy are more heavily used at high cardinality.

The results for Q3 show that Spreadsort is the fastest algo-
rithm across the board. The overall trend shows that hash-based
algorithms, such as Hash_SC and Hash_LP, are competitive with
Spreadsort until the group-by cardinality exceeds 104. The ex-
ecution times for both Spreadsort and Introsort show consider-
ably less variance, whereas the worsening of data locality re-
sults in sharp declines in performance for the hash-based and
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Figure 5: Vector Aggregation Q3 - 100M records

tree-based implementations. The performance of Hash_Sparse
dramatically worsens at 107 groups, suggesting that the com-
bination of Hash_Sparse’s gradual growth policy and the extra
space needed by this query result in a much steeper decline in
performance compared to Q1.

In order to understand why Hash_LP outperforms all the other
algorithms in Q1, we need to consider several factors. Firstly, the
average insert time complexity (as shown in Table 2) is unafected
by group-by cardinality. Secondly, the cache-friendly layout of
Hash_LP takes great advantage of data locality compared to the
other hash tables. Lastly, compared to Q3, Q1 does not require
additional memory to store the values associated with each key.
This reduces the pressure on the cache and TLB, and allows
Hash_LP to compete with memory eicient approaches such
as Spreadsort. We further explore cache and TLB behavior in
Section 5.3 and memory consumption in Section 5.4.

5.3 Results - Cache and TLB misses

Cache and TLB behavior are metrics of algorithm eiciency. To-
gether with runtime and memory eiciency, they paint a picture
of how diferent algorithms compare with each other. Processing
large volumes of data in main memory often leads to many cache
and TLB misses, which can hinder performance. A cache miss
can sometimes be satisied by a TLB hit, but a TLB miss incurs a
page table lookup, which is considerably more expensive. Using
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Figure 6: Cache and TLB misses - Rseq 100M Dataset

the perf tool, we measure the CPU cache misses and data-TLB (D-
TLB) misses of Q1 and Q3 with low cardinality (103 groups) and
high cardinality (106 groups) datasets. The results are depicted
in Figure 6.

It is interesting to compare the results in Figure 6(c) with the
performance discrepancy between Hash_LP and Spreadsort in
Q1. At low cardinality, the number of TLB misses is relatively
close between the two algorithms. However, at high cardinality,
Spreadsort exhibits considerably higher TLB misses. Similarly, in
Figure 4(a) we see the runtime gap between the two algorithms
widen in Hash_LP’s favor as the cardinality increases to 107.

Although this metric is not a guaranteed way to predict the
relative performance of the algorithms, it is a fairly reliable mea-
sure of scalability and overall eiciency. The cache behavior of
Spreadsort is consistently good. Other algorithms, such as ART,
exhibit large jumps in both cache and TLB misses. This correlates
with similar gaps in the query runtimes, and it is noted in [8]
that ART’s memory eiciency and performance may degrade if
it creates many small nodes due to the dataset distribution.

5.4 Results - Memory Eiciency

Memory eiciency is a performance metric that is arguably as
important as runtime speed. We now measure the peak memory
consumption at various dataset sizes.

To do so we lock the group-by cardinality at 103 and vary the
dataset size from 105 up to 108. These measurements are taken
by using the Linux /usr/bin/time -v tool to acquire the maximum

resident set size for each coniguration. The results for Q1 are
depicted in Table 6 and the memory usage of Q3 is shown in
Table 7. The results show that the hash tables consume the most
memory, followed by the tree data structures. The sort algorithms
are the most memory eicient because they sort the data in-place.
In order to maintain good insert performance, most hash tables
consume more memory than they need to store the items, and

Table 6: PeakMemoryUsage (MB) - Q1 onRseq 103 Groups

Dataset Size

Algorithm

105 106 107 108

ART 4.45 11.61 131.61 1027.44

Judy 4.31 11.53 131.49 1027.45

Btree 4.54 11.79 131.66 1027.60

Hash_SC 5.45 19.41 159.07 1540.95

Hash_LP 5.23 18.67 156.29 1529.44

Hash_Sparse 4.61 11.94 131.68 1027.58

Hash_Dense 6.42 27.33 336.02 2814.70

Hash_LC 26.95 44.44 263.14 2069.90

Introsort 4.50 11.74 131.66 1027.59

Spreadsort 4.53 11.55 131.65 1027.44

Table 7: PeakMemoryUsage (MB) - Q3 onRseq 103 Groups

Dataset Size

Algorithm

105 106 107 108

ART 5.07 15.26 132.57 1212.46

Judy 4.87 15.37 132.68 1212.82

Btree 5.14 15.33 132.78 1212.64

Hash_SC 5.88 23.28 211.39 1986.78

Hash_LP 7.80 45.55 437.76 4264.07

Hash_Sparse 5.11 15.92 137.78 1255.51

Hash_Dense 12.74 79.16 1156.55 9404.48

Hash_LC 30.01 68.44 686.95 5575.09

Introsort 4.45 11.61 131.57 1027.50

Spreadsort 4.31 11.66 131.59 1027.48

some will only resize to powers of two. Hash_Dense’s memory
usage is particularly high because it uses 6× the size of the entries
in the hash table when performing a resize. After the resize is
completed, the memory usage shrinks down to 4× the previous
size. Comparing Tables 6 and 7, we see a jump in memory usage
from Q1 to Q3. This is due to the fact that Q3 requires the data
structures to store the keys and all associated values in main
memory, whereas Q1 only requires the keys and a count value.
Consequently, holistic queries like Q3 will generally consume
more memory.

5.5 Results - Dataset Distribution

These experiments show the performance impact of the data
key distribution. The results are presented in Figures 7(a) and
7(b). In each igure, we vary the key distribution while keeping
the dataset size at a constant 100 million records. To get a better
understanding of how this factor ties in with cardinality, we show
results for both low and high cardinality (103 and 106 groups).

The results point out that Zipf and Rseq-Shf are generally
the most performance-sensitive datasets. The shuled variants
of Rseq and HHit take longer to run due to a loss of memory
locality. By comparing the two igures we can see that this efect
is ampliied by group-by cardinality, as it increases the range of
keys that must be looked up in the cache. In the low cardinality
dataset, the number of unique keys is small compared to the
dataset size. Introsort is the overall slowest algorithm at low car-
dinality and its performance is around the middle of the pack at
high cardinality. This is in line with prior works suggesting that
sort-based aggregation is faster when the group-by cardinality
is high [32]. However, as we can see in the results produced by
Spreadsort, the algorithm also performs well at low cardinality
which contradicts earlier claims. Due to this, it may be worth
revisiting hybrid sort-hash aggregation algorithms in the future.
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Figure 7: Vector Q1 - Variable Key Distributions - 100M
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Figure 8: Range Search Aggregation Q7 - 100M records

The results also highlight an interesting trend when it comes
to shuled/unordered data. Observe that ART’s performance in
Figure 7(b) signiicantly worsens when going from Rseq to Rseq-
Shf or indeed any unordered distribution. The combination of
high cardinality and unordered data increase pressure on the
cache and TLB. If we consider how well Spreadsort performs
in these situations, then the results indicate that presorting the
data before invoking the ART-based aggregate operator could
signiicantly improve performance. However, careful considera-
tion of the algorithm and dataset is required to avoid increasing
the runtime.

5.6 Results - Range Search

The goal of this experiment is to evaluate algorithms that provide
a native range search feature, and combine this with a typical
aggregation query. Although it is possible to implement an inte-
ger range search on a hash table, this would not work for strings
and other keys with non-discrete domains. Consequently, we
focus on the tree-based aggregation algorithms. Q7 calculates
the vector count aggregates for a range of keys. The tuples that
do not satisfy the range condition could be iltered out before
building the index (if the range is known in advance). We assume
that (a) the data has already been loaded into the data structure,
and (b) this is a a Write Once Read Many (WORM) workload, and
multiple range searches will be satisied by the same index.

We evaluate the time it takes to perform a range search on each
of the tree-based data structures for ranges that cover 25%, 50%
and 75% of the group-by cardinality (the smaller ranges are run
irst). The results are shown in Figure 8. In Figure 8(c), we see that
the time to build the tree dominates the runtime. The search times
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Figure 9: Scalar Aggregation Q6 - 100M records

shown in Figures 8(a) and 8(b) indicate that Btree signiicantly
outperforms the other algorithms if the tree is prebuilt. This is
likely due to the pointers that link each leaf node, resulting in
one O(log(n)) lookup operation to ind the lower bound of the
search, and a series of pointer lookups to complete the search.
At low cardinality (103 groups), the range search time for ART is
12% lower than Judy, but it is 94% higher at high cardinality (106

groups). If we factor in the build time and consider the workload
WORO, then ART is the fastest algorithm.

5.7 Results - Scalar Aggregation

Unlike Vector aggregate functions, which output a row for each
unique key, Scalar aggregate functions return a single row. We
evaluate Q6 on the tree-based and sort-based aggregation algo-
rithms. Hash tables are unsuitable for this query because the
keys need to be in lexicographical order to calculate the median.
Figure 9 shows the query execution time for Q6 with diferent
datasets. The overall winner of this workload is the Spreadsort
algorithm. In the case of a dynamic or WORM workload, a tree-
based algorithm would have two advantages of faster lookups
and requiring considerably less computation for new inserts. A
good candidate for tree-based scalar aggregation is Judy, as it
outperforms Introsort on all the datasets, and comes close to the
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Figure 11: Multithreaded Scaling - Rseq 100M

performance of Spreadsort in three out of the six datasets. Al-
though ART wins over Judy in some cases, it is inconsistent and
its worse case performance is signiicantly worse, rendering it a
poor candidate for this workload. The conclusion is in line with
our expectation. To calculate the scalar median of a set of keys,
Spreadsort is the fastest algorithm. If an index has already been
built then Judy is usually the quickest in producing the answer.

5.8 Multithreaded Scalability

A concurrent algorithm’s ability to provide a performance advan-
tage over a serial implementation depends on two main factors:
the problem size, and the algorithmic eiciency. Considerations
pertaining to algorithmic eiciency include various overheads
associated with concurrency, such as contention and synchro-
nization. In order to implement concurrent aggregate operators,
a suitable data structure must fulill three requirements. Firstly,
they must be designed for data-level parallelism that can scale
with an increasing number of threads. Secondly, they must sup-
port thread-safe insert and update operations. It is not uncommon
to encounter data structures that support concurrent put and
get operations, but provide no way to safely modify existing val-
ues. Lastly, they must provide a means to iterate through their

Table 8: Concurrent Algorithms and Data Structures

Label Type Description

Hash_TBBSC Hash TBB Separate Chaining
(Concurrent Unordered Map [35])

Hash_LC Hash Intel Libcuckoo [29]

Sort_BI Sort Block Indirect Sort [42]
Sort_QSLB Sort Quicksort with Load Balancing

(GCC Parallel Sort [43])

content, preferably without requiring prior knowledge of the
range of values. In this section, we evaluate the performance and
scalability of concurrent data structures and algorithms which
fulill all three criteria. We considered and ultimately rejected
several candidate tree data structures. HOT [8] does not support
concurrent incrementing of values (needed by Q1) or multiple
values per key (needed by Q3). BwTree [28, 46] is a concurrent
B+Tree originally proposed by Microsoft. However, our prelim-
inary experiments found its performance to be very poor, as
limitations in its API prevent eicient update operations. These
characteristics have been discovered by other researchers as well
[47]. The concurrent variant of ART [27] currently lacks any
form of iterator, which is essential to our workloads.

We use a microbenchmark to select two parallel sorting al-
gorithms from among four candidates. We vary the number of
threads from one to eight, and include the two fastest single-
threaded sorting algorithms for comparison. The workload con-
sists of sorting random integers between 1-1M, similar to the
microbenchmark presented in Section 3. The results are shown
in Figure 10. Sort_BI is a novel sorting algorithm, based on the
concept of dividing the data into many parts, sorting them in
parallel, and then merging them [42]. Sort_TBB is a Quicksort
variant that uses TBB task groups to create worker threads as
needed (up to number of threads speciied). Sort_SS (Samplesort)
[42] is a generalization of Quicksort that splits the data into mul-
tiple buckets, instead of dividing the data into two partitions
using a pivot. Lastly, Sort_QSLB [43] is a parallel Quicksort with
load balancing. Considering the performance and scalability at
8 threads, we select the Sort_BI and Sort_QSLB algorithms to
implement sort-based aggregate operators.

We selected four concurrent algorithms and algorithms, listed
in Table 8, all of which are actively maintained open-source
projects. We introduced Hash_LC in Section 3, and Hash_TBBSC
is a concurrent separate chaining hash table that is similar to
Hash_SC. We evaluate the multithreaded scaling for Q1 and Q3,
on both low and high dataset cardinality. The results are de-
picted in Figure 11. We observe that both hash tables are faster
in Q1, and Hash_TBBSC outperforms Hash_LC regardless of the
cardinality. Sort-based approaches take the lead in Q3. The gap be-
tween sorting and hashing increases at higher cardinalities. This
echoes our previous single-threaded results. The performance of
Hash_TBBSC degrades signiicantly in Q3, because storing the
values requires the use of a concurrent data structure (in this case
a concurrent vector) as the value type. This is a limitation of the
hash table implementation, which results in additional overhead
due to synchronization and fragmentation [35]. We also consid-
ered implementing Q3 using TBB’s concurrent multimap, but the
performance was signiicantly worse. Hash_LC does not sufer
from these issues, as it provides an interface for user-deined
upsert functions. We observe similar trends with other data dis-
tributions, which we omit here due to space constraints.
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6 SUMMARY AND DISCUSSION

Based on the insightswe gained from our experiments, we present
a decision low chart in Figure 12 that summarizes our main ob-
servations with regards to the algorithms and data structures.
We acknowledge that our experiments do not cover all possible
situations and conigurations, and our conclusions are based on
these computational results and observations.

We start by picking a branch depending on the output format
of the aggregation query. If the query is scalar, the workload deter-
mines the best algorithm. If query workload is "Write Once Read
Once" (WORO) then the Spreadsort algorithm provides the fastest
overall runtimes. If we require a reusable data structure that can
satisfy multiple queries of this category, then Judy is a more suit-
able option. Going back to the start node, if the aggregation query
is vector, our decision is determined by the aggregate function
category. Holistic aggregates (such as Q3) are considerably faster,
and more memory eicient with the sorting algorithms, particu-
larly Spreadsort (single-threaded) and Sort_BI (multithreaded).
This advantage is more noticeable at high group-by cardinality. If
the query is distributive (such as Q1) then our experiments show
that Hash_LP (single-threaded) and Hash_TBBSC (multithreaded)
are the fastest algorithms. For aggregate queries that include a
range condition, we found that Btree greatly outperformed the
other algorithms in terms of search times. This advantage is only
relevant if we assume that the tree has been prebuilt. Otherwise,
ART is the best performer in this category, due to its advantage
in build times.

7 RELATED WORK

There have been a broad range of studies on the topic of ag-
gregation. With the growing popularity of in-memory analytics
in recent years, memory-based algorithms have gained a lot of
attention. We explore some of the work that is thematically close
to our research.

Some studies have proposed novel index structures for data-
base operations. Notably, recent studies have looked into replac-
ing comparison trees with radix trees. In [26] Leis et al. proposed
an adaptive radix tree (ART) designed for in-memory query pro-
cessing. The authors evaluated their data structure with the TPC-
C benchmark, which does not focus on analytical queries or aggre-
gation. Based on a similar concept Binna et al. propose HOT [8]
(Height Optimized Trie). The core concepts behind this approach
are reducing the height of the tree on sparsely distributed keys,
and the use of AVX2 SIMD instructions for intra-cycle parallelism.
The authors demonstrate that HOT signiicantly outperforms
other indexes, such as ART [26], STX B+tree [7], and Masstree
[31], on insert/read workloads with string keys. However, for
integer keys, ART maintains a notable performance advantage
in insert performance, and is competitive in read performance.

The duality of hashing and sorting for database operations is a
topic that continues to generate interest. The preferred approach
has changed many times as hardware, algorithms, and data have
evolved over the years. Early database systems relied heavily
on sort-based algorithms. As memory capacity increased, hash-
based algorithms started to gain traction [16]. In 2009 Kim et al.
[24] compared cache-optimized sorting and hashing algorithms
and concluded that hashing is still superior. In [38] Satish et al.
compared several sorting algorithms on CPUs and GPUs. Their
experiments found that Radix Sort is faster on small keys, and
Merge Sort with SIMD optimizations is faster on large keys. They
predicted that Merge Sort would become the preferred sorting
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Figure 12: Decision Flow Chart

method in future database systems. It can be argued that this
prediction has yet to materialize.

Müller et al. proposed an approach to hashing and sorting
with an algorithm that can switch between them in real time [32].
The authors modeled their algorithm based on their observation
that hashing performs better on datasets with low cardinality, but
sorting is faster when there is high data cardinality. This holds
true with some basic hashing or sorting algorithms, but there are
algorithms for which this model does not apply. Their approach
adjusts to the cardinality and skew of the dataset by setting a
threshold on the number of groups found in each cache-sized
chunk of the data. This approach cannot be used for holistic
aggregation queries, as the data is divided into chunks.

Balkesen et al. [2] compared the performance of highly opti-
mized sort-merge and radix-hashing algorithms for joins. Their
implementations leveraged the extra SIMD width and processing
cores found in modern processors. They found that hashing out-
performed sorting, although the gap got much smaller for very
large datasets. The authors predicted that sorting may eventually
outperform hashing in the future, if the SIMD registers and data
key sizes continue to expand.

Parallel aggregation algorithms focus on determining eicient
concurrent designs for shared data structures. A key question
in parallel aggregation is whether threads should be allowed
to work independently, or to work on a shared data structure.
Cieslewicz et al. [11] present a framework to select a parallel
strategy based on a sample from the dataset. Surprisingly, the
authors claim that sort-based aggregation can only be faster than
hash-based aggregation if the input is presorted. We found that in
the context of single threaded algorithms, sort-based aggregation
is quite competitive with hash-based.

In [49], the authors examined several previously proposed
parallel algorithms, and propose a new algorithm called PLAT
based on the concept of partitioning, and a combination of local
and global hash tables. Most of these algorithms do not support
holistic aggregation, because they split the data into multiple
hash tables in order to reduce contention. Furthermore, none of
the algorithms are ideal for scalar aggregation as they do not
guarantee lexicographical ordering of the keys.
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8 CONCLUSION

Aggregation is an integral aspect of big data analytics. With
rising RAM capacities, in-memory aggregation is growing in
importance. There are many diferent factors that can afect the
performance of an aggregation workload. Knowing and under-
standing these factors is essential for making better design and
implementation decisions.

We presented a six dimensional analysis of in-memory ag-
gregation. We used microbenchmarks to assess the viability of
20 diferent algorithms, and implemented aggregation operators
using 14 of those algorithms. Our extensive experimental frame-
work covered a wide range of data structures and algorithms,
including serial and concurrent implementations. We also varied
the query workloads, datasets, and the number of threads. We
gained a lot of useful insights from these experiments. Our re-
sults show that some persisting notions about aggregation do
not necessarily apply to modern hardware and algorithms, and
that there are certain combinations that work surprisingly better
than conventional wisdom would suggest (see Figure 12).

To our knowledge, this is the irst performance evaluation
that conducted such a comprehensive study of aggregation. We
demonstrated with extensive experimental evaluation that the
ideal approach in a given situation depends on the input and
the workload. For instance, sorting-based approaches are faster
in holistic aggregation queries, whereas hash-based approaches
perform better in distributive aggregation queries.
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Abstract
Hardware specialization has been considered as a promising way
to overcome the power wall, ushering in heterogeneous computing
paradigm. Meanwhile, several trends, such as cloud computing
and advanced FPGA technology, are converging to eliminate the
barriers to custom hardware deployment, allowing it to be both
technologically and economically feasible. In this paper, we con-
duct a pioneering study of hardware specialization for OLTP
databases and present a fast and power-efficient transaction pro-
cessing system built on FPGA, called BionicDB. With an order of
magnitude higher power-efficiency inherently offered by FPGA,
BionicDB performs faster or comparable to state-of-the-art soft-
ware OLTP system by accelerating indexing and inter-worker
communication.

1 INTRODUCTION
For the past decade, multicore has been a dominant scaling path.
However, multicore hardware is getting more and more stagnant
over time due to the growing scalability pressure and continu-
ing power wall [16, 21] . To tackle the situation, hardware spe-
cialization has garnered a great deal of attention. It is widely
regarded as a way to provide substantial power saving, while
providing application-specific acceleration at the expense of gen-
erality [22, 30, 32, 34, 38, 44, 45] .

In the meantime, field-programmable gate array (FPGA) tech-
nology has been matured, making custom hardware deployment
more viable and economical. Its reconfigurability can return eco-
nomic gains in accommodating quickly changing application de-
mands by lifting manufacturing burden; we can reconfigure hard-
ware to update or patch on-the-fly, as we do so for software. More
importantly, inherent power efficiency of FPGA provides a great
opportunity to overcome the power wall. Although running at low
clock frequency, fine-grained, massive parallelism of FPGA could
potentially compensate the low clock frequency with suitable
custom hardware design on top.

For these reasons, datacenters increasingly integrate FPGA as a
primary platform to run various custom accelerators for some data-
intensive applications, such as search engine, deep learning and
OLAP databases [4, 38] . Characteristically, those are compute-
bound, dataflow applications. For such workloads, FPGA’s mas-
sive fine-grained parallelism holds great promise for compute
acceleration while CPU’s limited and stagnant parallelism be-
comes a major computation bottleneck in dealing with huge data
volume.

However, hardware specialization for transaction processing
(OLTP) has been rarely explored. It has even been regarded as
questionable because of OLTP’s very different characteristics from
previous cases: OLTP is generally bound by memory stalls and
communication, rather than computation. In this situation, compu-
tation acceleration does not promise meaningful performance gain.

© 2019 Copyright held by the owner/author(s). Published in Proceedings of the 22nd
International Conference on Extending Database Technology (EDBT), March 26-29,
2019, ISBN 978-3-89318-081-3 on OpenProceedings.org.
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Meanwhile, multicore CPU is returning diminishing performance
gain with growing power consumption, putting scalability efforts
at risk.

Inspired by the findings and technology trends, we conclude
that it is imperative to explore an OLTP-oriented hardware that is
power-efficient to operate under restrictive power budget and fast
enough to meet performance requirement at the same time. FPGA
can easily satisfy the power goal, but the question is how fast it
can be while preserving the power efficiency.

In this paper, we report the design and implementation of
BionicDB on FPGA as a case of hardware specialization for
OLTP. BionicDB is an OLTP-oriented hardware optimized for
in-memory, partitioned databases. Preserving the inherent power
efficiency of FPGA, it achieves high performance thanks to vari-
ous OLTP-oriented custom hardware that accelerate 1) index and
2) inter-worker communication. Also, it takes a hybrid processor-
accelerator (software-hardware) architecture to complement each
other. Our experimental results show that BionicDB can achieve
an order of magnitude power saving while providing competitive
performance compared to state-of-the-art software system; with
the same number of worker threads, BionicDB can be faster by
up to 4.5x when fully utilized and maintains comparable perfor-
mance in TPC-C transactions where BionicDB is substantially
underutilized.

The main contributions of this paper are as follows.
• We establish a holistic strategy for fast and power-efficient

OLTP through hardware specialization.
• We propose index pipelining and transaction interleaving for

index acceleartion.
• We suggest on-chip message-passing for faster inter-worker

communication in partitioned databases.
• We show that hybrid processor-accelerator (software-hardware)

approach is required for OLTP.

The remainder of this paper is organized as follows. Section 2
covers background on FPGA. Section 3 discusses design deci-
sions, laying the foundations of BionicDB. Section 4 describes
how BionicDB works in detail. Section 5 evaluates BionicDB,
comparing to a software OLTP system. Section 6 summarizes
related work. Section 7 contains our conclusion and suggests
possible future research directions.

2 FIELD PROGRAMMABLE GATE ARRAYS
FPGA is a reconfigurable hardware platform and becoming an
enabling technology for hardware specialization for a wide variety
of application. Its main advantages are low power consumption
and massive fine-grained parallelism that can be leveraged for
acceleration. While CPU still remains as a central processing
resource, certain CPU-unfriendly work can be offloaded to custom
accelerator built on FPGAs for higher efficiency.

The main building blocks of FPGA that enable reconfigurability
are lookup tables (LUT), flip-flops (FF) and programmable routing
fabric. The first two components are used to implement logic func-
tions, and the routing fabric interconnects them programmably.
In addition to the programmable elements, modern FPGA chips
commonly include hardwired blocks for higher efficiency, such as
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Challenge Solution
Memory stalls Index pipelining
Memory stalls Transaction interleaving
Inter-worker communication On-chip message-passing over DORA
Heavy control-flow Hybrid processor-accelerator design

Table 1: Design summary

block RAMs (BRAMs), digital signal processors (DSPs) and even
embedded processors. Hardware can be designed with hardware
description language (HDL) and CAD tools provided by a vendor
compile HDL code into a bitstream that physically implements
the hardware design on a target chip.

FPGA trades efficiency for reconfigurability, largely because
of the area/speed/power overhead from programmable fabric, re-
siding in a middle ground between ASIC and CPU in terms of ef-
ficiency and flexibility; ASIC provides the highest efficiency with
lowest flexibility, while CPU provides the opposite. But FPGA
can be an excellent platform for applications where the volume
of production does not justify ASIC manufacturing. In datacen-
ters where servers are dynamically re-purposed for a changing
set of applications, a FPGA-augmented server can reprogram
both software and hardware at runtime, allowing more efficient
resource provisioning [38] . It also provides a chance to free up
a number of CPUs from cycle-consuming jobs and spare them
for more suitable (SW-friendly) tasks, returning higher datacenter
efficiency.

3 DESIGN
BionicDB aims to provide 1) power saving 2) and high perfor-
mance at the same time for OLTP. Software-only systems on
low-power processors usually end up trading one for another;
[40] reports that an ARM processor sacrifices performance by
3x with merely 25% energy efficiency gain, compared to a Xeon
processor when running a high-performance in-memory OLTP.
Therefore, we leverage hardware specialization with FPGA to
achieve both goals. Table 1 summarizes the specific challenges
and solutions to address them.

3.1 Acceleration Strategy
We start from understanding bottlenecks in modern OLTP to iden-
tify “what to accelerate" and establish a strategy on “how to ac-
celerate". Typically, OLTP systems serve massively concurrent
transactions that make small random updates to databases [1, 20] .
Such workload characteristic naturally gives high pressure on
indexing and thread coordination.

Index. Although OLTP databases heavily rely on index, the CPU
is frequently bound by memory stalls from dependent pointer
chasing within an index probe, wasting huge amounts of cycles.
For example, a recent study reported roughly 40% overhead from
index in a state-of-the-art software OLTP system[24] . But ex-
isting software solutions are limited to overcome the memory
wall [19, 25] : 1) cache optimizations and bigger cache are easily
undermined by OLTP’s access randomness; 2) prefetching often
fails to hide memory latency due to the lack of computation to
overlap with; 3) software pipelining is inefficient with irregularity;
4) and group/dynamic prefetching is bound by the limited size of
the instruction window of a CPU.

BionicDB alleviates the memory stalls through index pipelin-
ing. The key concept of index pipelining is to overlap multiple
index accesses through hardware pipelining. It can provide higher
memory-level parallelism, thereby improving single-worker per-
formance. Also, we aim to exploit index parallelism not only

DRAM utilization

Index lookup 
(from txn A)

Index lookup 
(from txn A)

Index lookup 
(from txn B)

Hardware
pipeline stage 1 

Hardware
pipeline stage 2 

Hardware 
pipeline stage 3 

DRAM latency

DRAM access

(a) Index acceleration by overlapping index operations.

Partition 
worker 

Partition 
worker 

On-chip message-passing channels

FPGA 

DB partition DB partition 

Memory-resident, partitioned DB 

(b) Fast on-chip message-passing for partitioned DB.

Figure 1: OLTP acceleration strategy

within a transaction, but also across transactions. For that, trans-
action interleaving captures inter-transaction index parallelism,
improving the utilization of index pipelining. Figure 1a illustrates
how we can achieve higher memory-level parallelism with these
techniques.

Communication. Partitioned databases can simplify the hard-
ware complexity; theoretically, database resources are core-private
eliminating the burden of complex thread coordination, such
as concurrent index implementation. For that reason, we adopt
DORA[35, 36] which is a scalable partitioned database.

In regard to performance, it has very low overhead for a single-
partition transaction because inter-worker communication does
not take place at all. However, it requires inter-worker communi-
cation overhead when a transaction spans across partitions (multi-
site transaction). Recent studies [7, 8, 12] have revisited message-
passing semantic for partitioned databases, but software message-
passing can involve 1) memory latency when a message is evicted
from cache and 2) thread synchronization at concurrent message
queues that can be a scalability bottleneck. Despite the prob-
lems, there is no alternative or a bypass for software, because the
shared-memory is the only available communication semantic in
most CPUs. In other words, the shared-memory bottlenecks are
inevitable with software message-passing even when application-
level communication semantic is purely message-passing.

For faster communication in partitioned database, As illustrated
in Figure 1b , BionicDB provides an on-chip message-passing
method that can completely eliminate the overhead of software
message-passing. As a result, multisite transactions, a remaining
concern in partitioned databases, can be accelerated.

3.2 Hybrid Hardware-Software Approach
While software-only is inefficient for the challenges of memory
stalls and communication, the heavy control-flow in transaction
logic, such as conditional branches and dynamic loops, makes
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general-purpose processor technology indispensable. This natu-
rally leads to hybrid processor-accelerator approach that can deal
with the inefficiency of both hardware-only (dynamic control-
flow) and software-only (memory stalls, inter-worker communica-
tion) solutions.

The next question is how to integrate them. In our hardware
environment where FPGA is connected through PCIe, the exces-
sive PCIe latency (1us) between FPGA and host CPU can absorb
most acceleration benefits. Therefore, we implement a custom
softcore (microprocessor built around reconfigurable fabric) and
acceleration fabric altogether on a PCIe-attached FPGA chip for
tight integration, moving the majority of the OLTP components.
The mission of the softcore is to execute pre-compiled stored
procedures, while interacting with the index/communication ac-
celeration fabric. As a result, hardware and software can closely
collaborate, complementing each other. We design a custom core
from the scratch, rather than using a vendor-provided softcore,
to easily implement custom features and to integrate with the
acceleration fabric more efficiently.

Although unexplored in this work, upcoming in-socket FPGA
hardware[33] where FPGA is placed closer to host CPU is promis-
ing for hybrid software-hardware approach in that it allows to
re-use existing software ecosystem, while enabling fast FPGA
roundtrips thanks to low-latency interconnects, such as QPI.

4 ARCHITECTURE
4.1 Hardware Description
We build BionicDB on Micron HC-2 machine (formerly, Convey
HC-2)1 which contains four Xilinx Virtex-5 LX330 FPGA chips
on a PCIe card and two-socket Intel Xeon X5670 processors. The
memory subsystem of the FPGA card includes 64GB of DDR2
RAM, 8 memory controllers and 16 scatter-gather DIMMs. It
can provide up to 80GB/s memory bandwidth for random 64-bit
accesses when its 16 scatter-gather DIMMs are fully utilized with
all FPGA chips enabled. However, current implementation of

1 https://www.micron.com/about/about-convey-computer-accelerator-products/
hc-series

BionicDB uses only a single FPGA chip out of 4 and 8 DIMMs
out of 16, bound by the maximum bandwidth of 10GB/s. It is also
worth noting that in-memory OLTP is typically bound by memory
latency, rather than bandwidth, due to small random accesses.

4.2 Overview

Figure 2 illustrates the architecture of BionicDB. BionicDB im-
plements OLTP functionalities (stored procedure execution, in-
dexing, concurrency control and transaction management) on a
PCIe-attached FPGA chip, leaving a few background housekeep-
ing jobs (signaling FPGA to start/stop, memory management,
interactions with clients) to the host CPU. The database is par-
titioned, entirely residing in FPGA-side on-board DRAM. Each
partition is accessed by a single partition worker in FPGA, and we
fit multiple partition workers on a FPGA chip as many as its logic
capacity allows for thread-level parallelism. The main components
of a partition worker are 1) stored procedure execution engine and
2) acceleration fabric. The former includes the softcore and the
catalogue that stores stored procedures and metadata, and the lat-
ter is composed of a local index coprocessor and communication
channels.

We briefly describe the processing flow during transaction exe-
cution. The client should upload a pre-compiled stored procedure
along with all metadata to the catalogue in advance. After that, the
client can submit a transaction block to BionicDB for executing
the transaction. Then, a partition worker fetches the transaction
block from its input queue (step 1 in Figure 2). Once a transaction
block arrives, the softcore fetches the corresponding stored proce-
dure code from the catalogue and executes it (step 2 in Figure 2).
During the execution of a stored procedure, it makes a database
access by asynchronously passing an index request to the local
index coprocessor or a remote site through the communication
channels (step 3 in Figure 2). Meanwhile, the index operations
issued by the local softcore (foreground requests) can be over-
lapped in the index coprocessor. The index operations from remote
sites (background requests) also can be overlapped in the index
coprocessor (step 4 in Figure 2). After a batch of transactions is
entirely executed, the transactions are committed in serial order.
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0 Input key
8 Input key

UNDO log buffer

Scratch buffer

Output buffer

Stored procedure (code) Transaction block (data)

Figure 3: Stored procedure interface.

4.3 Softcore
In BionicDB, a transaction can be executed by invoking an as-
sociated stored procedure that is pre-compiled with BionicDB
instructions (will be described in this section). Then, the soft-
core executes the instructions while interacting with the index
accelerator where most performance gains come from.

Stored procedure execution. A stored procedure is composed
of three parts: 1) transaction logic code, 2) commit handler and
3) abort handler. The first part represents the original transaction
logic and the rest implements a commit protocol (currently, com-
mit/abort handlers should be defined by users). Depending on the
execution results during transaction logic, BionicDB moves on to
either the commit or the abort handler.

Once a stored procedure is registered, a client can submit a
transaction block to BionicDB to invoke the transaction at run-
time. A transaction block contains a transaction ID, input data
and buffers for result sets, intermediate data and transaction logs.
When it receives a transaction block, the softcore executes the
matching stored procedure code with the transaction ID, using
the input data and buffers in the transaction block. In the example
shown in Figure 3 , the stored procedure (left) tries to search a
tuple with a key at offset 0 and update a tuple with a key at offset
8 in the transaction block (right).

When generating a stored procedure, a compiler should trans-
late SQL statements into machine code, as Hekaton does with
T-SQL [14] (we used manually-written stored procedures, as the
compiler is beyond the scope of this paper). A client can register
a new transaction or change an existing one by uploading the
stored procedure code to BionicDB along with metadata to work
with, such as transaction information and table schema. It does not
require FPGA reconfiguration that involves hours-long synthesis,
so BionicDB can accommodate workload changes quickly.

Instruction set architecture. The instruction set of BionicDB is
composed of a subset of typical CPU instructions and DB instruc-
tions that encapsulate index operations (see Table 2). Figure 4
briefly illustrates how the softcore processes each instruction type
during stored procedure execution. CPU instructions are directly
executed by the softcore in five steps as simple RISC CPUs do:
Instruction Fetch, Decode, Execute, Memory and Writeback. We
ruled out instruction pipelining and out-of-order execution as
previous studies showed that such features do not translate into
meaningful improvement in OLTP [6, 17] .

DB instructions are added for invoking indexing services pro-
vided by the index coprocessor. For DB instructions, the softcore
collects metadata in Prepare stage, such as index type (hash or
skiplist) and transaction begin timestamp. In the next stage (Dis-
patch), the softcore passes the DB instruction with the metadata
to the local index coprocessor or a remote one via on-chip com-
munication channels, depending on the destination partition. DB

Instruction Type
INSERT DB
SEARCH DB
SCAN DB
UPDATE DB
REMOVE DB
ADD/SUB/MUL/DIV/MOV CPU
CMP CPU
LOAD/STORE CPU
JMP/BE/BLE/BLT/BGT/BGE CPU
RET CPU
COMMIT/ABORT CPU

Table 2: BionicDB instructions. DB instructions invoke index
operations provided by the index coprocessor.

IFetch

Decode

Execute

Memory

Writeback

Prepare

Dispatch

CPU inst. DB inst.

Local 
index coproc.

Remote 
index coproc.

(via on-chip comm.)

Figure 4: Instruction execution steps of the softcore.

instructions are asynchronously forwarded for overlapping multi-
ple index operations.

General-purpose registers (GP registers) are available to store
data or pointers, and special-purpose registers, including a pro-
gram counter (PC) and a status register that contains carry/ze-
ro/sign/overflow flags, are also available as typical CPUs. Ad-
ditionally, coprocessor registers (CP registers) are provided; the
result of a DB instruction is returned asynchronously to a CP reg-
ister specified in the DB instruction. Then, the softcore can copy
the result from the CP register to a GP register by executing a RET
instruction. Therefore, a DB instruction must be paired with a
RET instruction on the same CP register. The GP/CP register files
are implemented on BRAMs, instead of flip-flops, for resource ef-
ficiency, and 256 GP/CP registers are provided to a single softcore.
General-purpose cache memory was not implemented.

The addressing mode is base-offset. At the beginning of a trans-
action, a BionicDB worker sets a base address register with the
start address of a transaction block and reaches memory locations
within the block by adding the base address and an offset value.
The offset value could be either the content of a GP register or an
immediate value which is inlined to an instruction directly.

4.4 Index Coprocessor
The index coprocessor processes DB instructions from the local
softcore or a remote one. The key technique for acceleration
is hardware pipelining. We decompose an index algorithm into
sub-functions that can work in parallel and implement each sub-
function as a hardware pipeline stage. Each pipeline stage is a
finite-state machine that is awakened on source data arrival from
off-chip DRAM, performs a certain task, issues memory requests
designating the next stage as a destination and moves on to the
next incoming instruction. There could be multiple outstanding
DB instructions between neighboring stages.

Index pipelining can overlap multiple index accesses, achiev-
ing higher memory-level parallelism. But pipeline hazards can
happen when different stages access the same memory location.
We describe details of each index and discuss how to prevent
pipeline hazards in the following sections. Figure 5 shows the
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Figure 5: Index pipelining to overlap multiple index accesses. Hash index deals with point access and skiplist provides range scan.

index pipelining with hash and skiplist indexes. For point ac-
cess, BionicDB implements hash index that processes INSERT,
SEARCH, UPDATE and REMOVE instructions. Skiplist index
can handle SCAN instructions for range query, INSERT and RE-
MOVE instructions. Both indexes support variable-length key.

4.4.1 Hash index for point access We illustrate how the HW
hash index works in Figure 5a . KeyFetch stage takes a DB in-
struction and issues memory requests to fetch a search key from a
transaction block, designating Hash stage as a destination. Then,
the memory response containing the search key is queued at Hash
stage. Hash stage takes the search key from its input queue, com-
putes a hash value and loads a hash table entry with the hash value.
(we use Sdbm hash function2 for its minimal use of hardware
resources; it requires neither a huge lookup table nor an expensive
operation like modulo).

At this point, Hash stage forwards an INSERT instruction to
Install stage and the other instructions to HeadFetch stage. For
INSERT instruction, Install stage takes a hash table entry and
appends a new tuple to the entry. For SEARCH/UPDATE/RE-
MOVE instructions, HeadFetch stage checks the content of hash
table entry. If the value is NULL indicating that there is no tuple
installed, it returns a “NotFound" message to the destination CP
register specified in the DB instruction. Otherwise, it issues mem-
ory requests to read the first item of a hash bucket. KeyComp stage
compares the search key against the first item’s key. If they match,
it examines visibility check (will be explained in Section 4.7)
for concurrency control, otherwise, it passes the instruction to
Traverse stage to follow a hash conflict chain.

Traverse stage follows a hash conflict chain until it finds a
matching tuple or reaches the end of the chain. Unlike other stages
that contain only computation without memory stalls, this stage
could involve multiple memory stalls. Thus, Traverse could take
much longer time with poorly distributed hashing. We decouple
this stage from Compare stage so that an instruction that follows a
long hash conflict chain does not block succeeding instructions
that terminate at Compare stage. If hash conflict is frequent, mul-
tiple Traverse stages could be populated for balanced dataflow
over the pipeline. Also, a hash function with good distribution
and sufficiently large hash table could minimize the activation of
Traverse stage by reducing hash conflicts.

Pipeline hazards and prevention. There are two hazards in hash
index: insert-after-insert and search-after-insert (see Figure 6). In
the former case, lost update can happen between in-flight inserts

2 http://www.cse.yorku.ca/~oz/hash.html

accessing the same hash table entry, if the following request reads
a hash table entry before the preceding request updates it (see
Figure 6a). Although not illustrated in the figure, a SEARCH
instruction could read an inconsistent hash table entry at Hash
stage before Install stage finishes updating it. In both cases, the
reason for the hazards is that Hash and Install stages access the
same hash table entry without coordination.

To prevent the hazards, we use a pipeline-stall based coor-
dination scheme. BionicDB tracks the hash values of in-flight
instructions that passed Hash stage in a lock table on BRAM
(content-addressable memory could be used for faster check), and
Hash stage checks the lock table before accessing a hash bucket.
If a duplicate hash value is detected, it blocks until the lock entry
disappears (see Figure 6b). The lock table entry is deleted by
terminal stages when an instruction completes.

4.4.2 Skiplist for range scan For range scan, we choose
skiplist because it is efficient with index pipelining for range
scan (will be discussed later in this section). A skiplist index is a
collection of linked lists at multiple levels [37] . A skiplist node
(tower) includes a tuple and an array of pointers to the next towers
at different levels. The bottom link is a list of all towers, while
upper ones are short-cuts and contain towers with probabilistic
distribution; the number of towers decreases exponentially from
the bottom through the top, offering logarithmic time complexity
on average for traversal by preferring to traverse taller towers first.

Traversal pipelining. BionicDB maps skiplist indexing on deeply
pipelined datapath. Each pipeline stage covers an exclusive range
of levels. We illustrate an example of index pipelining for skiplist
in Figure 5b . In the example, four levels are mapped on four
skiplist pipeline stages. The level 3 stage starts pointer chasing
horizontally at the top level, stops at the tower having key 15
because its next tower contains an upper bound and drills down to
the lower level. As it goes out-of-range, it passes the instruction
to the next pipeline stage (level 2) and immediately moves on
to the next incoming instruction. Meanwhile, level 2 stage takes
over the instruction and performs same tasks within its coverage.
The level 0 stage that exclusively owns the bottom level finally
receives the request and locates the right tower for the given key,
which is 56. For balanced pipelining, it is important to customize
range binding properly. If skiplist towers are substantially sparser
at upper levels than lower ones, upper pipeline stages could be
assigned larger ranges.

Insert. During the traversal for INSERT instruction, the insert
path, the pointers to the predecessor and successor towers at each
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Figure 7: Skiplist hazard and prevention.

level below the new tower’s height, is recorded in BRAMs. From
the bottom level, the bottom-level stage installs a new tower on
the insert path.

Scan. Scan does not require to record the path because it only
needs to reach the bottom level. We assign a dedicated scanner
module after the bottom-level stage. The bottom-level stage passes
a scan request with the first tower in the scan range to the scanner.
Then, a scanner collects committed and visible tuples within the
scan range. The result scan set is stored in a designated buffer
space in a transaction block (on DRAM), and the size of scan set is
returned through a CP register. Like Traverse stage in hash index,
decoupled scanner stages prevent long-running scan requests from
blocking following requests that complete at the bottom-level
stage. When necessary, redundant scanners could distribute heavy
scan loads, ameliorating unbalanced dataflow.

Insert-insert hazard and prevention. In skiplist, only insert-
insert hazard can happen. When consecutive inserts traverse down
through common path, the traversal path of the following request
could be invalidated when the preceding one has overwritten it
with a new tower’s address. Figure 7a shows an example of the
insert-insert hazard. In the example, INSERT(D) request drills
down a wrong tower (which is B) because the preceding insert C
has not updated the tower at level 1. In turn, INSERT(D) installs a
new tower on its inconsistent path, consequently, C is lost at level
1.

To prevent insert-insert hazard in skiplist, we apply a similar
blocking policy to the hash index to prevent the skiplist hazard
(see Figure 7b). For all in-flight INSERTs, we record the entry
points of insert paths in a lock table. All skiplist pipelines should

check the lock table before switching to the next tower or a lower
level and block when encountering a locked traversal path. The
lock is eliminated by the terminal stage (the bottom-level stage)
when an INSERT operation completes.

Stall-free range scan. Unlike insert, skiplist scan can be stall-
free, allowing efficient pipelining. A scan request might traverse
down an inconsistent image of the skiplist, when missing towers
installed by previous in-flight inserts at short-cut levels. How-
ever, all towers inserted previously are visible at the bottom link
because a single dedicated pipeline stage serializes requests in
order. After the bottom-level stage passes a scan request, a scanner
starts pointer chasing from the first tower in the scan range. There-
fore, scan does not miss any previous inserts in the end. During
scan, the scanner could see towers inserted after scan started, but
they are ignored by timestamp-based visibility check. In terms
of performance, a scan request could choose a slower traversal
path by missing recent short-cuts, but higher concurrency is more
beneficial for overall performance.

4.5 Transaction Interleaving

The index coprocessor could be heavily underutilized with insuf-
ficient intra-transaction index parallelism when transactions are
serially executed. As an extreme example, a single record transac-
tion in key-value workloads that issues only a single index request
can entirely eliminate the chance to overlap index accesses. To
prevent the underutilization, the softcore exploits inter-transaction
index parallelism by interleaving multiple transactions. We de-
scribe the details of transaction interleaving and discuss what
factors could affect its efficiency.
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Figure 8: Transaction interleaving and 2 phase execution.

Transaction grouping. Whenever a transaction block enters the
softcore, the softcore tries to add the transaction to the current
batch as follows. It first checks the metadata in the catalogue to
figure out how many GP/CP registers are required for the trans-
action. If there are enough registers remaining, the transaction
joins the current batch with an exclusive range of GP/CP registers
allocated. For the purpose, the softcore maintains the base GP/CP
register addresses and renames the registers in the stored proce-
dure instructions by adding the base register addresses. After that,
the base register addresses are updated to indicate next available
range, and the stored procedure is executed immediately. If the
allocation fails, the current batch is closed and the new transaction
is scheduled after the current batch commits.

Two-phase execution and interleaving. Figure 8 shows how in-
terleaving is done. BionicDB executes transactions in two phases:
1) transaction logic and 2) commit/abort. Starting from the first
transaction in a batch, the softcore executes a stored procedure
code. When it reaches the end of a stored procedure, it saves the
transaction context in a BRAM buffer, including program counter
register, the base address of transaction block and register address
range, and switches to the next transaction without waiting for
outstanding DB instructions to complete.

When the first phase of a batch is finished by batch closure,
it returns back to the first transaction and restores the context
saved in the BRAM buffer. At this point, the program counter
(PC) indicates the address of the first instruction of the commit
handler. The commit handler then waits for all outstanding DB
instruction to return. Depending on the results from them, the
softcore continues to commit or jumps to the abort handler. Any
exception, such as a DB instruction failure by CC or a voluntary
abort, caught will trigger the abort handler. Then, the commit/abort
handler performs a CC protocol to finish the transaction batch.
After the second phase of a batch is finished, the softcore opens
a new batch and executes the pending input transactions in the
batch.

Discussion. With transaction interleaving, DB instructions across
transactions can be overlapped. It is particularly beneficial for
small transactions with insufficient intra-transaction index par-
allelism. Also, the overhead of transaction interleaving is mar-
ginal: transaction contexts are stored entirely in a context table
on BRAMs, and a single switch takes 10 cycles to save current
context and restore the next one from the context table.

The benefit of interleaving could be absorbed by data depen-
dency within a transaction; data dependency is formed when a DB
instruction requires an output from the previous DB instruction
in the same transaction. Data dependency becomes a barrier that
forces to wait for outstanding DB instructions to complete within
a transaction, getting rid of the chance to overlap index requests
in the next transactions. However, we found that current interleav-
ing is still promising for certain workloads where transactions are

small and data dependency-free (for example, YCSB transactions).
To deal with heavy data dependency, it might be helpful to switch
between transactions dynamically whenever desired, but current
implementation does not support such dynamic scheduling.

4.6 On-chip Message-passing Channels
Partitioned databases, such as H-store and DORA, can minimize
synchronization overhead across concurrent threads with single-
threading policy; a partition is not thread-safe, but it is guaranteed
to be accessed by a dedicated worker exclusively. Therefore, a
partition worker cannot directly access a remote partition, instead,
it should send a request message to a remote site. Then, a delegate
worker on the remote partition processes the request on behalf of
the initiator and returns a response message back. Hence, inter-
worker message-passing is required when a transaction spans over
multiple partitions.

To reduce the communication overhead and, thereby, accelerate
cross-partition transactions, BionicDB provides on-chip message-
passing channels. Unlike software message-passing that can in-
clude memory latency and thread synchronization during com-
munication, request/response messages are directly exchanged
between workers at on-chip speed without memory round-trips
and thread synchronization. Despite the low clock frequency of
FPGA, the communication latency is still low due to low-overhead
message-passing protocol. The latency in exchanging a single pair
of request and response messages takes 6 cycles in total (the la-
tency could vary slightly depending on congestion). We believe
that message-passing is a suitable communication semantic for
single-threaded databases where data is strongly isolated between
partition workers, while most CPUs have to conform the shared-
memory semantic for backward compatibility.

Multisite transaction handling. Let us explain how a multisite
transaction is processed using with the on-chip communication
channels in detail. Each worker is assigned a communication link
that consists of request and response channels. When the softcore
decodes a DB instruction and finds out that the target partition is
remote, it creates a request packet with the instruction and sends
it through the request channel asynchronously. A request packet is
piggybacked with a transaction timestamp for concurrency control
and source/destination worker IDs for routing. At a remote site,
a background unit monitors the request channel and catches an
inbound request packet having a matching worker ID. In turn,
the DB instruction is dispatched immediately to the remote index
coprocessor as a background request. At this point, local (fore-
ground) and remote (background) requests can be overlapped in
the index coprocessor. But, it does not cause inconsistency be-
cause the index coprocessor is capable of dealing with pipeline
anomalies and concurrency control. After completion of a back-
ground request, its result is sent back to the initiator through the
response channel. The response message returned to the initiator
is written back to the destination CP register asynchronously, and
the initiator’s softcore takes the result later when executing a RET
instruction with the CP register.

Scaling on-chip message-passing. We discuss several scaling
issues, leaving them to future work. First, the current topology
of the on-chip communication is crossbar which does not scale.
When scaling up BionicDB on datacenter-grade FPGAs that can
fit tens or hundreds of BionicDB workers in a single chip (resource
consumption will be provided in Section 5), a scalable on-chip
communication topology, such as ring or tree, will be required.
Also, BionicDB is currently a single-chip, single-node system.
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Given that typical FPGA offerings have merely around tens of
GBytes of on-board DRAM, it is vital to scale BionicDB across
multiple FPGA nodes in a shared-nothing cluster like H-store
[23] . Fortunately, some cloud FPGA services, such as AWS F1,
support multi-chip, multi-node deployment [4] . Therefore, the
message-passing channels should be diversified with additional
connectivities for inter-node communication.

4.7 Concurrency Control
Currently, BionicDB employs a variant of the basic single-version
timestamp CC [11] . Its strengths and weaknesses are well-known
[47] , but we use it for the sake of simplicity as CC is not the focus
of this paper. A transaction is assigned a hardware timestamp
value at the beginning. During transaction lifecycle, DB instruc-
tions issued by the transaction are packed with the transaction
timestamp and passed to the index coprocessor. Then, visibility
check is performed as follows by the index coprocessor against a
matching tuple with the search key.

Visibility check. Each tuple is associated with latest read and
write timestamps, and they are compared against the transaction
timestamp when accessed. The read permission is granted on
a tuple having a lower write time, and the write permission is
granted on a tuple having a lower read time. If the transaction
is the latest reader, read time of the tuple is updated with the
transaction timestamp immediately. There are minor deviations
from the original algorithm. First, any access to an uncommitted
(dirty) tuple during runtime is blindly rejected without the care of
the serial order and triggers transaction abort immediately. Also,
read set is not buffered. If the second access to a previously visited
tuple is denied by concurrent updates, the transaction should abort
to ensure repeatable read.

If a DB instruction passes the visibility check, the address of
the matching tuple with a “success" return code is written back
to the CP register specified in the DB instruction. Otherwise, an
error code is written. An UPDATE instruction only marks the
dirty bit and returns without actual modification. With the tuple
address returned, the softcore later performs in-place update after
backing up the original tuple in UNDO log buffer in a transaction
block. An REMOVE instruction returns after marking both dirty
and tombstone bits.

Commit protocol. When a commit handler takes over the soft-
core after transaction logic execution, it collects the results from
CP registers by executing RET instruction. If an error code is
detected, the softcore jumps to the abort handler. After making
sure successful execution, the softcore iterates write-set to cleanup
dirty marks and overwrite their write time with the transaction’s
begin timestamp. If aborted, the abort handler restores the write-
set from the UNDO logs in a transaction block and removes the
dirty marks.

4.8 Logging and Recovery
Although logging and recovery are currently missing, we discuss
a possible way to guarantee durability. BionicDB can adopt the
VoltDB’s command logging approach for recovery[29] . After ex-
ecuted by BionicDB, each transaction block contains the commit
state and the commit timestamp of the transaction, preserving
the input arguments. BionicDB can recover the database simply
by re-executing the committed transaction blocks in the commit
timestamp order. To this end, the host CPU should store the input
transaction blocks that were processed in a durable storage be-
fore returning them to clients. After system failure, the host CPU
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Figure 9: Comparison of overall performance of BionicDB to
Silo on Xeon (4 chips).

should load the last checkpoint image and the persisted transaction
blocks (command logs) from the disk. Then, the host CPU can re-
play the committed transaction blocks, ignoring the uncommitted
ones. It must replay them in the commit timestamp order to ensure
correct recovery. After recovery, the hardware clocks of BionicDB
should be re-initialized to the latest commit timestamp, and the
host CPU can signal BionicDB to resume transaction processing.

5 EVALUATION
This section evaluates BionicDB for the following purposes.

• We show that BionicDB can provide high performance and
substantial power saving in OLTP workloads, comparing to
state-of-the-art SW system.

• We figure out how much speedup comes from each acceleration
feature and which factors can limit the performance.

5.1 Experimental Setup
In all experiments, we fit the entire databases in DRAM. For
BionicDB, we populated input transaction blocks in advance
by host CPUs (ideally, remote clients should submit transaction
blocks through network cards, and BionicDB should process them
without the intervention of the host CPU). Unless stated otherwise,
we report the aggregate throughput of four BionicDB workers.

5.2 Hardware
Xilinx Virtex5 LX330. We built BionicDB on a single Virtex5
LX330 FPGA chip which was manufactured with 65nm technol-
ogy and released a decade ago. It contains merely 200K logic cells,
allowing to fit only four BionicDB workers within a single chip.
However, recent datacenter-grade FPGA chips containing millions
of logic cells, such as Xilinx Virtex Ultrascale+ used in AWS F1
instances or Intel Arria 10, could accommodate tens or hundreds
of BionicDB workers with a single chip [2, 5] , providing ample
thread-level parallelism. The clock frequency of BionicDB was
set to 125MHz.

Intel Xeon E7 4807. To compare BionicDB to a software engine,
we ran Silo[43] on 4 hexa-core Xeon chips (24 physical cores in
total). Its clock frequency is 1.87GHz, and each core is assigned
private 32KB L1I/D cache and 256KB L2 cache. L3 cache is
18MB and shared by all cores on a chip. In choosing a CPU for
comparison, our focus was making sure the CPU is roughly in
the same generation with Virtex5 for fairness. Xeon E7 4807 was
released later (in 2011) than Virtex5 and manufactured with more
advanced process technology (32nm).
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5.3 Benchmarks
TPC-C. We ran a mix of the TPC-C NewOrder and Payment
(50:50). Most transactions are local, but 1% of the NewOrder and
15% of the Payment transactions are cross-partition by default. We
partitioned the database by Warehouse and replicated Item table
which is read-only across partitions. The number of partitions
was fixed to the number of workers. We modified the Payment
transaction by enforcing to pick up a customer with customer id
for both BionicDB and Silo.

YCSB. The YCSB transaction includes 16 independent DB ac-
cesses with no data dependency. The YCSB table schema consists
of a 8B integer key and 1KB payload. We populated 300K records
per partition, and the size of a partition is 300MB (the number
of partitions is equal to the the number of workers). We ran the
YCSB-C (read-only) and YCSB-E transactions. The YCSB-B
(read-intensive) was ommitted due to similar results to YCSB-C.
We modified the YCSB-E transaction to make it scan-only and
fixed the scan range to be 50 records which is the average scan
length with the default workload setting.

5.4 Overall Performance
We compared the overall performance of BionicDB and Silo
in Figure 9 . As explained in Section 5.1 , we only presented
BionicDB from 1 to 4 workers because of limited logic capacity
of Virtex5 FPGA. In Figure 9a , we ran YCSB-C transactions.
With the same number of workers, BionicDB outperformed Silo
by 4.5x. Silo matched the throughput of 4 BionicDB workers
with 24 cores enabled over 4 CPU chips. YCSB-C transaction
exploited both intra-, inter-transaction parallelism provided by
index pipelining and transaction interleaving thanks to sufficient
index parallelism and the absence of data dependency that permits
aggressive transaction interleaving.

We also ran a mix of the TPC-C NewOrder and Payment (50:50)
and plotted in Figure 9b . Unlike the YCSB result, BionicDB

achieved only comparable performance to Silo with the same
number of workers because of insufficient index parallelism of
Payment transaction (only 4 index lookups) and heavy data de-
pendency that nearly eliminated the chance for transaction inter-
leaving (in fact, the TPC-C transactions were executed almost in
serial).

These results reveal both the promise and challenge of BionicDB
at the same time. BionicDB can outperform state-of-the-art SW
OLTP system when fully utilized, but it can be underutilized by in-
sufficient index parallelism and heavy data dependency. However,
the results confirm that BionicDB can provide still competitive
performance even with much lower frequency (125MHz) and
a limited microprocessor (no instruction-level parallelism and
general-purpose cache memory), by taking a suitable accelera-
tion approach for OLTP. From the next section, we evaluate each
acceleration component to understand their impacts quantitatively.

5.5 Impact of Index Pipelining

We evaluated index pipelining in Figure 10 and Figure 11 , We
controlled the degree of coprocessor parallelism by changing
the maximum number of in-flight DB requests over the index
coprocessor. To focus on the index coprocessor, all experiments
in this section run local transactions only.

Hash. In Figure 10a , we ran a non-transactional key-value work-
load to see the peak performance of the hash index. A single
transaction repeated issuing 60 insert/search instructions in bulk
for 20,000 times (in total 1.2M inserts and searches). The peak
performance for insert and search reached 8.5Mops and 7Mops,
respectively, and saturated between 12 and 16 index parallelism.
This implies that there were 3 or 4 in-flight requests between
pipeline stages in average.

We plotted the throughput of the YCSB-C (read-only) and
the TPC-C NewOrder transactions in Figure 10b and Figure 10c .
Both figures show the similar trend with the previous result in the
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KV workload. It proves that the transactions have sufficient intra-
transaction parallelism. Figure 10d shows the performance of the
TPC-C Payment transactions. Due to the limited index parallelism,
the performance did not improve after 4 requests.

Skiplist. We instantiated 8-stage skiplist pipelines with an extra
scanner module. The maximum height of a skiplist tower was set
to 20. Figure 11a shows the performance of sequential loading.
The pipeline was saturated at 8 in-flight requests. It increased
sharply from 1 to 4 and modestly from 4 to 8 requests. The rea-
son for lower pipeline parallelism than hash index is that skiplist
pipeline stages contain multiple memory stalls during horizon-
tal pointer chasing, leaving nearly no in-flight requests between
stages, unlike the hash pipeline. Hence, the index parallelism was
bound by the depth of pipeline. The modest curve from 4 to 8
in-flight requests is related to unbalanced dataflow over skiplist
pipeline. Pipeline stages covering upper levels were less busy than
lower levels as towers were sparser. Figure 11b shows the perfor-
mance of point query. It shows similar trend with the previous
result, but the throughput is higher because tower installation was
skipped.

To measure scan performance, we ran modified YCSB-E trans-
actions (Section 5.1) and presented the performance in Figure 11c .
We can find that the pipelining efficiency was deteriorated. This
is because a single scanner became a bottleneck in the pipeline.
Thus, heavy scan loads should be distributed over multiple scan-
ners for balanced pipelining. In Figure 11d, we compared the
scan performance to Masstree and SW skiplist on the Xeon CPU
introduced in Section 5.1 . The number of workers was four across
all indexes. Since its pipelining efficiency was largely eliminated,
HW skiplist was slower than Masstree by 20% and SW skiplist by
5x. With extra FPGA resources, HW skiplist could be improved
with deeper pipelining and multiple scanners (in this experiment,
pipelining depth and the number of scanners were bound by cur-
rent FPGA resource). To catch up with SW skiplist, at least 5
scanners would be required.

5.6 Impact of Transaction Interleaving
Figure 12 shows the performance comparison between transac-
tion interleaving and serial execution. In this experiment, all trans-
actions were local. In Figure 12a , we changed the the size of
transaction footprint, or intra-transaction parallelism, by varying
the number of DB instructions in a YCSB-C transaction. With a
single record transaction, transaction interleaving was 3x faster
than serial execution. In serial execution, the coprocessor was
underutilized by small transactions. Whereas, transaction inter-
leaving was able to overlap index requests across transactions,
resulting in much higher utilization. As we increase the number of
requests, the performance gap shrank. This is because coprocessor
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Figure 13: Single-site (100% local access) vs. multi-site trans-
action (75% remote, 25% local access).

was utilized better in serial execution with more intra-transaction
parallelism.

Figure 12b illustrates the throughput of the TPC-C NewOrder
and Payment transactions. In both transactions, there was no no-
ticeable difference because heavy data dependency hindered trans-
action interleaving. The NewOrder transaction had enough intra-
transaction index parallelism, but failed to exploit inter-transaction
parallelism due to data dependency, leaving the coprocessor idle
during commit phase. The Payment transaction’s case was worse.
It was not able to exploit both intra-, inter-transaction parallelism
because of limited parallelism and data dependency combined,
leading to significant underutilization. It is also evidenced by
the modest difference in overall performance from the YCSB-C
transaction that includes four times more index roundtrips.

5.7 Impact of On-chip Message-passing
Latency analysis. Table 3 compares the communication latency
of on-chip message-passing against software message-passing. We
assumed 20ns and 80ns for the latency of shared-cache and DDR3,
respectively. Based on the estimates, we calculated the total com-
munication latency for exchanging a single request/response pair
that takes two iterations of message-passing, assuming that cache
communication takes two cache reads on a modified-state cache-
line, and DRAM communication takes two rounds of memory
read and write. Despite the slow frequency (125MHz), the latency
of on-chip message-passing is 48ns which is comparable to cache
communication and much faster than DDR3 communication. If
cache miss happens, the latency of software communication can
rapidly increase. Also, we did not take synchronization cost into
account, giving favor to software message-passing. In practice,
software message-passing could suffer much higher communica-
tion latency in the presence of cache misses and thread contention.

Primitive Latency (ns) Total comm. delay (ns)
On-chip MP 24 48

Software MP
L3 cache 20 40
DDR3 80 320

Table 3: Latencies of message-passing methods.

Throughput of cross-partition transactions. It is widely known
that frequent multisite transactions in non-partitionable workloads
can be a serious bottleneck in partitioning-based systems. We now
evaluate the performance of multi-site transactions to see if the
on-chip message-passing can accelerate them. We ran the cross-
partition YCSB-C transactions with uniform random keys and
plotted the throughput in Figure 13 . In the cross-partition trans-
action, 75% of DB accesses are remote, and the rests are local
accesses. As an ideal case, we also plotted the performance of local
transactions that do not involve inter-worker communication at all.
The result shows that on-chip, message-passing communication
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imposed negligible overhead, achieving almost same performance
with the ideal case. In all other workloads, we observed the same
result. This confirms that the message-passing, on-chip commu-
nication of BionicDB eliminated the overhead of communication
and accelerated cross-partition transactions effectively.

5.8 Power Consumption and Resource Utilization
We estimated the power consumption of BionicDB on Virtex5
LX330 with Xilinx Power Estimator (XPE). The total power con-
sumption was approximately 11.5W. The thermal design power
(TDP) of a single Xeon E7 4807 is 95W, and the aggregate TDP
of four chips is 380W.

Module Flip-flops Look-up tables Block RAMs
Hash 12,932 14,504 24
Skiplist 27,300 35,968 36
Softcore 7,080 8,796 12
Catalogue 1,484 1,964 8
Communication 2,482 3,191 8
Memory arbiters 1,192 5,800 0
HC-2 modules 98,507 76,639 103
Virtex5 LX330 Total 207,360 207,360 288
Utilization 72% 70% 70%
Table 4: Resource utilization of BionicDB with 4 workers

Table 4 reports the resource utilization of BionicDB with four
workers on a Virtex5 LX-330 chip. The entire hardware design
consumed around 70% of FFs, LUTs and BRAMs. Almost half of
the total logic cells were taken by HC-2’s infrastructures, such as
host interface, crossbar memory interconnects and a custom pro-
cessor which were not used by BionicDB at all. Four BionicDB
workers consumed approximately 70k LUTs and 53k FFs in total.
Out of BionicDB resources, the skiplist index consumed almost
50%, and hash index consumed around 20%. The stored proce-
dure execution modules, the softcore and catalogue, took only
15% thanks to the resource-efficient design choices.

6 RELATED WORK
Many existing database accelerators have focused on offloading
SQL computation. They commonly exploit massive fined-grained
parallelism for compute acceleration, avoiding instruction decod-
ing overhead and memory wall. (application-specific functions
are wired on datapath directly, and data stream flow over them)
[18, 27] .

Oracle SPARC M7 processor integrates in-memory database
acceleration fabric (DAX), offloading filtering and de/compres-
sion [3] . Ibex[44] is a FPGA-based MySQL storage engine that
offloads filtering and aggregation functions to FPGA. It provides
the notion of near-data processing by placing the SQL accelerator
between CPU and SSD. Bharat et al., suggested FPGA copro-
cessor for OLAP acceleration in in-memory HTAP system [41] .
They offloaded filtering and data decompression to FPGA copro-
cessors on a PCIe board while the host CPU focus on transaction
processing. The FPGA coprocessor directly accesses compressed
memory-resident data, decompresses them, and performs filter-
ing. To saturate PCIe bandwith, data scan tiles are replicated.
Q100[45] is a dataflow hardware for SQL. ASIC tiles that per-
form SQL operators are provided, along with a custom instruction
set to control data stream over the tiles. DoppioDB offloaded
regular expression evaluation and analytic operators on Intel’s
Xeon-FPGA machine [33, 39] . Do et al. explored in-storage SQL
processing inside flash memory SSD [15] , but the system used
embedded processors for acceleration without custom hardware.

Kocberber et al. suggested Widx which is an on-chip hash index-
ing accelerator for OLAP workloads [26] . They identified hash
index lookup as the main bottleneck due to poor memory-level
parallelism in OLAP workloads and offloaded the it to on-chip
acceleration fabric.

For stream acceleration, Glacier [30] implemented SQL circuits
on an FPGA fabric, installed on datapath between network card
and host CPU. Handshake join [42] is a highly parallel stream
join algorithm with massive parallel processing resources such as
FPGA or GPGPU. The key idea is fine-grained parallel join pro-
cessing between two streams flowing from the opposite directions.
A large number of tuple pairs are evaluated at once, exploiting
massive computation parallelism. FQP[31] is a flexible stream
query processor that can support changing query logic without
FPGA reconfiguration. It implemented filtering and stream join
operators.

For transaction processing, there have been a few studies with
custom hardware approach. Cipherbase uses FPGA as a copro-
cessor for security, offloading expression evaluation, some index
operations and en/decryption [9] . Also, there have been hard-
ware key-value store systems with hash index [10, 13, 22, 46]
and transactional graph processing on FPGA [28] . However, stan-
dalone transaction processing hardware is still missing in the
landscape. Many existing SQL accelerators do not solve OLTP’s
main problems: memory stalls and communication. Low-end pro-
cessor, such as ARM, could be a power efficient option, but it
often sacrifices performance [40] .

7 CONCLUSION
In this paper, we explored hardware specialization for OLTP and
presented the design and implementation of BionicDB built on
FPGA. We discussed index pipelining and transaction interleaving
for index acceleration, and on-chip message-passing for faster
communication in partitioned databases. Also, we argued that
OLTP requires tightly integrated SW-HW architecture. The exper-
imental results confirmed that transaction processing can be done
at substantially lower power cost while providing competitive per-
formance. Possible future directions include scaling up BionicDB
on a modern FPGA chip and scaling out over multiple chips and
nodes.
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[39] D. Sidler, M. Owaida, Z. IstvÃąn, K. Kara, and G. Alonso. 2017. doppioDB:
A hardware accelerated database. In 2017 27th International Conference on
Field Programmable Logic and Applications (FPL). 1–1. https://doi.org/10.
23919/FPL.2017.8056864

[40] Utku Sirin, Raja Appuswamy, and Anastasia Ailamaki. 2016. OLTP on a Server-
grade ARM: Power, Throughput and Latency Comparison. In Proceedings of
the 12th International Workshop on Data Management on New Hardware
(DaMoN ’16). ACM, New York, NY, USA, Article 10, 7 pages. https://doi.
org/10.1145/2933349.2933359

[41] Bharat Sukhwani, Hong Min, Mathew Thoennes, Parijat Dube, Balakrishna
Iyer, Bernard Brezzo, Donna Dillenberger, and Sameh Asaad. 2012. Data-
base Analytics Acceleration Using FPGAs. In Proceedings of the 21st Inter-
national Conference on Parallel Architectures and Compilation Techniques
(PACT ’12). ACM, New York, NY, USA, 411–420. https://doi.org/10.1145/
2370816.2370874

[42] Jens Teubner and Rene Mueller. 2011. How Soccer Players Would Do Stream
Joins. In Proceedings of the 2011 ACM SIGMOD International Conference on
Management of Data (SIGMOD ’11). ACM, New York, NY, USA, 625–636.
https://doi.org/10.1145/1989323.1989389

[43] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and Samuel
Madden. 2013. Speedy Transactions in Multicore In-memory Databases.
In Proceedings of the Twenty-Fourth ACM Symposium on Operating Sys-
tems Principles (SOSP ’13). ACM, New York, NY, USA, 18–32. https:
//doi.org/10.1145/2517349.2522713

[44] Louis Woods, Zsolt István, and Gustavo Alonso. 2014. Ibex: An Intelligent Stor-
age Engine with Support for Advanced SQL Offloading. Proc. VLDB Endow.
7, 11 (July 2014), 963–974. https://doi.org/10.14778/2732967.2732972

[45] Lisa Wu, Andrea Lottarini, Timothy K. Paine, Martha A. Kim, and Kenneth A.
Ross. 2014. Q100: The Architecture and Design of a Database Processing Unit.
In Proceedings of the 19th International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS ’14). ACM,
New York, NY, USA, 255–268. https://doi.org/10.1145/2541940.2541961

[46] Shuotao Xu, Sungjin Lee, Sang-Woo Jun, Ming Liu, Jamey Hicks, and Arvind.
2016. Bluecache: A Scalable Distributed Flash-based Key-value Store. Proc.
VLDB Endow. 10, 4 (Nov. 2016), 301–312. https://doi.org/10.14778/3025111.
3025113

[47] Xiangyao Yu, George Bezerra, Andrew Pavlo, Srinivas Devadas, and Michael
Stonebraker. 2014. Staring into the Abyss: An Evaluation of Concurrency
Control with One Thousand Cores. Proc. VLDB Endow. 8, 3 (Nov. 2014),
209–220. https://doi.org/10.14778/2735508.2735511

312



Hyrise Re-engineered: An Extensible Database System for
Research in Relational In-Memory Data Management

Markus Dreseler, Jan Kossmann, Martin Boissier, Stefan Klauck,
Matthias Uflacker, Hasso Plattner

Hasso Plattner Institute
Potsdam, Germany

firstname.lastname@hpi.de

ABSTRACT
Research in data management profits when the performance eval-
uation is based not only on individual components in isolation,
but uses an actual DBMS end-to-end. Facilitating the integration
and benchmarking of new concepts within a DBMS requires a
simple setup process, well-documented code, and the possibil-
ity to execute both standard and custom benchmarks without
tedious preparation. Fulfilling these requirements also makes it
easy to reproduce the results later on.

The relational open-source database Hyrise (VLDB, 2010) was
presented to make the case for hybrid row- and column-format
data storage. Since then, it has evolved from being a single-
purpose research DBMS towards becoming a platform for various
projects, including research in the areas of indexing, data parti-
tioning, and non-volatile memory. With a growing diversity of
topics, we have found that the original code base grew to a point
where new experimentation became unnecessarily difficult. Over
the last two years, we have re-written Hyrise from scratch and
built an extensible multi-purpose research DBMS that can serve
as an easy-to-extend platform for a variety of experiments and
prototyping in database research.

In this paper, we discuss how our learnings from the previous
version of Hyrise have influenced our re-write. We describe the
new architecture of Hyrise and highlight the main components.
Afterwards, we show how our extensible plugin architecture
facilitates research on diverse DBMS-related aspects without
compromising the architectural tidiness of the code. In a first
performance evaluation, we show that the execution time of most
TPC-H queries is competitive to that of other research databases.

1 INTRODUCTION
Hyrise was first presented in 2010 [19] to introduce the concept
of hybrid row- and column-based data layouts for in-memory
databases. Since then, several other research efforts have used
Hyrise as a basis for orthogonal research topics. This includes
work on data tiering [7], secondary indexes [16], multi-version
concurrency control [42], different replication schemes [43], and
non-volatile memories for instant database recovery [44].

Over the years, the uncontrolled growth of code and function-
ality has become an impediment for future experiments. We have
identified four major factors leading to this situation:
• Data layout abstractions were resolved at runtime and in-
curred costs that sometimes had a disproportional overhead.

• Prototypical components have been implemented to work in
isolation, but did not interact well with other components.

© 2019 Copyright held by the owner/author(s). Published in Proceedings of the
22nd International Conference on Extending Database Technology (EDBT), March
26-29, 2019, ISBN 978-3-89318-081-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

• The lack of SQL support required query plans to be written
by hand and made executing standard benchmarks tedious.

• Accumulated technical debt made it difficult to understand
the code base and to integrate new features.

For these reasons, we have completely re-written Hyrise and
incorporated the lessons learned. We redesigned the architecture
to provide a stable and easy to use basis for holistic evaluations of
new data management concepts. Hyrise now allows researchers
to embed new concepts in a proper DBMS and evaluate perfor-
mance end to end, instead of implementing and benchmarking
them in isolation. At the same time, we allowmost components to
be selectively enabled or disabled. This way, researchers can ex-
clude unrelated components and perform isolated measurements.
For example, when developing a new join implementation, they
can bypass the network layer or disable concurrency control.

In this paper, we describe the new architecture of Hyrise and
how our prior learnings have led to a maintainable and com-
prehensible database for researching concepts in relational in-
memory data management (Section 2). Furthermore, we present a
plugin concept that allows testing different optimizations without
having to modify the core DBMS (Section 3). We compare Hyrise
to other database engines, show which approaches are similar,
and highlight key differences (Section 4). Finally, we evaluate
the new version and show that its performance is competitive
(Section 5).

1.1 Motivation and Lessons Learned
The redesign of Hyrise reflects our past experiences in develop-
ing, maintaining, and using a DBMS for research purposes. We
motivate three important design decisions.

Decoupling of Operators and Storage Layouts. The previous
version of Hyrise was designed with a high level of flexibility
in the storage layout model: each table could consist of an ar-
bitrary number of containers, which could either hold data (in
uncompressed or compressed, mutable or immutable forms) or
other containers with varying horizontal and vertical spans. In
consequence, each operator had to be implemented in a way
where it could deal with all possible combinations of storage
containers. This made the process of adding new operators cum-
bersome and led to a system where some operators made undocu-
mented assumptions about the data layout (e.g., that all partitions
used the same encoding type). Instead of relying on operators to
properly process data structures with varying memory layouts,
Hyrise now follows an iterator-based approach. By accessing
data through iterators, the implementation of new operators is
decoupled from the implementation of new data storage concepts
without compromising the flexibility. Operators can implement
custom specializations for specific iterators, but execution falls
back to the default iterator if no implementation exists. The iter-
ator abstraction is explained in Section 2.3.
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Benchmarking. Just as modern software development pro-
cesses require that fundamental development steps, such as set-
ting up the environment, building the code, and running tests
should require only one step each, we believe that the same is true
for benchmarks. This might seem obvious, but in our experience,
also with other databases, both productive and research, this is
almost never the case. In Hyrise, benchmarks are now single
binaries that generate their data, run the queries, and print the
results. As of writing, the TPC-H benchmark is included in the
code base; the alternative data generator JCC-H [8], as well as the
TPC-C and Join-Order [30] benchmarks are work-in-progress.
Custom benchmarks can be easily added by creating table and
query files, which are automatically executed by a generic bench-
mark runner (cf. Section 2.10). To facilitate reproducibility, all
benchmark results contain the parameters relevant to their ex-
ecution, including the Git commit hash, information about the
utilized scheduler, thread count, and more. Benchmarks are exe-
cuted by the CI process for each commit on the master branch to
aid in the identification of performance regressions.

Memory Management & Metaprogramming. When the devel-
opment of Hyrise started 10 years ago, C++11 was not yet fi-
nalized. This meant that memory management had to be done
manually using new/malloc and delete/free, resulting in spurious
segmentation faults and considerable debugging efforts. In the
new version, Hyrise almost exclusively uses shared or unique
smart pointers, which guarantee that objects are only deleted
right after there is no remaining pointer to them. The overhead of
reference counting for shared pointers seems to be well justified
by the noticeable reduction in time spent on debugging memory
management issues. Only when these pointers become an actual
bottleneck, we look into whether the memory management in
that particular component can be made more explicit.

Hyrise employs template metaprogramming to decouple the
supported data types, storage layers, encoding types, and opera-
tors while at the same time preserving a high degree of compile-
time type safety. We use Boost.Hana to automatically generate
code for the different supported data types and for the resolution
of our iterators. Mostly because of this, but also because of other
C++17 features that are used all over the code base, Hyrise can
only be compiled with current versions of GCC and Clang.

1.2 Building a Database with Students
We believe that the best way to learn about database systems
is to program them yourself. Therefore, in addition to our PhD
research projects, we use Hyrise in a graduate-level database
class in which students develop, integrate, and test new features,
such as additional join implementations, optimizer rules, or index
structures. Not only does this hands-on experience help their un-
derstanding of databases and improve their programming skills;
it also raises their interest to research database topics in greater
depth, for example as part of their Master’s theses. As a result,
a considerable fraction of the Hyrise code has been developed
together with students as part of their class assignments or thesis
work.

Developing a database with students also entails one of the
main challenges in the process, which is a relatively short devel-
oper turnover time. Even those Master’s students who decide to
specialize in the field rarely spend more than two years on the
project. We address this challenge with strict code reviews, a high
degree of test coverage (currently at >85%), and by encouraging
new students to highlight existing components that are difficult

to understand. On the technical side, we use automatic format-
ting (clang-format), multiple linting tools (cpplint and clang-tidy),
sanitizers (ASan, UBSan, TSan, andMemcheck), and enforce most
compiler warnings (-Wall -Wextra -pedantic -Werror).

The main criterion for building a maintainable research DBMS
is that students without prior database knowledge can be brought
up to speed and contribute code in six weeks. The fact that we
were able to prove this repeatedly in our database seminars shows
us that we are on the right track.

2 SYSTEM ARCHITECTURE
In this section, we give an overview of the new architecture of
Hyrise. In places where it improves clarity, we refer to the original
Hyrise architecture as Hyrise1 and to that of the rewritten DBMS
Hyrise2. After a general description of the high-level architecture,
which follows the visualization in Figure 1 and focuses on query
execution, we describe major components in their respective
subsections, which are also given in the figure.

We decided to make as much functionality and as many com-
ponents optional as reasonably possible. This decision is based
on a learning from Hyrise1, where we found it difficult to isolate
the root of performance issues because of the number of involved
components. In Hyrise2, even core concepts, such as optimization,
concurrency control, or scheduling, can be disabled. Without an
optimizer, queries get executed close to how they are defined
in SQL; for example, joins are only identified if JOIN ... ON ...

is used. If MVCC is turned off, all tables are read-only, do not
store information with regards to transactions or concurrency,
and validation operators are not inserted into the query plan. If
the scheduler is turned off, tasks are immediately executed in
the same thread (while still guaranteeing progress). Similarly,
Hyrise2 can be benchmarked with and without the just-in-time
compiler, the network interface, or logging.

2.1 General Overview
Figure 1 shows the core components of Hyrise. We discuss them
by following the process of answering a user-provided SQL query.
Users have three options to submit queries to Hyrise. As a first op-
tion, we provide a command line interface, which can not only be
used to submit queries, but also offers convenience functions for
generating TPC-C or TPC-H benchmark tables, visualizing query
plans, and toggling optional Hyrise components. As a second
option of interacting with the database, Hyrise has an integrated
TCP/IP server implementing the wire protocol of PostgreSQL.
Users can send queries using PostgreSQL’s interactive terminal
psql or existing drivers for PostgreSQL. More details on how this
interface is designed and implemented can be found in Section 2.5.
Lastly, the third option is the SQL-C++ interface, which is used
by our benchmark binaries (cf. Section 2.10) and also enables
hand-written optimization of query plans. Currently, the bench-
mark binaries use the SQL-C++ interface. We are working on a
benchmark implementation that utilizes the network interface.

All of the three entry points hand the user’s SQL string to
Hyrise’s SQL Pipeline (cf. Section 2.6), which consists of multiple
steps that transform the provided SQL string to an efficient query
plan. The SQL Parser translates the SQL string to an abstract
syntax tree expressed as C++ data structures. Next, the SQL to
LQP Translator changes the abstraction level by creating a logical
query plan (LQP), which is a directed acyclic graph (DAG) whose
nodes loosely resemble the operations of the relational algebra.
Finally, the Optimizer applies a series of rules to the LQP, which
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Figure 1: Hyrise Architecture Overview.

transform it into a more efficient, semantically equivalent version
of the query. Some rules work by simply applying logical proper-
ties of the query plan (e.g., single-table predicates should almost
always be pushed below joins), while others utilize information
about the referenced tables that is only known at runtime. This
information is collected from auxiliary data structures, such as
general statistics, indexes, and filters (cf. Section 2.4). At the time of
writing, statistics rely on histograms (equal height, equal width,
equal distinct count) and other simpler metrics, e.g., the number
of distinct values. Filters are probabilistic data structures that
support approximate membership queries and allow the pruning
of chunks (i.e., logically ruling out the necessity to access a chunk
for a given predicate), whereas indexes return qualifying posi-
tions for a certain predicate directly without scanning through
the data.

Hyrise implements a query plan cache, which can store both
logical and physical query plans. Thereby, translation and opti-
mization can be skipped to avoid doing these steps repeatedly for
the same queries. While the cache does not yet auto-parameterize
incoming queries, users can use prepared statements for queries
with varying parameters. Both implicitly cached queries and
prepared statements use the same caching data structures and
shortcuts shown in the figure.

After optimization, the LQP is passed to the LQP Transla-
tor, which translates logical operators (such as predicates, joins,
and sorts) to physical operators. Physical operators are concrete
implementations of the logical concepts and more than one im-
plementation might exist for a logical operator. For example, we
implement joins as either sort-merge joins (cf. [2]), hash joins
(cf. [4]), or nested-loop joins. Based on the optimizer’s hints, one
of these implementations is chosen for each logical operator. The
result of the LQP Translator is another DAG, which we call Physi-
cal Query Plan (PQP). If the just-in-time compiler (cf. Section 2.7)
is enabled, the LQP is not passed to the LQP translator, but to

a JIT-aware LQP Translator, which creates JIT operators whose
code is specialized using runtime information.

In both cases, the resulting PQP is then handed to the scheduler,
which takes care of executing the translated operators. Once all
operators have been executed, the resulting table is returned to
the user.

Having looked at the entities that make executing a query
possible, we now go over the data structures that are accessed
for this. During execution, the primary table data as well as
secondary data structures such as indexes are accessed by the
operators. Tables are horizontally partitioned into chunks. Within
a chunk, we have vertical partitions called segments where the
segments across all chunks constitute the columns. Data within
a segment might be encoded (cf. Section 2.3), for example using
dictionary or run-length encoding. Additionally, chunks hold the
data needed for multi-version concurrency control (MVCC, cf.
Section 2.8). For more information on our storage layout refer to
Section 2.2.

There are two more components shown in Figure 1: Self-
Driving and Logging / Recovery. We envision future database
systems to be self-driving [26], meaning that they autonomously
adjust their configurations. Therefore, a self-driving component
that assesses the database’s current workload and tunes the con-
figuration accordingly is part of Hyrise as well. This component
is explained in more detail in Section 3.2. Logging and recovery are
currently work-in-progress and are not described in this paper.

2.2 Storage Layout
Hyrise1 offers hybrid layouts, providing a maximum of flexibility
with regards to storage layouts. This flexibility causes increased
system complexity as well as runtime overhead by introduced
abstractions.While the underlying system architecture of Hyrise2
supports hybrid layouts, we focus on columnar-oriented data for
now. Figure 2 depicts the storage layout for an example table.
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Storage layouts for HTAP database must support efficient read
and write operations. This is often achieved by separating the
data into read- and write-optimized partitions. Data is always
added towrite-optimized partitions. Update and delete operations
invalidate entries in read-optimized partitions. From time to time,
data has to be moved from write- to read-optimized partitions.

This transformation may happen by merging data of write-
optimized partitions into read-optimized partitions [15, 27]. Merg-
ing may require re-encoding of already compressed data. Further-
more, the merge algorithm introduces implementation-specific
complexity. For example, modifications to currently merged data
have to be handled. In addition, the same data is encoded re-
peatedly during consecutive merge processes. Last, merge costs
increase with the size of involved partitions.

To avoid a merge process in Hyrise2, tables are implicitly
divided into Chunks, horizontal partitions of a certain size. Opti-
mal chunk sizes are both data- and workload-dependent. A self-
driving database system would decide on these autonomously. So
far, our experiments showed suitable sizes to be between roughly
fifty thousand and a few million records. The optimal chunk size
is largely independent of the width of the table, both in terms of
data sizes and number of columns in our default setup, where a
column-based layout and dictionary encoding are used.

There are two types of chunks, mutable and immutable chunks.
Initially, chunks are mutable and append-only containers. Data is
added in a plain, unencoded fashion. When a chunk’s capacity is
reached it becomes immutable. Once this happens, encodings (cf.
Section 2.3) can be asynchronously applied. Chunks encapsulate
fractions of all of the table’s columns, so-called segments.

There are a couple of advantages of the chunk-based approach.
First, by implicitly partitioning the data, both multiprocessing
(one core processes one chunk) and data placement, e.g., in NUMA
environments, are simplified. Chunks can easily be distributed
over multiple NUMA nodes, thereby leveraging multiple memory
busses and CPUs for simultaneous processing.

Furthermore, auxiliary data structures like indexes and filters
can be created on a per-chunk basis. Thus, these data structures
are only created for those chunks where they yield a certain
benefit. It also offers the flexibility to create different structures,
for example, different index types for different chunks. The same
can be applied to encodings: Some segments of a column might
stay unencoded, others dictionary-encoded, and further segments
run length-encoded.

Chunks are implicitly prunable entities. Thereby, in some
cases, they can be excluded early from query processing without
having to process the contained data. This can be achieved by
using approximate membership query properties of filters (cf.
Section 2.4) or characteristics of certain encoding types.

Partitioning the data into chunks has some drawbacks that
need to be mitigated. First, it introduces the memory cost of
storing per-chunk metadata. If, however, chunk sizes are chosen
to be hundreds of thousands or millions of rows, this is not an
issue as we show in Section 5.2. Second, for some encoding types,
chunks may introduce redundant storage of information. For
example, chunks encoded using the dictionary encoding store
values that occur in all chunks over and over again in every chunk-
local dictionary. On the other hand, if the overlap of values across
chunks is low, the size of the dictionary can be kept low, and the
number of needed bits for the attribute vector is reduced. Thus,
choosing the optimal chunk size is a tradeoff between memory
overhead and flexibility.

Table T

Chunk #1

Segment a

dictionary-
encoded

Segment b

run length-
encoded

Segment c

unencoded

Chunk #2

Segment a

dictionary-
encoded

Segment b

dictionary-
encoded

Segment c

dictionary-
encoded

Chunk #n-1

Segment a

unencoded

Segment b

unencoded

Segment c

unencoded

Chunk #n

Segment a

unencoded

Segment b

unencoded

…

im
m

ut
ab

le
im

m
ut

ab
le

im
m

ut
ab

le
m

ut
ab

le

Segment c

unencoded

Column T.a Column T.b Column T.c

Figure 2: Depiction of Hyrise’s storage layout for an exem-
plary table T with n chunks and three attributes.

2.3 Segment Encoding
To our best knowledge, all modern columnar andmemory-resident
databases employ some form of column encoding. This is to (i)
compress data and reduce memory consumption, (ii) better utilize
the available memory bandwidth by increasing the entropy, and
(iii) increase performance since operations on integer-encoded
columns can be vectorized and processed by modern CPUs more
efficiently. This effect is even stronger when relational operators
can operate on encoded data without prior decoding.

Hyrise supports both logical (i.e., mapping input data to an
integer representation) and physical (i.e., further compressing
integer codes) encoding schemes (cf. [13]). The implemented
logical schemes include frame of reference, run length, and order-
preserving dictionary encoding. The physical ones include fixed-
size byte alignment and SIMD-BP128 for null suppression. Logical
and physical encoding schemes can be arbitrarily combined so
that existing logical schemes can profit from a new physical
encoding without modification.

Hyrise1 includes several encoding and compression schemes,
but as mentioned above, no abstraction layer separated the data
layout and the execution engine. This caused maintainability
and performance issues and led us to formulate the following
requirements for an encoding framework in Hyrise2:

• The encoding framework should be an abstraction layer
where operators do not need to be implemented for each
added encoding type.

• Still, implementing specialized access methods for cer-
tain encodings should be possible. For example, scans on
dictionary-encoded columns should search for the integer
value id, without having to decompress the data.

• Performance should be on par with manually optimized
encoding schemes. This means that the compiler should be
able to statically resolve the abstractions without having
to resort to virtual method calls in hot loops.
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Figure 3: Runtime comparison for an aggregation accessing 25% of 1M integer values. Left: impact of decoding the full vec-
tor upfront vs. positional decoding. Right: impact of static polymorphism via C++ templating vs. dynamic polymorphism
as done in the previous version of Hyrise.

• Abstractions should be analyzable by the compiler to the
point where auto-vectorization (i.e., the automatic genera-
tion of SIMD code) is possible.

• The framework should seamlessly cooperate with our
long-term plans on just-in-time query plan compilation.

• Instead of defining encodings per column, it should be
possible to have different encodings in different segments.

We fulfill these requirements by heavily relying on static poly-
morphism, i.e., C++ templates. For each implementation of an
encoding type, an iterable is implemented. These iterables inherit
from a common base class using the curiously recurring tem-
plate pattern (CRTP). The base class provides the with_iterators

interface to operators, but instead of implementing this method
using virtual inheritance, the CRTP is used to statically call a
protected _on_with_iterators method. Operators pass a functor
(i.e., a lambda or closure) to with_iterator as shown in Listing 1.
Optionally, with_iterators takes a position list, which is used to
selectively iterate over the values that, for example, are the result
of a previous scan operation.

segment_iterable.with_iterators(

[&]( auto left_it , auto left_end) {

for (; left_it != left_end; ++ left_it) {

const auto left = *left_it;

if (!left.is_null () && predicate(left.value ())) {

matches.emplace_back(left.chunk_offset ());

}}});

Listing 1: Implementation of a vectorizable1 scan operator
using the iterators provided by the encoding framework

Not only the iterators, but also the functors (in the exam-
ple, the predicate) are resolved at compile time. This allows us
to define an adaptable and flexible encoding framework that
avoids virtual method calls. Using iterators allows us to hide
implementation details of encoded columns, which eases the
maintainability of operators. In case query compilation is used,
the iterators also provide efficient accesses for tuple-at-a-time
processing without incurring virtual method calls. A downside
of this approach is that the number of template instantiations

1To enable the compiler’s auto-vectorization, it is helpful to first iterate over a
constant number of rows at a time. This is not shown in the example for the
purpose of brevity.

grows exponentially. For a scan on a single column, we instanti-
ate |DataTypes | ∗ |EncodinдSchemes | ∗ |Comparators | templates,
resulting in a compile time of up to five minutes for the most
complex operators. To prevent that cost from slowing down our
development, the static resolution only takes place for Release
builds; Debug builds use conventional virtual method calls.

The same iterator model can also be used to implement hybrid
data layouts. A row-oriented segment type can provide iterators
for each included attribute. Because the iterators are resolved
at compile-time, accesses to attributes within one tuple would
result in contiguous memory accesses.

Figure 3 shows two micro-benchmarks evaluating the perfor-
mance of our encoding schemes and the encoding framework. As
Hyrise is optimized for HTAP workloads, which include frequent
positional accesses, random access iterators play an important
role. Figure 3a shows the overhead of decoding the encoded vec-
tor beforehand (cf. [25]) compared to using positional random
access iterators. For most encodings, positional accesses are 2−3×
faster, even when decoding large position lists. For typical OLTP
queries with short position lists, the advantage is even more
pronounced.

The performance advantage of static polymorphism over dy-
namic polymorphism, i.e., virtual method calls, is shown in Fig-
ure 3b. In this benchmark, we aggregated a set of randomly cho-
sen positions (25% of 1M integer values). No matter the encoding
type, the cost of static polymorphism is significantly lower, with
the biggest improvement being a factor of 3×.

2.4 Indexes and Filters
During execution, two types of secondary data structures are
used to reduce the amount of data accessed: (i) secondary indexes
and (ii) filters, which are lightweight probabilistic data structures
for chunk pruning. Moreover, Hyrise uses these data structures
during query optimization for cardinality estimation.

Secondary Indexes. Indexes in Hyrise yield qualifying positions
for one or more predicate(s). Three secondary index structures
are implemented: (i) adaptive radix trees (ART, cf. [31]), (ii) B-
trees2, and (iii) the group-key index [16]. The group-key index has
been developed particularly for Hyrise. It builds on compressed
position lists and exploits order-preserving dictionaries.
2Google C++ B-tree: https://code.google.com/archive/p/cpp-btree/
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Filters. Filters are space-efficient (i.e., significantly smaller
than a secondary index) auxiliary data structures, which allow
the pruning of chunks (similar to partition elimination) for a
given predicate. Hyrise supports min-max filters, counting quo-
tient filters [37], and pruning-optimized histograms, which are
comparable to adaptive range filters [3]. The latter two are not
only capable of pruning but also support selectivity estimation.

Both indexes and filters are created on a per-chunk basis on
immutable chunks and not globally for the whole table so that
no maintenance cost is caused by inserts, updates, or deletes.
This simplifies the code base and avoids computational overhead
in forms of logging or heavy updates of large data structures.
However, it is conceptually possible to add, e.g., a B-tree in-
dex to mutable chunks when required in OLTP scenarios. As
filters and indexes are chunk-local, they can be selectively cre-
ated for chunks where the estimated performance improvement
outweighs the necessary memory space.

An important difference to previous work on filters is that,
in Hyrise, they are integrated with the query optimizer, instead
of being only used in the execution phase. Doing so enables
optimizations that can only be used at query planning time: First,
chunk pruning can be propagated through conjunctive predicate
chains down to the plan node that initially represents the input
table (cf. [6]). That plan node is configured to skip chunks that
would later be excluded by one of the predicates. As a result, the
number of accessed rows is reduced from the start and not only
at the location of the respective predicate. Second, in case chunk
pruning has a significant impact on the selectivity of a predicate,
this knowledge can be exploited for operator-reordering, which
would not be possible when pruning is done later in the execution
phase. Similarly, we plan to use indexes not only in the execution
phase but also for estimating cardinalities (cf. [32]).

2.5 Networking
Hyrise implements the wire protocol of PostgreSQL [40]. Reusing
existing wire protocols is common [41] for new systems for sev-
eral reasons. First, existing clients and drivers can be reused. This
is advantageous for database products as well as for research
platforms as it offers the possibility to access Hyrise from many
programming languages and makes it accessible to many users.
Second, tools such asWireshark can be used to investigate how
the sent and received PostgreSQL messages are encapsulated
in network packets. As Hyrise is a research platform, we only
implement the features needed for receiving SQL queries and
returning results, but do not implement features such as user
authentication or SSL. This keeps our implementation lean. The
wire protocol uses TCP/IP, and our server is implemented using
the asynchronous network features of Boost.Asio.

2.6 SQL
Figure 4 depicts the different steps in our SQL Pipeline. A ded-
icated SQLPipeline class is the main entry point to everything
related to query execution. It takes an SQL string as a parameter
and returns one or more tables. Optionally, all intermediary ar-
tifacts can be inspected by the developer in their text or graph
forms. This was designed based on our experience with other
databases where, in some cases, it is difficult to even understand
the path that an SQL query takes through the system and which
steps are involved. In the following paragraphs, we describe the
steps of the SQL pipeline.

SQL Parser SQL Translator

Parsed 
Select 

Statement

Optimizer

Logical 
Query Plan

(LQP)

LQP Translator

Optimized
LQP

Operators

Physical 
Query Plan

Figure 4: The different steps of the SQL Pipeline, leading
from an SQL string to executable operators

Parsing. The SQL parser transforms the SQL query string into
data structures that can be accessed and modified programmati-
cally. When we started to add SQL support to Hyrise, we found
no easy-to-use component that would transform an SQL string
into an Abstract Syntax Tree (AST) that uses C(++) structs. While
open-source databases come with their own parser (e.g., Post-
greSQL), we found these to be too interwoven with the rest of the
database for our purposes. Thus, we built a standalone C++ SQL
parser based on Flex and Bison and released it as open source
software3.

SQL-to-LQP Translation. Having parsed the SQL query string
into an Abstract Syntax Tree, which still resembles the structure
of the SQL Query, we now translate the AST into a Logical Query
Plan (LQP), which is based on the relational algebra. Each edge
in the LQP represents a table, either a user-defined table that is
stored in the central Storage Manager or an intermediary table
generated by the previous operator. It could also be a user-defined
SQL view, which we have stored as its LQP and can embed into
the query plan at this point. Operators do not need to perform
expensive materializations of intermediary results, but can also
pass positional references to the next operator. Having these
references avoids expensive materializations. These operators
are represented as nodes, which hold information about their
input relations and attributes and parameters for their execution.
LQP nodes are, however, not executable operators but only form
the basis for logical query optimization. They get translated into
physical operators only after all optimization steps have been
performed. An example of a Logical Query Plan is shown in
Figure 5.

Most LQP nodes, such as Predicates, Joins, or Aggregations,
are one-to-one representations of their equivalent in the rela-
tional algebra. One node type that stands out is the Projection,
which is our workhorse for most non-trivial column operations.
This includes more complex logical operators (nested AND/ORs),
string manipulation, but also the execution of subselects: In the
initial LQP, all subselects are expressed as sub-LQPs attached to
a Projection node close to the point of their first use. As such,
subselects are executed as if they were stand-alone queries. For
non-correlated subselects, this is done only once. For correlated
subselects, the query plan contains placeholders that are replaced
with the correlated attributes during the execution. Obviously,
this is quite inefficient, which is why the optimizer later rewrites
the LQP into a more efficient, join-based version.

Optimization. All optimizations are achieved by rules that are
executed on the Logical Query Plan (LQP). Rules are maintained
by the optimizer and are part of an optimization pipeline that con-
tains single-pass and multiple-pass rules. While some rules need

3Hyrise SQL Parser: https://github.com/hyrise/sql-parser
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to be executed only once (e.g., the substitution of constant expres-
sions), others can be re-executed if the LQP has been changed
by a different rule or if they themselves improve the resulting
LQP in multiple passes. A rule takes an LQP as a modifiable input
and returns whether it has modified that LQP. The information
on whether a rule modified the LQP is used by the optimizer
to decide whether iterative rules should be executed again. At
the end of every rule stands a valid LQP. Thus, the optimization
process can be skipped or stopped after a certain time, e.g., if the
expected runtime of the query is determined to be too low to
warrant further optimization efforts.

Out of the eight currently implemented rules, we use three
examples to highlight how these rules operate on the LQP: the
Predicate Pushdown Rule, the Join-Ordering Rule, and the Chunk
Pruning Rule. The Predicate Pushdown Rule is a rule that is almost
always applicable: For every LQP, it makes sense to execute
cheap filtering predicates as early as possible, that is, before more
expensive joins or aggregations. Currently, it is applied to all
trivial predicates. Correctly estimating the cost of more complex
predicates (such as nested predicates or LIKE expressions) is work
in progress. The Join-Ordering Rule is an example, which relies
on the statistics component to gather the estimated selectivities
of the join predicates and on the cost estimator to estimate the
cost of the different joins. These joins are then ordered using
DpCcp [34] in what is considered to be the most effective order.
Finally, our third example rule, the Chunk Pruning Rule, uses the
LQP and the filter information discussed in Section 2.4 to identify
chunks that will not contribute to the final result. While the LQP
is not structurally changed by this rule, the table nodes at the
bottom are augmented with the information of which chunks do
not need to be passed to the first operator (cf. Section 2.4).

LQP-to-PQP Translation. Finally, the LQP has to be translated
into a PQP. As described above, there are potentially multiple
physical implementations of a logical operator. The optimizer
has already left hints in the LQP nodes. An example of such a
hint is when a logical predicate node contains the information
that a secondary index can and should be used. Starting from
the bottom, each LQP node is now translated into one of the
available physical operators. Because all decisions have already
been made by the optimizer, nothing of great interest happens
here. This is different for the JIT-Aware LQP Translator, which
we describe in Section 2.7.

Prepared Statements and Query Plan Caching. One goal in the
design of the previous steps was to keep the SQL Pipeline lean,
which is why the cost of query planning is comparably low.
Still, commonly reoccurring queries can profit from previously
generated query plans. We treat SQL Prepared Statements and
Query Plan Caching similarly. In both cases, we store a mapping
from an SQL query string to a Physical Query Plan. The only
difference is that for Prepared Statements, entries in this mapping
are manually maintained, while the query plan cache is limited
and automatic eviction takes place. For Prepared Statements, we
store placeholders instead of actual values. Before the execution
of such a statement, these placeholders are replaced with actual
values.

Regular SQL queries are currently cached with all parameters
left in place. Automatically replacing these with placeholders
would increase the number of cache hits but at the same time
introduce further complexity. For example, for skewed workloads,
where the reuse of a previously generated query plans may not
be safe [5], caching PQPs might not always result in the best

[Sort]
o_totalprice DESC,
 o_orderdate ASC

[Aggregate]
aggregate sum(l_quantity)

by c_name, c_custkey, o_orderkey, o_orderdate, o_totalprice

[Predicate]
(o_orderkey) IN SUBSELECT (LQP, 0x7fb[..]) != 0 

[Projection]
(o_orderkey) IN SUBSELECT (LQP, 0x7fb[..])

[Join]
Mode: Inner

o_orderkey=l_orderkey

[Join]
Mode: Inner

c_custkey=o_custkey

[Validate]

[Projection]
c_custkey, c_name

[StoredTable]
Name: 'customer'

[Validate]

[Projection]
o_orderkey, o_custkey,

o_totalprice, o_orderdate

[StoredTable]
Name: 'orders'

[Validate]

[Projection]
l_orderkey, l_quantity

[StoredTable]
Name: 'lineitem'

[Projection]
l_orderkey

uncorrelated subquery

[Predicate]
sum(l_quantity) > 300

[Aggregate]
aggregate sum(l_quantity)

by l_orderkey

[Validate]

[Projection]
l_orderkey, l_quantity

[StoredTable]
Name: 'lineitem'

Figure 5: A sample visualization of a Logical Query Plan,
here of TPC-H query 18

execution strategy. For these cases, we can easily switch the cache
to only cache optimized LQPs, which are then re-optimized once
the actual parameters are bound to the placeholders. Because the
optimizer has already operated on the cached plan, we can save
on optimization time compared to starting the optimization from
scratch. Deciding when a PQP is safe to cache and reuse without
re-optimization is subject to future work.

2.7 Just-in-Time Compilation
Hyrise’s JIT engine is based on three components: The JIT Repos-
itory, which holds JITtable operators; the JIT-Aware LQP Transla-
tor, which translates Logical Query Plans into a chain of JITtable
operators; and the JIT Code Specializer, which optimizes the
operator code and fuses multiple operators into a single loop.

It is based on a code specialization approach, where, during
development, generalized C++ code is written for each operator.
This code still contains the virtual method calls for calling the
next operator, the switches for different column and encoding
types, or checks for null values. At runtime, when this infor-
mation is available, the JIT compiler replaces these abstractions
with their concrete values. This is done using LLVM’s ORC (On
Request Compilation) interface. For the examples, this means
that virtual method calls to the next operator can be inlined, type
switches can be removed and replaced with the known type, and
checks for null values can be removed if the column is known to
be non-nullable. The result of this optimization step is a single
binary that represents all logical operators between two pipeline
breakers. Because of this, we can optimize across operator bound-
aries and profit from keeping values in the CPU caches (or even
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registers) as well as from (auto-)vectorization of the code. We
believe that this specialization approach is a better fit for our
goals as it does not require developers to write code-generating
code. The downside of this approach is a high complexity of the
specializer component.

We maintain two execution engines, one with and one with-
out support for just-in-time compilation, for three reasons. First,
having two engines allows us to compare their performance and
identify bottlenecks. Second, despite all effort to make the de-
velopment of JIT operators as simple as possible, we consider it
to still be more complicated as developing traditional operators.
Not only do developers have to understand the JIT model, but
they also need to familiarize themselves with our specialization
engine in order to be able to debug or profile the resulting bi-
nary code. Especially for students who work on the project for
just a semester, this becomes a limiting factor. Third, most of
the research projects evaluated on Hyrise are orthogonal to the
optimizations achieved with JIT. The filter-based access prun-
ing methods presented in Section 2.4, for example, can prune
the same number of chunks no matter if the remaining chunks
are evaluated using traditional or JITted operators. As such, the
relative performance impact is comparable, even if the absolute
performance of the JITted queries is better.

In some cases, we can achieve a 22x performance improve-
ment over the traditional, operator-based approach, for example
when complex expressions have to be calculated. At the current
stage, not all operators are implemented as JIT operators (most
notably the different joins) and the JIT-aware LQP Translator
automatically falls back to non-JITtable implementations. Also,
the encoding-specific optimizations have not made it into the JIT
component yet, so table scans on dictionary-encoded segments
have to decompress all values. Because of this, the JIT component
has to be explicitly enabled.

2.8 Concurrency
As described in Section 2.2, chunks become immutable when
they reach their maximum capacity. This makes it easier to ef-
ficiently encode them without having to consider future modi-
fications. Updates to these chunks are thus implemented in an
insert-only fashion as invalidations and reinsertions. While a
table’s last chunk is mutable and would theoretically support
in-place updates, we keep the architecture simple by following
the insert-only approach for that chunk as well. For each chunk,
we store three vectors: the (1) begin and (2) end commit ids of the
transactions that inserted or invalidated this row, as well as the
transaction id of a transaction that currently has this row in its
set of modified rows.

When a transaction starts, it is assigned a unique (not nec-
essarily contiguous) transaction id by the transaction manager.
Also, it stores the commit id of the last transaction that was com-
mitted successfully. We previously called this "last commit id of a
transaction" [42] or lcidT , but have since renamed it to snapshot
commit id, which we believe communicates its purpose better.

A transaction can identify rows that are visible by comparing
the begin commit id with its snapshot id: If it is higher, the row
has been inserted after the transaction has started and should
not be visible. Similarly, a lower end commit id means that the
row has already been deleted by the time the transaction started.
Invalidations use the transaction id field for two purposes: First,
when checking the visibility of a row, seeing its own transaction
id in a row signals to the transaction that it has already modified

(i.e., inserted or invalidated) the row. This keeps us from having
to maintain a separate list of updated rows. Second, as modifying
the transaction id is an atomic compare-and-swap operation, it
identifies concurrency conflicts. If two transactions concurrently
try to set the transaction id of a single row, only one can succeed
and the other has to abort. For more detail on our implementation
ofMVCC, please refer to our description of transaction processing
in Hyrise1 [42].

2.9 Scheduling
Most databases do not leave the task of scheduling their work
items to the operating system’s scheduler [18]. We, too, have
instead implemented a cooperative task-based scheduler that tries
to keep the OS scheduling out of the equation. Our unit of work is
a task, which can be an operator, a subroutine within an operator,
a maintenance job, or any other subroutine. The easiest type of
task has been modeled after std::thread to take a function object
or a lambda. This keeps the entry threshold for new developers
low. All tasks are stored in a task queue, which is using a lock-
free tbb::concurrent_queue. Tasks can have dependencies on other
tasks and only tasks with fulfilled dependencies get emplaced
in the queue by the scheduler. Once a task finishes, it iterates
over its list of successors and asks them to check if they are now
ready to be scheduled.

Hyrise spawns one active worker thread per CPU core. It
polls the queue for new tasks to be executed. Once it has begun
executing a task, it continues to do so uninterruptedly until it
finishes. A task can also spawn subtasks, which are then emplaced
in the scheduling queue and executed in parallel.

On NUMA systems, we use one queue per node. Tasks can
specify a preferred node, for example when they should be sched-
uled close to the data that they are processing. When the queue
on one node runs dry, workers on that node perform work steal-
ing and attempt to help other nodes with finishing their queue.
To prevent high contention on the queues, workers back off for a
fixed time interval (currently 10 milliseconds) if the work stealing
was unsuccessful.

In line with our goal to keep the systemmodular, the scheduler
can be entirely disabled so that tasks are executed in the main
thread. When schedule is called on a task, it is either directly
executed or, if it has predecessors, their predecessors are executed
first. As a result, when measuring the multi-threaded scalability
of our system, there are differences between the measurements
for one core with and without scheduler. This allows us to inspect
the cost of the scheduler.

2.10 Benchmark Runner
Running standard benchmarks on different databases is often a
tedious task. Benchmark tables have to be generated and, in many
cases, the generated CSV files need some modifications before
they can be loaded. For many research databases, some features
of SQL are not supported and queries need to be reformulated
accordingly. Finally, many databases have special configuration
parameters that users need to be aware of. In our case, this in-
cludes the default chunk size and encoding options. Our goal is
to provide both developers and new users with a binary that is a
one-stop solution for executing such benchmarks.

Currently, Hyrise supports the TPC-H benchmark with the
binary hyriseBenchmarkTPCH. Support for the alternative data gen-
erator JCC-H, as well as the benchmarks TPC-C and Join Order
Benchmark are in development. These binaries return a JSON
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file with the total number of executed queries per second, as
well as the individual run times of each query and additional
information about the setup. Configuration parameters like de-
fault chunk size, encoding, or the number of used threads can
optionally be set either via the command line or in a JSON file.
Our idea is that by providing a git commit id and optionally a
JSON file, results can easily be communicated in a reproducible
way. Finally, users can provide their own table and queries in
.csv and .sql files, which are then automatically executed. We
use this to experiment with enterprise-specific workloads and
real-world data that, unfortunately, cannot be published. A tool
with a similar goal is OLTP-Bench [14], which we plan to support
in the future.

3 PLUGINS
For Hyrise to be a multi-purpose research vehicle, it is important
not to clutter the code base with limited-purpose extensions.
Often, research concepts and their implementations tackle very
distinctive challenges that are not necessary for normal database
operation. We believe that these specialized implementations
should not necessarily become part of the database core to avoid
complicating the process of understanding Hyrise and its source
code. Not merging them into the main code base also avoids
behavior that is unexpected by other researchers, for example
when self-tuning components automatically create new indexes.
We see plugins as a solution that allows us to extend the system’s
functionality beyond that of typical database systems. In this
section, we present the plugin interface offered by Hyrise and
our plans for its use by a self-driving database.

3.1 Interface
Plugins are dynamic libraries, which can be loaded and unloaded
by the user during database runtime. They can access all of
Hyrise’s components using the respective public interface. This
means that, except for the boilerplate code needed to initialize
them, the development of plugins is almost indistinguishable
from that of the database core. Also, most code can be moved
from the core into plugins without modification. The main limi-
tation is that while plugins can call public methods, they cannot
modify the code of existing components. For example, no new
encoding type can be added via a plugin, as all encoding types
have to be known during the compilation of Hyrise.

Plugins are implemented as Singletons to ensure that there
is only a single instance in the system. The Plugin Manager is
responsible for administrative work, such as loading and unload-
ing of plugins via libdl. We provide a blueprint for plugins4 that
can be used as a starting point for developing new plugins.

3.2 Self-Driving Database
One prime use case for plugins in Hyrise is the area of self-
driving database systems. In contrast to traditional databases,
these systems do not rely on human database administrators
(DBAs) anymore, but adjust their configuration and tune their
physical database design autonomously. Such behavior can be
achieved by employing workload-driven optimization and ma-
chine learning models. To achieve this efficiently, self-driving
components need to access and manipulate database-internal
data structures and processes. At the same time, it should still
be possible to run Hyrise independently of such a plugin and its
dependencies and it should not be necessary for other developers
4Exemplary plugin for Hyrise: https://github.com/Bensk1/example-plugin

to consider such external components. In addition, components
of such a self-driving system should be easily exchangeable to
enable experiments with different strategies.

The basic architecture and conceptual ideas for a Generalized
Self-Driving Framework [26] are currently under development
in Hyrise. A couple of typical database configuration and phys-
ical design aspects should be adjusted autonomously, e.g., the
selection of indexes, data placement in NUMA and in replicated
systems, and an automatic selection of efficient encoding and
compression schemes per chunk. These are either already part
of Hyrise and are going to be transferred to the plugin-based
self-driving system or are under development.

4 RELATEDWORK
The field of database systems for analytical applications has seen
vast progress over the last decade [1]. Amongst the first aca-
demic systems were MonetDB [9] and C-Store [46], which are
disk- and OLAP-optimized systems. While the first column stores
focused solely on analytical workloads, the rise of main memory-
optimized databases also led to the use of column stores for mixed
workload processing (OLxP or HTAP). Amongst these HTAP-
optimized column stores are SAP HANA [15] and Hyper [23].
Other comparable database systems include academic systems
like Quickstep [38] and Peloton [39]. In the remainder of this
section, we discuss major design decisions of Hyrise and how
other systems approached them.

The storage layouts of early column-oriented systems like
MonetDB and C-Store closely resemble the decomposition storage
model (DSM [12]), storing attributes in one large consecutive
allocation. In addition to the base attributes, both systems further
include additional sort orders (cf. C-Store’s projections [46] and
MonetDB’s cracking [22]). A similar layout is used in SAP HANA
with the difference that it tries to minimize the memory footprint
and avoids redundant data storage. More recent systems use a
different approach that splits columns into several smaller units.
With the rising importance of NUMA systems, such a form of an
automatic horizontal partitioning in fixed-size blocks eases the
equal distribution of data over several nodes [10]. This storage
paradigm is used, e.g., in Hyrise, HyPer, and Quickstep. Peloton’s
tiles are a hybrid storage layout and resemble the variable-width
containers of the first version of Hyrise.

One of the main challenges for columnar databases is handling
a steady stream of modifications in HTAP environments. C-Store
introduced the separation into read- and write-optimized stores.
A similar concept is used in SAP HANA and has been used in
Hyrise1, namely separating each table in a read-optimized main
partition and a write-optimized delta partition [27, 29]. In con-
trast, HyPer and Quickstep have chosen a model that is closer to
the chunk concept in Hyrise. While Quickstep is read-optimized,
HyPer uses uncompressed small blocks at the beginning and
shifts to larger and more compressed blocks over time [17].

Storing aggregated and space-efficient data structures for early
pruning of data is done by many database systems. The sim-
plest form is to store the min/max values of each column (e.g.,
Netezza’s zone maps or SAP HANA’s synopses [36]) or small ma-
terialized aggregates [33]. HyPer uses so-called positional small
materialized aggregates, which include scan ranges for multiple
value ranges [28]. More sophisticated approaches comparable to
Hyrise’s filters are adaptive range filters [3] or SuRF [47].

In the area of modern in-memory databases, Hyper has been
amongst the first systems that generated data-centric code using
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LLVM IR [35]. Since then, other database systems, both research
and productive, have started to compile queries at runtime, most
generating either LLVM IR or C code that is then compiled. Hyrise
differs from these approaches in that it does not generate new
code but specializes existing code that is stored in LLVM IR and
fuses it across operator boundaries. This approach has previously
been used by other projects, such as DexterDB [21] or Sharygin
et al.’s modifications to PostgreSQL [45]. Hyrise supports both
compiled and vectorized queries, allowing for similar evaluations
as done by Kersten et al. [24].

The idea of database systems that administrate themselves is
almost as old as that of databases itself. Early work [20] dates
back to the 1970s where certain aspects of the physical database
design were tuned. In later years, vendors of commercial database
systems integrated advisors into their products to support human
DBAs [11]. Recently, self-driving databases [39] received fresh
attention. New systems have a more holistic approach where
systems do not rely on human interaction anymore and aim for
administrating all aspects of databases instead of certain parts
only. With its plugin architecture, Hyrise enables the integration
and interplay of self-driving components with reusable compo-
nents and clearly specified interfaces.

5 EVALUATION
Only recently has the SQL and expression subsystem reached
the point where the syntax of all TPC-H queries was supported.
Since then, we have constantly been working on improving the
optimizer so that it generates better query plans. AlthoughHyrise
still misses some LQP optimizations, which currently limit the
performance of a few SQL queries, we can show that Hyrise is
already in the same ballpark as other research databases.

5.1 Single Query Comparison
In this section, we compare Hyrise’s performance with two
other open-source research databases, namely Quickstep [38]
and Peloton [39]. All databases were built from source in their
release mode5 using gcc 8.2. Our benchmark system has four
Intel Xeon E7-4880 v2 CPUs, a total of 60 cores with 2.5 GHz (up
to 3.1 in Turbo Boost Mode), and 2 TB of DRAM. We start the
databases using either their network interface and psql (Peloton
and Hyrise) or by sending queries to the command-line interface
using expect (Quickstep and Hyrise).
5Git-Hashes for Hyrise: 9a60098b, Peloton: 3bc6d461, Quickstep: 5cbaa7ef

The TPC-H CREATE statements have been slightly modified to
reflect the level of data type support in the databases. DECIMAL
has been replaced by FLOAT and DATE has been replaced by
CHAR(10). While Quickstep seems to offer a date type, using
it in comparisons gives us an error. Within the queries, slight
modifications have been made to compensate for the lack of
date functions. No indexes were created. This evaluation aims
at comparing the database performance that researchers can
expect when looking at a system for the first time. As such, no
additional settings were made. Most importantly, the databases
are running with their default number of threads: 1 for Hyrise6,
120 for Quickstep, and 4 for Peloton. We expect that there are
probably better settings for these databases or more advanced
code branches that would lead to better results, but limit the
evaluation to what is publicly available and what would be a
reasonable attempt at generating first numbers.

Results can be found in Figure 6. Considering the mentioned
limitations, we can see that for most queries, Hyrise’s perfor-
mance is within an order of magnitude of the other databases. It
also shows that there is still optimization potential both within
the optimizer and the query execution, but also especially within
our network component.

5.2 Chunk Size Evaluation
We discussed Hyrise’s storage layout, including the chunk con-
cept, in Section 2.2. In this subsection, we evaluate the perfor-
mance impact of chunks. The test setup (hardware, compiler, scale
factor) remains unchanged from the previous section. Figure 7
depicts the throughput for selected TPC-H queries for chunk
capacities varying from one thousand to ten million records per
chunk. The throughput is shown relative to a setup without any
form of chunking. In the figure, TPC-H queries for which the per-
formance is only marginally impacted by the chunk capacity are
combined into "Avg. of other queries". This experiment demon-
strates that the chosen chunk capacity influences the throughput
to a large extent. Compared to a chunk capacity of 10 000 000
rows, which effectively results in a single chunk for the given
scale factor, a chunk capacity of 100 000 improves the throughput
by a factor of 26 for TPC-H query 21. At the same time, chunks
containing only 1 000 records diminish the throughput by 97%
for TPC-H query 22.

6In the default configuration, the scheduler is currently disabled as we are investi-
gating a performance regression.
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As stated earlier, chunks can influence the performance in
different ways. First, chunks provide inherent partitions that can
be used to distribute the workload. In the results above, however,
multithreading was disabled and we see a second effect: Because
chunks enable pruning, they can sometimes help in avoiding the
access to large parts of the data. Whether pruning is possible
depends on the underlying data. If pruning cannot be applied,
queries might see drawbacks when too small chunks are used.
Queries 6 and 22with a chunk capacity of 1 000 are an example for
this: pruning cannot be applied and many small chunks introduce
a significant overhead. Overall, the best throughput is achieved
with chunk sizes around 100 000. Compared to a non-chunked
layout in Hyrise, the performance increases by 146%.

In addition, the chunk size affects a table’s memory footprint
as stated in Section 2.2. The lower half of Figure 7 shows the
memory footprint for different chunk sizes of all TPC-H tables
for a scale factor of 1 when applying dictionary encoding. The
configuration that is best for throughput consumes roughly 10%
more memory than the most space-efficient configuration. Fine-
tuning this parameter on a per-table basis instead of setting it
globally is subject to future work. Depending on the encoding
scheme, a smaller chunk size can also reduce the footprint in edge
cases, for example when a lower number of dictionary entries
enables the use of fewer bits for their encoded representation.

6 SUMMARY
In this paper, we have presented how our research database
Hyrise was re-engineered and rewritten to be a platform for
future research projects. Our new architecture was built around
the goals of being easy to understand and extend, enabling end-to-
end benchmarking, and delivering high performance even in the
presence of multiple abstraction layers. We have described which
prior experiences with Hyrise1 have influenced the development,
both from an architectural, and from a processual perspective.

Most components that are relevant to our query execution
have been explained, including storage and encoding, auxiliary

data structures, networking, the SQL pipeline, JIT compilation,
multi-threading, and benchmarking. Furthermore, we have de-
scribed our plugin interface and the self-driving plugin as an
example for its use. Finally, we have evaluated chunks as the
main storage concept of Hyrise, have shown how pruning can
reduce the number of accessed rows during execution, and have
compared Hyrise to other research databases.

Future work has been discussed for the separate components.
From a high-level perspective, we will focus on implementing
the missing LQP optimizations that are current bottlenecks to
our performance, will implement more benchmarks, and improve
the performance of the system by making better use of modern
hardware components.

We invite the reader to experiment with Hyrise by following
our first steps guide7, which not only contains instructions on
how to setup Hyrise and run first benchmarks within minutes,
but also examples on how to run queries, and visualize them.

ACKNOWLEDGEMENTS
Hyrise is partly developed during Master’s seminars and theses.
The presented improvements would not have been possible with-
out the contributions and ideas of over 60 students in the last
two years. We would like to thank all of them for their dedica-
tion. The work of Moritz Eyssen has not only brought Hyrise
its current degree of SQL support but, through his immensely
helpful feedback on pull requests, also greatly contributed to the
overall quality of the code base.

REFERENCES
[1] Daniel Abadi, Peter A. Boncz, Stavros Harizopoulos, Stratos Idreos, and Samuel

Madden. 2012. The Design and Implementation of Modern Column-Oriented
Database Systems. Foundations and Trends in Databases 5, 3 (2012), 197–280.

[2] Martina-Cezara Albutiu, Alfons Kemper, and Thomas Neumann. 2012. Mas-
sively Parallel Sort-Merge Joins inMainMemoryMulti-Core Database Systems.
PVLDB 5, 10 (2012), 1064–1075.

7Hyrise – First steps: https://github.com/hyrise/hyrise/wiki/FirstSteps

323



[3] Karolina Alexiou, Donald Kossmann, and Per-Åke Larson. 2013. Adaptive
Range Filters for Cold Data: Avoiding Trips to Siberia. PVLDB 6, 14 (2013),
1714–1725.

[4] Cagri Balkesen, Jens Teubner, Gustavo Alonso, andM. Tamer Özsu. 2013. Main-
memory hash joins on multi-core CPUs: Tuning to the underlying hardware.
In Proc. ICDE. 362–373.

[5] Harold R Berenson, Peter A Carlin, Nigel R Ellis, Cesar A Galindo-Legaria,
Goetz Graefe, Ajay Kalhan, Craig C Peeper, and Samuel H Smith. 2002. Auto-
parameterization of database queries. US Patent 6,356,887.

[6] Martin Boissier. 2018. Reducing the Footprint of Main Memory HTAP Systems:
Removing, Compressing, Tiering, and Ignoring Data. In Proc. VLDB PhD
Workshop.

[7] Martin Boissier, Rainer Schlosser, and Matthias Uflacker. 2018. Hybrid Data
Layouts for Tiered HTAP Databases with Pareto-Optimal Data Placements. In
Proc. ICDE. 209–220.

[8] Peter A. Boncz, Angelos-Christos Anatiotis, and Steffen Kläbe. 2017. JCC-H:
Adding Join Crossing Correlations with Skew to TPC-H. In Proc. TPCTC at
VLDB. 103–119.

[9] Peter A. Boncz, Marcin Zukowski, and Niels Nes. 2005. MonetDB/X100:
Hyper-Pipelining Query Execution. In Proc. CIDR. 225–237.

[10] Craig Chasseur and Jignesh M. Patel. 2013. Design and Evaluation of Storage
Organizations for Read-Optimized Main Memory Databases. PVLDB 6, 13
(2013), 1474–1485.

[11] Surajit Chaudhuri and Vivek R. Narasayya. 2007. Self-Tuning Database Sys-
tems: A Decade of Progress. In Proc. VLDB. 3–14.

[12] George P. Copeland and Setrag Khoshafian. 1985. A Decomposition Storage
Model. In Proc. SIGMOD. 268–279.

[13] Patrick Damme, Dirk Habich, Juliana Hildebrandt, and Wolfgang Lehner.
2017. Lightweight Data Compression Algorithms: An Experimental Survey
(Experiments and Analyses). In Proc. EDBT. 72–83.

[14] Djellel Eddine Difallah, Andrew Pavlo, Carlo Curino, and Philippe Cudré-
Mauroux. 2013. OLTP-Bench: An Extensible Testbed for Benchmarking Rela-
tional Databases. PVLDB 7, 4 (2013), 277–288.

[15] Franz Färber, Norman May, Wolfgang Lehner, et al. 2012. The SAP HANA
Database – An Architecture Overview. IEEE Data Eng. Bull. 35, 1 (2012), 28–33.

[16] Martin Faust, David Schwalb, Jens Krüger, and Hasso Plattner. 2012. Fast
Lookups for In-Memory Column Stores: Group-Key Indices, Lookup and
Maintenance. In Proc. ADMS at VLDB. 13–22.

[17] Florian Funke, Alfons Kemper, and Thomas Neumann. 2012. Compacting
Transactional Data in Hybrid OLTP & OLAP Databases. PVLDB 5, 11 (2012),
1424–1435.

[18] Jana Giceva, Gerd Zellweger, Gustavo Alonso, and Timothy Roscoe. 2016.
Customized OS support for data-processing. In DaMoN. 2:1–2:6.

[19] Martin Grund, Jens Krüger, Hasso Plattner, Alexander Zeier, Philippe Cudré-
Mauroux, and Samuel Madden. 2010. HYRISE - A Main Memory Hybrid
Storage Engine. PVLDB 4, 2 (2010), 105–116.

[20] Michael Hammer. 1977. Self-adaptive automatic data base design. In Proc.
AFIPS. 123–129.

[21] Carl-Philip Hänsch, Thomas Kissinger, Dirk Habich, and Wolfgang Lehner.
2015. Plan Operator Specialization using Reflective Compiler Techniques. In
Proc. BTW. 363–382.

[22] Stratos Idreos, Stefan Manegold, Harumi A. Kuno, and Goetz Graefe. 2011.
Merging What’s Cracked, Cracking What’s Merged: Adaptive Indexing in
Main-Memory Column-Stores. PVLDB 4, 9 (2011), 585–597.

[23] Alfons Kemper and Thomas Neumann. 2011. HyPer: A hybrid OLTP&OLAP
main memory database system based on virtual memory snapshots. In Proc.
ICDE. 195–206.

[24] Timo Kersten, Viktor Leis, Alfons Kemper, Thomas Neumann, Andrew Pavlo,
and Peter Boncz. 2018. Everything You Always Wanted to Know About
Compiled and Vectorized Queries But Were Afraid to Ask. PVLDB 11, 13
(2018), 2209–2222.

[25] Marcel Kornacker, Alexander Behm, Victor Bittorf, Taras Bobrovytsky, Casey
Ching, Alan Choi, Justin Erickson, Martin Grund, Daniel Hecht, Matthew
Jacobs, Ishaan Joshi, Lenni Kuff, Dileep Kumar, Alex Leblang, Nong Li, Ip-
pokratis Pandis, Henry Robinson, David Rorke, Silvius Rus, John Russell,
Dimitris Tsirogiannis, Skye Wanderman-Milne, and Michael Yoder. 2015. Im-
pala: A Modern, Open-Source SQL Engine for Hadoop. In Proc. CIDR.

[26] Jan Kossmann. 2018. Self-Driving: From General Purpose to Specialized
DBMSs. In Proc. VLDB PhD Workshop.

[27] Jens Krüger, Changkyu Kim, Martin Grund, Nadathur Satish, David Schwalb,
Jatin Chhugani, Hasso Plattner, Pradeep Dubey, and Alexander Zeier. 2011.
Fast Updates on Read-Optimized Databases Using Multi-Core CPUs. PVLDB
5, 1 (2011), 61–72.

[28] Harald Lang, Tobias Mühlbauer, Florian Funke, et al. 2016. Data Blocks:
Hybrid OLTP and OLAP on Compressed Storage using both Vectorization and
Compilation. In Proc. SIGMOD. 311–326.

[29] Juchang Lee, Michael Muehle, NormanMay, Franz Faerber, Vishal Sikka, Hasso
Plattner, Jens Krüger, and Martin Grund. 2013. High-Performance Transaction
Processing in SAP HANA. IEEE Data Eng. Bull. 36, 2 (2013), 28–33.

[30] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter A. Boncz, Alfons Kemper,
and Thomas Neumann. 2015. How Good Are Query Optimizers, Really?
PVLDB 9, 3 (2015), 204–215.

[31] Viktor Leis, Alfons Kemper, and Thomas Neumann. 2013. The adaptive radix
tree: ARTful indexing for main-memory databases. In 29th IEEE International
Conference on Data Engineering, ICDE 2013. 38–49.

[32] Viktor Leis, Bernhard Radke, Andrey Gubichev, Alfons Kemper, and Thomas
Neumann. 2017. Cardinality Estimation Done Right: Index-Based Join Sam-
pling. In Proc. CIDR.

[33] Guido Moerkotte. 1998. Small Materialized Aggregates: A Light Weight Index
Structure for Data Warehousing. In VLDB. 476–487.

[34] Guido Moerkotte and Thomas Neumann. 2006. Analysis of Two Existing and
One New Dynamic Programming Algorithm for the Generation of Optimal
Bushy Join Trees without Cross Products. In Proc. VLDB. 930–941.

[35] Thomas Neumann. 2011. Efficiently Compiling Efficient Query Plans for
Modern Hardware. PVLDB 4, 9 (2011), 539–550.

[36] Anisoara Nica, Reza Sherkat, Mihnea Andrei, Xun Chen, Martin Heidel, Chris-
tian Bensberg, and Heiko Gerwens. 2017. Statisticum: Data Statistics Manage-
ment in SAP HANA. PVLDB 10, 12 (2017), 1658–1669.

[37] Prashant Pandey, Michael A. Bender, Rob Johnson, and Robert Patro. 2017. A
General-Purpose Counting Filter: Making Every Bit Count. In Proc. SIGMOD.
775–787.

[38] Jignesh M. Patel, Harshad Deshmukh, Jianqiao Zhu, Navneet Potti, Zuyu
Zhang, Marc Spehlmann, Hakan Memisoglu, and Saket Saurabh. 2018. Quick-
step: A Data Platform Based on the Scaling-Up Approach. PVLDB 11, 6 (2018),
663–676.

[39] Andrew Pavlo, Gustavo Angulo, Joy Arulraj, Haibin Lin, Jiexi Lin, Lin Ma,
Prashanth Menon, Todd C. Mowry, Matthew Perron, Ian Quah, Siddharth
Santurkar, Anthony Tomasic, Skye Toor, Dana Van Aken, Ziqi Wang, Yingjun
Wu, Ran Xian, and Tieying Zhang. 2017. Self-Driving Database Management
Systems. In Proc. CIDR.

[40] PostgreSQL 10 Documentation. 2018. Frontend/Backend Protocol. https:
//www.postgresql.org/docs/10/static/protocol.html

[41] Mark Raasveldt and Hannes Mühleisen. 2017. Don’t Hold My Data Hostage -
A Case For Client Protocol Redesign. PVLDB 10, 10 (2017), 1022–1033.

[42] David Schwalb, Martin Faust, Johannes Wust, Martin Grund, and Hasso Plat-
tner. 2014. Efficient Transaction Processing for Hyrise in Mixed Workload
Environments. In IMDM at VLDB. 112–125.

[43] David Schwalb, Jan Kossmann, Martin Faust, Stefan Klauck, Matthias Uflacker,
and Hasso Plattner. 2015. Hyrise-R: Scale-out and Hot-Standby through Lazy
Master Replication for Enterprise Applications. In Proc. IMDM at VLDB. 7:1–
7:7.

[44] David Schwalb, Girish Kumar, Markus Dreseler, Anusha S., Martin Faust, Adolf
Hohl, Tim Berning, Gaurav Makkar, Hasso Plattner, and Parag Deshmukh.
2016. Hyrise-NV: Instant Recovery for In-Memory Databases Using Non-
Volatile Memory. In Proc. DASFAA, Part II. 267–282.

[45] E. Yu. Sharygin, Ruben Buchatskiy, Roman Zhuykov, and A. R. Sher. 2017.
Query compilation in PostgreSQL by specialization of the DBMS source code.
Programming and Computer Software 43, 6 (2017), 353–365.

[46] Michael Stonebraker, Daniel J. Abadi, Adam Batkin, Xuedong Chen, Mitch
Cherniack, Miguel Ferreira, Edmond Lau, Amerson Lin, Samuel Madden,
Elizabeth J. O’Neil, Patrick E. O’Neil, Alex Rasin, Nga Tran, and Stanley B.
Zdonik. 2005. C-Store: A Column-oriented DBMS. In Proc. VLDB. 553–564.

[47] Huanchen Zhang, Hyeontaek Lim, Viktor Leis, David G. Andersen, Michael
Kaminsky, Kimberly Keeton, and Andrew Pavlo. 2018. SuRF: Practical Range
Query Filtering with Fast Succinct Tries. In Proc. SIGMOD. 323–336.

324



Efficient Computation of Probabilistic Core Decomposition at
Web-Scale

Fatemeh Esfahani, Venkatesh Srinivasan, Alex Thomo, and Kui Wu

Computer Science Dept., University of Victoria, B.C., Canada

{esfahani,srinivas,thomo,wkui}@uvic.ca

ABSTRACT
Core decomposition is a popular tool for analyzing the struc-

ture of network graphs. For probabilistic graphs the computation

comes with several challenges and the state-of-the-art approach

is not scalable to large graphs. One of the challenges is to com-

pute tail probabilities of vertex degrees in probabilistic graphs.

To address this we employ a special version of the Central Limit

Theorem (CLT) to obtain the tail probabilities efficiently. Based

on our CLT methodology we propose a peeling algorithm to com-

pute the core decomposition of a probabilistic graph that scales to

very large graphs and is orders of magnitude faster than the state-

of-the-art. Next, we propose a second algorithm that can handle

graphs not fitting in memory by processing them sequentially

one vertex at a time. This algorithm has the desirable property

that it can produce close approximations to true core numbers of

vertices in only a fraction of iterations needed for full completion.

The graphs in our study are orders of magnitude larger than

those considered in the literature. Our extensive experimental

results confirm the scalability and efficiency of our algorithms;

the largest graph we can process has more than 40 million nodes

and 1.5 billion edges and we are able to compute its core decom-

position on a commodity machine in about two and half hours.

1 INTRODUCTION
Probabilistic graphs are graphs in which each edge has a probabil-

ity of existence (cf. [6–8, 19, 21, 43]). Mining probabilistic graphs

has become the focus of interest in analyzing many real-world

datasets, such as social, trust, communication, and biological

networks due to the intrinsic uncertainty present in them. For in-

stance, influence between users (cf. [7, 17, 21]) in a social network

can be modeled as a probabilistic graph with probabilities on the

edges representing the likelihood that some action of one user

will be adopted by another. In terms of trust inference, probabilis-

tic models with trust values as edge probabilities can be used to

compute trust associated with a social relationship [27, 28]. In

protein-protein networks (cf. [9]) interactions between proteins

are obtained through laboratory experiments that are prone to

measurement errors resulting in edges labeled with confidence

levels that can also be interpreted as probabilities [14, 15, 41].

Discovering dense components is of great importance in an-

alyzing network graphs [29]. A popular way to find such com-

ponents is core decomposition which has been shown to have a

wide variety of applications (cf. [1, 24, 30, 44, 46]). For instance,

it can be used in measuring structural diversity is social conta-

gion [44], describing biological functions of proteins in protein-

protein interaction networks [30], analyzing network structure’s

properties to explore collaboration in software teams [46], and

also as a metric for sentence selection in text summarization [1].
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Probabilistic core decomposition naturally extends all the applica-

tions of deterministic core decomposition to probabilistic graphs.

Other applications, showcased in [6], are facilitating influence

maximization and task-driven team formation in probabilistic

graphs.

In k-core computation the goal is to find the maximal sub-

graph in which each vertex has at least k neighbors within that

subgraph. The set of all k-cores of a graph, for various k , forms

the core decomposition of that graph [40]. Core decomposition

in deterministic graphs has been thoroughly studied in literature

[3, 11, 24, 35], and can be computed inO(m) time, wherem is the

number of the edges in the input graph. However, in the prob-

abilistic context, computing core decomposition is much more

challenging.

Here we use the probabilistic (k,η)-core notion introduced by

Bonchi, Gullo, Kaltenbrunner, and Volkovich in [6]. In (k,η)-core
computation the goal is to find the maximal subgraph in which

each vertex has at least k neighbors within that subgraph with

probability no less than η ∈ [0, 1]. Threshold η is given by the

user and defines the desired level of certainty of the output cores.

A fundamental notion needed to compute the (k,η)-core is the
η-degree of a vertex v . It is the maximum degree such that the

probability for v to have that degree is no less than η.

Challenges and contributions. A significant initial challenge

is computing η-degrees of graph vertices. In [6], the η-degree
of each vertex v is computed using dynamic programming (DP)

which has a complexity of O(d2

v ), where dv is the number of

edges incident to v . Unfortunately, in many real social and web

networks, dv can be in the millions and a quadratic algorithm

such as DP is impractical.

Our first contribution is the design of an efficient method for

computing η-degrees. Our method is based on Lyapunov’s special

version of the Central Limit Theorem [25, 34] and we show its

output to be virtually indistinguishable from exact computation

for vertices with a high number of incident edges.

While solving the challenge of computing η-degrees is an
important step forward, we still need efficient algorithms to

compute core decomposition for large probabilistic graphs. We

propose two efficient algorithms to solve this problem.

The first one, which we call the “peeling algorithm” (PA), re-

cursively deletes (peels-off) the vertex of the smallest degree.

Our contribution here is in designing efficient arrays for storing

important bookkeeping information. Handling these arrays be-

comes challenging because, differently from the deterministic

case, the process of keeping the vertices sorted based on their

changing η-degrees is more complicated and we need to shuf-

fle information carefully in order to keep the arrays up to date.

Notably, our PA algorithm scales to datasets two orders of mag-

nitude bigger than those that the state-of-the-art algorithm [6]

can handle.

For the case when the input graph does not fit in memory, we

propose a sequential algorithm (SA) based on the vertex-centric

model of computation. The main idea of the SA algorithm is to
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maintain an upper-bound, called vertex value, on the core number

of each vertex. This upper-bound is initialized to be the η-degree
of each vertex, and after each iteration of the algorithm it is

tightened further until it reaches the exact core value.While being

moderately slower than PA, there are two notable advantages

associated with this algorithm. First, the SA algorithm has a

memory footprint of O(n) as opposed to O(m) for PA, where n
andm are the number of vertices and edges, respectively. This

amounts to SA requiring 30 to 40 times lower memory for social

and web network graphs in practice. Second, as shown in Section

6, after only a fraction of iterations of the algorithm, we can

obtain an approximation very close to the true core numbers of

vertices.

In summary, our contributions are as follows.

• We introduce an efficient approach to compute η-degrees
using Lyapunov’s central limit theorem which gives very

accurate approximations on the probability that a vertex

can have a certain degree. We prove the accuracy of the

approach and show that this method of computing proba-

bilistic degree is numerically stable.

• We propose a peeling algorithm (PA) based on recursive

vertex deletions which, by using carefully engineered ar-

ray structures, is able to scale to graphs two orders of

magnitude larger than what the state-of-the-art algorithm

can handle.

• For the case when the input graph does not fit into mem-

ory, we propose a sequential algorithm (SA) to produce

the core decomposition in probabilistic graphs with a low

memory footprint. This algorithm can also produce accu-

rate approximations after only a fraction of total iterations,

a useful feature to have in applications when exact core

numbers are not necessary.

2 BACKGROUND
Cores of deterministic graphs. Let G = (V ,E) be an undi-

rected graph, where V is a set of n vertices, and E is a set ofm
edges. For vertex v ∈ V , let NG (v) be the set of v’s neighbors:
NG (v) = {u : (u,v) ∈ E}. The (deterministic) degree of v in G , is
equal to |NG (v)|.

Given V ′ ⊆ V , and EV ′ = {(u,v) ∈ E : u,v ∈ V ′}, graph H =
(V ′,EV ′) is called the subgraph of G induced by V ′. Let k ∈
[0,dmax(G)], where dmax(G) is the maximum vertex degree in

G. The k-core of G is defined as the maximal induced subgraph

Ck (G) = (V
′,EV ′) in which each vertex v ∈ V ′ has degree of at

least k . The set of all k-cores forms the core decomposition of G.
Core decomposition ofG is unique and it satisfies the following

relation [40]: G = C0(G) ⊇ · · · ⊇ Cdmax(G)−1
⊇ Cdmax(G). The

coreness (or core number) of a vertex is defined as the maximum

value of k such that the corresponding Ck (G) contains v .

Probabilistic graphs. A probabilistic graph is a triple G =

(V ,E,p), where V and E are as before and p : E → (0, 1] is a
function that maps each edge e ∈ E to its existence probability

pe . For each vertex v ∈ V , the set of edges incident to v is de-

noted by Nv . dv = |Nv | is the number of all edges incident to

v which is equal to the deterministic degree of v . In the most

common probabilistic graph model (cf. [6, 19, 21]), the existence

probability of each edge is assumed to be independent of other

edges.

In order to analyze probabilistic graphs, we use the concept

of possible worlds that are deterministic graph instances of G in

which only a subset of edges appears. The probability of a possible
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Figure 1: A probabilistic graph.

worldG ⊑ G is obtained as follows: Pr(G) =
∏

e ∈EG pe
∏

e ∈E\EG (1−

pe ).
In a probabilistic graph G, the notion of η-degree, where η ∈

[0, 1], denoted by η-deg(v), of a vertex v is defined in [6] as

the maximum k for which PrG⊑G[dG (v) ≥ k] ≥ η, where
k = 0, . . . ,dv , and the probability is taken over all the possi-

ble worlds G ⊑ G.
For instance, consider Figure 1. When η = 0.5, vertex 6 has

degree at least 2 with probability 0.94 · 0.23 = 0.2162 (product

of probabilities that each of the two edges is in a possible world),

and it has degree at least 1 with the probability 1 − ((1 − 0.94) ·

(1 − 0.23)) = 0.9538 (complementary probability that none of

the two edges is in a possible world) which is greater than the

threshold. Thus, the η-degree of vertex 6 is 1.
In the rest of the paper, we use Pr[d(v) ≥ k] to denote PrG⊑G[dG (v) ≥

k]. The value of Pr[d(v) ≥ k] decreases with the increase of k .
Note thatdv is different fromd(v); the former is constant, whereas

the latter is a random variable.

Cores of probabilistic graphs. In order to extend k-core de-

composition to probabilistic graphs, the notion of (k,η)-core is
defined in [6]:

Definition 1. Given a probabilistic graph G = (V ,E,p), and
a threshold η ∈ [0, 1], (k,η)-core is the maximal induced sub-
graph C(k,η)(G) = (V ′,EV ′ ,p) in which the η-degree of each ver-
tex v ∈ V ′ is at least k . The set of all (k,η)-cores forms the core
decomposition of G.

The core decomposition in probabilistic graphs is unique, and

the (k,η)-cores are nested into each other similar to the deter-

ministic case. The highest value of k for which v belongs to a

(k,η)-core is called η-core number or probabilistic coreness of v .

Computing η-degrees using Dynamic Programming. We

have that Pr[d(v) ≥ k] = 1 −
∑k−1

i=0
Pr[d(v) = i]. One way of

computing Pr[d(v) = i] is to use dynamic programming as pro-

posed in [6]. However, this method of computing the η-degree
has complexity of O(d2

v ) for a vertex v of deterministic degree

dv . This is not practical when dv is big, say over 20 thousand,

which occurs often in all our datasets. In fact, DP cannot finish in

reasonable time even for one such vertex. In addition, web-scale

graphs normally have millions of nodes with moderate-high de-

gree (e.g., a thousand or more), and if DP is applied to every such

node, the total processing time increases considerably. In the next

section we introduce an alternative way for fast computation of

the η-degree of a vertex v using Lyapunov central limit theorem.

3 COMPUTING η-DEGREES USING
CENTRAL LIMIT THEOREM

In this section, we first show how a special version of Cen-

tral Limit Theorem (CLT) can be applied to accurately estimate

Pr

[
d(v) ≥ k

]
. Then, we show theoretical bounds on the accuracy

of this approximation. Specifically, we show that CLT can pro-

duce a very accurate approximation to tail probabilities of the

vertex degree.
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CLT, one of the most important theorems in statistics, states

that given a set of random variables, their properly scaled sum

converges to a normal distribution under certain conditions.

There are different versions of CLT, with the most common one

focusing on independent identically distributed (i.i.d.) random

variables. In this paper, we consider a variant called Lyapunov

CLT [33, 34] that can be applied when random variables are

independent, but not necessarily identically distributed. The Lya-

punov’s condition imposes a limit on the growth of the third

absolute central moment of each random variable in the given

sequence ensuring the convergence of the normalized sum of

that sequence to standard normal distribution. Formally, we have

Theorem 3.1. Lyapunov CLT [25]. Let ξ1, ξ2, · · · , ξn be a
sequence of independent, but non-identically distributed random
variables, each with finite expected value µk and variance σk . Let

s2

n =

n∑
k=1

σ 2

k , (1)

Lyapunov CLT states that if

lim

n→∞

1

s2+δ
n

n∑
k=1

E[|ξk − µk |
2+δ ] = 0, (2)

for some δ > 0, then 1

sn
∑n
k=1
(ξk − µk ) converges in distribution

to a standard normal random variable.

Equation (2) is called Lyapunov’s condition which in practice

is usually tested for the special case δ = 1. The proof for this

theorem can be found in [4, 13].

Computing η-degrees using Lyapunov CLT. In what follows,

we show how Lyapunov CLT can help compute Pr

[
d(v) ≥ k

]
,

for each vertex v of the input probabilistic graph G.

Recall that for each vertex v we have a set of edges incident

to v denoted by Nv . Each ei in Nv has existence probability

pi , which is independent of the other edge probabilities in G.

Corresponding to each edge ei in Nv , we define a Bernoulli

random variable Xi which takes on 1 with probability pi , and 0

with probability (1 − pi ). Formally,

Xi =

{
1 if edge ei incident to v exists in the graph

0 otherwise

(3)

SinceXi is a Bernoulli random variable, we know that E[Xi ] =
µi = pi and Var[Xi ] = pi (1 − pi ). Using the fact that d(v) =∑dv
i=1

Xi , we have:

Pr[d(v) ≥ k] = Pr


dv∑
i=1

Xi ≥ k

 . (4)

According to Equation (4), finding the probability that a ver-

tex v is of the degree at least k is equivalent to computing the

probability that the sum of Xi ’s for v is at least k . In addition,

Bernoulli random variables Xi ’s are independent, but not iden-
tically distributed. Thus, if condition (2) is satisfied and if dv
is large enough, we can conclude that

1

sdv

∑dv
i=1
(Xi − µi ) has

standard normal distribution, where sdv =
√∑dv

i=1
pi (1 − pi ). To

compute Pr[
∑dv
i=1

Xi ≥ k], we can subtract

∑dv
i=1

µi from both

sides of the inequality, and then divide by sdv which results in:

Pr

[ dv∑
i=1

Xi ≥ k
]
= Pr

[
1

sdv

dv∑
i=1

(Xi − µi ) ≥
1

sdv
(k −

dv∑
i=1

µi )

]
. (5)

Using Lyapunov CLT, and setting

Z =
1

sdv

dv∑
i=1

(Xi − µi ), (6)

we can say that Z has standard normal distribution. Thus

Pr

[
d(v) ≥ k

]
� Pr

[
Z ≥ z

]
, (7)

where z = 1

sdv
(k −

∑dv
i=1

µi ). In fact, since Z in Equation (6) has

standard normal distribution, using the complementary cumu-

lative distribution function [56], we can efficiently evaluate the

right hand side of Equation (7). To find the η-degree we start with
k = 1, and approximate Pr[d(v) ≥ k] using Lyapunov CLT, find-

ing the maximum k for which the probability is above threshold

η.
We can apply Theorem 3.1 provided that Lyapunov’s condition

is satisfied. By setting δ = 1 in Equation (2) we show that this

condition holds for a sequence of non-identically distributed

Bernoulli random variables.

Theorem 3.2. Given a sequence of random variables Xi ∼
Bernoulli(pi ), for i ∈ [1,n], the Lyapunov’s condition (2) for δ = 1

is satisfied whenever s2

n =
∑n
k=1

pk (1 − pk ) → ∞.

Proof. For each Bernoulli random variable Xi we know that

σ 2

i = pi (1 − pi ), and µi = pi . Therefore, s
2

n =
∑n
k=1

pk (1 − pk )
according to the equation (1). On the other hand, when δ = 1,

E[|Xk − µk |
3] is computed as follows:

E[|Xk − µk |
3] = pk (1 − pk )

3 + (1 − pk )p
3

k ,

= pk (1 − pk )[(1 − pk )
2 + p2

k ] ≤ σ
2

k , (8)

where in inequality (8) we have used the fact that (1−pk )
2+p2

k ≤

1. Thus,

∑n
k=1

E[|Xk − µk |
3] ≤ s2

n . Substituting this in the Lya-

punov’s condition (2) for δ = 1, we conclude that the condition

is satisfied whenever s2

n/s
3

n → 0 as n → ∞ which means that

sn should go to infinity as n increases. This is equivalent to

s2

n =
∑n
k=1

pk (1 − pk ) → ∞, and as a result the theorem follows.

In other words, since we have

s2

n =

n∑
k=1

pk (1 − pk ) =
n∑

k=1

σ 2

k ≥ nσ 2

min
, (9)

for large n and as long as σ 2

min
= mink {σ

2

k } is away from zero,

nσ 2

min
→ ∞ which results in s2

n → ∞ as n approaches infinity.

□
Accuracy of the Approximation. In order to show the accu-

racy of the approximation, we refer to the Berry–Esseen theorem

[57]: For a given sequence Y1,Y2, ... of non identically distributed

and independent random variables with E(Yi ) = 0, E(Y 2

i ) = σ
2

i ,

and E(
��Y 3

i

��) = ρi < ∞, there exists a constant C0 such that the

following inequality is satisfied for all n:

sup

x ∈R
|Fn (x) − Φ(x)| ≤ C0 ·ψ0, (10)

where Fn is the cumulative distribution of Sn =
Y1+Y2+· · ·+Yn√
σ 2

1
+σ 2

2
+· · ·+σ 2

n

,

which is the sum of Yi ’s standardized by the variances, and Φ is

the cumulative distribution of the standard normal distribution.

In the above inequalityψ0 is a function given by

ψ0 = ψ0(
−→σ ,−→ρ ) =

( n∑
i=1

σ 2

i

)−3/2

·

n∑
i=1

ρi . (11)

where
−→σ = (σ1, · · · ,σn ), and

−→ρ = (ρ1, · · · , ρn ) are the vectors

327



of σi ’s and ρi ’s respectively. It should be noted that the best

upper-bound obtained so far for C0 is 0.56 [42].

Based on the Berry–Esseen theorem, the more the number of

edges incident to a vertex, the better the accuracy of the results. In

the following corollary, we show how to obtain an upper-bound

on the maximal error while approximating the true distribution

of the sum of Xi ’s with the normal distribution.

Corollary 1. For each vertex v in the probabilistic graph G
withXi ’s being Bernoulli random variables as defined in (3), where
i = 1, . . . ,dv , the error bound on the approximation of the right-
hand side of Equation (7) to the standard normal distribution is
given as follows:

sup

x ∈R

��Fdv (x) − Φ(x)�� ≤ 0.56√
p1(1 − p1) + · · · + pdv (1 − pdv )

Proof. Setting Yi = Xi − pi in equation (6), we can apply the

Berry–Essen theorem for random variablesY1,Y2, · · · ,Ydv , since
for each Yi , E[Yi ] = 0. In addition,

E[Y 2

i ] = E[(Xi − pi )
2] = Var[Xi ] = σ

2

i = pi (1 − pi ),

E[
��Y 3

i
��] = E[|Xi − pi |

3] = ρi = (1 − pi )
3pi + p

3

i (1 − pi )

= pi (1 − pi )[(1 − pi )
2 + p2

i ] < ∞. (12)

It should be noted that the random variable

Sdv =
(X1 − p1) + (X2 − p2) + · · · + (Xdv − pdv )√

σ 2

1
+ σ 2

2
+ · · · + σ 2

dv

(13)

in the Berry–Essen theorem is the same as the random variable

Z in Equation (6).

Substituting σ 2

i and ρi in Equation (11), we obtain:

ψ0 = ψ0(
−→σ ,−→ρ )

=

( dv∑
i=1

pi (1 − pi )

)−3/2

·

( dv∑
i=1

pi (1 − pi )[(1 − pi )
2 + p2

i ]

)
,

(14)

Using the fact that 1 = (1−pi+pi )
2 = (1−pi )

2+p2

i +2pi (1−pi ) ≥

(1 − pi )
2 + p2

i , we can simplify (14) to have:

ψ0 ≤

( dv∑
i=1

pi (1 − pi )

)−3/2

·

( dv∑
i=1

pi (1 − pi )

)
=

( dv∑
i=1

pi (1 − pi )

)−1/2

=
1√

p1(1 − p1) + · · · + pdv (1 − pdv )
,

(15)

Substituting (15) in (10) the stated claim follows. □

4 PEELING ALGORITHM (PA)
In this section we propose a graph peeling algorithm (PA). Graph

peeling, that is, (1) recursively deleting the vertex v of smallest

degree (2) setting v’s coreness to be equal to its degree at the

time of deletion, and (3) updating the degrees of v’s neighbors
while keeping them sorted, is a general idea that has been used

broadly in core decomposition of deterministic graphs (cf. [3, 24]).

However, it requires substantial algorithmic engineering in order

to achieve high scalability when applied to probabilistic graphs.

This is because when a vertex v is deleted in the peeling process,

updating the η-degrees of v’s neighbors and maintaining the

data structures up to date are non-trivial. In order to tackle these

challenges, we use efficient array structures and lazy updates,

which delay updating the η-degrees of v’s neighbors for as long
as possible.

Computing and updating η-degrees. An expensive step in

the peel-off process is computing initial η-degrees and updating

them for those vertices that lose neighbors in a peel-off step. We

will depart from the feature of the deterministic case of having

vertices sorted at all times based on their current degrees and

allow instead the vertices to not be on their precise order as long

as at the time of their removal we can fix things up using the key

functions and data structures that we define.

More specifically, the computation and update of η-degrees
is delayed as much as possible by using easy to compute lower-

bounds on η-degrees instead of exact values. It is only when a

vertex is candidate for removal that we compute its exactη-degree.
At that time the remaining graph is typically much smaller and

the computation becomes significantly faster.

Based onCorollary 1, we know that LyapunovCLT gives a very

good approximation on tail probabilities of vertex degrees. We

use the values produced by CLT (decremented by a small epsilon)

in order to obtain lower-bounds on η-degrees. For simplicity of

exposition, we refer to the lower-bound values simply as values.
One important difference between the core decomposition of

probabilistic and deterministic graphs is that the η-degree of a
vertex can decrease by at most one when a neighbor is removed

(according to Lemma 2 in [6]) as opposed to exactly one in deter-

ministic graphs. An array A stores, for each value in the input

graph, the set of vertices with that value. In the PA algorithm at

each iteration, we decrease the value of a vertex v by one if a v’s
neighbor is removed. When v’s turn comes to be removed and

processed, we compute its η-degree and if it is the same as its

current value we remove v . Otherwise, we repeatedly swap v to

the proper place in A. There could be several neighbor removals

that did not change the η-degree of v , thus the proper place of v
in A could be far from the next block of vertices, and therefore

we might need to perform several swaps.

PA algorithm description. The PA algorithm is given in Algo-

rithm 1. There we have arrays d, b, p, and A. For an example see

Figure 1 and Table 1. Vertices in the PA algorithm are assumed

to be labeled by numbers 0 to n − 1. Array d initially stores for

each vertex the lower-bound on the η-degree of that vertex. For
instance, vertex 1 has a lower-bound of 1 in Table 1, so d[1] = 1.

Initially, vertices are stored inA in ascending order of their lower-

bounds. We have coloredA in shades of green in Table 1. The first

block in A contains all the vertices with a lower-bound equal to

0; the second block contains vertices with lower-bound equal to

1, and so on. In order to determine the index boundaries of such

blocks in A, we define array b which stores the index boundaries

of the vertex blocks inA. In Table 1 we have for instance b[1] = 2

and b[2] = 6. In order to handle swapping efficiently we define

an array p which stores the position of each vertex in A. For
instance, vertex 6 is at position 2 in A, therefore p[6] = 2.

There are two additional arrays as well; gone and valid. Since
we do not remove vertices physically from the graph, we use

array gone to keep track of the removed vertices at each step of

the algorithm. Array valid tells for each vertex v if the η-degree
of v is the same as the value d[v]. The array gone is initially

set to false for all the vertices, because none of the vertices has

been removed yet. Array valid is set to all-false vector because

all the vertices are on their lower-bound at the beginning of the

algorithm. For instance, in Table 1, we have valid[4] = f alse
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which indicates that vertex 4 is on its lower-bound and its η-
degree should eventually be computed.

We illustrate a few steps of the PA algorithm on the graph in

Figure 1. We set η = 0.5. The PA algorithm starts with the first

vertex v in array A, checking whether v is on its lower-bound

or its η-degree is available. As can be seen in Table 1, vertex 0 is

the first vertex in A. Since valid[0] = f alse , the vertex 0 is on

its lower-bound, and its η-degree might be higher. Therefore, it

might not be its turn to be removed. As such, the compute_swap

function is called (line 19, Algorithm 1) to compute the η-degree,
and then do the required number of swaps to the right, using

Algorithm 3, to place the vertex in the proper block of A. Thus,
unlike deterministic case we do need to perform several swaps to
the right. The compute_swap function (Algorithm 4) computes

the η-degree of vertex 0, which turns out to be 1. Thus, the vertex

only needs one swap to the right in A to be placed in the block

containing all the vertices with degree 1. In order to do each swap

in constant time (using Algorithm 3), we swap vertex 0 with the

last vertex in the same block which is 6. As a result, the positions

of vertices 0 and 6 should be swapped as well: p[0] = 2,p[6] = 1.

Vertex 0 becomes the last element of its current block (the block

of vertices with degree 0). In order to make vertex 0 become an

element of the next block, the index of the block of vertices with

degree 1, b[1], is decremented by one to include vertex 0 as its

first element. We have b[1] = 1, and vertex 0 becomes the first

element of the block of vertices with degree 1.

Table 2 shows the current status of arrays after swapping ver-

tex 0 with 6. The updated values are shown in red color. As can

be seen, valid[0] = true because now the η-degree of vertex 0 is
available. Now, vertex 6 is the first vertex in A and the algorithm

processes it. The summary of the results is shown in Table 3.

Since valid[6] = true we can safely remove vertex 6. The corre-

sponding index in array gone is set to true, and the coreness of

vertex 6 is set to d[6], which is 1.

When a vertex v is removed, we process those neighbors u
of v with a higher degree (lower-bound or exact) than v’s (see
lines 14-16), and decrement their degrees by one. Therefore, these

neighbors should be moved one block to the left inA. This is done

in constant time using the swap_left function (line 15) which is

shown in Algorithm 2. For instance, vertex 3 is a neighbor of

vertex 6 with degree 2, which is decremented by one, from 2 to 1,

when vertex 6 is removed. Therefore, vertex 3 should be swapped

to the block in the left in A, which contains vertices of degree 1.

The process is similar to swapping to the right. However, when

swapping to the left, vertex u is swapped with the first vertex,w
in the same block in A. In addition, the positions of u andw are

swapped in p. Then, the block index in b is incremented by one

(line 7, Algorithm 2), making u the last element of the previous

block.

Correctness of the algorithm. For every v ∈ V , and C ⊆ V , a
vertex property function [3] is a function ϕ(v,C) : V × 2

V → R,
and it is monotonic if ∀C1,C2 ⊆ V : C1 ⊆ C2 implies that

ϕ(v,C1) ≤ ϕ(v,C2). According to the result by Batagelj and Za-

versnik [3], for a monotonic vertex property function ϕ(v,C), the
algorithm that repeatedly removes the vertex with smallest ϕ
value gives the core decomposition. Since η-degree of a vertex
is a monotonic vertex property function [6], then our peeling

algorithm, which removes the vertex with smallest η-degree at
each iteration of the algorithm, computes the desired core decom-

position. Also, it should be noted that, the algorithm scans the

next vertex in array A only when the η-degree of the previous

vertex has been set. In addition, the lower-bounds never surpass

the value of η-degrees. Thus, we conclude that the PA algorithm

computes the desired core decomposition in probabilistic graphs.

Running time of the PA algorithm. The compute_swap func-

tion is dominated by two parts: (1) computing η-degrees takes
O(η-deg(u)) for each vertexu (2) swapping a vertex to the proper
block; each swap is done in constant time, and the maximum

number of swaps required for a vertexu isO(η-deg(u)). However,
as reported above, initially the difference between the lower-

bounds obtained by Lyapunov CLT and the η-degrees is no more

than one. Hence, either one or no swap is required initially. Thus,

the compute_swap function takes in total

O
©­«
∑
v ∈V

∑
u :(u,v)∈Nv

η-deg(u)
ª®¬ = O

( ∑
v ∈V

dvδ
′

)
= O(mδ ′),

wherem is the number of edges, and δ ′ is the maximum η-degree
over all vertices at the time of their removal. The swap_left func-

tion swaps each vertex one block to the left inA in constant time.

Therefore, the main cycle (Algorithm 1, line 6-19) takes O(mδ ′).
In conclusion, the running time of the PA algorithm is O(mδ ′).

Index 0 1 2 3 4 5 6

d 0 1 1 2 1 1 0

A 0 6 1 2 4 5 3

p 1 3 4 7 5 6 2

b 0 2 6

valid false false false false false false false

gone false false false false false false false

Table 1: Arrays d, b, A, p, valid, and gone in the PA algorithm for
the graph in Figure 1.

Index 0 1 2 3 4 5 6

d 1 1 1 2 1 1 0

A 6 0 1 2 4 5 3

p 2 3 4 7 5 6 1

b 0 1 6

valid true false false false false false false

gone false false false false false false false

Table 2: First step of the PA algorithm (after swapping vertex 0) for
the graph in Figure 1.

Index 0 1 2 3 4 5 6

d 1 1 1 2 1 1 1

A 6 0 1 2 4 5 3

p 2 3 4 7 5 6 1

b 0 0 6

valid true false false false false false true

gone false false false false false false false

Table 3: Second step of the PA algorithm executed on the graph in
Figure 1.

5 SEQUENTIAL ALGORITHM (SA)
In this section we present a sequential algorithm (SA) which

processes the vertices one-by-one, and as such, does not require

the graph to be fully loaded into memory but rather one vertex at

a time. Furthermore, as shown in Section 6, after only a fraction

of iterations, SA is able to produce high quality results.

SA maintains bookkeeping information for each vertex and

has a memory footprint ofO(n) as opposed toO(m) for PA. More
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Algorithm 1 PA k-core computation function

1: function K_CoreCompute(Graph G, η)
2: initialize(d, b, p, A, G)
3: gone← False ▷ all-false vector

4: valid← False ▷ all-false vector

5: i ← 1

6: while i < n do
7: v ← A[i]
8: if valid[v] = true then
9: gone[v] ← true
10: for all u : (u,v) ∈ Nv do
11: if d[u] = d[v] then
12: if valid[u] = false then
13: compute_swap(d,p, b,A,u, valid)
14: if d[u] > d[v] then
15: swap_left(d,p, b,A,u)
16: valid[u] ← false
17: i + +
18: else
19: compute_swap(d,p, b,A,v, valid)
20: return d

Algorithm 2 PA swap to left function

1: function swap_left(d,p, b,A,u)
2: du ← d[u], pu ← p[u]
3: pw ← b[du] ,w ← A[pw]
4: if u , w then
5: A[pu] ← w , A[pw] ← u
6: p[u] ← pw , p[w] ← pu

7: b[du] + +, d[u] − −

Algorithm 3 PA swap to right function

1: function swap_right(d,p, b,A,u)
2: du ← d[u], pu ← p[u]
3: pw ← b[du + 1] − 1 ,w ← A[pw]
4: if u , w then
5: A[pu] ← w , A[pw] ← u
6: p[u] ← pw , p[w] ← pu

7: b[du + 1] − −, d[u] + +

Algorithm 4 η-degree computation and swap function

1: function compute_swap(d,p, b,A,u, valid)
2: η_deд← compute η-deg(u)
3: valid[u] ← true
4: diff← η_deд − d[u]
5: for j ← 1 to diff do
6: swap_right(d,p, b,A,u)

specifically, SA adopts the “semi-external” model of computation,

which assumes that for each vertex we can fit a small constant

amount of information in main memory while the edges of the

graph are stored on disk. As other works have shown, this model

is practical for a large number of real-world, web-scale graphs,

and widely adopted to handle other graph problems [32, 45, 50,

51].

Algorithms that are sequential and semi-external do exist

for deterministic core-decomposition (see [24, 35, 45]). They are

based on the idea of maintaining an upper-bound on each vertex’s

coreness. This upper-bound is initialized to the degree of each

vertex, and after each iteration of the algorithm it is tightened

further using a simple locality property until it reaches the exact

core value. The locality property is as follows. The coreness of a

vertexv can at most be the largest value k such thatv has at least

k neighbors with a value greater or equal to k . Locality-based
tightening (LBT) lowers the bound of a vertex to be the number

k described above.

Unfortunately, this idea does not work for probabilistic core

decomposition. LBT does not necessarily converge to true core

values of vertices. For an example, consider Figure 1, η = 0.5,

and Table 4. We initialize the upper-bounds to the η-degree of
each vertex. Then, we execute a round of LBT. The bound for

vertex 3 is tightened to 2. This is because the largest k for which

vertex 3 has at least k neighbors with a value at least k is 2. These

neighbors are 1, 2, 4, and 5 with a bound equal to 2. Running one

more iteration of LBT does not produce any further tightening.

However, the true core number of vertex 3 is 1 not 2 (see Table 4,

last column). In the following, we tackle the problem with a

new procedure we call probabilistic bound tightening (PBT). PBT
takes into consideration the edge probability values and uses an

optimized version of dynamic programming to gradually tighten

the upper bounds of vertices to the true coreness. While PBT by

itself can be used to compute coreness, we combine PBT with

LBT in order to speed up the convergence, since LBT is faster

than PBT.

First we show that the obtained values at the end of LBT are

always an upper-bound to the true coreness values.

Proposition 1. Let G = (V ,E,p) be a probabilistic graph.
Also, for each vertex v ∈ V , let kv be the true coreness of v , and
¯kv be the value assigned to v at the end of the LBT phase. Then,
¯kv ≥ kv .

Proof. Once a LBT phase terminates, and the coreness of v
is fixed to

¯kv ; then there should be a subset V¯kv of neighbors

of v with the size at least
¯kv , and ∀u ∈ V¯kv :

¯k(u) ≥ ¯kv , where
¯k(u) is the coreness assigned to u by LBT. However, considering

the existence probability of edges incident to v , the value for

Pr[dG(V ¯kv )
(v) ≥ ¯kv ] can be less than η, where G(V¯kv ) is the in-

duced subgraph byV¯kv . On the other hand, since Pr[d(v) ≥ k] is

monotonically non-increasing with the value of k , the true core-
ness ofv should be in the interval [0, ¯kv ] such that Pr[dG(V ¯kv )

(v)

≥ k] ≥ η > Pr[dG(V ¯kv )
(v) ≥ ¯kv ]. Thus, ¯kv ≥ kv . □

Once a LBT phase terminates, PBT starts to check whether

the obtained value for each vertex is the true coreness of the

vertex or not. If not, the gap is tightened further. We run LBT

and PBT repeatedly, one after the other, until the core value for

each vertex reaches a fixed point.

Before formally giving the algorithm, we present an exam-

ple to illustrate how the SA algorithm works. We consider the

probabilistic graph in Figure 1 and η = 0.5. LBT for this example

was discussed earlier and the vertex values at the end of it are

given in Table 4, third column. As can be seen, there are some

vertices whose bounds are different from their true coreness (e.g.

vertices 1 and 3). Therefore, the SA algorithm starts PBT to close

this gap by checking for exactness of each bound to the true

coreness of the vertex. For instance, consider vertex 1. We should

check whether the coreness of it can be equal to 2 or not. In

probabilistic core decomposition, a vertex v has coreness k if
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Pr[dH(v) ≥ k] ≥ η, where H is a maximal subgraph in which

each vertex has degree of at least k . Checking Pr[dH(1) ≥ 2],

we see that this probability does not pass threshold η = 0.5,

and therefore vertex 1 cannot have coreness of 2 in subgraphH

which contains the neighbors 2 and 3. We perform the check of

Pr[dH(v) ≥ k] using an optimized version of dynamic program-

ming explained later. Vertex 0 cannot belong to the subgraph

because its bound is less than 2. For vertex 1, the maximum value,

for which the probability passes the threshold, is equal to 1. As

a result, the bound on the coreness of vertex 1 is updated to 1.

The same process is done for vertex 3. The values obtained at the

end of PBT are shown in the fourth column of Table 4, which

contains exactly the true core value of each vertex.

v η-degree LBT-Round 1 PBT-Round 1 Coreness

0 1 1 1 1

1 2 2 1 1

2 2 2 2 2

3 3 2 1 1

4 2 2 2 2

5 2 2 2 2

6 1 1 1 1

Table 4: Upper-bounds obtained at LBT and PBT phase of SA. η =
0.5 for the example. LBT and PBT correspond to locality-based and
probability bound tightening, respectively.

SA algorithm description. The main cycle of SA is given in

Algorithm 5. We define two Boolean variables, PBT_phase and
etadegree_change. Variable PBT_phase is used to determinewhether

a PBT phase has been started or not. The variable etadegree_-
change is used to record whether there is some vertex (in PBT

phase) with its η-degree changed or not. Initially both of them are

set to false. Then, we invoke LBT. Once this process terminates

(line 4), the vertex value (upper-bound) of all the vertices should

be checked for the possibility of gap between the current vertex

value and its true coreness. In fact, for each vertex v it should

be investigated whether the degree of v can be greater than or

equal to its current vertex value with probability no less than

η or not. If so, the current vertex value should be the same as

its η-deg(v). Checking whether a vertex should be processed (in

PBT) or not is done using the Boolean array check which contains
a flag for each vertex. If the flag is set to true, its vertex value

needs to be checked, using the PBT function (see line 10). Then,

the algorithm enters a PBT phase (lines 8-10). We make a clone,

checkNow, of check; then we reinitialize check to the all-false vec-

tor (lines 8-9). The clone is needed to be used in the for loop
in the PBT function (line 3, Algorithm 6). If after a PBT phase

terminates there is some vertex with its η-degree not equal to its

current vertex value, a new LBT phase is started again (line 15)

and this process continues until a fixed point is obtained for all

the vertices (lines 11-12).

PBT is given in Algorithm 6. The implementation iterates over

each vertex v , and checks if there is a gap between v’s value and
its true coreness; if so, that vertex should be processed. In this

process, only the neighbors ofv whose current values are greater

or equal to v’s value are considered because it is only them that

can contribute to v’s coreness. We compute Pr[d(v) ≥ C[v]] and
checkwhether it passes thresholdη or not. If Pr[d(v) ≥ C[v]] < η,
then, since we know that Pr[d(v) ≥ k] is non-increasing with k ,
the maximum k for which the probability passes the threshold is

returned and stored in variable localValue (line 5). In this case, all

the values from (C[v] − 1) down to localValue should be checked

as candidate values for the coreness ofv and the maximum value

(variable max in line 16), is chosen as the new value of v . This
way we make sure that the algorithm does not go below the real

coreness value at each PBT step (lines 8-15). For each value j in
the for loop (line 8) we check whether Pr[d(v) ≥ j] ≥ η (line

9). If so, max is set to j (line 10) and the vertex value is updated

to max (line 16). Otherwise, the value for which the probability

passes the threshold is stored in variable value (line 13), and if

it is greater than max, the latter is updated to the former (lines

14-15).

It should be noted that in the for loop, similar to what we

do in lines 4-5 of Algorithm 6, we should compute Pr[d(v) ≥ j]
and check if it passes the threshold or not. For this, we use an

optimized dynamic programming process as follows. Variable

j starts from C[v] − 1 and goes down to localValue. In order

to avoid computing these probabilities from scratch, once we

compute Pr[dH(v) ≥ C[v]], we cache the following probabilities

Pr[dH(v) = 0], · · · , Pr[dH(v) = C[v]], whereH contains all the

neighbors ofv whose upper-bound is at leastC[v]. Then, since for
j = C[v] − 1,H ′ contains all the neighbors whose upper-bound

is exactly equal to j (we denote this set byVj ) and higher, we can
have H ′ = Vj ∪ H . Therefore, to compute Pr[dH′(v) ≥ j] we
use the computed probabilities inH and only consider vertices

in Vj . This way we optimize DP to compute the probabilities

very fast since Vj is typically small (e.g., about 100 in our later

evaluated large-scale graphs). For the next iteration, we store

all the probabilities computed in the previous iteration and use

them to compute new probabilities. In the following we describe

our DP process in more detail.

Let assume that we have computed Pr[dH(v) = k], where k =
0, 1, ..., j , andH is a subgraph of the input probabilistic graph in

which each vertex has core value at least j . Also, letVj−1 contain

all the vertices (including the neighbours ofv) whose core value is
exactly j−1. Thus,H ′ = H∪Vj−1 is the subgraph whose vertices

have core value at least j − 1. We denote {e1, ..., ex } to be the set

of edges incident to v such that for each ei = (ui ,v), ui ∈ Vj−1,

where i = 1, ...,x . In order to evaluate Pr[dH′(v) = k ′], where
0 ≤ k ′ ≤ k , and avoid from scratch computation, we denote the

degree ofv in the subgraphH ′ by d(v | (H ∪{e1, ..., ex })). Then,
it holds that:

Pr[d(v | (H ∪ {e1, ..., ex })) = k
′] =

= pex Pr[d(v | (H ∪ {e1, ..., ex−1})) = k
′ − 1]+ (16)

+ (1 − pex )Pr[d(v | (H ∪ {e1, ..., ex−1})) = k
′].

LettingT (x ,k ′) = Pr[d(v | (H ∪ {e1, ..., ex })) = k
′], we have the

following recursive formula:

T (x ,k ′) = pexT (x − 1,k ′ − 1) + (1 − pex )T (x − 1,k ′) (17)

with the following base cases:{
T (0,k ′) = Pr[dH(v) = k

′], 0 ≤ k ′ ≤ k

T (x ,−1) = 0,
(18)

As can be seen, in the base case of the recursive formula, we

are using the previously computed probabilities to compute the

probabilistic degree of vertex v in the new subgraph, which

results in saving time significantly.

Since the vertex value of v is updated, all its neighbors with

value at least the vertex value of v should be checked for validity

of their vertex value. We show in the following that the PBT

estimate of the coreness eventually equals the true coreness for

each vertex.
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Algorithm 5 SA k-core computation function

1: function SA_core_computation(Graph G)

2: PBT_phase ← f alse
3: C ← 0 ▷ array of core values

4: LBT()

5: check← True ▷ all-true vector

6: etadeдree_chanдe ← f alse
7: while true do
8: checkNow← check.clone()
9: check← False ▷ all-false vector

10: PBT(G, checkNow)

11: if etadegree_change = false then
12: break
13: else
14: PBT_phase = true
15: LBT()

16: etadegree_change← f alse

17: return cores

Algorithm 6 SA probabilistic bound tightening function

1: function PBT(G, checkNow)

2: for all v ∈ V do
3: if checkNow[v] = true then
4: if Pr[dH(v) ≥ C[v]] < η then
5: localValue← compute η-degH(v)
6: max ← localValue
7: m ← C[v] − 1

8: for all j ←m down to localValue do
9: if Pr[dH′(v) ≥ j] ≥ η then
10: max← j
11: break
12: else
13: value← compute η-degH′(v)
14: if value ≥ max then
15: max ← value
16: C[v] ←max
17: etadegree_change← true
18: for all u : (u,v) ∈ Nv do
19: if C[u] ≥ C[v] then
20: check[u] ← true

Correctness of the SA algorithm.We prove this by contradic-

tion. Suppose that after the last PBT phase, there is vertexu1 such

that k(u1) = k1 (real coreness) and core[u1] = k
′ > k1, where core

is the coreness assigned to u1 after PBT phase. Since k(u1) = k1,

k1 is the maximum value such that Pr[dH(u1) ≥ k1] ≥ η, and
Pr[dH′(u1) ≥ i] < η for all i > k1, whereH andH ′ are the max-

imal induced subgraphs in which each vertex has degree at least

k1 and i , respectively, with probability no less than η. Based on

the properties of cores of a graph, we know thatH ′ ⊆ H . If all

the neighbors of u1 inH have coreness k1, then u1 will not have

any neighbors with coreness greater than k1 inH
′
, so u1 eventu-

ally sets core[u1] equal to k1, which is a contradiction. The similar

argument holds if all the neighbors of u1 in H have coreness

greater than k1. Since k(u1) = k1 and core[u1] = k ′ > k1, there

should exist a neighbor u2 with k(u2) = k1 and core[u2] > k1

such that Pr[deдH′∪{u2 }(u1) ≥ k ′] ≥ η, because otherwise

Pr[dH′(u1) ≥ k ′] < η. In fact, the existence of this neighbor will

contribute to the assigned coreness of u1 to be greater than k1.

Now by reasoning similar to [35], we can build a sequence of

vertices S =
{
ui ,ui+1,ui+2, ...,uj = ui

}
connected to each other

with k(ui ) = k1 and core[ui ] > k1. For each vertex ui in S , let Vi
be the set of all neighbors of ui inH

′
. Now, we can define a set

U = S ∪
⋃
ui ∈S Vi . The corresponding induced subgraph G(U ) is

a k ′-core, because all the vertices in Vi have coreness at least k
′

with probability greater than or equal to η. Also, since for each
vertex ui in S , Pr[dVi∪{ui+1 }(ui ) ≥ k ′] ≥ η, we have that G(U )
is a k ′-core where k ′ > k1. Hence, we find a subgraph whose

vertices have coreness k ′ > k1 which is a contradiction because

we assumed that each vertex in S has coreness k1. Therefore, k1

is not a maximal (i.e. true) coreness.

Running time of the SA algorithm. The time complexity of

the algorithm is dominated by time complexity of the PBT be-

cause LBT has a time complexity of O(N − K + 1) [35], where

K is the number of vertices with minimal degree (in probabilis-

tic graphs it refers to η-degree). To analyze the time complex-

ity of a PBT step (Algorithm 6), let ∆ be the maximum upper-

bound on the η-degree over all the vertices in all the probabilistic

bound tightening steps. Lines 4 and 5 (η-degree computation)

are done simultaneously, and take time O(dvC[v]) for each ver-

tex v , where C[v] is the upper-bound on the η-degree of v . In
practice this computation is fast because the η-degree computa-

tion is performed on the subgraphH which contains only those

neighbors of v whose upper-bound is at least C[v] (not all the
dv vertices). In the worst case the inner loop is repeated C[v]
times, and each time the η-degree computation and the check-

ing of the probability threshold (lines 9 and 13) are performed

similarly to what explained above. Therefore, the time complex-

ity of this part is:

∑C[v]
j=1

O(jdv ). It should be noted that at each

iteration in the for loop, we use the previously computed prob-

abilities to avoid computing η-degrees from scratch. However,

here we consider the worst case analysis of the algorithm. The

time complexity of lines 18-20 is O(dv ). As a result, each PBT

iteration takes

∑
v ∈V

(
O(C[v]dv ) +

∑C[v]
j=1

O(jdv ) + O(dv )
)
=∑

v ∈V

(
O(∆dv ) + O(θdv ) + O(dv )

)
, where θ = ∆2

. Therefore,

the time complexity of each PBT round is O(mθ ), where m is

the total number of edges. In the worst case, we assume that at

each PBT round, the difference between the actual coreness of a

vertex and its initial estimate (the initial η-degree) decreases by
one unit. Thus, in the worst case Γ =

∑
v ∈V η-deg(v) PBT steps

are required. Therefore, the total running time can be expressed

as: O(Λm), where Λ = Γθ .
As in [35], the complexity upper bounds for such iterative

algorithms are not representative of practical performance. In

practice, LBT and PBT are fast, and the number of iterations is

only a handful, thus SA is an efficient algorithm for large datasets

while requiring only O(n) memory footprint.

6 EXPERIMENTS
In this section, we present our experimental results. Our im-

plementations are in Java and the experiments are conducted

on a commodity machine with Intel i7, 2.2Ghz CPU, and 12Gb

RAM, running Ubuntu 14.03. The hard disk is Seagate Barracuda

ST31000524AS 2TB 7200 RPM.

The statistics for all of the datasets we consider are shown in

Table 5. We obtained flicker, dblp, and biomine from the authors

of [6], and the rest of the datasets from Laboratory of Web Algo-

rithmics.
1
The datasets are divided by horizontal lines according

to their size, small (S), medium (M), large (L), and extra large (XL).

1
http://law.di.unimi.it/datasets.php
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We use the Webgraph framework [5] to store these datasets. The

flickr, dblp, and biomine datasets already contained probability

values. For the other datasets we generated probability values

uniformly distributed in [0, 1].

We evaluate our algorithms in three important aspects. First

is numerical stability. As [6] points out, using probability val-

ues may lead to numerical instability. We discuss this in Subsec-

tion 6.1. Second is the quality of our η-degree lower-bounds using
Lyapunov CLT. We evaluate and discuss this in Subsection 6.2.

Third is the efficiency of our proposed algorithms. We show our

performance results in Subsection 6.3.

6.1 Numerical Stability
For evaluating numerical stability we refer to the results of η-
degree computations shown in Table 6. The table contains results

for η = 0, η = 10
−9

and dv = 100, dv = 1000. For each com-

bination of η and dv we compute η-degrees for 1000 randomly

selected vertices. We show results for twitter-2010, but any of the

other datasets above can be used for this experiment to obtain

similar results.

Using the BigDecimal class in Java we adjust the numerical

precision to different levels when using DP for computing η-
degrees. We compare numerical results of DP using different

precision levels in Java, where DPU (DPwith unlimited precision)

is the highest level of precision and thus the gold standard. The

DP128 and DP256 columns in the table correspond to computing

η-degrees using DP by setting precision to 128 bit and 256 bit,

respectively. We observe that the more we increase the level

of precision, the longer it takes to perform the computation.

For example, when executing the DP algorithm for computing η-
degrees for vertices withdv = 1000, it takes more than 7000 times

longer to perform the computation using unlimited precision

than using the default (plain) number computation in Java.

Following [6], we start by setting η = 0 (top two parts). For this

η the (k,η)-core decomposition of a probabilistic graph should

coincide with the core decomposition of the deterministic graph

derived by ignoring probabilities. The accuracy can thus be mea-

sured by comparing, for each vertex, the (k, 0)-core number with

the core number obtained on the deterministic version of the

graph.

We can see that for η = 0, we need a lot of precision (bits) to

achieve error free computation. For example, when dv = 100, we

need at least 256-bit precision, whereas when the degree is 1000,

we need DP with unlimited precision.

The DPLog2 column of the table shows the results if we op-

erate in logarithmic space
2
. We can see that DP operating in

logarithmic space is very stable and never produces any error at

all, while being much faster than the DP variants operating with

specified precision.

We test η = 0 to compare our results to previous work [6].

However, the situation changes significantly if η is greater than

zero even by a very small amount. If we set η = 10
−9

(one bil-

lionth) or higher, we never get an error even for plain DP which

is much faster than any other DP variant including the one in log

space (see the two bottom parts). We tested with η in [10
−9, 0.5]

and obtained similar results.

The last column of Table 6 shows the accuracy of η-degree
computation when using Lyapunov CLT instead of DP. For η = 0,

computing η-degrees using CLT is error-free. More interesting

are the bottom two parts for η greater than zero. For vertices

2
https://en.wikipedia.org/wiki/Logarithm

Name |V | |E |

flickr 24,125 300,836

dblp 684,911 2,284,991

cnr-2000 325,557 2,738,969

biomine 1,008,201 6,722,503

ljournal-2008 5,363,260 49,514,271

arabic-2005 22,744,080 553,903,073

uk-2005 39,459,925 783,027,125

twitter-2010 41,652,230 1,202,513,046

Table 5: Dataset Statistics

DP DP128 DP256 DPU DPlog2 CLT

NE 100% 99% 0% 0% 0% 0%

AE 8% 5% 0% 0% 0% 0%

AT 0.09 11.44 12.57 27.71 1.56 0.05

NE 100% 100% 100% 0% 0% 0%

AE 40% 35% 28% 0% 0% 0%

AT 3.3 1238 1499 26355 222 0.1

NE 0% 0% 0% 0% 0% 43%

AE 0% 0% 0% 0% 0% 1%

AT 0.19 14.41 15.34 43.86 2.14 0.27

NE 0% 0% 0% 0% 0% 0%

AE 0% 0% 0% 0% 0% 0%

AT 3.7 1244 1382 23934 171 0.3

Table 6: Error statistics and average running time for different pre-
cision levels for η = 0 and η = 10

−9. NE stands for Number of Errors,
AE for Average Relative Error, andAT for Average Time (ms). Specif-
ically, AE=∥error ∥/true_value .
1st part:η = 0,dv = 100; 2ndpart:η = 0,dv = 1000; 3rd part:η = 10

−9,
dv = 100; 4th part: η = 10

−9, dv = 1000

DP: DP using plain numbers in Java; DP128, DP256, DPU: DP us-
ing BigDecimal in Java and setting the precision to 128 bits, 256
bits, and unlimited, respectively; DPlog2: DP doing computations
in log space.

with dv = 100, CLT makes errors in computation (on 43% of the

vertices), however, those errors are small; only 1% on average of

the η-degree value.
When considering vertices with dv = 1000, the computation

using CLT is error-free and furthermore it is orders of magnitude

faster than the variants of DP. Again, we also tested with a variety

of η levels and obtained similar results. Guided by the above,

in our algorithms, we set the threshold on dv to start using

Lyapunov CLT for computing η-degrees at 1500. Recall that the
η-degree computation is needed in PA when a vertex becomes

candidate for removal, while in SA it is needed when initializing

vertex values.

In summary, regarding numerical stability, our contribution is

to show that DP is sensitive to the setting of η value and becomes

error-free once η is greater than zero even by a small amount.

This was not investigated thoroughly before. On the other hand,

CLT is resilient to different η values (even η = 0). With respect

to efficiency in computing η-degrees, when dv ≥ 1000, CLT can

be used to produce error-free computations orders of magnitude

faster than all the DP variants.

6.2 Accuracy of CLT as a lower-bound
Here we investigate the quality of the lower-bounds on η-degrees
obtained using CLT. Namely, we compare CLT with another

method for deriving lower-bounds used in [6], which utilizes a
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Figure 2: Average error (average of difference from true core coreness) and max error (maximum difference from true coreness) versus itera-
tions for different values of η.

Dataset

Max Error

CLT Beta Function

biomine 1 1,663

cnr-2000 1 9,056

ljournal-2008 1 9,453

Table 7: Maximum error of CLT and regularized beta function for
selected datasets.

formula based on the regularized beta function.
3
We computed

initial η-degrees for biomine, cnr-2000, and ljournal-2008 with

η = 0.1 using DP, Lyapunov CLT, and regularized beta function.

Then, we computed the maximum error for CLT and regularized

beta function. We report the results in Table 7. As can be seen,

the maximum error for CLT for all the datasets is one which

means that the difference between the values obtained by CLT

and the true values is either zero or at most one. On the other

hand the max error for the regularized beta function is big, in

the order of thousands.

The small value of error for CLT is of great importance in the

main cycle of the PA algorithm where each vertex is processed

based on its lower-bound before its true η-degree is computed.

To summarize, since the difference between each vertex’s lower-

bound (computed by CLT) and its true η-degree is small, we only

need to do a small number of swaps to place a vertex in the proper

place in the array A resulting in significant savings in running

time.

6.3 Efficiency of the Proposed Algorithms
Table 8 shows the running times of the PA (left) and SA (right)

algorithms on the selected datasets. For twitter-2010 we report

the results for different values of η ranging from 0.1 to 0.5. For the

other datasets, we only show results for η = 0.1 and omit results

3
http://mathworld.wolfram.com/RegularizedBetaFunction.html

for η = 0.2, . . . , 0.5, since they are similar to those for η = 0.1

and their nature is the similar to what we see for twitter-2010.

For the small and medium datasets, PA produced the results in

about 2 sec for the small and 4 to 6 sec for themedium datasets. PA

also performed well on the large datasets; biomine and ljournal-

2008, computing the core decomposition of these two graphs

on average in only 40 sec and 2 min, respectively. Notably, for

biomine for instance, our algorithm is 32 times faster than the

algorithm of [6] (see also Table 10 which we discuss later).

The running time of PA is good on the very large datasets

as well. On uk-2005 and arabic-2005, PA completed in about 28

min and 42 min, respectively; less than one hour; in contrast

the state-of-art [6] was not able to complete for these datasets

in our machine after one day. For twitter-2010, which is much

larger than uk-2005 and arabic-2005, with a maximum η-degree
of 1, 500, 282, our PA algorithm completed in around two hours,

which is impressive for processing such a big dataset on our

consumer-grade machine.

The running times of SA are shown in Table 8 (right part).

For the small and medium datasets the total running times of SA

were similar to those of PA. For the large datasets, SA needed

more time, 2-3 times more, than PA. However, we recall that SA

has a much smaller memory footprint than PA, namely O(n) as
opposed to O(m) for PA. As such we are trading time for space

when using SA over PA, a beneficial feature to have when using

low-cost, cloud-server machines.

Another benefit of using SA is that it can produce good ap-

proximate results after only a small fraction of total iterations.

We discuss this more later in this section.

Effect of η values. We observe that the total running time does

not changemuch as the value ofη increases. This is because when
η increases, the η-degree of a vertex might not change or slightly

decrease and as such this does not have a significant effect on

the total running time of the algorithms. This is also evident in
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Table 9 where the average coreness (kavg) and the maximum

coreness (kmax) decrease only slightly as η increases. As before,

we report the average coreness, the maximum coreness, and the

maximum η-degree for twitter-2010 for η = 0.1, . . . , 0.5, whereas

for the other datasets we only show the values for η = 0.1.

Comparing with the algorithm of [6].We also compared the

running times of our algorithms, PA and SA, to that of the algo-

rithm of [6] (which we call BGKV
4
), for η = 0.1. We considered

the (k,η)-core implementation made available to us by the au-

thors of [6] with numbers represented by using BigDecimal in

Java. From this, we also created a second version, which we call

BGKV-2, where we replaced the computations using BigDecimal

with plain computations in Java. This is because as shown in

Subsection 6.1, for η greater than 0, the use of BigDecimal for DP

is not warranted.

Table 10 summarizes the running times on three datasets, flickr,

dblp and biomine. For biomine, which is a large dataset, we were

only able to use up to 64 precision bits. We can see that both

PA and SA are significantly faster than BGKV. For example, for

biomine our algorithms are more than 32 times faster than BGKV.

BGKV-2 is faster than BGKV. For the small datasets, flickr and

dblp, it is even faster than PA and SA. This can be attributed to

the fact that since the memory footprint is small, the benefit of

using our algorithms is outweighed by the overhead of using the

Webgraph compression structures in PA and SA.

The situation changes significantly as the size of the datasets

grows. For biomine, BGKV-2 is about twice slower than PA and

SA. For the rest of the datasets that are bigger than biomine,

BGKV-2 cannot run to completion in our machine after one

day. For those datasets, our algorithms, PA and SA, are the only

algorithms that can produce results in a matter of minutes or few

hours (for twitter-2010), Table 8.

Convergence speed of SA. To further investigate the execu-

tion of SA as it unfolds with time, we look at average error and

maximum difference (max error) from the true core value over

the sequence of iterations (see Figure 2). As shown by the plots

in the top part of the figure, the average error sharply decreases

for all the datasets which we consider, except for uk-2005 and

arabic-2005 whose average errors decrease more gradually.

Similar to the average error, the maximum difference from

the true core value (shown in the plots in the bottom part) drops

quickly, becoming 1 in only a fraction of the total number of

iterations. Furthermore, as the value of η increases, the total

number of iterations required decreases.

These results show that SA produces approximate results of

good quality in only a fraction of iterations needed for completion.

For instance, for arabic-2005 with η = 0.1, the average error

drops below 0.01 at iteration 200, only one third of the total

number of required iterations (about 600, see the end of the curve).

Depending on the application domain this can be a desirable

property during data analysis.

7 RELATEDWORK
Among different notions of cohesive subgraphs, k-core is one
of the most popular (cf. [1, 24, 30, 44, 46]. Other definitions of

dense subgraphs such as maximal cliques can also be computed

using k-core decomposition [16]. In deterministic graphs, the

computation of k-core has been well studied. Batagelj and Zaver-

snik [3] give an efficient peeling algorithm for deterministic core

decomposition. Montresor et al. [35] give a distributed algorithm

4
Abbreviation using the first letters of the authors’ names.

Dataset η PA-Running Time SA-Running Time

flickr 0.1 2.05 1.88

dblp 0.1 5.81 9.57

cnr-2000 0.1 3.99 8.49

biomine 0.1 40 40

ljournal-2008 0.1 120 342

arabic-2005 0.1 2,539 2,513

uk-2005 0.1 1,709 1,961

twitter-2010

0.1 8,096 21,662

0.2 8,547 20,268

0.3 8,358 19,670

0.4 8,364 20,544

0.5 8,929 20,111

Table 8: Running times (sec) of PA and SA. Numbers less than 10
have been rounded to 2 decimal places, and those above 10 have
been rounded to the nearest integer.

Dataset η-degmax kmax kavg η

flickr 78 46 3.70439 0.1

dblp 162 26 1.99825 0.1

cnr-2000 9,255 38 5.77113 0.1

biomine 6,269 79 3.08697 0.1

ljournal-2008 9,664 156 5.4735 0.1

arabic-2005 287,949 1,088 15.2903 0.1

uk-2005 888,658 274 13.0279 0.1

twitter-2010

1,500,282 986 15.7391 0.1

1,499,970 976 15.0873 0.2

1,499,744 970 14.6407 0.3

1,499,552 964 14.2919 0.4

1,499,372 959 13.9927 0.5

Table 9: Maximum η-degree, maximum probabilistic coreness, av-
erage probabilistic coreness, value of the threshold η.

Algorithm flickr dblp biomine

BGKV

pr=64 18 90 2,493

pr=128 27 133 N.P.

pr=256 35 148 N.P.

BGKV-2 0.49 4.26 85

PA 2.05 5.81 40

SA 1.88 9.57 40

Table 10: Running time (sec) of the algorithm in [6] with BigDeci-
mal (BGKV), and without (BGKV-2) versus PA and SA. “pr” is the
precision (bits) used. BGKV cannot run for biomine to completion
after one day (we use N.P. for “Not Possible”). BGKV-2 is faster for
the small datasets, flickr and dblp, but twice slower for biomine
than PA and SA. For the rest of the datasets that are bigger than
biomine, both BGKV and BGKV-2 cannot run to completion in our
machine after one day. Our algorithms PA and SA can produce re-
sults for every dataset, see Table 8.

for deterministic core decomposition and introduce the concept

of locality-based bound tightening. Wen et al. [45] propose I/O

efficient core decomposition algorithms which only allow node

information to be loaded in memory. Khaouid et al. [24] consider

deterministic core decomposition of large networks on a single

PC. Sariyuce et al. [39] propose incremental k-core decompo-

sition algorithms for dynamic graph data, in which edges are

added/deleted on a regular basis. In a similar setting, a distributed

k-core decomposition and maintenance algorithms are proposed

in [2]. Core decomposition in large temporal graphs is addressed

in [47].
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For probabilistic graphs, the generalization of k-core is the
notion of (k,η)-core introduced by Bonchi et al. [6], which we dis-
cussed in detail throughout the paper. Other notions of cohesive

subgraphs are studied in probabilistic setting [18, 36, 55]. [36, 53]

focus on the problem of finding k vertex sets with the largest

maximal-clique probabilities. Truss decomposition as another

notion of a cohesive subgraph has been studied in [18, 55].

Significant research has been done in mining and querying

probabilistic graphs. Reachability is addressed in [12, 20, 22, 23].

Shortest paths are studied in [38, 48] and frequent subgraph

mining in [10, 37, 52, 54]. Clustering analysis is investigated in

[26, 31] and subgraph similarity in [49].

8 CONCLUSIONS
We presented two efficient algorithms, PA and SA, for computing

the core decomposition of probabilistic graphs at web scale. An

important contribution of this work is the use of Lyapunov Cen-

tral Limit Theorem in these algorithms to compute tail probabili-

ties for η-degrees. We evaluated our algorithms, and showed that

they are efficient and numerically stable. Our algorithms were

considerably faster than the-state-of-the-art for large datasets.

For datasets larger than biomine, our algorithms PA and SA, were

the only algorithms able to run to completion on a consumer

grade machine. In particular, PA was able to compute probabilis-

tic core decomposition for uk-2005, arabic-2005, and twitter-2010

in 28 min, 42 min and 2.2 hours, respectively, which is impressive

for such large datasets. SA has smaller memory footprint and can

produce approximate results of high quality in only a fraction of

iterations needed for full completion.
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ABSTRACT
Network reliability is an important metric to evaluate the con-

nectivity among given vertices in uncertain graphs. Since the

network reliability problem is known as #P-complete, existing

studies have used approximation techniques. In this paper, we

propose a new sampling-based approach that efficiently and

accurately approximates network reliability. Our approach im-

proves efficiency by reducing the number of samples based on

the stratified sampling. We theoretically guarantee that our ap-

proach improves the accuracy of approximation by using lower

and upper bounds of network reliability, even though it reduces

the number of samples. To efficiently compute the bounds, we

develop an extended BDD, called S2BDD. During constructing

the S
2
BDD, our approach employs dynamic programming for

efficiently sampling possible graphs. Our experiment with real

datasets demonstrates that our approach is up to 51.2 times faster

than existing sampling-based approach with a higher accuracy.

1 INTRODUCTION
To understand and design our world, we need to model and an-

alyze relationships between objects. Objects and relationships

can be modeled by a graph, whose vertices and edges represent

the objects and the relationships, respectively. Graph analysis is

widely used in many domains, and the reachability [8, 34, 37] and
network reliability [5, 10, 33] are the fundamental research top-

ics in graph analysis. Reachability techniques compute whether

there are paths between two terminals (i.e., given vertices). On the
other hand, network reliability techniques compute a probability

that all pairs of terminals are connected in uncertain graphs. In an

uncertain graph, each edge is associated with an edge existence
probability to quantify the likelihood that the edge exists in the

graph. Network reliability is more generalized than reachability

in terms of two aspects (1) a probabilistic value (the reachability

is binary) and (2) the number of terminals. Thus, network relia-

bility techniques have two benefits over reachability techniques.

First, we can handle the inherent uncertainty of relationships

in the real-world by modeling the uncertainty as the edge exis-

tence probability [1, 23]. Second, we can flexibly specify arbitrary

numbers of terminals. From the above two benefits, the network

reliability can be widely used for the uncertain graph analysis

[6, 36] and many practical applications [20]. For example, protein-

protein interaction networks can be modeled by uncertain graphs

since protein interactions are not always established due to the

sensitivity to conditions [4, 17]. In such protein-protein interac-

tion networks, analysts evaluate the network reliability among

several proteins as the strengths of the relationships to elucidate
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Figure 1: Uncertain graph

the functions of proteins. The network reliability is also used

in many domains such as communication networks [5, 29] and

urban planning [13].

Unfortunately, the computation cost of the network reliability

is significantly large because it is #P-complete problem [33]. The

high complexity of #P-complete is caused by the fact that the

computation of the network reliability inherently requires to enu-

merate all possible graphswhich have the same set of vertices and

an arbitrary subset of the edges without their probabilities. Each

possible graph has its probability computed from the existence

probabilities of its edges. A set of possible graphs is logically

equivalent with its original uncertain graph. To compute the

network reliability, we sum up the probabilities of all possible

graphs in which all the terminals are connected.

We explain an example of computation of the network relia-

bility by using Figure 1. This figure shows an original uncertain

graph and three examples of its possible graphs. The black ver-

tices represent terminals. Let us assume that each edge has 0.7

as its existence probability. Since these possible graphs have four

existent and two non-existent edges, their probabilities are 0.0216

(i.e., 0.74 · (1 − 0.7)2). All these terminals are connected only in

the left and middle possible graphs. Thus, their probabilities are

added to the network reliability.

Problem Definition and Technical Overview
We approximate the network reliability since the computation

cost of the network reliability is significantly large due to #P-

complete problem. In this paper, we consider the problem of

computing the approximate network reliability by sampling. We

formally define the problem as follows.

Problem definition: (Approximate network reliability). Given
an uncertain graph G, a set of terminals T, and the number of

samples s , we efficiently compute the approximate network reli-

ability R̂[G,T].

The computation cost of sampling becomes considerable as

the number of samples increases. To efficiently approximate the

network reliability, we reduce the number of samples with keep-

ing a high accuracy. Our challenges are (1) how to reduce the

number of samples with a theoretical guarantee of the accuracy

and (2) how to practically achieve the theoretical results from

the first challenge. As for the first challenge, we extend the strat-
ified sampling [32], which increases the accuracy of an estimated

value by using the lower and upper bounds of the value. We first
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prove a theorem that we reduce the number of samples without

sacrificing the accuracy of approximation.

We can reduce the number of samples in accordance with the

theoretical results. The theoretical results have two requirements;

(1) to efficiently compute the approximate network reliability, we

need to efficiently obtain the tight lower and upper bounds of

the network reliability and (2) to guarantee the approximation

of accuracy, we need to sample possible graphs from the set of

possible graphs that are not used to compute the bounds. There

are no trivial techniques to effectively achieve them. Therefore,

we develop an extended binary decision diagram, which we call

scalable and sampling BDD (S2BDD for short). The S
2
BDD enables

preferentially searching for possible graphs in which terminals

are connected/disconnected. The connected and disconnected

possible graphs are used for computing the lower and upper

bounds. Our approach employs dynamic programming during

constructing the S
2
BDD for efficiently sampling the possible

graphs. It enables avoiding sampling possible graphs from the

set of possible graphs that are used to compute the bounds.

Furthermore, our approach becomes more efficient by reduc-

ing the size of graphs. Thus, we propose an extension technique

of our approach which uses 2-edge connected components [7].

The extension technique prunes vertices and edges that do not

affect the network reliability, decomposes the graph to several

subgraphs, and transforms the subgraphs into a smaller graphs.

It efficiently reduces the vertices and edges involved in the com-

putation while preserving the network reliability.

Contributions and Organization
To the best of our knowledge, our approach is the first solution

to achieve both high efficiency and accuracy to compute the

network reliability. Our approach has the following attractive

characteristic.

• Our approach improves the efficiency to compute an ap-

proximate network reliability by reducing the number of

samples. The extension technique effectively reduces the

size of graphs while preserving the network reliability.

• Our approach outputs more accurate network reliability

than the existing approaches. We theoretically guarantee

that our approach improves the accuracy of approxima-

tion, even though it reduces the number of samples.

• Our approach computes the exact answer for small-scale

graphs due to the S
2
BDD though the existing sampling-

based approach cannot compute the exact answer.

• Our approach can be used to improve the performances

on uncertain graph analyses [6, 18, 22] in terms of both

accuracy and efficiency because many algorithms compute

the network reliability by sampling techniques.

The remainder of this paper is organized as follows. Section 2

introduces related work. Section 3 then describes the prelimi-

naries. Sections 4 and 5 present our approach and an extension

technique for our approach, respectively. Section 6 describes al-

gorithms of our approach with the extension. Section 7 shows the

results obtained from the experiments, and Section 8 concludes

the paper.

2 RELATEDWORK
Querying and mining uncertain graphs have recently attracted

much attention in the database and data mining research com-

munities. We review some relevant works related to the network

reliability problem.

Network reliability: For computing the network reliabil-

ity, several approaches have been proposed such as cut-based

approach and BDD-based approach. The cut-based [3, 15, 25]

approach enumerates all cuts which are divides the terminals

and then computes the network reliability by using the set of cuts.

Harris and Srinivasan [15] proposed theoretical result to obtain

the lower bound of network relaibility based on cuts. However,

they do not mention how to efficiently obtain the cuts. The BDD-

based approach is more efficient than the cut-based approach.

The BDD-based approach [14, 26, 35] effectively avoids enumer-

ating all possible graphs without sacrificing the exactness of the

network reliability. However, it cannot be applicable to large

graphs due to the large memory usage. The BDD-based approach

first constructs a BDD, and then obtains the possible graphs in

which terminals are connected by traversing the BDD. Recent

work has shown that the BDD-based approach can be applied

only to graphs with 100–200 edges because of limitations of mem-

ory space [14, 26]. The state-of-the-art library TdZDD
1
also can

only be applied to very small-scale graphs. Herrmann and Soh

[16] proposed a memory-efficient BDD that computes the net-

work reliability by constructing a BDD and deleting unnecessary

parts of it during the process. We partially adopt their idea to

reduce the memory usage. There are several preprocessing and

indexing techniques to efficiently compute the network reliability

(and similar problems) [12, 24]. These techniques remove redun-

dant parts of graphs, which have similar idea of our extension

technique. However, these techniques cannot directly apply to

k-terminal reliability. To the best of our knowledge, there has

been no prior work on approximating the network reliability

with BDD.

Reachability query in uncertain graphs: The reachability
in uncertain graphs is a special type of network reliability (called

s-t network reliability) [2]. Jin et al. [19] proposed a distance-

constraint reachability query in uncertain graphs, which answers

the probability that the distance from one vertex to another is

less than or equal to a threshold. They proposed approximate

algorithms as solutions to this problem. The approximate al-

gorithms use unequal sampling techniques [31], and achieves

higher accuracy than Monte Carlo sampling. Cheng et al. [9]

proposed an algorithm to compute the reachability in distributed

environments. The algorithm reduces the size of graphs without

sacrificing the exactness of the result before computing the reach-

ability. It divides the graph into several subgraphs and computes

probabilities of the subgraphs in distributed environments. The

algorithm is only applicable to directed acyclic graphs. While

these algorithms [9, 19] deal with uncertain graphs, their objec-

tive is to compute reachability and their algorihms cannot be

applied to computing the network reliability.

Other problems with uncertain graphs: Many existing

works in uncertain graphs use the network reliability as the met-

ric to evaluate the connectivity among vertices. The efficiency

and accuracy of their algorithms depend on those of the sam-

pling techniques. Although they use the sampling technique to

compute the network reliability, they have not proposed efficient

sampling techniques. Jin et al. [18] proposed an algorithm for

finding reliable subgraphs in which the vertices are connected

with a higher probability than a given threshold. Ceccarello et

al. [6] proposed clustering techniques for uncertain graphs. The

technique uses the network reliabilities between vertices as dis-

tances between them. Khan et al. [22] proposed a reliability search

1
https://github.com/kunisura/TdZdd
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Table 1: Notations

Symbol Meaning

G Uncertain graph

V Set of vertices

E Set of edges e = (v,v ′)
p(e) Edge existence probability of e
Gp Possible graph

Ep Set of edges in Gp
Pr [Gp ] Existence probability of Gp
GE Intermediate graph

E∃ Set of existent edges in GE
E¬ Set of non-existent edges in GE
Pr [GE] Existence probability of GE
T Set of terminals

R[G,T] Network reliability of G for T

R̂[G,T] Approximate network reliability of G for T
k The number of terminals

w Maximum size of BDD

Fl Set of frontiers at layer l
| · | The number of elements in a set

that returns a set of vertices that are connected from given ver-

tices with a higher probability than the threshold. These studies

have different purposes, but they use the Monte Carlo sampling

to compute the network reliability. Our approach can be used

to improve their performances in terms of both accuracy and

efficiency instead of using the Monte Carlo sampling.

3 PRELIMINARIES
As preliminaries of our approach, we explain uncertain graph

and network reliability. Table 1 summarizes the notations.

3.1 Uncertain graph
Let G = (V,E,p) be a connected and undirected uncertain graph,

where V is a set of vertices, E ⊆ V×V is a set of uncertain edges,

andp : E→ (0, 1] is a function that determines the edge existence

probability p(e) of uncertain edge e ∈ E in the graph. We denote

edge e ∈ E between v and v ′ as e = (v,v ′). A state of uncertain

edge e is existent with a probability p(e) or non-existent with a

probability (1−p(e)). We assume that edge existence probabilities

of different edges are independent of one another [6, 19].

A possible graphGp = (V,Ep ) is a graph that contains a set of

vertices and a subset of edges of G without their edge existence

probabilities. Edges in E\Ep are non-existent in the possible

graph. Although edges in possible graphs have no probabilities,

the possible graphs themselves have existent probabilities. The

existent probability Pr [Gp ] of possible graph Gp is as follows:

Pr [Gp ] =
∏

e ∈Ep p(e) ·
∏

e ∈E\Ep (1 − p(e)).

The total number of the possible graphs of G is 2
|E |

because

each edge is either existent or non-existent. We defineWG as all

possible graphs obtained from G.

We define an intermediate graph GE(E∃,E¬), which is an un-

certain graph with the set of existent edges E∃, the set of non-
existent edgesE¬, and the set of uncertain edgesE\(E∃∪E¬). The
existent probability Pr [GE(E∃,E¬)] of the intermediate graph

GE(E∃,E¬) is as follows:

Pr [GE(E∃,E¬)] =
∏

e ∈E∃ p(e) ·
∏

e ∈E¬ (1 − p(e)).

We simply use Pr [GE] as Pr [GE(E∃,E¬)]. We defineWGE as all
possible graphs obtained from GE. The total number of the possi-

ble graphs of GE(E∃,E¬) is 2 |E\(E∃∪E¬) | . We define that vertices

are connected in intermediate graphs if there are paths among

the vertices by existent edges, and vertices are disconnected if

there are no paths among the vertices by existent and uncertain

edges. Note that it is unsure to be connected or disconnected

even if there are paths among the vertices by uncertain edges.

3.2 Network reliability
The network reliability is computed by summing up the proba-

bilities of all possible graphs in which all terminals (a subset of

vertices) are connected. The definition is as follows:

Definition 1 (Network reliability). Given a set of k termi-
nals T and an uncertain graph G, the network reliability R[G,T]
is

R[G,T] =
∑
Gp ∈WG

I (Gp ,T) · Pr [Gp ], (1)

where Gp denotes a possible graph, and I (Gp ,T) is an indicator
function that returns one if all terminals in T are connected in Gp ,
and returns zero, otherwise.

We denote by R̂[G,T] the approximate network reliability. We

simply use R and R̂ as R[G,T] and R̂[G,T] for the given uncertain
graph and terminals, respectively.

The network reliabilitywithk terminals is called thek-terminal
reliability, and it is known as the most generalized network relia-

bility [14]. The network reliability problem is #P-complete [33].

Planar graphs can be more efficiently solved than general graphs,

but it is also #P-complete [30]. Therefore, it has no polynomial

time algorithm unless P = NP .
BDD [14] and sampling [19] are main techniques to compute

the network reliability. BDD-based approach can compute the ex-

act answer in small-scale graphs, while sampling-based appraoch

can compute approximate answers in large-scale graphs.

3.2.1 Binary decision diagram. A BDD D = (N,A) is a di-

rected acyclic graph with sets of nodes N and arcs A2. Figure 2(a)
shows the BDD to compute the network reliability of the original

graph in Figure 1. Nodes in the BDD correspond to intermediate

graphs, and arcs in the BDD correspond to existent/non-existent

edges. The BDD has a single node that has no incoming arcs,

called the root node (node G1 in Figure 2(a)). Each node has two

outgoing arcs, called the 0-arc and 1-arc (represented by dashed

and solid arrows in Figure 2(a), respectively). 0-arcs and 1-arcs

indicate that edges are non-existent and existent in the uncertain

graph, respectively. Each arc is associated with a weight that rep-
resents the existent or non-existent probability of the edge. We

define layer l (≥ 1) as the depth from the root node. The nodes at

layer l of the BDD correspond to the intermediate graphs whose

edges e1, . . . , el−1 are existent/non-existent and the other edges

el , . . . , e |E | are uncertain. The BDD has special nodes that have

no outgoing arcs, called sink nodes. The sink nodes are of two

types, called 1-sink and 0-sink (represented by rectangles with

labels 1 and 0 in Figure 2(a), respectively). If the terminals in

the intermediate graph are connected and disconnected, the arcs

point at the 1-sink and 0-sink, respectively. We can obtain inter-

mediate graphs in which terminals are connected by traversing

the BDD from the root node to the 1-sink.

2
To avoid confusion, we use the terms “vertex” and “edge” to refer to a vertex and

an edge in an uncertain graph, respectively, and “node” and “arc” to refer to a vertex

and an edge in a BDD, respectively.
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Figure 2: BDD for the original graph on Figure 1(a).

To construct the BDD, the frontier-based method is a common

procedure [21, 26]. This method first orders edges (e1, . . . , e |E |).
It generates the nodes on layer l + 1 by setting the states of el
when a BDD is already constructed until layer l . In the frontier-

based method, a vertex that has both existent/non-existent and

uncertain edges are called a frontier f , and we denote by Fl the
set of frontiers at layer l . Figure 2(b) shows intermediate graphs

after processing e1 and e2, where solid black, dashed black, and

dashed gray lines denote existent, non-existent, and uncertain

edges, respectively. These intermediate graphs correspond to G4,

G5, andG6 in the BDD from the top, respectively. Vertices b and

c are frontiers because they have both existent/non-existent and

uncertain edges. Note that nodes at the same layer l have the same

set of frontiers Fl . The frontier-based method maintains several

attributes on only the frontiers (e.g., the number of uncertain

edges and the number of terminals connected to the frontiers). It

merges the nodes if the attributes are the same. Thus, the frontier-

based method can effectively reduce the number of nodes.

The size of the BDD is defined by the number of nodes in the

BDD [14]. Generally, it exponentially increases as the number of

edges in the uncertain graphs increases. As the size of the BDD

increases, both of the computation cost and the memory usage

increase. Thus, it is hard to compute the exact network reliability.

3.2.2 Sampling. Sampling is a basic approach for computing

the approximate network reliability [9, 18, 19]. Given the number

of samples s , the sampling-based approach repeats the following

procedures s times: (1) picking a possible graph of G as a sample,

Gpi (1 ≤ i ≤ s) according to the probabilities Pr [Gpi ] fromW
G

and then (2) computingwhether all the terminals are connected or

not inGpi . The time complexity of the sampling-based approach

is O(s · (|V| + |E|)). This is because it requires O(|E|) time to

determine the states of all edges andO(|V|+ |E|) time to compute

the connectivity by a depth first search for each sample.

The accuracy of the sampling-based approach is evaluated by

its variance. Since the sampling-based approach is a randomized

algorithm [28], the average network reliability is most likely to be

closest to the exact network reliability. A small variance indicates

a small rate of error (i.e., high accuracy). Note that unbiased
sampling is necessary that samples possible graphs according

to their probabilities for guaranteeing the theoretical variance.

As the number of samples increases, the variance decreases but

the computation cost increases. Therefore, there is a trade-off

between the accuracy and the computation cost.

The stratified sampling is known as a successful method in

the field of statistics [32]. The stratified sampling divides the

population into subgroups and individually picks samples from

each subgroup. The variance of the estimated value for the whole

population are the sum of the variances of the estimated values

for individual subgroups. Let L be the number of subgroups and

Ri be the estimated total probabilities of possible graphs for

subgroup i . The estimated network reliability is computed by

summing up the total probabilities for the subgroups as follows:

R̂ =
∑L
i=1 R̂i .

The variance is the sum of the individual variances for the sub-

groups as follows:

Var [R̂] =
∑L
i=1Var [R̂i ].

When we compute the exact values for the subgroups, the vari-

ances of the estimated network reliability for the subgroup be-

come zero. Thus, when we compute the exact values for the

subgroups, the variance of the estimated network reliability for

the whole population decreases.

4 OUR APPROACH
In this paper, we solve the problem of the approximate network

reliability. Section 4.1 provides an overview of our approach.

Section 4.2 explains how to reduce the number of samples. Section

4.3 presents our extended BDD S
2
BDD.

4.1 Overview
Our approach efficiently and accurately computes the approxi-

mate network reliability. We achieve high efficiency and accuracy

with the following ideas:

• Reduction of the number of samples: Our approach
significantly reduces the number of samples with keeping

a high accuracy of approximation by using the lower and

upper bounds of the network reliability.

• Efficient computation of the bounds of network re-
liability: We develop the S

2
BDD to efficiently compute

the bounds of the network reliability.

• Dynamic programming: During constructing S
2
BDD,

we employ dynamic programming for efficiently sampling

possible graphs.

Our approach reduces the number of samples in accordance

with the stratified sampling. We theoretically guarantee that the

number of samples becomes small as the lower and upper bounds

become tight without sacrificing the accuracy of approximation.

We prove it in two representative estimators; Monte Carlo and

Horvitz-Thompson estimators [32].

For achieving the theoretical result, we compute the lower

and upper bounds by constructing the S
2
BDD. We specify the

maximum sizew of S
2
BDD for avoiding a large cost to construct

the S
2
BDD. Our approach deletes nodes on the S

2
BDD when its

size exceedsw . To effectively delete nodes, we define a heuristic

function for preferentially keeping high-priority nodes in the

S
2
BDD; the priorities are computed from the possibilities of im-

proving the bounds. The S
2
BDD enables efficiently computing

the bounds because nodes preferentially point at sink nodes.

For efficiently sampling possible graphs, our approach employs

dynamic programming during constructing the S
2
BDD. We can

straightforwardly employ dynamic programming for sampling

because sampling possible graphs from intermediate graphs is

a sub problem of sampling possible graphs from the original

uncertain graph. We also use the stratified random sampling for
determining the number of samples for each sub problem. The
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stratified random sampling divides the set of possible graphs into

subgroups and samples possible graphs from each subgroup.

4.2 Reducing the number of samples
In this section, we theoretically prove that our approach reduces

the number of samples while keeping a high accuracy in accor-

dance with the stratified sampling [11, 27]. As we mentioned

in Section 4.3.3, the accuracy of sampling is evaluated by the

variance of the estimated network reliability. Since the stratified

sampling reduces the variance of the estimated network reliabil-

ity, we can reduce the number of samples without sacrificing the

accuracy of approximation.

To apply the stratified sampling, we divide the set WG of

possible graphs into three subgroupsWGc ,WGd , andWGu .WGc and

WGd include the sets of only possible graphs in which terminals

are connected and disconnected, respectively.WGu includes the

set of possible graphs that are not included inWGc andWGd . Let

pc and pd be the sum of the probabilities of possible graphs in

WGc andWGd , respectively. Hence, from Definition 1, the upper

and lower bounds are given as follows:

R =
∑
Gp ∈W

G
c
Pr [Gp ] +

∑
Gp ∈W

G
u
I (Gp ,T)Pr [Gp ]

= pc +
∑
Gp ∈W

G
u
I (Gp ,T)Pr [Gp ]

≥ pc .

R = 1 −
∑
Gp ∈W

G

d
Pr [Gp ] −

∑
Gp ∈W

G
u
(Pr [Gp ] − I (Gp ,T)Pr [Gp ])

= 1 − pd −
∑
Gp ∈W

G
u
(Pr [Gp ] − I (Gp ,T)Pr [Gp ])

≤ 1 − pd .

Consequently, we have pc ≤ R ≤ 1 − pd . We reduce the number

of sample by using the lower bound pc and upper bound 1 − pd .
The variance also depends on estimators. In our approach, we

exploit two representative estimators; Monte Carlo estimator and

Horvitz-Thompson estimator. The Monte Carlo estimator is a

basic technique for computing the average values of the samples.

On the other hand, the Horvitz-Thompson estimator is unequal

probability estimator, which provides smaller variance than the

Monte Carlo estimator under sampling without replacement.

We explain how to reduce the number of samples in the two

estimators with keeping a high accuracy.

Monte Carlo estimator: The Monte Carlo estimator for R is:

R̂ =
∑s
i=1 I (Gpi ,T)

s .

The variance is computed by the following equation [11]:

Var [R̂] = R(1−R)
s .

Because the random sampling is unbiased, i.e., E(R̂) = R, the
variance can be simply written as follows [27]:

Var [R̂] = R(1−R)
s ≈

R̂(1−R̂)
s . (2)

LetVar [R̂]′ be the variance using the upper and lower bounds.
Var [R̂]′ is computed in accordance with the stratified sampling

as follows [11, 27]:

Var [R̂]′ =
(R̂−pc )(1−pd−R̂)

s . (3)

From Equations (2) and (3), we obtain the following equation:

R̂(1−R̂)
s ≥

(R̂−pc )(1−pd−R̂)
s . (4)

Therefore, we have Var [R̂] ≥ Var [R̂]′. From Equation (4), we

obtain the following theorem:

Theorem 1. Given the number of samples s , the lower bound
pc , and the upper bound 1 − pd , the variance of network reliability
by using Monte Carlo estimator with s ′ (≤ s) samples is less than
and equal to that with s samples if s ′ is computed by the following
equations:

s ′ =



⌊s(1 − pd )⌋ . (pc = 0)

⌊s(1 − pc )⌋ . (pd = 0)

⌊s(1 − 4 · pc (1 − pc ))⌋ . (pc = pd )

⌊s(1 − 4 · pc (1 − pd ))⌋ . (pc < pd )

⌊s(1 −min(4pc (1 − pc ),

4(pc (1 − pd ) + (pd − pc )))⌋ . (pc > pd )

Proof: From Equation (4), we have the following equation such

that the variance with s samples is equal to that with s ′ samples

by using the lower and upper bounds:

(pc−R̂)(1−pd−R̂)
s ′ =

R̂(1−R̂)
s

Then, s ′ is computed as follows:

s ′ = s ·
(R̂−pc )(1−pd−R̂)

R̂(1−R̂)

= s ·

(
1 −

pc (1−R̂)+pd (R̂−pc )
R̂(1−R̂)

)
(5)

However, we cannot compute R̂ before sampling s possible graphs.
Therefore, we remove R̂ from Equation (5) by dividing the pat-

terns of pc and pd . First, if pc = 0, s ′ is computed as follows:

s

(
1 −

pd R̂
R̂(1−R̂)

)
≤ s(1 − pd ).

s ′ = ⌊s(1 − pd )⌋ .

Second, if pd = 0, s ′ is computed as follows:

s

(
1 −

pc (1−R̂)
R̂(1−R̂)

)
≤ s(1 − pc ).

s ′ = ⌊s(1 − pc )⌋ .

Third, if pc = pd , s
′
is computed as follows:

s

(
1 −

pc (1−R̂)+pc (R̂−pc )
R̂(1−R̂)

)
≤ s(1 − 4pc (1 − pc )). (6)

s ′ = ⌊s(1 − 4pc (1 − pc ))⌋ .

In Equation (6), the maximum value of R̂(1 − R̂) is 0.25. Thus, we
substitute 0.25 for R̂(1− R̂) in the denominator. Fourth, if pc < pd ,
s ′ is computed as follows:

s

(
1 −

pc (1−R̂)+pd (R̂−pc )
R̂(1−R̂)

)
≤ s(1 − 4pc (1 − pd )).

s ′ = ⌊s(1 − 4pc (1 − pd ))⌋ .

Finally, if pc > pd , s
′
is computed as follows:

s

(
1 −

pc (1−R̂)+pd (R̂−pc )
R̂(1−R̂)

)
≤ s(1 − 4pc (1 − pc )).

s

(
1 −

pc (1−R̂)+pd (R̂−pc )
R̂(1−R̂)

)
≤ s(1 − 4(pc (1 − pc ) + (pd − pc )).

s ′ = ⌊s(1 −min(4pc (1 − pc ), 4(pc (1 − pd ) + (pd − pc ))))⌋ . (7)

In Equation (7), the minimum s ′ depends on the values of pc and

pd . Consequently, we have that s
′ ≤ s for all patterns of pc and

pd . □

Horvitz-Thompson estimator: The Horvitz-Thompson esti-

mator for R is:

R̂ =
∑s
i=1 Pr [Gpi ]·I (Gpi ,T)

πi ,
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where πi = 1 − (1 − Pr [Gpi ])
s
. The variance is:

Var [R̂] =
∑s
i=1

(
1−πi
πi

)
I (Gpi ,T)Pr [Gpi ]

2

+
∑s
i
∑s
j,i,j

(
πi j−πiπj
πiπj

)
I (Gpi ,T)I (Gpj ,T)Pr [Gpi ]Pr [Gpj ],

where πi j = 1− (1− Pr [Gpi ])
s − (1− Pr [Gpj ])

2 + (1− Pr [Gpi ] −

Pr [Gpj ])
s
. The variance is simplified as follows [19]:

Var [R̂] = R(1−R)
s −

Σsi=1(s−1)I (Gpi ,T)Pr [Gpi ]
2

2s . (8)

The variance using the lower and upper bounds is computed

in accordance with the stratified sampling as follows:

Var [R̂]′ =
(R̂−pc )(1−pd−R̂)

s −

∑s
i=1(s−1)I (Gpi ,T)Pr [Gpi ]

2

2s . (9)

Theorem 2. Given the number of samples s , the lower bound
pc , and the upper bound 1 − pd , the variance of network reliability
by using Horvits-Thompson estimator with s ′ (≤ s) samples is less
than and equal to that with s samples where s ′ is equal to the
number of samples in Monte Carlo estimator in 1.

Proof: From Equations (8) and (9), we have the following

equation:

(R̂−pc )(1−pd−R̂)
s ′ −

∑s
i=1(s

′−1)I (Gpi ,T)Pr [Gpi ]
2

2s ′

=
R̂(1−R̂)

s −

∑s
i=1(s−1)I (Gpi ,T)Pr [Gpi ]

2

2s .

The values of the right are the same because the estimator is

unbiased. The proof for this follows Theorem 1. □

Our approach reduces the number of samples in accordance

with Theorems 1 and 2. As a result, our approach is more efficient

than the existing sampling-based approach.

4.3 Scalable and Sampling BDD: S2BDD
We can reduce the number of samples by using the lower and

upper bounds of network reliability. To efficiently obtain the

bounds, we develop the S
2
BDD. We efficiently search for the pos-

sible graphs in which terminal are connected and disconnected

with high probabilities by constructing the S
2
BDD. Furthermore,

during constructing the S
2
BDD, we sample possible graphs that

are not used to compute the bounds, which is the requirement

of stratified sampling. Our approach uses S
2
BDD for both com-

puting the bounds of network reliability and sampling possible

graphs.

We design the S
2
BDD to effectively reduce its size. The S

2
BDD

keeps a single layer and sink nodes while ordinary BDD contains

all layers. This idea is based on the observation that the layer

l − 1 is unnecessary after constructing the next layer l to both

construct the layer l + 1 and obtain the bounds. We first define

the S
2
BDD and then explain how to construct it.

Definition 2. LetNl be a set of nodes at layer l . S2BDD consists
Nl , the 1-sink, and the 0-sink. The S2BDD maintains the following
attributes on node n ∈ N:
• pn : the probability of the intermediate graph corresponding
to node n.
• {cn,f } for all f ∈ Fl : an identifier of connected component.
If frontiers f and f ′ ∈ Fl are connected by existent edges,
cn,f and cn,f ′ share the same identifier.
• {dn,f } for all f ∈ Fl : the sum of the numbers of uncertain
edges connected to the frontiers such that { f ′ ∈ Fl |cn,f =
cn,f ′}.
• {tn,f } for all f ∈ Fl : the number of the terminals that are
connected to f by existent edges.

The 1-sink and 0-sink maintain the probabilities pc and pd that
terminals are connected and disconnected, respectively.

For example, in Figure 2, S
2
BDD contains third and sink layers

but does not contains first and second layers.

To construct an S
2
BDD, we process edge el and generate the

set of nodes Nnext at layer l + 1. The construction method com-

prises four procedures; generating, merging, deleting, and sam-
pling. The following sections explain these procedures in details.

4.3.1 Generating and Merging Procedures. The BDD-based ap-
proach uses the generating and merging procedures to construct

the BDD. We extend these procedures to effectively compute the

bounds without sacrificing the exactness of the network reliabil-

ity. For extending the generating and merging procedures, we

capture the feature of computing the network reliability such

that we can skip the computation of nodes when we obtain the

probabilities pc and pd exactly.

We first explain the generating procedure. The generating

procedure sets the state of edge el (recall that arcs at layer l in the

BDD corresponding to el ) and then generates the set of new nodes

Nnext at layer l + 1. As the same as the traditional procedure, we

generate two new nodes at layer l + 1 from every node at layer

l according to the state of el . We set the attributes on the new

nodes (i.e., pn , {cn,f }, {dn,f }, and {tn,f }). More specifically, pn is

set as pn ·p(el ) when el is existent and set as pn · (1−p(el )) when
el is non-existent. {cn,f }, {dn,f }, and {tn,f } are computed from

attributes of frontiers on nodes at layer l by merging attributes

of frontiers and creating new frontiers. If all the terminals in the

intermediate graph are connected, we add its probability to pc ,
and if they are disconnected, we add its probability to pd .

If we determine whether or not terminals are connected/disco-

nnectedwith processing a smaller number of edges, we can obtain

the tight bounds of the network reliability earlier. Let n, n′, F, and
F′ be the new node at layer l + 1, the node before setting el of n
at layer l , the sets of frontier at layers l + 1 and l , respectively. We

determine whether or not terminals are connected/disconnected

based on following lemmas:

Lemma 4.1. All the terminals t ∈ T are connected if the at-
tributes of the frontiers satisfy one of the following conditions:
Condition 1: edge el = (v,v ′) is existent, for tn,f = k , ∃f ∈ F.
Condition 2: edge el = (v,v ′) is existent, for (1) v ∈ F′, (2)
v ′ < F′ ∪ F, (3) tn′,v = k − 1, and (4) v ∈ T (similarly, replacing v
with v ′ and vice versa).
Condition 3: edge el = (v,v ′) is existent, for (1) v,v ′ ∈ F, (2)
cn′,v , cn′,v ′ , and (3) tn′,v + tn′,v ′ = k .

Proof: This is an immediate consequence of the definitions

because all the terminals are connected. □

Lemma 4.2. The terminals are disconnected if the attributes of
the frontiers satisfy one of the following conditions:
Condition 1: edge el = (v,v ′) is non-existent, for (1) v < F′ ∪ F,
and (2) v ∈ T (similarly, for v ′).
Condition 2: edge el = (v,v ′) is non-existent, for (1) v ∈ F′, (2)
tn′,v > 0, and (3) dn′,v =1 (similarly, for v ′).
Condition 3: edge el = (v,v ′) is existent or non-existent, for (1)
v,v ′ ∈ F′\F and (2) (tn′,v > 0 or tn′,v ′ > 0).

Proof: This is an immediate consequence of the definitions

because the terminals are disconnected. □

Note that the state-of-the-art construction of the BDD uses only

the condition 1 on Lemmas 1 and 2. As a result, the S
2
BDD can

more effectively tighten the bounds of network reliability.

342



We next explain the merging procedure. Since each interme-

diate graph on S
2
BDD has different existent and non-existent

edges, the attributes on each frontier are different (in general).

The merging procedure merges the nodes that make a transition

to the same sink nodes based on the following lemma:

Lemma 4.3. Given nodes n1 and n2 at layer l , if we have for
∀f ∈ Fl (1) cn1,f = cn2,f and (2) (tn1,f = 0 and tn2,f = 0) or
(tn1,f > 0 and tn2,f > 0), then nodes derived from n1 and n2 with
the same states of edges el+1, . . . , e |E | make a transition to the
same sink nodes.

Proof: If n1 and n2 have (1) {cn1,f } = {cn2,f } for all f in Fl ,
the connected frontiers are the same in the intermediate graphs

corresponding to n1 and n2. New nodes n′
1
and n′

2
derived from

n1 and n2 are the same {cn′
1
,f } = {cn′

2
,f } if they have the same

states of edges el+1, . . . , e |E | . Thus, {cn1,f } and {cn2,f } for all f
in Fl are the same until they make a transition to the sink nodes.

Since the same {cn1,f } and {cn2,f } share the same connected

components, each frontier has the same {dn1,f } and {dn2,f }. In

addition, frontiers f and f ′ must be connected if they connect

to at least one terminals (i.e., tn1,f > 0 and tn2,f > 0). If (1)

{cn1,f } = {cn2,f } and (2) (tn1,f = 0 and tn2,f = 0) or (tn1,f > 0

and tn2,f > 0) for all f in Fl , nodes derived from n1 and n2 with
the same states of edges el+1, . . . , e |E | have the same attributes

on the frontiers, and thus they make a transition to the same sink

nodes. □
The probabilities of the merged nodes are aggregated to one

node. The probabilities pc and pd are consistent, regardless of

whether or not the nodes are merged. These procedures do not

sacrifice the exactness of the network reliability.

4.3.2 Deleting Procedure. The size of the S2BDD increases

exponentially as the size of the graph increases. If the size of

S
2
BDD increases, the computation cost increases to obtain the

lower and upper bounds of the network reliability because it

takes a large time to construct the S
2
BDD. Hence, we control

the size of S
2
BDD by specifying the maximum sizew . The delet-

ing procedure deletes the nodes so that the size of an S
2
BDD

is not larger thanw . One of major difficulties in designing this

procedure pertains to which nodes should be kept in the S
2
BDD

for achieving higher efficiency and accuracy. According to Theo-

rems 1 and 2, the number of samples effectively decreases as the

probabilities pc and pd increase. We identify intermediate graphs

in which terminals are highly likely connected or disconnected

after processing a small number of edges. We make the following

key observations in terms of the connectivity of terminals:

Observation 1 The terminals in the intermediate graph cor-

responding to node n are highly likely connected if tn,f is

large for ∃f ∈ Fl .
Observation 2 The terminals in the intermediate graph cor-

responding to noden are highly likely disconnected ifdn,f
is small and tn,f > 0 for ∃f ∈ Fl .

Furthermore, if the probability of node pn is high and node n
makes a transition to sink nodes, pc and pd increase considerably.

Based on these observations, we define a heuristic function based

on our observations. We compute the priorities of nodes from

their attributes by the heuristic function and preferentially keep

high-priority nodes. The heuristic function h to compute the

priority of node n is as follows:

h(n) = pn ·maxf ∈F

( tn, f
k ,

1

dn, f

)
if tn,f > 0. (10)

This function outputs larger value when (1) a frontier is con-

nected to at least one terminals and (2) the frontier is connected

to a large number of terminals or (3) the frontier has a small

number of uncertain edges. In the former case, the terminals are

likely connected, and in the latter case, the terminals are likely

disconnected. Low-priority nodes (i.e., n with smallh(n)) are then
deleted from an S

2
BDD.

4.3.3 Sampling procedure. Our approach samples possible

graphs so that it avoids sampling the possible graphs that are

used to compute the lower and upper bounds of network relia-

bility, for satisfying the requirements of the stratified sampling.

We sample the possible graphs from the set of possible graphs

that in which terminals are not connected/disconnected yet. We

denote byWGu such set of possible graphs, and the set is obtained

from intermediate graphs corresponding to the deleted nodes and

nodes in the S
2
BDD. We employ dynamic programming for effi-

ciently sampling possible graphs fromWGu . In addition, we use

the idea of the stratified random sampling [32] for determining

the number of samples for subgroups that are partialWGu .

We first divideWGu into subgroups and then randomly sample

possible graphs from each subgroup. The number of samples for

each subgroup is taken in proportion to the sum of the prob-

abilities of the intermediate graphs in the subgroup. We here

explain only how to divide the deleted nodes and how to decide

the number of samples for them. As for the nodes in S
2
BDD,

each subgroup is the set of possible graphs obtained from the

intermediate graph corresponding to the node, and the number

of samples is computed from its probabilities.

We divide the set of intermediate graphs for deleted nodes

into subgroups according to original BDD layers instead of the

node itself. This is because probabilities of deleted nodes are

typically quite small to decide the number of samples.W
Gl
u and

sl are the set of intermediate graphs corresponding to the deleted

nodes at layer l and the number of samples at layer l , respectively.
sl is computed by multiplying s and the total probabilities ˆpsl
of deleted nodes at layer l . We compute ˆpsl from the attributes

maintained by the S
2
BDD by the following equation:

ˆpsl = 1 −
∑l−1
i=1 psi − pNnext − pc − pd , (11)

where pNnext denotes the sum of probabilities of n ∈ Nnext .
ˆpsl is the expected sum of probabilities of deleted nodes. This

is because ˆpsl indicates the sum of probabilities in Nl when the

number of nodes at layer l + 1 reaches the maximum size. The

number of samples sl at layer l becomes s · ˆpsl . The dynamic pro-

gramming and stratified random sampling improve the efficiency

of sampling while keeping the unbiased sampling.

4.4 Complexity
We explain the time and space complexities of our approach.

Theorem 3. Given the uncertain graph G, the updated number
of samples s ′, and the maximum width of S2BDDw , the time and
space complexities of our approach areO(w2

logw + s ′(|V| + |E|))
and O(w logw + |V| + |E|), respectively.

Proof: The time complexity of our approach is divided into two

parts; constructing S
2
BDD and sampling. To construct S

2
BDD,

our construction method compares attributes on each node each

other for generating and merging procedures. The number of

attributes on each node increases in proportion to the number

of frontiers. The number of frontiers is O(logw) because the

number of existent/non-existent edges is at most logw . Thus,
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the time complexity for constructing S
2
BDD is O(w2

logw). The
time complexity of sampling is O(s ′(|V| + |E|)). Therefore, the
time complexity of our approach is O(w2

logw + s ′(|V| + |E|)).
The space complexity depends on the size of S

2
BDD and the

uncertain graphs. The size of S
2
BDD is the number of nodes

multiplied by the number of attributes on each node. Therefore,

the space complexity is O(w logw + |V| + |E|). □

5 EXTENSION
The computation cost of our approach depends on the size of

the uncertain graphs as well as the number of samples. The

computation cost decreases as the size of the uncertain graphs

decreases. Therefore, we propose an extension technique to effi-

ciently reduce the size of graphs while preserving the accuracy.

The extension technique preprocesses the uncertain graphs be-

fore sampling possible graphs and constructing an S
2
BDD. It not

only improves the efficiency but also improves the accuracy of the

approximation. The extension technique uses 2-edge-connected
components for reducting the size of uncertain graphs [7].

Definition 3 (2-edge-connected component). Given a graph
G = (V,E), an edge is called a bridge if G is disconnected after
the removal of the edge from E. Vertices that are connected by
bridges are called articulation points. A subgraph C = (VC ,EC )
of G is a 2-edge connected component if C is still connected after
the removal of any edges from EC . We denote the sets of bridges,
articulation points, and 2-edge connected components by B, A, and
C, respectively

The 2-edge-connected components, bridges, and articulation

points provide sets of edges (and vertices) such that the uncer-

tain graph is disconnected or still connected when the edges

(and vertices) are deleted. Because we can compute 2-edge con-

nected components only by using the network topology of a

given uncertain graph, we precompute them as an index.

The extension technique consists of three phases; (1) pruning,

(2) decomposing, and (3) transforming. In the pruning phase, we

first compute G′ such that R[G] = R[G′]. The number of edges

in G′ is smaller than that in G by pruning edges and vertices

that do not affect computing the network reliability. Next, in

the decomposing phase, we compute the subgraphs G1, . . . ,Gm
where R[G′] = Πmi=1R[Gi ]. Finally, in the transforming phase, we

compute G′i such that R[Gi ] = R[G′i ] for all 1 ≤ i ≤ m. Since we

transform the graph into a smaller graph, the number of edges

in G′i is smaller than that in Gi .

Prune: We prune vertices and edges that do not affect the

network reliability. A vertex (or an edge) is unnecessary if the

graph is partitioned after the removal of the vertex (or edge) from

G and one of the partitioned graphs does not include terminals.

A naive approach deletes each articulation point and bridge, and

then checks whether partitioned graphs include terminals or not.

This approach incursO((|B|+ |A|)(|V|+ |E|)) time complexity. To

improve the efficiency, we reconstruct the uncertain graph based

on the 2-edge connected components. To do so, we first unite the

set of vertices and edges included inC ∈ C to form a single vertex

vc . We then set every articulation point included in C as vertex

va and set edges betweenva andvc . The other vertices and edges
that are not included in C are still in the reconstructed graphs.

Therefore, the vertices of the reconstructed graph indicate C, A,
and the vertices that are not included in C. If any vertex in C
except for articulation points is a terminal, vc is also a terminal.

The reconstructed graph is structured as a tree structure because

the 2-edge connected components are connected to the other

components by a single edge. To compute the necessary vertices

and edges, we compute the minimum Steiner tree for terminals

in the reconstructed graph. The minimum Steiner tree includes

only the necessary vertices and edges to compute the network

reliability because it includes only the edges and vertices that

all the terminals are connected. Its computation cost is O(|V|),
because the minimum Steiner tree in a tree structure is computed

by a depth first search from a terminal.

Decompose: We decompose the graph because the time com-

plexity for computing the network reliability on decomposed

graphs becomes smaller than that on that original uncertain

graph. The decomposed graph has fewer edges than the origi-

nal uncertain graph. We decompose the graph according to the

following lemma:

Lemma 5.1. Given an uncertain graph and a set of bridges, we
obtain R[G,T] = pb ·

∏m
i=1 R[Gi ,Ti ], where pb =

∏
eb ∈B p(eb )

and Ti is the set of terminals for Gi .

Proof: Given intermediate graph GE(E∃,E¬) and edge e ∈
E\(E∃ ∪ E¬), the network reliability is computed using the Fac-

toring Theorem [10]:

R[GE(E∃,E¬)] = p(e) · R[GE(E∃ ∪ e,E¬)]
+(1 − p(e)) · R[GE(E∃,E¬ ∪ e)]. (12)

If we select bridge eb = (v,v
′) ∈ B as e in Equation (12),

R[GE(E∃,E¬ ∪ e)] is zero because terminals in GE(E∃,E¬ ∪ e)
are disconnected. Therefore, we obtain the following equation:

R[GE(E∃,E¬)] = p(eb ) · R[GE(E∃ ∪ eb ,E¬)]. (13)

For connecting all the terminals, eb must be existent, and thus we

can decompose the intermediate graph GE into two graphs GE1
and GE2 . We also divide the terminals T into T1 and T2 for GE1
and GE2 , respectively; T1 includes {t ∈ T,v,v ′ |t ,v,v ′ ∈ V1}
(similarly, T2). Thus, R[GE] = p(eb ) ·R[GE1 ]R[GE2 ]. GE1 and GE2
are decomposed in the same manner. Then, we obtain R[G] =
pb ·

∏m
i=1 R[Gi ,Ti ]. □

We decompose the uncertain graph into several subgraphs

based on the above lemma. Its computation cost is O(|B| |V|)
because we check whether decomposed graphs include terminals

or not for each bridge.

Transform: We transform the graph to reduce its size. We

delete and add the following edges and vertices without sacrific-

ing the exactness of the network reliability:

• Sequential edges (e = (v,v ′), e ′ = (v,v ′′)): Delete v , e
and e ′, and add a new edge with probability p(e) · p(e ′)
between v ′ and v ′′, provided that v is not a terminal and

its degree is two.

• Parallel edges (e = (v,v ′), e ′ = (v,v ′)): Delete e and e ′,
and add a new edge with probability (1−(1−p(e)·(1−p(e ′))
between v and v ′.
• Loop : Delete the loop because loops do not contribute to

the network reliability. Note that transforming sequential

and parallel edges can generate loops.

We iteratively repeat this process until the graph does not change.

The computation cost is O(γ · |V| · davд
2) where γ and davд are

the number of repetitions and the average degree of the vertices,

respectively.

Consequently, the extension technique effectively reduces the

computation cost for computing the network reliability with a

small preprocessing time. Furthermore, it improves the accuracy

of the sampling technique.
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Algorithm 1: Computing the approximate network reliabil-

ity

input :Uncertain graph G, terminals T, maximum BDD sizew , size of

samples s , 2-edge connected components C, bridges B, articulation
points A

output :Approximate network reliability R̂
1 procedure our approach
2 set T to G;

3 R̂, SG ← Preprocess(G, T, C, B, A);
4 for Gi ∈ SG do
5 r ← Construction(Gi ,w , s);
6 R̂ ← R̂ · r ;

7 return R̂ ;

8 end procedure

Algorithm 2: Constructing S2BDD
input :Uncertain graph G, maximum sizew , number of samples s
output :Approximate network reliability R̂

1 procedure Construction(G,w , s)
2 Ordering(E);

3 pc , pd , ˆpsl , c ← 0; /* initialize probabilities and sampling

count */

4 s ′ ← s ;
5 N← CreateRoot; F← null ;
6 for l for 1, . . . , |E | do
7 pN, psi ← 0;

8 F′ ← F; compute F based on el ;
9 while N is empty do

10 n ← N.pop ;
11 for state ∈ { non-existent, existent } do
12 set(n, F′, F, state, G, el );
13 if n is 0-sink then pd ← pd + pn ;
14 else if n is 1-sink then pc ← pc + pn ;
15 else
16 if hashmap[n] is not null then
17 phashmap[n] ← phashmap[n] + pn ;

18 else
19 if |Nnext | ≤ w then
20 hn ← h(n);
21 Nnext .add(n); hashmap[n] ← n;

pNnext ← pNnext + pn ;

22 else
23 psi ← psi + pn ;
24 for i for

1, . . . , ⌊s ′ · (1 − ˆpsl − pNnext − pc − pd )⌋
do

25 if Sampling(G, n) then c ← c + 1;

26 if c + ⌊s ′ · pNnext ⌋ ≥ s
′ then

27 for n ∈ N do
28 for i for 1, . . . , ⌊s ′ · pNnext ⌋ do
29 if Sampling(G, n) then c ← c + 1;

30 break;

31 if Nn is empty then
32 break;

33 N← Nnext ;

34 sort N in descending order of h(n);
35 ˆpsl ← ˆpsl + psi ; compute s ′; clear Nnext ; clear hashmap;

36 compute R̂ based on the sampling;

37 return R̂ ;

38 end procedure

Theorem 4. GivenG1, . . . ,Gm such thatR[G] = pb ·Πmi=1R[Gi ],
the variance of the network reliability decreases for 0 < R̂ < 1 and
0 < pb < 1.

Proof: The network reliability is denoted by R̂ = pb ·Πmi=1R̂[Gi ].
The valiance is computed as follows:

Algorithm 3: Extension technique

input :Uncertain graph G, terminals T, 2-edge connected components C,
bridges B, articulation points A

output :Probability pb , the set of decomposed graphs SG
1 procedure Preprocess(G, C, B, A)
/* Prune */

2 Gr ← Reconstruct(G);

3 Compute the minimum Steiner tree T for Gr and terminals;

4 Delete edges and vertices of G not included in T;

/* Decompose */

5 pb ←
∏

eb ∈B
p(eb );

6 Delete the set of bridges in G;

7 SG ← the set of disconnected graphs;

/* Transform */

8 for G′ ∈ SG do
9 while 1 do

10 for v ∈ V of G′ do
11 if v connects to edge e = (v, v) then
12 delete e = (v, v);

13 if v < T and v connects to just two edges e = (v, v ′) and
e ′ = (v, v ′′) then

14 delete e and e ′ from G′;
15 add a new edge (v ′, v ′′) with probability p(e) · p(e ′);

16 for v ∈ V of G′ do
17 for ∀ pair of u and u′ ∈ the set of neighbor vertices of v do
18 if u = u′ then
19 delete edge e = (v, u) and e ′ = (v, u′);
20 add a new edge (v, u) with probability

(1 − (1 − p(e) · (1 − p(e ′));

21 if The number of edges does not change then
22 break;

23 return pb , SG ;

24 end procedure

Var [R̂] = Var [pb · Π
m
i=1R̂[Gi ]]

= (Var [pb ] + pb
2)(Var [R̂[G1]] + R̂[G1]

2

) · · ·

(Var [R̂[Gm ]] + R̂[Gm ]
2) − pb

2 · Πmi=1R̂[Gi ]
2

= pb
2Πmi=1(Var [R̂[Gi ]] + R̂[Gi ]

2

) − pb
2Πmi=1R̂[Gi ]

2

= pb
2Πmi=1

(
R̂[Gi ](1−R̂[Gi ])

s + R̂[Gi ]
2

)
− pb

2Πmi=1R̂[Gi ]
2

= pb
2Πmi=1R̂[Gi ]

(
(1+(s−1)R̂[Gi ])

s

)
− pb

2Πmi=1R̂[Gi ]
2

<
pb 2Πmi=1R̂[Gi ]

s −
pb 2Πmi=1R̂[Gi ]

2

s

= pb
R̂(1−R̂)

s <
R̂(1−R̂)

s (14)

Note thatVar [pb ] = 0.Var [R̂] is smaller than the variance of the

network reliability of the original graph. □

6 ALGORITHM OF OUR APPROACH
In this section, we explain the entire algorithm of our approach.

Algorithm 1 shows the pseudo-codes. Our approach first pre-

processes uncertain graphs and obtains decomposed uncertain

graphs (line 3). For each decomposed graph, it then constructs

an S
2
BDD to compute the approximate network reliability of

the decomposed graphs (lines 4–5). The product of the network

reliability of each decomposed graph is the original network

reliability (line 6).

Algorithm 2 shows the pseudo-codes for the construction of an

S
2
BDD. We process edges in a predefined order, and compute the

set of frontiers (lines 6–8). For each node at layer l , we compute

the nodes at layer l + 1 according to the states of the edges
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Table 2: Dataset

Name Abbr. Type #vertices #edges Avg. Deg Avg. Prob

Zachary-karate-club Karate Social 34 78 4.59 0.527

American-Revolution Am-Rv Affiliation 141 160 2.27 0.528

DBLP before 2000 DBLP1 Coauthorship 25,871 108,459 8.38 0.222

DBLP after 2000 DBLP2 Coauthorship 48,938 136,034 5.56 0.203

Tokyo Tokyo Road network 26,370 32,298 2.45 0.391

New York City NYC Road network 180,188 208,441 2.31 0.294

Hit-direct Hit-d Protein 18,256 248,770 27.25 0.470

(lines 11–12). The set function (line 12) sets attributes on the

new node to n and checks whether the terminals are connected

or disconnected based on Lemmas 1 and 2. If the new node are

0-sink and 1-sink, we add pn to pd and pc , respectively (line 13–

14). Otherwise, we compute hash values for n, and if the hash

of n is not null, we add the probability pn to the node in the

hash (lines 16–17). If the hash is null with respect to n, it inserts
n into the set Nnext of nodes at layer l + 1 and into the hash

after computing their priorities (lines 19–21). If the number of

nodes in Nn exceeds the maximum sizew , we delete n and pick

possible graphs as samples from n (lines 22–25). After sampling

an enough number of possible graphs, we sample form the nodes

in the S
2
BDD (lines 26–29).

Algorithm 3 shows the pseudo-codes for the extension tech-

nique. The extension technique first reconstructs the uncertain

graph (line 2). Then, it computes the minimum Steiner tree for the

reconstructed graph and prunes the edges and vertices that are

not included in the Steiner tree from the original uncertain graph

(lines 3–4). To decompose the graph, we compute the product of

the probabilities of bridges pb (line 5). Then, we delete bridges

from the uncertain graph, and the disconnected subgraphs are

inserted into the set of decomposed uncertain graphs (lines 6–7).

For each decomposed graph, it transforms vertices and edges

that satisfy the transformation rules (lines 8–20).

7 EXPERIMENT
We evaluate our approach in terms of efficiency, accuracy, and

memory usage.

7.1 Dataset
We summarize the datasets in Table 2. The first two datasets;

Zachary-karate-club and American-revolution are small datasets

for evaluating accuracy, which are extracted from KONECT
3
. We

randomly assign probabilities based on the uniform distribution

[9]. The other five datasets; DBLP before 2000, DBLP after 2000,

Tokyo, New York City, and Hit-direct, are large datasets. Edge

existence probabilities for each large dataset are assigned based

on the attributes of the edges in each dataset. DBLP before 2000

and DBLP after 2000 are graphs extracted from DBLP
4
, where

vertices and edges are authors and co-author, respectively. We

compute the edge existence probabilities by
log(α+1)
log(αM+2)

, where

α and αM denote the number of co-authors and the maximum

in each dataset, respectively [6]. The Tokyo and New York City

datasets are road networks extracted from OpenStreetMap
5
. We

compute the edge existence probabilities in the same manner as

with the DBLP datasets, although we use road lengths instead

of the number of co-authors. Note that both the Tokyo and New

3
http://konect.uni-koblenz.de/

4
http://dblp.uni-trier.de/

5
https://www.openstreetmap.org

York City datasets are not planar graphs. Hit-direct is a protein-

protein interaction network extracted from the Human Genome

Center
6
. We use the interaction scores ∈ (0, 1] of interactions as

the edge existence probabilities.

7.2 Setting and Implementation
For each dataset, we generate 20 searches (except when we eval-

uate the accuracy, for which see Section 7.6). The terminals are

selected randomly from vertices. We vary the number of termi-

nals k , the number of samples s , and the maximum size of the

S
2
BDDw .

Because the existence probabilities of possible graphs can be

very small, we use the Boost.Multiprecision library, with preci-

sion of 10,000 decimal points, for the large datasets. We compute

the 2-edge-connected components using code provided by the

authors [7]. We compare our approach with two existing ap-

proaches; the sampling-based and BDD-based approaches. The

BDD-based approach uses the state-of-the art library, TdZDD.

All algorithms are implemented in C++, and run on a server with

an Intel Xenon E7-8860v4 at 2.20GHz with 256GB RAM.

7.3 Efficiency
We compare the efficiency of our approach with that of sampling-

based and BDD-based approaches. Figure 3 shows the response

time for each large dataset when the numbers of terminals k
is set to 5, 10, and 20. DNF indicates that we cannot compute

the network reliability due to the lack of memory space. We use

Monte Carlo estimator for our approach and the sampling-based

approach (denoted by Pro(MC) and Sampling(MC), respectively)
and set s to 10,000. For our approach, we set w to 10,000. We

also evaluate our approach without the extension technique de-

noted by Pro(MC)w/o ext. We here omit the results of Horvitz-

Thompson estimator because they are almost equivalent to those

of Monte Carlo estimator.

The results show that our approach is more efficient than

both of the sampling-based and the BDD-based approaches for

all k . The BDD-based approach cannot compute the network

reliability because it runs out of memory. Our approach achieves

higher efficiency than the sampling-based approach because it

reduces the number of samples. Furthermore, we can see that

the extension technique improves the efficiency. In particular,

our approach works well on the Tokyo and NYC datasets. This is

because the S
2
BDDworks well for planar-like graphs (even when

they are not strictly planar graphs). In the Hit-direct dataset, the

lower and upper bounds do not effectively become tight because

the number of degrees is large. Nevertheless, our approach is

more efficient than the sampling-based approach.

6
http://hintdb.hgc.jp/htp/download.html.
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Figure 3: Overview of efficiency
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Figure 4: Efficiency with varying the number of samples
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Figure 5: Efficiency with varying the maximum width

7.4 Effect of Number of Samples
We evaluate the effect of the given number of samples. Figure 4

shows (a) the rate of response time of our approach over that of

the sampling-based approach and (b) the rate of updated samples

s ′ over s , varying the number of samples. This figure shows that

our approach becomes more efficient as the given number of

samples increases. This is because the reduction of the number

of samples is more effective when the given number of samples

is large. Therefore, our approach more effectively works when

we need a high accurate network reliability.

7.5 Effect of MaximumWidth
We evaluate the effect of the given maximum width of S

2
BDD.

The maximum widthw affects the memory usage and efficiency.

Figure 5 shows (a) the memory usage and (b) the response time.

From Figure 5(a), we can see that the memory usage increases as

the maximum width increases. The memory usage depends on

the maximum width but not depends on the size of graphs. Our

approach can be used for large-scale graphs in terms of memory

usage. From Figure 5(b), we can see that the response time does

not largely depend on the maximum width. When the maximum

width is large, our approach can reduce the number of samples

but takes a large computation cost for constructing S
2
BDD. Our

approach is robust enough to the maximum width in terms of

efficiency. Consequently, our approach effectively decreases the

response time even for large-scale graphs.

7.6 Accuracy
We evaluate the accuracy of our approach compared with the

sampling-based approaches. For both approaches, we use Horvits-

Thompson estimator (denoted by Pro(HT) and Sampling(HT)) as
well as Monte Carlo estimator. Since the network reliability prob-

lem is #P-complete, we cannot compute the exact answer for large

datasets in terms of both response time and memory usage. We

use the Karate and Am-Rv datasets which can be computed the

exact network reliability. We evaluate the variance and the error

rate to determine the accuracy of the approximation as follows:

variance =
Σ
q
1

i=1Σ
q
2

j=1(Ri−R̂i, j )
2

q1 ·q2 and error rate =
Σ
q
1

i=1Σ
q
2

j=1 |Ri−R̂i, j |
q1 ·q2 ·Ri ,

where Ri and R̂i, j denote the i-th exact network reliability and

the j-th approximate network reliability for the i-th search, re-

spectively. We generate 100 searches and compute the network

reliability 100 times for each search (i.e., both q1 and q2 are 100).
Tables 3 and 4 show the accuracy on the Karate and Am-Rv

datasets, respectively. Table 3 shows that our approach outper-

forms the sampling-based approaches in terms of both of the

variance and error rate. Comparing the variance between the

estimators, the Monte Carlo estimator is slightly better than the

Horvits-Thompson sampling. This is because we sample possible

graphs with replacement, and thus the Horvits-Thompson esti-

mator is less effective. Table 4 shows that our approach always

computes the exact network reliability on the Am-Rv dataset— its

error rate is zero. Both of the existing sampling-based approaches

have high error rates when k = 20 although their variances are

small. Because the network reliability is very small, the sampling-

based approaches rarely sample the possible graphs in which

terminals are connected. Thus, the approximate network reliabil-

ity is often zero, and the error rates are close to one. From these

results, we conclude that our approach can achieve less variance

and error rate with fewer samples than the other approaches and

compute the exact answer for small-scale graphs.

7.7 Effect of Extension Technique
Finally, we evaluate the performance of the extension technique.

The effect of the extension technique is detailed in Table 5 which

shows the process time and the ratio of the maximum number of

edges in decomposed graphs over the number of edges in the orig-

inal uncertain graph. The results show that the extension tech-

nique requires a very small time compared with computing the

network reliability. Thus, it effectively reduces the total response

time. Since it reduces the size of uncertain graphs, it mitigates

the computation cost for the S
2
BDD. The extension technique is

effective for improving the efficiency of our approach.
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Table 3: Accuracy on Karate dataset

k Method Variance Error rate

5

Pro(MC) 0.025 0.036

Pro(HT) 0.025 0.036

Sampling(MC) 0.025 0.037

Sampling(HT) 0.029 0.042

10

Pro(MC) 0.013 0.058

Pro(HT) 0.014 0.059

Sampling(MC) 0.013 0.058

Sampling(HT) 0.015 0.062

20

Pro(MC) 0.76 ·10−3 0.054

Pro(HT) 0.85·10−3 0.057

Sampling(MC) 0.78·10−3 0.056

Sampling(HT) 0.86·10−3 0.057

Table 4: Accuracy on Am-Rv dataset

k Method Variance Error rate

5

Pro(MC) 0 0

Pro(HT) 0 0

Sampling(MC) 0.43·10−4 0.061

Sampling(HT) 0.31·10−4 0.059

10

Pro(MC) 0 0

Pro(HT) 0 0

Sampling(MC) 0.099·10−5 0.38

Sampling(HT) 0.12·10−5 0.37

20

Pro(MC) 0 0

Pro(HT) 0 0

Sampling(MC) 0.10·10−3 1.00

Sampling(HT) 0.10·10−3 1.00

Table 5: Effect of extension technique

Dataset

Process time Reduced

[sec] graph size

Karate 0.0277·10−3 0.757

Am-Rv 0.310·10−3 0.120

DBLP1 0.060 0.946

DBLP2 1.61 0.797

Tokyo 0.015 0.425

NYC 0.370 0.279

Hit-d 0.184 0.982

8 CONCLUSION
In this paper, we proposed an efficient sampling-based approach

for computing the approximate network reliability. Our approach

reduces the number of samples by using lower and upper bounds

of the network reliability based on the stratified sampling. We

developed scalable and sampling BDD, called S
2
BDD, which effi-

ciently computes the bounds. The S
2
BDD preferentially searches

for the possible graphs that highly improve the bounds. We fur-

ther developed the extension technique of our approach to reduce

the size of graphs. Experiments demonstrated that our approach

is up to 51.2 times faster than the sampling-based approach with

a higher accuracy.
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ABSTRACT
The RDF data model has emerged as the most prominent way to
interlink and exchange data on the Web due to its simplicity in
the form of subject predicate object statements, but this simplicity
comes with the cost of having to execute a large number of joins
in order to get the desirable query results. Numerous approaches
exist that aim to treat this problem, mainly focusing on disk based
storage. In this work we consider a main memory setting and
present a physical design and query method aiming to exploit
spatial locality for efficient in-memory processing. Our design is
also amenable to straightforward parallelization, something cru-
cial for main memory database systems. Specifically, we present
a join implementation that allows to achieve any desired degree
of parallelism on arbitrary join queries and RDF graphs stored in
memory using compact vertical partitioning. We use an adaptive
join processing approach, such that we take advantage of complete
or even partial ordering of RDF data, which is compactly stored
in order to increase spatial locality and keep memory consump-
tion low, coupled with an ID-to-Position vector index used when
ordering does not allow for efficient scanning of the input relation.
We have implemented an in-memory prototype that experimen-
tally shows the efficiency and scalability of our proposal, taking
advantage of continuously growing sizes of main memory and
multi-core environments of modern hardware. Specifically, we
show that for a machine with 128 GB of main memory and 16
cores, which is a reasonable amount for an average modern server,
our prototype can store and query RDF graphs with up to two
billion triples, and it outperforms centralized and distributed state
of the art approaches.

1 INTRODUCTION
The Resource Description Framework (RDF) is a data model rec-
ommended by the W3C for semantic data integration, sharing
and linking across different organizations and applications on
the Web. RDF provides flexible modeling of data coming from
heterogeneous domains in the form of triples forming subject-
predicate-object statements, facilitating the construction of Knowl-
edge Graphs. Every component of such a triple is a resource
uniquely identified by an IRI or a data value in the form of a
literal. The latter can only be present in the object position. A
set of such statements can be considered an RDF graph, where
subjects and objects are nodes and there exists an arc labeled with
the property name, connecting corresponding subject and object
for each statement. Several organizations publish data in the RDF
model, leading to interlinking information from different sources
and automatic processing using software agents. As a result, as
of 2018 the Linked Open Data (LOD) cloud [34] contains more

© 2019 Copyright held by the owner/author(s). Published in Proceedings of the 22nd
International Conference on Extending Database Technology (EDBT), March 26-29,
2019, ISBN 978-3-89318-081-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

than 1000 datasets and 60 billion triple statements, with DBpedia
[8], a dataset that contains semantic information extracted from
Wikipedia, taking up a central position with 3 billion triples and
around 50 million links to other datasets.

The SPARQL query language is the W3C recommendation
for querying RDF graphs. The basic building block of SPARQL
queries are triple patterns. A triple pattern is similar to an RDF
statement, with the exception that each component (subject, pred-
icate or object) can be either a resource or a variable. The eval-
uation of a single triple pattern over an RDF graph consists of
finding matches of the pattern on the graph such that variables
are substituted by RDF resources. A Basic Graph Pattern (BGP)
is a set of triple patterns. During evaluation of a BGP all triple
patterns are matched to an RDF statement and common variables
between triple patterns are substituted by the same resource. If we
consider RDF storage on a single relational triples table, a BGP
with n triple patterns corresponds to n − 1 self joins of the triples
table.

Since the adoption of the RDF data model numerous systems
and research prototypes have been developed aiming at efficient
SPARQL query evaluation, focusing mainly on the evaluation
of BGPs which proved to be extremely demanding. Centralized
systems explored different physical storage options and query ex-
ecution techniques. Main storage schemas include a single triples
table, denormalized property tables, vertical partitioning, graph-
based storage and storage based on bit arrays. Details and ref-
erences to such systems are presented in the next section. As
scalability became an issue with the continuously increasing size
of several datasets, distributed approaches came into play, assisted
by cloud technologies such as the MapReduce framework, its
implementation Apache Hadoop and several Big Data processing
systems built on top of it. Most of these systems use optimizations
in order to minimize the execution cycles, which correspond to
Hadoop jobs and involve data transfer between the workers. This
is due to the synchronous nature of the MapReduce paradigm. As
a result, depending on data partitioning and replication one can
achieve evaluation completely in parallel for some queries, but for
queries that require communication the overhead is important due
to the synchronization step.

A number of in-memory distributed systems were later pro-
posed such that their communication is based on custom asynchro-
nous methods, mostly on the Message Passing Interface (MPI)
standard. Trinity.RDF [42] is based on graph exploration and it
was the first system to follow this design. TriAD [14] and the
extension of the centralized main memory RDF store RDFox with
a dynamic data exchange operator [26] also use an asynchronous
execution model (In what follows we will refer to the system
described in [26] as the dynamic exchange operator approach),
but unlike Trinity.RDF they use relational-style joins, increasing
the level of parallelism for large intermediate results over the
graph-based approach. In order to do so, both of these systems use
expensive graph partitioning before data loading. AdPart [3] tries
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to overcome this problem by using simple subject-based hash par-
titioning and then adaptively, based on the query load, replicates
specific data fragments to the workers. As a result of the initial
subject-based partitioning, expensive broadcast of intermediate
result occurs in case of joins on objects.

Our query processing approach is inspired by the asynchro-
nous execution model of main-memory distributed RDF stores,
mainly of TriAD and the dynamic exchange operator approach.
Both these approaches use expensive preprocessing in the form of
graph partitioning in order to minimize communication between
servers during query execution. Also, extra effort is needed in
order to track the server that contains each resource. Most impor-
tantly, even in a centralized parallel environment these systems
would require some form of inter-process or inter-thread com-
munication and as a result some form of synchronization. For
example, in case of rehashing, each worker of TriAD has to wait
in order to receive and rehash all intermediate results from all
other workers. Same kind of overheads occur in the dynamic ex-
change operator where each worker must hold a queue for each
query atom, where incoming messages are put. This may lead to
blocking execution until some other worker process results for a
subsequent query atom. Also, in the dynamic exchange operator
approach detecting termination is not trivial and requires a round
of message exchanging. Our method ensures parallel execution
without any form of communication or synchronization between
the workers (in our case threads) while at the same time avoiding
expensive preprocessing like graph partitioning. Furthermore, we
adaptively decide to scan the corresponding partitions when it is
preferable, instead of always using index-based nested loops as
done by the dynamic exchange operator approach.

Regarding the physical data storage, our approach is inspired
by column-store systems such as MonetDB [16] and C-Store [37],
as we first use vertical partitioning [1] to create a separate table for
each property, and then keep subjects and objects for each prop-
erty in separate arrays so that each tuple can be reconstructed by
relating entities at the same positions in these arrays, reminiscent
of the virtual IDs of column stores. This way we achieve increased
spatial locality during processing. Also, we allocate a single array
position for each distinct subject or object as a simple form of
column specific compression (reminiscent of the POS and PSO
indexes used by Hexastore [39]) and we keep two replicas of each
two-column table in different sort orders. The main contributions
presented in this work are:

• A join processing approach with low memory consumption,
able to efficiently parallelize evaluation of arbitrary multi-
join BGPs without any communication.
• Physical design method which compactly stores RDF data

in memory, in order to increase spatial locality during join
processing. For example, for scale 10240 of the LUBM
dataset with about 1.4 billion triples, excluding dictionary,
the storage requirements are only 22 GB (50GB if we
include the dictionary).
• A cache-friendly method which adaptively, during execu-

tion, decides to switch from binary search to scan in order
to take advantage of existing (even partial) sorting of RDF
triples, that further improves our join implementation. An
auxiliary bit vector index can be used to avoid binary search
and improve efficiency.
• An implementation and experimental evaluation for datasets

up to 2 billion triples which shows that our proposal out-
performs existing state of the art centralized systems. Also,

based on published results for other systems, it is shown
that for tested datasets, like LUBM 10240, our implementa-
tion running on a single 16-core server outperforms (mostly
for complex queries) or performs close to the fastest state
of the art asynchronous distributed in-memory systems
deployed on a cluster of machines.

We proceed by first presenting related work. Then in Section 3
we present details of the physical data storage and in Section 4 we
present details of the adaptive join method that allows for incor-
porating parallelism into processing. We present implementation
details and experimental evaluation in Section 5 and we finally
conclude and discuss future work.

2 RELATED WORK
RDF storage using relational technology has been a subject of
research since the proposal of the RDF data model. BGP evalua-
tion using a single triples table that contains the whole RDF graph
involves expensive self joins over this large table. As a solution,
some systems like Jena [40] proposed the usage of “flattened“
property tables, which contain a larger number of columns, in an
effort to simulate a relational schema and avoid joins as much
as possible. Nevertheless, this design has some drawbacks, like
for example a lot of NULL values for wide tables, the need for
UNION during a single BGP processing and difficulty to handle
multi-values attributes. [5] aims at efficient evaluation using an
object-relational DBMS including a two-column representation
for properties. Vertical partitioning[1] uses this representation in
order to treat the drawbacks of the property tables. In this approach
a separate two-column table is created for every property of the
RDF graph. In this case, the number of joins is not reduced in
comparison to the single triples table, but each join is between
smaller tables and also tables not relevant to the query do not need
to be accessed at all. Column stores are ideal candidates for RDF
processing using vertical partitioning, as they provide compact
storage and compression over each column.

Hexastore enhances the vertical partitioning by replicating the
data through six different indexes, corresponding to all possible
permutations of subject, predicate and object [39]. RDF-3X [23]
also uses extensive indexing such that an index is created not only
for all possible permutations but also for aggregated values, result-
ing in 15 indexes stored as clustered B+ trees. This schema along
with several optimizations, such as skipping large parts of irrele-
vant data during merge joins using a form of sideways information
passing, made RDF-3X one of the most efficient disk-based RDF
stores, despite conceptually using the single triples-table approach.
Our design follows the vertical partitioning approach, but as in
Hexastore, we keep two different replicas for each property in
different sort orders (corresponding to POS and PSO indexes) and
we also compactly store only distinct subjects and objects. Also,
our adaptive join optimization (Section 4.1) can be considered a
way of skipping irrelevant data as in RDF-3X.

Regarding SPARQL query processing using cloud technologies,
an initial approach using the MapReduce framework is presented
in [30, 31]. In this work, the authors describe the query evaluation
of Basic Graph Patterns of SPARQL using an iterative algorithm,
such that every join in the query requires a separate MapReduce
job. The RDF data is stored in plain files in the distributed file
system. A similar iterative approach is also used in [20], but here
the authors note that more than one triple patterns that share a
variable can be joined together in the same MapReduce job. They
use a greedy selection algorithm that chooses in every step the
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variable that appears in more triple patterns and they employ
reduce-side joins to get the results. In [11] predicate-based hash
partitioning is employed. The query is decomposed to subqueries
using the same partitioning and in every node a local Sesame
RDF store is used to evaluate each subquery. Instead of hash
partitioning, in [15] the authors use a graph partitioning algorithm
to assign triples to nodes and also they employ data replication
for triples that are on the boundaries of each partition, in order to
maximize the number of subqueries that can be executed without
communication between the nodes. They stress the usefulness of a
heuristic that finds the minimal number of subqueries because this
corresponds to a minimal number of Hadoop jobs, and they split
each query to a number of such subqueries using a brute-force
method, which is suitable only for queries with few triple patterns.

A number of approaches store the RDF data into an existing
system that has its own declarative language and then they trans-
form the SPARQL queries into that language. For example, [32]
uses Pig Latin[24] and performs some well known optimizations
to the SPARQL query, like the early execution of filters and some
selectivity estimations based on variable counting. During the
translation to Pig Latin, [32] just uses multi joins when consecu-
tive joins on the same variable are found, as this is an option that
Pig Latin offers. RAPID+, a system which is also based on Pig
Latin, is presented in [29]. Here the authors propose an intermedi-
ate algebra which is called Nested TripleGroup Algebra, in order
to facilitate the grouping of join operators during the translation of
the query to the execution plan in Pig Latin. The result is that each
star join involving two or more triple patterns can be executed in
one Map-Reduce job, using vertical partitioning.

H2RDF+ [25] uses HBase1 to store the RDF data. It takes ad-
vantage of the HBase key ordering for each table and it uses six
tables, each one corresponding to an RDF triple permutation. In
this way there is replication of the data, so that the system can
perform fast merge joins when all triples are part of the initial RDF
data. When some data is result of an intermediate step, the system
first performs a sorting on this intermediate data. Another key fea-
ture of the system is that during the query planning it examines the
option that the query will be executed in a centralized system. The
rationale behind this is that if the query is simple, its evaluation
in a centralized system can be preferable, because one can avoid
the overhead of the MapReduce jobs and network communication.
The system uses a greedy planner to decide about the order of the
joins, based on a cost model and some index statistics that it has.
In a similar manner, the system named Rya[27] uses Accumulo2,
to store indexes for permutations of subject, predicate and object
in the row ID field of each corresponding table, but it only uses
three indexes instead of all the possible ones. Rya supports range
queries and regular expressions, multi-threaded join execution and
also provides some limited inferencing capabilities. S2RDF [33]
uses the in-memory system Spark to store the RDF data using
vertical partitioning combined with semi-join materialization and
then translates the SPARQL query to Spark SQL [7].

Regarding in memory join processing, a lot of research has been
concentrated on cache friendly methods, such as the radix hash
join [18], and also into taking advantage of hardware features
such as the SIMD vectorized instructions for efficient parallel
sort-merge joins [4, 17]. These works consider the setting of
relational data with arbitrary number of columns, where a single
join has to be performed on previously non indexed columns and

1http://hbase.apache.org/
2http://accumulo.apache.org/

sorting or hashing is a serious overhead that has to be performed
in parallel. Instead, our work is tailored for RDF graphs, as it
exploits initial ordering of both subject and object RDF columns
and partial ordering of subsequent joins for pipelining multiway
joins, such that it completely avoids hashing or sorting during
query execution. Exploiting partial ordering of values in a column
has been used by main memory systems in the form of zone-maps
[28, 35] where additional statistics about each such zone have to
be maintained in order to skip scanning certain areas. Adaptivity
during run-time regarding the decision of scanning a base relation
or use a secondary index has been studied in [9, 10] for disk-based
systems.

Regarding centralized parallel in memory RDF processing, to
the best of our knowledge there is no work concentrating on query
processing. RDFox [21] and Inferray [38] are both systems that
aim at parallel in memory computation and materialization of
RDF inferences. This can be thought of as a preprocessing step
prior to querying. Although RDFox offers query evaluation, it
seems that is not the focal point of the system and for such queries
there is no support for intra-query parallelism, that is each query
is evaluated in a single thread. In [12] several variations of the
disk based RDF-3X are presented, such that they allow parallel
join evaluation. From the experimental results it is shown that
depending on the query, there is no clear variation that has bet-
ter performance, whereas for some queries the original version
is better, as parallel evaluation prohibits the usage of the side-
ways information passing optimization in RDF-3X. Also, their
approach works by parallelizing each join separately and demands
communication and synchronization costs.

3 PHYSICAL DATA STORAGE
In this section we present our physical data storage and give an
overview of the join method that allows incorporation of paral-
lelism. First, following the common practice used by many sys-
tems, we use dictionary encoding, by assigning an integer value
to each value encountered in the RDF data. We use common num-
bering for values appearing in the subject and object positions
and a different numbering for values appearing in the property
position, but for ease of presentation here we assume common
numbering for all values. Thus, after parsing of an RDF dataset
that contains N distinct values, our dictionary will contain integer
IDs from 1 to N . Then, we apply vertical partitioning [1] to create
a separate two-column table for each property defined in the data.
We keep two replicas of each two-column table, the first sorted on
subject and then on object, and the second sorted first on object
and then on subject. Given that a property P is assigned to integer
i from our dictionary encoding, we will refer to the first replica
of two-column table for P as propi and to the second replica as
propi− and we will call the tables first sorted on subject S-O tables
and tables first sorted in object O-S tables.

Consider for example the following RDF data (IRIs are omit-
ted):

ProfessorA teaches Mathematics
ProfessorB teaches Chemistry
ProfessorC teaches Literature
ProfessorA teaches Physics
ProfessorA worksFor University1
ProfessorB worksFor University2
ProfessorC worksFor University2
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Figure 1: Example of Physical Data Storage for a Property
Partition

The dictionary encoding of the data is given in Table 1. Us-
ing this encoding, the two-column tables prop2 and prop9 that
correspond to properties teaches and worksFor will be created.

Table 1: Example of Dictionary Encoding

Integer Value
1 ProfessorA
2 teaches
3 Mathematics
4 ProfessorB
5 Chemistry
6 ProfessorC
7 Literature
8 Physics
9 worksFor
10 University1
11 University2

For each table, we store a sorted integer array with the distinct
subjects (for S-O tables) or distinct objects (for O-S tables). We
also store a second array of same length with the first. Each posi-
tion of this second array contains a pointer to a sorted integer array
and an integer denoting the length of this array. This is a pointer
to the objects (for S-O tables) or subjects (for O-S tables) that
correspond to the subject (respectively object) located at the same
position of the first array. The reason that we keep two separate
arrays has simply to do with compactly storing the integers of
the first array and improving spatial locality during the join pro-
cessing. We also keep track of the length of the first array, using
an array of length 2 ∗ (number o f properties ) that contains this
information for all properties. Getting this information involves
a simple lookup at a specific position, for example, to get the
number of subjects for prop7, we should look at position 2 ∗ 7,
whereas to get the number of objects for prop7− we should look at
position (2 ∗ 7) + 1.

Figure 1 contains an example of physical storage for a property
table. Given that the specific table is for property prop3, then it
contains the following triples: 5 prop3 8, 7 prop3 8, 7 prop3 34,
13 prop3 40, 18 prop3 3, 24 prop3 9, 24 prop3 16, 24 prop3 41,
29 prop3 40, 33 prop3 22, 45 prop3 4. Note that in order to avoid
memory fragmentation, the different object arrays of this example
can be allocated to a continuous memory area. In this case, instead
of having different pointers for each position of the second array,
we can keep a single pointer to the start of this memory area and
only keep offsets in each position of the second array.

Our join method resembles an index-based nested loops join
(or merge join when possible - this will be discussed later) that
starts concurrently from different shards of the first table, and runs
in parallel, by probing the next table to be joined for each tuple.
In this way our method operates on left-deep query join trees as
shown in Example 3.1.

Example 3.1. Consider a SPARQL query:

SELECT ?x ?y ?z
WHERE {

?x teaches ?z .
?x worksFor ?y . }

Also suppose that the join order chosen by the optimizer (see
Section 4.3) is the same with the order of the triples in the text of
the query. This will be translated to a join prop2 ▷◁sub ject=sub ject
prop9. If there are two available threads, our algorithm will start
concurrently scanning two different shards of prop2. For each
tuple encountered during this process, it will probe, using bi-
nary search, table prop9. This process can be decomposed into
completely independent tasks that start from different shards and
operate on read-only common data, and thus it straightforward to
be implemented using threads or separate processes with shared
memory. It is even straightforward to be implemented on different
machines using complete data replication and parallelize the query
across machines without any communication.

Note that for the given query, the degree of parallelism depends
on the number of different shards of the first table. For more
selective queries a different strategy may be needed as shown in
Example 3.2.

Example 3.2. Consider the following query, that contains an
extra filter:

SELECT ?x ?z
WHERE {

?x teaches ?z.
?x worksFor University1 . }

In this case, suppose that the optimizer chooses the inverse join
order, as it is reasonable that the filter will limit the results of the
second triple pattern. In this case, table prop9 should be scanned
first. One first observation is that instead of scanning the whole
table, we can search for tuples where object is equal to 10. To do
so it is better to use the replica that is first ordered by object. After
we search prop9− for object = 10, we obtain the vector of subjects
that correspond to object = 10 (in our case it is only value 1).
Then we start scanning this vector and probing table prop2 using
these values. In this way we do not obtain any level of parallelism
for this query, as we start from a specific value of the first table.
It is easy though to recover the parallelism, if we start scanning
concurrently different shards of the vector that corresponds to
object = 10. If the query contains a triple pattern with variable
in the predicate position, then a union over all properties will be
needed, but this is rarely encountered in real world queries[1]. In
any case, if the number of distinct predicates encountered in the
dataset is very large, an ID-Predicate index similar to the one use
in [41] can be useful. Also note that the exact number of threads
that will be used is independent of our physical data storage and
can be decided on a per query basis after data loading in memory.
In our current implementation (Section 5) we choose to execute
each query with the same number of threads (optimally this should
be equal to the number of available processing cores or greater in
case hyper-threading is supported as shown in Section 5.2.3), but
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an extension such that very simple and selective queries could be
executed with fewer resources is possible.

4 QUERY PROCESSING
The approach followed by RDF stores like RDF-3X and TriAD,
is to take advantage of initial sorting of RDF triples, and perform
merge joins when possible. Hash join is preferred when inputs
are not sorted on the join key. On the other hand, the dynamic
exchange operator approach always uses index-based nested loops
aiming at low memory consumption and avoiding blocking opera-
tors. Our system uses a combination of these two approaches, by
taking into consideration the following points:
• When both inputs are already sorted on the join key, merge

join is preferable over hash join.
• For main memory systems, index-based nested loops (in

our case in the form of binary searches over the inner
table stored as an array) does not exploit data locality and
also it is not amenable to efficient data prefetching due
to conditional branching. Nevertheless, for very selective
joins, it may still be faster than merge join.
• For RDF data processing, where the initial triples are sorted

in all three subject, predicate and object columns, even if
the whole input is not sorted on the join key of a subsequent
join, large portions of the input can still be sorted as it is
demonstrated in the following example.

Example 4.1. Consider the following SPARQL query:
SELECT ?x ?y
WHERE {

?x prop1 ?y .
?x prop2 ?z .
?z prop3 ?w . }

If the selected join order is as shown in text of the query, S-O tables
will be used for all properties. As shards of prop1 are scanned, for
each thread of execution, prop2 will be probed for values sorted
on ?x , but for the second join, probing prop3 will not in general
be sorted on ?z. Nevertheless, for each distinct ?x , prop3 probing
will still be sorted on ?z and if each subject of prop3 is connected
to many objects, it may be more efficient to avoid binary search
on prop3 and switch to scanning for each distinct ?x .

A single join operator has been implemented in our system,
that adaptively during run-time, for each search key, decides if
it will switch to binary search (a behavior similar to index-based
nested loops) or keep scanning the input in the form of sequential
search, continuing from the position that the cursor has been left
from a previous search (a behavior similar to merge join).

4.1 Adaptive Join Processing
Given a left-deep join tree produced from the optimizer, each
worker starts scanning a shard of the first relation, or a specific
shard of an object/subject vector of the first S-O/O-S relation
in case a filter exists, and searching the subsequent relations for
each produced tuple. The search procedure is presented in Algo-
rithm 1. The algorithm takes as input a pointer to current cursor
position (cursor_position), which corresponds to the position of
the last accessed element for the array, and decides if it will
use binary or sequential search. The cursor_position is updated
each time for both successful and unsuccessful searches inside
Sequential_Search and Binary_Search functions.

Obtaining an exact cost-model in order to take the correct deci-
sion is an involved process that needs to take into consideration

factors such as the exact cache hierarchy, the size and bandwidth
estimation for each cache level for both sequential access (scan-
ning) and random access, cache line size, the replacement of cache
entries from operations other than the join under consideration (for
example subsequent joins of the same query) and the existence in
cache of relevant entries from previous operations (for example
scanning of the same relation in a previous query). Obtaining such
cost models for hierarchical memory systems has been studied in
[19], where cost functions are defined for basic access patterns
and then combinations of these functions can be used to derive
the cost of complex compound access patterns. As a prerequisite,
specific hardware measurements should be known, which can be
obtained through a separate calibration program that estimates
cache and CPU characteristics.

In our case, decision has to be made during runtime for each
produced tuple and each join of the query. Instead of using an
analytical cost model, we opt for a fast and lightweight method
using two assumptions: a uniform distribution of integers in the
first array of each table and that existing cache contents have an
impact proportional to the cost of either binary search or scanning.
The second assumption simply denotes that existing cache con-
tents can improve both methods, but they will not change which
the methods is more efficient in each case. For example, if bi-
nary search is preferable with completely empty cache, it will
remain so independently of the cache contents and vice versa. As
a result we base our decision on the difference between the last
accessed element and the element that we are currently searching
for. Specifically, we pass as argument to the algorithm a thresh-
old which is computed during data loading for each table. This
threshold takes into consideration an estimation about the max-
imum distance of the position of the last accessed element and
the position of the element to be found in the array, in order for
sequential search to be preferable. To switch from distance in
the array to the actual arithmetic distance of the two numbers,
we use the uniform distribution assumption, which leads to an
estimation that the difference between an element and its sub-
sequent one is (array[size − 1] − array[0])/size. Note that in
Algorithm 1, if Distance > Threshold then we could perform bi-
nary search using CursorPosition instead of 0 as starting position,
and if Distance < −Threshold we could use CursorPosition as
the end position instead of size. In theory this reduces the steps
needed from binary search, but in practice it is not efficient, as
always performing binary search on the whole array leads to the
array positions visited during the first steps to frequently occur in
cache.

Regarding the determination of the threshold, a calibration
process shown in Algorithm 2 is used. This process takes place
after data loading, prior to query execution, and tries to determine
a distance (called WindowSize) such that when searching for a
value ToFind in the Array and the position of ToFind is at dis-
tanceWindowSize from the position of the last accessed element
(CursorPosition), then BinarySearch and SequentialSearch per-
form roughly the same. Specifically, the ratio of the larger to the
smaller execution times of these two methods should be smaller
than a value close to 1.0 which is specified in the input of the
algorithm (Threshold). For each calibration step each process is
called NoO f Searches times, each time searching for a value es-
timated to be at distance equal to CurrentW indowSize from the
previous one. If the ratio is larger than the Threshold , calibration
continues such that the window size is multiplied by this ratio (in
case time spent on binary search is larger) or divided (otherwise).
This calibration process is different from a calibration needed
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when using an analytical cost model, in the sense that we directly
make an estimation for a value related to processing, instead of
estimating values about several hardware characteristics. Once the
calibration process terminates, we precompute the estimated value
distance (corresponding to the position distance that we obtained)
for each property, such that during query execution we only need
to perform one integer subtraction, one absolute value computa-
tion and one comparison for each tuple (lines 2-3 of Algorithm
1.

Algorithm 1: Adaptively switching between binary and se-
quential search

1 Search (Array,Value,CursorPosition,Threshold ,Size );
Input :Array: an array of integers (subjects of an S-O table

or objects of an O-S table), Value: integer value to
find, CursorPosition:pointer to current cursor
position, Threshold: integer, Size: size of array

Output :nonnegative integer corresponding to the position of
Value in Array or a negative integer if Value is not
present in the Array

Uses :Binary_Search(Array, Value, CursorPosition,
Size), Sequential_Search(Array, Value,
CursorPosition, Size)

2 Distance := Array[CursorPosition] −Value;
3 if |Distance | <= Threshold then
4 return Sequential_Search(Array, Value,

CursorPosition, Size);
5 else
6 return Binary_Search(Array, Value, CursorPosition,

Size);
7 end

4.2 ID-to-Position Index
Our join method takes advantage of initial sorting and performs
cache-friendly joins even when only a partial order of input triples
is possible, but when ordering does not help we must resort to
binary search. In this section we describe the structure of an ID-
to-Position index that is used to avoid binary search and directly
locate the position of a given integer on the property array. A
separate such ID-to-Position index must be built for each S-O or
O-S table, but its usage is auxiliary, in the sense that our system
can operate without all or some of these indexes. Given an RDF
dataset with N distinct values and a corresponding dictionary with
IDs from 1 to N , in order to directly locate the position of a given
value in a table, we need to store an integer array of length N ,
such that the value at index p denotes the exact position at the
table where it is located the resource whose ID value according
to the dictionary is p, or a special value to denote absence of the
specific resource from the table.

For example, given the property shown in Figure 1 and sup-
posing that the maximum ID contained in the dictionary is 45,
we would need an array of integers with length 45, such that
at position 5 of the array we would have the value 0, at posi-
tion 7 the value 1, at position 13 the value 2 and so on for po-
sitions 18,24,29,33 and 45, and all other position of the array
would have a value denoting absence. If we use M-byte integers,
then for each table the memory requirement would be M ∗ N
bytes. In order to save space, we use a different layout on out
ID-to-Position index, such that we only use an integer to de-
note the position of the property table at specific intervals, and

Algorithm 2: Calibration Process

1 Calibrate (Array,NoO f Searches,

StartinдWindowSize,Threshold );
Input :Array: an array of integers (subjects of an S-O table

or objects of an O-S table), NoO f Searches: number
of times to run sequential and binary search in each
calibration step, StartinдWindowSize: initial
window size used in first step of calibration,
Threshold: A threshold ratio to stop calibration

Output : integer corresponding to the window size such that
if two values in array are longer apart then binary
search is preferable

2 NextW indowSize = StartinдWindowSize;
3 AvдGap = (Array[Size − 1] −Array[0])/Size;
4 do
5 WindowSize = NextW indowSize;
6 TotalGap = AvдGap ∗WindowSize;
7 PreviousSearchPosition = 0;
8 StartTime = дetTimeNow ();
9 ToFind = Array[0];

10 for K ← 0 to NoO f Searches do
11 Binary_Search(Array, ToFind, 0,

&PreviousSearchPosition);
12 ToFind+ = TotalGap;
13 end
14 TimeBinary = дetTimeNow () − StartTime;
15 toFind = Array[0];
16 PreviousSearchPosition = 0;
17 StartTime = дetTimeNow ();
18 for k ← 0 to noO f Searches do
19 Sequential_Search(array, toFind ,

&PreviousSearchPosition);
20 ToFind+ = TotalGap;
21 end
22 TimeScan = дetTimeNow () − StartTime;
23 TimeDi f f = |TimeBinary −TimeScan |;
24 if TimeBinary > TimeScan then
25 Fraction = TimeBinary/TimeScan;
26 NextW indowSize =WindowSize ∗ Fraction;
27 else
28 Fraction = TimeScan/TimeBinary;
29 NextW indowSize =WindowSize/Fraction;
30 end
31 while Fraction > Threshold;
32 return WindowSize;

for all other positions we use a bit value to simply denote pres-
ence or absence of value from the property table. Finding the
exact position for a value requires reading the previous integer
and then counting bits set to 1 up to the position of the ID-to-
Position Index corresponding to the value. For example, if we
choose the interval to be equal to 8, then our index will store
the integer −1 at start, followed by bit values 0,0,0,0,1,0,1,0,
then integer value 1 and bit values 0,0,0,0,1,0,0,0, then inte-
ger value 2 and bit values 0,1,0,0,0,0,0,1, then integer value 4
and bit values 0,0,0,0,1,0,0,0, then integer value 5 and bit values
1,0,0,0,0,0,0,0 and finally integer value 6 and bit values 0,0,0,0,1.
If we want to find the position of value 29 at the property we can
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directly check bit at position ((29÷8)+1) ∗M ∗8+29. If bit is not
set, then value is not present in property table. If bit is set we read
integer value that starts at bit position (29÷8) ∗M ∗8+ (29÷8) ∗8
at the array and we add to this the number of bits that are set after
this number for 29 mod 8 positions. With this layout, given an
interval A we only need N /8 + ((N /A) ∗ M ) bytes. Also, given
that the integer and the number of bits followed up to the next
integer fit into a single cache line (with proper alignment of the
index in the memory), we only need one memory access and some
computation that can be done efficiently as a popcount operation
in order to determine the position.

As an example, using the dataset LUBM 10240 described in
Section 5, which contains about 1.4 billion triples, 17 distinct
properties and about 336 million distinct resources, using 4-byte
integers and choosing the interval to be 480 we only need 44.8
MB for each property, leading to a total memory usage of about
1.5 GB if we choose to create all possible indexes for S −O and
O − S tables, in contrast to a memory requirement of 45.7 GB if
we had used the simple layout.

Regarding modification of the join processing in case the ID-to-
Position index is used, the only change that needs to be addressed
is a different threshold resulted from calibration process. Specif-
ically, since we anticipate that using the index will have better
behavior in comparison with binary search, we need to estimate
two different thresholds with regards as to when sequential search
is preferable, with the threshold when ID-to-Position index is used
being smaller than the threshold when binary search is used.

4.3 Join Ordering and Cost Estimation
As in RDF-3X and TriAD, we employ a bottom-up dynamic pro-
gramming optimizer. As the level of parallelism during execution
is determined by the number of threads, we assume that the benefit
of each possible join order from parallelism will be a fixed propor-
tion of its centralized cost, that is the execution cost if we consider
that each property is consisting of a single shard. As a result of this
assumption, we disregard parallelism during optimization. During
cost estimation, we assume that a specific choice will be followed
for all tuples of a join, either binary search or scanning. The latter
will only take place when the join inputs are already fully sorted
and it is estimated to be cheaper than binary search. Adaptivity
during execution is expected to give a cost equal or lower to this
estimation. For each property of a specific join order we choose
to use the replica that leads to more selective results.

As selectivity estimation is not the focal point of this work, cur-
rently, in order to estimate the sizes of intermediate results we use
equi-depth histograms. As it is known that often estimates based
on such histograms may not be accurate especially in the case of
RDF data [23], we precompute some cardinalities between pairs
of properties during data loading and use these as a corrective step.
We plan to implement more elaborate techniques for cardinality
estimation in the future, like for example estimations based on
characteristic sets [22] or RDF data summaries [36].

5 EXPERIMENTS
In-memory data storage and query processing for our prototype
have been implemented in C as an extension of a SQLite, which
is used as disk-based storage. Disk-based tables are created and
saved during data import from RDF files. On application start-up
the in-memory data structures are created reading from the tables.
The dictionary can either be loaded in memory or kept in disk
where for IRI-to-ID transformation (during query optimization) a

clustered B+ tree on IRI is used and for ID-to-IRI transformation
(during IRI construction of answer tuples) a clustered B+ tree on
id. Our system is called through a wrapper written in Java, where
also query parsing and optimization is implemented. We use the
name PARJ for our implementation, which stands for Parallel
Adaptive RDF Joins.

All experiments were conducted on a 16-core server with In-
tel E5-4603 processors at 2.20 GHz and 128 GB RAM running
Debian 8. We used the popular Lehigh University Benchmark
(LUBM) [13] and Waterloo SPARQL Diversity Test Suite (Wat-
Div) [6] benchmarks. All material required to reproduce the ex-
periments is available online 3.

5.1 Setup
We use two sets of experiments: in the first one we test the effi-
ciency of our approach in the single-thread setting. In this setup
we use as competitors the in-memory RDF store RDFox (SVN
version: 2776) and also RDF-3X [23] (version 0.3.8) for com-
parison with a state of the art disk-based system. The second
setup is about multi-threaded execution. In the second setup we
use as competitor the TriAD system which in [14] it is shown to
outperform all competitors in the centralized parallel setting. We
have used the optimized build for TriAD, as it is suggested in the
installation manual.

Due to a hard-coded limit in the TriAD source code, we could
not execute queries using more than 20 workers4. Note that in
PARJ, each worker corresponds exactly to one thread, so given that
hyper-threading is enabled, we found that the optimal performance
was achieved when we used two threads for each processing core,
resulting in 32 workers/threads in our testing machine. More
details regarding the behavior of PARJ for different number of
threads are given in Section 5.2.3. For TriAD it was not clear
which number of workers should be the optimal, as this could
be query depended. This is also the reason that we do not use
TriAD in the single-thread setting. To have a better image and
find the optimal setup, we executed TriAD with different number
of workers, and we also modified the hard-coded limit and tried
with up to 32 workers. For most queries, TriAD performance is
degrading for more than 20 workers. From our testing we found
that the overall best performance was achieved for 16 workers
and this is the setup we used for TriAD in our experiments. Also,
we present results for both TriAD settings: with summary mode
enabled and disabled. For summary mode, we used the same
number of partitions used in [14]: 200K for LUBM 10240 and
70K for WatDiv 1000.

Regarding result handling, as our intention is to concentrate in
join processing, all systems were tested in the so called ”silent“
mode, that is we do not include the time for dictionary lookups
and result tuple construction. In multi threaded execution this
also means that we do not measure the time to aggregate the
results together. Each query was executed 10 times and the average
execution time is shown. We have deployed RDF-3X using an
in-memory filesystem and as a result there is no need to report
cold and warm cache times.

5.2 Results
We present results for scale 10240 of the LUBM benchmark in
Table 2 (about 1.4 billion triples) and scale 1000 of the WatDiv
benchmark (about 110 million triples). For WatDiv we used both

3https://github.com/dbilid/experiments
4This was verified with the TriAD implementors
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basic test workload (Table 3) and incremental linear and mixed
linear extensions of basic workload (Table 4). For WatDiv we
generated all the queries proposed in the workloads. For LUBM
we used the seven queries commonly used to test systems that do
not perform reasoning tasks, which can be found in [42], and are
labeled LUBM1-LUBM7, and we also used three extra queries
from [26] (LUBM8-LUBM10). A timeout of 30 minutes was used
for all queries.

Regarding single thread execution, we first observe that RDFox
is comparable to PARJ for some queries, but for other queries,
especially for queries from the WatDiv incremental and mixed
linear extensions, is highly inefficient. This confirms that this
system is not optimized for query answering, but instead, it aims at
efficient parallel materialization of RDF implications. Regarding
RDF-3X, we can see that it performs more than one order of
magnitude slower from PARJ for most queries. The reason is that
despite the fact that it is deployed in an in-memory filesystem, its
processing is oriented towards optimizing disk access, as it is not
aware that it operates in memory. For example, it uses B+ trees
to minimize the number of disk pages needed, it skips records
with its sideways-information passing optimization only when
it reads a new disk-page into memory, it uses compression on
a per page basis and also its cost estimation is based on disk
access. Nevertheless, there are some queries, for example queries
in the ML-2 set or LUBM8, where RDF-3X outperforms the
single-threaded PARJ execution. These are queries with large
intermediate results, but only few final answers, where the record
skipping using sideways information passing in RDF-3X results
in substantial gains.

Regarding multi-thread execution we can see that for most
queries the summary mode of TriAD is inferior to the simple mode,
sometimes by a large margin. For example, for query LUBM 3
in Table 2 the execution time increases from 2 seconds to more
than 15 seconds. For the specific query we saw that execution over
the summary graph takes up most of the execution time. In any
case, the results show that for parallel execution on a centralized
environment the pruning from the graph summaries does not
contribute to an important improvement which can justify the
overhead of graph partitioning.

A comparison of PARJ with the best TriAD mode shows that
we outperform TriAD by more than an order of magnitude for
the average execution time of the LUBM 10240 queries: from
838 milliseconds for PARJ to 13263 for TriAD (Table 2). For
basic WatDiv testing (Table 3), though TriAD performs slightly
better for simple queries, PARJ performs better overall with a
total average execution time of 11.27 ms (geomean: 7.76) whereas
TriAD has a total average execution time of 13.95 (geomean: 6.8).
For the more complex queries of WatDiv extended workloads
(Table 4) PARJ clearly outperforms TriAD. For some queries the
difference is more than two orders of magnitude. As an example,
for query ML1-7 the time increases from 7 ms to 2154. The
specific query contains a series of subject-object joins, which
leads TriAD to perform blocking data transfers between workers
and rehashing over large intermediate results, though the final
result is relatively small.

Regarding the difference between the silent mode and the full
result handling, we have executed all queries with full result han-
dling (except from printing) in PARJ. That is we include answer
tuple construction, dictionary lookups and sending all results to
the coordinating thread. We do not include these results, as we
saw that for most queries, usually with results up to a few thou-
sand tuples, the difference is not important, but for queries with

Table 5: Impact of Adaptive Processing for LUBM 10240 and
WatDiv 1000 (times in ms)-1 thread

Query Binary AdBinary Index AdIndex
LUBM1 22186 15454 16557 15369
LUBM2 2877 2443 2535 2437
LUBM3 6562 5491 6415 5338
LUBM4 5 7 7 5
LUBM5 1 1 1 1
LUBM6 2 2 2 3
LUBM7 12246 11866 9197 9213
LUBM8 15725 9782 10420 9899
LUBM9 77468 63586 58171 58082
LUBM10 22359 14892 16217 14606
Avg 15943 12352 11952 11495
Geomean 1034 892 898 864
Watdiv1000 Avg 8439 8003 5013 4869
WatDiv 1000 Geomean 33 28 25 23

many million results the difference can be significant. This can
be seen especially for query 2 from the LUBM benchmark (about
10M results) where execution time in multi threaded execution in-
creases from 151 milliseconds in silent mode to 610 milliseconds
in full result handling. The same holds for queries C3 (about 4.3M
results) and IL-3-5 to IL-3-10 from WatDiv which have more than
50M results. Query IL-3-8 has by far the largest number of results
(about 1.6 billion tuples with 9 columns). This is the reason that
TriAD runs out of memory for the specific query, since even in
silent mode, each worker keeps in memory all the results instead
of using an iterator to send the results to the master (or discard
the results in silent mode) as they are produced, as it is the ap-
proach used by PARJ. Execution times for the full result handling
mode of PARJ are included in the online material to reproduce
experiments.

5.2.1 Effect of Runtime Join Optimization. In order to
examine the effect of our adaptive join method, we have executed
the queries of both datasets using four different strategies as shown
in Table 5. For WatDiv benchmark we only report the average
and geometric mean of all execution times. In the first (Binary)
column we report the execution times when we always use binary
search. In the second column (AdBinary) we use our adaptive join
method in order to switch from binary to sequential search. In third
column (Index) we always use the ID-to-Position index, whereas
in the last column (AdIndex) we use the adaptive join method in
order to switch from ID-to-position index to sequential search.
One can observe that the impact of the adaptive join method is
more important when binary search is employed (comparison
of first and second column), whereas when the ID-to-Position
index is used (comparison between third and fourth column) its
contribution to better performance is smaller. This is in line with
the result of our calibration method, where when binary search is
used, the result threshold is about 200 positions, whereas when ID-
to-Position index is used the threshold is about 20 positions. Also,
it seems that the impact is more important for LUBM queries,
where in case of binary search it leads to a decrease of 23% in
average execution time. The reason for that is that the average
execution time for WatDiv queries is heavily affected by the IL-3
queries, where the impact of the adaptive method is not important,
as sequential search can rarely be used in these queries. This is
also the reason for the great reduction in average execution time
of WatDiv queries when the ID-to-Position index is used, as the
aforementioned queries are greatly profit from the index.
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Table 2: Results for LUBM 10240 (times in ms)

Single Thread Multi-Thread
PARJ RDFox RDF-3X PARJ-32 TriAD TriAD-SG 200K

LUBM1 15369 96677 1329510 800 4188 4467
LUBM2 2437 40368 21870 151 965 1101
LUBM3 5338 136554 23179 605 2004 15243
LUBM4 5 1 8 10 12 5
LUBM5 1 1 6 4 2 2
LUBM6 3 3 190 5 95 5
LUBM7 9213 31180 68769 473 13400 14125
LUBM8 9899 44144 6485 1336 2838 3906
LUBM9 58082 187192 208839 4014 42932 32982
LUBM10 14606 26690 51235 982 65925 41510
Avg 11495 56281 171009 838 13263 11334
Geomean 864 2536 5581 180 1071 881

Table 3: Results for WatDiv Basic Workload scale 1000 (times in ms)

Single Thread Multi-Thread
PARJ RDFox RDF-3X PARJ-32 TriAD TriAD-SG 200K

L1 5 5 40 10 3 5
L2 8 43 30 5 5 6
L3 2 244 13 4 2 3
L4 3 7 19 4 2 8
L5 9 57 40 6 3 46
Avg 5 71 28 6 3 14
Geomean 5 29 26 5 3 8
S1 49 1209 18 47 34 116
S2 3 284 27 3 4 17
S3 4 17 7 3 2 18
S4 4 153 10 5 5 29
S5 4 1* 14 4 4 20
S6 1 5 8 5 2 3
S7 1 695 7 5 2 3
Avg 9 338* 13 10 8 29
Geomean 4 61* 12 6 4 15
F1 5 24 15 6 5 19
F2 12 153 27 10 37 13
F3 3 59 73 9 29 74
F4 56 249 83 19 9 66
F5 3 10 108 7 40 58
Avg 16 99 61 10 24 46
Geomean 8 56 48 9 18 37
C1 21 50 140 12 39 598
C2 76 178 441 16 40 1574
C3 266 4810 127 45 43** 527**

Avg 121 1679 236 24 41** 900**

Geomean 75 350 199 21 41** 792**

* RDFox returns an empty result-set for query S5, whereas the correct answer is not
empty.

** TriAD returns only distinct answers for query C3, even though modifier DISTINCT
is not present in the SPARQL query. The number of results returned is only 8162
instead of 4335801.

5.2.2 Effect of ID-to-Position Index. We now proceed to
describe the evaluation of our ID-to-Position Index compared
to standard binary search using the LUBM 10240 dataset in the
single-thread setting. Table 6 shows the number of binary searches
and the number of sequential searches which were performed
using the decision of our adaptive join method, using a thresh-
old of about 200 computed with our calibration algorithm. The
fact that sequential searches heavily outnumber binary searches
provides a strong indication that ordering is present in the RDF
dataset. In order to compare our index with binary search, we

kept the threshold the same as computed in the case of binary
search, and executed the queries by performing our index based
lookup instead of binary search, measuring the exact number of
total execution cycles used in the index lookup or binary search
procedure each time, as well as the cache misses for each cache
level. If we exclude queries no 1 and 3-6, as they nearly perform
only sequential searches, we can see that our ID-to-Position index
results in more than 30% decrease in total execution cycles and
similar or larger decrease in the number of cache misses for all
levels of cache hierarchy.
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Table 4: Results for WatDiv Incremental and Mixed Linear Workloads scale 1000 (times in ms)

Single Thread Multi-Thread
PARJ RDFox RDF-3X PARJ-32 TriAD TriAD-SG 200K

IL-1 5 3 27617 1339 5 584 5082
IL-1 6 4 204898 1832 4 1482 11814
IL-1 7 8 669099 1272 7 1862 14950
IL-1 8 3 700199 1633 5 1615 21238
IL-1 9 26 728518 1396 11 630 23844
IL-1 10 29 734363 1923 9 618 25752
Avg 12 510782 1566 7 1132 17113
Geomean 8 335194 1546 6 1002 15068
IL-2 5 2 6574 1525 6 476 5340
IL-2 6 5 62149 2046 4 952 11156
IL-2 7 2 78211 1794 3 344 58749
IL-2 8 4 80453 1865 16 1148 62448
IL-2 9 9 86995 1998 6 1062 67045
IL-2 10 4 87872 1867 5 1093 70658
Avg 4 67042 1849 7 846 45899
Geomean 4 51948 1841 6 770 31807
IL-3 5 13259 187101 542948 1494 11195 17093
IL-3 6 58379 397964 357310 7070 13603 25492
IL-3 7 23208 342533 Timeout 1192 1809 23492
IL-3 8 71918 1214564 Timeout 4903 Out Of Memory Out Of Memory
IL-3 9 26437 966919 Timeout 2082 7182 39462
IL-3 10 41867 951513 175247 1882 8118 46593
Avg 39178 676766 3104
Geomean 33565 552681 2496
ML-1 5 2 11481 163 2 56 374
ML-1 6 2 2 83 2 33 1152
ML-1 7 1 1 728 7 2154 4646
ML-1 8 2 1 824 4 103 2018
ML-1 9 5 98058 994 4 198 11766
ML-1 10 4 14111 1482 3 930 9841
Avg 3 20609 712 4 579 4966
Geomean 2 178 478 3 206 2786
ML-2 5 3175 1136335 936 201 413 1849
ML-2 6 2 12182 166 5 92 1041
ML-2 7 121 27151 678 15 296 895
ML-2 8 69 818424 2863 19 1996 24500
ML-2 9 4335 919541 282 259 330 1587
ML-2 10 52 849283 1952 9 728 32449
Avg 1292 627153 1146 85 643 10387
Geomean 151 249327 741 30 419 3599

Table 6: Number of binary searches and sequential searches for LUBM10240 chosen by out adaptive join method

Query #Binary #Sequential
Binary Search ID-to-Position Index

Cycles L1 Misses L2 Misses L3 Misses Cycles L1 Misses L2 Misses L3 Misses
LUBM1 1 107525748 2236 130 49 9 3135 102 43 8
LUBM2 204795 10854018 502M 26.7M 10.8M 3.5M 355M 18.3M 4.4M 543K
LUBM3 1 33169741 2401 140 50 8 4175 139 42 3
LUBM4 4 68 38745 666 368 235 16862 469 182 34
LUBM5 1 10 2423 94 29 0 2395 162 83 5
LUBM6 1 570 2033 106 26 0 2003 130 48 0
LUBM7 2257238 28768005 2.95B 254M 80.1M 2.30M 2.12B 211M 58.9M 1.08M
LUBM8 8645 84755793 17.4M 1.20M 682K 84.1K 11.2M 841K 351K 21.7K
LUBM9 409590 351307982 1.06B 53.6M 19.7M 2.92M 655.7M 39.1M 11.18M 639.7K
LUBM10 558279 116015419 1.22B 66.7M 24.2M 2.98M 798.2M 50.76M 12.7M 634.3K

5.2.3 Scalability. In this section we experimentally show the
scalability of PARJ with regard to a varying number of threads
and varying dataset size. As far as the first issue is concerned, we
can already observe from Section 5.2 and specifically from Tables
2, 3 and 4, that running PARJ in multi threaded mode with 32

threads performs on average about 15 times better than the single
thread version, but for the simple queries, when execution time is
less than few tens milliseconds, multi-threaded execution does not
seem to provide important gains. There are two reasons for that.
The first one is the overhead of spawning multiple threads and
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Figure 2: LUBM 10240 execution times in ms for different
number of threads

the second is that query parsing and optimization take up a large
fragment of the total execution time, which cannot be avoided in
multi-threaded execution. The best example of this is query S1
from WatDiv benchmark which is a star join query with 9 triple
patterns and more than 40 milliseconds of the reported time of 49
milliseconds is spent on producing the join order in the optimizer.

In order to better examine the behavior of PARJ for a varying
number of threads we have executed the queries from LUBM
benchmark for scale 10240 with 1, 2, 4, 8 and 16 threads as shown
in Figure 2. We exclude from this presentation simple and very
selective queries L4, L5 and L6 that do not appear to improve from
parallelism, since already in the single-threaded execution their
execution time is only a few milliseconds, much of which is due
to query parsing and optimization. On the other hand, complex
queries L1, L3, and L7-L10, and also the simple but not selective
query L2 show large and nearly linear improvement. The reason
that we do not show results beyond 16 threads in Figure 2 has to
do with the capabilities of our testing machine, which has exactly
16 processing cores. As stated before, best results were obtained
with 32 threads as hyper-threading was enabled, but improvement
from 16 to 32 threads cannot be evaluated and interpreted reliably
for the specific scalability experiment, as here we aim to examine
the behavior of PARJ for a varying number of threads given that
the underlying hardware can provide full processing resources to
each thread.

We have also examined the scalability of our system for a
varying dataset size. Findings in Figure 3 show a similar situation
for a varying number of universities in the execution with 32
threads, confirming the excellent scalability of PARJ.

5.2.4 Comparison With Distributed RDF Stores. A com-
parison of a parallel centralized system with distributed systems
is not straightforward, as many factors come into play in order
to have a result that will be as fair and complete as possible. In
this section we attempt some first comparison of PARJ with exist-
ing RDF stores based on a recently published survey [2] and we
plan to further investigate this issue experimentally in the future.
The aforementioned survey presents an experimental comparison
of 12 distributed systems designed for shared-nothing clusters,
chosen as the most competitive and innovative from a variety of
approaches and characteristics. The experiments were performed
on a cluster with 12 servers, each with 148GB of memory and
24 cores, using, among others, the LUBM 10240 (only queries
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Figure 3: LUBM 32 threads execution times in ms for differ-
ent dataset sizes

LUBM1-LUBM7) and WatDiv 1000 (only basic workload) bench-
marks. For both these benchmarks the single server results of
PARJ (in the full result handling mode) are comparable with the
faster of the reported systems which is the non-adaptive version
of AdPart (the adaptive version is not included in the results of
[2]). Specifically, the average and geometric mean of execution
times for first seven queries of LUBM 10240 are 918 and 75 mil-
liseconds respectively (compared with 419 and 103 for PARJ in
full result handling mode) whereas the geometric means for the
4 query categories of the basic workload of WatDiv 1000 are 9,
7, 160 and 111 milliseconds (compared with 9, 10, 12 and 48 for
PARJ in full result handling mode).

6 CONCLUSIONS AND FUTURE WORK
We have presented a centralized in-memory system for paral-
lelizing join processing on RDF graphs. We have shown that our
design has excellent scaling capabilities and performance. For fu-
ture work, we first plan to perform a more thorough experimental
comparison with distributed RDF stores. As we mentioned, it is
straightforward to extend PARJ to a “cluster” version through full
replication, such that during query execution each worker start
processing from different initial shard. We plan to implement and
compare this version with the current state of the art distributed
systems. We also want to further evaluate PARJ on a high-end
server with larger available memory, in order to load and process
larger RDF graphs. Based on the scaling capabilities presented
during the experiments, we anticipate that our approach will be
able to efficiently handle such datasets.

Furthermore, we plan to investigate the efficient incorporation
of query answering with respect to class and property hierarchies
into our join approach. RDF Schema (RDFS) as well as more
expressive ontological languages like OWL-2 QL define ontologi-
cal constraints on top of RDF graphs, such that SPARQL query
answering must be extended by taking into consideration the corre-
sponding semantics in order to provide the user with the complete
answers. Deep and wide class and property hierarchies pose a
serious performance issue for all systems that perform query an-
swering with respect to such entailment regimes. Materializing
all implied assertions, as it is the case in RDFS reasoning with
forward chaining, with respect to these hierarchies may lead to
data size many times larger than the original, something that may
not be viable especially for an in-memory system. On the other
hand, using RDFS reasoning with backward chaining may lead to
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complicated queries. We plan to extend our join method to han-
dle such queries, by “unioning” tables during the pipelined join
execution in order to provide complete answering with respect to
hierarchies, without the need to materialize the implications.
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ABSTRACT
Given query graph Q with pivot node v , Pivoted Subgraph Iso-

morphism (PSI ) finds all distinct nodes in an input graph G that

correspond to v in all matches of Q in G. PSI is a core opera-

tion in many applications such as frequent subgraph mining,

protein functionality prediction and in-network node similar-

ity. Existing applications implement PSI as an instance of the

general subgraph isomorphism algorithm, which is expensive

and under-optimized. As a result, these applications perform

poorly and do not scale to large graphs. In this paper, we propose

SmartPSI; a system to efficiently evaluate PSI queries. We develop

two algorithms, called optimistic and pessimistic, each tailored

for different instances of the problem. Based on machine learn-

ing, SmartPSI builds on-the-fly a classifier to decide which of the

two algorithms is appropriate for evaluating each graph node.

SmartPSI also implements a machine learning-based optimizer to

generate low-cost execution plans. Our experimental evaluation

with large-scale real graphs shows that SmartPSI outperforms

existing approaches by up to two orders of magnitude and is

able to process significantly larger graphs. Moreover, SmartPSI is

shown to achieve up to 6 times performance improvement when

it replaces standard subgraph isomorphism in the state-of-the-art

distributed frequent subgraph mining system.

1 INTRODUCTION
Graphs are widely used to model information in a variety of

real world applications such as social networks [31, 32], chemical

compounds [20] and protein-protein interactions [25]. Finding all

valid bindings of a particular query node is an important step in

various application domains such as frequent subgraphmining [4,

37], protein functionality prediction [12], neighborhood pattern

mining [15], query recommendation [16] and in-network node

similarity [39]. This step is called Pivoted Subgraph Isomorphism

(PSI ); for query Q with pivot node v , PSI finds the set of distinct
matches of v in an input graph G. For example, PSI query S
(v1,v2,v3) in Figure 1 has two matches of the pivot node v1 in
G: u1 and u6.

Existing applications [4, 13, 15, 16, 25] depend on subgraph

isomorphism [9, 17, 30] to evaluate PSI-like queries. They use

subgraph isomorphism to find all matches of the query and then

project distinct nodes that correspond to the pivot node. In the

example of Figure 1, subgraph isomorphism generates 5 inter-

mediate results: (u1,u2,u3), (u1,u2,u4), (u1,u5,u4), (u1,u5,u3)
and (u6,u5,u3)), in order to project u1 and u6 as results for the
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(a) PSI query S (b) Input graph G

Figure 1: (a) A PSI query with v1 as pivot, (b) input graph.
The bindings of v1 are u1 and u6

PSI query. We show in Table 1 the number of PSI results com-

pared to the number of intermediate isomorphic subgraphs for

various real graphs and query sizes (see Section 5 for details).

Observe that the number of isomorphic subgraphs grows expo-

nentially with the query size even for small and sparse datasets

like Yeast, whereas the actual PSI results are significantly fewer.

Consequently, the performance of applications that depend on

subgraph isomorphism degrades rapidly with complex queries

and larger graphs.

A possible approach to reduce the exponential number of

matches in subgraph ismorphism-based solutions is to stop the

search once a match of the pivot node is found for each candidate

graph node. We demonstrate the effect of this optimization by

proposing TurboIso
+
(Section 5.2) as a modified version of Tur-

boIso [17] which is a highly optimized subgraph isomorphism

solution. We show in Table 2 that TurboIso
+
is significantly faster

than TurboIso for all query sizes. However, it remains compu-

tationally expensive since it cannot avoid the overhead of the

sophisticated data structures used to compile all occurrences of

the given query. As such, using subgraph isomorphism to solve

PSI queries is unnecessarily expensive. Moreover, to the best

of our knowledge, there is no existing research that has been

devoted to efficiently answer PSI queries.

In this paper, we formalize the pivoted subgraph isomorphism

problem and introduce the optimistic and pessimistic approaches
for evaluating PSI queries efficiently. The optimistic approach is

highly optimized to confirm that a graph node matches the pivot

node in the query. It uses a greedy depth-first guided search to

minimize the number of graph explorations required to prove that

a particular node is indeed a matching node. If no match exists,

it would have unnecessarily wasted resources to discover non-

matching nodes. The pessimistic approach, on the other hand,

is highly optimized to verify that a graph node does not match

the given query. It is based on a random, non-guided, search that

prunes adjacent nodes early depending on their neighbourhood.
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Table 1: Number of subgraph query matches using PSI vs. standard subgraph isomorphism

Dataset Query Query Size
4 5 6 7 8 9 10

Yeast PSI 7 × 104 6 × 104 5 × 104 5 × 104 4 × 104 3 × 104 3 × 104

Subgraph Iso. 1.3 × 107 1.2 × 108 1.1 × 109 7.4 × 109 5.8 × 1010 6.0 × 1011 2.8 × 1012

Cora PSI 2.1 × 105 1.9 × 105 1.4 × 105 1.2 × 105 1.1 × 105 0.9 × 105 0.8 × 105

Subgraph Iso. 1.6 × 108 1.2 × 1010 1.1 × 1012 8.4 × 1013 1.5 × 1015 8.9 × 1016 NA

Human PSI 1.4 × 105 1.3 × 105 1.2 × 105 1.1 × 105 1.1 × 105 1.0 × 105 1.1 × 105

Subgraph Iso. 2.6 × 1010 7.6 × 1012 NA NA NA NA NA

Early pruning helps the pessimistic algorithm to avoid unneces-

sary graph traversals. It detects non-matching nodes significantly

faster than the optimistic approach, however, it has a higher cost

when used for matching nodes.

To maximize the gain from these two methods, the optimistic

method has to be used to validate nodes that match the query

while the pessimistic method should be used to confirm other non-

matching nodes. Unfortunately, we do not know which graph

node matches the given PSI query prior to query evaluation,

while it is counter-intuitive to use the proposed methods ran-

domly on the input graph. To solve this problem, we propose

SmartPSI, a solution that relies on machine learning to predict

which method is best to evaluate each graph node. In SmartPSI,

a classification model is trained to predict the type of each graph

node (i.e., whether a node does or does not match the given

query). Based on the prediction result, the appropriate method is

picked accordingly; the optimistic method is used for matching

graph nodes (predicted valid nodes) and the pessimistic is used

for non-matching nodes (predicted invalid nodes). Notice that

SmartPSI is an exact solution since the correctness of the result

is guaranteed even when using the opposite evaluation, this is

due to the fact that both algorithms traverse the whole search

space in the worst-case scenario. SmartPSI is also coupled with

a novel query optimizer, that recommends an efficient search

order plan for evaluating each graph node. The last row of table 2

gives a hint on how the combined ideas implemented in SmartPSI,

which are solely designed for PSI queries, perform compared to

the more general solutions of subgraph isomorphism.

In summary, our contributions are:

• We introduce two methods for evaluating PSI queries,

each method is optimized for a particular type of the input

graph nodes.

• We propose a solution based on machine learning that,

for each graph node, predicts the node type, picks the

corresponding optimized evaluation method, and selects

an efficient plan for query evaluation.

• We also propose a preemptive query processor that em-

ploys a detection and recovery technique at run-time to

reduce the impact of incorrect predictions.

• We experimentally compare the performance of SmartPSI

against the state-of-the-art subgraph isomorphism tech-

niques. We show that SmartPSI is orders of magnitude

faster and it scales to much larger queries and input graphs.

Furthermore, we empirically show that our optimizations

significantly improve the performance of a cutting edge

frequent subgraph mining system.

The rest of the paper is organized as follows: Section 2 formal-

izes the problem and presents various PSI applications. Section 3

introduces two novel PSI evaluation methods. Section 4 presents

Table 2: Performance of PSI solutions on Human dataset
(details in Section 5). SmartPSI is our proposed approach.

Query size 4 5 6 7

TurboIso 5.4 hrs >24 hrs >24 hrs >24 hrs

TurboIso
+

14 min 30 min 45 min 2.4 hrs

SmartPSI 27 sec 47 sec 2 min 4.3 min

a two-threaded baseline solution and describes machine learning

based optimizations that overcome the limitations of the baseline.

Section 5 presents the experimental evaluation. Section 6 surveys

the related work while Section 7 concludes.

2 PIVOTED SUBGRAPH ISOMORPHISM
2.1 Definition
A labeled graph G = (VG ,EG ,LG ) consists of a set of nodes

VG , a set of edges EG and a labeling function LG that assigns

labels to nodes and edges. A graph S = (VS ,ES ,LS ) is a subgraph
of a graph G iff VS ⊆ VG , ES ⊆ EG and LS (v) = LG (v) for
all v ∈ VS ∪ ES . Subgraph isomorphism is the task of finding

all occurrences of S inside G. It is a computationally expensive

problem, known to be NP-Complete [14]; it needs to validate a

huge number of intermediate and final results. PSI, which is also

NP-Complete [15], relaxes subgraph isomorphism by focusing on

finding all node matches of a particular query node (vp ), which
is called a pivot node, inside the input graph G.

Definition 2.1. A pivoted graph is a tuple ð={G, vp }, where G
is a labeled graph and vp ∈ VG is called the pivot node of the

pivoted graph ð.

The pivot node (vp ) is the node of interest, and it is usually

set by the user who creates the query.

Definition 2.2. A pivoted subgraph isomorphism of ðS=(S , vp )
to ðG={G ,up } where S = (VS ,ES ,LS ),G = (VG ,EG ,LG ),vp ∈ VS
and up ∈ VG , is an injective functionM : VS → VG satisfying (i)
LS (v) = LG (M(v)) for all nodes v ∈ VS , (ii) (M(u),M(v)) ∈ EG
and LS (u,v) = LG (M(u),M(v)) for all edges (u,v) ∈ ES , and (iii)
M(vp ) = up .

Rather than finding all matches in subgraph isomorphism, PSI

finds at most one occurrence per graph node up , which signifi-

cantly reduces computation and memory overheads. The input

graph node up is called a valid node for query ðS if it matches

vp in at least one occurrence of S in G, otherwise it is called

an invalid node. PSI has an important role in several applica-

tions [4, 13, 15, 16, 25]. In the following discussion, we highlight

some of these applications.
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2.2 PSI Applications
Frequent SubgraphMining (FSM). FSM is an important opera-

tion for graph analytics and knowledge discovery [4, 5, 13]. Given

an input graph and a support threshold, FSM evaluates the fre-

quencies of a large number of candidate subgraphs to determine

which one is frequent. Typically, this evaluation relies on finding

the distinct input graph nodes that match their corresponding

candidate subgraph nodes [11]. Current solutions [4, 13] employ

subgraph isomorphism to conduct this step. Instead of using

the expensive subgraph isomorphism algorithms, PSI can be em-

ployed to efficiently evaluate the frequencies. Using PSI instead

of subgraph isomorphism results in a significant improvement

in the overall efficiency of FSM techniques (see Section 5.5).

Functionprediction inPPI networks. In the domain of protein-

protein-interaction (PPI) networks, it is common to discover new

proteins with unknown functions [12]. Knowledge about their

functionality is essential to analyze these networks and discover

valuable insights. In order to predict these functions, a set of sig-

nificant patterns are extracted from the PPI network. Each protein

with unknown function is thenmatched against the extracted pat-

terns. A label that is matched to the node with unknown function

represents a predicted function for this node. Each significant

pattern is represented by a different pivoted subgraph query, and

the matching task resembles a PSI query evaluation.

Discovering Pattern Queries by Sample Answers. Knowl-
edge bases are effective in answering questions. Nevertheless, it

is challenging for a user to issue a query that follows the schema

of the knowledge base. Han et al. [16] proposed a query discov-

ery approach to assist users by recommending candidate queries.

This approach is based on having a sample answer set (i.e., a set

of nodes which the user thinks they match his query). The first

step finds a set of queries that match the neighborhood around

the given nodes. These queries represent recommended candi-

date queries. This step is conducted by a series of PSI operations

which tries to filter out all queries that do not match any of the

given answer nodes. Queries that pass the first step are then

ranked and the top ones are recommended for the user.

Neighborhood Pattern Mining. Mining frequent neighbor-

hood patterns [15] finds the set of frequent patterns that each

originates from graph nodes with a particular label. Similar to

FSM, candidate patterns are generated and evaluated to deter-

mine whether they are frequent. Though, the evaluation step is

different. Given a specific label, each candidate pattern is eval-

uated by PSI to know the number of graph nodes that satisfy

this pattern. Based on this process, interesting knowledge can

be obtained regarding the common connectivity patterns found

around each node label.

In-network Node Similarity. In many applications, it is very

important to measure the similarity among graph nodes. These

applications include role discovery [28], objects similarity [21]

and node clustering [19]. Two nodes are similar if they have

similar neighborhoods. There are several techniques for calculat-

ing nodes similarity. A recent approach [39] proposed a unified

framework for measuring the similarity between two nodes. One

of the proposed metrics is the maximum common pivoted sub-

graph that exists around the two nodes. This metric is extended

into a more general similarity metric, which is used to compare

the common pivoted subgraphs occurring in the neighborhoods

of any two nodes. Such approach is a direct application of PSI.

3 THE OPTIMIST AND THE PESSIMIST
In this section, we propose an optimist and a pessimist evaluation

mechanisms to improve PSI evaluation. The optimistic method is

optimized to confirm that a candidate node is valid, i.e., matches

the query pivot node. On the other hand, the pessimistic method

is effective in proving that a candidate node is invalid. Since both

methods require access to a neighborhood signature, we will

first describe what a neighborhood signature is and how it is

calculated (Sections 3.1 and 3.2). Then, we introduce each PSI

method in Sections 3.3 and 3.4.

3.1 Neighborhood Signature
The neighborhood signature of a graph node represents how this

node interacts with its neighbors. A good neighborhood signature

should be concise and effective in pruning/matching of a graph

node. The literature introduces several signature definitions [7,

23, 42, 43]. We propose to use a label propagation technique

inspired by the work of proximity pattern mining [23]. This

technique assigns a list of weights to each graph node. Each

weight corresponds to a label and reflects the proximity of that

label to the graph node.

Definition 3.1. Let u be a node in the graph G. The neighbor-
hood signature of u within a distance D is the set of pairs:

NSuD = {(l1,wD
1
), (l2,w

D
2
)...(ln ,w

D
n )}

where each li is a node label and each weightwD
i ∈ R.

Label weights are propagated from nearby nodes such that for

each label li , its weightw
D
i is calculated as:

wD
i =

D∑
d=0

2
−d ×Cu (li ,d)

where D is the maximum propagation depth, and Cu (li ,d) is the
number of nodes with label li having a shortest distance d from

node u. Notice that the signature NSuD is small since its size

depends on the number of distinct labels that appear in the graph.

It is also effective as the used weights reflect how neighbors

are structured around the node. In this work, we use the same

maximum propagation depth for query graphs and the input

graph. Thus, we will omit the use of the superscript D where it

is not needed.

Example: Consider the data graph G in Figure 1, G contains

three different labels; {A,B,C}. Assuming that the maximum

propagation depth is set to 2, the signature of node u1 is calcu-
lated as follows: (i) first, the label of u1, which is ‘A’, is given a

weight = 1. Consequently, the list of weights from distance 0

is: {(A, 1), (B, 0), (C, 0)}. (ii) For the first level of neighbors, there
exist four nodes, two nodes are labeled ‘B’ and the other two are

labeled ‘C’. Therefore, the weight of ‘B’ in this case is 2 × 0.5 and

the weight of ‘C’ = 2 × 0.5. Consequently, the list of propagated

weights from this level is {(A, 0), (B, 1), (C, 1)}. (iii) There is only
one node that is two hops away from u1; i.e. u6, which has label

‘A’, and thus the weight of ‘A’ = 1 × 0.25 = 0.25. Consequently,

the propagated weights from this level = {(A, 0.25), (B, 0), (C, 0)}.
(iv) Finally, NS2u1 is the sum of weights from all levels, hence,

NS2u1 = {(A, 1.25), (B, 1), (C, 1)}.
Signature Computation. Traditional approaches [23] follow
an exploration-based strategy to compute node signatures. It

executes a breadth-first search algorithm iteratively till the max-

imum propagation depth is met. This approach is very simple
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to implement but has an exponential computational complexity

(O(|N |.|L|.dD )), where |N| is the number of nodes in the graph,

|L| is the number of distinct node labels, d is the average node

degree and D is the maximum traversal depth.

Optimization. To improve the performance of computing neigh-

bourhood signatures, we propose a significantly faster approach

based on matrix multiplication to compute all neighborhood

signatures of the input graph. In comparison to the exploration-

based technique [23], the computational complexity of our pro-

posal is O(|N |.|L|.d .D). The first step is to create a matrix NS0 :
|N | × |L|. Each row NS0(n) represents the neighborhood signa-

ture of a node n and is initialized as: NS0(n) = [b1,b2, ...bL]where
bl = 1 if l ∈ L(n) and 0 otherwise. Then for the subsequent D
iterations, the corresponding row for each node n is updated as

follows:

NSi (n) = NSi−1(n) +
1

2

Adj(n) × NSi−1

where Adj(n) is the adjacency matrix row that corresponds to

node n. Notice that the label weights obtained by the iterative

matrix multiplications may differ from the ones generated by the

exploration based approach. This is because the iterative matrix

approach considers neighbors labels multiple times through dif-

ferent paths, compared to one time through the shortest path in

the previous approach. However, these weights are still based

on the proximity of the labels that exist around the node under

consideration.

Example: Consider the PSI query in Figure 2. Assuming a max-

imum propagation depth of 2, we first initialize NS0 and Adj to
be:

NS0 =

©­­­­­«

A B C D

v0 1 0 0 0

v1 0 1 0 0

v2 0 1 0 0

v3 0 0 1 0

v4 0 0 0 1

ª®®®®®¬

Adj =

©­­­­­«

v0 v1 v2 v3 v4

v0 0 1 0 0 0

v1 1 0 1 1 0

v2 0 1 0 1 0

v3 0 1 1 0 1

v4 0 0 0 1 0

ª®®®®®¬
Then, we apply two iterations of the matrix multiplication to

compute the results for NS1 and NS2:

NS1 =

©­­­­­«

A B C D

v0 1 1/2 0 0

v1 1/2 3/2 1/2 0

v2 0 3/2 1/2 0

v3 0 1 1 1/2

v4 0 0 1/2 1

ª®®®®®¬

NS2 =

©­­­­­«

A B C D

v0 5/4 5/4 1/4 0

v1 1 3 5/4 1/4
v2 1/4 11/4 5/4 1/4

v3 1/4 13/4 2 1

v4 0 1/2 1 5/4

ª®®®®®¬

Notice that row v1 in NS2 is the neighborhood signature of

the query graph pivot node in Figure 2(a).

PSI query evaluation benefits from neighborhood signatures in

two ways. First, graph traversals are guided towards the relevant

graph nodes in order to efficiently reach amatch for a given query.

Second, significant pruning is achieved during the evaluation of

graph nodes that do not satisfy the query.

3.2 Neighborhood Signature Satisfaction
The neighborhood signatures of two nodes can be utilized to

quickly judge if they have the same neighbourhood and hence

could be a match. A signature NSi is said to satisfy another sig-

nature NSj if for every (lj ,w j ) ∈ NSj , there exists (li ,wi ) ∈ NSi
where li = lj and wi ≥ w j . In Figure 1(b), u1 has a neighbor-

hood signature NS2u1 = {(A, 1.25), (B, 1), (C, 1)}. For query S in

Figure 1(a), NSv1
= {(A, 1), (B, 0.5), (C, 0.5)}. NSu1 satisfies NSv1

since the weights of all labels in NSu1 are larger than their corre-

sponding ones in NSv1
.

Proposition 3.2. Given a graphG , a graph nodeu and a pivoted
query ð={S , vp }, where S is a subgraph and vp is the pivot node,
if NSu does not satisfy NSv , then u is an invalid node given the
pivoted query ð.

Proof: We will use a proof by contradiction approach. Let NSu
do not satisfy NSv . Let’s assume a graph node u be valid for the

pivot node v of subgraph S . Since NSu do not satisfy NSv . This
implies that there exists at least one pair (li ,wu ) ∈ NSu and a

pair (lj ,wv ) ∈ NSv , where li = lj andwu < wv . Forwu to be less

thanwv , the contribution to the weightwu from neighbor nodes

with label li should be less than of neighbors of node v with

the same label. The weight contribution relies on the number

of neighbors labeled li and their distances. Accordingly, either

the number of neighbor nodes of u with label li is less than that

for neighbors of node v with the same label, or their distances

are larger than their corresponding ones in the query. The last

statement contradicts with the assumption that v is a valid node

of u since this requires that each neighbor of v to have a distinct

corresponding match with a neighbor of u. □

3.3 The Optimist
The optimistic algorithm uses a greedy depth-first guided search

to quickly find a match for the given query. Its name is derived

from the fact that it assumes that input candidate nodes are valid

and optimizes the evaluation accordingly. The algorithm starts

by generating a satisfiability score for each neighbor of the can-

didate node and then it sorts them based on the calculated scores

descendingly. The satisfiability score measures the likelihood of

a graph node being a match for its corresponding query node, it

is calculated as:

SS(u,v) = avд(l,wl )∈NSv (NSu (l)/wl )

For example, the satisfiability score ofu1 inG andv1 in S from

Figure 1, where NSu1 = {(A, 1.25), (B, 1), (C, 1)} and NSv1
=

{(A, 1), (B, 0.5), (C, 0.5)}, is calculated as follows:

(1.25/1) + (1/0.5) + (1/0.5)

3

= 1.75

We show more examples of satisfiability scores in Figure 2.

Moreover, Figure 2 shows how to use the computed neighborhood

signatures ofv1,u1,u2 andu3 (based on Section 3.1) to determine

the satisfiability scores of node pairs (u1, v1), (u2, v1) and (u3,
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Figure 2: (a) PSI query S , showing the neighbors signature
for v1 (b) Input graph G with satisfiability scores with re-
gard to query node v1

v1). Note that a higher neighbourhood signature of label l for
vi means that vi is connected with many nodes having label

l which increases the chance for finding a match for u. As a
result, the larger the satisfiability score of a graph node, the

higher the chances that it satisfies a corresponding node in the

PSI query. Once the satisfiability scores are calculated for all

neighbors, the optimistic algorithm sorts them according to their

scores and traverses those with higher scores first. The idea is to

prioritize nodes with high likelihood to reach a result over other

nodes with less chances, and thus the algorithm can finish faster.

This step is repeated recursively by calculating the satisfiability

scores of the new neighboring nodes and change paths until a

match is found or all possible graph traversals are exhausted. The

optimistic algorithm is useful only when used with valid nodes;

i.e. nodes that match the pivot node. Otherwise, it suffers from

performance degradation caused by the overhead of calculating

the satisfiability scores for candidate nodes and sorting them,

which is an unnecessary overhead for the case of invalid nodes.

Figure 3(a) shows an example of how the optimistic algorithm

employs the satisfiability scores obtained in Figure 2(b) to reach

a solution quickly. Consider evaluating the neighbors of u0 for
matching with query nodev1, the optimistic algorithm is going to

traverse the graph starting fromu3, as shown in Figure 3(a), since

it has the highest score (SS(u3) = 1.54). As a result, the optimistic

algorithm is able to find that u0 is valid using the least number

of traversals by avoiding the traversal of u1 and u2. A random
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Figure 3: The behaviour of the optimistic algorithm start-
ing from u0 with (a) sorting and (b) without sorting

Algorithm 1: PSI Evaluation
Input: G the input graph, S query subgraph,M Mapping, T

Method type; Optimistic or Pessimistic

Output: R true if a result is found, false otherwise

1 if M is full mapping then Return true

2 vnext ←GetNextQueryNode(S)

3 C ←GetNextCandidateNodes(G, S , vnext )

4 if Super Optimistic then C ←GetLimitedCandidates(C ,
Max)

5 if T is Optimistic then C ←SortBySatisfiabilityScore(C)

6 foreach c ∈ C do
7 if T is Pessimistic And ¬Satisfy(c , vnext ) then Continue

8 Mnew ← M + (vnext , c)

9 if ValidMapping(M) then
10 valid ←PSI(G, S ,Mnew , T )

11 if valid is true then Return true

12 Return false

traversal would have exhausted up to 3 different traversals from

u0, as shown in Figure 3(b), since u1 and u2 do not lead to an

occurrence.

Algorithm 1 shows the steps required for evaluating PSI

queries. To enable the optimistic algorithm, the input flagT is set

to optimistic. Note that this algorithm is recursive where it stops

whenever a result is found (Line 1). The crux of the optimistic

method is the sorting of graph nodes based on their satisfiability

scores (Line 5). The sorting function introduces extra overhead,

which might be unacceptable when evaluating nodes with high

degrees. To avoid such problem and benefit from situations where

a match can be quickly found, we propose a super optimistic step,
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where only a small portion of the neighbor nodes are checked.

The difference between the "super" optimistic and the original

optimistic method is in Line 4. For the super optimistic version,

the number of candidates is limited by a maximum value (we

use 10 in our experiments). Therefore, the overhead of sorting is

significantly minimized and less intermediate graph nodes are

visited. For each graph node, the optimistic approach proceeds

with the super optimistic version. If a result is found, it returns

that result without further processing. Otherwise, the normal

optimistic method is used.

3.4 The Pessimist
In this method, we exploit aggressive pruning to quickly reach a

decision. The pessimistic algorithm evaluates the label, degree

and the neighborhood signature of the candidate nodes against

the corresponding query node. Then, it prunes non-matching

candidate nodes without carrying out further graph traversals.

In comparison to a typical subgraph isomorphism evaluation,

this early pruning reduces the number of intermediate results

since it does not go deeper in the search plan for pruned nodes.

This pruning results in a significant improvement, especially for

graphs with high degree nodes. Although pruning has a notable

computation price due to its excessive calculations per evaluated

node, it is worth exploiting it for invalid nodes to reduce the cost

of unproductive traversals. On the contrary, using this pruning

for valid nodes introduces unnecessary overhead to reach the

conclusion that a node is valid.

The utilization of the neighborhood signature in pruning is im-

portant since it captures wider properties of the area surrounding

each graph node. Proposition 3.2 allows pruning of a node when

its neighborhood signature cannot satisfy the neighborhood sig-

nature of the query node. Based on this proposition, a significant

number of graph nodes are pruned but with a small number of

false positive nodes (i.e., nodes that satisfy the corresponding

neighborhood signature but are non-candidates because they do

not match the query graph). Algorithm 1 follows the pessimistic

approach by setting the flag T to Pessimistic. It is similar to the

optimistic method except Line 7 which applies pruning on nodes

using Proposition 3.2 and the neighborhood signature.

We show in Figure 4 the difference between the pessimistic and

optimistic algorithms when evaluating an invalid node, i.e., u13,
againstv0 in Figure 2(a). In this example, the candidate mappings

of query node v1 are u1 and u2. Notice that both nodes satisfy

label and direct neighbors requirements; both have label "B" and

are connected to nodes labeled "B" and "C". When looking at

the neighborhood signatures of both nodes, we discover that u1
satisfies the neighborhood signature of v1, i.e., its features have
weights higher than or equal to those of the features of v1. On
the other hand, the neighborhood signature ofu2 does not satisfy
that ofv1 because weights corresponding to labels "C" and "D" are
both less than those for v1. As a result, the pessimistic algorithm

prunes u2 early in the evaluation and traverse u1 for further

evaluation as shown in Figure 4(a). The optimistic algorithm,

if employed, would explore both paths, u1 and u2, as shown in

Figure 4(b).

4 THE REALIST: SMARTPSI
4.1 Two-threaded PSI Baseline
In order to benefit from the optimistic and pessimistic meth-

ods, we need to know the type of each graph node; i.e., valid
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Figure 4: The behaviour of (a) the pessimistic vs. (b) the
optimistic algorithm starting from u13

or invalid, and pick the appropriate method accordingly. How-

ever, such knowledge is not available beforehand. Therefore, we

propose a simple baseline, based on threading, that leverages

the two algorithms for PSI evaluation. Figure 5 shows how this

baseline works. For each graph node, two threads are executed

concurrently. One thread runs the optimistic method while the

other runs the pessimistic method. The thread that finishes its

evaluation first stops the other thread and returns the result. This

approach guarantees that each node is evaluated in almost the

least wall-clock time of both methods (optimistic and pessimistic).

However, it suffers from two issues: (i) under-utilization, as two
threads are doing the job of a single task, and (ii) initiating and
stopping millions of threads to evaluate the candidate graph

nodes leads to a huge unnecessary cumulative overhead.

4.2 SmartPSI
This section discusses SmartPSI; our proposed PSI solution that

employs machine learning techniques to avoid the limitations of

the above-mentioned two-threaded baseline. We show in Figure 6

the architecture of SmartPSI which integrates the utilization of

both PSI methods with two independent classification models.

The first model (Model α ) is a node type classifier that identifies
whether a graph node is valid or invalid. Compared to the two-

threaded approach, this model allows SmartPSI to benefit from

the optimized PSI methods, i.e., the optimistic and the pessimistic,

without sacrificing extra resources. The second classification

model (Model β) is trained to predict an efficient query execution

plan for each candidate node.

SmartPSI starts by loading the entire input graph in-memory,

then it computes the neighborhood signatures for each graph

node. When receiving a query, it extracts the candidate nodes

from the input graph. A small percentage of the candidate nodes

(around 10% up to a maximum value) is randomly selected to train
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both models (α and β) using the Random Forest classification

algorithm [10]. Our empirical evaluation shows that using this

simple classifier is effective since it provides both a lightweight

training time as well as a decent prediction accuracy (see Sec-

tion 5.4). However, utilizing other machine learning classifiers;

e.g. Neural Networks or Support Vector Machines, is orthogonal

to our work. The remaining candidate nodes are passed to the

trained models to predict their types and evaluation plans based

on their neighborhood signatures. SmartPSI uses these predic-

tions to evaluate each node against the query and the result of

this evaluation is cached for future use. In the rest of this section,

we describe in more details each one of these steps.

4.2.1 Predicting the Node Type (Model α ). Correctly predict-

ing the candidate node type (as valid or invalid) helps SmartPSI

to decide the node’s most efficient graph matching method (opti-

mistic or pessimistic). Valid nodes are best evaluated using the

optimistic algorithm while the pessimistic algorithm is much bet-

ter at evaluating invalid nodes. To select the best method for each

graph node, we utilize a binary classification model to predict

the node’s type (class) based on its neighborhood signature, and

accordingly decide which method to use for evaluation.

Training: The neighborhood signature of each graph node is

used to build the feature vectors for our classifier. Each label in

the neighborhood signature represents a feature and the value

associated with this label in the signature is considered as the

feature’s weight. Each training node is evaluated using the pes-

simistic method and is labeled based on its confirmed type. The

pessimistic method is used during model training since, on av-

erage, it is more stable and performs better than the optimistic

method.

Prediction: For the remaining graph nodes, the trained model

is used to predict the node type, either valid or invalid. Nodes

predicted as valid are passed to the optimistic method while

invalid nodes are given to the pessimistic method.

4.2.2 Predicting an Optimal Plan (Model β). Selecting the or-

der in which query nodes are evaluated is important for efficient

evaluation. A bad order results in an excessive number of inter-

mediate results and consequently poor performance. Existing

techniques [17, 18, 30] employ heuristic approaches to priori-

tize the evaluation of query nodes that have higher selectivity.

However, these approaches may not consistently provide good

performance since their proposed plans are not adapted to the

local features of each graph node.We describe next how SmartPSI

trains a classifier to predict an efficient locality-aware query plan

for each graph node based on its neighborhood signature.

Training: Model β is a multi-class classifier; its training phase
uses the same set of graph nodes used for model α . For each query,
a set of plans are generated and evaluated for each training node

ut . The plan that results in the least time is selected as the optimal

plan forut . This plan is considered the class ofut and is fed along
with ut feature vector to the multi-class classifier.

The training time can be very large especially for big queries

with a considerably large number of possible plans. For example,

a subgraph with 6 nodes can have up to 6! (or 720) plans. It is

not practical and very expensive to evaluate all these plans. To

mitigate this problem, we only train using a small sample of

these plans to minimize the training time. Furthermore, we avoid

evaluating very expensive plans by enforcing a configurable

time limit when evaluating each one of the sample plans. We

first set the time limit to a relatively small value. Evaluations of

subsequent plans are not allowed to exceed that time limit. If no

plan is able to finish within the allotted time, the time limit is

gradually increased. This process repeats until at least one plan

can finish within the time limit.

Prediction: For each remaining candidate node, SmartPSI uses

the created model β to predict a good query execution plan based

on its neighborhood signature. Then, this plan is fed to the cor-

responding PSI method for evaluation.

4.2.3 Prediction Caching. As shown in Figure 6, correct pre-

dictions of both models are cached to improve the run-time per-

formance of SmartPSI. The cache module stores the node signa-

ture of already evaluated nodes. Upon checking next candidate

nodes, SmartPSI checks if a similar node has been evaluated

before. If exists, the PSI evaluation model and execution plan

decisions are looked up from the cache without consulting the
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classifiers. Using caching improves the efficiency of SmartPSI

since the time needed to consult the prediction model and possi-

ble wrong predictions are avoided. This is because nodes having

the same neighborhood signature are deemed similar since they

have similar graph structures around them. Thus, they are ex-

pected to have the same optimal method and execution plan.

4.3 Preemptive Query Execution
As in any classifier, the trained model may result in incorrect

predictions. In our case, there are two types of prediction errors;

incorrect plan prediction and incorrect node type prediction.

SmartPSI, however, employs a detection and recovery technique to

minimize the impact of wrong predictions. As shown in Figure 6,

the preemptive query processor monitors the evaluation of a

node ui and an incorrect prediction is detected if the time of this

evaluation exceeds a maximum value. We calculate this value as

follows:

MaxTime(ui ) = 2 × AvgT(PSIMethod(ui ), Plan(ui ))

PSIMethod(ui ) returns the used PSI method for ui while

Plan(ui ) is the currently used plan. Note that AvgT(X ,Y ) returns
the average time needed for the selected PSI method X and plan

Y during the training phase. To be able to recover from bad pre-

dictions, the query processor goes through three states; (i) it
evaluates candidate nodes using predicted plan and PSI method

with a time limit. If the execution timed-out, (ii) the processor
uses the opposite PSI method and restarts the evaluation with

a time limit. This step overcomes wrong predictions in the first

model (Model α ). If the execution timed-out again, (iii) the pro-
cessor restarts the node evaluation, without time limits, by using

the original predicted PSI method with a standard execution plan

generated by selectivity-based heuristics. This step uses a best

guess for the execution plan because Model β was not able to

provide a credible suggestion. Since the accuracy of our classifica-

tion models is high (as we show later in Section 5.4), the majority

of candidate nodes should be able to finish before hitting the first

timeout.

5 EVALUATION
In this section, we experimentally evaluate the performance of

SmartPSI and compare it against existing competitors using sev-

eral real large-scale datasets. Specifically, we show the following:

(i) SmartPSI significantly outperforms the state-of-the-art sub-

graph isomorphism solutions for solving PSI queries (Section 5.2).

(ii) Our proposed optimizations provide significant improvements

including the optimized matrix-based signature generation and

the proposed machine-learning approach compared to optimistic-

only, pessimistic-only and the two-threaded baseline search tech-

niques (Section 5.3). (iii) Our machine-learning model achieves

both high accuracy and minimal run-time overhead (Section 5.4).

Finally, (iv) we show a significant improvement in the efficiency

of ScaleMine [4]; the state-of-the-art distributed frequent sub-

graph mining system; when subgraph isomorphism is replaced

by pivoted subgraph isomorphism (Section 5.5).

5.1 Experimental setup
Datasets: We use six real graphs to evaluate the performance of

SmartPSI and compare it to existing techniques. These graphs are

widely used in the subgraph isomorphism and frequent subgraph

mining literature [4, 9, 17]. Table 3 shows the details of each

dataset. Yeast [8] and Human [26] are protein-protein interaction

networks where nodes represent proteins and edges represent the

interactions among them. Cora [1] is a citation graph where each

node represents a publication with a label representing a machine

learning area. In the YouTube [3] graph, each node represents

a YouTube video and is labeled with its category, while edges

connect similar videos. Twitter [2] models the Twitter social

network where each node represents a user and edges represent

follower-followee relationships. The original Twitter graph is

unlabeled, we follow the same approach used in [4] to assign

node labels. Finally, Weibo [40] is a social network crawled from

Sina Weibo micro-blogging website. Each node represents a user

and is labeled with the city that user lives in, while each edge

represents a follower-followee relationship.

Table 3: Datasets and their characteristics

Dataset Nodes Edges #node labels

Yeast [8] 3,112 12,519 71

Cora [1] 2,708 5,429 7

Human [26] 4,674 86,282 44

Youtube [3] 5,101,938 42,546,295 25

Twitter [2] 11,316,811 85,331,846 25

Weibo [40] 1,655,678 369,438,063 55

Query Graphs: From each input graph, we extract a set of

random connected subgraphs as query graphs. Then, a random

node is assigned as a pivot node for each query. Similar to the

related work in [9, 17], a random walk with restart algorithm

is used to extract 1000 query graphs for each size. Query sizes

range from four to ten nodes. The resulted queries span a wide

range of query complexities including paths, trees, stars and other

complex shapes. Thus, they cover query loads for a wide variety

of PSI applications. Unless stated otherwise, in all experiment,

we use 1000 queries per query size.

Hardware Setup: SmartPSI and its competitors are deployed

on a single Linux machine with 148GB RAM and two 2.1GHz

AMD Opteron 6172 CPUs, each with 12 cores. We also use a

distributed hardware setting for deploying ScaleMine [4] and its

PSI version. In particular, we conduct ScaleMine experiments

(see Section 5.5) on a Cray XC40 supercomputer which has 6,174

dual sockets compute nodes based on 16 cores Intel processors

running at 2.3GHzwith 128GB of RAM.We used up to 32 compute

nodes with a total of 1024 cores. In all experiments, the maximum

allowed time is 24 hours, any task which exceeds this limit is

aborted.

5.2 Comparison with Existing Systems
SmartPSI is evaluated against three state-of-the-art subgraph iso-

morphism solutions: (i) CFL-Match [9]; the fastest reported sub-

graph isomorphism solution, (ii) TurboIso [17]; a recent subgraph
ismorphism system that utilizes the query structure to combine

the evaluation of similar parts of the query in a single task. and

(iii) TurboIso+; a modified version of TurboIso. Since TurboIso is

a subgraph isomorphism algorithm, it finds all matches of a given

query regardless of the pivot node. To optimize the performance

for PSI queries, we configured TurboIso
+
to start evaluating the

given queries using candidate matches of the pivot nodes and

stop the evaluation once a pivot node match is found. Since the

source code of CFL-Match is not publicly available, we could

not follow a similar approach to provide a modified version of

CFL-Match that is optimized for PSI queries. We also tried to
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Figure 7: Query Performance of SmartPSI vs. state-of-the-art Subgraph Isomorphism Systems

compare against TurboIso-Boost [30]; however, similar to what

mentioned in [9], we encountered several run-time problems and

we could not resolve them even after communicating with the

authors. Thus, we had to omit its results. Notice that SmartPSI

and all its competitors are single-machine in-memory systems.

Moreover, for each input graph, we use a maximum of 1000 nodes

to train the classification models in SmartPSI.

This experiment shows how available solutions (i.e., subgraph

isomorphism techniques) perform when solving pivoted sub-

graph isomorphism queries in comparison to SmartPSI. In order

to evaluate PSI queries, these algorithms use subgraph isomor-

phism to find all matches, then generates the list of distinct graph

nodes that correspond to the pivot query node. Figure 7 shows

the results on Yeast, Cora and Human datasets. The x-axis shows

the query size (in number of nodes) and the y-axis shows the

processing time. For Yeast (Figure 7(a)), subgraph isomorphism

is a comparably easy task since this dataset is relatively small.

As a result, existing techniques outperform SmartPSI on queries

of size four. As the query size increases, subgraph isomorphism

techniques become slower than SmartPSI. The optimizations pro-

posed by CFLMatch allows it to outperform other systems up to

queries of size 8, however, SmartPSI starts gaining momentum

and becomes the fastest for larger queries. Notice that TurboIso
+

is significantly faster than TurboIso due to its optimization step,

however, it is still slower than SmartPSI on larger queries.

For Cora dataset (Figure 7(b)), SmartPSI significantly out-

performs other systems with up to two orders of magnitude.

CFLMatch’s optimizations worked well for small queries; it is the

fastest for queries of size 4, 5 and 6. As the query size grows, sim-

ilar to the Yeast dataset, CFLMatch generates huge amounts of

intermediate query matches and becomes worse than SmartPSI.

For queries with size 10, TurboIso fails to finish query evaluation

within 24 hours. Finally for Human dataset (Figure 7(c)), both

TurboIso and CFLMatch fail to evaluate most of the queries as

this dataset is significantly larger and denser. TurboIso
+
could

only complete its evaluation for queries of size up to 8. Com-

pared to all systems, SmartPSI is able to evaluate all queries on

the Human dataset with performance improvements of up to

two orders of magnitude. This experiment highlights the unsuit-

ability of the state-of-the-art subgraph isomorphism solutions to

solve PSI queries even for small graphs. It also shows SmartPSI’s

significant improvements over the existing solutions.

5.3 SmartPSI Optimizations
Neighborhood Signature Overhead: Figure 8 compares be-

tween the matrix-based and exploration-based methods in terms
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Figure 8: Exploration vs. Matrix Based Approach for Pop-
ulating Neighborhood Signatures of various datasets.

of the total time for populating the neighborhood signatures (see

Section 3.1). As shown in Figure 8, the processing time of both

methods increases as the input graph gets larger. Exploration-

based method, however, suffers from being computationally ex-

pensive especially for large datasets. For Twitter, exploration-

based could not finish generating the nodes’ neighborhood sig-

natures within 24 hours. On the other hand, the matrix-based

method reduces the overhead of exploration-based method signif-

icantly. It requires around 400 seconds, which is more than two

orders of magnitude faster than the exploration-based method.

This significant improvement is a direct result of the difference

in complexities between the two methods.

SmartPSI vs. the two-threaded baseline: Figure 9 shows the
run-time overhead of evaluating 100 queries on SmartPSI com-

pared to the two-threaded solution using YouTube and Twitter

datasets. The X-axis shows the query size in terms of number of

nodes, while the Y-axis shows the total time to evaluate the cor-

responding queries. Only 100 queries are used since evaluating

1000 queries takes too much time for the two threaded approach.

Since the two-threaded baseline utilizes two parallel threads, for

a fair comparison, only in this experiment we run a modified

version of SmartPSI that uses two concurrent threads to evaluate

two different graph nodes in parallel. Using YouTube datatset,

Figure 9(a) shows that the two-threaded baseline outperforms

SmartPSI for small queries because it does not possess the over-

head of training and prediction. Nevertheless, the two-threaded

solution becomes slower than SmartPSI as queries grow in size

till it exceeds the time limit on queries larger than 7 nodes. This

is also true for Twitter dataset in Figure 9(b), where the two-

threaded baseline can only evaluate queries of size 4. SmartPSI
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Figure 9: SmartPSI (2 threads) vs. two-threaded Baseline

has an upper hand since the two-threaded baseline underutilizes

the available resources by using two threads to finish a task that

can be conducted by one thread. Moreover, the heuristic-based

query execution plans, which are used in the two-threaded solu-

tion, are far less competent than the optimized plans of SmartPSI.

SmartPSI vs. optimistic and pessimistic: Figure 10 compares

SmartPSI against Pessimistic-only and Optimistic-only using 10

queries for each query size on the Twitter dataset. In particular,

the Pessimistic solution uses the pessimistic PSI method regard-

less of the type of the graph node. Likewise, Optimistic solution

always use the optimistic PSI method. Moreover, the Pessimistic
and Optimistic solutions use a heuristic-based query evaluation

plan. SmartPSI significantly outperforms the optimistic and pes-

simistic methods. Furthermore, the two competitors fail to evalu-

ate queries of size eight. The node type prediction in SmartPSI

allows it to avoid exploring the full search space (compared to

Pessimistic) and to reduce the overhead of calculating scores and

sorting graph nodes accordingly (compared to Optimistic). More-

over, SmartPSI is able to predict the best evaluation plan for

the candidate nodes, which is not achievable for the other two

solutions.

5.4 Prediction Accuracy and Training
Overhead

Machine Learning Models: We tested several machine learn-

ing models to build SmartPSI’s classifier including Random Forest

(RF), Support Vector Machines (SVM) and Neural Networks (NN).

In our experiments, we found that the RF classifier provides the

best accuracy. For example, it always achieves more than 95% ac-

curacy on Human dataset compared to SVM (90%) and NN (92%).

At the same time, RF is two times faster in building the model

and getting predictions. We also observed similar performance
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results for the other datasets. Therefore, we use RF as it provides

consistently good performance in terms of accuracy and training

time.

Model accuracy:We conducted a set of experiments to measure

the prediction accuracy of the node type prediction model using

Yeast, Human, Cora, YouTube and Twitter datasets. Accuracy is

calculated by comparing the result of the model’s prediction to

the ground truth result obtained by node evaluation using sub-

graph isomorphism, i.e., the number of correctly predicted node

types divided by the total number of examined nodes. Figure 11

shows that the prediction accuracy of the proposed classification

model is always higher than 90% for the used datasets. Further-

more, it also shows that prediction accuracy is effective and stable

where the variation in predictions quality among the different

datasets is small regardless of the query size.

Training overhead: Table 4 shows the overhead of models train-

ing/prediction compared to the total query evaluation time. This

overhead includes model building, node type prediction and sug-

gesting a good execution plan. In this experiment, we ran 100

queries per query size for each dataset. For small datasets and

queries, the training overhead is relatively large compared to

the total time. For example in Human dataset, the prediction

overhead exceeds the PSI evaluation time for small queries. The

reason is that query evaluation on small graphs is usually compa-

rably fast. For larger query sizes in Human dataset, PSI evaluation

becomes more expensive which reduces the relative overhead of

the classification model. For larger datasets; e.g., YouTube and

Twitter, the training time is very insignificant compared to PSI

evaluation time. This shows that high accuracy of our classifica-

tion model comes at a low computation cost, especially on large

graphs.
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Table 4: The overhead of model training and prediction to
the total time of SmartPSI

Dataset 4 5 6 7 8

Human 75.41% 57.94% 50.85% 34.88% 33.05%

YouTube 1.13% 1.19% 1.20% 1.79% 2.83%

Twitter 1.98% 5.33% 20.15% 2.35% 5.19%

5.5 PSI Application: Frequent Subgraph
Mining

This experiment highlights the advantage of using SmartPSI to

boost the efficiency of an example PSI-dependent application;

Frequent Subgraph Mining (FSM). For this experiment, we use

ScaleMine
1
[4]; the state-of-the-art distributed FSM system. Note

that ScaleMine uses subgraph isomorphism for finding occur-

rences for each candidate subgraph. We implemented ScaleM-

ine+SmartPSI, a variation of ScaleMine that employs SmartPSI’s

techniques instead of the traditional subgraph isomorphism

for computing the frequency of each candidate subgraph. Fig-

ures 12(a) and 12(b) show the performance of ScaleMine com-

pared to the optimized version, ScaleMine+SmartPSI, using Twit-

ter and Weibo datasets on frequency thresholds of 155K and

460K, respectively. The X-axis shows the total number of com-

pute nodes while the Y-axis shows the overall time required to

finish the mining task. For the Weibo dataset, the maximum size

of allowed frequent subgraphs is set to six edges. In this experi-

ment, ScaleMine+SmartPSI outperforms ScaleMine significantly

for both datasets. For Twitter, ScaleMine+SmartPSI is up to 5X

faster than ScaleMine. As for Weibo, ScaleMine+SmartPSI is up

to 6X faster. By replacing the traditional subgraph isomorphism,

ScaleMine+SmartPSI generates significantly less intermediate

results and quickly reaches the final answer.

6 RELATEDWORK
6.1 Subgraph Isomorphism
Subgraph isomorphism is the bottleneck of many graph opera-

tions since it is an NP-complete problem. Therefore, many re-

search efforts attempted to reduce its overhead in practice. The

first practical algorithm that addresses this problem follows a

backtracking approach [35]. Since then, several performance

enhancements were proposed, ranging from CSP-based tech-

niques [29], search order optimization [18], indexing [38] and

parallelization [33]. As reported in [26], GraphQL [18] is consid-

ered one of the best subgraph isomorphism techniques, though

its performance is not stable over the different datasets. Gra-

phQL prunes the search space by using local and global graph

information. Moreover, it utilizes a search order optimization

technique based on a global cost model.

TurboIso [17] is a recent approach that outperforms previous

techniques by grouping similar parts of the query and process

them at once. Moreover, TurboIso adapts its search order plan

according to each input graph node. BoostIso [30] is a plugin that

enhances the efficiency of other approaches. It is able to avoid

duplicate computations by exploiting the relationship among

the input graph nodes. CFLMatch [9] is the current state-of-

the-art technique for subgraph isomorphism. It decomposes the

query graph into a core and multiple trees. Such decomposition

allows better search order optimization. Moreover, CFLMatch

1
https://github.com/ehab-abdelhamid/ScaleMine
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Figure 12: ScaleMine vs. ScaleMine+SmartPSI

avoids redundant evaluations of tree leaf nodes by representing

the mappings of these nodes in a compressed way. Although

these techniques lead to relatively significant improvements in

the domain of subgraph isomorphism, the algorithm itself is

impractical especially for large graphs. The main reason behind

this limitation of subgraph isomorphism is the excessive number

of results it generates.

The closest approach to our work is Ψ-framework [22]. It

utilizes both isomorphic query re-writings and existing alter-

native algorithms in parallel to improve the performance of

subgraph isomorphism. Ψ-framework is similar to our two-

threaded prototype (Section 4.1) where it requires more process-

ing power to achieve a reasonable performance. Unlike SmartPSI,

Ψ-framework is unable to decide on which approach is better to

use during runtime.

6.2 Neighborhood Signature
A graph node can be represented by a signature that reflects the

neighborhood structures around it. This neighborhood signature

can be represented as a feature vector and used inmany important

applications such as abnormal nodes detection [6] and predicting

missing links [27].

Neighborhood signatures are also used for indexing and prun-

ing. GADDI [41] is a subgraph matching solution that builds an

index based on graph structures that exist between any pair of

vertices. Based on this index,a two way pruning technique is

used to efficiently prune candidate matches. GADDI suffers from

the excessive cost required for creating its index. NOVA [43]

and DSI [24] maintain the paths to and from surrounding nodes.

These paths are used to filter out unqualified graph nodes. Both

Nova and DSI rely on maintaining a huge number of paths. As

such, both technique comprise excessive overhead, especially
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when processing large-scale dense graphs. (NNT) [36] is a more

effective index that relies on finding the trees around each graph

node. NNT requires the use of tree matching algorithms which

makes pruning and matching more complex.

The above approaches are expensive, especially for large-scale

dense graphs. Other simpler indexes were proposed such as

SMS [42] which maintains the list of labels and node degrees

that appear in the neighborhood. Although this indexing tech-

nique is simple, it significantly outperforms NOVA and GADDI.

Tale [34] is a system that finds approximate matches of query sub-

graphs in an input graph. It relies on an index, called NH-Index,

which maintains information about the direct neighbors of each

graph node. NH-Index maintains information such as node label,

node degree, neighbor nodes and how they are connected. Both

SMS and Tale focus on the direct neighbors. Thus, their pruning

and descriptive power is limited. More recently, k-hop label [7]

extends its indexing by considering all neighbor nodes within

K-hops. Such representation extends beyond direct neighbors,

but it lacks effective representation of the surrounding structure.

Finally, label propagation [23] captures the neighborhood struc-

ture around each graph node using a list of labels along with their

corresponding weights. Weights represent how labels are placed

and connected around the node under consideration. Thus, more

informative structural information is captured.

7 CONCLUSION
In this paper, we propose SmartPSI; an efficient machine-learning

based system for evaluating Pivoted Subgraph Isomorphism (PSI)

queries. It is based on two effective PSI algorithms; each is op-

timized for a certain graph node type. SmartPSI is also coupled

with a machine-learning model to predict the graph node type

and call the appropriate PSI algorithm accordingly. It also uses

a machine-learning based query optimizer to select execution

plans that reduce the total query run-time by minimizing inter-

mediate query results. Our experiments show that SmartPSI is

efficient and able to scale PSI evaluation where it is up to two

orders of magnitude faster compared to existing subgraph iso-

morphism techniques. Furthermore, when applied to Frequent

Subgraph Mining (FSM), PSI improves the performance of the

state-of-the-art distributed FSM system by up to a factor of 6X.
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ABSTRACT
Entity Resolution (ER) aims to identify different descriptions in
various Knowledge Bases (KBs) that refer to the same entity. ER
is challenged by the Variety, Volume and Veracity of entity de-
scriptions published in the Web of Data. To address them, we
propose the MinoanER framework that simultaneously fulfills full
automation, support of highly heterogeneous entities, and massive
parallelization of the ER process. MinoanER leverages a token-
based similarity of entities to define a new metric that derives the
similarity of neighboring entities from the most important rela-
tions, as they are indicated only by statistics. A composite blocking
method is employed to capture different sources of matching ev-
idence from the content, neighbors, or names of entities. The
search space of candidate pairs for comparison is compactly ab-
stracted by a novel disjunctive blocking graph and processed by a
non-iterative, massively parallel matching algorithm that consists
of four generic, schema-agnostic matching rules that are quite
robust with respect to their internal configuration. We demonstrate
that the effectiveness of MinoanER is comparable to existing ER
tools over real KBs exhibiting low Variety, but it outperforms them
significantly when matching KBs with high Variety.

1 INTRODUCTION
Even when data integrated from multiple sources refer to the same
real-world entities (e.g., persons, places), they usually exhibit
several quality issues such as incompleteness (i.e., partial data),
redundancy (i.e., overlapping data), inconsistency (i.e., conflicting
data) or simply incorrectness (i.e., data errors). A typical task for
improving various data quality aspects is Entity Resolution (ER).
In the Web of Data, ER aims to facilitate interlinking of data that
describe the same real-world entity, when unique entity identifiers
are not shared across different Knowledge Bases (KBs) describing
them [8]. To resolve entity descriptions we need (a) to compute
effectively the similarity of entities, and (b) to pair-wise compare
entity descriptions. Both problems are challenged by the three Vs
of the Web of Data, namely Variety, Volume and Veracity [10].
Not only does the number of entity descriptions published by
each KB never cease to increase, but also the number of KBs
even for a single domain, has grown to thousands (e.g., there
is a x100 growth of the LOD cloud size since its first edition1).
Even in the same domain, KBs are extremely heterogeneous both
regarding how they semantically structure their data, as well as

*Work conducted during the Ph.D research of the author at ICS-FORTH.
1https://lod-cloud.net
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Figure 1: Parts of entity graphs, representing the Wikidata
(left) and DBpedia (right) KBs.

how diverse properties are used to describe even substantially
similar entities (e.g., only 109 out of ∼2,600 LOD vocabularies are
shared by more than one KB). Finally, KBs are of widely differing
quality, with significant differences in the coverage, accuracy and
timeliness of data provided [9]. Even in the same domain, various
inconsistencies and errors in entity descriptions may arise, due
to the limitations of the automatic extraction tools [34], or of the
crowd-sourced contributions.

The Web of Data essentially calls for novel ER solutions that
relax a number of assumptions underlying state-of-the-art methods.
The most important one is related to the notion of similarity that
better characterizes entity descriptions in the Web of Data - we
define an entity description to be a URI-identifiable set of attribute-
value pairs, where values can be literals, or the URIs of other
descriptions, this way forming an entity graph. Clearly, Variety
results in extreme schema heterogeneity, with an unprecedented
number of attribute names that cannot be unified under a global
schema [15]. This situation renders all schema-based similarity
measures that compare specific attribute values inapplicable [15].
We thus argue that similarity evidence of entities within and across
KBs can be obtained by looking at the bag of strings contained
in descriptions, regardless of the corresponding attributes. As
this value-based similarity of entity pairs may still be weak,
due to a highly heterogeneous description content, we need to
consider additional sources of matching evidence; for instance,
the similarity of neighboring entities, which are interlinked via
various semantic relations.

Figure 1 presents parts of the Wikidata and DBpedia KBs,
showing the entity graph that captures connections inside them.
For example, Restaurant2 and Jonny Lake are neighbor entities in
this graph, connected via a “headChef” relation. If we compare
John Lake A to Jonny Lake based on their values only, it is easy
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Figure 2: Value and neighbor similarity distribution of
matches in 4 datasets (see Table 1 for more details).

to infer that those descriptions are matching; they are strongly
similar. However, we cannot be that sure about Restaurant1 and
Restaurant2, if we only look at their values. Those descriptions
are nearly similar and we have to look further at the similarity of
their neighbors (e.g, John Lake A and Jonny Lake) to verify that
they match.

Figure 2 depicts both sources of similarity evidence (valueSim,
neighborSim) for entities known to match (i.e., ground truth) in
four benchmark datasets that are frequently used in the literature
(details in Table 1). Every dot corresponds to a matching pair
of entities, and its shape denotes its origin KBs. The horizontal
axis reports the normalized value similarity (weighted Jaccard
coefficient [21]) based on the tokens (i.e., single words in attribute
values) shared by a pair of descriptions, while the vertical one
reports the maximum value similarity of their neighbors. The
value similarity of matching entities significantly varies across
different KBs. For strongly similar entities, e.g., with a value
similarity > 0.5, existing duplicate detection techniques work
well. However, a large part of the matching pairs of entities is
covered by nearly similar entities, e.g., with a value similarity
< 0.5. To resolve them, we need to additionally exploit evidence
regarding the similarity of neighboring entities.

This also requires revisiting the blocking (aka indexing) tech-
niques used to reduce the number of candidate pairs [7]. To avoid
restricting candidate matches (i.e., descriptions placed on the
same block) to strongly similar entities, we need to assess both
value and neighbor similarity of candidate matches. In essence,
rather than a unique indexing function, we need to consider a com-
posite blocking that provides matching evidence from different
sources, such as the content, the neighbors or even the names (e.g.,
rdfs:label) of entities. Creating massively parallelizable tech-
niques for processing the search space of candidate pairs formed
by such composite blocking is an open research challenge.

Overall, the main requirements for Web-scale ER are: (i) iden-
tify both strongly and nearly similar matches, (ii) do not rely on a
given schema, (iii) do not rely on domain experts for aligning re-
lations and matching rules, (iv) develop non-iterative solutions to
avoid late convergence, and (v) scale to massive volumes of data.
None of the existing ER frameworks proposed for the Web of

Data (e.g., LINDA [4], SiGMa [21] and RiMOM [31]) simultane-
ously fulfills all these requirements. In this work, we present the
MinoanER framework for a Web-scale ER2. More precisely, we
make the following contributions:
•We leverage a token-based similarity of entity descriptions,

introduced in [27], to define a new metric for the similarity of a set
of neighboring entity pairs that are linked via important relations
to the entities of a candidate pair. Rather than requiring an a priori
knowledge of the entity types or of their correspondences, we rely
on simple statistics over two KBs to recognize the most important
entity relations involved in their neighborhood, as well as, the most
distinctive attributes that could serve as names of entities beyond
the rdfs:label, which is not always available in descriptions.
•We exploit several indexing functions to place entity descrip-

tions in the same block either because they share a common token
in their values, or they share a common name. Then, we intro-
duce a novel abstraction of multiple sources of matching evidence
regarding a pair of entities (from the content, neighbors, or the
names of their descriptions) under the form of a disjunctive block-
ing graph. We present an efficient algorithm for weighting and
then pruning the edges with low weights, which are unlikely to
correspond to matches. As opposed to existing disjunctive block-
ing schemes [3, 18], our disjunctive blocking is schema-agnostic
and requires no (semi-)supervised learning.
•We propose a non-iterative matching process that is imple-

mented in Spark [36]. Unlike the data-driven convergence of ex-
isting systems (e.g., LINDA [4], SiGMa [21], RiMOM [31]), the
matching process of MinoanER involves a specific number of
predefined generic, schema-agnostic matching rules (R1-R4) that
traverse the blocking graph. First, we identify matches based on
their name (R1). This is a very effective method that can be ap-
plied to all descriptions, regardless of their values or neighbor
similarity. Unlike the schema-based blocking keys of relational
descriptions usually provided by domain experts, MinoanER auto-
matically specifies distinctive names of entities from data statistics.
Then, the value similarity is exploited to find matches with many
common and infrequent tokens, i.e., strongly similar matches
(R2). When value similarity is not high, nearly similar matches
are identified based on both value and neighbors’ similarity using
a threshold-free rank aggregation function (R3), as opposed to
existing works that combine different matching evidence into an
aggregated score. Finally, reciprocal evidence of matching is ex-
ploited as a verification of the returned results: only entities that
are mutually ranked in the top positions of their unified ranking
lists are considered matches (R4). Figure 2 abstractly illustrates
the type of matching pairs that are covered by each matching rule.
•We experimentally compare the effectiveness of MinoanER

against state-of-the-art methods using established benchmark data
that involve real KBs. The main conclusion drawn from our exper-
iments is that MinoanER achieves at least equivalent performance
over KBs exhibiting a low Variety (e.g., those originating from
a common data source like Wikipedia) even though the latter
make more assumptions about the input KBs (e.g., alignment of
relations); yet, MinoanER significantly outperforms state-of-the-
art ER tools when matching KBs with high Variety. The source
code and datasets used in our experimental study are publicly
available3.

The rest of the paper is structured as follows: we introduce our
value and neighbor similarities in Section 2, and we delve into the

2A preliminary, abridged version of this paper appeared in [13].
3http://csd.uoc.gr/~vefthym/minoanER
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blocking schemes and the blocking graph that lie at the core of
our approach in Section 3. Section 4 describes the matching rules
of our approach along with their implementation in Spark, while
Section 5 overviews the main differences with the state-of-the-art
ER methods. We present our thorough experimental analysis in
Section 6 and we conclude the paper in Section 7.

2 BASIC DEFINITIONS
Given a KB E, an entity description with a URI identifier i, de-
noted by ei ∈ E, is a set of attribute-value pairs about a real-
world entity. When the identifier of an entity description ej ap-
pears in the values of another entity description ei , the corre-
sponding attribute is called a relation and the corresponding
value (ej ) a neighbor of ei . More formally, the relations of ei
are defined as relations(ei ) = {p |(p, j) ∈ ei ∧ ej ∈ E}, while
its neighbors as neiдhbors(ei ) = {ej |(p, j) ∈ ei ∧ ej ∈ E}. For
example, for the Wikidata KB in the left side of Figure 1 we
have: relations(Restaurant1) = {hasChef, territorial, inCountry},
and neiдhbors(Restaurant1) = {John Lake A, Bray, United King-
dom}.

In the following, we exclusively consider clean-clean ER, i.e.,
the sub-problem of ER that seeks matches among two duplicate-
free (clean) KBs. Thus, we simplify the presentation of our ap-
proach, but the proposed techniques can be easily generalized to
more than two clean KBs or a single dirty KB, i.e., a KB that
contains duplicates.

2.1 Entity similarity based on values
Traditionally, similarity between entities is computed based on
their values. In our work, we apply a similarity measure based
on the number and the frequency of common words between two
values4.

Definition 2.1. Given two KBs, E1 and E2, the value simi-
larity of two entity descriptions ei ∈ E1, ej ∈ E2 is defined as:
valueSim(ei , ej )=

∑
t ∈tokens(ei )∩tokens(ej )

1
loд2(EFE1 (t )·EFE2 (t )+1)

,

where EFE (t) = |{el |el ∈ E ∧ t ∈ tokens(el )}| stands for “En-
tity Frequency”, which is the number of entity descriptions in E
having token t in their values.

This value similarity shares the same intuition as TF-IDF in
information retrieval. If two entities share many, infrequent to-
kens, then they have high value similarity. On the contrary, very
frequent words (resembling stopwords in information retrieval)
are not considered an important matching evidence, when they
are shared by two descriptions, and therefore, they only contribute
insignificantly to the valueSim score. The number of common
words is accounted by the number of terms that are considered in
the sum and the frequency of those words is given by the inverse
Entity Frequency (EF), similar to the inverse Document Frequency
(DF) in information retrieval.

Proposition 1. valueSim is a similarity metric, since it satisfies
the following properties [5]:
• valueSim(ei , ei ) ≥ 0,
• valueSim(ei , ej ) = valueSim(ej , ei ),
• valueSim(ei , ei ) ≥ valueSim(ei , ej ),
•valueSim(ei , ei ) = valueSim(ej , ej ) = valueSim(ei , ej )⇔ei=ej ,
• valueSim(ei , ej ) +valueSim(ej , ez ) ≤ valueSim(ei , ez ) +
valueSim(ej , ej ).

4We handle numbers and dates in the same way as strings, assuming string-dominated
entities.

PROOF. Please refer to the extended version of this paper5. □

Note that valueSim has the following properties: (i) it is not a
normalized metric, since it can take any value in [0,+∞), with 0
denoting the existence of no common tokens in the values of the
compared descriptions. (ii) The maximum contribution of a single
common token between two descriptions is 1, in case this common
token does not appear in the values of any other entity description,
i.e., when EFE1 (t) · EFE2 (t) = 1. (iii) It is a schema-agnostic
similarity metric, as it disregards any schematic information6.

2.2 Entity similarity based on neighbors
In addition to value similarity, we exploit the relations between
descriptions to find the matching entities of the compared KBs.
This can be done by aggregating the value similarity of all pairs
of descriptions that are neighbors of the target descriptions.

Given the potentially high number of neighbors that a descrip-
tion might have, we propose considering only the most valuable
neighbors for computing the neighbor similarity between two
target descriptions. These are neighbors that are connected with
the target descriptions via important relations, i.e., relations that
exhibit high support and discriminability. Intuitively, high support
for a particular relation p indicates that p appears in many entity
descriptions, while high discriminability for p indicates that it has
many distinct values. More formally:

Definition 2.2. The support of a relation p ∈ P in a KB E
is defined as: support(p) = |instances(p) |

|E |2
, where instances(p) =

{(i, j)|ei , ej ∈ E ∧ (p, j) ∈ ei }.

Definition 2.3. The discriminability of a relation p ∈ P in a
KB E is defined as: discriminability(p) =

|ob jects(p) |
|instances(p) | , where

objects(p) = {j |(i, j) ∈ instances(p)}.

Overall, we combine support and discriminability via their
harmonic mean in order to locate the most important relations.

Definition 2.4. The importance of a relation p ∈ P in a KB E
is defined as: importance(p) = 2 · suppor t (p)·discr iminabil ity(p)

suppor t (p)+discr iminabil ity(p) .

On this basis, we identify the most valuable relations and neigh-
bors for every single entity description (i.e., locally). We use
topNrelations(ei ) to denote the N relations in relations(ei ) with
the maximum importance scores. Then, the best neighbors for
ei are defined as: topNneiдhbors(ei ) = {nei |(p,nei ) ∈ ei ∧ p ∈
topNrelations(ei )}.

Intuitively, strong matching evidence (high value similarity) for
the important neighbors leads to strong matching evidence for the
target pair of descriptions. Hence, we formally define neighbor
similarity as follows:

Definition 2.5. Given two KBs, E1 and E2, the neighbor simi-
larity of two entity descriptions ei ∈ E1, ej ∈ E2 is:

neiдhborNSim(ei , ej )=
∑

nei ∈topNneiдhbors(ei )
nej ∈topNneiдhbors(ej )

valueSim(nei ,nej ).

Proposition 2. neiдhborNSim is a similarity metric.

5http://csd.uoc.gr/~vefthym/DissertationEfthymiou.pdf
6Note that our value similarity metric is crafted for the token-level noise in literal
values, rather than the character-level one. Yet, our overall approach is tolerant to
character-level noise, as verified by our extensive experimental analysis with real
datasets that include it. The reason is that it is highly unlikely for matching entities
to have character-level noise in all their common tokens.
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PROOF. Given that neiдhborNSim is the sum of similarity met-
rics (valueSim), it is a similarity metric, too [5]. □

Neither valueSim nor neiдhborNSim are normalized, since the
number of terms that contribute in the sums is an important match-
ing evidence that can be mitigated if the values were normalized.

Example 2.6. Continuing our example in Figure 1, assume
that the best two relations for Restaurant1 and Restaurant2 are:
top2relations(Restaurant1) = {hasChef, territorial} and
top2relations(Restaurant2) = {headChef, county}. Then,
top2neiдhbors(Restaurant1) = {John Lake A, Bray} and
top2neiдhbors(Restaurant2) = {Jonny Lake, Berkshire}, and
neiдhbor2Sim(Restaurant1,Restaurant2) =
valueSim(Bray, JonnyLake)+valueSim(John Lake A, Berkshire)
+valueSim(Bray, Berkshire)+valueSim(John Lake A, Jonny Lake).
Note that since we don’t have a relation mapping, we also consider
the comparisons (Bray, JonnyLake) and (John Lake A, Berkshire).

Entity Names. From every KB, we also derive the global top-k
attributes of highest importance, whose literal values act as names
for any description ei that contains them. Their support is simply
defined as: support(p) = |subjects(p)|/|E |, where subjects(p) =
{i |(i, j) ∈ instances(p)} [32]. Based on these statistics, function
name(ei ) returns the names of ei , and Nx denotes all names in
a KB Ex . In combination with topNneiдhbors(ei ), this function
covers both local and global property importance, exploiting both
the rare and frequent attributes that are distinctive enough to
designate matching entities.

3 BLOCKING
To enhance performance, blocking is typically used as a pre-
processing step for ER in order to reduce the number of unneces-
sary comparisons, i.e., comparisons between descriptions that do
not match. After blocking, each description can be compared only
to others placed within the same block. The desiderata of block-
ing are [6]: (i) to place matching descriptions in common blocks
(effectiveness), and (ii) to minimize the number of suggested
comparisons (time efficiency). However, efficiency dictates skip-
ping many comparisons, possibly yielding many missed matches,
which in turn implies low effectiveness. Thus, the main objective
of blocking is to achieve a good trade-off between minimizing the
number of suggested comparisons and minimizing the number of
missed matches [7].

In general, blocking methods are defined over key values that
can be used to decide whether or not an entity description could be
placed in a block using an indexing function [7]. The ‘uniqueness’
of key values determines the number of entity descriptions placed
in the same block, i.e., which are considered as candidate matches.
More formally, the building blocks of a blocking method can be
defined as [3]:
• An indexing function hkey : E → 2B is a unary function that,

when applied to an entity description using a specific blocking
key, it returns as a value the subset of the set of all blocks B, under
which the description will be indexed.
• A co-occurrence function okey : E × E → {true, f alse} is a

binary function that, when applied to a pair of entity descriptions,
it returns ‘true’ if the intersection of the sets of blocks produced by
the indexing function on its arguments, is non-empty, and ‘false’
otherwise; okey (ek , el ) = true iff hkey (ek ) ∩ hkey (el ) , ∅.

In this context, each pair of descriptions whose co-occurrence
function returns ‘true’ shares at least one common block, and the

distinct union of the block elements is the input entity collection
(i.e., all the descriptions from a set of input KBs). Formally:

Definition 3.1. Given an entity collection E, atomic blocking
is defined by an indexing function hkey for which the generated

blocks, Bkey={bkey1 , . . . , b
key
m }, satisfy the following conditions:

(i) ∀ek , el ∈ bkeyi : bkeyi ∈ Bkey ,okey (ek , el ) = true,

(ii) ∀(ek , el ) : okey (ek , el )=true,∃bkeyi ∈ Bkey , ek , el ∈ b
key
i ,

(iii)
⋃

bkeyi ∈Bkey
b
key
i = E.

Given that a single key is not enough for indexing loosely
structured and highly heterogeneous entity descriptions, we need
to consider several keys that the indexing function will exploit to
build different sets of blocks. Such a composite blocking method
is characterized by a disjunctive co-occurrence function over the
atomic blocks, and it is formally defined as:

Definition 3.2. Given an entity collection E, disjunctive block-
ing is defined by a set of indexing functions H , for which the gen-
erated blocks B =

⋃
hkey ∈H

Bkey satisfy the following conditions:

(i) ∀ek , el ∈ b : b ∈ B,oH (ek , el ) = true,
(ii) ∀(ek , el ) : oH (ek , el ) = true,∃b ∈ B, ek , el ∈ b,

where oH (ek , el ) =
∨
hkey ∈H okey (ek , el ).

Atomic blocking can be seen as a special case of composite
blocking, consisting of a singleton set, i.e., H = {hkey }.

3.1 Composite Blocking Scheme
To achieve a good trade-off between effectiveness and efficiency,
our composite blocking scheme assesses the name and value sim-
ilarity of the candidate matches in combination with similarity
evidence provided by their neighbors on important relations. We
consider the blocks constructed for all entities ei ∈ E using the
indexing function hi (·) both over entity names (∀nj ∈ names(ei ) :
hN (nj )) and tokens (∀tj ∈ tokens(ei ) : hT (tj )). The composite
blocking scheme O of MinoanER is defined by the following
disjunctive co-occurrence condition of any two entities ei , ej ∈ E:
O(ei , ej ) = oN (ei , ej ) ∨ oT (ei , ej )∨
(
∨
(e ′i ,e

′
j )∈topNneiдhbors(ei )×topNneiдhbors(ej ) oT (e

′
i , e
′
j )),where

oN , oT is the co-occurrence function applied on names and to-
kens, respectively. Intuitively, two entities are placed in a common
block, and are then considered candidate matches, if at least one
of the following three cases holds: (i) they have the same name,
which is not used by any other entity, in which case the common
block contains only those two entities, or (ii) they have at least
one common word in any of their values, in which case the size of
the common block is given by the product of the Entity Frequency
(EF ) of the common term in the two input collections, or (iii)
their top neighbors share a common word in any of their values.
Note that token blocking (i.e., hT ) allows for deriving valueSim
from the size of blocks shared by two descriptions. As a result,
no additional blocks are needed to assess neighbor similarity of
candidate entities: token blocking is sufficient also for estimating
neiдhborNsim according to Definition 2.5.

3.2 Disjunctive Blocking Graph
The disjunctive blocking graph G is an abstraction of the dis-
junctive co-occurrence condition of candidate matches in blocks.
Nodes represent candidates from our input entity descriptions,
while edges represent pairs of candidates for which at least one
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Figure 3: (a) Parts of the disjunctive blocking graph corre-
sponding to Figure 1, and (b) the corresponding blocking
graph after pruning.

of the co-occurrence conditions is ‘true’. Each edge is actually
labeled with three weights that quantify similarity evidence on
names, tokens and neighbors of candidate matches. Specifically,
the disjunctive blocking graph of MinoanER is a graph G =
(V ,E, λ), with λ assigning to each edge a label (α , β,γ ), where
α is ‘1’ if oN (ei , ej ) is true and the name block in which ei , ej
co-occur is of size 2, and ‘0’ otherwise, β = valueSim(ei , ej ), and
γ = neiдhborNSim(ei , ej ). More formally:

Definition 3.3. Given a block collection B =
⋃
hkey ∈H Bkey ,

produced by a set of indexing functions H , the disjunctive block-
ing graph for an entity collection E, is a graph G = (V ,E, λ),
where each node vi ∈ V represents a distinct description ei ∈ E,
and each edge <vi ,vj> ∈ E represents a pair ei , ej ∈ E for which
O(ei , ej ) = ‘true ′; O(ei , ej ) is a disjunction of the atomic co-
occurrence functions ok defined along with H , and λ : E → Rn is
a labeling function assigning a tuple [w1, . . . ,wn ] to each edge,
wherewk is a weight associated with each co-occurrence function
ok of H .

Definition 3.3 covers the cases of an entity collection E being
composed of one, two, or more KBs. When matching k KBs, as-
suming that all of them are clean, the disjunctive blocking graph
is k-partite, with each of the k KBs corresponding to a different
independent set of nodes, i.e., there are only edges between de-
scriptions from different KBs. The only information needed to
match multiple KBs is to which KB every description belongs, so
as to add it to the corresponding independent set. Similarly, the
disjunctive blocking graph covers dirty ER, as well.

Example 3.4. Consider the graph of Figure 3(a), which is part
of the disjunctive blocking graph generated from Figure 1. John
Lake A and Jonny Lake have a common name (“J. Lake”), and
there is no other entity having this name, so there is an edge
connecting them with α = 1. Bray and Berkshire have common,
quite infrequent tokens in their values, so their similarity (β in
the edge connecting them) is quite high (β = 1.2). Since Bray is
a top neighbor of Restaurant1 in Figure 1, and Berkshire is a top
neighbor of Restaurant2, there is also an edge with a non-zero
γ connecting Restaurant1 with Restaurant2. The γ score of this
edge (1.6) is the sum of the β scores of the edges connecting Bray
with Berkshire (1.2), and John Lake A with Jonny Lake (0.4).

3.3 Graph Weighting and Pruning Algorithms
Each edge in the blocking graph represents a suggested compari-
son between two descriptions. To reduce the number of compar-
isons suggested by the disjunctive blocking graph, we keep for
each node the K edges with the highest β and the K edges with
the highest γ weights, while pruning edges with trivial weights
(i.e., (α , β,γ )=(0,0,0)), since they connect descriptions unlikely to
match. Given that nodes vi and vj may have different top K edges
based on β or γ , we consider each undirected edge in G as two
directed ones, with the same initial weights, and perform pruning
on them.

Example 3.5. Figure 3(b) shows the pruned version of the
graph in Figure 3(a). Note that the blocking graph is only a con-
ceptual model, which we do not materialize; we retrieve any nec-
essary information from computationally cheap inverted indices.

The process of weighting and pruning the edges of the dis-
junctive blocking graph is described in Algorithm 1. Initially, the
graph contains no edges. We start adding edges by checking the
name blocks BN (Lines 5-9). For each name block b that contains
exactly two entities, one from each KB, we create an edge with
α=1 linking those entities (note that in Algorithm 1, bk , k∈{1, 2},
denotes the sub-block of b that contains the entities from Ek ,
i.e., bk⊆Ek ). Then, we compute the β weights (Lines 10-14) by
running a variation of Meta-blocking [27], adapted to our value
similarity metric (Definition 2.1). Next, we keep for each entity,
its connected nodes from the K edges with the highest β (Lines 15-
18). Line 20 calls the procedure for computing the top in-neighbors
of each entity, which operates as follows: first, it identifies each
entity’s topNneiдbors (Lines 36-43) and then, it gets their reverse;
for every entity ei , we get the entities topInNeiдhbors[i] that have
ei as one of their topNneiдhbors (Lines 44-47). This allows for
estimating the γ weights according to Definition 2.5. To avoid
re-computing the value similarities that are necessary for the γ
computations, we exploit the already computed βs. For each pair
of entities ei ∈ E1, ej ∈ E2 that are connected with an edge with
β > 0, we assign to each pair of their inNeiдhbors, (ini , inj ), a
partial γ equal to this β (Lines 20-27). After iterating over all
such entity pairs ei , ej , we get their total neighbor similarity, i.e.,
γ [i, j] = neiдhborNsim(ei , ej ). Finally, we keep for each entity,
its K neighbors with the highest γ (Lines 28-33).

The time complexity of Algorithm 1 is dominated by the pro-
cessing of value evidence, which iterates twice over all compar-
isons in the token blocks BT . In the worst-case, this results in
one computation for every pair of entities, i.e., O(|E1 | · |E2 |). In
practice, though, we bound the number of computations by remov-
ing excessively large blocks that correspond to highly frequent
tokens (e.g., stop-words). Following [27], this is carried out by
Block Purging [26], which ensures that the resulting blocks in-
volve two orders of magnitude fewer comparisons than the brute-
force approach, without any significant impact on recall. This
complexity is higher than that of name and neighbor evidence,
which are both linearly dependent on the number of input entities.
The former involves a single iteration over the name blocks BN ,
which amount to |N1 ∩ N2 |, as there is one block for every name
shared by E1 and E2. For neighbor evidence, Algorithm 1 checks
all pairs of N neighbors between every entity ei and its K most
value-similar descriptions, performing K · N 2 · (|E1 | + |E2 |) oper-
ations; the cost of estimating the top in-neighbors for each entity
is lower, dominated by the ordering of all relations in E1 and E2
(i.e., |Rmax | · loд |Rmax |), where |Rmax | stands for the maximum
number of relations in one of the KBs.
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Algorithm 1: Disjunctive Blocking Graph Construction.
Input: E1, E2, the blocks from name and token blocking, BN and BT
Output: A disjunctive blocking graph G .

1 procedure getCompositeBlockingGraph(E1, E2, BN , BT )
2 V ← E1 ∪ E2;
3 E ← ∅;
4 W ← ∅ ; // init. to (0, 0, 0)

// Name Evidence
5 for b ∈ BN do
6 if |b1 | · |b2 | = 1 then // only 1 comparison in b
7 ei←b1 .дet (0), ej←b2 .дet (0) ; // entities in b
8 E ← E ∪ {< vi , vj > };
9 W ←W .set (α, < vi , vj >, 1);

// Value Evidence
10 for ei ∈ E1 do
11 β [] ← ∅ ; // value weights wrt all ej ∈ E2
12 for b ∈ BT ∧ b ∩ ei , ∅ do
13 for ej ∈ b2 do // ej ∈ E2
14 β [j]←β [j]+1/loд2( |b1 | · |b2 |+1) ; // valueSim

15 ValueCandidates ← дetTopCandidates(β [], K );
16 for ej ∈ ValueCandidates do
17 E ← E ∪ {< vi , vj > };
18 W ←W .set (β, < vi , vj >, β [j]);

19 for ei ∈ E2 do . . . ; // ...do the same for E2

// Neighbor Evidence
20 inN eiдhbors[] ← дetTopInNeiдhbors(E1, E2);
21 γ [][] ← ∅ ; // neighbor weights wrt all ei , ej ∈ V
22 for ei ∈ E1 do
23 for ej ∈ E2, s.t.W .дet (β, < vi , vj >) > 0 do
24 for inj ∈ inN eiдhbors[j] do
25 for ini ∈ inN eiдhbors[i] do // neighborNSim

26 γ [i][j] ← γ [i][j] +W .дet (β, < ni , nj >);

27 for ei ∈ E2 do . . . ; // ...do the same for E2
28 for ei ∈ E1 do
29 NeiдhborCandidates ← дetTopCandidates(γ [i][], K );
30 for ej ∈ NeiдhborCandidates do
31 E ← E ∪ {< vi , vj > };
32 W .set (γ , < vi , vj >, γ [i][j]);

33 for ei ∈ E2 do . . . ; // ...do the same for E2
34 return G = (V , E,W );

35 procedure getTopInNeighbors(E1, E2)
36 topNeiдhbors[] ← ∅ ; // one list for each entity
37 дlobalOrder ← sort E1’s relations by importance;
38 for e ∈ E1 do
39 localOrder (e)←r elations(e).sor tBy(дlobalOrder );
40 topN relations ← localOrder (e).topN ;
41 for (p, o) ∈ e , where p ∈ topN relations do
42 topNeiдhbors[e].add (o);

43 for ei ∈ E2 do . . . ; // ...do the same for E2
44 topInNeiдhbors[]←∅; // the reverse of topNeighbors

45 for e ∈ E1 ∪ E2 do
46 for ne ∈ topNeiдhbors[e] do
47 topInNeiдhbors[ne].add (e);

48 return topInNeiдhbors ;

4 NON-ITERATIVE MATCHING PROCESS
Our matching method receives as input the disjunctive blocking
graph G and performs four steps – unlike most existing works,
which involve a data-driven iterative process. In every step, a
matching rule is applied with the goal of extracting new matches
from the edges of G by analyzing their weights. The functionality
of our algorithm is outlined in Algorithm 2. Next, we describe its
rules in the order they are applied:
Name Matching Rule (R1). The matching evidence of R1 comes
from the entity names. It assumes that two candidate entities

Algorithm 2: Non-iterative Matching.
Input: E1, E2, The pruned, directed disjunctive blocking graph G .
Output: A set of matches M .

1 M ← ∅; // The set of matches

// Name Matching Value (R1)
2 for < vi , vj >∈ G .E do
3 if G .W .дet (α, < vi , vj >) = 1 then
4 M ← M ∪ (ei , ej );

// Value Matching Value (R2)
5 for vi ∈ G .V do
6 if ei ∈ E1 \M then // check the smallest KB for

efficiency
7 vj ← arдmaxvk ∈G .VG .W .дet (β, < vi , vk >) ; // top

candidate
8 if G .W .дet (β, < vi , vj >) ≥ 1 then
9 M ← M ∪ (ei , ej );

// Rank Aggregation Matching Value (R3)
10 for vi ∈ G .V do
11 if ei ∈ E1 ∪ E2 \M then
12 aдд[] ← ∅; // Aggregate scores, init. zeros
13 valCands ← G .valCand (ei ) ; // nodes linked to ei

in decr. β
14 rank ← |valCands |;
15 for ej ∈ valCands do
16 aдд[ei ].update(ej , θ · rank/ |valCands |);
17 rank ← rank − 1;

18 nдbCands ← G .nдbCand (ei ) ; // nodes linked to ei
in decr. γ

19 rank ← |nдbCands |;
20 for ej ∈ nдbCands do
21 aдд[ei ].update(ej , (1 − θ ) · rank/ |nдbCands |);
22 rank ← rank − 1;

23 M ← M ∪ (ei , дetTopCandidate(aдд[ei ]));

// Reciprocity Matching Value (R4)
24 for (ei , ej ) ∈ M do
25 if < vi , vj >< G .E ∨ < vj , vi >< G .E then
26 M ← M \ (ei , ej );

27 return M ;

match, if they, and only they, have the same name n. Thus, R1
traverses G and for every edge <vi ,vj> with α = 1, it updates the
set of matches M with the corresponding descriptions (Lines 2-4
in Alg. 2). All candidates matched by R1 are not examined by the
remaining rules.
Value Matching Rule (R2). It presumes that two entities match,
if they, and only they, share a common token t , or, if they share
many infrequent tokens. Based on Definition 2.1, R2 identifies
pairs of descriptions with high value similarity (Lines 5-9). To
this end, it goes through every node vi of G and checks whether
the corresponding description stems from the smaller in size KB,
for efficiency reasons (fewer checks), but has not been matched
yet. In this case, it locates the adjacent node vj with the maximum
β weight (Line 7). If β ≥ 1, R2 considers the pair (ei , ej ) to be
a match. Matches identified by R2 will not be considered in the
sequel.
Rank Aggregation Matching Rule (R3). This rule identifies fur-
ther matches for candidates whose value similarity is low (β < 1),
yet their neighbor similarity (γ ) could be relatively high. In this
respect, the order of candidates rather than their absolute similarity
values are used. Its functionality appears in Lines 10-23 of Algo-
rithm 2. In essence, R3 traverses all nodes of G that correspond to
a description that has not been matched yet. For every such node
vi , it retrieves two lists: the first one contains adjacent edges with
a non-zero β weight, sorted in descending order (Line 13), while
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Figure 4: The architecture of MinoanER in Spark.

the second one includes the adjacent edges sorted in decreasing
non-zero γ weights (Line 18). Then, R3 aggregates the two lists
by considering the normalized ranks of their elements: assuming
the size of a list is K , the first candidate gets the score K/K , the
second one (K − 1)/K , while the last one 1/K . Overall, each ad-
jacent node of vi takes a score equal to the weighted summation
of its normalized ranks in the two lists, as determined through the
trade-off parameter θ ∈ (0, 1) (Lines 16 & 21): the scores of the β
list are weighted with θ and those of the γ list with 1-θ . At the end,
vi is matched with its top-1 candidate match vj , i.e., the one with
the highest aggregate score (Line 23). Intuitively, R3 matches ei
with ej , when, based on all available evidence, there is no better
candidate for ei than ej .
Reciprocity Matching Rule (R4). It aims to clean the matches
identified by R1, R2 and R3 by exploiting the reciprocal edges of
G. Given that the originally undirected graph G becomes directed
after pruning (as it retains the best edges per node), a pair of nodes
vi and vj are reciprocally connected when there are two edges
between them, i.e., an edge from vi to vj and an edge from vj
to vi . Hence, R4 aims to improve the precision of our algorithm
based on the rationale that two entities are unlikely to match, when
one of them does not even consider the other to be a candidate
for matching. Intuitively, two entity descriptions match, only if
both of them “agree” that they are likely to match. R4 essentially
iterates over all matches detected by the above rules and discards
those missing any of the two directed edges (Lines 24-26), acting
more like a filter for the matches suggested by the previous rules.

Given a pruned disjunctive blocking graph, every rule can be
formalized as a function that receives a pair of entities and returns
true (T ) if the entities match according to the rule’s rationale, or
false (F ) otherwise, i.e., Rn : E1 × E2 → {T , F }. In this context,
we formally define the MinoanER matching process as follows:

Definition 4.1. The non-iterative matching of two KBs E1,
E2, denoted by the Boolean matrix M(E1, E2), is defined as a
filtering problem of the pruned disjunctive blocking graph G:
M(ei , ej ) = (R1(ei , ej ) ∨ R2(ei , ej ) ∨ R3(ei , ej )) ∧ R4(ei , ej ).

The time complexity of Algorithm 2 is dominated by the size
of the pruned blocking graph G it receives as input, since R1, R2
and R3 essentially go through all directed edges in G (in practice,
though, R1 reduces the edges considered by R2 and R3, and so
does R2 for R3). In the worst case, G contains 2K directed edges
for every description in E1∪E2, i.e., |V |max = 2 ·K · (|E1 |+ |E2 |).
Thus, the overall complexity is linear with respect to the number
of input descriptions, i.e., O(|E1 |+|E2 |), yielding high scalability.

4.1 Implementation in Spark
Figure 4 shows the architecture of MinoanER implementation in
Spark. Each process is executed in parallel for different chunks of
input, in different Spark workers. Each dashed edge represents a
synchronization point, at which the process has to wait for results
produced by different data chunks (and different Spark workers).

In more detail, Algorithm 1 is adapted to Spark by applying
name blocking simultaneously with token blocking and the ex-
traction of top neighbors per entity. Name blocking and token
blocking produce the sets of blocks BN and BT , respectively,
which are part of the algorithm’s input. The processing of those
blocks in order to estimate the α and β weights (Lines 5-9 for BN
and Lines 10-18 for BT ) takes place during the construction of
the blocks. The extraction of top neighbors per entity (Line 20)
runs in parallel to these two processes and its output, along with
the β weights, is given to the last part of the graph construction,
which computes the γ weights for all entity pairs with neighbors
co-occuring in at least one block (Lines 21-33).

To minimize the overall run-time, Algorithm 2 is adapted to
Spark as follows: R1 (Lines 2-4) is executed in parallel with
name blocking and the matches it discovers are broadcasted to be
excluded from subsequent rules. R2 (Lines 5-9) runs after both
R1 and token blocking have finished, while R3 (Lines 10-23) runs
after both R2 and the computation of neighbor similarities have
been completed, skipping the already identified (and broadcasted)
matches. R4 (Lines 24-26) runs in the end, providing the final,
filtered set of matches. Note that during the execution of every
rule, each Spark worker contains only the partial information of
the disjunctive blocking graph that is necessary to find the match
of a specific node (i.e., the corresponding lists of candidates based
on names, values, or neighbors).

5 RELATED WORK
To the best of our knowledge, there is currently no other Web-
scale ER framework that is fully automated, non-iterative, schema-
agnostic and massively parallel, at the same time. For example,
WInte.r [22] is a framework that performs multi-type ER, also
incorporating the steps of blocking, schema-level mapping and
data fusion. However, it is implemented in a sequential fashion
and its solution relies on a specific level of structuredness, i.e., on a
schema followed by the instances to be matched. Dedoop [20] is a
highly scalable ER framework that comprises the steps of blocking
and supervised matching. However, it is the user that is responsible
for selecting one of the available blocking and learning methods
and for fine-tuning their internal parameters. This approach is
also targeting datasets with a predefined schema. Dedupe [16]
is a scalable open-source Python library (and a commercial tool
built on this library) for ER; however, it is not fully automated, as
it performs active learning, relying on human experts to decide
for a first few difficult matching decisions. Finally, we consider
progressive ER (e.g., [1]) orthogonal to our approach, as it aims
to retrieve as many matches as possible as early as possible.

In this context, we compare MinoanER independently to state-
of-the-art matching and blocking approaches for Web data.

Entity Matching. Two types of similarity measures are com-
monly used for entity matching [21, 31]. (i) Value-based simi-
larities (e.g., Jaccard, Dice) usually assess the similarity of two
descriptions based on the values of specific attributes. Our value
similarity is a variation of ARCS, a Meta-blocking weighting
scheme [12], which disregards any schema information and con-
siders each entity description as a bag of words. Compared to
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ARCS, though, we focus more on the number than the frequency
of common tokens between two descriptions. (ii) Relational simi-
larity measures additionally consider neighbor similarity by ex-
ploiting the value similarity of (some of) the entities’ neighbors.

Based on the nature of the matching decision, ER can be char-
acterized as pairwise or collective. The former relies exclusively
on the value similarity of descriptions to decide if they match
(e.g., [20]), while the latter iteratively updates the matching deci-
sion for entities by dynamically assessing the similarity of their
neighbors (e.g., [2]). Typically, the starting point for this similarity
propagation is a set of seed matches identified by a value-based
blocking.

For example, SiGMa [21] starts with seed matches having iden-
tical entity names. Then, it propagates the matching decisions
on the ‘compatible’ neighbors, which are linked with pre-aligned
relations. For every new matched pair, the similarities of the neigh-
bors are recomputed and their position in the priority queue is
updated. LINDA [4] differs by considering as compatible neigh-
bors those connected with relations having similar names (i.e.,
small edit distance). However, this requirement rarely holds in the
extreme schema heterogeneity of Web data. RiMOM-IM [23, 31]
is a similar approach, introducing the following heuristic: if two
matched descriptions e1, e ′1 are connected via aligned relations r
and r ′ and all their entity neighbors via r and r ′, except e2 and e ′2,
have been matched, then e2 and e ′2 are also considered matches.

All these methods employ Unique Mapping Clustering for
detecting matches: they place all pairs into a priority queue, in
decreasing similarity. At each iteration, the top pair is considered
a match, if none of its entities has been already matched. The
process ends when the top pair has a similarity lower than t .

MinoanER employs Unique Mapping Clustering, too. Yet,
it differs from SiGMa, LINDA and RiMOM-IM in five ways:
(i) the matching process iterates over the disjunctive blocking
graph, instead of the initial KBs. (ii) MinoanER employs statistics
to automatically discover distinctive entity names and important
relations. (iii) MinoanER exploits different sources of matching
evidence (values, names and neighbors) to statically identify can-
didate matches already from the step of blocking. (iv) MinoanER
does not aggregate different similarities in one similarity score;
instead, it uses a disjunction of the different evidence it considers.
(v) MinoanER is a static collective ER approach, in which all
sources of similarity are assessed only once per candidate pair. By
considering a composite blocking not only on the value but also
on the neighbors similarity, we discover in a non-iterative way
most of the matches returned by the data-driven convergence of
existing systems, or even more (see Section 6).

PARIS [33] uses a probabilistic model to identify matches,
based on previous matches and the functional nature of entity
relations. A relation is considered functional if, for a source entity,
there is only one destination entity. If r (x ,y) is a function in one
KB and r (x ,y′) a function in another KB, then y and y′ are con-
sidered matches. The functionality of a relation and the alignment
of relations along with previous matching decisions determine
the decisions in subsequent iterations. Unlike MinoanER, PARIS
cannot deal with structural heterogeneity, while it targets both
ontology and instance matching.

Finally, [30] parallelizes the collective ER approach of [2], re-
lying on a black-box matching and exploits a set of heuristic rules
for structured entities. It essentially runs multiple instances of
the matching algorithm in subsets of the input entities (similar
to blocks), also keeping information for all the entity neighbors,
needed for similarity propagation. Since some rules may require

the results of multiple blocks, an iterative message-passing frame-
work is employed. Rather than a block-level synchronization, the
MinoanER parallel computations in Spark require synchronization
only across the 4 generic matching rules (see Figure 4).

Regarding the matching rules, the ones employed by MinoanER
based on values and names are similar to rules that have already
been employed in the literature individually (e.g., in [21, 23, 31]).
In this work, we use a combination of those rules for the first time,
also introducing a novel rank aggregation rule to incorporate value
and neighbor matching evidence. Finally, the idea of reciprocity
has been applied to enhance the results of Meta-blocking [28], but
was never used in matching.

Blocking. Blocking techniques for relational databases [6] rely
on blocking keys defined at the schema-level. For example, the
Sorted Neighborhood approach orders entity descriptions accord-
ing to a sorting criterion and performs blocking based on it; it is ex-
pected that matching descriptions will be neighbors after the sort-
ing, so neighbor descriptions constitute candidate matches [17].
Initially, entity descriptions are lexicographically ordered based
on their blocking keys. Then, a window, resembling a block, of
fixed length slides over the ordered descriptions, each time com-
paring only the contents of the window. An adaptive variation of
the sorted neighborhood method is to dynamically decide on the
size of the window [35]. In this case, adjacent blocking keys in
the sorted descriptions that are significantly different from each
other, are used as boundary pairs, marking the positions where
one window ends and the next one starts. Hence, this variation cre-
ates non-overlapping blocks. In a similar line of work, the sorted
blocks method [11] allows setting the size of the window, as well
as the degree of desired overlap.

Another recent schema-based blocking method uses Maximal
Frequent Itemsets (MFI) as blocking keys [19] – an itemset can
be a set of tokens. Abstractly, each MFI of a specific attribute
in the schema of a description defines a block, and descriptions
containing the tokens of an MFI for this attribute are placed in a
common block. Using frequent itemsets to construct blocks may
significantly reduce the number of candidates for matching pairs.
However, since many matching descriptions share few, or even
no common tokens, further requiring that those tokens are parts
of frequent itemsets is too restrictive. The same applies to the
requirement for a-priori schema knowledge and alignment, thus
resulting in many missed matches in the Web of Data.

Although blocking has been extensively studied for tabular
data, the proposed approaches cannot be used for the Web of Data,
since their blocking keys rely on the existence of a global schema.
However, the use of schema-based blocking keys is inapplicable
to the Web of Data, due to its extreme schema heterogeneity [15]:
entity descriptions do not follow a fixed schema, as even a single
description typically uses attributes defined in multiple LOD vo-
cabularies. In this context, schema-agnostic blocking methods are
needed instead. Yet, the schema-agnostic functionality of most
blocking methods requires extensive fine-tuning to achieve high
effectiveness [29]. The only exception is token blocking, which
is completely parameter-free [26]. Another advantage of token
blocking is that it allows for computing value similarity from
its blocks, as they contain entities with identical blocking keys –
unlike other methods like Dedoop [20] and Sorted Neighborhood
[17], whose blocks contain entities with similar keys.

SiGMa [21] considers descriptions with at least two common
tokens as candidate matches, which is more precise than our token
blocking, but misses more matches. The missed matches will be
considered in subsequent iterations, if their neighbor similarity is
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Table 1: Dataset statistics.
Restau- Rexa- BBCmusic- YAGO-

rant DBLP DBpedia IMDb
E1 entities 339 18,492 58,793 5,208,100
E2 entities 2,256 2,650,832 256,602 5,328,774

E1 triples 1,130 87,519 456,304 27,547,595
E2 triples 7,519 14,936,373 8,044,247 47,843,680

E1 av. tokens 20.44 40.71 81.19 15.56
E2 av. tokens 20.61 59.24 324.75 12.49

E1/E2 attributes 7 / 7 114 / 145 27 / 10,953 65 / 29
E1/E2 relations 2 / 2 103 / 123 9 / 953 4 / 13
E1/E2 types 3 / 3 4 / 11 4 / 59,801 11,767 / 15
E1/E2 vocab. 2 / 2 4 / 4 4 / 6 3 / 1

Matches 89 1,309 22,770 56,683

strong, whereas MinoanER identifies such matches from the step of
blocking. RiMOM-IM [31] computes the tokens’ TF-IDF weights,
takes the top-5 tokens of each entity, and constructs a block for
each one, along with the attribute this value appears. Compared to
the full automation of MinoanER, this method requires attribute
alignment. [25] iteratively splits large blocks into smaller ones by
adding attributes to the blocking key. This leads to a prohibitive
technique for voluminous KBs of high Variety.

Disjunctive blocking schemes have been proposed for KBs of
high [18] and low [3] levels of schema heterogeneity. Both meth-
ods, though, are of limited applicability, as they require labelled
instances for their supervised learning. In contrast, MinoanER
copes with the Volume and Variety of the Web of Data, through an
unsupervised, schema-agnostic, disjunctive blocking.

Finally, LSH blocking techniques (e.g., [24]) hash descriptions
multiple times, using a family of hash functions, so that similar
descriptions are more likely to be placed into the same bucket
than dissimilar ones. This requires tuning a similarity threshold
between entity pairs, above which they are considered candidate
matches. This tuning is non-trivial, especially for descriptions
from different domains, while its effectiveness is limited for nearly
similar entities (see Figure 2).

6 EXPERIMENTAL EVALUATION
In this section, we thoroughly compare MinoanER to state-of-the-
art tools and a heavily fine-tuned baseline method.
Experimental Setup. All experiments were performed on top
of Apache Spark v2.1.0 and Java 8, on a cluster of 4 Ubuntu
16.04.2 LTS servers. Each server has 236GB RAM and 36 Intel(R)
Xeon(R) E5-2630 v4 @2.20GHz CPU cores.
Datasets. We use four established benchmark datasets with en-
tities from real KBs. Their technical characteristics appear in
Table 1. All KBs contain relations between the described entities.

Restaurant7 contains descriptions of restaurants and their ad-
dresses from two different KBs. It is the smallest dataset in terms
of the number of entities, triples, entity types8, as well as the
one using the smallest number of vocabularies. We use it for two
reasons: (i) it is a popular benchmark, created by the Ontology
Alignment Evaluation Initiative, and (ii) it offers a good example
of a dataset with very high value and neighbor similarity between
matches (Figure 2), involving the easiest pair of KBs to resolve.

Rexa-DBLP9 contains descriptions of publications and their
authors. The ground truth contains matches between both publica-
tions and authors. This dataset contains strongly similar matches in
terms of values and neighbors (Figure 2). Although it is relatively

7http://oaei.ontologymatching.org/2010/im/
8Extracted using the attribute w3.org/1999/02/22-rdf-syntax-ns#type.
9oaei.ontologymatching.org/2009/instances/

Table 2: Block statistics.
Restaurant Rexa- BBCmusic- YAGO-

DBLP DBpedia IMDb
|BN | 83 15,912 28,844 580,518
|BT | 625 22,297 54,380 495,973

| |BN | | 83 6.71·107 1.25·107 6.59·106

| |BT | | 1.80·103 6.54·108 1.73·108 2.28·1010

|E1 | · |E2 | 7.65·105 4.90·1010 1.51·1010 2.78·1013

Precision 4.95 1.81·10−4 0.01 2.46·10−4

Recall 100.00 99.77 99.83 99.35
F1 9.43 3.62·10−4 0.02 4.92·10−4

easy to resolve, Table 1 shows that it exhibits the greatest differ-
ence with respect to the size of the KBs to be matched (DBLP is
2 orders of magnitude bigger than Rexa in terms of descriptions,
and 3 orders of magnitude in terms of triples).

BBCmusic-DBpedia [14] contains descriptions of musicians,
bands and their birthplaces, from BBCmusic and the BTC2012
version of DBpedia10. In our experiments, we consider only en-
tities appearing in the ground truth, as well as their immediate
in- and out-neighbors. The most challenging characteristic of this
dataset is the high heterogeneity between its two KBs in terms
of both schema and values: DBpedia contains ∼11,000 different
attributes, ∼60,000 entity types, 953 relations, the highest number
of different vocabularies (6), while using on average 4 times more
tokens than BBCmusic to describe an entity. The latter feature
means that all normalized, set-based similarity measures like Jac-
card fail to identify such matches, since a big difference in the
token set sizes yields low similarity values (see Figure 2). A thor-
ough investigation has shown that in the median case, an entity
description in this dataset contains only 2 words in its values that
are used by both KBs [14].

YAGO-IMDb [33] contains descriptions of movie-related enti-
ties (e.g., actors, directors, movies) from YAGO11 and IMDb12.
Figure 2 shows that a large number of matches in this dataset has
low value similarity, while a significant number has high neighbor
similarity. Moreover, this is the biggest dataset in terms of entities
and triples, challenging the scalability of ER tools, while it is the
most balanced pair of KBs with respect to their relative size.
Baselines. In our experiments, we compare MinoanER against
four state-of-the-art methods: SiGMa, PARIS, LINDA and Ri-
MOM. PARIS is openly available, so we ran its original imple-
mentation. For the remaining tools, we report their performance
from the original publications13. We also consider BSL, a custom
baseline method that receives as input the disjunctive blocking
graph G, before pruning, and compares every pair of descriptions
connected by an edge in G. The resulting similarities are then
processed by Unique Mapping Clustering. Unlike MinoanER,
though, BSL disregards all evidence from entity neighbors, relying
exclusively on value similarity. Yet, it optimizes its performance
through a series of well-established string matching methods that
undergo extensive fine-tuning on the basis of the ground-truth.

In more detail, we consider numerous configurations for the
four parameters of BSL in order to maximize its F1: (i) The
schema-agnostic representation of the values in every entity. BSL
uses token n-grams for this purpose, with n ∈ {1, 2, 3}, thus repre-
senting every resource by the token uni-/bi-/tri-grams that appear

10datahub.io/dataset/bbc-music, km.aifb.kit.edu/projects/btc-2012/
11www.yago-knowledge.org
12www.imdb.com
13RiMOM-IM [31] is openly available, but no execution instructions were made
available to us.
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Figure 5: Sensitivity analysis of the four configuration parameters of our MinoanER.

in its values. (ii) The weighting scheme that assesses the impor-
tance of every token. We consider TF and TF-IDF weights. (iii)
The similarity measure, for which we consider the following well-
established similarities: Cosine, Jaccard, Generalized Jaccard and
SiGMa (which applies exclusively to TF-IDF weights [21]). All
measures are normalized to [0, 1]. (iv) The similarity threshold
that prunes the entity pairs processed by Unique Mapping Clus-
tering. We use all thresholds in [0, 1) with a step of 0.05. In total,
we consider 420 different configurations, reporting the highest F1.

6.1 Effectiveness Evaluation
Blocks Performance. First, we examine the performance of the
blocks used by MinoanER (and BSL). Their statistics appear in
Table 2. We observe that the number of comparisons in token
blocks (| |BT | |) is at least 1 order of magnitude larger than those of
name blocks (| |BN | |), even if the latter may involve more blocks
(|BN |> |BT | over YAGO-IMDb). In fact, | |BN | | seems to depend
linearly on the number of input descriptions, whereas | |BT | | seems
to depend quadratically on that number. Nevertheless, the over-
all comparisons in BT ∪ BN are at least 2 orders of magnitude
lower than the Cartesian product |E1 | · |E2 |, even though recall is
consistently higher than 99%. On the flip side, both precision and
F-Measure (F1) remain rather low.
Parameter Configuration. Next, we investigate the robustness of
our method with respect to its internal configuration. To this end,
we perform a sensitivity analysis, using the following meaningful
values for the four parameters of MinoanER: k ∈ {1, 2, 3, 4, 5}
(the number of most distinct predicates per KB whose values
serve as names), K ∈ {5, 10, 15, 2, 25} (the number of candidate
matches per entity from values and neighbors), N ∈ {1, 2, 3, 4, 5}
(the number of the most important relations per entity), and
θ ∈ {0.3, 0.4, 0.5, 0.6, 0.7, 0.8} (the trade-off between value- vs
neighbor-based candidates). Preliminary experiments demonstrated
that the configuration (k,K ,N ,θ ) = (2, 15, 3, 0.6) yields a perfor-
mance very close to the average one. Therefore, we use these
parameter values as the default ones in our sensitivity analysis.

In more detail, we sequentially vary the values of one parameter,
keeping the others fixed to their default value, so as to examine its
effect on the overall F1 of MinoanER. The results appear in the
diagrams of Figure 5. We observe that MinoanER is quite robust
in most cases, as small changes in a parameter value typically
lead to an insignificant change in F1. This should be attributed to
the composite functionality of MinoanER and its four matching
rules,in particular: even if one rule is misconfigured, the other
rules make up for the lost matches. There are only two exceptions:

(i) There is a large increase in F1 over BBCmusic-DBpedia
when k increases from 1 to 2. The former value selects completely
different predicates as names for the two KBs, due to the schema
heterogeneity of DBpedia, thus eliminating the contribution of the
name matching rule to F1. This is ameliorated for k=2.

(ii) F1 is significantly lower over BBCmusic-DBpedia and
YAGO-IMDb for θ < 0.5. This should be expected, since Figure

Table 3: Evaluation of MinoanER in comparison to the state-
of-the-art methods and the heavily fine-tuned baseline, BSL.

Restau- Rexa- BBCmusic- YAGO-
rant DBLP DBpedia IMDb

SiGMa [21]
Prec. 99 97 - 98
Recall 94 90 - 85
F1 97 94 - 91

LINDA [4]
Prec. 100 - - -
Recall 63 - - -
F1 77 - - -

RiMOM [23]
Prec. 86 80 - -
Recall 77 72 - -
F1 81 76 - -

PARIS [33]
Prec. 95 93.95 19.40 94
Recall 88 89 0.29 90
F1 91 91.41 0.51 92

BSL
Prec. 100 96.57 85.20 11.68
Recall 100 83.96 36.09 4.87
F1 100 89.82 50.70 6.88

MinoanER
Prec. 100 96.74 91.44 91.02
Recall 100 95.34 88.55 90.57
F1 100 96.04 89.97 90.79

2 demonstrates that both datasets are dominated by nearly-similar
matches, with the value similarity providing insufficient evidence
for detecting them. Hence, θ should promote neighbor-similarity
at least to the same level as the value-similarity (i.e., θ ≥ 0.5).

As a result, next, we can exclusively consider the configuration
(k,K ,N ,θ ) = (2, 15, 3, 0.6) for MinoanER. This is the suggested
global configuration that works well over all datasets, but parame-
ter tuning per individual dataset may yield better results.
Comparison with Baselines. Table 3 shows that MinoanER of-
fers competitive performance when matching KBs with few at-
tributes and entity types, despite requiring no domain-specific
input. Specifically, it achieves 100% F1 in Restaurant, which is
3% higher than SiGMa, 9% higher than PARIS, and ∼20% higher
than LINDA and RiMOM. BSL also achieves perfect F1, due
to the strongly similar matches (see Figure 2). In Rexa-DBLP,
MinoanER also outperforms all existing ER methods. It is 2%
better than SiGMa in F1, 4.6% better than PARIS, 20% better than
RiMOM, and 6% better than BSL. In YAGO-IMDb, MinoanER
achieves similar performance to SiGMa (91% F1), with more iden-
tified matches (91% vs 85%), but lower precision (91% vs 98%).
Compared to PARIS, its F1 is 1% lower, due to 3% lower precision,
despite the 1% better recall. The high structural similarity between
the two KBs make this dataset a good use case for PARIS. BSL
exhibits the worst performance, due to the very low value similar-
ity of matches in this KB. Most importantly, MinoanER achieves
the best performance by far over the highly heterogeneous KBs
of BBCmusic-DBpedia. PARIS struggles to identify the matches,
with BSL performing significantly better, but still poorly in abso-
lute numbers. In contrast, MinoanER succeeds in identifying 89%
of matches with 91% precision, achieving a 90% F1.

Comparing the performance of MinoanER to that of its input
blocks, precision raises by several orders of magnitude at the cost
of slightly lower recall. The lower recall is caused by missed
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Table 4: Evaluation of matching rules.

Restau- Rexa- BBCmusic- YAGO-
rant DBLP DBpedia IMDb

R1
Precision 100 97.36 99.85 97.55
Recall 68.54 87.47 66.11 66.53
F1 81.33 92.15 79.55 79.11

R2
Precision 100 96.15 90.73 98.02
Recall 100 30.56 37.01 69.14
F1 100 46.38 52.66 81.08

R3
Precision 98.88 94.73 81.49 90.51
Recall 98.88 94.73 81.49 90.50
F1 98.88 94.73 81.49 90.50

¬R4
Precision 100 96.03 89.93 90.58
Recall 100 96.03 89.93 90.57
F1 100 96.03 89.93 90.58

No Precision 100 96.59 89.22 88.05
Neigh- Recall 100 95.26 85.36 87.42
bors F1 100 95.92 87.25 87.73

matches close to the lower left corner of Figure 2, i.e., with very
low value and neighbor similarities. This explains why the impact
on recall is larger for BBCmusic-DBpedia and YAGO-IMDb.
Evaluation of Matching Rules. Table 4 summarizes the perfor-
mance of each matching rule in Algorithm 2, when executed alone,
as well as the overall contribution of neighbor similarity evidence.
• Name Matching Rule (R1). This rule achieves both high pre-

cision (> 97%) and a decent recall (> 66%) in all cases. Hence,
given no other matching evidence, R1 alone yields good matching
results, emphasizing precision, with only an insignificant num-
ber of its suggested matches being false positives. To illustrate
the importance of this similarity evidence in real KBs, we have
marked the matches with identical names in Figure 2 as bordered
points. Thus, we observe that matches may agree on their names,
regardless of their value and neighbor similarity evidence.
• Value Matching Rule (R2). This rule is also very precise

(> 90% in all cases), but exhibits a lower recall (> 30%). Never-
theless, even this low recall is not negligible, especially when it
complements the matches found from R1. In the case of strongly
similar matches as in Restaurant, this rule alone can identify all
the matches with perfect precision.
• Rank Aggregation Matching Rule (R3). The performance of

this rule varies across the four datasets, as it relies on neighbor-
hood evidence. For KBs with low value similarity (left part of
Figure 2), this rule is the only solution for finding matches having
no/different names. In BBCmusic-DBpedia and YAGO-IMDb, it
has the highest contribution in recall and F1 of all matching rules,
with the results for YAGO-IMDb being almost equivalent to those
of Table 3 (YAGO-IMDb features the lowest value similarities in
Figure 2). For KBs with medium value similarity (middle part of
Figure 2), but not enough to find matches with R2, aggregating
neighbor with value similarity is very effective. In Rexa-DBLP,
R3 yields almost perfect results. Overall, R3 is the matching rule
with the greatest F1 in 3 out of 4 datasets.
• Reciprocity Matching Rule (R4). Given that R4 is a filtering

rule, i.e., it does not add new results, we measure its contribution
by running the full workflow without it. Its performance in Table 4
should be compared to the results in Table 3. This comparison
shows that this rule increases the precision of MinoanER, with a
small, or no impact on recall. Specifically, it increases the preci-
sion of BBCmusic-DBpedia by 1.51%, while its recall is decreased
by 1.38%, and in the case of YAGO-IMDb, it improves precision
by 0.44% with no impact on recall. This results in an increase of
0.04% and 0.21% in F1. Overall, R4 is the weakest matching rule,
yielding only a minor improvement in the results of MinoanER.

Contribution of neighbors. To evaluate the contribution of neigh-
bor evidence in the matching results, we have repeated Algo-
rithm 2, without the rule R3. Note that this experiment is not
the same as our baseline; here, we use all the other rules, also
operating on the pruned disjunctive blocking graph, while the
baseline does not use our rules and operates on the unpruned
graph. The results show that neighbor evidence plays a minor or
even no role in KBs with strongly similar entities, i.e., Restaurant
and Rexa-DBLP, while having a bigger impact in KBs with nearly
similar matches, i.e., BBCmusic-DBpedia and YAGO-IMDb (see
Figure 2). Specifically, compared to the results of Table 3, the use
of neighbor evidence improves precision by 2.22% and recall by
3.19% in BBCmusic-DBpedia, while, in YAGO-IMDB, precision
is improved by 2.97% and recall by 3.15%.

6.2 Efficiency Evaluation
To evaluate the scalability of matching in MinoanER, we present
in Figure 6 the running times and speedup of matching for each
dataset, as we change the number of available CPU cores in our
cluster, i.e., the number of tasks that can run at the same time. In
each diagram, the left vertical axis shows the running time and the
right vertical axis shows the speedup, as we increase the number
of available cores (from 1 to 72) shown in the horizontal axis14.
Across all experiments, we have kept the same total number of
tasks, which was defined as the number of all cores in the cluster
multiplied by a parallelism factor of 3, i.e., 3 tasks are assigned
to each core, when all cores are available. This was to ensure
that each task would require the same amount of resources (e.g.,
memory), regardless of the number of available cores.

We observe that the running times decrease as more cores be-
come available, and this decrease is steeper when using a small
number of cores. For example, resolving Rexa-DBLP with 6 cores
is 6 times faster than with 1 core, while it is 10 times faster with
12 cores than with 1 core (top-right of Figure 6). We observe a
sub-linear speedup in all cases, which is expected when synchro-
nization is required for different steps (see Section 4.1). Though,
the bigger datasets have a speedup closer to linear than the smaller
ones, because the Spark overhead is smaller with respect to the
overall running time in these cases. We have also measured the
percentage of time spent for the matching phase (Algorithm 2)
compared to the total execution time of MinoanER. In Restau-
rant and Rexa-DBLP, matching takes 45% of the total time, in
BBCmusic-DBpedia 30% and in YAGO-IMDb 20%. Thus, in all
cases, matching takes less than half the execution time, while it
takes smaller percentage of time as the tasks get bigger.

It is not possible to directly compare the efficiency of Mi-
noanER with the competitive tools of Table 3; most of them are
not publicly available, while the available ones do not support
parallel execution using Spark. The running times reported in the
original works are about sequential algorithms executed in ma-
chines with a different setting than ours. However, we can safely
argue that our fixed-step process, as opposed to the data-iterative
processes of existing works, boosts the efficiency of MinoanER at
no cost in (or, in most cases, with even better) effectiveness. In-
dicatively, the running time of MinoanER for Rexa-DBLP was 3.5
minutes (it took PARIS 11 minutes on one of our cluster’s servers
- see Experimental Setup - for the same dataset), for BBCmusic-
DBpedia it was 69 seconds (it took PARIS 3.5 minutes on one of

14We could not run MinoanER on the YAGO-IMDb dataset with only 1 core, due
to limited space in a single machine, so we report its running time starting with a
minimum of 4 cores. This means that the linear speedup for 72 tasks would not be
72, but 18 (72/4).
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Figure 6: Scalability of matching in MinoanER w.r.t. running time (left vertical axis) and speedup (right vertical axis) as more
cores are involved.

our cluster’s servers), while the running time for YAGO-IMDb
was 28 minutes (SiGMa reports 70 minutes, and PARIS reports
51 hours). In small datasets like Restaurant, MinoanER can be
slower than other tools, as Spark has a setup overhead, which is
significant for such cases (it took MinoanER 27 seconds to run
this dataset, while PARIS needed 6 seconds).

7 CONCLUSIONS
In this paper, we have presented MinoanER, a fully automated,
schema-agnostic and massively parallel framework for ER in the
Web of Data. To resolve highly heterogeneous entities met in
this context, MinoanER relies on schema-agnostic similarity met-
rics that consider both the content and the neighbors of entities. It
exploits these metrics in a composite blocking scheme and concep-
tually builds a disjunctive blocking graph - a novel, comprehensive
abstraction that captures all sources of similarity evidence. This
graph of candidate matches is processed by a non-iterative al-
gorithm that consists of four generic, schema-agnostic matching
rules, with linear cost to the number of entity descriptions and
robust performance with respect to their internal configuration.

The results show that neighbor evidence plays a minor role
in KBs with strongly similar entities, such as Restaurant and
Rexa-DBLP, while having a big impact in KBs with nearly sim-
ilar entities, such as in BBCmusic-DBpedia and YAGO-IMDb.
MinoanER achieves at least equivalent performance with state-of-
the-art ER tools over KBs exhibiting low Variety, but outperforms
them to a significant extent when matching KBs with high Variety.
The employed matching rules (R1, R2, R3, R4) manage to cover
a wide range of matches, as annotated in Figure 2, but there is
still room for improvement, since the recall of blocking is better
than that of matching. As an improvement, we will investigate
how to create an ensemble of matching rules and how to set the
parameters of pruning candidate pairs dynamically, based on the
local similarity distributions of each node’s candidates.
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ABSTRACT
Cross-domain knowledge bases such as YAGO, DBpedia, or the
Google Knowledge Graph are being used as background knowl-
edge within an increasing range of applications including web
search, data integration, natural language understanding, and
question answering. The usefulness of a knowledge base for these
applications depends on its completeness. Relational HTML ta-
bles from the Web cover a wide range of topics and describe
very specific long tail entities, such as small villages, less-known
football players, or obscure songs.

This systems and applications paper explores the potential of
web table data for the task of completing cross-domain knowl-
edge bases with descriptions of formerly unknown entities. We
present the first system that handles all steps that are necessary
for this task: schema matching, row clustering, entity creation,
and new detection. The evaluation of the system using a manu-
ally labeled gold standard shows that it can construct formerly
unknown instances and their descriptions from table data with
an average F1 score of 0.80. In a second experiment, we apply
the system to a large corpus of web tables extracted from the
Common Crawl. This experiment allows us to get an overall im-
pression of the potential of web tables for augmenting knowledge
bases with long tail entities. The experiment shows that we can
augment the DBpedia knowledge base with descriptions of 14
thousand new football players as well as 187 thousand new songs.
The accuracy of the facts describing these instances is 0.90.

1 INTRODUCTION
Cross-domain knowledge bases like YAGO [18], DBpedia [20],
Wikidata [30], or the Google Knowledge Graph are being em-
ployed for an increasing range of applications, including natural
language processing, web search, and question answering.

The YAGO, DBpedia, and Wikidata knowledge bases all rely
on data that has been extracted from Wikipedia and as a result
cover mostly head instances that fulfill the Wikipedia notability
criteria. Their coverage of less well known instances from the
long tail is rather low [11]. As the usefulness of a knowledge base
often increases with its completeness, adding long tail instances
to an existing knowledge base is an important task.

Web tables [8], which are relational HTML tables extracted
from the Web, contain large amounts of structured information,
covering a wide range of topics, and describe very specific long
tail instances. Web tables are thus a promising source of informa-
tion for the task of augmenting cross-domain knowledge bases.

Augmenting knowledge bases with descriptions of long tail
instances requires, on the one hand, identifying instances of a
specific class that are not yet part of a knowledge base, and,

© 2019 Copyright held by the owner/author(s). Published in Proceedings of the
22nd International Conference on Extending Database Technology (EDBT), March
26-29, 2019, ISBN 978-3-89318-081-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

on the other hand, compiling descriptions of the new instances
according to the schema of the knowledge base. Two areas of
related work are relevant for this task: Existing work on slot
filling [11, 22, 23, 27, 29] focuses on adding missing facts describ-
ing existing instances to a knowledge base. The methods do not
attempt to discover new instances. In contrast, existing research
on set expansion [24, 31, 32] focuses on determining the names
of new instances and is not concerned with compiling struc-
tured descriptions of those instances according to a schema of a
knowledge base. As most set expansion methods disambiguate
new instances solely based on names, they miss the potential of
exploiting additional features for disambiguation.

As a result, no viable methods that are able to automatically
augment a knowledge base with new instances and their descrip-
tions exist. In this work, we close this gap by introducing and
evaluating the first system that is able to generate descriptions of
formerly unknown long-tail entities given a corpus of relational
web tables. The system exploits the synergies between the task
of identifying new instances and compiling descriptions of these
instances using an iterative approach. The contributions of the
paper are as follows:

• We introduce the first system that is able to generate de-
scriptions of new instances given the set of all instances of
a class from a knowledge base and a corpus of relational
web tables.

• We evaluate our system using a manually built gold stan-
dard of annotatedweb tables and report the lessons learned
from this experiment.

• We run our system over a large corpus of web tables which
allows us to profile the general potential of web table data
for augmenting knowledge bases with descriptions of long
tail instances.

Figure 1 gives an overview of the overall process performed
by our system. The process consists of four main steps which are
executed in two iterations. We first apply schema matching meth-
ods to match web tables and attribute columns of those tables
to classes and properties in the knowledge base. Second, a row
clustering method identifies rows that describe the same entity.
From these row clusters, the entity creation component creates
entity descriptions according to the schema of the knowledge
base. Finally, the new detection component determines whether
an entity already exists in the knowledge base. We iterate over
the pipeline a second time using the row clusters and entity-to-
instance correspondences from the first run in order to refine the
schema mapping. After the second run of the pipeline, entities
identified as new are added to the knowledge base.

The paper is structured as follows: First, we describe the pro-
file of the knowledge base, the web table corpus, and the gold
standard that are used for the experiments throughout the pa-
per. Section 3 describes and evaluates the individual steps of the
overall process. Section 4 discusses the overall performance of
the pipeline on the gold standard, while in Section 5 we run our
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Table 1: Number of instances and facts for selected DBpe-
dia classes.

Class Instances Facts

GF-Player 20,751 137,319
Song 52,533 315,414
Settlement 468,986 1,444,316

system on the large corpus of web tables in order to profile the
overall potential of web tables for the task at hand. Section 6
compares our system to the related work.

2 EXPERIMENTAL SETUP
This section describes the datasets that we use to evaluate our
system. We will first describe the knowledge base and the se-
lection of classes we aim to extend. We then describe the web
table corpus in which we hope to find new instances. We finally
describe the gold standard that we use throughout this work.

2.1 Knowledge Base and Classes
We employ DBpedia [20] as the target knowledge base to be
extended. It is extracted fromWikipedia and especiallyWikipedia
infoboxes. As a result, the covered instances are limited to those
identified as notable by the Wikipedia community.

From DBpedia we selected three classes on which we focus
throughout this work. To ensure that information covered by the
classes is diverse, we selected each from a different first-level
class, i.e. Agent, Work, and Place. To ensure that the classes are
not too broad, we preferred classes further down in the hierarchy.
As a result we chose the following three classes: GridironFoot-
ballPlayer (GF-Player), Song and Settlement. The class Song in-
cludes all instances of the class Single. Tables 1 and 2 provide an
overview of the number of instances and facts, and the property
densities of those classes. We only consider properties that have
an initial density of at least 30 %. We use the 2014 release of DBpe-
dia, as this release has been used in related work [22, 23, 26, 27],
and its release date is also closer to the extraction of the web
table corpus used in this work.

Table 1 shows that DBpedia already covers tens of thousands
of instances for the profiled classes. This could indicate that most
of the well-known instances are already covered, so that we are
especially interested in finding instances from the long tail.

Table 2 also reveals that the density differs significantly from
property to property. Only the properties of class Song have
consistently high densities larger than 60 %. The football player
class has many properties, but half of them have a density below
50 %. The class Settlement suffers from both, a small number of
properties, and low densities for some of them.

Table 2: Number of facts and property densities for se-
lected DBpedia properties.

Class Property Facts Density

GF-Player birthDate 20,218 97.43 %
GF-Player college 19,281 92.92 %
GF-Player birthPlace 17,912 86.32 %
GF-Player team 13,349 64.33 %
GF-Player number 11,430 55.08 %
GF-Player position 11,240 54.17 %
GF-Player height 10,059 48.47 %
GF-Player weight 10,027 48.32 %
GF-Player draftYear 7,947 38.30 %
GF-Player draftRound 7,932 38.22 %
GF-Player draftPick 7,924 38.19 %

Song genre 47,040 89.54 %
Song musicalArtist 45,097 85.85 %
Song recordLabel 43,053 81.95 %
Song runtime 42,035 80.02 %
Song album 40,666 77.41 %
Song writer 33,942 64.61 %
Song releaseDate 31,696 60.34 %

Settlement country 433,838 92.51 %
Settlement isPartOf 416,454 88.80 %
Settlement populationTotal 292,831 62.44 %
Settlement postalCode 154,575 32.96 %
Settlement elevation 146,618 31.26 %

2.2 Web Table Corpus
In this work, we utilize the english-language relational tables
set of the Web Data Commons 2012 Web Table Corpus.1 The
set consists of 91.8 million tables. Table 3 gives an overview of
the general characteristics of tables in the corpus. We can see
that the majority of tables are rather short, with an average of
10.4 rows and a median of 2, whereas the average and median
number of columns are 3.5 and 3. As a result, a table on average
describes 10 instances with 30 values, which likely is a sufficient
size and potentially useful for finding new instances and their
descriptions. In [27] we have profiled the potential of the same
corpus for the task of slot filling, meaning to find missing values
for existing DBpedia instances.

For every table we assume that there is one attribute that
contains the labels of the instances described by the rows. The
remaining columns contain values, which potentially can be used
to generate descriptions according to the knowledge base schema.

1http://webdatacommons.org/webtables/#toc3
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Table 3: Characteristics of the web table corpus.

Average Median Min Max

Rows 10.37 2 1 35,640
Columns 3.48 3 2 713

Table 4: Number of tables and value correspondences for
selected classes.

Class Tables VMatched VUnmatched

GF-Player 10,432 206,847 35,968
Song 58,594 1,315,381 443,194
Settlement 11,757 82,816 13,735

For the three evaluated classes, Table 4 shows the result of
matching the table corpus to existing instances and properties in
DBpedia, using a method from previous work [26, 27]. The first
column shows the number ofmatched tables that have at least one
matched attribute column. Rows of those tables were matched
directly to existing instances of DBpedia. From the second and
third columns we see how many values were matched to existing
instances and how many values remained unmatched. While
more values were matched, the number of unmatched values is
still large, especially for the song class.

2.3 Gold Standard
For the purpose of this work we built a publicly available gold
standard of annotated web tables. We first annotated clusters of
rows that describe the same instance. Additionally, we annotated
if these clusters describe new instances and for clusters that over-
lap with existing instances in DBpedia, we also annotated the
clusters with the correspondence to the existing instance. We
annotated attribute-to-property correspondences, where table
columns are mapped to properties in DBpedia. Finally, we anno-
tate facts for all cluster and property combinations for which a
candidate value exist in the annotated web tables.

The gold standard contains tables with instances of varying
degree of popularity, so that they describe head and long tail
instances. We also prioritized tables with rows that are unlikely
to have a match in DBpedia and ensured that for some labels, we
select at least five rows to be able to form large enough clusters.

Table 5 provides an overview of the annotations per class. In
the first three columns we see the number of table, attribute and
row annotations. On average, we have 1.85 attribute annotations
per table, not counting the label attribute. The two following
columns show the number of annotated clusters, followed by the
number of values within those clusters that match a knowledge
base property. The second to last column shows the number
of overall value groups, i.e. the number of cluster and property
combinations for which at least one candidate value exists. For all
groups we included facts, i.e. the correct value given the group’s
cluster and property. The last column shows for how many of
the groups, the correct value is contained among the candidate
values. We annotated 271 clusters, of which 39 % are new. On
average, each cluster has approximately 3.42 rows, 7.69 values,
3.17 value groups and their facts, and 2.88 groups where the
correct value is present in the web tables.

We use the gold standard for learning and testing. For this,
we split the data into three folds and performed cross-validation.

We ensured that we evenly split new clusters and homonym
groups, which are groups of clusters with highly similar labels.
All clusters of a homonym group were always placed in one fold.

The gold standard, along with the code and other data, is pub-
licly available.2 The results of this work are therefore replicable.

3 METHODOLOGY
In this section we present our system and evaluate alternative ap-
proaches for the individual components of the pipeline. As shown
in Figure 1, the pipeline begins with the web tables and ends with
entities being added to the knowledge base as new instances.
In between, the pipeline consists of four components: schema
matching, row clustering, entity creation and new detection.

We iterate over the pipeline twice. During the second run, we
utilize the output of the row clustering and the new detection to
generate a refined schema mapping. The attribute-to-property
correspondences derived by the schema matching are important,
because they allow us to extract for a row a set of values which
correspond to the schema of the knowledge base. These values
are utilized by the row clustering and new detection components
with a positive impact on performance. More importantly, these
values are required to create descriptions for new instances.

During the schema matching phase, we also match each table
to a class in the knowledge base. Afterwardswe run the remainder
of the pipeline for each class separately.

3.1 Schema Matching
The first step in the pipeline is to create a mapping between
the schemata of the individual web tables and the schema of the
knowledge base. As the web tables have heterogeneous schemata,
this task is non-trivial. Overall there are four steps necessary: (1)
data type detection, (2) label attribute detection, (3) table-to-class
matching and (4) attribute-to-property matching.

Data Type Detection
Throughout our pipeline we utilize a number of data types to
type individual values, facts, attribute columns or knowledge base
properties. Each type has a corresponding similarity function,
and an equivalence threshold, which is used to determine if the
compared values are equal. We employ overall six data types:

• Text: string, where two strings do not have to be exactly
equal to be similar, e.g. label of an instance.

• Nominal String: string, where two strings are either
completely equal or unequal, e.g. ISO code of a country.

• Instance Reference: reference to an instance, e.g. team
of an athlete or musical artist of a song.

• Date: date with two possible granularities: year or specific
day, e.g. release date of song, or birth date of a person.

• Quantity: numeric quantity, where numeric closeness
has a semantic relevance, e.g. population of a settlement.

• Nominal Integer: integer, where numbers close to each
other are not semantically related. This include e.g. num-
bers or draft rounds of athletes. Typing nominal integers
in addition to nominal strings allows some components, es-
pecially the attribute-to-property matcher, to use methods
tailored for this type.

We run a data-type detection algorithm [26] that assigns to each
table attribute one of the following types: text, date and quantity.
Detecting the other three types requires an understanding of the

2http://data.dws.informatik.uni-mannheim.de/expansion/LTEE/
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Table 5: Overview of the gold standard.

Existing New Matched Value Correct
Class Tables Attributes Rows Clusters Clusters Values Groups Value Present

GF-Player 192 572 358 81 19 1,207 475 444
Song 152 248 193 34 63 425 231 212
Settlement 188 162 376 49 25 451 152 124

actual semantics of an attribute, so that they are assigned by the
attribute-to-property matcher, after an attribute has successfully
been matched to a knowledge base property.

The data type detection is performed using manually defined
regular expressions. We decide the data type of an attribute based
on the majority data type among its values.

Label Attribute Detection
For each table we assign one column as the label attribute, which
contains natural language labels for the entities described in the
table rows [26]. For this we find the column with the data type
text and the highest number of unique values. In case there is
a tie between multiple columns, we choose the column that is
furthest to the left [26].

Table-to-Class Matching
We utilize an approach that performs both row-to-instance and
attribute-to-property matching to find the class of a table.

We first extract from the label attribute a label for each row,
and use the label to find candidate instances from the knowledge
base. A class, for which many rows of a table have a candidate
instance, is chosen as a possible candidate class of that table. We
assign the number of rows with a match as a score to that class.

Given these candidate classes, we then evaluate how well
their properties match. We compare the values in the rows with
facts of their candidate instance in the knowledge base, to find if
they match a certain property of the candidate class. We block
comparisons based on data type as detected above. Using the
matched values we are able to perform duplicate-based attribute-
to-property matching [5], where we chose the property with the
highest number of matched cells as the property of the attribute,
and assign the number as the score of the correspondence.

Per candidate class, we aggregate all scores to compute a
ranked list of candidate classes. We choose the class with the
highest score as the class of the table. This approach was pro-
posed and evaluated by Ritze et al., where authors find that it
can achieve an F1 score of 0.97 on a web table corpus [26].

Attribute-to-Property Matching
Our attribute-to-property matching approach consists of three
steps. We first select candidate properties from the knowledge
base schema based on data types. For text attributes, we choose
all properties with types instance reference, nominal string and
text, for quantity attributes we choose properties with types
quantity and nominal integer and finally for date attributes, we
choose properties with types date, quantity and nominal integer
as candidates. After matching, the data type of the attribute is
changed to the data type of the matched property and the values
are accordingly normalized.

Secondly, we use various matchers, described further below,
to compute matching scores. Given a candidate knowledge base
property, a matcher finds a score from 0.0 to 1.0 that measures

Table 6: Attribute-to-property matching performance by
iteration.

Iteration P R F1

First 0.929 0.608 0.735
Second 0.924 0.916 0.920
Third 0.929 0.916 0.922

the likelihood that the attribute matches the property. Scores
of multiple matchers are then aggregated based on a weighted
average, where weights are learned for each class individually.

We then utilize thresholds on the aggregated scores to de-
termine if a certain candidate property matches an attribute.
The thresholds are learned per property of the knowledge base
schema. An attribute is matched to a property if it is both, a prop-
erty that achieves a score above the property-specific threshold,
and the property with the highest aggregated score.

Overall we implement five matchers, three of which exploit
the knowledge base. KB-Overlap computes the proportion of
values in the attribute that generally fit the candidate property in
the knowledge base. KB-Label compares the label in the attribute
header row to the labels of the candidate property in the knowl-
edge base. KB-Duplicate computes the proportion of values in
the attribute that is equal to the fact of the candidate property
in the knowledge base, based on the instance correspondences
generated by the new detection component.

We further implement two matchers that exploit the large web
table corpus. For this, we first match attributes using the above
described matchers for a preliminary mapping. We then rerun
the matching using two additional matchers that exploit the pre-
liminary mapping and the web table corpus. WT-Label utilizes
the column headers of columns matched in the preliminary run,
to derive label-to-property scores, where the score represents
the likelihood that an attribute with a certain header row label
corresponds to a certain candidate property of the knowledge
base. WT-Duplicate knows through a previous row clustering
run which rows in the tables describe the same instances. Using
the preliminary mappings, we can find values in the corpus that
are matched to same instance and property. This matcher mea-
sures and returns the proportion of values in an attribute, for
which an equal value matched to same instance exists.

Table 6 shows by iteration the performance of an attribute-
to-property matching method that aggregates all matchers. The
duplicate-based methods are not included in the first iteration,
as they require output from the other pipeline components. We
evaluated the methods on the attribute annotations in the gold
standard. We split the annotations first into a learning and a test-
ing set, where the learning set contains two third of annotations.

From the table we can see that a second iteration and the uti-
lization of the output of the row clustering and the new detection
components have a large positive effect on schema matching
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performance. The table also shows that a third iteration has only
a marginal positive effect, so that two iterations suffice.

To determine the usefulness of each individual matcher, we
evaluate the weights assigned in the aggregated method of the
second iteration. As we learn weights per class, the following
weights are averages. The duplicate-based matchers have a com-
bined weight of 0.43, where the KB-Duplicate matcher with
a weight of 0.25 is more important. The label-based matchers
achieve a higher combined weight of 0.46 where the WT-Label
with a weight of 0.25 is very effective. Finally the KB-Overlap
method is the least important method with a weight of 0.10. Ad-
ditionally, the distribution of weights for the individual classes
were similar to the here mentioned averages.

From the weights we can first of all see, that the attribute
label is quite an effective method for schema matching. More
importantly, we can conclude, that the most effective approach
is one that combines various matchers and thereby exploits the
highest number of individual signals for schema matching.

3.2 Row Clustering
After matching tables to classes and table attributes to properties
of the knowledge base, we cluster rows that describe the same
instance together. This step is especially important, as it reveals
the overall number of unique instances described in the tables.

Our row clustering methods consist of a row similarity metric,
which measures the likelihood that two rows describe the same
instance, and a clustering algorithm, that utilizes the similarity
metric to create clusters of rows.

In earlier work [25–27], we determined which rows describe
the same instance by matching them to existing instances in the
knowledge base. As a result, our earlier methods were unable
to cluster rows of new instances, unlike in this work, where we
perform clustering independently from existing instances.

Clustering Algorithm
In the context of this work, a required feature of the clustering
algorithm is its ability to determine the number of clusters. In
case of a perfect clustering, this number would correspond to the
exact number of instances described by the rows of all tables.

Correlation clustering approaches [1, 2, 6, 10] fulfill this re-
quirement. Clustering here is viewed as an optimization problem
that aims to find the optimal partitioning of a set of vertices by
maximizing a fitness function that aggregates similarities within
a partition and dissimilarities between partitions.

Due to the large number of rows that need to be clustered (see
Table 11), we need clustering methods that scale. As correlation
clustering approaches try to find the globally optimum solution,
they do not scale for the task at hand. We therefore utilize a
greedy correlation clustering algorithm [15, 16], which solves
the optimization problem locally for each decision made by the
clusterer. The algorithm employs a row similarity function with
a normalized output from −1.0 to 1.0 and sequentially tries to
assign each row to the optimum cluster by summing the similarity
scores of the current row with all individual rows in already
created clusters in order to compute aggregated row-to-cluster
scores. If there are scores larger than zero, the row is assigned
to the cluster with the highest score. If no score is larger than
zero, a new cluster is created, and the row is assigned to it. While
every row assignment or cluster creation would maximize the
fitness function locally, this does not ensure global optimization.

To achieve further scalability, we perform the row assignment
in parallel instead of sequentially. While this is much faster, it
can results in errors during clustering. We therefore run the
Kernighan-Lin with joins (KLj) [19] clustering algorithm as a
secondary step. The algorithm improves an existing preliminary
clustering, in our case the output of the parallelized greedy clus-
tering, by comparing cluster pairs and attempting to move indi-
vidual rows between those clusters or merging the clusters fully.
Similarly, each cluster is compared with an empty set to find
whether splitting a cluster increases the fitness function locally.
The operations are repeated until no further operation is able to
increase the local fitness function.

As a result, we are able to quickly build a preliminary cluster-
ing with complete parallelization, while with a second step, we
ensure that clustering quality is still high. Scalability is further
ensured by the blocking approach described below.

Row Similarity Metrics
A row similarity metric compares two rows and returns a score
that measures the likelihood that the two rows describe the same
instance. Depending on the exact implementation, other input,
e.g. from the knowledge base or the web table corpus, might be
utilized. We implement six different similarity metrics:

• LABEL:We use the label attribute of a table to derive labels
for all rows to then derive a similarity score by comparing
labels using the Monge-Elkan similarity with Levenshtein
as the inner similarity function.

• BOW: For each row we create a bag-of-words binary term
vector that contains the terms that occur in all cells of
a row. For this, cell values are cleaned, normalized and
tokenized. To compare two rows, we compute the cosine
similarity of their vectors.

• PHI: This approach allows us to compare two rows by
comparing their tables. It derives a similarity between two
tables using the PHI correlation of row labels, which we
first compute using the following formula:

PHI (x,y) =
n × nxy − nx × ny√

nx × ny × (n − nx ) × (n − ny )
,

where n = total number of unique labels,
nab = occurrence of labels a and b in same table,
na = occurrence of label a in a table.

For each label we therefore have a vector that measures
its correlation with all other labels in the corpus. We then
create such a vector for each table, by averaging the vectors
of the table’s row labels. With this we attempt to derive a
vector that captures semantic information about all rows
described in the table. When comparing two rows, we
return the cosine similarity of the vectors of their tables.

• ATTRIBUTE: Using the attribute-to-property correspon-
dences we can derive for each row values matched to
the knowledge base schema. This allows us to perform
value normalization and apply data-type-specific similar-
ity functions to compare row values. If the two rows being
compared have overlapping value pairs, so that both val-
ues are matched to same property, we use the data type
similarity function to determine if those values are equal,
assigning them a score of either 1.0 or 0.0. As there are
possibly more than one overlapping value pair, the simi-
larity returned equals to the average similarity scores of
all pairs. Additionally, a confidence score is attached that
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equals the number of pairs compared. This confidence
score is used by the aggregation methods described below.

• IMPLICIT_ATT: Many tables have rows that describe in-
stances that are similar, e.g. cities in Germany or athletes
drafted in 2010. This information is not stated explicitly
in any of the row cells. Using the following approach, we
attempt to derive for a table implicit property-value com-
binations that apply to all instances described by the table.
We can then use these implicit property-value combina-
tions to compare rows with each other.
We first use the row labels to find candidate instances
for all rows, and then for each row all property-value
combinations that exist for at least one candidate in the
knowledge base. For each property-value combination we
then derive a score for the whole table, which equals the
proportion of rows that have this combination. We keep
only combinations with a score above a certain threshold.
The remaining combinations are the implicit attributes of
a table and their score is assigned as a confidence score.
Given two rows we compare the implicit attributes of
one row with overlapping implicit attributes and column
attributes of the other row and vice versa. We return the
average of the similarities of all compared pairs and the
sum of the implicit attribute scores as the confidence.

• SAME_TABLE: This metric builds on the observation that
rows in a single table usually describe different entities.
The metric assigns two rows of the same table a similarity
of 0.0, otherwise 1.0.

Similarity Score Aggregation
We implement two approaches to aggregate the row similarity
scores. We first utilize a weighted average, where the weights
assigned to each metric are learned. In this case, attached confi-
dence scores are not considered. We also learn a threshold, where
scores above the threshold indicate that the rows describe the
same instance. This threshold is used to normalize the similar-
ity metric to −1.0 and 1.0. To learn the weights, we model the
data in the learning set as row-pairs that either match or not, i.e.
with scores of either 1.0 or 0.0. When learning weights we uti-
lize a genetic algorithm that attempts to maximize the matching
performance on the learning set.

As a second, alternative aggregation approach, we use random
forest regression tree [7], where as features we include both
similarity and confidence scores. We again model the data as
row-pairs, where non-matching row-pairs are assigned a score
of −1.0, while matching pairs a score of 1.0. To learn the random
forest regression tree we utilize the WEKA library. We learn the
hyperparameters of the algorithm by using the out-of-bag error
with different out-of-bag rates on the learning set.

As a third aggregation approach, we combine both aggregation
methods using a weighted average, where the weights are also
learned as described above. In all cases we upsample to balance
the number of matching and non-matching row pairs.

Blocking
To ensure the scalability of the row clustering for large web
table corpora, we implement a blocking algorithm. We block
comparisons by first limiting the number of clusters a row is
compared to during the parallel greedy clustering, and, secondly,
limiting the cluster pairs that are compared with each other
during the KLj clustering.

Table 7: Average clustering performance and metric im-
portance scores for alternative row clustering methods.

Run PCP AR F1 MI

LABEL 0.71 0.83 0.76 0.33
+ BOW 0.73 0.84 0.78 0.18
+ PHI 0.74 0.84 0.78 0.05
+ ATTRIBUTE 0.75 0.85 0.80 0.21
+ IMPLICIT_ATT 0.78 0.87 0.82 0.17
+ SAME_TABLE 0.79 0.87 0.83 0.07

We utilize the row labels for the blocking mechanism. We first
normalize the labels of all rows and use them to build a Lucene
index. Each label in the index forms a block, which includes all
rows with that exact label. For each row we use the index to
retrieve a number of labels similar to the row’s label, and assign
their blocks to the row.

During the parallelized greedy clustering, we compare a row
only to clusters with which the row shares a block. The blocks
of a cluster are the union of the blocks of all rows in that clus-
ter. Similarly, during the KLj clustering, two clusters are only
compared when they share a block.

Evaluation
To evaluate the performance of the row clustering, we employ
the evaluation approach proposed by Hassanzadeh et al. [17]. We
use the set of clusters annotated in the gold standard, denoted as
G, and the set of clusters returned by our method, denoted as C ,
to first compute a one-to-one mapping between the clusters inG
and the clusters inC . We map a cluster inC to a cluster inG , if it
contains the highest fraction of rows that are from that cluster
in G. In case two clusters in C have the same proportion, we
take the cluster with the highest absolute number of overlapping
rows. We denote the mapping asM .

Using this mapping we compute average recall, penalized
clustering precision and their F1 score. Average recall is the
average of the individual recalls of the clusters inG . The recall of
a cluster in G is equal to the ratio of rows in the mapped cluster
from C that are also in G to the number of total rows in G. If no
cluster from C was mapped to a cluster in G, the recall of that
cluster is zero.

To compute the clustering precision we compute the precision
of all pairs of rows that are part of the same cluster inC . A pair is
determined to be correct if both rows are part of the same cluster
in G. Unlike the average recall, this does not measure how well
we find cluster, but how well we place rows in the same cluster.

As finding the correct number of unique instances described in
the web tables is important, finding the correct number of clusters
is important. We therefore penalize the clustering precision, as is
also suggested by [17], if the number of returned clusters deviates
from the correct number of clusters. We penalize by multiplying
the clustering precision by a penalizing factor. This factor is
computed by finding the sizes of C , G orM and dividing lowest
by the highest size. We take this penalized clustering precision
as the main precision-based score to evaluate our clustering.

Results and Lessons Learned
We will first evaluate the effectiveness of the individual row
similarity metrics, and afterwards take a look at the effect of
different aggregation methods as well as the blocking.
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Table 7 shows the average performance of various row clus-
tering methods using the third aggregation method, which com-
bines random forest and weighted average. The first row contains
the results when using only the LABEL metric. For every follow-
ing row we aggregate one additional similarity metric. The last
column of the table shows the metric importance, which is the av-
erage of the relative importance of the metric inside the learned
random forest regression tree and the weights in the learned
weighted average function. The importance scores shown are
derived for the method that aggregates all metrics, i.e. the one
that corresponds to the last row of the table.

The table shows that the similarity of row labels is the best
indicator if two rows describe the same instance, as it has the
highest average metric importance of 0.33 and with it we are able
to achieve a moderate F1 of 0.76. At the same time, it alone is
not enough and all other similarity metrics positively impact the
row clustering performance when aggregated. This applies espe-
cially to the metrics BOW, ATTRIBUTE and IMPLICIT_ATT, which
increase the F1 score by 2 percentage points each.

Both PHI and SAME_TABLE have smaller effects, as both only
increase precision by 1 percentage point without an effect on
recall. PHI likely achieves a low impact because it does not mea-
sure the similarity of two rows directly, but rather compares their
tables. On the other hand, the same applies to IMPLICIT_ATT and
it has a significantly higher impact. This shows the likely benefit
of utilizing the knowledge base as background knowledge.

From the overall results, we can conclude that the best ap-
proach is to aggregate multiple metrics, thereby combining the
different signals exploited by the individual metrics. The LABEL
method utilizes the output of the label attribute detection, while
the ATTRIBUTE method utilizes the knowledge base as back-
ground knowledge to semantically understand the attributes
of the table. The IMPLICIT_ATT also exploits a knowledge base,
but to assign semantic property-value combinations to its rows.
Finally, the BOW method includes all information of a row, poten-
tially covering information that couldn’t be mapped to a schema.

The last row in Table 7 shows the clustering method that
aggregates all metrics using a combination of random forest and
weighted average. Applying both aggregationmethods separately
would have achieved an F1 score of 0.81 for weighted average
and 0.82 for random forest.

Finally, the blocking yields no decrease in F1, which shows
that it is an effective approach with minimal loss in recall.

3.3 Entity Creation
The entity creation component receives clusters of rows and
transforms each cluster into an entity. First, an entity consists of
one or more labels, which we extract from the label attribute of
the entity’s rows. More importantly, an entity contains a set of
values mapped to the properties of the knowledge base. Given
that at the row-level, each row can have multiple values matched
to certain knowledge base properties, and that we have multiple
rows in a cluster, there are likely to be multiple candidate values
for one property when creating an entity. We therefore apply the
following four-step method to fuse candidate values:

(1) Scoring:We score candidate values using one of the three
alternative approaches described below.

(2) Grouping: We group equal values together. This is done
using the data type specific similarity functions.

(3) Selection:We then select the group with the highest sum
of individual candidate value scores.

(4) Fusion: We fuse a group into a fused value by using data
type specific fusers. For text and instance reference types
we utilize the majority value in a group, whereas for quan-
tity and date types we use a weighted median approach.
For nominal string and nominal integer, no fusion is nec-
essary, as all values in a group will be equal.

We test three different scoring approaches. VOTING assigns all
candidate values equal scores of 1.0. In the KBT [13] approach
we measure for a certain table attribute the correctness of its
overlapping values, i.e. those matched to an existing fact in the
knowledge base, to estimate the trustworthiness of the whole
attribute. Finally, the MATCHING approach utilizes the scores at-
tached to a column by the attribute-to-property component. We
measure the effect of the scoring approach using the output at
the end of the pipeline. The results are discussed in Section 4.2.

The methods presented here are similar to those in our earlier
works [22, 23, 27]. In this work, we additionally apply scores
derived from the schema matching component for fusion.

3.4 New Detection
After creating entities from row clusters, we now determine
whether a created entity describes a new instance, not yet present
in the knowledge base. This is done by attempting tomatch the en-
tities to existing instances by exploiting various features through
entity-to-instance similarity metrics. If there are no instances
found or the distance between an entity and an instance is large
enough, the entity is determined to be new.

Additionally, for entities not classified as new, we attempt to
match them to an existing instance in the knowledge base. These
correspondences to existing instances are fed back into a second
iteration of the pipeline to refine the schema mapping.

Our new detection approach consists of three steps:
Candidate Selection: We find a list of candidate instances

from the knowledge base using a Lucene index built from the
labels of knowledge base instances. To search candidates for an
entity we utilize the labels attached to the entity in the entity
creation component. Additionally candidates found must be of
the class of the created entity or share one parent class.

Similarity Score Computation:We compute a score to mea-
sure the similarity between the created entity and a candidate
instance. Multiple entity-to-instance similarity metrics are im-
plemented and tested below.

Classification: If the highest similarity for any candidate
instance is lower than a learned threshold, we classify the entity
as new. Otherwise we find the candidate instance with the highest
similarity score, and in case its score is higher than another
threshold, the entity is classified as existing and a correspondence
from the entity to that instance is generated.

In earlier work we presented methods that are solely con-
cerned with matching rows to existing instances of a knowledge
base, whereas with the methods presented here, we also deter-
mine whether rows have a match at all. Additionally, we do not
match rows directly, but first create entities from row clusters,
which allows us to exploit more information for matching.

Entity-To-Instance Similarity Metrics
As described above, the following metrics compute a similarity
score between a created entity, and a one candidate instance of
the knowledge base. We implement overall six different metrics:

• LABEL: We compute the similarity between the labels of
the created entity and the labels of the candidate instance
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using Monge-Elkan with Levenshtein as the inner similar-
ity function.

• TYPE: In DBpedia every class is part of a hierarchy with a
certain number of parent classes. We compute the overlap
of the classes of the candidate instance with the class of
the entity and its parent classes.

• BOW: We create a bag-of-words binary term vector for the
entity by combining the vectors of all its rows, which
themselves are created as described in the row clustering
approach. We then create a vector for the candidate in-
stance in the knowledge base, using its labels, abstract and
facts. We return the cosine similarity of both vectors.

• ATTRIBUTE: For each property, where a fact exists in both
the created entity and the candidate instance in the knowl-
edge base, we determine if the fused fact is equal to the
fact in the knowledge base. As there could be multiple
overlapping properties, we return an average similarity
and a corresponding confidence score, which equals the
number of overlapping properties.

• IMPLICIT_ATT:We utilize the implicit attributes derived
for tables, as described in Section 3.2, to derive implicit
attributes for a created entity. We sum up the confidence
scores of equal implicit attributes for the tables of all rows
in the entity and divide by the total number of rows to
compute an entity-level confidence score. We then com-
pare these property-value combinations at the entity level
with overlapping facts of a candidate instance.

• POPULARITY: We use a dataset of Wikipedia page links to
rank all candidate instances of an entity by their number
of incoming page links. A similarity score is assigned to
each candidate based on its rank. If an entity has only one
candidate instance, we assign it a score of 1.0.

Similarity Score Aggregation
We aggregate various similarity scores using the same aggrega-
tion approaches utilized for row clustering.

Evaluation
We evaluate the new detection component using the clusters
annotated in the gold standard. Before we run new detection
on those clusters, we create entities from them as outlined in
Section 3.3 above. From the gold standard we know whether a
certain created entity describes a new instance or not. In case it
describes an existing instance, we additionally know from the
gold standard the exact instance it describes.

When running the new detection component on those entities,
we receive a set of entities classified as new, and another set
classified as existing with additional correspondences to existing
instances in the knowledge base. We can now use the gold stan-
dard to determine the accuracy of those classifications, which
equals the fraction of correctly classified entities. Existing enti-
ties must additionally be matched to the correct instance in the
knowledge base to be counted as correctly classified.

As the accuracy measures the classification performance for
both the new and existing instances, we additionally evaluate
both separately using F1. The precision of the new entities equals
the fraction of entities returned with a new classification that
were correctly classified as new, whereas recall is equal to the
fraction of total new entities in the gold standard that were cor-
rectly classified as new. The same applies to the existing entities,
with a second condition that the entity must be matched to the
correct instance in the knowledge base as well.

Table 8: Average performance and metric importance
scores for alternative new detection methods.

Run ACC F1Existing F1New MI

LABEL 0.69 0.66 0.67 0.20
+ TYPE 0.79 0.75 0.82 0.26
+ BOW 0.85 0.84 0.83 0.17
+ ATTRIBUTE 0.85 0.86 0.84 0.20
+ IMPLICIT_ATT 0.88 0.87 0.89 0.11
+ POPULARITY 0.89 0.88 0.88 0.06

Results and Lessons Learned
Table 8 shows the performance of various new detection methods.
All numbers in table are averages of all classes and folds. The
first row shows a method that only utilizes the label. For each
following row we aggregate an additional similarity metric into
themethod using the combined aggregation approach. Themetric
importance shown in the last column reflects a score derived from
the random forest and the weights in a method that aggregates
all metrics, i.e., the method described in the last row.

From the table we can see that with an accuracy of 0.89, the
final aggregated method performs quite well. It achieves a perfor-
mance considerably better than the LABEL method, which only
has an accuracy of 0.69. Additionally we can see that all similarity
metrics are important and contribute positively to the overall
performance. This shows that the combined approach is able to
leverage the different features exploited by the individual met-
rics. The LABEL metric does however have a high importance
score, even though the candidate selection already only returns
candidates with similar labels.

The later a metric is aggregated, the more difficult it is to yield
a large absolute increase in performance. As such, the metrics
TYPE and BOW increase accuracy by 10 and 6 percentage points
respectively, which is much larger than for metrics added later.
At the same time we see, that ATTRIBUTE, which has a higher
importance score than BOW, does not increase accuracy at all. It
does however increase the individual F1 scores.

Noticeable is also the increase achieved by the IMPLICIT_ATT
metric. It is able to improve the accuracy by further 3 percentage
points, even though it is the second to last metric to be aggre-
gated. This means, that we are successfully able to leverage the
knowledge base as background knowledge to derive semantically
relevant property-value combinations per table and entity.

The POPULARITY metric only impacts performance for the
Settlement class. This means that, given just the name of a settle-
ment, it is safe to assume that the most well-known settlement
is meant. This makes sense, as this assumption is typically made
when speaking about cities in general.

The last row shows the performance of a new detectionmethod
that aggregates all metrics using a combined approach ofweighted
average and random forest. When using the aggregation methods
separately, we achieve an accuracy of 0.85 and 0.86 respectively.
The combined approach is therefore able to exploit both aggre-
gation methods to achieve a higher performance.

4 OVERALL RESULTS ON THE GOLD
STANDARD

In this section, we choose the best methods for clustering and
new detection, and evaluate the output of a complete run of
our system using our gold standard. We will first evaluate how
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Table 9: Results of new instances found evaluation.

Class Clust. New Det. P R F1

GF-Player GS ALL 0.89 0.95 0.91
GF-Player ALL ALL 0.82 0.95 0.87

Song GS ALL 0.92 0.88 0.90
Song ALL ALL 0.72 0.72 0.72

Settlement GS ALL 0.84 0.90 0.87
Settlement ALL ALL 0.74 0.87 0.80

Average ALL ALL 0.76 0.85 0.80

many of the new instances were correctly found, while in the
second part, we will evaluate how many correct facts were found.
Throughout this evaluation we utilize three fold cross-validation.

4.1 New Instances Found Evaluation
To evaluate how well new instances were found, we utilize preci-
sion and recall. First, we determine the number of new instances
annotated in the testing sets, for which an entity was correctly
returned by the system. For this, three conditions must be met.
First, a majority of the rows of an entity must correspond to the
same new instance in the gold standard, while at the same time
the entity must also contain the majority of the rows that actually
describe that instance. Lastly, the entity must be classified as new
by the new detection component. Based on this, recall is defined
as the fraction of new instances in the gold standard for which a
correct entity was returned. Precision, on the other hand, is the
fraction of entities returned by the system as new, that correctly
match an instance in the gold standard.

Table 9 shows the performance of our system for the three
classes separately. To evaluate the individual impact of row clus-
tering and new detection, we once evaluate using the clustering
from the gold standard, denoted GS, and once with the aggregated
clustering method containing all similarity metrics, denoted ALL.
For new detection we run in both cases the aggregated method
containing all similarity metrics, also denoted ALL.

Generally, we achieve good performance for football players
and settlements, while for songs the performance is less convinc-
ing. This is likely, because for songs, the homonym problem is
much larger. It is much more likely that there exist songs of the
same name by various artists. Sometimes these homonyms even
represent cover versions, so that they are highly similar in their
descriptions, e.g. in runtime or writer.

When investigating how much performance is lost by the
individual components, we find that for football players and
settlements the new detection component is causing a larger
decrease than the row clustering. More specifically, the drop is
mainly caused by classifying entities as new even though they
should be matched to existing instances. This is confirmed by
the recall being higher than precision. For songs, the clustering
causes a much larger decrease in performance, showing that the
clustering task is more difficult for songs, and that we require
more sophisticated clustering methods.

4.2 Facts Found Evaluation
In this section we evaluate how well we can generate facts from
web tables for new entities. Again, we need a mapping between
entities returned and instances in the gold standard, for which
we utilize the approach described above. For wrongly created

Table 10: Results of the facts found evaluation.

New F1 F1 F1
Class Clust. Det. VOTING KBT MATCHING

GF-Player GS GS 0.82 0.82 0.82
GF-Player GS ALL 0.81 0.81 0.81
GF-Player ALL ALL 0.81 0.81 0.81

Song GS GS 0.80 0.81 0.81
Song GS ALL 0.74 0.73 0.74
Song ALL ALL 0.67 0.69 0.68

Settlement GS GS 0.98 0.98 0.98
Settlement GS ALL 0.93 0.93 0.93
Settlement ALL ALL 0.91 0.91 0.91

Average ALL ALL 0.80 0.80 0.80

entities, or entities incorrectly determined to be new, i.e. they
could not be mapped to a new cluster in the gold standard, their
facts are counted as wrong and therefore reduce precision. To
determine if returned facts for matched entities are correct, they
are compared to the facts in the gold standard using data type
specific similarity functions and a learned tolerance range. To
measure recall, we utilize the number of annotated facts for which
a correct value is present in the web tables, as seen in Table 5.

Table 10 shows fusion performance per class. In order to mea-
sure the individual impact of the new detection and the row
clustering on the overall performance, we again perform multi-
ple runs. For the first run, we utilize for both components the
correct annotations from the gold standard. In the following
run we use our new detection methods, while for the third run
we additionally use our clustering methods, in both cases using
the methods that aggregate all similarity metrics. Additionally
we test performance for the different fusion scoring methods,
VOTING, KBT and MATCHING, described in Section 3.3.

From the table we can see that for football players and songs
we lose 18 and 19 percentage points of F1 score even when row
clustering and new detection are perfect. We looked at a sample
of errors and were able to identify two main causes. The largest
amount of errors is due to the attribute-to-property matching
component, where the proportion of errors caused by wrong
or missing column matches makes up 43 % of all errors. This is
followed by 35 % of errors that occurred as a result of wrong or
outdated data in the tables.

In addition, we evaluate various fusion scoring approaches.
We find that all performances are very close, so that the choice
of scoring approach is of low relevance.

Finally, we can deduce from the table the individual impacts
of the pipeline components on the performance. The largest
negative impact is due to errors in finding facts as described above,
of which the attribute-to-property matching is a large contributor.
Not as large are the individual impacts of the row clustering and
new detection components, but they are still significant ranging
from 1 to 13 percentage points. Overall, the way errors compound
throughout the pipeline shows the difficult nature of the task at
hand. Every individual component has to perform very well for
there to be good performance at the end of the pipeline.

5 LARGE-SCALE PROFILING
In this section we try to estimate the potential of web tables for
extending knowledge bases with new instances, by running our
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system on not only the tables of the gold standard, but on all
tables of a specific class within the whole corpus (see Table 4).
We are especially interested in how many new instances we can
correctly add per class and how that compares to the number
of existing instances in the knowledge base. We additionally are
interested in the descriptions of these new instances, the number
and accuracy of facts, and property densities of the new instances.

Evaluation
From the entities returned as new by the system, we pull a strati-
fied sample of 50 entities for each class. We group the returned
entities by the number of facts generated for each entity. We then
pull from each group a number of entities proportional to the
size of the group in relation to the total number of new entities.

The accuracy of new entities equals the fraction of entities
that were correctly identified as new when compared to the
2014 release of DBpedia, while the accuracy of facts equals the
proportion of facts within those new entities that are correct.

Results and Lessons Learned
Table 11 shows the results of the large-scale profiling per class.
The second column lists the number of rows of all tables matched
to the given class. The three columns afterwards describe existing
entities found, to how many unique instances in the knowledge
base they were matched, and the ratio of the two numbers. The
remaining columns contain the number of new entities, their
facts, the relative increases when compared to Table 1 and the
accuracies of new entities and facts of the extracted sample.

First of all, we find that the ratio of existing entities to matched
instances in the knowledge base differs by class. While for players
and settlements the number is good, it is less so for songs. Song
was the class with the worst performance at row clustering, i.e.
identifying the exact number of unique instances. This shows,
that we need to implement more sophisticated row clustering
methods or, alternatively, perform deduplication after clustering.

For the class Song we have a very large number of new entities
and facts, even if we would correct the number of new entities
by the ratio in the fifth column. For Settlement, there are in
comparison very few new entities. When considering that only
26 % of them are correct, we would actually achieve a relative
increase in knowledge base instances of 0.3 %. The difference can
be explained by understanding the notability rules of Wikipedia.

There are a very large number of obscure songs. It is very
common, even for well-known artists, to release for example only
a few songs from an album as singles, which are the only ones
that become popular. And here the notability rules compound
the issue, as songs only receive their own Wikipedia article if
they are notable, e.g. because they were independently released.

For Settlement, almost the opposite is true. While there are
many small villages, they are never irrelevant, as there are al-
ways enough people living in them, who might contribute to a
Wikipedia article. More importantly, Wikipedia deems any place
notable if it has legal recognition. As a result, Wikipedia covers
a lot of settlements, and it is difficult to find new ones.

Football players are in the middle of both classes. There are not
as many obscure football players, as, theoretically speaking, the
number of teams is limited, but there are many that are obscure
enough, not to be covered in a Wikipedia article. And while the
absolute number of newly added players is not high, compared
to the number of existing instances in the knowledge base, we
achieve an increase of 67 % for instances and 32 % for facts.

Table 12 shows the property densities for new entities. As one
would expect, the properties are not as dense as in Table 2. More
importantly, the distribution of densities differs significantly. For
football players, personal properties like birthDate and birthPlace
have a very low density for new instances, but high for the
knowledge base. This might be, because in Wikipedia one is
interested in describing a person, whereas in web tables, the
games, teams and drafts are more in focus. For those tables, a
property like position might be more relevant, which explains
why its density is even higher than in the knowledge base.

For songs, the properties writer, genre, and record label have
very low densities compared to the knowledge base. It is likely
that for genre, this is a column matching issue, as song genres are
not always objectively defined. For writer and recordLabel there
could be two causes. First, they might be uninteresting properties,
and secondly, there are often multiple correct facts. The record
label might even differ by country. This makes these properties
difficult to match, and, more importantly, unlikely to be included
in a table. We can confirm the latter, as these properties occurred
very rarely in the tables we annotated for the gold standard.

When looking at the accuracies of new entities we also find
differences per class. We achieve a moderate accuracy for songs, a
sub-par accuracy for players and a low accuracy for settlements.

The primary reason for the low accuracy for settlements are
conflicting values in an entity of an existing instance and the
instance in the knowledge base. This includes outdated popula-
tion numbers, but also isPartOf values, where the values in the
entity and in the knowledge base are both correct, but different,
preventing the entity from matching. This problem makes up
36 % of all errors. 25 % of errors are because the new entity does
not describe a settlement, but a different place, like a region or a
mountain. This error is caused by incorrect table-to-class match-
ing. These problems are magnified because there are so few new
entities to begin with, so that these corner cases make up a huge
proportion of the new entities returned.

For GF-Player, the sources of errors include bad column-to-
attribute matching, entities not being football players due to bad
table-to-class matching, and incomplete information in DBpedia.
The latter happened primarily when a football athlete was not
assigned the correct class in DBpedia. The accuracy for entities
with a higher number of values is however much higher. If we
do not consider entities with one value, the accuracy of new
entities rises to 0.72. If we further do not consider entities with
two values, we achieve an accuracy of 0.85. This would mean
excluding 6,360 entities, but also that with an accuracy of 0.85
we can add 7,623 entities with 34,922 facts to the knowledge base,
an increase of 37 % for instances, and 25 % for facts.

For songs, the sources of errors are versatile. The main contrib-
utors are bad new detection, incorrect table-to-class matching,
and bad clustering. The latter meaning that an entity was incor-
rectly detected as new, as a result of being created from rows
that describe different instances.

We generally notice that the performance does not correlate
with the performance on the gold standard. This might indicate
that the gold standard either does not completely reflect the
nature of the task, or the gold standard is not large enough. On
the other hand, we achieve a consistently high accuracy for new
facts, similar to the high performance on the gold standard, as
seen in Section 4.2. This means that when it comes to finding
descriptions, our performance is quite good, even if the density
is lower when compared to the knowledge base.
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Table 11: Results and evaluation of a system run on all tables matched to a class.

Total Existing Matched Matching New New N. Entities N. Facts
Class Rows entities KB instances Ratio Entities Facts Accuracy Accuracy

GF-Player 648,741 30,074 24,889 1.21 13,983 (+67%) 43,800 (+32%) 0.60 0.95
Song 2,173,536 40,455 29,140 1.39 186,943 (+356%) 393,711 (+125%) 0.70 0.85
Settlement 1,472,865 28,628 27,365 1.05 5,764 (+1%) 7,043 (+0%) 0.26 0.94

Table 12: Property densities for new entities returned by
the full run.

Class Property Facts Density

GF-Player position 9,204 65.82%
GF-Player team 7,637 54.62%
GF-Player college 6,849 48.98%
GF-Player weight 5,915 42.30%
GF-Player height 4,253 30.42%
GF-Player number 2,951 21.10%
GF-Player birthDate 2,537 18.14%
GF-Player draftPick 2,404 17.19%
GF-Player draftRound 1,538 11.00%
GF-Player draftYear 386 2.76%
GF-Player birthPlace 126 0.90%

Song musicalArtist 143,656 76.84%
Song runtime 115,652 61.86%
Song album 52,664 28.17%
Song releaseDate 47,377 25.34%
Song genre 23,814 12.74%
Song recordLabel 10,278 5.50%
Song writer 270 0.14%

Settlement isPartOf 2,889 50.12%
Settlement postalCode 1,605 27.85%
Settlement country 1,232 21.37%
Settlement populationTotal 1,214 21.06%
Settlement elevation 103 1.79%

Overall we find that for some classes there is high potential
for finding new instances using web tables. Additionally, we
also find that the performance of our system for these classes is
generally good. Yet, it is clear that more sophisticated approaches
are necessary for row clustering, new detection and table-to-class
matching.

6 RELATEDWORK
This section compares our method to the related work. As we
investigate a new problem, we compare to research on similar
tasks as well as on specific subtasks, including slot filling, set
expansion, schema matching and identity resolution.

Slot Filling
Many works that exploit web table data for knowledge base aug-
mentation [11, 25–29] focus on the task of slot filling, i.e. adding
missing facts for existing instances. One prominent state of the
art work by Dong et al. [11] introduces a probabilistic approach
that exploits background knowledge, in their case Freebase, to
construct a large knowledge base using web data, including web
tables. The extracted facts however only describe instances that
already exist in Freebase [11, 12].

While slot filling is a different task, we can still generally
compare the numbers of generated facts. In a previous work,
where we use web tables to perform slot filling for DBpedia [27],
we are able to find 378, 892 facts, 64, 237 of which are new facts
for existing instances. We reach an F1 score of 0.71. Compared to
that work, we are able to achieve better numbers and accuracy. In
the work by Dong et al., the authors are able to find 271 M facts
for instances in Freebase with an expected correctness higher
than 90 %. Of those facts, 90 M are new facts for existing instances.
While the amount of facts that we discover are much smaller, we
are only dealing with three classes and looking at facts only for
new instances. Additionally we only use web tables to extract
new facts, while Dong et al. also use free text, HTML DOM trees
and schema.org annotations. Our average accuracy of 0.91 for
facts of new entities is comparable.

Set Expansion
Set expansion is a task, where new instances are retrieved to
complete a set [24, 31, 32]. Set expansion methods, however, only
focus on finding the labels of new instances. The methods rely on
seeds from that set to perform set expansion. Both, the complete
sets and the number of seeds, are often small. In contrast, we focus
on a scenario in which large sets of entities, already contained
in the knowledge base, are extended with potentially large sets
of new instances. Finally, most set expansion methods make use
of ranked evaluation, where the precision of the top k instances
is measured. In contrast, our evaluation not only focuses on
precision, but also considers recall.

One set expansionmethod exploits a corpus of relational tables
to augment an incomplete relational table with new instances
and their descriptions [33]. The methodology differs significantly
from ours. To find more instances, the method uses sets of 1 to
5 seed instances to first search for candidates in the tables. For
this, it exploits the labels of the seeds and the caption of the
seed table. Candidates are then ranked based on how often they
co-occur with the seeds and how similar their tables’ captions
are. Similarly, the method searches for candidate columns in the
corpus and ranks them based on how well they fit the seed table.
The method then returns a fixed number of entities, where the au-
thors use 256 as their cut-off. While this approach does generate
descriptions, it does not resolve any of the following problems of
set expansion. Their approach still ranks candidate entities based
on their similarity to the seeds, and, more importantly, always
returns a fixed number of instances. Especially the latter makes
this approach not applicable to our task, as we are interested in
generating as many new instances as possible.

To compare our work with works of set expansion, we need to
utilize ranked evaluation and therefore need to implement a rank-
ing algorithm for new entities. We rank based on the similarity
scores returned by the new detection. These scores measure the
distance between one or more existing instance in the knowledge
base, and an entity generated from the web tables. We rank new
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entities higher, the higher their lowest distance to the closest
existing instance is. Using this, we achieve a MAP, with a cut-off
at 256, of 0.88, while related works achieve 0.63 [33], 0.95 [32]
and 0.78 [31]. For precision at 5 and 20 we achieve 0.84 and 0.78
respectively, while a related work achieves 0.94 and 0.91 [33].
We find that our performance is comparable, even though the
task we are solving is more difficult.

Schema Matching and Identity Resolution
Throughout the components of the pipeline, we apply approaches
for which a large corpus of related work exists. This includes
schema matching methods, which are surveyed in [3]. For row
clustering and new detection we essentially exploit identity reso-
lution methods, which are extensively surveyed in [9, 14].

For the specific use case of matching web table attributes to
DBpedia properties, authors from our research group were able
to achieve an F1 score of 0.81 [25]. While our performance of 0.92
is higher, we consider a smaller number of classes and properties.

There exists a large corpus of research on the task of matching
web table rows to existing knowledge base instances. While this
task is not a primary objective of this paper, we are able to evalu-
ate our pipeline by comparing how well we are able to perform
this task. We achieve an average F1 score of 0.83, compared to
0.80 [25] and 0.87 [34] in the related work, and we achieve an
accuracy of 0.78, compared to 0.83 [21] and 0.93 [4] in the related
work. While for F1, our performance is comparable to the related
work, it is lower when it comes to accuracy.

7 CONCLUSION
This paper explored the potential of web table data for extending
a cross-domain knowledge base with new long tail entities and
their descriptions according to the schema of the knowledge base.
To the best of our knowledge, this specific task has to this date not
been handled in related research. For this task, we present and
evaluate a complete system. It consists of a pipeline with multiple
components, including schema matching, row clustering, entity
creation and new detection.

We evaluated our pipeline using a manually annotated gold
standard of web tables. We find that the task is non-trivial, as
it requires good performance in all steps of the process. For all
components of the pipeline we implemented and evaluated mul-
tiple alternative methods. We find that aggregating the similarity
scores of multiple metrics that exploit different features yields
the best results. We also find that metrics that make use of label
similarity, while highly important, are not sufficient to yield a
good performance. Additionally, we are able to show that metrics
that use the knowledge base as background knowledge, e.g. to
semantically understand cell values or to derive semantic infor-
mation about web tables, have a positive impact on performance.
Finally, we are able to utilize the output of the pipeline in a second
iteration to achieve a large improvement in schema matching
performance, while any further iteration has negligible impact.

We are successfully able to utilize our pipeline and our pro-
posed implementations of the pipeline’s components to find new
instances and their descriptions from the web tables. At the same
time, there remains room to further improve the quality of the
generated data.

Finally we run the method on the complete web table corpus
to profile the overall potential of web tables in augmenting a
knowledge base class with new instances. We find that this po-
tential differs per class, but at the same time, we find that for

some classes a large number of instances and facts with a high
accuracy can successfully be added to the knowledge base.
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ABSTRACT
Today machine learning is entering many business and scienti�c
applications. The life cycle of machine learning applications con-
sists of data preprocessing for transforming the raw data into
features, training a model using the features, and deploying the
model for answering prediction queries. In order to guarantee
accurate predictions, one has to continuously monitor and update
the deployed model and pipeline. Current deployment platforms
update the model using online learning methods. When online
learning alone is not adequate to guarantee the prediction ac-
curacy, some deployment platforms provide a mechanism for
automatic or manual retraining of the model. While the online
training is fast, the retraining of the model is time-consuming and
adds extra overhead and complexity to the process of deployment.

Wepropose a novel continuous deployment approach for updat-
ing the deployed model using a combination of the incoming real-
timedata and thehistorical data.Weutilize sampling techniques to
include the historical data in the training process, thus eliminating
the need for retraining the deployed model. We also o�er online
statistics computation and dynamic materialization of the prepro-
cessed features, which further reduces the total training and data
preprocessing time. In our experiments, we design and deploy
two pipelines and models to process two real-world datasets. The
experiments show that continuous deployment reduces the total
training cost up to 15 times while providing the same level of qual-
itywhen compared to the state-of-the-art deployment approaches.

1 INTRODUCTION
In machine learning applications, a pipeline, a series of complex
data processing steps, processes a labeled training dataset and
produces a machine learning model. The model then has to be
deployed into a deployment platformwhere it answers prediction
queries in real-time. To properly preprocess the prediction queries,
typically the pipeline has to be deployed alongside the model.
A deployment platform must be robust, i.e., it should accom-

modate many di�erent types of machine learning models and
pipelines. Moreover, it has to be simple to tune. Finally, the plat-
formmust maintain the quality of the model by further training
the deployed model when new training data becomes available.

Online deployment of machine learning models is one method
for maintaining the quality of a deployed model. In the online
deployment approach, the deployment platform utilizes online
learning methods to further train the deployed model [13]. In on-
line learning, themodel is updated based on the incoming training
data. Online learning adapts the model to the new training data
and provides an up-to-date model. However, online learning is
sensitive to noise and outliers which may result in an increase in
the prediction error rate. Therefore, to guarantee a high level of
quality, one has to tune the online learning method to the speci�c
use case [22, 23]. Thus, e�ective online deployment of machine
learning models cannot provide robustness and simplicity.
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To solve the problem of degrading model quality, periodical
deployment approach is utilized. In the periodical deployment
approach, the platform, in addition to utilizing simple online learn-
ing, periodically retrains the deployed model using the historical
data. One of the challenges inmany real-world use cases is the size
of the training datasets. Typically, training datasets are extremely
large and require hours or days of data preprocessing and training
to result in a newmodel. Despite this drawback, in some applica-
tions, retraining the model is still critical, as even a small increase
in the quality of the deployed model can have a large impact. For
example, in the domain of ads click-through rate (CTR) prediction,
even a 0.1% accuracy improvement yields hundreds of millions
of dollars in revenue [21]. In the periodical deployment approach,
while the model is being retrained, new prediction queries and
training data are still arriving at the deployment platform. How-
ever, the platform has to answer the prediction queries using the
currently deployed model. Moreover, the platform appends the
new training data to the historical data. By the time the retrain-
ing process is over, enough training data is accumulated which
requires the deployment platform to perform another retraining.
As a result, the deployed model quickly becomes stale.

Although periodical deployment is robust and easy to tune, it
cannot maintain the quality of the deployed model without incur-
ring a high training cost. We propose a deployment platform that
eliminates the need for retraining, thus signi�cantly reducing the
trainingcostwhileachieving thesame levelofqualityas theperiod-
ical deployment approach. Our deployment platform is robust, i.e.,
it accommodatesmanydi�erent types ofmachine learningmodels
and pipelines. Moreover, similar to the periodical deployment, the
tuning process of our deployment platform is simple and requires
the same amount of user interaction as the periodical deployment.
Our deployment platform continuously updates the model us-

ing a combination of the historical and incoming training data.
Similar to existing deployment platforms, our platform also uti-
lizes online learning methods to update the model based on the
incoming training data. However, instead of the periodical retrain-
ing, our deployment platform performs regular updates to the
model based on samples of the historical data. Our deployment
platform o�ers the following two features:

Proactive training. Proactive training is the process of utilizing
samples of the data to update the deployedmodel. First, the deploy-
ment platform processes a given sample using the pipeline, then
it computes a partial gradient and updates the deployed model
based on the partial gradient. The updated model is immediately
ready for answering prediction queries. Our experiments show
that proactive training reduces the training time by one order
of magnitude while providing the same level of quality when
compared to the periodical deployment approach.

Online Statistics Computation and Dynamic Materialization. Be-
fore updating the model using proactive training, the pipeline has
to preprocess the training data. Every component of the pipeline
needs to scan the data, updates the statistics (for example themean
and the standard deviation of the standard scaler component), and
�nally, transform the data. Computing these statistics and trans-
forming the data are time consuming processes. Aside from the
proactive training, our deployment platform also employs online
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learning methods to update the model in real-time. During the
online learning, we compute the required statistics and transform
the data. The deployment platform stores the updated statistics
for every pipeline component and materializes the transformed
features by storing them in memory or disk. In presence of a lim-
ited storage capacity, the platform removes the older transformed
features, and only re-materializes themwhen needed (through a
process called dynamic materialization). By reusing the computed
statistics and the materialized features during the proactive train-
ing, we eliminate the data preprocessing steps of the pipeline and
further decrease the proactive training time.

In summary, our contributions are:
• Aplatformforcontinuously trainingdeployedmachine learning
models and pipelines that adapts to the changes in the incoming
data. The platform accommodates di�erent types of machine
learning models and pipelines. In our experiments, we design
and deploy two di�erent machine learning pipelines.

• Proactive training of the deployed models and pipelines that
frequently updates the model using samples of the data which
completely eliminates the need for periodical retraining while
providing the same level of model quality.

• E�cient pipeline processing andmodel training by online statis-
tics computation and dynamic materialization, which provides
up-to-date models for answering prediction queries.
The rest of this paper is organized as follows: In Section 2, we

provide background information on the optimization strategy we
utilize in our continuous deployment platform and tuning mech-
anism of the existing deployment platforms. Section 3 describes
the details of our continuous training approach. In Section 4, we
introduce the architecture of our deployment platform. In Section
5, we evaluate the performance of our continuous deployment
platform. Section 6 discusses the related work. Finally, Section 7
presents our conclusion and the future work.

2 BACKGROUND
To continuously train the deployed model, we compute partial up-
dates based on the currentmodel parameters and a combination of
the incoming and existingdata. To compute thepartial updates,we
utilize StochasticGradientDescent (SGD) [36]. SGDhas several pa-
rameters (typically referred to as hyperparameters) and in order to
work e�ectively, they have to be tuned. In this section, we describe
the details of SGD and its hyperparameters and discuss the e�ect
of the hyperparameters on training machine learning models.

2.1 Stochastic Gradient Descent
Stochastic Gradient Descent (SGD) is an optimization strategy uti-
lized by many machine learning algorithms for training a model.
SGD is an iterative optimization technique where in every iter-
ation, one data point or a sample of the data points is utilized to
update the model. SGD is suitable for large datasets as it does
not require scanning the entire data in every iteration [5]. SGD
is also suitable for online learning scenarios, where new training
data becomes available one at a time. Many di�erent machine
learning tasks such as classi�cation [23, 36], clustering [6], and
matrix factorization [19] utilize SGD in training models. SGD is
also the most common optimization strategy for training neural
networks on large datasets [12].
To explain the details of SGD, we describe how it is utilized to

traina simple linear regressionmodel. In linear regression, thegoal
is to �nd the weight vector(w) that minimizes the least-squares
cost function (J (w)):

J (w)=
1
2

N∑
i=1

(x iw−yi )2 (1)

where N is the size of the training dataset. To utilize SGD for
�nding the optimalw , we start from initial randomweights. Then
in every iteration, we update the weights based on the gradient
of the loss function:

wt+1=wt +η
∑
i ∈S

(yi−x iw)x i (2)

where η is the learning rate hyperparameter and S is the ran-
dom sample in the current iteration. The algorithmcontinues until
convergence, i.e., when the weight vector does not change after
an iteration.

Learning Rate. An important hyperparameter of stochastic
gradient descent is the learning rate. The learning rate controls
the degree of change in the weights during every iteration. The
most trivial approach for tuning the learning rate is to initialize
it to a small value and after every iteration decrease the value
by a small factor. However, in complex and high-dimensional
problems, the simple tuning approach is ine�ective [27]. Adaptive
learning rate methods such as Momentum [26], Adam [18], Rm-
sprop [31], andAdaDelta [35] have been proposed. Thesemethods
adaptively adjust the learning rate in every iteration to speed up
the convergence rate. Moreover, some of the learning rate adap-
tation methods perform per coordinate modi�cation, i.e., every
parameter of the model weight vector is adjusted separately from
the others [18, 31, 35]. In many high-dimensional problems, the
parameters of the weight vector do not have the same level of
importance, therefore each parameter must be treated di�erently
during the training process.

Sample Size.Another hyperparameter of stochastic gradient
descent is the sample size (sometimes referred to as the mini-
batch size). Given proper learning rate tuning mechanism, SGD
eventually converges to a solution regardless of the sample size.
However, the sample size cangreatlya�ect the time that is required
to converge. Two extremes of the sample size are 1 (every iteration
considers 1 data item) andN (similar to batch gradient descent, ev-
ery iteration scans the entire dataset). Setting the sample size to 1
increases themodel update frequency but results in noisy updates.
Therefore, more iterations are required for the model to converge.
Using theentiredata inevery iteration leads tomore stableupdates.
As a result, the model training process requires fewer iterations to
converge. However, because of the size of the data, individual iter-
ations requiremore time to complete. A common approach ismini-
batch gradient descent. Inmini-batch gradient descent, the sample
size is selected in such a way that each iteration is fast. Moreover,
the training process requires fewer iterations to converge.

2.2 Tuning the Periodical Deployment
Typically, two groups of hyperparameters a�ect the e�ciency of
the periodical deployment approach. The �rst group (the deploy-
ment hyperparameters) control the frequency and amount of data
for every retraining. The second group (the training hyperparam-
eters) tune the algorithm for retraining procedure. In this work,
we are targeting training algorithms based on Stochastic gradient
descent. Therefore, the hyperparameters are the learning rate and
the sample size.
There are several existing approaches for tuning the training

hyperparameters, such as grid search, random search, and sequen-
tial model based search [4, 17]. The deployment hyperparameters,
however, are typically selected to �t the speci�c use case. For
example, in many of the real-world use cases, one retrains the
deployed model using the entire historical data (hyperparame-
ter for the amount of data for every retraining) on a daily basis
(hyperparameter for the frequency of the retraining). In the next
sections, we describe howwe tune the deployment and training
hyperparameters of our deployment framework.
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3 CONTINUOUS TRAININGAPPROACH
In this section, we describe the details of our continuous training
approach. Figure 1 shows the work�ow of our proposed platform.
The platform processes the incoming training data through 5
stages:
1. Discretizing the data: To e�ciently preprocess the data and
update the model, the platform transforms the data into small
chunks and stores them in the storage unit. The platform assigns a
timestamp to every chunk indicating its creation time. The times-
tampacts asbothaunique identi�erandan indicatorof the recency
of the chunk.
2. Preprocessing the data: The platform utilizes the deployed
pipeline to preprocess the raw training data chunks and transform
them into feature chunks. Then, the platform stores the feature
chunks alongwith a reference to the originating rawdata chunk in
the storage unit. When the storage unit becomes full, the platform
starts removing the oldest feature chunks and only keep the ref-
erence to the originating raw data chunks. In case the later stages
of the deployment platform request a deleted feature chunk, the
platform can recreate the feature chunk by utilizing the referenced
raw data chunk. During the preprocessing stage, we utilize online
statistics computation to compute the required statistics for the
di�erent pipeline components. These statistics speed up the data
processing in later stages.
3. Sampling thedata: Asampler unit samples the feature chunks
from the storage. Di�erent sampling strategies are available to
address di�erent use-case requirements.
4. Materializing the data: Depending on the size of the stor-
age unit, some preprocessed feature chunks (results of step 2) are
not materialized. If the sampler selects unmaterialized feature
chunks, the platform recreates these feature chunks by utilizing
the deployed pipeline through a process called dynamic materi-
alization.
5. Updating the model: By utilizing the preprocessed feature
chunks, the platform updates the deployed model through a pro-
cess called proactive training.

In the rest of this section, we �rst describe the details of the
online statistics computation the platform performs during the
preprocessing step. Then we introduce the dynamic materializa-
tion approach and the e�ects of di�erent sampling strategies on
the materialization process. Finally, we describe the details of the
proactive training method.

3.1 Online Statistics Computation
Some components of the machine learning pipeline, such as the
standard scaler or the one-hot encoder, require some statistics of
the dataset before they process the data. Computing these statis-
tics requires scans of the data. In our deployment platform, we
utilize online training as well as proactive training. During the
online update of the deployedmodel,we compute all the necessary
statistics for every component. Every pipeline component �rst
reads the incoming data. Then it updates its underlying statistics.
Finally, the component transforms and forwards the data to the
next component. Online computation of the required statistics
eliminates the need to recompute the same statistics during the
dynamic materialization and proactive training.

Online statistics computation is only applicable to certain types
of pipeline components. The support for stateless pipeline com-
ponents is trivial as they do not rely on any statistics before trans-
forming thedata. For stateful operations, since the statisticsupdate
occurs during the online data processing, the platform can only
update the statistics that can be computed incrementally. Many

of the well-known data preprocessing components (such as stan-
dardization and one-hot encoding) require statistics that can be
computed incrementally (such as mean, standard deviation, and
hash table). However, some pipeline components require statistics
that cannot be updated incrementally (such as percentile) or the
algorithm utilized by the pipeline component is non-incremental
(such as PCA). As a result, our deployment platform does not
support such components. Fortunately, recent bodies of work are
devoted to developing novel techniques for online feature engi-
neering [32, 33] and approximate machine learning [25] that o�er
fast and incremental alternatives with theoretical error bounds
to non-incremental algorithms.

Theplatformcanalso facilitate theonline statistics computation
for user-de�ned pipeline components. In Section 4, we describe
how users can incorporate this feature into their custom pipeline
components.

3.2 DynamicMaterialization
In order to update the statistics of the pipeline components, each
component must �rst transform the data and then forwards the
transformed data to the next component. At the end of this pro-
cess, the pipeline has transformed the data chunks into feature
chunks that the model will utilize during the training process. In
our continuous deployment platform, we repeatedly sample the
data chunks to update the model. Storing the chunks as materi-
alized features greatly reduces the processing time as the entire
data preprocessing steps can be skipped during the model update.
However, in the presence of a limited storage capacity, one has to
consider the e�ect of storing the materialized feature chunks.

To address the storage capacity issue,weutilize dynamicmateri-
alization. While creating the feature chunks, the platform assigns
a unique identi�er (the creation timestamp) and a reference to the
originating raw data chunk. In dynamicmaterialization, when the
size of the stored feature chunks exceeds the storage capacity, the
platform removes the content of the oldest materialized feature
chunks from the storage and only keeps the unique identi�er and
the reference to the rawdata chunk (similar to cache eviction). The
next time the sampler selects one or more of the evicted feature
chunks, the platform re-materializes each feature chunk from the
raw data chunk by reapplying the deployed pipeline to the raw
data chunk. Figure 2 shows the process of dynamicmaterialization
in twopossible scenarios. Forboth scenarios, therearea total 6data
chunks (rawand feature) available in the storage (with timestamps
t0 to t5). The sampling operation selects the chunks at t0, t2, and t5.
In Scenario 1, all the feature chunks are materialized. Therefore,
the platformdirectly utilizes them toupdate themodel. In Scenario
2, the platform has previously evicted some of the materialized
feature chunks due to the limit on the storage capacity. In this sce-
nario, the platform �rst re-materializes the evicted chunks using
the deployed pipeline components before updating the model.

It is important to note that the continuous training platform as-
sumes the raw data chunks are always stored and are available for
re-materialization. If someof the rawdata chunks arenot available,
the platform ignores these chunks during the sampling operation.
A similar issue arises in the periodical deployment approach. If
there is not enough space to store all the historical and incoming
data, at every retraining, the platform only utilizes the available
data in the storage.

3.2.1 Storage requirement for materialized feature chunks. In
order to estimate the storage requirement for the preprocessed
feature chunks, we investigate the size complexity of di�erent
pipeline components in terms of the input size (raw data chunks).
Table 1 shows the categories of the pipeline components and their
characteristics. Let us assume the total number of the values in a
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Figure 1: Work�ow of our continuous deployment approach. (1) The platform converts the data into small units (2) The
platform utilizes the deployed pipeline to preprocess the data and transform the raw data into features and store them in
the storage. (3) The platform samples the data from the storage. (4) The platform materializes the sampled data (5) Using
the sampled data, the deployment platform updates the deployedmodel.
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All chunks are materialized

Scenario 2:
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Figure 2: DynamicMaterialization process

Component type Unit of work Characteristics
data transformation data point (row) �ltering or mapping
feature selection feature (column) selecting some columns
feature extraction feature (column) generating new columns

Table 1: Description of the pipeline component types. Unit
of work indicates whether the component operates on a
row or a column.

dataset where R represents the rows and C represents columns is
p, where p= |R |×|C|. Data transformation and feature selection
operations either perform a one-to-one mapping (e.g., normaliza-
tion) or remove some rows or columns (e.g., anomaly �ltering and
variance thresholding). Therefore, the complexity of data trans-
formation and feature selection operations is linear in terms of the
input size (O(p)). The case for feature extraction is more compli-
cated as there are di�erent types of feature extraction operations.
Inmany cases, the feature extraction process creates a new feature
(column) by combining one ormore existing features (such as sum-
mingormultiplying features together).This results inacomplexity
of O(p) as the increase in size is linear with respect to the input
size. However, in some case, the feature extraction process gener-
ates many features (columns) from a small subset of the existing
features. Prominent examples of such operations are one-hot en-
coding and feature hashing. One-hot encoding converts a column
of the data with categorical values into several columns (1 column
for each unique value). For every value in the original column,
the encoded representation has the value of 1 in the column the
value represents and 0 in all the other columns. Consider the case
when we are applying the one-hot encoding operation to every
column ∀c ∈ C. Furthermore, let us assume q =max∀c ∈C |U(c)|,
whereU is the function that returns the unique values in a column

(U(x) ∈ [1, |R |]). Thus, the complexity of the one-hot encoding
operation is O(pq) (each existing value is encoded with at most q
binary values). Based on the value of q, two scenarios may occur:
• if q�|R|⇒O(pq)=O(p)

• if q≈ |R|⇒O(pq)=O(p |R |)=O(p
p

|C|
)=O(p2)

The second scenario represents the worst-case scenario where
almost every value is unique and we have very few columns (if
the number of columns is large then the complexity is lower than
O(p2)). A quadratic growth rate, especially in the presence of large
datasets, is not desirable and may render the storage of even a few
feature chunks impossible. However, both one-hot encoding and
feature hashing produce sparse datawhere for every encoded data
point, only one entry is 1 and all the other entries are 0. There-
fore, by utilizing sparse vector representation, we guarantee a
complexity of O(p).
Since the complexity is in worst-case scenario linear with re-

spect to the size of the input data and the eviction policy gradually
dematerializes the older feature chunks, the platform ensures the
size of the materialized features will not unexpectedly exceed the
storage capacity.

3.2.2 E�ects of sampling strategies on the dynamic material-
ization. Our platform o�ers three sampling strategies, namely,
uniform, window-based, and time-based (Section 4.2). The choice
of the sampling strategy a�ects the e�ciency of the dynamicmate-
rialization.Here,weanalyze the e�ects of dynamicmaterialization
in reducing the data processing overhead.

We de�neN as themaximumnumber of the raw data chunks,n
as the number of existing raw chunks during a sampling operation,
m as themaximumnumber of thematerialized feature chunks (cor-
responds to the size of the dedicated storage for the materialized
feature chunks), and s as the sample size (in each sampling oper-
ation, we are sampling s chunks out of the available n chunks)1.
Let us de�neMS as the number of materialized feature chunks in
a sampling operation. The variableMS follows a hypergeometric
distribution2 (sampling without replacement) where the number
of success states ism, and the number of draws is s . Therefore, the
expected value ofMS for a sampling operation with n chunks is:

En [MS]=s
m

n
To quantify the e�ciency of the dynamic materialization, we in-
troduce the materialization utilization rate with n raw chunks,
which indicates the ratio of the materialized feature chunks:

µn =
En [MS]

s
Finally, theaveragematerializationutilization rate for thedynamic
materialization process is:

µ=

∑N
n=1µn

N
(3)

1The value N corresponds to the size of the storage unit dedicated for raw data
chunkswhich bounds the variablen. If we assumen is unbounded, then as l imn→∞ ,
the probability of sampling materialized feature chunks becomes 0.
2https://en.wikipedia.org/wiki/Hypergeometric_distribution
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µ indicates the ratio of the feature chunks that do not require
re-materialization before updating the model (a µ of 0.5 shows on
average half of the sampled chunks are materialized). To simplify
the analysis, we assume the platform performs one sampling op-
eration after every incoming data chunk. In reality, a scheduler
component governs the frequency of the sampling operation (Sec-
tion 4.1). Next, we describe how the sampling strategy a�ects the
computation of µ.

Random Sampling: For the random sampling strategy, we
compute µn as:

µn =


1, if n≤m

En [MS]

s
=

s
m

n
s
=
m

n
, otherwise

Since for the�rstm samplingoperations thenumberof rawchunks
(n) is smaller than the total size of the materialized chunks (m), µn
is 1.0 (every sampled chunk is materialized).

µ=

N∑
n=1

µn

N
=

m×1.0+
N∑

n=m+1

m

n

N

=

m+m(
1

m+1
+

1
m+2

+...+
1
N

)

N

=
m(1+(HN −Hm ))

N

≈
m(1+ln(N )−ln(m))

N

(4)

The highlighted section corresponds to the Harmonic numbers
[30]. The t-th harmonic number is:

Ht =1+
1
2
+
1
3
+...+

1
t
≈ln(t)+γ+

1
2t

−
1

12t2
whereγ ≈0.5772156649 is the Euler-Mascheroni constant. In our
analysis, since t is su�ciently large (more than 1000), we ignore
1
2t

−
1

12t2
.

Window-based Sampling: In the window-based sampling,
we have an extra parameter w which indicates the number of
chunks in the active window. Ifm≥w then µ=1, as all the feature
chunks in the active window are always materialized. However,
whenm<w :

µn =


1, if n≤m
En [MS]

s
=
m

n
, ifm<n≤w

Ew [MS]

s
=
m

w
, ifw <n

therefore:

µ=

N∑
n=1

µn

N
=

m+
w∑

n=m+1

m

n
+(N −w)

m

w

N

≈

m+m(Hw −Hm )+(N −w)
m

w
N

=

m(1+ln(w)−ln(m)+
N −w

w
)

N

(5)

Time-based Sampling: For the time-based sampling strategy,
there is no direct approach for computing the expected value of
MS (the number of the materialized chunks in the sample). How-
ever, we are assigning a higher sampling probability to the recent
chunks. As a result, we guarantee the time-based sampling has a
higher average materialization utilization rate than the uniform
sampling. In the experiments, we empirically show the average
materialization utilization rate.

In our experiments, we execute a deployment scenario with a
total of 12,000 chunks (N =12000), where each chunk is around 3.5
MB (a total of 42 GB). For the uniform sampling strategy, in order
to achieve µ=0.91, using Formula 4, we set the maximum number
of the materialized chunks to 7,200 (m=7200). This shows that, in
the worst-case scenario (when uniform sampling is utilized), by
materializing around 25 GB of the data, we ensure the deployment
platform does not need to re-materialize the data 91% of the time.

3.3 Proactive Training
Updating the model is the last step of our continuous deployment
platform. We update the model through the proactive training
process. Unlike, the full retraining process that is triggered by a
certain event (such as a drop in the quality or certain amount of
time elapsed since the last retraining), proactive training continu-
ously updates the deployed model. The proactive training utilizes
the mini-batch stochastic gradient descent to update the model
incrementally. Each instance of the proactive training is analo-
gous to an iteration of the mini-batch SGD. Algorithm 1 shows
the pseudocode of the mini-batch SGD algorithm. In mini-batch

Algorithm 1mini-batch Stochastic Gradient Descent
Input: D= training dataset
Output: m= trained model
1: initializem0
2: for i=1...n do
3: si = sample fromD
4: д=∇J (si ,mi−1)
5: mi =mi−1−ηi−1д
6: end for
7: returnmn

SGD, we �rst initialize the model (Line 1). Then, in every iteration,
we randomly sample points from the dataset (Line 3), compute
the gradient of the loss function J (Line 4), and �nally update the
model based on the value of the gradient and the learning rate
(Line 5). Since the platform executes the proactive training in ar-
bitrary intervals, we must ensure each instance of the proactive
training is independent of the previous instances. According to
the mini-batch SGD algorithm, each iteration of the SGD only
requires the model (mi−1) and the learning rate (ηi−1) of the previ-
ous iteration (Lines 4 and 5). Given these parameters, iterations of
SGD are conditionally independent of each other. Therefore, to ex-
ecute the proactive training, the deployment platform only needs
to store the model weights and the learning rate. By proactively
training the deployedmodel, the platform ensures themodel stays
up-to-date and provides accurate predictions.

Proactive training is a form of incremental training [14] which
is limited to SGD-based models. In our deployment platform, one
can replace the proactive trainingwith other forms of incremental
training. However, we limit the platform’s support to SGD for two
reasons. First, SGD is simple to implement and isused for traininga
variety ofmachine learningmodels in di�erent domains [6, 19, 23].
Second, since the combination of the data sampling and the proac-
tive training is similar to themini-batch SGDprocedure, proactive
training provides the same regret bound on the convergence rate
as the existing stochastic optimization approaches [18, 36].

4 DEPLOYMENT PLATFORM
Our proposed deployment platform comprises of �ve main com-
ponents: pipeline manager, data manager, scheduler, proactive
trainer, and execution engine. Figure 3 gives an overview of the
architecture of our platform and the interactions among its com-
ponents. At the center of the deployment platform is the pipeline
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manager. The pipeline manager monitors the deployed pipeline
andmodel,manages the processing of the training data and predic-
tion queries, and enables the continuous update of the deployed
model. The data manager and the scheduler enable the pipeline
manager to perform proactive training. The proactive trainer com-
ponent manages the execution of the iterations of SGD on the
deployed model. The execution engine is responsible for execut-
ing the actual data transformation andmodel training components
of the pipeline.

4.1 Scheduler
The scheduler is responsible for scheduling the proactive training.
The scheduler instructs the pipeline manager when to execute
the proactive training. The scheduler accommodates two types
of scheduling mechanisms, namely, static and dynamic. The static
scheduling utilizes a user-de�ned parameter that speci�es the
interval between executions of the proactive training. This is a
simple mechanism for use cases that require constant updates to
the deployed model (for example, every minute). The dynamic
scheduling tunes the scheduling interval based on the rate of the
incoming predictions, prediction latency, and the execution time
of theproactive training. The scheduler uses the following formula
to compute the time when to execute the next proactive training:

T ′=S∗T ∗pr ∗pl (6)
whereT ′ is the time in secondswhen the next proactive training is
scheduled to execute,T is the total execution time (in seconds) of
the last proactive training,pl is the average prediction latency (sec-
ond per item), and pr is the average number of prediction queries
per second (items per second). S is the slack parameter. Slack is
a user-de�ned parameter to hint the scheduler about the possi-
bility of surges in the incoming prediction queries and training
data. During a proactive training, a certain number of predictions
queries arrive at the platform (T ∗pr ) which requires T ∗pr ∗pl
seconds to be processed. The scheduler must guarantee that the
deployment platform answers all the queries before executing
the next proactive training (T ′ >T ∗pr ∗pl). A large slack value
(≥ 2) results in a larger scheduling interval, thus allocatingmost of
the resources of the deployment platform to the query answering
component. A small slack value (1≤S ≤ 2) results in smaller sched-
uling intervals. As a result, the deployment platform allocates
more resources for training the model.

Continuous Deployment Platform

Pipeline Manager

Scheduler

Execution Engine

Data Manager Proactive Trainer

Figure 3: Architecture of the Continuous Deployment
Platform

4.2 DataManager
The data manager component is responsible for the storage of
historical data and materialized features, receiving the incoming
training data, and providing the pipelinemanager with samples of
the data. Thedatamanager has fourmain tasks. First, the dataman-
ager discretizes the incoming training data into chunks, assigns a
timestamp (which acts as a unique identi�er) to them, and stores
them in the storage unit. Second, it forwards the data chunks (and
the prediction queries) to the pipeline manager for further pro-
cessing. Third, after the pipelinemanager transforms the data into

feature chunks, the data manager stores the transformed feature
chunks in the storage unit along with a reference to the originat-
ing raw data chunk (i.e., the timestamp of the raw data chunk). If
the storage unit reaches its limit, the data manager removes old
feature chunks. Finally, upon the request of the pipeline manager,
the data manager samples the data for proactive training.
During the sampling procedure, the data manager randomly

selects a set of chunks by using their timestamp as key. Then, the
data manager proceeds as follows. For every sampled timestamp,
if the transformed feature chunk exists in the storage, then the
data manager forwards it to the pipeline manager. However, if
the data manager has previously removed the transformed fea-
ture chunks from the storage unit, the data manager forwards the
raw data chunk to the pipeline manager and noti�es the pipeline
manager to re-transform the raw data chunk (i.e., the dynamic
materialization process).
The data manager provides three sampling strategies, namely,

uniform, time-based, and window-based. The uniform sampling
strategy provides a random sample from the entire data where
every data chunk has the same probability of being sampled. The
time-based sampling strategy assignsweights to every data chunk
based on their timestamp such that recent chunks have a higher
probability of being sampled. The window-based sampling strat-
egy is similar to the uniform sampling, but instead of sampling
from the entire historical data, the data manager samples the
data from a given time range. Based on the speci�c use-case, the
user chooses the appropriate sampling strategy. In many real-
world use cases (e.g., e-commerce and online advertising), the de-
ployedmodel should adapt to the more recent data. Therefore, the
time-based and window-based sampling provide more appropri-
ate samples for training.However, in someuse cases, the incoming
training data is not time-dependent (e.g., image classi�cation of
objects). In these scenarios, the window-based and the time-based
sampling strategies may fail to provide a non-biased sample. In
Section 5, we evaluate the e�ect of the sampling strategy on both
the total deployment cost and the quality of the deployed model.

4.3 PipelineManager
The pipeline manager is the main component of the platform. It
loads the pipeline and the trained model, transforms the data into
features using the pipeline, enables the execution of the proactive
training, and exposes the deployed model to answer prediction
queries.
Each pipeline component must implement two methods: up-

date and transform. Furthermore, every pipeline component has
an internal state for storing the statistics (if needed). During the
online training, when new training data becomes available, the
pipeline manager �rst invokes the updatemethod which enables
the component to update its internal statistics using the incoming
data. Then, the pipeline manager invokes the transformmethod,
which transforms the data. After forwarding the data through
every component of the pipeline, the pipeline manager sends the
transformed features to the data manager for storage.

When the scheduler component informs the pipeline manager
to execute proactive training, the pipeline manager requests the
datamanager to provide itwith a sample of the data chunks for the
next proactive training. If some of the sampled data chunks are not
materialized, the pipeline manager re-materializes the chunks by
invoking the transformmethodsof thepipeline components.Then,
it provides theproactive trainerwith thecurrentmodelparameters
and the materialized sample of the features. Once the proactive
training is over, the pipeline manager receives the updated model.
The data manager also forwards the prediction queries to the

pipeline manager. Similar to the training data, the pipeline man-
ager sends the prediction queries through the pipeline to perform
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the necessary data preprocessing (by only invoking the transform
method of every pipeline component). Using the same pipeline to
process both the training data and the prediction queries guaran-
tees that the same set of transformations are applied to both types
of data. As a result, the pipeline manager prevents inconsistencies
between training and inference that is a common problem in the
deployment ofmachine learning pipelines [3]. Finally, the pipeline
manager utilizes the deployed model to make predictions.

4.4 Proactive Trainer
The proactive trainer is responsible for training the deployed
model by executing iterations of SGD. In the training process, the
proactive trainer receives a training dataset (sampledmaterialized
features) and the currentmodel parameters from the pipelineman-
ager. Then, the proactive trainer performs one iteration of SGD
and returns the updatedmodel to the pipelinemanager. The proac-
tive trainer utilizes advanced learning rate adaptation techniques
such as Adam, Rmsprop, and AdaDelta to dynamically adjust the
learning rate parameter when training the model.

In order for the proactive training to update the deployedmodel,
the machine learning model component of the deployed pipeline
must implement an updatemethod, which is responsible for com-
puting the gradient. To provide support for other types of incre-
mental training approaches, one needs to implement the training
logic in the updatemethod of the model. However, as described
in Section 3.3, the proactive training with data sampling can guar-
antee convergence only when the SGD optimization is utilized.

4.5 Execution Engine
The execution engine is responsible for executing the SGD and
the prediction answering logic. In our deployment platform, any
data processing platform capable of processing data both in batch
mode (for proactive training) and streaming mode (online learn-
ing and answering prediction queries) is a suitable execution en-
gine. Platforms such as Apache Spark [34], Apache Flink [7], and
GoogleDataFlow [2] are distributed data processing platforms
that support both stream and batch data processing.

5 EVALUATION
To evaluate the performance of our deployment platform, we
perform several experiments. Our main goal is to show that the
continuous deployment approach maintains the quality of the de-
ployed model while reducing the total training time. Speci�cally,
we answer the following questions:
1. How does our continuous deployment approach perform in
comparison to online and periodical deployment approaches with
regards to model quality and training time?
2. What are the e�ects of the learning rate adaptation method,
the regularization parameter, and the sampling strategy on the
continuous deployment?
3. What are the e�ects of online statistics computation and dy-
namic materialization optimizations on the training time?
To that end, we �rst design two pipelines each processing one

real-world dataset. Then, we deploy the pipelines using di�erent
deployment approaches.

5.1 Setup
Pipelines.We design two pipelines for all the experiments.
URL pipeline. The URL pipeline processes the URL dataset for

classifying URLs, gathered over a 121 days period, into malicious
and legitimate groups [22]. The pipeline consists of 5 components:
inputparser,missingvalue imputer, standardscaler, featurehasher,
and an SVMmodel. To evaluate the SVMmodel, we compute the
misclassi�cation rate on the unseen data.

Taxi Pipeline.The Taxi pipeline processes theNewYork taxi trip
dataset and predicts the trip duration of every taxi ride [8]. The
pipeline consists of 5 components: input parser, feature extrac-
tor, anomaly detector, standard scaler, and a Linear Regression
model. We design the pipeline based on the solutions of the top
scorers of the New York City (NYC) Taxi Trip Duration Kaggle
competition3. The input parser computes the actual trip duration
by �rst extracting the pickup and drop o� time �elds from the
input records and calculating the di�erence (in seconds) between
the two values. The feature extractor computes the haversine dis-
tance4, the bearing5, the hour of the day, and the day of the week
from the input records. Finally, the anomaly detector �lters the
trips that are longer than 22 hours, smaller than 10 seconds, or the
trips that have a total distance of zero (the car never moved). To
evaluate the model, we use the Root Mean Squared Logarithmic
Error (RMSLE) measure. RMSLE is also the chosen error metric
for the NYC Taxi Trip Duration Kaggle competition.

Deployment Environment. We deploy the URL pipeline on
a single laptop running a macOS High Sierra 10.13.4 with 2,2 GHz
Intel Core i7, 16 GB of RAM, and 512GB SSD and the Taxi pipeline
on a cluster of 21 machines (Intel Xeon 2.4 GHz 16 cores, 28 GB
of dedicated RAM per node). In our current prototype, we are
usingApache Spark 2.2 as the execution engine. The datamanager
component utilizes the Hadoop Distributed File System (HDFS)
2.7.1 for storing the historical data [28]. We leverage the SVM, Lo-
gisticRegression, and the GradientDescent classes of the machine
learning library in Spark (MLlib) to implement the proactive train-
ing logic.We represent both the rawdata and the feature chunks as
RDDs. Therefore,we can utilize the cachingmechanismofApache
Spark to simply materialize/dematerialize feature chunks.

Datasets. Table 2 describes the details of the datasets such as
the size of the raw data for the initial training, and the amount of
data for the prediction queries and further training after deploy-
ment. For the URL pipeline, we �rst train a model on the �rst day
of the data (day 0). For the Taxi pipeline, we train a model using
the data from January 2015. For both datasets, since the entire data
�ts in the memory of the computing nodes, we use batch gradient
descent (sampling ratio of 1.0) during the initial training. We then
deploy the models (and the pipelines). We use the remaining data
for sending prediction queries and further training of the deployed
models.

Dataset size # instances Initial Deployment
URL 2.1 GB 2.4 M Day 0 Day 1-120
Taxi 42 GB 280 M Jan15 Feb15 to Jun16

Table 2: Description of Datasets. The Initial and Deploy-
ment columns indicate the amount of data used during
the initial model training and the deployment phase
(prediction queries and further training data)

Evaluationmetrics. For experiments that compare the qual-
ity of the deployed model, we utilize the prediction queries to
compute the cumulative prequential error rate of the deployed
models over time [11]. For experiments that capture the cost of the
deployment, wemeasure the time the platforms spend in updating
the model, performing proactive training (retraining for the pe-
riodical deployment scenario), and answering prediction queries.

Deployment process. The URL dataset does not have times-
tamps. Therefore, we divide every day of the data into chunks of
1 minute which results in a total of 12000 chunks, each one with
the size of roughly 200KB. The deployment platform �rst uses the
chunks for prequential evaluation and then updates the deployed
3https://www.kaggle.com/c/nyc-taxi-trip-duration/
4https://en.wikipedia.org/wiki/Haversine_formula
5https://en.wikipedia.org/wiki/Bearing_(navigation)
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Figure 4: Model Quality and Training cost for di�erent deployment approaches

model. The Taxi dataset includes timestamps. In our experiments,
each chunkof theTaxi dataset contains onehour of the data,which
results in a total of 12382 chunks, with an average size of 3MB per
chunk. The deployment platform processes the chunks in order
of the timestamps (from 2015-Feb-01 00:00 to 2016-Jun-30 24:00,
an 18 months period).

5.2 Experiment 1: Deployment Approaches
In this experiment, we investigate the e�ect of our continuous
deployment approach onmodel quality and the total training time.
We use 3 di�erent deployment approaches.
• Online: deploy the pipeline, then utilize online gradient descent
with Adam learning rate adaptation method for updating the
deployed model.

• Periodical: deploy the pipeline, then periodically retrain the
deployed model.

• Continuous: deploy the pipeline, then continuously update the
deployed model using our platform.
The periodical deployment initiates a full retraining every 10

days and every month for URL and Taxi pipelines, respectively.
Since the rate of the incoming training and prediction queries are
known, we use static scheduling for the proactive training. Based
on the size and rate of the data, our deployment platform executes
the proactive training every 5 minutes and 5 hours for the URL
and Taxi pipelines, respectively. To improve the performance of
the periodical deployment, we utilize thewarm starting technique,
used in the TFX framework [3]. In warm starting, each periodical
training uses the existing parameters such as the pipeline statistics
(e.g., standard scaler), model weights, and learning rate adaptation
parameters (e.g., the average of past gradients used in Adadelta,
Adam, and Rmsprop) when training newmodels.

Figure 4 (a) and (c) show the cumulative error rate over time
for the di�erent deployment approaches. For both datasets, the
continuous and the periodical deployment result in a lower error
rate than the online deployment. Online deployment visits every
incoming training data point only once. As a result, the model
updates are more prone to noise. This results in a higher error
rate than the continuous and periodical deployment. In Figure 4
(a), during the �rst 110 days of the deployment, the continuous
deployment has a lower error rate than the periodical deployment.
Only after the �nal retraining, the periodical deployment slightly
outperforms the continuous deployment. However, from the start
to the end of the deployment process, the continuous deployment
improves the average error rate by 0.3% and 1.5% over the period-
ical and online deployment, respectively. In Figure 4 (c), for the
Taxi dataset, the continuous deployment always attains a smaller
error rate than the periodical deployment. Overall, the continuous
deployment improves the error rate by 0.05% and 0.1% over the
periodical and online deployment, respectively.
When compared to the online deployment, periodical deploy-

ment slightly decreases the error rate after every retraining. How-
ever, between every retraining, the platform updates the model
using online learning. This contributes to the higher error rate
than thecontinuousdeployment,where theplatformcontinuously
trains the deployed model using samples of the historical data.

In Figure 4 (b) and (d), we report the cumulative cost over time
for every deployment platform. We de�ne the deployment cost
as the total time spent in data preprocessing, model training, and
performing prediction. For the URL dataset (Figure 4 (b)), online
deployment has the smallest cost (around 34 minutes) as it only
scans each data point once (around 2.4 million scans). The contin-
uous deployment approach scans 45million data points. However,

404



the total cost at the end of the deployment is only 50% larger than
the online deployment approach (around 54 minutes). Because
of the online statistics computation and the dynamic material-
ization optimizations, a large part of the data preprocessing time
is avoided. For the periodical deployment approach, the cumu-
lative deployment cost starts similar to the online deployment
approach. However, after every o�ine retraining, the deployment
cost substantially increases. At the end of the deployment process,
the total cost for the periodical deployment is more than 850 min-
utes which is 15 times more than the total cost of the continuous
deployment approach. Each data point in the URL dataset has
more than 3 million features. Therefore, the convergence time for
each retraining is very high. The high data-dimensionality and
repeated data preprocessing contribute to the large deployment
cost of the periodical deployment.

For the Taxi dataset (Figure 4 (d)), the cost of online, continuous,
and periodical deployments are 262, 308, and 1765minutes, respec-
tively. Similar to the URL dataset, continuous deployment only
adds a small overhead to the deployment cost when compared
with the online deployment. Contrary to the URL dataset, the
feature size of the Taxi dataset is 11. Therefore, o�ine retraining
converges faster to a solution. As a result, for the Taxi dataset,
the cost of the periodical deployment is 6 times larger than the
continuous deployment (instead of 15 times for URL dataset).

5.3 Experiment 2: System Tuning
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Figure 5: Result of hyperparameter tuning during the
deployment
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Figure 6: E�ect of di�erent samplingmethods on quality

In this experiment, we investigate the e�ect of di�erent parame-
ters on the quality of themodels after deployment. As described in
Section 3.3, proactive training is an extension of the stochastic gra-
dient descent to the deployment phase. Therefore, we expect the
set of hyperparameters with the best performance during the ini-
tial training also performs the best during the deployment phase.

ProactiveTrainingParameters. Stochastic gradient descent
is heavily dependent on the choice of learning rate and the regular-
ization parameter. To �nd the best set of hyperparameters for the

initial training, we perform a grid search. We use advanced learn-
ing rate adaptation techniques (Adam,Adadelta, and Rmsprop) for
both initial and proactive training. For each dataset, we divide the
initial data (from Table 2) into a training and evaluation set. For
each con�guration,we�rst train amodel using the training set and
then evaluate the model using the evaluation set. Table 3 shows
the result of the hyperparameter tuning for every pipeline. For the
URL dataset, Adamwith regularization parameter 1E-3 yields the
model with the lowest error rate. The Taxi dataset is less complex
than the URL dataset and has a smaller number of feature dimen-
sions. As a result, the choice of di�erent hyperparameter does not
have a large impact on the quality of the model. The Rmsprop
adaptation technique with the regularization parameter of 1E-4
results in a slightly better model than the other con�gurations.

After the initial training, for every con�guration, we deploy the
model and use 10 % of the remaining data to evaluate the model
after deployment. Figure 5 shows the results of the di�erent hy-
perparameter con�gurations on the deployed model. To make
the deployment �gure more readable, we avoid displaying the
result of every possible combination of hyperparameters and only
show the result of the best con�guration for each learning rate
adaptation technique. For the URL dataset, similar to the initial
training, Adamwith regularization parameter 1E-3 results in the
best model. For the Taxi dataset, we observe a similar behavior to
the initial training where di�erent con�gurations do not have a
signi�cant impact on the quality of the deployed model.
This experiment con�rms that the e�ect of the hyperparame-

ters (learning rate and regularization) during the initial and proac-
tive training are the same. Therefore, we tune the parameters of
the proactive training based on the result of the hyperparameter
search during the initial training.

SamplingMethods. The choice of the sampling strategy also
a�ects the proactive training. Each instance of the proactive train-
ing updates the deployedmodel using the provided sample. There-
fore, the quality of the model after an update is directly related
to the quality of the sample. We evaluate the e�ect of three dif-
ferent sampling strategies, namely, time-based, window-based,
and uniform, on the quality of the deployed model. The sample
size is similar to the sample size during the initial training (16k
and 1M for URL and Taxi data, respectively). Figure 6 shows the
e�ect of di�erent sampling strategies on the quality of the de-
ployedmodel. For the URL dataset, time-based sampling improves
the average error rate by 0.5% and 0.9% over the window-based
and uniform sampling, respectively. As new features are added to
the URL dataset over time, the underlying characteristics of the
dataset gradually change [22]. A time-based sampling approach is
more likely to select the recent items for the proactive training. As
a result, the deployed model performs better on the incoming pre-
diction queries. The underlying characteristics of the Taxi dataset
are known to remain static over time. As a result, we observe that
di�erent sampling strategies have the same e�ect on the quality
of the deployed model. Our experiments show that for datasets
that gradually change over time, time-based sampling outper-
forms other sampling strategies. Moreover, time-based sampling
performs similarly to window-based and uniform sampling for
datasets with stationary distributions.

5.4 Experiment 3: Optimizations E�ects
In this experiment, we analyze the e�ect of the system optimiza-
tions, i.e., online statistics computation and the dynamic material-
ization on the total deployment cost.We de�ne thematerialization
rate (i.e., mn , as described in Section 3.2) as the ratio of the number
of materialized chunks over the total number of chunks (both URL
andTaxi have around12,000 chunks in total). For bothdatasets, the
materialization rates of 0.0, 0.2, 0.6, and 1.0 indicates that 0, 2400,
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URL Taxi

Adaptation 1E-2 1E-3 1E-4 1E-2 1E-3 1E-4
Adam 0.030 0.026 0.035 0.09553 0.09551 0.09551
RMSProp 0.030 0.027 0.034 0.09552 0.09552 0.09550
Adadelta 0.029 0.028 0.034 0.09609 0.09610 0.09619

Table 3:Hyperparameter tuningduring initial training (boldnumbers show thebest results for eachadaptation techniques)

7200, and 12000 chunks are materialized. For the window-based
sampling strategy, we set the window size to 6,000 chunks (half
of the total chunks). In this experiment, we assume the raw data
is always stored in memory. The total size of the datasets after
materialization is 5.2 GB and 59 GB for the URL and Taxi datasets,
respectively. Therefore, when setting the materialization rate to a
speci�c value, we must ensure we have enough memory capacity
to store both the materialized and the raw data. Table 4 shows

URL Taxi

Sampling m
n =0.2 m

n =0.6 m
n =0.2 m

n =0.6
Uniform 0.52 (0.52) 0.91 (0.91) 0.51 (0.52) 0.90 (0.91)
Window-based 0.58 (0.58) 1.0 (1.0) 0.57 (0.58) 1.0 (1.0)
Time-based 0.68 0.97 0.65 0.97

Table 4: Empirical computation and theoretical estimates
(bold numbers) of µ for di�erent sampling strategies and
materialization rates (mn ). We omit the materialization
rates 0.0 and 1.0 since both the empirical and theoretical
estimates of µ are 0.0 and 1.0 for every sampling strategy.

the empirical values and theoretical estimates of µ for di�erent
settings. For both the uniform and time-based sampling, the em-
pirical and analytical computation yield similar values. Moreover,
the empirical computation shows that the time-based strategy
performs better than the uniform sampling strategy. When the
number of materialized feature chunks is 0 or 12000, the design of
the deployment platform guarantees that µ is 0.0 and 1.0, respec-
tively. Therefore, we do not report those results in the table.
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Figure 7: E�ect of the online statistics computation and
dynamicmaterialization on the deployment cost

To examine the e�ect of µ on the deployment cost, we plot
the total deployment cost using di�erent sampling strategies and
materialization rates (mn ) for the URL and Taxi deployment sce-
narios in Figure 7. When the materialization rate is 0.0 or 1.0, the
sampling strategies have similar e�ects on the deployment cost.
Therefore, the total deployment cost for every sampling strategy is
90minutes for URL and 600minutes for Taxi deployment scenario,
when the materialization rate is 0.0. Similarly, the deployment

cost is 54 minutes for URL and 308 minutes for Taxi, when the
materialization rate is 1.0 (an improvement of 40% for URL and
49% for Taxi deployment scenarios).

For the URL deployment scenario, when the materialization
rate is 0.2, time-based, window-based, and uniform sampling im-
prove the deployment cost by 30%, 25%, and 23% in comparison
with the materialization rate of 0.0. Similarly, in the Taxi deploy-
ment scenario, time-based, window-based, and uniform sampling
improve the deployment cost by 22%, 16%, and 12%, respectively.
Time-based sampling performs better since it has a higher µ value
than the other two sampling strategies (Table 4).When themateri-
alization rate is 0.2, the rate of the decrease in the deployment cost
for theURL scenario is greater than the Taxi scenario.We attribute
this di�erence in the decrease in the deployment cost to two rea-
sons. First, the number of sampled chunks in the Taxi deployment
scenario is larger than the URL (720 for Taxi and 100 for URL).
Before updating the model, we utilize the context.union operation
of Spark, to combine all the non-materialized and materialized
chunks. The union operation incurs a larger overhead when the
number of underlying chunks is bigger. Second, we execute the
URL deployment scenario on a single machine with SSD. Since
materializing data that resides on an SSD is faster than an HD, we
observe a larger decrease in the deployment cost.
When the materialization rate is 0.6, window-based sampling

has the best performance. Since the size of the window is smaller
than thenumberof thematerialized feature chunks, every sampled
feature chunk is materialized. For the URL deployment scenario,
window-based, time-based, and uniform sampling improves the
performance by 40%, 36%, and 33%, respectively. For the Taxi
deployment scenario, window-based, time-based, and uniform
sampling improves the performance by 49%, 46%, and 37%, respec-
tively. Similar phenomena explain the di�erence in performance
improvement at materialization rate of 0.6 between the Taxi and
theURLdeployment scenarios. Atmaterialization rate of 0.6,more
than 90% of the chunks are materialized. Therefore, the Taxi de-
ployment scenario gains relativelymore than theURLdeployment
scenario from a smaller number of disk I/O operations.
To analyze the e�ect of the online statistics computation on

the deployment cost, we also execute the deployment scenarios
without the online statistics computation and the dynamicmateri-
alization optimizations. In this case, the deployment platform �rst
accesses the sampled raw data chunk directly from the disk. Then,
the platform recomputes the required statistics of every compo-
nentby scanning thedata. Finally, it transforms the rawdata chunk
into the preprocessed feature chunks by utilizing the deployed
pipeline. Without the optimizations, the choice of the sampling
strategy does not a�ect the total deployment time (similar to the
materialization rate of 0.0). Therefore, when the optimizations are
disabled, we only show the results for the time-based sampling
(depicted as NoOptimization in Figure 7). The extra disk access
and data processing result in an increase of %110 for the URL
(Figure 7a) and %170 for the Taxi deployment scenarios (Figure
7b) when compared with a fully optimized execution (with online
statistics computation and materialization rate of 1.0). Similar to
the dynamic materialization case, we observe a larger increase in
the deployment cost of the Taxi deployment scenario due to the
larger overhead of disk I/O.
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The result of this experiment shows that even under limited
storage we can bene�t from the dynamic materialization, espe-
cially for the time-based and window-based sampling strategies.
Furthermore, online statistics computation can improve the total
deployment cost, especially when the expected amount of incom-
ing data is large.

5.5 Discussion
Trade-o� between quality and training cost. In many real-
world use cases, even a small improvement in the quality of the
deployed model can have a signi�cant impact [21]. Therefore,
one can employ more complex pipelines and machine learning
training algorithms to train better models. However, during the
deployment where prediction queries and training data become
available at a high rate, onemust consider the e�ect of the training
time. To ensure the model is always up-to-date, the platformmust
constantly update the model. Long retraining time may have a
negative impact on the prediction accuracy as the deployedmodel
becomes stale. Figure 8 shows the trade-o� between the average
quality and the total cost of the deployment. By utilizing con-
tinuous deployment, we reduce the total cost of the deployment
6 to 15 times when compared with the periodical deployment,
while providing the same quality (even slightly outperforming
the periodical deployment by 0.05% and 0.3% for the Taxi and URL
datasets, respectively.)
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Figure 8: Trade-o� between average quality and deploy-
ment cost

Stalenessof themodelduringtheperiodicaldeployment.
In the experiments of the periodical deployment approach, we
pause the in�ow of the training data and prediction queries. How-
ever, in real-world scenarios, the training data and the prediction
queries constantly arrive at the platform. Therefore, the periodical
deployment platform pauses the online update of the deployed
model and answers the prediction queries using the currently de-
ployed model (similar to how Velox operates [9]). As a result, the
error rate of the deployed model may increase during the retrain-
ing process. However, in our continuous deployment platform, the
average time for the proactive training is small (200ms for theURL
dataset and 700ms for the Taxi dataset). Therefore, the continuous
deployment platform always performs the online model update
and answers the predictions queries using an up-to-date model.

6 RELATEDWORK
Traditional machine learning systems focus solely on training
models and leave the task of deploying and maintaining the mod-
els to the users. It has only been recently that some platforms, for
example LongView [1], Velox [9], Clipper [10] , and TensorFlow
Extended [3] haveproposed architectures that also considermodel
deployment and query answering.

LongView integrates predictive machine learning models into
relational databases. It answers predictive queries and maintains

andmanages themodels. LongViewuses techniques such as query
optimization and materialized view selection to increase the per-
formance of the system. However, it only works with batch data
and does not provide support for real-time queries. As a result, it
does not support continuous and online learning. In contrast, our
platform is designed to work in a dynamic environment where it
answers prediction queries in real-time and continuously updates
the model.
Velox is an implementation of the common periodical deploy-

ment approach. Velox supports online learning and can answer
prediction queries in real-time. It also eliminates the need for the
users to manually retrain the model o�ine. Velox monitors the
error rate of the model using a validation set. Once the error rate
exceeds a prede�ned threshold, Velox initiates a retraining of the
model using Apache Spark. However, Velox has four drawbacks.
First, retraining discards the updates that have been applied to the
model so far. Second, the process of retraining on the full dataset
is resource intensive and time-consuming. Third, the platform
must disable online learning during the retraining. Lastly, the
platform only deploys the �nal model and does not support the
deployment of the machine learning pipeline. Our approach dif-
fers from Velox as it exploits the underlying properties of SGD to
integrate the training process into the platform’s work�ow. Our
platform replaces the o�ine retraining with proactive training.
As a result, our deployment platformmaintains the model quality
with a small training cost. Moreover, our deployment platform
deploys the machine learning pipeline alongside the model.

Clipper is another machine learning deployment platform that
focuses on producing high-quality predictions by maintaining an
ensemble of models. For every prediction query, Clipper exam-
ines the con�dence of every deployed model. Then, it selects the
deployed model with the highest con�dence for answering the
prediction query. However, it does not update the deployed mod-
els, which over time leads to outdated models. On the other hand,
our deployment platform focuses onmaintenance and continuous
update of the deployed models.
TensorFlow Extended (TFX) is a platform that supports the

deployment of machine learning pipelines and models. TFX au-
tomatically stores new training data, performs analysis and val-
idation of the data, retrains new models, and �nally redeploys
the new pipelines and models. Moreover, TFX supports the warm
starting optimization to speed up the process of training new
models. TFX aims to simplify the process of design and training
of machine learning pipelines and models, simplify the platform
con�guration, provide platform stability, and minimize the dis-
ruptions in the deployment platform. For use cases that require
months to deploy newmodels, TFX reduces the time to produc-
tion from the order of months to weeks. Although TFX uses the
term "continuous training" to describe the deployment platform,
it still periodically retrains the deployed model on the historical
dataset. On the contrary, our continuous deployment platform
performsmore rapid updates to the deployedmodel. By exploiting
the properties of SGD optimization technique, our deployment
platform rapidly updates the deployedmodels (seconds tominutes
instead of several days or weeks) without increasing the overhead.
Our proactive training component can be integrated into the TFX
platform to speed up the process of pipeline and model update.
Weka [15], ApacheMahout [24], andMadlib [16] are systems

that provide the necessary toolkits to trainmachine learningmod-
els. All of these systems provide a range of training algorithms
for machine learning methods. However, they do not support the
management and deployment of machine learning models and
pipelines. Our platform focuses on continuous deployment and
management of machine learning pipelines and models after the
initial training.

407



MLBase [20] and TuPaq [29] are model management systems.
They provide a range of training algorithms to create machine
learningmodels andmechanism formodel search aswell asmodel
management. They focus on training high-quality models by
performing automatic feature engineering and hyper-parameter
search. However, they only work with batch datasets. Moreover,
the users have to manually deploy the models and make them
available for answering prediction queries. On the contrary, our
deployment platform focuses on the continuous deployment of
pipelines and models.

7 CONCLUSIONS
We propose a deployment platform for continuously updating
machine learning pipelines and models. After a machine learn-
ing pipeline is designed and initially trained on a dataset, our
platform deploys the pipeline and makes it available for answer-
ing prediction queries. To ensure that the model maintains an
acceptable error rate , existing deployment platforms periodically
retrain the deployed model. However, periodical retraining is a
time-consuming and resource-intensive process. As a result of
the lengthy training process, the platform cannot produce fresh
models. This results in model-staleness which may decrease the
quality of the deployed model.

We propose a training approach, called proactive training, that
utilizes samples of thehistorical data to train the deployedpipeline.
Proactive training replaces the periodical retraining, which pro-
vides the same level of model quality without the lengthy retrain-
ing process. We also propose online statistics computation and
dynamic materialization of the preprocessed features which fur-
ther decreases the training time.Wepropose amodular design that
enables our deployment platform to be integrated with di�erent
scalable data processing platforms.

We implement a prototype using Apache Spark to evaluate the
performance of our deployment platform. In our experiments,
we develop two pipelines with twomachine learning models to
process two real-world datasets. We discuss how to tune the de-
ployment platform based on the available historical data. Our
experiments show that our continuous deployment reduces the
total deployment cost by a factor of 6 and 15 for the Taxi and URL
datasets, respectively.Moreover, continuous deployment platform
provides the same level of quality for the deployed model when
compared with the periodical deployment approach.
Currently, we provide support for anomaly and concept drift

detection through components of the machine learning pipeline.
However, given the large impact of the concept drift and anom-
alies on the performance of a deployed model, in the future work,
we plan to extend our platform to provide native support for
both concept drift and anomaly detection and alleviation. Fur-
thermore, we plan to integrate more complex machine learning
pipelines and models (e.g., neural networks) into our deployment
platform.
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ABSTRACT

A relevant task in the exploration and understanding of large
datasets is the discovery of hidden relationships in the data. In
particular, functional dependencies have received considerable
attention in the past. However, there are other kinds of relation-
ships that are significant both for understanding the data and for
performing query optimization. Order dependencies belong to
this category. An order dependency states that if a table is ordered
on a list of attributes, then it is also ordered on another list of
attributes. The discovery of order dependencies has been only
recently studied. In this paper, we propose a novel approach for
discovering order dependencies in a given dataset. Our approach
leverages the observation that discovering order dependencies
can be guided by the discovery of a more specific form of de-
pendencies called order compatibility dependencies. We show that
our algorithm outperforms existing approaches on real datasets.
Furthermore, our algorithm can be parallelized leading to fur-
ther improvements when it is executed on multiple threads. We
present several experiments that illustrate the effectiveness and
efficiency of our proposal and discuss our findings.

1 INTRODUCTION

In the big data era, the volume and complexity of available
datasets has grown so much that data engineers are having a hard
time interpreting the information contained in them. In such a
reality, the ability to discover hidden dependencies in some auto-
matic way is fundamental. Dependencies across different parts
of the data play a significant role in query optimization, since
redundant information may be ignored making the query evalu-
ation faster. Furthermore, parts of the data may be replaced with
others that are easier to manipulate, without affecting the final re-
sult. Data profiling may help with data quality since it highlights
constraints that may exist in the data but are not fully satisfied
and have not been enforced when designing the database.

Dependency discovery is not a new challenge. Functional and
inclusion dependencies are the most common type of depen-
dencies and have been studied extensively [14]. A functional
dependency states that if two different data elements sharing a
common structure have the same part A, then some other part B
should also have the same value. An inclusion dependency states
that the values of the data elements in some part A must be a
subset of the values in a subpart B of some other portion of the
dataset.

© 2019 Copyright held by the owner/author(s). Published in Proceedings of the
22nd International Conference on Extending Database Technology (EDBT), March
26-29, 2019, ISBN 978-3-89318-081-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

An example of functional dependency can be seen in Table 1,
that shows a relational table with data regarding yearly incomes,
savings and taxes. Assume that the tax system is a progressive one
that categorizes the different incomes into brackets, each of them
characterized by a tax percentage. Thus, there is a functional
dependency from the income amount to the tax brackets, i.e.,
income→ bracket. Since for every income range the percentage
is fixed, there are two other functional dependencies from the
income to the tax amount and vice-versa, i.e., income → tax
and tax → income. Using the transitive property of functional
dependencies a new one can be inferred, i.e., tax→ bracket.

A closer look at Table 1 can illustrate another, stronger, form of
dependency: as the income is increasing, bracket and tax amount
are increasing as well. In other words, if we were to order the
table based on the income column, each one of the bracket and
the tax amount columns will also end up being ordered. This form
of dependency is known as an order dependency and is typically
noted with the ↦ symbol, i.e., income ↦ tax, which is read as:
income orders tax.

The knowledge encoded by order dependencies can be ap-
plied to various tasks during the entire data life-cycle [3]: in
the design phase, order dependencies can be exploited to assist
schema design [21] or for selecting indexes [7]; if data are ex-
tracted from unstructured sources, order dependencies can aid
knowledge discovery, to find hidden properties of the data; in the
context of data profiling [13], data integration and cleansing [5],
order dependencies can be used to describe a dataset; for data
quality [8], order dependencies can be used as requirements or
constraints [1].

The most important application of order dependencies is their
use in the optimization of queries; in particular, they can be used
to rewrite the ORDER BY clauses in SQL queries in ways similar to
that of functional dependencies for the GROUP BY statements [17,
22]. Consider the following query:

SELECT income, bracket, tax
FROM TaxInfo
ORDER BY income, bracket, tax

TaxInfo

name income savings bracket tax

T. Green 35,000 3,000 1 5,250
J. Smith 40,000 4,000 1 6,000
J. Doe 40,000 3,800 1 6,000
S. Black 55,000 6,500 2 8,500
W. White 60,000 6,500 2 9,500
M. Darrel 80,000 10,000 3 14,000

Table 1: A relational table with financial information.
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Given that the order dependencies income↦ tax and income↦
bracket hold, the query optimizer can infer that sorting by
income makes the ordering on the other two columns redun-
dant, so the ORDER BY clause can be simplified to ORDER BY
income.

The concept of order dependency in the context of database
systems first appeared under the name of point-wise order [9–11].
A point-wise ordering specifies that a set of columns orders an-
other set of columns. In the example of Table 1, the point-wise
order dependency income,tax ↝ bracket holds because if
both of the tuples (income, tax) and (tax, income) are lexico-
graphically ordered, then the column bracket is ordered in the
same way. A new definition for order dependency was later in-
troduced [21] to represent an order-preserving mapping between
lists of attributes. In contrast to point-wise ordering, the new
definition was distinguishing tuples with attributes in different
order, thus having lists of attributes instead of sets.

There are cases where two lists of attributes order each other
when taken together. This property is known as order compati-
bility and is denoted with the symbol ∼. In Table 1, e.g., it holds
that

(income, savings) ↦ (savings, income) and
(savings, income) ↦ (income, savings)

and thus income ∼ savings. Another way to see an order com-
patibility dependency between two columns is that their values
are bothmonotonically non-decreasing when they are considered
pairwise.

Dependencies are typically derived from design specifications,
from the context of queries or from other known dependencies
using inference rules. Discovering dependencies by analyzing
the data is a process known as dependency discovery [14]. It
conceptually requires to check for all potential dependencies if
they hold in the database instance under examination, which
may be time consuming. Thus, there is interest in developing
strategies that limits the number of combinations to be checked.
The task becomes even more challenging in the case of order
dependencies, where the order of attributes matters, leading to a
search space much larger than that of functional dependencies.

In this work we study ways for efficiently discovering order
dependencies. We follow a bottom-up approach in which we
start by checking short lists of columns and progressively check
longer and longer lists. In this process, once an order dependency
between two lists of attributes is found not to hold, we prune the
search space by ignoring larger lists that include them. In this
way, many of the combinations that would have normally been
checked are avoided.

We advocate that this whole process can be significantly im-
proved by framing the discovery of order dependencies in the
context of order compatibility dependencies. This is based on a
recently introduced theorem [21] that established that an order
dependency holds if and only if a functional and an order com-
patibility dependency hold between the two attribute lists of the
order dependency. We illustrate in details how the order compat-
ibility dependencies can be exploited to find order dependencies
and propose a new algorithm for finding them.

Recently, two algorithms to automatically detect order depen-
dencies in relational data have been proposed: order, proposed
by Langer and Naumann [13], and fastod proposed by Szlichta et
al. [18]. order explores a lattice of order dependency candidates,
in a level-wise fashion reminiscent of the tane algorithm [12].

After building a dependency candidate, order checks its valid-
ity against the data and then it applies pruning rules to reduce
the search space over the lattice. order has been shown to be
incomplete [18], i.e. it does not find the complete set of order
dependencies. In particular, this approach is unable to discover
dependencies with repeated attributes, for example, the order
dependency (income, savings) ↦ savings of Table 1 cannot
be discovered. Dependencies of this form, however, may not be
inferred from other dependencies and are useful in the case of
queries that involve ordering with multi-column indexes. In the
example of Table 1, an index over (income, savings) can be used
to simplify the clause ORDER BY savings. fastod [18] is based
on a different axiomatization of order dependencies that allows
mapping dependencies between lists of attributes to dependen-
cies between sets of attributes written in a canonical form. In
this way, several order dependencies are mapped to the same
set-based canonical form. fastod explores the space of order
dependencies of this set-based canonical form, still retaining the
ability to find a complete set of dependencies. While we have
reproduced the results presented in the original work, we have
found that an implementation error of the original work produces
wrong results over simple datasets, this vitiates the validity of
their results and the comparison with our approach.

The approach we present in this paper is able to provide a
complete set of dependencies that is based on the idea that the
whole process of order dependency discovery could be performed
through the search of order compatibility dependencies. While our
approach has a higher worst-case complexity than fastod, it
outperforms all the state-of-the-art approaches [13, 18] when
tested over real datasets.

In particular, our contributions are the following:
● we introduce a definition of minimality for a set of order
compatibility dependencies that we show being complete
in the sense that it can recover all valid order compatibility
dependencies that hold over a given instance of relational
data;

● we propose a novel algorithm for finding order depen-
dencies that is complete and can perform the detection of
order dependencies in parallel.

● we perform an exhaustive experimental evaluation that
shows the performance of our algorithm in comparison
with existing works, including a study of its scalability
over big datasets and multiple threads.

● we discuss possible solutions for the discovery of the most
important order dependencies in the case of dataset that
could not be managed (too many columns) in a reasonable
amount of time.

The paper is structured as follows: in Section 2 we review the
relevant definitions and theorems that formalize the connection
between order dependencies and order compatibility dependen-
cies. In Section 3 we prove that order dependency discovery can
be guided by order compatibility dependencies without losing
completeness. Our novel algorithm is presented in Section 4,
while Section 5 contains the discussion of our experimental eval-
uation. Finally, a thorough review of the related work can be
found in Section 6 and we present our conclusions in Section 7.

2 BACKGROUND

To provide the background of our problem, we first review the
definition of order dependency and its axiomatization, then we
describe the formal relation between order dependencies (ODs),
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functional dependencies (FDs) and order compatibility depen-
dencies (OCDs).

2.1 Notational Conventions and Definitions

We adopt the notational conventions summarized in Table 2,
consistently with the literature [21]. Let R be a relation over the
set of attributes 𝒰 and r be a table instance of R, i.e. a set of
tuples under R’s schema. A tuple p can be projected over a single
attribute A, over a set of attributes 𝒳 and over a list of attributes
X by subscripting the tuple as follows: pA, p𝒳 , pX.

We assume that a total ordering is defined over each of the
attributes, denoted ≤A; in the following, however, we will drop
the attribute specification and use ≤, as the attribute will be
always clear from the context. Order dependencies are defined
based on the operator ≼, which is equivalent to a lexicographical
ordering over a list of attributes, and is defined by:

Definition 2.1 (operator ≼). Given a list of attributesX ∶= (︀A⋃︀T⌋︀
and two tuples p,q ∈ r, the operator ≼ (and its associated operator
≺) are defined as follows:

pX ≼ qX ⇔ (pA < qA) ∨
((pA = qA) ∧ (T = (︀⋅⌋︀ ∨ pT ≼ qT))

pX ≺ qX ⇔ pX ≼ qX ∧ pX ≠ qX
(1)

The ≼ operator reproduces the ordering clause ORDER BY ASC
in SQL [21].

Based on the comparison operator of Definition 2.1, we can
introduce the concept of order dependency [21].

Definition 2.2 (Order dependency (OD)). Given a relation R
and two lists X and Y, X↦ Y is an order dependency if, for any
instance r of R and for every pair of tuples p,q ∈ r, the following
implication holds:

pX ≼ qX ⇒ pY ≼ qY (2)

If both X ↦ Y and Y ↦ X hold, we say that X and Y are
order equivalent and we write X ↔ Y. If XY ↔ YX we say
that X and Y are order compatible and we write X ∼ Y. We will
discuss the latter relation in Section 2.2.

Order dependencies satisfy the set of axioms 𝒥OD, introduced
by Szlichta et al. [21], which are reported in Table 3. These axioms
are analogous to the Armstrong axioms for functional dependen-
cies [2].

Relations:
▸ R, written as a capital letter in bold italics, is a relation

over a set of attributes 𝒰 ;
▸ r, written as a lowercase letter in bold italics, is a table

instance over R, i.e. a set of tuples;
▸ Single attributes are represented with capital letters: A, B,

and C;
▸ Tuples are represented with lowercase letters: p, q, s , and t .

Lists:
▸ Bold capital letters are lists of attributes: X,Y, and Z. they

can represent the empty list (︀⋅⌋︀;
▸ A list is denoted with square brackets (︀A,B,C⌋︀. A list (︀A⋃︀T⌋︀

is composed by a head A and a tail T;
▸ XY is a shorthand for X ○ Y, XA and AX are shorthands

for X ○ (︀A⌋︀ and (︀A⌋︀ ○X respectively, AB denotes (︀A,B⌋︀.
Table 2: Notational conventions

AX1: Reflexivity

XY↦ X

AX2: Prefix
X↦ Y

ZX↦ ZY

AX3: Normalization

WXYXV↔WXYV

AX4: Transitivity
X↦ Y
Y↦ Z

X↦ Z

AX5: Suffix

X↦ Y
X↔ YX

AX6: Chain
X ∼ Y1

∀i∈(︀1,n−1⌋︀Yi ∼ Yi+1
Yn ∼ Z

∀i∈(︀1,n⌋︀YiX ∼ YiZ
X ∼ Z

Table 3: The set of axioms 𝒥
OD

for order dependen-

cies [21]

2.2 Decomposing Order Dependencies

We show how an order dependency can be decomposed in a pair
composed of one functional dependency and one order compati-
bility dependency.

Functional dependencies. Functional dependencies encode
the fact that, in a relation, one attribute determines completely
another attribute.

Definition 2.3 (Functional dependency (FD)). Given a relation
R and two sets of attributes 𝒳 and 𝒴 , 𝒳 → 𝒴 is a functional
dependency if, for any instance r of R and for every pair of tuples
p,q ∈ r, the following implication holds:

p𝒳 = q𝒳 ⇒ p𝒴 = q𝒴 (3)

Order Compatibility Dependencies. Order compatibility de-
pendencies encode the fact that in a relation two lists of attributes
show the same monotonicity. If we order either combination of
the lists in non-decreasing order, they end up both ordered such
their values are both monotonically non-decreasing.

Definition 2.4 (order compatibility dep. (OCD)). Given a relation
R and two lists of attributes X and Y in R, X ∼ Y is a order
compatibility dependency if, for any instance r of R and for every
pair of tuples p,q ∈ r, the following implications hold:

pXY ≼ qXY⇔ pYX ≼ qYX (4)

Order dependencies are a stricter relation between two at-
tributes with respect to functional and order compatibility de-
pendencies; furthermore, when an order dependency between
two lists of attributes X and Y holds, an order compatibility de-
pendency between X and Y holds as well. In this sense, order
dependencies combine the fact that an attribute functionally
determines and have the same monotonicity of another when
ordered together.

We present previous results [21] that formally highlight the
nature of the relationship between these dependencies, showing
that when an order dependency does not hold there are only two
possible scenarios called split and swap. When X does not order
Y, i.e. when the order dependency between X and Y does not
hold, we write X↦̸ Y.
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t1
t2
t3
t4
t5

A B

1 4
2 5
3 6
3 7
4 1

Table 4: A relational table containing both a split and a

swap between the two attributes A and B.

Split. A split indicates the case where there exists a pair of tuples
that have the same values when projected over the attributes X,
but have different values over the attributes Y. Formally:

Definition 2.5 (Split). Two tuples s,t ∈ r form a split over two
lists of attributes X, Y iff sX = tX but sY ≠ tY, or equivalently:

∃s, t ∈ r ∶ sX = tX ∧ sY ≻ tY
When an OD between two attribute lists is valid, then a FD is

valid as well (Theorem 15, [21])

Theorem 2.6 (ODs subsume FDs). For every instance r of rela-
tion R, if the OD X↦ Y holds, then the FD 𝒳 → 𝒴 holds.

Whereas if there is a split between two lists of attributesX and
Y, there is no guarantee that ordering data will result in ordered
tuples over Y and XY; in other words, both the ODs X↦ Y and
X↦ XY do not hold. Furthermore, a split falsifies the functional
dependency 𝒳 → 𝒴 as well.

The relationship between order and functional dependencies
is formalized as follows (Theorem 13, [21]):

Theorem 2.7 (FD and OD correspondence). For every in-
stance r of a relation R, the functional dependency 𝒳 → 𝒴 holds
iff X↦ XY holds for all lists X that order the attributes of 𝒳 and
all lists Y that order the attributes of 𝒴 .

In Table 4, tuples t3 and t4 form a split for the attributes A and
B, thus A↦̸ B and A↦̸ AB. The functional dependency A→ B is
not valid, as well.

Swap. A swap indicates the case where there exists a pair of
tuples whose values projected over two lists of attributes X and
Y are swapped, i.e. they are sorted differently when they are
ordered with respect to X or Y. Formally:

Definition 2.8 (Swap). Two tuples s,t ∈ R form a swap over two
list of attributes X and Y, iff sX ≺ tX but tY ≺ sY, or equivalently:

∃s, t ∈ r ∶ sX ≺ tX ∧ sY ≻ tY
Swaps between X and Y falsify the ODs of the form X↦ Y,

Y ↦ X, and XY↔ YX. For example, tuples t1 and t5 in Table 4
form a swap for attributes A and B, thus A ↦̸ B, AB ↦̸ B, and
AB ↦̸ BA.

Splits and swaps establish a correspondence between order
dependencies, functional dependencies and order compatibility
dependencies, as in the following theorem (Theorem 15, [21]):

Theorem 2.9 (OD = FD + OCD). X ↦ Y holds iff 𝒳 → 𝒴
(X↦ XY) and X ∼ Y (XY↔ YX) hold.

In summary, when an order dependency between two lists of
attributes X and Y holds:

● a functional dependency 𝒳 → 𝒴 holds, which implies the
absence of split conditions;

● an order compatibility dependency betweenX andY holds,
which implies the absence of swap conditions.

We exploit this relation to guide our discovery algorithm as es-
tablished in Section 4.2.

3 ORDER DEPENDENCY THROUGH

ORDER COMPATIBILITY

This section introduces the concepts that lay the foundations to
our approach.

3.1 Minimality of Discovered Dependencies

Similarly to what has been done for functional dependencies, we
introduce the notion of minimality of a set of order compatibility
dependencies. In principle, minimality is the property for which a
set of dependencies equipped with inference rules can recover all
the dependencies that are valid in a given instance of relational
data. Axioms AX1-AX6 presented in Table 3 provide inference
rules for order dependencies.

The concept of minimality for order dependencies, as for other
types of dependencies, has several uses. First of all, it allows
reasoning about the validity of pruning rules, e.g., to show that
they do not lead to loss of information about valid dependencies
in the relation.

Minimality serves also the purpose of compressing informa-
tion to a manageable size: in fact, if we take a relation with n
attributes, in the worst case where each of which is order equiv-
alent to every other, the minimal set of ODs would contain n − 1
dependencies (A ↔ B,A ↔ C , etc.), while the set of all valid
dependencies would contain 𝒪((n!)2) elements: all the possible
combinations of attributes on the left-hand and right-hand sides,
a prohibitively large number.

Finally, real applications may not need the whole list of de-
pendencies: for example, in knowledge discovery, redundant
dependencies do not add value to the properties discovered and
too many dependencies can cause the most important ones to be
missed; in query optimization, the only useful dependencies are
those that can be applied to the queries to be performed.

Any pruning rule applied by a dependency discovery algo-
rithm needs to respect minimality, in the sense that it should
allow the recovery of the full set of valid dependencies. A com-
plete algorithm must find at least allminimal order dependencies
over an instance r of a relation R.

To introduce the concept of minimality for ODs, we start by
presenting the concepts of closure and equivalence of sets of
order dependencies.

Definition 3.1 (Closure). The closure of the set of ODsℳ, de-
notedℳ+, is the set of ODs that are logically implied fromℳ
by the axioms 𝒥OD = {AX1 −AX6} defined in Table 3.

ℳ+ = {X↦ Y ⋃︀ ℳ ⊢𝒥OD X↦ Y}
Definition 3.2 (Equivalence of sets of ODs). Two setsℳ1 and

ℳ2 of order dependencies are equivalent if and only if they have
the same closureℳ+1 =ℳ+2 .

The closure of a set of minimal dependencies is the set of all the
dependencies that are valid over r. We build this definition first
showing which lists of attributes are in minimal form and then
when an OCD is minimal. Finally, we prove that our definition
of minimality is complete.

Order compatibility dependencies employ attribute lists in-
stead of attribute sets, thus we introduce the concepts ofminimal
attribute list. An attribute list is minimal if it has no embedded
order dependency, i.e., the list of attributes is the shortest possi-
ble.
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Definition 3.3 (minimal attribute list). An attribute list X is
minimal if there is no other list X′ such that:

● X′ is smaller than X, and
● X and X′ are order equivalent.

For example, the attribute listABA is never minimal, in fact, by
the Normalization axiom (AX3) we know that ABA ↔ AB and
AB is a shorter list than ABA. Instead, AB is a minimal attribute
list, unless A ↔ B.

An OCD is minimal if both sides are given as minimal attribute
lists and there are no repeated attributes:

Definition 3.4 (minimal OCD). An OCD X ∼ Y is minimal if:
● X and Y are minimal attribute lists;
● 𝒳 ∩ 𝒴 = ∅.

In the following theorem, we show that OCDs with repeated
attributes can be derived from OCDs without repeated attributes:

Theorem 3.5 (Completeness of minimal OCD). Order com-
patibility dependencies with repeated attributes can be derived from
OCD without repeated attributes.

Proof. The proof of this theorem is split in three cases:
(1) OCDs of the form XY ∼ XZ can be derived from Y ∼ Z;
(2) OCDs of the form XY ∼MY can be derived from XY ∼M

and X ∼MY;
(3) OCDs of the form XY ∼MYN can be derived from X ∼M,

XY ∼M, X ∼MY and XY ∼MN;
which are covered respectively by Theorems 3.10, 3.11 and 3.12
which are presented separately for clarity in Section 3.3. □

The following result extends the Downward Closure theorem
(Theorem 12, [21]):

Theorem 3.6. Downward closure for OCD
XY ∼ ZV
X ∼ Z

Theorems 3.5 and 3.6 provide the justification for the structure
of the search tree used in our approach, as explained in Section 4.2.
In particular, we derive the following pruning rule:

Theorem 3.7 (Pruning rule for OCD).
X ≁ Z

XY ≁ ZV

Proof. This theorem is the contronominal preposition of The-
orem 3.6. □

Theorem 3.5 justifies the reduction of the search space that
we highlight in the following section.

3.2 Dimension of the Search Space

The number of valid ODs over a relation R is vast: in fact, if R
has n attributes, then all permutations of length k of n elements
must be considered both for the left-hand side and the right-
hand side of the OD. We address a limitation of the previous
work by Langer and Naumann [13] and we show that some order
dependencies with repeated attributes cannot be derived from
other dependencies without repeated attributes.

For example, in Table 5 (a) we have that AB ↦̸ B, instead
in Table 5 (b) we have AB ↦ B and A ∼ B. For both tables the
dependencies A↦̸ B and B ↦̸ A do not hold, thus the validity of
AB ↦ B and A ∼ B, in this case, cannot be inferred from shorter
ODs.

t1
t2
t3
t4
t5

(a)

A B

1 4
2 5
3 6
3 7
4 1

(b)

A B

1 4
2 5
3 6
3 7
4 7

Table 5: Two relations where the ODs A↦̸ B and B ↦̸ A do

not hold; furthermore in (a) AB ↦̸ B while in (b) AB ↦ B
and A ∼ B.

Finding all valid order dependencies thus requires, in principle,
the need for checking all combinations X↦ Y where both X and
Y can be permutations of length k of the n attributes in R with
1 ≤ k ≤ n. If we denote with S(n) the number of k-permutations
of n elements we have:

S(n) = ⟨︀e ⋅ n!⧹︀ − 1

Excluding trivial ODs of the form X↦ X, the number of candi-
dates that needs to be checked would be:

C(n) = (S(n) − 1) ⋅ (S(n) − 1) − (S(n) − 1) ∝ 𝒪((n!)2) (5)

With n = 10, there are more than 97 ⋅ 1012 candidates ODs.
In contrast to general order dependencies, OCDs candidates

with repeated attributes, i.e., X→ Y or X ∼ Y where 𝒳 ∩𝒴 ≠ ∅,
are redundant in the sense that their validity can be inferred
from the validity of other dependencies of the same type without
repeated attributes and with shorter attribute lists.

Theorem 3.8. X ∼ Y iff XY↦ Y

Proof. We prove the implication in each direction:
⇒ By definition X ∼ Y implies that both the order depen-

dencies XY↦ YX and YX↦ XY are valid. By Reflexivity
(AX1) YX ↦ Y and thus by Transitivity (AX4) the order
dependency XY↦ Y is valid.

⇐ Conversely, if XY ↦ Y, by Suffix (AX5) XY ↦ YXY and
Normalization (AX3) XY↦ YX. □

□

This means that ODs of the form XY ↦ Y and OCDs of the
form X ∼ Y are equivalent. We are thus enabled to solve the
problem by considering only OCDs without repeated attributes,
and thus the dimension of the search space is reduced to 𝒪(n!).

As shown in Theorem 2.9, if X ↦ Y then X ∼ Y is valid; we
can thus derive the following theorem, which will provide the
foundation for the pruning rules detailed in Section 4.2.1.

Theorem 3.9.
X↦ Y
XZ ∼ Y (6)

Proof. By the Augmentation theorem [21], X ↦ Y implies
XZ ↦ Y. By Theorem 2.9 of Section 2.2, XZ ↦ Y implies XZ ∼
Y. □

3.3 Completeness of Minimal OCD

We divide the proof of the completeness of our definition of mini-
mality for OCDs in three parts: first, in the following theorem we
prove that attribute lists with repeated attributes at the beginning
are redundant:
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Theorem 3.10 (Completeness of minimal OCD - 1).

Y ∼ Z

XY ∼ XZ

Proof. By the Shift theorem [21] and the fact that X↔ X by
Reflexivity (AX1):

YZ↦ ZY
X↔ X

XYZ↦ XZY

by Normalization (AX3) and Replace [21] XYXZ↦ XZXY. Anal-
ogously by the Shift theorem [21] starting from ZY↦ YZ we ob-
tain XZXY↦ XYXZ. Thus XYXZ↔ XZXY, i.e., XY ∼ XZ □

The following theorem proves that attribute lists with repeated
attributes at the end are also redundant:

Theorem 3.11 (Completeness of minimal OCD - 2).
X ∼ Y

XZ ∼ Y
X ∼ YZ

XZ ∼ YZ

Proof. (1) using XY ↔ YX and XZY ↔ YXZ, by Nor-
malization (AX3) XZY ↔ XZYZ and by Replace [21]
YXZ↔ XZYZ;

(2) using XY ↔ YX and XYZ ↔ YZX, by Normalization
(AX3) YZX↔ YZXZ, by Replace [21] YXZ↔ YZX and
by Transitivity (AX4) YXZ↔ YZXZ;

By Transitivity (AX4) YXZ ↔ XZYZ and YXZ ↔ YZXZ
imply XZYZ↔ YZXZ, i.e., XZ ∼ YZ. □

Finally, the following theorem proves that attribute lists with
repeated attributes in the middle are redundant:

Theorem 3.12 (Completeness of minimal OCD - 3).
X ∼M

XY ∼M
X ∼MY

XY ∼MN

XY ∼MYN
Proof.

(1) from XY ∼ MN, by Normalization (AX3) XYMYN ↔
MNXY;

(2) from XY ∼M and X ∼MY, using X ∼M and Replace [21]
we get MYX↔ XYM andMXY↔MYX↔ XYM;

(3) from (2), by the Shift theorem [21] with MY↔ MY and
MNXY↔ XYMMYNwe getMYMNXY↔MYXYMMYN;

(4) by Normalization (AX3) MYMNXY↔MYNXY;
(5) from MYXYMMYN, using MYX ↔ XYM and Normal-

ization (AX3) we get XYMYMYN and finally XYMYN;
From points (3), (4) and (5) we finally getMYNXY↔ XYMYN,
i.e., XY ∼MYN. □

4 THE OCDDISCOVER ALGORITHM

We present now the details of our algorithm, called ocddiscover,
by first examining its search strategy to cover all the possible
combinations and then presenting an implementation in pseudo-
code.

AA BB CC

A ⇠ CA ⇠ CA ⇠ BA ⇠ B B ⇠ CB ⇠ C

B ⇠ CAB ⇠ CABA ⇠ CBA ⇠ CA ⇠ CBA ⇠ CBAB ⇠ CAB ⇠ CA ⇠ BCA ⇠ BCAC ⇠ BAC ⇠ B

` = 2` = 2

` = 0` = 0

` = 1` = 1

` = 3` = 3

Figure 1: Permutation tree for a table withn = 3 attributes.

4.1 Column Reduction

Given that the search space grows with the number of columns,
we start our discovery algorithm focusing on the columns show-
ing special properties and we perform two operations: (a) the re-
moval of constant columns; (b) the reduction of order-equivalent
columns. The dependencies provided by these operations are an
integral part of the results provided by our algorithm.

Removal of constant columns. Constant columns generate
a huge amount of ODs; in fact, over an instance r a constant
column C is ordered by any other attribute list X.1 Thus, we
remove all constant columns and we collect the corresponding
dependencies.

Reduction of order-equivalent columns. Order-equivalent
columns asA↔ B describe a relation inwhich both the directions
of the order dependency hold. By the Replace theorem (Theorem
6, [21]), we can replace any order dependency where A appears
with another dependency with any instance of A replaced with
B, that is:

XAY↦MAN⇔ XBY↦MBN

We check any combination of order-equivalent dependencies,
i.e. for all A,B ∈ 𝒰 we verify the validity of A ↦ B and B ↦ A,
and we build the equivalence classes of columns using the Tarjan
algorithm [25].

We choose a representative from each of these equivalence
classes; we then remove all other columns. We store this infor-
mation to later recover the redundant dependencies.

4.2 Search Tree

We use a breadth-first search strategy for identifying OCD re-
lations in r ; in this way, shorter minimal dependencies are dis-
covered before longer ones. At the first level, we consider the
set of all pairs of single attributes. Given that OCDs are com-
mutative, we build this set by enumerating all the attributes
with A1,A2, . . . ,An and taking all the pairs (Ai ,Aj) such that
{(Ai ,Aj) ⋃︀ Ai ,Aj ∈ 𝒰 , i < j}.

Figure 1 shows the tree 𝒯 of generated candidates for a relation
r with attributes 𝒰 = {A,B,C} where all possible candidates are
generated.

Each OCD candidate X ∼ Y is checked for order compatibility;
we are then confronted with two possibilities:

1If C is constant column, the following property holds for any tuple p, q in any
instance r of R: pX ≤ qX ⇒ pC = qC , where the second part of the implication is
always true by definition of constant column.
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● if the candidate is not order compatible, we do not gen-
erate any other candidate starting from it, as stated by
Theorem 3.7 in Section 3.1;

● if the candidate is order compatible, we generate new
OCD candidates in the following way: for each attribute
not already present in the OCD, for each A ∈ 𝒰 / {𝒳 ∪𝒴},
we add it to the right of each attribute list, i.e. XA ∼ Y and
X ∼ YA, then we apply further pruning rules as explained
in Section 4.2.1.

4.2.1 Pruning Rules. When we find a new OCD X ∼ Y, we
further check the validity of the OD X↦ Y and Y↦ X.

From Theorem 3.9 we derive the following pruning rules:
● if X ↦ Y we do not generate the candidates of the form
XZ ?∼ Y, i.e. the left-hand children candidates of X ∼ Y are
pruned;

● if Y↦ X, we do not generate the candidates of the form
X ?∼ YZ, i.e. the right-hand children candidates of X ∼ Y
are pruned;

If both dependencies are valid we prune all the subtree from the
given OCD candidate.

With reference to Figure 1, if the order compatible dependency
A ∼ B is valid:

● if A↦ B, the children candidate AC ?∼ B is pruned;
● if B ↦ A, the children candidate A ?∼ BC is pruned.

4.2.2 Parallelizability. ocddiscover explores the tree of
candidates breadth-first. Each branch of the tree can be visited
independently since each OCD candidate is independent from the
others; furthermore, a candidate is generated for each level if and
only if its father in the tree was a valid order dependency. We ex-
ploit this structure to parallelize the execution of ocddiscover by
assigning candidates from different branches to different queues;
each queue is then processed by a different thread. With refer-
ence to Algorithm 1, if we have K cores available, we can have
K independent subtrees 𝒯 1

ℓ ,𝒯
2
ℓ , . . . ,𝒯

K
ℓ (lines 7 — 12) each one

containing the OCD candidates belonging to a different branch
of the tree. The number of queues used by the algorithm can be
chosen as a run-time parameter provided by the user.

4.3 Order Checking

One of the most important steps in our approach is the check of
order compatibility candidates.

Single check. Given an OCD candidate in the form X ?∼ Y,
we need to verify if it holds. The general definition of order
compatibility states that X ∼ Y ≡ XY ↔ YX, i.e. X and Y are
order compatible if XY↦ YX and YX↦ XY; however, with the
following theorem, we can reduce the problem of checking the
validity of an OCD to a single check.

Theorem 4.1. XY↦ YX is valid iff X ∼ Y.
Proof.
⇒ we have to prove that XY ↦ YX ⇒ YX ↦ XY. If, by

contradiction, YX↦̸ XY, then:

∃ p,q ⋃︀ pYX ≤ qYX ⇒ pXY > qXY (7)

thus since pXY > qXY we can distinguish two cases:
– if pX > qX, we can conclude that:

qXY < pXY ⇒ qYX > pYX
thus XY↦̸ YX;

– if pX = qX ∧ pY > qY, we always obtain a contradiction
with the condition expressed in Eq. 7;

thus both XY↦ YX and YX↦ XY are valid and X ∼ Y;
⇐ by definition if X ∼ Y then both YX↦ XY and XY↦ YX

are valid;
□

Checking with Indexes. To compute if an order dependency
candidate holds, we sort the relation by the left-hand side at-
tributes of the candidate. We build an index that contains only
the position of each tuple in the order in which it appears. Then,
we iterate over the tuples following this index, and we check if
the attributes on the right-hand side violate the ordering, specif-
ically if we detected a pair of tuples forming a swap. We break
the detection loop as soon as we find a violation and return true
otherwise. In the worst case, the number of comparisons to be
made is O(m +m logm) wherem is the total number of tuples
in the relation.

NULL Values. In real-world datasets, and in many of the test
cases that will be analyzed in Section 5, data contains NULL values,
which destroy the total ordering assumption because they can
not be compared with the other values. We use the standard SQL
semantics given by set ansi nulls ON, i.e. NULL equals NULL,
and NULLS FIRST for sorting.

4.4 Description of the Algorithm

Algorithm 1 is the main algorithm that implements our approach.
The input is given by the instance of relational data r and its set
of attributes 𝒰 .

Algorithm 1 ocddiscover
Input: r: a relational instance
Input: 𝒰 : the set of attributes associated with r
1: function ocddiscover(r,𝒰 )
2: ℓ ← 2
3: 𝒰 ′ ← columnsReduction(𝒰)
4: 𝒯1 ← {(A,B) ⋃︀ A,B ∈ 𝒰 ′,B ≻ A}
5: while 𝒯ℓ ≠ ∅ do ▷Main loop
6: 𝒯ℓ+1 ← ∅
7: for each (X,Y) ∈ 𝒯ℓ do
8: if checkCandidate(XY,YX, r) then
9: emit X ∼ Y
10: 𝒯ℓ+1 ← 𝒯ℓ+1 ∪ generateNextLevel(X,Y,𝒰 ′)
11: end if

12: end for

13: ℓ ← ℓ + 1
14: end while

15: end function

In Line 3, function columnReduction() (not shown here) is
called to apply the operations described in Section 4.1: the re-
moval of constant attributes and the reduction of order-equivalent
columns. This function prints a list of order-equivalence relations
and a list of constant attributes and returns a reduced set of at-
tributes 𝒰 ′ where (a) the constant columns are removed; and (b)
for each class of order-equivalent attributes, one representative
is chosen.

The initial tree of OCD candidates is built in Line 4; by the
commutativity of OCDs, only half of the combinations are added.
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Figure 1 shows that the second level of the tree (ℓ = 2) contains
only the initial candidates A ?∼ B, A ?∼ C and B ?∼ C .

Then, the algorithm continues with the main loop where
each OCD candidate X ?∼ Y is tested against the data in r in
the form of an OD candidate XY

?↦ YX using the function
checkCandidate(), which is described in Algorithm 2.

The function checkCandidate() iterates over the index built
on the left-hand side of the candidate with generateIndex() and
checks that the values over the attributes in the right-hand side
are in the same order. The loop is terminated early if a violation
is detected.

Algorithm 2 checkCandidate
Input: X,Y: an OD candidate
Input: r: the instance of relational data
Output: true ifX↦Y, false otherwise.
1: function checkCandidate(X,Y, r)
2: lr ← len(r)
3: index ← generateIndex(X,Y,r)
4: for i ← 1 to lr − 1 do
5: for each A ∈Y do

6: if r(︀index (︀i⌋︀,A⌋︀ > r(︀index (︀i + 1⌋︀,A⌋︀ then
7: return false

8: else if r(︀index (︀i⌋︀,A⌋︀ < r(︀index (︀i + 1⌋︀,A⌋︀ then
9: return true

10: end if

11: end for

12: end for

13: return true

14: end function

If the candidate is a valid OCD, we emit it as a result and
generate the new candidates through generateNextLevel(),
which is described in Algorithm 3.

The function generateNextLevel() builds a set containing
all the OCD candidates of the form XA ∼ Y and X ∼ YA, where A
is an attribute that does not already belong to the lists X and Y,
this corresponds to creating a new level of the tree presented in
Section 4.2 using the pruning rules of Section 4.2.1. The function
further checks if the ODs X ?↦ Y or Y ?↦ X hold. If so, it applies
the pruning rules and returns the remaining candidates. We emit
the valid ODs found in Lines 9 and 16 of Algorithm 3.

The new candidates are added to the queue of candidates
to check for the next level in line 10 of Algorithm 1. The loop
terminates when there are no candidates left.

5 EXPERIMENTAL EVALUATION

In this section, we evaluate the results of our approach, with
particular emphasis on its scalability in the number of rows
and columns, and we compare it with previous work on order
dependency detection. We analyze the results of ocddiscover
over 6 real-world datasets and 5 synthetic datasets.

Our algorithm is implemented in Java 1.7 and is designed
to work on the Metanome data profiling framework [15] as a
multi-threaded program.

All experiments were run on a i686 Intel Xeon E52440 2.40
GHz machine with 12 cores in hyper-threading and 128 GB RAM,
over a Linux kernel v4.15.0. The execution environment is a
64-bit Oracle JDK version 1.8.0_171, with the JVM heap space
limited to 110 GB.

Algorithm 3 generateNextLevel
Input: X,Y: an OCD candidate
Input: 𝒰 ′: the set of reduced attributes of relation R
Output: C: the candidate OCD generated from X ∼ Y
1: function generateNextLevel(X,Y,𝒰 ′)
2: C ← ∅
3: 𝒜+ ← 𝒰 ′ − set(X) − set(Y)
4: if ¬checkCandidate(X,Y, r) then ▷ X↦̸ Y
5: for each A ∈ 𝒜+ do

6: C .add((XA,Y))
7: end for

8: else ▷ X↦ Y
9: emit X↦ Y
10: end if

11: if ¬checkCandidate(Y,X, r) then ▷ Y↦̸ X
12: for each A ∈ 𝒜+ do

13: C .add((X,YA))
14: end for

15: else ▷ Y↦ X
16: emit Y↦ X
17: end if

18: return C
19: end function

5.1 Datasets

We use the datasets provided by the Information Systems Group
of Hasso-Plattner-Institut.2 These datasets are the same used by
the previous work on order dependency discovery by Langer
and Naumann [13]. We have also created three simple additional
synthetic datasets, called YES, NO, and NUMBERS created to high-
light the differences of our approach with previous works. In
particular, YES and NO reproduce, respectively, the examples in
Tables 5 (a) and 5 (b), while NUMBERS is shown in Table 7.

Table 6 presents the datasets and their properties; for each
dataset, the table reports: the dataset name, the number of rows
⋃︀ r ⋃︀, the number of attributes ⋃︀ 𝒰 ⋃︀, the number of functional de-
pendencies discovered by the fastfds algorithm [26] ⋃︀ℱd ⋃︀, the
number of ODs discovered ⋃︀𝒪d ⋃︀ by order. For fastod we pro-
vide: (a) the number of FDs discovered ⋃︀ℱd ⋃︀, (b) the number of
ODs discovered ⋃︀𝒪d ⋃︀. For ocddiscover we provide: (a) the num-
ber of OCDs discovered ⋃︀𝒪c ⋃︀, which are missed by order [13],
since they are order dependencies with repeated attributes; (b)
the number of ODs discovered ⋃︀𝒪d ⋃︀; and (c) the total number
of dependency candidates checked during the execution of the
algorithm.

Execution time is averaged across 5 independent runs and we
set a time threshold at 5 hours. When the time limit is reached,
for order, and fastod we are unable to present the number
of dependencies discovered so far, while for ocddiscover we
report the number of dependencies discovered and the number
of checks made until the limit.

5.2 Comparison with Previous Work

We discuss the results of the extensive comparison with the previ-
ous state-of-the-art algorithms for detecting order dependencies.
The code used for the comparison has been provided by the
respective authors.3

2https://hpi.de/naumann/projects/repeatability/data-profiling/fd-algorithms.html
3 the source code for order is available at: https://hpi.de/naumann/projects/
repeatability/data-profiling/fds.html#c168192 while the source of fastod has been
provided to us by the authors through direct communication.
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Dataset properties fastfds [26] order [13] fastod [18] ocddiscover

Dataset ⋃︀r⋃︀ ⋃︀𝒰⋃︀ ⋃︀ℱd ⋃︀ ⋃︀𝒪d ⋃︀ time (ms) ⋃︀𝒪d ⋃︀ ⋃︀ℱd ⋃︀ time (ms) ⋃︀𝒪d ⋃︀ ⋃︀𝒪c ⋃︀ time (ms) checks

DBTESMA 250,000 30 89,571 —∗ 5 h∗ 400 89,571 4,641,485 138 0 337,289 4,118
DBTESMA_1K 1000 30 11,099 —∗ 5 h∗ 30 11,099 5,799 138 0 1,835 4,118
FLIGHT_1K 1,000 109 —∗ —† —† —∗ —∗ 5 h∗ 3,216,069∗ 29,404,555∗ 5 h∗ 7,473,951
HEPATITIS 155 20 8,250 0 182 32,717 8,250 211,903 0 5 361 556
HORSE 300 29 128,727 31 46,907 —∗ —∗ 5 h∗ 31 7 618 1,185
LETTER 20,000 17 61 0 1,215 —∗ —∗ 5 h∗ 0 0 1,720 272
LINEITEM 6,001,215 16 —∗ 1 982,075 —∗ —∗ 5 h∗ 1 0 1,039,517 255
NCVOTER_1K 1,000 19 758 18 796 2,333 758 90,000 18 1 872 338
NO 5 2 1 0 323 0 1 24 0 0 4 2
YES 5 2 0 0 329 1 0 28 1 1 3 2
NUMBERS 7 4 4 0 331 6 4 325 0 0 28 12

Table 6: Datasets and execution statistics for the ocddiscover, order [13], and fastod [18] algorithms. “
∗
” indicates that

the execution has reached the time limit of 5 hours, while “
†
” that it has exceeded the memory limit of 110GB. When the

time limit is reached, for ocddiscover we present partial results.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Fraction of full dataset

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
of

to
ta

l
ex

ec
ut

io
n

ti
m

e

LINEITEM and NCVOTER

NCVOTER

LINEITEM

Figure 2: Normalized exe-

cution times for row scala-

bility.

0 4 8 12 16 20

Number of columns

100

150

200

250

300

350

400

T
im

e
(m

s)

HEPATITIS

Figure 3: Execution times

for column scalability for

HEPATITIS.

0 4 8 12 16 20 24 28

Number of columns

100

200

300

400

500

600

700

T
im

e
(m

s)

HORSE

Figure 4: Execution times

for column scalability for

HORSE.

0 4 8 12 16 20 24 28 32 36

Number of columns

100

101

102

103

104

105

106

107

108

T
im

e
(m

s)

FLIGHT 1K

Figure 5: Execution times

for column scalability for

FLIGHT_1K.

A B C D

1 3 1 1
2 2 3 2
2 3 2 2
2 5 2 2
3 1 2 3
4 4 4 2
4 5 3 2

Table 7: NUMBERS dataset.

To compare our algorithm with order and fastod we need
to transform OCDs back to ODs. In fact, in a relation R over
attributes A,B and C where A ↔ B, A ∼ C and B ∼ C , the set
of OCDs 𝒪 = {A ∼ B, A ∼ C, B ∼ C} is minimal following Defi-
nition 3.4. However, columnsReduction() would discover the
order-equivalence A↔ B and choose one attribute as a represen-
tative, e. g. A. Thus ocddiscover would return as valid OCDs
only 𝒪 = {A ∼ C}. From this information, we infer the remain-
ing dependency B ∼ C using the axioms 𝒥OD. We perform this
expansion and compare the results produced by ocddiscover,
order and fastod. The function performing the expansion is not
shown in Algorithm 1, but the times reported in Table 6 include
it. This step did not impact the running time of ocddiscover.

5.2.1 Comparison with Langer and Naumann [13]. For
order, dependencies are considered to be completely non-trivial,
if their left- and right-hand side attribute lists are disjoint. How-
ever, we argue that limiting the discovery of order dependencies
to candidates where the left-hand side and the right-hand side
are completely disjoint gives incomplete results. Our algorithm,
instead, is complete.

Following Theorem 3.8 in Section 3.2, order dependencies
of the form XY ↦ Y can be inferred from order compatibility

dependencies of the form X ∼ Y. Note that these dependencies
have repeated attributes between its left- and right-hand sides.

We show the difference between our approach and previous
work with the YES and NO datasets. As reported in Table 6, the
order algorithm does not find any order dependency in either of
the YES and NO datasets. ocddiscover, instead, finds correctly the
order compatibility dependencyA ∼ B, i.e., the order equivalence
AB ↔ BA, in YES.

Our approach detects all the dependencies found by order,
and additional dependencies on HEPATITIS, NCVOTER_1K, and
HORSE. For FLIGHT_1K and NCVOTER_ALLC we found several de-
pendencies but we were not able to compare the results with
order because the latter does not report the discovered depen-
dencies when the time limit is reached.

Provided that the order compatibility dependencies found by
ocddiscover are translated to the corresponding OD in the form
XY↦ Y, ocddiscover effectively discovers a minimal set of ODs
even following the definition of minimality provided by Langer
and Naumann [13].

When a candidate dependency is found to be false, pruning
rules are applied. For this reason, notwithstanding the factorial
dimension of the search space, datasets with several columns,
such as datasets HEPATITIS and HORSE, are successfully and com-
pletely tested. When pruning cannot be applied, the generation of
candidates grows – e.g., more than 7 million candidates are gen-
erated in FLIGHT_1K. For this dataset, ocddiscover detects more
than 32 million ODs. In this particular case, the number of checks
is smaller than the number of discovered dependencies because
we also count the dependencies inferred from constant and order-
equivalent columns reported by the columnsReduction() func-
tion.

Furthermore, Table 6 shows that using order compatibility
dependencies does not hinder the performance of the detection. In
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all dataset tested, the performance of our algorithm with respect
to the execution time is comparable to order; in some cases, we
obtain significant speedups up to a factor of 75, e.g. in HORSE.

5.2.2 Comparison with Szlichta et al. [18]. As shown in
Table 6, ocddiscover and fastod compute a different number
of order dependencies. We claim that this difference, which also
affects also the results published in [18], is due to an implementa-
tion error in the code. Table 7 presents an instance of a relational
table where the implementation of fastod we received finds
several order dependencies that are not actually present in the
data, e.g. (︀B⌋︀ ↦ (︀AC⌋︀. Other datasets were also affected by this
issue, but, unfortunately, we were not able to isolate and resolve
the root cause of this incorrect behavior. In addition, fastod
considers all columns as if they contain data of type String,
thus using a lexicographical ordering, while order and ocddis-
cover perform type inference over the datasets provided, and
use the natural ordering for real and integer numbers. We have
also implemented for ocddiscover the possibility of forcing lex-
icographical ordering, i.e., treat all data as if they were of type
String, but we do not report these results since this change does
not affect the execution time of our approach.

Furthermore, the scalability experiments reported by Szlichta
et al. [18] used trimmed-down versions of the datasets. For the
row scalability experiments, the datasets were reduced to 1,000
rows, while for the column scalability experiments columns were
chosen at random. For this reason, we report in Table 6 both
the DBTESMA and DBTESMA_1K datasets, which are respectively
the full dataset with 250,000 rows, and a trimmed-down ver-
sion with the first 1,000 rows. For column scalability, we tested
ocddiscover and fastod against HEPATITIS, FLIGHT_1K, and
NCVOTER_1K, which were used in full, so we were able to compare
the performance of the two algorithms.

As shown in Table 6, ocddiscover gains significant speed-ups.
This highlights the fact that, while the worst-case complexity of
ocddiscover is (O)(⋃︀r ⋃︀!), which is greater than that of fastod,
O(2⋃︀r ⋃︀), the execution time depends on the actual number of
dependencies contained in the dataset.

5.3 Performance

In the following, we analyze the scalability of our approach with
respect to the number of rows, the number of columns, and the
number of parallel threads used.

5.3.1 Scalability in the number of rows. We performed
our analysis on the synthetic dataset LINEITEM with 6,001,215
rows and 16 columns. We also test the algorithm on the NCVOTER
dataset. This dataset has 938,084 rows and 94 columns, but since
our algorithm did not terminate on the full datasets, we consider
only a subset of 20 randomly chosen columns. Figure 2 shows the
results for the scalability experiment on LINEITEM and NCVOTER.
Ten samples of the original dataset have been created, ranging
from 10% to 100% of the rows with a step of 10%. Five repetitions
have been performed for each of the samples and the average is
reported. Variance is very small and thus not shown.

The experiments show that the algorithm scales almost lin-
early with the number of rows, and it is able to find a complete
set of OCDs over datasets with millions of rows.

The execution time would be expected to grow log-linearly
with respect to the number of rows, due to the indexing phase;
but an increasing number of rows may correspond to a smaller

number of dependencies; thus, the pruning phase could reduce
the number of checks to be computed.

Previous work, instead, has shown the ability to scale linearly
on the number of rows performing the check of dependency
candidates with sorted partitions computed from the data. This
method could have been re-implemented in our approach as well,
but it would have been out of the scope of this paper.

5.3.2 Scalability in the number of columns. Scalability
over columns is the key challenge in detecting dependencies in
relational data since in many cases the dimension of the search
scales with the number of columns.

We choose the HORSE and HEPATITIS datasets, that are well-
suited to evaluate the influence of an increasing number of
columns, given that their execution completes. We also consider
FLIGHT_1K that has a very high number of columns and does not
terminate.

The evaluation approach is as follows: we start with two ran-
dom columns from each dataset, and we incrementally add more
randomly-chosen columns, until the total number of columns in
the dataset is reached.

To avoid skewing the results, we generate 50 samples of each
dataset with the process described above and we run our al-
gorithm over these samples. We average the execution time of
ocddiscover of each sample with c columns over all the 50
samples.

Figures 3 and 4 show the results of the column scalability
experiment on the HEPATITIS and HORSE datasets.

Figure 5 shows how the algorithm behaves when the number
of dependencies discovered in the data grows on a single run.
Times on the y-axis are in logarithmic scale. ocddiscover is very
susceptible to columns that are quasi-constant, i.e., attributes
with very few distinct values, but not constant. In this case, ocd-
discover cannot eliminate these columns during the column-
reduction phase. As argued in Section 4.1, constant columns are
ordered by any other attribute; quasi-constant columns are asso-
ciated with a large number of valid OCDs and consequently the
size of the tree to be explored grows enormously.

In fact, the slowdown corresponding to the sample with 28
columns in Figure 5 is caused by the addition of a column with 3
distinct values. This column appears on the right-hand side of
more than 94% of the dependencies found in that sample.

5.3.3 Scalability over parallel threads. As described in
Section 4.2.2, ocddiscover can be run over multiple threads.

Figure 6 shows the results of the multithreading scalability
experiments on the LETTER, LINEITEM, and DBTESMA datasets.
On the y-axis times are normalized to the runtime over a single
thread, which is the maximum for each case. Table 8 reports the
executions times.

Time (s) vs number of threads

Dataset 1 2 4 8

LETTER 5.7 4.6 3.6 3.4
LINEITEM 2,848.8 1,770.0 1,243.5 1,040.0
DBTESMA 2,228.9 1,240.0 686.0 414.0

Table 8: Execution time of ocddiscover versus number

of threads.

As it is shown in Figure 6, using multiple parallel threads short-
ens the execution time of our dependency discovery algorithm.
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Figure 6: Execution times for LETTER (red straight line),

LINEITEM (green dotted line), DBTESMA (blue dashed line),

when executed overmultiple threads, normalized over the

runtime over a single thread.

The amount of this improvement varies based on the character-
istics of each dataset and in particular, depends on the of OCD
candidates checked.

If we compare LETTER and LINEITEM, we see that while the
number of checks performed on each dataset is comparable (272
for LETTER versus 255 for LINEITEM), the number of their rows
differ by several orders of magnitude (∼ 20k lines for LETTER, ver-
sus ∼ 6M for LINEITEM). This implies that checking the validity
of an OCD candidate for LINEITEM takes longer than checking a
candidate for LETTER. Thus the relative gain when splitting the
work over multiple threads is greater for LINEITEM.

Instead, comparing LINEITEM and DBTESMA we can see that
for the latter dataset the number of checks performed is much
higher, thus the workload of candidate checking can be spread
over multiple threads, leading to greater relative improvements.

5.4 Quasi-constant Columns

The quasi-constant column scenario is challenging for our algo-
rithm. We further develop the idea of measuring how varied the
values in a column are by measuring its entropy.

Definition 5.1 (Entropy). Given an attribute A ∈ 𝒰 of an in-
stance r of a relation R, the entropy of A is defined as:

H(A) = −∑
(︀a⌋︀

p(︀a⌋︀ log (p(︀a⌋︀) (8)

where (︀a⌋︀ are the equivalence classes of distinct values in A
and p(︀a⌋︀ is the probability of extracting an instance of class a,
computed as the relative frequency of instances class (︀a⌋︀ over
the total number of tuples in r:

p(︀a⌋︀ =
⋃︀{t ∈ r ⋃︀ tA ∈ (︀a⌋︀}⋃︀

⋃︀r ⋃︀
For constant columns there is only one equivalence class and

p(︀a⌋︀ = 1, thus H(A) = 0. If all values are distinct, for each (︀a⌋︀,
⋃︀(︀a⌋︀⋃︀ = 1 and p(︀a⌋︀ = 1⇑⋃︀r ⋃︀:

H(A) = −∑
(︀a⌋︀

1
⋃︀r ⋃︀ log (1⇑⋃︀r ⋃︀) = log (⋃︀r ⋃︀)

We test the idea that progressively less diverse columns cause
the slowdown of ocddiscover by taking the FLIGHT_1K dataset
and running it over multiple samples build with the following
criteria: we calculate the entropy of each column in FLIGHT_1K
and then we build samples of increasing size in the number of
columns by adding progressively the columns with decreasing
entropy, i.e., we start with the columns with the greatest number
of distinct values and we progressively add columns with less
distinct values. Eventually, the constant columns are added.
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Figure 7: Execution times (red straight line) for the

FLIGHT_1K when adding columns of decreasing entropy

(blue dotted line). On the y-axis, times (left-hand side) are

in logarithmic scale, entropy (right-hand side) is normal-

ized with respect to the maximum value over the dataset.

The result of the execution on ocddiscover over this set
of samples is reported in Figure 7. With 50 columns the ocd-
discover completes in 4 minutes, adding the 51st column the
execution time grows by an order of magnitude to over 1 hour.
With the addition of the 52nd column, the algorithm reaches the
time limit of 5 hours. The 50th, 51st, and 52nd columns have
respectively 4, 2, and 2 distinct values respectively.

With respect to applications, this insight could be exploited
to develop algorithms that return results for the most diverse
columns, which can be the most interesting with respect to other
properties of the data such as unique column combinations (UCC).
Detection of unique column combinations is usually performed
to find primary keys candidates that may be also interesting
candidates from the point of view of ordering and query opti-
mization.

In summary, the column scalability experiments show that
ocddiscover can find a complete set of ODs over datasets with
tens of columns. Furthermore, ocddiscover can be easily adapted
to perform the detection over a set of interesting columns, where
the interestingness of an attribute can be determined providing
a function measuring the properties chosen by the user.

6 RELATEDWORK

Functional Dependencies: Theory, Discovery and Applica-

tions. Literature on functional dependencies is vast [2, 12, 14, 16].
Applications of functional dependencies span several fields from
query optimization [6], to data cleaning [5], to data quality man-
agement [8]. Given this variety of applications, several algorithms
for the discovery of functional dependencies have been devel-
oped. The first algorithm to be proposed was TANE [12], which
has served as inspiration for many subsequent efforts [14, 16].
Research on better functional dependency discovery algorithms
is still ongoing [15]. Functional dependencies have been extended
in several ways: from conditional functional dependencies [4],
to approximate (or partial) functional dependencies [14].

OrderDependencies Theory andApplications. In the 1980’s,
Ginsburg and Hull were the first to consider the idea of analyzing
orderings between the attributes of a relation as a kind of depen-
dency [9–11]. They introduced the concept of point-wise order-
ing [11], that is a relation where a set of attributes orders another
set of attributes. Recently, Szlichta et al. introduced the concept
of order dependency [21], which is the one used throughout this
paper. Order dependencies are defined over lists of attributes,
and can be formalized in a similar way to functional dependen-
cies [21, 23]. In this paper we focused on dependencies where the

419



attributes are all ordered in the same direction, also called "uni-
directional" order dependencies; however order dependencies
can be generalized to "polarized" or "bidirectional" ODs where
a different direction of the ordering can be specified for each
attribute on either side of the dependency [20]. One of the main
theoretical problems concerning dependencies in relational data
is the problem of inference. For order dependencies this problem
is shown to be co-NP-complete [24].

Applications of Order Dependencies. Notwithstanding their
recent theoretical formulation, order dependencies have been
already used in several applications, such as query optimization.

Sorting is a fundamental database operation. Since the semi-
nal works [10], research has focused on developing optimization
strategies for dealing with queries with an ORDER BY clause [17].
Order dependencies can be used for this purpose, as it has been
shown with an implementation of a query optimizer in IBM DB2.
Optimizing queries with order dependencies yields significant
speedups in execution times over the well-known TPC-DS bench-
mark and on queries taken from real-world scenarios [22].

Discovery Algorithms for Order Dependencies. These ap-
plications are driving the need for discovering order dependen-
cies in existing datasets. The first work proposing an algorithm to
solve this problem is the one by Langer and Naumann [13]. Their
approach, called order, follows the path of tane, computing the
potential order dependency candidates from the permutations of
attributes and traversing the lattice in a level-wise, bottom-up
manner. Pruning rules are applied to reduce the number of can-
didates to check, with the caveat of eliminating only redundant
relations that can be later inferred from the dependencies discov-
ered together with the axioms. However, as shown in this paper,
this approach does not consider all the possible order dependency
candidates, discarding repeated attributes. While this gives a sig-
nificant advantage in execution time, reducing the worst-case
time complexity of the algorithm to O(⋃︀r ⋃︀!), its major drawback
is the possibility of losing completeness. More recently Szlichta et
al. [18] proposed an algorithm called fastod that is complete and
faster than order. This algorithm exploits a novel polynomial
mapping that transforms ODs with lists of attributes into canon-
ical forms of ODs that are established between sets of attributes.
fastod has exponential worst-case time complexity, O(2⋃︀r ⋃︀), in
the number of attributes. Recently, this work was extended in
order to discover bidirectional order dependencies [19].

7 CONCLUSIONS

In this work, we presented a novel method for discovering order
dependencies (ODs). We based our approach on the fact that an
order dependency is valid if and only if both a functional depen-
dency (FD) and an order compatibility dependency (OCD) are
valid. Thus, we designed a novel and efficient algorithm – called
ocddiscover – where the search for ODs is guided by checking
the validity of OCDs. Our approach outperforms existing two
state-of-the-art algorithms, order [13] and fastod [18] with
respect to order, we are complete, meaning that we detect or-
der dependencies that are ignored. We have shown that these
dependencies cannot be inferred by other detected dependen-
cies. While the worst-case complexity of ocddiscover is greater
than fastod, the execution time on real datasets depends on
the actual number of dependencies found, thus our algorithm
outperforms fastod. Furthermore, we presented an extensive set
of experiments that illustrate that our approach can be executed

in parallel over multiple threads. We have also suggested that
considering the entropy of attributes can lead to further develop-
ments in discovery the most interesting order dependencies. As
a future work, we would like to consider dynamic inputs, where
additional rows and columns may be added at runtime.
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ABSTRACT
Local outlier techniques are known to be effective for detecting

outliers in skewed data, where subsets of the data exhibit diverse

distribution properties. However, existing methods are not well

equipped to supportmodern high-velocity data streams due to the

high complexity of the detection algorithms and their volatility

to data updates. To tackle these shortcomings, we propose local

outlier semantics that operate at an abstraction level by lever-

aging kernel density estimation (KDE) to effectively detect local

outliers from streaming data. A strategy to continuously detect

top-N KDE-based local outliers over streams is designed, called

KELOS – the first linear time complexity streaming local outlier

detection approach. The first innovation of KELOS is the abstract

kernel center-based KDE (aKDE) strategy. aKDE accurately yet

efficiently estimates the data density at each point – essential for

local outlier detection. This is based on the observation that a

cluster of points close to each other tend to have a similar influ-

ence on a target point’s density estimation when used as kernel

centers. These points thus can be represented by one abstract

kernel center. Next, the KELOS’s inlier pruning strategy early

prunes points that have no chance to become top-N outliers. This

empowers KELOS to skip the computation of their data density

and of the outlier status for every data point. Together aKDE and

the inlier pruning strategy eliminate the performance bottleneck

of streaming local outlier detection. The experimental evaluation

demonstrates that KELOS is up to 6 orders of magnitude faster

than existing solutions, while being highly effective in detecting

local outliers from streaming data.

1 INTRODUCTION
Motivation. The growth of digital devices coupled with their

ever-increasing capabilities to generate and transmit live data

presents an exciting new opportunity for real time data analytics.

As the volume and velocity of data streams continue to grow,

automated discovery of insights in such streaming data is critical.

In particular, finding outliers in streaming data is a fundamental

task in many online applications ranging from fraud detection,

network intrusion monitoring to system fault analysis. In gen-

eral, outliers are data points situated away from the majority

of the points in the data space. For example, a transaction of a

credit card in a physical location far away from where it has

normally been used may indicate fraud. Over 15.4 million U.S

residents were victims of such fraud in 2016 according to [3]. On

the other hand, as more transactions take place in this new loca-

tion, the previous transaction may appear legitimate as it begins
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to conform to the increasingly expected behavior exemplified by

the new data. Thus, in streaming environments, it is critical to

design a mechanism to efficiently identify outliers by monitoring

the statistical properties of the data relative to each other as it

changes over time.

State-of-the-Art. To satisfy this need, several methods [20, 21]

have been proposed in recent years that leverage the concept

of local outlier [6] to detect outliers from data streams. The lo-

cal outlier notion is based on the observation that real world

datasets tend to be skewed, where different subspaces of the data

exhibit different distribution properties. It is thus often more

meaningful to decide on the outlier status of a point based on its

difference with the points in its local neighborhood as opposed

to using a global density [9] or frequency [5] cutoff threshold

to detect outliers [11]. More specifically, a point x is considered

to be a local outlier if the data density at x is low relative to that

at the points in x ’s local neighborhood. Unfortunately, existing
streaming local outlier solutions [20, 21] are not scalable to high

volume data streams. The root cause is that they measure the

data density at each point x based on the point’s distance to

its k nearest neighbors (kNN). Unfortunately, kNN is very sen-

sitive to data updates, meaning that the insertion or removal

of even a small number of points can cause the kNN of many

points in the dataset to be updated [20]. Since the complexity

of the kNN search [6] is quadratic in the number of the points,

significant resources may be wasted on a large number of un-

necessary kNN re-computations. Therefore, those approaches

suffer from a high response time when handling high-speed

streams. For example, it takes [20, 21] 10 minutes to process just

100k tuples as shown by their experiments. Intuitively, kernel

density estimation (KDE) [26], an established probability density

approximation method, could be leveraged for estimating the

data density at each point [16, 23, 27]. Unlike kNN-based density
estimation that is sensitive to data changes, KDE estimates data

density based on the statistical properties of the dataset. There-

fore, it tends to be more robust to gradual data changes and thus

a better fit for streaming environments. However, surprisingly,

to date no method has been proposed that utilizes KDE to tackle

the local outlier detection problem for data streams.

Challenges. Effectively leveraging KDE in the streaming context

comes with challenges. Similar to kNN search, the complexity of

KDE is quadratic in the number of points [26]. While the compu-

tational costs can be reduced by running the density estimation

on kernel centers sampled from the input dataset, sampling leads

to a trade-off between accuracy and efficiency. Although a low

sampling rate can dramatically reduce the computational com-

plexity, one must be cautious because the estimated data density

at each point may be inaccurate due to an insufficient number of

kernel centers. On the other hand, a higher sampling rate will

certainly lead to a better estimation of the data density. How-

ever, the computational costs of KDE increase quadratically with

more kernel centers. With a large number of kernel centers, KDE
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would be at risk of becoming too costly to satisfy the stringent re-

sponse time requirements of streaming applications. Due to this

accuracy versus efficiency trade-off, to the best of our knowledge,

no method has successfully adapted KDE to function efficiently

on streaming data to date.

1. Stream Clustering

Abstract Kernel Centers

Streaming Data
2. Inlier Pruning

Lower
Bound

Upper 
Bound

3. Outlier Score Calculation

Outliers

Previous WindowCurrent Window

Figure 1: An illustration of KELOS approach.

Proposed Solution. In this work, we propose a scalable KDE-

based strategy (Fig. 1) for detecting top-N local outliers over

streams, or in short KELOS. KELOS provides the first practical
solution for local outlier detection on streaming data. Our key

contributions are given below.

• New KDE-based semantics are proposed for the continuous

detection of the top promising outliers from data streams. This

establishes a foundation for the design of a scalable streaming

local outlier detection method.

• A notion of the abstract kernel center is introduced to solve

the accuracy versus efficiency trade-off of KDE. This leverages

the observation that kernel centers close to each other tend to

have a similar strength of influence on the densities at other

points. These nearby points thus can be clustered together and

considered as one abstract kernel center weighted by the amount

of data it represents. Compared to the traditional sampling-based

KDE, our strategy achieves accurate density estimation using

much fewer kernel centers. This in turn speeds up the quadratic

complexity process of local density estimation. This notion of ab-

stract kernel centers by itself could be applied to a much broader

class of density estimation related stream mining tasks beyond

local outlier detection.

• Unlike existing techniques [20, 21], which detect outliers by

computing the data density and then the outlierness score for

every data point, KELOS quickly prunes the vast majority of

the data points that have no chance to become outliers. The

more expensive KDE method itself is only used thereafter to

evaluate the remaining much smaller number of potential outlier

candidates.

• Putting these optimizations together, we obtain the first linear

time complexity streaming local outlier detection approach that

outperforms the state-of-the-arts by up to 6 orders of magnitudes

in speed confirmed by our experiments on real world datasets.

2 PRELIMINARIES
2.1 Local Outlier
Given a point xi , it is a local outlier if the data density at xi (e.g.
inverse of average distances to its kNN) is significantly lower

than the densities at xi ’s neighbors.
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Figure 2: Local outlier detection using local densities.

As illustrated in Fig. 2, although the densities at x1 and x2 are
both low, the density at x1 is quite different than the densities

at the locations of its neighbors. However, the densities at the

neighbors of x2 is similar to x2. Therefore, x1 is more likely to be

an outlier than x2 due to its relatively low density in contrast to

those at its neighbors. Therefore, conceptually measuring a point

xi ’s status of being a local outlier corresponds to the two-steps:
(1) Estimate the density at xi and the densities at its neighbors;

(2) Compute the outlierness score of xi based on the deviation of

the density at xi in contrast to those at its neighbors.

2.2 Kernel Density Estimation

Gaussian Kernel Gaussian Kernel

(a) Bandwidth h = 0.1

Gaussian Kernel Gaussian Kernel

(b) Bandwidth h = 0.3

Figure 3: An example of univariate kernel density estimator us-
ing Gaussian kernel with different bandwidth.

Kernel density estimation (KDE) is a non-parametric method

to estimate the probability density function (PDF) of a dataset

X = {x1, · · · ,xn }. Given a point xi , the kernel density estimator

of X computes how likely xi is drawn from X . This computed

probability can be interpreted as the “data density” at xi in X .

The density at xi in X is:

˜f (xi ) =
1

m

m∑
j=1

Kh (|xi − kc j |). (1)
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Kernel Centers. kc j ∈ KCwhere 1 ≤ j ≤ m are called the kernel

centers in the estimator. Typically, kc j is a point sampled from X .

The selected set of kernel centers must be sufficient to represent

the data distribution of X [26]. Each kernel center kc j carries a
kernel function Kh . The density contribution by a kernel center

kc j is calculated based upon the distance from kc j to the target

point xi . The density at xi is estimated by the average density

contribution by all kernel centers. For example, in Fig. 3(a), there

are 7 kernel centers. Each of them carries a kernel function (red

dashed curve). The shape of the overall density function across

all kernels is represented by the blue solid line. Given a dataset

X with n points and m kernel centers, the time complexity of

computing the densities of all xi ∈ X is O(nm).
Kernel Function. A wide range of kernel functions can be used

in kernel density estimation [26]. The most commonly used ones

are the Gaussian and Epanechnikov kernel functions [11]. In this

study, we adopt the Gaussian kernel:

Kдauss (u) =
1

(
√
2π )h

e
(−

1

2

u2

h2
)
, (2)

Kepanechnikov (u) =
3

4h

(
1 − u2

h2

)
, (3)

where u represents the distance from a kernel center kc j to the

target point xi and h is an important smoothing factor, called

bandwidth. The bandwidth h controls the smoothness of the

shape of the estimated density function. The greater the value

h, the smoother the shape of the density function
˜f . As shown

in Figs. 3(a) and (b), using the same set of kernel centers but dif-

ferent bandwidth values, the estimated PDFs (the blue lines) are

significant different from each other. Therefore, an appropriate

bandwidth is critical to the accuracy of the density estimation.

Balloon Kernel. In balloon kernel [30], when estimating the

density at a target point xi , only the k nearest kernel centers

of xi denoted as kNN(xi ,KC) are utilized in the estimator. This

provides each point xi a customized kernel density estimator that

adapts to the distribution characteristics of xi ’s surrounding area,
hence also called local density. Therefore, Balloon kernel fits the

local outlier that detects outliers based on the local distribution

properties as shown in [23]:

˜f (xi ) =
1

k

k∑
j=1

Kh (|xi − kc j |) where kc j ∈ kNN(xi ,KC). (4)

Multi-dimensional Kernel. We adopt the product kernel [24]
as the form of the kernel function. The product kernel is typ-

ical in density estimation for multi-dimensional data. Given a

d dimensional target point xi and a kernel center kc j , for each
dimension l the product kernel (Eq. 5) first computes the density

contribution of kc j to xi based on the distance on dimension l .
The final density contribution by kc j to xi is the product of the
density contributions by kc j on all dimensions, so called prod-

uct kernel. As we will show in Sec. 7, this creates opportunities

for the design of constant time density update operation in the

streaming context. Moreover, product kernel allows the band-

width to be customized for each dimension, resulting in more

accurate estimation [24].

˜f (xi ) =
k∑
j=1

d∏
l=1

Khl (|x
l
i − kc

l
j |) where kc j ∈ kNN(xi ,KC). (5)
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Figure 4: A data stream in the form of sliding windows.

3 PROPOSED OUTLIER SEMANTICS
Next, we propose our semantics of KDE-based streaming local

outliers. We first introduce the notion of top-N local outliers that

captures the most extreme outliers in the input dataset. We then

apply this concept to sliding windows to characterize outliers in

data streams.

3.1 Top-N KDE-based Local Outliers
We first define a new outlierness measure, KDE-based local

outlierness measure (KLOME). The goal is to reduce the com-

putation costs of the existing KDE-based outlier semantics [23],

while still effective in detecting outliers.

Definition 3.1. KLOME. Given a set of data points X = {x1,
· · · , xn} and a set of kernel centers KC = {kc1, · · · , kcm }, the
KLOME score of a target point xi ∈ X is defined as KLOME(xi )

= z-score(f̃b(xi), {f̃b(kcj) | ∀kcj ∈ kNN(xi,KC)}).
Here z-score(s, S) = (s - S)/σS [33] indicates how many standard

deviations a value s is above or below the mean of a set of values

S . In this definition, KLOME(xi )measures how different the local

density at xi is from the average local density at xi ’s nearest
kernel centers denoted as kNN(xi,KC). A negative KLOME score

of a target point xi indicates that the local density at xi is smaller

than the local densities at its neighbors’ locations. The smaller
the KLOME score of a point xi is, the larger the possibility that

xi is an outlier.

The key property of our KLOME semantics is that the density

at xi is compared against the densities at its kNN in the kernel

center set KC (kNN(xi,KC)) instead of its actual kNN in the

dataset.

The intuition is as below. The kernel centers sufficient to

recover the distribution of the original dataset can well cap-

ture every local phenomenon. The density at xi is estimated

based on its location relative to the selected kernel centers kc j
∈ kNN(xi,KC). Naturally kc j can serve as the local neighbor of

xi in the density deviation computation of xi (z-score). In other

words, kNN(xi,KC) effectively models the local neighborhood of

a point xi . This in turn significantly reduces the computational

complexity compared to working with xi ’s kNNs in the much

larger input dataset X .

Next, we define the top-N KDE-based local outlier:

Definition 3.2. Given a set of data points X = {x1, · · · ,xn }
and a count threshold N , the top-N KDE-based local outliers
are a set of N data points, denoted by Top-KLOME(X ,N ) such
that ∀xi ∈Top-KLOME(X ,N ) and ∀x j ∈ X \Top-KLOME(X ,N ),
KLOME(xi ) ≤ KLOME(x j ).

3.2 Local Outlier Detection in Sliding
Window

We work with periodic sliding window semantics, illustrated in

Fig. 4, commonly adopted to model a finite substream of interest

from the otherwise infinite data stream [4]. Such semantics can be

either time or count-based. Each data point xi has an associated

time stamp denoted by xi .time . The window size and slide size

of a stream S are denoted as S .win and S .slide correspondingly.
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Each windowWc has a starting timeWc .Tstar t and an ending

timeWc .Tend = Wc .Tstart + S.win. Periodically the current win-

dowWc slides, causingWc .Tstar t andWc .Tend to increase by

S .slide respectively. For count-based windows, a fixed number

(count) of data points corresponds to the window size S .win. Ac-
cordingly S .slide is also measured by number of data points.SWc

denotes the set of data points falling into the current windowWc .

The local outliers are then always detected in the current active

windowWc . An outlier in the current window might turn into

an inlier in the next window.

Next, we define the problem of continuously detecting Top-
KLOME(X ,N ) over sliding windows:

Definition 3.3. Given a stream S , a window size S .win, a
slide size S .slide , and an integer N , continuously compute

Top-KLOME(SWc ,N ) over sliding windows.

Next, we introduce our KELOS framework for supporting

continuous local outlier detection over windows stream with our

proposed KLOME semantics.

4 THE KELOS FRAMEWORK
KELOS framework, depicted in Fig. 5, consists of three main com-

ponents, namely, stream data abstractor, density estimator
and outlier detector.
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Figure 5: The KELOS framework.

The stream data extractor is composed of the window pro-
cessor and the data abstractor. The window processor feeds the
latest data that falls into the current streamwindow to the system.

By leveraging a lightweight stream clustering approach, the data
abstractor dynamically organizes the data points in each window

into evolving clusters based on their affinity. It then generates and

maintains statistics that reflect the key distribution properties of

each cluster. These statistics are essential to performing density

estimation and the inlier pruning during outlier detection.

The estimator constructor in the density estimator builds ker-
nel density estimators utilizing abstract kernel centers where each
abstract kernel center represents one data cluster. The bandwidth
estimator leverages the statistics associated with each cluster

to approximate an optimal bandwidth for each density estima-

tor customized for each target. The constant time complexity

of the bandwidth estimator ensures that the bandwidth can be

continuously updated online to best fit the data.

The outlier detector continuously computes the top-N out-

liers, that is, the N points with the highest outlierness scores. It

avoids having to compute the density and the outlierness score

for each and every point by pruning clusters that as a whole do

not have a chance to contain any outlier. This leverages the stable
density property of a tight cluster and the characteristics of local

outliers (Sec. 6.1).

In Sec. 5, we present the key strategies of our density esti-
mator, namely abstract kernel center-based KDE. In Sec. 6, we

introduce the techniques core to our outlier detector. It effi-

ciently identifies and prunes the points that are guaranteed not

to be outliers. Finally, in Sec. 7, we introduce our stream data
abstractor. It features a low complexity dual-purpose clustering

algorithm that continuously constructs data clusters, while at the

same time generating the statistics needed to support the density

estimator and outlier detector.

5 DENSITY ESTIMATOR
In this section, we propose our abstract kernel center-based KDE

strategy (aKDE). It solves the problem of accurately yet efficiently

estimating the density at a given point. In contrast to the tradi-

tional sampling-based KDE approach [26], our density estimation

is performed on top of a set of clusters (Fig. 1) that succinctly

summarize the distribution characteristics of the dataset. This

approach is inspired by our abstract kernel center observation
below.

Abstract Kernel Center Observation. In KDE, the density at

a given point xi is determined by the additive influences of the
kernel centers, while the influence from one center kc j is de-
termined by the distance between kc j and xi . The centers close
to each other tend to have similar influence on the target point

xi . Using them redundantly instead of representing them as a

whole perplexes the density estimation by unnecessarily enlarg-

ing the center space. To obtain succinct while informative repre-

sentatives as kernel centers, KELOS first performs a lightweight

clustering that groups close points together. The centroid of the

cluster weighted by the cluster’s data cardinality, called abstract

kernel center (AKC) is then selected as a kernel center to perform

density estimation.

Fig. 6(b) shows an example estimation using the abstract kernel

centers. The original 7 points in Fig. 3(a) are abstracted into three

clusters. The estimations (blue line) in Fig. 6(b) with 3 centers

and Fig. 6(a) using all 7 points as kernel centers are similar.

Gaussian Kernel Gaussian Kernel

(a) All points as kernel centers

Gaussian Kernel

(b) Abtract kernel centers

Figure 6: Local kernel density estimator.

On the performance side, real world data sets tend to be

skewed. Therefore, typically most points can be clustered into

a small number of tight clusters. Correspondingly, the number

of the abstract kernel centers tends to be much smaller than the

number of sampled kernel centers that would be sufficient to

represent the overall data distribution of the dataset. Since the

bottleneck of local density estimation is on the computation of

the k nearest kernel centers for each to be estimated point xi , the
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small number of abstract kernel centers promises to reduce the

complexity of the successive density estimation process.

Furthermore, the abstract kernel centers allow us to use a

small k while establishing a diversified neighborhood – hence a

comprehensive density estimator for each point. This not only

reduces the complexity of the kNN search and kernel density

computation, but also alleviates the problem of selecting an ap-

propriate k because of the reduced range of possible k .

Definition 5.1. Given a stream window SWc
= {x1, · · · ,xn }, the

abstract kernel centers of SWc
are a set of pairs AKC(SWc ) =

{⟨cc1 , |c1 |⟩, · · · , ⟨ccm , |cm |⟩}, where cci (1 ≤ i ≤ m) corresponds

to the centroid of the respective data cluster ci and |ci | the number

of points in ci . Here
⋃m
i=1 ci = SWc

and ∀i, j, i , j ci ∩ c j = ∅.

WeightedKernel Density Estimator. Intuitively, each abstract
kernel center represents the centroid of a cluster of points close to

each other along with the data cardinality of this cluster. Utilizing

these abstract kernel centers, we construct a weighted kernel

density estimator [13], where the kernel centers correspond to

the centroids in AKC(SWc ) (the first component of AKC) and
the weight corresponds to the cardinality of the data cluster

represented by the centroid (the second component). Therefore,

the weighted kernel density estimator reflects the distribution

characteristics of the entire dataset by utilizing only a small

number of kernel centers. The formula is shown below:

˜fAKC(SWc )(xi ) =
k∑
j=1

ω(cc j )
d∏
l=1

Khl (|x
l
i − c

l
c j |) (6)

where

ω(cc j ) =
|c j |∑k

m=1 |cm |
, (7)

and ccm ∈ kNN(xi ,AKC(S
Wc )). Here ˜fAKC(SWc )(xi ) in Eq. 6 cor-

responds to a weighted product kernel estimator that computes

the local density at xi and kNN(xi ,AKC(S
Wc )) corresponds to

the k nearest centroids of xi in the abstract kernel centers.

Bandwidth Estimation. One additional step required to make

the weighted kernel density estimator work is to establish an

appropriate bandwidth for the kernel on each dimension. Here

we show that the data driven strategy introduced in [25] (Eq. 8)

can be efficiently applied here by leveraging the abstract kernel

centers.

hl = 1.06σ lk−1/(d+1). (8)

In Eq. 8, d denotes the data dimension. σ l denotes the weighted
standard deviation of the kernel centers on the lth dimension

computed by:

σ l =

√√√ k∑
m=1

ω(ccm )(c
l
cm − µ

l )2, (9)

where

µl =

∑k
m=1 ω(ccm )c

l
cm

k
, (10)

and ccm ∈ kNN(xi ,AKC(S
Wc )).

Efficiency. The time complexity of KDE is O(nm), where n is

number of data points and m is the number of kernel centers.

Since aKDE dramatically reduces the number of kernel centers,

it significantly speeds up the KDE computation. On the other

hand, data clustering introduces extra computation overhead.

In this work, we apply the low complexity micro-clustering [2]

strategy that processes each point only once. This overhead is

significantly outweighed by the saved KDE computation costs.

Therefore, overall aKDE is much faster than the traditional KDE

– as shown in Sec. 8.2.

6 OUTLIER DETECTOR
Our outlier detector fully utilizes the data clusters produced for

aKDE by leveraging our stable density observation described

below.

Stable Density Observation. Data points in a tight cluster are

close to each other. Therefore, they tend to share the same kernel

centers and have similar local densities. By the definition of local

outliers, the outlierness score of a point x depends on the relative

density at x in contrast to those at its neighbors. Therefore, these

points tend to have similar outlierness scores. Since outliers only

correspond to small subset of points with the highest outlierness

scores, it is likely that most of the data clusters do not contain

any outlier.

Assume we have a method to approximate the highest (upper

bound) and lowest (lower bound) outlierness scores for the points

in each data cluster. Using these bounds, the data clusters that

have no chance to contain any outlier can be quickly identified

and pruned from outlier candidate set without any further inves-

tigation. More specifically, if the upper bound outlierness score of

a data cluster ci is smaller than the lower bound outlierness score

of a data cluster c j , then the whole ci can be pruned (under the

trivial premise that c j has at least N points). This is so because

there are at least N points in the dataset whose outlierness scores

are larger than any point in ci .
Leveraging this observation, we now design an efficient local

outlier detection strategy. The overall process is given in Alg. 1.

We first rank and then prune data clusters based on their upper

KLOME score bounds. As shown in Sec. 3.1, a small KLOME

score indicates large outlier possibility. Therefore, the upper

KLOME bound corresponds to the lower outlierness score bound.

Similarly, the lower KLOME bound corresponds to the upper

outlierness score bound. Therefore, if the lower KLOME bound

of a cluster ci is higher than the upper KLOME bound of another

cluster c j , all points in ci can be pruned immediately. Only the

clusters with a small lower KLOME bound (large outlierness score

upper bound) are subject to further investigation. The densities

and KLOME scores at the data point-level are computed only

for the data points in these remaining clusters. Finally, the top-

N results are selected among these points by maintaining their

KLOME scores in a priority queue.

6.1 Bounding the KLOME Scores
Next, we present an efficient strategy to establish the upper and

lower KLOME bounds for each given data cluster.

By Def. 3.1, the KLOME score of a point xi corresponds to z-
score( ˜f (xi ), S), where S refers to the local densities at xi ’s kernel
centers. Since the points in the same cluster ci typically share the
same kernel centers, the data point xmin ∈ ci with the minimal

density determines the lower bound KLOME score of the entire

cluster ci . Similarly the upper bound is determined by the point

xmax with the maximal density. Obviously it is not practical to

figure out the lower/upper bound by computing the densities at

all points and thereafter finding xmin and xmax .
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Algorithm 1 : Top-N Outlier Computation.

Input: Clusters C.
Output: Top-N Outliers.

1: Pr ior ityQueue<Cluster> P of size N /*by upperbound

in ascending order*/

2: P ← first N in C

3: for rest of the cluster c in C do
4: if KLOMElow (c) > KLOMEup (P .peek ) then
5: prune c
6: else if KLOMEup (c) < KLOMElow (P .peek ) then
7: P .poll & P .add(c )
8: else
9: P .add(c )
10: Pr ior ityQueue<Data> R of size N /*by KLOME in

ascending order*/

11: for cluster c in P do
12: for data d in c do
13: compute KLOME of d
14: R .add(d )
15: return R
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Figure 7: An example of lower KLOME bound.

Lower bound. We now show that by utilizing the statistical

property of each data cluster – more specifically the radius, the
bounds can be derived in constant time. Here we use the lower

bound as example to demonstrate our solution (Fig. 7).

Lemma 6.1. Given a data cluster ci , its k nearest kernel cen-
ters {cc1 , · · · , cck } and the data point xmin which has the mini-
mum density among all points in ci , ˜fmin (ci ) ≤ ˜f (xmin ), where
˜fmin (ci ) =

∑k
j=1 ω(cc j )Kh (|cci − cc j | + r ). Here r is the radius of

ci and cci is the centroid of ci .

Proof. The density contributionKh (|xi−cc j |) is inversely pro-
portional to the distance between the evaluated point xi and the

kernel center cc j . The longer the distance, the smaller the density

contribution is from the kernel center. The radius r of a cluster ci
is the distance from ci ’s centroid cci to the furthest possible points
in ci . The longest possible distance from a kernel center cc j to any
point in ci is denoted as dc = |cci −cc j | + r . The distance from cc1
to xmin is denoted as dx = |cc j − xmin |. dc ≥ dx by the triangle

inequality. ThereforeKh (dx ) ≤ Kh (dc ). This holds for any kernel

center cc j . Therefore
˜fmin (ci ) =

∑k
j=1 ω(cc j )Kh (|cc j − cci | + r ) ≤

˜f (xmin ). □

Intuitively, the density at a data point is measured by the

summation of the density contributions of all relevant kernel

centers. The summation of the density contribution from each

kernel center cc j to the point x j that is the point furthest to cc j
in ci is guaranteed to be smaller or equal to the density at point

xmin . This is so because the distance from xmin to each kernel

center cc j cannot be larger than the distance between cc j and x j .
According to Lemma 6.1, given the radius of a data cluster ci

and its k nearest kernel centers cc1 · · · cck , the lower KLOME
bound of cluster ci is computed as:

KLOMElow (ci ) = z-score( ˜fmin (ci ), { ˜f (cc1 ) · · ·
˜f (cck )}). (11)

Upper Bound. Similarly, we can show that the maximal local

density at a cluster ci , denoted by ˜fmax (ci ), can be obtained based
on the shortest distance from each kernel center to the points in

ci .

˜fmax (ci ) =
k∑
j=1

ω(cc j )Kh (|cc j − cci | − r ). (12)

Accordingly, the upper KLOME bound of each cluster ci
KLOMEup(ci) is derived based on

˜fmax (ci ).

KLOMEup (ci ) = z-score( ˜fmax (ci ), { ˜f (cc1 ) · · ·
˜f (cck )}). (13)

7 THE EFFICIENT STREAM DATA
ABSTRACTOR

The stream data abstractor adapts a lightweight stream clustering

algorithm similar to [2, 8] that clusters the extremely close data

points together. As the clusters are continuously constructed and

incrementally maintained, the statistics needed by both aKDE
and inlier pruning, namely the cardinality, the centroid, and the

radius of the cluster, must also be continuously generated. We

thus refer to this as dual-purpose clustering. The dual-purpose

clustering is based on two key ideas: additive meta data and

pane-based meta data maintenance.
The additivemeta data is inspired bymicro-clustering [2] – a

popular stream clustering approach. The idea is that by maintain-

ing meta data that satisfies the additive properties, the statistics

required by both the density estimator and the outlier detector

can be computed in constant time whenever the window evolves.

Definition 7.1. A cluster ci in a d-dimensional data set

SWc = {x1, · · · ,xm } corresponding to the data in the cur-

rent window Wc of stream S is represented as a 4-tuple set

{M,LS,Rmin ,Rmax } whereM denotes the cardinality of the clus-

ter, LS =<
∑m
i=1 x

1

i , · · · ,
∑m
i=1 x

d
i > is the linear sum of the

points by dimension, Rmin =< x1min , · · · ,x
d
min > and Rmax =<

x1max , · · · ,x
d
max > are the minimum and maximum values of

the points in each dimension.

Cardinality and Centroids for aKDE. In Def. 7.1,M refers to

data cardinality of cluster ci . M is used to compute the weight
(Eq. 7) and the centroid of the abstract kernel center. The linear

sum LS is used to compute the centroid of cluster ci =
LS
M .

The Radius for Inlier Pruning. Rmin and Rmax representing

the minimal and maximal values in each dimension are utilized to

compute the radius of cluster ci . Radius is a key statistic needed

by our outlier detector to quickly prune the clusters from the

outlier candidate set.

Since the radius is defined as the distance from the centroid

cci to its furthest point in cluster ci , the radius changes whenever
the centroid changes. All points in ci then have to be re-scanned
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Figure 8: An example of an evolving cluster.

to find the point “furthest” from the new centroid. This, being

computational expensive, is not acceptable in online applications.

The remedy comes from our carefully selected product kernel

function (Eq. 5). In the product kernel, each dimension has its own

customized bandwidth. Accordingly, we only need the radius on

each single dimension to estimate the bandwidth instead of the

radius over the multi-dimensional data space. Since updating the

minimum or maximum value per insertion or deletion to an array

is constant cost, the cost of radius maintenance for k separated

dimensions (Rmin and Rmax ) is constant as well.

Pane-based meta data maintenance. The pane-based meta

data maintenance strategy [17] is utilized to effectively update

the meta data for each cluster as the window slides. Given the

window size S.win and slide size S.slide, a window can be divided

into
S .win

дcd (S .win,S .sl ide) small panes where дcd refers to greatest

common divisor. The meta data of a cluster ci is maintained at

the pane granularity instead of maintaining one meta data struc-

ture for the whole window. Since the data points in the same

pane arrive and expire at the same slide pace, the meta data can

be quickly computed by aggregating the meta data structures

maintained for the unexpired panes as the window moves. This

process is illustrated in Fig. 8. Since the meta data satisfies the

additive property, the computation can be done in constant time.

In this way, no explicit operation is required to handle the expi-

ration of outdated data from the current window. Therefore, our

stream clustering algorithm only needs to exclusively deal with

the new arrivals.

The Dual-Purpose Stream Clustering Algorithm. Once a

new data point x arrives, The algorithm first finds its nearest

cluster according to the distance of x to all the centroids. If the

distance from x to its nearest cluster ci denoted as dist(x, cci )
is smaller than a radius threshold θ , x is inserted into ci . The
corresponding 4-tuple meta data is updated accordingly. On the

other hand, if dist(x, cci ) > θ , a new cluster will be created. This

logic is described in Alg. 2.

7.1 Time Complexity Analysis of KELOS
The complexity of the clustering comes from the nearest centroid

search. The complexity is O(mc) with m the number of new

arrivals and c the number of centroids. In the density estimation

step, each point has to find its k nearest kernel centers from

the c centroids. Therefore, in worst case the complexity is O(c)
for each point. In the outlier detection step, the cluster-based

pruning takes O(c2).
One more pass is required for the remaining points to com-

pute the density and the outlierness score. Assuming the number

of remaining points is l , the density computation takes O(lc),
while the outlierness score computation takes O(l logN ), where

Algorithm 2 : Dual-Purpose Stream Clustering

Input: Data batch D at time ti , window size S .win and

threshold θ .
Output: Clusters C.
1: Array<Cluster> C
2: for every data d in D do
3: distmin ← +∞

4: Cluster cn
5: for every cluster c in C do
6: dist ← distance(d, c .centroidti−S .win+1→ti )

7: if dist < distmin then
8: distmin ← dist
9: cn ← c
10: if distmin < threshold θ then
11: cn .insert(d ,ti )
12: else
13: Cluster cnew
14: cnew .insert(d ,ti )
15: C.add(cnew )

16: return C

O(logN ) comes from the priority queue operation for maintain-

ing the top-N outlierness score points. Therefore, the overall

computation costs for a batch of newly arriving data points is

O(mc) + O(c2) + O(lc) + O(l logN ). In summary, the time com-

plexity of our KDE based outlier detection approach is linear

in the number of points. Since typically N ≪ c ≪ l ≪ m, the

complexity is dominated by the clustering step.

8 EXPERIMENTAL EVALUATION
8.1 Experimental Setup & Methodologies
In this section, we compare the efficiency and effectiveness of

KELOS against the state-of-art local outlier detection approaches

for data streams. All experiments are conducted on an Ubuntu

server with 56 Intel(R) Xeon(R) 2.60GHz cores and 512GB mem-

ory. Overall, our KELOS is 1-6 orders of magnitude faster, while

still at least as accurate as the alternative approaches.

We utilize the public as well as synthetic datasets generated

using the data mining framework ELKI [1] to measure the effi-

ciency of KELOS. We also work with real labeled datasets so that

we can evaluate the effectiveness of KELOS.

Real Datasets. We work with 3 labeled public datasets. The

HTTP dataset [10] contains in total 567,479 network connec-

tion records with 2,211 among them being outliers. The labeled

outliers correspond to different types of network intrusions in-

cluding DOS, R2L, U2R, etc. Three numerical attributes, namely

duration, src_bytes and dst_bytes are utilized in our experiments.

The points in the HTTP dataset are ordered by their arrival time.

Therefore we can generate a data stream simply by enforcing a

sliding window on it.

The Yahoo! Anomaly Dataset (YAD) [15] is considered as one
of the industry standards for outlier detection evaluation. It is

composed of 4 distinct data sets. In this work we utilize Yahoo! A1

and Yahoo! A2. Yahoo! A1 is based on the real production traffic to

some of the Yahoo! services. The anomalies are marked by Yahoo!

domain experts. Yahoo! A2 is a synthetic data set containing time-

series with random seasonality, trend and noise. Yahoo! A1 and

Yahoo! A2 contain 94,866 points with 1,669 outliers and 142,101

points with 312 outliers respectively. Each data point has three

attributes: timestamp, value, and label.
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Synthetic Datasets. We generate synthetic datasets to measure

the efficiency of KELOS under various scenarios with different

distribution properties. We first create static datasets containing

different number of data clusters and then utilize these datasets

to simulate windowed streams. For example, to simulate a win-

dowed stream with three clusters and some outliers, we first

create a static dataset containing three clusters. The size and

shape of the clusters are controlled by different parameter set-

tings in ELKI such as type of distribution, standard deviation,

etc. When generating a sliding window data stream, different

windows correspond to different datasets with different cluster

densities.

Comparative Methods. We compare KELOS against five base-

lines, namely sLOF, sKDEOS, pKDEOS, iLOF [20] andMiLOF [21].

LOF [6] is the seminal and most popular local outlier detection

method. KDEOS [23] leverages KDE in local density estimation

which is then used to compute an outlierness score for each point.

Since their performance bottleneck is the kNN search, we imple-

mented the skyband stream kNN search algorithm [29] to speed

up their outlier detection process for windowed streams and

named the modified methods as sLOF and sKDEOS. iLOF [20]

and MiLOF [21] are two incremental LOF algorithms specifically

designed for landmark windows. iLOF computes the LOF score

for each inserted data point and update the LOF score of the

affected data points following the reverse kNN relationships.

MiLOF improves iLOF in a scenario where the memory is lim-

ited. When the memory limit is reached, part of the existing data

points are summarized into small clusters as references for the

future LOF approximation. Since iLOF and MiLOF do not handle

data expiration, they have to start from scratch for each new win-

dow. In the original KDEOS, every data point in the input dataset

is used as kernel center. We also implemented a sampling-based

sKDEOS called pKDEOS, since it is the common practice for KDE

to use only the data points uniformly sampled from the input

dataset as kernel centers. All methods continuously return the

N points with the highest outlierness scores as outliers in each

window.

Efficiency Measures. We measure the end-to-end execution

time.

Effectiveness Measures. We measure the effectiveness using

the Precision@N (P@N ) metric typical for the evaluation of out-

lier detection techniques [7].

P@N =
# of True Outliers

N
. (14)

Intuitively, P@N measures the true positive of the detected

top-N outliers. An ideal P@N equals to 1, where all outliers are

found and no inlier is returned as result. Here we measure the

P@N metric window by window and report the average P@N
over all windows. Following [7], we replace N with |O | in the

P@N computation for each window, where |O | corresponds to
the total number of labeled (ground truth) outliers falling in this

window. Only the top-|O | points out of the top-N outlier list are

used in the evaluation. Therefore, the P@|O | for n consecutive

stream windows is:

P@|O | =

∑n
i=1 # of True Outliers in top-|O |i∑n

i=1 |O |i
, (15)

where |O |i denotes the number of the true outliers in the ith
window.

To investigate the quality of the ranking in the Top-|O | outlier
list, we also measure the average precision (AP) [31]:

Averaдe Precision(AP) =
1

|O |

∑
o∈O

P@rank(o). (16)

Here P@rank(o) measures the P@N , where N is set as rank(o)

representing the position at which a true outlier o appears. AP
measures how well the true outliers are ranked among all data

points.

8.2 Efficiency Evaluation
We evaluate the end-to-end execution time and memory con-

sumption by varying the number of the neighbors k , the window
size and the window overlap rate.

Number of Neighbors k . The k parameter defines the number

of the neighbors to be considered in the computation of outlier-

ness score for each point. We first report the execution time of all

methods on real datasets with varied k from 10 to 100. The radius

threshold θ of KELOS appropriate for HTTP, Yahoo! A1, and

Yahoo! A2 are set as 0.095, 0.1 and 40 (See Sec.8.4 for parameter

tuning). The window size of HTTP is set to 6,000 and window

sizes of Yahoo! A1 and Yahoo! A2 are set as 1,415, and 1,412 based

on the instruction of the data provider for the effectiveness of

outlier detection. The sampling rates of pKDEOS is set as 10%

which is a relatively high sampling rate ensuring that pKDEOS

always has more than k kernel centers to use as k increases. For

MiLOF, we configured it to keep 10% of the data in memory for

LOF score approximation.

As shown in Fig. 9(a), KELOS is about 2-6 orders of magnitude

faster than the alternatives. Among all alternative methods, iLOF

and MiLOF are the slowest. To reduce the influence of the new

arrivals they use a point-by-point processing strategy that com-

putes the LOF score for each new point and update the LOF score

of the affected data points immediately after a single insertion. It

wastes significant CPU time on unnecessarily updating the LOF

scores of some points that are modified again later due to the

insertion of other new arrivals. sLOF and sKDEOS are 1-2 orders

of magnitude faster than the previous two, as they compute the

outlierness score only once for each data point in the entire win-

dow. pKDEOS is faster than sKDEOS and sLOF, because pKDEOS

only utilizes the sampled points as kernel centers. Searching for

the k nearest kernel centers from the sampled kernel center set

is much faster than searching among all points in each window.

However, pKDEOS is still at least 1 order of magnitude slower

than KELOS on HTTP. This is because in order to satisfy the

accuracy requirement, the number of the sampled kernel cen-

ters has to be large enough to represent the distribution of the

data stream. While the aKDE approach of KELOS only uses the

centroid of each cluster as abstract kernel center. Therefore, the

number of the clusters tends to be much smaller than the number

of the sampled kernel centers. Furthermore, KELOS effectively

prunes most of the inliers without conducing the expensive den-

sity estimation, while in contrast, others have to compute the

outlierness score for each and every data point.

As shown in Fig. 9(b), although pKDEOS is faster than KE-

LOS on Yahoo! A1 due to the smaller population of the sampled

kernel centers, KELOS outperforms pKDEOS in the effective-

ness measurements (Tab. 1). On average, KELOS keeps slightly

more kernel centers in the memory than pKDEOS for Yahoo!

A2 (Fig. 12(c)). However, KELOS still outperforms pKDEOS on

execution time because of our inlier pruning strategy.

Window Size. To evaluate how window size affects the effi-

ciency of KELOS, we measure and compare the average window
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(c) Yahoo! A2

Figure 9: Execution time of varied number of neighbors k . Note the maximum k that each method can reach is different.
For LOF-basedmethods, it depends on the total number of data points. For KDE-basedmethods, it depends on the number
of the kernel centers available.
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(c) Six-Cluster Stream

Figure 10: Execution time on synthetic datasets of varied window size.
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(c) Six- Cluster Stream

Figure 11: Execution time on synthetic datasets of varied overlap rate.

processing time of each method by varying the window size of

synthetic datasets from 5,000 to 100,000. For these experiments,

we created three data streams with one, three and six Gaussian

clusters with various parameter configurations (mean, variance

and etc.) across the timeline and 10 outliers for each window.

The parameters of different all the methods are configured such

as they achieve the same accuracy (P@|O | > 0.95) with as lit-

tle memory consumption as possible while k=10. As shown in

Fig. 10, in general, the execution time increases with the increase

of the window size (average data points within a single window).

KELOS constantly outperforms all other baselines by 1-5 orders

of magnitude.

Window Overlap Rate. We evaluate the efficiency of KELOS

by varying synthetic streams’ window overlap rate from 0% to

90%. The synthetic streams are created in the same fashion to

the previous experiments. The parameters of different all the

methods are configured such as they achieve the same accuracy

(P@|O | > 0.95) with as little memory consumption as possible

and k=10. Based on this controlled accuracy, we evaluate the

average window processing time.

When the overlap rate increases, the execution time of all six

approaches decrease as demonstrated in Fig. 11. This is because

iLOF and MiLOF are designed to process the data incrementally.

Although iLOF and MiLOF are not capable of handling data prun-

ing, in these experiments, we simply assume that the overlapped

data are already processed and we report the their processing

times for the rest of the window. sKDEOS, pKDEOS and sLOF

all leverage the skyband stream kNN search that incrementally

computes the kNN for each point as window slides, while the

clustering algorithm used by KELOS is incremental by nature

as shown in Sec. 7. As shown in Fig. 11, KELOS is 2-5 orders of

magnitude faster than iLOF, MiLOF, sKDEOS, sLOF and pKDEOS

in all settings on all three streams. iLOF and MiLOF are the

slowest. sLOF and sKDEOS are faster than the previous two but

slower than pKDEOS. Although they all can save computation by

avoiding some unnecessary reprocessing of the existing data, the
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reason of the performance difference is the same as we already

explained in the previous experiments.

Memory Consumption. The memory consumption shown

in Fig. 12 is evaluated by counting the number of the kernel

centers and data points kept in the memory by each approach.

sKDEOS, iLOF and sLOF (represented by sLOF in Fig. 12) utilizes

all points as kernel centers or reference points, while pKDEOS

and MiLOF (represented by pKDEOS in Fig. 12) dramatically

reduces the number of the kernel centers by sampling and the

number of the references by clustering. KELOS uses the smaller

number of kernel centers as compared to sLOF which facilitate

more accuracte density estimation. The number of the kernel

centers is equivalent to the number of the clusters that tends

to be small. sLOF and iLOF measures the local density at each

point by computing the local reachability density (LRD). Since

the LRD computation requires the access to all points falling

in each window, it is equivalent to using all points as kernel

centers similar to sKDEOS. On synthetic data stream, Similar to

the memory consumption on the real HTTP dataset, KELOS uses

the least number of kernel centers. pKDEOS and MiLOF uses

fewer kernel centers or references than sKDEOS, iLOF and sLOF

because of the sampling and clustering.

8.3 Effectiveness Evaluation
We report the accuracies of our KELOS, sKDEOS (≈ pKDEOS)

and sLOF methods on the real data streams. Tab. 1 (with pKDEOS

included) shows the peak P@|O | and AP for each approach on

each dataset. KELOS outperforms all other approaches in all

cases. We are not reporting the results of iLOF and MiLOF, since

they perform equally to sLOF in effectiveness. Similarly, for the

KDE-based methods we only report the results on sKDEOS for

various configurations.

Number of Neighbors k . The number of the neighbors k is the

most influential factor that affects the detection accuracies of all

methods. The parameter settings are the same to the efficiency

evaluation when varying k .
Fig. 13& 14 demonstrate the trend of P@|O | and AP as k varies.

The line of KELOS stops at 800 in Fig. 13(a)&14(a), because KELOS

uses cluster-based aKDE approach. The number of the kernel

centers is restricted by the number of the clusters. Fig. 13(a) shows

the results on the HTTP dataset. For our KELOS, as k increases,

the P@|O | increases until k reaches 80. It then starts decreasing

after k is larger than 100. Overall sKDEOS and sLOF show the

similar trend. Compared to KELOS they have to use a much

larger k to get relative high accuracy. The trends on the Yahoo

A1 and A2 datasets are different from that on the HTTP dataset

as shown in Fig. 13(b)% 13(c). The P@|O | continuously increases

and gets stable after k reaches certain value. This confirms our

observation that using as many as possible kernel centers in the

density estimator does not always lead to more accurate density

estimation. This justifies our decision of adopting the balloon

kernel that only takes the close kernels into consideration when

estimating the density at a point x .
The trends of AP are similar to the trends of P@|O | on all

datasets as shown in Fig. 14. Overall, KELOS is as accurate or

more accurate than alternative approaches. Furthermore, com-

pared to the alternatives, KELOS uses a smaller k to achieve high

accuracy. This also contributes to the performance gain of KELOS

in execution time.

8.4 Hyper Parameter Tuning
In KELOS, the radius threshold θ defines the maximum possible

radius of the formed clusters, that is, the tightness of the clusters.

Since the effectiveness of our aKDE approach (Sec. 5) and the

pruning strategy (Sec. 5) rely on the tightness of the clusters, θ is

important for the accuracy of KELOS. In this set of experiments,

we vary θ from small to large on the large HTTP dataset that

contains multiple data clusters. As shown in Fig. 15(a), when θ is

at 0.1, the P@|O | is at the peak. Then P@|O | and AP of KELOS

starts to decrease gradually as θ increases. Large θ results in a

small number of clusters that have large radius. Potentially the

centroid of a large radius cluster might not precisely represent

all points in the cluster. This leads to inaccurate density esti-

mation. Furthermore, a larger radius causes looser upper and

lower KLOME bound. This makes the inlier pruning less effective.

However, a smaller radius θ inevitably leads a large number of

clusters. This increases the computation costs of both stream clus-

tering and the cluster-based aKDE method as shown in Fig. 15(b).

Therefore, KELOS will achieve the best performance when radius

θ is set to the largest value that is still ‘small’ enough to generate

tight data clusters.

Tuning Radius Threshold θ . Micro-clustering utilizes the ra-

dius threshold θ to make sure only the extremely similar points

fall into the same cluster and produce tight clusters. The smaller

the θ is, the tighter the formed clusters are. However, as shown

in Fig. 15(a), although small θ achieves high accuracy in density

estimation, it also slows down the overall speed of KELOS. There-

fore, it is important to find an appropriate θ threshold that can

balance the speed and the accuracy. Instead of trying to acquire

an optimal θ value at the beginning by exploring some expensive

preprocessing, in streaming context we recommend that the θ
threshold could be dynamically adapted to the optimal value.

More specifically, one can start by initializing the system using

a relatively small θ value to ensure the accuracy of the results.

Then the θ value can be gradually adjusted to larger values as

the data stream evolves as long as the accuracy is still reason-

ably good based on the user feedback. As concept drift occurs

when stream data evolves, the θ is adjusted again using the same

principle.

9 RELATEDWORK
Local Outlier Factor. Local outlier detection has been exten-

sively studied in the literature since the introduction of the Local

Outlier Factor (LOF) semantics [6]. A detailed survey of LOF and

its variations can be found in [7]. The concept of local outlier, LOF

in particular, has been applied in many applications [7]. However,

LOF requires kNN search for every data point and needs multiple

iterations over the entire dataset to compute these LOF values.

For this reason, to support continuously evolving streaming data,

iLOF was proposed [20] to quickly find the points whose LOF

scores are influenced by new arrivals. This avoids re-computing

the LOF score for each point as the window slides. However

as the velocity of the stream increases, most of the points in a

window will be influenced. Therefore this approach does not

scale to high volume streaming data. In [21] an approximation

approach MiLOF was designed to support LOF in streaming data

that focuses on the memory efficiency. However, MiLOF only

considers new incoming data. It does not offer any efficient strat-

egy to handle the update caused by data expiration. Therefore, it

is not efficient when handing windowed streams. As evaluated
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(d) Synthetic

Figure 12: Memory consumption for real and synthetic data streams (window size as 100,000).
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(c) Yahoo! A2

Figure 13: P@|O | of varied number of neighbors k .
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(c) Yahoo A2

Figure 14: AP of varied number of neighbors k .

Table 1: Peak accuracies among various k .
P@|O| AP

HTTP Yahoo! A1 Yahoo! A2 HTTP Yahoo! A1 Yahoo! A2
sLOF 87.06% 65.97% 75.11% 77.34% 69.16% 77.19%

sKDEOS 86.88% 64.17% 75.11% 76.06% 68.84% 76.95%
pKDEOS 87.43% 37.39% 74.89% 77.54% 36.43% 77.10%
KELOS 93.40% 67.83% 75.75% 85.92% 69.64% 77.30%

in our experiments, iLOF and MiLOF are much slower than our

skyband-based streaming LOF implementation sLOF.

Efficient Kernel Density Estimation. Kernel density estima-

tion is considered as a quadratic process O(nm) with n the total

number of data points andm the number of kernel centers. Pre-

vious efforts have aimed to accelerate this process while still

providing accurate estimation, such as utilizing sampling [26].

[14, 32] designed a method that incrementally maintains a small,

fixed size of kernel centers to perform density estimation over

data streams. However, to ensure the accuracy of density esti-

mation over skewed datasets, the sample size has to be large.

Therefore it cannot solve the efficiency problem of KDE in our

context. [12] studied the density-based classification problem.
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(b) Execution Time

Figure 15: Varying radius threshold θ .

It proposed a pruning method that correctly classifies the data

without estimating the density for each point by utilizing a user-

defined density threshold. However, this pruning method can not

be applied to solve our problem, since a point with low density

is not necessarily an outlier based on the local outlier semantics

we target on.
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Outlier Detection using KDE. For each point in the current

window of a sliding window stream, [27] utilizes KDE to approx-

imate the number of its neighbors within a certain range. This

information is then utilized to support distance-based outlier

detection and LOCI [19]. It directly applies off-the-shelf KDE

method on each window. No optimization technique is proposed

to speed up KDE in the streaming context. [16] is the first work

that studied how to utilize KDE to detect local outliers in static

datasets. This later was improved by [23] to be better aligned

with LOF semantics. Each data point’s density is estimated based

upon the surrounding kernel centers only, therefore called lo-

cal density. Instead of considering outliers only based on their

density value, data points are measured based on the density

in contrast to their neighbors. However, this work does not im-

prove the efficiency of KDE. Nor does it consider streaming data.

As confirmed in our experiment (Sec. 8.2), it is indeed orders of

magnitude slower than our KELOS.

Other Streaming Outlier Detection Approaches. LEAP [9]

and Macrobase [5] scale distance-based and statistical-based out-

lier detection respectively to data streams. They rely on the abso-

lute density at each point to detect outliers, while we work with

the local outlier method which determines whether a point is an

outlier based on the density relative to its neighbors. It tends to

be more effective than the absolute density-based methods [11].

Streaming HS-Trees [28] detects outliers by using a classification

forest containing a set of randomly constructed trees. The points

falling in the leafs that contain a small number of points are

considered as outliers. Similar to [5, 9], this method also relies

on absolute density of each point to detect outliers. RS-Hash [22]

proposed an efficient outlier detection approach using sample-

based hashing and ensemble. However, different from our local

outlier mining problem, it focuses on subspace outlier detec-

tion, that is, detecting outliers hidden in different subspaces of a

high dimensional dataset. Similar to iLOF [20] and MiLOF [21],

DILOF [18] processes the data stream in a point-by-point fashion

and incrementally detects outliers and sequential outliers from

landmark windows. It does not handle data expiration which is a

required operation in sliding windows scenario.

10 CONCLUSION
We present KELOS – the first solution for continuously monitor-

ing top-N KDE-based local outliers over sliding window streams.

First, we propose the KLOME semantics to continuously capture

the n points that have the highest outlierness scores in the stream-

ing data. Second, a continuous detection strategy is designed that

efficiently supports the KLOME semantics by leveraging the key

properties of KDE. Using real world datasets we demonstrate that

KELOS is 2-6 orders of magnitude faster than the baselines, while

being highly effective in detecting outliers from data streams.
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ABSTRACT
The explosion in the amount of the RDF on the Web has lead
to the need to explore, query and understand such data sources.
The task is challenging due to the complex and heterogeneous
structure of RDF graphs which, unlike relational databases, do
not come with a structure-dictating schema. Summarization has
been applied to RDF data to facilitate these tasks. Its purpose is to
extract concise andmeaningful information from RDF knowledge
bases, representing their content as faithfully as possible. There
is no single concept of RDF summary, and not a single but many
approaches to build such summaries; the summarization goal,
and the main computational tools employed for summarizing
graphs, are the main factors behind this diversity.

This tutorial presents a structured analysis and comparison
existing works in the area of RDF summarization; it is based
upon a recent survey which we co-authored with colleagues [3].
We present the concepts at the core of each approach, outline
their main technical aspects and implementation. We conclude
by identifying the most pertinent summarization method for
different usage scenarios, and discussing areas where future effort
is needed.

1 INTRODUCTION
The explosion in the amount of the RDF on the Web has lead
to the need to explore, query and understand such data sources.
This need arises both for computer scientists and for scientists
and practitioners in the many areas where Open Data is produced
- ranging from agriculture to education, from cultural artefacts
to criminality statistics. All users who need to tame, understand
and analyze such complex RDF graphs are faced with several
challenges.

Firstly, RDF graphs are often large compared with the human
ability to understand and analyze them; even a “tiny” graph of e.g.
10.000 nodes is challenging for humans to comprehend. Secondly,
unlike relational databases which come equipped with a prescrip-
tive schema, RDF graphs lack regular structure or many times
this structure exists but is unknown. Thirdly, size of the is chal-
lenging both for humans and for automated data processing tools.
Fourthly, while RDF graphs may come equipped with ontologies,
which specify the known relationships between the properties
and classes present in the graph, the ontology itself is sometimes
a source of complexity, especially if it is very large. In the pres-
ence of ontologies, graphs may contain implicit information, i.e.
facts that hold in the graph despite not being physically present
there. Reflecting the implicit facts of the ontology is in itself a

© 2019 Copyright held by the owner/author(s). Published in Proceedings of the
22nd International Conference on Extending Database Technology (EDBT), March
26-29, 2019, ISBN 978-3-89318-081-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

challenge. Additionally specific parts of the ontology might not
be used at all or very little in the specific Knowledge Base (KB).

Summarization has been applied to RDF data to facilitate these
tasks. Its purpose is to extract concise and meaningful informa-
tion from RDF knowledge bases, representing their content as
faithfully as possible. There is no single concept of RDF summary,
and not a single but many approaches to build such summaries.

Summarizing semantic graphs is a multifaceted problem with
many dimensions, and thus many algorithms, methods and ap-
proaches have been developed to cope with it. As a result, there is
now a confusion in the research community about the terminol-
ogy in the area, further increased by the fact that certain terms
are often used with different meanings in the relevant literature,
denoting similar, but not identical research directions or concepts.
We believe that this lack of terminology and classification hinders
scientific development in this area.

Following up on a recent survey which we co-authored with
colleagues [3], in this tutorial we present the main conceptual
tools behind graph summarization, including some techniques
developed prior to the advent of RDF, and show how all these
techniques have been applied to the problems of summarizing
semantic graphs. The goal of our tutorial is to acquaint the audi-
ence with the literature in this area, help them identify the tools
and techniques most suited to the summarization problems they
might have, and point out areas of interest for future work.

2 SCOPE
The tutorial aims at a broad range of researchers, students, IT
professionals and practitioners, and developers. Anyone work-
ing with semantic graphs and RDF more specifically will benefit
from this tutorial. Students and researchers will not only get
a good introduction to the topic with a complete coverage of
the state-of-the-art, but will also find a number of challenging
research problems in these emerging technologies on which they
may decide to focus their future research efforts. Practitioners
will get a good overview of what the summarization algorithms,
techniques and systems can offer nowadays and learn how they
can use them to enhance their understanding of their available
datasets. Developers of systems relying on semantic graphs will
get helpful information that will help them improve further their
products, enhancing query execution, data visualization and un-
derstanding.

Other tutorials [10, 15] considers the broad topic of summa-
rizing large graphs, mostly using data mining tools, and with
an approach tailored specifically to social networks; our tuto-
rial focuses on the particularities of RDF graphs (and of their
summarization).
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Figure 1: A taxonomy of the works in the area [3].

2.1 Tutorial goal
The goal of this tutorial is to introduce summarization notions
and tools which are useful in order to concrete RDF data manage-
ment applications. A broad set of techniques will be presented
covering summarization of general RDF graphs, that contain or
not ontological information, independent of their application
domain.

3 OUTLINE
Our tutorial will be organized as follows.

3.1 Introduction and preliminaries
We will recall the basics of RDF graphs, RDFS and OWL ontolo-
gies, RDF queries (focusing in particular on conjunctive queries,
the most frequently used in practice) and inference in RDF knowl-
edge graphs in the presence of an ontology.

3.2 Applications
Next, we will present the main classes of application contexts
which have justified the need for RDF summaries:

Indexing: The first and foremost application RDF summaries
has been brought by the necessity of efficiently querying large
and complex graphs. In this context, sets of nodes which are likely
to be used together by queries are grouped together and their IDs
are associated to a given summary node. Then, query processing
proceeds in two stages: first, the summary nodes relevant to a
given query are identified; then, from the summary node, an
index lookup gives access directly to the respective data nodes.

Estimating the size of query results: To the same direction with
indexing, summaries can be used to identify directly when no
nodes are available for a specific query. More than this, sum-
maries can also store statistical information on the available
nodes, leading query optimizers to start query evaluation from
the most selective conditions.

Source selection: Query evaluation across several graphs, in
particular in a distributed setting where multiple graphs are each
accessible behind its individual endpoint, can greatly benefit
from the knowledge that one source (or one graph) does not
have results matching a (sub)query. This is one facet of source
selection: restricting query evaluation to avoid datasets on which
it is guaranteed to have no answers. A variant consists of ordering

the graphs to be explored (queried), so that in a finite time budget,
the most interesting graphs are sure to be visited.

Graph visualization and schema discovery: Summarized infor-
mation is easier to be visualized and comprehended. On the other
hand when an ontology is not present, it can be extracted out
of the available data, augmenting user understanding on the
available information.

3.3 Classification & Dimensions
Then, we will present a classification of the available approaches
according to the main algorithmic idea behind the summarization
approach. We identify the following main categories; we also
indicate a few of the relevant references (out of the 122 present
in our survey [3]):

(1) Structural methods are those which summarize seman-
tic graphs, based mostly on the graph structure, i.e. the
paths and sub-graphs available in the RDF graph. Tech-
niques in this category can be further categorized as quo-
tient and non-quotient.
• Quotient approaches are based on the idea of charac-
terizing selected graph nodes as "equivalent" in a certain
way, and then summarizing the graph by assigning a
representative summary node to each class of equiva-
lent graph nodes; further, each edge between two graph
nodes leads to the corresponding edge being present
between the two graph node’s representatives. In a quo-
tient summary, each property (edge label) from the in-
put RDF graph is guaranteed present in the summary
graph; more a quotient summary is guaranteed to be at
most as large as the original graph. Different quotient
summaries result from different notions of equivalence
among the RDF graph nodes. Sample works in this area
include [2, 4, 11, 22, 27], while [17] and [9] are important
sources of inspiration from before the RDF age;

• Non-quotient approaches are the remaining methods
that are based mostly, on specific measures according
to which the most important nodes are identified and
then linked to formulate the presented summary. Pio-
neered by Dataguides [6, 20], the area features many
recent works such as [21, 24, 29, 30]; [28] has an infor-
mation retrieval approach, as it aims at extracting the
most interesting triples to be shown to a user about a
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subject; [32] summarizes ontologies found on the web,
through the prism of the salience (interestingness) of
their concepts.

(2) Pattern mining methods employee mining techniques
to identify patterns appearing in the semantic graph. A
pattern might be a set of instances having a certain set of
properties, which are in exact or approximate terms repre-
sentative of the graph or provide enough information on
the graph using some cost function to determine that. We
consider also as patterns the discovery of rules that can
be used to reconstruct the graph and thus represent it ad-
equately. Those patterns, together, compose the summary.
Representative works in this area are, e.g., [8, 25, 33];

(3) Statisticalmethods on the other hand try to qualitatively
summarize the contents of a graph counting occurrences,
building histograms, measuring frequencies and other sta-
tistical measures out of the available semantic graph. This
class comprises notably works such as [5, 7, 23, 31];

(4) Finally, several works combine techniques from several of
the main areas listed above; these are hybrid methods,
e.g., [1, 27] first and foremost aim at estimating the cardi-
nality of query patterns, [26] summarizes RDF graphs and
ontologies through the prism of statistics, while [19] aims
at graph compression with bounded error, that is: a core
(most regular) part of the graph is identified as comprising
several copies of a same data pattern, and compressed into
a single copy of this, whereas the rest is ignored from
the summary and considered to be the summarization er-
ror (which the authors seek to minimize under certain
constraints).

Further, we will characterize each of these proposal along a
set of other informative dimensions:

(1) Input: An interesting dimension of analysis is the in-
put required by each summarization method, as different
approaches have usually different requirements for the
dataset they get as input. RDF data graphs are usually ac-
cepted, RDF/S and/or OWL are considered for some of the
works for specifying graph semantics whereas very few
works consider DL models. Some works are based only on
the ontology part whereas others consider only instances.
Hybrid approaches are also available consuming both in-
stances and the ontology for producing summaries. In
addition, many works in the area require additional user
input of fine tuning (e.g. summary size, weights, equiva-
lence relations etc.) whereas some others are completely
user independent.

(2) Output: Besides input, the available works might have
also different output. The summary for example can be a
graph or a selection of the most frequent structures such as
nodes, paths, rules or queries. In addition we distinguish
summaries that only output instances from those that
output schema information as well.

(3) Availability: Several approaches are available by the au-
thors as complete system/tool and some others provide
only the corresponding algorithms/theory. Finally some
systems are available online and can be readily tested.

(4) Purpose: As already explained in the applications of the
summarization techniques, summaries can be build for
indexing, source selection, visualisation, schema discovery
or for facilitating query answering.

(5) Quality: Finally an important dimension of study, for each
summarization algorithm is its completeness in terms of
coverage, precision and recall of the result if an "ideal"
summary is available as golden standard and its corre-
sponding computational complexity.

Figure 1 presents the various dimensions that will be used in
order to present the works available in each category.

Natural connections exist between the families of RDF sum-
maries and the applications they are best suited for. Structural
quotient summaries are most applicable to indexing and query
answering through graph reduction; this holds especially for
quotients built through equivalence relations such as bisimilar-
ity (possibly bounded). Non-quotient summaries mostly target
visualization, schema discovery and data understanding. Pattern
mining summaries provide in many cases logical rules besides
the summary graph as part of the final result, so could be possibly
more useful in RDF graph compression scenarios. Summaries
could also be really useful in data integration scenarios [14],
where instead of generating mappings [16], [18] between data
source schemas, summaries could be used to drive the defini-
tion of the mapping. Extending this to a scenario where the
sources can also evolve [13], [12], summaries can play a key role
in schema understanding and mapping redefinition.

3.4 Open issues and future research
directions

RDF graph summaries can be useful in different application and
research scenarios. Each scenario brings each own specific re-
quirements and the possibility of having more than one items
being suitable is present. One open issue in this respect is whether
one could use the provided taxonomy to further automate the
selection of the appropriate algorithms in the different use cases.

Identifying the quality of the RDF summary is also a difficult
and not really widely addressed problem. The main problem that
remains is how could one compare the summaries produced by
the different algorithms and take into account the specificities of
the problem at hand and provide an RDF summary with some
guarantees. Given that even human experts do not agree on the
quality of different summaries in many cases, this remains a
challenging task.

Finally, one important problem that has been looked up very
little is the updates of the RDF summaries produced, given the
dynamic nature of most RDF datasets as well as their size. It is an
open issue how one could update the summary without having
to recompute the whole summary every time; and this problem
has also a temporal dimension since one should answer not only
how but also when this update is pertinent.
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ABSTRACT
The last few years have seen the fast and ubiquitous diffusion of

JSON as one of the most widely used formats for publishing and

interchanging data, as it combines the flexibility of semistruc-

tured data models with well-known data structures like records

and arrays. The user willing to effectively manage JSON data col-

lections can rely on several schema languages, like JSON Schema,

JSound, and Joi, or on the type abstractions offered by modern

programming languages like Swift or TypeScript.

The main aim of this tutorial is to provide the audience with

the basic notions for enjoying all the benefits that schemas and

types can offer while processing and manipulating JSON data.

This tutorial focuses on four main aspects of the relation between

JSON and schemas: (1) we survey existing schema language pro-

posals and discuss their prominent features; (2) we review how

modern programming languages support JSON data as first-class

citizens; (3) we analyze tools that can infer schemas from data, or

that exploit schema information for improving data parsing and

management; and (4) we discuss some open research challenges

and opportunities related to JSON data.

1 INTRODUCTION
The last two decades have seen a dramatic change in the data pro-

cessing landscape. While at the end of the last century data were

usually very structured and managed inside relational DBMSs,

nowadays they have very different characteristics: they are big,

usually semistructured or even unstructured, without a rigid and

predefined schema, and hosted and produced in data process-

ing platforms that do not embrace the relational model. In this

new scenario, where data come without a schema, and multiple

data models coexist, JSON is affirming as a useful format for

publishing and exchanging data, as it combines the flexibility

of XML with well-known data structures like records and ar-

rays. JSON is currently employed for publishing and sharing data

in many application fields and for many different purposes: for

instance, JSON is used as the result format for many web site

APIs (e.g., Twitter, New York Times), as a common format for the

remote interaction of modern web applications (e.g., Facebook’s

GraphQL is entirely based on JSON), as a common format for ex-

changing scientific data as well as public open data (e.g., the U.S.

Government’s open data platform: https://www.data.gov).
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Given the wide diffusion of JSON and its use in scientific as

well as mainstream applications, the need to directly manipulate

JSON data inside applications rapidly emerged. To this aim, a

schema language, specifically designed for JSON, has been in-

troduced, but its adoption is not growing at a fast pace, since

its specification is somewhat complex and many modern pro-

gramming languages, like Swift and TypeScript, directly support

JSON data through their own, simple type systems; furthermore,

Walmart Labs endowed JavaScript, which is inherently untyped,

with a powerful schema language for JSON objects by means of

JavaScript function calls.

In this tutorial proposal, we will present and discuss existing

schema and type languages for JSON data, and compare their

features; we will also discuss several schema-related tools, with

a particular focus on approaches for schema inference. The main

aim of this tutorial is to provide the audience and developers with

the basic notions for enjoying all the benefits that schemas and

types can offer while processing, analyzing, and manipulating

JSON data.

Outline. This 1.5-hour tutorial is split into five main parts:

(1) JSON primer (∼ 10 min.). In this very introductory part

of the tutorial, we review the basic notions about JSON

together with its JavaScript legacy, and present a few ex-

amples, coming from publicly available datasets, that we

will use throughout the remaining parts of the tutorial.

(2) Schema languages (∼ 20 min.). In this part of the tuto-

rial we focus on existing schema languages for JSON data

collections and discuss their most prominent features.

(3) Types in Programming Languages (∼ 15min.). In this
part of the tutorial we review how modern programming

languages support JSON data as first class citizens. In par-

ticular, we focus on programming and scripting languages

for web and/or mobile applications, where JSON data in-

terchange is a crucial task.

(4) Schema Tools (∼ 30 min.). In this part of the tutorial

we analyze tools that exploit schema information for im-

proving JSON data processing. We focus on the problem of

inferring a meaningful schema for schemaless JSON collec-

tions, as well as on the exploitation of schema information

for improving data parsing and management.

(5) Future Opportunities (∼ 10 min.). Finally, we outline
open research problems as potential directions for new

research in this area.

In what follows we describe at a very high level the technical

content covered in each of the last four aforementioned parts.
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2 SCHEMA LANGUAGES
In this part of the tutorial we will focus our attention on several

schema languages for JSON data, with particular emphasis on

JSON Schema [4] and Walmart Labs Joi [6].

JSON Schema emerged in the academic community and has

been developed without a specific programming or scripting lan-

guage in mind. JSON Schema allows the programmer to specify

a schema for any kind of JSON values, and supports traditional

type constructors, like union and concatenation, as well as very

powerful constructors like negation types.

JSON Schema has already been studied. Indeed, in [21], moti-

vated by the need of laying the formal foundations for the JSON

Schema language [4], Pezoa et al. present the formal semantics

of that language, as well as a theoretical study of its expressive

power and validation problem. Along the lines of [21], Bourhis et

al. [15] have recently laid the foundations for a logical character-

ization and formal study for JSON schema and query languages.

On the contrary, Joi has been developed by Walmart as a tool

for (i) creating schemas for JSON objects and (ii) ensuring the

validation of objects inside an untyped scripting language like

JavaScript; furthermore, to the best of our knowledge, Joi has

not been studied so far. Joi only allows the designer to describe

the schema for JSON objects, but it still provides the ability to

specify co-occurrence and mutual exclusion constraints on fields,

as well as union and value-dependent types.

We will analyze the most prominent features of these lan-

guages, and compare their capabilities in a few scenarios. We

will also briefly discuss JSound [5], an alternative, but quite re-

strictive, schema language, as well as a few other schema-related

proposals, such that described in [24], where Wang et al. present

a framework for efficiently managing a schema repository for

JSON document stores. The proposed approach relies on a no-

tion of JSON schema called skeleton. In a nutshell, a skeleton is a

collection of trees describing structures that frequently appear in

the objects of a JSON data collection. In particular, the skeleton

may totally miss information about paths that can be traversed

in some of the JSON objects.

3 TYPES IN PROGRAMMING LANGUAGES
Unlike XML, which found no space as a first class citizen in pro-

gramming languages, with the obvious and notable exception of

XQuery, JSON has been designed starting from the object lan-

guage of an existing scripting language. Therefore, given its wide

use in web and mainstream application development, JSON sup-

port has been introduced in several strongly typed programming

and/or scripting languages.

To directly and naturally manage JSON data a programming

language should incorporate the ability to express record types,

sequence types, and union types. While record and sequence

types can be easily found inmany programming languages, union

types are quite rare and usually confined to functional languages

only.

In this part of the tutorial we will discuss the support for JSON

objects inside the type systems of TypeScript [9] and Swift [8].

TypeScript is a typed extension of JavaScript, while Swift is an

Apple-backed programming language that is rapidly becoming

the language of choice for developing applications in the Apple

ecosystem (iOS + macOS). These languages show similar features,

but also very significant differences in the treatment of JSON

objects.

We will also compare the features offered by these languages

with those of the schema languages we presented in the second

part of the tutorial.

4 SCHEMA TOOLS
In this part of the tutorial we will present several schema-related

tools for JSON data. We will first discuss existing approaches

for inferring a schema starting from a dataset and then move to

parsing tools that are able to exploit dynamic type information

to speed-up data parsing.

4.1 Schema Inference
Several schema inference approaches for JSON data collections

have been proposed in the past. In [10–12] authors describe a

distributed, parametric schema inference approach capable of

inferring schemas at different levels of abstraction. In the context

of Spark, the Spark Dataframe schema extraction [7] is a very

interesting tool for the automated extraction of a schema from

JSON datasets; this tool infers schemas in a distributed fashion,

but, unlike the technique described in [10–12], its inference ap-

proach is quite imprecise, since the type language lacks union

types, and the inference algorithm resorts to Str on strongly

heterogeneous collections of data. Other systems, like Jaql [13],

exploit schema information for inferring the output schema of a

query, but still require an externally supplied schema for input

data, and perform output schema inference only locally on a

single machine.

There are also a few inference tools for data stored in NoSQL

systems and RDBMSs. Indeed, in the context of NoSQL systems

(e.g. MongoDB), recent efforts have been dedicated to the problem

of implementing tools for JSON schema inference. A JavaScript

library for JSON, called mongodb-schema, is presented in [22].

This tool analyzes JSON objects pulled from MongoDB, and pro-

cesses them in a streaming fashion; it is able to return quite

concise schemas, but it cannot infer information describing field

correlation. Studio 3T [19] is a commercial front-end for Mon-

goDB that offers a very simple schema inference and analysis

feature, but it is not able to merge similar types, and the resulting

schemas can have a huge size, which is comparable to that of the

input data. In [23], a python-based tool is described, called Skin-

fer, which infers JSON Schemas from a collection of JSON objects.

Skinfer exploits two different functions for inferring a schema

from an object and for merging two schemas; schema merging is

limited to record types only, and cannot be recursively applied to

objects nested inside arrays. Couchbase, finally, is endowed with

a schema discovery module which classifies the objects of a JSON

collection based on both structural and semantic information [3].

This module is meant to facilitate query formulation and select

relevant indexes for optimizing query workloads.

When moving to RDBMSs, in [16] Abadi and al. deal with

the problem of automatically transforming denormalised, nested

JSON data into normalised relational data that can be stored in

a RDBMS; this is achieved by means of a schema generation

algorithm that learns the normalised, relational schema from data.

This approach ignores the original structure of the JSON input

dataset and, instead, depends on patterns in the attribute data

values (functional dependencies) to guide its schema generation.
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4.2 Parsing
There are a few novel parsing tools for JSON data that take into

account dynamic type information for improving the efficiency

of the applications relying on them.

In a recent work [20], Li et al. present streaming techniques for

efficiently parsing and importing JSON data for analytics tasks;

these techniques are then used in a novel C++ JSON parser, called

Mison, that exploits AVX instructions to speed up data parsing

and discarding unused objects. To this end, it infers structural

information of data on the fly in order to detect and prune parts

of the data that are not needed by a given analytics task.

In [14], Bonetta and Brantner present Fad.js, a speculative,
JIT-based JSON encoder and decoder designed for the Oracle

Graal.js JavaScript runtime. It exploits data access patterns to

optimize both encoding and decoding: indeed, Fad.js relies on

the assumption that most applications never use all the fields

of input objects, and, for instance, skips unneeded object fields

during JSON object parsing.

5 FUTURE OPPORTUNITIES
We finally discuss several open challenges and opportunities

related to JSON schemas, including the following ones.

Schema Inference and ML. While all schema inference ap-

proaches covered in the previous part of the tutorial are based

on traditional techniques, a recent work by Gallinucci et al. [17]

shows the potential benefits of ML approaches in schema infer-

ence; furthermore, ML-based inference techniques have already

been used for non-JSON data, as shown by Halevy et al. in [18].

Hence, a promising research direction is to understand how these

methods can be efficiently applied to large collections of data

and whether they can overcome some limitations of previous

approaches.

Schema-Based Data Translation. While JSON is very frequently

used for exchanging and publishing data, it is hardly used as

internal data format in Big Data management tools, that, instead,

usually rely on formats like Avro [1] and Parquet [2]. When input

datasets are heterogeneous, schemas can improve the efficiency

and the effectiveness of data format conversion. Therefore, a

major opportunity is to design schema-aware data translation

algorithms that are driven by schema information and use it to

improve the quality of the translation.

6 INTENDED AUDIENCE AND COVERAGE
Our goal is to present a coherent starting point for EDBT atten-

dees who are interested in understanding the foundations and

applications of schemas and types for JSON data processing. We

will not assume any background in JSON schema languages, but

will introduce them starting from the roots, giving broad cover-

age of many of the key ideas, making it appropriate for graduate

students seeking new areas to study and researchers active in

the field alike.
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ABSTRACT
The steady growth of graph data from social networks has
resulted in wide-spread research on the influence maxi-
mization (IM) problem. This results in extension of the
state-of-the-art almost every year. With the recent explo-
sion in the application of IM in solving real-world problems,
it is no longer a theoretical exercise. Today, IM is used in
a plethora of real-world scenarios, with OnePlus1 series
of mobile phones, Hokey Pokey2 ice-creams, and galleri5
influencer marketplace3 being the most prominent indus-
trial use-cases. Given this scenario, navigating the maze of
IM techniques to get an in-depth understanding of their
utilities is of prime importance. In this tutorial, we address
this paramount issue and solve the dilemma of “Which IM
technique to use and under What scenarios”? “What does
it really mean to claim to be the state-of-the-art”?

This tutorial builds upon our benchmarking study [1],
and will provide a concise and intuitive overview of the
most important IM techniques, which is usually lost in the
technical literature. Specifically, we will unearth a series of
incorrect claims made by prominent IM papers, disseminate
the inherent deficiencies of existing approaches, and surface
the open challenges in IM even after a decade of research.

1 MOTIVATION
Influence maximization (IM) has been one of the most
actively studied areas of data management research over
the past decade. With this, almost every year, a new IM
technique has been published that claims to be the state-
of-the-art. However, IM is no longer a theoretical problem.
We rely on Facebook and WhatsApp to communicate with
friends. Twitter is used to disseminate information such as
traffic-news, emergency-services, etc. IM is used by com-
panies to publicize their products or shape opinions (Ex:
OnePlus, galleri5, and HokeyPokey [19]).

On the academic front, researchers are interested in
classical IM [3, 7–10, 16–18, 21, 24, 25, 31] as well as more
application-specific models such as IM under competition
[22], time and opinion-aware IM [6, 12] etc. Undoubtedly,
this extensive research has promoted prosperity of the
family of IM techniques. However, it also raises several
questions that are not adequately addressed. Given this
widespread applicability, it is important to understand the
following questions from a neutral standpoint.
1https://oneplusstore.in
2http://www.hokeypokey.in
3https://galleri5.com/aboutus

© 2019 Copyright held by the owner/author(s). Published in Proceed-
ings of the 22nd International Conference on Extending Database
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Distribution of this paper is permitted under the terms of the Cre-
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Figure 1: Comparing IMM (𝜖 = 0.5) with EaSyIM (𝑖𝑡𝑒𝑟 =
100) under IC (𝑊 (𝑢, 𝑣) = 0.1) on the YouTube dataset.

∙ Which IM technique should one use given the re-
sources in hand? How to choose the most appropriate
IM technique in a given specific scenario?

∙ What does it mean to claim to be the state-of-the-art?
More fundamentally, Is there really a single state-of-
the-art technique as is often claimed?

∙ Are the claims made by the recent papers true?
∙ What are the unsolved challenges in the field?

To highlight the ambiguity that plagues the current maze of
IM techniques, we provide a concrete example4 to motivate
the need for answering the questions stated above.

What does it mean to be the state of the art? While
many techniques claim to be the state of the art, in reality,
they are often the state of the art in only one aspect of the
IM problem. Consider Figs. 1a-1b, where EaSyIM [12] and
IMM [30] scale better with respect to memory and running
time respectively. Thus, neither technique can be termed
as better than the other.

1.1 Relevance and Timeliness
∙ First, EDBT is an appropriate platform to present a tu-
torial on IM from a neutral standpoint since reproducibility
tests and benchmarking have always been a key area of
interest of the database community at large. Moreover, as
shown in Fig. 2, of late database conferences have become
the venue of choice for authors conducting research in the
field of influence maximization, since ensuring scalability
(while maintaining quality guarantees) has become central
to the problems identified in this area.

∙ Second, to ensure a streamlined growth of the field, this
tutorial, in addition to surveying existing IM techniques,
serves as a timely and relevant avenue to disseminate an-
swers of the questions stated above to the data management
community. Overall, the tutorial will build upon our bench-
marking study [1] and present our musings over almost a
decade long literature (along with the recent advances) in
the field of IM from top publication venues, and unravel
many interesting and unknown avenues in the well-studied
area of influence maximization.
4A detailed analysis on more such examples may be found in [1].
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∙ Lastly, as mentioned previously, IM is no longer a
theoretical problem. It is regularly used by companies
to publicize their products or shape opinions. OnePlus,
galleri5, and HokeyPokey [19] for example rely completely
on IM through social networks. To this end, the insights
presented in this tutorial would definitely be advantageous
to a broad audience at EDBT/ICDT ranging from theorists
to researchers who are more interested in understanding
and harnessing the practical power of IM in social networks.

2 INTENDED AUDIENCE, PREREQUISITE
KNOWLEDGE AND LENGTH

The tutorial is aligned to the general area of data manage-
ment and the web, thereby being relevant for a broad au-
dience at EDBT: including students, academic researchers,
and industrial experts specifically interested in benchmark-
ing, data mining, social-network analysis, large-scale ana-
lytics, and performance tuning. No prior knowledge beyond
basic probability and graph theory is expected. Familiar-
ity with information-diffusion concepts would help, but
not needed. The tutorial is self-contained and possesses
introduction of most of the foundational concepts.

The key take away would be knowledge of the gaps in-
cluding mis-claims and myths, leading to some of the never
unraveled aspects of the IM problem, thereby enabling a
more streamlined advancement in IM research. Since IM is
a hot topic, we expect around 50 participants.

3 OUTLINE OF THE TUTORIAL
3.1 Introduction (20 minutes)
The first part of the tutorial will involve the formal def-
inition of the IM problem along with an analysis of the
fundamental information diffusion models: IC and LT [18].
The other aspect here would be to motivate the impor-
tance of IM, by citing real-world applications, in order to
bridge the gap between theoretical models and real-world
information diffusion.

Moving ahead, we will explain in detail the various chal-
lenges faced in designing effective solutions for the IM
problem. We will analyze various properties of IM, namely
– NP-hardness, submodularity etc., and also present the
scenarios where exact estimation of influence is possible.

3.2 Summary of IM Algorithms (30 minutes)
First, we will present a categorized overview [1] of existing
IM algorithms. This will enable the attendees to grasp the
broad spectrum of IM techniques as portrayed in Table 1
in an intuitive and concise manner. Next, we will delve into
a detailed description of each category.

Given that the IM problem is NP hard, Kempe et al. [18]
leverage submodularity to propose a GREEDY algorithm
that provides the best approximation on the quality of
obtained spread. Later, CELF [21] and CELF++ [15] were
proposed to maintain the same quality of spread with

an attempt to improve the efficiency by applying several
optimizations over the GREEDY algorithm.

Next, we will present the heuristics IMRank/IRIE [8, 17]
and LDAG/SIMPATH [7, 16] that improve the efficiency
and scalability aspect of IM, and perform well for the
WC and LT models respectively. The caveat with these
techniques is that they work well in practice, however lack
any theoretical backing on the quality of the obtained
spread. We will also introduce our techniques – ASIM [13]
and EaSyIM [12], which are better both empirically and
theoretically when compared to other heuristics.

Lastly, we will present a recent class of techniques that
use sampling [9, 24, 25, 30, 31] to portray superior effi-
ciency while retaining quality guarantees. These techniques
either maintain reverse reachable (RR) sets of nodes or
snapshots of cascades, and try to estimate influential nodes
by sampling nodes from the original network. The caveat
here is that most of these techniques are not scalable owing
to their exorbitantly high memory footprint [1].

Table 1 summarizes the techniques discussed above,
while stating their key highlights and the respective state-of-
the-arts. This will enable the attendees to understand the
representative techniques in the literature and the different
aspects they address. It will also facilitate the attendees to
appreciate as to why “One Size Doesn’t Fit All!”.

Finally, we will analyze why there does not exist any
algorithm capable of simultaneously excelling in all the
three fronts: (1) efficiency, (2) scalability, and (3) quality?

3.3 Myths, Mis-Claims and Insights (20
minutes)

In continuation to the overview of the techniques, here,
we present our findings and provide recommendations to
answer the question(s) posed by us in Section 1. We firmly
establish that several claims from highly cited papers are
incorrect (our experiments have been marked SIGMOD
Reproducible), the evaluation procedure adopted by various
techniques could produce misleading results, and expose
a series of myths that could potentially alter the way we
approach IM research. All the insights would be supported
by empirical results, presented to the audience using a
python interface to the publicly available implementations5

of the discussed techniques.

3.4 Open Challenges and Future Directions
(20 minutes)

The last part of the tutorial would focus towards summa-
rizing the key insights discussed previously to eventually
shortlist the best technique(s) and the corresponding sce-
narios in which they are the best. To this end, a decision-
tree (Fig. 3b) will be presented as a tool to the audience.
Next, we would delve into a detailed discussion on the open
5For details please visit our project page: https://sigdata.github.io/
infmax-benchmark
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Type Theoretical Highlights State-of-the-Art
Guarantee?

GREEDY and Yes Superior Quality and Scalability CELF/CELF++ [15, 21]
Optimizations but low Efficiency

Heuristics No Superior Efficiency and Scalability EaSyIM, IRIE, & LDAG/SIMPATH [7, 12, 16, 17]
at the cost of Quality

Sampling Yes Superior Efficiency and Quality PMC, Stop-and-stare, Coarsening,
Snapshots/RR sets at the cost of Scalability Sketching, and NoSingles [23–27]

Table 1: The spectrum of IM techniques.

challenges in the field of information propagation, thereby
providing a streamlined view of future research directions.
∙ The most important research direction is the development

of a scalable and efficient algorithm with error guarantees
(Fig. 3a), which still remains as the holy grail of influence
maximization. While recent efforts by Popova et al. [27],
Ohsaka et al. [26], and Nguyen et al. [23] are steps in this
direction to improve scalability of the class of memory-
intensive sampling algorithms [10, 24, 30, 31], more work
is needed to achieve true scalability. To this end, there is
a need for a generic framework inspired by classical data
management systems which are shown to perform well
for managing graph data [11], or the use of modern data
management technologies that rely on distribution and
parallelization to improve scalability and efficiency.

∙ Another compelling and novel research direction lies
in validating the correctness/effectiveness of the classi-
cal information diffusion models proposed in [18] using
real-world social media data capturing cascades from
retweets or mentions as ground truth. The advantage
of this exercise would be two fold: (1) Exploring the
most unfathomed area in the field provides tremendous
scope for advancement of the state-of-the-art, and (2)
Curating a benchmark dataset for all the follow-up re-
search. Such efforts would also attract further research on
scalably learning influence probabilities from real-world
interaction data extending on the works of [14] and [20].

∙ The challenges involved in scaling up influence maxi-
mization to massive networks under classical information
diffusion models also cascade to the recent research activi-
ties around development of sophisticated diffusion models
like opinion-aware [12], topic-aware [5] etc., which too
are deprived of scalable algorithms. To this end, there is
a need for devising a generic and unified framework for
scaling up influence maximization under classical and
various sophisticated real-world scenarios.

4 RELATED TUTORIALS
Multiple tutorials have been presented in the broad field
of information propagation and IM at major data-centric
venues [2, 4, 28, 29]. However, all these tutorials possess
a common theme, i.e., each of them have provided an
overview of models for information diffusion in networks
and associated algorithms for influence analysis. While
[2, 4, 29] were based on an algorithmic and data-mining
perspective of the broad area of information diffusion, [28]
focused on machine learning methods, specifically encir-
cling the problems of network inference, influence estima-
tion and control. In sum, the main focus of these tutorials
was towards dissemination of the mathematical, technologi-
cal, and algorithmic innovations to all-and-sundry, thereby

enabling a step forward for sound analysis of research prob-
lems in the field of information propagation.

The proposed tutorial has the following key differentia-
tions:
∙ First, the state-of-the-art has never been discussed from a

neutral standpoint. More fundamentally, all the previous
tutorials have given overviews of the existing literature,
however, this exercise has not been from a perspective
of a critic. We are the first to present some of the highly
controversial and ground-breaking discoveries, thereby
unraveling several mis-claims and myths in the existing
IM research. This in-depth focus of our tutorial enables
a more streamlined advancement in IM research with
possible redefinition of the state-of-the-art.

∙ Second, IM is still a niche problem and provides many
avenues to devise real world models and scalable al-
gorithms capable of tackling competitive, time aware,
opinion aware settings and many more. The knowledge
gathered from this tutorial would facilitate more informed
extensions to these settings.

5 TUTOR BIOGRAPHY AND EXPERTISE
Akhil Arora is a doctoral researcher at EPFL. His research
interests include large scale data mining, databases, and
machine learning. He is a recipient of the prestigious “EDIC
Doctoral Fellowship” for the academic year 2018-19, and
the “Most Reproducible Paper” award at SIGMOD 2018.
He has published his research in prestigious data min-
ing and database conferences, served as a reviewer, and
co-organized workshops in these conferences. Further infor-
mation available at https://www.cse.iitk.ac.in/~aarora.

Sainyam Galhotra is a graduate student at UMass Amherst.
His research interests include graph analysis, data mining
and integration. He is the recipient of the “Best Paper
Award” at FSE 2017 and the “Most Reproducible Award”
at SIGMOD 2018. He is the first recipient of the “Krithi
Ramamritham Scholarship” at UMass for contribution to
research in databases. He has published in top data mining,
database and machine learning conferences. Further infor-
mation available at https://people.cs.umass.edu/~sainyam.

Sayan Ranu is an assistant professor in the Computer
Science department at IIT Delhi. His research interests
include graph mining, spatio-temporal data analytics, and
bioinformatics. He was a recipient of the Best Paper Award
at WISE 2016 and the “Most Reproducible Paper” award
at SIGMOD 2018. Sayan regularly serves in the program
committees of conferences and journals including KDD,
ICDE, WWW, ICDM, TKDE, VLDB Journal. Further
information available at http://www.cse.iitd.ac.in/~sayan/.
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Figure 3: (a) Summarizing the spectrum of Influence Maximization (IM) techniques based on their strengths. (b) The decision
tree for choosing the most appropriate IM algorithm.

5.1 Tutorials given by Authors
The authors possess adequate experience of delivering tu-
torials at reputed venues as indicated below:
∙ Akhil Arora, Sainyam Galhotra, Sayan Ranu, Shourya

Roy: “Influence Maximization Revisited”, COMAD 2018.
∙ Sayan Ranu and Ambuj Singh: “Indexing and mining

topological patterns for drug discovery”, in EDBT 2012.
∙ Sayan Ranu and Ambuj Singh: “Topological Indexing

and Mining of Chemical Compounds”, in BCB 2011.

5.2 Previous Edition of this Tutorial
An overview of the state-of-the-art IM techniques was pre-
sented at ACM CoDS-COMAD 2018. The current proposal
for EDBT 2019 would include the following extensions:
∙ We will build upon our benchmarking framework to

present detailed insights about the state-of-the-art IM
algorithms in real-world scenarios. We will unravel several
myths and ambiguities that plague the current maze of
IM techniques.

∙ We will discuss in detail about the open-challenges that
remain in the field of influence maximization and provide
concrete pointers to important research questions in order
to facilitate streamlined advancement of the field.
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ABSTRACT
Contrast set mining identifies patterns that can best distinguish
between two groups of data. While many machine learning mod-
els share the same goal, contrast set mining focuses on data un-
derstanding and interpretability. Most existing work in contrast
set mining focuses on categorical data. In this work, we pro-
pose an algorithm that discovers contrast patterns on mixed data
(datasets that contain both categorical and continuous attributes).
Our algorithm is able to discover multivariate interactions using a
supervised adaptive binning strategy. The binning strategy iden-
tifies meaningful bin boundaries in continuous attributes based
on their relationships with other attributes. This in turn allows
us to form better and more meaningful contrast patterns than
traditional techniques that use global, pre-binning approaches.
We propose various pruning strategies to reduce the search space,
and show the utility of our algorithm on simulated data, several
datasets from the UCI repository, as well as real manufacturing
data.
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1 INTRODUCTION
The work presented in this paper was motivated by a desire to
reliably detect factors resulting in failure at final test during the
semiconductor packaging and test process and is the outcome
of a multi-year research grant funded by Intel, Corporation to
develop a solution that can be applied to their manufacturing
facilities. As the industry moves to more complex packages that
involve complex process flows, the amount of data collected dur-
ing the processing increases, and the signals being detected (as
related to cause of test failures) become more diluted. At the
same time, the cost of missing these signals increases, and hence
there is a growing need to develop machine learning algorithms
that can quickly detect the potential cause of part failures and
deliver timely feedback to the engineers so that adjustments in
the manufacturing line can be made to avoid generating scrap.
Note that packaging can contribute up to 50% of the cost to manu-
facture a CPU, hence any scrap avoidance is highly desirable. As
an example, during the baking stage of the manufacturing line,
if the ovens are run at a higher temperature than usual, resulting
in low yield, a timely notice could minimize potential loss. The
behavior of manufacturing data is often predictable; however, at
times there exist anomalies such as low yield for a batch. To find
potential causes of this low yield, one could create a classification
model comparing good chips and bad chips. Apart from a few

© 2019 Copyright held by the owner/author(s). Published in Proceedings of the
22nd International Conference on Extending Database Technology (EDBT), March
26-29, 2019, ISBN 78-3-89318-081-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

models such as decision trees, most models are not interpretable
to the user and hence non-actionable. Even though models like
decision trees can be used to find explainable patterns, usually
there is a single global model built for the whole dataset using
a greedy strategy. To find all patterns, the user would need to
build all possible trees which can take exponential time. There-
fore, while decision trees are good for classification, they are
not suitable if the goal is to detect patterns in the dataset. The
matter becomes more complicated when we want to capture mul-
tivariate relationships between attributes (e.g. XOR data), which
require more computational time.

The analysis of semiconductor manufacturing data is non-
trivial because the numbers of attributes and instances are large,
and the engineer needs considerable amount of time for analysis.
Our intent is to learn the patterns ("contrast sets") that distin-
guish two groups, e.g. a normal group and an anomalous group,
automatically, without external knowledge. We note that the
main goal here is data understanding and exploration, rather
than prediction.

Pattern mining algorithms are often used during the initial
stages of the data mining process to understand relationships
among features, or in a decision making stage. A major concern
is displaying results that misconstrue relationships between at-
tributes or giving incorrect insights to make decisions. For exam-
ple, due to the large number of relationships between attributes
to be considered, there is a high probability of discovering un-
interesting or potentially spurious patterns. A large amount of
existing work in pattern mining has focused on reducing the
number of such uninteresting patterns, which is also one of the
goals in this paper. Another concern relating to pattern mining
is the time and space complexity. This can usually be reduced
by either building a more compact representation of the data
or pruning the search space. In this paper, we try to reduce the
search space by pruning uninteresting regions.

Contrast set mining is a set of algorithms under the pattern
mining paradigm to find patterns for which the supports differ
significantly among groups. It is closely related to, and can be
directly compared [21] to subgroup discovery and emerging pat-
tern mining. There has been a lot of work in the area of contrast
set mining [4, 14, 15, 26, 29]; however, there remain some issues
that need to be addressed. First, in the manufacturing of semi-
conductors, many attributes of interest are continuous. Most of
the existing work in contrast set mining, emerging patterns and
subgroup discovery focus on improving the efficiency of the al-
gorithms to find categorical contrasts, i.e. by reducing the search
space and the number of database scans. Continuous attributes
are typically handled by either computing some statistics (such
as mean) that meaningfully differ among groups, or by using a
binning technique as a preprocessing step and then treating the
attribute as a categorical one. The latter can potentially provide
more information since it identifies local patterns as ranges of val-
ues in the continuous attributes that can be actionable. Therefore,
in this work we focus on binning-based approaches. A software
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suite Cortana has many state of the art subgroup discovery algo-
rithms developed. It also has an implementation of an adaptive
discretization method that we compare to in the experimental
section. This approach, however, is a greedy approach and may
miss (local) multivariate interactions between continuous fea-
tures which we often find in semiconductor manufacturing data.
As will be seen later, the patterns found using these algorithms
seem to be redundant and cumbersome to interpret.

Binning or discretization is a fundamental and well-studied
topic in data mining. Garcia et al. [10] published a detailed survey
on discretization techniques, as well as a tool (KEEL) that con-
tains implementations of 30 popular discretization algorithms.
We applied these discretization algorithms extensively on various
datasets, but we were not able to find an algorithm that satisfies
all our requirements. Specifically, for our application (or applica-
tions containing continuous attributes in general), the discretizer
has to be able to handlemultivariate data, be adaptive (local
bins with respect to a subset of attributes), and dynamic (tightly
coupled algorithmwith the end goal of finding the most meaning-
ful contrast patterns). In addition, the algorithm needs to detect
not only global correlations, but (local) multivariate interactions
between features. Unfortunately, existing algorithms, including
those implemented in Cortana, typically miss one or more of our
requirements.

Another important aspect of the proposed algorithm is to show
the user the most meaningful contrasts. The authors in [13, 27]
have defined patterns that will most likely be interesting to a
user. More specifically, a meaningful contrast is a pattern that
is not redundant, is productive and independently productive.
We define what each term means in the context of contrast pat-
tern mining and extend it to cases where the patterns have only
continuous, or have mixed features.

Our contributions are summarized as follows:

(1) We propose an algorithm, SDAD-CS (Supervised Dynamic
and Adaptive Discretization for Contrast Sets), to find
contrast patterns for datasets containing continuous (and
categorical) attributes.

(2) Our binning technique is supervised, dynamic, and adap-
tive, and therefore finds better quality and meaningful
bins as compared to the state of the art.

(3) The binning technique detects multivariate interactions
and hence higher order contrasts can be detected.

(4) We introduce several pruning strategies to reduce the
search space, which also results in finding more meaning-
ful contrast patterns.

(5) We use statistical measures to find non-redundant, pro-
ductive and independently productive contrast patterns.

2 RELATEDWORK
A number of work on contrast set mining have been proposed
[4, 14, 15, 26, 29]. In their pioneering work [4], the authors pro-
posed an algorithm, STUCCO (Searching and Testing for Un-
derstandable Consistent COntrasts), that finds contrast sets in
groups. STUCCO employs efficient search for contrast sets based
on another rule mining algorithm, Max-Miner [5]. To assess the
meaningfulness of the difference in support values across groups,
the authors use a chi-square test on the null hypothesis that the
support value is independent of group membership. In another
work [26], the authors observe that existing commercial rule-
finding system, Magnum Opus [25], can successfully perform the
contrast-set mining task. The authors conclude that contrast-set

mining is a special case of the more general rule discovery task.
The techniques discussed above are only applicable to categori-
cal data. A good survey on contrast sets, emerging patterns and
subgroup discovery algorithms is provided in [21]. The authors
also discuss how the interest measures (such as difference in
support and WRACC) are compatible, i.e. the interest can be used
interchangeably between communities.

Techniques derived from decision tree learning can be used;
however, the authors in [16, 18, 23] explain some limitations of
decision-tree-based method for our application. A number of
work have been proposed to find subgroups in numerical do-
mains. The authors in [20, 23] discretize numerical data into bins
to find subgroups. The algorithm is implemented in an open
source tool Cortana. Such techniques typically use an initial dis-
cretization method and then merge spaces based on an interest
measure. We have compared against this approach in the experi-
mental section. An interesting algorithm described in [11] also
discretizes continuous attributes into bins for the problem of
subgroup discovery. The algorithm uses optimistic estimates and
horizontal pruning to prune the search space. This technique
heavily relies on pruning based on the top-k subgroups, since
the interest measure can be updated as soon as the algorithm
reaches k subgroups. Finding all initial split points (exhaustive
search in [11]) is expensive but if the initial partitions are not
exhaustive, e.g. frequency or entropy based, the algorithm may
miss interesting patterns that occur lower down the tree due to
multivariate interactions. The current trend of recent algorithms
tend to use sampling and user feedback to improve efficiency and
quality of rules [6–8, 17]. This is an interesting direction; how-
ever, our goal is to develop an accurate and efficient discretizer
in order to find contrast patterns. These algorithms can certainly
be used in conjunction with our algorithm.

Quantitative association rule mining is well-studied and could
potentially be used for contrast mining. Srikant proposed a dis-
cretization technique that partitions the range of the continu-
ous attribute into n equal-frequency partitions, and assigns the
partitions to consecutive integers [22]. If the supports for any
consecutive partitions fall below the minsup threshold, they are
merged. The problem, however, is setting the initial number of
partitions n and handling multivariate interactions. If n is too
small, it results in large partitions and potential information loss
since elements in the same partition are indistinguishable. On the
other hand, if n is too large, the algorithm becomes computation-
ally expensive. In [2], the authors find extraordinary behavior
by partitioning the antecedent of the rule into bins and finding
the statistics of the consequent. The algorithm cannot handle
multivariate interactions between continuous attributes. The al-
gorithm described in [24] is a bottom-up merging algorithm. It
merges contiguous parts of a feature based on the improvement
of an interest measure. We also use a bottom-up approach to
merge spaces; however, as will be shown later, our algorithm
can handle multivariate interactions between continuous fea-
tures and does not need initial small bins. MVD [3] proposed
by Bay is able to detect multivariate interactions for continuous
attributes. This algorithm is also a bottom-up approach which
merges contiguous spaces if they are not statistically different.

3 PRELIMINARIES
LetDB be a dataset withm rows R = {r1, r2, ... , rm } and n attributes
A = {a1, a2, ... , an }. An attribute can be either categorical or
continuous. A categorical attribute can have multiple values, i.e.

445



Finding Meaningful Contrast Patterns for Quantitative Data EDBT 2019, March 26-29, 2019, Lisbon, Portugal

for a categorical attribute ai having l unique values, domain(ai )
= {vi1, ...,vil }. For continuous attributes, its values consist of real
numbers i.e. domain(ai ) = IR. An item in DB is either a value
in a categorical attribute, ai = vix where vix ∈ domain(ai ), or
range in a continuous attribute, ai ∈ [vl ,vr ] where vl ≤ vr , vl ∈IR
and vl ∈IR. Using the above definitions, we note that items in a
continuous attribute can have overlapping ranges. An itemset c
is a combination of items in DB. Apart from having n attributes,
DB has an extra attribute that contains the group information
for each row (instance). Let G = {g1, g2, ... , gk } be a set of groups.
Each row belongs to exactly one group and multiple rows can
be a part of a single group. If |дk | is the number of instances in
group k and countk (c) is the number of rows that contain itemset
c in group k then support suppk (c) is:

suppk (c) =
countk (c)
|дk |

(1)

Bay [4] formally defines contrast set mining as follows. An
itemset is a contrast between 2 groups i and j if the support
difference between the 2 groups is large and significant. The
support difference is large if

suppi (c) − suppj (c) > δ (2)
and significant if

χ2i j (c) < α (3)
where α and δ are user-defined parameters.

Contrasts should be non-redundant. In the context of frequent
itemset mining, an itemset c is redundant if it contains a proper
subset d that has the same support as i where i is an itemset
of d [27]. An example given in [27] explains that any superset
of itemset female, pregnant is unlikely to be interesting since
female subsumes pregnant, i.e. these itemsets are functionally
dependent.

An itemset c is said to be productive if for every partition d,
where d ⊂ c , supp(c) > supp(d) ∗ supp(c\d). Since the dataset is
usually a sample of the population, statistical test such as fisher’s
exact test and chi-squared tests are performed on each partition of
an itemset to check for significance of the product. Although this
makes the algorithms computationally more expensive, it is an
important step to determine productivity and finding meaningful
patterns.

Another requirement is that a pattern should be independently
productive. To be independently productive, an itemset should
not be explained by any of its supersets apart from being pro-
ductive and not redundant. Statistical tests are also performed at
this step, usually as a postprocessing step.

An optimistic estimate (oe) of an itemset is the maximum
possible value of an interest measure in any of the itemsets
specializations[12]. If X’ is the specialization of X and Int(X’)
is the calculated interest measure of X’ then

Int(X ′) ≤ oe(X ) (4)
optimistic estimates are used to prune the search space by calcu-
lating the upper bound of the children nodes of each explored
node in the search tree.

Top-k pattern mining algorithms display the best ’k’ patterns
to the user based on some user defined interest measure. The
advantage is two-fold. First, it removes the need for the user to
enter a minimum threshold for the interest measure. For example,
support-based pruning is the first stage of the Apriori algorithm
[1] for association rule mining. Determining the best minimum

support (minsup) is non-trivial, if minsup is too high or too low,
it may find too few or too many patterns, respectively. The other
advantage is that it helps prune the search space even if the inter-
est measure is not monotonically decreasing based on optimistic
estimates.

We use the following strategies to reduce the search space.
An itemset is pruned if (1) it does not have support over δ in
any group (minimum deviation size pruning); (2) its expected
occurrence is less than 5, since statistical tests are not significant
at that level; and (3) If the optimistic estimate of the χ squared
value for the itemset’s children is less than the current threshold.
Also, to reduce the number of false positives, the value of α is
adjusted according to Bonferroni’s adjustment as explained in
[4].

4 QUANTITATIVE CONTRAST SETS
4.1 Methodology

Figure 1: Search Tree for Mixed Data

To find combination of attributes (itemsets to be explored), any
search algorithm such as breadth first search or depth first search
can be used. Depth first search is not the preferred choice of
search algorithm since it reduces the amount of pruning possible.
More specifically, it may try to combine attributes which other
algorithms may have found to be "non-combinable" early on.
For example. if the support of a subset of an itemset is below
the threshold, depth first search will not prune it. Breadth first
search, on the other hand, can maximize pruning. However, the
storage overhead at each level may be high. We use a search
strategy [28] shown in Figure 1 since it can maximize pruning,
and it requires less storage overhead than breadth first search.
The figure shows how itemsets are combined, and the number on
each node indicates the order in which it is explored. If an itemset
contains only categorical attributes, calculating the support for
each group is straightforward. When a combination containing
at least one continuous attribute is encountered in the tree, our
proposed algorithm, SDAD-CS, is called.

To explore contrast patterns for mixed (or exclusively con-
tinuous) itemsets, such as in nodes 4 to 12 in Figure 1, we pro-
pose SDAD-CS (Supervised Dynamic and Adaptive Discretization
for Contrast Sets), a quantitative contrast-set mining algorithm.
Given an itemset c containing 0 or more categorical items, and 1
or more continuous attributes ca = {a1 ... an } where n > 0, SDAD-
CS finds itemsets that are contrasts between the groups. The
contrasts found should also have the interest measure (such as
difference in support) greater than the current minimum. Each
contrast pattern returned should contain items from all the at-
tributes (categorical and continuous) specified by the calling
function.

446



EDBT 2019, March 26-29, 2019, Lisbon, Portugal Rohan Khade, Jessica Lin, and Nital Patel

The core idea behind SDAD-CS is to first divide the space
(range) of a continuous attribute in a top-down fashion, calculate
the interest measures and determine whether to stop searching
or to explore further. After that, it merges similar contiguous
spaces in a bottom-up fashion and refines the space.

Let input group DB be all the rows and columns of the dataset
containing the groups of interest. Let c and ca be the categorical
itemset and continuous attributes to be explored, respectively.
The pseudocode for SDAD-CS is shown in Algorithm 1. The α
and δ are user input parameters (α is adjusted during execution).
Though not shown specifically in the algorithm, α and δ are
used each time there is a check for significance and largeness,
respectively. The parent measure, which is initially set to 0, stores
the parent’s interest measure (such as difference in support). Min
support is set to the current minimum support in the current
list of top-k contrasts. If the list does not have k contrasts, min
support is set to δ . Starting with the top-down part, partition(ca)
(Line 4 of the Algorithm) divides each continuous attribute at
the median or mean (we use median) into spaces. For example, a
continuous attribute with a range 0 to 100 with median 35 will
be divided into [0-35] and (35-100]. Next, f ind_combs(p) (Line 5)
finds combinations of spaces between continuous attributes. For
example, if there are two continuous attributes, dividing each by
its median creates four rectangles (spaces) on a scatter plot. Each
space together with the categorical itemset creates a candidate
itemset. If cont is the number of continuous attributes, then the
number of spaces is 2cont . These spaces define our initial bin
boundaries.

The algorithm iterates over each space created. It checks if
the space can be pruned (Line 7). This is performed by either
checking a lookup table or by performing some calculation and
saving the information in a lookup table, as will be described
later. We use a hash map with the itemset as the key. More space-
efficient data structures such as a hierarchical hash map can be
used if space is an issue. Our pruning strategies are explained in
detail in a later section; however, at this point it suffices to note
that a space is pruned if it is found in the lookup table.

The next step is to calculate the support of the itemset in each
group in the current space r (Line 10). SDAD-CS then calculates
the interest measure – in our case the difference in support (and
Surprising Factor) (Line 11). The algorithm then needs to make
a decision whether to explore the current space further. This is
determined by calculating the optimistic estimates for the child
space. If the current database contains n groups, the optimistic
estimate is calculated as follows.

Let r be the current space being explored, ccar be the itemset
found at space r and countk (ccar ) be the number of instances of
group k in space r. If |д1 |, |д2 | ... |дn | are the number of instances
in group 1, 2 ... n respectively, then,

supp1(ccar ) =
count1(ccar )
|д1 |

(5)

is the support of itemset cca in space r in group 1. Similar
definition follows for the support of the same itemset in group n.

Let level be the current level in the recursive tree of SDAD-CS,
|ca | be the number of continuous attributes, then

max_instances_child =
|DB |

2level+1 ∗ |ca |
(6)

indicates the maximum number of instances in the child spaces
created by a recursive call of SDAD-CS. This comes from the
fact that the continuous space is split at the median and hence

distributes the data points among all child spaces equally. It
should be noted that the assumption is that the data is real-
valued, and each reading is unique. Some care has to be taken if
the number of unique values is far less than the number of data
points.

The maximum support for itemset ccar in group 1 in any of
the child spaces is

max_supp_д1 =min(max_instances_child
|д1 |

, supp1(ccar )) (7)

The first part of equation 7 calculates the maximum support
possible in a child space for group 1. We note here that the
median is calculated based on all the given instances and the
groups can be imbalanced.We see that dividing the space may not
reduce the supports proportionally in all groups. If the number of
possible instances in the child space is greater than the number
of instances in group 1, then the first value inside the ’max’
function is greater than 1. This is not possible and is taken care of
in the second part of the equation. Also, support is monotonically
decreasing as the space reduces, and hence if the support of the
current space is less than the maximum possible support of
the child space, the maximum support of the child space is the
current support. A similar argument can be made for the other
groups.

We can calculate minimum support by following Eq. 6-8:

other_instances_д1 = |DB | − count1(ccar ) (8)

other_instances_д1 is the number of instances of the other
groups apart from g1 in the current space r.

Let

min_instances_д1 =max_instances_child −other_instances_д1
(9)

which will be negative if the majority of elements are not g1.

min_supp_д1 =max(0, min_instances_д1
|д1| ) (10)

Finally, the optimistic estimate for the child space is given by

oe(ccar ) =max(∀i∀j, i , j,max_supp_дi −min_supp_дj) (11)

i,j = 1..n
If the optimistic estimate calculated is greater than the mini-

mum support, the child spaces are recursively explored (Lines
12-13). If a better contrast pattern is found in the child space, it
is added to the current list of contrast patterns (Lines 14-15), else
if the current contrast pattern is large and significant, then it is
either added to the current list of contrasts D or Dtemp (Lines
16-21). The current itemset is added to D if the interest measure
is greater than its parents. However, if it is not, the algorithm
waits until all the spaces are explored and adds it if at least the
interest measure in one space is greater than that of its parent
(Lines 22-23).

After finding contrast spaces, the algorithm merges similar
and contiguous spaces to get more general and comprehensible
contrasts in a bottom up fashion (Lines 26-30). To merge parti-
tions, the spaces are sorted in increasing order of size. We observe
that, SDAD-CS finds fewer and more meaningful itemsets since
there is more opportunity of merging smaller itemsets. If we plot
the continuous attributes on a scatter plot, the spaces created by
two continuous attributes is a rectangle and the size is the area
of the rectangle; by plotting 3 continuous attributes the space
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Algorithm 1: Algorithm SDAD-CS
Input: DB with group attribute, categorical items c in

itemset, continuous attributes ca, δ , α , min support,
parent measure pm

Output: Set of contrast patterns
1 begin
2 D ← List o f itemsets that are contrasts (Initially set to

empty )
3 Dtemp ← List o f itemsets that may be contrasts

(Initially set to empty )
4 p = partition(ca) %partition each continuous

attribute at median

5 r = f ind_combs(p) % f ind all combinations

o f ranдes f ound by p

6 for each space in r do
7 if can_prune(ccar ) then
8 Add itemset to pruned list
9 continue

10 Calculate s(ccar ) for each group
11 Calculate int(ccar ) user defined interest measure

(such as difference in support) between each group
12 if oe(ccar ) >min support then
13 Dchild = SDAD_CS(DBr , ca, δ , α , min support,

int(ccar ))
14 if Dchild not empty and then
15 Append(D,Dchild )
16 else
17 if ccar large and significant then
18 if ccar greater than pm then
19 Append (D,ccar )
20 else
21 Append (Dtemp ,ccar )

22 if len(D)>0 then
23 append(D,Dtemp )
24 else
25 return []
26 if level==1 then
27 FIS = SORT(All spaces from smallest to largest)

while No space left to combine in FIS do
28 Check 2 contiguous spaces if combination is

possible if Comb possible then
29 Combine itemsets; update contrast set

30 Return D

is a cuboid and the size is the volume of the cuboid. In general,
hyper-planes create hyper-cubes and the size is n-volume.

Lines 28-29 loop through the spaces and try to merge contigu-
ous and similar ones. Again, similarity is tested using a chi square
test with αr and the resulting contrast is still large and significant.
If the itemsets are merged, the support, PR (to be defined later),
hyper volume and bin boundaries are updated accordingly. More
specialized itemsets are deleted and the new itemset is inserted
in the appropriate sorted place.

4.2 Interest Measures
The default interest measure we use in the quantitative analysis
is the difference in support; however, we find that looking at
the homogeneity of a space while searching can help us find
interesting patterns. We define an interest measure, purity ratio
(PR), which describes how homogeneous the current region is
with respect to the group. In general, any interest measure, such
as entropy, can also be used here depending on the problem
definition. Our data is highly imbalanced and working with just
supports of the group eradicates this issue. For purity ratio (PR), a
value closer to 1 indicates that the current space contains mostly
data from the same group. Suppose i and j are the groups we
are contrasting, c is the itemset with discretized quantitative
attributes, sic is the support of group i in the space of itemset c ,
we define PR as:

PR(c) = 1 −
min(sic , sjc )
max(sic , sjc )

(12)

One limitation with purity ratio is that it does not take the size
of the itemset involved into consideration. For example, consider
two itemsets: c1 with supports of 0.02 and 0.04 in groups i and j
respectively and c2 with supports 0.30 and 0.60. Both have equal
purity ratio. However, we notice that c2 should be considered
more interesting since it covers more instances. On the other
hand, difference in support has another issue. Suppose we find
two itemsets: c1 with supports of 0.9 and 0.8 in groups i and j
respectively and c2 with supports 0.20 and 0.10, and we notice
that both have similar support difference. However, c2 (for our
application) is more interesting, i.e. given the contrast c2 the
likelihood c2 to be in group i is double that of j but there is
almost a equal likelihood for c1 to be from either of the groups.
To overcome this, we define SurPRising Measure:

SurprisinдMeasure(c) = PR(c) ∗ Di f f (c) (13)
By multiplying difference in support (Diff) in each group to

purity (PR) it takes the size of the contrast into consideration
while giving equal weights to both groups.

The optimistic estimate for Surprising Measure is the same as
Equation 11, since in the best case, PR will always be 1 in any
partition (PR = 1 if there is only one instance in a partition).

4.3 Pruning
For itemsets containing only categorical attributes, we use the
same pruning methods as in [4], i.e. minimum deviation size, ex-
pected value and chi-square bounds. This can be directly applied
to itemsets containing both continuous and categorical or only
continuous items once the bins are formed. Apart from the above
technique, we try to prune redundant contrasts. An itemset is
redundant if the support of the itemset is equal to the support
of one of its subsets. The rationale behind this can be explained
using an example. Consider an itemset { f emale & preдnant}. Fe-
male subsumes pregnant i.e. the support of { f emale & preдnant}
is equal to support of {preдnant}. Any contrast that is a superset
of { f emale & preдnant} is likely redundant.

If an itemset is redundant, the support difference will be the
same as its ancestors. Not expanding this itemset will reduce the
number of redundant contrasts and search space. We note that
the itemset should be redundant in all groups. In many real world
datasets, there might be missing values, or incorrectly entered
values. In addition, highly correlated features also tend to have
many redundant contrasts. Hence, we loosen the requirement of
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Figure 2: (Left) Vertical lines: all splits before merging. (Right) Final result after merging.

total subsumation and test whether the difference is statistically
the same.

The datasets tested upon are samples of the population, and
hence to make decisions for the population, statistical tests are
needed. To check if two itemsets have statistically the same dif-
ferences in support in the population, we use the central limit
theorem. We choose this because we can assume that the differ-
ence in support for multiple samples of the population tend to
follow a normal distribution. Extending the definition of central
limit theorem to difference in support, it states that “Given no
other samples, the best approximation of the mean of the differ-
ence in support for the population is the difference in support in
the current sample."

Let α be the significance level, |дx | and |дy | be the sizes of
groups x and y, respectively, di f fcurr be the current difference
in the groups, di f fsubset be the difference of the subset, and
suppx (c) and suppy (c) be the supports of itemset c in group x
and y, respectively. For each subset, we calculate the bounds of
the difference di f fbound . Let

a =
suppx (c) ∗ (1 − suppx (c))

|дx | (14)

and,

b =
suppy (c) ∗ (1 − suppy (c))

|дy | (15)

di f fbound = di f fsubset ± α ∗
√
a + b (16)

If di f fcurr is within the range of di f fbound , the difference
support for the current itemset is statistically the same as its sub-
set and hence may not be interesting and is pruned. Itemsets that
are supersets of the current itemset will also not be meaningful.

Another case for redundancy for contrast patterns would be if
there is a contrast found with support = 0 in a group but greater
than δ in the other, then adding another item to the itemset
may result in a redundant itemset. Extending this to itemsets
containing continuous items, and looking at our definition of
PR, we notice that when PR = 1 in a space, only one group
is present in that space. Adding another item to the itemset
would result in redundant contrasts. For example, consider a
dataset containing attributes height and current country with
groups toddler and adult. Consider we find a contrast height ∈
]60,75] (inches) has support(adult)=0.8 and support(toddler)=0.
Now adding current country to height may also result in a large
and significant contrast, but it is clearly redundant between these
groups.

A contrast pattern ’c’ is productive if for every subset ’a’ and
’c\a’,

di f fc > suppx (a) ∗ suppx (c \ a) − suppy (a) ∗ suppy (c \ a) (17)

if |g_x| > |g_y|.
If di f fc is less than the product on the right-hand side of the

equation for even one of the subsets, the contrast is clearly not
productive. However, if it is greater, a statistical test is needed
to confirm if it is indeed productive. We use chi-square test to
check productivity. It should be noted that this formula is related
to leverage in association rule mining which checks statistical
dependence between variables.

At the end of the mining process, a check is performed to
see if the contrasts are independently productive. Independently
productive itemsets are meaningful, independent of their children
or ancestor itemsets. For example, consider a dataset with two
groups of days when a hurricane "develops" and "not develops,"
and a user wants to study the differences in the groups. There
are a few necessary conditions for a hurricane to develop, e.g.
temperature of water > 80 degrees Fahrenheit, depth of water >
200 feet and low wind shear. Considering these 3 features, the
number of contrasts which will be found is 7. However, the only
contrasts that the user might be interested in are the ones with
all 3 conditions in it. Independently productive patterns provides
the users with a compact set of patterns which are likely to be
meaningful.

To check whether an itemset is independently productive, a
check is performed on each superset of the itemset present in
the final list. For example, consider itemset {A & B} and itemset
{A} in the list of contrasts found. Let r(A) be the indices of rows
that item A is present, r(B) be the indices of rows that item B is
present and r(A ∩ B) be the indices of rows that item A and item
B are present. Now if itemset {A} is independently productive
then rows r(A) - r(A ∩ B) should also be a contrast, otherwise the
contrast is found only because of itemset {B}. To check whether
an itemset is a contrast, a chi-square test is performed to check
significance difference in the groups. We note that an itemset
may have multiple supersets and the check is performed only
on supersets present in the final list. It is easy to see why this is
the case by simple observation. If the superset is not a contrast,
then it cannot be the case that the other features present in the
superset caused the current itemset to be a contrast.
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(a) (b)

(c) (d)

Figure 3: (a) Simulated Dataset 1 (b) Simulated Dataset 2 (c) Simulated Dataset 3 (d) Simulated Dataset 4

4.4 Example
In Figure 2 we show an example of discretizing an itemset c =
{X }, where X is a continuous attribute. Let G be the group at-
tribute with value “A" and “B". The figures shows the histograms
of X , and the different shades of gray denote the two groups “A"
and “B". The darker shade denotes G = “A”. Suppose 2% of all
records belong in group “A", and the rest belong in group “B".
X is first divided into two spaces at the medianm, and SDAD-
CS notices that PR in the left space is 1 since there are no in-
stances of {X < m,Y = “A”}. This is a pure space and does
not need to be split further. In the right space, however, the
PR is 1 − (48/98)/(2/2) = 0.51 and the optimistic estimate is
1− 23/98 = 0.76. The algorithm continues dividing the space and
the new PR becomes 1 − (23/98)/(2/2) = 0.76. All the partitions
are shown in Figure 2(Left). Spaces are thenmerged from smallest
to largest. The final partition after merging contiguous regions
is in Figure 2(Right).

5 EXPERIMENTAL EVALUATION
SDAD-CS is compared with 3 other popular algorithms, MVD,
Fayyad’s entropy based method [9], and Subgroup Discovery
interval binning [20] implemented in the Cortana software suite.

Experimental Setup: For all experiments, initial α = 0.05 and
δ = 0.1 . The search tree was stunted to have a maximum of 5
levels. For the simulated dataset, we use Surprising Factor as our
interest measure since it results in the best contrasts qualitatively.
For the quantitative analysis, we compare all the algorithms
with SDAD-CS NP (No Pruning) . This was to level the playing
field since many redundant and non-productive contrasts have
a high interest measure and are pruned out by our algorithm.
We use mean difference in support as the interest measure since
the other algorithms are not developed to optimize Surprising
Factor or Purity and hence would not be a fair comparison. These
experiments however show the utility of our algorithm compared
to the state of the art. We also discuss the scale and effect of non
meaningful patterns found by not using our pruning methods.

We compare our algorithm to MVD [3] with initial α = 0.05
and δ = 0.01 of the size of the dataset. For MVD, the datasets
were initially discretized to have 100 instances per small bin as in

[3]. For Fayyad’s discretizer, the Group attribute is treated as the
Class. For subgroup discovery using Cortana, we use theWRACC
measure (equivalent to finding support difference in groups [21])
with a minimum value of 0.01 with beam search and use the
’intervals’ option for continuous attributes. The other settings
for Cortana include keeping the target as nominal, search width
100, maximum time to infinity, maximum subgroups to k (100 in
experiments), minimum coverage to 2 and maximum coverage
to the entire dataset. Although Cortana is suite of algorithms,
these settings seem to be the fairest comparison to our algorithm,
and from here on we will refer to these settings as ’Cortana’. For
Cortana we ran the algorithms twice, once for each subgroup, and
then used all the subgroups found as the contrast set. The first
part of this section qualitatively analyzes some of the contrasts
found, and later we quantitatively compare the algorithms. Please
visit https://zenodo.org/badge/latestdoi/8891484 to access the
application version.

5.1 Simulated Dataset 1
As a litmus test, we first conduct experiments on 4 simulated
datasets, to check the validity of the bins found. The first simu-
lated data consist of 2 attributes as shown in Figure 3a. The bold
line indicate the bins found by SDAD-CS and the dotted lines are
the bins found by MVD.

The only split point SDAD-CS finds is with Attribute 1. Since
PR = 1 for both contrasts we cannot do "better" by adding another
attribute hence we prune these spaces i.e SDAD-CS will not find
a contrast between Attribute 1 and Attribute 2. Although we
see that there is some interaction (correlation) between the 2
attributes, which is detected by MVD, the goal here is to find a
boundary that separates the groups and there is no interest in the
underlying relationships in this case. MVD misses this splitting
point. The entropy based method and Cortana finds the same
contrast as SDAD-CS, however Cortana also finds a bin outlined
by the red box which seems meaningless.

5.2 Simulated Dataset 2
This experiment shows the algorithm’s ability to find meaningful
contrast patterns in multivariate data. This dataset consists of
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two multivariate Gaussians in the shape of an “X” as shown in
Figure 3b. Each Gaussian has a group attribute associated with it
indicated by the markers.

The bin boundaries found by SDAD-CS are indicated by the
rectangles in Figure 3b. We note that there is no rule found when
we run SDAD-CS on each attribute individually. The contrasts
found byMVD are similar to our algorithm. However, the entropy
based method does not find any bins for this dataset. Cortana
does not find the best bins which are shown by the red dotted
boxes.

5.3 Simulated Dataset 3
In this experiment, we generated two variables uniformly dis-
tributed in the range 0 to 1. The only relationship in this dataset
is that Attribute 1 in range 0 to 0.5 belongs to Group 2 and the
rest Group 1. SDAD-CS finds contrasts at only level 1; however,
Cortana finds meaningless contrasts at higher levels, shown in
the red box. MVD finds similar contrasts as SDAD-CS.

5.4 Simulated Dataset 4
In Simulated dataset 4 we see interactions between attributes at
level 2 of the search tree. We notice that during the search stage,
there will be contrasts in the range 0 to 0.25 and 0.75 to 1 for
Attribute 1 and 0 to 0.5 and 0.75 to 1 for Attribute 2. However,
when the attributes are combined, the lower level contrasts are
not independently productive and hence pruned by SDAD-CS.
SDAD-CS finds a total of 6 contrasts. On the other hand, Cortana
misses the top right contrasts and finds somemeaningless regions
shown in the middle of the figure.

5.5 Adult Dataset
5.5.1 Analyzing Bin Boundaries for Numeric Features. In this

section, the differences in the contrasts found by the 5 algorithms
on the Adult census dataset from the UCI Machine Learning
repository [19] are shown. This experiment is a comparison be-
tween the ’Doctorate’ and ’Bachelor’ groups. We focus on Age
and hours per week worked attributes since they highlight the
differences between the algorithms.

Some of the quantitative contrasts found are shown in Table
1. Figure 4 shows the group support and the PR in each equi-
frequency bin for Age and hours-per-week. The labels on the
X-axis denote the bin boundary used and the Y-axis denotes the
group support.

Looking at the contrasts found by SDAD-CS, we observe
strong contrasts in the ranges 19–26 and 47–90 of the age at-
tribute when we use PR as the interest measure to optimize.
Looking at Figure 4a, we notice that, in the range 27–45, the
supports for both groups are similar and hence it has a low PR.
However, in the other ranges, there is clearly a dominant group.
Similarly, in the range 50–100 for the hours-per-week attribute
shown in Figure 4b, we see the majority belonging to the Doctor-
ate group. The Bachelor group usually work less than 40 hours
per week. The fifth contrast pattern discretizes {age, hours-per-
week} which produces a better contrast (higher purity) than the
contrasts found in the lower-order ones. This suggests that there
is a multivariate relationship between these 2 attributes. We
also notice the bin boundaries of {age, hours-per-week} change
as compared to when they are discretized independently. This
contrast shows that a global discretization may not work.

(a)

(b)

Figure 4: (a) Histogram comparing Age supports and pu-
rity ratio (b) Histogram comparing Hours per week sup-
ports and purity ratio

Cortana and SDAD-CS with support difference does not detect
very good split points qualitatively. For example, in the range 19–
26 in the age attribute we find only the group Bachelors. However,
they find bigger bin boundaries. By looking at Figure 4a we notice
the difference in supports and purity between ages 27 and 45 is
small, however since the overall support in that space is much
higher, the 2 algorithms find this as a large contrast. This is not
surprising since the goal is to maximize the interest measure. A
similar argument can be made for hours per week attribute. The
contrasts found by Cortana when age and hours per week are
combined are not productive according to the definition earlier. If
we compare contrast 6 of Cortana and SDAD-CSwith PR, Cortana
finds a purer space. However, we also notice that in the range
19–26 of the age attribute, the support for the Doctorate group
is close to 0, so PR is almost 1 for this contrast. Thus, we can
prune this space for higher order combinations. An example of a
contrast found without pruning this space is 19 ≤ Age ≤ 25 and 1
≤ hours-per-week ≤ 40, which has support of 0 for the Doctorate
group, and support of 0.10 for the Bachelors group. If this space
is not pruned, SDAD would have found a purer contrast than
Cortana, however, this clearly is a redundant space.

Fayyad’s entropy discretizer and MVD detects level 1 interac-
tions and finds strong contrasts, but fails to find any interaction
between the attributes when combined. For the Doctorate group
MVD forms a bin for Ages 48–59, which seems reasonable, how-
ever from 60–90 even though support difference is low, the purity
(homogeneity) in favor of the Doctorate group is similar. Looking
at the bar graph in Figure 4a, at around age 40, the support for
both groups are similar, and as the age increases, we notice a
higher support for the Doctorate group. MVD is not able to find
the interaction between age and Hours worked

5.5.2 Analyzing top Patterns found. We now take a look at the
top patterns found by Cortana (similar ones found by SDAD-CS
without pruning). The setting for Cortana are as explained earlier;
however, the depth of the tree was set as 2 for this discussion.
The top 5 contrasts are shown in Table 3 (Cortana also displays
contrasts such as sex = Male and occupation = Pro f specialty
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Table 1: Contrast Sets for Adult Dataset

S.No Contrast Set Supp (Doc.) Supp (Bach.)
Contrasts Using SDAD-CS with PR

1 18 < Aдe <= 26 0 0.16
2 47 < Aдe <= 90 0.48 0.22
3 1 < hour_per_week <= 40 0.45 0.60
4 50 < hour_per_week <= 99 0.28 0.14
5 49 < Aдe <= 69 and 50 < hour_per_week <= 99 0.13 0.03
6 25 < Aдe <= 39 and 1 < hour_per_week <= 39 0.11 0.26

Contrasts Using SDAD-CS with Support Difference
1 18 < Aдe <= 39 0.26 0.57
2 38 < Aдe <= 90 0.76 0.46
3 1 < hour_per_week <= 48 0.55 0.73
4 40 < hour_per_week <= 99 0.55 0.40

Contrasts Using Subgroup Discovery with Cortana
1 39 < Aдe <= 80.0 0.74 0.43
2 −in f < Aдe <= 39 0.26 0.57
3 6 < hour_per_week <= 49 0.53 0.72
4 49 < hour_per_week < in f 0.45 0.28
5 32 < Aдe <= 69 and 49 < hour_per_week < in f 0.41 0.19
6 −in f < Aдe <= 43 and 6 < hour_per_week <= 49 0.20 0.50

Contrasts Using Fayyad Entropy Binning
1 18 < Aдe <= 26 0 0.16
2 26 < Aдe <= 32 0.08 0.19
3 46 < Aдe <= 90 0.24 0.51
4 0 < hour_per_week <= 55 0.91 0.78

Contrasts Using MVD
1 18 < Aдe <= 24 0 0.13
2 47 < Aдe <= 58 0.32 0.15
3 39 < hour_per_week <= 40 0.30 0.43
4 50 < hour_per_week <= 99 0.28 0.14

Table 2: Datasets

Dataset Groups No. of instance per
group

No. of Features/ Contin-
uous Features

Adult Bachelors/Doctorate 8025/594 13/5
Spambase Spam/No Spam 1813/2788 57/57
Breast Cancer Benign/Malignant 458/241 10/10
Mammography Severe/Not Severe 445/516 5/5
Transfusion Donated/Not Donated 570/178 4/4
Shuttle Rad Flow/High 45586/8903 9/9
Credit Card No/Yes 23363/6635 24/23
Census Income Below 50K/Above 50K 187141/12382 39/11
Ionosphere g/b 225/126 34/34
covtype Spruce-Fir/Lodgepole Pine 211840/283301 54/10

which is clearly the same as contrast number 4 in the table and is
not considered here). We notice that the top 5 contrasts has one
item in common occupation = Pro f specialty . The question
arises if all the contrast are meaningful.

Itemsets i, ii and iii in Table 3 are singular itemsets required
for calculation of the expected support for the top 5 itemsets
shown as a, b and c in table. Looking at Table 3, we see itemsets
1, 4 and 5 are not meaningful since the difference in support is
not statistically different from the expected difference in support.
Itemset 2 is clearly redundant and functionally dependent to
itemset 3. Hence, of the top 5 contrasts found by Cortana, only
contrast 3 would be displayed by SDAD-CS. It should be noted

that these itemsets are seeds to higher order itemsets (with 3 and
more items) which further exacerbates the problem. Later on we
discuss the pervasiveness of this in all the datasets we encounter.

5.6 Quantitative Analysis
In this section, we compare the mean difference in support. We
compare the algorithms based on difference of support since it
is shown to be compatible with WRACC [21] (they are directly
proportional). It should be noted that SDAD-CS finds significantly
better contrasts with respect to Surprising Factor, however, it
would not be a fair comparison since Cortana is not optimized
for this interest measure.
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Table 3: Top Contrast Sets for Adult Dataset with Cortana

S.No Contrast Set Supp (Doc.) Supp (Bach.)
Top 5 Contrasts found by Cortana

1 occupation = Pro f specialty and 28 <= Aдe < 80 0.74 0.21
2 occupation = Pro f specialty and 19302 <= f nlwдt < 606111 0.76 0.28
3 occupation = Pro f specialty 0.76 0.28
4 occupation = Pro f specialty and sex = Male 0.61 0.17
5 occupation = Pro f specialty and class = > 50K 0.55 0.11

Required Itemsets with 1 item
i 28 <= Aдe < 80 0.98 0.8
ii sex = Male 0.81 0.69
iii class = > 50K 0.73 0.41

Expected Supports for itemsets
a occupation = Pro f specialty and 28 <= Aдe < 80 0.75 0.22
b occupation = Pro f specialty and sex = Male 0.61 0.19
c occupation = Pro f specialty and class = > 50K 0.55 0.11

Each algorithm finds different number of contrasts. To have
a meaningful comparison, we only compare the top k contrasts
where k is decided by the algorithm that finds the least number
of contrasts or 100, whichever is smaller. The itemsets are sorted
on the interest measure which is used to compare the algorithms
in the experiment i.e. the itemsets are sorted in decreasing order
on difference. The datasets are from the UCI repository and are
shown in Table 2.

The ∗ and - in Table 4 indicate that the distributions are not
significantly different from SDAD-CS according to the Wilcoxon
Mann Whitney test, and that the experiment was not able to
be completed, respectively. The results indicate that on aver-
age, SDAD-CS NP finds the best results followed by Cortana.
However, many of the contrast found are redundant when ana-
lyzed qualitatively. For example, in the Shuttle dataset, SDAD-CS
seems to find very bad contrasts compared to Cortana. Further
analysis of the patterns show that Attr_1 in (-inf, 54.0] has prob-
abilities 0.91 and 0.01 in the 2 groups respectively and Attr_9
in (-inf, 2.0] has probabilities 0.77 and 0. Cortana then finds an-
other pattern Attr_1 in (-inf, 54.0] and Attr_9 in (-inf, 62.0] with
probabilities 0.91 and 0.01 which is clearly not improving the
pattern found in the previous level. However, these strong pat-
terns contribute towards increasing the average interest measure.
Comparing the results manually indicate the SDAD-CS finds all
the non-redundant contrasts. Moreover, if we restrict the algo-
rithms to find only patterns at the first level, SDAD-CS finds
stronger patterns. Additional experiments were conducted to
validate our algorithm on semiconductor manufacturing data
and initial results indicate SDAD-CS found the most interesting
patterns qualitatively.

We compare the time cost for MVD, SDAD-CS and SDAD-
CS NP in Table 5. It should be noted that the time observed
is only representative and may not be an accurate comparison.
The implementation standards were kept similar, however, it
is possible that the algorithms could be made faster by some
implementation optimizations. In general SDAD-CS explores
more spaces but that may not correlate to time taken. This may be
because at each space, MVD is more computationally expensive.
SDAD-CS with pruning is the fastest in general.

For each dataset we show the number of Redundant, Unpro-
ductive and Independently Productive Contrasts in the top 100
patterns without applying the filter. The results are shown in

Table 6. As shown in the table the majority of the contrasts may
not be interesting to the user.

6 CASE STUDY: ANALYSIS OF
MANUFACTURING DATA

The previous section showed the ability of our algorithm to find
better contrast patterns than other state of the art algorithms,
however, through this section, we show the utility of contrast
pattern mining in a real world scenario. We demonstrate that
contrast patterns have the capability to find insightful informa-
tion in a dataset from a high-volume semiconductor packaging
factory. Note that the data has been encoded and normalized for
intellectual property reasons. The patterns shown here can be
easily interpreted by engineers which may not be possible with
other machine learning paradigms. There are many examples
where we can apply our algorithm in the semiconductor man-
ufacturing domain, such as, analyzing the difference between
machines or finding contrasts between a high yield and a low
yield batch.

A large amount of information is collected on a per package
level as material moves through the packaging and test process.
The segment of processing in the manufacture of CPUs which
is of interest to us, lies between the wafer test and final test
operations. Wafer test is the test performed on an entire wafer
before it gets singulated and packaged. Final test occurs after the
packaging process, and is used to ensure the product is going to
perform as designed under specified operating conditions. The
data collected are tied to the part identifier and can consist of
variables that have continuous, as well as, discrete values. One
has parameters that correspond to contextual information re-
lated to, for example, the sequence of equipment that processed
the part, including relevant subentities (e.g. test heads, pick and
place heads, oven lanes, bond heads etc.), material information,
along with parametric measurement information from sensors
on process tools (such as temperatures and pressures), along with
parametric measurements from test, as well as, and categorical
data related to device performance. The data volumes are quite
substantial when one looks at the data collected across the en-
tire manufacturing flow and to show viability of the methods
presented in this paper, a limited data set was normalized and
used for testing. The intent of the activity is to use the methods
to quickly identify manufacturing conditions that are resulting
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Table 4: Quantitative Analysis of Contrast Sets

Dataset SDAD-CS
NP

MVD Entropy Cortana-
Interval

Mean Support Difference
Adult 0.26 0.16 0.18 0.27∗

Spambase 0.60 0.42 0.36 0.60∗

Breast 0.86 0.46 0.51 0.87∗
Mammography 0.54 0.36 0.52∗ 0.43
Transfusion 0.34 0.12 0.29 0.35∗

Shuttle 0.87 0.24 0.45 0.92∗

Credit Card 0.26 0.17 - 0.19
Census Income 0.48 0.32 - 0.49∗

Ionosphere 0.76 0.43 0.35 0.75∗
Covtype 0.49 0.41 - 0.45

Table 5: Time taken by SDAD-CS and MVD

Dataset Time in Seconds Number of Partitions Evaluated
SDAD-CS MVD SDAD-CS NP SDAD-CS MVD SDAD-CS NP

Adult 11.11 22.92 13.28 742 171 1024
Spambase 899.97 1901.88 1909.02 121604 592 283714
Breast 0.59 3.38 1.98 72 30 376
Mammography 0.71 0.88 0.86 188 19 248
Transfusion 0.42 0.69 0.40 86 23 84
Shuttle 45.80 80.82 105.95 302 382 1018
Credit Card 441.82 873.88 639.22 12126 3260 17202
Census Income 1490.34 2256.63 4127.39 594 2566 19516
Ionosphere 960.54 983.21 1169.56 117199 122854 7371104

Table 6: Number of Meaningful Contrasts

Dataset Count (Meaningful Contrasts) Count (Meaningless Contrasts)
Adult 3 97
Spambase 12 88
Breast Cancer 5 95
Mammography 11 37
Transfusion 7 23
Shuttle 9 91
Credit Card 1 99
Census Income 8 92
Ionosphere 10 90
Covtype 3 97

in failures at final test to prevent generation of additional scrap
material. Note that these failures are typically sporadic and the
upstream signals often get diluted with increasing process com-
plexity.

For this experiment we took a sample of the entire popula-
tion and compared it with parts that failed a particular test. The
data consists of 148 attributes including around 30 continuous at-
tributes. A quick look at the contrasts indicate some information
of the failing parts. These insights allow engineers to tweak or
change things that are a probable cause of the failure for the test.
In Table 7 we see categorical contrasts which suggest that most of
the problems occur on a particular placement tool and pick head
on a specific chip attach module (CAM) and most of the issues
usually occur on the back row of the tray holding the parts. Both
the location of the impacted parts in the trays and the specific
placement tool point to a potential issue with the rear lane of the

module. We also see in Table 7 that the time the impacted parts
are spending above the solder liquidus temperature in the reflow
oven is unusually higher. Another issue noted in 7 indicates that
the average peak reflow temperature for the chips that failed the
test seem to be higher as well. These results indicate an issue
with the temperature control in the rear lane of the reflow oven
on that specific module. With this information, feedback and
changes along the manufacturing line can be made in a timely
manner, including blocking any additional processing on that
specific equipment/location until the issue has been addressed.
Other algorithms however give a large number of contrasts and
are sometimes hard to interpret and act upon.

In any practical scenario the scaling of the algorithm is very
important. Apart from introducing some pruning mechanisms
in the previous sections in a real world scenario the data usually
does not fit in main memory. A usual way to handle this situation
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Table 7: Contrast Sets for Manufacturing data

Contrast Set Supp. Diff Supp. (Population) Supp. (Sample)
CAM entity-SCE 0.27 0.28 0.55
Placement tool-JVF 0.27 0.28 0.55
10.5106<=CAM peak temp std<=10.6534 0.18 0.45 0.62
67.1875<=Die temp above std<=67.2486 0.17 0.13 0.3
CAM row location -Rear 0.16 0.34 0.5
92.0373<=CAM time above liquidus<=92.8009 0.16 0.04 0.21
254.1609 <= CAM Peak temperature <= 256.8191 0.14 0.24 0.37

is by parallelizing the algorithm by using multiple machines (in
a cluster). It should be noticed that SDAD-CS is run on combina-
tions of features (itemsets) and can be run parallel of each other.
Intermittent results can be used to prune the next stages. There
are multiple strategies proposed in the literature of association
rule mining (or search tree algorithms) to find candidate itemsets
in parallel. A simple strategy is find contrast patterns at each
level of the tree in parallel and then use those results to prune
the next level of the tree. There is some loss of pruning of the
search space across subtrees, but by using this strategy, we can
treat each problem at the computing nodes as an independent
problem, and use the pruning strategies discussed earlier within
subtrees. The times taken to complete the experiments are 18,
106 and 225 minutes for samples containing 100000, 500000 and
1000000 instances respectively with 120 features.

7 CONCLUSION
In this paper we propose a method to find contrast sets in mixed
data. Using a binning strategy that automatically determines
the size and number of bins for the continuous attributes, we
find meaningful contrasts even with the presence of multivari-
ate interactions. Our algorithm is capable of finding meaningful
contrasts which can potentially be more interesting to users by
finding productive, independently productive and non-redundant
patterns. We discuss strategies to reduce the search space. The
experimental results show the utility of our algorithm in real
datasets and how it finds better contrasts compared to exist-
ing techniques. The algorithm introduced in this work provides
insights for analyzing data that fits in the main memory. Manu-
facturing data, as well as data in many application domains are
very large. We discussed a way to scale up the algorithm in a
parallel environment. This can be potentially used to provide
more accurate and real time patterns to engineers.
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ABSTRACT
Assessing the interestingness of data analysis actions has been

the subject of extensive previous work, and a multitude of inter-

estingness measures have been devised, each capturing a differ-

ent facet of the broad concept. While such measures are a core

component in many analysis platforms (e.g., for ranking associa-

tion rules, recommending visualizations, and query formulation),

choosing the most adequate measure for a specific analysis task

or an application domain is known to be a difficult task.

In this work we focus on the choice of interestingness mea-

sures particularly for Interactive Data Analysis (IDA), where

users examine datasets by performing sessions of analysis ac-

tions. Our goal is to determine the most suitable interestingness

measure that adequately captures the user’s current interest at
each step of an interactive analysis session.

We propose a novel solution that is based on the mining of IDA

session logs. First, we perform an offline analysis of the logs, and

identify unique characteristics of interestingness in IDA sessions.

We then define a classification problem and build a predictive

model that can select the best measure for a given a state of a user

session. Our experimental evaluation, performed over real-life

session logs, demonstrates the sensibility and adequacy of our

approach.

1 INTRODUCTION
Assessing the potential interestingness of the output generated by
a data analysis action has attracted considerable attention both

in research and in the industry, and was proven highly useful

for tasks such as association rules ranking [18], choosing data

visualizations [31], data summaries [6], query formulation [27],

etc.

Consequently, a multitude of interestingness measures has

been suggested in previous work, each measure attempting to

capture a different aspect of the broad “interestingness” concept.

For example, diversity measures favor data patterns in which ele-

ments differ significantly from one another, peculiarity measures
favor data patterns that display anomalous behavior. Other mea-

sures capture conciseness, novelty, and so on. Consequently, an
important (and still open) question is how can one choose which in-
terestingness measure to employ? To tackle this exact question, sev-
eral comprehensive empirical evaluations have been conducted

(e.g. [12, 17, 18, 22, 29]). These excellent surveys conclude that

(1) there is no single measure that consistently outperforms the

rest and (2) the adequacy of specific measures depends heavily

on the task at hand and on the application domain.

Whereas most previous work examines the interestingness

of specific, singular analysis actions, our work focuses on the

interestingness notion within the entire process of Interactive
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Data Analysis (IDA). There is a growing understanding in the

industry and research communities that users analyze datasets

interactively by issuing a sequence of analysis actions of different
types (e.g., OLAP, visualizations, mining). Notable and ubiquitous

IDA tasks are data exploration, business intelligence (BI), and

fraud detection. Typically in IDA, users interact with a dataset by

executing a series of analysis actions, referred to as session. After
issuing an action (e.g. group-and-aggregate, filter, plot, cluster),

the user examines its results output (which we call display) then
decides if and which action to issue next.

Our goal is to predict, at each step of a user’s analysis
session, what is themost suitable interestingnessmeasure
that adequately captures the user’s current interest.

If successful, such a predictive model may be highly useful

in several analysis “meta” tasks, such as facilitating an evalua-

tion method for analysts’ effectiveness, improving existing (and

future) analysis recommender systems (e.g. [16, 25, 31]) and en-

hancing systems for automatic data exploration e.g. ([9, 24]).

To our knowledge, our work is the first to consider dynami-

cally changing interestingness in the context of IDA. Therefore,

Our first intent is to demonstrate that interestingness in IDA

has different characteristics than the ones assumed in previous

work, posing both challenges and opportunities. We identified

the following key characteristics, based on an in-depth analysis

of real-life session logs:

1. There is not onemeasure that holistically captures “what
is interesting” in IDA sessions. When using a single interest-

ingness measure, even if it is the most prevalent one, our experi-

mental evaluation shows that it is inadequate for more than two
thirds of all our examined cases. Also, many valuable, interesting

actions obtain high scores w.r.t. one measure, and low to medium

scores by others, hence, different measures need to be employed

in different cases.

2. Interestingness (and correspondingly, themeasure used
to capture it) changes dynamically even in the same user
session.We empirically show that within a single user session

the “most adequate” interestingness measure changes every 2.2

analysis actions on average.

3. Interestingness is contextual. Namely, the analysis context,

comprising of previous actions in the same session and their

result displays, is, to some extent, correlated with the interesting-

ness preferences of the user (and the measures capturing them).

The following example illustrates the dynamically changing

nature of the interestingness notion in a typical IDA scenario.

Example. Clarice is a cyber security analyst assigned to exam-

ine inbound network traffic data of a large organization, with the

goal of searching for back-door communication channels. She

loads the dataset to an IDA interface and performs a sequence

of actions, as illustrated in Figure 1 (the sequence of actions is

depicted on the upper part of the figure, and the bottom tables

depict the actions’ results) First, she performs a group-by on the

field “Protocol” in order to view the amount of traffic of each
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q1: Group by Protocol

q2: Filter by Protocol=‘HTTP’ 
&  7pm <Time <4am 

q3: Group by IP_dst

qa: Group by IP_src

qb: Group by Length

d0

d1

d2 d3

da

db

d0

Time IP_src IP_dst Protocol Length
13:00:37 10.1.31.15 8.8.4.4 DNS 76
13:00:41 10.1.31.15 74.25.22.7 TCP 62

... ... ... ... ...
23:56:41 10.2.22.8 8.8.8.8 DNS 72
23:56:41 10.2.22.8 5.8.63.3 SSL 277

d1

Protoco
l

Count
HTTP 492910
SSL 22479

... ...
SMB 96
NBNS 4

d2

Time IP_src IP_dst Protocol Length
19:00:00 10.2.26.3 5.8.63.6 HTTP 549.0
19:00:00 10.2.28.12 5.8.63.6 HTTP 350.0

... ... ... ... ...
03:57:42 10.2.23.13 5.8.63.6 HTTP 279.0
03:58:01 10.1.14.11 5.8.63.2 HTTP 471.0

d3

IP_dst Count
5.8.63.6 100371
5.8.63.2 50538

da

IP_src Count
10.2.22.5 1624
10.2.28.12 1528

... ...
10.1.15.2 1316
10.1.14.11 1422

db

Length Count
231 971
238 1966
... ...

723 124
472 631

Figure 1: An Example IDA Session

network protocol. She then returns to the previous display, and is-

sues a filter action in order to examine HTTP packets transmitted

after business hours (i.e.,between 7pm to 4am). Last, she performs

another group-by action on the attribute ’Destination IP’, in order

to obtain a summary of the uncommon packets (transmitted after

business hours) categorized by their destination IP address.

Since Clarice is an expert analyst, assume that all her actions

yield interesting result displays. However, each action is consid-
ered interesting according to different measures: For instance, her
first group-by action results in a display (as depicted in Figure 1)

that summarizes all traffic according to the network protocol.

If we use a diversity-based measure (such as Variance [15] or

Simpson [15]) to assess the interestingness of this display, it

would rank high - as the amount of packets greatly differs be-

tween the different protocols. However, if assessed by peculiarity
based measures (e.g. [19, 28]), which consider displays showing

anomalous/extreme patterns as more interesting, this display

may obtain a low interestingness score.

In contrast, the results display of the second (filter) action

contains rather unusual packets transmitted after business hours

(e.g., having a very small length or issued from IP addresses

that are uncommon in the dataset). Therefore, this display may

be ranked as highly interesting by peculiarity measures. How-

ever, it may yield lower scores from diversity measures (since

the attributes of the unusual HTTP packets are rather evenly

distributed).

Last, her third (group-by) action results in a compact summary

of the unusual HTTP packets, grouped by their destination IP

address. This display is considered interesting according to con-
ciseness based measures (e.g. [6]) that favor displays conveying a

small, human-readable number of rows that summarize a large

number of elements. Indeed, all unusual HTTP packets are out-

going merely two different destination addresses. However, this

display obtains a low score from diversity and peculiarity based

measures. ■

As illustrated in the example, although the expert analyst
makes actions resulting in interesting displays - each ac-
tion is supported (i.e., given a high score) by a different in-
terestingness measure, and obtains low to medium scores
by others.

However, attempting to predict the most adequate interesting-

ness measure at each point in an IDA session poses immediate

challenges and questions: (1) How can we derive the “ground

truth”? Manual labeling may be possible yet time-consuming and

costly. (2) Even the simple task of examining a single action and

determining which measure finds it more interesting than others

is quite difficult, since the different measures capture different

facets of interestingness and have different value ranges and

distributions.

To overcome these challenges we propose mining analysis

session-logs, containing previous analysis actions performed by

the same or other users. Given the current user’s state in a session,

we search the repository to find points in other sessions that are

similar to the user’s state. We analyze what were the relevant

measures for these previous sessions and use them to predict the

most adequate measure for the current user.

The key contributions of our work are as follows:

1. A simple yet generic datamodel for interestingness in
an IDA environment. Our model is compatible with different

types of interactive analysis platforms, from traditional SQL to

OLAP and modern web-based interfaces (such as Splunk and

Tableau). Our generic model supports a wide range of existing

interestingness measures and can be easily extended to support

user-defined measures as well.

2. A-posteriori, offline interestingness analysis. The ses-
sion logs do not provide any information about what parts of

the session were interesting and which measures adequately

capture it. We therefore devise methods for deriving the most

adequate measure at each point in a past session by analyzing

the interestingness of the next-action performed within the same

session. By using new techniques for computing relative interest-
ingness, we can properly compare the scores of this action (given

by different measures) and determine which one best captures

its interestingness.

3. Online Interestingness Prediction. Using the results of
the above offline analysis, we define a classification problem

and build a predictive model that can select the most adequate

measure for a current session-state, without knowing its contin-

uation. This model can be used for a dynamic, context-aware

selection of interestingness measures in an ongoing session, and
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Class Measure Definition Reference

Diversity Variance

∑m
j=1

(pj−q̄ )2

m−1
[15]

Diversity Simpson

∑m
j=1

pj
2

[15]

Dispersion Schutz 1 −

∑m
j=1

pj−q̄
2mq̄ [15]

Dispersion MacArthur 1 +
∑m
j=1

pj+q̄
2

loд2

pj+q̄
2
−

loд2m−
∑m
j=1

pj loд2pj
2

[15]

Peculiarity Outlier Score Function See [19] [19]

Peculiarity Deviation δKL ({p
′
j }|{pj }) [31]

Conciseness Compaction Gain
|O |
m [6]

Conciseness Log-Length 1 −
min (logm,c )

c Following [26]

Table 1: A Partial List of Interestingness Measures

when combined with analysis assistance tools, can aid users in

discovering interesting patterns in the data, compose meaningful

visualizations, and so on.

4. Experimental evaluation.We evaluated our framework

on real-life IDA session logs [1] acquired from over 50 experi-

enced analysts in the domain of cyber security. Our empirical

results show that our system can predict, with high accuracy, the

correct measure to be used at each point in a user session.

The paper is organized as follows. In Section 2 we describe our

data model for IDA interestingness and articulate the problem

of interestingness measure prediction. Section 3 describes our

framework, comprising the offline interestingness analysis an the

online predictivemodel. Our experiments are detailed in Section 4.

Last, we overview related work in Section 5, and conclude in

Section 6.

2 BACKGROUND & PROBLEM DEFINITION
We first present a simple yet generic formal model for the IDA

process, then describe the different notions of interestingness that

we use. Last, we define the problem of dynamic interestingness
measure selection.

2.1 IDA: Model and Definitions
An IDA session begins when a user loads a dataset, denoted D,

to an analysis UI (could be SQL, OLAP or a visualization-driven

interface such as Tableau). Then, the user executes a series of anal-
ysis actions (e.g. SQL queries or visualization actions) q1,q2, . . . ,

examining the obtained results after each one. The results-set of

action qt , executed at step t is called a display (representing the

results "screen") and denoted by dt . The preliminary display is

d0, representing the dataset before any action was performed.

IDA session works intuitively like website navigation - at each

point the user may invoke an action or backtrack to a previous

display and take an alternative navigation path.We thusmodel an

analysis session as an ordered labeled tree
1
, denoted S . The nodes

represent displays, and the edges outgoing from each node are

labeled by the executed action and lead to the resulting display

node.

We use St to denote the session after step t , namely the state
in which the user examines the results display dt , before deciding
whether to execute a next action qt+1 or conclude the analysis.

1
If the same display is generated twice (yet on different paths) it is represented by

two different nodes

Figure 1 illustrates an analysis session tree that corresponds to
our running example, in which a user interacts with a dataset

of network packets (ignore, for now, the dashed and gray parts).

The directed edges represent actions q1-q3, and the nodes d1-d3

represent their corresponding results displays. The root node, d0

represents the first display of the dataset before any action was

invoked.

Last, we assume throughout this work that past analysis ses-

sions are recorded in a session log. We denote by R a repository

of such recorded sessions.
2

2.2 Interestingness Notions for IDA
A typical interestingness measure, denoted i , takes as input an
action q and its results display d , and returns a real number

i (q,d ) ∈ R indicating how interesting are the results (d) of the
action q (higher score indicates a more interesting action).

3
For

brevity, when d is clear from context, we omit it and simply refer

to the interestingness of action q by i (q).
While a multitude of different interestingness measures exist

(See Section 5 for a discussion), w.l.o.g. we focus our attention

in this work to eight common measures from the literature that

correspond to four different facets of interestingness, following

the categorization in [12] and [15].

The formal definitions of the considered measures (along with

a corresponding reference) are provided in Table 1. Next, we

intuitively describe each measure, then provide several examples.

Diversity. Diversity measures, e.g. Simpson and Variance [15]
rank higher displays whose elements demonstrate notable dif-

ferences in values. The definitions of the example measures that

we use here are stated in Table 1. The notations are borrowed

from [15], assuming an aggregated results display:m is the num-

ber of groups,vj is an aggregated value for group j , pj =
vj∑m
k=1

vk
and q̄ = 1

m . Example below.

Dispersion. In contrast to diversity, dispersion measures e.g.

Schutz andMacArthur [15] favor displays consisting of relatively
similar elements.

4

2
Analysis sessions may either be recorded by the IDA platform, or, when it does

not provide such a service, reconstructed from standard query logs by methods

e.g. [32].

3
Some measures consider more information, such as a reference display or a model

of the user’s prior belief. While our framework can be naturally extended to support

such measures we omit them for the simplicity of presentation.

4
In some cases the inverse score of a diversity measure can be used to evaluate

dispersion, and vice versa.
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Class Measure (i) Interestingness Scores Relative Scores
i (q1) i (q3) i (qa ) i (qb ) i (q3) (RB) i (q3) (N)

Diversity Simpson 0.65 0.55 0.15 0.63 1 -0.07

Dispersion Schutz 0.28 0.83 0.91 0.52 1 1.37

Peculiarity Outlier Score Function 19.37 1.76 1.02 7.05 1 -0.74

Conciseness Compaction Grain 51176 75454 39819 25706 2 2.2

Table 2: Interestingness Scores

Peculiarity. A display is peculiar if it presents or contains

anomalous patterns. An example is aDeviation-basedmeasure [31]

that ranks a display higher if it demonstrates a difference from

some reference display (e.g. the root display d0); the pj notation
in the formal definition (Table 1) is the same as above, {pj } de-
notes the discrete distribution of pj values, and {p

′
j } denotes the

distribution of the aggregated values in the reference display.

δKL (A|B) is the Kullback-Leibler divergence distance of the two
distributions. Another peculiarity measure is the Outlier Score
Function [19] (OSF) that focuses on the peculiarity of a single ele-

ment (i.e, a single tuple, group, or cube cell) within the examined

display. The final peculiarity score is simply the maximum of the

elements’ individual scores (See [19] for full details).

Conciseness. Such measures consider the size of the display,
i.e. the number of elements it contains. Intuitively, displays that

convey thousands of rows are difficult to interpret, therefore are

considered less interesting. Log-Length scores a display propor-

tionally to the log of its size, bounded by a constant c .Compaction-
Gain (CG) compares the size of the particular display to the num-

ber of tuples in the original dataset (denoted O in the formula in

Table 1).

In Section 5 we discuss other types of interestingness mea-

sures e.g. surprisingness, actionability and how they can also be

incorporated in our framework.

As the reader can observe, each measure values different prop-

erties of the data and may rank a given display differently. The

following example illustrates the interestingness evaluation ac-

cording to the measure types presented above.

Example 2.1. Consider again the IDA session described in Fig-

ure 1, and the different interestingness measures described in

Table 1. Let us assess the interestingness evaluation of actions

q1 (Group by ’Protocol’) compared to q3 (Group by ’Destination

IP’). In Table 2, we report the interestingness scores of q1 and

q3 according to four different measures, one from each interest-

ingness type (we do not exemplify the calculation of each score,

for that we refer the reader to the original papers as depicted in

Table 1). Let us examine some of the scores:

1. Diversity, Dispersion: The results of q1 are considered more

interesting than of q3 as i (q1) = 0.65 and i (q3) = 0.55 (See

Table 1). This is due to the larger deviation in the groups’ size

in d1 than what appears in d3 which only contains two groups

that are rather even in size. In terms of Dispersion, in which

displays with less variations yield higher scores, q3 is indeed

more interesting than q1 (i (q1) = 0.28 and i (q3) = 0.83)

2. Conciseness: In terms of the Compactness Grain measure,

which considers the ratio between the number of tuples to the

number of elements (e.g. groups) that covers them, we can see

that i (q1) = 51, 176 while i (q3) = 75, 454. q3 obtains a higher

score than q1 as its results-display d3 covers a high number of

packets in merely two groups (IP addresses), while d1 covers all

packets with a larger number of groups, one for each network

protocol.

Interestingness Measure Prediction. Given a predefined set of

interestingness measures I, and a user session state St after

t steps, our goal is to predict which measure in I adequately

captures “what is interesting” at this point of the session. Our
main hypothesis in this work is that interestingness (and
therefore the adequacy of measures) is contextual, hence
correlated with previous actions taken by the user in the
same session.We illustrate this with our running example.

Example 2.2. Consider the Example Session in Figure 1, at

state S2, i.e. when the user examines Display d2, before invoking

the next action q3. Our goal, as stated above, is to predict which

measure from I (e.g., Diversity-based, Peculiarity, Conciseness,

etc.) best captures the interestingness at this moment. While this

seems like a challenging task, examining the previous actions in

the session provides some intuition regarding which measure is

preferable: In q2 the user filters all packets to focus on unusual
HTTP traffic occurring after business hours. As she examines a

long list of anomalous elements, it is likely that she is interested

in a more concise display that summarizes the data, rather than a

display that demonstrates another peculiar pattern or one with

high Dispersion.

Following this premise, we form a supervised multi-class clas-

sification problem that considers session-states as “samples” and

assign them a “label” corresponding to interestingness measures

in I. In other words, we will assemble a training set containing

labeled samples of the form ⟨St , i⟩ and build a predictive model

F (St ) ≈ i that best fits the training data.

To properly define this process, one needs to (1) develop means

to determine “what is interesting” in a current state of an IDA

session and which measure captures it best. (2) Once this is deter-

mined, develop a classification model for predicting what mea-

sure best captures the interestingness for the current session

state.

We address the two issues in the following section, where we

explicitly define the predictive task and model.

3 INTERESTINGNESS PREDICTION
FRAMEWORK

We next describe our solution for interestingness measure predic-

tion in IDA sessions. Before we describe our predictive model, we

provide (Section 3.1) a set of techniques for offline interestingness
analysis, in which we retrospectively derive what was the most

suitable measure i ∈ I for a session state St , using the next ac-
tion qt+1. Then we describe in Section 3.2 how these techniques

are used when constructing the training set and building the

predictive model.

3.1 Offline Interestingness Analysis
Theoretically speaking, there are several possible ways to exam-

ine a session state St and determine what is the most suitable

measure for it.
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First, one can perform manual labeling by using expert an-

alysts, familiar with interestingness measures, that can label a

session state St with the most suitable measure as they see it.

The problem with this approach is that it requires, first of all, a

great manual effort that is not easily transfered to other contexts

(e.g. IDA session logs performed on different datasets or for dif-

ferent purposes). Also, existing measures are often not intuitive

even to expert analysts. A second approach could be prompting

for user feedback at each session-state, gathering details about

the user’s intention, goals, and details regarding if and why the

current display is interesting (w.r.t. each facet captured by the

measures in I). But this method, like the previous one, requires

a considerable manual effort (this time by the users performing

the sessions).

In contrast to these approaches, we devise means for deriving

the adequate measure for a session state St solely by examining

the continuation of the session. Assume for a moment that our

repository only contains actions resulting in interesting displays.

Then our key assumption is that for a session state St , if the
next action in the same session qt+1 is interesting enough
(we explain how this is determined in the sequel), then we can
use it to derive what is the measure that best captures the
interestingness at St .

A simplistic implementation of the above assumption is to

simply choose, given a session state St , the measure i ∈ I that

produces the highest scorei (qt+1). However, since the measures

in I may produce scores of different value ranges and distribu-

tions, this method must be refined.

We therefore devise two interestingness comparison methods
that are largely impartial to such biases. In each comparison

method, we first compute, w.r.t. each measure i , the relative inter-
estingness score of an action q denoted i (q), which is comparable
to the relative scores i ′(q) obtained by other interestingness mea-

sures i ′ ∈ I. Once we have the unbiased, relative scores, we

can simply choose a measure yielding the maximal relative in-
terestingness as one that best captures the interestingness of an

action qt+1, hence is suitable for St . We call a measure dominant
w.r.t. action q, denoted i⋆(q), if it yields the maximal relative

interestingness, i.e. i⋆(q) = arдmaxi ∈I (i (q)).
Last, we note that in real-life analysts are imperfect, hence

IDA sessions may contain erroneous/redundant actions or simply

uninteresting ones. We will show in the sequel how our analysis

is used to eliminate such actions and minimize their negative

effect.

We start by describing the Reference-Based Comparisonmethod,

which is comprehensive but expensive to compute. To overcome

this, we then present an alternative method, the Normalized Com-

parison, which also reduces the score bias but requires a lower

computational cost.

Reference-Based Comparison. Our first method for unbiased

interestingness comparison, denoted Reference-Based compari-

son, examines the score of an action q as obtained by a particular

measure and compares it to the scores achieved when employ-

ing alternative actions. Hence, instead of comparing individual

scores of different measures for an action q, we first calculate
how “high” each measure ranks q compared to a reference set of

alternative action, denoted R (q) (in Section 4 we explain how we

generate R (q) in our prototype implementation). Then we can

simply derive that the measure i which ranks q the highest, is

the one that best captures its interestingness (in case there is a

Algorithm 1 Re f erenceBasedComparison(I, ⟨q,p,d⟩,R (q))

1: for q′ ∈ R (q) do
2: d ′ ← The results of action q’ on display p
3: for i ∈ I do
4: Compute the score i (q′,d ′)

5: for i ∈ I do
6: Compute the score i (q,d )
7: i (q) ← |{q′ ∈ R (q) | i (q′,d ′) ≤ i (q,d )}|

8: return arдmaxi ∈I (i (q))

tie, all measures that yield the highest relative interestingness

are returned).

The Reference-Based comparison is depicted in Algorithm 1. It

takes as input a set of measure I, a tuple ⟨q,p,d⟩ which includes

an action q together with its parent display p (i.e., the display on

which q was employed), and its results display d , and last, a set

of alternative actions, denoted R (q). It then works as follows.

First, we execute each action in the reference set R (q) (from
the same parent display p of action q) then calculate its inter-

estingness scores w.r.t. each measure in I (Lines 1-4). Next, we

calculate the raw scores for q w.r.t. each measure i ∈ I (Line 6),

then derive the relative interestingness score of q , denoted i (q), by
counting the number of actions in R (q) that obtained a lower in-

terestingness score than q (Line 7). Last, we return the dominant

measure(s) i⋆(q) that produced the highest relative interesting-

ness score (Line 8).

Example 3.1. We use the Reference-Based method to assess

which is the dominant interestingness measure for action q3 in

our example session (Figure 1). While we can see from Table 2

that d3 has high Conciseness score, it is also rather disperse.

However is it more disperse than concise, or vice versa?
Let R (q3) be the set of alternative actions {qa ,qb } (The dashed

edges and Grey displays in Figure 1). Their interestingness scores

w.r.t. the different measures appear in Table 2. The relative inter-

estingness scores for q3 appears in the middle section of Table 2.

For instance, in terms of Dispersion, since q3 has a higher score

than qb yet a lower score than qa its relative score is 1. How-

ever, in terms of Conciseness, since the score of q3 is higher than

both qa and qb , its relative interestingness (Conciseness) is 2.

Indeed, Conciseness yield the highest relative score for q3, hence

is chosen as the dominant measure i⋆(q3) that best captures the
interestingness of action q3.

While this method completely eliminates the score biases of

the different measures, note that it is rather expensive to compute

(we demonstrate this in Section 4) as it requires to execute, at

each comparison, all alternative actions in the reference set and

compute their interestingness scores. Consequently, we devise a

second, more efficient comparison method which significantly

reduces the score biases using statistical analysis.

Normalized Comparison. The second interestingness compar-

ison method, denoted Normalized Comparison, eliminates the

score bias due to differences in the range and value distributions,

by applying a two-staged normalization process to each measure:

(1) to tackle the differences in the measures’ value distributions

we apply a Box-Cox [5] power transformation that makes the val-

ues resemble a normal-distribution. (2) To tackle the differences

in the value ranges, we calculate the mean and standard deviation

of each measure’s (transformed) value distribution then employ

z-score standardization [30] so that each computed value now
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represents the number of standard deviations the original value

differs from the mean. The transformed and standardized score

of each action q is defined to be its relative interestingness score
i (q), and can now be compared to the relative scores produced

by other measures in I.

The Normalized Comparison, depicted in Algorithm 2, is di-

vided into two parts.

First, Stage (1) of the normalization process is applied, in a

preprocessing manner, to a sample of the score distribution of

each measure. The function PreProcess (Lines 1-8) takes as input

the set of measures I and a set QD of actions and their corre-

sponding result displays, i.e. pairs of the form ⟨q,d⟩ (such a set

can be extracted from the session repository R). It then calculates

the interestingness score w.r.t. each measure in I (Line 4) and

transforms its value using the Box-Cox method (Line 5). Last, the

mean and standard deviation of the transformed interestingness

scores of each measure are returned (Line 8).

Once the preprocessing is done, the Normalized Comparison

function (Lines 9-15) can be employed. It takes as input an action

q with its results display d , a set I of interestingness measures

and the mean and standard deviation of the transformed scores

of each measure, and computes the dominant measure i⋆(q) as
follows: first, we calculate the interestingness scores i (q,d ) w.r.t.
each measure in I and apply the Box-Cox transformation to

it (Lines 11-12). Then the mean and standard deviation are up-

dated (Note that Lines 11 to 13 can be skipped if theses values

were already computed in the preprocessing phase), and the rela-

tive score is calculated by applying the z-score standardization

(Line 14). Finally, we return the measure(s) that obtained the high-

est relative interestingness score i⋆(q), as in the Reference-Based

method.

Example 3.2. To illustrate the computation, we demonstrate

how the Normalized method can be used to assess the measure

i⋆(q3) which gives the highest relative score to action q3 in our

running example (depicted in Figure 1).

Assume we performed the preprocessing routine and calcu-

lated the scores of all other actions in the log, then performed

the transformation and standardization described above. The

normalized relative scores for action q3 are depicted in the right-

hand section of Table 2. Consistently with the previous example,

the highest normalized score for q3 is given by the Conciseness
measure, as its score deviates more than 2.2 standard deviation

from the mean conciseness scores.

Also, observe that similar scores of different measures can

obtain significantly different results after the standardization

process. For instance, the absolute scores of q3 obtained by the

Dispersion and Peculiarity measures are 0.74 and 0.71 (resp.),

however their standardized scores are very different (2.39,−0.2

resp.)

In Section 4we examine the correlation between the Reference-

Based and the Normalized methods and compare their execution

times. In what comes next, we describe how these methods are

used to construct the training set and the predictive model.

3.2 Online Interestingness Prediction
We developed a predictive kNN-based model for selecting the

most suitable measure at a particular session-state.

First we discuss what information is used to describe a ses-

sion state St , then how the training set is constructed and the

mechanism of the kNN-based classification model.

Algorithm 2 NormalizedComparison

1: function PreProcess(I,QD)
2: for i ∈ I do
3: for ⟨q,d⟩ ∈ QD do
4: Compute the score i (q,d )
5: ĩ (q,d ) ← BOX-COX(i (q,d ))

6: for i ∈ I do
7: Calculate µ̃i and σ̃i , the mean and SD of all ĩ (q,d ).

8: Return µ̃I , σ̃I , containing µ̃i , σ̃i∀i ∈ I

9: function NormalizedComparison(I, ⟨q,d⟩, µ̃I , σ̃I )
10: for i ∈ I do
11: Compute i (q,d )
12: ĩ (q,d ) ← BOX-COX(i (q,d ))
13: Update µ̃i and σ̃i
14: i (q) ← Z-SCORE(ĩ (q,d ), µ̃i , σ̃i )

15: return arдmaxi ∈I (i (q))

Describing Session States. Recall that a session state St , is the
subtree of S containing the first t actions and their result displays.

However, as older actions in the sessions may be of less impor-

tance to the classification model, we follow [25] and consider in

our predictive model only the n most recent actions and displays,

which we call the n-context of St , denoted ct . More formally, ct
is defined as the minimal subtree of S that covers the most recent

min(n, 2t + 1) elements (i.e., displays and actions) up to step t
(inclusive).

As an example, the 3-context at step t = 2 in our example

session in Figure 1 includes Displays d0 and d2 and the action q2.

In Section 4 we evaluate the predictive performance of the

model when using n-contexts of various sizes.

Training Set Construction. Building a training set for a given
session repository R and a set I of interestingness measures is

performed as follows:

(1) Extracting n-contexts from the session repository. For
each session state St in every session S in the repository we first

compute its n-context. As we assume that the sessions in R are

already represented as trees, deriving the n-context for a session

state St can be done by a DFS-like traversal: Starting from display

dt , we process the nodes (i.e., displays) in reverse to the order

of execution of their corresponding actions, considering only

actions executed before step t until the size of the induced subtree
(nodes+edges) reaches n, which is a configurable parameter in

our framework.

For each session state St we keep a pair ⟨ct ,qt+1⟩ compris-

ing its corresponding n-context and the consecutive action qt+1

which will be used to derive its label (i.e., the suitable measure

for that session state). For space efficiency, it is sufficient to store

for each n-context only pointers to the original actions in the log

rather than duplications. In Section 4 we explain how n-contexts

are extracted and stored in our implementation.

(2) Assigning labels to n-contexts. For each pair ⟨ct ,qt+1⟩, we

use either one of the two comparison methods described above

to find the dominant measure i⋆(qt+1). This measure is assigned

as a label to the n-context ct , representing the most suitable

measure for the corresponding session state St (recall that more

than one measure may be qualified).

(3) Omitting globally "non-interesting" samples. Naturally,
some of the actions in the session repository may be erroneous

or simply non-interesting. Consequently, we want to eliminate

461



from the training set samples whose consecutive action qt+1 is

not interesting enough w.r.t. any of the measures in I, hence can

not be used for deriving the right measure. This is done by using

a configurable threshold for the maximal relative interestingness

score of qt+1, denoted θI . If the relative interestingness obtained
by the dominant measure i⋆(qt+1) is lower than θI then we

discard the sample ⟨ct ,qt+1⟩ from the training set.

kNN-Based Classification. Once the training set containing

labeled n-contexts is constructed, a classification model can be

used, given n-context, to predict the dominant measure.

In principle, there are multiple techniques for performing su-

pervised classification, however many of them requires a numeric

vector representation for the samples (n-contexts in our case).

However, we are not aware of such numeric representation of

analysis sessions, yet numerous previous works [3, 11, 13, 25]

define a notion of distance/similarity for analysis sessions (or a

part thereof). For example the measure suggested in [25] uses

tree edit distance to compare two session trees, together with

two ground metrics that compare individual actions and displays.

Alternatively, in [3] the authors suggest a measure based on local

sequence alignment. We harness such a distance notion to form a

simple kNN classifier: Given an n-context ct , we search the train-

ing set for its k nearest-neighbors, then employ a majority-vote

and return the most common label among the nearest neighbors.

Last, it may be that some of the k nearest n-contexts may be too

distant from ct . To avoid the negative effect of such cases on the

model’s output, we use a distance threshold, denoted θδ , which
is used to enforce a maximal distance (i.e., a minimal degree of

similarity) between the kNN set and the given n-context. If the

nearest neighbors retrieved are not similar enough, the model

does not yield a prediction.

We intuitively explain this using our running example.

Example 3.3. Assume that our session repository R comprises

only the example session depicted in Figure 1. We first extract

n-contexts of e.g. size 3 from R: For each 1 ≤ t ≤ 3 we create the

3-context ct : c1 contains the single node d0, c2 contains d0,q1,d1

and c3 contains d0,q2,d2. Recall from the previous examples

that Compaction Gain measure (Conciseness) is the dominant

measure for action q3, therefore is used as a label for c3.

Assume we are given another user’s session on a different

network log, however with the following last action qu : “filter by
protocol=’SSL’ & 10pm < Time<3am” (which is intuitively similar

to q2 in our example session in Figure 1). After extracting the

n-context (containing qu , its results, and its parent display) from

the new session state, we predict what is the adequate measure

using the kNN model: If using k = 1, then the most similar n-

context in the repository is c3, hence Compaction Gain will be

return as prediction.

In Section 4 we explain howwe evaluated the predictive model

in various settings and compared its performance to several base-

line approaches.

4 EXPERIMENTAL EVALUATION
We applied our offline interestingness analysis methods as well

as the predictive model on an IDA session log containing real

life analysis actions. We begin by describing the session log and

our implementation choices, then describe our findings from

the offline analysis. Last we evaluate the accuracy of our predic-

tive model compared to other baselines, then test the effect on

performance induced by the model’s hyper parameters.

REACT-IDA: A repository of real-life IDA sessions. We used the

only publicly available (to our knowledge) collection of recorded

analysis sessions performed by real users on real-life datasets [1].

The sessions were collected as part of the experimental evalua-

tion of an existing IDA recommender system [25], developed by

some of the authors of this work (we discuss this system in more

details in Section 5). The repository contains sessions performed

by 56 network security analysts, recruited via dedicated forums,

security firms, etc. The participating analysts were asked to ex-

plore 4 different network-logs datasets using REACT-UI [23], a

dedicated, web-based analysis platform with an easy to use inter-

face supporting data filtering, grouping and aggregation. Each

dataset contains raw network logs that may reveal a distinct secu-

rity event, e.g. malware communication hidden in network traffic,

hacking activity inside a local network, an IP range/port scan,

etc. After completing an analysis sessions, REACT-UI prompts

the user to type a short summary of the findings. Sessions corre-

sponding to summaries that successfully reveal the underlying

security event are marked as successful. The repository contains

a total of 454 sessions comprising 2460 distinct analysis actions,

out of which 122 sessions (comprising 757 actions) are successful.

The REACT-IDA session database in [1] also contains the original

datasets used in the analysis, and the means for regenerating the

actions and inspect their result displays, so that the each recorded

session can be fully reconstructed.

4.1 Offline Analysis Evaluation
We next describe the application of our offline interestingness

analysis methods on the REACT-IDA sessions database, accom-

panied by selected findings.

Computing interestingness scores.We re-executed the recorded

actions in the REACT-IDA database and computed their interest-

ingness scores w.r.t. all measures presented in table 1. Next, to

form an unbiased set of measures I, i.e., that does not contain

dependent/highly correlated measures we computed the Pearson

Correlation Coefficient for every pair of measures. While the

average correlation score was 0.3 we saw that measures from

different types (e.g. Dispersion, Peculiarity, Conciseness) have
an average correlation of 0.071 compared to an average score of

0.543 obtained by measures of the same type. Consequently, we
experimented with 16 different configuration of I, containing

one measure from each type. .

Applying offline comparisons. We applied both compar-

ison methods to the REACT-IDA session database in order to

calculate the dominant interestingness measure i⋆(q) for each
action q. As for the Reference-Based Comparison, recall that it

compares the interestingness scores of an individual action to the

interestingness scores of alternative actions. We constructed the

reference action set as follows: For each action q with a parent

displayp we considered all actions in the databases from the same

type (e.g. group-by, filter), omitting actions that when executed

from display p result in displays comprising less than two rows.

As for the Normalized Comparison, we calculated the statistics

over all actions (and their results) in the REACT-IDA database by

applying the Box-Cox transformation and z-standardization to

their raw interestingness values as described in Section 3.1. Each

series of interestingness values (corresponding to a particular

measure) was first shifted by a constant in order to eliminate

negative scores (this is often required for power transformations).

The configurable power parameter λ, which is used as the ex-

ponent for the values to be transformed, was determined using
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maximum-likelihood estimation, as is standard for such transfor-

mations.

As an example, Figure 2 depicts the scores histograms of the

Outlier Score Function (Peculiarity) and the Compactness Grain

(Conciseness) measures, before and after normalization. The red

line in each figure represents the mean score, and the orange

line represents the median. While the non-normalized scores

are skewed towards zero, we can see that the normalized values

distribute much more evenly, resembling a normal distribution.
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Figure 2: Interestingness Scores Histograms

Understanding users’ interestingness preferences.
We studied the output of the interestingness comparison meth-

ods, namely the dominant measure w.r.t. each recorded action, in

order to empirically validate our first two hypotheses presented

in the introduction:

(1) Is there one measure/interestingness type that is sufficient
to capture “what is interesting” in IDA? If indeed so, then it is

sufficient to choose a-priori a single interestingness measure and

apply it to all IDA tasks. To answer this question we counted

how many actions in the REACT-IDA were labeled with the same

dominant measure.

Figure 3 depicts the proportion of actions labeled with mea-

sures from the same interestingness type (averaged over all set-

tings of I), when using both the Reference-Based and the Nor-

malized comparison methods.

We can see that in both comparison methods, the most com-

mon measure is dominant w.r.t. only 41% of the recorded actions,

and the proportions of the rest of the measures types are rather

evenly distributed. Due to ties, see that the sum of proportions is

slightly larger than 1, i.e. where more than one interestingness

measure was found dominant for the same action. Also, note

that there are differences in some of the classes’ size when a

different comparison method is used (mainly in the Peculiarity

and Conciseness classes). This is due to slight differences in the

comparison base for each method: The Reference-Based method

is affected by the parent display of the examined action (from

which it was executed), whereas the Normalized is affected by

the interestingness scores of other recorded actions, regardless

of their parent displays and context.

The above result indicates that there is no single interestingness
measure that can be used for all actions in the repository. However,
as users’ IDA sessions are performed on different datasets and for
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Figure 3: Interestingness Class Labeling Frequency

different purposes, one may still ask whether one interestingness
type is sufficient to capture interestingness within the same session?
If true, it may be sufficient to match a single interestingness mea-

sure with certain IDA tasks or datasets rather than dynamically

choose a measure for each state in a user session. We therefore

examined the relative interestingness scores of actions of the
same session. We found that on the course of a single session in
the REACT-IDA repository, the dominant measure is changed every
2.2 steps on average. This demonstrates that the interestingness

preferences of the user, as well as the measures capturing them,

are dynamically changing even within the same IDA session. In

Section 4.2 we empirically validate our third hypothesis arguing

that interestingness is contextual i.e., that one can successfully

predict the right measure for a given session state St based on

its corresponding n-context ct .
Correlation between the comparison methods.We stud-

ied how consistent is the output of the two comparison methods.

First, we found that 68% of all recorded actions obtained exactly

the same dominant measure as output, by both methods. We then

performed a Chi-Square test for independence between the out-

puts of the comparison methods on all actions: The methods were

found highly correlated with a negligible p-value < 10
−67

. The

latter result demonstrates the sensibility of our offline interesting-

ness analysis, and that the methods may be used interchangeably.

Execution times.
Applying the offline comparison methods includes three major

parts:

(1) Calculating interestingness scores. Recall that the raw inter-

estingness scores are precomputed for each measure in I. While

some measures are rather fast to compute (e.g. both Conciseness

measures), others (such as the Outlier Score Function) are much

more time consuming.

(2) Actions Execution. This part is relevant to the Reference-

Basedwhich compares the interestingness scores of a given action

to a set of alternative actions. Thus, each such reference action

needs to be executed on the same dataset (from the same parent

display) by the IDA platform.

(3) Computing relative interestingness scores: Both methods

calculate the relative interestingness score and return as output

the dominant measure(s), yielding the highest relative interest-

ingness.

Wemeasured the running times required to apply the Reference-

Based and the Normalized interestingness comparison methods,

w.r.t. each of these computation parts. For the Normalized Com-

parison, running times include the corresponding segment in the

preprocess routine for each action.

Table 3 depicts the average time required by the Reference-

Based and the Normalized comparison methods in order to select
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Component Time (Seconds)
Reference Based Normalized

Action Execution 2.218 –

Calc. Interstingness 4.84 0.106

Calc. Relative Scores 0.04 0.031

Total 7.2 0.138
Table 3: Offline Running Times

the dominant measure for a given action for each of the compu-

tation parts described above. First, observe that the Reference-

Based requires an overall of 7.2 seconds compared to the Nor-

malized which takes 0.138 seconds only. As for the computa-

tional parts, see that the Reference-Based requires a considerable

amount of time for executing the alternative actions (Part 2)

method (the average size of the reference actions set was 115)

which is unneeded for the Normalized method. Consequently,

the former requires computing all interestingness scores of the

alternative actions, therefore its running time w.r.t. Part 1 is sig-

nificantly longer than of the Normalized method. Part 3, in both

methods is negligible.

4.2 Predictive Model Evaluation
We next describe our predictive kNN based model. We then ex-

plain how we evaluated its performance in comparison with

several appropriate baselines.

Constructing the training set. Extracting n-contexts. We ex-

tractedn-contexts that belong to successful sessions from REACT-

IDA repository using the DFS base method described in Sec-

tion 3.2. We experimented with n-contexts of sizes 1 to 11 (we

explain below how the default size was chosen). For each session

state St , we stored the pair ⟨ct ,qt+1⟩ comprising its context and

the consecutive action.

Annotating n-contexts.We used the offline analysis results

as described above, to label each pair ⟨ct ,qt+1⟩ with its corre-

sponding dominant interestingness measure i⋆(qt+1). We then

discarded all samples in which the maximal relative interesting-

ness scores (obtained by i⋆(qt+1)) was smaller than the interest-

ingness threshold θI (as described in Section 3.2).

In case that identical n-contexts obtained different labels
5
we

unanimously labeled them by the most common label(s) associ-

ated with this n-context.

kNN Model implementation. As common for kNN based clas-

sification models, given a (non-labeled) n-context our model

searches the training set for the top-k most similar labeled n-

contexts, then selects the label by employing majority vote. To de-

termine the similarity between n-contexts, we used the distance

metric devised in [25] which was proven useful for IDA sessions.

The metric is based on tree edit-distance, i.e. the minimum-cost

sequence of edit operations (add, delete, and alter a node/edge) re-
quired to transform one n-context to the other. While a unit cost

is given to delete/add operations, the cost of an alter operation
(for a node/edge) is proportional to the similarity between the

data displays and analysis actions. The latter is determined by

two ground metrics for actions and displays: the first considers

differences in the actions’ syntax and the second measures the

differences in the content of the compared displays.

As for the model’s running times, we measured an average

time of 6.04 milliseconds required to output a single prediction.

5
This can happen when users perform an identical subsequence of actions yet

choose a different next action.

Parameter Value Range Default Configuration
Ref. Based Norm.

n-Context Size (n) [1, 11] 4 2

kNN Size (k) [1, 40] 1 1

Dist. Thres. (θδ ) [0, 0.5] 0.2 0.1

Int. Thres. (θI )
[0, 1] (RB)

[−2.5, 2.5] (N)

0.92 0.7

Table 4: Model Hyper-Parameters

We refrain from further discussing the computation costs and

the scalability of the model and refer the reader to [25] for an

in-depth performance evaluation of the nearest-neighbors search

w.r.t. their distance metric.

Evaluation Methodology. We formed multiple test sets using

the Leave-One-Out cross validation (LOOCV) method, i.e., in a

single prediction task we take one sample (n-context) out of the

training set to be used as a test set, then repeat the process for

each and every sample.

We then used the following evaluation metrics: (1) Accuracy,
which stands for the ratio between correctly predicted samples

(true positives) and the number of all samples. Then, as is standard

when evaluating multi-class classification models, we used the (2)
Macro-Averaged Precision and (3) Macro-Averaged Recallmeasures,

which takes the average of the precision (resp., recall) w.r.t. each
class (i.e., each interestingness measure).

6
We also computed the

(4)Macro-Averaged F1 which is the harmonic mean of (2) and (3).

Last, since in some cases the kNN model does not output a

prediction (recall from Section 3.2), we also measured the (5)
coverage rate, namely the proportion of samples for which our

model is able to produce a prediction.

Hyper-parameters tuning. Our model uses the following hyper-

parameters: (1) the size of n-contexts used when constructing the

training set to decide how many actions/displays are required to

represent each session state St . (2) The size of k , i.e. the number

of similar n-contexts used to perform a prediction. (3) n-contexts
distance threshold θδ , representing the maximal distance allowed

between each members of the kNN set and the given n-context.

(4) Interestingness Threshold θI , i.e. the minimal relative inter-

estingness score required for the sample to be considered as

interesting and not to be discarded. Recall that relative inter-

estingness is computed differently for each comparison method

therefore this parameter has two sets of scales: For the Reference-

Based method the threshold represents the minimal percentile
rank of the actions in the reference set surpassed by the score

of the given action (For example θI = 0.7 means that we are

interested in samples where the dominant measure ranks an ac-

tion higher than at least 70% of the actions in the reference set).

For the Normalized method, as the standardized scores largely

falls between −2.5 and 2.5 standard deviations, θI represents the
minimal number of standard deviations that the score should

(positively) deviate from the mean.

To choose an optimal parameters configuration, we used a

standard grid search consisting of more than 50K unique settings.

Table 4 depicts the minimal, maximal and default value for each

parameter, w.r.t. both interestingness comparison methods.

Since there is a tradeoff between the predictive performance

and the coverage-rate (we explain this in the sequel), in order to

choose an optimal configuration we calculated the skyline (also

6
In contrast, micro-averaged methods consider all true/false positives, regardless

of the class.
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Reference-Based Comparison Normalized Comparison

Accuracy Macro-Precision Macro-Recall Macro-F1 Accuracy Macro-Precision Macro-Recall Macro-F1

RANDOM 0.282 0.281 0.268 0.275 0.252 0.252 0.253 0.252

BestSM 0.397 0.397 0.250 0.306 0.329 0.329 0.250 0.284

I-SVM 0.632 0.636 0.482 0.549 0.655 0.674 0.617 0.643

I-kNN 0.730 0.646 0.569 0.605 0.763 0.730 0.664 0.694
Table 5: Interestingness Measure Prediction - Baseline Results
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Figure 4: Configurations Skyline

called the Pareto frontier) for every comparison method. This

resulted in a set of dominant configurations, w.r.t. the coverage
and the accuracy/F1 score

7
. Figure 4 depicts the skyline plot for

both comparison methods, between the coverage-rate (x-axis)

and the accuracy (y-axis).

We chose default configurations from the skyline, as depicted

in Table 4. Our default configurations yield accuracy scores of

0.730 and 0.763 (for the Reference-Based and Normalized meth-

ods, respectively), with coverage scores of 0.67 and 0.722 (resp.).

In principle, any other configuration on the skyline can be chosen

to ensure a different coverage-rate or predictive accuracy.

Baselines Comparison. We compared the performance of our

predictive model, denoted I-kNN, with several other baselines.

(1) RANDOM, a naive baseline that selects a measure out of

I uniformly at random. (2) Best-SM, this baseline chooses the

best single measure, namely it always selects the one measure

which is the most prevalent among the training set. This baseline

corresponds to the common approach, taken in many analysis

assistance tools (e.g. [10, 16, 31]), in which a single interesting-

ness measure is chosen a-priori and used for all cases. Next, we

experimented with two predictive models that are adequate to

our setting in which the samples (namely, n-context) are com-

pound objects rather than feature vectors: (3) I-SVM: a Support

Vector Machine (SVM) model with a modified kernel [7] that can

take an arbitrary distance matrix rather than using the Euclidean

distance between vector-shaped samples. We used it with the

dedicated distance metric for IDA sessions [25] described earlier

in this section. We employed a standard grid search to tune the

model’s hyper parameters.

Table 5 lists the predictive evaluation scores for both the

Reference-Based and Normalized comparison methods, averaged

over all 16 measure combinations in I.

First, we can see that the Best-SM baseline outperforms RAN-
DOM, yet its accuracy is less than 40%. The latter reestablishes our

first hypothesis that no single existing measure can adequately

capture users’ dynamic interestingness preferences, hence a-

priori choosing a single interestingness measure in IDA may

often lead to an erroneous outcome. Second, see that the I-kNN

7
A configuration with x coverage and y accuracy is dominant if there is no other

configuration with x ′ coverage and y′ accuracy such that x ′ ≥ x ∧ y′ > y .

model outperforms the I-SVM demonstrating 14% higher accu-

racy and 10% higher F1 score. However, recall that in contrast

to I-kNN (which uses the default configuration), the SVM base

model obtains 100% coverage. Yet, as mentioned above, it is pos-

sible to choose a different configuration from the skyline (see

Figure 4) to enforce full coverage. In such settings the improve-

ment obtained by the kNN model over the SVM is less significant.

Nevertheless, see that both predictive models I-SVM and I-kNN
significantly outperforms BEST-SM, which corresponds to ex-

isting approaches to interestingness measures. This establishes

our third hypothesis that the right measure can be successfully
predicted by examining the analysis n-context.

In what comes next we examine the effect on the predictive

performance (and coverage) of the model’s hyper-parameters.

Hyper-parameters Effect. To study the effect of the model’s

hyper-parameters we repeated the predictive evaluation of the

model while varying the values of each parameter and fixing the

rest to their default values as depicted in Table 4.

In Figure 5we present theAccuracy,Macro-F1 and the Coverage-

Rate as a function of each of the system parameters (for both

comparison method), where the other system parameters get

their values from the default configuration (w.r.t. the compari-

son method used) in Table 4. We next examine the effect on the

predictive performance and coverage when varying each of the

model’s parameters. Last, we present a summary of our findings.

n-context Size. The n-context size, determined when preparing

the training set, affects the amount of information the predictive

models consider. Figure 5a1 and 5b1 depict the effect of n on

the Accuracy, Macro-F1, and the Coverage-Rate of model for the

Reference-Based and Normalized settings (resp.). As expected,

increasing n (hence increasing the amount of information con-

sidered) positively affects the predictive performance. However,

observe that the Coverage-Rate decreases. This is expected since

when calculating the distance between larger, more compound,

n-contexts the scores increase thus in more cases the k nearest-

neighbors are not “similar enough” and themodel does not output

a prediction. When choosing n between 2-4, as in our default con-

figurations, we obtained almost optimal predictive performance

while retaining coverage of about 70% of the cases.

Size of k. The number of nearest neighbors considered by the

model has a milder effect on performance, as can be seen in Fig-

ure 5a2 and 5b2 that demonstrate the effect of k on the Reference-

Based and Normalized settings (resp.). In the Reference-Based

method we can see a small, noticeable increase in performance,

however it has a greater effect on the coverage of the model, since

finding a larger set of nearest neighbors which are all similar

enough to the given n-context is not always possible.

Distance Threshold θδ The distance threshold θδ is used by

the model to enforce that the set of retrieved nearest neighbors

are not too distant from the given n-context, hence avoiding

erroneous predictions.

As expected, the lower (more tight) the distance threshold, the

higher the predictive accuracy, as shown in Figures 5a3 and 5b3
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Figure 5: System Parameters Effect

displaying the effect of θδ when using the Reference-Based and

the Normalized comparison methods. Naturally, the coverage

decreases with θδ since there is not enough nearest neighbors

with high similarity in many cases.

Interestingness Threshold θI . Recall that after we apply one

of the offline comparison methods, we obtain the relative inter-

estingness of each action. This allows us to filter out cases where

the action executed by the user was not considered as interesting

w.r.t. any of the measures in I. For both comparison methods

this indeed increases the predictive performance, as can be seen

in Figures 5a4 and 5b4

Summary of Findings.We conclude this part by pointing out

the trade-off between the predictive performance of the model

and its coverage. When increasing the size of n-context and the

kNN set size we increase the amount of information considered

by themodel, since a larger set of more comprehensive n-contexts

are used as the basis for prediction. This naturally increases the

model’s predictive performance yet decreases the coverage since

there are fewer cases where we can find, e.g., a large number of

nearest neighbors highly similar to the given n-context.

A similar effect occurs when increasing the interestingness

and similarity thresholds θI and θδ , which are used to ensure that
the model uses only “high-quality” samples. Increasing theses

thresholds improves the predictive performance yet decreases

the Coverage-Rate, since there are fewer cases where such high-

quality samples are relevant.

5 RELATEDWORK
There is extensive literature that considers the interestingness

of analysis actions on one hand, and interactive data analysis on

the other.

Evaluating and comparing interestingness measures. As
mentioned in the introduction to this work, interestingness mea-

sures are widely used in the field of data analysis, employed

in tools e.g. for ranking and sorting association rules [17, 29],

data patterns [4], generating useful visualizations [31], exploring

OLAP data cubes [16] and many others.

Since dozens of measures were devised in the literature, each

capturing different facets of the broad concept, several surveys

and comparative studies have been performed to evaluate their

usefulness [12, 14, 17, 18, 22, 29]: In these works the authors

empirically evaluate many of the measures on real and synthetic

datasets, and provide guidelines for choosing the right one for a

given task and application domain. For example, [17] presents an

empirical evaluation of more than 30 interestingness measures,

applied for ranking buying patterns of customers. In [29], the

authors examine 21 measures for association rules, concluding

that neither one is consistently better than the others. [14] focuses

on measures for data summary, empirically showing that the

score distributions tend to be highly skewed.

While these notable studies contribute to the understanding of

the usefulness of measures for different analysis tasks and scenar-

ios, they do not address the case of IDA - in which the interestingness
criteria may dynamically change as the analysis session progresses.
To our knowledge, our work is the first to experimentally demon-

strate this phenomenon and to provide a dynamic interestingness

assessment (and selection of the appropriate measure), at each

step of an ongoing analysis session.

Subjective facets of interestingness. For brevity, we consid-
ered in this work only objective facets of interestingness, such as

Diversity, Peculiarity and Conciseness. However, several works

suggest measures that capture subjective facets of interesting-
ness [8, 20], i.e. that use prior information about the user and

provide a more personalized interestingness assessment. For ex-

ample, in [20] the authors devise measures for capturing inter-

estingness facets such as surprisingness and actionability by con-

sidering user prior beliefs encoded as a set of classification rules

(e.g. "has_job→ loan_approved").

Incorporating such measures in our framework is possible yet

requires the model to consider user information in addition to

the n-contexts. This is an exciting direction for future research.
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Learning Interestingness. Some works also suggest learning-

based solutions for interestingness assessment. In [9] the authors

present a system for guided data exploration based on active-

learning. The system presents users with an initial set of tuples

and asks then to annotate each tuple as interesting or not. Har-

vesting this feedback, the system can improve and personalize the

tuples presented to the users. In [21], they present a visualization

ranking system which is based on supervised binary classifica-

tion of visualization into “interesting” or “non-interesting”, based

on students’ annotations as ground truth.

In contrast to our work, these works tackle specific analysis

tasks (i.e. filter/select queries and visualizations) hence can not

be trivially generalized to the context of IDA which consists of

sequences of actions of multiple types, and where (as we had

shown in the experiments), interestingness, even for the same

action on the same dataset, may vary through the process.

Second, both [9] and [21] require, and rely on users’ feed-

back, which as explained in the introduction has limitations in

our context. Different from these works, our solution provides

a general-purpose system suitable for various types of analysis

actions, and does not relay on particular user annotations. How-

ever, harnessing user feedback and learning-to-rank models in

our system could be a promising direction for future work.

Mining IDA session-logs for action/query recommendation.
Previous work [2, 11, 13, 25] suggests that mining IDA session

logs can be used for predicting/recommending the next action

in a session. These works utilize a collaborative-filtering ap-

proach, intuitively arguing that “if users are posing similar se-

quences of queries, they are likely interested in the same subpart

of the dataset”. However, in our previous work [25] we argue

that in real life IDA scenarios analysts often examine different

datasets from different purposes, hence recommending previ-

ous actions from the log to new users is generally impractical.

To overcome this, the system described in [25] provides users

with high-level “suggestions” that aggregate meaningful action-

fragments mined from previous actions in the log. Combining

our solution with [25] is an interesting direction for future work,

where our solution can assist the system in [25] to better sort

the output suggestions and further materialize them to concrete,

executable actions.

6 CONCLUSION
This work examines interestingness measures in the context of

interactive data analysis (IDA). We show that interestingness

in IDA has unique characteristics: it dynamically changes even

within a single session, and can not be holistically captured by

just one measure. Using a real-life session log we demonstrated

these characteristics and evaluated our interestingness predictive

model, showing it can successfully select an appropriate interest-

ingness measure for each step in an IDA session. Our model and

framework may be employed in existing analysis recommender

systems, allowing them to better fit the recommended next ac-

tions (e.g., visualizations, queries) to the current interestingness

preferences of the user.

As for future work, we previously mentioned several ideas

such as using our system to evaluate the effectiveness of analysis

sessions. Also, incorporating user feedback and learning-to-rank

models in our system is an exciting idea for future research.
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ABSTRACT
An increasing amount of marketing intelligence data is becoming
available today. This includes data that describes information
technology (IT) inventories, i.e. IT products purchased by com-
panies. It is advantageous for hardware and software service
providers to analyze this data and build recommender systems to
propose new products for client companies. Real-time recommen-
dations are usually done based on matrix factorization methods
or association rules. In this work we study the applicability of
generative models to the recommendation problem. We focus on
models that are able to reveal latent connections between compa-
nies and deployed IT products and build discriminative features
of the IT structure of a company. Additionally generative models
of company-product data are of interest for service providers
for efficient company comparison, application of similar mar-
keting strategies towards the groups of similar companies. In
this work, we first formalize the notion of a company and its IT
install base. Then, we estimate various generative models that are
able to reveal hidden structures in data. These are mainly topic
and language modeling techniques emerging in natural language
processing to the task of company-product modeling and sequen-
tial models that are widely used for product recommendations.
More precisely, the analysis is done using (a) Latent Dirichlet
Allocation (LDA) with the products in a company are treated as
a set, (b) n-gram models or sequential association rules and (c)
Recurrent Neural Networks (RNN), when the time of product
appearance is taken into account. The techniques are used for
a corpus consisting of 860k companies. The results of the study
demonstrate that simpler generative models with lower number
of parameters, such as LDA, fit company-product data better and
are more beneficial for company IT install base modeling both
in terms of goodness of fit of the model and recommendation
quality.

1 INTRODUCTION
Information technology (IT) install base1 data is provided by spe-
cialized companies that carefully maintain its quality in terms of
confidence of IT products’ presence and accuracy of timestamps
of their appearance. This kind of data has already been exploited
1Install base refers to the IT inventory of a company.

© 2019 Copyright held by the owner/author(s). Published in Proceedings of the
22nd International Conference on Extending Database Technology (EDBT), March
26-29, 2019, ISBN 978-3-89318-081-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

for industrial applications and proved to be extremely useful to
get market insights in several contexts such as, for example, new
market development or white space determination. Data usually
refers to companies. For a specific company, different types of
information are provided, for example, insights about the internal
structure, what the company buys, etc. IT install base data is a
specific type of marketing intelligence data that provides, for a
set of companies, knowledge about the type of IT equipment they
own and how this equipment is distributed across their physical
locations.

Install base information is particularly useful when addressing
white spaces. If a provider of hardware services tries to acquire
new customers, install base information will illuminate the in-
sights about the business potential for a particular product do-
main. More interestingly, when combined with data about estab-
lished customers, install base information can be used to identify
companies that are similar to existing clients and therefore have
a high potential of becoming new customers by acquiring certain
sets of products.

In this paper, we concentrate on the problem of modeling
company-product relations in order to (1) identify similar compa-
nies and (2) build product recommendations. Besides the compu-
tational complexity of the similarity search problem due to the
large number of companies and product types, another challenge
is that a naïve comparison of the individual product types owned
by companies turns out to be biased towards product types that
are common to a large number of companies. Therefore, after
reviewing the related work, we focus on two approaches that
consider the hierarchical similarity of objects (companies) based
on contextual proximity of their features (product types). This
happens to be an assumption in the field of Natural Language
Processing (NLP). In our case, the similarity on the lower level is
defined via the co-occurrence of the product types in a company.
Higher levels correspond to hidden structures in the install base
and the representation of a company itself.

To get the best model representations of products and then of
companies, we estimate and evaluate various types of generative
models. We choose the best model in terms of goodness of fit
and predictive power. This model is used to extract product and
company representations which are then applied for similarity
search queries and marketing recommendations. In particular, we
compare the performance achieved by these two modeling tech-
niques: Latent Dirichlet Allocation (LDA) and Recurrent Neural
Networks (RNN). The products belonging to a company compose
a multilevel structured representation of the IT install base. Such
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products are used as the basis of company similarity evaluation.
The LDA and RNN techniques are beneficial for the IT install
base modeling as they are able to reveal hidden hierarchies. RNN
is preferred over other neural network architectures as it is able
to take into account time-correlations of product time series.
Besides, both techniques are among the best performers in the
corresponding domains. LDA produces interpretable parameters,
while the embeddings obtained by RNN modeling lack the inter-
pretability. Uninterpretable parameters is a significant drawback
for business applications, which can be tolerated if these models
would perform much better.

The main contributions of this work are the following:
(1) We formalize the problem of modeling the IT install base

of companies for various types of input data, such that
the state-of-the-art unsupervised techniques from NLP do-
main can be applied. First, we formalize company-product
data treating products in a company as a set and use cor-
responding non-sequential models for this case. Second,
we treat the product data as sequences according to the
time of their appearance. The models are then compared
using their data fitting quality.

(2) The applicability of topic modeling via LDA and language
modeling via RNN is assessed for our data.We demonstrate
that LDA with 2, 3 and 4 latent topics fits the data best and,
additionally, provides the most discriminative company
features for the task of company clustering.

(3) We assess the practical applicability of the LDA and RNN
models to an industrial product recommender and com-
pare them with sequential association-rule and matrix
factorization approaches.

(4) After solving various data integration challenges, we ap-
ply the output of the best performing model, enriched
with internal company-product data, to a recommenda-
tion tool that searches for similar companies and makes
recommendations.

2 PRELIMINARIES AND PROBLEM
FORMALIZATION

The goal of this paper is to develop a recommendation system
that also allows companies to be compared based on their install
base. This comparison will be used to generate sets of similar
companies and will allow possible business developments to be
identified in real time. As the system in development is to be used
by offeringmanagers, the interpretability of the results is a crucial
requirement to be able to justify the outcome. In consequence,
models with interpretable parameters bring an advantage in our
settings.

As a source of marketing intelligence data, we use information
provided by HG Data Company, Inc. [12]. HG Data Company is
building and maintaining a comprehensive database with com-
petitive intelligence about deployed technologies. Essentially,
for each company assessed, this database provides the following
information: the type of IT products available at each site of the
company without specifying the quantities and product model
details, some indication about the confidence of the informa-
tion provided, and dates of the first as well as the most recent
successful confirmation of product presence.

Product descriptions are organized in a hierarchical fashion.
This hierarchy contains four levels. At the top, we find the ven-
dors. For each vendor, there is a list of category parents giving
a high-level grouping of the product types, for example, “Data

Center Solution” or “Hardware (Basic)”. Each category parent con-
tains a list of categories, which are finer-grain groups. Examples
of categories are “Printers” or “Midrange Computers”. Finally,
each category contains the product types available for the vendor
considered.

Our aim is to develop a sales recommendation application.
Given a customer, potential customers with similar IT install
base are provided as input to our solution, which then combines
this information with internal data. To align the product descrip-
tion between our proprietary data and the result of the company
similarity evaluation, we have focused on the category layer. Un-
fortunately, the product types do not contain a certain product
details, thus, do not allow us to link the products with the lowest
level of product descriptions in our proprietary data.Therefore
for each company we consider the product categories2 associated
with the company, independently of the vendor. In our version of
the HG Data Company database, there are 91 distinct categories.
Out of those categories, we decided, because of the nature of our
application, to restrict our study to hardware and low-level hard-
ware management software categories, thus, using 38 distinct
categories.

To link data from the HG Data Company database to our
internal data, we solved integration and cleaning issues. In the
HG Data Company database, companies are identified by their
D-U-N-S® numbers. This number is a unique 9-digit identifier,
assigned by Dun & Bradstreet, Inc. [8] to each business location.
Therefore, each company entity, such as branches, subsidiaries
and headquarters, has an individual D-U-N-S® number, and
the set of all D-U-N-S® numbers associated with a company is
organized hierarchically.

After we had chosen the product categories or company at-
tributes and aggregated the subsidiaries of a company, we created
our corpus for model training which is a binary company-product
matrix. As we do not have information about product quantities,
we consider only binary values in the company-product matrix,
where 1 means that the product belongs to the install base of the
company and 0 means that it does not.

More formally, let us consider a set of N companies repre-
sented in the HG Data Company database C = {c0, . . . , cN−1}.
Each company ci has a given set of products Ai in its install base
belonging to k categories, which can also be called attributes.
This set of attributes is included in the set of all possible attributes
A = {a0, . . . ,aM−1} containingM elements3. That is

∀ci ∈ C ; ci 7−→ Ai = {ai0 , . . . ,aik−1 } ⊂ A. (1)

The attributes might be sorted by the time of their appearance
in the IT install base of a company and treated as data series. We
denote the sorted version ofAi asASi . The information about the
attributes or products from Ai can be re-written using vectors
Ai instead of sets of products:

∀ci ∈ C ; ci 7−→ Ai , dim(Ai ) = M , (2)

Ai =
[
1a0∈Ai , . . . ,1aM−1∈Ai

]
. (3)

A naïve approach to compare companies is to calculate the
distance between their initial attributes A or AS . In Section 3,
we discuss why such an approach leads to results that are not
sufficiently meaningful. The initial attribute space does not repre-
sent companies in a discriminative manner because the distance
2In the remainder of the paper we use the terms products and product categories
interchangeably, meaning product categories.
3In our application M = 38.
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between companies is affected too strongly by the most popular
attributes. To overcome this problem, we introduce a new space
of company features that better represents the IT install base:

∀ci ∈ C ; ci 7−→ Bi ∈ R
L , L < M . (4)

Considering the new company features B, it is possible to ex-
press the distance between two companies as a classical distance
between two vectors:

∀ci , c j ∈ C ; dist (ci , c j ) = d (Bi ,Bj ), (5)
where d (., .) is any vector distance, e.g., euclidean or cosine dis-
tance.

One of the goals of this paper is to automatically discover
the most representative features of a company B, based on ini-
tial company attributes AS or attribute vectors A . The features
should be representative in terms of goodness of fit of the gener-
ative model of company-product data and in terms of quality of
similarity clusters of companies. The methods of feature learning
for companies are discussed in Section 4. Learned company and
product features are, then, used for product recommendations.

3 RELATEDWORK
In this section, we consider the applicability of existing methods
for building discriminative company representations, namely,
the feature vectors Bi for each company ci . Bi are built using
product vectors of a company, Ai , or a sequence of products per
company, ASi . This representations should capture the hidden
structures in the company-product data.

3.1 Co-Clustering
Co-clustering or bi-clustering is a technique used for building
two-dimensional groups of objects that are represented by a
matrix. The matrix is clustered along the rows and the columns.
The principle of co-clustering was first introduced by Hartigan
in 1972 [10]. Since then, several algorithms have been proposed
mainly aimed at product recommendations.

The PaCo algorithm [27] and the OCuLaR algorithm for co-
clustering with overlapping [11] are most closely related to our
problem. The main issue with these approaches is that they are
built on initial company representations Ai , which may be not
the best features to distinguish IT install bases of companies.
When we applied the PaCo algorithm as well as spectral co-
clustering to a small sample of around 500 companies that belong
to a healthcare industry, we could not generate meaningful co-
clusters. The only co-cluster generated contained overall popular
products. Our first attempt of using LDA for this small subset of
companies and products [18] provided us with much better re-
sults and inspired us to continue our search of company features
in this direction. We believe that modified product features could
improve the quality of co-clusters. As we also show in Section 5,
raw initial company-product representations Ai neither describe
the generative model of our data well nor perform well for the
task of company clustering. In addition, given the large number
of companies to analyze (on the order of a million), co-clustering
results are difficult to interpret because the intuitive visual way
to consume co-cluster results is not possible in this case.

3.2 Pattern mining
Another possibility is to explore product install base modeling
using the approaches of the frequent pattern search from the time
series domain. One family of such approaches is Association Rule

mining [2], which is partially time agnostic. It was demonstrated
in [6], [7] that taking into account the sequential nature of data
is beneficial for time series tasks, such as similarity matching and
nearest neighbor search. This inspired another line of techniques
that are based on estimating Markov Chain models via real-time
algorithms for ‘conditional heavy hitters‘ discovery [20], [17].
However, the mined patterns are not able to represent the hidden
structures of the IT install base of companies, though we use
them to compare more advanced methods with.

3.3 Applicability of NLP Concepts
In the past decade, much attention in the literature was given to
modeling techniques related to NLP. In this subsection, we dis-
cuss their applicability to the problem of modeling install bases
of companies. One of the key tasks in NLP is language modeling.
The goal is to learn representations for hierarchies of concepts,
starting from words, phrases, and sentences, which are then orga-
nized into more sophisticated concepts, such as documents and
topics. In recent years, a lot of research has been devoted to the
advancement and improvement of topic modeling and language
processing methods, including, among others, LDA and Deep
Neural Network (DNN) approaches. We assume that the gener-
ative model of our company install bases is similar to the NLP
models. The product-company world consists of the following
layers: a layer of companies, a layer of product categories and a
hierarchy of latent structures inside the install base. Given this
assumption, these company layers can be mapped to NLP con-
cepts for application in the LDA and DNN methods. Considering
NLP terminology, we associate companies with documents and
products with words. All companies that we consider in our anal-
ysis form the corpus of company documents. We further assume
that products or product embeddings can be grouped into latent
topics, which then construct specific and discriminative features
Bi for each company ci , 0 = 1, 2, ...,N − 1.

3.4 Deep Neural Networks and Product
Embeddings

Currently DNNs are the core of the-state-of-the-art techniques
for the tasks related to NLP. Mikolov et al. [16] [15] use a simpli-
fied architecture of neural networks that allows them to use very
large training datasets and to build accurate word embeddings in
Euclidean space of high dimensionality very efficiently. The word
embeddings can afterwards be used directly without any trans-
formation or aggregation as features for clustering. They also can
be aggregated to represent a document as a vector in a smaller
space using, for example, the Fisher Kernel Framework (proba-
bilistic modeling of the corpus of documents using a mixture of
Gaussians [14]) similarly as described in the work [5].

The larger the training set (hundreds of millions) and the
larger the dimensionality of the word embedding, the better is the
representation, although after a certain point the improvement
is no longer significant. This is partially due to the large size of
the vocabulary that typically needs to be learned, namely, 600K.
As in our case the number of products is much smaller, there
is a chance that we will learn good embeddings from tens of
thousands of companies.

State-of-the-art performance on language modeling task is
achieved by RNN family of models and specifically by RNN with
Long Short-Term Memory (LSTM) units with the dropout reg-
ularization method [29]. This technique applies a distinct view
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on the information flow, using information not about indepen-
dent instances but taking into account the sequential nature
of data. Therefore, recurrent networks are sensitive to the past
inputs and can adapt to them. Other RNN realization, such as
Gated Recurrent Unit (GRU) [4] which is a simpler version of
LSTMs, has recently gathered popularity, but study [9] empiri-
cally demonstrates the the performance of GRUs and other RNN
architectures can be better for some datasets, but do not outper-
form LSTM in general. We will apply LSTM architecture to our
company-product modeling using a time series input, Ai , and
analyze its performance both in terms of goodness of fit and as a
recommender of future IT products of companies.

In work [19], we have demonstrated that LSTMs are applicable
to the task of modeling company-product time series. We used
RNNs with Long Short-Term Memory (LSTM) units with the
dropout regularization method [29]. Prior to applying RNNs in
our work [19] we demonstrated that company-product time se-
ries are of clear sequential nature. This was done using statistical
hypothesis testing and was based on the fact that the frequency
of the i.i.d. time series observations has binomial distribution. In
this work, we compare accuracy of the RNN modeling, where
product time series are taken into account, with the performance
of LDA, where products in a company are treated independently,
without their timestamps. We also assess both methods for the
recommendation task, comparing their results with the associa-
tion rule-based recommender.

3.5 Latent Dirichlet Allocation
Blei et al. [3] introduce LDA, which is a generative probabilistic
model for collections of discrete data, such as corpora of doc-
uments (or company-product vectors in our case) that is also
used for collaborative filtering. Each item, such as a document
or a company, is modeled as a finite mixture of an underlying
set of topics or hidden groups. The topic probabilities for an
item provide an explicit representation of a document. In parallel,
word embeddings are also trained. The embeddings represent
relatedness of words in the space of document topics.

The number of latent topics is a user-defined parameter. It
can be chosen using measures of the goodness of fit of the LDA
model, such as, a total log-loss for a testing set of documents
or as the average perplexity of how well each single word is
modeled. In our case of company-product modeling, LDA learns
both product embeddings and company representations Bi in
the vector space that is the size of the number of latent topics.
The main advantage of LDA over RNN and other topic modeling
techniques such as Latent Semantic Indexing [13] is that LDA-
learned features are easy to interpret. This fact is important for
adopting those techniques in marketing environment.

4 MODELING APPROACH
In the current setting, we can model and learn the semantic
information about companies in terms of their IT install base,
which is based on the fact that similar products and, then, similar
companies should be close in the L-dimensional space, where
L < M . In this case, the recommendations are extracted using the
notion of similarity between the companies. Recommendations
are based on the similarity calculated given the dataset from
HG Data Company. The gaps in possible product offerings are
extracted from our internal databases for similar companies. The
strength of the recommendation is in this case measured via the
strength of the company similarity.

We compare two types of unsupervisedmodels: non-sequential
modeling (LDA-based), when products are considered indepen-
dently (A company features are used as input), and sequential
modeling (LSTM-based), when we take into account the order of
product appearance in the HG Data Company database via AS
input. Both modeling techniques capture the hidden structures
in the company-product data and produce features (representa-
tions) for products and companies. We assess the quality of the
following company-product representations:

(1) Naïve representation: binary or Term Frequency-Inverse
Document Frequency (TF-IDF) [22] vector of products.
In our case, TF-IDF can be also reformulated as product
frequency-inverse company frequency.

(2) RNN-based representation: embedding (vector) that shows
the position of a company in an L-dimensional vector
space. The position depends on the contextual similarity
of products of a company.

(3) LDA-based representation: vector of real numbers that
shows the probability that a company belongs to an LDA
topic.

The modeling methods are evaluated using the measures of good-
ness of fit of a model, and, additionally, the representations are
evaluated for the company clustering task. When the proper rep-
resentation is chosen, we can find the top-k similar companies
based on HG Data Company data. The models are also evaluated
for the recommendation task.

4.1 Model adaptation and parameter
estimation

We train LDA both on initial binary company-product represen-
tations4 and TF-IDF representations. The type of data represen-
tation is considered as one of the parameters for LDA training.
Although LDA intrinsically models data to give more weight to
the most representative features, we verify whether the model
improves if TF-IDF representation is given as an input. Another
crucial parameter of LDAmodeling is the number of latent topics;
this number is chosen using goodness of fit measures.

For RNN, we used various architectures as modeling param-
eters. More details about LSTM modeling can be found in [19].
We select the parameters of LDA and LSTM by minimizing the
perplexity level of a model. The average perplexity per product is
calculated on a test set using Ai or ASi company representation,
with the total number of products being n. Perplexity5 shows
how well the probability distribution defined by a model (for
example, LDA or LSTM) predicts testing data and is calculated
as follows:

Perplexity = exp−
1
n
∑n
i=1 ln P (ai ) ,

where P (·) is the probability distribution induced by a model.
The lower the perplexity, the better the model. The best features
of a company B are computed using the models with the lowest
perplexity. Instead of the original binary vectors A or binary
sets of products AS , a company is represented via the vector of
latent LDA topics or company embeddings trained on RNN.

4Initial binary representation can also be called ‘Bag Of Words’ (BOW) representa-
tion in terms of NLP theory.
5We use the terms perplexity and average perplexity per product interchangeably.
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4.2 Validation of Company Representations
using Clustering

To see how extracted features perform in comparison with initial
binary features, or initial TF-IDF features, we assess the quality
of learned representations for a clustering task.

As measure of clustering quality, we use silhouette scores6.
The silhouette score is calculated as the ratio of intraclass and
interclass distances. The higher the score, the better the clusters
are separated from one another. We choose an appropriate model
depending on the silhouette score value for the desired number
of clusters. We expect that the model with the highest silhouette
scores is also the best according to the perplexity results, as both
validationmeasures favor themost descriptive and representative
features.

4.3 Recommendation Capabilities of
Generative Models

In addition to the perplexity evaluation, we also check the recom-
mendation capabilities of LDA, LSTMs and n-gram based models.
For the marketing recommendation scenario, it is essential to
provide an outlook over a relatively long period of time; typically
the span of interest r ranges from 6 to 24 months. To evaluate
this capability, we assess the model recommender for a sliding
windowWr that covers r months. This time window slides with
a granularity of two month in order to accumulate significant
changes in the install base of a company. At each iteration, the
recommender provides a series of observations i.e. the probability
of a given product appearing within a particular windowWr . In
order to access the statistically significant accuracy, we gather
the accuracy information for a number of sliding windows. The
cardinality of the set of accuracy observations is equal to the
number of sliding windows and is denoted as l . All the previous
information that happened before the start of a sliding window
is used for model training.

To obtain a recommendation for a particular product, we as-
sess the conditional probability of seeing that product appear-
ing given the time series of products that a company acquired
so far. The probability is obtained as the output of a model.
If for a product pi the probability of the generative model M ,
Pr (pi |M,pi−1,pi−2, ...) exceeds a threshold ϕ we assume that the
product pi should be recommended to a given company. Prod-
ucts pi−1,pi−2, ... represent previous products acquired by that
company. As the optimal probability threshold ϕ is not known in
advance we treat it as a parameter of the validation of the model
recommender. For each ϕ and for each company time series we
estimate the average precision and recall measures for the com-
pany time series and all the sliding windows l . Recall shows how
many of the true products that company buys in the future are
retrieved by the recommender. Precision represents the ratio of
the retrieved products that are in the true future product set.

5 EXPERIMENTAL EVALUATION
The experiments are done for 860k aggregated companies and 38
product categories7. Company aggregation is performed using
domestic D-U-N-S® numbers, that is, all company sites in one
country are aggregated. Products are consequently aggregated

6For the experiments, we use the silhouette score implementation available in
Python programming language (Python Software Foundation, https://www.python.
org) package sklearn[21]
7The full list of product categories is available at: http://www.hgdata.com/
Technologies-We-Track.

into a set containing all products available in all sites of a com-
pany. The companies belong to 83 industries, such as “Health
Services”, “Agricultural Services”, etc., which are encoded with
the SIC2 codes.8

First, we estimate the perplexity of initial company representa-
tions A . This is equivalent to the perplexity of the unigram ‘bag
of words’ model. The perplexity is equal to 19.5. The perplexities
of bi- and tri-gram models are also reported in [19]. Their value
is not lower than 15.5, which will be the evaluation baseline.

LSTM. For LSTM,we usedAS company representations, where
products are sorted according to the date of their first appear-
ance in a company. LSTM is applicable for sequential data. The
sequential nature of our data was checked in work [19], where
we demonstrated that 69% of the bigrams and 43% of the trigrams
have frequencies that are statistically significantly higher than
in the case of independent identically distributed products. This
demonstrates that the time dependencies among the products are
indeed strong. The hypothesis testing was based on the binomial
distribution of frequencies of n-grams.

We used 12 different architectures of LSTM model by varying
the number of hidden layers (Nlayers = {1, 2, 3}) and the number
of nodes in the layers (Nnodes = {10, 100, 200, 300}). We used 70%
of the initial corpus for training, 10% for parameter validation and
20% for model testing. We used the LSTM model implementation
of the ‘tensorflow’ package [1]. Training was done for 14 epochs
over the training data. The resulting perplexity values for each
RNN architecture are given in Figure 1.
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Figure 1: LSTM average perplexity per product for test
data.

As can be seen from the results, the lowest (best) perplexity
achieved by LSTM model is 11.6 for the test set, which corre-
sponds to 1 hidden layer and 200 nodes per layer. The number
of nodes per layer corresponds to the product embedding size.
LSTM also learned meaningful representations of IT products,
that are illustrated and discussed in [19].

LDA. In the case of LDA, we need to set the number of latent
topics. Altough LDA takes into account the representativeness of
words (products in our case), we consider both raw binary rep-
resentations and TF-IDF representations as input for the model.
The division of the corpus into training and test datasets is done
in the same way as for RNN modeling. The LDA implementation
used is from the gensim package [23]. The perplexity curves of
LDA for both inputs are shown in Figure 2.

8Standard Industrial Classification (SIC) is a taxonomy established by the US Gov-
ernment to classify industries. The full list of SIC encoded industries is available at:
http://siccode.com/.
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Figure 2: Average perplexity plots measured on test data
for LDA models.

It appears that the perplexity of raw binary inputs is better
than that of TF-IDF pre-processed input. The leads to the con-
clusion that LDA indeed is able to assign higher weights to the
most representative products and that therefore, no additional
pre-processing is needed. Moreover, lower numbers of hidden
topics, namely. 2, 3 and 4 lead to lower perplexity values, which
vary from 8.5 to 8.9.

The minimum achieved perplexities for each method with the
ranking placing the best methods first are shown in Table 1.

Table 1: Minimum perplexities achieved by each method
varying the parameter settings.

Method Name Min. Perplexity
1 LDA 8.5
2 LSTM 11.6
3 N -grams 15.5
4 Unigram ‘bag of words’ 19.5

Lessons learned.We conclude that, for our company-product
data, LDA models perform better than LSTM models. Note that
LDA models do not take into account the time component of
the company-product space, whereas RNN is built over time
ordered sequences of products. We assume that more sequential
training data might be needed to build more accurate LSTM
models as they have more parameters than LDA models. Indeed,
the number of parameters to estimate in LDA models is equal
to nt + nt ∗ M [3], where nt is the number of latent topics in
the LDA model andM is the vocabulary size of products. In the
case of four latent topics, we have 156 parameters to estimate.
The number of parameters to estimate for LSTM is dominated
by nc ∗ (4 ∗ nc + no ) factor [24], where nc is the total number of
memory cells and no is the number of output units. In the case of
one the best performing LSTM settings in our deployment with
100, the number of parameters is lower bounded by 100(4 ∗ 100+
100) = 50000.

Another hypothesis is that the distribution and properties of
hidden structures in company-product data correspond better to
LDA modeling assumptions. The fact that LSTM with only one
hidden layer fits the data the best out of other LSTM architectures
supports this hypothesis.

5.1 Recommendation accuracy
To assess the recommendation accuracy we follow the methodol-
ogy described in Section 4.3. The time span of the product time

series in our deployment range from 1990 till the end of January,
2016. We use a trained model (LDA, LSTM or n-gram based) to
predict products within a sliding windowWr of 12 month start-
ing from January,1 2013, thus, r = 12. The window slides by two
month. This way we obtain 13 accuracy observations. The first
recommendation window starts on January 1, 2013 and finishes
by January 1, 2014 and the last recommendation window starts
on January 1, 2015 and finished on January 1, 2016.

The precision and the recall of the LDA3 is compared to the
LSTM-based recommender and n-gram recommender based on
exact Conditional Heavy Hitters [17], that is another data series
technique capable of capturing time correlations in the data and
predicting future states of the system. The exact Conditional
Heavy Hitters are also exact time-dependent association rules.
Based on the experiments to validate temporal correlations in
product time series described earlier, the depth of the context
for Conditional Heavy Hitters (CHH) is chosen to be 2. Thus,
we study the dependencies on the previous products up to the
second order.

The plot with the average Precision and Recall values, for
different values ϕ of conditional probabilities that are used as a
recommendation threshold is shown in Figure 3.
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Figure 3: Recall and F1-score with the corresponding con-
fidence intervals for the recommenders based on LDA,
LSTMs and Conditional Heavy Hitters (CHHs).

The average numbers of retrieved and correctly retrieved prod-
ucts by each method with the confidence intervals are shown in
Figure 4.

We can infer (Figure 4) that ϕ should be smaller or equal to
0.2, as for higher values the numbers of products retrieved by
the methods are too low. The accuracy results demonstrate that
the recall of a recommender based on LDA model is consistently
higher than the recall of LSTM and CHH-based recommenders for
the appropriate values of ϕ. The F1-score is also higher for large
range of ϕ. For the values of ϕ ≥ 0.25 the recall values are not
statistically significantly different as their confidence intervals
intersect. Also we note that beyond the probability threshold
ϕ = 0.5 LDA and CHH did not produce any recommendations,
thus, precision values are not defined for this points and recall
values are equal to zero.

The plots on Figures 3 and 4 demonstrate also that the recall
LSTM and CHH is similar as they retrieve similar number of
true future products of a company, but CHH-based recommender
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Figure 4: The average number of retrieved, correctly re-
trieved and relevant products for LDA, LSTM and CHH
with the confidence intervals.

tends to produce more false positives, i.e. it recommends more
products that should have not been recommended. This causes
significant differences in precision.

The task of product recommendations is very hard as it is quite
difficult to capture all the underlying processes that influence
the choice of future models. This is witnessed by the fact that so
far, the best models we tried are only able to reach the values of
precision and recall around 0.25 - 0.43 for ϕ ∈ [0.05, 0.15]. This
means that they are able to capture a true generative model to
some extend. The random generator that produced a product
recommendation with a uniform probability = 1/38 ≈ 0.026 re-
trieved all the products for the thresholds ϕ <= 0.026 and on
average close to zero of the correct products for higher thresh-
olds. The differences between the accuracy measures for LDA
and LSTM, LDA and CHH-based methods are statistically signifi-
cant for most of ϕ values as the corresponding 95% confidence
intervals do not intersect. We have also assessed the accuracies
LDA-based recommender with two and four latent topics, their
performance has been very similar to the results of LDA with the
three latent topics which has been described above. As a future
work we will study the influence of the sliding window size on
the recommendation accuracy.

5.2 Comparison with Matrix Factorization
We also compared the hidden layer methods with one of the
best-performing matrix factorization techniques, Bayesian Prob-
abilistic Matrix Factorization (BPMF), which was introduced in
work [25] and implemented in [28]. As the system requires rank-
ings as an input, we use a ranking transformation of the training
and test data described in the previous section. This means that
if a company has product x , its ranking is equal to 1, otherwise,
its ranking is equal to 0.

The BPMF recommendation results that we obtained for the
product recommendations in our deployment were similar to the
initial results for co-clustering that we reported in Section 3.1. In
the majority of the cases, recommendations produced by BPMF
for a given company include all possible products. The distribu-
tion of the BPMF recommendation scores can be seen in Figure 5.
This is due to the fact that BPMF, and matrix factorization meth-
ods in general, was developed for sparse and imbalanced datasets.

The data in our deployment is relatively dense, and cannot be
reasonably approximated by a low-rank matrix, which is the
basis of BPMF.
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Figure 5: Boxplot of BPMF recommendation score values.

The precision, recall and F1-score values depending on varying
BPMF recommendation score values (in the interval [0.9, 1.0])
are shown in Figure 6.
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Figure 6: Accuracy values of Bayesian Probabilistic Matrix
Factorization method.

All the scores for the thresholds of recommendation score
that are lower than 0.94 are the same as for the values 0.91, 0.93
and 0.94. This means that almost for all of the threshold values
the full set of available products is recommended regardless the
previous products purchased by a company. Thus, BPFM does
not produce meaningful recommendation results and does not
provide us with effective features for company-product modeling.
In contrast, additional feature search for products, as done in
LDA and LSTM, leads to high-quality recommendations.

5.3 Company clustering.
As LDA is the best-performing model based on the analysis of
perplexity and recommendation accuracy, we will now study
the suitability of LDA-learned features for clustering. For this
purpose, we build silhouette curves for the features obtained with
the best-performing LDA configurations, that is, with the number
of topics equal to 2, 3 and 4. We then compare these results with
silhouette curves that are built on i) raw binary company-product
representations, ii) raw TF-IDF company representations and iii)
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LDA representations with TF-IDF input for 2 and 4 hidden topics.
The results are shown in Figure 7.
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Figure 7: Silhouette curves.

Note that the higher silhouette score, the better the clusters of
companies are separated. A higher score means that the distances
between companies within one cluster is much lower than the
distances between companies in different clusters. In Figure 7,
we can see that the initial binary representations of companies
are not very discriminative (blue line with stars) as the silhouette
score is the lowest for almost all number of clusters. Clustering on
the initial representation with TF-IDF transformation performs
better then clustering on the initial binary representation, as the
silhouette curve is higher and around 0.6 for a varying number
of clusters. Clustering on LDA-generated representations with
TF-IDF input (tfidf_lda_2 and tfidf_lda_4) performs better than
clustering on raw TF-IDF, especially, when two latent topics are
used. Company representation associated with the best silhou-
ette curves are generated by LDA with raw binary inputs for
the number of latent topics equal to 2, 3 and 4. This result is in
accordance with the perplexity outcomes. This means that LDA
with these numbers of latent topics represents the install base of
the companies the best.

We notice that silhouette scores for lower numbers of clusters
from 5 to 200 are higher for LDA representations with lower
numbers of topics, i.e., 2 topics, whereas higher numbers of topics
(3 or 4) discriminate larger numbers of clusters better.

The t-SNE [26] 2D projections for the product embeddings
based on LDA3 and LDA4 are shown in Figures 8, 9. The original
names of the product categories are shortened for better visu-
alization, e.g., ’SW’ and ‘OS’ stand for software and operating
systems.

It appears that the main products that construct a topic pro-
duce clusters of products. It is also interesting to see that most
of the hardware products are close to each other for both the
LDA3 and the LDA4 representation. These are ‘server_HW’, ‘stor-
age_HW’, ‘HW_other’. Similarly, software products tend to ap-
pear together, for example, ‘commerce’, ‘media’, ‘collaboration’
‘product_lifecycle’, ‘electronics PCs SW’ and ‘retail’. Thus also the
semantic proximity of the products is captured by LDA models.

Lessons learned. The good quality of company clusters and
the meaningful representation of products discussed above mean
that the LDA method is able to automatically infer representative
features both for companies and products in our deployment.
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Figure 8: LDA3 product embeddings.
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Figure 9: LDA4 product embeddings.

6 SALES APPLICATION
We have deployed LDA-based company representations in our
recommendation tool. The company similarity search is based
on LDA company representations with the HG Data Company
dataset as input. Recommendations are built using our internal
datasets. The tool searches for top-k similar companies that are
calculated using their LDA representations based on HG input.
As LDA training is not done in a streaming fashion, it is done
offline and can be retrained on demand or when the concept
shift is taken place. In addition to the global similarity search,
the tool also provides the user with filtering capabilities based
on industry, location, number of employees and revenue.
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This tool is currently used for an internal recommendation
system.

7 CONCLUSION AND DISCUSSIONS
In this work, we assessed several data modeling techniques for
product-company modeling, company similarity matching and
recommendation. Companies have been considered to be similar
based on the closeness of the structure of their IT install base.
Assuming intrinsic hierarchies between products, companies
and possibly latent install base structures, we have compared
several techniques from the NLP domain capable of learning this
kind of hidden hierarchical structures. These are unsupervised
modeling techniques, namely, Latent Dirichlet Allocation and
Recurrent Neural Networks. Having evaluated different model
architectures, we demonstrated that LDA with 2, 3 and 4 latent
topics fits our data best. We applied the company features learned
by LDA to determine the top-k similar companies, assessed the
recommendation capabilities of the methods and deployed the
best performers in a recommendation tool.

The results show that though there is clear sequential nature in
the data, still the techniques that does not take time into account
perform the best. The reason of this may be due to the higher
number of parameters to learn in sequential techniques and the
fact that our corpus is not enough to train all the parameters.

As future work, we will gather additional internal data about
the IT structure of companies with proper timestamps and as-
sess other deep neural network architectures starting from lower
levels of product descriptions. We believe that, because of their hi-
erarchical nature, deep neural networks should be able to discover
hidden structures in IT install bases of companies if sufficient
training data is provided.
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ABSTRACT
Point of Interest (POI) data constitutes the cornerstone in many

modern applications. Fromnavigation to social networks, tourism,

and logistics, we use POI data to search, communicate, decide

and plan our actions. POIs are semantically diverse and spatio-

temporally evolving entities, having geographical, temporal, and

thematic relations. Currently, integrating POI datasets to increase

their coverage, timeliness, accuracy and value is a resource-

intensive and mostly manual process, with no specialized soft-

ware available to address the specific challenges of this task. In

this paper, we present an integrated toolkit for transforming,

linking, fusing and enriching POI data, and extracting additional

value from them. In particular, we demonstrate how Linked Data

technologies can address the limitations, gaps and challenges

of the current landscape in Big POI data integration. We have

built a prototype application that enables users to define, manage

and execute scalable POI data integration workflows built on

top of state-of-the-art software for geospatial Linked Data. This

application abstracts and hides away the underlying complex-

ity, automates quality-assured integration, scales efficiently for

world-scale integration tasks, and lowers the entry barrier for

end-users. Validated against real-world POI datasets in several

application domains, our system has shown great potential to

address the requirements and needs of cross-sector, cross-border

and cross-lingual integration of Big POI data.

1 INTRODUCTION
Our daily lives evolve around locations. From navigation appli-

cations, to social networks, tourism, and logistics, we use infor-

mation about locations to search, communicate, decide, and plan

our actions. Selecting a location for a given activity has a varying

complexity and significance, ranging from simple, everyday rou-

tines (e.g., where to have dinner), to more complex planning (e.g.,

where to open a shop), and to life-changing decisions (e.g., where

to live, work or invest). Locations that exhibit a certain interest

or serve a given purpose are commonly referred to as Points of

Interest (POIs), covering anything from shops, restaurants or mu-

seums to ATMs or bus stops. POIs are complex entities that are

characterized by their geospatial shape (points, lines, polygons)

along with various thematic attributes indicating their name, type,

functionality, services, etc., as well as their relations to each other

(e.g., containment, part-of) with respect to spatial, temporal, and

thematic contexts.

© 2019 Copyright held by the owner/author(s). Published in Proceedings of the

22nd International Conference on Extending Database Technology (EDBT), March

26-29, 2019, ISBN 978-3-89318-081-3 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons

license CC-by-nc-nd 4.0.

Creation, update, and provision of POI datasets is a multi-

billion, cross-domain, and cross-border industry. Advances in

the timely and accurate provision of POIs result into signifi-

cant direct and indirect gains throughout our Digital Economy
1
.

The value and impact of POIs is reflected in the complex, ex-

pensive and labor-intensive effort required for their production

and maintenance, which inherently involves stakeholders and

users throughout their value chain. Initial production involves

field-work, constant monitoring for their evolution and accuracy,

integration of user-feedback mechanisms for reporting errors,

quality assurance of new data, and roll-out across a plethora of

services and products. The greater the size, timeliness, richness,

and accuracy of POI data, the better the product’s value. Inversely,

incomplete or inaccurate information has a profound effect on

all types of end-users and applications.

The value chain of POI data has rapidly changed in the last

few years. The advent of open data, crowdsourcing, and social

media provides new data sources of even greater volume, het-

erogeneity, diversity, veracity, and timeliness. Such Big POI Data

assets are harnessed by both startups and established commercial

vendors alike to enrich their products, while also giving rise to

new business models founded on domain-specific collection and

provision of POIs (e.g., Foursquare
2
, Yelp

3
). Enrichment, curation,

and update of POI data is increasingly becoming collaborative,

with stakeholders and end-users actively involved in all steps of

the value chain. This intensifies the challenges relating to their

quality-assured integration, enhancement, and sharing.

POI data is by nature semantically diverse and spatiotemporally

evolving, representing different entities and associations depend-

ing on their geographical, temporal, and thematic context. Due to

its use in various domains and contexts, POI information is typi-

cally fragmented across diverse, heterogeneous sources. These

are common issues in Big Data integration [7], but combining

and assembling POI information is further hindered in practice

by the lack of common identifiers and data sharing formats. Even

the way we typically identify and share information about POIs is

inherently ambiguous. Addresses, coordinates, and place names

are equally used throughout applications as pseudo-identifiers;

but practice shows that they fail to effectively disambiguate POIs.

Integrating POI data using current approaches remains labor-

intensive and does not scale, thus limiting data coverage. The

industrymakes typically two compromises to reduce the complex-

ity to feasible levels: focus on a specific domain (e.g. fuel stations),

and/or restrict the spatial-, temporal-, and feature-space of data.

In both cases, this leads to loss of information and thus lost value.

1
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=COM:2018:0232:FIN

2
https://enterprise.foursquare.com/products/places

3
https://www.yelp.com
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To tackle these challenges of Big POI data integration in the

context of the SLIPO project
4
, we transfer knowledge and ap-

ply state-of-the-art techniques and tools from the domains of

Linked Data, Big Data and GIS. We argue that Linked Data tech-

nologies [2] are ideally suited to handle the inherent geospatial,

thematic, and semantic ambiguities of POIs, without resorting

to general-purpose entity matching platforms [16]. Recent ad-

vances in spatially-aware Linked Data technologies
5
address the

scalability challenges of integrating, enriching, and querying

semantically diverse geospatial Big Data assets and can effec-

tively maximize the value extracted from open, crowdsourced

and proprietary data sources.

The scope and ambition of our work in terms of complexity

and coverage is inherently defined by current practices and needs

in the industry. Indicatively, HERE Places API
6
offers information

about 55 million POIs with names and categories in 237 countries;

Google Places API
7
advertises over 150 million POIs globally;

from OpenStreetMap, we have extracted more than 18.5 million

POIs regarding specific categories
8
. Hence, we are targeting data

integration concerning millions of POIs. We provide a complete

suite of integrated software and services for POI data integration,

supporting all stages of the POI data lifecycle (transformation,

linking, fusion, enrichment). Our prototype application employs

mature, scalable, open-source software specialized in geospatial

linked data integration. We have tested its operation against

several use cases for POIs in different application domains (geo-

marketing, tourism, navigation) with very encouraging results

concerning execution cost and accuracy. Our experience shows

that stakeholders can orchestrate those tools in coordinated, iter-

ative workflows to progressively increase both the size and the

quality of the integrated POI data.

The remainder of this paper is organized as follows. Section 2

presents the main challenges concerning Big POI data integration.

Section 3 outlines the POI data integration lifecycle applied in

SLIPO. Section 4 describes the SLIPO data model for representing

information about POIs throughout the executed workflows. In

Section 5, we explain the specific processes involved in the POI

data integration process. Section 6 outlines the provided function-

alities for extracting value-added analytics from the integrated

POI datasets. Section 7 presents the current status of our proto-

type application. In Section 8, we report our experience from POI

data integration scenarios in two real-world use cases. Finally,

Section 9 summarizes the paper and discusses future work.

2 CHALLENGES IN POI DATA INTEGRATION
POIs are complex entities, described and associated with multi-

faceted and multi-modal information. They also exhibit complex

(spatial, temporal, thematic) relationships, and they often have a

long and complex lifespan. Any effective and systematic approach

towards POI data integration needs to rely on robust, flexible and

semantically-rich modeling of POI profiles and handling of POI

identifiers, especially for applications dealing with cross-sector,

cross-border, and cross-lingual content.

Consider a simple example regarding an imaginary POI. Sup-

pose that the “Acropole Palace Hotel” was registered in 2015 at

the local Yellow Pages directory and was assigned an identifier,

along with some basic information (name, address, telephone,

4
Acronym for Scalable Linking and Integration of big POI data, http://slipo.eu/

5
blog.geoknow.eu/the-linked-data-stack, http://aksw.org/Projects/LOD2.html

6
https://developer.here.com/products/geocoding-and-search

7
https://cloud.google.com/maps-platform/places/

8
http://slipo.eu/?p=1397

Figure 1: Matching different representations of the same
POI coming from two data sources.

fax), as illustrated at the upper side in Figure 1. Later on, its ad-

dress was geocoded and the resulting location coordinates were

also included in the record to be used in a mobile city guide. At

some point in time, this hotel was acquired by another company,

which renovated and rebranded it to “Xenia Hotel”, and also

opened a restaurant at the roofgarden. This hotel is since listed

in a hotel reservation application under a new identifier and with

updated, multi-lingual information, which also features its cur-

rent offers and services, as well as customer ratings (shown at the

bottom side of Figure 1). Such changes need to be detected and

included in the mobile city guide application, by matching and

integrating new POI representations with old ones to avoid dupli-

cates and to update obsolete information. In this example, such a

matching (denoted with an owl:sameAs link) can be based on the

phone number and the address of this POI (properties marked

with red color in Figure 1). The challenge arises from the inherent

heterogeneity in POI data characteristics. As shown in this exam-

ple, this involves diverse attribute schemata, varying formats in

values (e.g., in phone numbers) or different representations of

the same information (e.g., address represented in a structured

or unstructured format), which need to be resolved to determine

whether these two records actually refer to the same POI.

This example is only indicative of how different companies in

different sectors and application domains collect, use, and extend

information about the same POI. It also points out the importance

of volatile data in the POI profile, e.g., its facilities, prices, events,

etc. Moreover, it brings up several cases of ambiguity that arise

and lead to data integration challenges that stakeholders have to

face throughout this process. Next, we outline these challenging

issues in POI data integration:

• Lack of standardization. Even though POI data is ubiquitous,

there are no de jure standards yet for POI models, formats and

identifiers. This is due to licensing and commercial competition,

different hardware and software characteristics, and diverse

requirements among mobile and web applications. Thus, POI

datasets provided by different vendors are often not compati-

ble with each other and require excessive effort and domain

knowledge to be integrated and reused. At the most basic level,

there are no (globally) unique identifiers assigned to POIs, mak-

ing it difficult to identify duplicates among datasets and to link

together different pieces of information for the same POI.
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• Inherent ambiguity of POIs. POIs are entities having a twofold

nature, geospatial and semantic; moreover, their characteristics

and associated information evolves over time. This results in

multiple sources of ambiguity when dealing with POI data.

In the spatial dimension, coordinates given for the same POI

in different sources typically differ, while the spatial extent

of a POI is often ignored, and its location is abstracted and

approximated by a single point. Even if the shape is retained,

it may have varying levels of accuracy. Hence, when encoun-

tering multiple POIs in different sources with slightly different

coordinates or shapes, it is challenging to determine whether

these refer to the same or different real-world entities. Similar

issues arise when using POI names. The same POI may ap-

pear with slight naming variations in different sources, while

different POIs may in fact have the same or similar names.

Furthermore, different sources employ different classification

or tagging schemes to categorize POIs and describe their type.

This ambiguity is amplified when the temporal dimension is

introduced, e.g., for determining whether two different repre-

sentations refer to the same POI that evolved over time (as in

Figure 1) or to two distinct POIs.

• Long update cycles. Due to the effort needed for maintaining

and curating POI datasets, the contained information often

remains relatively static. Further, it typically focuses on cer-

tain, mostly factual aspects of a POI, such as its title and a

set of categories or tags. When and how this information is

updated depends on the way it is collected and the available

resources. Hence, for most providers, POI data is updated in

yearly cycles. Moreover, if and when it is refreshed, typically

the dataset will just be updated to the latest version, as it is not

straightforward to apply a systematic and principled approach

for recording and representing the evolution that has occurred,

or more generally to track and record events that are related to

that entity. Hence, even though such information may actually

exist, there is often no historical profile of a POI that evolves

over time and keeps track of associated events.

• Fragmented POI profiles. Based on how and for what purpose

a POI dataset has been created, its contents typically cover

only certain aspects of the POIs. For example, a navigation

service and a city guide may have different priorities when

deciding which POIs to include and what kind of information

about them to collect. Although a wealth of information may

exist for a POI, different parts and pieces may be found in

different (types of) sources. Still, more complete POI profiles

would allow more sophisticated and accurate analyses.

• POIs treated independently and out of context. POI datasets

are typically treated as collections of individual entities. Each

POI is modeled, stored and analyzed independently, without

considering or establishing connections and links to other POIs.

The reason is that relationships between POIs are more difficult

to model, represent and analyze. However, this significantly

limits the type of analyses that can be carried out over sets of

POIs and creates gaps with the actual needs of users.

In SLIPO, our approach places particular emphasis on these

issues related to POI models, identifiers, and resolving the afore-

mentioned cases of ambiguity, as explained next.

3 THE POI DATA INTEGRATION LIFECYCLE
In this Section, we provide an overview of the POI data integra-

tion lifecycle supported in SLIPO. The underlying idea of our

Figure 2: The POI data integration lifecycle.

proposed system is to address the POI data integration challenges

in the Linked Data domain [2]. Thanks to a simple, standardized,

yet flexible model (Resource Description Framework
9
), Linked Data

technologies can handle the inherent geospatial, thematic, and

semantic ambiguities of POIs. Existing POI data assets need first

to be transformed into RDF, so that individual POI profiles can be

interlinked, fused, and enriched. This takes place in successive

steps that progressively increase the size and/or the quality of

POI data throughout a virtuous cycle, implementing an iterative

workflow (Figure 2). Next, we outline the purpose of each stage,

the processes that take place, and their output.

The lifecycle begins with a transformation stage. This assumes

as input POI data collected from heterogeneous and diverse data

sources (proprietary, open, crowdsourced), having different at-

tribute schemata and formats. The spatial, temporal, and thematic

attributes in the input data are transformed into RDF triples con-

forming to a common, vendor-agnostic, well-defined, yet agile

and extendable POI ontology. Hence, schema mappings from at-

tributes of the original schemata to the classes and properties

of this ontology are applied. After transformation, the resulting

RDF triples can be stored in files or in an RDF store.

Subsequent stages are applied in the Linked Data domain

against the previously transformed RDF data comprising an itera-

tive, step-wise workflow that first increases the size, and then the

quality of POIs. This forms a virtuous cycle that begins by expand-

ing POI coverage, completeness, and richness, delivering data of

greater size. Then, it focuses on increasing the quality of the POI

data, fusing these intermediate results and enforcing appropriate

quality assurance algorithms. This inherently reduces the size of

data in absolute numbers, but increases their value. This process

can be repeated in the same manner, iteratively increasing the

size and then refining to increase quality, as many times as re-

quired. For example, an expert user can introduce additional data

sources, apply different rules, focus on other types of metadata,

etc. Such an iterative workflow involves the following stages:

• Interlinking. This is applied among transformed RDF datasets

to link together individual RDF representations of the same

real-world POI. It exploits structural properties, textual simi-

larities, spatial proximity, etc., based on various user-specified

9
https://www.w3.org/RDF/
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metrics and thresholds. This deduplication process creates

owl:sameAs links between matching POI entities, thus tack-

ling the lack of common identifiers between POI entities across

data sources, and enabling their management at later stages of

the integration process.

• Enrichment. This step identifies and retrieves additional infor-

mation from external sources that relates to the processed POIs,

and creates extra properties for these POIs, increasing the rich-

ness and completeness of the data. It also discovers semantic

relations between POI entities and other resources (e.g. areas,

events, time), such as partOf relations (e.g., a school yard is

part of a school etc.) or occursAt relations (e.g., events at a

certain venue). Essentially, this phase enhances and contextu-

alizes POI profiles with information extracted and assembled

from other relevant sources, leading to a multi-faceted and

more comprehensive view of POIs. For instance, it can enrich a

POI profile with extra information concerning opening hours,

price ranges, event timelines, etc.

• Fusion. This stage consolidates linked POIs and their proper-

ties. From two linked POI entities, it produces a unified and

consolidated representation that is more complete, concise and

accurate than the individual initial linked entities. For match-

ing properties (e.g., similar names, nearby geometries) between

a pair of linked entities, potentially different fusion actions

can be applied. Fusion actions may include selection of proper-

ties from one of the entities, merging of properties from both

entities, selection of those properties that satisfy a specific

criterion (e.g., more complex, more timely), etc. Eventually,

this leads to significant increase in completeness, coverage,

timeliness and quality of POI data.

• Value Added Analytics. The POI data lifecycle includes an addi-

tional step, offering large-scale aggregation analytics in various

dimensions, clustering, association rule mining, and predictive

analytics. We can perform large-scale spatial, temporal, and

thematic aggregation or extract associations between POIs and

other entities. Results can be modelled as integrated sets or

sequences of POIs. For instance, such a set can represent a

thematic area of interest not explicitly defined in the original

data, but implicitly discovered; this encapsulates a set of POIs

that are spatially co-located and related thematically for direct

exploitation in several use cases (e.g., geomarketing).

Quality assurance is performed throughout all steps of the life-

cycle and ensures that each phase produces correct and accurate

results, taking into account dataset-specific and use-case-specific

quality indicators and rules, including also manual validation and

authoring. Several indicators can be used, most of them already

adopted by industrial vendors that manage and exploit POIs: size,

timeliness, coverage, accuracy, etc.

Eventually, at the end of the POI data integration lifecycle,

another transformation is also required. This involves the reverse

transformation of the integrated POI data back to conventional

formats (i.e., de facto POI formats), enabling their use in existing

products, systems and services.

4 POI DATA MODEL
We have developed a comprehensive ontology for POI data to

model and represent multi-faceted and enriched POI profiles and

thus leverage Linked Data techniques and tools for POI data in-

tegration. This model accommodates and extends existing POI

formats, providing a uniform and semantically rich model for

Figure 3: Main classes and properties in the POI ontology.

assembling and managing POI data from heterogeneous sources,

since a widely accepted, de facto model is missing. To design this

ontology, we have taken into consideration POI data represen-

tations employed by several well-known and widely used POI

data sources. These included both open data sources, like Open-

StreetMap andWikimapia
10
, as well as proprietary data schemata

like Foursquare or Google Places. We also studied the structure

of POI data assets based on samples obtained by commercial

vendors in several countries (Austria, Germany, Greece). Finally,

we investigated other efforts, especially an ongoing work on POI

modelling by W3C and OGC Working Groups
11
, as well as mod-

els for representing places proposed by collaborative projects
12
.

The main challenge in POI data modelling arises from the high

degree of heterogeneity across sources, given that these have

different scope, goals and purposes. Thus, they model POIs from

different perspectives and with varying levels of detail. Among

the main issues we addressed with our POI data model are:

• Names: Accommodate the presence of different types of names

(e.g., official vs. commonly used ones), alternate or historical

names, acronyms, multi-lingual names, etc., as well as phonetic

transcriptions or transliterations useful for internationalized

POI information.

• Addresses: Represent addresses both in structured formats (sep-

arate components for country, city, street, house number, etc.)

and flat formats (concatenated strings), with potentially miss-

ing information in either case.

• Geometry: Allow both for point geometries (longitude and lati-

tude coordinates) and more complex geometries (lines, poly-

gons), potentially in different coordinate reference systems.

• Classification: Support both hierarchical categorizations (i.e.,

categories, subcategories, etc.) and free tags.

• Source of POI data (e.g., a commercial vendor) may be specified

using its title, homepage, description, license, logo, etc.

• Media: Support for auxiliary assets such as photos, videos or

audio associated with a POI.

10
http://wikimapia.org/api/

11
http://www.opengeospatial.org/projects/groups/poiswg

12
https://schema.org/Place

480



• Contact information: Include various elements, such as phone,

email, fax, Web page, social media accounts, etc., with different

structures and formats.

• Amenities: Include extra information on a variety of attributes

such as offered services, opening and/or popular hours, ratings,

payment methods, etc.

Figure 3 illustrates a graph with the main classes and object

properties of our OWL ontology
13

as used internally in the POI

data integration lifecycle. POI is the main class for representing

POI features and is modelled as subclass of a spatial Feature in
GeoSPARQL [24], thus directly inheriting properties regarding

geospatial location. It supports multiple geometric representa-

tions, and the type of each geometry (e.g., centroid, navigation

point, map pin, boundary) may be specified as well. Extra at-

tributes for specialized use cases not covered by the ontology can

be represented in the form of key/value pairs.

Overall, this ontology adheres to well-established standards

(RDF, GeoSPARQL) and is geared towards processing efficiency.

In addition, it can be extended and enhancedwith domain-specific

POI profiles, which include additional properties and relation-

ships. We are currently working on modelling the provenance of

POIs and their metadata, their evolution across time leading to

different versions, as well as changes occurring to their contents

and representation (e.g., extra attributes).

5 POI DATA INTEGRATION STEPS
SLIPO offers a complete and integrated suite of software tools that

support all steps of the POI data integration lifecycle. All tools are

available as open source software and are the state of the art in

geospatial linked data integration. Specifically, the suite includes:

(a) TripleGeo, for POI data and metadata transformation into

RDF; (b) Limes, for interlinking of POIs; (c) Fagi, for the fusion of

linked POI data into unified, concise and complete descriptions;

and (d) Deer, for enrichment of POIs with implicit metadata, third

party datasets and thematic, temporal and spatial metadata. Next,

we describe them in more detail.

5.1 Transformation
Transformation is the entry point for POI datasets, converting

them from their original format to RDF, thus enabling their subse-

quent processing in the Linked Data domain. We have extended

our open-source Extract-Transform-Load (ETL) software Triple-

Geo [25] to enable scalable and efficient transformation of POI

datasets from a variety of de facto geospatial formats into RDF

triples. In TripleGeo
14
, we employ adaptable, configurable, and

reusable mappings from existing attribute schemata into our POI

ontology (Section 4). We also support classification hierarchies

for assigning categories to POIs. Moreover, TripleGeo can han-

dle all common geometry data types and established coordinate

reference systems. Its main features include:

• Native support for a multitude of geospatial data formats. Cur-

rently, TripleGeo supports 9 common file formats (e.g., ESRI

shapefiles, GML, KML, CSV, JSON), and JDBC-based access to

8 geospatially-enabled DBMSs (e.g., Oracle Spatial, PostGIS).

• Improved geospatial support not only of primitive geometry

types (points, linestrings, polygons), but also more complex

geometries (MultiPolygons, Geometry Collections), as well as

on-the-fly reprojection to another coordinate reference system.

13
OWL ontology is available at https://github.com/SLIPO-EU/poi-data-model

14
https://github.com/SLIPO-EU/TripleGeo

• User-defined mappings specify rules that dictate how to gener-

ate RDF triples from original thematic attributes in the input

POI data according to a given ontology. Such mappings allow

transformation of all available attributes per POI entity and

can be specified in the generic RDF Mapping Language RML

[5, 6]. We also provide an alternative, simplified mapping facil-

ity specifically tailored to our ontology, offering much faster

transformation even for very large volumes of POI data.

• Classification schemes. POI data providers employ diverse clas-

sification or tagging schemes to categorize POIs and describe

their type. TripleGeo accepts specification of (possibly hierar-

chical) classification schemes for POIs, produces RDF triples

that fully describe this information along with especially as-

signed URIs, and introduces extra links between a POI and its

respective category under this scheme.

• Customized URIs. We construct HTTP Universal Resource Iden-

tifiers for POIs based on automatically generated Universally

Unique Identifiers (UUIDs). This follows recommended pat-

terns and best practices for creating persistent, unique, vendor

and technology independent URIs. Thus, POI data owners have

enough flexibility and control over creating andmanaging their

own POI identifiers, while still adhering to a uniform format.

• Reverse transformation from RDF to all common geographical

file formats. POI data that have been interlinked, fused, and

enriched in previous executions of the POI data integration

lifecycle can become accessible and exploitable by existing

software (e.g., DBMS, GIS) or services (e.g., web mapping, route

planning) commonly utilized in the industry.

• Comprehensive configuration. Users can control various pa-

rameters of the transformation process at different levels of

complexity based on their technical background and expertise.

• Compliance to standards. The produced RDF geometries are

fully compliant with the OGC GeoSPARQL standard for RDF

spatial entities [24]. Transformation of INSPIRE-aligned data

and metadata [10] is also supported [26], thus abiding by the

EU Directive for interoperable Spatial Data Infrastructures.

• Scalability. Our experiments with various data sources show

that TripleGeo is currently orders of magnitude faster com-

pared to its original release [25], aswell as faster thanGeoTriples

[17]. It can efficiently transform millions of POIs even without

any sophisticated data partitioning schemes. Indicatively, it can

transform all 7.4 million POIs extracted from OpenStreetMap

for Europe into RDF triples in less than 3 minutes, effectively

generating more than 715,000 triples/sec.

Using TripleGeo, we have launched a free download service
15

that offers global POI data extracted from OpenStreetMap and

transformed into RDF format, retaining all original tags and also

creating resolvable, machine-readable URIs per POI.

We are currently working on extending TripleGeo towards

semi-automatic workflows to assist and guide users in creating

attribute mappings for new datasets. We have built a utility that

employs Machine Learning to learn new mappings from a corpus

of previously specified ones, available from the various use cases

of POI datasets we have handled so far. This utility also analyzes

the contents of each attribute in a new POI dataset, based on

its data type (string, numeric, etc.), formatting (e.g., phone num-

bers, postal codes), as well as the presence of special characters.

Users can then verify or modify the automatically suggested

mappings through a graphical interface before applying them for

transforming their POI data into RDF.

15
http://download.slipo.eu/results/osm-to-rdf/
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5.2 Interlinking
The aim of interlinking POI datasets is to develop scalable ap-

proaches for integrating massive heterogeneous, and incomplete

POI data at a world-scale. Limes
16

is integrated in SLIPO and in-

corporates many algorithms for performing efficient interlinking

among POI resources. In the context of SLIPO, Limes receives as

input two RDF POI datasets conforming to the SLIPO ontology.

Thus, Limes’s input POI data are first transformed by TripleGeo,

into the proper RDF format and schema. Further, apart from the

two input POI datasets, Limes requires as input a configuration

file containing the Limes configuration parameters. Limes’s out-

put consists in a single file, which contains the links between

corresponding POI entities from both input POI datasets. The

output of Limes is essential for running other SLIPO tools in a

POI data integration cycle (Figure 2).

Limes v1.0.0 is the first version of Limes that has been devel-

oped in the context of the SLIPO project and focuses on POI-

specific interlinking. One of the major goals was to abstract as

much complexity as possible from the end users. So, in order to

keep user interaction at a minimum and requiring no knowledge

of Linked Data technologies and concepts, we aimed at adapting

and fine-tuning Limes’s functionality specifically for POI data,

as well as at automating the interlinking process as much as

possible. To this end, we emphasized on the development of the

backend of the platform, aiming to enrich and specialize the core

interlinking functionality of the framework. Next, we outline the

new features and functionality of Limes:

• POI-specific point-set distances. New point-set distances based

on the vector representations of the POI resources (e.g. Haus-

dorff, mean, surjection and sumOfMin). Altogether, we imple-

mented a set of 10 point-set distance functions based on our

survey published on [30].

• Topological relation discovery based on the vector representa-

tions of the POI resources (e.g. a POI resource contains, crosses

or touches another POI resource). For instance, find all park-

ing locations within shopping malls. Therefore, we develop

Radon [8, 29], an efficient algorithm for rapid discovery of

topological relations among POI resources with 2D geometries.

• Temporal relation discovery based on timestamps associated

with the POI resources (e.g., one POI takes place after, before

or during another POI). For example, a specific area is used

as a parking location only during a football match. To tackle

this problem, we proposed Aegle [13], a novel approach for

efficient computation of links between POIs’ temporal repre-

sentations according to Allen’s interval algebra.

• Combining the new techniques with the ones already in Limes.

In Limes v.1.0.0 we integrated the novel algorithms for the 10

POI-point-set distances as well as Radon and Aegle into the

Limes core. In particular, a new mapper is implemented for

each of the new relation types. Such mappers are combined

with the already existing mappers for efficient link discovery

of the new types of relation specific for POI resources.

• Novel machine learning approaches for POI interlinking. In most

cases, finding a good metric expression
17

(i.e. one that achieves

high F-Measure in interlinking POI entities) is not a trivial task.

Therefore, in Limeswe implementedWombat, a novel machine

learning approach for auto-generation of mappings among POI

resources. Wombat is inspired by the concept of generalisation

16
https://github.com/dice-group/LIMES

17
A metric expression is a logical expression that describes when two resources

should be linked.

in quasi-ordered spaces [28]. Wombat minimizes the Limes

configuration task by providing unsupervised, supervised and

active learning versions.

• Integration with the SLIPOWorkbench. Limes v.1.0.0 realizes two

deployment modes: (a) standalone, as an individual software

that accepts as input linked POI datasets and provides as output

a mapping file containing the links between the input POI

datasets; (b) deployment within the SLIPO Workbench, where

Limes serves as an integral component of the SLIPO Toolkit and

is loosely integrated by the SLIPO Workbench with the other

software components into forming POI integration workflows.

• Scalability. In addition to the original Limes parallelization algo-

rithm [31] and optimized planners [12, 22], in Limes v1.0.0 we

evaluated the scalability of our novel POI-specific approaches.

Our evaluation proves that Radon [8, 29] is able to outper-

form state-of-the-art approaches up to 3 orders of magnitude

while maintaining a precision and a recall of one. Also, our

evaluations of the runtime of Aegle [13] show that Aegle

outperforms the state of the art by up to 4 orders of magnitude

while maintaining a precision and a recall of one. Recently,

we have implemented a simple, yet efficient in our setting,

distributed execution scheme, which functions independently

of core interlinking in Limes. Specifically, we have two imple-

mentations based on Spark and Flink frameworks. Currently,

we run an intensive evaluation for both frameworks to find

the pros and cons of each. Finally, we studied the effect of

geometry simplification on the scalability of POI interlink-

ing [1]. We found that a suitable simplification setting can

reduce interlinking cost with a minimum effect on quality.

5.3 Fusion
The fusion process in SLIPO follows the interlinking of different

representations of the same POI across data sources. Fusion ad-

dresses the problem of assembling partial and incomplete POI

profiles as well as resolving conflicting information in order to

derive a more complete, consolidated profile per POI.

Fusion receives as input two POI datasets as well as a set

of links between them. The output is a third merged dataset,

which contains consolidated descriptions of the linked POIs. Each

POI in the fused dataset is described by a set of richer, non-

redundant, non-conflicting and complete properties, which have

been derived by merging the initial descriptions of the linked

POIs. The main challenge in this task is to efficiently apply the

most appropriate fusion action in such way that the best elements

of individual datasets are kept in the final composite dataset.

To support scalable and quality assured fusion of large POI

datasets, we have extended our fusion framework Fagi [14]. Ini-

tially, Fagi was a map-based, user-interactive platform for manu-

ally performing property matching and fusion actions on individ-

ual properties of linked geospatial entities. In SLIPO, we adapted

Fagi
18

to effectively handle the fusion of POI data, while we also

minimized manual user effort. Specifically, the current version

offers the following main features:

• Advanced fusion facilities for POIs. Fagi supports the graphi-

cal authoring of POI fusion specifications. These sets of rules

examine the individual properties of pairs of linked POIs and

decide, for each property, the most fitting fusion action. Fagi

currently incorporates 25 condition functions for examining the

properties of linked POIs, including string similarity, geome-

try comparison, etc. Further, it implements 15 fusion actions

18
https://github.com/SLIPO-EU/FAGI
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(regarding both thematic and geospatial properties) for decid-

ing how to merge the values of matching properties. Fusion

actions include: aligning geometries, maintaining the most

complex value, maintaining both values for the same property,

etc. Finally, combining several condition functions can be used

to construct more elaborate fusion rules, while fusion results

can also be marked as ambiguous for later inspection by the

end user.

• Link validation functionality. An important aspect of quality as-

surance lies in validating the fusion input and decidingwhether

the linked entities should be either fused, further examined,

or rejected as erroneous. To this end, in Fagi we define a set

of validation actions, as well as a validation rule specification

scheme. Similarly to POI fusion specifications, the user can

define elaborate link validation specifications that jointly ex-

amine several properties of pairs of linked POIs in order to

maintain or reject the specific linked POIs.

• Quality indicators extraction. Further emphasizing on quality

assurance, Fagi supports the extraction of more than 25 quality

indicators. The user is able to review several statistics on the

input linked POI datasets before performing fusion on them

(pre-fusion statistics), as well as on the output fused data (post-

fusion statistics). The former provide an overview of the data

at hand, which assists the integrator to properly define and

configure the validation/fusion rules. The latter assist the user

in the inspection of the fusion results, and potentially guide

her into re-configuring and re-executing the fusion process.

• Recommendation of link validation and fusion actions. Fagi

implements learning mechanisms for training on past user

actions and recommending link validation and fusion actions

for new POIs. It learns binary (for link validation) and multi-

class (for fusion actions) classifiers on a series of extracted

training features regarding the properties of the linked POIs.

Then, it recommends actions for new pairs of linked POIs.

The aforementioned functionality of Fagi satisfies commercial-

level data fusion needs. In a typical fusion scenario, the user can

define configurable and re-usable fusion rule specifications of

varying complexity, which collect names from different datasets

in multiple languages or types (such as official, international,

brand-names etc.) and complete other attributes, such as address

information, websites, phone numbers, emails, ratings, reviews,

opening hours, image links, etc. The resulting fused dataset then

contains POIs with the most complete and accurate descriptions,

as well as more precise and/or more complex geometries. Addi-

tionally, the user is able to examine a plethora of quality indicators

and use them to assess and potentially improve the quality of the

fusion process.

Fagi v2.0 focuses on satisfying the effectiveness and perfor-

mance requirements of fusing Big RDF POI data. Thus, an impor-

tant effort has been made to fine-tune the underlying algorithms

in order to increase their efficiency and scalability. The perfor-

mance of the current implementation of Fagi is tested against

real-world commercial POI datasets, by applying a custom parti-

tioning and distributed processing scheme that occupies 10 nodes

and takes less than five minutes to fuse 1 million linked POIs,

which corresponds to a country-level fusion process.

5.4 Enrichment
Enrichment is one of the main parts of the data integration pro-

cess. In SLIPO, enrichment focuses on POI entities that are char-

acterized by a set of major properties (e.g. name, coordinates and

category) as well as potentially several additional properties (e.g.

address, telephone, email, rating, etc.). Enrichment considers one

or more input dataset(s) containing POIs. The goal of enrichment

is to produce one or more enriched dataset(s), containing better

descriptions of the input POIs based on information retrieved

from external, third-party RDF data sources (e.g., SPARQL end-

points, DBpedia). That is, each POI entity in the final, enriched

dataset must be described by a set of RDF triples that have been

derived by merging the initial description for the POI with those

generated via various enrichment operations. Note that some

enrichment approaches can define a set of triples to be removed

from the original POI descriptions. Those removed set of triples

are either wrong or inaccurate. The enrichment process can also

replace inaccurate triples with ones with correct values. Consid-

ering the big picture of the POI integration lifecycle (Figure 2),

the enrichment process is tightly interconnected with validation

and quality assurance. To this end, the enrichment process needs

to incorporate several mechanisms to assess the quality of the

proposed enrichment operations and their results.

The enrichment task is carried out via our generic enrichment

component Deer
19

[27]. Deer incorporates many approaches

for performing efficient enrichment among POI resources. In the

context of SLIPO, Deer receives as input one or more RDF POI

dataset(s) conforming to the SLIPO ontology. Thus, Deer’s input

POI data are first transformed by TripleGeo into the proper

RDF format and schema. Moreover, Deer input datasets may be

linked via Limes prior to be enriched by Deer. Further, Deer

requires as input a configuration file containing its configuration

parameters. Deer’s output consists of one or more files that

contain the enriched versions of the respective input datasets.

Deer offers a set of enrichment operators, i.e., artifacts in charge

of enriching input POI dataset(s). The input for such an enrich-

ment operator is a set of one or more datasets. The output is

also a set of one or more enriched datasets. In the following, we

highlight some of Deer’s enrichment operators:

• The Dereferencing enrichment operator. For POI datasets which

contain similarity proprieties links (e.g. owl:sameAs to DBpe-

dia resources), we deference all links from our source dataset

to other datasets (e.g., DBpedia) by using a content negotiation

on HTTP. The returned set of triples needs to be filtered for rel-

evant POI resources. Here, we use a predefined list of attributes

of interest. Among others, we look for geo:lat, geo:long,
geo:lat_long, geo:line and geo:polygon. This list can be

reconfigured via Deer’s configuration.

• The NLP Enrichment Operator enriches POI resources by ex-

tracting embedded POI information hiddenwithin the datatype

properties and making it explicit as new triples added to the

original POI dataset. For example, find all POIs embedded

within the description of all hotel POIs and add them as new

triple to the respective hotel POI. The current version of Deer

uses the Fox [33] framework for Named Entity Recognition

(NER). By default, Deer extracts the POIs based on DBpedia

as the background knowledge base. As Deer is a generic POI

enrichment framework, the used NER framework can be con-

figured as well as the used background knowledge base.

• The Geo-Distance Enrichment Operator aims to enrich a set of

POI pairs (not necessarily of the same type) with the great

elliptic distance between them. For example, the geo-distance

operator can enrich all hotel POIs by adding the distance to

the nearest POIs of bus stations/parking lots/hospitals.

19
https://github.com/dice-group/DEER
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5.5 Quality Assurance
Each SLIPO component provides a collection of several qual-

ity indicators and statistics. They all produce verbose execution

metadata that can either be visualized or downloaded for fur-

ther inspection by the end user. Particular effort has been put in

Limes, Deer, and Fagi for POI linking, enrichment and fusion

respectively. In particular, both Limes and Deer implement a

series of quantitative quality indicators, such as run-time, num-

ber of added triples and percentage of data increase after link-

ing/enrichment. Further, both Limes and Deer provide the quali-

tative quality indicators of precision, recall, and F-measure in cases

where benchmark datasets are available. In case no benchmark

dasasets are available, Limes is still able to provide the pseudo-

precision, pseudo-recall, and pseudo-F-measure first introduced

in [23]. The basic assumption behind these pseudo measures is

that symmetrical one-to-one links exist between the resources in

source and target datasets. Our pseudo-precision computes the

fraction of links that stand for one-to-one links and is equivalent

to the strength function presented in [15]. The pseudo-recall

computes the fraction of the total number of resources (i.e. from

both source and target datasets) that are involved in at least

one link. Finally, the pseudo-F-measure is the harmonic mean of

pseudo-precision and pseudo-recall.

Fagi implements a series of quality indicators (e.g., percent-

ages of fused properties vs. initial POIs/initial links, average num-

bers of POI property completeness) that compare the linked POI

datasets and the resulting fused POIs. In particular, attribute gain

indicates the percentage of extra properties compared to the orig-

inal (e.g., a gain of 0.4 on a given POI means it was complemented

with 40% additional attribute values). Confidence indicates the

degree of similarity (in names, geometry, phone number, etc.)

between the original features that were fused into a unified one,

with values close to 1 indicating almost perfect match. These in-

dicators are utilized both internally in Fagi (similarity measures,

learning mechanisms) and as output for the end user, for further

inspection and manual validation of fused POIs.

6 VALUE-ADDED POI ANALYTICS
At the end of the POI data integration workflow, various services

are provided to perform advanced analytics and extract added

value from POIs. Currently available functionality includes Best

Region Search and extraction of Areas of Interest, which can be

further modeled using techniques such as LDA or semantic clus-

tering. We describe these functionalities in more detail below.

6.1 Best Region Search
Given a set of POIs D, an α × β rectangle R, and a utility score

function f : P → R that assigns an objective score to any subset

P ⊆ D, the goal of the Best Region Search problem is to find the

optimal placement of R over the space containingD such that the

value of f over the enclosed subset of POIs P is maximized [11].

This problem has many applications in various domains, from

geomarketing and tourism to real estate and urban planning,

facilitating decisions about, e.g., selecting the best location to

open a new store or to place an advertisement.

However, the existing state-of-the-art algorithm for this prob-

lem [11] only computes the best, i.e., the top-1 result. This is

usually not sufficient in practice. For instance, it may not be pos-

sible to open a store at the identified best location (no available

facilities to rent or purchase), or all hotels in the identified best

area may be occupied or too expensive. Then, the user needs to

examine alternative solutions in decreasing order of quality, until

one is found that meets all desired criteria.

To address this shortcoming, we have introduced the k-Best
Region Search (k-BRS) problem, which computes a ranked list of

the top-k best regions according to the utility score function. The

main challenge in doing so, is that by simply returning a top-k
list of results ordered by their objective score, typically produces

highly overlapping results. Instead, our proposed algorithm is

able not only to compute top-k results progressively, but also to

diversify the returned results by either minimizing or completely

excluding overlap among them. This is achieved by progressively

retrieving subsequent results beyond the top-1, and selecting the

next best candidate based on their marginal gain, i.e., the added

value of each new result in the context of those already selected.

A detailed description of the algorithm can be found in [32].

6.2 Extracting and Modelling Areas of
Interest

Another functionality for POI data analytics involves the applica-

tion of spatial clustering to extract Areas of Interest (AOIs) from

the integrated and enriched POI dataset and then the use of topic

modelling techniques to characterize and compare those areas.

For the first step, we employ density-based clustering to iden-

tify areas with high concentration of POIs (e.g., shopping malls,

transportation hubs, touristic attractions, etc.). We use the DB-

SCAN [9] or HDBSCAN [4] algorithms for this purpose. DBSCAN

can identify clusters of arbitrary shapes. Moreover, it does not

require the user to specify the desired number of clusters in ad-

vance; instead, the user specifies two parameters that control the

density. HDBSCAN extends DBSCAN by offering a mechanism

to adjust the density automatically based on the data distribution.

The resulting clusters comprise a set of AOIs but provide no

additional information regarding their nature or characteristics.

They merely point out that these areas have a higher concentra-

tion of POIs compared to the rest of the space. To provide further

insights to the user as to what these AOIs are about and how

they can be compared to each other, we employ topic modelling.

Essentially, this draws inspiration from extracting a set of top-

ics over a document collection and representing each document

according to those topics.

In our case, we represent each AOI as a “document”, with the

contents of the document being a bag-of-words representation

of the union (multiset) of terms appearing in the POIs contained

in that AOI. These terms may refer to POI categories or tags, or

any other terms extracted from POI names, descriptions, reviews,

etc. We then perform Latent Dirichlet Allocation (LDA) [3] over

this “document” collection. The basic idea behind LDA is that

each document can be described by a distribution of topics and

each topic can be described by a distribution of words. The result

of the process comprises two matrices. The first is a topic-terms

matrix that defines each extracted topic as a distribution over

POI terms. The second is an AOI-topics matrix that represents

each AOI as a distribution over the identified topics.

This approach is quite flexible in practice because it allows

to model each AOI as a mixture of topics, instead of assigning

each AOI to a single category. This better reflects the fact that

typically a region contains a mixture of different types of POIs

and serves a mixture of purposes, rather than a single one.

The resulting AOI-topics matrix can be used to compare AOIs

to each other, e.g., find AOIs with similar mixture of topics, pro-

viding a means to quantify these similarities and differences.
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Figure 4: Example of extracted AOIs in London, with col-
ors determined via topic modelling.

Moreover, it allows for intuitive visualizations of the extracted

AOIs based on their topic distributions. An illustrative example is

provided in Figure 4, where LDA was used to extract 3 topics for

a given set of AOIs in London, and then each AOI was assigned

a color by determining the RGB values based on its mixture of

these 3 topics. Such visualizations allow not only to depict where

AOIs are located, but also to intuitively identify similarities and

differences between AOIs according to the underlying mixture

of different types and attributes of POIs they contain.

6.3 Implicit POI Clustering
We have also developed strategies to group POIs together ac-

cording to thematic, contextual and/or temporal considerations.

For that purpose, we have integrated into SLIPO’s toolkit the

Power Iteration [19] and K-Means [20] clustering algorithms into

Sansa
20

[18] since this semantic-web open-source stack provides

these algorithms for RDF data out-of-the-box. We first process

the input RDF data using Sansa and then apply the clustering

methods. To facilitate the explanation of the algorithms, we use

the following example data as input and give the corresponding

results. Let’s consider three POIs and their associated categories:

P1(A,B,C), P2(A,C,D) and P3(A,B,D).

Power Iteration Clustering (PIC). In general, given a set of data

points, we could represent the similarity between each pair of

data points with a similarity matrix. For example, we could use

Jaccard Similarity between two sets of categories that belong to

corresponding POIs to represent the similarity between them.

Therefore, a similarity matrix S , a diagonal matrix D and a Lapla-

cian matrix L = D − S are created. In Spectral Clustering [35],

a subspace matrix consisting of eigenvectors corresponding to

the smallest K eigenvalues was derived from the Laplacian ma-

trix. The subspace matrix indicates the clustering results with K
clusters. In PIC, the subspace matrix is an approximation to an

eigenvalue-weighted linear combination of all the eigenvectors

of a normalized similarity matrix [19]. The subspace matrix also

indicates the clustering results. In order to prepare the correct

input to the algorithm, we first collect the categories for each POI,

and then we compute the Jaccard Similarity between category

sets for each pair of POIs. Afterwards, we construct a similarity

matrix which could be used by PIC algorithm.

20
https://github.com/SANSA-Stack

Figure 5: Example of AOIs in Vienna obtained after the-
matic and spatial clusterings.

K-means. This algorithm partitions POIs into different clusters

such that POIs within each cluster have the smallest distance to

the cluster centroid compared to placing them into any other clus-

ter. K-means requires a distance metric to represent the distance

between POIs. We use the following:

• One hot encoding converts categorical values into numerical

vectors. Going back to our example, P1 would be encoded into

(1, 1, 1, 0) since it belongs to categories A,B,C and not D.
• Multidimensional scaling [34] maps a distance matrix to some

vectors in certain dimensions. The relative distances between

different POIs are kept.

• Word2Vec [21] creates vector representations of words in a text

corpus, which here concerns the set of all categories.

Since these methods do not consider the location of the POIs

but only focus on implicit links, they produce thematic groups

of POIs which are not necessarily geographically close. Indeed,

since the groups are computed using categories, clusters might

contain POIs sharing the exact same set of categories but actually

located in different regions. For instance, Figure 5 represents the

results when running PIC over POIs in Vienna. Pins having the

same color are part of the same cluster. As expected, it appears

that POIs of the same thematic cluster are distributed at various

parts of the city center. Then, to get usable AOIs, we pipe together

the two considered kinds of clustering to sub-group the thematic

clusters according to their geographical locations. Thanks to that

strategy, we ensure that the resulting AOIs are composed by POIs

that are thematically related. This example demonstrates that

the combination of these two approaches allows us to refine the

thematic clusters and thus obtain the four AOIs depicted on map.

7 PROTOTYPE IMPLEMENTATION
We have been implementing a comprehensive open source soft-

ware prototype aiming to support stakeholders in all stages of

the POI data value chain. This prototype integrates all afore-

mentioned tools for transforming, linking, fusing, enriching, and

analyzing linked POI data. The SLIPO system (currently in beta

version
21
) consists of the following main modules:

• SLIPO Toolkit: This is a collection of the individual software

components (Section 5) applied in quality-assured POI data

integration: transformation (TripleGeo), interlinking (Limes),

fusion (Fagi), enrichment (Deer) and analytics (Sansa). These

software components can be either installed locally or invoked

21
All software is publicly available at https://github.com/SLIPO-EU
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as part of the SLIPO Workbench and APIs functionality ex-

plained next.

• SLIPO Workbench: This is a web application, which integrates

the Toolkit components to implement POI data integration

workflows in a coherent, simple to use, and flexible manner.

More specifically, it provides utilities for (a) uploading, search-

ing and managing POI datasets in several formats, (b) design-

ing, persisting and managing data integration workflows for

POI datasets based on the features provided by the SLIPO

Toolkit, (c) scheduling and monitoring the execution of the

data integration workflows, and (d) visualizing the results of

workflow executions.

• SLIPO APIs: This is a collection of RESTful HTTP programming

interfaces for invoking SLIPO Toolkit component functionality

and integrating it into third-party systems. APIs only support

the invocation of simple atomic functions (e.g., POI transfor-

mation); otherwise the Workbench web application should be

used. Both SLIPO Workbench and APIs are exposed through

the same web application server.

Our prototype implements a workflow engine that executes

data integration jobs and a scheduler for initializing workflow exe-

cutions. A workflow consists of several loosely coupled tasks that

together constitute a data integration process over POI datasets.

A task may invoke an operation implemented by a Toolkit compo-

nent (e.g., fusion), or perform secondary operations (e.g., prepare

configuration files, update metadata, copy files).

The workflow engine and the SLIPO Toolkit components are

deployed over a cloud infrastructure. Workbench and APIs ex-

change messages with the scheduler to execute workflows. The

scheduler propagates requests to the workflow engine, which

subsequently initiates the execution of one or more tasks. A task

is executed either in-process locally on the scheduler host, or

remotely using Docker containers. Each Toolkit component is

responsible for providing a scalable implementation for the re-

quested operation, inside the context of the running OS process.

A Toolkit component that advertises itself as capable of parti-

tioning its input (and, of course, merging its output) can also

scale to multiple Docker containers. The scheduler only controls

the total amount of resources allocated to a container, enforcing

CPU/memory quotas derived from component-specific require-

ments and input data size.

Thanks to its modular, service-oriented architecture, SLIPO

offers stakeholders the option to directly use the provided func-

tionalities following a Software-as-a-Service paradigm. Alterna-

tively, they are able to select specific tools to customize, extend

and incorporate in their own POI data management workflows

according to their specific needs and requirements. We expect

that this will allow the rapid uptake of our innovations in a pro-

duction setting without affecting any operations and processes

already in place.

8 USE CASES
We have been extensively testing and evaluating SLIPO in real-

world settings, against various POI data assets. These use cases

cover diverse domains (geomarketing, tourism, navigation), en-

suring that they reflect the requirements of cross-sector, cross-

border and cross-lingual POI data integration. Next, we examine

the ability of SLIPO to cope with two typical data integration

scenarios against real-world POI datasets in two countries.

Table 1: POI datasets tested in the use cases.

Dataset #POIs Geometry Thematic attributes (# in bold) #triples

G
e
r
m
a
n
y

D1 35640 point (14): name(s), category, address, 1114598

(vendor) contact details

D2 24416 point (13): name, address, business 1098755

(vendor) data (turnover, #employees, etc.)

point, > 25 tags: (multi-lingual) names,

OSM 45750 line, address, contact details, image, 1130220

(open) polygon opening hours, operator, etc.

GN 7156 point (12): name(s), city, zipcode, 161473

(open) text description, last update

G
r
e
e
c
e

D3 72373 point (13): bi-lingual names, address, 2517030

(vendor) category, contact details

point, > 25 tags: (multi-lingual) names,

OSM 102159 line, address, contact details, image, 2515476

(open) polygon opening hours, operator, etc.

8.1 Validation Settings
The first use case concerns hotel POIs in Germany, whereas the

second deals with general POIs in Greece. Table 1 lists information

concerning the datasets in each scenario. Note that data sources in

each use case have different schemata, content and quality. Some

datasets are crowdsourced such as OpenStreetMap (OSM) or

GeoNames (GN ), while others are offered by commercial vendors

(D1,D2,D3)
22
. Through SLIPO, we define integration workflows

that deliver an output dataset having:

– More POIs, i.e., POIs missing from an original dataset are com-

plemented from the other ones.

– Geometry representations get a more detailed shape, e.g., poly-

gons obtained from OSM can replace (or complement) the

original point (lat/lon) locations of certain POIs.

– Extra thematic attributes are derived by bringing together in-

formation (e.g., fax numbers, opening hours, links to photos,

multi-lingual names) across all original data sources.

– Attribute values per POI are more accurate and complete, e.g.,

missing telephone numbers are filled or updated after checking

against each available input.

In each use case, the original datasets are first transformed

into RDF according to the SLIPO ontology (Section 4) with suit-

able attribute mappings. The last column in Table 1 indicates the

number of resulting RDF triples. Next, each data integration cycle

handles a pair of RDF datasets, either transformed from original

data or intermediate ones derived from previous cycles. As men-

tioned in Section 3, a cycle involves these successive stages (cf.

Figure 2):

• Linking two POI datasets to identify matching POI entities.

The resulting RDF graph contains owl:sameAs links between

their respective URIs.

• Fusion of the linked datasets into a new one according to several

strategies for fusing spatial and thematic properties per POI.

• Enrichment of fused data with extra information from DBpedia.

Once data integration is complete, its RDF output passes through

our reverse transformation service and delivers the integrated

dataset in a traditional POI format (e.g., CSV, shapefile) readily

expoitable by stakeholders.

Both scenarios were executed on a virtual machine deployed

on top of a cloud stack. This VM offers an Intel
®
Xeon

®
E-52600

CPU with 16 virtual cores, 32GB RAM, 16GB swap space, and

200GB disk running Linux Ubuntu 16.04 LTS. In each case, we

report data sizes, as well as the qualitative measures discussed in

Section 5.5. All tests have been conducted with “cold” caches.

22
Commercial vendors are anonymized for confidentiality.
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8.2 Use Case A: Hotels in Germany
The first use case aims to integrate POIs in Germany concerning

hotels. We assume that a stakeholder maintains a base POI dataset

(D1) and wishes to enrich it with information from other datasets

(Table 1) in three successive integration cycles:

(#1) Integrate D1 with OSM ;

(#2) Integrate result of cycle #1 with D2;

(#3) Integrate result of cycle #2 with GN .

This workflow is illustrated in Figure 6(a). It includes transfor-

mation of each input dataset as well as the successive integration

cycles (linking, fusion, enrichment). After reverse transforma-

tion of the integrated output, the resulting dataset R1 is obtained.
Under this scenario, the stakeholder does not wish to increase

the number of POIs in its base data D1. Instead, it only wants to

enhance its content with extra thematic attributes, by filling in

missing values and also obtain more detailed geometry represen-

tation where available from the other datasets.

Indicative quality and performance measurements for each

cycle of Use Case A are listed in Table 2. In this use case, as all

data belongs to a specific category (hotels), we specified that links

between POI profiles should be based strictly on their spatial

proximity. This explains the high linking confidence (0.98) in

the resulting links. Although this choice can yield erroneous

matches (e.g., two hotels may be close, but have different names),

we sort them out later during fusion. As no ground truth is avail-

able, precision and recall concerning link detection cannot be

estimated by Limes. In Table 2, we only provide the respective

pseudo-measures (Section 5.5), but they yield rather poor esti-

mates because the source/target datasets involved in linking at

each cycle have different sizes (cf. Table 1).

Thanks to its validation rules, Fagi can filter out mismatches

not only based on proximity, but also checking with POI names,

phone numbers and addresses. The confidence of fused results re-

mains consistently high across all three cycles and demonstrates

the similarity among the original POIs that were fused together.

At the end of the fusion process, we were able to achieve an

increase in the amount of properties per POI, which at the final

cycle exceeds 26% on average. Note that there are some POIs

where the amount of their attributes increases by up to 47%, ac-

quiring extra properties progressively in each cycle. The more

the fused attributes, the faster the confidence stabilizes after each

subsequent cycle close to 0.87. It is also important to mention

that about a quarter of the POIs get more detailed geometry rep-

resentations due to integration with the OSM data in Cycle #1.

Since all other datasets include points only, no further geometric

improvement occurs in subsequent cycles. Finally, we stress that

the entire workflow concludes in about 6.5 minutes, delivering a

unified, richer dataset that otherwise would require considerable

human labor.

8.3 Use Case B: POIs in Greece
The second use case concerns general POIs in Greece of various

categories, i.e., not only hotels as in the previous use case, but also

restaurants, cinemas, schools, supermarkets, bus stops, ATMs,

etc. As illustrated in Figure 6(b), the goal in this workflow (in one

cycle only) is to create a single, integrated datasetR2 that includes
all available information from both input datasets (commercial

D3, open OSM data). In particular, apart from richer content

(geometries, extra thematic attributes, and filled missing values),

the resulting dataset R2 will grow in size as well, containing many

more POIs than any of the original ones.

(a) Hotels in Germany (b) POIs in Greece

Figure 6: Integration workflows for the two use cases.

Table 2: Execution Results.

Measurement

Use Case A

Use Case B

Cycle #1 Cycle #2 Cycle #3

# detected links 33645 15605 6448 29353

Pseudo-precision 0.69 0.81 0.61 0.65

Pseudo-recall 0.57 0.43 0.18 0.22

Pseudo-F-measure 0.62 0.56 0.28 0.33

Avg linking confidence 0.98 0.98 0.98 0.79

# fused pairs 19885 10903 1790 11036

Avg fusion confidence 0.91 0.88 0.87 0.86

Avg attribute gain 0.20 0.26 0.26 0.17

Max attribute gain 0.41 0.47 0.47 0.37

# resulting POIs 35640 35640 35640 159099

# non-point geometries 8728 8728 8728 28236

Execution cost (sec) 224.8 141.4 26.5 823.4

Statistics regarding this workflow are also listed in Table 2. In

this use case, interlinking is not just based on spatial proximity

but also on POI name similarity in order to avoid matching of

possibly dissimilar entities that are next to each other in densely

populated areas (e.g., city centers). Due to our relaxed criteria

for interlinking, enough potential matches were detected (29353),

although with less linking confidence (average: 0.79) compared

to the previous use case.

However, we observed that a POI was often linked to multiple

other POIs not always having a very similar name, but still close

enough in space. During the fusion stage, most of those links

were ignored based on our validation rules that also take into con-

sideration more properties (phone, address) in similarity checks.

Keeping only 11036 links that were deemed reliable, we derived

fused POIs achieving strong confidence (0.86) that they actually

concern the same entity. Regarding attribute gain, integrated re-

sults denote an average 17% increase in properties per POI. This

result may seem poorer compared to Use Case A, but note that

crowdsourced content in OSM for Greece is less rich than for

Germany. Still, the most important outcome of this integration is

that the final dataset R2 includes more than 159 thousand POIs,

which is over than double the size of commercial dataset D3. As
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Figure 7: POIs in Athens city center before (red) and after
integration (blue).

depicted in Figure 7, integration results (POIs in blue circles) su-

persede by far and drastically enhance the original information

of dataset D3 (shown with red stars). Furthermore, almost 18% of

the resulting POIs now have more detailed geometries (shown as

blue polygons) thanks to information extracted from OSM . Last,

but not least, the fact that this workflow delivers its result in less

than 14 minutes, clearly demonstrates the efficiency of SLIPO.

9 CONCLUSIONS AND FUTUREWORK
In this paper, we presented the SLIPO system, a cloud-based ap-

plication encapsulating Linked Data technologies to efficiently

address the challenges of large-scale integration of POI data as-

sets. SLIPO transfers data integration to the Linked Data domain,

thus allowing state-of-the-art software to be repurposed and fo-

cused to POI data, without requiring domain-specific knowledge

from stakeholders or alterations in existing operational work-

flows. Our tests and evaluations in diverse application domains

have shown that SLIPO offers clear advantages in terms of effi-

cient, reliable, quality-assured POI data integration.

Our effort in SLIPO continues along several directions aiming

to expand its relevance, efficiency, and value in an industrial set-

ting. First, we will improve the individual software components

with additional POI-specific rules and operations to increase

performance and effectiveness. Further, we are working with

our industrial partners to apply SLIPO in a plethora of domain-

specific and cross-border commercial data integration tasks, di-

rectly comparing and documenting the gains in productivity,

time-to-market, and value. In addition, we are creating periodic

world-scale data integration workflows beyond the current reach

of the industry, to enable low-cost and streamlined POI-based

services. Finally, we are expanding the interoperability of the

system to support third-party systems (e.g., signage recognition

from street-level imagery) and its quality-assurance services,

which will help embed SLIPO in the business workflows of most

stakeholders in the value chain.
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ABSTRACT
Entity matching (EM) identifies data instances that refer to the
same real-world entity. Numerous EM works have covered a
wide spectrum, from developing new EM algorithms to scaling
them to building EM systems. But there has been very little if
any published work on how EM is carried out in practice, end to
end. In this paper we describe in detail a case study of applying
EM to a particular domain end to end (i.e., going from the raw
data all the way to the matches).

Specifically, we describe a real-world application for EM in the
science policy research community. We describe how our team
(the EM team) interact with the science policy team to carry out
the EM process, using PyMatcher, a state-of-the-art EM system
developed in theMagellan project at UW-Madison. We highlight
the communication between the two teams and the zig-zag nature
of the EM process. We identify a set of challenges that we believe
arise inmany real-world EM projects but that current EM systems
have either ignored or are not even aware of. Finally, we provide
all data underlying this case study, including labeled tuple pairs
and documentation supplied by the science policy team, to serve
as a good challenge problem for EM researchers.

1 INTRODUCTION
Entity matching (EM) identifies data instances that refer to the
same real-world entity, such as (David Smith, UW-Madison) and
(D. M. Smith, UWM). EM has been a long-standing challenge in
data management [6, 11], and will become even more important
in data science. This is because many data science projects need
to integrate data from disparate sources before analysis can be
carried out, and such integration often requires EM.

Consequently, EM has received enormous attention (see Sec-
tion 2). Surprisingly, as far as we can tell, there has been very
little if any published work on how EM is carried out in practice,
end to end. The closest that we can find are works that perform
EM in a particular domain, e.g., e-commerce, mobile data, pa-
tient records, drugs, etc. But these works focus on developing
specialized EM algorithms that exploit the characteristics of the
target domain, e.g., exploiting product taxonomies (to match e-
commerce products) or the spatio-temporal nature of mobile data
(to match phone calls).

In this paper we describe in detail a case study of applying
EM to a particular domain, end to end (i.e., going from the raw
data all the way to the matches). This case study is quite rich,
and it clearly demonstrates many novel challenges for current EM
solutions and systems. We will soon release all the data underlying
this case study (to be available at [20]), so that our community
can use it as a challenge problem for EM.

Specifically, in summer 2015 we started theMagellan project
at the University of Wisconsin-Madison, to build EM systems.
We believe that building practical EM systems is critical for ad-
vancing the EM field, the way systems such as System R, Ingres,

© 2019 Copyright held by the owner/author(s). Published in Proceedings of the
22nd International Conference on Extending Database Technology (EDBT), March
26-29, 2019, ISBN 978-3-89318-081-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Hadoop, and Spark are critical for advancing the fields of rela-
tional data management and Big Data. Subsequently, we built
an EM system called PyMatcher [17], which is quite different
from EM systems built so far (see Section 2). We then looked for
real-world applications to “test drive” PyMatcher.

To do so, we talked with the science policy research commu-
nity, which has been building a large “data lake” called UMET-
RICS. Currently UMETRICS collects data from 24 participating
U.S. universities, on research grants and the researchers involved
in these grants. They use the data to study questions such as
“What are the results of investments in research?” and “How
do universities affect the regional economy?”, and indeed many
studies have been published using UMETRICS data (e.g., [30]).

Building UMETRICS requires matching grants across different
datasets. The UMETRICS team (at the University of Michigan)
has developed and deployed a rule-based EM workflow, but its
accuracy is not satisfactory. So we collaborated with a science pol-
icy team at UW-Madison to build a more accurate EM workflow,
using PyMatcher.

This workwas eye-opening to us. Before starting this work, we
already felt that existing EM systems were not powerful enough
because they failed to address many challenges that arise in real-
world EM [17]. That was why we started theMagellan project.
Working with UMETRICS suggested to us that we were probably
on the right track, but that real-world EM does raise many more
challenges that we have also failed to recognize.

These challenges apply equally well toMagellan and other ex-
isting EM systems. We discuss the challenges in detail in Section
13, covering the need to develop how-to guides (that provide de-
tailed guidance to the users on how to carry out EM step by step,
end to end), new pain points in EM (e.g., labeling, match defini-
tion), the need for different EM solutions for different parts of the
data, support for easy collaboration among multiple team mem-
bers (who are often in different locations), handling changes that
inevitably arise during the EM process, managing machine learn-
ing “in the wild”, the need to use both learning and hand-crafted
rules, and the need to design a new type of EM architecture. In
summary, we make the following contributions:

• We describe a real-world application for EM in the science
policy community. We describe what the users want in
terms of EM, how their goals change over time, and what
end results they are aiming for.
• We describe in detail how our team (the EM team) interacts
with the science policy team (the UMETRICS domain ex-
pert team) to carry out the EM process, using PyMatcher,
a state-of-the-art EM system developed in our group. We
highlight the communication between the two teams and
the zig-zag nature of the EM process.
• We identify a set of challenges that we believe arise in
many real-world EM projects but that current EM systems
have either ignored, or are not even aware of, or have not
addressed well. While in this paper we have focused on
just one case study, in the past few years we have worked
with many more real-world EM cases, and the challenges
described here also commonly arise in those cases.
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• Finally, we provide all data underlying this case study,
including all the labeled tuple pairs and documentation
supplied by the domain expert [20]. This dataset can serve
as a good challenge problem for EM researchers.

Overall, we hope that the case study here can contribute to help-
ing EM researchers understand better the challenges of the EM
process and develop more effective EM solutions. The UMET-
RICS data and Jupyter notebooks will be available at [20], and a
technical report with far more details will be available at [19].

2 BACKGROUND & RELATEDWORK
We now discuss the EM problem, related work, then PyMatcher,
which was used to perform EM for the case study.

Entity Matching: This problem, a.k.a. entity resolution, record
linkage, etc., has received enormous attention (see [6, 11] for
books and surveys). A common EM scenario finds all tuple pairs
(a,b) that match, i.e., refer to the same real-world entity, between
two tables A and B (see Figure 1). Other EM scenarios include
matching tuples within a single table, matching into a knowledge
base, matching XML data, etc. [6].

Most EMworks develop matching algorithms, exploiting rules,
learning, clustering, crowdsourcing, among others [6, 11]. They
try to improve the matching accuracy and reduce costs (e.g.,
run time). Trying to match all pairs in A × B often takes very
long. So users often employ heuristics to remove obviously non-
matched pairs (e.g., products with different colors), in a step
called blocking, before matching the remaining pairs. Several
works have addressed scaling up blocking (e.g., [3, 8, 16, 29]),
learning blockers [4, 9], and using crowdsourcing for blocking
[13] (see [7] for a survey).

Many works have considered EM for a particular domain, such
as e-commerce (e.g., [10, 15, 21, 22]), patient records [24], finan-
cial entities [12], medical sciences [5], drugs [26], and more. But
they do not focus on the entire end-to-end process, the interac-
tion between the EM team and the domain expert team, and on
identifying the challenges for current EM systems, as we do in
this paper.

In contrast to the extensive effort on EM algorithms, there
has been relatively little work on building EM systems. As of
2016 we counted 18 major non-commercial systems (e.g., D-Dupe,
DuDe, Febrl, Dedoop, Nadeef), and 15 major commercial ones
(e.g., Tamr, Data Ladder, IBM InfoSphere) [6]. Our examination
of these systems (see [18]) reveals the following four major prob-
lems: these systems do not cover the entire EM pipeline, they
are stand-alone monolithic systems and hence they make it very
difficult to exploit a wide range of techniques, it is very difficult to
write code to “patch” these systems even though this is often nec-
essary in practice, and these systems provide very little guidance
to users on how to execute the EM process. These shortcomings
motivated us to develop theMagellan project, which we briefly
describe next.

The Magellan Project (PyMatcher and CloudMatcher): In
the Magellan project we developed an on-premise Python-based
EM system called PyMatcher and a cloud-based self-service sys-
tem called CloudMatcher. In this paper we only used the Py-
Matcher system, which we briefly describe below.

Compared to current EM systems, PyMatcher is novel in four
aspects. (1) It provides how-to guides that tell users what to do in
each EM scenario, step by step. (2) It provides tools to help users
do these steps; the tools seek to cover the entire EM pipeline, not

Name City State

Dave Smith Madison WI

Joe Wilson San Jose CA

Dan Smith Middleton WI

Name City State

David D. Smith Madison WI

Daniel W. Smith Middleton WI

a1 

a2 

a3  

b1

b2

Matches

(a1, b1)  

(a3, b2)  

Table A Table B

Figure 1: An example of matching two tables.

just matching and blocking as current EM systems do. (3) Tools
are built into the ecosystem of data science tools in Python, allow-
ing PyMatcher to borrow powerful capabilities in data cleaning,
visualization, learning, etc. (4) PyMatcher provides a powerful
scripting environment to facilitate interactive experimentation
and quick “patching” of the system. See [14, 17] for more, and see
sites .дooдle .com/site/anhaidдroup/projects/maдellan for code.

3 PROBLEM DEFINITION
We now introduce the science policy research community, their
effort to conduct data-driven research by creating a large data lake
called UMETRICS, their need to perform EM to build UMETRICS,
and the EM problem considered in this paper.

The Science Policy Research Community: A large country
such as the U.S. spends hundreds of billions of dollars on science
R&D (i.e., research & development) per year. It is important to be
able to track the impact of this spending and develop effective
science R&D policies. The science policy research community
studies such issues.

UMETRICS: To do so effectively, in the past decade, this com-
munity has been building a data science infrastructure centering
around a large data lake called UMETRICS, which stands for
“Universities: Measuring the Impacts of Research and Innovation,
Competitiveness and Science” [2].

Currently UMETRICS collects data from 24 participating uni-
versities, specifically data on (a) all people paid and all purchases
from vendors and subcontracts for all federally funded grants, and
(b) the specific job titles and the source of funding for research
projects at the universities. As such, the data can be used to study
questions such as “What are the results of investments in re-
search?” and “How do universities affect the regional economy?”,
and indeed many studies have been published using UMETRICS
data (e.g., [30]).

The Need for Entity Matching: While highly promising,
building UMETRICS require a lot of work to integrate the data
submitted by the 24 participating universities. For example, if
UW-Madison submits a table that lists research grants from the
National Science Foundation (NSF), then those grants must be
matched into existing grants already in UMETRICS.

This matching is highly non-trivial. For example, the same
research project can have different research titles recorded in
UMETRICS and at universities. As another example, a grant given
by a funding agency to a research project may be distributed to
many smaller projects in the same university, and this infor-
mation will be recorded in multiple entries in UMETRICS, so
matching these entries is not trivial.

The Need to Improve the Current EM Solution: Currently
the UMETRICS team (at the University of Michigan) performs
suchmatching using hand-crafted rules. But the accuracy remains
unsatisfactory. As a result, a team led by Professor Brent Hueth
(in the Department of Agricultural and Applied Economics at
UW-Madison and a co-author of this paper) set out to examine
how to improve the accuracy of this EM solution.
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Matching the USDA Dataset with the UMETRICS Dataset:
As a concrete project, they first selected a dataset that contains
grants awarded to UW-Madison fromUSDA (the U.S. Department
of Agriculture) in a certain time period. We will refer to this
dataset the USDA dataset.

Next, they wanted to match grants in this USDA dataset into
UMETRICS. To do so, they performed a simple selection inUMET-
RICS to select all grants awarded to UW-Madison by USDA in the
same time period (UMETRICS allows such selections). For sim-
plicity, let us call this new dataset the UMETRICS dataset. Next,
the team wanted to match grants between the USDA dataset and
the UMETRICS dataset. Their goal is to find a new EM workflow
that is more accurate than the current rule-based EM workflow
(deployed in UMETRICS).

This team, which we will call the UMETRICS team, consisted
of Professor Brent Hueth, a Ph.D. student in economics, and an
hourly student in CS. Initially, we did not get closely involved
in the EM process. Instead, we let the UMETRICS team try to
match the two datasets themselves. We only provided advice for
specific problems such as debugging the matches and evaluating
the match results. However, after multiple meetings, we observed
that the UMETRICS team simply did not know how to perform
EM in a systematic fashion. They had no idea what to do first,
what to do second, etc., even though they had a CS student in
the team who has learned about EM in a data science class.

So we decided to get involved. Our team, which we will call
the EM team, consisted of Professor AnHai Doan, a Ph.D. stu-
dent in CS, and an hourly student in CS. Our team took over
the matching work. We viewed the UMETRICS team as domain
experts, and consulted with them in that capacity (by meeting
for an hour per week and via emails). Our goal here is to simulate
and understand the collaboration between an EM team and a
domain expert team, as such settings commonly occur in real-
world matching projects. Henceforth “we” refers to the EM team
(in CS), when there is no ambiguity.

We decided to use PyMatcher to perform EM, by following
its how-to guide (see the PyMatcher’s homepage for this guide).
In the following sections, we discuss the steps we followed. We
intentionally discuss them in details, to show all the steps that hu-
man users must perform. We also discuss them in chronological
order to show how zig-zag the process was. Finally, we discuss
details such as where the files were stored, how the two teams
communicated, to highlight the logistic aspects of executing such
an EM project in a distributed fashion.

4 UNDERSTANDING THE DATA
We received the raw data from the UMETRICS team in a Google
Drive folder. We started by exploring to understand the tables
in the datasets, specifically to understand the “entities” in these
tables and the relationships among the entities.

We first opened the raw data and found six CSV tables with the
“UMETRICS” prefix and one CSV table with the “USDA” prefix.
From the table names, we assumed that the names with the
“UMETRICS” prefix correspond to UMETRICS-related tables and
the name with the “USDA” prefix corresponds to the USDA table.

Next, we explored each table to obtain a brief understanding of
the information included in it and the data values of its columns.
Specifically, we browsed a few sample rows that were randomly
selected from the table and examined general statistics such as
the number of unique values, number of missing values, mean,
median, etc., for each column.

UMETRICS

Table Name Num. Rows Num. Cols
UMETRICSAwardAggMatching 1336 13
UMETRICSEmployeesMatching 1454070 13
UMETRICSObjectCodesMatching 4574 3
UMETRICSOrgUnitMatching 264 5
UMETRICSSubAwardMatching 21470 23
UMETRICSVendorMatching 377746 21

USDA

Table Name Num. Rows Num. Cols
USDAAwardMatching 1915 78

Figure 2: Summary of the original UMETRICS and USDA
tables given by the UMETRICS team.

Figure 2 lists the number of rows and columns for each table.
Figure 3 shows a few rows from UMETRICS tables, and Figure 4
shows a few rows from the USDA table.

To explore the smaller tables (which have fewer than 300K
tuples), we used pandas [25] and MS Excel. To explore the larger
tables, we used SQLite. To profile the tables, we used the pandas-
profiling tool [1] and custom Python scripts.

The UMETRICS Tables: The schemas of the six UMETRICS
tables are as follows:
UMETRICSAwardAggMatching(UniqueAwardNumber,AwardTitle,
FundingSource,FirstTransDate, LastTransDate,
RecipientAccountNumber,TotalOverheadCharged,
TotalExpenditures,NumberOfTransactions,
DataFileYearEarliest, DataFileYearLatest,
SubOrgUnit, CampusID)

UMETRICSSubAwardMatching(UniqueAwardNumber, Address,
BldgName, City, Country, DUNS, DomesticZipCode, EIN,
ForeignZipCode, ObjectCode, OrgName, OrganizationID,
POBox, PeriodEndDate, PeriodStartDate, RecipientAccountNumber,
SrtName, SrtNumber, State, StrName, StrNumber,
SubAwardPaymentAmount, DataFileYear)

UMETRICSOrgUnitsMatching(CampusId, SubOrgUnit, CampusName,
SubOrgUnitName, DataFileYear)

UMETRICSEmployeeMatching(UniqueAwardNumber, PeriodStartDate,
PeriodEndDate, RecipientAccountNumber,
DeidentifiedEmployeeIdNumber, FullName,
OccupationalClassification, JobTitle, ObjectCode,
SOCCode, FteStatus, ProportionOfEarningsAllocated,
DataFileYear)

UMETRICSVendorMatching(UniqueAwardNumber, PeriodStartDate,
PeriodEndDate, RecipientAccountNumber, ObjectCode,
OrganizationID, EIN, DUNS, VendorPaymentAmount,
OrgName, POBox, BldgNum, StrNumber, StrName, Address,
City, State, DomesticZipCode, ForeignZipCode, Country,
DataFileYear)

UMETRICSObjectCodesMatching(ObjectCode, ObjectCodeText,
DataFileYear)

Entities of the UMETRICS Tables: Based on our exploration
and profiling of the UMETRICS tables, we inferred the entities of
each table as much as we could. “UMETRICSAwardAggMatch-
ing” included information about awards, i.e., research grants. It
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Figure 3: Example rows from the UMETRICS tables.

Accession
Number

Project Title Sponsoring
 Agency

Funding
 Mechanism

Award 
Number

Initial 
Award

Fiscal Year

Recipient 
Organization

Recipient 
DUNS

Project 
Director

Multistate 
Project

 Number

Project 
Number

Project 
Start Date

Project 
End Date

Project 
Start 
Fiscal 
Year

… … Financial: USDA 
Contracts, 

Grants, Coop Agmt

175763 GENETIC 
ORGANIZATION 
AND EPIGENETIC 
SILENCING OF 
MAIZE R GENES

State 
Agricultural 
Experiment 
Station

State Funding NaN NaN SAES – 
UNIVERSITY 
OF WISCONSIN

NaN Kermicle, 
J.L

NaN WIS04059 1997-07-01 2010-09-30 1997 … … NaN

190977 The Changing 
Location and Extent 
of the Wildland-
Urban Interface 
During the 1990's

State 
Agricultural 
Experiment 
Station

State Funding NaN NaN SAES – 
UNIVERSITY 
OF WISCONSIN

NaN Hammer, 
R

NaN WIS04593 2001-10-01 2011-09-30 2002 … … NaN

Figure 4: Example rows from the USDA table.

included funding information for the research projects in the uni-
versity. “UMETRICSSubAwardMatching” included information
about how the awards are split into multiple sub-awards to fund
the research projects.

“UMETRICSOrgUnitsMatching” included information about
different organization units to which the awards were given.
“UMETRICSEmployeeMatching” included information about the
employees in the university, and “UMETRICSVendorMatching”
included information about the vendors interacting with the
university. We were not clear about the information included in
the “UMETRICSObjectCodesMatching” table.

Relationships among the UMETRICS Tables: We observed
that “UMETRICSAwardAggMatching” was the central table to
which most other tables (except “UMETRICSObjectCodesMatch-
ing”) could be joined using a key-foreign key relationship. For
this table (i.e., “UMETRICSAwardAggMatching”), the attribute
“UniqueAwardNumber” was the primary key.

We found that the tables “UMETRICSEmployeeMatching,”
“UMETRICSVendorMatching,” and “UMETRICSSubAwardMatch-
ing” included the “UniqueAwardNumber” column, which could
be joined with the ”UniqueAwardNumber” of the “UMETRIC-
SAwardAggMatching” table. The table “UMETRICSOrgUnits-
Matching” included a “CampusId” column that could be joined
with “CampusId” in the “UMETRICSAwardAggMatching” table.
The table “UMETRICSObjectCodesMatching” included an “Ob-
jectCode” column that could be joined with the “ObjectCode”
column in the “UMETRICSEmployeeMatching” table.

The USDA Table: Only one table contained USDA information
(see Figure 4). This table has 78 columns. Because of space con-
straints, a partial schema of this table including a few columns is
shown below.
USDAAwardMatching(AccessionNumber, ProjectTitle,
SponsoringAgency, FundingMechanism, AwardNumber, ...,
ProjectNumber, ProjectStartDate, ProjectEndDate, ...,
ProjectDirector, ...,
Financial: USDAContracts, Grants, Coop Agmt)
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5 UNDERSTANDING MATCH DEFINITION
After exploring the tables, we have obtained an understanding
of the entities and their relationships. However, we did not know
how to use these tables to match the awards (i.e., grants), e.g.,
which tables are relevant for matching? What does it mean to be
a match between the UMETRICS and USDA datasets?

In response, theUMETRICS team sent us amatching document,
which discusses the most relevant tables, provides a matching def-
inition, and provides a few sample matching and non-matching
record pairs. This document stated that only three tables (among
seven) were most relevant for matching and provided the follow-
ing matching definition.

• (M1) If a part of “UniqueAwardNumber” in UMETRICS
matches “Award Number” in USDA, then the record pair
can be considered a match. Specifically, “UniqueAward-
Number” can take the form “XX.XXX YYYY-YYYY-YYYYY-
YYYYY”. Thus if “YYYY-YYYY-YYYYY-YYYYY” matches
the “Award Number,” then the record pair is a match. An
example of such a match is shown in Figure 5.
• (M2) A number of records in USDA do not have values
for “Award Number.” In such cases, the records may be
matched by checking whether the “AwardTitle” in UMET-
RICS and the “Project Title” in USDA are similar. An ex-
ample of such a match is shown in Figure 6.
• (M3) A record pair from UMETRICS and USDA can also
be matched by comparing the individuals involved in the
project.

From the above matching definition, we could infer one positive
matching rule based onM1. Specifically, for a record pair from
UMETRICS and USDA tables, if the second part of “UniqueAward-
Number” in the UMETRICS record matches exactly the “Award
Number” in the USDA record, then the record pair could be de-
clared a match.

It is possible to use this positive rule to filter out all the positive
matches, then proceed with a smaller set for matching. However,
we did not do that because we were not sure if the match defini-
tion had been stabilized as yet. Instead, we decided to incorporate
this rule as a part of the blocking step (as we will see soon).

Apart from M1, the other two instructions (M2 and M3) in
the above matching definition are not precise. For example, in
M2, what does it mean to say “similar”? Further, if the award
and project titles match exactly, but are very generic (e.g., “Lab
Supplies”), then we still cannot conclude that the records match.
So we cannot capture these matching instructions as rules, to be
applied to the tables to obtain the matches.

As this example suggests, matching definitions are often writ-
ten in English, in a verbose and imprecise fashion. Business own-
ers often train analysts to perform matching. These analysts gain
experience over time and tune their understanding of a “match.”
They do this by exploring a wide variety of examples and check-
ing with the business owners when in doubt. This suggests that
understanding a matching definition is an iterative process that
involves continuous interaction with the business owners.

6 PRE-PROCESSING THE DATA
Recall that we were given six UMETRICS tables (describing how
the funding from different agencies was used for the research
projects at UW-Madison) and one USDA table (describing how
the funding from USDA was used for research projects at UW-
Madison).

UMETRICS USDA
field value field value

UniqueAwardNumber 10.200 
2008-34103-19449 Accession Number 214335

AwardTitle

DEVELOPMENT OF 
IPM-BASED CORN 
FUNGICIDE 
GUIDELINES FOR 
THE NORTH 
CENTRAL STATES

Project Title

Development of IPM-
Based Corn Fungicide 
Guidelines for the North 
Central States

FirstTransDate 10/1/08 Award Number 2008-34103-19449

FirstTransDate 10/1/08 Project Start Date 8/15/08

Project End Date 8/14/11
    Project Director ESKER, PAUL 

Figure 5: A matching pair based on Award Number.

UMETRICS USDA
field value field value

UniqueAwardNumber 10.203 WIS01040 Accession Number 206746

AwardTitle

SWAMP DODDER 
(CUSCUTA 
GRONOVII) APPLIED 
ECOLOGY AND 
MANAGEMENT IN 
CARROT 
PRODUCTION

Project Title

Swamp Dodder (Cuscuta 
gronovii) Applied 
Ecology and 
Management in Carrot 
Production

FirstTransDate 10/1/07 Award Number -

LastTransDate 12/31/08 Project Start Date 10/1/06

Project End Date 9/30/08

    Project Director Colquhoun, J. 

Figure 6: A matching pair based on Award Title.

Even with this moderate number of tables, the matching pro-
cess will be difficult if we have to consider all of them. So we
decided to subset the tables (i.e., selecting only a portion of in-
formation from the tables, perhaps even using just a subset of
the tables) and apply transformations to obtain only two tables
that can be used for matching. To do so, we used the matching
document provided by the UMETRICS team.

Specifically, we created two tables “UMERICSProjected” and
“USDAProjected” (later we will match these two tables), using
the following steps.

(1) First, from the six UMETRICS tables, we selected two ta-
bles judged most relevant for matching by the UMETRICS team
(as discussed in the matching document): “UMETRICSAwardAg-
gMatching” and “UMETRICSEmployeeMatching”. (Naturally we
also keep the table “USDAAwardMatching”.)

(2) Next, we checked that “UniqueAwardNumber” and “Ac-
cession Number” were indeed the key columns in the “UMET-
RICSAwardAggMatching” and “USDAAwardMatching” tables,
respectively. We also checked that “UniqueAwardNumber” was
indeed a foreign key in the “UMETRICSEmployeesMatching”
table with valid values, and could be joined with the “UMETRIC-
SAggAwardMatching” table. We used PyMatcher and pandas to
perform these validations.

(3) Then we checked the four remaining UMETRICS tables to
see if they contained any information useful for matching. To
do this, we manually examined the names of the attributes of
these four UMETRICS tables and compared these names to the
names of the attributes of the USDA table, to find attribute pairs
with similar names. We found that “Recipient Organization” and
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“Recipient DUNS” from theUSDA tablewere similar to “OrgName”
and “DUNS” in the “UMETRICSVendorMatching” table1.

Next, we checked if the attributes with similar names have sim-
ilar values. Specifically, we checked for any overlap of values and
compared the distributions of values using mean, median, etc. We
did this using pandas and custom Python scripts. We found that
the values of “OrgName”and “DUNS” from the “UMETRICSVen-
dorMatching” table did not overlap with the values of “Recipient
Organization” and “Recipient DUNS”.

We concluded that the four remaining UMETRICS tables do
not share any information with the USDA table, and thus are
not useful for matching. Thus, we ignore them in the subsequent
pre-processing steps.

(4) Finally, we applied transformations to the selected tables.
Specifically, we (a) projected out the UMETRICS and USDA tables
to create two tables with relevant columns for matching, (b)
matched the columns between the tables and renamed them with
the same names, and (c) added an ID column to each table. We
now elaborate on these steps.

(4.a) First, we projected and kept from the two tables “UMET-
RICSAwardAggMatching” and “USDAAwardMatching” only at-
tributes that are relevant for matching (we consulted the match-
ing document and the UMETRICS team about which attributes
to keep). This produced the following two tables:
UMETRICSProjected(UniqueAwardNumber, AwardTitle,
FirstTransDate, LastTransDate)

USDAProjected(AwardNumber, ProjectTitle, ProjectStartDate,
ProjectEndDate, AccessionNumber, ProjectDirector)

The “AccessionNumber” was included in the “USDAProjected”
table because the UMETRICS team required the output matches
to be listed as pairs of “UniqueAwardNumber” and “Accession-
Number.”

(4.b) Next, we matched the column names between the two
tables and renamed them with the same name. Specifically, we
matched “UniqueAwardNumber,” “AwardTitle,” “FirstTransDate,”
“LastTransDate” from the “UMETRICSProjected” table to “Award-
Number,” “ProjectTitle,” “ProjectStartDate,” “ProjectEndDate,” re-
spectively. We named them “AwardNumber,” “AwardTitle,” “First-
TransDate,” “LastTransDate.” We renamed “ProjectDirector” in
the “USDAProjected” table as “EmployeeName.” The updated
schemas are shown below.
UMETRICSProjected(AwardNumber, AwardTitle,
FirstTransDate, LastTransDate)

USDAProjected(AwardNumber, AwardTitle, FirstTransDate,
LastTransDate, AccessionNumber, EmployeeName)

Thenwe added a new column, “EmployeeName,” to the “UMET-
RICSProjected” table. To do so, we joined this table with the
“UMETRICSEmployeesMatching” table on the “AwardNumber”
and “UniqueAwardNumber” columns. There were multiple em-
ployee names for the same award in the “UMETRICSEmploy-
eesMatching” table. Therefore, for each award, these employee
names were concatenated, and each employee name was sepa-
rated by the | character.

(4.c) Finally, we added an ID column (“RecordId”) to both the
“UMETRICSProjected” and “USDAProjected” tables, to uniquely
identify each record in each table. The final schema of the two
tables are (see Figure 7):

1What we did here is essentially schema matching [27]. But we did it manually due
to the relatively small sizes of the tables.

Figure 7: Sample rows of the UMETRICSProjected and US-
DAProjected tables.

UMETRICSProjected(RecordId, AwardNumber, AwardTitle,
FirstTransDate, LastTransDate, EmployeeName)

USDAProjected(RecordId, AwardNumber, AwardTitle,
FirstTransDate, LastTransDate, AccessionNumber,
EmployeeName)

We used pandas, PyMatcher, and custom Python scripts to
perform the join and other transformations.

7 BLOCKING
After applying the transformations, the resulting tables, “UMET-
RICSProjected” and “USDAProjected”, have just 1336 and 1915
records, respectively.

Since they are small, can we just match all pairs of records in
their Catersian product? In other words, is blocking necessary?
It turns out that blocking is still required even in this case. This
is because to perform learning-based matching and to evaluate
the match results, we must first take a sample from this set (of
record pairs in the Cartesian product) and label them.

In our case, however, the Cartesian product of the input tables
has 2.5M record pairs, and most of them would be non-matches.
Random sampling from this set will result in very few matches.
Therefore, we still have to perform blocking to remove obvious
non-matching record pairs, so that later when we sample we can
obtain more matches in the samples.

We used the matching definition provided by the UMETRICS
team to guide the blocking step. We proceeded as follows:

(1) First, we applied a blocking scheme to include all record
pairs that satisfy M1. This is because if M1 is indeed a positive
matching rule, then all record pairs satisfying M1 must be in-
cluded in the candidate set (to be fed into the matching step).

Recall thatM1 declares a record pair a match if the second half
of the “AwardNumber” attribute of the “UMETRICSProjected”
table matches exactly the “AwardNumber” attribute of the “US-
DAProjected” table. To find all record pairs that satisfyM1, we
applied an attribute equivalence (AE) blocker to these tables. This
blocker includes a record pair (in the candidate set) only if the
blocking attributes of both input tables agree.

In our case, the AE blocker cannot be applied directly because
the “AwardNumber” from “UMETRICSProjected” and “USDAPro-
jected” cannot be compared for an exact match. So we first used
a regular expression to extract the suffix of “AwardNumber” of
the “UMETRICSProjected” table and stored the result as a tem-
porary column, “TempAwardNumber,” in the same table. Then
we applied the AE blocker using “TempAwardNumber” from the
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“UMETRICSProjected” table and “AwardNumber” from the “US-
DAProjected” table as blocking attributes. Finally, we removed
the temporary column (“TempAwardNumber”) from the “UMET-
RICSProjected” table. This blocking scheme produced a candidate
set of record pairs C1.

(2) Next, based on the matching definition M2, we decided
to include the record pairs that have similar award titles. We
examined a sample of the award titles in the “USDAProjected”
and “UMETRICSProjected” tables, and observed that the titles
often have multiple tokens (i.e., words in this case).

Intuitively, two similar award titles should share at least a few
tokens. So we applied an overlap blocker to the input tables us-
ing “AwardTitle” as the blocking attribute. This blocker discards
a record pair if the number of shared tokens (in the blocking
attribute) is less than an overlap threshold K .

Specifically, we normalized all the strings in the “AwardTi-
tle” column by lower casing and removing special characters
(e.g., single/double quotation marks, hash symbols, exclamation
marks, round/curly braces, etc.). Then we performed overlap
blocking using a word-level tokenizer, using the overlap thresh-
old 3 after trying a few other thresholds (e.g., the threshold of 1
resulted in 200K record pairs, and a threshold of 7 resulted in a
few hundred record pairs). This produced a candidate set C2.

(3) The overlap blocker drops a record pair if the number
of tokens in the blocking attribute was less than the overlap
threshold K (in our case, K was 3). So we examined the award
titles between the two tables to see if similar titles with fewer
than 3 tokens exist, and we found quite a few such title pairs2.

To include these record pairs, we applied an overlap-coefficient
blocker, using “AwardTitle” as the blocking attribute. For any
two strings X and Y we have overlap_coe f f icient (X ,Y ) = |X ∩
Y |/min( |X |, |Y |) (assuming X and Y have been tokenized into
two sets). This blocker is similar semantics-wise to the overlap
blocker. However, it returns a score between 0 and 1, regardless
of the title length, and thus can handle the case where a title
has fewer than 3 tokens. To apply this blocker, we first lower
cased all the strings in the “AwardTitle” column, removed special
characters, then performed overlap-coefficient blocking using a
word-level tokenizer and a threshold of 0.7 (after trying a few
other thresholds). This produced a candidate set C3.

(4) Next, we unioned C1, C2, and C3 to obtain a consolidated
candidate set C , which has 3177 record pairs3.

We then checked for any potentially missing matches in C
using the blocking debugger of PyMatcher [23]. Briefly, this
debugger takes the two input tables (“UMETRICSProjected” and
“USDAProjected”) and the candidate set C , and returns the list
of record pairs that (a) are in the Cartesian product of the two
tables but not inC , and (b) are judged to be potential matches by
the debugger. These pairs are ranked in decreasing likelihood of
being matches. If the user does not see many true matches in this
list (e.g., by manually examining the top 100 pairs), then he/she
can conclude that the blocking process probably has not killed
off many true matches. See [23] for details, including how the
debugger performs the above process fast.

2Specifically, we first used PyMatcher to find all title pairs whose Jaccard score
(over a 3-gram tokenization) exceeds a threshold. Next, we kept only those pairs
where at least one title has fewer than 3 words. Finally, we took a random sample
of these pairs and manually examined the sample.
3It turned out that we want both C2 and C3 in the consolidated candidate set. C2
andC3 have 2,937 and 1,375 record pairs, respectively. |C2 ∩C3 | = 1,140, |C2 −C3 |
= 1,797, and |C3 −C2 | = 235. Our examination revealed that if two titles are similar
but share few tokens, the overlap blocker will include the pair, but the coefficient
blocker will discard it. So we cannot just use C3 and discard C2 .

In our case, we observed that the top record pairs returned by
the blocking debugger were not matches, and hence we decided
to stop modifying the blocking pipeline. We used PyMatcher for
blocking, and used custom Python scripts and pandas commands
to preprocess the columns before applying blocking4.

8 SAMPLING AND LABELING
After blocking, we wanted to obtain and label a sample of record
pairs from the candidate setC . (Later we need this labeled sample
to select the best learning-based matcher and then train this
matcher to predict matches in the candidate set C .)

Sampling and labeling is not straightforward because the can-
didate set C has relatively few matches and the match definition
is still evolving. Further, since we had to ask the UMETRICS team
to label, we had to manage the logistics for labeling.

Setting Up: We first emailed the UMETRICS team, then fol-
lowed up with a face-to-face meeting to discuss the logistics.
Initially, we proposed to email the record pairs as a CSV file that
they could download and use tools such as MS Excel to label
pairs as a match or a non-match. The UMETRICS team wanted a
tool with better UI that multiple team members could use. So we
developed a simple cloud-based labeling tool with a good UI, but
the tool was limited in that only one person could label at any
time. The UMETRICS team accepted this and said they would
discuss the matter internally and schedule the labeling.

Sampling and Labeling: Next, we performed sampling and
labeling iteratively. Our goal was to obtain a sufficient number
of positive matches in the labeled set. We first took a random
sample of 100 record pairs from the candidate set C , uploaded
the sampled pairs into the cloud-based labeling tool, then asked
the UMETRICS team to label the record pairs as “Yes”, “No”, or
“Unsure”5.

The UMETRICS team trained a student to label using the tool.
Meanwhile, we labeled the same set of record pairs, using our
own understanding of the match definition. Afterward we cross-
checked their labels against ours and observed 22 mismatched
labels. Specifically, one record pair was labeled a non-match
despite satisfying the matching ruleM1. The other 21 pairs had
similar award titles, but labeled as a mix of match, non-match,
and primarily unsures.

In a face-to-face meeting, the UMETRICS team confirmed that
the record pair satisfying M1 must be declared as match (they
also confirmed thatM1 is indeed a positive matching rule). For
others, they mentioned that, though the award titles were similar,
some of them were not unique enough to be declared matches.

They said that theywould have a closer look at themismatches.
After the discussion, we shared the record pairs with mismatched

4PyMatcher’s blocking methods use string filtering techniques where appropriate
to speed up the blocking process.
5It turned out that for many real-world datasets that we have seen, even domain
experts had troubles labeling certain pairs, due to dirty, incomplete, or cryptic data.
Hence the option “Unsure”. As we will see, we ignore “Unsure” pairs in training and
evaluating learning-based matchers. Our reasoning is that if even domain experts
cannot label these pairs, it is unfair to ask learning algorithms to handle them. And
if we can ask learning algorithms to label these pairs, how can we evaluate their
accuracy, given that even the domain experts cannot label them?

We also believe that if the number of “Unsure” pairs is too high, that indicates
that the dataset is too dirty, incomplete, or cryptic, and the domain experts should
clean the dataset before EM is attempted. In this case, as we will see, 300 pairs
were labeled for selecting/training matchers, out of which 32 were labeled “Unsure”.
Later 400 pairs were labeled for evaluating matchers, out of which 16 were labeled
“Unsure”. The UMETRICS team said they were okay with the quality of this dataset
(i.e., judging the EM result from this dataset to be still useful for their domain
science research).
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labels using Google Sheets. TheUMETRICS team updated 4 labels
to “Yes” (keeping the labels of the remaining pairs). After the
updated labels were submitted, 15 pairs were labeled as “Yes”, 66
labeled “No” and 19 labeled “Unsure”.

Next, because we had only 15 positive matches, we decided to
obtain more labeled pairs. We discussed (via email) and asked the
UMETRICS team to label at least 100-200 more record pairs to
obtain a sufficient number of positive matches. Following this, we
internally decided to obtain labeled record pairs in two iterations,
with 100 record pairs per iteration6. The first iteration produced
29 “Yes” pairs, 64 “No”, and 7 “Unsure”. The second iteration
produced 24 “Yes”, 72 “No”, and 4 “Unsure”.

We now have 300 labeled pairs, consisting of 68 “Yes”, 202 “No”,
and 30 “Unsure”. Because we have obtained a sufficient number
of positive matches, we stopped seeking more labeled pairs.

Debugging the Labeled Sample: Next, since the labeled pairs
will be used to select and train a matcher, any labeling errors
can impact the predicted matches. To minimize this impact, we
decided to debug the labels.

To do so, we used leave-one-out cross-validation: we trained
an ML matcher on all labeled record pairs except one, applied the
matcher to predict the label for the left-out record pair, compared
this predicted label with the label given by the UMETRICS team,
and repeated the process. We used random forest as the ML
matcher, and removed the unsure and sure matches (record pairs
that satisfy M1) from the labeled data before debugging7. We
observed the following discrepancies:

(D1) Record pairs were predicted matches, but labeled non-
matches if the award titles were very similar but the award title
in the “USDAProjected” table included the suffix “NC/NRSP.”

(D2) Record pairs were predicted matches but labeled non-
matches if the award numbers were different but the award titles
were the same or very similar.

(D3) Record pairs were predicted matches but labeled a mix
of matches and non-matches if the award number was missing
from “USDAProjected” but the award titles were very similar.

We shared example record pairs (using Google Sheets) for each
of the above discrepancies, and discussed via email and face-to-
face meetings with the UMETRICS team. This team (based on
their domain knowledge) decided that all labels in D1 should be
updated as unsure (even they did not know if these were matches).
All labels in D2 should be retained. For D3, the labels must be
updated as matches if the transaction dates for the awards are
within a difference of few years (e.g., two years). This produced
a final set of 300 labeled pairs, consisting of 68 “Yes”, 200 “No”,
and 32 “Unsure.”

9 MATCHING
We now use the above set of 300 labeled record pairs to find
matches between the “UMETRICSProjected” and “USDAProjected”
tables. Specfically, we used this labeled set to select a good
learning-based matcher, then applied this matcher to the pairs in
the candidate set C (obtained after blocking) to predict matches.
6Since labeling is time consuming, we wanted to do this in iterations (rather than
asking the UMETRICS team to label all 200 pairs in one shot) to make sure we can
catch and handle any possible labeling glitches early.
7For cross validation, we need to convert each record pair into a feature vector. To do
this, we applied PyMatcher to the schemas of the two tables “UMETRICSProjected”
and “USDAProjected” to automatically generate a large set of features, which
include both string related features (e.g., Jaccard over 3grams, edit distance, etc.)
and numeric features (e.g., absolute difference, exact match, etc.). See the PyMatcher
homepage for a description of how these features are automatically generated. We
then used these features to convert each record pair into a feature vector.

UMETRICS 

Candidate Set 
C 

USDA 

block 

sample/label 

matches 

select matcher M 

predict using M 

Figure 8: The initial EMworkflow formatching theUMET-
RICS and USDA datasets.

Selecting a Good Matcher: To do this, we used PyMatcher.
Let G be the set of 300 labeled pairs. First, we removed the pairs
labeled “Unsure” and sure matches (i.e., pairs satisfyingM1) from
G, then converted G into a set of feature vectors H (each pair
was converted into a feature vector; we used PyMatcher to au-
tomatically generate a set of features F , then used F to generate
feature vectors).

PyMatcher uses the scikit-learn package, and learning meth-
ods in this package cannot work with missing values in the fea-
ture vectors. So in the next step we filled in the missing values in
the feature vectors in H (with the mean values of the respective
columns).

Next, we selected the best (i.e., the most accurate) matcher
using five-fold cross validation on H . Among decision tree, SVM,
random forest, logistic regression, naive Bayes, and linear regres-
sion matchers (supplied by PyMatcher; these matchers in turn
use corresponding learning methods in scikit-learn), we found
the random forest (RF) matcher had the highest F1 accuracy (av-
eraged over the five folds).

Next, we debugged the RF matcher to try to improve its ac-
curacy. Again, we used the debugging method described in Py-
Matcher. This method tried to find the mismatches, i.e., those
pairs where the RF matcher predicted incorrectly, then examine
these mismatches and take actions to fix them (see [17]). Toward
this goal, we randomly split H into two sets I and J , trained the
RF matcher on I , then applied it to J and identified mismatches in
J , i.e., pairs in J where the label given by the RF matcher differs
from the label given in the sampling and labeling process de-
scribed earlier. We then trained the RF matcher on J and applied
it to I , to identify the mismatches in I .

It turned out many mismatches occurred due to award titles
having different letter cases. So we added more features to handle
this problem8. We then performed cross validation to select the
best matcher again. Now the decision tree performed the best
with 97% precision, 95% recall, and 94.7% F1, on average. We
debugged this matcher using the decision tree matcher debugger
of PyMatcher, but were not able to improve accuracy. So we
stopped and selected this matcher as the best matcher.

Applying the Selected Matcher: We first trained the decision
tree matcher M on the set of feature vectors H (i.e., the set of
300 labeled record pairs). Next, we removed the record pairs
satisfying the positive matching ruleM1 from the candidate set
C (which was obtained after blocking). There were 210 record
pairs that satisfyM1. Next, we converted the revised set C into
a set of feature vectors C ′ (each pair becomes a feature vector)
and imputed the missing values with the mean of the respective
columns. Finally, we applied the trained matcherM to C ′. This
produced 807 matches. Figure 8 shows the overall EM workflow.

Counting also the record pairs that satisfy the positive match-
ing rule, we obtained a total of 1,017 matches. We shared these
matches in a CSV file with the UMETRICS team and discussed
them in a face-to-face meeting.
8We did not not lowercase all words in the pre-processing step, because our experi-
ence withmany EM projects suggests that that often resulted in a loss of information.
So we only lowercased where necessary.
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10 HANDLING MANY COMPLICATIONS
What happened nextweremany complications regardingwhether
the current match definition (i.e., what it means to be a match) is
incorrect and should be revised, and how to acommodate more
data (for the tables), which was accidentally omitted earlier.

Should We Match at the Cluster Level? During the discus-
sion with the UMETRICS team, we observed a gap between
their definition of a match between the UMETRICS and USDA
awards and our understanding of the same. Specifically, in our
set of 1,017 matches, there are many one-to-many matches, e.g., a
record in the “UMETRICSProjected” table matches many records
in the “USDAProjected” table. The UMETRICS team insisted that
matches should be one-to-one, i.e., a record in “UMETRICSPro-
jected” should match at most one record in “USDAProjected”.

We were confused by this requirement. Recall from Section 3
that a grant given to a project may be distributed to many smaller
projects (e.g., one per an academic year, or one per CS and one
per biology) in the same university, and this information will
be recorded in multiple entries. For instance, multiple records
in “USDAProjected” can contain information about the exact
same award, but for different academic years (e.g., a research
group may receive a 3-year award; it can send 3 annual reports to
USDA, resulting in 3 records in USDA about this award). Given
this, a record in “UMETRICSProjected” can match many records
in “USDAProjected” and vice versa.

Upon further discussion, it turned out that what the UMET-
RICS team really wanted is this. As mentioned earlier, a project
may last for many years, and may be associated with many sub-
awards. Each sub-award is captured by a record in a table. So the
UMETRICS teamwanted to cluster the records in each table, such
that all sub-awards go into the same cluster. They then wanted
to match these clusters. At this level, insisting that the matches
be one-to-one, i.e., a cluster in “UMETRICSProjected” match at
most one cluster in “USDAProjected” makes sense.

Unfortunately, since this desire was not conveyed to us earlier
(they were not even aware of this sub-award problem originally),
we already performed matching at the record level (not at the
cluster level), and at this level one-to-many and many-to-one
matches make sense.

We then analyzed the one-to-one, one-to-many, and many-to-
one match predictions and shared our analysis with the UMET-
RICS team. Our goal was to show examples of these and their
frequency in the set of matches. Tthe reasoning is that if a prob-
lem affects only a small number of matches, then it is not worth
spending a lot of effort to solve that problem.

We had another discussion with the UMETRICS team. There
they decided that the problem does not affect many matches
and so probably would have an insignificant effect on their do-
main science (which relies on these matches). So they opted to
keep matching at the record level, and kept the definition that
one record in the “UMETRICSProjected” table can match many
records in the “USDAProjected” table, and vice versa. This would
avoid a redo of the project, i.e., starting by clustering the records,
then trying to match the clusters.

Revising theMatchDefinition: Recall that the currentUMET-
RICS repository already has a rule-based matching system, and
that our goal is to beat that system. To do so, the UMETRICS
team logged intoUMETRICS and applied the rule-basedmatching
system to the same data (i.e., the “UMETRICSProjected” and “US-
DAProjected” tables) to obtain matches. The idea was to compute

and compare the precision and recall of the rule-based system to
those of our system.

During this process, they discovered that another positive
matching rule existed: “If the award number in UMETRICSmatches
the project number in USDA, then the record pair is considered a
match”. This rule could be used to pull more sure matches directly
from the “UMETRICSProjected” and “USDAProjected” tables9.

Thus, the match definition was revised to include this rule.
The question is how would this complicate the EM process. The
how-to guide of PyMatcher spells out a well-defined sequence
of steps for EM (e.g., blocking, sampling, etc.). We trained the
students to follow this sequence. By default, a revised match
definition would trigger a re-do of this sequence, which is time
consuming. For example, blocking can be easily revised by just
using the new positive matching rule to add more record pairs
to the candidate set C . But sampling and labeling would be time
consuming. We need to take a random sample of the candidate
set C , and since C has changed, we need to re-do the random
sampling and label any new pair in the sample (that has not
been labeled before).While labeling a small number of pairs seems
trivial, in practice it can take days, as we need to upload the pairs
to the cloud-based labeling tool, then wait for the UMETRICS team,
which often cannot label right away, due to other obligations.

Thus, we did not want to redo the EM process from scratch. To
avoid this, first we checked whether the ML matcher was already
learning the above positive rule from the labeled data. Specifically,
we checked and found that there were 411 pairs in C that satisfy
that rule, and out of those 397 were predicted as matches. Thus,
our matcher correctly predicted most of the pairs that satisfy the
rule as matches. Next, we checked if blocking discarded any pairs
that satisfy the new rule. We found that the Cartesian product of
the “UMETRICSProjected” and “USDAProjected” tables contain
473 such pairs, butC included only 411. Thus, blocking discarded
too many pairs. So the new positive matching rule does have an
effect on the EM process, and something must be done.

Our solution was to leave the current EM workflow alone and
create a new EM workflow (which will be used together with the
current EM workflow). In this new workflow, we wrote a Python
script to apply the new matching rule directly to the input tables
“UMETRICSProjected” and “USDAProjected” to obtain the sure
matches. This new EM workflow can be viewed as a “patch” of the
current EM workflow. If a pair is predicted by both the old and
new workflows, then we take the prediction of the new workflow.
An advantage of this approach is that we did not have to label any
new pairs.

Handling More Data: When the UMETRICS team inspected
the matches produced by the rule-based matcher at UMETRICS,
they found new award numbers that they had not seen before.
Further inspection revealed that the original table “UMETRIC-
SAwardAggMatching” was incomplete, missing 496 records.

We received these extra records in a CSV file. Revising the
table “UMETRICSAwardAggMatching” (to add these records) and
redoing the EM process following the PyMatcher’s how-to guide
would be time consuming (all the steps, blocking, sampling, label-
ing, matching, etc. must have been redone). So we followed the
same strategy used to handle a change in the match definition.
We keep the current EM workflow “as is” or make only minimal
changes to it, then “patch” it with new EM workflows. This way

9“AwardNumber” is already in table “UMETRICSProjected”. “ProjectNumber” is
not in table “USDAProjected”. However, it is in table “USDAAwardMatching” and
thus can be easily added to “USDAProjected”.
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Figure 9: The updated EMworkflow to accommodate extra
data and positive matching rules.

we minimized the changes we had to make to our existing work-
flow, and minimized the total human effort. This resulted in the
following procedure (see Figure 9):

(1) Apply the sure-match rules to the original input tables.
Specifically, apply ruleM1 (from the match definition) and
the positive matching rule involving award number and
project number to obtain a set C1.

(2) Apply blocking as before to obtain a candidate set C2.
(3) Remove the sure matches (C1) from C2 to obtain a set C;

this set C is what will be predicted as matches and non-
matches.

(4) Use the labeled set without the sure matches to train
the best matcher and predict on C , and call the resulting
matches R1.

(5) Repeat Steps 1-3 for the extra records in UMETRICS and
the whole USDA table until a set of sure matches D1 and
a candidate set D are obtained.

(6) Apply the best matcher obtained using labeled data (in
Step 4) to D to get a set of match predictions R2.

(7) Return the union ofC1,D1,R1, andR2 as the set of matches.
The above procedure produced 1,137 matches. Specifically, we
first applied the sure-matches rule to obtain 683 sure matches
from the original input tables and 55 sure matches from the addi-
tional records. Then we applied blocking and removed the sure
matches. This resulted in a candidate set from the original input
tables having 2,556 record pairs and a candidate set from the ex-
tra records having 1,220 record pairs. Next, we removed the sure
matches from the labeled set and selected the best matcher, which
was a decision tree matcher. Finally, we applied this matcher to
the candidate sets and obtained 399 matches from the original
tables and no matches from the additional records.

11 ESTIMATING ACCURACY
Now that we had finally obtained the matches in our approach
(and praying that no more complications arise), we were ready
to estimate the accuracies of our solution and the rule-based
matcher deployed at UMETRICS, which we will call the IRIS
matcher (IRIS is the organization that manages UMETRICS).

Ideally, if we have the true labels for the record pairs in the
Cartesian product of the input tables, then we can compute the
accuracy, i.e., precision and recall. However, having the true
labels would mean that there was no need to do EM in the first
place. To address this, we met with the UMETRICS team and
decided to follow the accuracy estimation approach described in
the Corleone paper [13]: We proceeded as follows:

(1) To use the Corleone approach, both the IRIS matches and
our predicted matches must be from the same candidate set of

UMETRICS Sure Matches 
C1 

R1 Candidate Set 
C2 

rules
 

block 

C2-C1 = C 

select matcher 

predict using M USDA 

USDA 

Sure Matches 
D1 

R2 

Candidate Set 
D2 

rules
 

block 

D2-D1 = D predict using M 
Extra 

UMETRICS 

M 

Labeled Pairs 

apply neg. rules S1 

apply neg. rules S2 

Figure 10: The final EM workflow with negative rules ap-
plied to the results of the learning-based matcher.

record pairs. So we looked for any award number-accession num-
ber pairs from the IRIS matches that were not included in our
consolidated candidate set (from the original and extra records),
which is E = C1 ∪C2 ∪ D1 ∪ D2 (see Figure 9). We found only
one such pair. The UMETRICS team said that the award number
in question was a terminated award (no longer valid) and could
be discarded safely.

(2) We took a random sample of 200 record pairs from the con-
solidated candidate set E, uploaded it to the cloud-based labeling
tool, and asked the UMETRICS team to label. Then we used E
to estimate precision and recall, using Formulas 2-3 in Section
6.1 of the Corleone paper [13]. We estimated that our matcher
had precision in the range (79.6%, 86.01%) and recall in (96.8%,
99.42%). The IRIS matcher had precision in the range (100%, 100%)
and recall in (52.7%, 62.07%). Thus, the IRIS matcher had higher
precision, but lower recall, compared to our matcher.

(3) To reduce the large interval sizes of the estimated precision
and recall, we asked theUMETRICS team to label another 200 ran-
domly sampled record pairs. Applying the same estimation pro-
cedure to all 400 labeled pairs10, we estimated that our matcher
had precision in (75.2%, 80.3%) and recall in (98.1%, 99.6%). The
IRIS matcher had precision in (100%, 100%) and recall in (65.1%,
71.8%). The UMETRICS team liked the fact that our matcher was
able to find more matches than the IRIS matcher.

12 IMPROVING ACCURACY USING RULES
Though we received positive feedback from the UMETRICS team,
we had an internal discussion on how to improve the precision
of our matcher. We decided to apply hand-crafted rules to the
output of our learning-based matcher. The rules would allow
us to make “localized changes”. This hopefully would improve
precision without reducing recall a lot.

Specifically, we wanted to solicit domain-specific rules from
the domain experts (the UMETRICS team) to reduce the number
of false positives, then apply these rules to the predictions of
our learning-based matcher. To do so, we had an email conversa-
tion with the UMETRICS team to understand how to reduce the
number of false positives. The UMETRICS team examined the
predicted matches, then defined a negative rule (i.e., the rule will
flip matches to non-matches), which we discuss next.

The Negative Matching Rule: This rule states that a record
pair is considered a non-match if one of the following conditions
is satisfied:
• Award numbers from UMETRICS and USDA are “compa-
rable,” (defined below), and they are not the same.
• Award number from UMETRICS and project number from
USDA are “comparable,” and they are not the same.

10The set of 400 labeled pairs consists of 92 “Yes”, 292 “No”, and 16 “Unsure”. The
estimation procedure ignores the “Unsure” pairs.
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Here “comparable” means that the award numbers are considered
(for this rule) only if they have the same pattern. For example,
the UMETRICS award number “03-CS-112313000-031” and the
USDA award number “2001-34101-10526” are not comparable
because they follow different patterns (i.e., “##-XX-########-###,”
and “YYYY-#####-#####”, respectively, where “#” is any number,
“X” is any character, and “YYYY” is a four-digit year).

The UMETRICS award number “WIS01560” and the USDA
project number “WIS04509” are comparable because they follow
the same pattern “WIS#####” (but because the values are different
this pair will be considered a non-match). The UMETRICS team
gave us the list of possible patterns for the award numbers from
UMETRICS and USDA as well as the project numbers from USDA
(not shown for space reasons).

Applying the Negative Matching Rule: We applied the neg-
ative rule (provided by the UMETRICS team) to the matches
and estimated the accuracy again. Conceptually, the learning-
based matcher followed by rules could be considered just another
matcher like the IRIS matcher. The updated EM procedure is
shown in Figure 10. Here, we applied the negative rules to the
sets of matches R1 and R2 (obtained from the learning-based
matcher). The final set of matches is the union of C1, D1, S1, and
S2.

We consider this new workflow a new matcher. Because the
candidate set of this new matcher is the same as that of the
learning-based matcher from our previous iteration, we can reuse
the labeled set (of 400 pairs). Again, we used the Corleone ap-
proach to estimate the new precision and recall.

We found that our newmatcher (decision tree followed by neg-
ative rules) had precision (96.7%, 98.8%) and recall (94.2%, 97.05%).
In contrast, the learning-based matcher (without negative rules)
had precision (75.2%, 80.3%) and recall (98.1%, 99.6%). The IRIS
matcher had the precision (100%, 100%) and recall (65.1%, 71.8%).
Thus, compared to the IRIS matcher, our learning-based matcher
followed by rules has slightly lower precision, but much higher
recall. The final result set has 845 matches, and was shared with
the UMETRICS team in a CSV file that uses “UniqueAwardNum-
ber”and “Accession Number” pairs to capture the matches.

The UMETRICS team was delighted with the result, and their
director sent the following email:

That is really stupendous news! I’m surprised to see
how much you were able to raise the precision and
recall ... Thanks for all your brilliant work on this.

The Next Steps: As the next immediate step, the UMETRICS
team wanted us to package the matcher so that they could move
it into the UMETRICS repository to do matching for other data
slices. It is similar to moving a workflow that was developed in
the development stage into production.

This step raises three challenges. First, the EM workflow is
rather complex. It has rules atmultiple places (to find surematches
and to update the predictions from the learning-based matcher)
and a machine learning-based matcher. So we need to find out
how to represent it effectively. Second, the new data may be
dirty, so we need to monitor the accuracy of the match results11.
Finally, if the accuracy is not good enough, we need a way to

11This is typically done by taking a random sample of the predicted matches at
regular intervals, manually labeling it, then using the labeled sample to estimate
the accuracy. See [28] for an example of monitoring the accuracy of an e-commerce
product classification system in production.

move back to the development stage and update the EM work-
flow. Currently, we are working with the UMETRICS team to
address these challenges.

13 CHALLENGES FOR CURRENT ENTITY
MATCHING SOLUTIONS

The end-to-end EM case study that we have just described raises
many challenges for the current EM solutions and systems. In
what follows we discuss the main challenges12.

The Need for How-To Guides: It should be clear from the
case study that it is extremely hard, if not impossible, to fully
automate the EM process, end to end. The fundamental reason is
because at the start, the user does not even fully understand the
data, the match defition, and even what he or she wants.

Here, for instance, initially the users were not aware that some
records were missing, or that the match definition was incom-
plete, or that they actually wanted to match at cluster level, and
more. As a result, most EM projects are really a “conversation”
between the EM team and the domain expert team, and this conver-
sation moves forward as new results were produced and discussed.

If this is the case, then it follows that it is critical to have
some how-to guides that tell both teams how to conduct this
conversation, what to do first, what to do second, and so on.

Such guides are completely missing from most current EM
solutions and systems. While PyMatcher does have an initial
how-to guide, as this case study makes clear, that guide is still
quite preliminary. It does not provide guidance to many steps
such as how to converge on a match definition, and how to
collaboratively label effectively, among others. In practice, guides
are likely to be complex, as users want to do so many different
things, and complications will arise (as seen in this study).

Many New Pain Points: Current EM work has largedly fo-
cused on blocking and matching. This study makes clear that
there are many pain points, i.e., steps that require a lot of work
from users, that current EM research has ignored or not been
aware of. For example, how to effectively explore, understand,
and clean the tables? While data exploration and cleaning have
received significant attention, most of this work has been carried
out “in isolation”, independently of work in EM, based on the
implicit argument that these problems are orthogonal to EM. We
believe, however, that these problems should be solved in an EM-
centric way, i.e., we should not just try to understand the tables
for understanding’s sake, but rather to understand only things
that are important for subsequent EM.

Other examples of pain points, which require a lot of work
from users, include how to quickly converge to amatch definition,
how to label collaboratively, and how to update an EM workflow
if something (e.g., data, match definition) has changed. We argue
that more effort should be devoted to addressing these real pain
points in practice.

Different Solutions for Different Parts of the Data: The
vast majority of current EM works treat the input data as of
uniform quality, but in practice, this is rarely the case. Instead, the
data commonly contains dirty data of varying degree, incorrect
12In addition to this case study, in the past 3.5 years we have also worked on more
than 20 other EM cases for 12 companies and domain science groups [14]. The
challenges that we discuss here are not specific to the case stufy of this paper.
They arise in many of these other EM cases as well. Further, even though we used
PyMatcher in this case study, given the detailed examination of 33 other free and
paid EM tools conducted in [18], we believe many of the challenges discussed here
would also arise if we were to use these other EM tools.
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data, and incomplete data that even domain experts cannot match.
It makes no sense trying to debug the system, then spendingmore
time and money to match incorrect and incomplete data. As a
result, it is important to have tools that help the user explore
and understand the data, then ways to help the user “split” the
data into different parts and develop different EM strategies for
different parts of the data, as illustrated in this case study (e.g.,
see Figure 10).

Support for Easy Collaboration: We found that in many EM
settings there is actually a team of people wanting to work on the
problem. Most often they collaborate to label a data set, debug,
clean the data, etc. For example, in this case study theUMETRICS
team collaboratively labeled and helped debug the labeled data.
However, most current EM tools are rudimentary in helping
users collaborate easily and effectively. Since users often sit in
different locations, it is important that such tools are cloud-based,
to enable easy collaboration.

Handling Changes Along the Way: No matter how careful
we are at the start, changes will likely arise along the way, as the
users gain more knowledge and may change their mind. So any
effective EM solution need to have good ways to handle such
changes. This case study suggested a way to do so, by minimally
modifying existing EM workflows and patching them by adding
more EM workflows. More research is necessary to evaluate and
develop solutions for this problem.

Managing Machine Learning “in the Wild”: It is clear that
ML can be quite effective. This case study suggests that it can
help significantly improve recall while retaining high precision,
compared to rule-based EM solutions. But the study also shows
that deploying even the simplest ML method “in the wild” raises
all kinds of challenges, such as labeling, coping with new data,
etc. Further, the study also suggests that the best EM solutions
are likely to involve a combination of ML and rules (such as the
negative matching rule in this study).

Designing EM SystemArchitectures: Finally, this case study
raises fundamental questions about what should be the “right”
EM system architecture. It implies that a stand-alone monolithic
EM system is not likely to work well, because the users often
want to try so many different things and many complications
often arise.

Observe that in this study, every time there was a complication,
we had to devise a new EM workflow and then wrote Python
script (that uses PyMatcher’s commands) to implement the new
workflow. This is more difficult to do with a stand-alone systems.
Instead, the study suggests that an “open-world” EM architecture,
such as the one PyMatcher has adopted, where the system is a
set of tools that interoperate with one another and also with data
science tool in PyData, is more promising. But far more studies
and research are necessary to settle this question. For a more
detailed discussion on this topic, see our recent work [14], which
discusses the system aspects of Magellan.

14 CONCLUSIONS
In this paper we have described in detail a case study of entity
matching, from raw data to the matches. We have highlighted as-
pects that previous EM work has ignored. Our case study clearly
demonstrates many challenges for current EM work and systems.
We hope that this case study on how “sausage is made” can help
EM researchers understand better the challenges of the EM pro-
cess, and thus develop more effective EM solutions.
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ABSTRACT
Copernicus is the European programme for monitoring the Earth.
It consists of a set of complex systems that collect data from satel-
lites and in-situ sensors, process this data, and provide users with
reliable and up-to-date information on a range of environmen-
tal and security issues. Information extracted from Copernicus
data is made available to users through Copernicus services ad-
dressing six thematic areas: land, marine, atmosphere, climate,
emergency and security. The data and information processed
and disseminated puts Copernicus at the forefront of the big
data paradigm and gives rise to all relevant challenges: volume,
velocity, variety, veracity and value. In this paper we discuss
the challenges of big Copernicus data and how the Copernicus
programme is attempting to deal with them. We also present
lessons learned from our project Copernicus App Lab, which
takes Copernicus services information and makes it available on
the Web using semantic technologies to aid its take up by mobile
developers. We also discuss open problems for information re-
trieval, database and knowledge management researchers in the
context of Copernicus.

1 INTRODUCTION
Earth observation (EO) is the gathering of data about our planet’s
physical, chemical and biological systems via satellite remote
sensing technologies supplemented by Earth surveying tech-
niques. The Landsat program of the US was the first international
program that made large amounts of EO data open and freely
∗Work performed while at VITO
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available. Copernicus, the European programme for monitoring
the Earth, is currently the world’s biggest EO programme. It con-
sists of a set of complex systems that collect data from satellites
and in-situ sensors, process this data and provide users with re-
liable and up-to-date information on a range of environmental
and security issues. The data of the Copernicus programme is
provided by a group of missions created by ESA, which is called
Sentinels, and the contributing missions, which are operated by
national, European or international organizations. Copernicus
data is made available under a free, full and open data policy.
Information extracted from this data is also made freely available
to users through the Copernicus services which address six the-
matic areas: land, marine, atmosphere, climate, emergency and
security.

The Copernicus programme offers myriad forms of data that
enable citizens, businesses, public authorities, policy makers, sci-
entists, and entrepreneurs to gain insights into our planet on
a free, open, and comprehensive basis. By making the vast ma-
jority of its data, analyses, forecasts, and maps freely available
and accessible, Copernicus contributes to the development of
innovative applications and services that seek to make our world
safer, healthier, and economically stronger. However, the poten-
tial (in both societal and economic terms) of these huge amounts
of data can only be fully exploited if using them is made as sim-
ple as possible. Therefore, the straightforward data access every
downstream service developer requires must also be combined
with in-depth knowledge of EO data processing. The Copernicus
App Lab1 aims to address these specific challenges by bridging
the digital divide between the established, science-driven EO
community and the young, innovative, entrepreneurial world of
mobile development.

1http://www.app-lab.eu/
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Copernicus App Lab is a two year project (November 2016
to October 2018) funded by the European Commission under
the H2020 programme. The consortium consists of the com-
pany AZO2 (project coordinator), the National and Kapodistrian
University of Athens3, the companies Terradue4 and RAMANI5
and the Flemish research institute VITO6. The main objective of
Copernicus App Lab is to make Earth observation data produced
by the Copernicus programme available on the Web as linked
data to aid its use by users that might not be Earth observation
experts.

Copernicus App Lab targets the volume and variety challenges
of Copernicus data, and it follows the path of previous research
projects TELEIOS7, LEO8 and MELODIES9. Under the lead of
the National and Kapodistrian University of Athens, these three
projects pioneered the use of linked geospatial data in the EO do-
main, and demonstrated the potential of linked data and semantic
web technologies in the Copernicus setting by developing pro-
totype environmental and business applications (e.g., wild-fire
monitoring and burn scar mapping [18, 20], precision farming [9],
maritime security [8] etc.).

Copernicus App Lab goes beyond these projects in the follow-
ing important ways:

• It develops a software architecture that enables on demand
access to Copernicus data using the well-known OPeN-
DAP framework and the geospatial ontology-based data
access system Ontop-spatial [5]. Now users and applica-
tion developers do not need to worry about having to
download data or having to learn the details of sophisti-
cated data formats for EO data.

• It brings computing resources close to the data by making
the Copernicus App lab tools available as Docker images
that are deployed in the Terradue cloud platform as cloud
services. The platform allows application developers to
access Copernicus data and carry out massively parallel
processing without the need to download the data in their
own servers and carry out the processing locally.

• It enables search engines like Google to treat datasets pro-
duced by Copernicus as “entities” in their own right and
store knowledge about them in their internal knowledge
graph. In this way, search engines will be able to answer
sophisticated users questions involving datasets such as
the following: “Is there a land cover dataset produced by
the European Environmental Agency covering the area of
Torino, Italy?”

A demo paper describing the application scenario presented
in this paper won the “best demo award" prize at CIKM 2018 [3].
Shorter presentations of the Copernicus App Lab project also
appears in [2]. Compared with the present paper, these papers
emphasize only the semantic technologies developed and only
the big data dimensions respectively.

The above innovations of Copernicus App Lab are discussed
in detail in the rest of the paper, which is organized as follows.
Section 2 presents the related work. Section 3 presents the concep-
tual architecture of the Copernicus integrated ground segment

2http://www.anwendungszentrum.de/
3http://kr.di.uoa.gr/
4https://www.terradue.com/
5https://ramani.ujuizi.com/
6https://remotesensing.vito.be/
7http://www.earthobservatory.eu/
8http://www.linkedeodata.eu/
9https://www.melodiesproject.eu/

and the software architecture of Copernicus App Lab. Section 4
presents a simple case study which demonstrates the technolo-
gies of Copernicus App Lab. Section 5 discusses lessons learned
by the use of these technologies and discusses open problems that
need to be tackled by future research. Finally, Section 6 concludes
the paper.

2 RELATEDWORK
Open EO data that are currently made available by the Coper-
nicus and Landsat programs are not following the linked data
paradigm. Therefore, from the perspective of a user, the EO data
and other kinds of geospatial data necessary to satisfy his or her
information need can only be found in different data silos, where
each silo may contain only part of the needed data. Opening up
these silos by publishing their contents as RDF and interlinking
them with semantic connections will allow the development of
data analytics applications with great environmental and finan-
cial value.

Previous projects TELEIOS, LEO and Melodies funded by FP7
ICT, have demonstrated the use of linked data in Earth Obser-
vation. The European project TELEIOS was the first project in-
ternationally that has introduced the linked data paradigm to
the EO domain, and developed prototype applications that are
based on transforming EO products into RDF, and combining
them with linked geospatial data. TELEIOS concentrated on de-
veloping data models, query languages, scalable query evaluation
techniques, and efficient data-management systems that can be
used to prototype the applications of linked EO data [18]. The
European project LEO was to go beyond TELEIOS by designing
and implementing software supporting the complete life cycle
of linked open EO data and its combination with linked geospa-
tial data and by developing a precision farming application that
heavily utilizes such data [9]. The MELODIES project developed
new data-intensive environmental services based on data from
Earth Observation satellites, government databases, national and
European agencies and more [7]. We focused on the capabilities
and benefits of the project’s “technical platform”, which applied
cloud computing and Linked Data technologies to enable the
development of services, providing flexibility and scalability.

One of the most important objectives achieved by the afore-
mentioned projects, was capturing the life cycle of open EO data
and the associated entities, roles and processes of public bodies
that make this data available, and bring the linked data paradigm
to EO data centers by re-engineering a complete data science
pipeline for EO data [16, 19].

3 THE COPERNICUS APP LAB
ARCHITECTURE

Figure 1 presents the conceptual architecture of the Copernicus
integrated ground segment and the Copernicus App Lab software
architecture. A ground segment is the hardware and software
infrastructure where raw data, often from multiple satellite mis-
sions, is ingested, processed, cataloged, and archived. The pro-
cessing results in the creation of various standard products (level
1, 2, and so forth in EO jargon; raw data is level 0) together with
extensive metadata describing them.

In the lower part of the figure, the Copernicus data sources are
shown. These are Sentinel data from ESA, Sentinel data from the
European Organisation for the Exploitation of Meteorological
Satellites (EUMETSAT), satellite data from contributing missions
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Figure 1: The Copernicus integrated ground segment and
the Copernicus App Lab software architecture

(e.g., the RADARSAT-2 mission of Canada or the PROBA-V mis-
sion of Belgium) and in-situ data (e.g., data from sensors mea-
suring major air pollutants). The next layer makes Copernicus
data and information available to interested parties in three ways:
via the Copernicus Open Access Hub, via the Copernicus Core
Services and via the Data and Information Access Service (most
often known by its acronym DIAS).

The Copernicus Open Access Hub10 is currently the primary
means of accessing Sentinel data. It offers a simple graphical
interface that enables users to specify the extent of the geograph-
ical area one is interested in (by drawing a bounding box or a
polygon). The user may also complete a search interface with
information regarding the sensing period, the satellite, the plat-
form, the sensor mode, the polarization etc. If a relevant product
is found, the product can be downloaded to the user’s computer.

The six core Copernicus services (land, marine, atmosphere,
climate, emergency and security) are administered by European
entrusted entities (e.g., the Copernicus App Lab partner VITO
administers the global land service), whose job is to process
Copernicus data and produce higher-level products (information
in the Copernicus jargon) that are of importance in the corre-
sponding thematic area (e.g., leaf-area index data in the case of
the global land service).

The DIAS is not yet fully developed. In December 2017, the
European Commission has awarded four contracts to industrial
consortia for the development of four cloud-based DIAS plat-
forms. A fifth DIAS is developed by EUMETSAT in collaboration
with the French company Mercator Ocean and the European
Center for Medium-Range Weather Forecasts (ECWMF). The five
DIAS will bring computing resources close to the data and enable
an even greater commercial exploitation of Copernicus data. The
first versions of the five DIAS are now open to demo-users.

As we have already mentioned in the introduction, the goal
of Copernicus App Lab is to make earth observation data pro-
duced by the Copernicus programme available as linked data
to aid its use by developers that might not be experts in Earth
Observation. The software architecture presented in the top two
layers of Figure 1 has been designed for achieving this goal. Since
none of the DIAS platforms was available when Copernicus App

10https://scihub.copernicus.eu/

Lab started, all the software components of the project run in
the Terradue cloud platform11. Terradue Cloud Platform is built
as a Hybrid Cloud platform. The primary purpose of the Hy-
brid Cloud Platform is to facilitate the management of elastic
compute resources, with low cost scale-out capabilities. It re-
lies on the concept of an application integration environment
(PaaS, or Platform-as-a-Service) and a production environment.
Terradue Cloud Platform builds on three major outcomes of the
recent developments in Computer Science and Web technology
- Cloud Computing, Open Data repositories, and Web Services
interoperability. The platform allows cloud orchestration, stor-
age virtualisation, and virtual machine provisioning, as well as
application burst-loading and scaling on third-party cloud in-
frastructures. Within the Terradue cloud platform, the developer
cloud sandbox service provides a platform-as-a-service (PaaS)
environment to prepare data and processors. It has been designed
with the goal to automate the deployment of the resulting EO ap-
plications to any cloud computing facility that can offer storage
and computing resources (e.g., Amazon Web services). In this
manner, the AppLab Cloud Architecture provides the infrastruc-
ture (cloud environment) to bring together all the elements of
the Copernicus App Lab, and ensure operations.

In Copernicus App Lab, access to Copernicus data and infor-
mation can be achieved in two ways: (i) by downloading the
data via the Copernicus Open Access Hub or the Web sites of
individual Copernicus services, and (ii) via the popular OPeN-
DAP framework12 for accessing scientific data. In the first case
(workflow on the left part of the two top layers of Figure 1), the
downloaded data should then transformed into RDF using the
tool GeoTriples [23] or scripts written especially for this task.
GeoTriples enables the transformation of geospatial data stored
in raw files (shapefiles, CSV, KML, XML, GML and GeoJSON)
and spatially-enabled RDBMS (PostGIS and MonetDB) into RDF
graphs using well-known geospatial vocabularies e.g., the vo-
cabulary of the Open Geospatial Consortium (OGC) standard
GeoSPARQL [27]. The performance of GeoTriples has been stud-
ied experimentally in [22] using large publicly available geospa-
tial datasets. It has been shown that GeoTriples is very efficient
especially when its mapping processor is implemented using
Apache Hadoop.

After Copernicus data has been transformed into RDF, it can
be stored in the spatiotemporal RDF store Strabon [6, 21]. Strabon
can store and query linked geospatial data that changes over time.
It has been shown to be the most efficient spatiotemporal RDF
store available today using the benchmark Geographica in [6, 15].

Copernicus data stored in Strabon may also be interlinked
with other relevant data (e.g., a dataset that gives the land cover
of certain areas might be interlinked with OpenStreetMap data
for the same areas). To do this in Copernicus App Lab, we use
the interlinking tools JedAI and Silk. JedAI is a toolkit for entity
resolution and its multi-core version has been shown to be scal-
able to very large datasets [25]. Silk is a well-known framework
for interlinking RDF datasets which we have extended to deal
with geospatial and temporal relations [28].

The above way of accessing and using Copernicus data as
linked data, has been introduced in previous projects TELEIOS,
LEO and MELODIES discussed in the introduction, and it is not
the focus of this paper. The novel way of accessing Copernicus
data and information in Copernicus App Lab is captured by the

11https://www.terradue.com/portal/
12https://www.opendap.org/
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workflow on the right part of the two top layers of Figure 1, and
it is based on the popular OPeNDAP framework for accessing
scientific data. OPeNDAP provides a powerful data translation
facility so that users do not need to know the detailed formats of
data stored in servers, and can simply use a client that supports a
model they are comfortable with. The streaming data library (SDL)
implemented by RAMANI communicates with the OPeNDAP
server and receives Copernicus services data as streams. In the
rest of this section, we describe how we can access Copernicus
data on-the-fly using this workflow.

3.1 Enhance Cataloguing of Copernicus data
streams

Copernicus Service Providers (CSP) publish their data holdings
in a variety of data formats and access protocols (ftp, http, dap),
with various metadata co-existing, and data and metadata either
separate or combined in one container. In order to enrich the
metadata coupled with the CSP’s offerings, we set a minimum
metadata standard which should be followed by interested par-
ties in order to streamline the classification, mapping and RDF
linkage.We present a mediation approach that facilitates multiple
Metadata Standards to co-exist but are semantically harmonized
through SPARQL Query. A command-line tool was build and pub-
lished, entitled “DRS-validator”, that validates a CSP’s datasets
exposed through the OPeNDAP interface by checking for compli-
ance with the Data Reference Syntax (DRS) metadata. Given the
proliferation of various metadata standards, a tool was developed
that can translate between metadata conventions. In order to
harvest the metadata, a Content Management System (CMS) was
developed and published as a service allowing the CSP’s to man-
age the metadata of their datasets, which allows them to mutate
as and when they choose to expose them through the DAP. Com-
pleteness of metadata can be checked globally at SDL level or at
an individual dataset level. Since we also use the netCDF variable
attributes and global attributes to perform machine-to-machine
communication of metadata, the publishing and then harvesting
of metadata from CSPs is recurrent by design. For communi-
cating metadata, we use the NetCDF Markup Language (NcML)
interface service. This extends a dataset’s OPeNDAP Dataset At-
tribute Structure (DAS) and Dataset Descriptor Structure (DDS)
into a single XML-formatted document. The DDS describes the
dataset’s structure and the relationships between its variables,
and the DAS provides information about the variables themselves.
The returned document may include information about both the
data server itself (such as server functions implemented), and
the metadata and dataset referenced in the URL. To ensure that
metadata contributes to the discoverability of a datasets, a tool
was implemented that provides recommendations for metadata
attributes that can be added to datasets exposed through the DAP
to facilitate discovery of those using standard metadata searches.

Depending on the requirements imposed upon us by the other
open-data, additional analytical functionality is created to en-
sure the geospatial data streams are commensurate with these
requirements. We added a software layer to the SDL, entitled
RAMANI Cloud Analytics, allowing on-the-fly spatial and tempo-
ral aggregations such that downstream services may request for
derived variables to be returned, such as a long-term (moving)
average (summer-time) or spatial central tendency (city-average),
ensuring that the return is fully commensurate with the intrinsic
requirements of the other data to be linked. The technology being
used in this stage consists of background IP (BIPR) of RAMANI

B.V., with the development of an additional layer for support-
ing Open Linked Data and Web Coverage Service (WCS). We
designed a backend solution capable of providing analytics on
data via linked relations. Basic analytical modelling processes
can be represented straightforwardly by starting with data and
do calculations/analysis that result in more data, which we even-
tually synthesize into a pithy result, like part of an App or a
presentation. Also, the analysis can easily be rerun, if, for ex-
ample, the data is extended in time, otherwise modified, or is
replaced by a different data source providing similar variables
based on semantically provided heuristics (e.g. based on “has-
Name” or “hasUnit”). To allow fast processing we developed a
set of containers of the server-side analytics package. Then we
used Kubernetes13 for managing the containerized applications
across multiple hosts, that provides the mechanisms for deploy-
ment, maintenance, and scaling of the RAMANI Cloud Analytics
backend services. Kubernetes builds upon a decade and a half
of experience at Google running production workloads at scale
using a system called Borg, combined with best-of-breed ideas
and practices from the community.

The SDL is also extended with Semantic Web standards provid-
ing a framework for explicitly describing the data models implicit
in EO and other GRIDded data streams to enhance downstream
display and manipulation of data. This provides a framework
where multiple metadata standards can be described. Most im-
portantly, these data models and metadata standards can be inter-
related, a key step in creating interoperability, and an important
step in being able to map various metadata formats in compliance
with other standards, e.g. as put forward by the INPIRE Spatial
Data Services Working Group. First we developed an Abstract
Model capable of providing the basis of the semantics for the
linked RDFS. Based on a proof-of-concept use case, an exam-
ple of a RDF/XML expression for a remote OPeNDAP dataset14
sourced from the Copernicus Land Monitoring programme was
created. This dataset is published using a local deployment of the
DAP at VITO. We then implemented a vetted RDF crawler that
handles non-standard metadata and supports reasoners, query
languages, parsers and serializers. The query languages can create
new triples based on query matches (CONSTRUCT) and reason-
ers create virtual triples based on the stated interrelationships,
so we have a framework for creating crosswalks between meta-
data standards, as well as creating code that is independent of
the metadata standards. Finally, in case metadata at the source
cannot be made compliant with ACDD, the CMS will allow for
post-hoc augmentation using NcML blending metadata provided
by the source and those required as-per the DRS validator.

In the current version of the Copernicus App Lab software,
VITO -as prime contractor of the Copernicus Global Land Service-
has engagedwith RAMANI and now provides access to the Coper-
nicus Global Land Service using a remote data access protocol
facilitating discovery, viewing, and access of their unique Land
Monitoring data-products. OPeNDAP and SDL are installed and
configured by VITO on a virtual machine running on the VITO
hosted PROBA-V mission exploitation platform15, which has di-
rect access to the data archives of the Copernicus global land
service. The original data sources (i.e. Leaf Area Index, from
PROBA-V) have been added to the Streaming Data Library (SDL)
so their temporal and spatial characteristics are exposed in a
queryable manner. Three Copernicus datasets as well as one
13http://kubernetes.io
14http://land.copernicus.eu/global/products/lai
15https://proba-v-mep.esa.int
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Proba-V dataset were configured in the initial setup. These are
BioPar BA300 (Burnt Area), LAI (Leaf Area Index) and NDVI (Nor-
malised Difference Vegetation Index). The S5 (five-daily compos-
ite) TOC (Top of Canopy, i.e. after atmospheric correction) NDVI
100M was supposed to be implemented as a Proba-V dataset.
Each dataset also contains a netCDF NCML aggregation, which
is automatically updated when new data (a new date) becomes
available. Three different services are exposed for each dataset:
the OPeNDAP service, the NetcdfSubset service and the NCML
service. The installation of OPeNDAP was done using Docker
and access to the Copernicus global land and PROBA-V datasets
via OPeNDAP is realised by mounting the necessary disks on the
virtual machine.

3.2 Querying Copernicus data on-the-fly
using GeoSPARQL

The geospatial ontology-based data access (OBDA) systemOntop-
spatial [4] is used to make Copernicus data available via OPeN-
DAP as linked geospatial data, without the need for downloading
files and transforming them into RDF. Ontop-spatial is the geospa-
tial extension of the OBDA system Ontop16 [10]. OBDA systems
are able to connect to existing, relational data sources and create
virtual semantic graphs on top of them using ontologies and
mappings. An ontology provides a conceptual view of the data.
Mappings encode how relational data can be mapped into the
terms described in the ontologies. The mapping language R2RML
is a W3C standard and is commonly used to encode mappings,
but a lot of OBDA/RDB2RDF systems also offer a native mapping
language. Since Ontop-spatial follows the OBDA paradigm in
the geospatial domain, it can be used to create virtual semantic
RDF graphs on top of geospatial relational data sources using
ontologies and mappings.

Then, the Open Geospatial Consortium standard GeoSPARQL
can be used to pose queries to the data using the ontology. As
documented in [4], Ontop-spatial also achieves significantly bet-
ter performance than state-of-the-art RDF stores. An extension
of this work described in [5] shows how the system was extended
to support raster data sources as well (support for raster data
sources has not been foreseen in the GeoSPARQL standard) and
it also describes how, using the OBDA approach, one can query
both vector and raster data sources combined in a purely trans-
parent way, without the need to extend the GeoSPARQL query
language further.

In the context of the work described in this paper, we extend
the OBDA paradigm even more, by enabling an OBDA system
not only to connect to a non-relational data source, but also to
query data sources that are available remotely, without accessing
or storing the data locally (e.g., import the datasets into database);
the data can be available through a REST API, for example, and
can be accessed by the system only after a GeoSPARQL query
is fired. Ontop-spatial has been extended with an adapter that
enables it to retrieve data from an OPeNDAP server, create a
table view on-the-fly, populate it with this data and create vir-
tual semantic geospatial graphs on top of them. In order to use
OPeNDAP as a new kind of data source, Ontop-spatial utilizes the
system MadIS17 as a back-end. MadIS is an extensible relational
database system built on top of the APSW SQLite wrapper [11].
It provides a Python interface so that users can easily imple-
ment user-defined functions (UDFs) as rows, aggregate functions,

16http://ontop.inf.unibz.it/
17https://github.com/madgik/madis

or virtual tables. We used MadIS to create a new UDF, named
Opendap, that is able to create and populate a virtual table on-
the-fly with data retrieved from an OPeNDAP server. In this way,
Ontop-spatial enables users to pose GeoSPARQL queries on top
of OPeNDAP data sources without materializing any triples or
tables. We stress that the relational view that is created is not
materialized. The intermediate SQL layer facilitates the data ma-
nipulation process, in the sense that we can manipulate the data
before they get RDF-ized. In this way we can perform “data clean-
ing” without (i) changing the data that arrive from the server
(ii) changing any intermediate code, such as the opendap func-
tion and (ii) without requiring any extra pre-processing steps.
In order to be able to integrate MadIS as back-end system of
Ontop-spatial, apart from implementing the OPeNDAP virtual
table function, we also had to extend its jdbc connector and make
several modifications in the core of Ontop code so that it allows
connections to non-relational data. The design choice behind
our approach to implement the OPeNDAP adapter as a virtual
table is that it improves the extensibility of the system, as more
adapters could be added in the same way by implementing more
UDFs in the MadIS system. The integration of the MadIS system
to Ontop-spatial is a gateway to support any API in the future
that could serve as a new data source to the system.

To improve performance, the OPeNDAP adapter also imple-
ments a caching mechanism that stores results of an OPeNDAP
call in a cache for a time windoww , so that if another, identical
OPeNDAP call needs to be performed within this time window,
the cached results can be used directly. The length of the time
window w is configured by the user in the mappings and it is
optional. In the context of the application scenario described in
Section 4, we provide more details about the implementation and
use of this new version of Ontop-spatial.

3.3 Visualization
Data can be visualized using the tools Sextant [24] orMaps-API.18
Sextant is a web-based and mobile ready application for explor-
ing, interacting and visualizing time-evolving linked geospatial
data. What we wanted to achieve is develop an application that
is flexible, portable and interoperable with other GIS tools. The
core feature of Sextant is the ability to create thematic maps by
combining geospatial and temporal information that exists in a
number of heterogeneous data sources ranging from standard
SPARQL endpoints, to SPARQL endpoints following the standard
GeoSPARQL defined by the Open Geospatial Consortium (OGC),
or well-adopted geospatial file formats, like KML, GML and Geo-
TIFF. In this manner we provide functionality to domain experts
from different fields in creating thematic maps, which emphasize
spatial variation of one or a small number of geographic distri-
butions. Each thematic map is represented using a map ontology
that assists on modelling these maps in RDF and allow for easy
sharing, editing and search mechanisms over existing maps.

The Maps-API is similar to Sextant in terms of visualization
functionality, but it takes its data from SDL and it cannot deal with
linked geospatial data sources accessed by SPARQL orGeoSPARQL.
Once data has been discovered, it can be consumed in the VISual
Maps-API using any of the following data request-methods: get-
Metadata, getDerivedData, getMap, getAnimation, getTransect,
getPoint, getArea, getVerticalProfile, getSpectralProfile (in case
of multi-spectral EO-data), getMapSwipe, and getTimeseriesPro-
file. This is mainly intended for App Developers who wish to

18https://ramani.ujuizi.com/maps/index.html
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integrate and consume the Copernicus services’ products in their
favourite mobile platform(s) using straightforward visualization,
e.g. as layers on a map-view or as independent graphics (w/o
associated geometries on the map).

A more detailed discussion of the linked data tools introduced
above and their use in the life cycle of linked Earth observation
data is given in the survey papers [14, 17]. All tools are open
source and they are available on the following Web page: http:
//kr.di.uoa.gr/#systems

4 A COPERNICUS APP LAB CASE STUDY
We will now present a simple case study which demonstrates
the functionality of the Copernicus App Lab software presented
in the previous section. The case study is the same as the sce-
nario presented in the demo paper [3]. However, the presentation
here is much more detailed and concentrates on the technical
challenges and contributions of the case study.

The case study involves studying the “greenness” of Paris.
This can be done by relating “greenness” features of Paris using
geospatial data sources such as OpenStreetMap (e.g., for features
like parks and forests) and relevant Copernicus datasets. The
most important source of such data in Copernicus is the land
monitoring service.19 The data provided by this service belongs
to the following categories:

• Global: The Copernicus Global Land Service (CGLS) is a
component of the Land Monitoring Core Service (LMCS)
of Copernicus, the European flagship programme on Earth
Observation. The Global Land Service systematically pro-
duces a series of qualified bio-geophysical products on the
status and evolution of the land surface, at global scale and
at mid to low spatial resolution, complemented by the con-
stitution of long term time series. The products are used to
monitor the vegetation, the water cycle, the energy budget
and the terrestrial cryosphere. These datasets are provided
by the Copernicus App Lab partner VITO via its satellite
PROBA-V. They include a series of bio-geophysical prod-
ucts on the status and evolution of the Earth’s land surface
at global scale at mid and low spatial resolution.

• Pan-European: The pan-European component is coordi-
nated by the European Environment Agency (EEA) and
produces satellite image mosaics, land cover / land use
(LC/LU) information in the CORINE Land Cover data, and
the High Resolution Layers. The CORINE Land Cover is
provided for 1990, 2000, 2006 and 2012. This vector-based
dataset includes 44 land cover and land use classes. The
time-series also includes a land-change layer, highlighting
changes in land cover and land-use. The high-resolution
layers (HRL) are raster-based datasets which provides in-
formation about different land cover characteristics and
is complementary to land-cover mapping (e.g. CORINE)
datasets. Five HRLs describe some of the main land cover
characteristics: impervious (sealed) surfaces (e.g. roads and
built up areas), forest areas, (semi-) natural grasslands, wet-
lands, and permanent water bodies. The High-Resolution
Image Mosaic is a seamless pan-European ortho-rectified
raster mosaic based on satellite imagery covering 39 coun-
tries.

• Local: The local component is coordinated by the Euro-
pean Environment Agency and aims to provide specific
and more detailed information that is complementary to

19https://land.copernicus.eu/

the information obtained through the Pan-European com-
ponent. The local component focuses on different hotspots,
i.e. areas that are prone to specific environmental chal-
lenges and problems. It will be based on very high resolu-
tion imagery (2,5 x 2,5 m pixels) in combination with other
available datasets (high and medium resolution images)
over the pan-European area. The three local components
are Urban Atlas, Riparian Zones and Natura 2000.

• Reference data: Copernicus land services need both satellite
images and in-situ data in order to create reliable products
and services. Satellite imagery forms the input for the cre-
ation of many information products and services, such as
land cover maps or high resolution layers on land cover
characteristics. Having all the satellite imagery available
to cover 39 countries of EEA (EEA39), the individual image
scenes have been processed into a seamless pan-European
ortho-rectified mosaics. The Copernicus Land Monitoring
Service also provides access to Sentinel-2 Global Mosaic
service. A lot of in-situ data is managed and made accessi-
ble at national level. However, due to issues such as data
access and use restrictions, data quality and availability
across EEA39 countries, Copernicus services and partic-
ularly Copernicus Land Monitoring Service also relies
on pan-European in-situ datasets created and/or coordi-
nated at European level. These datasets are needed for
the verification and validation of satellite data in the land
monitoring service portfolio.

For our case study, the most relevant datasets from the land
monitoring service of Copernicus are the leaf-area index dataset
(global), the CORINE land cover dataset (pan-European) and the
Urban Atlas dataset (local).

Leaf area index (LAI) is a dimensionless quantity that charac-
terizes plant canopies and it is defined as the one-sided green leaf
area per unit ground surface area in broadleaf canopies20. LAI
may range from 0 (bare ground) to 10 (dense coniferous forests).
LAI information from the global land service of Copernicus is
made available as a NetCDF file giving LAI values for points
expressed by their lat/long co-ordinates.

The CORINE land cover dataset in its most recent version (2012)
covers 39 European countries21. Land cover is characterized using
a 3-level hierarchy of classes (e.g., olive groves or vineyards) with
44 classes in total at the 3rd level. The minimum mapping unit
is 25 hectares for areal phenomena and 100 meters for linear
phenomena. It is made available in raster (GeoTIFF) and vector
(ESRI/SQLite geodatabase) formats.

The Urban Atlas dataset in its most recent version (2012) pro-
vides land use and land cover data for European urban areas with
more than 100.000 inhabitants22. It covers 800 urban areas in
28 European Union countries, the 4 European Union Free Trade
Association countries (Switzerland, Iceland, Norway and Licht-
enstein), Turkey and the West Balkans. Land cover/land use is
characterized by 17 urban classes (e.g., discontinuous very low
density urban fabric) with minimum mapping unit 0.25 hectares,
and 10 rural classes (e.g., orchards) with minimum mapping unit
1 hectare. It is made available in vector format as ESRI shapefiles.

In addition to the above datasets, our case study utilizes data
from OpenStreetMap and the global administrative divisions
dataset GADM. OpenStreetMap is an open and free map of the

20https://en.wikipedia.org/wiki/Leaf_area_index
21https://land.copernicus.eu/pan-european/corine-land-cover/view
22https://land.copernicus.eu/local/urban-atlas/view
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whole world constructed by volunteers. It is available in vector
format as shapefiles from the German company Geofabrik23. For
our case study, information about parks in Paris has been taken
from this dataset.

GADM is an open and free dataset giving us the geometries of
administrative divisions of various countries24. It is available in
vector format as a shapefile, a geopackage (for SQLlite3), a format
for use with the programming language R, and KMZ (compressed
KML).

The first task of any case study using the Copernicus App
Lab software is to develop INSPIRE-compliant ontologies for the
selected Copernicus data. The INSPIRE directive aims to create
an interoperable spatial data infrastructure for the European
Union, to enable the sharing of spatial information among public
sector organizations and better facilitate public access to spa-
tial information across Europe25. INSPIRE-compliant ontologies
are ontologies which conform to the INSPIRE requirements and
recommendations. The INSPIRE directives provide a set of data
specifications for a wide variety of themes. Our purpose is to
categorize our datasets into INSPIRE themes, construct an on-
tology that follows the respective data specification and then
extend this generic ontology to create a specialized version in
order to model our datasets. Our initial approach was to reuse
existing inspire-compliant ontologies , such as the ones described
in [26], but since these efforts are not as close to the INSPIRE
specifications as we would like to, we decided to create our own
INSPIRE-compliant versions, following the data specifications
as closely as possible. Our aim is to reuse these ontologies for
other datasets that belong to the same INSPIRE themes and also
publish them so that others can reuse these ontologies for their
geospatial datasets as well.

Figure 2: The LAI ontology

A simple ontology for the LAI dataset is shown in Figure 2.
We have re-used classes and properties from the Data Cube on-
tology26 (namespace qb) specializing them when appropriate.
We also used classes and properties from the GeoSPARQL on-
tology [27] (namespaces sf and geo), from the Time Ontology27
(namespace time), and datatypes from XML-Schema. The class
and properties introduced by us use the prefix lai.

Once the LAI ontology is created, a user following the work-
flow depicted on the left, in the Copernicus App Lab software
architecture of Figure 1, can use it to transform into RDF the most
recent LAI dataset that is made available by the Copernicus global
23http://download.geofabrik.de/
24https://gadm.org/
25https://inspire.ec.europa.eu/
26https://www.w3.org/TR/vocab-data-cube/
27https://www.w3.org/TR/owl-time/

land service28. Since GeoTriples does not support NetCDF files
as input, the translation was done by writing a custom Python
script.

Figure 3: The GADM ontology

Figure 3 shows the ontology that we created for the GADM
dataset by extending the GeoSPARQL ontology [27] (namespaces
sf and geo). For the class and properties that we introduced we
use the prefix gadm29.The GADM ontology can be used so that
a GADM dataset30 can be either converted into RDF or queried
on-the-fly.

A similar process can be followed for datasets CORINE land
cover, Urban Atlas, and OpenStreetMap. The ontology which we
constructed for the CORINE land cover dataset is not shown here
due to space considerations but it is available online 31. Among
other entities (i.e., a class hierarchy corresponding to CORINE
land cover categories), it includes the following elements:

• clc:CorineArea. This class is a subclass of the class
inspire:LandCoverUnit of the INSPIRE theme for land
cover.

• clc:hasCorineValue. This property associates a
clc:CorineArea with its land cover, as characterised by
CORINE.

• clc:CorineValue. This class is the range of the property
clc:hasCorineValue and it is superclass of all the land
cover classes of the CORINE hierarchy e.g., clc:Forests.

The CORINE land cover ontology can be used tomodel CORINE
land cover data, either materialised as RDF dumps, or virtual RDF
graphs created by an OBDA system.

Similarly, we have defined ontologies for Urban Atlas32, and
OpenStreetMap33. In the past OpenStreetMap data have been
made available in RDF by project LinkedGeoData34 [29] in the
context of which a SPARQL endpoint for OpenStreetMap data
was also created. However, the data in this endpoint is not up-
to-date (the current version is from 2015), and also this endpoint
does not support GeoSPARQL queries. Therefore, we constructed
a new ontology for OpenStreetMap by following closely the
description of OpenStreetMap data provided by Geofabrik35 and
made it available also in OWL36. Using this ontology, we have
transformed OpenStreetMap data in shapefiles format into RDF
using the tool GeoTriples.

Once all the above datasets are available in RDF, they can be
stored in Strabon enabling users to pose interesting, rich queries
against the combined dataset. For example, assuming appropriate
PREFIX definitions, the GeoSPARQL query shown in Listing 1
28https://land.copernicus.eu/global/products/lai
29The corresponding namespace is: http://www.app-lab.eu/gadm/
30https://gadm.org/data.html
31http://pyravlos-vm5.di.uoa.gr/corineLandCover.svg
32http://pyravlos-vm5.di.uoa.gr/urbanOntology.svg
33http://sites.pyravlos.di.uoa.gr/dragonOSM.svg
34http://linkedgeodata.org/About
35http://download.geofabrik.de/osm-data-in-gis-formats-free.pdf
36http://pyravlos-vm5.di.uoa.gr/osm.owl
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retrieves the LAI values of the area occupied by the Bois de
Boulogne park in Paris.

Listing 1: LAI in Bois de Boulogne
SELECT DISTINCT ?geoA ?geoB ?lai WHERE
{ ?areaA osm:poiType osm:park .

?areaA geo:hasGeometry ?geomA .
?geomA geo:asWKT ?geoA .
?areaA osm:hasName
"Bois de Boulogne "^^xsd:string > .
?areaB lai:lai ?lai .
?areaB geo:hasGeometry ?geomB .
?geomB geo:asWKT ?geoB .
FILTER(geof:sfIntersects (?geoA , ?geoB))

}

Similarly, in Figure 4, we have used Sextant to build a temporal
map that shows the “greenness” of Paris, using the datasets LAI,
GADM, CORINE land cover, Urban Atlas and OpenStreetMap.We
show how the LAI values (small circles) change over time in each
administrative area of Paris (administrative areas are delineated
by magenta lines) and correlate these readings with the land
cover of each area (taken from the CORINE land cover dataset
or Urban Atlas). This allows us to explain the differences in LAI
values over different areas. For example, Paris areas belonging
to the CORINE land cover class clc:greenUrbanAreas overlap
with parks in OpenStreetMap and show higher LAI values over
time than industrial areas. Paris enthusiasts are invited to locate
the Bois de Boulogne park in the figure.

Figure 4: The “greenness” of Paris

All RDF datasets that have been discussed above are freely
available at the following Web page: http://kr.di.uoa.gr/#datasets

The “greenness of Paris” case study can also be developed
using the workflow on the right in the Copernicus App Lab
software architecture of Figure 1. In this case, the datasets of
interest can be queried using Ontop-spatial and visualized in
Sextant without having to transform any datasets into RDF. In
this case, the developer has to write R2RML mappings expressing
the correspondence between a data source and classes/properties
in the corresponding ontology. An example of such a mapping is
provided in Listing 2 (in the native mapping language of Ontop-
spatial which is less verbose than R2RML).

Listing 2: Example of mappings
mappingId opendap_mapping
target lai:{id} rdf:type lai:Observation .

lai:{id} lai:lai {LAI}^^xsd:float;
time:hasTime {ts}^^xsd:dateTime .

lai:{id} geo:hasGeometry _:g .
_:g geo:asWKT {loc}^^geo:wktLiteral .

source SELECT id, LAI , ts, loc
FROM (ordered opendap

url:https :// analytics.ramani.ujuizi.com/
thredds/dodsC/Copernicus -Land -timeseries -
global -LAI %29/ readdods/LAI/, 10)
WHERE LAI > 0

In the example mappings provided in 2, the source is the LAI
dataset discussed above which provided through the RAMANI
OPeNDAP server of the Copernicus App Lab software stack.
The dataset contains observations that are LAI values as well as
the time and location for each observation. The MadIS operator
Opendap retrieves this data and populates a virtual SQL table with
schema (id,LAI,ts,loc). The column id was not originally in
the dataset but it is constructed from the location and the time of
observation. The LAI column stores LAI values of an observation
as float values. The attribute ts represents the timestamp of an
observation in date-time format. In the original dataset times are
given as numeric values and their meaning is explained in the
metadata. For example, it can be days or months after a certain
time origin. The Opendap virtual table operator converts these
values to a standard format. Because of the fact that the Opendap
operator is implemented as an SQL user-defined operator, it can
be embedded into any SQL query. In the above mapping, we also
refine the data that we want to be translated into virtual RDF
terms by adding an filter to the query to eliminate (noisy) negative
or zero LAI values. The value 10 that is passed as argument to the
Opendap virtual table operator is the length of the time window
w of the cache that is used (in minutes). In this case, if |w | is the
length of the time windoww , then |w | = 10 minutes. This means
that results of a every OPeNDAP call get cached every 10 minutes.
If a query arrives resulting in anOPeNDAP in time t , where t < 10
minutes later than a previous identical OPeNDAP call (resulting
from a same or similar query that involves the same OPeNDAP
call), then the cached results can be used directly, eliminating the
cost of performing another call to the OPeNDAP server.

The target part of the mapping encodes how the relational
data is mapped into RDF terms. Every row in the virtual table
describes an instance of the class lai:Observation of the LAI
ontology in Figure 2. The values of the LAI column populate
the triples that describe the LAI values of the observation, and
the values of the columns ts and loc populate the triples that
describe the time and location of the observations accordingly.

Given the mapping provided above, we can pose the
GeoSPARQL query provided in Listing 3 to retrieve the LAI values
and the geometries of the corresponding areas.

Listing 3: Query retrieving LAI values and locations
SELECT DISTINCT ?s ?wkt ?lai
WHERE { ?s lai:hasLai ?lai .

?s geo:hasGeometry ?g .
?g geo:asWKT ?wkt }

Using queries like the one described in Listing 3, Sextant can
again visualize the various datasets and build layered maps like
the one in Figure 4. The visualization of the case study in Sextant
is available on line at the following URL: http://test.strabon.di.
uoa.gr/SextantOL3/?mapid=m8s4kilcarub1mun_
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5 LESSONS LEARNED, FUTURE PLANS AND
OPEN PROBLEMS

In this section, we discuss lessons learned, future plans and open
problems in the following areas of research and development of
the project: the cloud platform, the use of OPeNDAP for access-
ing global land service and PROBA-V data at VITO, the linked
geospatial data technologies and the use of our technologies by
users that are not experts in Earth Observation.

The Terradue cloud platform. The use of this platform has pro-
vided the Copernicus App Lab project with the ability to manage
all software components as cloud appliances, manage releases of
the project software stack, deploy on demand this software stack
on target infrastructures (e.g., at VITO), monitor operations (by
each partner for its part), provide a development and integration
environment, and manage solution updates and transfer to oper-
ations via cloud bursting. In this way, when the five DIAS will be
operational, the Copernicus App Lab software will also be able
to run on them. To demonstrate this, we will be working closely
with EUMETSAT and Mercator Ocean to make the Copernicus
App Lab software run on their DIAS.

The AppLab Cloud solution is operated through both the Ap-
pLab Front-end service for Mobile App developers, and the Ap-
pLab Back-end service for partnerships with data providers. The
concept of operation of the AppLab Cloud solution supports
mobile App developers and provides an AppLab capacity “as-a-
service” to them. Considering the strength of having several tech-
nology providers contributing to the AppLab architecture, the
challenge is about how to streamline a deployment scenario that
can be replicated on different Copernicus Collaborative Ground
Segment (CCGS) partner environments. Each individual deploy-
ment must be configured for the target environment, in order to
enable some specific data management functions. All together,
these deployments also have to be configured on top of the CCGS
data repositories, in order to deliver a “value adding” service,
aimed at Mobile App developers, over the Copernicus Services
data products. Terradue Cloud Platform supports this “AppLab
service” integration work, based on the contributed Docker ser-
vices and on standard protocols, and deploys it “as-a-Service”
on a selected target environment. A pre-operational capacity, is
providing managed services on Terradue Cloud Platform. For
the back-end services, Terradue Cloud Platform supports the
deployment (Cloud bursting) of tailored data access services onto
the Cloud Computing layer of a selected CCGS provider. The
deployment scenario relies on using Terradue Cloud Platform as
a reference platform for evolutive maintenance and versioning of
the whole AppLab solution, and its updates as new deployments
on the selected data providers’ environments (e.g. a Copernicus
DIAS).

Deploying OPeNDAP at VITO. The use of OPeNDAP offers bet-
ter data access capabilities specifically for application developers
that are not experts in Earth Observation, and thus it a clear
benefit. OPeNDAP and SDL provide streaming data to the end
user and have some significant advantages over the OGC Web
Coverage Service standard which is already offered by VITO.
First of all, from a data provider perspective, OPeNDAP is easier
to use, as it is able to deal with a wider variety of grid types.
Furthermore, OPeNDAP can be easily extended with different
conventions, allowing for easier integration of different dataset
and without overhead like file conversion. Also, OPeNDAP en-
ables the loose coupling of different Copernicus data sources

into one data model, providing the user easy access through a
single access point that uses this data model. Finally, when using
the Web Coverage Service, there is limited possibility to obtain
client-specific parts of the datasets (one is limited to, for example,
a bounding-box). In contrast, OPeNDAP allows for the caching
of datasets by serialization based on internal array indices. This
increases cache-hits for recurrent requests of a specific subpart
of the dataset which can be very useful, e.g., in a mobile appli-
cation scenario, where the viewport of the application could be
defaulting to a specific, user-configurable area of interest with
only modest panning and zooming interaction. Also, OPeNDAP
ensures that metadata is intrinsically embedded in the TCP/IP
response, regardless of container type (GeoTIFF, NetCDF, HDF,
grib, etc.), which is beneficial for the semantic enrichment pro-
cess that may happen at higher layers of the architecture. For the
remaining duration of the project, the OPeNDAP deployment at
VITO will be improved by offering a more sophisticated access
control facility.

In order to deploy DAP at VITO we created several Virtual
Machines (VMs) to build a private cloud in the VITO data center
and used Docker images for the configuration. To provide ac-
cess to the Copernicus and Proba-V datasets via the DAP, these
datasets are mounted on the virtual machine. The data available
on these storage volumes will be exposed by the DAP. Copernicus
data uses the netCDF extension while tiff extension is used for
Proba-V data. During the implementation of the DAP at VITO, it
became clear that the directory structure used for the Copernicus
Global Land datasets is not supported by the DAP, so we had to
create a virtual directory structure to be compliant with the DAP.
The reason why the Copernicus dataset could not be supported is
that this directory structure contains multiple versions of data for
the same day: the production centre reprocesses data at several
days when more accurate meteorological data becomes available.
The DAP could not handle this deviation, so VITO made a script
to create a directory structure that uses symbolic links to point
at the most recent version of the data, as that is the only one that
needs to be exposed. Also, to ensure security we used tokens
that allow accessing the datasets throught the RAMANI API. Ev-
ery user has to register an account on the RAMANI platform.
Without proper registration users will not have any access to
the datasets to ensure map uptake monitoring capabilities and to
avoid abuse. Furthermore, this will allow the tracking of which
users access which datasets.

The linked geospatial data tools. The linked geospatial data
tools presented in Section 3 have been used to develop environ-
mental applications not only in Copernicus App Lab but also in
previous projects TELEIOS, LEO and MELODIES [14, 17]. The
linked geospatial data tools have been welcome by users who
could see the value of developing applications using semantic
technologies. The most popular tools have been Sextant and
Ontop-spatial. Sextant has been irreplaceable as there is currently
no other tool for visualizing linked geospatial data. Ontop-spatial
has been attractive for users given that most of them were not
in favour of transforming their data into RDF and storing it in
Strabon. The fact that Ontop-spatial is also faster than Strabon
on most of the queries of the benchmark Geographica [4] has
been another reason users preferred it over Strabon.

The most innovative, but also challenging, aspect of using
Ontop-spatial in Copernicus App Lab has been its ability to give
access to Copernicus data (e.g., LAI data) through the OPeNDAP
framework. When the data gets downloaded at query-time, query
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execution typically takes two orders of magnitudemore time than
in the case where the data is materialized in a database or an
RDF store. When data is stored in a database connected with
Ontop-spatial, DBMS optimizations and database constraints are
taken into account and query plans are optimized. This does not
happen in the case where Ontop-spatial retrieves data on-the-fly
from OPeNDAP, especially since data is preprocessed before it
gets translated into virtual triples using Ontop-spatial. However,
in the cases when we want to access Copernicus data that gets
frequently updated, the virtual RDF graphs approach is useful as
it avoids the repeated translation steps that have to be done by
the data provider. For more costly operations (e.g., spatial joins
of complex geometries), it is better to materialize the data. In
our current work, we are developing further optimizations to
improve the performance of this mechanism using techniques
such as caching. We are also working on enabling Ontop-spatial
to query other kinds of data e.g., HTML tables and social media
data, since this functionality has been requested by users.

The following open problems will also be considered in the
future:

• Although Strabon has been shown to be the most efficient
spatiotemporal RDF store available today37, much remains
to be done for Strabon to scale to the petabytes of Coper-
nicus data or the linked geospatial data typically managed
by a national cartographic agency (e.g., Ordnance Survey
in the United Kingdom or Kadaster in the Netherlands;
they both use linked geospatial data). We plan to extend a
scalable RDF store like Apache Rya38 with GeoSPARQL
support taking into account the lessons learned by similar
projects in the relational world [13].

• It will usually be the case that different geospatial RDF
datasets (e.g., GADM and OpenStreetMap) will be offered
by different GeoSPARQL endpoints that can be considered
a federation. There is currently no query engine that can
answer GeoSPARQL queries over such a federation. The
only system that comes close is SemaGrowwhich has been
shown to federate a single Virtuoso endpoint and a single
Strabon endpoint in [12]; more research is needed in this
area for developing a state-of-the-art federation engine
for GeoSPARQL.

• It is important to extend GeoTriples to be able to transform
data in SQLite and ESRI geodatabases into RDF. The same
should be done for scientific data formats such as NetCDF.
The problem of representing array/gridded data in RDF
has recently received attention by the W3C/OGC Spatial
Data on the Web Working Group and some interesting
working group notes were produced39. In a similar spirit
an extension of SPARQL, called SciSPARQL, for querying
scientific data has been proposed in the Ph.D. thesis of [1].

Using the Copernicus App Lab tools. Participants of the ESA
Space App Camps that were organised in September 2017 and
2018 had the opportunity to use the Copernicus App Lab technolo-
gies to implement demo applications. ESA Space App Camps40
are yearly events that bring together programmers to develop
innovative applications based on satellite data. The objective is to
make EO data, particularly from Copernicus, accessible to a wide

37We have shown this in papers [6, 15] in 2013. The situation has not changed since
then, according to recent experiments of our team.
38https://rya.apache.org/
39https://www.w3.org/2015/spatial/wiki/Main_Page
40http://www.app-camp.eu/

range of businesses and citizens. Twenty-four developers from 14
countries attended the 2017 ESA App Camp in Frascati, Italy. It
is important to note that these were the first two ESA Space App
Camps that introduced the Copernicus App Lab tools and in both
competitions he winning applications utilized the Copernicus
App Lab technologies. The winning app of 2017 named AiR, dis-
plays an interactive projection of the Earth’s surface to airplane
travelers using Copernicus satellite imagery, letting them see
information about the cities and landmarks they pass over dur-
ing their flight, without the disruptions of clouds or parts of the
plane getting in the way. The developers of AiR used Copernicus
App Lab tools to access and integrate data from different sources
(Copernicus land monitoring service data, OpenStreetMap data
and DBpedia data about landmarks). In 2018 the winning app
named Urbansat aims to guide greener, more ecological urban
planning. It provides a range of data for planners, including infor-
mation on green spaces, terrain and biodiversity and more. The
app′s map interface has a drag and drop feature, which would
allow users to compare scenarios pre and post build for their
construction projects, through the generation of relevant data,
largely derived from Sentinel satellites. This would allow them to
see the anticipated impact of constructing a building on local air
quality, for example. The developers of Urbansat used Copernicus
App Lab tools to process data from different sources (Copernicus
land monitoring service data, Urban Atlas data, Natura 2000 data
and data provided from GADM). Another interesting application
that was developed was Track Champ. Track Champ combines
Earth observation data with data about points of interest from
OpenStreetMap to find the perfect time and place to exercise
while tracking personal performance over time.41

One of the lessons that we learned from the 2017 and 2018 ESA
Space App Camps, after compiling user feedback, was that the
capability of integrating Earth observation data together with
linked open data (e.g., landmarks, points of interest) was very im-
portant in some applications. In all of the applications that were
based on combining Copernicus data with open data, developers
chose to use the Copernicus App Lab tools. Given the limited
time they had available for coding, they found it easier to access
the available GeoSPARQL endpoints rather than the original het-
erogeneous data sources. On the other hand, some developers
also reported that getting familiarized with the Copernicus App
Lab technologies required some effort, given that they did not
have background knowledge in Semantic Web technologies or
geospatial data management. These users suggested that this
issue could be addressed by improving documentation material.

Google has recently activated the beta version of its dataset
search (https://toolbox.google.com/datasetsearch), where the
datasets that are indexed using schema.org (https://schema.org/),
as proposed by Google, show up. Schema.org is a vocabulary
created from the collaboration of four major search engines:
Bing, Google, Yahoo, and Yandex. It aims to provide a unique
structured data markup schema which would include a great
amount of topics, including people, organizations, events, cre-
ative works such as books and movies, etc. The on-page markup
allows search engines to understand information included in
web pages, while it provides rich search features for users. We
have followed these guidelines and annotated all the datasets
used in the use case of Section 3, and made them available at the

41All the applications developed are presented in more detail at the following Web
page: https://www.app-camp.eu/winner-frascati-2017/
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following link: http://kr.di.uoa.gr/#datasets. We have also recom-
mended that the same practice is followed by the Copernicus
services we have worked with (land monitoring, global land and
atmosphere services).

Currently, EO datasets are hidden in the archives of big EO
organizations, such as ESA, NASA, etc. These datasets are only
available through specialized search interfaces provided by the
organizations. It is important to make major search engines like
Google able to discover EO datasets and not only general datasets,
in the same way they can discover information about movies,
concerts, etc. To achieve this goal, we designed an extension to
the community vocabulary schema.org, appropriate for anno-
tating EO data in general and Copernicus data in particular, by
extending the class Dataset with subclasses and properties, which
cover the EO dataset metadata defined in the specification OGC
17-003 for annotating EO product metadata using GeoJSON(-
LD) (http://geo.spacebel.be/opensearch/myDocumentation/doc/
index-en.html). The OGC 17-003 is based on the specifica-
tions OCC 10-157r4 (http://docs.opengeospatial.org/is/10-157r4/
10-157r4.html) and UMM-G (https://wiki.earthdata.nasa.gov/
display/CMR/CMR+Documents), and it is expected to be stan-
dardized by OGC during 2018. The OGC 10-157r4 - Earth Observa-
tion Profile of Observations and Measurements (O&M) provides
a standard schema for encoding EO product metadata in order
to describe and catalogue products from the sensors of EO satel-
lites. The Unified Metadata Model for Grabules (UMM-G) is an
extensible metadata model for Granules, that provides the map-
pings between NASA’s Common Metadata Repository (CMR)
supported metadata standards.

The schema.org extension for encoding EO metadata can be
used by EO organizations like ESA for the encoding of the meta-
data of their EO datasets. In this way, EO datasets will be discover-
able by search engines. In addition, this schema.org extension for
EO products can be used by webmasters who want to annotate
their webpages, so that search engines can find the EO datasets
they provide. It is important to make this EO data available on the
Web as linked data in order to increase their use by developers
that might not be experts in EO. In this way, great amounts of
data that are generated fast, can be made “interoperable” and
more valuable when they are linked together.

6 SUMMARY
In this paper we argued that Copernicus data is a paradigmatic
source of big data giving rise to all relevant challenges: volume,
velocity, variety, veracity and value. The Copernicus App Lab
project targets all these challenges with special focus in variety
and volume, and has developed a novel software stack that can
be used to develop applications using Copernicus data even by
developers that are not experts in Earth observation. We pre-
sented a case study developed using the Copernicus App Lab
software stack and discussed lessons learned, future plans and
open problems.
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ABSTRACT
Vast amounts of data are being generated daily with the adop-
tion of Internet-of-Things (IoT) solutions in an ever-increasing
number of application domains. There are problems associated
with all stages of the lifecycle of these data (e.g., capture, cura-
tion and preservation). Moreover, the volume, variety, dynam-
icity and ubiquity of IoT data present additional challenges to
their usability, prompting the need for constructing scalable data-
intensive IoT data management and processing platforms. This
paper presents a novel approach to model and build IoT data plat-
forms based on the characteristics of an Actor-Oriented Database
(AODB). We take advantage of two complementary case studies –
in structural health monitoring and beef cattle tracking and trac-
ing – to describe novel software requirements introduced by IoT
data processing. Our investigation illustrates the challenges and
benefits provided by AODB to meet these requirements in terms
of modeling and IoT-based systems implementation. Obtained
results reveal the advantages of using AODB in IoT scenarios
and lead to principles on how to effectively use an actor model
to design and implement IoT data platforms.

1 INTRODUCTION
Internet-of-Things (IoT) systems enable data interactions through
machine-to-machine communication stemming from supporting
devices connected to the Internet [13]. IoT systems generate a
potentially huge amount of data from devices that dynamically
enter and leave the IoT environment, with very high-speed data
flow and processing. Data, in turn, are generated by awide variety
of devices, thus giving rise to highly heterogeneous data streams.
In this paper, we distinguish between IoT systems (i.e., the entire
software ecosystem involved in an IoT scenario) and IoT data
platforms (i.e., the data and data management software modules
that are part of an IoT system). Our work focuses on the latter.

Enormous challenges need to be addressed in order to realize
the full potential of IoT. First, there is a tension between effective
data management and fulfillment of performance requirements
in IoT data platforms. Indeed, many IoT systems are processor-
intensive and require processing a massive amount of highly
concurrently generated data. The management of these interac-
tions among data with low latency remains an open research
problem. Second, being able to deal with dynamic scaling while
guaranteeing protection of data from different entities is another

© 2019 Copyright held by the owner/author(s). Published in Proceedings of the
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Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

significant challenge. Therefore, we focus our investigation on
how to manage the data from large volumes of devices and, at
the same time, ensure the dynamic and flexible development of
applications. This dual aim must be achieved while respecting ap-
plication constraints for low latency in interactive functionality
as well as data protection and access control.

Given these characteristics, we propose that actor-oriented
databases (AODBs) are ideally suited to manage the data of real-
world IoT systems. Actors comprise a model of computation
specifically aimed at high concurrency and distribution [1]. To
that effect, actors keep their private states and can modify states
by communicating with each other via immutable asynchro-
nous messages [19]. As such, actors are natively applicable to
support the management of an arbitrary number of indepen-
dent and heterogeneous streaming data sources. AODBs, in turn,
enrich actors with classic RDBMS functionality by integrating
data management features, such as indexing, transactions, and
query interfaces, into actor runtimes [17]. These features make
AODBs attractive for building an IoT data platform. Inmore detail,
AODBs stand out for several reasons. First, IoT systems comprise
many different devices with distinct functionality. This require-
ment is directly met by the actor model, through the principle
of assigning different logic and tasks to actors. Second, in IoT,
data changes frequently; actors provide a natural alternative to
conventional concurrency models that rely on synchronization
of shared mutable state using locks. Third, the characteristics
of non-blocking interactions via immutable messages between
actors match well with the demands of IoT systems. Fourth, the
number of actors can scale out quickly without consuming ex-
cessive resources. Dynamic scaling is a common situation in IoT
in which all kinds of sensing devices (including humans!) can
quickly enter – but also leave – a system.

There are several examples of the use of actors in IoT scenar-
ios [4, 38, 41, 43]. However, these previous studies concentrate
on implementation aspects, neither providing guidance on how
to model IoT data platforms with actors nor analyzing the fit
of AODB to the requirements and challenges brought about by
IoT. By contrast, to the best of our knowledge, this paper is the
first that builds an end-to-end case for the suitability of AODBs
to manage IoT data, going from requirements and modeling to
implementation and performance evaluation. Our work covers
a wide gamut of issues to justify and showcase the adoption of
AODBs as an appropriate solution to meet the main challenges
of data management in IoT systems. Our main contributions are
therefore:

(1) We discuss core requirements of IoT data platforms, and
challenges to be met in their implementation. We illustrate
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this discussion through the analysis of two real world IoT
case studies.

(2) We present a methodology and guidelines to model an
AODB for such platforms.

(3) We develop a prototype of one of the case studies and
present its evaluation to show the effectiveness of adopting
AODBs for IoT data platforms.

The remaining of this paper is organized as follows. Section
2 presents two case studies of IoT systems, which we use to ex-
tract functional and non-functional requirements, and to present
some of the major challenges to be faced. Section 3 justifies our
choice of AODBs as an appropriate technology to meet such
requirements and challenges. In Section 4, we provide a detailed
discussion of the challenges of modeling such platforms, and
show how these challenges can be overcome for the running
cases. Sections 5 and 6 respectively present our prototype for
one of these cases and its evaluation. Section 7 revisits the paper
by contrasting it with related work. Finally, Section 8 presents
conclusions and ongoing work.

2 IOT DATA PLATFORM CASE STUDIES
In this section, we discuss the requirements for an IoT data plat-
form and analyze two specific case studies. There are several
scenarios in IoT data platforms, such as healthcare, personal se-
curity, traffic control, environmental monitoring, and disaster
response. The two IoT data platform cases that we focus on are
drawn from our experience with a structural health monitoring
system (cf. Subsection 2.1) and a beef cattle tracking and trac-
ing system (cf. Subsection 2.2). We have worked directly with
these case studies, helping us validate common non-functional
requirements for IoT data platforms as well as collect illustrative
functional requirements for these applications.

For the first study, we have cooperated with SenMoS [45] in
the area of structural health monitoring for large constructions,
e.g., bridges. SenMoS is a Danish company that provides users
with entire monitoring solutions, including requirement elicita-
tion and cloud data management. The developers at SenMoS have
participated in the design and implementation of the IoT data
platform for the Great Belt Bridge [50]. The second case focuses
on the management of cattle produce (and in particular the beef
supply chain) from the perspective of traceability. This study is
based on previous work with domain experts from the Brazil-
ian agricultural research corporation Embrapa [28] that studied
traceability in food for supply chains [35], and on interactions
within the Danish Future Cropping partnership [30], particularly
with experts from the agriculture solution provider SEGES [44].
Both of these organizations have substantial experience in the
agricultural sector and are key players in agricultural extension
systems of the respective countries. Both case studies concern
the development of a scalable data platform that collects and
stores data from IoT devices, processes operations, and provides
information services to different users. Although these two IoT
platforms target different scenarios, they present several com-
mon aspects and non-functional requirements. In particular, the
systems should operate as Software-as-a-Service (SaaS) solutions
and thus manage the data from several different tenants. More-
over, it is desired that scalability to large data volumes or users be
achieved without a high burden on the data platform developers.
Non-Functional Requirements for IoT Data Platforms.We
elicited the following common non-functional requirements shared
by different IoT data platforms:

(1) Data ingestion from endpoints. The IoT data platform
must have the capability to receive and store data from
IoT devices, e.g., GPS collars on cows.

(2) Multi-tenancy. The IoT data platform must provide var-
ied information services to different users.

(3) Support for heterogeneous data. The IoT data platform
must be modular in its support for data ingested from IoT
devices and allow for communication employing different
data formats.

(4) Cloud-based deployment. The IoT data platform can be
distributed in the cloud for ease of operation, management,
and maintenance.

(5) Scalable data platform. The IoT data platform must not
degrade in functionality or performance while expand-
ing. This must occur without modifying existing software
components.

(6) High efficiency. The IoT data platformmust process mas-
sive amounts of concurrently generated data effectively.

(7) Access control and data protection. The IoT data plat-
form should support data protection, enforcing authenti-
cation and access control over different users and profiles.

In addition to the requirements above, it is often the case
that IoT data platforms must serve queries over historical data
accumulated from devices over long time periods. In this paper,
we focus, however, on online data ingestion and querying in
SaaS scenarios. We note that at present, there is only limited
support for declarative multi-actor querying in AODBs [17], and
thus complex historical analyses could still be served by a data
warehouse.

2.1 Case 1: Structural Health Monitoring
Structural Health Monitoring (SHM) systems aim to identify dam-
aged sections on parts of large constructions that can cause safety
concerns. SHM systems can help organizations save time on in-
spections by gathering and processing data so that the system can
generate alerts when problems arise or suggest actions that can
prevent faults. SHM systems are equipped with a set of sensors,
e.g., to measure a bridge’s extension, inclination, temperature,
wind speed, and wind direction. Each sensor is connected to a
data logger that converts the sensors analog signal into a digital
one. The platform must collect, process and store data from the
sensors. Figure 1 presents a context diagram of the Structural
Health Monitoring Data Platform. This design is based on a real
case study. Sensors provide data to different stakeholders, e.g., en-
gineering experts monitoring the structure, data analysts, or the

Structural Health Monitoring Data Platform

sensor1

Get sensor
data

Manage sensor
configurations

sensor2

Get bridge 
information

Maintenance personnel

Provide 
information

Engineering expertsData analysts

Provide 
sensor data

Adjust warning 
thresholds

Get 
warnings

Figure 1: Context Diagram for Structural Health Monitor-
ing Case Study.
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maintenance personnel who manages the monitoring projects.
The SHM system must meet the following functional require-
ments:

(1) The system must control several construction structures
(e.g., bridges) using the same data platform.

(2) The system must be structured to support data storage,
i.e., data must be saved in a way that allows for further
data manipulation and analysis.

(3) The data platform must be able to maintain data from
multiple sensors, users, projects, and organizations.

(4) The data platform must calculate the accumulated change
for each data stream from a sensor, e.g., to gauge how far
elements have moved when using extension sensors.

(5) The data platform must send customized alerts to users
when thresholds are met, depending on individual sensors
or sensor types. Thresholds can be used for determining
the need for maintenance, or to call attention to ongoing
events.

(6) The data platform must support plots providing statistical
aggregates to help users spot meaningful events in time
series. Besides, online plotting of recent raw sensor data
is required to let personnel explore events interactively.

(7) The data platform must allow for browsing of live data
from sensors, along with continuously derived equations,
to provide a view of the current state of the structure.

2.2 Case Study 2: Beef Cattle Tracking and
Tracing

Agricultural supply chains involve a complex network of pro-
ducers, retailers, distributors, transporters, storage facilities, and
consumers in the sale, delivery, and production of a particular
product. Trackability and traceability are essential requirements
in food marketing [24]. Tracking refers to following the path
of an entity from the source to destination. Tracing refers to
identifying original information regarding an entity and tracing
it back in the system [37]. Systems for tracking and tracing agri-
cultural products increase consumer confidence on provenance
and quality of the food they buy, while at the same time helping
retailers and certification authorities to monitor products.

The ability of IoT to collect data from sensors as well as trace
entities is a crucial enabler for monitoring such chains. Systems
that automate tracking and tracing in an agricultural supply chain
should not only collect data, but also connect users and objects
at any place and time. Data integration, processing, analysis and
service support present many challenges in this context. For the
sake of feasibility, we assume for this case study, similarly to
other food tracing systems [33], that a global standard for supply
chain messages, GS1 [32], is adopted by participants that connect
with the IoT data platform. As such, we do not discuss the data
integration problem in this paper.

Our case study refers to a part of the beef cattle supply chain,
concentrating on cow tracking and meat product tracing, pro-
viding tracking information and helping consumers trace meat
products. Figure 2 presents the entities interacting within the
data platform. The system must provide multi-tenancy services
to host the data of different participants and supply chains. From
a high-level point of view, there are five kinds of tenants in our
system: farmers, slaughterhouses, distributors, retailers, and con-
sumers. Each involved part is the source of different types of data
in the system to enable the tracing of the whole life-cycle of a
given meat product.

Beef Cattle Tracing and Tracking Data Platform

Farmer Cow Slaughterhouse

Distributor Retailer Meat Product

Get cow 
information

Get cow
information

Get meat cut 
information

Get meat cut/
product information

Get meat cut/
retailer information

Provide cow 
information

Provide meat cut
 information

Provide distributor 
information

Provide retailer 
information

Meat Cut

Get slaughterhouse/ 
distributor/retailer  
information

Provide meat 
cut information

Provide meat product
information

Figure 2: Context Diagram for Beef Cattle Tracking and
Tracing Case Study.

Full-fledged cattle sensor-based systems involve the deploy-
ment of very many kinds of sensors – both in individual ani-
mals and in their environment. For instance, each animal has
external sensors (e.g., collars, earrings) to measure movement,
speed, location. Cattle often also have sensors inside their diges-
tive tract (usually swallowed, sometimes implanted), to measure
factors such as temperature, metabolic variables, or digestive
characteristics. Environmental sensors may monitor factors such
as cattle weight, or soil humidity. Additional sensors along the
supply chain include devices that provide trackability (e.g., in
transportation), but also traceability and quality (e.g., monitor-
ing temperature inside warehouses). Without loss of generality,
we have simplified this scenario to consider only a few of these
sensing sources, keeping only enough distinct sensors to illus-
trate actual data and sampling rate heterogeneity. This simplified
scenario must fulfill the following functional requirements:

(1) The data platform must store the data from animal and
environment sensors, such as collars bound to each indi-
vidual cow, to enable retrieval of location, motion, and
other facts regarding traceable entities.

(2) Farmers need to track each cow’s trajectory and behavior,
and thus the data platform must record the locations of
each cow over time. Geo-fencing can help identify whether
a cow is in an appropriate area (e.g., when rotating pasture
grounds) [20].

(3) Slaughterhouses wish to access services that provide infor-
mation about cows that will be slaughtered. For instance,
it must be possible to access tracing information such
as the provenance of the cows and tracking information
about where the meat cuts produced after slaughter are
transferred to.

(4) Distributors wish to get tracing information of a meat cut
and tracking information of where those cuts are to be
sent to.

(5) Retailers aim to know the source of the meat cuts and
manage their transformation into meat products for con-
sumers.

(6) Consumers wish to get tracing information about meat
products over the whole supply chain.

2.3 Challenges for IoT Data Platforms
The functional and non-functional requirements discussed in this
section render the modeling and building of IoT data platforms
a non-trivial undertaking. The construction of such a platform
involves technical issues related to capturing, identifying and
storing relevant events, managing associated constraints, process-
ing varied types of queries, etc. Further complexity arises from
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taking into account the necessities of different stakeholders, and
issues related to data precision, synchronization and availability.

Choosing the right database architecture is therefore a key
decision for the success of an IoT data platform project. Vir-
tualized deployment for efficiency and ease of scaling to large
request volumes are significant obstacles [46]. Moreover, sup-
port for multi-tenancy needs to be carefully designed. While
physical sharing of tenant data lowers overhead and increases
efficiency [7], this strategy opens up security risks, which are
related to the lack of modularity at the database level [47].

Thus, several questions need to be addressed when building
IoT data platforms. First, a vast amount of data is concurrently
generated from IoT devices. How can this data be managed and
processed in the data platform? Second, how can data protection
and access control across different entities be enforced while
sharing data effectively? Third, our case studies suggest that a
variety of queries, including analyses of time series from bridge
sensors, spatial queries for cow locations, or graph navigation for
tracing, need to be efficiently supported over IoT data. How can
applications be modeled and built to support different types of
queries? Fourth, it is necessary that the system be easily scaled
without affecting functionality and performance. How can the
platform be architected to easily scale out when it becomes nec-
essary to manage more users and data? In this investigation,
we observe that the issues regarding modularity and scalability
pointed out in this section can be simultaneously addressed by
AODBs [17]. We design cloud-centric actor-oriented database
backends for the two IoT case studies introduced in this section.
As a first step, we explain the motivation of taking an approach
based on AODBs in the next section.

3 WHY ACTOR-ORIENTED DATABASES?
We argue that an actor-oriented database is the ideal organiza-
tion for an IoT data platform, enabling fulfillment of all common
non-functional requirements identified in Section 2. Moreover,
AODBs ease the achievement of functional requirements by pro-
viding amodular, stateful, and scalable substrate for the modeling,
design and implementation of an IoT data platform. The follow-
ing characteristics of an AODB illustrate its suitability to address
the challenges of IoT data platforms.
AODBs facilitate the management of distribution and the
encapsulation of data. Actors are logically distributed, and can
thus naturallymap to dispersed entities such as sensors. The latter
promotes the expression of parallelism in the application logic
responsible for data ingestion into the platform. Moreover, an
AODB-centric design functionally decomposes the data platform
into different actors. State is encapsulated within each actor, and
can only be communicated by asynchronous messages. As such,
actors provide a mechanism for isolation of different functions
and data, enabling efficient support for multi-tenancy.
Actor modularity in AODBs supports representation and
sharing of heterogeneous data. Actors are the unit of modu-
larity in an AODB. By encapsulating state and supporting speci-
fication of user-defined APIs, actors abstract heterogeneous data
representations. Moreover, arbitrary data transformations can
be coded in actor methods, enabling asynchronous exchange
of data across heterogeneous actors. As such, actors offer an
attractive model to capture heterogeneity of data formats and
representations originating at multiple IoT devices.
AODBs employ multiple actor types and concurrent exe-
cution among actors to achieve scalability. The support for

multiple actor types enables the representation of different kinds
of entities in the IoT data platform. When a new entity type is
added to the system, it is represented by a new actor type added
to the data platform. AODBs thus support a gradual extension of
the platform through new actors and actor types with minimal
impact on existing components. The use of actors makes scaling
out easier, since new actors can be deployed over additional hard-
ware components to avoid violation of performance constraints.
The resulting concurrent and distributed execution facilitates
efficient use of computational resources to bolster scalability.
Parallelism across actors in AODBs allows for processing
of massive amounts of concurrently generated data. By
identifying tasks and associated logic among entities, we can
model entities as independent actors, so that they can perform
tasks concurrently. When independent tasks are then run in par-
allel across actors deployed on separate hardware components,
data platform performance can be improved. Since sensors are
naturally modeled as different actors, parallel execution can be
leveraged in processing data from a large number of data streams.
Encapsulation andmodularity inAODBs support data pro-
tection and access control. As data in one actor are invisible
to others, access permissions can be checked when data are ex-
changed by asynchronous messaging [40]. In other words, data
are protected inside an actor, and mechanisms for access control
can ensure data are only shared with authorized users.

4 MODELING THE CASE STUDIES WITH
ACTOR-ORIENTED DATABASES

AODBs provide scalable data processing, management, and stor-
age over a set of application-defined actors [17]. However, to
the best of our knowledge, there is scant guidance on how to
model applications to reap the benefits of AODBs. In this sec-
tion, we fill this gap by an in-depth modeling discussion of the
two IoT case studies described in Section 2. We contribute to the
construction of IoT data platforms in two ways: (1) we provide
guidelines for modeling IoT data platforms with AODBs; and (2)
we explain how an actor model affects the system both in design
and implementation.

It is believed that application modeling helps to preserve and
reuse information in other projects, as well as facilitates the
automated generation of a system from models [51]. To support
the latter aim, we leverage UML notation [53] to create models of
actors, their encapsulated state and their operations. These data-
centricmodels harken back to conceptual modeling approaches in
databases, enabling both specifications of data requirements and,
in the future, code generation for AODB platforms. To support the
former aim, we focus on documenting database actors and their
asynchronous interactions. In addition to database actors, the
classic architecture of an IoT data platform contains a stateless
tier that mediates the interaction with users or devices. The
analysis of this tier is outside the scope of our work; we abstract
its functionality as stateless actors operating as proxies and omit
this tier from our models.

In the presented models, we represent the minimal necessary
information to emphasize techniques for actor-oriented database
design. Application details that would make the presentation
unnecessarily complex are thus omitted, and simplifications are
made where appropriate. In the sections that follow, we identify
each core modeling question encountered in the two IoT data
platform case studies and discuss lessons learned.
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4.1 How can Actors be Identified?
A variety of entities exist in any system, and these entities either
perform or collaborate to achieve different tasks. Moreover, these
entities have different life cycles, distinct types, and varied needs
regarding heavy computation or communication [14]. To take
advantage of the actor programming model as well as achieve
high availability and performance, it is an essential question to
decide which entities or entity sets should be modeled as actors.

To appreciate a concrete example of this challenge, consider
the beef cattle system introduced in Section 2, where many en-
tities perform different tasks to satisfy multiple requirements.
For instance, a collar sensor that is bound to a cow continuously
collects real-time geo-data for this cow and sends it to the data
platform. A historical trajectory for each individual cow is thus
updated based on this sensor data. Besides, additional informa-
tion may be needed, such as the cow’s identifier or health-related
data. In this sense, we can observe both collar and cow as sep-
arate entities engaged in cooperation to provide real-time and
historical geo-information to farmers and slaughterhouses. The
question is whether these two entities, the collar sensor, and the
cow, should be one or two independent actors.

Actors comprise a model of computation for concurrency and
distribution [1]. So not only should actors encapsulate state, as it
is the case with non-actor objects, but they should also abstract
concurrent tasks that need to be processed by the system. In our
experience, we found it useful to answer the following questions
when attempting to identify actors: (a)What services are provided
by the system being modeled? (b) Who should provide these
services and who are their users? (c) What is the output and
input of every single task performed and can these tasks be
executed concurrently?

Take our beef cattle tracking and tracing system as an ex-
ample. Typically one actor is designed to carry out one specific
real-world task with associated logic, such as slaughter or dis-
tribute. Different actors then capture simultaneous tasks. For
instance, farmers would like to obtain information on cows and
manage the herds that they own. Slaughterhouses would like
to obtain information about cows that will be slaughtered and
record how these cows get transformed into meat cuts. Farmers
and slaughterhouses can thus be conceptualized as users of cow
information services, which a cow ought to provide. Moreover,
the interactions between farmers, slaughterhouses, and cows are
concurrently executed by independent entities in the real world.
In particular, farmers manage cows and their respective infor-
mation, and slaughterhouses slaughter cows and record their
transformation into meat cuts. Cows are associated with their
sensor data, which are continuously updated by their collars.
As such, we model farmers, slaughterhouses, and cows as in-
dependent actor types. Since each collar is bound to a cow, we
encapsulate this sensor information inside cow actors.

Figure 3 shows the data platform model for the beef cattle
system. Every actor encapsulates its state and communicates
with other actors via asynchronous messages. Therefore, simple
accesses to data in the state of an actor are rendered as asynchro-
nous communication events across actors. As we can see from
the figure, we model one cow as a Cow actor. A Cow actor has an
aggregation relationship with many collar sensor readings indi-
cating the GPS locations of the cow, and each such sensor reading
is bound to exactly one cow. In other words, we use aggregation
relationships to indicate that the objects of a non-actor class are
encapsulated in the referred actors. Since cows are modeled as

Figure 3: Actor Model of Beef Cattle Tracking and Tracing
Data Platform.

actors, real-time locations are reported to Cow actors, which
serve this information to all interested readers along with other
associated cow state data such as the cow identifier.

We model one farmer or several farmers who work together
(e.g., a cooperative) as one single Farmer actor because the state
of this farmer or these farmers is organized as a unit.1 One cow is
owned by one farm unit, but one farm unit can own many cows.
The Farmer actor can read the properties of any Cow actor that
is associated with it through message passing. If such messages
are exchanged under a security model with authentication, then
we can enforce that cow information is only visible to its owner
farmer tenant or properly authorized slaughterhouse.

A physical slaughterhouse ismodeled as a Slaughterhouse actor.
A cow can only be slaughtered once in exactly one slaughter-
house, but a slaughterhouse is responsible for slaughtering many
cows. This constraint is reflected in the association between Cow
and Slaughterhouse actors, and as above a Slaughterhouse actor
can read data from any Cow actor via asynchronous messaging.
The Slaughterhouse actor processes such data to deriveMeat Cut
actors, which represent units of beef to be distributed as a whole.

A Meat Cut actor processes updates to its itinerary property
generated by Delivery actors as meat cuts are transported. In
our model, a Distributor actor manages multiple Delivery actors,
which themselves manage a transportation process with differ-
ent source and destination locations. For example, a logistics
company is modeled as a Distributor actor, and transportation
processes in this company are modeled as various Delivery actors
managed by the Distributor actor. A Delivery actor tracks a meat
cut delivery from a source to a destination location using a given
vehicle at a well-defined time. A meat cut can be delivered many
times by one or several distributors during the whole itinerary,
and a distributor is responsible for delivering many meat cuts.

We model the final destination of a meat cut to be a retailer,
e.g., a supermarket chain, whose information is managed by
a Retailer actor. Retailer actors can create Meat Product actors
by disaggregating or combining meat cuts. Thus, Meat Product
actors have a many-to-many association with Meat Cut actors.

Based on the above modeling process, we can summarize a
general principle of how to identify actors:

Typically, one actor is designed to carry out one specific
real-world task with associated logic. Different actors
capture different simultaneous tasks.

1Notice that this unit can be broken down into smaller units at will, depending on
the focus of an application – e.g., individual farmers unite to provide beef, but a
cooperative handles each farmer individually.
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Figure 4: Actor Model of Structural Health Monitoring Data Platform.

4.2 What should the Granularity of Actor
State be?

In an AODB, we allocate different tasks into separate actors, as
this organization can help increase concurrency. However, if
a single actor concentrates too much state or too much of the
application logic, i.e., if an actor is coarse-grained, then it be-
comes increasingly difficult to reap the benefits of concurrency
stemming from the application of the actor model. At the other
extreme, since actors do not share state and communicate only
through asynchronous messaging, an excessively fine-grained
actor design can introduce unnecessary overheads in state manip-
ulation as well as increased communication overhead. Moreover,
a fine-grained design may cause the actors in the system to ex-
plode in number, e.g., one actor per data item or record in the
system, which can challenge efficiency in an AODB platform. So
deciding the granularity of actors is an essential problem when
modeling any application with actor-oriented databases.

Previously, we have formulated a principle to identify actors
out of the entities in an application scenario. However, we should
balance this principle against the potential effect of actor gran-
ularity on application performance. In particular, we wish to
keep concurrency high, but at the same time avoid unnecessary
overheads and reduce the complexity of application modeling.
To balance these goals, our experience has been that it is natural
to make actors more fine-grained when they represent active
entities for which detailed tracking is required by the application.

Figure 4 presents the data platform model for the structural
health monitoring system. We observed during modeling that
organization entities own project entities representing different
constructions and that each such construction project is associ-
ated with some installed sensors. Note that only organizations
are active, as they initiate and manage construction activities,
while projects are passive structural schemes used by organiza-
tions. As such, we create Organization actors that encapsulate
project information, as displayed by an aggregation relationship
with a non-actor Project class, instead of utilizing separate actors.
This modeling decision minimizes message exchange when there
is no clear advantage in having the two entities run concurrently.

This notwithstanding, sensors are themselves active entities
in that they may be relocated, leading to change of position, and

also may generate multiple data streams originating from dif-
ferent physical sensor channels (e.g., if we consider a regular
smartphone as a sensor, then the accelerometer and microphone
would be sensor channels). Moreover, messaging is minimal be-
tween sensors and sensor channels, as data streams arriving at
the platform can be disaggregated by proxies directly by sen-
sor channel instead of being relayed through sensor entities. As
such, we model separate Sensor and Sensor Channel actors. Sensor
Channel actors hold a window of data points originating in the
respective data stream. The data points are captured as non-actor
objects since these entities are not active.

To help structure information about data points, additional
actors are included. First, Sensor Channel is specialized into
Physical Sensor Channel and Virtual Sensor Channel actor classes.
Whereas the former represents a channel in a physical sensor, the
latter represents a computation over potentially multiple physical
channels (e.g., in our smartphone example, an equation merging
the data from accelerometer and microphone sensor channels).
While a virtual sensor channel provides data at the finest level of
detail, it is necessary to provide statistical aggregates for online
queries posed by data analysts at various levels of detail (e.g., per
hour, day, or month). Since there can be parallelism in computing
these aggregations across levels of detail (e.g., hourly aggregates
serving as input to daily aggregates), it is useful to conceptualize
them as active entities. We thus introduce Aggregator actors in
the model.

Based on the above modeling process in the context of our case
studies, we summarize a general principle of how to decide
on actor granularity:

An actor should represent the functionality of one active
entity for which detailed tracking is required.

4.3 What is the Trade-Off between
Employing Actors or Non-actor Objects
for Frequently Accessed Entities?

We discussed the issue of actor granularity, which may result in
decisions where entities from the domain are modeled as actors
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or alternatively as non-actor objects. The modeling principle for
actor granularity calls our attention to active entities. By contrast,
there are a number of entities that store data but do not proac-
tively perform tasks. We call them inanimate entities, and they
are exemplified in the beef cattle tracking and tracing case study
by meat cuts and meat products. In Figure 3, we model these inan-
imate entities as actors. However, these actors only encapsulate
state and manage corresponding queries and updates originating
from active entities such as slaughterhouse, distributor or retailer,
e.g., when meat cuts and products are created or transported. As
such, a natural question is whether these inanimate entities could
have been modeled as non-actor objects instead of actors.

For example, suppose a distributor wishes to obtain infor-
mation about a meat cut that it transports. The corresponding
Distributor actor would have to send a message to the respective
Meat Cut actor to fetch this information. Furthermore, when a
meat cut is transported, the Meat Cut actor has to communicate
with a number of other source or destination actors, such as
Slaughterhouse, Distributor, or Retailer actors. As such, a Meat
Cut actor frequently interacts with other actors in the system.
Since all information on meat cuts needs to be exchanged across
actors through asynchronous messaging, casting meat cuts as
actors can generate a considerable communication overhead.

To explore this question, we have created an alternative model
for the beef cattle tracking and tracing case study (cf. Figure 5). In
this alternative model, we capture inanimate, but frequently up-
dated entities, such as meat cuts and meat products, as non-actor
objects instead of actors. Actors are marked in red in Figures 3, 4
and 5, while the non-actor objects are marked in black. The non-
actor objects represent a state and thus cannot exist in an AODB
independently of some actor. To capture state mutation as meat
cuts and products move across the supply chain, we create ob-
ject versions that are always associated with a responsible actor
at every stage. Consider how a meat cut is transferred from a
slaughterhouse to a distributor. The meat cut is the same real-
world entity, but the slaughterhouse and distributor may identify
the meat cut differently. Upon transfer, the object representing
the meat cut will be copied from the Slaughterhouse actor to the
Distributor actor, where this new object version can be updated.
Since each actor keeps a separate object version of the meat cut
throughout the supply chain, communication to obtain meat cut
information is obviated. All the actor logic that reads this infor-
mation can now access the encapsulated entities in the respective
actor state. For frequently accessed entities, this reduction in com-
munication may pay off with respect to the overhead of copying
non-actor objects. Furthermore, potentially more concurrency
can be exploited in reading local object versions across several
actors independently. However, some degree of data redundancy
may be introduced in the model.

Based on the above modeling process, we can summarize a
general principle of when tomodel frequently accessed en-
tities as non-actor objects instead of actors:

Frequently accessed entities can be modeled as actors or
non-actor objects, and the latter representation should
be preferred when reductions in communication over-
heads and gains from concurrency offset the disadvan-
tages of copying overhead and data redundancy.

Figure 5: Alternative Actor Model of Beef Cattle Tracking
and Tracing Data Platform.

4.4 How can Relationship Constraints be
Enforced across Actors?

Because actors encapsulate state and only communicate through
asynchronous messaging, relationships between actors are con-
ceptually distributed. For instance, in the model of Figure 3, a
farmer may own many cows, but a cow belongs to at most one
farmer. In a typical implementation, each direction of this rela-
tionship would be represented as properties in Cow and Farmer
actors. When performing updates to this relationship, we need to
update both sides and make sure these two properties in different
actors remain consistent. In particular, when a farmer sells a cow,
the Cow actor should have its ownership relationship changed
to the next owner, and the properties in the two affected Farmer
actors ought to reflect that only one farmer retains the ownership
of that cow. Since communication between actors is asynchro-
nous, it is a challenge to keep consistency across actors in the
presence of updates.

The consistency problem can be addressed by a transaction fa-
cility in the AODB, when available, or alternatively by a workflow
that ensures that all actors in a relationship change are eventu-
ally updated to a consistent state. These options are similar in
spirit to the proposal for indexing support in AODBs [17]. Since
some actor systems, such as Akka, no longer support transactions
[52], and update workflows operate under relaxed consistency,
a final alternative is to keep all data related to a relationship, or
more generally constraint, encapsulated in a single actor. This
discussion leads us to our final principle of how to enforce
constraints when using actors:

Employ transactions to update data across actors con-
sistently; however, in the absence of transactions, keep
data related to a constraint in a single actor or design a
multi-actor workflow for updates.

5 IMPLEMENTATION
In this section, we discuss the implementation of the IoT data
platform for the first case study of Section 2 with an AODB. We
choose the Structural Health Monitoring Data Platform (SHMDP)
since the resulting implementation has been transitioned to the
company SenMoS. However, the lessons learned and discussion
extend more broadly to the applicability of AODBs to IoT data
platforms in other domains, e.g., in beef cattle supply chains,
among others.
Choice of AODB. Our implementation of the structural health
monitoring data platformwas based on the model of Figure 4 [18].
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The first implementation challenge to be overcome was to find an
appropriate platform supporting actor and non-actor object con-
structs, as well as the AODB approach. The vision for AODBs [17]
was proposed in the context of the Orleans project [16], and we
thus elect this actor runtime for the SHMDP. Orleans has also
been used successfully in the context of other scalable applica-
tions [38], and can thus support real-world deployments. Unlike
many other actor programming languages or frameworks such as
Erlang [29] or Akka [3], Orleans employs the concept of virtual
actors, i.e., named actors that are logically in perpetual existence.
The Orleans actor runtime automatically creates activations of
these virtual actors for processing whenever functions are asyn-
chronously invoked on them, and eliminates activations when
there is pressure on resources. As such, virtual actors simplify
actor lifecycle management for an application built on Orleans.

In addition to virtual actors, Orleans provides an explicit stor-
age model for actor state. In particular, actors run in a stateful
middle-tier that can be conceptualized as an in-memory cache
of actor state enriched with application code expressed as ac-
tor functions. Whenever persistence of actor state is required,
a cloud storage system is employed by Orleans. The concrete
storage system is specified through annotations in actor code.
To meet the vision for AODBs, additional features are currently
being implemented in Orleans to close the gap between actor
runtime and DBMS functionality, e.g., indexing [17] and ACID
transactions across actors [27].
Data Platform Architecture. A second implementation chal-
lenge was to architect an IoT data platform based on AODBs that
fulfills all of the non-functional requirements of Section 2. Ideally,
an AODB should handle online data ingestion and querying as
well as analyses of historical data. However, as pointed out in
Section 2, declarative querying functionality is still incomplete in
AODBs currently [17]. Thus, we identify three core components
for the SHMDP: actor runtime, cloud storage system, and ana-
lytical database system. The actor runtime was implemented by
Orleans and provides the virtual actor abstraction. It also keeps
any necessary in-memory data structures for online data pro-
cessing and analysis as expressed in the model of Figure 4. The
storage system provides durability of actor state, and allows large
amounts of historical data to be archived. A key-value database
system with efficient data ingestion [36] is useful for this purpose.
Finally, data recorded in the storage system can be exported into
a classic star schema implemented in the analytical database [34].
The latter component is targeted at analytical queries over his-
torical data, and its description is outside the scope of this paper.
The former two components comprised the online data ingestion,
processing, and analysis functions of the SHMDP.
Support for Non-Functional Requirements. The AODB ar-
chitecture supports the non-functional requirements listed in
Section 2 as follows:

(1) Data ingestion from endpoints. Data from different
endpoints was managed by distinct actors in Orleans, and
recorded in the cloud storage system for durability.

(2) Multi-tenancy. Modularity, data encapsulation, and asyn-
chronous communication were provided by virtual actors
in Orleans, allowing isolation of functions and data sensi-
tive to different users.

(3) Support for heterogeneous data. Orleans virtual actors
support a number of data types and structures, e.g., repre-
senting simple alerts or real-time derived data for virtual
sensors. In addition, Orleanswas used to query time ranges

of raw data, and to build aggregates for low latency re-
quests over time periods. The problem of using Orleans for
these functionalities was that declarative queries cannot
access data across actors, and thus needed to be decom-
posed by the developer.

(4) Cloud-based deployment. Orleans was built to scale
out on servers, and extend over multiple geographical
locations. It is, moreover, open-source and designed with
cloud deployment as a primary target.

(5) Scalable data platform. Modularization allows scalabil-
ity in the number of actors, thus easily enabling the addi-
tion of more endpoints or users to the data platform.

(6) High efficiency. All processing in virtual actors occurs
in-memory. Orleans employs multi-core and multi-server
architectures to execute application logic in different ac-
tors in parallel.

(7) Access control and data protection. Authentication and
access control were implemented at the application level
by building on actor modularity features.

Virtual actor durability and deployment. Further implemen-
tation challenges arise from ensuring that the IoT data platform
can effectively ingest and process the large number of concurrent
update streams originating from devices. Two issues may impact
performance substantially: enforcing durability and deploying
actors over multiple machines in a cloud infrastructure.

Orleans virtual actors are called grains, and managed auto-
matically by the Orleans runtime. When a grain has work to do,
the grain is activated; when the grain has been standing idle for
too long, the grain’s resources are reclaimed by the system, re-
moving it from memory. To provide durability, grains in Orleans
may have a state storage class. This class defines all variables the
developer wishes to store persistently. The developer can force
the current state to persistent storage by invoking the WriteS-
tateAsync grain method or configure the grain class to store state
persistently when Orleans deactivates a grain. Whenever the
Orleans runtime re-activates a grain, the runtime retrieves by
default the latest grain state from cloud storage, if available. As
such, Orleans lets the developer decide when state is written to
persistent state storage.

In the SHMDP, durability requirements may vary depending
on the task being implemented. Certain tasks require that the
state of actors be immediately made durable, e.g., for creating
structural entities such as organizations, sensors, projects, and
sensor channels. Other tasks, such as gathering sensor data, can
collect a window of updates before forcing them to storage. For
example, in the Great Belt Bridge [50], the structural health mon-
itoring project consisted of more than 200 sensor channels, with
a typical requirement for live data being a reporting rate of one
packet of readings per sensor per second. So if we wrote state to
persistent storage after each request, we would need 200 write
requests every second to the cloud storage system.

Activated grains in Orleans get distributed across a set of silos,
where each silo is typically deployed in a server in a cluster
of machines. The distribution of grain activations to silos is by
default random, which is adequate for most use cases since it will
spread load. However, this actor deployment can increase the
cost of communication when certain actors interact frequently.
Orleans suggests using prefer-local activation in these cases.
For our data platform, we have had to change the activation
placement strategy away from random placement for our sensor
channels and aggregators. The prefer-local placement in these
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instances minimizes the need to perform remote procedure calls
when processing incoming requests.

6 EXPERIMENTAL EVALUATION
Our goal in the experiments is to assess if the AODB-based imple-
mentation of our model from Figure 4 yields an IoT data platform
that can scale in the number of sensors simulated and at the
same time support low-latency online query functionality. In the
following, we present our setup and the obtained results.

6.1 Setup
Benchmarking Tool. To stress-test the SHMDP, we created a
command line tool in .NET that uses the Orleans framework
client directly. This tool simulates data requests from sensors
and users in order to generate variable load for the data platform.
Sensors are simulated by tasks that each call a sensor grain and
insert 10 data points. This procedure is repeated each second if all
sensors have finished their calls, so as to adhere to the behavior
expected in the real scenario based on our experience.

Even though we simulate sensors for experimentation with
the benchmarking tool above, we envision that ingestion of sen-
sor data points will be based on a REST interface in a produc-
tion deployment. This way, sensors can send HTTP calls to the
data platform. As part of data ingestion, message queues can be
employed to accommodate for bursty behavior in sensor mea-
surements [6]. To limit the scope of our evaluation, however, we
focus on stressing only the virtual actor implementation of the
IoT data platform, and not other layers related to communication
with sensor devices.

The benchmarking tool stores data from each request sent to
the data platform in a log. Each log entry includes the latency
for the request, which request was sent (data insertion, live user
data, or user data request), the sampling rate, and a timestamp.
With this information, we can derive detailed throughput and
latency statistics for the experiments.
Summary of Software. We needed the execution of several
components for the experiments. The first one was the Orleans
silo, typically with one instance deployed per server, where vir-
tual actors are activated and run all application logic. We also
employed Amazon RDS [12] for Orleans system storage, which
keeps track of silo instances, reminders, and general system state.
Amazon DynamoDB [9] was used for Orleans grain state storage.
Besides, the C# benchmarking tool described above is invoked to
generate load to silos.
Cloud Service andDeployment. To characterize the SHMDP’s
data ingestion and processing capabilities, we set up our bench-
marking environment on Amazon AWS [8], employing the Ama-
zon DynamoDB and RDS services [9, 12] as stated above and
EC2 on-demand instances [10] for all remaining components.
Given our budget, two types of instances were employed: T2 for
low cost and burst performance features as well as M5 for more
stable performance. All instances were running Windows Server
2012 R2 and Orleans 1.5.0. The configuration, unless otherwise
mentioned, was designed to simulate a possible future production
deployment of the data platform based on our previous experi-
ence with the project for the Great Belt Bridge [50]: m5.xlarge
instances were employed for the Orleans silos, RDS db.t2.small
for Orleans system storage, DynamoDB with 200 writes and 200
reads per second for Orleans grain storage, and an m5.2xlarge
instance for the benchmarking tool.

Environment Configuration. For the experiments, we simu-
late sensors with two sensor channels each; every tenth sensor
has a virtual sensor channel that is a summation of the two other
sensor channels on the corresponding sensor. The latter choice
reflects that only a subset of sensor data require additional pro-
cessing to create a derived virtual sensor stream, which is close
to the real life scenario from the Great Belt Bridge. We populated
our actor-oriented database with synthetic data for users, orga-
nizations, projects, sensors, and sensor channels simulating a
realistic scenario. For every 100 sensors, a new organization was
constructed with a single user and a single project. Following
the sensor configuration, these 100 sensors represent 210 sensor
channels in total, out of which 200 are physical sensor channels
and 10 are virtual sensor channels. This structure was used for
all experiments, so that we can calculate exactly how many orga-
nizations, projects, users, and sensor channels are created given
a number of sensors. Employing 100 sensors with 210 sensor
channels in total is a configuration similar in size to the one in
our previous experience with the Great Belt Bridge.

To achieve our experimental goal related to low latency queries,
the upload of data points to the grain state storage has been con-
figured to only happen when the Orleans silo service is shut
down. This configuration ensures that we are not benchmarking
DynamoDB storage, but rather the execution of in-memory ac-
tors. When using the system in production, the grains have to be
configured to store data points to grain storage at an acceptable
rate as explained in the considerations for durability in Section 5.

Load was offered to the SHMDP by sending requests with 20
data points for each sensor currently being simulated (i.e., 10
data points were generated for each physical sensor channel in
each sensor). The requests were sent at a rate of 1 request per
second. This frequency simulates sensors sampling data at 10 Hz,
as specified in the Great Belt Bridge project for most sensors. As
an example, consider that we wish to simulate 500 sensors: this
number of sensors would correspond to 1,000 physical sensor
channels and 50 virtual sensor channels. Thus, the resulting
load would be of 500 requests per second being used to transmit
10,000 data points per second, and leading to the calculation of
500 virtual data points each second.

For each experiment, Figures 6, 7, 8 and 9 present the results.
A single point on the figures aggregates 10 minutes of the whole
service configuration running. The data was split into windows
of 1 minute, and the first minute was removed to make sure
the platform had started up correctly before measurement. In
addition, the last minute was removed to ensure that only whole
minutes were used. The average latency or throughput was then
calculated as a measurement, and depicted along with standard
deviation as error bars where appropriate.

6.2 Experimental Results
How many sensor readings can the SHMDP ingest using
a single cloud server? In our first experiment, we aimed at
establishing a relationship between the number of simulated
sensors and the hardware utilization at the data platform, so
that we can create a baseline load for the other experiments. In
particular for these measurements, we employed the smallest VM
size in the M5 series, the m5.large instance, and observed when
the instance cannot process any more data insertion requests.
We have chosen the smallest server size so that the experiment
can be used for both scale up and scale out baselines.
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Figure 6: Single-server throughput experiment.
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Figure 7: Scale out experiment over multiple servers.
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Figure 8: Latency percentiles for raw sensor channel data
point time range requests.
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Figure 9: Latency percentile for organization live data re-
quests.

Figure 6 shows the results from this single-server throughput
experiment. Because each simulated sensor in the experiment
was configured to send one request every second, note that the
SHMDP deployment was processing all requests as long as the
throughput is equal to the amount of simulated sensors. We
observe that the ratio between simulated sensors and throughput
is close to one until the number of simulated sensors reaches
2,000. At that point, throughput ceases to increase even if more
load is offered. By monitoring the VM instance when performing
the experiment, we have remarked that CPU Usage in Windows
TaskManager was at 100%when the number of simulated sensors
was above 1,800.
Does the SHMDP scale simultaneously on the number of
sensors and servers?Our second aim was to verify whether the
data platform can scale out in the number of data requests that
it can ingest from simulated sensors by utilizing the computing
power of more servers. To simulate a production environment, we
employed larger m5.xlarge VMs as described in the experimental
setup. From our single-server throughput experiments, we can
estimate a baseline load to be offered per server. Based on this
baseline, we can proportionally scale the load, number of servers,
and organization structure in the experiment.

To estimate baseline load, we note that in a production envi-
ronment, we wish to leave some CPU resources for user interac-
tion. We chose to leave roughly 20% utilization for handling user
online query requests and creating statistical aggregates. From
the single-server throughput experiment of Figure 6, we know
that roughly 1,800 requests per second can be processed by a
m5.large instance. By removing 20% and rounding to the nearest
100 requests per second, we obtain 1,400 requests per second.
Now, we can scale that number by the difference in computing

power between the m5.large and m5.xlarge instances, which is
estimated by their EC2 Compute Unit (ECU) values to be of a
factor 1.5x. So the baseline for a single server corresponds to
the load offered by 2,100 simulated sensors. This configuration is
employed for a scale factor of one. As the scale factor is increased,
we proportionally increase the number of simulated sensors and
the number of servers used for Orleans silos.

Figure 7 shows that the throughput sustained by the data plat-
form scales close to linearly with the scale factor. To illustrate
this observation, consider that at a scale factor of five, we have
five server instances and 10,500 simulated sensors. We observe
as expected a throughput above 10,000 requests per second. Sim-
ilarly, for a scale factor of eight, we have eight server instances
and 16,800 simulated sensors, and a throughput above 16,000
requests per second is observed.

The results indicate that the data platform can potentially scale
out even further than the 8 servers used in this experiment, since
we did not hit any bottlenecks. We expect that the behavior can
be maintained as we add a larger number of servers, since there
are no dependencies across organizations and there is enough
processing slack left to support eventual online user queries and
calculation of statistical aggregates.
Does the SHMDPdeliver low latency on online query func-
tions concurrently with data ingestion?We have simplified
the previous experiments by removing any user interactions, and
made all sensors sample data at 10 Hz sending 1 request each
second to the data platform. This scenario is close enough to
our experience with a real deployment that we can observe how
the data platform scales as we increase the number of sensor
insertion requests. However, we still need to show that the 80%
utilization rate chosen earlier will indeed leave enough room for
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the processing of online user queries. Furthermore, we aimed
at better characterizing user request latencies under this target
utilization level to make informed decisions when creating a
production environment in the future.

To simulate user requests to the data platform, we estimated a
relationship between simulated sensor requests and user interac-
tion requests. We know from the requirements for the SHMDP
that requests for live data as well as raw data kept in the sen-
sor channel actors need to be supported. Requests for live data
retrieved the most recent values from all sensor channels of a
given organization, while requests for raw data retrieved the time
series in a given sensor channel actor in an organization. From
actual user interactions observed at the Great Belt Bridge project,
we expect these online queries to be generated by at most one
person looking at live data for each organization requesting data
once every second, and at most one request for raw data a second
for each organization. Since a deployment in that project would
have around 100 sensors, we thus generate roughly 1% of the
requests for live data from all sensor channels in a organization,
1% for raw data, and the remaining 98% as sensor data insertions.

Figures 8 and 9 show that the latency of online query requests
increase, as expected, for higher percentiles of the latency distri-
bution. This growth is especially pronounced for 99.9th percentile
latency; however, even these extreme tail latencies can be ame-
liorated if utilization is reduced in the machine by offering load
from less sensors. For example, for 500 simulated sensors, 99.9th
percentile latency is minimal for raw data requests, and under
1 sec for live data requests. It is expected that latency of user
interactions on the website be kept within a few seconds. This
requirement can be fulfilled by the data platform even with the
targeted 80% utilization load offered by 2,000 simulated sensors
and at extreme latency percentiles. Moreover, the latency of raw
data requests is often substantially below 0.5 sec, while that of
live data requests is often below 1 sec at 2,000 simulated sensors.

7 RELATEDWORK AND DISCUSSION
This section discusses research efforts related to our work. To the
best of our knowledge, the literature lacks contributions explicitly
justifying why and discussing how AODBs meet the challenges
of IoT data platforms. However, earlier approaches have explored
how to support different aspects of IoT data management em-
ploying a variety of data-centric system abstractions.

Approaches based on data stream management systems
(DSMSs), in particular, are a commonly used solution in the con-
text of IoT systems [11, 21, 31, 48]. DSMSs are apt at transforming
multiple input streams, through a topology of data flow opera-
tors, into output streams containing, e.g., alerts and notifications
for further processing. One challenge in these systems has been
flexibility in responding to dynamically changing conditions as
typical in IoT, e.g., through the addition or removal of input
sources [49]. Actor-based streaming implementations have been
proposed to address these concerns [5, 39], as adaptability is a
built-in feature of the actor model [1]. However, a problem with
data streaming approaches has been to additionally provide for
data storage and online queries [22, 26]. In the context of IoT,
AllJoyn Lambda explored a lambda architecture for IoT data stor-
age analytics. Adnan et al. combined streaming and historical
data to perform predictions in IoT systems based on machine
learningmodels [2]. In contrast to AODBs, which abstract storage
management with virtual actors and storage annotations, these
approaches require developers to master complex APIs, often

spanning across data stream and database systems. Moreover,
while these systems provide for low-latency alerts, online queries
are non-trivial to support efficiently. By contrast, an AODB acts
as an in-memory, programmable cache where complex analyses
can be executed in parallel over the encapsulated state of multiple
actors employing user-defined methods.

Another class of solutions explored by previous work is that
of cloud-centric actor-based IoT middleware, such as Ptolemy
Accessor [42] and Calvin [41]. In these systems, every IoT device
is modeled as an actor so that those multiple IoT components can
be easily integrated into a potentially complex edge-cloud system.
However, these middleware platforms lack integration with data
management features that are central to an IoT data platform,
such as efficient data storage with support for multi-tenancy and
data protection. In addition to middleware, specific IoT applica-
tions have also been directly built over actor runtimes [4, 38].
For example, Pegasus is a cloud-based project aimed at gathering
data with high-altitude balloons [23]. The system employs the
Orleans actor runtime so as to simplify the development process
of building a parallel, interactive and dynamic cloud service [15].
In contrast to our work, these previous implementation efforts
do not provide any insights on data modeling decisions, nor do
they analyze case studies to connect requirements for IoT data
platforms with the necessary support from an actor-based solu-
tion. Even though there have been explorations of how to employ
actors as a modeling construct for cyber-physical systems [25],
none of these investigations fully satisfy our data platform re-
quirements, namely storing, managing and processing large-scale
data as well as providing for high scalability, real-time computa-
tion, data protection, and access control.

In line with the vision of Bernstein et al. [17], we argue that
the integration of data management features into actor runtimes
can help meet the increasing demand for scalable, low-latency
data platforms. Recently, a relational actor programming model
has been proposed for in-memory databases and realized in Re-
actDB [46]. Even though ReactDB shows that the actor model can
be used to provide for low latency in databases, we did not con-
sider it as a possible option for our data platform because it is a
research prototype and currently not available for production use.
Furthermore, in previous work combining actors and databases,
there is no systematic review of how to model and structure IoT
data platforms, nor discussion of the implementation of such IoT
platforms employing an AODB approach. Our work matches the
characteristics of an AODB with the requirements and challenges
of IoT data platforms, showing how recent research on AODBs
can be the basis for a new methodology to model and build IoT
data platforms.

8 CONCLUSIONS AND FUTUREWORK
IoT systems require adequate data platforms for handling data
storage, management, query and preservation. The modeling and
deployment of these platforms remain an open research challenge.
In this paper, we presented a generic actor-oriented data platform
modeling approach for IoT data platforms, showing how actor-
oriented databases can address challenges in the management
of IoT data. Our discussion of challenges and their solution was
showcased via two distinct case studies, specifically systems
for structural health monitoring and beef cattle tracking and
tracing. Our contribution covered the detailed modeling of these
two real-world case studies and presented the entities and the
patterns used to represent their dynamic behavior. This was
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accompanied by a discussion of modeling challenges, together
with our recommendation of technologies and methodologies to
address these challenges. As part of this work, we developed a
prototype of a structural health monitoring system, which was
transitioned to SenMoS. This prototype was validated through
experiments demonstrating scalability as more simulated sensors
are added as well as low latency in interactive query functions.

We believe that adopting AODBs for IoT systems can help
attain the full potential of IoT by extending the reach, scalability,
and maintainability of IoT data platforms. As future work, we
plan to explore data integration issues in IoT data platforms
modeled with the AODB approach, and devise approaches to
enforce constraints in AODBs.
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ABSTRACT
Demand for real-time stream processing has been increasing and
Apache Kafka has become the de-facto streaming data platform in
many organizations. Kafka Streams API along with several other
open source stream processing systems can be used to process
the streaming data in Kafka, however, these systems have very
high barrier of entry and require programming in languages such
as Java or Scala.

In this paper, we present KSQL, a streaming SQL engine for
Apache Kafka. KSQL provides a simple and completely interactive
SQL interface for stream processing on Apache Kafka; no need
to write code in a programming language such as Java or Python.
KSQL is open-source, distributed, scalable, reliable, and real-time.
It supports a wide range of powerful stream processing opera-
tions including aggregations, joins, windowing, sessionization,
and much more. It is extensible using User Defined Functions
(UDFs) and User Defined Aggregate Functions (UDAFs). KSQL
is implemented on Kafka Streams API which means it provides
exactly once delivery guarantee, linear scalability, fault tolerance
and can run as a library without requiring a separate cluster.

1 INTRODUCTION
In recent years, the volume of data that is generated in organi-
zations has been growing rapidly. From transaction log data in
e-commerce platforms to sensor generated events in IoT systems
to network monitoring events in IT infrastructures, capturing
large volumes of data reliably and processing them in a timely
fashion has become an essential part of every organization. This
has resulted in an emerging paradigm where organizations have
been moving from batch oriented data processing platforms to-
wards realtime stream processing platforms.

Initially developed at LinkedIn, Apache Kafka is a battle hard-
ened streaming platform that has been used to capture trillions
of events per day [2] [16]. Apache Kafka has become the de-facto
streaming platform in many organizations where it provides a
scalable and reliable platform to capture and store all the pro-
duced data from different systems. It also efficiently provides the
captured data to all the systems that want to consume it. While
capturing and storing streams of generated data is essential, pro-
cessing and extracting insight from this data in timely fashion
has become even more valuable. Kafka Streams API along with
other open source stream processing systems have been used to
perform such real time stream processing. Such real time stream
processing systems have been used to develop applications such
as Streaming ETL, anomaly detection, real time monitoring and
many more. Many of these stream processing systems require
users to write code in complex languages such as Java or Scala
and can only be used by users who are fluent in such languages.

© 2019 Copyright held by the owner/author(s). Published in Proceedings of the
22nd International Conference on Extending Database Technology (EDBT), March
26-29, 2019, ISBN 978-3-89318-081-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

This is a high barrier of entry that limits the usability of such
systems.

Motivated by this challenge, in this paper we present KSQL, a
streaming SQL engine for Apache Kafka that offers an easy way
to express stream processing transformations[8]. While the exist-
ing open source stream processing systems require expression of
stream processing in programming languages such as Java, Scala
or Python or offer limited SQL support where SQL statements
should be embedded in the Java or Scala code, KSQL offers an
interactive environment where SQL is the only language that is
needed. KSQL also provides powerful stream processing capa-
bilities such as joins, aggregations, event-time windowing, and
many more.

KSQL is implemented on top of the Kafka Streams API which
means you can run continuous queries with no additional cluster;
streams and tables are first-class constructs; and you have access
to the rich Kafka ecosystem. Similar to addition of SQL to other
systems such as Apache Hive[17] and Apache Phoenix[4], we
believe that introduction of SQL for stream processing in Kafka
will significantly broaden the users base for stream processing
and bring the stream processing to the masses.

The rest of the paper is organized as the following. In the
next section we provide a brief overview on Apache Kafka and
the Kafka Streams API. Section 3 presents our contribution in
design and development of KSQL. We describe data model, basic
concepts, query language and the internals of our SQL engine.
In Section 4, we present how KSQL can be extended using UDFs
and UDAFs. We describe different execution modes for KSQL
in Section 5. We present our experimental evaluation results
for KSQL in Section 6. Section 7 describes the related work. We
present the future work directions and conclude the paper in
Section 8.

2 BACKGROUND
KSQL is implemented on top of the Kafka Streams API. In this
section we will provide a brief overview on Apache Kafka and
the Kafka Streams API.

2.1 Apache Kafka
Apache Kafka is a large-scale distributed publish/subscribe mes-
saging system where data is produced to and consumed from
topics [2] [15] [16]. Messages in Kafka include a key and a value.
Figure 1 depicts the anatomy of a topic in Kafka. Each topic con-
sists of several partitions where messages are assigned to based
on their key. Each partition is an ordered, immutable sequence
of records that is continually appended to a structured commit
log. To achieve fault tolerance, partitions are replicated across a
configurable number of servers, called brokers, in a Kafka cluster.
One broker for each partition acts as the leader and zero or more
brokers act as followers.

Producers publish data to their desired topics by assigning
the messages to the specific partition in the topic based on the
message key. To consume the published data to a topic, consumers
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Figure 1: Anatomy of a Kafka topic

form consumer groups where each published message will be
delivered to one instance in the consumer group. Figure 2 shows
two consumer groups that consume messages from a topic with
four partitions in a Kafka cluster with two brokers.

Figure 2: Two consumer groups reading from a topic with
four partitions.

A consumer groups can expand by adding more members to
it. It can also shrink when group members fail or are removed
explicitly. Whenever, a consumer group changes, Kafka cluster
will go through a rebalancing process for the consumer group to
guarantee every partition in the topic will be consumed by one
instance in the consumer group. This is done by Kafka group
management protocol which is one of the fundamental building
blocks of the Kafka streams API as we describe below.

2.2 Kafka Streams API
Kafka Streams API is a Java library that enables users to write
highly scalable, elastic, distributed and fault-tolerant stream pro-
cessing applications on top of Apache Kafka [2]. Unlike other
stream processing frameworks that need a separate compute
cluster to run stream processing jobs, Kafka streams runs as an
application. You can write your stream processing application
and package it in your desired way, such as an executable jar file,
and run instances of it independently. If you need to scale out
your application, you just need to bring up more instances of the
app and Kafka streams along with Kafka cluster will take care
of distributing the load among the instances. The distribution of
load in Kafka streams is done with the help of Kafka group man-
agement protocol. Figure 3 depicts the architecture of a Kafka
streams app.

Figure 3: Two consumer groups reading from a topic with
four partitions.

A typical Kafka streams application will read from one or more
Kafka topic and process the data and writes the results into one or
more Kafka topics. Kafka streams app uses the same data model
as Kafka where messages include a key and a value along with a
timestamp and offset of the message in its corresponding parti-
tion. The processing logic in a Kafka streams app is defined as a
processing topology that include source, stream processor and
sink nodes. The processing model is one record at a time where
an input record from the source is processed by passing through
the whole topology before the next recored is processed. Kafka
streams provides powerful stream processing capabilities such
as joins, aggregations, event-time windowing, sessionization and
more. Operations such as join and aggregation are done based on
the message key. Kafka streams uses intermediate Kafka topics
to perform shuffle for operations such as aggregation and join
that need to colocate data based on a key. For instance, if two
streams are being joined and the join key is not the same as the
message key for both streams, Kafka streams repartitions both
stream topics based on the join key and produces new intermedi-
ate topics where message key is the same as the join. This will
ensure the colocation of the records with the same key that can
be joined at the same node.

Kafka streams provides stateful stream processing through
the so-called state stores. The state stores exist in every instance
of the streaming application and are used to store the state in
operations such as join and aggregation in a distributed fashion.
By default Kafka streams uses RocksDB[9] to store application
state, however, any in-memory hash map or other data structures
can be plugged in.

3 KSQL
In this section we present KSQL, streaming SQL engine for Kafka.
As mentioned KSQL uses Kafka streams to run the user queries,
therefore, it inherits many properties of Kafka streams.

3.1 Data Model
As mentioned a message in a Kafka topic consists of a key and
a value. To keep the messages generic, Kafka does not assume
any specific format for the messages and both key and value
are treated as array of bytes. In addition to the key and value, a
message also includes a timestamp, a partition number that it
belongs to and the offset value in the corresponding partition. In
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order to use SQL on top of Kafka topics we need to impose the
relational data model, schema, on the value part of messages in
Kafka topics. All of the message values in a topic should conform
to the associated schema to the topic. The schema defines a
message value as a set of columns where each column conforms
to the defined data type. Currently, we support the primitive
types of BOOLEAN, INTEGER, BIGINT, DOUBLE and VARCHAR
along with the complex types of ARRAY, MAP and STRUCT. We
plan to add DECIMAL, DATE and TIME types in future. KSQL
supports nested column type using the STRUCT type. The fields
in a ARRAY, MAP and STRUCT types themselves can be any of
the supported types including complex types. As you can see,
there is no limit in the level of nesting and users can have as
many levels of nesting as they desire. The schema of message
values for Kafka topic is used for serialization and deserialization
of message values.

3.2 Basic Concepts
KSQL provides streaming SQL for Kafka topics meaning that
you can write continuous queries that run indefinitely querying
future data. There are two basic concepts in KSQL that users can
use in their queries, stream and table. Depending on how we
interpret the messages in a Kafka topic we can define streams or
tables over Kafka topics in KSQL.

If we consider the messages arriving into a topic as indepen-
dent and unbounded sequence of structured values, we interpret
the topic as a stream. Messages in a stream do not have any
relation with each other and will be processed independently.

On the other hand, if we consider the messages arriving into a
topic as an evolving set of messages where a new message either
updates the previous message in the set with the same key, or
adds a new message when there is no message with the same
key, then we interpret the topic as a table. Note that a table is an
state-full entity since we need to keep track of the latest values
for each key. In other words, if we interpret the messages in a
topic as a change log with a state store that represent the latest
state, then we interpret the topic as a table.

As an example consider we store the page view events for a
website in a Kafka topic. In this case, we should interpret the
topic as a stream since each view is an independent message. On
the other hand, consider we are storing user information is a
Kafka topic where each message either adds a new user if it is
not stored already or updates the user information if we already
have stored the user. In this case, we should interpret the topic
as a table. Note that at any moment, the table should have the
most up to date information for every user.

KSQL also provides windowed stream processing where you
can group records with the same key to perform stateful process-
ing operations such as aggregations and joins. Currently, KSQL
supports three types of windows:

• Tumbling window which are time-based, fixed-sized,
non-overlapping and gap-less windows

• Hopping window which are time-based, fixed-sized and
overlapping windows

• Session window which are session-based, dynamically-
sized, non-overlapping and data-driven windows

Note that the results of windowed aggregations are tables in
KSQL where we need to keep the state for each window and
aggregation group and update them upon receiving new values.

KSQL also support join operation between two streams, a
stream and a table or two tables. The stream-stream join always

requires a sliding window since we should prevent the size of the
state store growing indefinitely. Every time a newmessage arrives
to either of the streams, the join operation will be triggered and
the new message for each matching message from the other
stream within the join window will be produced. KSQL supports
INNER, LEFT OUTER and FULL OUTER join operations for two
streams. The RIGHT OUTER join can be implemented via the
LEFT OUTER join by simply change the left and right sides of the
join. Joining a stream with a table is a stateless operation where
each new message in the stream will be matches with the table
resulting in emission of zero or one message. Finally, joining
two tables in KSQL is consistent with joining them in relational
databases if we materialize both of them. KSQL supports INNER,
LEFT OUTER and FULL OUTER joins for two tables.

3.3 Query Language
KSQL query language is a SQL-like language with extensions to
support stream processing concepts. Similar to the standard SQL
language, we have DDL and DML statements. DDL statements
are used to create or drop streams or tables on top of existing
Kafka topic. The followings are two DDL statements to create a
pageviews stream and a users table:
CREATE STREAM pageviews (viewtime BIGINT,
userid VARCHAR, pageid VARCHAR) WITH
(KAFKA_TOPIC='pageviews_topic',
VALUE_FORMAT='JSON');

CREATE TABLE users (registertime BIGINT,
gender VARCHAR,
regionid VARCHAR,
userid VARCHAR,

address STRUCT<
street VARCHAR, zip INTEGER

>
) WITH (
KAFKA_TOPIC='user_topic',
VALUE_FORMAT='JSON',

KEY='userid'
);

Note that in addition to defining the schema for the stream
or table we need to provide information on the Kafka topic and
the data format in the WITH clause. After declaring streams and
tables, we can write continuous queries on them.

Unlike standard SQL statements where the queries return fi-
nite set of records as the result, in streaming systems we have
continuous queries and therefore the results also will be con-
tinuous while the query runs. To address this, KSQL provides
two types of query statements. If the results of the query are
stored as a new stream or table into a new Kafka topic we use
CSAS(CREATE STREAMAS SELECT) ,CTAS(CREATE TA-
BLE AS SELECT) or INSERT INTO statements depending on
the type of the query results. For instance, the following state-
ment enriches the pageviews stream with extra user information
by joining it with the users table and only passes the records
with regionid = ’region 10’. The result is a new stream that we
call enrichedpageviews:
CREATE STREAM enrichedpageviews AS
SELECT * FROM pageviews LEFT JOIN
users ON pageviews.userid = users.userid
WHERE regionid = 'region 10';
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On the other hand, the following CTAS statement creates a
table that contains the pageviews for each user in every 1 hour.
Here we use an aggregate query with tumbling window with size
of 1 hour.

CREATE TABLE userviewcount AS
SELECT userid, count(*)
FROM pageviews
WINDOW TUMBLING (SIZE 1 HOUR)
GROUP BY useid;

Note that the results of the above query will be continuous
count values for each user and window that will be stored in
a Kafka topic. Every time we receive a new record the current
count value for the corresponding userid and window will be
updated and the new updated value will be written to the topic.
As it can be seen the result will be a change log topic.

Depending on the execution model that we will discuss in the
later section, KSQL also provides query manipulation statements
where user can submit continuous queries, list the currently
running continuous queries and terminate the desired ones.

3.4 KSLQ Engine
As mentioned, KSQL uses Kafka streams to run the streaming
queries. The main responsibility of the KSQL engine is to compile
the KSQL statements into Kafka streams apps that can continu-
ously run and process data streams in Kafka topics. To achieve
this KSQL has a metastore component that acts as a system cata-
log storing information about all the available streams and tables
in the system. Currently metastore is an internal component in
the KSQL engine. Depending on the execution mode the metas-
tore can be backed by a Kafka topic to provide fault tolerance.

Figure 4 depicts the steps that are taken in the engine to com-
pile KSQL statements into Kafka streams applications to run. As
it can be seen, the first step is to parse the statements where the
KSQL parser generates an Abstract Syntax Tree (AST). Using
the metastore, the generated AST will be analyzed and the unre-
solved columns references will be resolved. This include detecting
the column types along with resolving expression types in the
queries along with extracting different components of a query
including source, output, projection, filters, join and aggregation.
After analyzing each query, we will build a logical plan for it.
Logical plan is a tree structure where the nodes are instances
of PlanNode class. Currently, we can have the following node
types in KSQL logical plan: SourceNode, JoinNode, FilterNode,
ProjectNode, AggregateNode and OutputNode. The leaf node(s)
are of SourceNode type and the root node is OutputNode type. As
it is indicated in Figure 4. rule-based optimization techniques can
be applied to the generated logical plan, however, at the moment
we do not apply any rule to the logical plan other than pushing
down the filters.

The final step is to generate a physical execution plan from the
logical plan. The physical plan in KSQL is a Kafka streams topol-
ogy that runs the stream processing logic. We use the higher level
topology structure that is called Kafka streams DSL[2]. Kafka
streams defines two fundamental building blocks, KStream and
KTable which are synonymous to stream and table in KSQL. In-
deed, A KSQL stream represents a KStream along with a schema.
Similarly, a KSQL table represents a KTable along with the as-
sociated schema. Kafka streams DSL also provides operations

such as map, join, filter, aggregate, etc that convert KStreams/K-
Tables into new KStream/KTables. These operations work on key
and value of Kafka messages where there is no assumption on
the schema of message value. KSQL defines similar operations
on streams and tables, however, in KSQL we impose the proper
schema on the message value.

KSQL engine also is responsible for keeping the metastore
and queries in the correct state. This includes rejecting state-
ments when they result in incorrect state in the engine. Dropping
streams or tables while there are queries that are reading from
or writing into them is one of the cases that would result the
system to go into an incorrect state. A stream or table can only
be dropped if there is no query reading from or writing into it.
KSQL engine keeps track of queries that read from or write into a
stream or table in the metastore and if it receives a DROP state-
ment for s stream or table that is still being used, it will reject the
DROP statement. Users should make sure that all of the queries
that use a stream or table are terminated before they can drop
the stream or table.

4 UDFS AND UDAFS
Although standard SQL statements provide a good set of capabil-
ities for data processing, many use cases need to perform more
complex and custom operation on data. By using functions in
queries SQL systems enhance their data processing capabilities.
KSQL also provide an extensive set of built in scalar and aggre-
gate functions that can be use in queries. However, to even make
KSQL more extensible, we have added capability of adding cus-
tom User Defined Functions (UDFs) and User Defined Aggregate
Functions (UDTFs).

4.1 User Defined Functions
UDF functions are scalar functions that take one input row and
return one output value. These functions are stateless, meaning
there is no state is maintained between different function calls.
Currently, KSQL supports UDFs written in Java. Implementing
a new UDF is very straightforward using only two annotations.
A Java class annotated by @UdfDescription annotation will be
considered as a UDF containing class. User provide the name of
the UDF by setting the name parameter of the @UdfDescription
annotation. Any function in this class that is annotated by @Udf
annotation will be considered as a UDF that can be used in any
query similar to any other built in function. The following is an
example UDF that implements multiplication.

@UdfDescription(name = "multiply", description =
"multiplies 2 numbers")

public class Multiply {

@Udf(description = "multiply two non-nullable INTs.")
public long multiply(final int v1, final int v2) {
return v1 * v2;

}
}

After implementing the UDFs, users can package them in a
JAR file and upload it to the designated directory in the KSQL
engine where the functions will be loaded from when the KSQL
engine starts up. The following query shows how the above UDF
can be used in a query:
CREATE STREAM test AS
SELECT multiply(col1, 25)
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Figure 4: Steps to convert KSQL statements into Kafka streams apps.

FROM inputStream;

4.2 User Defined Aggregate Functions
Aggregate functions are applied to a set of rows and compute
a single value for them. Similar to the UDFs, KSQL UDAFs are
implemented in Java using annotations. To create a new UDAF,
users need to create a class that is annotated with@UdafDescrip-
tion. Methods in the class that are used as a factory for creating an
aggregation must be public and static, be annotated with @Udaf-
Factory, and must return an instance of Udaf class. The instances
of a textitUdaf class should implement initialize, aggregate and
merge methods. The following is an example UDAF that will
perform sum operation over double values:

@UdafDescription(name = "my_sum", description = "sums")
public class SumUdaf {
@UdafFactory(description = "sums double")
public static Udaf<Double, Double> createSumDouble() {
return new Udaf<Double, Double>() {
@Override
public Double initialize() {
return 0.0;

}

@Override
public Double aggregate(final Double aggregate,

final Double val) {
return aggregate + val;

}

@Override
public Double merge(final Double aggOne, final

Double aggTwo) {
return aggOne + aggTwo;

}
};

}
}

Similar to UDFs, UDAFs should be packaged in a JAR file and
uploaded to the designated folder in the KSQL engine so the
functions can be loaded at the engine start up.

We plan to add support for User Defined Table Functions
(UDTFs) in near future.

5 EXECUTION MODES
As discussed above, KSQL engine creates Kafka streams topolo-
gies that execute the desired processing logic for Kafka topics.
Therefore, running KSQL queries is the same as running Kafka
streams topologies. Currently, KSQL provides three different ex-
ecution modes that we describe here.

5.1 Application Mode
The application mode is very similar to running a Kafka streams
app as described earlier. To deploy and run your queries, you
need to put them in a query file and pass it as an input parameter
to the KSQL executable jar. Depending on the required resources,
you determine the number of instances that your application
needs and similar to a Kafka streams execution model you will
instantiate the instances by running the KSQL jar with the query
file as input parameter. The deployment process can be done man-
ually or through third party resource managers such as Mesos[3]
or Kubernetes[10]. Note that you don’t need any extra process-
ing cluster and the only thing you need is to run your KSQL
app by bringing up desired number of instances independently.
Everything else will be handled by KSQL and Kafka streams.

5.2 Interactive Mode
KSQL also provides an interactive execution mode where users
can interact with a distributed service through a REST API. One
way of using the provided REST API is to use KSQL CLI which
includes a REST client that sends user requests to the service
and receives the response. The building block of the interactive
mode is KSQL server that provides a REST end point for users
to interact with the service and also KSQL engine to execute the
user queries. Figure 5 depicts the architecture of the KSQL service
with three servers in the interactive client-server execution mode.

Each KSQL server instance includes two components, the
KSQL engine and the REST server. The KSQL service uses a spe-
cial Kafka topic, KSQL command topic, to coordinate among
the service instances. When a service instance is started, it first
checks the Kafka cluster for the command topic. If the topic does
not exists it creates a new command topic with a single parti-
tion and a configurable number of replications. All of the service
instances then subscribe to the command topic. User interacts
with the service by connecting to REST endpoint on one of the
instances. The KSQL command topic has only one partition
to ensure the order of KSQL statements for all server is exactly
the same. The KSQL command topic can have more than one
replicas to prevent loss of KSQL statements in presence of failure.
The figure shows the KSQL CLI that connects to either of the
instances.

When user submits a new KSQL statement through the REST
endpoint, the instance that receives the request will append it to
the KSQL command topic. The KSQL engine components in all of
the instances will pull the new statement from the command topic
and execute the statement concurrently. For instance, consider
the following statement is submitted to the service through one
of the instances and appended to the command topic.
CREATE TABLE userviewcount AS
SELECT userid, count(*)
FROM pageviews
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Figure 5: A KSQL interactive service deployment with
three server instances.

WINDOW TUMBLING (SIZE 1 HOUR)
GROUP BY useid;

All of the instances will use the KSQL engine to start the
processing of the query and as mentioned above each instance
will process portion of the input data from the pageviews topic.
The service instances continue running the queries until they are
explicitly terminated using TERMINATE statement.

The KSQL service provides both elasticity and fault tolerance.
Service instances can be added or removed independently, de-
pending on the load and performance requirements. When a new
instance is started it subscribes to the command topic and fetches
all the existing KSQL statements from the command topic and
starts executing them. When the new instance starts executing
an existing query a rebalance process is triggered and the execu-
tion load will be redistributed among the existing instances. Note
that the rebalance protocol is handled by the underlying Kafka
consumers in the Kafka streams and is transparent for the KSQL
service instance. After all of the existing continuous queries start
running on the new instance too, it starts listening to the com-
mand topic for new queries. Similarly when an instance fails or
terminated a rebalance process among the remaining instances
of the service happens and the load of the removed instance will
be distributed among the remaining instances. Even if all the
instances fail and the whole system is restarted, the instances
will pick up all the existing KSQL queries from the command
topic when they come back online and the whole system will
continue processing the queries from the point they were left.

5.3 Embedded Mode
The third execution mode available in KSQL is the embedded
mode where we can embed KSQL statements in a Kafka streams

application. As mentioned Kafka streams apps are Java programs
that use the Kafka streams as library. KSQL provides a KSQL-
Context class with a sql() method where KSQL statements can
be passed to run in the embedded engine. The following code
snippet show a very simple example of using the embedded mode.

KSQLContext ksqlContext = new KSQLContext();
ksqlContext.sql("CREATE STREAM pageviews
(viewtime BIGINT, userid VARCHAR,
pageid VARCHAR) WITH
(KAFKA_TOPIC='pageviews_topic',
VALUE_FORMAT='JSON');");

ksqlContext.sql("CREATE STREAM pageviewfilter
AS SELECT * FROM pageviews
WHERE userid LIKE '\%10';");

Similar to the Kafka streams apps, in order to execute the
queries in the embedded mode, you need to package the ap-
plication and run instances of it. The deployment can be done
through a range of available options such as manually bringing
up instances or using more sophisticated tools such as Mesos or
Kubernetes.

6 EXPERIMENTAL EVALUATION
6.1 Methodology
We want to evaluate KSQL’s ability to handle different types of
workloads. To do this, we ran a series of tests with different query
types and measured the throughput that a single KSQL server
can process. Each test case runs for ten minutes and periodically
measures throughput in messages / second and bytes / second.

In practice, users will likely run multiple queries that feed
into each other to form a streaming pipeline. We’ve included a
multi-query test to measure performance for this scenario.

Finally, we run multiple queries on a pool of KSQL nodes to
see how KSQL scales as servers are added.

6.1.1 Load Generation. To generate load against KSQL we
ran a modified version of the “‘ksql-datagen“‘ tool that has had
some changes made to improve its performance and to allow it
to produce different types of workloads. “‘ksql-datagen“‘ is a tool
for generating data into a kafka cluster. The tool generates Kafka
records conforming to a specified schema. The schema can be
one of a set of pre-defined schemas, or the user can specify their
own avro schema for the tool to use. Records are written to Kafka
using the Java Kafka producer client. For our tests, we extended
“‘ksql-datagen“‘ to support multiple threads, and to support a
rate-limit parameter (specified in messages produced per second)
implemented using a token-bucket algorithm.

6.1.2 Measuring Throughput. We measured throughput us-
ing a counter exported by KSQL that provides the number of
messages consumed by a given topic. Throughput for a given
time period is computed by sampling the counter at two points
in time and dividing the difference in consumed messages by the
difference in time. For tests that run multiple queries in a pipeline,
consumption is measured against the topic that is the source for
the final query in the pipeline. This gives us the throughput of
the pipeline as a whole.

6.1.3 Environment. We ran our test in AWS EC2. The test
environment consists of a Kafka cluster, a KSQL cluster, and a
set of nodes that run the load-generator.
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The Kafka cluster consists of 5 Kafka nodes, and 1 node for run-
ning ZooKeeper. To run Kafka we chose the i3.xlarge instance
type, which has 4 2.3GHz VCPUs, 30.5GB of memory, "up-to-
10Gbit" of network, and a 950GBNVME local disk which we’ll use
to store the Kafka topics. We used fio to benchmark the instance
storage, and observed 380MBps write throughput, 950MBps read
throughput, 2000016K random write IOPS, and 61000 16K ran-
dom read IOPS. Finally, we ran some network benchmarks using
iperf to get an idea of what network performance to expect, and
observed 1.24Gbit of network throughput.

Zookeeper runs on an m3.medium.
The KSQL cluster consists of 1-4 nodes, depending on the test

case. We chose i3.xlarge instance for KSQL as well, and use the
NVME local disk to store the local state stores.

6.2 Test Data
The test data and workload are derived from a use case for ana-
lyzing metrics. Metrics are published by services that comprise
a distributed application. The queries consume, transform, ag-
gregate and enrich this metric data. The source stream for the
metrics has the following schema:
ID VARCHAR,
SOURCE VARCHAR,
INSTANCE LONG,
CLUSTERID VARCHAR,
METRIC STRUCT<

NAME STRING,
VALUE INTEGER,
METADATA1 STRING,
METADATA4 STRING,
METADATA5 STRING,
METADATA6 STRING,
METADATA7 STRING,
METADATA8 STRING,
METADATA9 STRING,
METADATA10 STRING

>

For our tests, we produced test data serialized using AVRO.
The average size for test records was 220 bytes. The source topic
containing the metrics data has 32 partitions.

Figure 6: Throughput for Basic Query Types

6.3 Projection
The first type of query we’ll evaluate is a basic projection. Users
can use similar queries to apply basic stateless transformations
and filters to their data. For the test, we’ll run the following query:

CREATE STREAM SINK
AS SELECT *
FROM METRICS_STREAM;

Figure 6 depicts the measured throughput over the test run.
Throughput starts low, increases as the JVM warms up, and stabi-
lizes just under 90000 messages per second. The main bottleneck
for this query type is CPU utilization, which is nearly 100% on
the KSQL server during the test run. To discover why, we re-ran
the test case while profiling using the YourKit JVM profiler and
found the main hot-spots to be deserialization and serialization of
the records after reading from, and before writing back to Kafka.

6.4 Aggregation
Next lets look at an aggregation. Aggregations allow the user to
group records in a stream or table, and then apply an aggrega-
tion function on the grouped records. For this test, we’ll run an
aggregation to compute the average value of a metric:

CREATE TABLE SINK
AS SELECT
INSTANCE,
SUM(METRIC->VALUE) / COUNT(*)
FROM METRICS_STREAM
GROUP BY INSTANCE

Figure 6 depicts the measured throughput over the test run.
Again, the bottleneck is CPU utilization on the KSQL server. In
this case, profiling revealed additional overhead from reading
from / writing to RocksDB. Each read from RocksDB has to po-
tentially traverse multiple SSTs within the database to find the
latest update for the grouping key. The state for aggregations is
quite small and fits comfortably within the block cache, so there
is no added cost for reading from the kernel cache or decompress-
ing. Writing also adds some cost to write to the memtable and
append to the log. The source data for this aggregation is keyed
on the grouping column, so there is no additional cost for seri-
alizing/deserializing to/from the repartition topic. Aggregations
that require a repartition would incur this cost as well.

Space usage on the local disk is quite small, just a few hundred
MBs. This makes sense since the state required to compute each
aggregation result is small - just the key, sum, and current count,
which are all 32-bit or 64-bit integers. Utilization is also quite
low - around 50 IOPS and 1MBps. Interestingly, a good portion
of the disk usage comes from storing checkpoints for per-task
topic offsets rather than from RocksDB itself.

6.5 Windowing
Usually, users want to compute aggregations that correspond
to a specific time interval - for example, the average value of a
metric over a day or hour. KSQL provides tumbling and hopping
windows to allow you to window your aggregation computation
using a fixed-size window. A tumbling window computes results
for one time interval without any overlap with the previous in-
terval. A hopping window has two arguments: the time interval,
and the hop size. Results are returned for windows that are as
wide as the interval and advance by the hop size. This lets you
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approximate a sliding window. In this experiment, we’ll com-
pute tumbling and sliding windows and observe the effect on
performance:
CREATE TABLE SINK
AS SELECT
INSTANCE,
SUM(METRIC->VALUE) / COUNT(*)

FROM METRICS_STREAM
WINDOW TUMBLING (
SIZE 60 SECONDS

)
GROUP BY INSTANCE

CREATE TABLE SINK AS SELECT
INSTANCE,
SUM(METRIC->VALUE) / COUNT(*)
FROM METRICS_STREAM
WINDOW HOPPING(
SIZE 60 SECONDS,
ADVANCE BY ? SECONDS

)
GROUP BY INSTANCE

Figure 7: Throughput for Varying Window Sizes

Figure 7 shows that the realized throughput decreases as the
number of windows that must be maintained increases. This
makes sense - under the hood the aggregation result for each
window that a given record maps to is maintained independently.
If record arriving in the stream must update 4 windows (as in the
ADVANCE BY 15 SECONDS case), then KSQL will do 4 separate
reads and write from/to RocksDB. This adds to the CPU cost to
process each record.

6.6 Stream Enrichment
Another common use case for KSQL is to enrich a stream of
data with a dimension table. In this test, we’ll enrich our metric
stream by adding information from an instance table to each
metric record:
CREATE STREAM SINK
AS SELECT S.*, T.*
FROM

METRIC_STREAM S
LEFT JOIN
INSTANCE_TABLE S
ON S.INSTANCE = T.INSTANCE;

Figure 6 shows the throughput over time. Again, the primary
bottleneck is CPU utilization, which is near 100%. The realized
throughput is around 55000 records per second - greater than
the aggregation but lower than the projection. This is because to
process each record in the stream we must read from RocksDB,
but nothing is written back to the state store. Therefore, the CPU
utilization per record is lower than that for aggregations, and the
realized throughput is higher.

6.7 Multi-Query Application
Usually, KSQL users run multiple queries in a streaming pipeline
to form a KSQL "application". To evaluate KSQL in this scenario,
we’ll build the following test app:
CREATE STREAM METRICS_WITH_INSTANCE_INFO
AS SELECT S.*, T.*
FROM
METRIC_STREAM S
LEFT JOIN
INSTANCE_TABLE S
ON S.INSTANCE = T.INSTANCE;

CREATE TABLE AVERAGE_VALUE_BY_PHYSICAL_INSTANCE
AS SELECT
T_PHYSICAL_INSTANCE,
SUM(METRIC->VALUE) / COUNT(*)
FROM METRICS_WITH_INSTANCE_INFO
GROUP BY PHYSICAL_INSTANCE;

In the app we first enrich the metrics stream with the instance
table (as in the previous section), and then compute average
metrics grouped by the "physical instance" each instance resides
on (which is another field of the instance table schema).

Figure 8: Throughput for Varying Load Rates

To evaluate the possible throughput a KSQL server can process
against the app, we generate load at varying rates and measure
the consumption rate from METRICS_WITH_INSTANCE_INFO.
To understand why its important to rate limit the load generator
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to determine the maximum possible throughput, lets consider
the behavior if load generation was run at a rate that would
produce records faster than KSQL could consume them. The
"application" presented in Figure 8 consists of 2 queries. The 2
queries have different performance characteristics. Specifically,
the join consumes significantly fewer CPU cycles than the ag-
gregation to process the same set of input records. Currently,
KSQL does not coordinate execution between separate queries.
So, each query would be afforded around half the available CPU
time. Ideally, the aggregation should be afforded more CPU than
the join. Throttling the input rate gives us a knob to do this
indirectly. In practice, a user could accomplish the same thing
by scaling out the capacity of their KSQL cluster, or allocating
varying numbers of threads to different queries. Figure 8 shows
that the maximum throughput a single KSQL server can process
running this application is around 16000 records/second.

6.8 Scale-Out
KSQL is designed to scale record throughput as KSQL servers
are added. In this section, we’ll show that KSQL can process
the application we evaluated in the previous section at higher
volumes as the cluster grows. We’ll evaluate a 2-node and 4-node
KSQL cluster. For each configuration, we’ll run at 2 times and 4
times the ideal load observed in the previous section, andmeasure
the realized throughput.

Figure 9: Throughput For Varying Cluster Sizes

Figure 9 shows the results of this experiment. Each bar repre-
sents the throughput processed by a KSQL cluster of a given size.
Load was generated proportional to the cluster size - 16000 mes-
sages per second for the single node cluster, and 32000 messages
per second and 64000 messages per second for the 2 and 4 node
clusters, respectively. We can see that KSQL is able to process
proportionally higher volumes of data as the cluster is grown.

6.9 Future Experiments
The previous sections detailed some initial results of our eval-
uation of KSQL performance. In the future, we plan to do addi-
tional analysis into performance as well as fix some of the issues
identified. Latency is a very important metric when evaluating
streaming systems that was not measured by our study. After all,
one of the primary advantages of stream processing is to be able

react to events in real-time. Therefore we plan to measure per-
centile latency as we invest in evaluating and improving KSQL
performance. We also plan to evaluate additional query types.
KSQL is a very powerful tool that can perform a wide variety
of computations not covered by the evaluation presented here.
Some candidate query types for the next round of testing include
stream-stream joins and aggregations over session windows.

7 RELATEDWORK
Over the past couple of decades stream processing has been one of
the main subjects of interest in the data management community.
Systems like STREAM [12], Aurora [11] and TelegraphCQ [14]
are some of the pioneers in this area.

Increasing demand for scalable streaming engine resulted in
development of many systems including open source systems
such as Storm [7], Spark [6], Flink [1] and Samza [5]. Although
these systems provide a scalable stream processing engine, how-
ever, all of them need deployment and management of a complex
processing cluster in order to process the streaming jobs. On
the other hand, KSQL uses Kafka streams and KSQL queries can
be deployed as an application without requiring another com-
plex processing cluster. This significantly simplifies deployment
and management of long running streaming jobs in KSQL and
provides a wide range of possible deployment options.

SQL language has been the de-facto data management lan-
guage and many systems support SQL or SQL-like interface.
Apache Hive [17] and Apache Spark SQL [13] have shown the
effectiveness of using SQL to express computations in batch
data processing. They are also great examples of how providing
SQL interface can expand the access to scalable data processing
systems by eliminating the need to write code in complex pro-
gramming languages. Some of the open source stream processing
frameworks including Apache Spark [6], Apache Flink [1] take
this idea to scalable stream processing by providing SQL support.
However, the level of SQL support in these system is not at the
same level as in KSQL and in order to use SQL for stream process-
ing in these systems users still need to write code in languages
such as Java or Scala and embed their SQL statements in their
code. On the other hand, in KSQL users describe their processing
in KSQL statements and there is no need to write any code in
Java or Scala or any other language. This approach significantly
simplifies scalable stream processing and makes it available for
greater audience.

8 CONCLUSIONS AND FUTUREWORK
In this paper we introduced KSQL, a streaming SQL engine for
Apache Kafka. KSQL uses Kafka streams API to run continuous
queries and is tightly integrated with Apache Kafka. We showed
how a KSQL query is translated into a Kafka streams app in KSQL
engine and how we can run KSQL queries in different execution
modes. One of the main advantages of KSQL compared to other
open source stream processing systems is the elimination of need
to code in any other language. KSQL users can use the KSQL CLI
and run their streaming queries by expressing them in only KSQL
statements. The other main differentiator of KSQL compared to
other open source streaming platforms is the query execution
model. Unlike other systems that need deployment of a separate
processing cluster to handle streaming queries, KSQL queries
can run as applications independently without requiring deploy-
ment of additional complex cluster. This significantly simplifies
deployment and management of streaming queries in KSQL.
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We just announced availability of KSQL as an open source
streaming SQL engine and released it under Apache license in
2017 Kafka Summit in San Francisco and since then we have
witnessed significant interest from the community[8]. We plan to
invest heavily in development and expansion of KSQL. Currently
we are looking into expanding supported data formats in KSQL
along with providing custom functionality through UDF and
UDAF in addition to the ones we already have in KSQL. Improv-
ing the performance through optimized query planning along
with even more simplified deployment and maintenance of KSQL
service in the production environment are part of our near future
work on KSQL. We believe KSQL along with Apache Kafka pro-
vide a full stack stream processing environment that can satisfy
the all the real-time stream processing needs in enterprises and
will be working towards this goal.
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ABSTRACT
This work demonstrates a wide range of applications that use
lambda expressions in SQL. Such injected code snippets form a
useful technique required by data mining algorithms to overcome
the inflexibility of the SQL language, as the language is limited to
predefined aggregations only. Following the ’move computation
to the data’ paradigm, we extend SQL lambda functions—also
known from common programming languages—for machine-
learning tasks.

As machine-learning relies mostly on gradient descent and
tensor data types, we use lambda expressions for clustering and
graph-mining algorithms as well as to formulate loss functions
and label data. To underline the flexibility gained in SQL, this
work demonstrates a main memory database system with inte-
grated lambda expressions accessible through table functions in
SQL. By reusing SQL and performing data mining and machine-
learning tasks faster than can dedicated tools, this demonstration
aims at convincing data scientists of the capabilities of database
systems for computational tasks.

1 INTRODUCTION
Database systems are commonly used for the initial analysis
of data, whereas data analysis happens in specialised systems,
covering the expensive Export, Transform, Load (ETL) process. In
consequence, database systems are often underused as a storage
system only, ignoring the advantages coming along with SQL
as the declarative query language and the benefits of database
systems as providing index structures for fast data retrieval.

Actually, data mining blends well with SQL: Using the same
data types, we need only minor adjustments as iterations in SQL
or injected code snippets. MADlib [3] proposes a data mining
library for extending database systems such as PostgreSQL and
Greenplum. The extension uses algorithms that are programmed
in Python and can be used as table functions in SQL.Modernmain
memory database systems try to integrate datamining algorithms
in the code generation phase. EmptyHeaded [1] generates and
combines code out of special algorithms and relational algebra,
whereas HyPer [5] provides specialised operators for data mining
tasks. The latter provides flexibility for data mining by so-called
SQL lambda functions, which allow for modifications to existing
database operators by injecting user-defined code.

Although modern database systems provide data mining al-
gorithms, machine-learning functionalities are still not covered.

© 2019 Copyright held by the owner/author(s). Published in Proceedings of the
22nd International Conference on Extending Database Technology (EDBT), March
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Figure 1: Lambda expression for code injection into an ex-
isting operator: The expression can be used inside unary
operators to define functions on different tuples of the
same relation and inside binary operators to combine tu-
ples of different relations.

As machine-learning tasks often rely on tensors and gradient
descent, providing an additional tensor data type and flexible loss
functions for gradient descent contribute to in-database machine-
learning.

Let us shift the boundary between database systems and the
specialised tools to save ETL costs and to enjoy the benefits
of database systems a bit more throughout the process. We ar-
gue that lambda functions can be adapted for machine-learning
tasks and extend SQL to a powerful query language for machine-
learning. This results in a computational engine, which merits
the full benefits of database systems and can be addressed in SQL.

This work demonstrates the first database system to incorpo-
rate lambda expressions for minimisation problems. An extended
HyPer is presented in detail. The main memory database sys-
tem developed at the chair of database systems at TU Munich
is already familiar with flexible clustering algorithms. It is now
extended by flexible PageRank, gradient descent and labelling
algorithms for machine-learning. A gradient descent operator
and the integrated tensor data type allow supervised machine-
learning tasks. As lambda expressions are part of the database
system’s core, the query optimiser implicitly performs optimi-
sations, such as predicate push-down, and reduces unnecessary
overhead.

The remainder of this paper is structured as follows. First, the
paper recaps lambda expressions and shows how they extend
database systems to a uniform tool for solving machine-learning
tasks. In the evaluation section, we discuss the measurement
of the performance of database systems with lambda functions
in comparison to dedicated tools to show the competitiveness.
Our demonstration scenario allows users to interact with the
database system and to create self-defined lambda expressions,
for example, to apply gradient descent, to label data or to measure
distances in clustering algorithms. The impact of computational
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database systems—replacing dedicated machine-learning tools—
is summarised in the section on benefits.

2 LAMBDA FUNCTIONS
Lambda functions originate from the lambda calculus invented
in 1936 by Alonzo Church [2] and later adapted for programming
languages to provide anonymous functions. For use in SQL, the
concept of anonymous expressions is adapted to ’inject user-
defined code’ [4] into analytic operators. Lambda expressions
allow a user-friendly way for data scientists—who are already
familiar with SQL and lambda functions from other programming
languages—to customise algorithms without any modifications of
the operators in the database system’s core. Another advantage
of lambda functions is the implicit deduction of input and output
data types from the input tables’ attributes without requiring
further specification.

Lambda expressions in HyPer have been used in clustering
algorithms as distance metrics and in graph-mining algorithms,
such as PageRank to specify the edges. As lambda functions
allow ’variation points’ [6] in inflexible data mining algorithms,
their usage can be transferred to machine-learning algorithms
to specify loss functions. Lambda expressions are composed as
follows:

λ(< name1 >, < name2 >, ...)(< arithmeticexpression >).

In the lambda function’s header, the arguments name the rela-
tions whose table attributes are used in the arithmetic expression
itself. The number of expected arguments is hard-coded in the
operators as well as in the relations referenced by the arguments.
More precisely, in unary operators, all arguments reference one
input pipeline, whereas, in binary operators, the references de-
pend on a certain application. Internally, lambda expressions
are treated as arithmetic expressions in HyPer like those in the
projection operator. Therefore, all known functions supported
by the referenced database types can be used inside the expres-
sion as long as the expression results in a single value. As HyPer
compiles SQL queries, lambda expressions are precompiled to
LLVM code and evaluated at runtime.

To demonstrate the use of lambda functions for data mining
and machine-learning, we selected two tasks out of each do-
main where lambda expressions broaden the application area of
database operators.

Clustering k-Means as a clustering algorithm assigns points
to a predefined number of k centres, which are iteratively
adjusted until the summed distance to each centre is min-
imised. Hereby, the distance function is given as a lambda
expression to specify Manhattan (L1) or Euclidean (L2)
distance.

Graph-mining PageRank is a graph-mining algorithm for
gathering the importance of nodes by the number of in-
coming edges per node weighted by the score of the source
node.

Optimisation Machine-learning algorithms rely on opti-
misation algorithms such as gradient descent. Given a
model function parametrised by some weights, one aims
to minimise the weights to obtain minimal loss in order to
predict the targets/labels of the data and a loss function
that measures the deviation from the true labels and their
predictions. To allow user-defined loss functions, we adapt

the concept of lambda expressions to work as a mathe-
matical function for minimisation on the training set’s
attributes.

Labelling To label test data, an operator adds the result of
a parametrised function to the input relation. Lambda
expressions define the loss function to be evaluated on the
test data set.

The algorithms for clustering and graph-mining are hard-
coded as materialising pipeline breakers in the database system’s
core, as various iterations are needed to compute the clusters
or the PageRank values. The operator for labelling—as part of
the pipeline—simply evaluates the lambda expression and adds
a new attribute to the input relation. The operator for gradient
descent uses a self-developed framework for automatic differen-
tiation based on placeholders for the input data and variables for
the weights and can be designed as either materialising or non-
materialising pipeline breaker. All operators define the usage of
the lambda functions according to the number of input pipelines.
As k-Means and PageRank only need one input pipeline, lambda
expressions define the functions between the tuples of one in-
put relation. The lambda expression for the distance metrics in
k-Means takes two tuples S,T of the same relation R{[x,y]} as
argument (L2 distance, for example):

λ(S,T )((S .x −T .x)2 + (S .y −T .y)2).

PageRank—contrary to the other operators—needs two lambda
expressions to specify the edges: one for the source node and
the second one for the destination node of the input relation
R{[src,dst]}:

λ(R)(R.src), λ(R)(R.dst).

For gradient descent and labelling, we need data for the place-
holders and weights for the variables. Therefore, the lambda
expression takes one tuple from each of the two input relations
R{[a,b]} (initial weights) and S{[x,y]} (training data) to formu-
late the loss function:

λ(R, S)(R.a ∗ S .x + R.b − S .y)2.

As lambda expressions are part of the database system, they
are taken into account by the database’s query optimiser. When
the data is stored column-wise, only the relevant data for the
lambda expression is loaded.

3 EVALUATION
The evaluation section presents the runtimes of the lambda-based
operators. The experiments were run on an Intel Xeon E5-2660
v2 (20 cores of 2.20 GHz) server with 256 GB main DDR4 RAM
running on Ubuntu 18.04 LTS. The test data was one-month
excerpt of the Chicago taxi rides dataset1 (> 1.7 ∗ 106 tuples),
on which we performed clustering with k-Means and logistic
regression by gradient descent, and the LDBC data set with scale
factor 10 for graph-mining with PageRank.

Using k-Means, we clustered the taxi dataset geographically by
the trip’s destination expecting 10 clusters. By logistic regression,
we predicted the payment type depending on the distance of a trip
and the ages of the customers. We reused the predicted weights to
label the data. We take the person-knows-person-relationship from
the LDBC benchmark to calculate the PageRank values of each
person. Each test varied the input sizes to compare the runtime
of our extended operators with the lambda functions in HyPer to
the runtime of PostgreSQL 9.6.8 with its MADlib v1.13 extension
1https://data.cityofchicago.org/Transportation/Taxi-Trips/wrvz-psew
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(b) PageRank (100 iter., no damping).
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(c) Gradient Descent.
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Figure 2: Runtimes of the operators using lambda functions and of the competitors varying the number of input tuples.

(database system with a plugin), TensorFlow 1.3.0 without GPU
support (dedicated machine-learning tool) and R 3.4.2 (statistical
tool). The tests were run five times and the average runtimes
were taken.

As expected, all the operators scaled linearly in the size of the
input dataset and no overhead caused by lambda expressions in
SQL was measurable. Figure 2a shows k-Means in comparison to
R and TensorFlow (both use predefined library functions). Our
database operator with the included lambda function outper-
formed all dedicated tools by at least a factor of three.

The in-database PageRank function provided by the MADlib
library scaled linearly as well but was still four times slower than
the integrated operator (see Figure 2b). The lambda expressions
did not slow down the runtime of the database system as both
operators performed at quite the same time.

The currently introduced gradient descent operator (see Fig-
ure 2c) reduced the overhead caused by data extraction and trans-
fer as the data could be processed directly. The results were
performance gains of at least five times in comparison to R, the
fastest dedicated tool. The hard-coded gradient descent function
in PostgreSQL and the equivalent procedure in MariaDB ran
out of scope and the MADlib extension for logistic regression
performed as fast as our lambda-based operator only for small
input relations. Figure 2d shows the labelling of the attributes
that performed linearly in the size of the input tuples.

In summary, the lambda expressions broadened the application
area of the database systems without performance losses and
eliminated the need for dedicated tools.

4 DEMONSTRATION
The demonstration convinces by the simplicity of using SQL for
machine-learning: the central part is an extended web interface
for HyPer with SQL for the input queries and a tabular output
representation (see Figure 3). To facilitate the use of database
systems for data scientists, data visualisation—comparable to
those of business intelligence tools—enriches the output by sim-
ple dragging and dropping the table’s attributes on the axes of
different sorts of diagrams (pie/bar/line charts). As an additional
feature, a box for specifying lambda functions with their input
weights allows the plotting of lambda expressions as mathemati-
cal functions inside the diagrams.

The database system is fed with an excerpt of the Chicago taxi
dataset and the current OpenFlights dataset2. The web interface
lets users choose between predefined example queries with sam-
ple lambda expressions or lets them create their own queries. Our

2https://openflights.org/data.html

predefined examples cover supervised machine-learning tasks
based on gradient descent (see Listing 3), labelling and data min-
ing tasks such as clustering (see Listing 1) and PageRank (see
Listing 2).

In our demonstration scenario, the user is encouraged to per-
formmachine-learning tasks, such as the predefined regression to
predict, for example, the number of tips given or the kind of pay-
ment in dependency of the length of a trip. In addition, the users
can specify any kind of loss functions to perform predictions or
other methods for the type of gradient descent.

To show the performance of the database systems, two charts—
one for the runtime and one for the operator tree—provide in-
formations about optimisations. This feature helps the user to
understand how operator reordering and predicate push-down
of integrated lambda expressions increase the performance.

5 CONCLUSION
In this demonstration, we presented SQL lambda functions for in-
database machine-learning and data mining with an interactive
web interface devoted to its use by data scientists.

We proposed extending already known lambda expressions
for use in machine-learning, especially to specify loss functions
for gradient descent. By this extension, we used database systems
with SQL as a universal computational engine, eliminated the
need for dedicated machine-learning tools and reduced the time
needed for data communication. To tackle the acceptance of
SQL with lambda functions, we created a web interface that
interactively combines SQL with data visualisation and provides
informations about the optimised query plans.

This work aimed at adding lambda functions in standardised
SQL to allow changing the database system as an underlying
machine-learning tool. Lambda functions are essential for provid-
ing a higher-order machine-learning language to be used by data
scientists. For that purpose, a declarative language is needed to
further increase the acceptance of database systems and should
be designed to be compiled to SQL or an executable to call the
application interfaces of current dedicated tools.
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Figure 3:We adapted our HyPerInsight web interface for demonstrating lambda functions. On the left side, we see the SQL
interface with an exemplary lambda expression as a distance metric (top) with tabular output and visualisation (bottom).
The right side shows the runtimes of the different algorithms (top) and the operator optimisations (bottom).

CREATE TABLE data(x FLOAT , y INTEGER);

CREATE TABLE center(x FLOAT , y INTEGER);

INSERT INTO ...

SELECT * FROM kmeans(

(SELECT x,y FROM data),

(SELECT x,y FROM center),

-- the distance function

λ(a, b) (a.x-b.x)^2+(a.y-b.y)^2,

3 -- max. number of iterations

);

Listing 1: k-Means.

CREATE TABLE edges (a BIGINT , b BIGINT);

INSERT INTO ...

SELECT * FROM pagerank(

(SELECT * FROM edges),

λ(src) src.a, -- source

λ(dst) dst.b, -- destination

0.85, -- damping factor

0.00001 , -- threshold

100 -- iterations

);

Listing 2: PageRank.

CREATE TABLE data (x FLOAT , y FLOAT);

CREATE TABLE weights(a FLOAT , b FLOAT);

INSERT INTO ...

SELECT * FROM gradientdescent(

-- the loss function

λ(d, w) (w.a*d.x+w.b-d.y)2,
-- training data set

(SELECT x,y FROM data d),

-- initial weights

(SELECT a,b FROM weights w),

0.05, -- learning rate

100 -- max. number of iteration

);

Listing 3: Gradient descent.

Figure 4: Examples of using lambda functions in SQL.
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ABSTRACT
We are witnessing a continuous growth in the size of scien-
tific communities and the number of scientific publications.
This phenomenon requires a continuous effort for ensuring
the quality of publications and a healthy scientific evalu-
ation process. Peer reviewing is the de facto mechanism
to assess the quality of scientific work. For journal editors,
managing an efficient and effective manuscript peer review
process is not a straightforward task. In particular, a main
component in the journal editors’ role is, for each submit-
ted manuscript, to ensure selecting adequate reviewers who
need to be: 1) Matching on their research interests with
the topic of the submission, 2) Fair in their evaluation of
the submission, i.e., no conflict of interest with the authors,
3) Qualified in terms of various aspects including scientific
impact, previous review/authorship experience for the jour-
nal, quality of the reviews, etc. Thus, manually selecting
and assessing the adequate reviewers is becoming tedious
and time consuming task.

We demonstrate MINARET, a recommendation framework
for selecting scientific reviewers. The framework facilitates
the job of journal editors for conducting an efficient and
effective scientific review process. The framework exploits
the valuable information available on the modern scholarly
Websites (e.g., Google Scholar, ACM DL, DBLP, Publons)
for identifying candidate reviewers relevant to the topic of
the manuscript, filtering them (e.g. excluding those with
potential conflict of interest), and ranking them based
on several metrics configured by the editor (user). The
framework extracts the required information for the rec-
ommendation process from the online resources on-the-fly
which ensures the output recommendations to be dynamic
and based on up-to-date information.

1 INTRODUCTION
The world is witnessing a continuous growth in the size
of scientific communities and the number of scientific pub-
lications. With the current rates, it is expected that the
global scientific output doubles every nine years1. For ex-
ample, Figure 1 shows the statistics of the popular DBLP
indexing services for computer science publications2. In
particular, the DBLP library is currently indexing over
3.8𝑀 publications. Out of these publications, the number
of journal articles published in 2018 is about 120𝐾 articles.
In 2017, Elsevier journals received 3919 submissions, out
1http://blogs.nature.com/news/2014/05/
global-scientific-output-doubles-every-nine-years.html
2source: https://dblp.uni-trier.de/statistics/newrecordsperyear

© 2019 Copyright held by the owner/author(s). Published in Proceed-
ings of the 22nd International Conference on Extending Database
Technology (EDBT), March 26-29, 2019, ISBN 978-3-89318-081-3
on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0.

of which 530 were accepted with acceptance rate of 14%3.
This situation raises a crucial need for continuous efforts to
ensure and improve the quality of the scientific publication
process.

In general, peer reviewing is a widely accepted practice
to assess the quality of scientific publications [5, 9]. In this
process, the selection of appropriate reviewers for evalu-
ating the submitted manuscript is a significant step. For
example, selecting reviewers without adequate knowledge
in the topic of the submissions or selecting inexperienced
reviewers would lead to poor reviews that harm the quality
of the publishing venue, the scientific community, and the
authors of the manuscript [3]. In addition, it is crucial to
avoid any reviewers with potential conflict of interest [10].
In practice, assigning reviewers for a conference submission
is less challenging than assigning a reviewer for a journal
submission. In particular, the universe of reviewers is closed
where it is limited to the program committee (PC) mem-
bers who are commonly selected based on their experience
and reputation in the scientific field of the conference. In
addition, accepting the membership for the PC of a sci-
entific conference indicates explicit commitment for the
assigned review workload of the conference within the de-
fined review deadline. Moreover, conference management
systems provide a bidding process where each PC member
should select the submissions that he/she would like to
review. Thus, with this setup and conditions, it is possible
to automate the paper-reviewer assignment task [2, 3, 8].

The manuscript review process for a journal submission
is different. In particular, the universe of reviewers is open
with various aspects of uncertainty. Thus, it depends much
on the editor’s experience, effort and professional network
to select the adequate reviewers for a submitted manu-
script. For example, there is no pre-defined agreement or
arrangement between the journal and a set of committed
reviewers. In particular, the manuscript review is a totally
voluntary work with the only incentive of having a mutual
benefit when the volunteering reviewer is an author of an-
other manuscript submission that needs to be reviewed in
the same or other journals. In addition, reviews’ deadlines
are soft constraints that are not obligatory for the reviewer.
Thus, in order to achieve efficient and effective review pro-
cess, it is the role of the editor to choose the reviewers that
should at least cover the following main criteria: 1) Have
matching research interests with the topic of the submitted
manuscript, 2) Fair in their evaluation of the manuscript
with no potential conflict of interest, 3) Have a good rank
according to the editor’s preferences in various criteria [4].
In practice, the first point can be managed by the editors’
experience with the scholars of the scientific community
of the journal and by browsing the profiles for candidate

3source:https://journalinsights.elsevier.com/journals/0142-9612/
acceptance_rate
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Figure 1: Statistics of DBLP library content

reviewers. However, the second point would require investi-
gating the track record for both the authors and reviewers
for discovering any potential for conflict of interest (e.g.,
co-authorship, having current/previous similar affiliations,
..., etc). Manually exploring and investigating this infor-
mation would be a tedious and time-consuming task for
the editors. The third point involves various aspects that
need to be considered. For example, inviting a high-profile
reviewer who happens to be quite busy will do nothing
but delaying the review process as she might not reply
to the invitation in a timely manner, simply reject it or
accepting the invite and sending the review very late. Such
selections may increase the turnaround time for making the
decision on the submitted manuscript. Another aspect that
can be considered is the history of review activities of the
candidate reviewers and the quality of their reviews. Thus,
it is crucially required that the reviewer selection process
strikes a balance between these criteria and aspects.

Recently, we have been witnessing a continuous increase
in the number of Websites and services that provide compre-
hensive scholary information. For example, DBLP provides
the list of publications for a given author, Google scholar
provides information about important metrics for the sci-
entific impact (e.g., citation count, H-index, i10-index),
Publons4 provides information about the reviewing activi-
ties that have been conducted by a scholar. In this demon-
stration, we present MINARET, a recommendation framework
for choosing scientific reviewers of a given manuscript in-
formation. The framework facilitates the job of journal
editors for conducting an efficient and effective scientific
review process by dynamically exploiting and integrating
the available information on scholarly Websites on-the-fly.
Within the search process, keywords representing the sub-
mission are semantically expanded to provide a wider range
of related reviewers as candidates. Extracted information
about the candidate reviewers are used to automatically
exclude those with potential conflict of interests with the
authors of the manuscript. Finally, the list of reviewers is
ranked based on various criteria including the experience
of the reviewer, recency of his familiarity with the topic of
the submission, likelihood to accept and timely return his
review, h-index, etc. The weight of these criteria is flexible
to be configured by the users of the framework (editors).

4https://publons.com/

2 REVIEWER RECOMMENDATION
Figure 2 shows the workflow of our recommendation frame-
work. Using the basic information of the submitted manu-
script (e.g., keywords, authors list and their current affili-
ation), the recommendation workflow goes through three
main phases: information extraction, filtration, and ranking
of the candidate reviewer list.

2.1 Information Extraction
The information extraction phase consists of the following
main steps:

∙ Verification of authors’ identities: This step is con-
cerned with the disambiguation of authors’ names [1,
6, 7]. For example, in the far east, many scholars may
share one of the popular names5. The identification
of the correct author profile is crucial as it influences
the accuracy of the collected information. We use
various services (e.g., DBLP, Google Scholar, ACM)
to gather the information about the author list. In
case of multiple matches, the user has to manually
identify the correct profiles for the author list among
the returned matches.

∙ Extracting the track records of the author list: This
step focuses on extracting information about the pub-
lications list and affiliation history of the author list
using multiple services (e.g., DBLP, Google Scholar,
ACM, Publons). Extracting the authors’ track record
is particulary important to allow discovering any po-
tential for conflict of interest.

∙ Retrieval of candidate reviewers’ profiles: The main
driver for candidate reviewers search is the list of
keywords supplied as part of the manuscript details.
Usually, this list contains three to five keywords de-
fined by the authors to describe the research topic
of their submission. To widen the search space of
candidate reviwers, we employ a semantic keyword
expansion. For this purpose, as our demonstration is
focusing on the computer science community, we rely
on an ontology of computer science topics6. Each
relevant expanded keyword is assigned a similarity
score 𝑠𝑐 ∈

[︀
0, 1

]︀
that defines the relevance between

the returned keyword from the ontology and the
original keyword. For example, if one of the manu-
script’s keywords is “RDF”, the expansion module

5https://dblp.uni-trier.de/pers/hd/z/Zhou:Lei
6https://cso.kmi.open.ac.uk/downloads
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would return “Semantic Web”, “Linked Open Data”,
and “SPARQL” as semantically related keywords
among its results. Using the expanded keywords list,
we retrieve the scholars who are registering these
keywords as research interests by querying multiple
services (e.g., Google Scholar and Publons).

MINARET is currently implemented to extract the in-
formation from six main sources: Google Scholar, DBLP,
Publons, ACM DL, ORCID and ResearcherID. However, the
framework is flexibly designed to include any further infor-
mation from any additional scholary resource.

2.2 Filtering
In this phase, the list of candidate reviewers which is re-
turned from the expanded keyword-based reviewer search
gets filtered using the following conditions:

∙ Conflict of interest: COI is determined by checking
the extracted profile information for both of the
author list and candidate reviewers and based on
the existence of a previous co-authorship between
the candidate reviewer and one of author list or the
existence of any shared affiliations on the level of the
university or country, as configured by the editor.

∙ Keyword matching score: The editor can specify a
threshold on the similarity score between the ex-
panded keywords and those attached to the reviewers’
profiles. Candidate reviewers with matching score
below the defined threshold are filtered out.

∙ A set of expertise constraints defined by the editor :
The user/editor can specify filtering out some of the
candidate reviewers based on various user-defined
filtering criteria (e.g., the range of number of citations
/ H-index, the number of previous review activities)

2.3 Ranking
The last phase of our workflow is ranking the candidate
reviewers. MINARET ranks the list of reviewers by means of
a score which is computed as a weighted sum that fuses
the following components:

∙ Topic coverage: Represents the reviewer’s coverage
score for the keywords of the submitted manuscripts.
For example, if the paper keywords were “Semantic
Web” and “Big Data” and we have two recommended
reviewers with fields of interest as “Semantic Web,

Ontologies, RDF”and “Semantic Web, Big Data”,
respectively. MINARET gives the second reviewer a
higher rank than the first, because the second re-
viewer covers more topics/keywords of the paper and
therefore is more related to the paper.

∙ Scientific impact: This component is based on the
number of citations/H-index of the reviewer, as con-
figured by the user. Clearly, the higher the number
of citations/H-index, the higher the rank.

∙ Recency: Reviewers who have recently authored pa-
pers in the topic of the reviewed manuscript are
ranked higher than others with less recent publica-
tions in the topic [5].

∙ Experience with manuscript reviewing: This compo-
nent is based on the total number of manuscript
reviews that is previously conducted by the candi-
date reviewer. This information is obtained from the
Publons profile of the candidate reviewer.

∙ Familiarity/Activity with the target outlet: The re-
viewer’s familiarity score is calculated based on two
sub-components. The first is the number of pre-
vious reviewers that are conducted by the candi-
date reviewer for the target outlet. The second sub-
component is how many times this reviewer has pub-
lished papers in this journal.

MINARET allows the user to configure the weights of the
different components for computing the final ranking score
for the candidate reviewers.

3 DEMO SCENARIO
MINARET is available both as a Web application7 as well as
RESTful APIs8. In this demonstration9, we will present to
the audience the workflow and the phases of the MINARET framewrok
(Figure 2). We start by introducing to the audience the
challenges we tackle, the main goal and the functionalities
of our framework. Then, we take the audience through the
reviewers recommendation process for sample manuscripts.
We start by completing the manuscript details form (Fig-
ure 3) with the basic information including authors’ names,

7https://bigdata.cs.ut.ee/minaret/
8The source code of the MINARET framework is available on https:
//github.com/DataSystemsGroupUT/Minaret
9A demonstration screencast is available on https://www.youtube.
com/watch?time_continue=7&v=rNHTqdY6GuI
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Figure 3: Screenshot of adding paper details page

Figure 4: Verification of authors identities

authors’ current affiliations, submission topics/keywords,
target journal in addition to any user-defined filters for the
target reviewers (e.g, citation range, H-index range). Next,
we will show how MINARETchecks and verifies authors names
(Figure 4). After this, we will show how MINARET queries
the different scholary sites for extracting the required in-
formation (Section 2) for candidate reviewers. Next, we
will continue with the stage of reviewers’ filtration and
ranking till returning the final results (Figure 5) where the
computed score of each reviewer is shown. By clicking on
the total score, score details for each ranking component
will be displayed.

While MINARET is designed for tackling the more challeng-
ing case of recommending reviewer for journal submissions.
It can be also integrated with conference management sys-
tems to automate the paper-reviewer assignment. In that
case, the list of programme committee members can be
used as a further filter. Thus, only candidate reviewers who
belong to the programme committee are retained.

Figure 5: Example recommended reviewers
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ABSTRACT
Segregation is the separation of social groups in the physical or
in the online world. Segregation discovery consists of finding
contexts of segregation. In the modern digital society, discov-
ering segregation is challenging, due to the large amount and
the variety of social data. We present a tool in support of seg-
regation discovery from relational and graph data. The SCube
system builds on attributed graph clustering and frequent itemset
mining. It offers to the analyst a multi-dimensional segregation
data cube for exploratory data analysis. The demonstration first
guides the audience through the relevant social science concepts.
Then, it focuses on scenarios around case studies of gender oc-
cupational segregation. Two real and large datasets about the
boards of directors of Italian and Estonian companies will be
explored in search of segregation contexts. The architecture of
the SCube system and its computational efficiency challenges
and solutions are discussed.

1 SOCIAL SEGREGATION
Ethical issues in data and knowledge management are gaining
momentum in the last few years. In addition to the traditional
field of privacy, techniques for data analysis are being designed
or enhanced to take into account moral values such as fairness,
transparency, accountability, and diversity1. We have recentely
developed a novel data-driven technique for addressing segre-
gation of social groups through multi-dimensional data analysis
[4]. The approach is implemented in the SCube system, which
we propose to demonstrate using real case studies.

Social segregation refers to the “separation of socially defined
groups” [11]. People are partitioned into two or more groups
on the grounds of personal or cultural traits that can foster dis-
crimination, such as gender, age, ethnicity, income, skin color,
language, religion, political opinion, membership to a national mi-
nority, etc. Contact, communication, or interaction among groups
are limited by their physical, working or socio-economic distance.
This can be observed when dissecting society in organizational
units (neighborhoods, schools, job types). Due to the ubiquitous
presence and pervasiveness of ICT, segregation is shifting from
ancient forms of well explored spatial segregation2 to novel forms
of digital segregation. For instance, it has been warned that the fil-
ter bubble generated by personalization of online social networks
may foster idelogical segregation [6], opinion polarization [10],
and informational segregation. A data-driven technology that
enables the assessment of the extent, nature, and trends of social
segregation in the offline or online world, is of extreme interest
for a wide audience: social scientistics, public policy makers, reg-
ulation and control authorities, professional associations, civil
rights societies, and investigative journalists. Business decision
1See e.g., the Toronto declaration at www.accessnow.org/toronto-declaration.
2See census stats, e.g., www.census.gov/topics/housing/housing-patterns/data.html

© 2019 Copyright held by the owner/author(s). Published in Proceedings of the
22nd International Conference on Extending Database Technology (EDBT), March
26-29, 2019, ISBN 978-3-89318-081-3. on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.
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Figure 1: A segregation data cube with dissimilarity index.

makers should also care of business practices, particularly auto-
mated decision making, that segregate customers and products
through stereotypes, because this limits diversity and reduces
opportunities of cross-selling. Finally, data scientists and pro-
fessionals should be aware of the unintended consequences of
their models (recommender systems, link suggestion systems,
classifiers) on the cohesion of society at large.

2 SEGREGATION DISCOVERY
From a data analysis perspective, the key problem of assessing
social segregation has been investigated so far by hypothesis
testing, i.e., by formulating one or more possible contexts of seg-
regation against a certain social group, and then in empirically
testing such hypotheses. Such an approach is currently supported
by statistical tools, such as the R packages OasisR3 and seg4 [9],
or by GIS tools such as the Geo-Segregation Analyzer5 [2]. The
formulation of an hypothesis, however, is not straightforward,
and it is potentially biased by the expectations of the data analyst
of finding segregation in a certain context. In addition, explo-
ration of multiple hypothesis can be time consuming, since data
have to be processed multiple times. Finally, this approach is
subject to erroneous conclusions if data is considered at wrong
granularity – an instance of the Simpson’s paradox.

Multi-dimensional segregation data cube. Our approach
consists of providing the analysts with a multi-dimensional data
cube that can be explored in search of candidate contexts of
segregation. An example segregation data cube is shown in Fig.1.
Dimensions of the data cube include two types of attributes:

• segregation attributes (SA), such as sex, age, and ethnicity,
which denote (minority/protected) groups potentially ex-
posed to segregation;

• context attributes (CA), such as region and job type, which
denote contexts where segregation may appear.

Metrics of the data cube are chosen among the social science
indexes proposed for measuring the degree of segregation of
social groups within a society [12]. Here, we recall only one
such index, but the SCube system is parametric to the indexes
3cran.r-project.org/package=OasisR
4cran.r-project.org/package=seg
5geoseganalyzer.ucs.inrs.ca
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and it computes 6 of them: dissimilarity, Gini, Information index,
Isolation, Interaction, Atkinson. Also, we restrict to binary groups
(minority/majority). LetT be the size of the total population under
consideration, 0 < M < T be the size of a minority group, T −M
the size of the rest of society (or majority group) and P = M/T
be the overall fraction of the minority group. Assume that there
are n organizational units (or simply, units – such as schools,
neighboorhoods, job types, etc.), and that for i ∈ [1,n], ti is the
size of the population in unit i , andmi is the size of the minority
group in unit i . The dissimilarity index D measures the absolute
distance between the fractions of minority and majority groups
over the units:

D =
1
2

n∑
i=1

���mi
M

−
ti −mi
T −M

���
D ranges over [0, 1], with higher values denoting higher segre-
gation. Dissimilarity is minimum when for all i ∈ [1,n],mi/ti =
M/T , namely the distribution of the minority group is uniform
over units. It is maximum when for all i ∈ [1,n], eithermi = ti
or mi = 0, namely every unit includes members of only one
group (complete segregation). Dissimilarity and other segrega-
tion indexes can be interpreted as metrics in a cell of a multi-
dimensional cube as follows: set the total population as those
individuals that satisfy the CA coordinates of the cell; and, set
the minority population as those individuals that satisfy the SA
coordinates. For instance, the cube cell in Fig.1 with SA coordi-
nates sex=female, age=young and CA coordinates region=north
contains the dissimilarity index for the population living in the
north region and for the minority group of young women. Notice
that the number n of organizational units here have to be deter-
mined a-priori, while the total population and minority groups in
each unit depend on the values of cell coordinates. As in standard
multi-dimensional modelling [7], the special value “⋆" allows for
considering different granularities of analysis.

Segregation analysis of tabular data.We assume in input
a relational table with a tuple for every individual in the popula-
tion, including SA and CA attributes, and with a further attribute
unitID which denotes the unit an individual belongs to. Unfor-
tunately, segregation indexes are not additive metrics (see [4]).
This gives rise to the problem of efficiently computing a data
cube for segregation analysis. Our approach is more specialized
than generic holistic aggregate computation in datacubes [13].
We resort to frequent closed itemset mining [8]. Data cube co-
ordinates are encoded into itemsets of the form A,B, where A
denotes a minority subgroup and B denotes a context. Recalling
the previous example, A =sex=female, age=young defines the SA
coordinates, and B =region=north defines the CA coordinates.
The SegregationDataCubeBuilder algorithm described in [4] fills
data cube cells with the value of a segregation index by scanning
frequent closed itemsets of the form above. Since relational data
is transformed into transaction database for itemset mining, we
obtain for free that CA or SA attributes can be multi-valued,
e.g., to denote that an individual owns both a house and a car we
admit a relation tuple σ such that σ [owns] = {house, car}.

Segregation analysis of graph data.While transaction data-
bases are able to cover typical analysis from traditional social
science, they are not enough powerful to deal with social net-
work data. We formalize such a case using attributed graphs,
where nodes are assigned values on a specified set of attributes.
However, in this scenario, there is no a-priori defined notion of
organizational unit, i.e., the unitID attribute assumed in input
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Figure 2: SCube architecture.

so far. Some forms of community discovery using graph cluster-
ing become necessary in order to determine the organizational
units. Clustering attributed graphs consists of partitioning them
into disjoint communities of nodes that are both well connected
and similar with respect to their attributes [5]. In summary, at-
tributed graph clustering can be used first to partition a social
network into communities. At this stage, every node/individual
in a community is described by its attributes and the community
id, which will be our unitID attribute. We have thus reduced the
problem to the analysis of relational data, for which the Segrega-
tionDataCubeBuilder algorithm can be applied.

Segregation analysis of bipartite graphs. An even more
complex scenario is when individuals are not connected among
them, e.g., because they are friends, but through a connection
with another entity, e.g., because they work in the same company.
Here, a form of projection on unipartite graph is needed to reduce
to the previous case. For instance, in [4], we adopt a bipartite
projection of the bipartite graph of directors and companies to
obtain a graph of companies connected by shared directors. Using
projection, we have reduced the problem to the previous case,
where attributed graph clustering can be adopted to find com-
munities of companies, which then represent the organizational
units for segregation analysis.

3 SCUBE ARCHITECTURE
The architecture of SCube is shown in Fig. 2. The system is
developed in Java, and it relies on a few state-of-the-art libraries6.

Inputs. The user has to provide features for two entities: in-
dividuals and groups. In the reference case studies, individuals
are directors and groups are companies. The input individuals
(a CSV file or a JDBC query) provides for each individual an ID
and a number of attribute values, distinguished into segregation
attributes (e.g., gender, age, birthplace) and context attributes
(e.g., residence). A second input groups provides for each group
an ID and a number of context attributes values (e.g., industrial
sector of a company and its headquarter location). Notice that
individuals are subjects to possible segregation, while groups are

6EWAH for compressed bitmaps (github.com/lemire/javaewah), Apache
POI for OOXML docs (poi.apache.org), Borgelt’s FPGrowth for frequent
itemset mining (www.borgelt.net), FastUtil for graph storage (fastu-
til.di.unimi.it).
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Figure 3: The process of segregation discovery supported by SCube (left, top), input to SegregationDataCubeBuilder (left,
bottom), and an output report on dissimilarity segregation index of the Italian provinces (right).

not. For this reasons, groups have no SA feature. A third input
is membership, which includes the edges of the bipartite graph of
individuals and groups, i.e., all pairs (individualID, groupID) for
which the individual is related to the group. In our case studies,
directors are related to companies they sit in the board of. We
also admit that the pairs are labeled with a time interval of valid-
ity, thus allowing for temporal analysis of segregation. We have
such an information for the Estonian dataset. A fourth input is
a list of snapshot dates at which to consider snapshots of the
membership relation.

Modules. SCube consists of five software modules. Graph-
Builder projects the bipartite graph of individuals and groups into
an unipartite attributed graph, where nodes are groups and an
edge connect two groups if they are related by at least one shared
individual. In the case studies, nodes are companies, and edges
connect companies that share at least one director in their boards.
Edges are weighted by the number of shared directors. Graph-
Builder outputs edges of the projection (edges), and nodes that
have zero degree (isolated). The GraphClustering module com-
putes then a clustering of nodes into organizational units (output
file nodeUnit). Methods for clustering available in SCube include:
extraction of connected components (Breadth-First Search), re-
moval of edges from the giant component with weight below
a threshold and then extraction of connected components (de-
signed in [4]), and an attributed graph clustering method for very
large graphs (SToC algorithm [3]). In our case studies, the result
of GraphClustering is a partitioning of companies into clusters
based on connections among companies determined by shared di-
rectors – which can be readily considered a signal of relationships
(business, personal, or other) between companies. Clusters repre-
sent the organizational units needed for computing segregation
indexes. TableBuilder joins features of individuals with features of
the companies in an organizational unit. This yields a finalTable
with a row per individual and organizational unit she belongs
to. An example is shown in Fig. 3 (left, bottom). This is the input
for the SegregationDataCube builder module, implementing the
algorithm of [4]. Notice that if the data under analysis contains
already the assignment of individuals to units, i.e., it is already
in the form of finalTable, the pre-processing steps of bipartite
projection and graph clustering do not need to be performed. The
Visualizer module transforms the extended datacube in output

of SegregationDataCube into a standard OOXML format that
can be opened by Microsoft Excel, Libre Office, and other office
productivity tools (see Fig. 5). Segregation data cube exploration
can be easily interfaced with visualization tools, as in the map
overlay in Fig. 3 (right).

Process, Wizard, and GUI. The whole process of segrega-
tion discovery supported by SCube is shown in Fig. 3 (left, top).
To facilitate the adoption of SCube by non-technical users, we
have developed two interfaces (see Fig. 4). The first one is a
standalone wizard that guides the user throughout all the steps
of the process, asking for inputs and parameters when appro-
priate, and finish launching Microsoft Excel or Libre Office on
the output file. Using popular desktop tools as GUI’s makes
the learning curve of approaching and effectively using SCube
more manageable. The second one is a cloud service offered
by the SoBigDataLab freely accessible research infrastructure
(www.sobigdata.eu/access/virtual), a web front-end comprising
a catalogue of data, services, and virtual research environments
for big data and social mining research.

4 DEMONSTRATION SCENARIO
The demonstration starts with a brief introduction on concepts
and methods of segregation measurement [12] and segregation
discovery [4]. This provides the audience with the basic defi-
nitions for understanding the SCube functionalities. The archi-
tecture of SCube is presented next. For interested participants,
computational efficiency, algorithmic solutions, and source code
internal aspects are discussed. Then, two running case studies in
the context of occupational segregation in the boards of company
directors [1] are introduced. They are based on a 2012 snaphost
of Italian companies (3.6M directors, 2.15M companies), and on a
20-year long dataset of Estonian companies (440K directors, 340K
companies). Such anonymized datasets are the largest ever con-
sidered in the literature of segregation analysis. We summarize
the data pre-processing activities to produce the inputs for SCube.

The demonstration then proceeds by presenting three analysis
scenarios based on input data of increasing complexity. In all
scenarios, gender, age, and birthplace are used as segregation
attributes. The first scenario considers tabular data, where com-
pany sector is used as organizational unitID, and it is intended
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Figure 4: SCube standalone wizard (left) and SCube method at the SoBigData research infrastructure (right).

Figure 5: Top: sample multidimensional segregation cube.
Bottom: radial plot of segregation indexes for directors in
each of the 20 Italian company sectors.

to answer questions such as: how much are women segregated
in company sectors? The second scenario considers attributed
graph data, where nodes are directors, and edges connect two
directors if they belong to a same company board. Here, the
organizational units are determined through clustering over at-
tributed graphs. This scenario can answer questions such as: how
much are women segregated in communities of connected direc-
tors? Finally, the third scenario considers a bipartite attributed
graph of directors and companies, as presented throughout the
paper. An example of question it can answer is: how much are
women segregated in communities of connected companies? For
each scenario, the output of SCube is interactively explored using
pivot tables and charts. The audience is guided to the discovery
of a few actual cases of a-priori unknown segregation contexts
and to the understanding of which attributes contribute the most
to segregation. Moreover, a cross-comparison of the Italian vs
Estonian segregation findings will be discussed.

5 CONCLUSION
This demonstration illustrates the SCube tool for interactive ex-
ploration of social segregation indexes in large and complex data.
The audience is made aware of social exclusion issues that can be
hidden in data and of the indexes that measure segregation. Real
case studies on scenarios of increasing complexity are discussed
and explored. Efficiency issues and algorithmic solutions adopted
for scaling to large datasets and graphs are detailed.
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ABSTRACT
We demonstrate SparkTune, a tool that supports the evaluation
and tuning of Spark SQL workloads from multiple perspectives.
Unlike Spark SQL’s optimizer, whichmainly relies on a rule-based
model, SparkTune adopts a cost-based model for SQL queries;
this enables the accurate estimation of execution times and the
identification of cost and complexity factors in a user-defined
workload. The estimate is based on the cluster configuration,
the database statistics (both automatically retrieved by the tool)
and the resources allocated to the workload. Thus, for any given
cluster, database and workload, SparkTune is able to identify the
best cluster configuration to run the workload, to estimate the
price to run it on a cloud platform while evaluating the perfor-
mance/price trade-off, and more. SparkTune turns the cluster
tuning efforts from manual and qualitative to automatic, opti-
mized and quantitative.

1 INTRODUCTION
Over the past years, Apache Hadoop has become the most pop-
ular framework for Big Data handling and analysis. On top of
it, SQL-on-Hadoop solutions have been introduced to provide a
relational abstraction layer to the data. Among them, one of the
most popular is Apache Spark, whose SQL-based sub-system (i.e.,
Spark SQL [1]) enables SQL queries to be rewritten in terms of
Spark commands and to be executed in parallel on a cluster1.

Although these systems are largely adopted and quickly be-
coming more solid and mature, they are still limited in terms of
cost modeling features. For instance, the module in charge of
translating SQL queries to Spark commands (i.e., Catalyst [1])
mainly relies on a rule-based optimizer. The cost model intro-
duced to Catalyst in its 2.3.0 release is still very simple (e.g., as
concerns join ordering, the cost function estimates a logical cost
in terms of number of returned rows). The need for robust cost-
based models is increasing, since the possibility to evaluate a
priori the execution cost of a workload is still lacking. Very little
work has been done on this aspect: some optimizers propose
cost-based features, but they evaluate only portions of a query
[8].

Our system, SparkTune, is an application that builds on a cost
model [3] for Spark SQL to support the user understanding the
cost of a workload and gaining the required knowledge to prop-
erly optimize the execution. From a high-level perspective, Spark-
Tune allows to: i) evaluate the duration of a workload; ii) see the
cluster’s size and potential first-hand, so as to properly optimize
the allocation of resources; iii) evaluate the trade-off between the
execution time and the price to execute it on a cloud platform.
The latter point is achieved by extending the cost model with

1Spark is not necessarily tied to Hadoop, although this is its most used architecture.
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license CC-by-nc-nd 4.0.

the pricing information of major cloud providers, which enables
the translation of resource consumption into actual money. On a
more technical side, SparkTune also: iv) enables the prior identi-
fication of stragglers (i.e., tasks that performs more poorly than
similar ones due to insufficient assigned resources); v) if adopted
by Spark SQL, it would enable the creation of a full cost-based
optimizer, both static and dynamic.

In Section 2 we summarize the core aspects of the cost model
(full details have been published in [3]), while Section 3 discusses
the features of SparkTune; the demonstration proposal is finally
given in Section 4.

2 COST MODEL OVERVIEW
The Spark architecture consists of a driver and a set of execu-
tors. The driver negotiates resources with the cluster resource
manager (e.g. YARN) and distributes the computation across the
executors, which are in charge of carrying out the operations on
data. Data are organized in Resilient Distributed Datasets (RDDs),
i.e., collections of immutable and distributed elements partitions
that can be processed in parallel. Partitions can either come from
a storage (e.g. HDFS) or be the result of a previous operation
(i.e., held in memory). At the highest level of abstraction, a Spark
computation is organized in jobs, which are composed of simpler
logical units of execution called stages. The physical unit of work
used to carry out a stage on each RDD partition is called task.
Tasks are distributed over the cluster and executed in parallel.

In Spark SQL, a declarative SQL query is translated in a set
of jobs by its optimizer, Catalyst, which carries out the typical
optimization steps: analysis and validation, logical optimization,
physical optimization, and code generation. Physical optimiza-
tion creates one or more physical plans and then it selects the
best one. At the time of writing, this phase is mainly rule-based:
it exploits a simple cost function only for choosing among the
available join algorithms [1].

Our cost model [3] computes the query execution time given
the physical plan provided by Catalyst. We remark that it is
not a cost-based optimizer, as the latter implements query plan
transformations to optimize the original plan, and it does so
without necessarily computing the whole cost of the query.

The cost model covers a wide class of queries that composes
three basic SQL operators: selection, join and generalized pro-
jection. The combination of these three operators determine
GPSJ (Generalized Projection / Selection / Join) queries, which
were first studied in [5] and which are the most common class of
queries in OLAP applications. Each Spark physical plan modeling
a GPSJ query can be represented as a tree whose nodes represent
tasks; each task applies operations to one or more input tables,
either physical or resulting from the operations carried out in its
sub-tree. Our cost model relies on a limited number of task types
(listed in Table 1) that, properly composed, form a GPSJ query. In
particular, a feasible tree properly composes the following task
types: table scan SC(), table scan and broadcast SB(), shuffle join
SJ(), broadcast join BJ() and group by GB(). SC() and SB() are
always leaf nodes of the execution tree since they deal with the
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physical storage where the relational tables lie. SJ() and BJ() are
inner nodes of the trees and can be composed to create left-deep
execution trees; finally GB(), if present, is the latest task to be
carried out.

The execution time is obtained by summing up the time
needed to execute the tasks of the tree coding the physical
plan of a query. In particular, the cost model is based on the
disk access time and on the network time spent to transmit
the data across the cluster nodes; CPU times for data serializa-
tion/deserialization and compression are implicitly counted by
the disk throughput. This is consistent with [9], which clearly
explains that one-pass workloads on Spark (e.g., SQL queries) are
either network-bound or disk-bound, whereas CPU can become
a bottleneck limitedly to serialization and compression costs.
Also, the cost model assumes that data always fits the executors
memory, so that data is never spilled to local disks.

Depending on its type, each task involves one or more basic
operations (such as reading, writing, and shuffling) which we
refer to as basic bricks; the cost of a task is calculated as the sum
of the cost of the involved bricks (see 1 for the usage of bricks
by the task types). In particular, each brick models the execu-
tion of an operation on a single RDD partition and considers
the resource contentions given by parallel execution. Bricks are
SQL-agnostic and require some parameters about Spark (e.g.,
network and disk read/write throughput) and about the cluster
(e.g., number of executors per rack and number of cores per ex-
ecutor) to be known. As explained in Section 3, most of these
parameters are automatically retrieved by SparkTune. In the
following, we briefly discuss the nature of each basic brick.

• Read: consists in reading an RDD partition from disk. If
the data does not reside on the executor’s node, it must be
read from another one, according to the locality principle.
The cost model exploits the known cluster configuration
to estimate the probability of such a case. When reading
from another node, both the time to transfer the data
over the network must be considered in addition to the
time to read the data from disk. Since Spark enables in-
memory pipelining of subsequent transformations that
do not require shuffling (according to the Volcano model
[4]), the overall time is computed as the maximum for
disk reading and data transmission.

• Write: consists in writing an RDD partition to the local
disk; no network data transfer is necessary.

• Shuffle read: consists in reading an RDD partition from
disk and shuffling it through the network. Similarly to
the Read brick, the overall time is computed as the maxi-
mum for disk reading and data transmission; in this case,
however, disk reading only happens on the local disk.

• Broadcast: consists in loading the whole RDD on the ap-
plication driver and in sending it to every executor. Since
the two operations cannot be pipelined, the overall cost
is determined as the sum of the two. The broadcast brick
does not involve disk reading or writing, thus the cost
only depends on network time.

Ultimately, we remark that – thanks to the known cluster con-
figuration – the cost model is able to probabilistically estimate
the amount of data to be read and/or transferred through the
network for each brick.

Example 2.1. The following GPSJ query is taken from the TPC-
H benchmark [7]; it computes the total income collected in a

Table 1: Task types characterization

Task Type Addittional params Basic bricks
SC() pred, cols, groups Read, Write
SJ() pred, cols, groups Shuffle Read, Write
SB() pred, cols Read, Broadcast
BJ() pred, cols, groups Write
GB() pred, cols, groups Shuffle Read, Write

GB(N5, {l_orderkey, o_orderdate, 
o_shippriority, l_extendedprice}, 

{l_orderkey, o_orderdate,o_shippriority},F)

SJ(N1, c_custkey=o_custkey, N2,
{o_orderkey, o_orderdate, 

o_shippriority}, { }, F)

SC(lineitem, l_shipdate >‘1995-
03-15’, {l_orderkey,

l_extendedprice}, { }, F)

SC(orders, o_orderdate<‘1995-03-
15’, {o_orderkey, o_custkey, 

o_orderdate, o_shippriority}, { }, F)
SC(customers, c_mktsegment = 
'BUILDING‘, {c_custkey}, { }, F)

SJ(N3, N4,l_orderkey=o_orderkey,
{l_orderkey, o_orderdate, o_shippriority, 

l_extendedprice}, {l_orderkey, 
o_orderdate,o_shippriority},F)

N1 N2

N3 N4

N5

N6

Figure 1: GPSJ grammar derivation for the query in Ex-
ample 2.1; node names substitute sub-expressions in the
inner nodes
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Figure 2: SparkTune’s architecture and data flow

given period and for a specific market segment grouped by single
orders and priority of shipping.
SELECT l_orderkey, o_orderdate, o_shippriority,sum(l_extprice)

FROM customer, orders, lineitem

WHERE c_mktsegment = ’BUILDING’ AND

c_custkey = o_custkey AND l_orderkey = o_orderkey AND

o_orderdate < date ’1995-03-15’ AND

l_shipdate > date ’1995-03-15’

GROUP BY l_orderkey, o_orderdate, o_shippriority

A graphical representation of the Spark physical plan chosen
by Catalyst is reported in Figure 1.

3 THE SYSTEM
SparkTune is implemented as a web application on a classic
WAMP stack (Windows, Apache, MySQL, PHP) and it is publicly
available at http://semantic.csr.unibo.it/sparktune. We plan to
release SparkTune as a standalone application in the near future.
The architecture of the system is sketched in Figure 2, where the
flow of data is also indicated.
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3.1 Environment setup
The system enables registered user to setup their own environ-
ment in order to define custom scenarios and run user-specific
analyses. The setup of the environment can be done either man-
ually or in an automatic fashion. The information required by
the system is the following:

• Cluster configuration, such as the number of nodes and
racks, the number of cores per node, HDFS’s replication
factor, hardware statistics. Automatic retrieval of these
data is enabled by providing credentials for an SSH con-
nection to one of the cluster’s nodes. Most parameters
are obtained through calls to the Hadoop’s APIs, while
Spark jobs are run to infer the read and write through-
put of the disk, as well as the intra-rack and inter-rack
network throughput. Both throughput values are inferred
as a function of the number of concurrent processes that
require disk access and network data transfer.

• Database statistics. Automatic retrieval of these data is
enabled by providing credentials to access the Hive Metas-
tore. For any of the available database, the user can trigger
the retrieval of the name, size, and statistics for every table
and attribute.

• One or more workloads, meant as sequences SQL queries
to be manually provided by the user; then, the system
automatically retrieves from Spark the physical plan.

These data are stored in the Metadata repository. Each user
can setup multiple clusters, databases, and workloads. The ver-
sions of Spark currently supported are 1.5 and 2.2.

3.2 Analyses
The system provides four kinds of analysis and simulation. Each
of them requires to define a specific environment (i.e., to select
a cluster, a database, and workload among the ones provided
in the setup), possibly requests additional parameters (e.g., the
number of executors to be allocated for each node), and outputs
a detailed report depending on the kind of analysis. Figure 3
shows examples of such reports, which are fully discussed in the
following.

Workload analysis. The goal is to provide an in-depth anal-
ysis of the complexity and cost of executing the workload on
a cluster with a specific configuration (i.e., the number of ex-
ecutors and the number of cores per executor must be defined
by the user). First of all, SparkTune runs each query’s physical
plan in the workload on the cost model to estimate the total
execution time of the workload. Secondly, it provides full details
about every task of every query (including the amount of data
read/written, the time to read/write data from disk or to transfer
it across the network). On the one hand, this greatly helps the
identification of stragglers: Figure 3.1 shows the report of a single
query, which presents the tasks in the execution tree colored on
a red gradient (the harder the red, the higher the percentage of
time required by the task w.r.t. to the query). On the other hand,
it helps understanding which factors mainly impact on the cost
of each task/query: below the execution plan in Figure 3.1, the
total estimated time of the query is split among disk read time,
disk write time, and network time; then, by clicking on a task in
the tree, a pop-up as the one in Figure 3.2 shows the same data
for each task — together with other detailed information (e.g.,
the amount of data read/written/transferred, the cardinality of
the involved table(s), etc.).

Cluster analysis. The goal is to optimize the allocation of
resources by understanding the impact of the configuration pa-
rameters on the performance. The total execution time of the
workload is calculated for every configuration potentially avail-
able within the boundaries set in the cluster setup2. The results
are presented in a 3D surface graph (Figure 3.3), showing the
execution time by the number of executors and the number of
cores. This graph emphasizes how the increase of executors and
cores progressively reduces the execution time; more specifically,
it shows which of the two factors has the greatest impact in the
time reduction for the given workload.

Performance analysis. The goal is to provide a what-if analy-
sis that shows the potential impact of enhancing the performance
of the cluster (in terms of disk throughput and network through-
put) on the execution time of a workload. Given a specific cluster
and its configuration, the system estimates the execution time
by progressively improving the disk and/or network throughput
in steps of 20% (i.e., 120% w.r.t. to the current throughput, 140%,
etc.). The results are presented in a 3D surface graph (Figure
3.4), which helps understanding which factor (disk or network)
is most critical in determining the execution time. Noticeably,
the increase in disk throughput is assumed in the same measure
for both reading and writing.

Cost analysis. The goal is to evaluate the price of executing a
workload on a cloud infrastructure. Tomake such an estimate, we
extended our cost model with the pricing information obtained
from cloud providers Amazon AWS (http://aws.amazon.com) and
Google Cloud (http://cloud.google.com); this enables the transla-
tion of the time usage estimates of every core and every executor
to the amount of USD (United States Dollars) to be paid to the
provider for the execution of the workload. Similarly to the Clus-
ter analysis, the system exhaustively calculates the total execu-
tion time of the workload in every possible configuration (within
the upper bounds set in the cluster setup), but it is eventually
translated to USD. Ultimately, two results are presented. The first
one (left-hand side of Figure 3.5) is a mere cost analysis, showing
the price obtained with the different cluster configurations by
means of a 3D surface graph; this enables the identification of
the cheapest cluster configuration, as well as the understanding
of which factor (i.e., number of executors or number of costs) is
the most expensive. The second one (right-hand side of Figure
3.5) is an evaluation of the trade-off between execution time and
price; it is shown as a 2D chart, pinpointing each cluster config-
uration in the 2D surface represented by the execution time and
the price. This chart allows an immediate identification of the
ideal cluster configurations, which minimize both the time spent
and the money to be paid. For the sake of completeness, we note
that the price estimate only considers the consumption of the
cluster’s resources for the estimated time; it does not consider
the price of the disk, which is required to store the database.

Example 3.1. The reports in Figure 3 pertain to a workload
of 8 queries from the TPC-H benchmark on our 11-node cluster.
Workload analysis. Figure 3.1 represents the execution tree of
the query in Example 2.1 and shows that the overall time (5.61
min) is mostly due to two tasks (nodes 1 and 5). Given Spark’s
in-memory pipelining, the “affected time” voice indicates the
portion of the time spent reading/writing/transferring data (i.e.,

2We adopt this naive approach for the purpose of showing a full report to the user.
A cost-based optimizer that only looks for an optimal configuration could apply
some heuristics to avoid an extensive research [2].
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Figure 3: Screenshots of the various functionalities of SparkTune, discussed in Section 3

“worked time”) that actually contributed to determining the over-
all query time. Figure 3.2 shows the details of node 5 in Figure
3.1; it is the scan of the Lineitem table and it shows that the
task is mostly disk-bound. Cluster analysis. Figure 3.3 clearly
shows that, for the given workload, the performance gain due to
increasing the number of executors is superior to the one due to
increasing the number of cores per executor. Performance analy-
sis. Figure 3.4 further confirms that the workload is disk-bound;
indeed, improving the network throughput would have little to
no impact on the execution time, as opposed to the adoption of
more performing disks. Cost analysis. The prices shown in Figure
3.5 refer to to Amazon AWS; interestingly, the left chart shows
that the cheapest configurations are those with a low number of
cores. This indicates that the higher core-power would not be
adequately put to use, as it does not correspond to a significant
reduction in time (as the Cluster analysis also anticipated). Ulti-
mately, this is confirmed by the right chart, which shows a high
disproportion between the price required to reduce the execution
time of the cheapest configured and the time actually saved.

4 DEMO PROPOSAL
In the demonstration we will show how cluster tuning can be au-
tomatized and optimized adopting a cost-based approach. First,
we will demonstrate the automatic retrieval of data for the envi-
ronment setup, either on our own cluster or on a cluster owned by
someone in the audience (provided their willingness to grant its
access). Then, we will develop with the audience an experience to
showcase the various functionalities of the system and to under-
stand their value from the perspective of different professional
figures. In particular, two distinct scenarios will be simulated
for data scientists (which will be interested in analyzing work-
loads from a more technical angle) and data architects (which
will be interested in an analyzing the same workloads from a
different, higher-level perspective). With data scientists we will
mainly focus on SparkTune’s Workload and Cluster analyses
to answers several questions, such as: “What are the reasons for
the poor performance of this workload?”, or “How can I reallocate

the resources to speed up the execution of the workload without
exceeding my budget?”. Differently, with data architects we will
mainly focus on SparkTune’s Cost and Performance analyses
to address issues related to the design and deployment of the
infrastructure; in particular, we will answer questions such as
“Which cloud provider will let me run this workload at the lowest
price and at a reasonable performance?”, or “What kind of scale-up
or scale-out improvements can I bring to the cluster to improve its
performance?”. The demo will put the audience in the shoes of
one of these figures and we will develop a simulation aimed at
answering the aforementioned questions.

Our real cluster that we use as a reference consists of 11 nodes
with 8 cores per node. SparkTunewill be configuredwith different
benchmark databases, including the well-known TPC-H [7] and
the Big Data Benchmark [6]. We will define different workloads
on each database, in order to present scenarios that require the
exploitation of the different features of SparkTune.
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ABSTRACT
We present HOTMapper, a tool that maps tables of Open Data
with historical information into unified data sources. The tool
couples data exchange and integration techniques implemented
into two main components: 1) a CLI script with commands to
create and update tables, and to insert and update the data, using
2) a simple mapping definition file, interpreted by the CLI script,
to store the schema and data mappings throughout different
years. The tool is implemented using Python and MonetDb. This
demo will show the creation of the mapping definition and the
execution flow of the CLI script for creating a unified data source
from scratch and then updating an existing one. It will unify
real world data sources, with millions of records, containing
information about the Brazilian educational system.

1 INTRODUCTION
The availability of large Open Data sources raises several oppor-
tunities for researchers from different domains to extract and
process the data. Governments from different countries are re-
leasing vast amounts of governmental data, i.e. regarding public
services and expenditures. However, in order to effectively use
the data, some difficult problems must be addressed: open data
sources are often heterogeneous, with different representation
formats, data models, schemas (if any), data quality, and others.
Such problems can be categorized into Data Exchange, Data Inte-
gration and Table Stitching issues. Data Exchange is the problem
of transforming data from one source, which has a source schema,
into a target schema [10]. Data Integration is defined as the prob-
lem of uniformly accessing different source schemes through an
integrated source [10]. Finally, Table Stitching is defined as the
problem of unifying many tables with identical schemes into a
single table identifying extra attributes for it [7].

Open Data is often de-normalized (e.g. in large CSV (Comma
Separated Values) files) and represents a small period of time
(i.e. a semester or a year). New data is periodically released, with
several files that need to be integrated. In addition, from one
release to another, data and schema changes often occur. While
each periodic instance could be handled separately, having a
unified view of the data allows to do historical analysis and
comparisons. Thus, it is important to develop methods and tools
that are able to create a unified view of the data, to translate each
periodic source into the unified view, to perform transformations
on the data sources and to update them periodically. This means
it is necessary to provide simple ways to maintain schema and
data mappings from several input schemes and data sources into
a unified one, keeping data compatibility.

© 2019 Copyright held by the owner/author(s). Published in Proceedings of the
22nd International Conference on Extending Database Technology (EDBT), March
26-29, 2019, ISBN 978-3-89318-081-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

There are different solutions/tools partially covering these is-
sues. The Clio tool [5] is one of the best known, being developed
before the advent of Open Data and a precursor to many others.
More recently the Polystore-like approaches, such as BigDawg[3],
ESTOCADA [1] or MISO[6] focus on the data integration issues,
as does the Data Civilizer system[2]. Ling at al. [7] handled the
problem of table stitching: new columns in the data source need
to be identified and stitched into unified tables. The approach
from [8] presents a brief history on data integration solutions
and the current issues when having multiple Open Data sources.
Their solution for creating union-able tables [9] could be valuable
for a mapping framework, though they do not focus on main-
tenance and updates of the data. As a drawback, the solutions
completeness and adaptability to several kinds of queries and
data sources makes it hard to be used in specialized scenarios,
such as the historical Open Data mapping presented in this paper.

TheHOTMapper tool 1 (Historical Open Data Table Mapper)
was developed as a domain specific data mapping/integration
solution, targeted to de-normalized Open data sources, spread
into several input files, where the mappings are simple and need
to be stored and modified periodically. The implementation cou-
ples different aspects of data integration, data exchange and table
stitching. It consists of a Command Line Interface (CLI) tool for
historical data and schema mapping, translated from CSVs into
the MonetDb2 column store.

The tool receives as input the CSV files and a mapping defini-
tion file with information on how to unify the data. The mappings
are defined in CSV as well, relating all desired input data with
the corresponding target columns. The mapping definition file
has information to guide the following actions: 1) creation of the
target unified schema; 2) source-to-target data transformations,
which are maintained for each given period; 3) creation of new
derived data 4) update of an existing source with new columns
and mappings; and 5) full reconstruction of the unified source
based on the input sources and mappings. More actions could be
added if needed.

This demonstration will present the execution flow of the tool:
• development of the periodical data and schema mappings;
• creation of a new data source;
• insertion of the corresponding data into the unified model;
• update with a new data source;
• update in the columns and data transformations.

We will execute the tool in a real world scenario, process-
ing information about the Brazilian educational system. The
data includes the enrollments and related information (schools,
courses or teachers) in schools and Universities, with hundreds
of columns. The mappings and commands can be modified on

1https://gitlab.c3sl.ufpr.br/tools/hotmapper
2https://www.monetdb.org/
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the fly following the audience interactions, showing how fast
and simple the tool is.

The unified data produced by the tool is currently being used
and can be visualized in an open web portal [4] 3. The amount
of data already processed by the tool is summarized in Table
1. It was extracted from Open Data sources produced by INEP
(Instituto Nacional de Pesquisa Educacionais Anísio Teixeira)4.

Table 1: Summary of data from the INEPOpenData Source
processed by HOTMapper

Year Tables Records
2017 13 102.176.661
2016 20 116.009.013
2015 18 116.946.948
2014 17 121.115.913
2013 18 112.645.020
2012 11 36.029.271
2011 7 12.025.035
2010 7 8.768.490

The paper is organized as follows: section 2 presents a moti-
vating example of HOTMapper; section 3 explains HOTMapper’s
design and working principle and Section 4 describe the steps of
the tool demonstration.

2 MOTIVATING EXAMPLE
Consider the necessity of extracting a metric (or indicator) regard-
ing the number of enrolled students in all Brazilian schools from
2013 to 2017. The information about enrollments is available at
an Open Data source produced by INEP. While this is a particular
metric, the idea can be generalized as “extracting indicators from
public Open Data sources”. The input data is de-normalized in
a set of large CSV files, with approx. 100 different fields each.
The choice for publishing de-normalized data is common in open
data sources, because it decreases the number of files that need
to be managed in the long run.

The metric/indicator must be correctly extracted from this
source and can be aggregated in different dimensions, i.e, location
dimensions such as country, state or city; enrollments on public
vs. private schools, enrollments on scientific courses, among
others. The metric also needs to support yearly updates, because
a new set of files is released every year, raising three main issues:

(1) Integrated source creation: a first set of tables needs to
be created to be able to execute queries considering the
historical data. In this case, the input data has 87 columns
for the 2013 and 2014 years, and 96 columns in 2015-2017.

(2) Schema evolution: every year, the data sources defini-
tion changes, so it is necessary to provide schema map-
pings:

(a) direct mappings:
NATIONALITY <- [2013-2017] NATIONALITY
SPECIAL_NECESSITY <- [2013-2014] HAS_NECESSITY
SPECIAL_NECESSITY <- [2015-2017] SPECIAL_NECESSITY

(b) new mapping (when a column is added):
REGION <- [2013-2015] not-available
REGION <- [2016-2017] REGION

(3) Data evolution: data has to be transformed and kept
compatible along all years, requiring instance mappings:

3http://dadoseducacionais.c3sl.ufpr.br
4http://portal.inep.gov.br/microdados

(a) mapping creation: a new dimension is generated from
existing data
PROFESSIONAL_STUDIES<-[2013-2014]
WHEN STUDIES_KIND between 30 and 40 THEN 1
WHEN STUDIES_KIND between 41 and 50 THEN 2
PROFESSIONAL_STUDIES<-PROFESSIONAL_STUDIES[2015-2017]

(b) mapping update: the datamapping from the data sources
may change (dimension or metric), which means the
previous mappings, for all previous years, has to be
updated
GENDER <- [2013-2014]

WHEN M THEN 1
WHEN F THEN 2

GENDER <- [2015-2017] GENDER

This motivating example considered just one indicator and
illustrative examples, with intersections of data exchange, inte-
gration and table stitching. This kind of mapping is commonly
applied to more or less 90 columns of annual data. In addition,
INEP publishes at least four main raw data sets: Students, Teach-
ers, Schools and Sessions, containing more than one hundred
columns. There are other sources released on a similar basis,
replicating this scenario for every new indicator produced, pre-
senting a challenging setting for the extraction and maintenance
of Open Data sources.

3 HOTMAPPER
In this section we present the HOTMapper tool, addressing the
maintenance of data and mappings of Open Data sets.

3.1 Tool description
HOTMapper’s architecture is shown in Figure 1. It consists of a
CLI (Command Line Interface) manager interacting with three
kinds of input and/or output, on which six predefined actions
can be performed. With a flexible implementation using Python
and SQL programming languages, the tool allows for an easy
extension by adding more actions.

Figure 1: HOTMapper overview

Themapping definition files are in CSV format. There is one
file for each table in the target RDBMS. It describes the columns
that are created and the mappings, per year, of each input column.

The input data is the set of CSV files that are included in
the target database, one file per metric (or set of metrics), and
per year. For instance, the enrollments metric has five input files,
from 2013 to 2017. The files are de-normalized, which means they
have a high number of columns.

The target database has the set of tables that contain the
integrated information produced by the tool. We use theMonetDb
column store and keep the included data as similar as possible to
the input data, i.e., we do not normalize the target data. This has
some advantages: the definition and maintenance of mappings
remains relatively simple; the data model does not need to be
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constantly adapted for every new release; the queries are fast,
because joins are minimized; and bulk insertion operations are
fast. It is important to emphasize that the target database is
only updated by new releases of the input data, without OLTP
operations.

The actions currently handled byHOTMapper are: tablemain-
tenance actions (1) CREATE and (2) DROP; data and table ma-
nipulation actions (3) INSERT, (4) REMAP and (5) UPDATE; and a
reporting action (6) GENERATE REPORT:

(1) CREATE action takes as input the table definition and exe-
cutes the DML (Data Manipulation Language) commands;

(2) DROP action deletes the table passed as parameter and any
related data. The tool executes standard DML commands,
so that it can be used in different RDBMS’s;

(3) INSERT action executes a bulk insert of the input CSV
files into a temporary table in the target database. Then, it
reads the mapping definition to transfer the data into the
target table. The creation of a temporary table is important
to facilitate the manipulation of the input data, avoiding
direct operations on the CSV file;

(4) REMAP action modifies the initial table definition;
(5) UPDATE action updates a table after a change in the map-

pings; and
(6) GENERATE REPORT action produces a report with column

equivalences between the input table and the current data-
base. It is not necessary for inserting or updating data, but
eases the creation of the mapping definition file.

Figure 2 illustrates a mapping definition and two input CSV
files, with information about the universities in Brazil.

Figure 2: Illustration of a mapping definition and two in-
put CSV data files

File OpenData-Mapper.csv contains the mapping definition,
composed of eight columns: [Lab.Var] is an identifier for each
mapping; [Standard Label] has the name of themapped columns;
[New Label] has the description of the column; [Temp Column]
defineswhether the column is temporary (usedwhen pre-calculations
are necessary); [DB name] is the name of the column in the target
database; [Data type] has the data type of the column defined
by [DB name]; and columns [2010],[2011] have the yearly
mappings of each input column into the corresponding target
column. Every time a new release is available, a new year column
is added, with its corresponding mappings. The periodicity can
be different, depending of the characteristics of the input data.

HOTMapper also supports source-to-target mappings. For a
given line in the CSV file, the [DB name] column points to the
target column in the database. Then, for each year, it is possible
to define two kinds of mappings: 1) simple equivalence mappings,
by indicating the name of the source column; 2) data transfor-
mation mappings, defined by CASE statements in SQL. The CASE

statements are injected in the code responsible for the transfor-
mation. The context of each statement is the current cursor of
the SQL execution.

Consider the first equivalence mapping from the motivating
example, i.e., for NATIONALITY. Five columns, from 2013 to 2017,
have the value of the input column NATIONALITY. The same
is valid for SPECIAL_NECESSITY, though it will have different
names depending on the year. Non-existent mappings are just
left blank. All other data transformations are written using CASE,
one per year, independently from each other.

Considering the PROFESSIONAL_STUDIES column, following
code is written to process years 2013 and 2014:
CASE
WHEN (STUDIES_KIND >= 30 AND STUDIES_KIND <= 40) THEN 1
WHEN (STUDIES_KIND > 40 AND STUDIES_KIND <= 50) THEN 2

END

Simple join operations are also supported. For instance, the
following expression (~ SCHOOL.REGION_ID) written in the map-
pings of the ENROLLMENTS table causes a join with the SCHOOL
table and returns the REGION_ID column.

The mapping definition is kept as simple as possible, yet rich
enough to express data translations. The choice of a sub-set of
SQL enables fast SELECT + INSERT executions, which would
demand handcrafted loops over millions of records with an imper-
ative programming language. The complexity of the translation
depends on the CASE expression written. They support 1-to-1 and
N:1 mappings, and simple joins with other tables. This choice
for simplicity is crucial for the continuous maintenance of the
mappings.

4 HOTMAPPER DEMONSTRATION
The demonstration will show how to create a mapping definition
file, how to use it to create and update tables and its correspond-
ing data. The process will be interactive, so the mapping can be
modified if necessary and the tool can be re-executed, to show
its efficiency and ease of use.

4.1 Requirements
HOTMapper has following software requirements:

• A Python environment
• The MonetDB5 database
• The Open Data files in CSV6

• A connection configuration file6
• The HOTMapper code6

After the installation, it is necessary to set up the configura-
tions in the file settings.py. It contains the database configura-
tions (login, host, database name) and the path to the CSV files.
The utilization of the CLI interface is straightforward:
./manage.py create|insert|remap|drop|remap|generate_report

INPUT_TABLE_NAME PARAMETERS

All the options process a mapping definition file with the same
name of the input table name, except for the period indication.
The development of this file is a central part of the tool usage.

4.2 Using the HOTMapper
This demonstration will show two scenarios, illustrating two
workflows: 1) the creation and insertion of an open data source
from scratch, and 2) the update of mappings and data of an
existing table. In both scenarios the audience will be able to

5https://www.monetdb.org/
6https://gitlab.c3sl.ufpr.br/tools/hotmapper
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propose modifications in the mapping definitions and check the
results on the fly.

In the first scenario, we will map a table containing informa-
tion about the undergraduate institutions in Brazil, from 2010 to
2016 (localoferta_ens_superior). It is a relatively small table,
with approximately 200K records per year, and for its creation
the mapping definition file must contain the necessary columns.
We execute the command:
./manage.py create localoferta_ens_superior

In addition, HOTMapper creates an auxiliary table to store the
mapping definitions, called mapping_localoferta_ens_superior.
These mappings can be used for any subsequent modifications,
enabling a faster processing and generation of SQL commands.
A final commit is done after the tables are created. Then, we
execute the command below to insert the data into the target
table.
./manage.py insert /FILEPATH/DM_LOCAL_OFERTA_2010.CSV

localoferta_ens_superior 2010 --sep="|"

The process is repeated for data files from each year, i.e., from
2010 to 2016, using the corresponding mapping definitions for
each year. An excerpt of the mapping is shown in the three
items below: (1) the labels of the mapping file; (2) a complete
1-to-1 mapping with the institution code; (3) a mapping with the
institution start date. In this case, we do not have data for every
year, leaving the corresponding column blank.

(1) Label,Std.Label,New Label,DB Name,Type,
2010,2011,2012,2013,2014,2015,2016

(2) LOCAL-OFERTA,CO_IES,Institution code,cod_ies,INTEGER,
CO_IES,CO_IES,CO_IES,CO_IES,CO_IES,CO_IES,CO_IES

(3) LOCAL-OFERTA,DT_INICIO_FUNCIONAMENTO,Start date,
data_incio_funcionamento,VARCHAR(255),,,,
DT_INICIO_FUNCIONAMENTO,DT_INICIO_FUNCIONAMENTO,
DT_INICIO_FUNCIONAMENTO,DT_INICIO_FUNCIONAMENTO

Figure 3: Screenshot of the insertion execution flow

The screen shot of the execution log is shown in Figure 3.
The command first inserts the table into a temporary table, with
the same structure as the input CSV, in a bulk insert action.
Then, it inserts the data into a final table applying the map-
ping definitions. If this insertion is successful, the tool commits
all changes to the MonetDb database. Once a first insertion is
done, we will execute the drop command (./manage.py drop
localoferta_ens_superior), and the audience can propose al-
terations to the mapping definition file to see different outcomes.

In the second scenario, we start from an already existing
table, with more complex mappings and records. We use the table
from the motivating example in Section 2, with the enrollments
of all students from 2013 to 2017. As already stated, it has about

90 columns and millions of records per year. We execute the
remap and update actions for 2013 as follows:
./manage.py remap matricula

./manage.py update_from_file /FILEPATH/MATRICULA_2013.csv
matricula 2013 --columns="profissionalizante" --sep="|"

The actions check if there is a difference between the current
table specification (matricula) and the new mapping definition
provided. It updates the table and the data. The mappings have, in
addition to simple definitions as the ones from the scenario 1, ex-
pressions requiring data conversions using CASE statements. We
will edit the PROFESSIONAL_STUDIES mapping, whose excerpt is
shown below:
IN_PROFISSIONALIZANTE,Educação Profissional,0,

profissionalizante,BOOLEAN,
~CASE
WHEN ("FK_COD_MOD_ENSINO"=1 OR "FK_COD_MOD_ENSINO"=2
OR "FK_COD_MOD_ENSINO"=3) THEN CASE WHEN null THEN null
WHEN ("FK_COD_ETAPA_ENSINO">=30 AND "FK_COD_ETAPA\_ENSINO"<=40)
OR ("FK_COD_ETAPA_ENSINO">=59 AND "FK_COD_ETAPA_ENSINO"<=65)
OR ("FK_COD_ETAPA_ENSINO">=67 AND "FK_COD_ETAPA_ENSINO"<=68)
OR ("FK_COD_ETAPA_ENSINO">=73 AND "FK_COD_ETAPA_ENSINO"<=74)
OR "FK_COD_ETAPA_ENSINO"=57
THEN 1 ELSE 0 END
END

The last column is the mapping for year 2013, also repeated
for 2014. The remaining years already have the desired informa-
tion. During the demonstration, this and other mappings can be
changed following audience interactions.

To summarize, the HOTMapper demo will show how to write,
store and manage mappings and data, from Open Data sources
with historical information into an integrated database. The sim-
ple definition format and rapid bulk insertions enables efficient
management of several Open Data sources over time.
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ABSTRACT
Due to the increasing success of machine learning tech-
niques, nowadays, thay have been widely utilized in almost
every domain such as financial applications, marketing,
recommender systems and user behavior analytics, just
to name a few. In practice, the machine learning model
creation process is a highly iterative exploratory process. In
particular, an effective machine learning modeling process
requires solid knowledge and understanding of the differ-
ent types of machine learning algorithms. In addition, all
machine learning algorithms require user-defined inputs to
achieve a balance between accuracy and generalizability.
This task is referred to as Hyperparameter Tuning. Thus, in
practice, data scientists work hard to find the best model
or algorithm that meets the specifications of their prob-
lem. Such iterative and explorative nature of the modeling
process is commonly tedious and time-consuming.

We demonstrate SmartML, a meta learning-based frame-
work for automated selection and hyperparameter tuning
for machine learning algorithms. Being meta learning-based,
the framework is able to simulate the role of the machine
learning expert. In particular, the framework is equipped
with a continuously updated knowledge base that stores in-
formation about the meta-features of all processed datasets
along with the associated performance of the different
classifiers and their tuned parameters. Thus, for any new
dataset, SmartML automatically extracts its meta features
and searches its knowledge base for the best performing
algorithm to start its optimization process. In addition,
SmartML makes use of the new runs to continuously en-
rich its knowledge base to improve its performance and
robustness for future runs. We will show how our approach
outperforms the-state-of-the-art techniques in the domain
of automated machine learning frameworks.

1 INTRODUCTION
Machine learning is the field of computer science that fo-
cuses on building algorithms that can automatically learn
from data and automatically improve its performance with-
out end-user instructions, influence or interference. In gen-
eral, the effectiveness of machine learning techniques mainly
rests on the availability of massive datasets, of that there
can be no doubt. The more data that is available, the
richer and the more robust the insights and the results
that machine learning techniques can produce. Nowadays,

© 2019 Copyright held by the owner/author(s). Published in Proceed-
ings of the 22nd International Conference on Extending Database
Technology (EDBT), March 26-29, 2019, ISBN 978-3-89318-081-3
on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0.

we are witnessing a continuous growth in the size and
availability of data in almost every aspects of our daily
life. Thus, recently, we have been witnessing many leaps
achieved by machine learning in wide range of fields [1, 9].
Consequently, there are growing demand to have increasing
number of data scientists with strong knowledge and good
experience with the various machine learning algorithms in
order to be able to build models that can achieve the tar-
get performance and to keep up with exponential growing
amounts of data which is produced daily.

In practice, the machine learning modeling process is a
highly iterative exploratory process. In particular, there is
no one-model-fits-all solution, i.e, there is no single model
or algorithm which is well-known to achieve the highest
accuracy for all data set varieties in a certain application
domain. Hence, trying many machine learning algorithms
with different parameter configurations is commonly con-
sidered an inefficient, tedious, and time consuming process.
Therefore, there has been growing interest to automate
the machine learning modeling process as it has been ac-
knowledged that data scientists do not scale1. Therefore,
recently, several frameworks have been designed to sup-
port automating the machine learning modeling process.
For example Auto-Weka [8] is an automation framework
for algorithm selection and hyper-parameter optimization
which is based on Bayesian optimization using sequential
model-based algorithm configuration (SMAC) and tree-
structured parzen estimator (TPE). Auto-Sklearn [3] is a
framework that has been implemented on top of the popu-
lar python scikit-learn machine learning package that
automatically considers the past performance on similar
datasets for its automation decision. Other tools include
Google Vizier which is based on grid or random search [5]
and TPOT which is based on genetic programming [10].

In this demonstration, we present SmartML, a meta learning-
based framework for automated selection and hyperpa-
rameter tuning for machine learning algorithms (using 15
classifiers). In our framework, the meta-learning feature
is emulating the role of the domain expert in the field
of machine learning [4, 11]. In particular, we exploit the
knowledge and experience from previous runs by storing
a set of data meta-features along with their performance.
In addition, our knowledge base is continuously updated
after running each task over SmartML which contributes
to improving framework performance over the time. Our
meta-learning mechanism is mainly used for the algorithm
selection process in order to reduce the parameter-tuning
search space which is conducted using SMAC Bayesian op-
timization [7]. This is different from other tools [3, 8] which

1https://hbr.org/2015/05/data-scientists-dont-scale
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SmartML Auto-Weka AutoSklearn TPOT
Language R Java Python Python
API Yes No No Yes
Optimization Procedure Bayesian Optimization Bayesian Optimization Bayesian Optimization Genetic Programming,

(SMAC) (SMAC and TPE) (SMAC) and Pareto Optimization
Number of Algorithms 15 classifiers 27 classifiers 15 classifiers 15 classifiers

on top of R on top of WEKA on top of scikit learn on top of scikit learn
Support Ensembling Yes Yes Yes No
Use Meta-Learning Yes No Yes No

(incrementally updated KB) (Static)
Feature preprocessing Yes Yes Yes No
Model Interpretability Yes No No No

Table 1: Comparison between State-of-the-art Automated Machine Learning Frameworks

deal with algorithm selection as one of the parameters to
be tuned.

SmartML can be used as a package in R language, one
of the most popular languages in the data science domain,
or as a Web application2. It is also designed to be pro-
gramming language agnostic so that it can be embedded
in any programming language using its available REST
APIs. Table 1 shows a feature comparison between our
framework and other state-of-the-art frameworks. In our
demonstration, we will show that SmartML can outperform
other tools especially at small running time budgets by
reaching better parameter configurations faster. In addi-
tion, SmartML has the advantage that its performance can
be continuously improved over time by running more tasks
which makes SmartML smarter by getting more experience
based on the growing knowledge base.

2 SMARTML ARCHITECTURE
Figure 1 illustrates the framework architecture of SmartML.
In the input definition phase, the user uploads the dataset,
choose the required options for features selection and pre-
processing, specify which features of the dataset should be
included in the modeling process, specify the target column
which represents the classes of labels of the instances in
the dataset and specify the time budget constraint for the
framework for conducting the hyper-parameter tuning pro-
cess. SmartML accepts csv and arff (attribute relation file
format developed with the Weka machine learning software)
file formats.

In the preprocessing phase, SmartML starts by perform-
ing the feature preprocessing operations specified by the
selected features. Table 2 lists the feature preprocessing
operations supported by the SmartML framework. In this
phase, the dataset is randomly split into training and val-
idation partitions where the former is used in algorithm
selection and hyper-parameter tuning while the later is
used for evaluating the selected configurations during pa-
rameter tuning. In addition, a list of 25 meta-features are
extracted from the training split describing the dataset
characteristics. Examples of these features include number
of instances, number of classes, skewness and kurtosis of
numerical features, and symbols of categorical features.

Currently, SmartML supports 15 different classifiers (Ta-
ble 3). In the algorithm selection phase, the meta features
of the input dataset at hand, which is extracted during

2https://bigdata.cs.ut.ee/smartml/index.html

the preprocessing phase, are compared with the meta fea-
tures of the datasets that are stored in the knowledge base
in order to identify the similar datasets, using a nearest
neighbor approach. The dataset similarity detection pro-
cess follows a weighted mechanism between two different
factors. The first factors is the Euclidean distance between
the meta-features of the dataset at hand and meta-features
of all datasets stored in the knowledge base. The second
factor is the magnitude of the best performing algorithms
on the similar dataset. For example, it may be better to
select the top 𝑛 top performing algorithms on a single very
similar dataset than selecting the first outperforming algo-
rithm for 𝑛 similar datasets. We use the retrieved results
of the best performing algorithms on similar dataset(s) to
nominate the candidate algorithms for the dataset at hand.

In the hyper-parameter tuning phase, SmartML attempts
to tune the selected classifiers hyper-parameters for achiev-
ing the best performance. In particular, the knowledge base
contains information about the best parameter configura-
tions for each algorithm on each dataset. The configurations
of the nominated best performing algorithms are used to
initialize the hyper-parameter tuning process for the se-
lected algorithms. The time budget constraint specified by
the end user represents the time used in hyper parameter
tuning of the selected classifiers. In particular, this budget
is divided among all the selected algorithms according to
the number of hyper-parameters to tune in each algorithm
(Table 3). SmartML applies the SMAC technique for hyper-
parameter optimization [7]. In particular, SMAC attempts
to draw the relation between the algorithm performance
and a given set of hyper-parameters by estimating the pre-
dictive mean and variance of their performance along the
trees of the random forest model. The main advantage of us-
ing SMAC is its robustness by having the ability to discard
low performance parameter configurations quickly after the
evaluation on low number of folds of the dataset [7].

Finally, the results obtained from the hyper-parameter
tuning process of the different nominated algorithms are
compared with each other to recommend the best per-
forming algorithm to the end user. In addition, a weighted
ensembling [2] output of the top performing algorithms can
be recommended to the end user based on their choice. In
addition, we have integrated the Interpretable Machine
Learning (iml) package3 in order to explain for the user
the most important features that have been used by the

3https://cran.r-project.org/web/packages/iml/index.html
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center subtract mean from values
scale divide values by standard deviation
range values normalization
zv remove attributes with zero variance
boxcox apply box-cox transform to non-zero positive values
yeojohnson apply Yeo-Johnson transform to all values
pca transform data to the principal components
ica transform data to their independent components
Table 2: Integrated Feature Preprocessing Algorithms

Classification Categorical Numerical Package
Algorithm parameters parameters

SVM 1 4 e1071
NaiveBayes 0 2 klaR
KNN 0 1 FNN
Bagging 0 5 ipred
part 1 2 RWeka
J48 1 2 RWeka
RandomForest 0 3 randomForest
c50 3 2 C50
rpart 0 4 rpart
LDA 1 1 MASS
PLSDA 1 1 caret
LMT 0 1 RWeka
RDA 0 2 klaR
NeuralNet 0 1 nnet
DeepBoost 1 4 deepboost

Table 3: Integrated Classifier Algorithms

selected model for directing its prediction process [6]. The
interactive interface of our system has been designed using
the Shiny R Package4.

4https://shiny.rstudio.com/

Dataset # Att. # Classes # Instances Auto-Weka SmartML
Accuracy Accuracy

abalone 9 2 8192 25.14 27.13
amazon 10000 49 1500 57.56 58.89
cifar10small 3072 10 20000 30.25 37.02
gisette 5000 2 2800 93.71 96.48
madelon 500 2 2600 55.64 73.84
mnist Basic 784 10 62000 89.72 94.91
semeion 256 10 1593 89.32 94.13
yeast 8 10 1484 51.80 66.23
Occupancy 5 2 20560 93.99 95.55
kin8nm 8 2 8192 93.99 96.42

Table 4: Performance Comparison: SmartML VS Auto-Weka

3 DEMO SCENARIO
SmartML is available both as a Web application as well as
RESTful APIs5. In this demonstration6, we will present to
the audience the workflow of the SmartML framework (Fig-
ure 1). In particular, we will show that how our approach
can help non-expert machine learning users to effectively
identify the machine learning algorithms and their associ-
ated hyperparameter settings that can achieve optimal or
near-optimal accuracy for their datasets with little effort.

We start by introducing to the audience the challenges
we tackle, the main goal and the functionalities of our
framework. Then, we take the audience through the au-
tomated algorithm selection and hyper-parameter tuning
process for sample datasets. We start by showing different
features which is provided for the end-user (Figure 2). For
example, the user can upload either a dataset file or a direct
URL for the dataset. In addition, the user can choose either
to perform both algorithm selection and hyper-parameter
5The source code of the SmartML framework is available on https:
//github.com/DataSystemsGroupUT/Auto-Machine-Learning
6A demonstration screencast is available on https://www.youtube.
com/watch?v=m5sbV1P8oqU&feature=youtu.be
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Figure 2: Screenshot: Configuring an experiment for a dataset

Figure 3: Screenshot: Sample experiment output from
SmartML

tuning or only algorithm selection. In the later case, it
is possible to upload only the dataset meta-features file
instead of the whole dataset. The user will be also able
to configure different options such as whether any kind
of feature preprocessing is needed or not, whether model
interpretability is needed or not and specify the time bud-
get for hyper-parameter tuning. Then, we will take the
audience through the different phases of the framework
until returning the final results (Figure 1).

Table 4 shows the performance comparison between
SmartML and Auto-Weka7 using 10 datasets where a time
budget of 10 minutes has been allocated for each dataset in
each framework. In our experiments, we have bootstrapped
the knowledge base of SmartML using 50 datasets from
various sources including OpenMl8, UCI repository9 and
Kaggle10. The results show that, using this relatively very
small knowledge base, the accuracy results of SmartML

7https://www.cs.ubc.ca/labs/beta/Projects/autoweka/
8https://www.openml.org/
9http://archive.ics.uci.edu/ml/index.php
10Kaggle:https://www.kaggle.com/

outperform the results of Auto-Weka for all the datasets.
As a part of our demonstration, we will provide the au-
dience with the live chance to compare the performance
of SmartML with Auto-Weka and other related frameworks
using various datasets.
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ABSTRACT
User-defined functions (UDFs) facilitate the execution of analyt-
ics pipelines inside the database. They provide many advantages
over traditional methods, such as close-to-data execution and
automatic parallelization. However, the standard workflow for
developing and debugging UDFs does not allow developers to use
their regular toolchains and Integrated Development Environ-
ments (IDEs). As a result, writing functional UDFs is challenging.
In this demo, we present the devUDF, a plugin to the PyCharm
IDE that allows developers to develop and debug their MonetD-
B/Python UDFs directly from within the IDE.

1 INTRODUCTION
To perform data analysis, data scientists frequently use script-
ing languages, such as R and Python. These languages have a
huge ecosystem of existing machine-learning and classification
libraries (e.g., TensorFlow [1] or Sci-Kit Learn [6]). Using these
languages in conjunction with a relational database management
system (RDBMS) has many advantages, as the RDBMS can offer
robust storage of data and handle common data wrangling op-
erations. The traditional method of combining a RDBMS with
these scripting languages is to connect to a RDBMS using a client
protocol. The data is then transferred from the database to the
analytical tool. However, this is not efficient when a large amount
of data needs to be retrieved [8].

This issue can be solved by in-database analytics. By perform-
ing the analytics inside the database, the data transfer overhead
is mitigated [7]. The primary way of performing in-database
analytics is through the use of UDFs. To facilitate this, most
RDBMS vendors support UDFs in at least one scripting language
frequently used for analysis [3].

The development workflow for UDFs differs depending on the
DBMS that is used. Certain databases provide their own custom
tools for developing UDFs, such as pgAdmin [9] for Postgres
and ODS [4] for DB2 and Oracle. However, these tools have a
number of limitations. They are not database agnostic, only work
for developing UDFs written in PL/SQL and require developers
to learn how to use complex tools designed for DBAs.

The generic workflow for developing a UDF is to write a func-
tion using a simplistic text editor. The function can then be cre-
ated inside the RDBMS through a SQL command, and used by
calling it within a SQL query. If there are bugs or problems within
the UDF, the function has to be recreated and the SQL query has
to be rerun. This process has to be repeated until the problem is
fixed.

This workflow is problematic when developing complex UDFs,
as advanced IDE features and modern debugging techniques

© 2019 Copyright held by the owner/author(s). Published in Proceedings of the
22nd International Conference on Extending Database Technology (EDBT), March
26-29, 2019, ISBN 978-3-89318-081-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Name Market Share Type
Eclipse 25.2% IDE

Visual Studio 19.5% IDE
Android Studio 9.5% IDE

Vim 7.9% Text Editor
XCode 5.2% IDE

IntelliJ 4.8% IDE
NetBeans 4.0% IDE
Xamarin 3.8% IDE
Komodo 3.4% IDE

Sublime Text 3.3% Text Editor
Visual Studio Code 3.3% Text Editor

PyCharm 2.3% IDE
Table 1: Most Popular Development Environments.

cannot be used. Using these IDE features is not easily doable
because the developer has to manually perform code transforma-
tions to convert the Python code to a SQL command that creates
the UDF. As seen in Table 1 [2], IDEs are heavily preferred for
development over simplistic text editors due to their develop-
ment features. Therefore, we argue that offering support for the
usage of these features in the development workflow of UDFs
will make developing UDFs more attractive, faster and easier for
many developers.

IDEs are also attractive because they facilitate the usage of
sophisticated interactive debugging techniques, such as stepping
through the code line by line and pausing code execution. How-
ever, these techniques cannot be used in conjunction with UDFs
because the RDBMS must be in control of the code flow while
the UDF is being executed. Instead, developers have to resort to
inefficient debugging strategies (e.g., print debugging) to make
their code work [3].

Another issue with the standard UDF workflow is that UDFs
are stored within the database server. As a result, version con-
trol systems (VCSs) such as Git [5] cannot be easily integrated
to keep track of changes to UDFs. Without a VCS, cooperative
development is challenging and the development history is not
stored.

In this demo we showcase devUDF, a plugin for the popular
IDE PyCharm that facilitates developing and debugging Mon-
etDB/Python UDFs [7] directly from within the IDE. Using our
plugin, advanced debugging features can be used while refining
and refactoring UDFs.

2 THE DEVUDF PLUGIN
The devUDF plugin is developed for the PyCharm IDE that fa-
cilitates the usage of advanced IDE features for development
of MonetDB/Python UDFs. It allows developers to create, mod-
ify and test UDFs without leaving their IDE environment. All
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Figure 1: PyCharm Main Menu.

features of the IDE can be used to develop UDFs, including the
sophisticated interactive debugger and VCS support.

Figure 2: Settings.

2.1 Usage
The devUDF plugin can be accessed through the main menu of
the IDE (See Figure 1). In this menu, a submenu labeled "UDF
Development" contains the three main aspects of the plugin.

Initially, devUDF must be configured so it can connect to an
existing database server. This can be done through the settings
window shown in Figure 2. The parameters required are the usual
database client connection parameters (i.e., host, port, database,
user and password).

After the devUDF plugin has been configured to connect to
a running database server, the development process begins by
importing the existing UDFs within the server into the devel-
opment environment. This is done through the "Import UDFs"
window, shown in Figure 3(a). The developer has the option to
select the functions that he wishes to import, or he can choose
to import all functions stored within the database server.

After the UDFs are imported, the code of the UDFs is exported
from the database and imported into the IDE as a set of files in the
current project. The developer can then modify the code of the
UDFs in these files, use version control to keep track of changes
to the UDFs and export the UDFs back to the database server for
execution through the "Export UDFs" window (see Figure 3(b)).

(a) Import (b) Export

Figure 3: Importing and Exporting UDFs from the Data-
base.

The developer can also run any of the imported UDFs with the
IDEs interactive debugger by running the project as they would
run a normal PyCharm project (using the "Debug" command).
Since a UDF is never executed in isolation, but always within
the context of a SQL query, the user must provide a SQL query
which executes the to-be-debugged UDF. This SQL query must
be specified in the Settings menu (see Figure 2).

Running the UDF in the interactive debugger will execute the
function locally on the developers’ machine instead of remotely
inside the database server. As the UDF requires data from the
database (as its input parameters), the data must be transferred
from the database server to the developers machine. For this data
transfer, the developer can configure another set of options. As
the data can be large, we offer a method of compressing the data
during the transfer, leading to faster transfer times. In addition,
the developer can choose to execute the UDF using a uniform
random sample of the input data instead of the full set of input
data. This will alleviate the data transfer overhead.

Since the data contained inside the database server might be
sensitive, and it must be exported for debugging purposes, we
also offer an optional encryption feature that can be used to safely
transfer the sensitive data.

2.2 Implementation
The devUDF plugin works by connecting to the database using
a JDBC connection. It then extracts the source code of the UDF
together with its input parameters from the database by querying
the databases’ meta tables. An example of how MonetDB stores
the source code of a Python function is shown in Listing 1. In
order to be able to execute the UDF locally a set of code trans-
formations has to be applied to this code, as the database only
contains the function body. We need to create the header of the
function using the function name and its parameters. To then
run the created function, we need to obtain the input data from

559



the database. In the generated code, we load the input data from
a binary blob using the pickle library and pass it as a parameter
to the function. The final transformed code is shown in Listing 2.
When the user wants to export the UDF back to the database,
these transformations are reversed and only the function body is
committed.

When the user wants to debug the UDF locally using the
interactive debugger, the input data of the function has to be
extracted from the database. To obtain the input data, we take the
user-submitted SQL query containing the call to the UDF, and we
replace the call to the UDF with a predefined extract function that
transfers the input data back to the client instead of executing the
UDF inside the server. We then run the transformed SQL query
inside the database server to obtain the input data, store it on the
developers machine and run the code of the transformed UDF.

The extract function used changes depending on the data trans-
fer options selected by the user. If encryption is requested, the
data is encrypted by the extract function before being transferred
using the password of the database user as a key. The client then
reverses the encryption to obtain the actual input data. The com-
pression option works in a similar fashion. If the sample option
is enabled, a uniform random sample of a size specified by the
user is taken before extracting the data from the database server.

+----------------+-----------------------------------+
| name | func |
+================+===================================+
| train_rnforest | { |
: : import pickle :
: : from sklearn.ensemble :
: : import RandomForestClassifier :
: : :
: : clf = RandomForestClassifier(n) :
: : clf.fit(data, classes) :
: : return {'clf': pickle.dumps(clf), :

: : 'estimators':n } :

: : }; :
+----------------+-----------------------------------+

Listing 1: MonetDB UDF Example.

2.3 Nested UDFs
Loopback queries inside UDFs are supported byMonetDB/Python.
They allow users to query the database directly from within the
UDF. The results of the query are converted to the host language
of the UDFs. In MonetDB/Python UDFs, loopback queries can be
can issued through the _conn object that is passed to every UDF.
They are useful because they can bypass cardinality restrictions
of the relational querying model.

The loopback queries can also contain UDFs themselves. An
example of a nested UDF is shown in Listing 3. This UDF calls the
function depicted in Listing 2 with a set of different parameters
in order to find the best classifier and its parameters. In order
to provide support for extracting and debugging these nested
UDFs, we must execute the same transformation steps on the
nested UDFs as we did for the main UDF being executed. With an
additional transformation rule on the _conn object to the correct
function call. After being transformed, we can execute the nested
UDFs locally by transferring their input data in conjunction with
the main UDF data, Finally they can be executed from within the
IDE.

1 import pickle
2

3 def train_rnforest(data, classes, n_estimators):
4 import pickle
5 from sklearn.ensemble
6 import RandomForestClassifier
7 clf = RandomForestClassifier(n_estimators)
8 clf.fit(data, classes)
9 dict = {'classifier': pickle.dumps(clf),
10 'estimators':n_estimators }
11 return dict;
12

13 input_parameters =
14 pickle.load(open('./input.bin','rb'))
15

16 train_rnforest(input_parameters['data'],
17 input_parameters['classes'],
18 input_parameters['n_estimators'])

Listing 2: Exported UDF Code Example.

1 CREATE FUNCTION find_best_classifier(esttest INT)

2 RETURNS DOUBLE LANGUAGE PYTHON {

3 import pickle
4 (tdata, tlabels) = _conn.execute("""SELECT data,
5 labels FROM testingset""");
6 best_classifier = None
7 best_classifier_answers = -1
8 best_estimator = -1
9 for estimator in esttest:
10 res = _conn.execute
11 ("""
12 SELECT *
13 FROM train_rnforest(
14 (SELECT data, labels
15 FROM trainingset), %d);
16 """ % estimator)
17 classifier = pickle.loads(res['clf'])
18 predictions = classifier.predict(tdata)
19 correct_pred = predictions == tlabels
20 correct_ans = numpy.sum(correct_predictions)
21 if correct_ans > best_classifier_answers:
22 best_classifier = classifier
23 best_classifier_answers = correct_ans
24 best_estimator = estimator

25 return {'clf': best_classifier,

26 'n_estimators': best_estimator}

27 };

Listing 3: Nested UDF Example.

2.4 Extensions
Extending to Other Databases. Our solution is implemented
for MonetDB. However, our plugin can be easily extended to
work with other RDBMSes, as the same implementation strategy
can be used. However, the processing model of the respective
database needs to be taken into consideration. MonetDB uses
the operator-at-a-time processing model, which means the UDFs
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are only called once with the entire columns as input. Row-store
databases (e.g., Postgres or MySQL) use the tuple-at-a-time pro-
cessing model, under which the UDFs are called many times with
only individual rows as input. As this changes the way UDFs are
called, the execution of the UDF must be adapted to these dif-
fering processing models. The tuple-at-a-time execution method
can be simulated by issuing a loop over the input tuples.

Extending to Other UDF Languages. Our solution is im-
plemented for Python/PyCharm. However the plugin is fully
developed in Java and compatible with all the other JetBrains
IDEs. In order to extend our plugin for other UDF languages,
the code transformations for the new language must be added
into the plugin. Additional care must be taken when dealing
with compiled languages. Our model assumes that the RDBMS
stores the source code of the UDF. If the database stores only a
compiled blob of the UDF, the code transformations cannot be
applied and an alternate solution must be used. In addition, when
dealing with compiled languages some additional work must be
performed on compiling and linking the code prior to execution.

2.5 Demo Outline
In the general outline for our interactive demo, we will introduce
the typical setup for UDF Development. The general presentation
for all the scenarios is as follows:

(1) We introduce the typical setup for UDF Development: De-
velopers write code in their text editor of choice, insert the
UDF into the database through a SQL command, repeating
this process if the UDF has any bugs.

(2) We show common pitfalls in developing a UDF. Foremost,
we focus on issues related to debugging.

(3) We show how bugs can be located using simplistic debug-
ging strategies like print debugging.

(4) Finally, we repeat the same process but using devUDF
to facilitate the development workflow. Showcasing how
easy, fast and secure it is to use in the UDF development
workflow.

In our demonstration we will ingest several CSV files, located
in one directory, with one column of integers, our final goal is to
create a UDF that calculates the mean deviation of said column,
as a reference we compare the results with a correct version of
the function. As common pitfalls, we will showcase the following
scenarios:

Scenario A. In this scenario we present a UDF that calculates
the median of a column with a bug, depicted in Listing 4. In
line 9, the regular difference is calculated instead of the absolute
difference which produces a semantic error, that is syntactically
correct but logically incorrect.

ScenarioB.Now,we use a correct version of themean_deviation
function. However, we introduce a bug in our data loader. Cre-
ating a data dependent error depicted in listing 5. In line 5 we
introduce the bug that skips one of the CSV files in a given direc-
tory because it considers that range is right side inclusive.

3 SUMMARY
When it comes to assessing the potential impact of devUDF,
we point out two current trends: First, the use of UDFs to per-
form In-Database Analytics is gaining popularity with support
of many languages in major DBMSs. Especially in data science
environments when the data is already stored inside a DBMS.
Second, IDEs like Eclipse, IntelliJ and PyCharm have been gain-
ing popularity over more simplistic text editors. Looking at both

1 CREATE FUNCTION mean_deviation(column INTEGER)

2 RETURNS DOUBLE LANGUAGE PYTHON {

3 mean = 0
4 for i in range (0, len(column)):
5 mean += column[i]
6 mean = mean / len(column)
7 distance = 0
8 for i in range (0, len(column)):
9 distance += column[i] - mean
10 deviation = distance/len(column)
11 return deviation;

12 };

Listing 4: Wrong mean deviation.

1 CREATE FUNCTION loadNumbers(path STRING)
2 RETURNS TABLE(i INTEGER)

3 LANGUAGE PYTHON {

4 files = os.listdir(path)
5 result = []
6 for i in range (0,len(files)-1):
7 file = open(files[i],"r")
8 for line in file:
9 result.append(int(line))
10 return result
11 };

Listing 5: Wrong data loader.

trends, we see a growing market for tools like devUDF, especially
considering the void it fills in UDF development workflow.
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ABSTRACT
This demonstration presents amachine learning languageMLearn
that allows declarative programming of machine learning tasks
similarly to SQL. Our demonstrated machine learning language
is independent of the underlying platform and can be translated
into SQL and Python as target platforms. As modern hardware
allows database systems to perform more computational intense
tasks than just retrieving data, we introduce the ML2SQL com-
piler to translate machine learning tasks into stored procedures
intended to run inside database servers running PostgreSQL or
HyPer. We therefore extend both database systems by a gradient
descent optimiser and tensor algebra.

In our evaluation section, we illustrate the claim of running
machine learning tasks independently of the target platform by
comparing the run-time of three in MLearn specified tasks on
two different database systems as well as in Python. We infer
potentials for database systems on optimising tensor data types,
whereas database systems show competitive performance when
performing gradient descent.

1 INTRODUCTION
Database systems provide with SQL a declarative language that
allows data manipulation and data retrieving without caring
about optimisation details. With increasing hardware perfor-
mance, database systems will not fully exploit the servers’ hard-
ware potentials as long as they are used for data retrieval only.
To shift computation to the data stored in database systems, algo-
rithms can be specified in SQL—as it has been Turing complete
since providing recursive tables—or as user-defined functions.
The latter allow injecting code as stored procedures to be exe-
cuted inside the database system and make an additional data
manipulation layer on top obsolete. Even though the run-time
would decrease, user-defined functions are not fully established
as they form a mixture of declarative and procedural language
and are inconvenient to express for data scientists.

When dealing with data and minimisation problems, dedi-
cated tools as TensorFlow [1] or Pytorch form the status quo
for performing machine learning tasks with tensors and gradi-
ent descent. Another approach of formulating machine learning
tasks is using a declarative language as MLog [7], that com-
piles to code using TensorFlow, but, so far, it lacks support for
use together with database systems. For computations inside of
database systems, the support of linear algebra together with
matrices or tensors is essential. Different studies focus on the

© 2019 Copyright held by the owner/author(s). Published in Proceedings of the
22nd International Conference on Extending Database Technology (EDBT), March
26-29, 2019, ISBN 978-3-89318-081-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Figure 1: The compilation process: the MLearn language
first gets preprocessed twice for handling includes, then
the language gets tokenised and parsed. For each target
platform, a generator allows to translate the abstract syn-
tax tree into the target language.

integration of linear algebra [8] and matrices inside of database
systems [5]. Going one step further, so called array database
systems replace relations by arrays as the native way of storing
attributes. To support machine learning, TensorDB [6] aims at
providing tensor calculus on top of array database systems. One
study even provide an own declarative language (BUDS) [2] on
top of a prototyped database system that supports matrix data
types. Comparable domain specific languages are Weld1 for data
driven workloads and IBM SystemML2 for creating flexible algo-
rithms, but both cannot be used inside of database systems. The
intermediate language Ferry [3] allows to translate from various
code (i.e. Ruby or Haskell) into SQL but is not designed for use
with array datatypes.

However, while linear algebra in database systems have been
integrated and declarative language concepts have been proposed,
there is no successful study on bringing a declarative language,
tensor calculus and gradient descent in database systems together.
We therefore develop a declarative machine learning language
aimed at optimising models for supervised machine learning
and data analysis. Our MLearn language allows specifying tasks
independently of the target language, changing the underlying
engine and makes it easy to compare run-times and results of
different underlying frameworks. This demonstration presents
the ML2SQL compiler in particular, which compiles code written
in MLearn to SQL (for PostgreSQL or HyPer [4]) or to Python
using the frameworks NumPy and TensorFlow (see Fig. 1).

This demonstration paper is structured as follows: First, we
introduce the MLearn language specifications and the details of
the corresponding compiler. We evaluate the run-time of the
generated code on the target platforms using the Chicaco taxi
1https://github.com/weld-project/weld
2https://systemml.apache.org
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dataset as input data and linear regression as optimisation model
(optimised by gradient descent or as closed form solution). At the
end, we introduce the demonstration concept including our web
interface for online testing and conclude by improvements that
might increase database systems’ computation performance.

2 MLEARN AND THE ML2SQL COMPILER
The MLearn language is designed to define machine learning
tasks in a declarative manner to be compiled to SQL or Python.
We begin by introducing the language specification needed for
enjoying the demonstration as a visitor. We precede by listing
the prerequisites of the target platforms in order to run the in-
troduced tasks. Finally, we will give examples on how to use the
MLearn language during the demonstration later on.

2.1 Language Specification
All operations work on integers, floating point numbers, Boolean
values or strings as basic types, which can be composed to tensors.
On these types,MLearn provides the following features (s. Lst. 5):

• Reading CSV files as the fundamental operation to store
the data in variables or relations of the database system.

• Mathematical expressions as provided by NumPy or
SQL (as part of the projection operator).

• Tensors form the main part in our computations. Beside
mathematical operations we support accessing, slicing,
concatenation and transposition.

• Functions allow to structure the code and to reduce code
duplication. Also external functions imported from other
files or of a target language are allowed.

• Control blocks. In addition to our declarative statements,
we allow conditional expressions and loops.

• Distributions are used for data sampling when initializ-
ing tensors with random values.

• Preprocessor statements as known from C can be used
to include files and to allow the abstraction of different
functions to different files.

• k-fold cross validation as a predefined building block
splits up a data set into training and test sets to find the
best—so-called—hyper parameters.

• Gradient descent as a separate building block optimises
the weights for a given loss function on input data.

2.2 Target Language
We designed our machine learning language to compile to Python
code with the libraries that data scientists would use. To work
with SQL we picked out the disk-based database system Post-
greSQL and its main-memory counterpart, HyPer. We assume for
both systems an underlying script language, PL/pgSQL in Post-
greSQL and HyPerScript in HyPer, that combines declarative SQL
statements with procedural control blocks. The tensor operations
in Python are performed using NumPy library calls. HyPer has al-
ready implemented all basic tensor operations including addition,
(scalar) multiplication, power (including inverse for matrices on
negative exponents), transposition, initializing an identity matrix
and filling a matrix by a predefined value. As those operations do
not exist in PostgreSQL, we have implemented these operations
as C library function calls, also supporting parallelism. Further-
more, we make use of predefined array operations as slicing and
concatenation to divide the input dataset into training and testing

one. Also, we wrap a PostgreSQL library extension around our al-
ready presented gradient descent [9] library to allow in-database
gradient descent in PostgreSQL.

2.3 Example
Fig. 2 shows the exemplary usage of the MLearn language where
we specify linear regression as closed form solution:

®w = (X ′TX ′)−1X ′T ®y.

The example code (see Lst. 1) splits a tensor (A) into features (X,
the first three attributes) and labels (y). Then a tensor out of the
value 1 as bias is prepended in front of the features. Afterwards,
the optimal weights (w) are computed out of tensor algebra. The
compiled code to Python can be seen in Lst. 2, the one for Post-
greSQL in Lst. 4 and the one for HyPer in Lst. 3. We can see
that the code written in our declarative language is much more
compressed.

3 EVALUATION
For evaluation (s. Fig. 3), we specify linear regression as closed
form or using gradient descent in our machine learning lan-
guage and let the tasks run on the following target platforms:
PostgreSQL version 10.5, Python 2.7.15 with NumPy 1.13.3 and
TensorFlow 1.3.0 and the current HyPer system. We used an
Ubuntu 18.04.01 LTS server with two sockets and twenty cores
of Intel Xeon E5-2660 v2 processors in total (supporting hyper-
threading). The server has 256 GiB of main memory and uses
1 TiB of SSD as background storage. As test data served 85 mio.
tuples of the Chicaco taxi rides dataset3.

We tested the run-time of loading data from CSV (s. Fig. 3a),
the run-time of linear regression in closed form (s. Fig. 3b) and by
using gradient descent (s. Fig. 3c). For gradient descent, we used
a learning rate of 0.0000005 and varied the number of iterations
from 1 to 104, but we used a constant input size (the whole
dataset). The time measurements consider only the run-time
needed for the specific operations, the time for data loading and
array creation is measured separately.

The results show that data loading took in all three systems
about the same time, no system seems to dominate one another.
For the matrix operations used for closed form linear regression,
Python using NumPy still dominates the other systems (even
PostgreSQL does not support two dimensional array creation for
more than 107 tuples). Hence, the integration of matrix calcu-
lus in database systems still has to be improved. Whereas using
gradient descent, both database systems show competitive perfor-
mance. Even some performance benefits originate from the used
gradient descent optimiser, the results underline the possibility
of analyzing data where it is stored.

In summary, the evaluation underlines the claim that the
ML2SQL compiler makes it easy to compare different systems and
that database systems show competitive performance on certain
tasks.

4 DEMONSTRATION
For our demonstration scenario, we have created an interactive
web interface (see Fig. 4) that allows formulating tasks inMLearn,
compiling to the choosable target language and executing the
tasks. Switching between the different target platforms (Python,
HyPer, PostgreSQL) makes it possible to compare the results and
the run-times of each target language. Behind the web interface,
3https://data.cityofchicago.org/Transportation/Taxi-Trips/wrvz-psew/data
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A = [[1.1 ,0.98 ,87.3 ,3] ,[0.1 ,3.15 ,42.05 ,3.3] ,
[100.5 ,26.8 ,10.1 ,225.1] ,
[1097.5 ,23000 ,10.1 ,24850.1]]

X = A[: , 0:2]
y = A[: , 3]
bias[1,len(X,0)] : 1
X = (bias::X.T).T
Xt = X.T
w = (Xt*X)^(-1) * Xt * y
print '%' , w

Listing 1: The specification inMLearn.

import numpy as np
def main():

A = np.array([np.array ([1.1 ,0.98 ,87.3 ,3]),np.array ([0.1 ,3.15 ,42.05 ,3.3]) ,np.
array ([100.5 ,26.8 ,10.1 ,225.1]) ,np.array ([1097.5 ,23000 ,10.1 ,24850.1]) ])

X = DATA[ :,0:2 +1]
y = DATA[ :,3:3 +1]
bias = np.full( ( 1,np.size(X ,0 )), 1)
X = (np.append(bias ,X.T, axis =0)).T
Xt = X.T
w = np.dot( np.dot( np.linalg.matrix_power (( np.dot(Xt, X)), (-1)), Xt), y)
print( '{}'.format( w))

if __name__ == "__main__": main()

Listing 2: The translated code for Python using NumPy.

CREATE OR REPLACE FUNCTION ML_main () AS $$
var A = array[array [1.1:: float ,0.98:: float ,87.3:: float ,3],array[

0.1:: float ,3.15:: float ,42.05:: float ,3.3:: float],array
[100.5:: float ,26.8:: float ,10.1:: float ,225.1:: float],array
[1097.5:: float ,23000 ,10.1:: float ,24850.1:: float ]];

var X = array_resetlower(array_slice(A,1, array_length(A,1) ,(0+1)
::int ,(2+1) ::int));

var y = array_resetlower(array_slice(A,1, array_length(A,1) ,(3+1)
::int ,(3+1) ::int));

var bias = array_fill (1:: float , 1,array_length(X,0+1));
X = array_transpose (( array_cat(bias ,array_transpose(X))));
var Xt = array_transpose(X);
var w = power((Xt*X), (-1)::int)*Xt*y; debug_print( '%',w);

$$ LANGUAGE 'hyperscript ' strict;
select ML_main (); DROP FUNCTION ML_main ();

Listing 3: As HyPerScript code for HyPer.

DO $$ declare
A float [][]; X float [][]; Xt float [][];
bias float [][]; w float [][]; y float [][];

begin
A := array[array [1.1:: float ,0.98:: float ,87.3:: float ,3],array

[0.1:: float ,3.15:: float ,42.05:: float ,3.3:: float],array
[100.5:: float ,26.8:: float ,10.1:: float ,225.1:: float],array
[1097.5:: float ,23000 ,10.1:: float ,24850.1:: float ]]

X := A[:][0+1:2+1]; y := A[:][3+1:3+1];
bias := array_fill (1:: float , ARRAY[1, array_length(X,0+1)]);
X := matrix_transpose (( array_cat(bias ,matrix_transpose(X))));
Xt := matrix_transpose(X);
w := matrix_power ((Xt * X), (-1)::int ) * Xt * y;
RAISE NOTICE '%',w;

END$$;

Listing 4: For PostgreSQL as PL/pgSQL procedure.

Figure 2: Closed form linear regression specified in MLearn and translated to Python and SQL: Lst. 1 shows the initial
specification, a matrix of fixed values is created, then the optimal weights are computed by solving an equation system;
Lst. 2 shows the translated code to Python using the NumPy matrix library calls. The other listings show the stored
procedures in HyPerScript for HyPer (Lst. 3) and in PL/pgSQL for PostgreSQL (Lst. 4).

expression: INJECT | 'print ' mathexplist | 'if' '(' mathexp ')' '{' explist '}' ['else' '{' explist '}'] | ('continue ' | 'break ')
| 'while ' '(' mathexp ')' '{' explist '}' | 'for' VARNAME ('from' mathexp 'to' mathexp | 'in' interval) '{' explist '}' | functions
| 'create ' 'tensor ' VARNAME 'from' VARNAME '(' varlist ')'
| 'save' 'tensor ' VARNAME 'to' (VARNAME|STRING) [':' STRING] '(' varlist ')'
| VARNAME '[' accessor (',' accessor)* ']' ('=' | ':') mathexp | VARNAME (',' VARNAME)* '=' VARNAME '(' [mathexp (',' mathexp)*] ')'
| VARNAME '[' accessor (',' accessor)* ']' '~' VARNAME '(' [mathexp (',' mathexp)*] ')' | 'import ' VARNAME
| VARNAME '=' (mathexp | 'distribution ' '(' VARNAME ',' VARNAME ')') | VARNAME '~' VARNAME '(' [mathexp (',' mathexp)*] ')'
| returnType* 'function ' VARNAME '(' [VARNAME (',' VARNAME)*] ')' '{' explist '}' | 'return ' mathexp (',' mathexp)*
| ('readcsv '|'writecsv ') '{' (('name:' VARNAME) | ('file:' STRING) | ('columns:' varlist) | ('replace␣empty␣entries:' mathexp)

|('delimiter:' STRING) | ('replace:' '{' (STRING ':' STRING)+ '}') | ('delete␣empty␣entries '))+ '}'
| 'gradientdescent ' '{' (('function:' STRING) | ('data:' varlist) | ('optimize:' [nameshape (',' nameshape)*])

| ('learningrate:' mathexp) | ('maxsteps:' mathexp) | ('batchsize:' mathexp) | ('threshold:' mathexp))+ '}'
| 'plot''{'(('xData:'mathexp) | ('yData:'mathexp) | ('xLabel:'STRING) | ('yLabel:'STRING) | ('type:'STRING) | ('filename:'STRING))+'}'
| 'crossvalidate ' '{' (('minfun ' ':' VARNAME '=' fun) | ('kernel ' ':' VARNAME ':' VARNAME ':' mathexp)

| ('data' ':' VARNAME (',' VARNAME)*) | ('n' ':' mathexp) | ('lossfun ' ':' fun)
| ('folds ' ':' mathexp) | ('test' '{' (VARNAME '=' interval)+ '}'))+ '}' ;

Listing 5: Grammar of the MLearn language: Predefined building blocks for gradient descent, cross validation, CSV file
handling as well as procedural control blocks, function calls and the declaration of variables are allowed as expressions.

we run a PostgreSQL and an HyPer database server fed with an
excerpt of the Chicago taxi dataset. The demonstration visitors
are invited to try out the introduced types of tensor algebra as
well as minimising arbitrary loss functions as, for example, linear
or logistic regression.

5 CONCLUSION
This demonstration presented the first declarative machine learn-
ing language MLearn, which allows describing machine learning
tasks independently of the target engine and whose compiler
allows running the code in the core of database systems. This
paper first introduced comparable approaches before it presented
the language specifications for performing linear regression and
gradient descent using any possible loss function. Then, we eval-
uated the run-time of the tasks on the different target platforms
PostgreSQL, HyPer and Python using NumPy and TensorFlow.
The results showed, that it was indeed feasible to run the tasks

as stored procedures inside of database systems showing compa-
rable run-time especially during matrix creation.

Overall we have shown the potential of a declarative machine
learning language of expressing tasks compactly and being in-
dependent of the underlying engine. As future work—to boost
the capabilities of database systems for array data—remains the
development of efficient array data types and the standardised
integration of optimisation methods such as gradient descent
inside of database systems.
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Figure 3: Run-time of (a) data loading from CSV, (b) solving linear regression using equation systems or (c) by gradient
descent: For data loading and closed form linear regression, we varied the input size; for gradient descent we varied the
number of iterations. PostgreSQL did not support the needed array operations for more than 107 tuples.

Figure 4: Web interface for an interactive exploration of theMLearn language: Above left, the text editor allows to specify
tasks, which are translated into the selected target language (above right). The code will be executed in the terminal.
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ABSTRACT
Realizing the full potential of Linked OpenData sharing and reuse
is currently limited by the difficulty users have when trying to
understand the data modeled within an RDF graph, in order to
determine whether or not it may be useful for their need.

We demonstrate our RDFQuotient tool, which builds com-
pact summaries of heterogeneous RDF graphs for the purpose
of first-sight visualizations. An RDFQuotient summary provides
an overview of the complete structure of an RDF graph, while
being typically many orders of magnitude smaller, thus can be
easily grasped by new users. Our summarization algorithms are
time linear in the size of the input graph and incremental: they
incrementally update a summary upon addition of new data.

For the demo, we plan to show the visualizations of our sum-
maries obtained from well-known synthetic and real data sets.
Further, attendees will be able to add data to the summarized
RDF graphs and visually witness the incurred changes.

1 INTRODUCTION
Semantic Web graphs are nowadays being published and shared
at a massive scale, e.g., Linked Open Data (LOD) Cloud (https:
//lod-cloud.net) lists 1.200 graphs, while the LOD Atlas portal
(http://lodatlas.lri.fr) references more than 20.000 graphs. Some
of these graphs are domain-oriented, that is, they reflect a certain
application domain, e.g., education, medical etc. On the contrary,
a few RDF graphs are encyclopedic, e.g., DBpedia (https://wiki.
dbpedia.org) and YAGO [7], covering many different topics; often,
these are unions of many domain-specific ones, e.g., DBpedia is
available for download as a set of domain-oriented “datasets”. An
overwhelming majority of the RDF graphs found in portals such
as LOD Cloud or LODAtlas, https://data.gov.uk, https://data.gov
etc. are domain-oriented.

Currently, a large obstacle toward exploiting this wealth of
data is the difficulty for human users to make sense of a newly
encountered RDF graph. The motivation for our work is to help
users learn at first sight, without any prior knowledge about the
graph and without having to set any parameter, the (ideally com-
plete) structure of a domain-specific RDF graph. Given that RDF
graphs can be very large, while the human information absorp-
tion capacity is relatively limited, RDF graph summaries have
been used as intermediaries: from a given graph G a summary is
extracted, then the summary is shown to the users in order to
convey information about the structure and/or content of G.

We demonstrate RDFQuotient, a tool for constructing a com-
plete summary of the structure of an RDF graph which does not
require any user input. The particular advantage of RDFQuotient
is its tolerance to heterogeneity, which enables it to build compact,
easy-to-visualize summaries even from very large graphs, while
preserving many of the important structural features of the graph.

© 2019 Copyright held by the owner/author(s). Published in Proceedings of the
22nd International Conference on Extending Database Technology (EDBT), March
26-29, 2019, ISBN 978-3-89318-081-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

RDFQuotient summaries can be built efficiently, in linear time in
the size of the graph. Further, they can be incrementally updated:
upon addition of a triple t to a graph G , the summary of G ∪ {t}
can be efficiently computed out of the current summary ofG and
t , without re-traversing the G triples.
Motivating example Figure 1 illustrates a possible visualization
of an RDFQuotient summary of a BSBM [1] benchmark graph
of 108 triples. This visualization reflects the complete structure
of the graph, using only 5 nodes and 11 edges, comparable to
a simple small Entity-Relationship diagram. This summary reads
as follows: (i) Non-leaf graph nodes belong to one of five disjoint
classes, each represented by a summary node (boxes labeledN 1 to
N 5 in Figure 1). The number of graph nodes in each class appears
in parenthesis after the label Ni of their representative; (ii) Graph
nodes from a class may have types. Each such type appears under
the summary node label, together with its number of occurrences
among graph nodes of that class, e.g., 5919 nodes represented by
N 3 are of type Producer, while 3050 are of type Vendor; (iii) Graph
nodes from a class may have outgoing properties whose values
are leaf nodes in the graph; the set of all such properties appears
in the corresponding summary node, one property per line. For
each property, e.g. country for N3, the summary node specifies
how many graph nodes represented by this summary node have
it (8969 in this case), and how many distinct leaf nodes are target
of these edges (10 in this case); (iv) Graph nodes from a class may
have outgoing properties whose values are non-leaf nodes in the
graph. For each graph edge n1

a
−→ n2, where n1,n2 are non-leaf

graph nodes and a is the property (edge label), an a-labeled edge
in the summary goes from the representative of n1 to that of n2.
Next to a, this summary edge is also labeled with the number of
graph edges to which it corresponds; (v) Properties from a small,
fixed vocabulary are considered metadata (as opposed to data)
and therefore they are not used to group nodes in classes, e.g.,
rdf-schema#-comment and rdf-schema#-label in Figure 1. More
such visualizations can be found online1; below, we also work
out an example leading from an RDF graph to its summary and
then such a visualization.

We propose to demonstrate the incremental construction of
four related (but different) summaries, i.e., show how summaries
quickly adjust when triples are added to the summarized RDF
graphs. Our summaries can be built from graphs where none,
some or all nodes have one or more types; this is important
because in many synthetic and real-life RDF graphs we studied,
a large share of nodes is untyped [3]. Two of our summaries give
preeminence to types (when available) to build the summary;
nodes are first grouped by types and then by the relationships
to other nodes. By contrast, the two other (including the one in
Figure 1) give preeminence to node relationships; nodes are first
grouped according to their relationships with others, then, each
group is typed with the types of the graph nodes it represents
within the summary (this is how each type has been attached to
a summary node in our figure). In the total absence of types, each

1https://team.inria.fr/cedar/projects/rdfquotient/
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Figure 1: Visualization built from an RDFQuotient summary.

Figure 2: Sample RDF graph.
type-first summary coincides with a type-ignorant one (thus, our
four summaries collapse into two).

Below, we define our summaries (Section 2) and summariza-
tion algorithms (Section 3). Then, we present the demonstration
scenario based on summary visualizations (Section 5). Finally, we
compare them with related work and we conclude (Section 6).

2 RDFQUOTIENT SUMMARIES
Let U be a set of URIs, L be a set of literals and B be a set of
blank nodes as per the RDF specification. An RDF graph G is a
set of triples of the form (s,p,o) where s ∈ U ∪ B ∪ L, p ∈ U and
o ∈ U ∪ B ∪ L. The special URI type, part of the RDF standard,
is used to attach types to nodes. An RDF graph may contain
ontology (schema) triples; while there are interesting interactions
between summarization and ontologies [3], below we only focus
on summarizing the non-schema triples, which make up the vast
majority of all RDF graphs we encountered. Thus, we consider G
consists exclusively of type triples and/or data triples (all those
whose property is not type; we call these data properties).

An RDF equivalence relation denoted ≡ is a binary relation
over the nodes of an RDF graph that is reflexive, symmetric and
transitive. Given an equivalence relation≡, an RDF graph quotient
is an RDF graph having (i) one node for each equivalence class
of nodes; (ii) for each edge n1

a
−→ n2, a summary edge n≡1

a
−→

n≡2 , where n
≡
i , i ∈ {1, 2}, is the summary node corresponding

to the equivalence class of ni , also called representative of ni .
The literature comprises many quotient graph summaries (see
Section 6), which differ by their equivalence relations.

The equivalence relations we use are based on the concept
of property cliques, which encodes a transitive relation of edge
co-occurrence on graph nodes. Given an RDF graph G, two data
properties p1,p2 are in the same source clique iff: (i) there exists
a G node n which is the source of p1 and p2 (i.e., (n,p1,x) ∈ G and
(n,p2,y) ∈ G for some x and y), or (ii) there exists a data property
p3 such that p3 is in the same source clique as p1, and p3 is in the
same source clique as p2. Symetrically, p1 and p2 are in the same
target clique if there exists a G node which is the target of p1
and p2, or a data property p3 which is in the same target clique
as p1 and p2. In Figure 2, the properties advises and teaches are in
the same source clique due to p4. The same holds for advises and
wrote due to p1; consequently, advises and wrote are also in the
same source clique. Further, the graduate student p2 teaches a
course and takes another, thus teaches, advises,wrote and takes are
all part of the same source clique. In this example, p1, p2, p3, p4,
p5 have the source clique SC1 = {advises, takes, teaches,wrote}, c1,
c2, c3 have the source clique SC2 = {coursedescr} and a1, a2 have
the empty source clique SC3 = ∅. Similarly, the target cliques are,
respectively; TC1 = {advises} for p2,p5, TC2 = {teaches, takes}
for c1, c2, c3, TC3 = {coursedescr} for d1,d2, TC4 = {wrote} for
a1,a2 and TC5 = ∅ for p1,p3,p4.

It is easy to see that the set of non-empty source (or target)
cliques is a partition over the data properties of an RDF graph G.
Further, if a G node n is source of some data properties, they are
all in the same source clique; similarly, all the properties of which
n is a target are in the same target clique. Based on these cliques,
for any nodes n1,n2 of G, we define:

• n1 is weakly equivalent to n2, denoted n1 ≡W n2, iff
n1,n2 have the same source clique or the same target
clique;
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Figure 3: Weak (left) and strong (right) graph summary.

• n1 is strongly equivalent to n2, denoted n1 ≡S n2, iff
n1,n2 have the same source clique and the same target
clique.

Further, we decide that in any RDF equivalence relation, any
class node, i.e., a URI c appearing in a triple of the form (n, type, c),
is (i) only equivalent to itself and (ii) represented by itself in any
RDFQuotient summary. This ensures that RDF types (classes),
which (when present) denote an important information that data
producers added to help understand their RDF graphs, are pre-
served in the summary.

The equivalence relations ≡W and ≡S lead to theweak, respec-
tively strong summaries, defined as quotients of G through ≡W,
denoted G/≡W

, respectively, through ≡S, denoted G/≡S
. Figure 3

illustrates these on the sample graph in Figure 2. For brevity,
in Figure 3 and from now on, we use a, w , te , ta, cd to denote
respectively the properties advises, writes, teaches, takes, and
coursedescr.

In G/≡W
, N1 represents all the people (p1 to p5), N2 represents

the courses, N3 the articles and N4 the course descriptions. Note
the self-loop from N1 to itself; it denotes that some nodes repre-
sented byN1 advise some nodes represented byN1. This summary
has only 4 nodes and 5 edges. It conveys the essential informa-
tion that some nodes advise, write, also they teach and take
something that has course descriptions. The Professor and Grad-
Student types of nodes p1, respectively p2, are attached to their
common representative N1.

G/≡S
differs from G/≡W

by representing the person nodes in
two separate groups: those represented by N1 advise those rep-
resented by N2. This is because the target clique of p1, p3 and p4
is empty, while the target clique of p2 and p5 is {advises}. This
example illustrates the fact (visible from the summary defini-
tions) that G/≡S

summarizes at finer granularity than G/≡W
(or,

equivalently, ≡S entails ≡W, but the opposite does not hold).
Clique-based structural summarization leads to compact

summaries even in graphswithheterogeneous structure. This
is because of the transitive aspect of the property cliques. For
example, p1 and p3 have the same source clique, even though
their property sets are disjoint: {a,w} for p1, {te} for p3; they are
in the same source clique e.g. due to p4, which has both a and te .
In contrast, previously studied quotient summaries, in particular
those aimed for indexing and query optimization, would not ac-
cept p1 and p3 as equivalent; in general, such summaries lead to
more equivalence classes (summary nodes), thus also summary
edges, making summaries hard to understand visually.
Type-first summarizationTheweak and strong summary group
nodes according to their incoming/outgoing data triples and then
just “carry” their types to the summary. A different choice is to
group nodes first by their set of types (if any)2, and use the data
triples to group the nodes without types. We define:

• n1 is typed-weak equivalent to n2, noted n1 ≡TW n2, iff
(i) n1,n2 have the same non-empty set of types or (ii) both
n1,n2 are untyped, and n1 ≡W n2;

2We use set of types and not just “type” on purpose, because an RDF node may
have more than one type. If we classified a node according to each of its types, as in
e.g. [2], a node with many types would have more than one representative, which
is incompatible with quotient summarization.

Figure 4: Typed weak graph summary.

• n1 is typed-strong equivalent to n2, noted n1 ≡TS n2, iff
(i) n1,n2 have the same non-empty set of types or (ii) both
n1,n2 are untyped, and n1 ≡S n2.

These relations lead to the typed weak (G/≡TW
), respectively,

to the typed strong (G/≡TS
) RDFQuotient summaries. Figure 4

illustrates typed weak summarization on our sample graph; on
this simple example, G/≡TS

is identical (in general, it may differ).

3 BUILDING RDFQUOTIENT SUMMARIES
We have devised algorithms which build G/≡W

, G/≡S
, G/≡TW

and
G/≡TS

through a single traversal of an RDF graph G, in two fla-
vors: (i) global: traverse G, compute all the cliques, then traverse
it again and represent nodes according to their cliques and/or
types; (ii) incremental: in a single traversal of G, gradually build
each source and target clique based on the triples traversed up to
that point and simultaneously represent G nodes in a summary
that is continuously updated; after traversing the last triple of
G, each incremental summarization algorithm ends up with the
respective summary of the full G. The algorithms are detailed
and their correctness is proved in [3]; below, we illustrate their
interesting points on minimal examples.

p1

p2 a1

a w

p4

c2

te ⇒ a w te

p1

p2 a1

a w

p4

c2 p5

te a ⇒ a w te

First, let us see on an example how ≡W can grow during in-
cremental weak summarization. Suppose the graph G in Figure 2
is traversed and summarized starting with: (p1 advises p2), then
(p1 wrote a1), then (p4 teaches c2) (see the figure above). When
we summarize this third triple, we do not know yet that p1 is
equivalent to p4, because no common source of teaches and
advises (e.g., p3 or p4) has been seen so far. Thus, p4 is so far not
equivalent to any other node, and represented separately from
p1. Now, assume the fourth triple traversed is (p4 advises p5):
at this point, we know that advises , wrote and teaches are in
the same source clique, thus p1 ≡W p4, and their representatives
(highlighted in yellow) must be fused in the summary. More
generally, it can be shown that ≡W only grows as more triples
are visited (i.e., is monotonic), in other words: if in a subset G′
of G’s triples, two nodes n1,n2 are weakly equivalent, then this
holds in any G′′ with G′ ⊆ G′′ ⊆ G.

Incremental strong summarization is even more complex be-
cause unlike ≡W, ≡S may grow and shrink during summa-
rization (i.e., is non-monotonic). For instance, assume the sum-
marization of the graph in Figure 2 starts with (p1 wrote a1),
(p2 wrote a2), (p2 takes c2) (see the figure below). After these, we
know p1 ≡S p2; their source clique is {wrote, takes} and their tar-
get clique is ∅. Assume the next triple traversed is (p3 advises p2):
at this point,p1 is not ≡S top2 any more, becausep2’s target clique
is now {advises} instead of ∅. Thus, p2 splits from p1, that is,
it needs to be represented by a new summary node (shown in
yellow below), distinct from the representative of p1.
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p1

a1

w

p2

a2 c2

w ta ⇒ w ta

p1

a1

w

p2

a2 c2

p3

w ta

a

⇒ w w ta

a

Further, note that the representative of p1 and p2 (at left above)
had one takes edge (highlighted in red) which was solely due to
p2’s outgoing takes edge. By definition of a quotient summary,
that edge moves from the old to the new representative of p2 (the
yellow node). If, above at left, p1 had also had an outgoing edge
labeled takes , at right, both nodes in the top row would have had
an outgoing takes edge. It can be shown that splits only occur in
such cases, i.e., a node whose target clique becomes non-empty
(respectively whose source clique becomes non-empty) and the
node was previously represented together with other nodes; if it
was represented alone, the respective clique of its representative
is just updated.

Figure 5: Summarization time (s) vs. graph sizes |G|.

The amortized complexity of our summarization algorithms
is linear in the number of triples of G. Figure 5 illustrate this
empirically on a variety of benchmark (LUBM and BSBM) and
real-life (DBLP, Springer conference etc.) datasets ranging from a
few hundred thousands to more than 100 million triples; note that
both axes are in log-scale. The implementation is made in Java 1.8;
RDF graphs are stored in Postgres 9.6 and traversed from there.
Increm-W is the fastest overall; it traverses G only once, thus it is
faster than global-W which performs one extra pass to compute
the cliques. S, TW and TS, in this order, are more expensive, and
finally incremental S, which pays an extra performance overhead
for growing and shrinking the equivalence relation.

4 FROM SUMMARIES TO VIZUALIZATIONS
The core of our work is on defining and efficiently building sum-
maries; here we present one possible way of rendering them
through a vizualization like the one illustrated in Figure 1.

On our four summaries we apply leaf and type inlining, as
follows. We remove type edges; instead, each type attached to a
node in the summary is shown in the box corresponding to the
node, after the node ID. Similarly, for each edge n

a
−→m wherem

is a leaf, we include a as an “attribute” of n, and do not render
m (we say it has been “inlined” within n). A sizable part of an
RDF graph’s nodes are leaves; as we will show, inlining them
into their parent nodes greatly simplifies the visualization.

Figure 6: Leaf and type inlining on the sample strong sum-
mary from Figure 3 (right).

Figure 6 illustrates inlining for the S summary of our sam-
ple graph. This summary is extremely compact, yet rich with
information; professors, students, and courses are visible at a
glance. Articles have been inlined within their authors as they
were leaves in G/≡TS

(Figure 3). This simplification can also be
seen as a small loss of information: Figure 6 does not immedi-
ately suggest that Professors may have written articles together
with GradStudents. However, (i) only leaf nodes are folded and
(ii) after a first glance, users may pursue exploration by other
means (e.g., queries to check for such joint articles).

5 DEMONSTRATION SCENARIO
Demonstration attendees will be able to pick an RDF graph from
a list of well-known synthetic and real data sets, visualize their
summaries, and compare with other close competitor summaries,
such as those mentioned in Section 6; some of these vizualiza-
tions can be seen online (https://team.inria.fr/cedar/projects/
rdfquotient/). Attendees will also be able to add new triples to
an RDF graph, to figure out through our summary visualization
how changes in the original data are rapidly reflected into the
summary thanks to incremental summarization. To make it en-
tertaining, we plan to use RDF data on the conference attendees,
from DBLP, other public sources, and made-up triples to get
interesting summary changes.

6 RELATEDWORK & CONCLUSION
The literature comprises many RDF summarization techniques,
more than a hundred of which we covered in a recent co-authored
survey [4]. RDFQuotient summarizes the structure of the data
triples, which form a vast majority of RDF graphs; complemen-
tary proposals summarize the ontology, the values, find the most
frequent property groups etc. Closest to us are quotient sum-
maries which group nodes by the set of their outgoing data prop-
erties (“characteristic sets” [6]) and possibly also by by the set of
their incoming data properties (forward and backward bisimula-
tion [5]). Our clique-based summarization differs from these by
the transitive aspect of the cliques which leads to heterogeneity-
tolerant summarization. Indeed, as we plan to show during our
demonstrations, more strict summaries such as [5, 6] support
query optimization and indexing well, but have too many nodes
and edges, even after inlining, for a comfortable vizualization.
In exchange, our summaries are not generally appropriate for
indexing, as they do not give e.g. access to “all the resources
having properties a and b”: the graph nodes whose source clique
is {a,b} may have one or another or both.
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ABSTRACT
Most of the trajectory datasets only record the spatio-temporal
position of the moving object, thus lacking semantics and this
is due to the fact that this information mainly depends on the
domain expert labeling, a time-consuming and complex process.
This paper is a contribution in facilitating and supporting the
manual annotation of trajectory data thanks to a visual-analytics-
based platform named VISTA. VISTA is designed to assist the
user in the trajectory annotation process in a multi-role user en-
vironment. A session manager creates a tagging session selecting
the trajectory data and the semantic contextual information. The
VISTA platform also supports the creation of several features
that will assist the tagging users in identifying the trajectory
segments that will be annotated. A distinctive feature of VISTA
is the visual analytics functionalities that support the users in
exploring and processing the trajectory data, the associated fea-
tures and the semantic information for a proper comprehension
of how to properly label trajectories.

1 INTRODUCTION
The increasing access to positioning devices technologies such
as smart-phones, GPS-enabled cameras and sensors, resulted in
vast volumes of mobility data collected, stored and available for
analysis. Such mobility data are typically modeled as streams of
spatio-temporal points, called trajectories. There is a growing
research interest in analysis methods for semantically enriched
trajectories [7, 8]. However, only a few datasets containing se-
mantically labeled trajectory data are available. This is primarily
because the semantic labels tend to indicate a specific behavior
whose identification depends on the humans’ interpretation: in
fact, the understanding of the moving object behavior depends
on multiple factors and, in most of the cases, it cannot be auto-
matically inferred. The process of manual annotation may be,
therefore, complex and time-consuming, even by domain experts
who might be uncertain in the correct data interpretation or they
might disagree. Indeed, the labeling process is complex due to a
number of factors: (1) the annotator user needs to have an imme-
diate view and understanding, not only of the spatio-temporal
trajectory details and the numerical features deriving from them
but also of the contextual semantic information; (2) different an-
notators might have different roles and interpretations on how
to label trajectories (e.g., "is the ship fishing or not?"); (3) not

© 2019 Copyright held by the owner/author(s). Published in Proceedings of the
22nd International Conference on Extending Database Technology (EDBT), March
26-29, 2019, ISBN 978-3-89318-081-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

only the whole trajectory might express a single behavior, very
often the parts of a trajectory have to be individually labeled
since different behavior may co-exist during the same journey
(e.g., a vessel is first fishing then traveling to harbor). How to cor-
rectly identify the switch points from one behavior to the other
is another critical issue to be solved. We believe that these issues
might be alleviated by a proper trajectory annotation platform
that effectively assists the user in coping with all these aspects
during the semantic labeling process.

A promising approach is to build a platform supporting the
annotation by exploiting concepts from Visual Analytics. The
idea of Visual Analytics is to create systems that enable analytical
reasoning about complex problems with the goal of making the
data processing and the inferred information clear and evident
for the analysis [5]. This is accomplished by integrating data
processing methods with visualizations designed to assist users
in making efficient decisions. We can observe that the human
mind generally conveys information more effectively through
visualization than only relying on textual and numerical data.
Combining visualization with user interactions enables a system
to explore the data from different perspectives, thus linking and
combining distinct information pieces to derive new insights
from the data.

Pioneering works on semantic trajectories annotations [6, 10]
used a predefined set of rules established by domain experts to
automatically assign the semantic labels to the whole trajectories
or to segments of trajectories. Although these methods work
well for many scenarios, they are not suitable in case there are
no clear criteria for identifying the object behavior and/or the
segment to be labeled. In this case, we need the human interven-
tion to establish the most appropriate label for each trajectory
(or trajectory segment) based on both numerical and semantic
features. Recently, some works proposed methods to simplify
the manual annotation task like in [9] where a web interface has
been proposed to upload personal trajectories and annotate each
segment with the activity performed by the user. However, in
this case, all trajectory segments need to be annotated directly by
the traveling user, and this becomes unfeasible when the number
of trajectory segments is very high and/or the annotator does
not represent the entity which performed the movement like
in the case of vehicles, vessels or animals. To cope with this
problem, other methods propose machine learning approaches
(e.g. semi-supervised or active learning) to automatically classify
trajectories into semantic labels by starting from a small set of
manually annotated traces [3, 4]. All these approaches must rely
on an accurately labeled dataset to reach a good classification
accuracy. Therefore, there is a strong need for supporting the
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manual annotation process which can lead to good quality anno-
tated datasets and therefore reliable analysis findings. To the best
of our knowledge, no approach combines visual analytics with
trajectory processing functions to assist the user in the process
of manually tagging trajectory data.

The challenge of a visual analytics trajectory annotation sys-
tem is to provide efficient and effective support for the user inter-
action, helping the user in focussing on each specific annotation
task, highlighting the features values for each trajectory point or
segment and properly visually combine contextual knowledge.
Specifically, the annotators need to use their domain knowledge
for thinking, creating associations, and generating insights from
the trajectory data. On the other hand, the system also needs
capabilities for processing and aggregating trajectory data. De-
ciding where to set the segmentation point in a trajectory is very
challenging because it will directly affect the values of the seg-
ments’ features and therefore the overall labeling of the trajectory
dataset. We propose VISTA as an interactive visual user interface
integrating spatio-temporal processing capabilities to play an
essential role in semantic trajectory annotation. With VISTA, we
provide full support to the manual trajectory annotation by tailor-
ing a visual analytics platform that guides the user in this process.
We strongly believe that VISTA can significantly contribute to
the scientific community in supporting the domain experts in
the annotation process and produce more reliable semantically
labeled trajectory datasets available for analysis.

2 SYSTEM ARCHITECTURE
The architecture of VISTA has been designed to provide solutions
to the three issues introduced in the previous section, namely
the immediate understanding, the different users’ role and the
support for the segment switch points identification.

A distinctive feature of VISTA is the possibility to handle a
multi-user annotation process where the users might have dif-
ferent roles. VISTA supports both the creation of an annotation
session (e.g., upload trajectories, contextual information, feature
creation, etc) by the session manager and the annotation process
itself by the annotator (e.g., user analyses a trajectory, provide par-
titioning positions, compare the segments, annotates a trajectory,
etc).

Figure 1: VISTA architecture and workflow.

The architecture and workflow overview is illustrated in Fig-
ure 1. As we can see, it is organized into three main components:
(i) the data collection to handle raw trajectory and contextual
geographical information like Point of Interests (POI) and Re-
gion Of Interests (ROI), (ii) the Data Processing that deal with
trajectory and annotation data, and (iii) the Data Visualization to

interact with the users in the processes of both creating a tagging
session, detect the switch points and annotating trajectories. The
workflow of VISTA to perform trajectory annotation includes
six steps depicted as the numbers of the arrows of Figure 1. In
the first step, the session manager is requested to set the stage
for the annotation process, namely upload raw trajectories and
the POIs and ROIs that are relevant to the studied domain. In the
following step (Step 2), the data processing engine automatically
creates numerical features related to each trajectory point, called
point features like the distance traveled, the estimated speed, the
bearing, the bearing rate, and the acceleration. The engine also
calculates the shortest distances to a POIs, and detects when
the trajectory points intersect with ROIs. The shapely library1
was used to calculate the shortest distance and intersections. At
this point, each trajectory uploaded by the user is stored as a
document in a MongoDB2 collection. In step 3, VISTA displays
the trajectories associated to these new features to the session
manager whose tasks are: (1) the data exploration for the selec-
tion of the features that are relevant for the tagging session, (2)
the creation of the annotation classes (i.e. labels) that must be
used in a tagging session, and (3) the invitation to the annotator
users to participate in a tagging session. With a tagging session
created, it is now possible for the invited annotators to start
the tagging process of trajectory data. In step 4, the annotators
explore the trajectory data and create the trajectory segments
that must reflect the annotation classes available for tagging.
Several visualization functionalities are available for the process
of tagging and are detailed in Section 3. After going through all
trajectories and tagging their segments with the labels (Step 5), a
dataset with annotated trajectories will be available for all the
users to download (Step 6).

As we discussed above, a crucial step in annotating trajec-
tory data is to determine the parts of the trajectory where the
moving object’s behavior changes. Detecting such switches in
the object movement behavior is challenging for an annotating
user since there is a need to explore a possibly high number
of features to precisely determine where and when the object
behavior changed. This is done through a process usually called
segmentation. Segmenting a trajectory means to find the parti-
tioning points that are used to create trajectory segments, or
sub-trajectories, characterized by the fact that each segment has
uniform behavior respect to some criteria [2]. Once these seg-
ments have been identified, additional numerical features like
average, median, standard deviations, and percentiles may be
created to better characterize the behavior of the moving object
in that segment (the so-called segment features).

3 DEMONSTRATION
The objective of our demonstration is to involve the user in the
VISTA tagging experience by providing a trajectory dataset to
be annotated together with semantic contextual information.
We have selected two datasets: (1) 10 trajectories of vessels that
should be annotated as "fishing" and "not "fishing" activity; (2) 20
trajectories of people that should be annotated with transporta-
tion means as "walking", "bike", "train", "bus", and "car". During
the demo the authors will guide attendees through the whole
process where the user will experience both roles, the session
manager and the annotator, whose tasks and relative interfaces
are detailed in the next sections.

1https://pypi.org/project/Shapely/
2https://www.mongodb.com/, version 3.6.2
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3.1 Session Manager
The role of this user is setting the stage for the actual annotation
process. This is done through four screens. In the first screen,
the user is requested to create and give a name to a new tagging
session or select a session that was previously created. In the
second screen, the user is requested to upload raw trajectories in
delimited separated file format (e.g., CSV, TSV, etc) and map the
file fields to the columns representing the raw trajectory data:
trajectory_id, time, latitude, longitude. In the third screen, the
user is asked to upload POIs and/or ROIs that are relevant to the
domain. Then, VISTA executes a process in the background to
create the following point features for each raw trajectory point:
time difference from the previous point, distance traveled from
the previous point, speed, acceleration, bearing, jerk, bearing rate,
and rate of bearing rate. The relative computation formulas and
details can be found in [1]. The platform also will create other
two point features using POIs and ROIs: (1) for every POIs layer,
the platform will calculate the shortest distance to a POI on the
particular layer; (2) for ROIs layers, the platform will verify if
a trajectory point intersects a ROI in the specific layer. Finally,
in the fourth screen, the user will create the labels that must
be used by annotators and invite annotators in the trajectory
tagging session by providing their emails. This sequence of ac-
tions represents steps 1, 2 and 3 of Figure 1. After this step, the
annotators will receive a notification with the invitation to enter
the tagging session.

3.2 Annotator
When a user receives an invitation for a tagging session, he/she
can start to tag trajectories. The process of annotating trajec-
tories is iterative and interactive, where a single trajectory is
presented to the user and further explored in each iteration with
the system. We recall that the two-fold objective of a tagging
session is (1) to identify the segments of the trajectory with a
uniform behavior, or, in other words, identify the change points
and (2) actually tag the segment with the appropriate label. In
VISTA, the annotator has access a dashboard providing tools to
understand the behavior of the moving object, depicted in Figure
2. We observe that the main screen is divided into two interac-
tive panels: (i) a map on the left and (ii) summary statistics on
the right. The map panel visualization needs to be effective in
showing the actual movement of the trajectory with point and
trajectory features. For this reason, we implemented two visual-
ization solutions to support the annotator in understanding the
movement data: first, the actual moving object movement can be
played, dynamically showing how the moving object performed
its movement in a particular region. Second, the line colors are
displayed in saturation grades of red, reflecting the value of the
point feature selected on the right side of the screen; a low value
is colored with a light intensity of red, and higher values are col-
ored with a more intense red. There is an automatic interaction
between the two panels: the user can select a segment and/or
point features in the right panel and the relative parts in the map
on the left are highlighted. Conversely, the annotator can select a
trajectory point in the map, and the corresponding segment and
point feature are highlighted in the right panel. On the bottom of
the map, the red color legend is presented to the annotator user
to have an immediate perception of what is happening between
the points sequence. Inside the map and in the top left, VISTA
provides some typical Geographical Information System (GIS)
visualization options, such as zoom-in and zoom-out, display or

hide POIs and ROIs, and change the colors of the annotation
classes (e.g., fishing or not-fishing).

In more detail, the right panel provides the following options
and statistics: (i) On the top, it displays a summary computed
from the trajectory data with its total number of points, total dis-
tance travelled in meters and the average sampling rate between
the trajectory points; (ii) at the bottom, the user may choose to
visualize the data as a line chart that shows the values of the point
features following the temporal order or a scatter plot where the
user can try to find correlations between two point features.

When a trajectory is shown on the screen, the annotator user
is requested to provide the partitioning positions to split the tra-
jectory into the segments representing uniform behavior to be
assigned to the class labels. This is the most challenging function-
ality to develop since the correct segmentation is fundamental
for a good quality annotation process. However, identifying the
switch points is particularly difficult since many different aspects
have to be considered at the same time. It is, therefore, challeng-
ing to support the user in this "multi-dimensional view" where
the most crucial aspects have to be considered jointly. For this
reason, we have created a drag and drop tool on the map where
the user can add a new partitioning point to the screen, assign to
a class label and pin exactly the switch point where to split the
trajectory. By adding a new partitioning position, all the statistics
regarding the classes of the trajectory have to be automatically
recomputed since new labeled segments are provided. This is
captured by the two panels described above. First, on the map
panel, the colors of the trajectory segments change according to
the class provided. Second, the colors of both the scatter plots
and the line chart change to reflect the new information provided
by the user. We also provide statistical measures regarding the
trajectory segments and their classes. Trajectories are sent to
user in a sequential way, one per interaction, which the user’s
objective is to segment it using the drag and drop pins provided
in the left side of the panel. When a trajectory is completely
annotated, the user can press the Next button on the bottom of
the screen to receive a new trajectory to be annotated.

3.3 Summarizing annotations from users
When all the users conclude the annotation process, a summariz-
ing screen (Figure 3) is created with the objective of exploring
how the different users tagged the data. In VISTA, the users can
confront their tagging with other annotators by exploring how
they annotated their dataset and how the results of their tagging
session are similar or not to the other users. The tagging session
results can be compared for both point and segment features.
Figure 3 shows the main screen with two panels: (1) on the left,
the user is able to analyze statistics (e.g. minimum, maximum,
average, standard deviation, and percentiles) of all point features
available on the platform; (2) on the right, the user may want
to analyze statistics regarding the segment features. For both
charts, the average behavior per user and class are plotted with
the objective of understanding if the users most likely agree or
disagrees regarding some feature.

4 CONCLUSIONS AND FUTUREWORKS
We have proposed VISTA, an interactive tool based on visual
analytics principles, supporting the users in semantically anno-
tate trajectory data. A distinctive feature of VISTA is the sup-
port for the identification of trajectory segments and the assign-
ment to the relative semantic label. We intend to expand this
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Figure 2: Elements of the annotator user dashboard with the vessels trajectories dataset.

Figure 3: Summary results with the users’ annotations.

platform into two directions. First, we want to create a mod-
ule that automatically suggests how to segment the trajectory
by learning from the previous interactions with the platform.
Second, we intend to improve the results comparing how the
labels have been assigned by the different users, highlighting
when users agree or disagrees in identifying a specific behavior
of a moving object. The tool is available for testing at the URL
https://bigdata.cs.dal.ca/resources.
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ABSTRACT
Points of Interest (POIs) are indispensable to many modern ap-

plications, services, and products. From navigation applications,

to social networks, tourism, or logistics, we use POIs to search,

communicate, decide, and plan our actions. In this demonstration,

we showcase SLIPO, a system prototype that addresses the limita-

tions, gaps and challenges in integrating, enriching, and sharing

POI data. Leveraging the Linked Data paradigm to effectively

extract the most out of open, crowdsourced or proprietary real-

world data sources, SLIPO tackles their inherent spatial, temporal,

or thematic ambiguities in POI data. Hiding all Linked Data com-

plexities in the background, SLIPO orchestrates state-of-the-art

software customized for POI data integration, enabling stake-

holders to increase the value of their data and relieving them

from labor-intensive, manual, error-prone, and costly updates.

1 INTRODUCTION
Points of Interest (POIs) refer to physical locations of some partic-

ular interest or utility, such as restaurants, shops, hotels, sport

venues, etc. They are useful in our everyday lives (e.g., naviga-

tion, social networks, tourism) as well as in various commercial

domains (such as logistics, advertising, or geomarketing). A POI

is minimally characterized by its name, a category, and a location;
however, POI profiles may often be quite complex, containing

composite, multi-faceted and multi-modal information. This com-

plexity may concern extra thematic attributes (address, contact
details, opening hours, etc.) or their relationship to other entities

(e.g., a shop within a mall).

Integrating POI data from multiple sources to create quality-

assured, enriched, updated datasets is challenging. The advent of

open data, crowdsourcing, and social media has provided new data

sources of even greater volume, heterogeneity, diversity, veracity,

and timeliness. Any consistent approach towards POI data inte-
gration also needs to rely on robust, flexible and semantically-rich

modelling of POI profiles and handling of POI identifiers, espe-

cially when dealing with cross-sector, cross-border, and cross-

lingual content. The greater the size, timeliness, richness, and
accuracy of POI data, the better the end product’s value.

Motivated by the highly fragmented landscape on POI data

integration, curation and update of missing, out-of-date, or inac-

curate information, we propose a pragmatic, yet highly effective

approach. In the context of the SLIPO project
1
, while maintaining

interoperability with de facto POI standards, we opt to apply de

jure Linked Data standards (RDF2, OWL
3
, GeoSPARQL

4
) for the

inner workings of data integration, also offering capabilities to

1
Acronym for Scalable Linking and Integration of big POI data, http://slipo.eu/

2
https://www.w3.org/RDF/

3
https://www.w3.org/OWL/

4
https://www.opengeospatial.org/standards/geosparql
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harness open POI data sources (e.g., OpenStreetMap). Linked

Data technologies are ideal for handling the inherent geospatial,

thematic, and semantic ambiguities of POIs. To this goal, we have

built an open-source prototype system with a complete suite of

software tools and services to orchestrate iterative POI integra-
tion workflows over multiple POI datasets, across all stages of the

POI data lifecycle (transformation, linking, fusion, enrichment).

Stakeholders should not adapt their current processes to collect,

update, or roll-out POIs across services and products, since SLIPO

hides all Linked Data complexities, and allows them to focus on

their task: increase the value of their data.

The paper is structured as follows. In Section 2 we discuss the

challenges in POI data integration. Section 3 overviews the data

integration lifecycle as applied in SLIPO. Section 4 outlines the

current status of our prototype. Finally, Section 5 showcases how

a typical POI integration scenario can be handled in SLIPO.

2 ISSUES IN POI DATA INTEGRATION
POI data are by nature semantically diverse and spatiotemporally
evolving, representing different entities depending on their ge-

ographical, temporal, and thematic context. Due to their use in

various domains and contexts, POI-related information is typi-

cally found in diverse, heterogeneous sources. Assembling such

pieces of information together is seriously hindered by the lack

of common POI identifiers and data sharing formats. In addition,

stakeholders also have to cope with volatile data in a POI profile,

e.g., its facilities, opening hours, prices, events, etc.

Since integrating POI data with current approaches remains

labor-intensive and does not scale, most stakeholders restrict

their focus on domain-specific or small-sized datasets. But at

a larger scale, all this complex process raises several cases of

ambiguity that may severely hinder data integration of POIs. Ad-

dresses, coordinates, and place names are equally used through-

out applications as pseudo-identifiers; but practice shows that

they fail to effectively disambiguate POIs. Next, we outline these

challenging issues in POI data integration.

i) Geospatial ambiguity:

• Same POI, differing coordinates. Locations of the same POI

among different datasets almost never match exactly due to

varying data collection procedures (e.g., field work, map digiti-

zation, GPS readings, crowdsourced markers).

• Same POI, different shapes. Although POIs are usually abstracted
as point locations, they usually have a shape with a spatial ex-

tent (e.g., a building). But such detailed geometries are only an

approximation, and their accuracy may vary significantly.

• Different POIs, same location. Multiple POIs may be co-located

within a larger structure (e.g., multi-storey building) or a facil-

ity (e.g., shops in a mall). If abstracted as points, those distinct
entities end up superimposed at the same location.

• POI within another POI. If POIs are represented by detailed

shapes (e.g., polygons), they may exhibit topological (e.g., con-

tainment) relations. Sometimes, it is not clear whether a certain

shape is a separate entity or merely a part of the larger one.
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ii) Temporal ambiguity:

– Same POI, new location. Location of a POI may change over

time, e.g., a shop has moved to another (nearby?) place.

– Defunct POI. A POI may still be displayed on a map, a city

guide, a navigation device, etc., but in the meantime may have

stopped its operation or completely ceased to exist.

– Same POI, change of type. Often, the type of a POI or the oper-
ations, services and facilities it offers may change over time,

e.g., a café turning to a restaurant or bar.

iii) Semantic ambiguity:

� Same POI, different names. POIs involving buildings, locali-

ties, etc. are often referred to by multiple names, in different

contexts or time periods (e.g., “Acropolis/Parthenon”, “Saint

Petersburg/ Petrograd/ Leningrad”). The most typical case con-

cerns multi-lingual names across datasets, possibly in different

alphabets (e.g., “Acropolis” transcribed in Arabic, Cyrillic, or

Chinese). Other textual characteristics can raise more concerns,

especially addresses (e.g., renamed or renumbered streets).

� Different POIs, same name. It is relatively easy to disambiguate

multiple locations or POIs with the same namewhen the spatial

context is quite different (e.g., hotels with the same name in

different cities). Instead, it can be quite challenging to infer

what is the actual entity in the same spatial context (e.g., “Hyde

Park” may refer to the park, to a nearby café, or to a hotel).

� Same POI, different types. Besides names, there is much hetero-

geneity in the use of classification schemes, category names and

tags to semantically annotate and classify POIs. Each source

typically employs its own vocabulary of categories and a hi-

erarchy to classify POIs. Sometimes, user-defined tags may

be assigned to POIs to describe them either instead of or in

addition to predefined classification schemes.

All this makes it especially challenging and cumbersome to in-

tegrate and harmonize POI data from different sources. In SLIPO,

our approach places particular emphasis to resolving ambiguity,

as well as in coping with differing POI models, non-common

identifiers, complex geometries, diverse attribute schemata, etc.,

by employing Linked Data technologies as explained next.

3 THE POI DATA INTEGRATION LIFECYCLE
In this Section, we provide an overview of the POI data inte-

gration lifecycle, as implemented in SLIPO. The underlying idea

of our proposed system is to address the POI data integration

challenges in the Linked Data domain, which is ideally suited to

handle the inherent geospatial, thematic, and semantic ambigui-

ties of POIs. Hence, POI data assets must first be transformed into

RDF, so that POI profiles can be interlinked, fused, and enriched

in successive steps. This is achieved through a virtuous cycle

implementing iterative workflows (Figure 1) that progressively

increase the size and/or the quality of the original POI data.. Next,

we outline the processes and software tools involved in each step.

Transformation. In order to be handled in the Linked Data

domain, POI assets from heterogeneous data sources must be

transformed into RDF triples conforming to a common OWL
ontology5 for POI profiles. To provide a scalable and efficient

transformation facility (shown as a thick red arrow in Figure 1),

we extended our open-source software TripleGeo
6
to enable

5
Available at https://github.com/SLIPO-EU/poi-data-model

6
Software available at https://github.com/SLIPO-EU/TripleGeo

Figure 1: The POI data integration lifecycle.

transformation of POI datasets from a variety of de facto geospa-

tial formats into RDF triples with minimal overhead. Although

TripleGeo is a general-purpose, spatially-aware ETL tool [3], we

have included specific support for transforming POI data. This

was possible through adaptable, configurable, and reusable map-

pings from existing attribute schemata into our POI ontology, and

also supporting classification hierarchies in assigning categories

to POIs. As TripleGeo inherently handles all geometry types

and established coordinate reference systems, it can cope with

the heterogeneity of POI formats and representations. Once data

integration is complete, SLIPO introduces reverse transformation
of the resulting integrated RDF data back to conventional POI

formats (at the bottom in Figure 1), so that they can be exploited

by existing products, systems, and services.

All transformed RDF data are fed to a step-wise workflow

abstracting a virtuous circle. This iterative cycle first increases
the size (i.e., coverage, completeness, and richness) of POI data,

and then refines them to increase quality of POIs by fusing in-

termediate results. For example, an expert user can repeatedly

introduce additional data sources, apply different rules, etc. This

iterative workflow involves the following stages:

Interlinking. This step is applied across the transformed RDF

datasets coming from different sources in order to discover pair-

wise relations among real-world POI entities. We make use of

Limes [5], a state-of-the-art interlinking software
7
that exploits

the semantic structure of RDF data, textual similarities, proximity

of geospatial representations, etc. In SLIPO, this actually concerns

POI deduplication, as we wish to identify same real-world POIs

based on user-specified metrics and thresholds. The output is

owl:sameAs links between matching POI entities, which tackle

the lack of common identifiers between POI entities across data

sources, thus enabling their management at later stages of the

integration process.

7
https://github.com/dice-group/LIMES
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Enrichment. To produce enriched metadata and contextualize

POI profiles based on information retrieved from external, third-

party RDF data sources, we make use of Deer [4]. This software
8

identifies external (structured or unstructured) information re-

lated to POIs and creates extra properties. For instance, a POI

profile can be enriched with opening hours, price ranges, event

timelines, etc., available in SPARQL endpoints such as DBpedia
9
.

It also discovers semantic interrelations between POI entities and

other resources (e.g. areas, events, time), such as partOf relations
(e.g., a shop is part of a shopping mall) or occursAt relations

(e.g., events taking place at a certain venue).

Fusion. This stage consolidates linked POIs and their proper-

ties. From two linked POI entities it produces a unified representa-

tion, which is more complete, concise and accurate than the indi-

vidual initial entities. In supporting scalable and quality-assured

fusion of large POI datasets, we employ our fusion framework

Fagi [1]. In SLIPO, we adapted and extended Fagi
10

with POI-

specific similarity functions, learning mechanisms, and fusion

actions. Such rules guide how POI properties will be fused (e.g.,

choose one, merge both) according to specific criteria (e.g. more

complex, more timely) specified by stakeholders.

Value-Added Analytics. Having these integrated and enriched

POI datasets it is then possible to provide added value services

that involve clustering and association discovery among POIs. In

SLIPO, we make use of Sansa [2], a software suite
11

that offers

several large-scale aggregation strategies and predictive analytics,

precious in geomarketing, tourism, logistics, etc.

As already mentioned, throughout this lifecycle we want to

ensure that each phase produces correct and accurate results,

taking into account dataset-specific and use-case-specific quality

indicators and rules, including manual validation and authoring.

Several indicators for such quality assurance can be used, most

of them already adopted by industrial vendors that manage and

exploit POIs: size, timeliness, coverage, accuracy, etc.

Last, but not least, we have implemented a service that al-

lows users to track the integration and evolution of POI informa-

tion across time and between different versions. This includes

mechanisms for recording provenance by tracking the full his-

tory of changes per POI up to the current values of its various

attributes. A graphical interface assists in visualizing and navigat-

ing through all available information, enabling users to intuitively

explore where and how a POI actually changed across the various

stages in the workflow.

4 THE SLIPO PROTOTYPE SYSTEM
We have been implementing a comprehensive, open-source soft-

ware prototype that integrates tools for transforming, linking,

fusing, enriching, and analyzing linked POI data aiming to sup-

port stakeholders in all stages of the POI data value chain. The

SLIPO system
12

consists of the following main modules:

• SLIPO Toolkit: This is the collection of individual software

components (Section 3) for transformation (TripleGeo), inter-

linking (Limes), fusion (Fagi), enrichment (Deer) and analytics

(Sansa). Any tool can either be installed locally or invoked as

part of the SLIPO workbench and APIs functionality.

8
https://github.com/dice-group/DEER

9
https://wiki.dbpedia.org/

10
https://github.com/SLIPO-EU/FAGI

11
https://github.com/SANSA-Stack

12
Current beta version is publicly available at https://github.com/SLIPO-EU

• SLIPO Workbench: This web application allows users to orches-

trate the Toolkit components and thus implement POI data

integration workflows (like the one depicted in Figure 2) in

a coherent, user-friendly, and flexible manner. It provides ad-

vanced capabilities for (a) uploading, searching and managing

POI datasets in several formats, (b) designing, persisting and

managing data integration workflows for POI datasets based

on the features provided by the SLIPO Toolkit, (c) scheduling

and monitoring the execution of data integration workflows,

and (d) visualizing the results of such executions.

• SLIPO APIs: This is a collection of RESTful HTTP programming

interfaces for invoking SLIPO Toolkit component functionality

and integrating it into third-party systems. APIs only support

the invocation of simple atomic functions (e.g., POI transfor-

mation). For composite operations, the Workbench web ap-

plication must be used. Both SLIPO Workbench and APIs are

exposed through the same web application server.

The SLIPO system is deployed within several virtual machines

on top of the Synnefo cloud stack
13
. In the back-end, our proto-

type implements a workflow engine that executes data integra-

tion workflows and a scheduler for initializing workflow execu-

tions. The workflow engine and the SLIPO Toolkit components

are deployed over a cloud infrastructure. Workbench and APIs

exchange messages with the scheduler to execute workflows. A

task is executed either in-process locally on the scheduler host, or

remotely using Docker containers. Each component is deployed

as a Docker Image and is responsible for providing a scalable

instantiation for the requested operation (e.g., TripleGeo for

transformation). A Toolkit component capable of partitioning its

input and merging its output can also scale to multiple Docker

containers. The scheduler only controls the total amount of re-

sources allocated to a container, enforcing CPU/memory quotas

derived from component-specific requirements and input size.

Thanks to its modular, service-oriented architecture, SLIPO

offers stakeholders the option to directly use the provided func-

tionalities following a Software-as-a-Service paradigm. Alterna-

tively, they are able to select specific tools to customize, extend

and incorporate in their own POI data management workflows

using APIs according to their specific needs and requirements.

5 DEMONSTRATION
In this demonstration, we will showcase a data integration work-

flow using the SLIPO Workbench. This workflow accepts input

POI datasets in a given geographical area (e.g., an island, a city,

or a country). Data sources generally differ in schema, content,

and quality; some concern crowdsourced information extracted

from an open database (like OpenStreetMap
14

or GeoNames
15
),

but others may be proprietary supplied by a commercial vendor.

Using the SLIPO Workbench, we will demonstrate how a user

can define data integration workflows that deliver a single dataset

in just a few minutes. Orchestrating the various tools into an

executable workflow (like the one in Figure 2) can be carried out

very quickly thanks to readily available profiles we have prepared

for several common POI datasets. Such a workflow can be easily

setup using drag and drop actions without the need to write any

code, by only a basic parametrization per step (Section 3). This

particular workflow first involves transformation of the input

datasets. After discovering links between them, it fuses their

13
https://www.synnefo.org/

14
https://www.openstreetmap.org/

15
https://www.geonames.org/

576



Figure 2: Designing a POI data integration workflow in the SLIPO Workbench application.

properties according to user-specified rules and finally enriches

the integrated result with external sources (e.g., DBpedia).

After executing such a workflow, the unified output dataset

will be enhanced with information from all input datasets:

• The output dataset will containmore POIs. Starting with a base

dataset (one of the input datasets), POIs missing from it will

be complemented with information from the rest.

• Geometry representations can get a more detailed shape, e.g.,
polygons obtained from OpenStreetMap can replace (or com-

plement) the original point (lat/lon) locations of certain POIs.

• Extra thematic attributes will be derived in the integrated

dataset, by bringing together information (e.g., fax numbers,

opening hours, links to photos, multi-lingual names) across

the original data sources.

• Attribute values per POI will be more accurate and complete,

e.g., missing telephone numbers can be filled or updated after

checking against all available input.

We have prepared a short video
16

that demonstrates such a

scenario on Corfu Island with a commercial POI dataset (GET)17

enriched from OpenStreetMap (OSM). The map in Figure 3 shows

how integration results (POIs depicted in blue circles or blue poly-

gons) supersede by far and enhance the original information of

the base dataset (GET) shown with red stars. Also, thematic prop-

erties per POI are substantially enriched with more attributes,

while missing values in the base dataset are properly updated.

Improvement in quality can be tracked graphically per individual

POI by inspecting how it evolved along the integration progress,

but also through statistics (attribute gain, confidence, etc.) esti-

mated over the final dataset.

Overall, we believe that this demo will offer more insight not

only about the challenges, but also regarding the benefits of

POI data integration using SLIPO. As we continue our efforts

to enhance and further develop our software, we expect rapid

16
https://drive.google.com/file/d/1NPhl2mgbSdqH9A5KMZufQF3-7zihZ3zb/view

17
Data sample courtesy of GET Ltd., http://www.getmap.eu/en/

Figure 3: POIs before and after data integration in Corfu.

uptake of our innovations by stakeholders in a production setting

without affecting any operations and processes already in place.
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ABSTRACT
We propose a novel query language that can express complex
spatial queries in a concise and intuitive way for map search. The
proposed language can express conditions on the range, direction,
and time distance within their spatial search queries. In this
language, we introduce several spatial operators, such as “space
character” operator which is used to represent the geographical
distance between matching objects in a concise and intuitive way
as well as arithmetic and directional operators which enables the
combination and manipulation of spatial areas. We also show
how a map search system supporting this query language can
be implemented, and describe several applications created using
this system to highlight how the query language can be put into
practice. These applications include a web interface which allows
developers to embed a function of spatial search by our query
language into their systems. In addition, we developed a mobile
Android application that allows nonprofessional users to easily
search for nearby venues and routes by using the proposed query
language. Finally, we outline the results of a study carried out to
evaluate the potential usefulness of our proposed search system.

1 INTRODUCTION
Inmap search systems, keyword-based queries arewidely adopted
due to their ease of use. Such queries are however inadequate
when more complex requests are needed. For example, consider
the case where a software tool would need to be developed to
help identify appropriate locations for real estate development.
Such a software needs to deal with search requests which contain
multiple constraints and spatial conditions. For instance, those
interested in constructing a family-friendly apartment building
would search for vacant locations that have many schools and
playgrounds within traveling distance, but are far enough away
from inappropriate locations or noisy public spaces.

In map search systems with simple keyword-based queries,
such a search task requires multiple query transactions by user
operations. For example, to find a good apartment for a family,
the transactions need to (1) search for apartments by using a
keyword query, (2) also identify schools on the map, (3) limit
the query result to those within 4km from the found schools,
and (4) also exclude those which are within 200m from some
inappropriate locations. The same is true for various complex
requests such as “Finding all the restaurants located between
two famous tourist landmarks” (when developing an application
for tourism) or “Finding all the shops located next to parks in
a city” (for location-based recommender systems). As shown in

© 2019 Copyright held by the owner/author(s). Published in Proceedings of the
22nd International Conference on Extending Database Technology (EDBT), March
26-29, 2019, ISBN 978-3-89318-081-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Figure 1: Examples of map search using spatial operators.

these examples, it is difficult to process complex search requests
using simple keyword-based queries. Systems only supporting
such keyword-based queries require multiple steps including
non-textual interactions to process them.

On the other hand, there have been much research on spatial
logic or algebra. In a spatial database of PostGIS1, the spatial
search task with location queries can be run in SQL, and they can
represent complex spatial conditions in queries, but they require
users to learn and understand the progrmming-language-like
syntax, and as a result, they are too complicated for general users
in many applications. They are, therefore, impractical for the use
in such systems.

The goal of this research is to design a simple spatial query
language which can represent such complex queries within a
single query statement with a concise, and more intuitive syntax
so that users can easily specify complex queries. Our language
uses 10 spatial operators to represent conditions on directions,
ranges, angles, and time distance, which allow users to incorpo-
rate spatial conditions and manipulation of spatial areas within
their keyword-based-like queries. Fig. 1 shows examples of map
search carried out by queries including spatial operators in our
language, such as ([^] [-] [*]). For example, Fig. 1 (c) shows the
result of a query (“my house”␣0.5km␣“pizza parlor”) * (“friends
house”␣0.5km␣“pizza parlor”).

2 RELATEDWORK
As explained in Section 1, there have been much research on spa-
tial databases based on region algebra or region logic. However,
most current commercial location-based services such as Google
Maps or Bing Maps are designed mainly to help general users
to execute two types of simple tasks: (1) find certain places and
locations within a specified geographical area and (2) find the
best route (e.g., shortest distance, most economical) between two
given locations. Recent academic research in this domain also
mainly focus on similar problems, such as locating comfortable,
aesthetically pleasing or safe routes [2] and personalizing the
search results by identifying locations which better match the
latent interests of users [5].
1https://postgis.net/
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Table 1: Spatial operators by using the space-key

Operator ␣* ␣^ ␣_ ␣@ ␣[x-y] ␣$ ␣#
Processing Surrounding Direction (north/up) Direction (south/down) Angle Range Size Time

Figure 2: (a) Union (b) Difference (c) Intersection (d)Within (e) Distance (f) Direction (north) (g) Angle (90 degree) (h) Range

Because most of the current commercial systems are focusing
on general users executing these types of tasks, they use simple
keyword-based queries instead of complicated query languages.
For example, if users need to search for restaurants in London,
they would simply input a query such as “Restaurants in London”.
For users who need more complex and precise search requests,
however, such search systems are inadequate. Although various
API systems2 3 have been created to provide access to the more
advanced features of the location search systems, they are often
limited to single-process tasks (finding locations within a specific
distance, geo-coding a specific location name, etc.). Therefore, in
this paper, we propose a novel query language to enhance the
existing API systems, which allows users to express conditions
on distance, space and time distance towards objects matching
the query keywords through the use of spatial operators.

While the use of operators in keyword-based queries for map
search is not common, the use of operators in keyword-based
queries can be found in other domains. In document search, prox-
imity operators have been proposed as a way to limit search
results to those that contain the keywords in a specific order
or within a specific distance [3]. Also in video database domain,
Pradhan et al. [4] proposed operators which allow users to rep-
resent constraints on pairs of matching objects to be joined. In
graph database domain, Cypher4 is a declarative query language
that allows users to state what actions they want performed upon
their graph data without requiring them to describe (or program)
exactly how to do it.

3 THE SPATIAL QUERY LANGUAGE
A description of our proposed spatial query language is described
in this section. Overall, there are twomain rules which are used to
define the syntax for a spatial search unit in our query language.

Rule 1: The syntax of the most primitive unit of spatial queries
is defined as follows: “A␣spatial length␣α” A and α are key-
words, with A denoting the location of the origin for the
spatial search for the object with the property α . It is per-
missible to either denote the spatial length by using a unit
distance (i.e., 200m, 3 minutes) or by using continuous spaces.
When continuous space is used, the spatial length would rep-
resent the N nearest locations with the property α , where N
is represented by the number of continuous spaces.

2https://www.microsoft.com/en-us/maps/choose-your-bing-maps-api
3https://cloud.google.com/maps-platform/
4https://neo4j.com/cypher-graph-query-language/

(Example) : A␣800m␣α denotes a query statement to iden-
tify the α objects which exists inside the region 800m from
the origin point A.

(Example) : A␣␣␣α denotes a query statement to identify
the nearest 3 α objects from the origin point A.

Rule 2: The keywords (e.g., A and α ) used in the primitive
unit of the spatial query would be encapsulated within a
double quotationmark (e.g., “Tokyo tower” or “Grand Central
Terminal, New York” for A or “pizza shop” or for α ).

In addition, various spatial, directional and distance operators can
be used to impose conditions when conducting a spatial search.
Rule 3: Each primitive spatial search Unit can be combined

with other units through the use of spatial, directional and
distance operators in a mathematical equation format.
(Example) : (A␣800m␣α ) + (B ␣300m␣α )

3.1 Spatial Operators
The standard set operators can also be used as spatial operations
for the query unit defined previously. These include the union
[+], difference [-], and intersection [*]. Users can use such opera-
tions to manipulate the spatial region they wish to search into.
Examples of queries including these operators are as follows:
Union calculation (Ex.1) : (A␣3km␣α )+(B␣3km␣α )

denotes the union of the spatial regionwithin 3km from point
A AND the spatial region within 3km from point B (see Fig.
2 (a)).

Difference calculation (Ex.2) :(A␣3km␣α )-(B␣3km␣α )
denotes the spatial region within 3km from point A which is
NOT within 3km from point B (see Fig. 2 (b)).

Intersection calculation (Ex.3) :(A␣3km␣α )*(B␣3km␣α )
denotes the spatial region that is within 3km from point A
which is ALSO within 3km from point B (see Fig. 2 (c)).

All set operators (+, -, *) can be used to search for objects with the
properties identified in the query unit. For example, the aforemen-
tioned (A␣3km␣α )*(B␣3km␣α ) query would search for objects
with the property α which is located within the spatial region
that is the result of the intersection between 3km from points A
and B.

3.2 Directional and Distance Operators
Table 1 shows the 7 spatial operators which can be used to further
denote distance and direction within our spatial query. Exam-
ples of four expressions which use these operators are described
below:
Distance operation (Ex.4) : A␣3km␣α
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retrieves the objects α which are within 3km from point A
(Fig. 2(d)).

Within operation (Ex.5) : A␣*3km␣α
retrieves the objects α that are 3km away from point A (Fig.
2 (e)).

Direction operation (Ex.6) : A␣^3km␣α
retrieves the objects α which are to the north of, and within
3km from, point A (see Fig. 2 (f)).

Angle operation (Ex.7) : A␣3km@90␣α
retrieves the objects α which exist within 3km in the 90 degree
counterclockwise direction from point A (see Fig. 2 (g)).

3.3 Range, Size, and Time Operators
Our proposed spatial query language also includes a variety of
range operators which allows users to more accurately specify
the desired search range within their query (see Table 1). For
example:
Range operation (Ex.8) : A␣[1km-3km]␣α

retrieves the objects α in the region from 1km to 3km from
point A (see Fig. 2 (h)).

In addition, size [$] and time operators [#] can be used to for-
mulate search queries. The size operator $ extracts the size of
the corresponding property of object α and uses it as a unit of
measure (i.e., 1 city block = 0.5km). The same is true for time
operations depend on the context (i.e., using A␣#3min to find
venues which are 3 minutes walking distance from point A, when
a user selects a “walking” direction).

4 SPATIAL SEARCH SYSTEM
In this section, we explain the structure of our search system. The
system consists of three main components: (1) an Input/Output
component that processes user requests and outputs them to the
appropriate format; (2) an interpreter component that parses and
processes queries and (3) the data processing program component
to link the search system to appropriate data sources.

Users of our system would send an HTTP request to the
server with details of the spatial query as parameters. The query
specified by the client is then passed to the interpreter and the
data processing components. These components would parse
the query, process the request and send the results back to the
Web In/Output Processing component which would transmit the
results back to the client as an HTTP response in a data format
such as JSON or XML.

The role of the interpreter component is to process the spatial
operators sent as the request. This component consists of a query
parser, a spatial data converter, and a spatial data calculator. For
the parser, the role is to analyze the user query and determine the
appropriate operations and procedures to process it. For example,
the following query: (A␣^3km␣α ) + (B␣^3km␣α ) would be pro-
cessed by the parser into the following steps: Var1= A␣^3km␣α
(step 1), Var2= B␣^3km␣α (step 2), and Result=Var1+Var2 (step
3).

These steps would then be processed by the interpreter. Each
spatial variable is sent to the data converter to convert the el-
ements (such as A␣^3km or B␣^3km) in the query to spatial
regions which represents the correct distribution of those ele-
ments. The conversion program would access information pro-
vided by the data processing component to calculate the ap-
propriate regions. For example, when processing the element
“A␣^3km␣shops”, the data processing component would calculate
the geographical location of point A as well as the geographical

Figure 3: Spatial query language demo application 5.

locations of shops within a 3km radius. After the data has been
converted, the spatial operators are then processed. For exam-
ple, if the request query contains the intersection operator [*],
it would calculate the region which is the overlap between the
converted A␣3km and B␣3km regions. After all the calculations
have been completed, the result is sent back to the client in the
appropriate data type (JSON or XML etc.) as specified by the data
processing component.

A prototype of the search system engine was implemented
as a RESTFUL web service using nodeJS. The current system
supports spatial map search, with the input being the requested
as a spatial query (an HTTPS GET request) and the output is an
array of locations which match the spatial query (returned using
the JSON data format) together with details such as the name
of the place and the address. The equation expression within
the spatial query was parsed using the Shunting-yard algorithm.
Google Maps API was used in the data processing proportion to
identify the various locations specified in the primitive spatial
query unit (i.e., “times square”) and their geographical positions.
The system could also later be easily adapted to utilize other
data sources such as Open Street Map data or a customized SQL
database as well.

5 DEMONSTRATION APPLICATIONS
To highlight how the system could be useful in practice, a number
of web applications were created which utilized our proposed
spatial search query language and would be shown during the
demonstration. The first application was a web interface for our
search system engine which users could use to test the query
language or search for locations using spatial equations3. Users
would be able to use the spatial, range and directional opera-
tions described in Section 3 as well as mathematical expressions
such as brackets to compose their search queries. After clicking
the search button, the system would send the user’s query to
the search system server and would then render the search re-
sults received from the server onto the map. For example, Fig.
3 shows the results of the query: ((“Times Square”␣700m␣“rest-
aurant”)*(“Grand Central”␣1km␣“restaurant”))*(“Pennsylvania
station”␣1km␣“restaurant”), which aims to identify all restau-
rants located within 700m of Times Square and 1km from Grand
Central and Pennsylvania station. One potential use-case for such
a query is for example to identify potential meeting places for
three users based on their starting locations (For example, when
one user works near Times Square and the other near Grand
Central and the final near Pennsylvania station and the system

5http://yklab.kyoto-su.ac.jp/~sakata/spatialQueryDemo
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Figure 4: Space-key search application for novice users.

would need to find a restaurant that is equally near to all three
of their workplaces for them to meet for lunch). The web inter-
face system also provides an instruction page where the various
operators in our query language are explained and a number
of examples shown (see Fig. 3). Users could click on the “try it”
button to examine the search results of the examples and could
also freely modify the example equations.

Furthermore, another application which utilized our proposed
query language (only using the “space-key” for a more simple
and intuitive search) would also be shown during the demon-
stration. This application was conceptualized by looking at how
non-professional common users generally used location-based
mapping services. Although route navigation was a commonly
used feature, users also generally used location-based services to
quickly identify different types of nearby venues and then find
out how they could travel to such locations. Therefore, we de-
veloped an android application (“space-key search” application)
which utilized the primitive unit of our spatial query language to
allow users to search for nearby venues (users are able to search
for nearby locations using only the space-key). For example, the
user would enter the query “Current Location␣␣␣␣␣Restaurants”,
to find the four nearest restaurants to them on auto adjust map
zooming (see Fig. 3). Clicking on the markers would show details
of the venue (the address, review scores etc.) as well as a link
with the details of the route to the store. The application itself
could be downloaded from Google play store6. A mobile web
version of this application 7 was also developed for evaluation
and demonstration purposes (Fig. 4 shows screen-shots of the ap-
plications). A demonstration video of the applications discussed
in the paper which would be presented at the conference could
be viewed from the following link 8.

6 USER STUDY
A user evaluation study was also carried out to evaluate the po-
tential usefulness of our proposed query language. The main aim
was to determinewhether such an equation based query language
would be feasible for developers to learn and use. 15 students
from a university-level computer science course were recruited
and asked to carry out a series of location search tasks. Each
participant was asked to use both our proposed query language
through the web interface system which was developed (spatial

6https://play.google.com/store/apps/details?id=com.kawaiLab.spatialQuery
7https://yklab.kyoto-su.ac.jp/~sakata/simple/spatialQuary/
8 http://yklab.kyoto-su.ac.jp/SpatialDEMO/Spatial_demo_movie.mp4

language condition) as well as through the Google Maps system
(Google map system) to complete 5 search assignments. Each
search assignment consisted of a task to search for places (e.g.,
pizza parlors) near a specific location (e.g., The White House).
For example, one task consisted of trying to find the number of
pizza parlors located within 500m of Times Square. In another
task, participants were asked to find the number of pizza parlors
located within 700m of Times Square which is also located 1000m
from Empire State Building. Written instructions and examples
were provided to help participants complete the tasks and intro-
duce the various spatial operators. An objective measurement
of performance was obtained by measuring the time users spent
on each task. To measure subjective user experience, the System
Usability Scale (SUS) was used [1], which involved the rating of
perceived effectiveness, efficiency, and satisfaction.

Overall, participants rated a higher SUS score for the spatial
language condition (Mean=70.17, SD=13.09) than the Google map
condition (Mean=24.46, SD=10.61) (t(13)=7.24, p<0.001)). In ad-
dition, participants were able to complete the tasks using less
time (seconds) in the spatial language condition (Mean=82.27,
SD=28.18) then theGooglemaps condition(Mean=180.86,SD=49.25)
(t(13)=-8.219, p<0.001). Therefore, it seems that at least for search
tasks which involve the combination and manipulation of spatial
regions, the proposed map search system could indeed be useful.

7 CONCLUSION
In this paper, we proposed a novel query language for spatial
search which can be used to express complex queries in a text
equation format. We implemented a prototype of our proposed
system and developed two applications (a web based application
and a mobile application) to showcase how the query language
could be put into practice. In addition, we conducted a user study,
The results of which highlights the potential usefulness of our
query language.

In the future, we look to expand our query language to other
search domains such as text and video search. Although we
have shown how our language could be used in map search,
our proposed query language could easily be applied to spatial
search within documents and videos as well. For example, a query
searching for text within a document that contains the word “B”
and is within 5 sentences from the word “A” is expressed by
“A␣5sentences␣B”.
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ABSTRACT
We demonstrate FaiRank, an interactive system to explore fair-

ness of ranking in online job marketplaces. FaiRank takes as

input a set of individuals and their attributes, some of which

are protected, and a scoring function, through which those indi-

viduals are ranked for jobs. It finds a partitioning of individuals

on their protected attributes over which fairness of the scoring

function is quantified. FaiRank has several appealing features:

(1) It can be used by different users: the auditor whose role is
to monitor the fairness of ranking in a job marketplace, the job
owner seeking to examine the influence of a scoring function

and its variants on the ranking of candidates for a job, and the
end-user who wants to assess the fairness of jobs on different

marketplaces; (2) It is able to quantify fairness under different

data and process transparency settings: when some attributes

are anonymized and when only the ranking (and not the scoring

function) is available; (3) It is interactive and lets its users explore

different scoring functions and examine how fairness evolves;

(4) It is generic and provides the ability to quantify different no-

tions of fairness. Our demonstration will provide attendees with

several scenarios for fairness of ranking in job marketplaces to

experiment with and acquire an understanding of this important

research question and its impact in practice.

1 INTRODUCTION
Freelancing marketplaces have become an online destination to

find a temporary job. The ranking of individuals on platforms

such as Qapa and MisterTemp’ in France, and TaskRabbit and

Fiverr in the USA, naturally poses the question of fairness. Fair-

ness in ranking has recently received great attention from the

data mining, information retrieval and machine learning com-

munities (See for instance [1, 4, 6, 9, 10]). The most common def-

inition of fairness in decision making was introduced in [2, 11]

as demographic parity, and formalized in [3] as group unfair-
ness. This definition captures the unequal treatment of a person

based on belonging to a certain group of people defined using pro-

tected attributes such as gender and ethnicity. For instance, in

the French Criminal Law (Article 225-1), 23 such attributes are

listed as discriminatory.
1
The exact formulation of fairness varies

and the purpose of FaiRank is to explore different formulations

and unveil their impact on individuals.

User Roles. FaiRank appeals to different users. The auditor,
whose role is to monitor the fairness of ranking in a marketplace,

can use FaiRank to examine different jobs on that marketplace

and quantify their fairness. The job owner, who wants to study the

1
https://www.legifrance.gouv.fr/affichCodeArticle.do?cidTexte=

LEGITEXT000006070719&idArticle=LEGIARTI000006417828

© 2019 Copyright held by the owner/author(s). Published in Proceedings of the

22nd International Conference on Extending Database Technology (EDBT), March

26-29, 2019, ISBN 978-3-89318-081-3 on OpenProceedings.org.
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license CC-by-nc-nd 4.0.

behavior of a scoring function and its variants, can use FaiRank to
understand their impact on the ranking of individuals, and choose

fairest one. Finally, the end-user, who is being ranked, can use

FaiRank to assess the fairness of jobs on different marketplaces

and make an informed decision.

Positioning. Most previous work on group-level fairness have

either assumed that groups are pre-defined [9] or that they are

defined using a single protected attribute (e.g., males vs females

or whites vs blacks) [5]. FaiRank extends prior work to examine

groups of people defined by any combination of protected at-
tributes (the so-called subgroup fairness [6]). The scoring function
yields one histogram per group as a score distribution. We use

the Earth Mover’s Distance (EMD) [8], a measure commonly used

to compare histograms, to quantify the difference between score

distributions across groups. The intuition is that if score distri-

butions between groups differ significantly, the scoring function

treats individuals in those groups unequally. This allows explor-

ing different fairness formulations in FaiRank as any aggregation
function over pairwise distances of score distributions in groups

(highest average, lowest variance, etc.).

Since we do not want to focus only on pre-defined groups to

quantify fairness, we must exhaust all possible ways of partition-

ing individuals into groups based on their protected attributes.

This would capture cases where a scoring function treats males

and females equally but is unfair to older African Americans com-

pared to younger White Americans for instance. To examine all

groups under different fairness definitions, we formulate an opti-

mization problem as finding a partitioning of the ranking space,

i.e., individuals and their scores, that exhibits some aggregation

over pairwise partitions (e.g., the highest average EMD between

partitions, the lowest average, the highest variance, etc.). Exhaus-

tively enumerating all groups is exponential in the number of

values of protected attributes. Therefore, to enable interactive

response time, FaiRank relies on an efficient heuristic algorithm.

At each step, the algorithm greedily splits individuals using the

most unfair attribute according to the fairness definition. This

local condition is akin to the one made in decision trees using

gain functions [7]. The algorithm stops when there are no further

attributes left to split on or when the current partitioning of in-

dividuals exhibits more unfairness than it would if its partitions

were split further.

Data and Function Transparencies. In practice, data about indi-

viduals, i.e., their attributes, or the scoring function itself, may

not be available. We integrate FaiRankwith the k-anonymization

ARX tool
2
and explore fairness for anonymized datasets. When

the function is not available, FaiRank builds histograms using

ranks of individuals rather than actual function scores.

Demonstration. Our demonstration combines the features of

FaiRank to help attendees explore fairness of ranking in online

job marketplaces and its impact in practice. It also sheds light

2
https://arx.deidentifier.org/
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Figure 1: System architecture of FaiRank

on the interplay between data and function transparencies and

the ability to quantify fairness. Additionally, FaiRank enables

the exploration of different scoring functions, which can help

choose the fairest for a given job. Finally, FaiRank can be used

with standalone datasets and scoring functions, and since it can

operate under various transparency settings, it can be used as a

service to quantify fairness in existing blackbox job marketplaces.

2 SYSTEM OVERVIEW
Figure 1 depicts the system architecture of FaiRank. The user
can select or upload a dataset which consists of a set of individ-

uals and their attributes. The attributes can be protected such

as gender, age, location, ethnicity, etc. or reflective of the perfor-

mance or skills of the individuals such as reputation, knowledge

in plumbing, writing skills, and mathematical abilities. Some of

these attributes can also be anonymized. The user of the system

can define or select a scoring function to rank individuals. The

scoring function can be defined on a subset of the attributes of the

individuals, for example a linear combination of an individual’s

reputation and plumbing skills, or of English writing skills and

expertise in computer science. In addition, the user can filter the

individuals based on protected attributes. This can be helpful in

scenarios where the user is only interested in ranking a subset

of individuals that satisfy certain criteria, say only individuals

who speak Arabic or who are located in New York city. Instead

of a scoring function, the user can also provide some ranking for

the individuals (i.e., in the case that the scoring function is not

transparent).

FaiRank solves an optimization problem that finds a parti-

tioning of individuals over their protected attributes for which

unfairness is subjected to an aggregation function (maximized,

minimized, etc). The partitioning is displayed in a panel for the

user. The user can interact with the returned partitions, view sta-

tistics such as the number of individuals in each partition, as well

as a histogram of the scores of the individuals in each partition.

The user can also choose to modify the scoring function or the

fairness formulation, and obtain several panels to explore how

that impacts fairness quantification. In the next section, we ex-

plain howwe partition workers and quantify fairness of a scoring

function given a set of individuals.

3 QUANTIFYING FAIRNESS
3.1 Model
To quantify fairness, we model the problem as aggregating a dis-

tance between the score distributions of all possible partitions of

individuals. Unlike previous work where partitions were defined

or known a priori (e.g., [5]), in FaiRank we explore the space

of all possible groups defined by a combination of values of the

individuals’ protected attributes. The goal becomes finding an

unfair partitioning of individuals under the scoring function. This

can be formulated in many ways. For instance, the worst-case

formulation would correspond to finding the highest distance
between partitions. We cast this goal as an optimization problem

as follows.

Definition 1 (Most Unfair Partitioning Problem). We
are given a set of individualsW , where each individual is asso-
ciated with a set of protected attributes A = {a1,a2, ...,an } and
observed attributes B = {b1,b2, . . . ,bm }. The protected attributes
are inherent properties of the individuals such as gender, age, eth-
nicity, origin, etc. The observed attributes represent the skills of
individuals for jobs and could include, for instance, the reputation
and writing skills of an individual. We are also given a scoring
function f :W → [0, 1], which is defined using observed attributes

as follows: f (w) =

m∑
i=1

αibi , where αi is a user-defined weight for

observed attributebi . A weight of zero indicates that the correspond-
ing attribute is not relevant for the user in ranking the individuals.
Our goal is to fully partition the individuals inW into k disjoint

partitions P = {p1,p2, . . . ,pk } based on their protected attributes
in A using the following optimization objective:

arдmax
P

unfairness(P , f )

subject to ∀i, j pi
⋂

pj = ϕ

k⋃
i=1

pi =W

Another formulation, Least Unfair Partitioning Problem, would

be to find the partitioning that results in the smallest unfairness

(i.e., arдmin instead of arдmax in the formulation above).

We now define how to compute the amount of unfairness of a

function f for a partitioning P , or unfairness(P , f ) in the above

optimization problem.

Definition 2 (Average Pairwise Unfairness). For a set of
individualsW , a full-disjoint partitioning of the individuals P =

{p1,p2, . . . ,pk } and a scoring function f , unfairness of f for the
partitioning P is quantified as the average pairwise Earth Mover’s
Distance (EMD) between the distribution of scores in the different
partitions of P , which is computed as follows:

unfairness(P , f ) = avд
i, j

EMD(h(pi , f ),h(pj , f ))

where h(pi , f ) is a histogram of the scores of individuals in pi .

Another possible formulation is to compute unfairness as the

maximum pairwise EMD, which would correspond to finding the

partitioning with the highest maximum EMD between any pair

of partitions.

Example. Consider the example dataset shown in Table 1 con-

sisting of 10 individuals on a crowdsourcing platform who are

ranked for some job using a scoring function f . Figure 2 shows
one possible partitioning of those 10 individuals, that results
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Table 1: An example dataset consisting of 10 individuals and a scoring function using Language Test and Rating

Individual Gender Country Year of Birth Language Ethnicity Experience Language Test Rating f(w)

w1 Female India 2004 English Indian 0 0.50 0.20 0.29

w2 Male America 1976 English White 14 0.89 0.92 0.911

w3 Male India 1976 Indian White 6 0.65 0.65 0.65

w4 Male Other 1963 Other Indian 18 0.64 0.76 0.724

w5 Female India 1963 Indian Indian 21 0.85 0.90 0.885

w6 Male America 1995 English African-American 2 0.42 0.20 0.266

w7 Female America 1982 English African-American 16 0.95 0.98 0.971

w8 Male Other 2008 English Other 0 0.30 0.15 0.195

w9 Male Other 1992 English White 2 0.32 0.25 0.271

w10 Female America 2000 English White 5 0.76 0.56 0.62

Figure 2: A partitioning of the example dataset

from splitting them based on Gender first, and then splitting

only the Male partition based on Language to get the following

partitioning of individuals: Male - English, Male - Indian, Male -
Other, and Female. We quantify the unfairness of partitioning P
as the average EMD between the pairs of partitions in P . To iden-
tify the most unfair partitioning, one must exhaust all possible

full disjoint partitionings of individuals based on their protected

attributes To do that, we generate a histogram for each partition

as indicated in Figure 2 based on the function scores by creating

equal bins over the range of f and counting the number of indi-

viduals whose function scores fall in each bin. The most unfair

partitioning is then the one with maximum average pairwise

EMD between its partitions’ histograms.

3.2 Algorithm
Our optimization problem for finding themost unfair partitioning

is hard since there are many possible partitionings P (exponential

in the number of protected attribute values). For this reason, we

propose an efficient heuristic algorithm to identify a partitioning

of individuals with respect to our optimization objective within

reasonable time. Our algorithm (pseudocode given as Algorithm

1) is recursive. We describe it with one unfairness formulation (the

worst-case one provided in Equation 1 and with one aggregation

function, namely average). Our algorithm decides whether or not

to split a given partition by comparing the average EMD of that

partition with its siblings to that of its children with its siblings.

The intuition behind this is that it assesses what would happen to

unfairness as measured by the average EMD if the partition was

Algorithm 1 QUANTIFY(current : a partition, siblinдs: a set of
partitions, f : a scoring function, A: a set of attributes)

1: if A = ∅ then
2: Add current to output
3: else
4: currentAvд = avд(EMD(current , siblinдs, f ))
5: a =mostUnf air (current , f ,A)
6: A = A − a
7: children = split (current ,a)
8: childrenAvд = avд(EMD(children, siblinдs, f ))
9: if currentAvд ≥ childrenAvд then
10: Add current to output
11: else
12: for each partition p ∈ children do
13: QUANTIFY({p}, children − {p}, f ,A)
14: end for
15: end if
16: end if

replaced by its children. It only splits a partition if its average

pairwise EMD with its siblings is less than the average pairwise

EMD of its potential children with the partition’s siblings (that

is in the case of the worst-case formulation of unfairness - other

formulations require to change this test only). To invoke the

algorithm for the first time, we first split the given set of indi-

viduals using the most unfair attribute and then the algorithm is

called once for each resulting partition. After all recursive calls

of the algorithm terminate, the output is returned as the final

partitioning of the individuals.

4 DEMONSTRATION SCENARIOS
FaiRank caters to different user roles. A screenshot of the inter-

face is shown in Figure 3. A video of the demonstration is
available at https://youtu.be/MckMJColcDk. We propose to

demonstrate it with 3 scenarios, one per role. During the demon-

stration, we will rely on two types of datasets, simulated datasets

mimicking crowdsourcing platforms and real-data crawled from

online freelancing marketplaces. In each case, we will explore

various scoring functions representing different jobs as well as

variants for the same job. We will also allow the exploration of

transparency settings and their effect on fairness quantification,

by making use of the ARX tool to k-anonymize the datasets
3
and

by considering cases where the scoring function is available and

cases where it is not.

3
https://arx.deidentifier.org/
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Figure 3: A snapshot of FaiRank’s interface. The Configuration box on the left allows users to choose which dataset and
which scoring functions they want to explore. It allows them to also choose a fairness criterion. The partitioning trees are
displayed on the right in multiple panels, which allows the user to compare multiple scoring functions/datasets. General
information about a partitioning tree can be found in the General box on the left, and the user can view statistics about a
particular partition in the Node box by clicking on that partition in the tree.

AUDITOR Scenario. This scenario provides auditors with

the ability to monitor a marketplace that offers multiple jobs,

each with its own scoring function. It provides a big picture to

auditors and lets them identify which jobs are most unfair to

which individuals based on their rankings and under different no-

tions of fairness. For instance, an auditor may be looking to draft

a “fairness” report on a freelancing marketplace such as Qapa

or TaskRabbit. The auditor would want to quantify the fairness

for each job offered on the platform, and identify demographics

groups that are least/most favored on the platform by each job.

Additionally, the auditor might consider cases where the mar-

ketplace does not provide full transparency, either in terms of

attributes of its users or in terms of the scoring functions used

to rank those users, and we show the effect of this on quantify-

ing fairness compared to the case when both attributes and the

scoring function are available.

JOB OWNER Scenario. This scenario emphasizes the ability

to define different scoring functions, and examine their impact

on individuals. This exploration will help owners understand

the behavior of their scoring functions and will guide them to

choose the best function for their job, i.e., the one that satisfies

some desired fairness. For instance, for an online job that requires

people to write code, the owner can select those for whom the

scoring function induces the least unfairness.

END-USER Scenario. This scenario offers end-users the abil-
ity to immerse themselves and simulate different cases in which

they are to be ranked. For instance, an end-user wishing to find

a job online, can examine how unfair some job is with respect to

different groups of people. Given a group to which the end-user

belongs (e.g., Young professionals in Grenoble) and a job of inter-

est (e.g., installing wood panels), the end-user can see how well

the marketplace is treating that group and make an informed

decision of whether to target that job or not.
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ABSTRACT
There is a new generation of databases specifically addressing
Big Data Variety: Multi-model databases store and process struc-
turally heterogeneous data, managing several data models in
one integrated backend. Yet one of the many challenges these
systems face is evolution management. In our demonstration,
we present our prototype implementation of a tool called MM-
evolver. MM-evolver carries out user-triggered schema modifi-
cation operations over a multi-model database, and propagates
them across all models. As a novelty, MM-evolver supports both
inter- and intra-model schema modification operators. To the
best of our knowledge, ours is the first tool addressing evolution
management in the world of multi-model databases.

1 INTRODUCTION
In recent years, the Big Data movement has broken down the
borders of many technologies and approaches that have so far
been acknowledged as mature and robust. One of the most chal-
lenging issues is the “Variety” of Big Data. Data may be present
in various types and formats – structured, semi-structured, and
unstructured – and produced by different sources, and hence
natively have various models.

The challenge of handling variety has inspired a new gen-
eration of dedicated multi-model databases (MMDs), capable of
storing and processing structurally different data, by supporting
several data models in a single DBMS having a unified query
language and API. The MMD way of solving the polyglot per-
sistence problem offers advantages in data modeling, allowing
to represent data in its most native model. This can be consid-
ered as opposite to the “One Size Does Not Fit All” argument [10].
However, it can be also understood as a way of re-architecting
traditional database models to address new requirements [4].
Nothing shows the picture better than the Gartner Magic quad-
rant for operational database management systems [3], which
(correctly) assumed that, by 2017, the majority of leading DBMSs
will offer multiple data models in a single DBMS platform.

To illustrate the challenge of multi-model data management,
consider the simple example depicted in Figure 1. There we have
data with four distinct data models. Customer data is stored in a
relational table – their ID, name, and credit limit. Graph data bear
information about mutual relationships between the customers,
i.e., who knows whom. In JSON documents, each order has an ID
and a sequence of ordered items, each of which includes product
number, name, and price. The fourth type of data, key/value pairs,
bears a relationship between customers (or rather, their IDs) and
orders (or rather, their IDs).

© 2019 Copyright held by the owner/author(s). Published in Proceedings of the
22nd International Conference on Extending Database Technology (EDBT), March
26-29, 2019, ISBN 978-3-89318-081-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Figure 1: A multi-model data scenario [6]

One of the many challenges [6] these systems are facing is
evolution management. As user requirements change, the data
structures evolve, and, consequently, also the respective storage
strategy, queries etc. This problem is challenging even in the
world of single-model databases. In simpler applications, we can
rely on a skilled DB administrator, but in more complex situations
it is a difficult and error-prone task. In addition, we can observe
contradictory approaches to this problem in different types of
DBMSs. In the world of traditional relational or XML databases,
the evolution of data structures requires immediate changes in
the schema.With NoSQL systems, we can (to some extent) exploit
the schemalessness and ability to store data with similar, but not
necessarily the same structure. Considering the existence of a
schema, another complication is existence of schema-full, schema-
less and even schema-mixed MMDs. Consequently, the problem
of evolution management in MMDs is much more complex.

Consider again Figure 1. We may want to add a new property
to one of the models (e.g., an address to JSON documents rep-
resenting orders), which does not affect the other models. But,
later we may decide to move this property to another model (e.g.,
to represent addresses in the relational model instead). Hence,
we need to change data in both models. In addition, there might
already exist a reference to the modified property, which then
needs to be updated accordingly.

To address the indicated problems, we extend our previous
research results [7, 8] for single-model systems (XML or rela-
tional) or systems with closely related models (namely aggregate-
oriented NoSQL). In this demonstration, we present a tool called
MM-evolver, which carries out user-required changes over amulti-
model schema and propagates them across all sub-models. To the
best of our knowledge, this is the first solution addressing the
problem of evolution management in the world of multi-model
databases. We see it as the first step towards a unification of
evolution management across multiple models.

In the remainder of this paper, we introduce the ideas imple-
mented in MM-evolver and outline our demonstration.

Demonstration
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2 MULTI-MODEL EVOLUTION
MANAGEMENT

There are two main approaches to supporting different models:
• Complex engine (e.g., CouchBase [2]) – TheDBMS trans-
forms all supported data types to a single core model. Its
engine has to pre-process and map all operations to the
core model.

• Layer-based architecture (e.g., Oracle Database 12c [1])
– The DBMS supports different models via different lay-
ers on top of an engine. Data are stored in the relevant
model. Each data model has its own component which
communicates with the engine.

We focus on the layer-based architecture, which is used in a
significant portion of existing MMDs, because there is no need
to introduce a generic approach for specific complex engines,
since they often internally map all supported models onto a sin-
gle model. Figure 2 shows two main layers of the layer-based
approach inspired by the principles of the Model Driven Archi-
tecture: model-specific and model-independent1. For the sake of
simplicity we assume that the data in the individual models have
a schema. However, such a schema does not have to be explicitly
defined. It can be a kind of an agreed structure, as often used in
practice. The engines in the model-specific layer can thus differ
also with regards to this aspect.

The MMD engine is located in the model-independent layer.
It is a facade for functions of the database, such as queries, and
distributes queries and commands to the respective individual
models. Also, it collects data from them and creates the final
result for the user.

2.1 Database Schema Evolution Language
Our aim is a general solution for schema evolution in MMDs and
the following models as the most common representatives: (1)
relational, (2) column, (3) graph, (4) key/value, and (5) document
(i.e., JSON or XML). By the generic term kind, we refer to an
abstract label that describes or groups related records. In the rela-
tional model, this corresponds to a table. Some MMD vendors use
the terms class (as in OrientDB2) or collection (as in ArangoDB3).

First, we settle on a common set of operations which can
be supported by all models. For this purpose, we extend the
work from [9], where the NoSQL Schema Evolution Language
(NoSQLSEL) covers most of the representatives, namely the ag-
gregate-oriented NoSQL databases, i.e., document, column and
key/value models. It involves three basic operations that affect
all entities of a given kind to (1) add (introducing a new property
with a specified default value), (2) delete (removing a property),
and (3) rename (changing the name of a property). It further
involves operations to (4) move (removing a property from one
kind of entity and adding it to another one), and (5) copy (copying
a property from one kind of entity to another one).

In order to avoid complex extensions of NoSQLSEL towards
the missing models, we use a strategy common to most of the
existing MMDs [5], i.e., a kind of a unification of the models. For
example, we can treat the graph model like ArangoDB, where
special edge collections bear information about edges in a graph
whose nodes correspond to documents. Similarly, we can as-
sume that entities are represented as rows in a specific table and

1We borrow from the idea only two layers (levels) and call them slightly different
to express our specific context.
2https://orientdb.com/
3https://www.arangodb.com/

their properties are columns of the table, where each entity has
a unique identification id. We call this extension covering the
model-specific layer the Database Schema Evolution Language.4

2.2 Multi-Model Schema Evolution Language
Having a common interface supported by all models in the model-
specific layer, we can introduce theMulti-Model Schema Evolution
Language (MMSEL) which is executed in the model-independent
layer. The multi-model engine has to distinguish which models
are affected by a given operation and propagate the operations
to them. We can divide the operations into two separate groups:

• Intra-model operations (i.e., add) affect just one model.
• Inter-model operations (i.e., copy,move, delete and rename)
can affect multiple models5. The first two can also trigger
data transfer between a source and a target model; the
last three can trigger changes in other models, due to
references that need to be updated accordingly.

Figure 3 shows the EBNF grammar for the MMSEL syntax and
Figure 6 shows an example statement. Intra-model operations, as
well as inter-model operations operating within a single model
are propagated by the multi-model engine to the specific target
model(s) which is/are already able to ensure correct data pro-
cessing.6 When entities should be transferred between models
(i.e., copied or moved), the multi-model engine gets all entities
of the given kind from the source model and inserts them into
the target model. In case of operation move, it has to delete them
from the source model. It is also able to track all cross-model
references. When the engine detects a change in a referenced
entity, it propagates these changes to the referencing entity.

2.3 Implementation of MMSEL
The core logic of the MMSEL happens in the model independent
layer. Internally, MMSEL schema modification operations are
translated into a lower-level language, which we introduce next.
To distinguish between the models, we introduce the data model
set DMS = {column,document ,key/value,дraph, relational} and
amodel key δ : δ ∈ DMS . To create an abstract model of the MMD,
we follow the notation from [9] which uses the term application
state for the current state of the application space. It is a non-
persistent application memory. Database state is the current state
of the database and it represents all stored data.

We need to call specific schema evolution functions in specific
models. Consequently, we introduce a modified set of functions
called Multi-Model Database Programming Language (MMDPL)
which extends the NoSQL Database Programming Language [9]
with DMS operations (see Figure 4). The main difference is in
operations for getting entities from the database and to save them
in the database. Function empty does not modify the application
space or the database. Despite the original plan of having a com-
mon set of operations, we decided to use it for the key/value
model, where there is no support for operation move since in
this model, entities do not have several properties, just a sin-
gle, opaque value. Otherwise it could be implemented as rename.
The remaining operations are extended with the DMS, but their
logic remains. Rule 7 extends function put(δ ,κ) by parameter
δ to distinguish where the entity with the key κ is stored. For
that purpose we introduce function model(κ) which returns a

4We refer interested readers to the extended version [11] for technical details.
5But they can be restricted to intra-model only, like they are in existing MMDs.
6We assume re-use of existing single-model change propagation approaches and
therefore focus on the novel problem of multi-model change propagation.
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Figure 2: Architecture of a layer-based MMD

mmevolutionop ::= add | delete | rename | move | copy;

add ::= "add" property "=" value [selection];
delete ::= "delete" property [selection];
rename ::= "rename" property "to" pname [selection];
move ::= "move" property "to" kind [complexcond];
copy ::= "copy" property "to" kind [complexcond];

selection ::= "where" conds;
complexcond ::= "where" (joincond | conds |

(joincond "and" conds));

joincond ::= property "=" property;
conds ::= cond {"and" cond};
cond ::= property "=" value;

property ::= mname "." kname ["." pname];
kind ::= mname "." kname;
mname ::= identifier;
kname ::= identifier;
pname ::= identifier;

Figure 3: EBNF syntax of MMSEL

model where the entity occurs. We use this approach to detect
the affected model in all modified functions. In Rule 8 we ex-
tend function delete(δ ,κ) by key of the model δ which contains
the entity with key κ. Rules 9, 10, and 11 add parameter δ to
function дet . All modified functions дet load entity/entities from
the specified model by key δ to the application space. Rule 12 is
also extended by the model key δ to load the property from the
specified model.

2.4 Reference Evolution in MMDs
We next discuss how referential integrity is maintained as schema
modification operations are carried out.7 In the first version of
our solution, we consider the reference simply as a pointer from
a property of a referencing entity to a property of a referenced
entity. We describe the source or target of a reference by a triple
(model, entity, property). A reference is then represented as a pair
(source, tarдet) and we assume that at least one model is able to
store the pairs in a reference space.

Next we can divide operations into two groups: Safe operations
(i.e., add and copy) do not trigger any reference updates, whereas
unsafe operations (i.e., delete, rename, and move) can.

To avoid complex extensions and instead stay within the
MMDPL framework, we internally represent a reference as a
special type of entity. It has three properties: (1) the referenced
property of the entity, (2) the key of the property in the MMD,
and (3) an array of triples describing entities referencing it. Each
triple in the array consists of three properties: a model, a kind,
and a property.

During our analysis of reference migration, we discovered that
WHERE conditions make the solution much more difficult. It is
caused by the nature of MMDs which allow a user to move a
subset of the properties. This behavior can split, delete or move
completely an existing reference based on the affected set of the
values. We introduce a solution for operations without WHERE
conditions and keep it as an open challenge.

Another point to discuss is the behavior when a referenced
property is removed. We have two options what can happen with
the referencing property: (1) set to a default value, (2) delete the
property. We decided to use the second approach, because it is
a clear solution for the used models. (The first approach has to
define what should be the behavior when a MMD contains an

7Note that the earlier language NoSQLSEL does not consider references, because
most NoSQL databases do not support them. Maintaining referential integrity is
therefore another new contribution of MM-evolver .

entity without a referencing property, as well as default values
for all models. Also, the default value can be considered as a value
of the property in an application so it can be confusing.)

The next step defines operations for creating and managing
references in the MMDPL. We need to create a reference, store it,
remove it and find it. Let reference store model (RSM) be a store
which is able to persist the reference entities. We use the RSM
to extend the MMDPL and define functions which help us to
implement reference management in the MMSEL. Figure 5 shows
the extension of the MMDPL which provides functions for the
mentioned operations. We introduced a special type of entities
for the references which is stored in the RSM, but we work with
the type in the same way as with other database entities.

3 DEMONSTRATION OUTLINE
For the purpose of experimental evaluation of the above described
ideas, we have implemented a first prototype called MM-evolver.
The application is based on the .NET framework and is written in
C#. To be able to experiment in the future with various models,
not just those provided by a particular MMD, we created an
abstract layer-based model, where each particular model can be
represented by a separate DBMS. To test also this feature, in the
first version we use MongoDB8 and MariaDB9 representing the
document model and the relational model.

In our demo of MM-evolver , we build two use cases – one
around real-world data, which is based on the Internet Movie
Database (IMDb)10, and the other on the multi-model benchmark
UniBench11. As shown in Figure 6 for the first case, the data
is stored both in the document model (such as movies.Contri-
butor to the left), as well as in the relational model (name_ba-
sics to the right). To the top, we show an inter-model schema
modification operation that we are about to execute. We further
highlight the affected data (relational in red, document in blue).
In interaction with our audience, we will gradually evolve the
database state, simulating realistic demands. We intend to make
the benefits of the declarative language evident, so that atten-
dees get a clear picture how they would use it in practice. For
each supported operation (both intra-model and inter-model),
we demo:

(1) the state of the database before and after the change,

8https://www.mongodb.com/
9https://mariadb.org/
10https://www.imdb.com/
11http://udbms.cs.helsinki.fi/?projects/ubench
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Let dms be a DMS, ds be a database state, as be an application state, δ be a model key, and Ω be a data model. Let κ , κ′ be entity keys. Let n, n′ be property names, and let v be a property value.
Symbol ⊥ denotes an undefined value. Let π , π ′ be properties, i.e., mappings from property names to property values. kind : Keys 7→ Kind is a function that extracts the entity kind from a key. model
: Keys 7→ Data model is a function that extracts the entity model from a key. Θ is a conjunctive query, and c is a string constant.

[[empty()]](dms, ds, as) = (dms, ds, as) (1)

[[new (κ)]](dms, ds, as) = (dms, ds, as[κ 7→ ∅]) (2)

[[new (κ, π )]](dms, ds, as) = (dms, ds, as[κ 7→ π ]) (3)

[[setProper ty(κ, n, v)]](dms, ds, as ∪ {κ 7→ π }) = (dms, ds, as ∪ {κ 7→ (π [n 7→ v])}) (4)

[[setProper ty(κ, n, κ′)]](dms, ds, as ∪ {κ 7→ π } ∪ {κ′ 7→ π ′ }) = (dms, ds, as ∪ {κ 7→ (π [n 7→ π ′])} ∪ {κ′ 7→ π ′ }) (5)

[[r emoveProper ty(κ, n)]](dms, ds, as ∪ {κ 7→ π }) = (dms, ds, as ∪ {κ 7→ (π [n 7→ ⊥])}) (6)

[[put (δ, κ)]](dms ∪ {δ 7→ Ω}, ds, as ∪ {κ 7→ π }) = (dms ∪ {δ 7→ Ω}, ds[{κ 7→ π | model (κ) = δ }], as ∪ {κ 7→ π }) (7)

[[delete(δ, κ)]](dms ∪ {δ 7→ Ω}, ds, as) = (dms ∪ {δ 7→ Ω}, ds[{κ 7→ ⊥ | model (κ) = δ }], as) (8)

[[дet (δ, κ)]](dms, ds, as) = (dms ∪ {δ 7→ Ω}, ds, as ∪ [{κ 7→ π | κ 7→ π ∈ ds ∧model (κ) = δ }]) (9)

[[дet (δ, kind = c)]](dms, ds, as) = (dms ∪ {δ 7→ Ω}, ds, as[{κ 7→ π | κ 7→ π ∈ ds ∧ kind (κ) = c ∧model (κ) = δ }]) (10)

[[дet (δ, kind = c ∧ Θ)]](dms, ds, as) = (dms ∪ {δ 7→ Ω}, ds, as[{κ 7→ π | κ 7→ π ∈ ds ∧ kind (κ) = c ∧model (κ) = δ ∧ [[Θ]](κ 7→ π )}]) (11)

[[дetProper ty(δ, κ, n)]](dms ∪ {δ 7→ Ω}, ds,as ∪ {κ 7→ ({n 7→ v } ∪ π ) | κ 7→ ({n 7→ v } ∪ π ) ∈ ds ∧model (κ) = δ }) = v (12)

Figure 4: The commands for interfacing with the multi-model database

Let r s be a RSM, ρ1 ,ρ2 be keys in r s and η1 its set of properties. Let dms be a DMS, ds be a database state, as be an application state. Let κ1 , κ2 be entity keys. Let n1 be property name. Let δ be a
model key, c be a kind and ν be an array of triples of m, k, and p. Symbol ⊥ denotes an undefined value. Let π1 be properties, i.e., mappings from property names to property values. key : RSM keys
7→ model keys is a function that extracts the entity key from a reference store model key.

[[newReference(κ1)]](dms, ds, as, r s) = (dms, ds, as[{ρ1 7→ ⊥ | key(ρ1) = κ1 }], r s) (13)

[[putReference(ρ1)]](dms, ds, as ∪ {ρ1 7→ η1 }, r s) = (dms, ds, as ∪ {ρ1 7→ η1 }, r s[ρ1 7→ η1]) (14)

[[getReference(κ1)]](dms, ds, as, r s) = (dms, ds, as[{ρ1 7→ η1 | ρ1 7→ η1 ∈ r s ∧ key(ρ1) = κ1 }], r s) (15)

[[getReferencedBy(δ, c1, n1)]](dms, ds, as, r s) = (dms, ds, as[{ρ1 7→ η1 | ρ1 7→ η1 ∈ r s ∧ {′′s′′, ν } ∈ η1 ∧ {′′m′′ : δ,′′ k′′ : c,′′ p′′ : n1 } ∈ ν }], r s) (16)

[[deleteReference(κ1)]](dms, ds, as, r s) = (dms, ds, as, r s[{ρ1 7→⊥| key(ρ1) = κ1 }]) (17)

[[renameReference(κ1, κ2)]](dms, ds, as, r s ∪ {ρ1 7→ η1 | ρ1 7→ η1 ∧ key(ρ1) = κ1 }) = (dms, ds, as, r s[{ρ2 7→ η1 | key(ρ2) = κ2 }]) (18)

Figure 5: Dedicated commands for manipulating references in the multi-model database

Figure 6: Carrying out an inter-model schema modification operation inMM-evolver

(2) the number of affected entities, i.e., those changed during
the execution of an operation,

(3) the number of targeted entities, i.e., those that correspond
to the change request, and

(4) the generated code which propagates these changes.
Interested attendees can experiment withMM-evolver , issuing

their own operations and thus evaluating our approach.
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ABSTRACT
As the scientific interest in the Internet of Things (IoT) continues
to grow, emulating IoT infrastructure involving a large number
of heterogeneous sensors plays a crucial role. Existing research
on emulating sensors is often tailored to specific hardware and/or
software, which makes it difficult to reproduce and extend. In
this paper we show how to emulate different kinds of sensors in
a unified way that makes the downstream application agnostic
as to whether the sensor data is acquired from real sensors or
is read from memory using emulated sensors. We propose the
Resense framework that allows for replaying sensor data using
emulated sensors and provides an easy-to-use software for setting
up and executing IoT experiments involving a large number
of heterogeneous sensors. We demonstrate various aspects of
Resense in the context of a sports analytics application using
real-world sensor data and a set of Raspberry Pis.

1 INTRODUCTION
The growth of the Internet of Things (IoT) has led to many dis-
ruptive technologies and applications such as smart homes, au-
tonomous vehicle fleets, health and well being, personal and
home security, and natural disaster management. In such ap-
plications, the IoT data (i.e., sensor data generated by devices
connected to the Internet) may get very large and may involve
billions of sensors [6]. Therefore, efficient means to automatically
collect, store, and analyze massive amounts of IoT data plays an
important role in our modern information-based society.

IoT research connects two communities: The database commu-
nity deals with sensor data acquisition [3, 12, 14] and distributed
query processing [8, 15]. The infrastructure and networking com-
munity deals with network connections, application and resource
management across sensor nodes, and cloud computing [4, 9, 10].

For database researchers, it is important to develop and test
data management solutions on IoT testbeds which include large
numbers of sensor nodes and provide real networking and data
processing conditions. However, it is hard to conduct repeatable
experiments on such testbeds for two main reasons: (i) One needs
to fine tune and test different versions of algorithms (A/B or split
testing), but sensors data varies over time which leads unequal
test conditions. (ii) Applications need to be tested on rare events
which leads to extremely long test durations. For example, con-
sider a sports analytics application that predicts injuries in real
time. Player injuries are rare and highly important, but one can-
not repeat them in the real world. Being able to replay sensor
data (e.g., data recorded from sensors on players’ body) on real
test beds solves the issues stated above and enables database
researchers to run repeatable experiments.

© 2019 Copyright held by the owner/author(s). Published in Proceedings of the
22nd International Conference on Extending Database Technology (EDBT), March
26-29, 2019, ISBN 978-3-89318-081-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

In this paper we present Resense, a framework which trans-
parently emulates sensors and provides an efficient way to replay
and record sensor data. Resense emulates sensors at the oper-
ating system level such that it is transparent for applications
whether they acquire values from real sensors or from memory
using emulated sensors. One can install Resense on testbeds with-
out changing any application and gains the flexibility to switch
between live sensor data and replayed sensor data easily.

Resense further provides mechanisms to orchestrate IoT exper-
iments involving a large number of heterogeneous sensors. Our
framework allows users to easily configure many different physi-
cal and/or emulated sensors as well as the data to be replayed.
We provide an intuitive user interface for loading experiment
configurations, for deploying experiment data to a large num-
ber of sensor nodes, and for starting/stopping experiments on
all (or some) sensor nodes. The automatic deployment of the
required data, the centralized configuration of sensor nodes, and
the centralized control and monitoring of experiments reduce
the administrative overhead when running IoT experiments and
developing IoT applications.

Our demonstration highlights how easy it can be to setup
and run experiments on a real testbed. We show various aspects
of Resense using a set of Raspberry Pis as sensor nodes and
some physical sensors. In particular, we demonstrate the record
and replay functionality where attendees can attach physical
sensors to a Raspberry Pi and use the graphical user interface to
inspect the (physical) sensor readings, record them, and replay
the recorded data. We also demonstrate setting up and executing
a full scale IoT experiment based on real-world data from the
DEBS 2013 Grand Challenge dataset [13]. The data consists of
about 15 000 position events per second which were recorded at
a football match in which sensors were embedded on the shoes
of the players as well as the ball. Attendees will be able to use
the Resense UI to deploy, control, and monitor the experiment
and configure the sensor nodes.

In summary, this paper makes the following contributions:
(1) We show how to transparently emulate sensors in order

to record and replay sensor data.
(2) We provide an easy to use software for setting up and

executing IoT experiments involving large numbers of
heterogeneous sensors.

(3) We demonstrate our software by recording and replaying
real world sensor data in the context of sports analytics
on a set of Raspberry Pis.

Resense is available as open source project1 and runs on any
GNU/Linux system independent of the underlying hardware (e.g.,
x86-based servers and ARM single-board computers).

The rest of the paper is organized as follows: in Section 2, we
give an overview of our approach for transparently emulating
sensors and orchestrating IoT experiments. Section 3 gives a

1https://github.com/TU-Berlin-DIMA/resense
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Figure 1: Recording and replaying data with Resense.

description of our demonstration. We discuss related work in
Section 4 and conclusion in Section 5.

2 EMULATING SENSORS
Implementing the emulation of sensors while being capable of
replaying scientific datasets is hard since the number of sensors
that can be involved in a single experiment can vary. On top of
this, the heterogeneity of the sensors makes it hard to include
every possible sensor architecture in a single emulator. In this sec-
tion we discuss the decisions behind the architecture of Resense
and show how we overcome these obstacles.

2.1 Emulation Abstraction & Replaying Data
The first major contribution of this paper is to emulate a sensor
transparently. Transparent emulation allows applications that
request data from sensors to treat the emulated sensor as if it
was a physical one. The applications cannot distinguish between
physical and emulated sensors and expect the same behavior from
them. The GNU/Linux kernel provides modules with a stable
API and implementations suited for such a task. For example,
it provides kernel drivers for commonly used sensor protocols
like I2C, SPI, and UART among others. These kernel modules are
fully featured drivers that emulate physical devices. We employ
their capabilities in Resense in order to provide emulated sensors
that are indistinguishable from physical sensors from the point
of view of an application.

In more detail, the kernel modules allow the addition and
removal of emulated sensors using file descriptors at the device
layer of the host operating system. These file descriptors have a
consistent naming scheme and are allocated in memory by the
kernel module in order to be subsequently perceived as physical
components by other parts of the system. Since different file
descriptors provide the same API to external applications, it
allows Resense to emulate different sensor types regardless of
their underlying protocol (and communication bus) for which
the host operating system includes its respective kernel module.

Figure 1 shows an end-to-end example from the perspective
of a single edge node. A physical temperature sensor is attached
to the edge node through an I2C bus. In addition, there is an em-
ulated sensor provided by Resense. The i2c-dev kernel module2
makes all I2C sensors accessible from userspace using character
device files. Each device gets assigned a number, starting from 0.
The device files follow the pattern of /dev/i2c-{0,1,2,...}.
In our example, i2c-dev has allocated /dev/i2c-3 for the tem-
perature sensor. The i2c-stub kernel module3, which is also
depicted in Figure 1, is responsible for creating character device
files for emulated devices. The emulated device files follow the
same pattern as the ones created from i2c-dev and are indistin-
guishable from the point of view of a userspace application. In
our example, the emulated sensor is allocated to /dev/i2c-7.

2https://www.kernel.org/doc/Documentation/i2c/dev-interface
3https://www.kernel.org/doc/Documentation/i2c/i2c-stub
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Three applications operate on top of physical and emulated
sensors in our example: (i) The Resense Recorder, (ii) Resense Re-
play, and (iii) a reader of an external application. The applications
act as follows: The Resense Recorder reads sensor values 1
and stores them for later use 2 . This allows for capturing events
in order to replay them later on. The Resense Replay module
can read the sensor values stored by the recorder 3 and replay
them through the emulated sensor 4 . We consider this process
a replay of an experiment. The external application reader can
access all sensors (the physical temperature sensor and the emu-
lated sensor) in the same way 5 .

The Resense Recorder and the Resense Replaymodule act
as a bridge between the physical sensors of an edge node and the
emulated sensors. Any application which consumes sensor data
can consume values from both, physical and emulated sensors,
since both types of sensors are exposed through device files. Our
current approach replays data at the same rate at which they
were captured. In future, we plan to support more fine grained
control over the rate of recording and replaying. Moreover, our fu-
ture work also includes time synchronization mechanisms across
edge nodes in order to provide reliable and accurate replaying of
sensor data. As a remark, the maximum number of physical and
emulated sensors per edge node is limited by the host operating
system as well as the node’s hardware.

2.2 Experiment Orchestration
In order to administrate a huge number of edge nodes and sen-
sors, Resense employs a Master/Slave approach. A visualization
of the interaction between master and slave nodes can be seen in
Figure 2. Users can control Resense through the graphical user
interface of the master node. From there, users can deploy sensor
data to sensor nodes, replay and record data, and monitor the
progress of experiments. For external applications it is transpar-
ent whether they read data which originates from physical or
emulated sensors.

Resense stores experiment setups pertaining to applications
in configuration files in order to reload and rerun experiments as
needed. An experiment consists of sensor data, edge nodes, emu-
lated sensors, and physical sensors. Listing 1 shows an example
configuration file. We first define the name of the experiment in
Line 1. Starting from Line 2, we provide the list of edge nodes
associated with the experiment. Each edge node has a unique
id (Line 4), an IP address or domain name (Line 5), and the user
name and password for remote access (Lines 6 and 7). Each edge
node may host many sensors listed starting from Line 8. Each
sensor has a unique id, an output type, and a sensor address. The
sensor id refers to a sensor contained in the data file associated
with the experiment. In our example, we connect two sensors
from the DEBS 2013 grand challenge.
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1 "experiment": "debs−2013",
2 "nodes": [
3 {
4 "edgeId": "edge−1",
5 "host": "192.168.1.3",
6 "user": "pi",
7 "password": "pi",
8 "sensors": [
9 {"sensorId": "ball", "type": ["GPS"], "address": 3},
10 {"sensorId": "referee_left", "type": ["GPS"], "address": 4}
11 ]
12 },{. . . }
13 ]
14 }

Listing 1: An excerpt of sample configuration file.

In order to run an experiment with Resense, users first create a
configuration file through the graphical user interface or load an
existing experiment configuration. Resense automatically splits
datasets associated with the experiment such that each result
file contains the data of one individual sensor declared in the
configuration file. The master node deploys the sensor data and
the node configuration to each edge node as needed. Each edge
node now creates the file descriptors for the emulated sensors ac-
cording to the configuration provided by the master node. Once
the deployment and setup are complete, the user can start the
experiment from the dashboard. Edge nodes will then replay sen-
sor data as described in Section 2.1 and shown in Figure 1. Users
can also pause, resume, stop, and restart experiments through
the dashboard. During execution, Resense monitors the progress
of the experiment and displays the status of sensors and edge
nodes as well as the currently replayed data.

3 DEMONSTRATION
We demonstrate Resense on a Raspberry Pi testbed as shown
in Figure 3. In our setup, the laptop machine acts as the master
node, five Raspberry Pis as edge nodes, and some of the edge
nodes are equipped to read data from physical sensors (a GPS,
an accelerometer, and couple of ultrasonic sensors).

In our demonstration, attendees can record sensor data, replay
the recorded data, and set up experiments with data from real-
world data sets. Thereby, users can combine physical and emu-
lated sensors installed onto our demonstration platform. Through
the Resense dashboard, users canmonitor edge nodes and sensors.
We further provide an example application which is independent
of Resense, reads data from emulated and physical sensors, and
streams the live-data to a visualization dashboard.

3.1 Real-World Testdata
As an example, we use the datasets of the DEBS 2013 Grand Chal-
lenge [13], which was recorded at a football match and contains
the speed, acceleration, and position of the players, the referees,
and the balls used during the match. We chose this dataset be-
cause it provides sensor values recorded at a high data rate. The
tracking frequency is 200Hz for players and of 2000Hz for the
ball. Players are tracked with two sensors located on their shoes.
Goal keepers are equipped with two additional sensors located at
their hands. Overall the dataset provides values from 37 sensors
with a total data rate of 15000 position events per second.

3.2 Demonstration Platform
The Raspberry Pi single board computer is our platform of choice
for this demo. Its cost effectiveness, its plethora of available con-
nection protocols as well as the fact that it is popular for sensor-
based research were the most important factors that lead to our

Figure 3: Resense demonstration setup.

decision. We use Raspberry Pi 3 Model B for our demonstration
and the latest version of the operating system that is available,
specifically version 2018-10-09 as of January 21, 2019.

For our demo, we choose to focus on the I2C protocol and the
i2c-stub kernel module to emulate sensors from file descrip-
tors. The protocol supports serial, 8-bit oriented, synchronous,
bidirectional data transfer. Synchronization of devices on the
bus uses a Master/Slave architecture. Moreover, I2C supports
multi-master configurations with collision detection. We chose
I2C over the other protocols that are available on a Raspberry Pi
board because of the simplicity of the protocol and the maturity
of the code of the kernel modules associated with it.

It is worthy of note that Resense is not tied to this demonstra-
tion platform. Resense runs on any GNU/Linux based operating
system and is agnostic to the hardware architecture. This allows
for running experiments with Resense on a large variety of hard-
ware architectures and helps to emulate sensors that lack driver
support for multiple architectures.

3.3 Demonstration Scenario
Figure 4 shows a screen shot of Resense’s UI. The dashboard has
three panels: a control panel on the left, a monitoring panel on
the center and a live-view panel on the right.

The control panel allows either for selecting an existing ex-
periment or creating a new one to be run. For each running
experiment, the panel shows the list of sensors involved and
the available controls. The controls depend on whether the sen-
sor is physical or emulated. Readings from physical sensors can
be stopped, resumed, or can be recorded (for replaying later).
For emulated sensors, their readings can either be stopped or
resumed. By default, all sensors are activated upon starting an
experiment. The monitoring panel displays statuses of current
recordings and experiments that are running. In particular, the
box for recordings shows details about sensors and data that is
being recorded. The box for each experiment shows progress,
number and type of sensors, number of edge notes, and details
about the sensors and the data being read. Finally, the live-view
panel shows time series data for sensor readings for currently
running experiments and allows to select specific sensor(s) from
which data should be rendered.

During the demonstration, the attendees will run an experi-
ment by selecting an existing configuration file (e.g., based on
the DEBS 2013 dataset) or by creating a new one. Attendees can
interactively control individual sensors and view readings in the
live-view panel. Attendees will also be able to create an experi-
ment involving available sensors, record sensor data, and replay
recorded data.
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Figure 4: Resense dashboard

4 RELATEDWORK
In the existing literature, Chernysov et al. [1] give an overview
on the topic of emulating and simulating IoT infrastructure. Ac-
cording to their work, IoT simulators are categorized into three
different sets: (i) perceptual emulation, emulates all of the lay-
ers of an IoT infrastructure, (ii) network emulation, focuses on
network properties and (iii) application level emulators, emu-
late workloads only on the application layer. To the best of our
knowledge, our work cannot be constrained to only these three
types because our implementation is capable of ingesting sensor
data at the kernel level of the host operating system. Thus, it is
fully transparent to external software that can itself be already
in one of these aforementioned categories.

In contrast to the work on IoT simulators [4, 5], our implemen-
tation differentiates between the edge nodes and the sensors and
focuses on emulating the sensors and reading from sensors. This
allows for more granularity while replaying sensor data and can
give a more detailed view of the experiment. While other solu-
tions [7] require a fixed full-stack emulation, our work provides
a mixed approach since it is able to integrate emulated as well as
physical sensors. This makes it easier for testing new physical
sensor architectures with existing ones.

Emulating sensors for conducting experiments have also been
studied using FPGAs [2, 11]. Usually, FPGAs are first designed
using a hardware description language (like VHDL/Verilog) and
later implemented into the actual hardware. Our solution reduces
the time and the cost involved in prototyping an experiment as
it does not depend on any specialized hardware.

5 CONCLUSIONS
In this paperwe showed how to emulate sensors to replay recorded
sensor data independent of the underlying hardware or software.
We presented the Resense framework that allows transparent
record and replay of sensor data and provides an easy to use soft-
ware for setting up and executing IoT experiments. We demon-
strated various features of Resense using real world sensor data,
a set of Raspberry Pis, and some physical sensors.
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ABSTRACT
Named Entity Recognition (NER) is a challenging problem in Nat-
ural Language Processing (NLP). Deep Learning techniques have
been extensively applied in NER tasks because they require little
feature engineering and are free from language-specific resources,
learning important features from word or character embeddings
trained on large amounts of data. However, these techniques
are data-hungry and require a massive amount of training data.
This work proposes Human NERD (stands for Human Named
Entity Recognition with Deep learning) which addresses this
problem by including humans in the loop. Human NERD is an
interactive framework to assist the user in NER classification
tasks from creating a massive dataset to building/maintaining a
deep learning NER model. Human NERD framework allows the
rapid verification of automatic named entity recognition and the
correction of errors. It takes into account user corrections, and
the deep learning model learns and builds upon these actions.
The interface allows for rapid correction using drag and drop
user actions. We present various demonstration scenarios using
a real world data set.

1 INTRODUCTION
Named Entity Recognition (NER) is a challenging problem in
Natural Language Processing (NLP). It corresponds to the ability
to identify the named entities in documents, and label them with
one of entity type labels such as person, location or organization.
Given the sentence "Trump lives in Washington DC", traditional
NER taggers would identify the mentions ’Trump’ and ’Wash-
ington DC’ to person and location labels, respectively. NER is an
important task for different applications such as topic detection,
speech recognition, to name a few.

However, there is a long tail of entity labels for different do-
mains. It is relatively simple to come up with entity classes that
do not fit the traditional four-class paradigm (PER, LOC, ORG,
MISC), such as, in Police report documents,weapon type is none of
the above. For these cases, labeled data may be impossible to find.

© 2019 Copyright held by the owner/author(s). Published in Proceedings of the
22nd International Conference on Extending Database Technology (EDBT), March
26-29, 2019, ISBN 978-3-89318-081-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Even, orthographic features and language-specific knowledge
resources as gazetteers are widely used in NER, such approaches
are costly to develop, especially for new languages and new do-
mains, making NER a challenge to adapt to these scenarios[10].

Deep Learning models have been extensively used in NER
tasks [3, 5, 9] because they require little feature engineering and
they may learn important features fromword or character embed-
dings trained on large amounts of data. These techniques from
Deep Learning are data-hungry and require a massive amount
of training data. While the models are getting deeper and the
computational power is increasing, the size of the datasets for
training and evaluating are not growing as much [14].

In this work, we address this problem by including humans
in the loop. Several methods have been proposed to improve
the efficiency of human annotations, for instance in computer
vision applications [11, 14] and NER tasks via active learning
[2, 7, 8, 12, 13]. Those methods are promising for NER but still
leave much room for improvements by assuming the annotation
cost for a document measured regarding its length, the number
of entities or the number of user annotation actions, for instance.
While these are important factors in determining the annotation
and misclassification cost, none of them provide the ability to
create and incrementally maintain deep learning models based on
iterative annotation. Indeed, all of them expect NER tasks to have
very few labels. Prodigy [1] is a promising annotation tool that
works on entity recognition, intent detection, and image classifi-
cation. It can help to train and evaluate models faster. However,
we could not explore Prodigy, since it is not free. In this work,
our goal is to provide an interactive framework called Human
NERD (stands for Human Named Entity Recognition with Deep
learning) to assist the user in NER classification tasks from cre-
ating a massive dataset to building/maintaining a deep learning
NER model. Human NERD provides an interactive user interface
that allows both the rapid verification of automatic named entity
recognition (from a pre-trained deep learning NER model) and
the correction of errors. In cases where there are multiple errors,
Human NERD takes into account user corrections, and the deep
learning model learns and builds upon these actions. The inter-
face allows for rapid correction using drag and drop user actions.
We need to point out that our framework consider two types
of user: reviewer and data scientist. The reviewer is a domain
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expert that can correct possible classification errors and enrich
the labels while data scientist focuses on tuning the models. In
the next Sections, we provide more details and a screencast is
available at YouTube1.

To the best of the authors’ knowledge, this work is the first that
simplifies the task of annotating datasets, minimizing supervision,
and improving the deep learning NER model, which in turn will
make the overall system more efficient. To achieve this end, we
first propose the framework in Section 2. Then, we present the
demonstration scenarios in Section 3. Section 4 draws the final
conclusions.

2 HUMAN NERD
For a large document collection, Human NERD keeps the user
engaged in the process of building a large named entity dataset.
The input to the framework is a set of documents to annotate and
a set of NER labels. The output is a set of annotated documents,
a deep learning model for entity recognition and the evaluation
metrics values that can estimate the operational cost during the
annotation time and the gain regarding model accuracy.

We incorporate deep learning NER models as the Entity Rec-
ognizer models from Spacy 2 framework into Human NERD to
reduce the cost of human time dedicated to the annotation pro-
cess. Indeed, these models have led to a reduction in the number
of hand-tuned features required for achieving state-of-the-art
performance [6]. Human NERD can also incorporate models such
as [3, 5].

Human NERD suggests a potential entity annotation in every
interaction loop, and the user as a reviewer can accept or reject
individual entities. He/she can also tag a new excerpt from the
document text with an entity that was not suggested by the NER
model. The feedback is then used to refine the model for the next
iteration and enrich the dataset. Our framework simplifies the
task of building large-scale datasets, minimizing supervision, and
improving the deep learning NER model, which in turn will make
the overall system more efficient.

The general workflow of Human NERD follows five main
steps (overview in Figure 1): (1) collecting a large set of unlabeled
documents; (2) the current NER model recognizes and annotates
entities in the document according to labels drawn from a given
set of entity classes L (i.e., person, location, among others); (3)
user as a reviewer can accept or reject individual entities; he/she
can also manually label the document according to L; (4) generat-
ing a deep learning NER model for each iteration; (5) estimating
the gain over the iterations and the loss, for improving the model
accuracy and the operational cost during annotation time, re-
spectively.

First step. Starting from a large pool of unlabeled documents
T = {t1, ..., tm } collected from different and heterogeneous re-
sources (as Twitter, Wikipedia, Police reports, among others),
where ti is a variable-length sequence of input symbols ti =
{w1, ...,wn }. A sequence of consecutive wi with the same la-
bel λj are treated as one mention of such label. Input symbols
are word tokens wi drawn from a given vocabulary V . Let L =
{λj : j = 1...q} denotes the finite set of labels in a learning
task. We aim at annotating ti with a sequence of output sym-
bols Y = {y1, ...,yp }. Output symbols are labels λj drawn from a
given set of entity classes L.

1https://youtu.be/KGJeWKO_3Xw
2https://spacy.io/

Figure 1: Overview of Human NERD. Given a set of doc-
uments for annotating as input, the system alternates be-
tween NER model classification and requesting user feed-
back through human tasks. The outcomes are the docu-
ments annotated to improve the NER model.

Second step. Human NERD acquires entity classes (i.e., per-
son, location, among others) for T from a deep learning NER
model as [3, 5] or using Spacy’s models (i.e., Entity Recognizer
model - which is trained using multilinear perceptron and con-
volutional network). The deep learning model is initially trained
with D = {(xi ,Yi ) : i = 1...m}, a set of labeled training exam-
ples xi , where Yi ⊆ L the set of labels of the i-th example. At
this step, the pre-trained model classifies the entity mentions
on T = {t1, ..., tm } using the labels described on L and outputs
O = (ti ,Yi ) : i = 1...m, where ti ∈ T and Yi ⊆ L the set of labels
of the i-th document.

Third step. Human NERD presents to the user an interactive
web-based annotation interface used for adding entity annota-
tions or editing automatic pre-annotations in O . As the entities
are labeled in O , users (as reviewers) then accept or reject these
to indicate which ones are true. Each document ti ∈ O is pre-
sented to one user. Thus no two users labeled the same document
at the same instant of time. This step outputs O with its user
corrections. Human NERD logs both the time elapsed during the
labeling process, and the number of labeling actions taken for
each document ti , i.e., it keeps track of actions like labeling an
entity or removing a label incorrectly assigned to an entity.

Fourth step. Based on the user corrections, the NER model
can learn and improve from O . In the interactive interface, the
user as a data scientist can demand Human NERD to incremen-
tally update the pre-trained deep NER model or build a new one
from O . At this step, the system logs the accuracy and loss over
the iterations of the model construction. These data are useful in
the next step.

Fifth step. By putting humans in the loop, Human NERD
has a gain, since the users help to improve the NER model by
validating a new massive training set over time. With such data,
we expect to increase the NER model accuracy and decrease its
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error in short-term. On the other hand, the drawback is the human
effort by adding entity annotations or editing pre-annotations
(third step). To estimate the framework loss, we measure the user
efforts for annotating the document regarding its length, number
of characters, number of entities or number of user annotation
actions (editing or adding new entities). As much the deep NER
model learns, Human NERD framework becomes more efficient
and minimizes the user supervision.

To measure the agreement between the deep NER model (sec-
ond step outputs) and the user (third step outputs), Human NERD
computes the kappa coefficient (k). Cohen’s kappa [4] measures
the agreement between two raters who each classifies N items
into L mutually exclusive categories.

k =
p0 − pe
1 − pe

(1)

such that

p0 =
|L |∑
i=1

nii
n

;pe =
1
n2

|L |∑
i=1

ni . × n.i ; (2)

where nii , n.i and ni . are the number of entities: labelled by
the NER model and the user in category i , labelled by the NER
model in category i , labelled by the user in category i , respectively.
Let n be the total number of entities in T . The closer k is to one,
the greater the indication that there is an agreement between
the model and the user (as a reviewer). On the other hand, if k is
closer to zero, the greater the chance of the agreement be purely
random. We expect to increase the NER model accuracy over
time and to improve the kappa coefficient to a value as close to
one as possible.

3 DEMONSTRATION DETAILS AND
SCENARIOS

We cover various scenarios that demonstrate the usefulness of
Human NERD. An interactive interface is the access point for the
user to: (i) upload several unlabeled documents; (ii) validate each
individual entity annotation from the output generated by a pre-
computed model executed over those documents; The user can
alsomanually label new entities; (iii) re-build the deep NERmodel
to learn from the annotated documents after the user feedback;
and (iv) estimate the gain and loss regarding the improved NER
model and the human efforts.

Human NERD considers two types of user: reviewer and data
scientist. The former can perform only the task (ii) described
above. The later can perform (i), (iii) and (iv). Moreover, the data
scientist can remove or add new labels and texts into L and T ,
respectively.

To examine the quality of our framework, we use a real dataset
with unlabelled texts from Police reports. The dataset contains
real-world stories in Portuguese language regarding homicides
from Fortaleza city (Brazil). We started by using a pre-computed
NERmodel calledWikiner from Spacy framework which includes
only four labels: PER, LOC, ORG, and MISC. We removed MISC
and added more than 20 label classes like firearm, melee weapon,
wrongful death, among others. After that, the Wikiner model
classified the reports according to the labels, and the expert re-
viewers by means of a web interface added and edited entity
annotations. From those reviews, Human NERD created a new
deep learning NER model for police domain. This data example
confirms that Human NERD can be applied in different contexts
and languages.

Figure 2: User (as a reviewer) validates the documents an-
notated by the pre-trained NER model.

It is worth to mention that Human NERD improved Wikiner
model with the human help, including its extension for covering
new labels and a new data domain. The demonstrated scenarios
are as follows.

A. Reviewer in the Loop
HumanNERDputs the pre-trainedmodel and the human in the

loop, so they can actively participate in the process of improving
the NER model, using what both know. The model learns as the
user goes, based on the labels the user assigns to text excerpts.
As shown in Figure 2, the reviewer as a user interacts with the
framework through a click-and-drag interface. The framework
initially presents a set of documents annotated by the pre-trained
model according to a set of label classes L. Each label receives a
different color for better visualization.

The reviewer validates one document per time. If he/she agrees
with the annotations of the current document (shown in Figure 2),
he/she saves the document. HumanNERD appends each validated
document in a historical dataset, which will be used to improve
the deep learning NER model. The reviewer can reject individual
entities, in this case, he/she can click on the "x" button. If the
reviewer identifies an entity not annotated by the model, he/she
can manually label it. In this case, first, he/she should click on the
class label (on top of the Figure 2), then the class will appear in
evidence. After that, the reviewer selects the sequence of words
in the document to annotate. Most annotation tools avoid making
any suggestions to the user, to prevent biasing the annotations.
Human NERD takes the opposite approach: demands the user to
annotate but as little as possible considering that the NER model
is continuously improving over time.

B. Data scientist in the Loop
Human NERD offers a full view of the imported or already

trained NER models to the data scientist (Figure 3). A model
is active if the framework is currently using it to annotate the
documents during the user review (the previous scenario). The
framework reports the status of review and train processing.
The former corresponds to how many documents the reviewer
already validated, and the later to how many epochs already
finished during the model training. The data scientist can request
the framework to train, duplicate, remove, edit the settings and
visualize the statistics of NER models which were imported or
trained by the framework.
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Figure 3: Data scientist visualization.

Figure 4: Human NERD enables the data scientist to train
a model.

Figure 4 shows the interface presented to the data scientist
which enables him/her to train a new model or update a previous
one based on the texts validated by the reviewer. Human NERD
requires for this functionality the inputs: number of iterations
(epochs), optimizer, dropout rate, and learning rate. When the
data scientist asks to edit the model settings, he/she can remove
or add new label classes.

When the data scientist requests the visualization of statis-
tics, Human NERD framework reports the gain, since we expect
that the NER model improves over time, and the user efforts for
annotating documents. Figure 5 summarizes those statistics col-
lected over time when Human NERD trains a model or during
documents annotation/validation performed by the reviewer.

4 CONCLUSION
In this demonstration, we proposed a framework called Human
NERD to improve named entity recognition models by using a
human in the loop. Human NERD relies on deep neural architec-
tures for NER tasks that are free from language-specific resources
(e.g., gazetteers, word clusters id, part-of-speech tags) or hand-
crafted features (e.g., word spelling and capitalization patterns).
We validate Human NERD framework with a real data set from

Figure 5: Statistics reports: the model gain and loss.

Police reports in the Portuguese language, and we built upon
Wikiner from Spacy a new deep learning NER model for this do-
main. A future work would be to improve the deep learning NER
models by using ensemble techniques. Another direction is to
provide a collaborative framework to allow multiple concurrent
active models and reviewers.
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ABSTRACT
This paper demonstrates CURARE, an environment for curat-
ing and assisting data scientists to explore raw data collections.
CURARE implements a data curation model used to store struc-
tural and quantitative metadata semi-automatically extracted. It
provides associated functions for exploring these metadata. The
demonstration proposed in this paper is devoted to evaluate and
compare the effort invested by a data scientist when exploring
data collections with and without CURARE assistance.

1 INTRODUCTION
The emergence of new platforms that produce data at different
rates, is adding to the increase in the amount of data collections
available online. Open data initiatives frequently release data
collections as sets of records with more or less information about
their structure and content. For example, different governmental,
academic and private initiatives release open data collections
like Grand Lyon in France1, Wikipedia 2, Stack Overflow 3 and
those accessible through Google Dataset Search 4. Releases often
specify minimum "structural" metadata as the size of the release,
the access and exploitation license, the date, and eventually the
records structure (e.g., names and types of columns). This brings
an unprecedented volume and diversity of data to be explored.

Data scientists invest a big percentage of their effort processing
data collections to understand records structure and content and
to generate descriptions. Useful descriptions should specify the
values’ types, their distribution, the percentage of null, absent
or default values, and dependencies across attributes. Having
this knowledge is crucial to decide whether it is possible to run
analytics tasks on data collections directly or whether they should
be pre-processed (e.g., cleansed). Therefore, several questions
should be considered by a data scientist. For example, whether
one or more data collections can be used for target analytics

1https://www.metropolis.org/member/grand-lyon
2https://www.wikidata.org/wiki/Wikidata:MainPaдe
3https://www.kaggle.com/stackoverflow/datasets
4https://toolbox.google.com/datasetsearch
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2019, ISBN 978-3-89318-081-3 on OpenProceedings.org.
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tasks; whether they are complementary or not, or whether they
can be easily integrated into one data set to be analyzed; whether
certain attributes have been cleaned, computed (e.g., normalized)
or estimated. Keeping track of cleansing changes is important
because such operations can bias certain statistics analysis and
results.

Therefore, the data scientist must go through the records and
the values exploring data collections content like the records
structure, values distribution, presence of outliers, etc. This is
a time consuming process that should be done for every data
collection. The process and operations performed by the data sci-
entist are often not described and preserved, neither considered
as metadata. Thus, the data scientist effort cannot be capitalized
for other cases and by other data scientists.

Curation tasks include extracting explicit, quantitative and
semantic metadata, organizing and classifying metadata and pro-
viding tools for facilitating their exploration and maintenance
(adding and adjusting metadata and computing metadata for new
releases) [3, 4, 6]. The problem addressed by curation initiatives is
to address the exploration of data collections by increasing their
usefulness and reducing the burden of exploring records man-
ually or by implementing ad-hoc processes. Curation environ-
ments should aid the user in understanding the data collections’
content and provide guidance to explore them [1, 2, 5, 8].

Our work focuses on (semi)-automatic metadata extraction
and data collections exploration which are key activities of the cu-
ration process. Therefore, we propose a data collections’ curation
and exploration environment named CURARE.

CURARE provides tools in an integrated environment for ex-
tracting metadata using descriptive statistics measures and data
mining methods. Metadata are stored by CURARE according to
its data model proposed for representing curation metadata (see
Figure 1). The data model organizes metadata into four main
concepts:

• Data Collection: models structural metadata concerning
several releases like the number of releases it groups, their
aggregated size, the provider, etc.

• Release: models structural metadata about the records of
a release (file) including for example the columns’ name
in the case of tabular data, the size of the release, the date
of production, access license, etc.
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Figure 1: CURARE Model

• Release view: models quantitative metadata of the release
records of a data collection. For example, the number of
columns and the number of records in a release. A release
view can store, for every column in all the records of a re-
lease, its associated descriptive statistics measures (mean,
median, standard deviation, distribution, outlier values).

• View: models quantitative aggregated metadata about the
releases of a data collection.

CURARE also provides functions for exploring metadata and
assist data analysts determining which are the collections that
can be used for achieving an analytics objective (comparing sev-
eral collections, projecting and filtering their content). Rather
than performing series of self-contained queries (like keyword
search or relational ones when possible), a scientist can stepwise
explore into data collections (i.e., computing statistical descrip-
tions, discovering patterns, cleaning values) and stop when the
content reaches a satisfaction point.

The demonstration proposed in this paper is devoted to evalu-
ate and compare the effort put by a data scientist when exploring
data collections with and without CURARE assistance. Through
a treasure seeking metaphor we ask users to find cues within non
curated Stack Overflow releases. Then, we compare the effort for
finding cues by exploring metadata extracted by CURARE. The
tasks are intended to show the added value of using metadata
to explore data collections for determining whether they can be
used for answering target questions.

The remainder of the paper is organized as follows. Section
2 describes the general architecture of CURARE and the extrac-
tion of structural and quantitative metadata. Section 3 describes
the demonstration scenario for CURARE and the tasks used for
measuring user experience during the demo. Section 4 concludes
the paper and discusses lessons learned from the demonstration.

2 CURARE
The curation tasks implemented by CURARE are coordinated
through a general iterative workflow consisting in three steps:
(i) data collections’ harvesting (manually or automatically) and
preservation; (ii) structural and statistical meta-data extraction;
(iii) exploration. The workflow is iterative because data collec-

Figure 2: CURARE data curation workflow

tions can be updated with new releases and therefore releases

are harvested recurrently. Similarly, as a result of curated data
collections exploration, new metadata can be defined and the
processing step can be repeated to include new metadata and
store them.

2.1 General architecture
Figure 3 shows the architecture of CURARE consisting of ser-
vices that can be deployed on the cloud. The current version of
CURARE are Azure services running on top of a data science vir-
tual machine. The services of CURARE are organized into three
layers that correspond to the phases of the curation workflow.
They are accessible through their Application Programming In-
terfaces (API’s). Services can be accessed vertically as a whole
environment or horizontally from every layer.

• The first layer is devoted to harvesting data collections
and extracting structural metadata like the size, the prove-
nance, time and location time-stamps.

• The second layer addresses distributed storage and access
of curated data and metadata.

• The third layer provides tools for extracting quantitative
metadata by processing raw collections.

The structural and quantitative metadata of CURARE are orga-
nized into four types of persistent data structures implementing
CURARE data model (i.e., data collection, release, view and release
view). According to the CURARE approach, a data collection con-
sists of several sets of data released at a given moment. For ex-
ample, Stack Overflow is a data collection consisting of packages
of records (i.e., releases) produced periodically. A Stack Overflow
release provides a kind of snapshot of the whole interactions
happening in this social network. It is made available at some
point in time. A release view, and a view, are data structures that
provide an aggregated and quantitative perspectives of resp. a
data collection and its several associated releases.

These data structures are then explored using ad-hoc opera-
tors within semi-declarative expressions or programs instead of
directly exploring raw data collections. For example, is a release
included in another? To which extent a release has new records
with respect to others? Which is the percentage of missing values
of the releases of a data collection?

2.2 Extracting structural metadata
The data collection model shown in the left hand side of Figure
1 provides concepts for representing data collections as sets of
releases of raw data. Each release consists of a set of items (e.g.
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Figure 3: General functional architecture of CURARE

records). The data collections model is used by the data harvest-
ing and cleansing services for organizing structural and context
metadata related to collections (provider, objective, URL, item
structure).

The demonstrated version of CURARE provides a data col-
lection upload facility for CSV files, which is an explicit data
harvesting process. During this process, the structure, the size
and release date of the file are extracted automatically. Then,
other metadata for example the URI of the provider and the type
of license can be provided by the data scientist by filling a for-
mulary.

As said before, metadata are stored by CURARE. Thus, in the
exploration phase a data scientist can search for releases of a
given size, with a "open source" licence, or produced by a spe-
cific provider, expressing queries or executing explicit exported
methods.

2.3 Extracting quantitative metadata
The viewmodel of CURARE shown in the right hand side of Figure
1 provides concepts for representing quantitative and analytic
aspects of the releases of a data collection. For instance, statistics
of the content including the distribution of the values of each
attribute across the items of a release, missing values, null values.

Depending on the attribute type (only atomic types are con-
sidered for statistics) the strategies for computing measures can
change. CURARE first defines for every attribute in a tabular
file, for example, its type and it approximately discovers possible
null, absent and default values. Then, it computes description
statistics measures (mean, mode, median, standard deviation,
distribution) of the values of every attribute of the structure of
the data collection in tabular format. It interacts with the data
scientist to decide what to do with those attributes with a domain
containing "dirty" values. Should these values be excluded from
the computation? Or how can they be adjusted if they should
be considered? If values are modified, should CURARE create
a new release? Should it be preserved completely tagging the
modified values as modified and indicating the applied formula
or procedure. This is specified by the data scientist and managed
by CURARE. For computing statistics of string values, CURARE
processes the strings and creates frequency matrices and inverted
indexes for the terms.

CURARE processes collectionswithmany attributes and records
that can be somehow costly depending on the tasks the data is
used for, and the data volume. Thus, CURARE uses a Spark envi-
ronment for computing statistics measures that sits on the data
science virtual machine 5. This strategy can be related to existing
approaches like the one proposed in [7].

3 DEMONSTRATION OVERVIEW
The demonstration of CURARE uses a Jupyter notebook prepared
for performing the tasks intended to test the use of metadata (i.e.,
entities of the CURARE data model) for exploring data collec-
tions. We use the Azure Notebooks environment 6 to run the
demonstration. The back-end of the demonstrated version uses
the Python data science libraries, nltk 7 for dealing with the pro-
cessing of string typed attributes. We use ATLAS 8, the clustered
public service of MongoDB for storing metadata associated to
raw data collections.

The demonstration provides 3 releases of Stack Overflow 9

made available between the 1st. and 4th. January 2018 each con-
sisting in five files "badges", "comments", "posts", "users" and
"votes". These files range between ca. 300 KB to 20 MB.

CURARE extracts structural metadata and stores them as Data
Collection documents according to its data model. It extracts
quantitative metadata and stores them as Views documents. For
the demonstration purposes we use a notebook that shows the
process and the results. The releases used in the demonstra-
tion are processed and the results are stored in Atlas. The result
weights 126,5 MB in Mongo and the data collection of structural
metadata 9,5 KB.

Demonstration scenario. The demonstration of CURARE shows
in which situations it can be useful to have an integrated curation
and exploration environment. This can be evaluated through
a set of tasks proposed by the demonstration scenario with a
game called The cure challenge. The objective is to compare the
effort when performing tasks to explore Stack Overflow releases
manually and with CURARE.
5https://azure.microsoft.com/en-us/services/virtual-machines/data-science-
virtual-machines/
6https://notebooks.azure.com
7https://www.nltk.org
8https://www.mongodb.com/cloud/atlas
9https://data.stackexchange.com/stackoverflow/query/new
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Figure 4: Assessment dashboard results of the demonstration scenario

When the game is activated it gives access to raw data col-
lections and to CURARE metadata. The game consists of two
curation matches where a data scientist has to perform the fol-
lowing tasks.

(1) Data collections exploration tasks:
• Discover the release of the Stack Overflow data collec-
tion with the best quality. That is, the one with less
missing, null and default values in the posts.

• Compare the releases size in terms of number of records.
• Compare releases in terms of values distribution for a
given attribute.

• Compare releaseswith respect to the topic by comparing
terms of a given attribute.

(2) Discover the attribute(s) of the Stack Overflow posts that
can be used to compute the popularity of the answers and
the reputation of the author (stared answers and authors).

(3) Discover the attribute(s) that can be used to identify the
most trendy topics addressed in the release. Will missing,
null, default values bias the observation of the trends?

(4) Choose the attributes that can be used as sharding keys to
fragment the release using a hash based and an interval
based strategy.

In the first match the tasks are done by exploring directly the
raw data collections. The second using CURARE’s exploration
facilities. For both matches a dashboard shown in Figure 4 auto-
matically measures the degree of effort given by comparing with
the accuracy/precision and correctness of the answers against
time used for providing an answer. These measures are completed
with an explicit score for every task given by the data scientist
(one star low effort, three stars high effort).

Measuring data exploration effort. The experiment is assessed
by comparing the evaluation results of the tasks performed in
the two matches. We evaluate:

• Whether the metadata in views provide representative
information of the raw content of a release (Q1 and Q2)

• How easy it is to see data collection quality in terms of
consistency of the structure, the degree of missing, null
and absent values of the attributes (Q2)

• Usefulness of views for exploring the data collections to
determine which kind of analytics questions they can an-
swer. (Q3, Q4)

4 CONCLUSION AND RESULTS
We demonstrate CURARE that implements a data curation ap-
proach integrating metadata describing the structure, content
and statistics of raw data collections. Thereby raw data collec-
tions can be comfortably explored and understood for designing
data centric experiments through exploration operations. The
demonstration shows the usefulness of CURARE by measuring
the effort of a data scientist for performing exploration tasks
in predefined Stack Overflow releases, used as demonstration
examples.
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ABSTRACT
We present SparkER, an ER tool that can scale practitioners’
favorite ER algorithms. SparkER has been devised to take full ad-
vantage of parallel and distributed computation as well (running
on top of Apache Spark). The first SparkER version was focused
on the blocking step and implements both schema-agnostic and
Blast meta-blocking approaches (i.e. the state-of-the-art ones); a
GUI for SparkER, to let non-expert users to use it in an unsuper-
vised mode, was developed. The new version of SparkER to be
shown in this demo, extends significantly the tool. Entity match-
ing and Entity Clustering modules have been added. Moreover, in
addition to the completely unsupervised mode of the first version,
a supervised mode has been added. The user can be assisted in
supervising the entire process and in injecting his knowledge
in order to achieve the best result. During the demonstration,
attendees will be shown how SparkER can significantly help in
devising and debugging ER algorithms.

1 INTRODUCTION
Entity Resolution (ER) is the task of identifying different repre-
sentations (profiles) that pertain to the same real-world entity. ER
is a fundamental and expensive task for Data Integration [2]. The
naïve solution of ER (i.e. comparing all profiles to each others)
is impracticable when the data volume increases (e.g. Big Data),
thus blocking techniques are employed to cluster similar records
and to limit the number of comparisons only among the profiles
contained in the same block.

In a real-world scenario, to identify a blocking strategy (i.e. the
blocking key) yielding high recall and precision is a hard task [4].
In particular, in the Big Data context, schema-aware techniques
have two main issues: (i) schema alignment, hardly achievable
with a high heterogeneity of the data; (ii) labeled data to train
classification algorithms, or human intervention to select which
attributes to combine. To overcome these problems, the schema-
agnostic approach was introduced [10]: each profile is treated as
a bag of words and schema-information is ignored. For instance,
Schema-Agnostic Token Blocking considers as blocking key each
token that appear in profiles, regardless of the attribute in which
it appears (Figure 1(b)). However, schema-agnostic methods pro-
duce a very low precision.

© 2019 Copyright held by the owner/author(s). Published in Proceedings of the
22nd International Conference on Extending Database Technology (EDBT), March
26-29, 2019, ISBN 978-3-89318-081-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

So, to mitigate this problem, they are typically coupled with
meta-blocking [6, 10, 13]. The goal of meta-blocking is to restruc-
ture a blocking collection by removing least promising compar-
isons. This is achieved in the following way: profiles and compar-
isons are represented as nodes and edges of a graph, respectively;
each node is connected to another one if the profiles co-occurs
in at least one block. Then, the edges are weighted on the basis
of the co-occurence of its adjacent profiles and for each profile
a threshold is computed. Finally, the graph is pruned removing
the edges which have a weight lower than the threshold. A toy
example is shown in Figure 1(c): each edge is weighted counting
the co-occurring blocks of its adjacent profiles, and is retained if
its weight is above the average. The dashed lines are the removed
comparisons.
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   title = {SparkER: parallel Blast}
   author = {Luca Gagliardelli}
   year = {2017}
}

@bookchapter {
   title = {Blast: loosely schema blocking},
   author = {Giovanni Simonini}
   year = {2016}
}
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Figure 1: Schema-agnostic (meta-)blocking process.

In [13] we proposed Blast, which introduces the notion of loose
schema information extracted from the data and composed of: (i)
attribute partitioning and (ii) attribute partition entropy (Figure
2(a)). The idea beyond attribute partitioning is that more values
two attributes share, more are similar, thus similar attributes are
put together in the same partition. Then, the meta-blocking takes
into account the generated attributes’ partitions: the blocking
key is composed by tokens concatenated to partition IDs; in
this way, the token "Simonini" (Figure 2(b)) is split into two
tokens, disambiguating "Simonini" as author ("Simonini_1"), and
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"Simonini" as cited author; note that "Simonini_1" do not generate
any block, since it appears only in p2.
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Figure 2: Meta-blocking with loose schema information.

Attribute partition entropy computes the entropy of each clus-
ter and gives more importance to the profiles that co-occurs in
blocks generated from clusters with high entropy. The idea is
that finding equalities inside a cluster with a high variability of
the values (i.e. high entropy) has more value that finding them
in a cluster with low variability (i.e. low entropy). The attribute
partition entropy is used in order to improve the edges weights:
each edge of the meta-blocking graph is re-weighted according
to the entropy associated to the block that generates it (i.e. the
entropy of the partition from which the blocking key belongs), as
shown in Figure 2(c). This affects the meta-blocking by helping to
remove more superfluous comparisons than the ones removed by
schema-agnostic blocking (the two retained red edges of Figure
1(c) are now removed).

At the end of the pruning step, the meta-blocking produces
the candidate pairs, i.e. pairs of profiles related to the same entity.
Then, these pairs have to be resolved, i.e. it is necessary to decide
if a pair is a true match or not, this task is called entity match-
ing. Several techniques can be applied to perform this task, e.g.
resolution functions, classifiers, crowdsourcing, etc. Finally, , the
retained matching pairs are clustered (entity clustering) in order
to group together all the profiles associated to the same entity.

Several tools were proposed to cover the full Entity Resolution
stack [9, 11]. In particular, JedAI [11] is more devoted to work
with semi-structured data, a schema-agnostic approach, and the
entity matching phase uses only unsupervised techniques (i.e. no
labeled data are required). In contrast, Magellan [9] is meant to
work with structured data and a supervised approach, so the user
has to align the schema, to provide matches examples to perform
entity matching, and supervise each step. Moreover, JedAI covers
the entity clustering step, while Magellan not.

Nevertheless, none of these tools exploits the benefits of dis-
tributed computing. Works on the meta-blocking parallelization
have been proposed [5], but they are implemented using Hadoop
MapReduce, that is not the best paradigm to exploit modern clus-
ter architectures [3, 12]. SparkER1 is an Entity Resolution tool
for Apache Spark2 designed to cover the full Entity Resolution
stack in a big data context.

Our approach. The first SparkER version [14] was focused on
the blocking step and implements usingApache Spark both schema-
agnostic [10] and Blast [13] meta-blocking approaches (i.e. the
1https://github.com/Gaglia88/sparker
2http://spark.apache.org
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Figure 3: SparkER architecture.

state-of-the-art ones). The description of the algorithms that we
devised for Apache Spark (and any MapReduce-like system) can
be found in our technical report [15]. Also, we developed a GUI
for SparkER to let non-expert users to use it in an unsupervised
mode.

The new version of SparkER that will be shown in this demo,
extends significantly the tool. Entity matching and entity clus-
tering modules have been added. Moreover, in addition to the
completely unsupervised mode of the first version, a supervised
mode has been added. The user can be assisted in supervising the
entire process and in injecting his knowledge in order to achieve
the best result.

In the following Section 2, we present the main modules that
compose SparkER and in Section 3 the process debugging. Fi-
nally, in Section 4 we present the demonstration for the EDBT
attendees.

2 SPARKER
SparkER is a distributed entity resolution tool, composed by dif-
ferent modules designed to be parallelizable on Apache Spark.
Figure 3 shows the architecture of our system. There are 3 main
modules: (1) blocker: takes the input profiles and performs the
blocking phase, providing as output the candidate pairs; (2) en-
tity matcher takes the candidate pairs generated by the blocker
and label them as match or no match; (3) entity clusterer takes
the matched pairs and groups them into clusters that represents
the same entity. Each of these modules can be seen as black box:
each one is independent from the other.

2.1 Blocker
Figure 4 shows the blocker’ sub-modules implementing the
Loose-Schema Meta-Blocking method described in the introduc-
tion.

Token
Blocking

Block purging 
and filtering

Meta-
blocking

Input
Data

Candidates
pairs

Attribute 
partitioning

Entropy 
extractor

Loose schema 
generator

(optional)

Figure 4: Blocker module

Loose SchemaGenerator-Attribute Partitioning: attributes
are partitioned in cluster using a Locality-sensitive Hashing (LSH)
based algorithm. Initially, LSH is applied to the attributes val-
ues, in order to group them according to their similarity. These
groups are overlapping, i.e. each attribute can compare in multi-
ple clusters. Then, for each attribute only the most similar one is
kept, obtaining pairs of similar attributes. Finally, the transitive
closure is applied to such attributes pairs and then attributes
are partitioned into nonoverlapping clusters (Figure 2(a)). All
the attributes that do not appear in any cluster are put in a blob
partition.
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Loose Schema Generator-Entropy Extractor: computes the
Shannon entropy for each cluster.

Block Purging and Filtering : the block collection is pro-
cessed to remove/shrink its largest blocks [10]. Block Purging
discards all the blocks that contain more than half of the profiles
in the collection, corresponding to highly frequent blocking keys
(e.g. stop-words). Block Filtering removes each profile from the
largest 20% blocks in which it appears, increasing the precision
without affects the recall.

Meta-Blocking: Finally, the meta-blocking method [10, 13]
introduced in the introduction is applied. The parallel meta-
blocking, implemented on Apache Spark, is inspired by the broad-
cast join: it partitions the nodes of the blocking graph and sends
in broadcast (i.e, to each partition) all the information needed to
materialize the neighborhood of each node one at a time. Once
the neighborhood of a node is materialized, the pruning function
is applied.

The output of the blockermodule are profile pairs connected
by an edge, which represent candidate pairs that will be processed
by the entity matcher module.

2.2 Entity Matcher and Clusterer
Regarding Entity Matching, any existing tool can be used. In
the demo we will show the one implemented in Magellan [9].
The Entity Matcher producesmatching pairs of similar profiles
with their similarity score (similarity graph). The user can select
from a wide range of similarity (or distance) scores, e.g.: Jaccard
similarity, Edit Distance, CSA [1].

The Entity Clusterer receives as input the similarity graph,
in which the profiles are the nodes and the matching pairs repre-
sent the edges, and partition its nodes into equivalence clusters
such that every cluster contains all profiles that correspond to
the same entity. Several entity clustering algorithms have been
proposed in literature [8]; at the moment, we use the connected
component algorithm3, based on the the assumption of transi-
tivity, i.e., if p1 matches with p2, p2 matches with p3, then p1
matches with p3. At the end of this step, the system produces
clusters of profiles: the profiles in the same cluster refer to the
same real-world entity.

3 PROCESS DEBUGGING
The tool can work in a completely unsupervised mode, i.e. the
user can use a default configuration and performs the process on
its data without taking care of the parameters tuning. Otherwise,
the user can supervise the entire process, in order to determine
which are the best parameters for its data, producing a custom
configuration. Given the iterative nature of this process (e.g. the
user try a configuration, if it is not satisfied changes it, and repeat
the step again), it is not feasible to process the entire input data,
as the user should waste too much time. Thus, it is necessary to

3This approach is implemented by using the GraphX library of Spark (https://spark.
apache.org/graphx/) that natively implement the connected component approach.

sample the input data, reducing the size. The main problem is to
take a sample that represents the original data, and also contains
matching and non matching profiles. This problem was already
addressed in [9], where the authors proposed to pick up some
random K profiles PK , then for each profile pi ∈ PK pick up k/2
profiles that could be a match (i.e. shares a high number of token
with pi ) and k/2 profiles randomly. K and k are two parameters
that can be set by the user based on the time that she wants to
spend (e.g. selecting more records requires a higher computation
time).

Each step can be assessed using precision and recall, if a
ground-truth is available; otherwise the system selects a sample
of the generated profile pairs (e.g. pairs after blocking, matching
pairs after matching, etc.) and shows them to the user who, on the
basis of his experience evaluates whether the system is working
well or not.

In the blocker each operation (blocking, purging, filtering,
and meta-blocking) can be fine tuned in order to obtain better
performances, e.g. the purging/filtering are controlled through
parameters that can change the aggressiveness of filters, or the
meta-blocking can use different types of pruning strategies, etc.
Moreover, if the Loose Schema Blocking is used, it is possible to
see how the attributes are clustered together, and how to change
the clustering parameters in order to obtain better clusters.

In the entity matching phase, it is possible to try different
similarity techniques (e.g. Jaccard, cosine, etc.) with different
thresholds.

At present no tuning activity is possible in the clustering step
since the connected component algorithm used does not have
any parameters. At the end of the process, the system allows to
explore the generated entities and to store the obtained configu-
ration. Then, the optimized configuration can be applied to the
whole data in a batch mode, in order to obtain the final result.

4 DEMONSTRATION OVERVIEW
During the demonstration, participants will explore the features
of our system on the Abt-Buy dataset4. It contains 2,000 products
extracted from Abt.com and Buy.com catalogs, denoted respec-
tively in red and blue. The dataset comes with a ground-truth
that allows to analyze the performances of each SparkER step.
Also, different datasets can be used5 during the demonstration.

In this demowe focus on showing the attribute partitioning un-
supervised/supervised step, the use of Attribute Partition Entropy
was illustrated in our previous paper [7] and the meta-blocking
step including entropy.

The tool displays the attributes partitions, recall/precision,
the number of blocks (blocking keys) generated, the number of
candidate pairs in the blocks, and the number of false positives
(i.e. the pairs that are in the ground-truth but are lost during the
blocking process) obtained after blocking. Through the interface
it is possible to modify the clustering threshold and other param-
eters (Advanced settings) which influence the algorithm in a more
marginal way.

We start setting the threshold to the maximum value (1) e.g a
schema-agnostic token blocking is applied and all the attributes
fall in the same blob cluster (Figure 6(a)). Then the user decreases
the threshold (0.3) and looks at what happens (Figure 6(b)). Two
clusters are created, representing, respectively the name with the
4https://dbs.uni-leipzig.de/en/research/projects/object_matching/fever/
benchmark_datasets_for_entity_resolution
5The datasets are available at: https://sourceforge.net/projects/sparker/files/
datasets/
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Figure 6: Process debugging. The figure shows how it is possible to debug the blocking phase.

description, and the prices of the products. However, we see how
precision slightly increases but the number of candidate pairs
has been reduced.

Now, the user try to modify the clusters, as apparently separat-
ing the attributes that refer to the name from those which refer
to the description of products (Figure 6(c)) seems a good idea.
He looks at the result and sees that unfortunately the number of
false positive increases.

By theDebug button it is possible to understandwhere the false
positives come from (Figure 6(d)). The tool shows the list of false
positive pairs (i.e. pairs that are in the ground-truth but are not
present after the blocking). By clicking on a pair, its profiles and
shared blocking key are shown and the user can understand why
this pair was lost. In the example we can see that the lost pairs
match on blocking keys referring to the name and description
attributes. So, partitioning descriptions and names was a wrong
choice and the automatic solution proposed by the tool was better
(Figure 6(b)). Moreover, it suggests that the choice of partitioning
the attributes on the bases of their names (i.e. exploting schema
information) can be wrong.

Finally, Figure 6(e) shows the debugging of the meta-blocking
phase, with the Entropy’s values obtained by the Entropy Ex-
tractor module. We can see a large decrease in the number of
candidate pairs w.r.t. 6(b) thus proving the effectiveness of our
technique.
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ABSTRACT
Time Series (TS) data are ubiquitous in enormous application
fields, such as medicine, multimedia, and finance. In this paper,
we present the demonstration with SE4TeC: A Scalable Engine
for efficient and expressive Time Series Classification, which is
applicable to certain fields in Big Data context, where the TS fea-
tures and their extraction process should be interpretable. SE4TeC
improves the state of the art solutions by proposing a scalable
and highly efficient method to classify TS based on characteris-
tic subsequences (i.e., shapelets). We explain the techniques we
adopt, and show how to use SE4TeC for exploring the real-life
datasets in medical diagnosis and in industrial troubleshooting.

1 INTRODUCTION
Tony is informed unhealthy heart status on the basis of his elec-
trocardiogram (ECG) during a medical diagnosis. An experienced
doctor can easily correlate the abnormal ECG with the diseases,
then explain to Tony the symbolic abnormality in the ECG and
the relevant treatment. Nowadays, Machine Learning technique
can partly replace the role of an experienced doctor and do the
diagnosis very accurately. In Tony’s case, the electrical activity
of the heart from physiological sensor is collected as Time Series
(TS). From the perspective of the machine, the diagnosis can be
considered as a Time Series classification (TSC) problem.

The classical approaches [1] on TSC problems are usually
based on the statistical features extracted from time series, such
as mean, standard deviation of subsequences, which are assumed
to represent the global characteristics of time series. Intuitively,
they get very superficial information with low noise tolerance.
On the basis of solving these limitations, the Shapelet approach
[12] has attracted great interest over the past years, owing to its
high discriminative feature and good interpretability. However,
extracting shapelets from data series has a large computation
cost. Even for small sized datasets, the algorithm can take days.
This is mainly due to the repeated similarity search between a
sub-sequence (i.e., a candidate shapelet) and TS instances in the
database. Some typical speed-up techniques (i.e., indexing [11],
lower-bounding [6] and early abandoning [12]), introduce al-
ways extra parameters, which is difficult to operate without prior
knowledge. Some low-dimensional representation methods have
also been proposed, such as Piece-wise Aggregate Approximation
(PAA) [4], which computes the mean of each subsequence of time
series in a given length, and transforms the raw data in coarse-
grained sub-components. Symbolic Aggregate approXimation
(SAX) [5], transforms subsequences of raw time series into value-
characterized symbols, which is eligible for a hierarchic indexing

© 2019 Copyright held by the owner/author(s). Published in Proceedings of the
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iSAX [2] to accelerate similarity search. Nevertheless, scalability
remains the bottleneck.

Our work is biased towards raw time series processing which
has a higher accuracy performance, but a relatively high time
complexity [12]. Unlike some hardware-based implementations,
such as using GPUs to accelerate the similarity calculation [3],
we focus on the scalability of TSC based on shapelet extraction.
Traditional TSC algorithms on raw TS data are not applicable for
big data context, because of their low scalability. Here are our
contributions in this paper:

(1) We propose a novel method to assess the importance of
shapelets in batches

(2) We introduce a scalable engine to extract the shapelets
(3) Based on the scalable engine, we propose an optimization

strategy to speed-up the shapelets extraction.
The rest of this paper is organized as follows. In Section 2, we re-
view the background and state the research problems. We present
our scalable engine for Time Series Classification in Section 3.
Section 4 shows an empirical evaluation of our method, as well
as a guidance for the demonstration. Finally, we give our conclu-
sions and perspectives for future work in Section 5.

2 BACKGROUND
2.1 Definitions and Notations
We start with defining the notions used in the paper:

Definition 1: A Time Series T is a sequence of real-valued
numbers T=(t1, t2, ..., ti , ..., tn ), where n is the length of T .

Definition 2: A subsequenceTi,m of Time SeriesT is a contin-
uous subset of values from T of lengthm starting from position
i . Ti,m = (ti , ti+1, ..., ti+m−1), where i ∈ [0,n −m + 1].

Definition 3: Shapelet ŝ is a time series subsequence which is
particularly representative of a class. As such, it shows a shape
which can distinguish one class from the others.

Definition 4: A Dataset D is a collection of time seriesTi , and
its class label ci . Formally, D = <T1, c j1>,<T2, c j2>,...,<TN , c jN >,
where N is the number of instances in D. C = c1, c2, ..., c |C | is a
collection of class labels, where |C | denotes the number of labels.

Definition 5: Z-Normalization Time Series is a formal repre-
sentation of Time Series, which is defined asZNormal(T ) =

T−µ
σ ,

where µ is the sample mean, σ is the standard deviation:

µ =
1
m

n∑
i=1

ti , σ 2 =
1
m

n∑
i=1

t2i − µ (1)

Z-Normalization allows us to focus on the structural feature ofT ,
rather than its amplitude value. It addresses the problem of data
stability. For instance, assume that the Euclidean Distance(ED)
between two time series Tx,m , Ty,m is expressed as follows:

EDx,y =

√√ m∑
i=1
(tx,i − ty,i )2 (2)
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Some little changes (e.g., the noise) will cause an evident bias for
the result, Z-Normalization is a way of smoothing the bias value.

Definition 6: Normalized Euclidean Distance(N-ED), is ex-
pressed by the formula

√
1
m

∑m
i=1(tx,i − ty,i )

2

Definition 7: Distance Profile DPi is a vector which stores the
Normalized EuclideanDistance between a given subsequence/query
Ti,m and every subsequencesT ′j,m of a target Time SeriesT ′. For-
mally, DPmi, j = dist(Ti,m ,T

′
j,m ),∀j ∈ [0,n′ −m + 1]

Query T
i,m

Nearest neighbor T ’
j,m

Target T ’ 

OFFSET in T ’ 

Source T

DP
i,j

 

0 n’

m

Figure 1: Distance Profile between Query Ti,m and target time se-
ries T ′, where n′ is the length of T ′. Obviously, DPi, j can be con-
sidered as a meta TS annotating target T ′

Definition 8: MASS, namely Mueen’s ultra-fast Algorithm
for Similarity Search, computes Distance Profile based on Fast
Fourier Transform(FFT), which requires just O(nloдn) time, other
than O(nm2) time in classical N-ED similarity search.

Definition 9:Matrix ProfileMP is a vector of distance between
subsequence Ti,m in source T and its nearest neighbor T ′j,m in
target T ′. Formally,MPmi =min(DPmi ), where i ∈ [0,n −m + 1].

Unlike the distance profile, the matrix profile is a meta TS
annotating the source time series. The highest point onMP cor-
responds to the TS discord, the lowest points correspond to the
position of a query which has a similar matching in target TS.

Target T ’ 

OFFSET in T 

Source T

MP
i
 

0 n

m

T
a,m

T
b,m

Figure 2: Matrix Profile between Source time series T and Target
time series T ′, where n is the length of T . Intuitively, MPi shares
the same offset as source T

2.2 Evaluation of Candidate Shapelets
The quality of a candidate shapelet ŝ , can be assessed by its ability
to separate the instances of different class in the dataset D. A
prerequisite of the quality measure for ŝ , is that a set of distance
Dŝ must be calculated, where Dŝ = Dŝ,1,Dŝ,2, ...Dŝ,n , n is the
number of T in dataset D.

Information Gain, an evaluation method based on Decision
Tree, is widely adopted in previous works [12]. An iteration test
of Dŝ is conducted to extract the split distance which brings the
highest Information Gain. The distance instance will be applied as
a property of candidate Shapelet, to check the inclusion between
the candidate and time series. Another simple approach, is to
use the F-Statistic [7], based on the difference of means in an
Analysis of Variance A(NOVA). The main idea of this statistic
method, is to assess the difference in distributions of ŝ between
the class distances.

2.3 Problem Statement
The high degree of coupling inside classical TSC algorithm [12]
leads to the problem of not being able to parallelize. The speed-
up method such as Early Abandoning [12] is based on clas-
sical Euclidean Distance measure, which has a time complex-
ity of O(N 2n4) with several orders of magnitude higher than

MASS [8]: O(N 2n3loдn). Another common trick played by previ-
ous work [12]: If we know ŝ is a low-quality candidate, then any
similar subsequence ŝ ′ to ŝ must also result in a low quality and
therefore, a costly computation of the distance setDŝ ′ (evaluation
of ŝ ′) can be skipped. However, a candidate shapelet is evaluated
by its quality ranking among all candidates of the same length.
Assume that the distributed nodes have generated from dataset
a collection of candidates ŝl , an aggregation operation between
nodes is required to extract the candidate with the best qual-
ity. Extra aggregations will be made along with the iteration of
candidate length. Apparently, the acceleration from the classical
pruning techniques can be easily offset by the communication
cost caused by the aggregation.

3 SYSTEM OVERVIEW
The main idea of our system is that the calculation should be
shared and executed independently, less communication between
the nodes, more powerful the algorithm would be.

Shapelet

Extraction

Early

Classifier

...

Labeled TS

Database

Unlabelled TS

Database

Prediction

  result

node

executor

CPUsexecutor

... node

executor

CPUsexecutor

...

Spark

Cluster

Figure 3: System overview

3.1 Main Structure
The conventional Time Series classification problems are tackled
with nearest neighbor (kNN) algorithm [12] due to its easy-design
feature. As shown in Figure 3, on the basis of kNN, an early classi-
fier [10] adopted in the system allows to give the prediction result
as earlier as possible without waiting for the entire sequence.
The processing of labelled Time Series data requires to be flexi-
bly arranged for nodes in the cluster, where the executors share
the CPU/memory resource. To this end, a suitable algorithm is
applied here allowing assignment of computing tasks which are
relatively independent of each other.

3.2 SMAP: Shapelet Extraction on MAtrix
Profile

Matrix Profile provides a meta-data which facilitates the repre-
sentation of a complex correlation between two time series. As
shown in Algorithm 1, SMAP takes the time series as the smallest
processing unit between nodes, and utilizes the normalized qual-
ity to extract themost important parts in each processing unit and
then merges them by an aggregation process. For this reason, the
number of candidate shapelet could be greatly reduced. Moreover,
a single aggregation is required to get the global shapelet result of
different class. In line 5, dataset is broadcast to distributed nodes
in order to reduce the communication cost caused by accessing
the common data. Then, each cluster partition shares the comput-
ing tasks for a set of time series. The function computeDiscrimP
aims at computing in batches the quality of candidate shapelets.
The visualized process is shown in Figure 4.

The batch quality of instances in a TS is defined by Discrimi-
nation Profile, which refers to the concept Representative Profile:

RP(TCi ,D) = avд(MPTCi ,Tj ) (3)
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Figure 4: Discrimination Profile Extraction

Algorithm 1: SMAP(Shapelet on MAtrix Profile)
Input: Dataset D , classSet Ĉ , k
Output: Ŝ

1 minLenдth ← 2,maxLenдth ← дetMinLen(D)
2 double[] DiscmP ← [], double[] DistThresh ← [], Ŝ ← ∅
3 D .cache(); //cache all the dataset in the cluster, where each time series has an unique ID
4 MapPartition (Set of < ID, T >: Tset )
5 for < ID, T >∈ Tset do
6 form ←minLenдth tomaxLenдth do
7 DiscmP [m], DistThresh[m] ← computeDiscmP (T , D,m)
8 DiscmP [m] ← DiscmP [m] ∗

√
1/l

9 DiscmP ← pruninд(DiscmP )
10 emit(DiscmP, DistThresh)

11 MapAggregation (class, (DiscmP, DistThresh))
12 for c ∈ Ĉ do
13 Ŝ′ ← дetTopk (DiscmP [c], DistThresh[c], k )
14 for ŝ ∈ Ŝ do
15 ŝ .matchinдIndices ← дetMatchinдIndices(ŝ, D)

16 Ŝ ← Ŝ
⋃
Ŝ′

17 return Ŝ

where Tj ∈ DC . Representative Profile targets thus on the mini-
mal processing unit (i.e., time series) in SMAP, which shows a
vector of Representative Power of each instance in the processing
unit. To put it simply, the Representative Power of a subsequence
in class C, is its normalized distance to the global instance cluster
of class C. Intuitively, it represents the relevance between the
subsequence (i.e., the candidate shapelet) and the class.

The fact that a subsequence is discriminative for its class to-
wards others, can be expressed by the difference of Representative
Power from class C to others (OVA, one-vs-all). Discrimination
Profile is then defined as follows:

DiscmProf ile (T
C
i ,D) = −(RP(T

C
i ,D

C ) − RP(TCi ,D
!C )) (4)

A quality Normalization in line 8 is made which allows to assess
the Discrimination Power for shapelet of different length in an
uniform way. Similar as the concept Information Gain, but Dis-
crimination Profile is a technique more interpretable serving to
assess the candidate shapelets. Moreover, in this manner, a split
distance can be given directly, other than iterating every possible
distance and deciding the best one with the highest Informa-
tion Gain, in time O(N 2n2). A strategy to check if T contains a
shapelet can be defined as the following:

sInT (T , ŝC ) =

{
true, i f dist(T , ŝC ) ≤ RP(ŝC ,DC )

f alse, otherwise
(5)

3.3 Optimization Strategy
The pruning function in line 9 is capable of eliminating the num-
ber of candidate shapelet, and then reducing the communica-
tion cost during the aggregation process. We can simply take
the "TopK" strategy, which extracts the biggest K values of the
Discrimination Profile. However, such a technique is far from
lightening the computation during MapPartition process.

Since each processing unit should be independent from each
other, a tenable technique for updating the profile of a long range
query could be adopted. The Lower Bounding distance [6] is de-
fined to estimate a minimal possible Z-Normalized Euclidean
Distance between two subsequences Ti,l+k and Tj,l+k , based on
the distance already computed between Ti,l and Tj,l . Compared
to a linear time complexity of computing the exact distance, LB
Distance Profile can be calculated in a constant time, which can
accelerate greatly the computation of Matrix Profile in Figure 4.
For example, from shapelet length l =m tom + 1, the time com-
plexity of computing the distance dl+1i, j is O(nm(m−1)2 m), where

j ∈ [0,nm(m−1)2 ]which represents the number of subsequences in
D, n is the number of instance in D,m is the length of the longest
instance in D. Accordingly, LB distance takes O(nm(m−1)2 )which
shows an apparent advantage when the query length is relatively
long. Lower Bounding distance [6] is defined as:

LB(dl+ki, j ) =


√
l

σj,l
σj,l+k

, i f qi, j ≤ 0√
l(1 − q2i, j )

σj,l
σj,l+k

, otherwise
(6)

where qi, j =
∑l
p=1

(tj+p−1ti+p−1)
l −µi,l µ j,l

σi,lσj,l
Empirically, the matching subsequence Tj,l which is the near-

est neighbor of Ti,l , can deduce a longer subsequence Tj,l+1,
which is probably the nearest neighbor of Ti,l+1. Assume that
the matching subsequence keeps in the same position in Ttarдet
when query Ti,l length increases, then the time complexity for
computing the minimal distance between Ti,l and Ttarдet is
O(l), other than O(l(n − l + 1)). As mentioned in Definition 9,
MPmi =min(DPmi ), the main idea here is to utilize LB Distance to
accelerate the computation ofmin(DPmi ), rather than computing
the entire DPi in a higher time complexity.

4 ABOUT THE DEMONSTRATION
This demonstration is intended to show a distributed approach
to extract features from large-scale time series and to make the
extraction process and extracted features very easy to understand
and interpret, thanks to the visual power of shapelets. Through
this demonstration, the attendees will have a general understand-
ing of time series, as well as its application areas and the current
challenges. With two real datasets, attendees will have the oppor-
tunity to experience and interact with SE4TeC from two aspects:

(1) Practical operation for distributing computation tasks: The
attendees are invited to connect to our elastic cluster, and
will further explore the distribution mechanism for feature
extraction. For instance, the relationship between perfor-
mance and adjustable parallelism, the progress monitoring
of parallel tasks on each distributed node, etc.

(2) Exploration of shapelet extraction process: Based on a small-
sized dataset, the attendees can interactively perform each
intuitive step shown in Figure 4, and are invited to analyze
the hidden meaning behind each intermediate features.
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In the view of the attendees, the reliability of extracted
shapelets can be proved by utilizing naked eyes or a smart
classifier, on a test instance.

4.1 Demonstration Platform
SE4TeC is implemented by Python3.6, powered by Apache Spark.
The program is executed on AWS EMR cluster. We provide also
an 1-click cluster based on Docker, to facilitate the attendees to
replay the distributed test offline. The baseline of the evaluation
is USE in [9], which utilizes the traditional method for shapelet
extraction based on Information Gain. 1NN classifier is applied
for all accuracy tests, and 5 shapelets are extracted for each class.

4.2 Demonstration Scenario
Due to page limitations, here we show two examples, more details
and videos can be found on the demonstration page1.

4.2.1 ECGmedical diagnosis. The datasetECG200, fromMIT-
BIH Long-Term ECG Database (ltdb), is collected by two elec-
trodes which record the brain activities in distinct body positions.
Each heartbeat has an assigned label of normal or abnormal. All
abnormal heartbeats are representative of a cardiac pathology
known as supraventricular premature beat. ECG200 contains 100
labelled records with a fixed length of 96.

4.2.2 Wafer industrial troubleshooting. To put the evaluation
into larger scale context, we choose the time series datasetWafer,
which contains 1000 training records with a fixed length of 152.
The dataset, collected during the manufacture of semiconduc-
tor microelectronics, comprises a collection of sequences for the
measurements recorded by one vacuum-chamber sensor dur-
ing the etch process applied to one silicon wafer. The class of
manufacture quality can be normal or abnormal.

Normal Abnormal

Top-5 Shapelet

(normal)

Top-5 Shapelet

(abnormal)

(a) Shapelets in ECG
Normal Abnormal

Top-5 Shapelet

(normal)
Top-5 Shapelet

(abnormal)

(b) Shapelets in Wafer
Figure 5: Interpretable Shapelet Feature Results

Reliability & Interpretability: Through the demonstration, the
attendees are capable of extracting the shapelets in various man-
ners, and comparing their difference. The shapelets extracted
by SMAP are shown in Figure 5, which has a relatively higher
prediction accuracy than USE: 84%|76% (ECG), 97%|92% (Wafer).

Scalability: The performance results are shown in Figure 6.
SMAPLB shows a gain in performance: 24.5X (ECG), 587.3X
(Wafer) faster. As the size of ECG (i.e., 100) is lower than the
parallelism power when we expand the cluster to 10 nodes, there-
fore, according to the time O(N 2n3loдn), the instance length n
will be the decisive factor in execution time. We should know
1https://github.com/JingweiZuo/SE4TeC

that the speed-up performance relies on the computing power
of the cluster. We are more inclined to consider its parallel ca-
pability which can be assessed by the aggregation cost between
distributed nodes. From 1 to 30 nodes on cluster mode, the ag-
gregation cost for Wafer increases by 181%, the total cost drops
to 0.68%. Obviously, considering the gain, the aggregation cost
can be ignored when we expand the cluster to a larger scale.
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Figure 6: Scalability performance

5 CONCLUSION
In this paper, we have proposed a novel methodology, namely
SMAP, for Time Series Classification. SMAP adopts the concept
of Matrix Profile, and extracts the shapelet features in an inter-
pretable and scalable manner. Within SMAP, the Discrimination
Profile is defined to assess in batches the quality of candidate
shapelets. On the basis of Lower Bounding, we have proposed an
acceleration strategy that benefits from distributed environment.
The satisfactory results proved the efficiency and competitiveness
of our approach. Different optimizations are in our planning list.
Specifically, we intend to expand SMAP for longer time series,
while ensuring its high accuracy and scalability. This may lead
us to combine SMAP with dimensionality reduction.
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ABSTRACT
We demonstrate a methodology of masking system failures in a

way that doesn’t require programmer or operational intervention,

and that strives to be imperceptible to the client. High Availability

SQL (HASQL) masks system failures in a clustered database-

system by seamlessly restoring a transaction’s state against a

different machine in the cluster. We have implemented HASQL

in Comdb2, an open source RDBMS developed by Bloomberg L.P.

To demonstrate, we allow participants to kill (via a button)

database instances one at a time, and all instances simultaneously,

as we execute an ongoing transaction against a Comdb2 cluster.

Upon achieving this, viewers will see the command-line session

and transaction pause briefly as the Comdb2 client-API connects

to a different cluster node and re-establishes the transaction’s

state, allowing it to resume processing at the exact point of the

disconnect. We repeat this demonstration, showing that a trans-

action’s state can be correctly re-established even though it is

midway through consuming a result set.

1 INTRODUCTION
Plummeting hardware prices have created increasing pressure on

software developers to design redundant systems, as the chance

for failure for any component of a system increases over time

(see figure 1). For RDBMS systems, High-Availability solutions

attempt to restore service quickly and minimize the effects of

outages[2]; indeed, many commercial RDMBS systems[3, 5, 6]

support automatic failover to provide uninterrupted service un-

der the loss of part of a database cluster. In traditional failover

strategies, a crashed server will return a CONNECTION LOST error
to the client. Application writers address this by programming

defensively, marrying database API calls to complex and often

poorly tested retry logic[7]. Handling a CONNECTION LOST er-

ror in response to a COMMIT directive gives the programmer the

additional burden of determining the fate of that transaction.

Our contribution is unique in that we show how to provide

seamless continuation of in-flight transactions under an optimistic
concurrency control (OCC) system: HASQL clients do not reissue

SQL in the face of machine failure, and need not be aware that a

machine failure has occurred, as every in-flight transaction will

be automatically re-established and continued against another

machine in the cluster, and any partially consumed result set will

continue to be returned, as the system we describe guarantees

that the client will never experience duplicate or missing data.

Oracle’s Application Continuity[4] feature is a proprietary im-

plementation which achieves the same goal. As we have imple-

mented this as part of an open source system, we are able to

describe our methodology explicitly, and we hope that by doing

© 2019 Copyright held by the owner/author(s). Published in Proceedings of the

22nd International Conference on Extending Database Technology (EDBT), March

26-29, 2019, ISBN 978-3-89318-081-3 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons

license CC-by-nc-nd 4.0.

Figure 1: ’Bathtub curve’ hazard function, adopted from
[1], describes the failure rate of a single-component.

so, other systems can likewise provide this feature to their users.

We note that any correct methodology will ensure that the re-

played SQL modifies the same set of records that would have

been modified on the original host, but that in an OCC system,

write conflicts for replayed transactions are handled in the same

manner as write conflicts for any two competing transactions:

the winning transaction will be allowed to modify the rows in its

write-set, while the losing transaction will return a verify error

to the client. So even though HASQL provides the ability to per-

fectly replay a read-write transaction, as with every transaction

in an OCC system, the replayed transaction will only be able to

commit successfully if the rows in its write-set have not been

modified.

In this paper, we describe HASQL as implemented in Comdb2,

an open source RDBMS developed at Bloomberg L.P.
1
, noting

that a brief overview of HASQL was outlined in [8]. As this

method relies on a limited number of architectural features, we

describe it generally, trusting that it should be straightforward

to implement HASQL in a similar system. Our motivation for

this feature grew organically from Bloomberg’s business need to

have an always available database server and to provide an intu-

itive and reliable software infrastructure layer to its application

developers. HASQL achieves this by shifting the responsibility

for handling hardware failures from the client application to the

database system.

2 SYSTEM OVERVIEW
We now describe the architecture and methodology for imple-

mentingHASQL. See [8] for a comprehensive review of Comdb2’s

architecture.

1
https://github.com/bloomberg/comdb2
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2.1 Architecture
A database cluster consists of N database instances running on N

physically separate machines sharing no components and con-

nected to each other by a network. Each instance contains a

complete copy of the data, and is able to start and maintain arbi-

trary point-in-time snapshot transactions.

The cluster maintains a single master which may modify data-

base state, and which synchronously replicates these modifi-

cations to every other instance in the cluster. We assume that

transactions are immutable and are applied atomically on the

master in a serial order defined by the global order of transaction

COMMITs.
For any two committed transactions, T1 and T2, if T1 is com-

mitted first, a point-in-time snapshot transaction started at T1’s

commit point will observe all the effects of T1’s modifications,

and none of the effects of T2’s modifications, while new snap-

shot transactions will observe the effects of both T1 and T2.

Modifications are applied to non-master instances (or replicants)
atomically in the same serial order as they were applied on the

master.

A point-in-time token (or PIT-token) identifies a specific point
in the serial order of committed transactions. Given a PIT token,

each instance is able to produce a snapshot view corresponding

to that point in the serial order. The transaction-id (tid) is a unique
identifier for a transaction; it is generated by the client API at

the beginning of a transaction.

Writes performed against a replicant are not executed locally,

but rather validated and executed on the master after the client

issues a COMMIT. The client API is aware of the cluster’s topology
and maintains a single connection against an arbitrary replicant.

2.2 Methodology
At the beginning of a transaction, the client API generates a

tid, establishes a connection against a replicant (if not already

connected), and retrieves from that instance a PIT-token corre-

sponding to the current state of that instance. As transactions

are applied in the same order on replicants as they are on the

master, the snapshot described by this PIT-token is guaranteed

to be equivalent to the current or some former state of the data

as it existed on the master, and may be used on any instance to

recreate the same snapshot so long as that instance has applied

transactions at least up to that point. During the course of the

transaction, all write statements and the most recent read state-

ment are cached by the client API. It’s important to note that the

results returned by the most recent read statement need not be

retained: rather, the API retains only a count of the rows already

retrieved from an in-flight SELECT statement.

Upon losing connection with the cluster, the client API recon-

nects to a different instance and begins a snapshot transaction at

the time described by the original PIT-token, as doing so ensures

that the client’s view of the database on that instance will be

identical to its view on the original. The client API then re-issues

the transaction’s write statements. If the connection was lost

while the client was consuming results of a read statement, the

client API re-issues the most recent read statement using the

cached count to skip (or alternatively, ask the server to skip)

records that have been previously returned to the user.

At commit time, the tid is used as a key to store the trans-

action’s result in a replicated global-transaction-table. The pre-
existence of a tid in the global-transaction-table indicates that

the transaction has already executed, and that the current thread

N1

N2

N3

Comdb2 Cluster

Client

(a) Client’s Connection to instance N1 gets sev-
ered

N1

N2

N3

Comdb2 Cluster

Client

(b) Client reconnects to instance N2

Figure 2: Connection to Cluster gets severed and Client
subsequently reconnects to a different instance.

should roll back any work that it has done and return the origi-

nal result to the client. The tid and the global-transaction-table

ensure that a transaction will only be executed once should the

client API replay a transaction after issuing a COMMIT.

2.3 Illustrated Example
We describe a concrete example using the event diagram shown

in Figure 3. Events in green represent SQL statements submitted

by the user. Events in blue represent operations executed on

behalf of the user by the client API code. Server responses are

displayed in black.

As previously described, upon beginning a transaction, the API

generates a unique tid, which is sent to the server along with the

BEGIN statement. The server responds with the PIT-token. Each

write statement of the transaction is cached locally as it is sent

to the server. Figure 3 shows a failure occurring after reading the

second record of a SELECT statement. The client API reconnects

to Node 2, begins a transaction at the point-in-time described

by the PIT-token, reissues the transaction’s write statements,

and the most recent incomplete SELECT. As the first two rows
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have been returned to the application, the client API skips them,

returning the third result row to the caller. The client finally

issues a COMMIT to complete the transaction.

2.4 Considerations
The HASQL scheme as described above works with SQL which

behaves deterministically. It requires that each participating in-

stance impose the same implicit order for results not sorted by

an ORDER BY clause. We note also that the implicit ordering re-

quirement does not exclude server-side parallelism, but concede

that any ORDER BY clause, either explicit or implicit, may incur a

performance penalty.

Node 1 Node 2

BEGIN tid=12

PIT=12:53854

INSERT ... VALUES(1)

INSERT ... VALUES(2)

ok

ok

SELECT ...

row 1

row 2

INSERT ... VALUES(1)

INSERT ... VALUES(2)

ok

ok

SELECT ...

BEGIN PIT=12:53824 tid=12

row 3

done

COMMIT

ok

Application

row 2 (skipped)

row 1 (skipped)

ok

Figure 3: Example HASQL sequence: After connection to
Node 1 is severed, Client Application reconnects to Data-
base Cluster Node 2, and continues processing where it
left off.

Wenow consider strategies for handling other non-deterministic

SQL. Rather than attempting to address this exhaustively, we con-

sider two situations which can employ a similar strategy; we offer

this strategy as a blueprint for how non-determinism might be

addressed.

BEGIN

DELETE FROM schedule WHERE updatetime <= NOW()

SELECT * FROM schedule

COMMIT

Listing 1: SQL using the NOW() function

If replayed, the NOW() function will execute at a different time

on a second machine, and delete a different set of records. A

replay which occurs during the SELECT could have already re-

turned records which are deleted on the retry. The replay would

subsequently skip over non-deleted records, as the client API’s

cached count pertains to the original result set. To address this,

we propose that NOW() be frozen during the course of a snapshot

transaction, always returning the wall clock time of the BEGIN
issued on the original node. This time can be included as part of

an extended PIT-token.

BEGIN

UPDATE contestants SET winner = 1 WHERE

ticketnumber = (SELECT ticketnumber FROM

contestants ORDER BY RANDOM() LIMIT 1)

SELECT * FROM contestants ORDER BY ticketnumber

COMMIT

Listing 2: SQL using the RANDOM() function

Because RANDOM() can return a different value on the replay

machine, the re-issued UPDATE statement can update a different

record. Should a replay event occur while retrieving results from

the SELECT, the result set can show that two different contestants

have winner set to 1. A system could work around this issue by

making note of the RANDOM() number generator’s current seed
value at the beginning of a transaction. A replicant which seeds

its RANDOM() number generator with this value should return

the same sequence of random numbers as the original machine.

As with NOW(), the seed value could be included as part of an

extended PIT-token.

3 DEMO
We present a simple interactive demonstration which exhibits

the HASQL scheme. We begin by starting a 3-node cluster and

presenting a volunteer with three buttons, each programmed

to stop and restart the database instance running on one of the

cluster nodes. From a separate machine, we open a command-line

session and begin a transaction against this cluster. Our volunteer

will be instructed to press, at his or her discretion, the kill-and-

restart-button corresponding to the machine that is currently

executing the transaction. We present this as a simple game,

allowing us to demonstrate the HASQL feature in a lighthearted

and engaging way.

When the volunteer kills the correct instance, spectators will

see the client-session pause briefly as the client API reconnects

to a different cluster machine. We encourage our volunteer to kill

and restart the active cluster node multiple times as we continue

the transaction, being sure to demonstrate HASQL’s ability to

resume a transaction in the middle of retrieving a result set.

We then perform a second demonstration which is identical to

the first, except that instead of killing a single cluster node, we ask
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Figure 4: Demonstration of HASQL with additional trace
enabled. Left panel shows trace emitted from client ap-
plication. Right panels show trace emitted by the three
Comdb2 cluster nodes. Server instance on Node 1 (top-
right) was manually terminated.

three volunteers to kill all three cluster nodes simultaneously. As

the cluster restarts, spectators will see again that the transaction

is resumed seamlessly.

We proceed to describe our implementation of HASQL, and

repeat both demonstrations with additional trace enabled, which

allows audience members to witness the sequence of events out-

lined in Figure 3. In contrast to seemlessly continuing a transac-

tion, this demonstration seeks to exhibit HASQL’s underlying

mechanism.

We further exploreHASQL’s behavior by repeating both demon-

strations, this time with an increased number of database in-

stances, and with varying levels of background writes. Specta-

tors will observe that HASQL’s performance is unaffected by the

increased cluster size, but that it is directly impacted by external

writes to a table which an HASQL transaction reads. We use

this as a starting point for a discussion of Comdb2’s implementa-

tion of point-in-time snapshot isolation and other architectural

features of Comdb2.

4 FUTUREWORK
A transaction which survives a machine crash naturally takes

longer to complete. While this does not effect the correctness

of a read-only query, the increased transaction time increases

the likelihood that a write transaction, T1, will fail, as it allows

greater opportunity for a competing transaction to write in the

space of T1’s write-sets. This is a small concession to make, as

prior to HASQL, a machine crash would certainly cause T1 to

fail, and there are a great number of non-intersecting write loads

that would permit T1 to commit.

Future work includes finding ways to minimize the amount

of time it takes to restore a partially completed transaction. We

observe that the slowness is most pronounced when a machine

crash occurs after a client has retrieved a substantial part of a

large result set which must be skipped.

We could gain substantial improvement by maintaining si-

multaneous connections to multiple cluster machines, using the

original PIT-token from the primary connection to establish one

or more secondary connections. Each SQL statement would be

issued to the primary and to the secondary handles in lock-step.

In the normal case, the redundant sessions are essentially wasted

computing power, but as hardware resources continue to become

cheaper, this may eventually be a valid concession to make.

5 CONCLUSION
HASQL’s contribution is one of resiliency: application devel-

opers need not know or care if the underlying system has ex-

perienced a critical error. We believe this is superior to other

failover schemes, where a machine failure, in addition to failing

all outstanding transactions, can stall clients for several minutes

before a failover machine is available. An API return code which

does not designate the success or failure of an operation places a

disproportionate burden on the application programmer in an-

swering a question which would be more appropriately addressed

by the database system itself. Though we concede that this is

unavoidable at times, HASQL addresses a significant subset of

these errors. As hardware is guaranteed to fail, it is the respon-

sibility of system designers to minimize the impact of failure.

HASQL demonstrates an intelligent way to utilize increasingly

less expensive hardware to create more robust service.
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ABSTRACT

In this paper, we explain the demonstration of the DataEcono-
mist, a framework for query-driven data minimization in rela-
tional DBMS conformable to law. Our approach automatically
minimizes user access rights based on the analysis of SQL query
logs and thereby enables a parsimonious data processing. A mini-
mization of data collection is reached by automatic detection and
manual deletion of data belonging to unneeded schema elements.

In contrast to existing approaches, the DataEconomist sup-
ports privacy officers by focusing on the queries instead of mak-
ing them trawl through a vast amount of collected personal data
and specify legal use cases for their processing. SQL queries easily
showwho has processed when which data for which purpose and
make it easy for the privacy officers to decide about the queries’
compliance with data privacy regulations. Our framework does
not require any knowledge of SQL by providing a graphical tool
for searching and filtering queries and visualizations of query
result sets.

1 INTRODUCTION

The new EU General Data Protection Regulation (GDPR) has an
impact on every organization around the world [16], but most of
them are prepared inadequately and are not aware of upcoming
legal requirements [4]. They face the challenge of adapting their
handling of personal data to become compliant to the contempo-
rary requirements of data privacy. Art 5(1) GDPR postulates data
minimization, which is one of the six general data-protection
principles of the GDPR [1]. It requires that all collection and
processing of personal data is only for a specific purpose, and
that the quantity of these data is kept down as much as possible,
so they are stored only as long as it is required to reach the in-
tended purpose [15]. There are approaches like privacy by design
[17] that include privacy protection in the overall conception of
technical systems, but the vast majority of current systems does
not consider these approaches. In order to ensure conformance
to the principle of data minimization it is not sufficient to analyze
the collected data sets only. This does not provide a possibility
to verify that the data processing is exclusively for a specific
purpose. But the responsible privacy officers often lack technical
knowledge, which is usually required for the evaluation of data
processing.

Problem Statement. In order to enable privacy officers to
ensure data privacy in established systems, novel approaches are
required, which provide mechanisms that do not premise pro-
found technical knowledge to determine who collects personal
data from where and who processes when which data for which

© 2019 Copyright held by the owner/author(s). Published in Proceedings of the
22nd International Conference on Extending Database Technology (EDBT), March
26-29, 2019, ISBN 978-3-89318-081-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

purpose. The mechanisms must provide user-friendly interfaces
and a data-processing description close to natural language [7].

Contribution. We demonstrate an extensible framework for
query-driven data minimization in existing IT landscapes. We
analyze SQL query logs and enrich querieswithmeta-information
about the query structure, their environment, their execution,
and their context. In contrast to currently trending approaches,
queries are our first-class citizens for analysis of conformance
to data privacy, instead of trawling through data stores that
harbor vast amounts of personal data. Our framework aims to
complement such approaches and supports privacy officers in
minimizing user access to personal data, minimizing the storage
of personal data to what is really necessary, and preventing future
collection of unnecessary data.

Our framework is minimally-intrusive because it has no im-
pact on productive operations. It can serve as a foundation of a
system that automatically identifies unneeded schema relations
and attributes in target databases (DBs), based on the queries run-
ning on these systems. Queries can be classified manually as legal
or illegal regarding data-privacy regulations. User access rights
can automatically be customized, and unnecessary data can be
automatically deleted from the target DBs. Furthermore, we list
the queries and the related users that have inserted unneeded
data into the target DBs.

This paper describes the client-server architecture of our frame-
work (cf. sec. 2.1), illustrates the conceptual schema for the query
characteristics, i. e. the queries and their meta-information (cf.
sec. 2.2), and outlines the reference implementation of the Data-
Economist (cf. sec. 2.3). In [12], we have already described a user
story from a healthcare scenario to emphasize our approach’s
benefits for ensuring data privacy, especially data minimization.

2 SYSTEM OVERVIEW

The software system is implemented with a client-server architec-
ture usingWeb technologies. An end user can have three different
roles: administrator, DB user, and privacy officer. Each of them
needs to interact with the system, so it has to be accessible from
different personal machines. Splitting the application into a client
and server part allows for that and additionally simplifies initial
setup for end users.

2.1 Client-Server Architecture

Internally, the DataEconomist server uses a PostgreSQL DB to
persist query characteristics. It also connects with target DBs
when needed to retrievemeta schemas required to understand the
queries and execute them when requested. It supports all major
relational DBMS and the Java JDBC API as well as standard SQL
and several of its dialects.

Demonstration
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The multi-user Web client is platform independent and does
not require any kind of installation for the end user. It communi-
cates with the server over HTTP using a RESTful JSON API.

The backend is implemented in Java using Apache Calcite [6]
and the Spring Framework1. Fig. 1 shows its architecture.

The Query Manager and the Database Manager take care of
ensuring consistency between main-memory representations
of Query and Database objects and their DB entries. We must
store additional information about these objects to control the
redundancy. For queries, this information includes syntactical
correctness, the number of restrictions, compliance with user
privileges, and other potentially interesting properties. For target
DBs, we fetch and store the schema in Java objects on the server.

The Query Controller and the Database Controller perform
actions requested by the API on the resp. objects. They can only
cause updates on the internal DB by using a manager module.

The SearchModulemaps search requests from the visual search
form onto the internal DB. On top of that, it makes use of the
Query Manager to consider information only available on the
server application.

Client
Client

Client

External DB Interface Client API

Apache 
Calcite

Spring 
Framework

Query 
Controller

Database 
Controller

Analysis 
Module

Search 
Module

Query 
Manager

Internal DB Interface

Database 
Manager

Internal 
PostgreSQL DB

Target DBs

Figure 1: Architecture of the DataEconomist

2.2 Conceptual Schema

Fig. 2 shows an Entity-Relationship diagram containing the Da-
taEconomist’s conceptual schema to hold the queries and their
meta-information. The Query entity is identified by the Text
attribute, holding the query text. The complex, multi-valued at-
tribute Relations stores the query’s relations and attributes. It
contains the two nested attributes RelName and Attributes. For
each relation, we store its name in RelName and the names of all
the relation’s attributes in the multi-valued attribute Attributes.

The purpose of the Project entity is to group several target
DBs in order to analyze their queries collectively. The Database
entity holds connection information to target DBs.

A Query Execution reflects the run of a certain Query by a
certain User on a certain Database at a certain Timestamp. The

1http://spring.io/projects/spring-framework

entity’s further attributes are the RunTime in case of a successful
query execution and the ErrorMessage if the query failed.

The Query Context points out a user’s intention or the situa-
tion in which aQuery Execution happens. Regarding this, privacy
officers can specify the query’s priority and its legitimacy con-
cerning data privacy in this context. A query execution can only
happen in one context, but a context may contain many query
executions.

Fig. 2 highlights four groups of query characteristics in color.
Some of them can be derived automatically; others must be en-
tered manually. TheQuery Environment group is derived from
the user and her initial connection to the target DB. TheQuery
Execution group bundles when which query ran with what run-
time successfully or not. Finally, theQuery Context group cannot
be derived automatically at all; it must be entered manually as it
externalizes tacit user knowledge.

Query 
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Query 
Context

Query 
Execution

Query

Database

1

DBName

Host

Port

Priority
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RunTime

ErrorMessage

User

Username
1
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Query 
Execution
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runs
at

1 Query 
Context

happens in

N

ContextName

Project

comprises

1

N

ProjID

ProjName

1

Figure 2: Conceptual schema of the DataEconomist

2.3 Reference Implementation

As first step, Apache Calcite performs basic syntax checking for
each query. When checking which tables and columns are used
by a query (a task that belongs to the core functionality of our
DataEconomist), syntax alone is not sufficient. We additionally
need the schema information. Asterisk selections are a trivial
example to illustrate that. In order to detect used schema objects,
Calcite’s query planner transforms the query into a logical query
plan. Calcite performs a query optimization and normalization.
By applying the visitor pattern, the query-plan object is traversed
and all used tables and columns are detected and collected for
later review.

To provide the HTTP API, we use the model-view-controller
module of the Spring framework. It maps HTTP requests onto the
corresponding Java methods and serves as a bridge between Java
objects and their JSON representation. The API mainly follows a
CRUD approach, offering endpoints for entity creation, retrieval,
update, and deletion.
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The frontend is implemented in Angular2, a widely used Web
framework written in TypeScript. It allows for the use of ad-
vanced GUI techniques such as reusable components and pro-
gramming patterns such as reactive programming.

Fig. 3 shows the functionalities of the frontend interface. They
are partitioned in three main views for projects, target DBs, and
queries. The admin role can create projects and relate one or
several target DBs. The admin needs to specify credentials for
the target DBs so that the DataEconomist can connect to them
and can fetch their schema information and import query logs.
The admin role can also add and modify queries in our frontend,
whereas the DB-user role can only choose a project and run the
related queries.

Privacy officers can browse through all queries. We support
them with a tool for extensive search-query formulation that can
be utilized with purely visual means and does not require any
knowledge of SQL. They can span a search-query tree by arbitrar-
ily nesting search conditions concerning query structure or query
characteristics. Any result set of queries can be manually filtered
to be used in the next step for automatic detection of unneeded
schema elements. Privacy officers can then check and adjust the
DataEconomist’s proposal of user-access-right minimization.
The final configuration can be enforced to the target DBs with a
single click.

Manage Queries

Run Query

Query Overview

Search Queries

Analyze Queries

Check Privileges

Adjust Priviledges

Manage DBs

DB OverviewProject Overview

Manage Projects

Admin

DB User

Privacy Officer

Figure 3: Frontend Use of the DataEconomist

3 DEMONSTRATIONWALKTHROUGH

For this demonstration, we will shortly present our approach’s
fundamental concepts to the conference attendees. Then they
will be briefed to use our framework and learn about various
aspects of the current version of our DataEconomist. Attendees
may go through three different demonstration scenarios that
build upon each other, but do not require the preceding steps
for understanding. Most steps in the process include interaction
with the attendees.

Setting up a project and analyzing queries. We have pre-
pared a substantial SQL query log containing queries of different
complexities from an enterprise scenario, stored in a MS-SQL DB.
The attendees can choose the queries to be investigated. When
a query is added to the DataEconomist, it will automatically
start to find various properties of that query and to make them
available for a potential search (see next scenario).

2https://angular.io/

After the analyzing step is finished, attendees can see its re-
sults. The derived properties include the number of restrictions,
the level of nesting, the number of different columns used by a
query, and more.

Along with these properties, a sample of the query result is
shown as well to help understand the query (see Fig. 4).

Figure 4: Query stats and results dialog

Finding potentially illegal queries. For this scenario, we
challenge the attendees to play the role of a privacy officer and
to find queries violating data-privacy regulations. The attendees
can use the visual-search interface and track down queries that
retrieve for example data revealing racial or ethnic origin, politi-
cal opinions, or religious or philosophical beliefs. To achieve a
high level of flexibility, the visual-search queries can be nested
and combined with Boolean operators (see fig. 5).

The attendees can directly consider accessible properties, such
as the names of DB users, query-execution times, SQL strings,
and all other query characteristics mentioned before.

We will examine two different cases that require different
approaches. One requires the correct choice of properties to
check. The other additionally requires a correct combination
of properties. Both demonstrate the possibilities offered by the
search-query formulation implemented in the DataEconomist.

Minimizing user privileges and deleting unnecessary
data. When illegal queries have been found, we demonstrate
how the DataEconomist displays which tables and columns are
used by a query or a set thereof (see Fig. 6).

Attendees can then adapt the user privileges by unchecking
tick boxes at all schema objects the user should no longer have
access to. These user privileges will actually be enacted on the
MS-SQL server through the interface. To show the effects, we
will then try to execute an illegal query on the DB, which will
fail, and inform the user about the illegal access attempt.

After that, attendees can use the DataEconomist to automati-
cally determine unnecessary schema elements, i. e. data that have
no user access to them. Again, by a single click, all these data
will be deleted on the MS-SQL server.

4 STATE OF THE ART

Srivastava et al. provide a relational framework for managing
queries [5].We adopt their way of administrating queries together
with their meta-information in a relational model. There are
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Figure 5: Visual query search form

Figure 6: Privilege adaption form

several systems dedicated to query management, e. g. [2, 10].
However, these tools are aimed at experts and lack usability
for privacy officers. During the query-log analysis of [3], we
considered the query structure and detected similarities among
queries. However, we did not yet provide a way to report user-
specific meta-information about queries.

QueRIE [9] performs a query-log analysis to give personalized
query recommendations. Manta and SQLDep3 visualize schema
lineage of SQL queries. None of these approaches considers query
context and other meta-information. This is also the case for
several graph-based approaches to representing SQL queries,
e. g. [8, 11]. Tools like the Query Patroller [14] or the DataLawyer
[13] provide a wide range of mechanisms for query analysis.
However, they aim at SQL experts and the latter is even limited
to a particular DBMS.

5 CONCLUSION AND FUTUREWORK

The DataEconomist supports several aspects of data minimiza-
tion: Based on the query-driven approach, user access to un-
needed schema elements can be automatically customized. Com-
pletely unneeded data can be automatically detected and deleted.
3https://getmanta.com/ and https://sqldep.com/

These features minimize data processing. In first measurements,
we determined the average latency for analyzing the structure
(117ms) and detecting unneeded schema elements (19ms) of a
single query. The structure analysis includes the generation of
the query execution plan, the detection works with this execution
plan. We intend to present more detailed measurement results in
a follow-up publication.

Our framework also points at queries inserting unneeded data
and at these queries’ authors. That allows privacy officers to take
specific measures in minimizing data collection.

Up to now, privacy officers have to manually classify illegal
queries regarding data privacy, which can be an outrageous effort.
Therefore, we work on a semi-automatic classification of illegal
queries to minimize user interaction. We are also enhancing our
framework by an intuitive visualization of all data processed by
a query to fully support non-expert SQL users in classification.
Furthermore, we aim to additionally consider unneeded tuples
for a more fine-grained data minimization.
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ABSTRACT
Grid-based clustering algorithms are well-known due to their
efficiency in terms of the fast processing time. On the other
hand, when dealing with arbitrary shaped data sets, density-
based methods are most of the time the best options. Accordingly,
a combination of grid and density-based methods, where the
advantages of both approaches are achievable, sounds interesting.
However, most of the algorithms in these categories require a
set of parameters to be specified while usually it is not trivial
to appropriately set them. Thus, we propose an Information-
Theoretic Grid-based Clustering (ITGC) algorithm by regarding
the clustering as a data compression problem. That is, we merge
the neighbour grid cells (clusters) when it pays off in terms of
the compression cost. Our extensive synthetic and real-world
experiments show the advantages of ITGC compared to the well-
known clustering algorithms.

1 INTRODUCTION
Among various clustering approaches some of them attract more
attentions because of their advantages. Partition-based clustering
algorithms are popular due to their simplicity and the relative
efficiency [7], [2]. K-means [7] is a well-know and well-studied
representative for this approach where initially the data is par-
titioned into k non-empty sets and iteratively the data points
are assigned to their nearest cluster. Despite the mentioned ad-
vantages, the clustering algorithms in this group suffer from
some drawbacks. For instance, the number of clusters k should
be specified in the beginning and the results are not deterministic
because of their sensitivity to the initialization. Moreover, they
are not suitable to discover clusters with non-convex shapes. As a
subset of this group, model-based clustering algorithms consider
a specific distribution model to represent the data sets. Among
them, Expectation-Maximization (EM) algorithm interpret the
data as a mixture of Gaussian distributions [5]. On the other
hand, density-based clustering algorithms [6], [3] are appropri-
ately designed to deal with clusters having an arbitrary shape.
Unlike the partition-based algorithms, the algorithms in this ap-
proach are able to deal with noisy data sets. However, in order to
find dense regions we need to specify two parameters represent-
ing the radius and the density of a neighborhood. Additionally,
density-based algorithms are not designed to efficiently deal with
clusters with various densities. Spectral clustering [9] is another
approach which has become popular due to its simple implemen-
tation and its performance in many graph-based clustering. It
can be solved efficiently by any standard linear algebra software.
However, this approach is expensive for the large data sets since
the Computing eigenvectors is the bottleneck.

© 2019 Copyright held by the owner/author(s). Published in Proceedings of the
22nd International Conference on Extending Database Technology (EDBT), March
26-29, 2019, ISBN 978-3-89318-081-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Another well-known approach is grid-based clustering where
any data set is partitioned using a set of grid-cells and data points
are assigned to the appropriate grid cell. Grid-based methods [1],
[14], [11] quantize the object space into a finite number of cells
(hyper-rectangles) and then perform the required operations on
the quantized space. The main advantage of grid-based methods
is their fast processing time which depends on the number of
cells in the grid. In the other word, no distance computation is
required and the clustering is performed on summaries and not
on the individual objects. Thus, the complexity of grid-based
algorithms is usually O(number of populated grid cells) and not
O(number of objects). Beyond their ability to deal with noisy
data sets, grid-based clustering algorithms are able to identity
clusters irrespective of their shapes. Unlike most of the clustering
algorithm which require an initialization phase, the algorithms
in this category are insensitive to the order of input records and
therefore are deterministic.

Despite the valuable advantages of grid-based clustering algo-
rithms, to the best of our knowledge, all of them are parametric al-
gorithms where a user is required to specify the parameters. How-
ever, most of the time it is not trivial to appropriately set them.
Thus, utilizing the principle of Minimum Description Length
(MDL) we propose a non-parametric Information-TheoreticGrid-
based Clustering algorithm where we regard the clustering task
as a data compression problem so that the best clustering is linked
to the strongest data compression. First, an adaptive grid is con-
structed corresponding to the statistical characteristics of any
data set and non-empty cells are considered as single clusters.
Then, we combine the concept of density and grid-based meth-
ods and employing our compression-based objective function we
start merging clusters with their neighbour grid cells only if it
pays off in terms of the compression cost.

In this paper we propose an information-theoretic clustering
algorithm offering the following contributions:

• Adaptive partitioning: We utilize the statistical charac-
teristics of any data set, e.g. local and global dispersion, in
order to introduce an adaptive partitioning of the data.

• Non-parametric clustering: Employing theMDL-based
objective function, we iteratively merge clusters when it
pays off in terms of the compression cost automatically.
Thus, no parameter needs to be specified.

• Insensitivity to the shape of clusters: ITGC employs
the concept of density-based methods in order to select
the next merging candidate. Thus, it is insensitive to the
shape of clusters whether they are Gaussian, arbitrary or
even having various density regions.

• Scalability: Analogous to other grid-based clustering
algorithm, the complexity of ITGC depends on the number
of cells not on the number of objects which leads to a
scalable algorithm in terms of the number of objects.

Short Paper

 

 

Series ISSN: 2367-2005 618 10.5441/002/edbt.2019.70

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2019.70


EDBT 2019, March 26-29, 2019, Lisbon, Portugal S. Behzadi et al.

2 INFORMATION-THEORETIC GRID-BASED
CLUSTERING

In order to introduce a grid-based clustering algorithm we need
to address two fundamental questions: (1) how to find a specific
appropriate partitioning (grid) corresponding to any data set; (2)
how to efficiently merge the cells to discover the hidden clusters.
Thus, our proposed algorithm ITGC consists of two main build-
ing blocks: (1) finding a suitable grid corresponding to specific
characteristics of any data set and (2) employingMDL principle to
effectively and efficiently merge the cells without any parameter
to be specified.

2.1 Partitioning the Data
Finding a suitable partitioning with respect to the data is a crucial
task in a grid-based clustering algorithm. Inspired by [8], we
utilize the characteristics of any data set to introduce the best
fitting partition. That is, we are looking for a partition which
leads to high internal homogeneity in the cells and high external
heterogeneity of each cell with respect to its neighbors for every
single cell. Thus, for any cell Cj consisting of nj data points the
statistical indicators are defined as:

X̄ j =

∑nj
i=1 Xi j

nj
and Sj =

√∑nj
i=1(Xi j − X̄ j )2

nj − 1
(1)

Where Xi j is the distance of the i − th data point in Cj to the
center of this cell. Thus, X̄ j is the average distance of data points
to the center of Cj and Sj is the standard deviation of the cell.
These are statistical indicators on the local level (each individual
cell), similar indicators are calculated on the global level (the
entire grid) as:

µ =

∑
j X̄ j

N
and σ =

√∑
j (X̄ j − µ)2

N − 1
(2)

Where µ is the average center - distance of all cells, N is the
total number of cells and σ is the standard deviation of all cells.
Based on these indicators, we defineCVLocal (j) andCVGlobal as
the coefficient of variation (CV) corresponding to any cellCj and
the global variation, respectively. That is,

CVLocal (j) =
Sj

X̄ j
and CVGlobal =

σ

µ
(3)

In another point of view, the above scores show how wide-
spread the data points are indicating the relative dispersion at
the local (cell) and global (grid) levels. Finally the partitioning
cost is defined as:

дridCost =
CVGlobal

avд CVLocal (j)
(4)

Considering the cost corresponding to any grid size k×k , we it-
eratively increase k starting from 1 until it pays off. However, it is
not trivial to justify a terminal for this process without observing
its trend. Initially, the grid cost increases sharply by increasing
k then it slows down quickly and continues linearly. Observing
this common trend, we conduct a simple linear regression on
various costs with respect to various k values. The regression
line is expected to fit more through the higher ks where the costs
have lower deviations. Thus, the optimal partitioning can be set
to the first k where the grid cost deviated from the fitted line
lower than the average.

On the other side, by increasing the size of grid the area of
non-empty cells decreases. Thus, it is reasonable to assume this

trend to continue with even smaller cells, but the descending
trend slows down while decreasing cell sizes. Visualizations of
the collected area reveals a common trend which is reverse to the
previous one. The area starts at a maximum value, decreases very
sharply at lower k and keeps decreasing at a lower gradient. In
order to find the optimum value for k , we analogously fit a linear
regression through the data set rejecting the low k values which
deviate larger than average from the fitted line. The following
steps summarize this procedure.

• Step 1: The grid is divided into k ×k cells where the initial
size for k is 1.

• Step 2: The grid cost as well as the area of non-empty cells
are determined and the values are stored.

• Step 3: We iteratively increase k ranging from 1 to amaxk
and repeat the previous steps

• Step 4: Now the optimum partitioning is determined em-
ploying two different criteria.

2.2 MDL-based Objective Function
Utilizing the Minimum Description Length (MDL) principle [10]
we regard the clustering task as a data compression problem
so that the best clustering is linked to the strongest data com-
pression. Given the appropriate model corresponding to any
attribute, MDL leads to an intuitive clustering result employing
the compression cost as a clustering criterion. The better the
model matches major characteristics of the data, the better the
result is. Following the MDL principle, we encode not only the
data but also the model itself and minimize the overall descrip-
tion length. Simultaneously, we avoid over-fitting since the MDL
tends to a natural trade-off between model complexity and the
goodness-of-fit. That is, for a given cluster Ci the corresponding
compression cost is defined as:

MDL(Ci ) = CodinдCost(Ci )+ParamCost(Ci )+ IDCost(Ci ) (5)

where CodingCost shows the cost of coding the data points
in cluster Ci by means of a coding scheme. The next two terms
illustrate the model complexity where the model itself needs to
be encoded. In this paper we employ the Huffman coding scheme
to encode the data considering an appropriate model. That is,
given the corresponding Probability Distribution Function (PDF)
to any attribute, the coding cost of any object x is determined by
−loд2PDF (x). Any PDF would be applicable and using a specific
model is not a restriction [4] for our algorithm. In this paper,
we consider Gaussian PDF for simplicity. In the following we
elaborate our objective function more concretely.

• Objective Function: The overall MDL-based objective
function is the summation of the all compression costs
with respect to various clusters. That is,

MDL(D) =
∑
Ci ∈C

MDL(Ci ) (6)

where D is the entire data set and C = {C1, ...,Ck } is the
set of all clusters.

• Data Coding Cost: Let X = {X1, ...,Xd } denote the
set of all attributes. For any object x = (x1, ...,xd ) the
corresponding coding cost is the sum of encoding any
attribute value xi . Putting all together, the coding cost
corresponding to cluster Ci is given by:
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CodinдCost(Ci ) = −
∑
X j ∈X

∑
x ∈Ci

log2 PDFj (x) (7)

where PDFj (.) is the Gaussian model with respect to j−th
attribute X j .

• Model Complexity: Without taking the model complex-
ity into account, the best result will be a clustering consist-
ing of singleton clusters. This result is completely useless
in terms of the interpretation. In order to specify the asso-
ciated cluster with any data object, we need to encode the
cluster IDs. Thus, the IDCosts are required to balance the
size of clusters and defined as:

IDCost(Ci ) = |Ci |.loд2
|Ci |

|D|
(8)

Following the fundamental results from the information
theory [10], for any attribute X j the parameters corre-
sponding to model employed to encode the data need to
be encoded as well. That is, concerning any Gaussian dis-
tribution PDFj with respect to the attribute X j , the mean
value and the standard deviation need to be encoded, i.e.

ParamCost(Ci ) =
1
2
.(2|X|).loд2 |Ci | (9)

2.3 Algorithm
As mentioned, ITGC consists of two main building blocks. Al-
gorithm 1 summarizes our grid-based algorithm ITGC. First, an
optimal grid is constructed following the steps mentioned in Sec-
tion 2.1, i.e. the procedure FindOptimumGrid(.). Then, we start
merging the cells if it pays off in terms of our objective function
(Section 2.2). Initially every cell is considered as a cluster while
empty cells are ignored. The cluster with the most number of
data points is chosen in the sense that at the end the results are
deterministic. We compute the coding cost with respect to the
selected clusterMDLbef ore and merge this cluster with one of
its neighbors and compute the cost after merging two clusters
MDLaf ter . If the cost after merging is smaller than the cost be-
fore, we merge two clusters and continue the merging process.
Otherwise, the visited cluster is marked. Finally the algorithm
terminates if no unmarked non-empty cell exists.

3 EXPERIMENTS
In this section we assess the performance of ITGC comparing
to other clustering algorithms in terms of Normalized Mutual
Information (NMI) which is a common evaluation measure for
clustering results [13]. NMI numerically evaluates pairwise mu-
tual information between ground truth and resulted clusters
scaling between zero and one.

We conducted several experiments evaluating our algorithm
on synthetic and real-world data sets. In order to investigate
the effectiveness of ITGC we generated various data sets and
compared to the base-line clustering algorithms, i.e. k-means [7]
and DBSCAN [6]. While the insensitivity of ITGC to the shape
of clusters as well as its effectiveness is illustrated by synthetic
experiments, we extended the comparison to the wider range of
well-known clustering algorithms. Our algorithm is implemented
in Java and the source code as well as the data sets are publicly
available 1.

1https://tinyurl.com/y85gglpx

Algorithm 1: Information-theoretic grid-based clustering

ITGC (D)

G = FindOptimumGrid(D);
C = {C1, ...,Ck } // Non-empty cells in G

seeds := non-visited clusters;
while (seeds != empty) do
Ci := the cluster with the most data points in C

Ci is visited
while (MDLbef ore > MDLaf ter ) do
MDLbef ore =MDL(Ci )
Cj := a random non-visited neighbor cell w.r.t Ci
Cm := the cluster after merging Ci and Cj
MDLaf ter =MDL(Cm )

if MDLbef ore > MDLaf ter then
remove Cj and Ci from C .
add Cm to C

end if
end while
seeds := non-visited clusters;

end while
return (C)

NMI=1.0 NMI=0.007 NMI=0.68 

(a) 

NMI=1.0 NMI=0.49 NMI=1.0 

(b) 

NMI=1.0 NMI=0.37 NMI=0.85 

(c) 

NMI=1.0 NMI=0.45 NMI=0.73 

(d) 

NMI=0.98 NMI=0.99 NMI=0.0 

(e) 

Ground Truth ITGC K-means DBSCAN 

Figure 1: Comparison on various synthetic data sets.

3.1 Synthetic Experiments
In order to cover all aspects of ITGC, we investigate the per-
formance of the algorithms considering various synthetic data
sets including arbitrary shaped data sets as well as clusters with
different densities. Then, we continue experiments by comparing
all algorithms in terms of the scalability.

Performance: Most of the time any clustering algorithm is
designed for a specific kind of data sets. For instance, k-means
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Dataset Attr./Objects ITGC k-means DBSCAN EM Spectral C. CLIQUE Single L.

Iris 4/150 0.66 0.53 0.59 0.60 0.6 0.00 0.59
Occupancy Detection 7/20560 0.61 0.56 0.00 0.31 0.00 0.61 -
Breast Cancer 9/286 0.47 0.32 0.41 0.45 0.45 0.39 0.27
User Knowledge 5/403 0.24 0.27 0.01 0.27 0.27 0.00 0.01

Table 1: Comparison on real data sets.
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Figure 2: Scalability of the algorithms by increasing the
number of objects.

appropriately deals with Gaussian shaped data sets and its perfor-
mance dramatically decreases when the clusters have no specific
shape. On the other hand density-based clustering algorithms
are sensitive to different densities w.r.t. various clusters. In order
to evaluate the performance of ITGC concerning various shapes
of clusters, we synthetically generated arbitrary shaped clusters
in a combination with some Gaussian clusters. Figure 1 shows
the effectiveness and the insensitivity of ITGC considering vari-
ous cases. As expected, k-means fails when the clusters are not
Gaussian (Figure 1a,b,c,d). On the other hand, DBSCAN is not
able to discover the clusters with various densities (Figure 1d,e)

Scalability: To evaluate the efficiency in terms of the runtime
complexity we generated 5 dimensional synthetic data sets where
we iteratively increased the number of data objects ranging from
1,000 to 10,000. Figure 2 shows the result of this experiment. As
expected, k-means is the fastest algorithm while DBSCAN is
the worse since its complexity highly depends on the number
of objects. Although ITGC is not able to outperform k-means,
its corresponding execution time is still reasonable and more
efficient than DBSCAN.

3.2 Real Experiments
In this section we extend our experiments to the wider range of
clustering algorithms including EM [5], Single link [12], spectral
clustering [9] and CLIQUE [1] as the well-known representatives
for any clustering approach. We evaluate clustering quality of
ITGC on real-world data sets. We used Iris, Occupancy Detection,
User Knowledge and Breast Cancer data sets from the UCI Reposi-
tory 2. Table 1 shows the characteristics of any data set and the
results of applying various algorithms in terms of NMI. Concern-
ing any data set the best NMI is high lighted and when getting
"Out Of Memory" error we inserted "-" in the table. As Table 1 il-
lustrates ITGC outperforms other algorithms considering the first
3 real-world data sets. Interestingly, in this experiment we out-
perform CLIQUE which is a well-known grid and density-based
clustering algorithm ( the results are similar on the Occupancy

2http://archive.ics.uci.edu/ml/index.php

data set). Although some of the comparison methods perform
slightly better than ITGC on User Knowledge data set, our result
is still comparable and we outperform DBSCAN, CLIQUE and
Single link.

4 CONCLUSION AND FUTUREWORKS
In this paper we propose an information-theoretic clustering
algorithm, ITGC, utilizing the MDL-principle. Firstly, We employ
the statistical characteristics of any data set to appropriately par-
tition the data without any presumptions. Then, an MDL-based
objective function is proposed to iteratively merge the neigh-
bour clusters when it pays of in terms of the compression cost
of the clusters. Our experiments on synthetic and real-world
data sets show the advantages of our proposed algorithm com-
pared to other well-known clustering algorithms. Similar to other
grid-based clustering algorithms, our algorithm may lead to inef-
ficiency when dealing with huge data sets in terms of the dimen-
sionality. Thus, a possible future work would be to investigate the
parallelization approaches in the sense that the required memory
to store the grid information could be distributed. As another
option for the further investigation could be to enhance the parti-
tioning procedure in the sense that it results a sparse grid which
is cheaper in terms of the memory.
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ABSTRACT
Event-time based stream processing is concerned with analyzing
data with respect to its generation time. In most of the cases, data
gets delayed during its journey from the source(s) to the stream
processing engine. This is known as late data arrival. Among
the different approaches for out-of-order stream processing, low
watermarks are proposed to inject special records within data
streams, i.e., watermarks. A watermark is a timestamp which
indicates that no data with a timestamp older than the water-
mark should be observed later on. Any element as such is consid-
ered a late arrival. Watermark generation is usually periodic and
heuristic-based. The limitation of such watermark generation
strategy is its rigidness regarding the frequency of data arrival
as well as the delay that data may encounter. In this paper, we
propose an adaptive watermark generation strategy. Our strat-
egy decides adaptively when to generate watermarks and with
what timestamp without a priori adjustment. We treat changes
in data arrival frequency and changes in delays as concept drifts
in stream data mining. We use an Adaptive Window (ADWIN)
as our concept drift sensor for the change in the distribution of
arrival rate and delay. We have implemented our approach on top
of Apache Flink. We compare our approach with periodic water-
mark generation using two real-life data sets. Our results show
that adaptive watermarks achieve a lower average latency by
triggering windows earlier and a lower rate of dropped elements
by delaying watermarks when out-of-order data is expected.

1 INTRODUCTION
Stream analytics is concerned with analyzing data on the move.
Several stream processing engines (SPEs) have been developed
that vary in their processing capabilities. One fundamental fea-
ture is the ability to process data with respect to their generation
time rather than their arrival time at the SPE [2]. This is com-
monly known as event-time versus processing-time. For a data
stream element e , we define te(e) as a function that returns the
timestamp of the event, i.e. the time it was created at the source,
we also define tp(e) to be the timestamp when it was first seen
by the SPE. The event-time notion is more relevant in several
applications. However, as the data sources are distributed and can
be placed far away from SPEs, delays can occur until an element e
reaches the SPE. This is known as late arrival. Moreover, a stream
element can arrive out-of-order. For example, two stream elements
e1 and e2 where e1 was created before e2, i.e., te(e1) < te(e2) can
arrive in the opposite order, i.e., tp(e2) < tp(e1). This is known
as out-of-order arrival.

Stream analytics jobs are usually defined by a sort of a win-
dow [4, 5, 7]. Windows are used to slice the infinite stream into
finite chunks and apply the analytics computation, e.g. averaging,

© 2019 Copyright held by the owner/author(s). Published in Proceedings of the
22nd International Conference on Extending Database Technology (EDBT), March
26-29, 2019, ISBN 978-3-89318-081-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

a.k.a window function, on the content of the window. Time win-
dows are common types of windows that define stream element’s
membership to the window based on the elements timestamp
w.r.t. window start and end times, when working in event time.
The window function cannot be applied on the window content
until the SPE decides that the window is closed. For system (pro-
cessing) time mode, the decision is made when the internal clock
(wall clock) of the SPE passes the window end. However, for
event time processing, we need an external notion progress.

Low watermarks generation [1, 2] is a technique to account
for the progress in event time. A watermark is a timestamp that
indicates that there should be no future data older than the wa-
termark to be seen. When a watermark is received by a window
operator in a pipeline, it triggers executions of completed time
windows whose closure completed at a time earlier than the wa-
termark. A watermark is monotonic. That is, a new watermark
cannot be less than the last generated watermark. Watermark
progress affects two metrics in stream processing: latency and
late arrival of data items and thus accuracy. Latency is hurt when
too few watermarks are generated. Late arrival increases when
too many watermarks are generated and thus accuracy decreases
due to more elements being ignored (dropped).

Currently, watermark generation is either heuristic-based and
periodic [1, 2] or punctuation-based [11]. The latter assumes
knowledge about the content of the data. The former is inflexible
with the change of the distribution of data arrival rate or the
distribution of the delays in arrival. Those are unique proper-
ties of data streams. In this paper, we contribute an approach to
watermark generation that is data-content-agnostic. We call our
approach as adaptive watermarks. By treating the change in the
skewness between stream elements event time and processing
time as a concept drift, we employ a drift detection technique,
the adaptive window (ADWIN) [3, 6], to decide when to generate
a new watermark and with which value. Moreover, we provide
another control, late arrival threshold, to decide about the water-
mark generation. We implement our approach on Apache Flink
and compare it with a baseline periodic watermark generator
using two real-life data sets. Our experiments empirically prove
the superiority of adaptive watermarks with respect to a reduced
latency and/or a reduced number of dropped elements.

2 ADAPTING TO DATA ARRIVAL RATES
2.1 Baseline: Periodic Watermark Generation
Periodic watermark generation is a heuristic-based approach.
Heuristically, application developers determine a max allowed
latenessm. With the arrival of a new event, the maximum times-
tamp seen is updated. Then, every s milliseconds, the SPE obtains
the maximum timestamp t seen so far. The watermark value is
t −m. New stream elements that arrive after the watermark are
considered late. Depending on the configuration of the stream
processing pipeline, such elements can still be included in the
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Table 1: Parameters used for watermark generators

Parameter Description
δ* Sensitivity to change ∈ [0, 1]. Default is 1.
l Late arrival threshold, l ∈ (0, 1]. Default is 1.
m* Skewness between event time and ingestion time.
∆δ Sensitivity change ratio, ∆δ ∈ (0, 1]. Default is 1.
w Warmup tuples used to initializem.

Parameters with * are derived by the system

result or ignored. This approach is simple to implement. How-
ever, it is does not adapt to changes in 1) the arrival rate of data
elements, 2) the lateness of elements.

2.2 Adaptive Watermark Generation
In practice, it would be desirable to learn bothm, the lateness, and
the period s for generating a new watermark and keep updating
them as new elements arrive. Moreover, to account for high
correctness, one would hold the generation of new watermarks if
the ratio of late arrival elements to the total elements goes above
a certain threshold l since the last generated watermark. In this
situation, the period s at which a watermark is generated will
change (adapt) according to the change in the distribution of data
inter-arrival time. Similarly,m can be learned upon each change
detection. The change of the inter-arrival time can be seen as
a concept drift in data streams [10]. In our case, the drift to be
detected is the change of events’ inter-arrival time. To detect this
drift, we employ the ADWIN algorithm [3].

ADWIN is an algorithm which detects concept drifts (e.g.,
changes in users opinions) and enables adapting machine learn-
ing models on data streams. It works by maintaining a window of
data items over time. The size of the window changes over time
based on the frequency of change detected in incoming data. The
algorithm does not require a pre-determined period to trigger
change detection. It checks for drifts on a per-tuple basis. The
more change occurs, the smaller the size of the window as older
items are considered irrelevant and dropped. The algorithm has
a single parameter δ (Table 1) which controls the sensitivity to
change. The higher the value of δ the more sensitive it will be to
change. In our work, δ is by default set to 1 so that a change is
detected as early as possible.

ADWIN works as follows: Upon the arrival of a tuple, it is
added to the window. Then, the algorithm tries to detect a change
by finding two sub-windows whose value distributions are sig-
nificantly different with respect to δ . Here, ADWIN iterates over
all possible combinations of sub-windows. As an optimization,
ADWIN maintains histograms (buckets) of the sum and variance
of the data rather than the data itself to have a better memory
footprint. The histogram grows logarithmically to the number
of data points. Grulich et al. [6] parallelize different parts of the
original algorithm and reach two orders of magnitude enhance-
ment of its throughput. Table 1 summarizes the parameters we
use for the adaptive watermark generation technique.

Algorithm 1 describes how we employ change detection by
ADWIN to adapt the generation of watermarks. At the arrival
of a new element, that might be late, the difference between the
new element’s timestamp and its ingestion timestamp is inserted
into ADWIN and a check is made for detection of a change (drift)
(Line 12). Such a detection can be an indicator to generate a
new watermark. It is not necessary that every change detection
leads to the generation of a new watermark. We need to look
at the second indicator which is the rate of late arrivals. A new

Algorithm 1: Adaptive watermark generation
Input: A data stream S
Input: Sensitivity change rate ∆δ
Input: Late arrival threshold l
Input:Warmup tuples countw

1 warmup ← 0;m ← 0;watermark ← 0;
2 lateElements ← 0; totalElements ← 0; δ ← 1
3 maxTimestamp = −∞

4 adWin ← initializeAdWin(δ )

5 foreach e ∈ S do
6 maxTimestamp =max(te(e),maxTimestamp)

7 if warmup ≤ w then
8 m ←max(m, tp(e) − te(e))

9 warmup ← warmup + 1
10 else
11 totalElements ← totalElements + 1
12 if adWin.dri f tDetected((tp(e) − te(e))/m, δ )

then
13 if lateElements = 0 then
14 δ = increaseSensitivity(∆δ )

15 if lateElements/totalElements < l then
16 watermark =maxTimestamp −m

17 emit(watermark)

18 lateElements ← 0
19 totalElements ← 0
20 else
21 m ← updateSkewness()

22 δ = decreaseSensitivity(∆δ )

23 else
24 if te(e) < watermark then
25 lateElements ← lateElements + 1

watermark is generated only if this rate is less than the threshold
l at the time of change detection (Line 15). This rate is reset each
time a new watermark is generated.

We call the elements collected between two successive wa-
termarks a chunk. The value of m is the maximum difference
between elements’ ingestion and event time within the chunk
(Line 21). The value of the newwatermark ismaximum timestamp−
m (Line 16). Upon the generation of a new watermark, all data
about late arrival is reset (Lines 18 and 19). In case a chunk has
no late arrivals, the sensitivity is increased (Line 14) to speedup
change detection. However, upon crossing the late arrival thresh-
old l , δ is adapted according to the δ∆ parameter (Line 22).

As ADWIN is designed to work with values in the range [0, 1],
we need to normalize the deviation between element’s event
and ingestion times. For this, we use the first w tuples of the
stream to learn about m (Line 7). That can be in the form of
minimum, maximum, or average skewness observed between
elements’ event time and ingestion time.

For the adaptive watermark generation, the user needs to
specify the late arrival threshold l , the sensitivity change ratio δ∆,
and the warmup tuplesw . The default values for these parameters
are 1, 1, and 10000 tuples, respectively. The choice of a value of l
is mainly driven by the accuracy expected by the application. The
more accurate results expected, the lower the value of l should
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Figure 1: Example for adaptive watermark generation versus periodic generation.

be. If the source is stable and does not produce considerable
late arrivals, the low value of l should not affect the latency of
the results. Otherwise, lower values of l shall affect the latency,
but this should be acceptable as the main concern is accuracy.
Sensitivity to change δ∆ is effective only in case that late arrivals
rate is above l . In such case, δ is decreased and thus ADWIN will
have to observe a larger number of elements before detecting a
change. The value of w affects latency as for the first w tuples,
no watermarks are generated and thus no window contents is
processed. Larger value of w could be used with data sources
with out-of-order arrivals. In Algorithm 1, we use the maximum
skewness observed to updatem. However, this can be changed
to average or other measures.

Example: Figure 1 exemplifies how adaptive watermark gener-
ation works in comparison to the periodic one on a hypothetical
stream. Vertical lines represent stream elements with their pro-
cessing and event time respectively. The periodic generator is
configured with s = 3 seconds andm = 5 seconds. The adaptive
generator is configured with l = 0.5, ∆δ = 1 andw = 3. The pe-
riodic generator will generate watermarks at tp = 103, tp = 106,
and tp = 109 with values 95, 98, and 101, respectively. The ele-
ments arriving at tp = 105, tp = 107 and tp = 109 are late. For
the adaptive generator, the first three tuples are used to initialize
m; which is set to 6, as the max skewness observed between tp
and te . At tp = 103, ADWIN detects a change. As there are no
late arrivals, a watermark is generated with the value 94. At time
tp = 106, another change is detected and a new watermark is
generated with value 97. The next element at tp = 107 is late.
ADWIN detects another change at time tp = 108. At this time,
no watermark is generated as the late arrival ratio is equal to
0.5. Also, at this time, m is updated to 11, the skewness between
tp = 107 and te = 96. At tp = 110, ADWIN detects another
change. A watermark is generated as the late arrival ratio drops
below 0.5.

3 EVALUATION
Setup:We have implemented adaptive watermark generation on
top of Apache Flink v1.6.2, using the Source APIs to control the
emission of watermarks. Our code base for the implementation
and experimental evaluation can be found online1. We run our
experiments on a standalone cluster with 6GB of main memory
and 4 cores at 2 GHz.
Data and query: For the comparison between adaptive and
periodic watermark generation, we use two data sets from the
DEBS grand challenges of 2012 [8] and 2015 [9] respectively. The
DEBS 2012 data set has 32,390,519 tuples and 1.5% of the elements
arrive out-of-order with an average of 100 tuples per second. The

1https://github.com/DataSystemsGroupUT/Adaptive-Watermarks

Table 2: Metrics for periodic watermark generation
Data- Allowed Period Win. Dropped Avg.
set lateness size % win. delay

(ms)
DEBS 1000 200 1000 1.24 9,452,454
2012 100 1.24 3,083,109

100 10 1000 1.50 713,846
100 1.50 175,497

DEBS 1000 200 1000 98.72 644,046,759
2015 100 98.62 648,821,195

100 10 1000 99.93 546,682,126
100 99.97 392,904,397

DEBS 2015 data set has 14,776,616 tuples and has 78.6% of its
tuples arrive out-of-order. Moreover, the arrival rate of the data
varies along the data set with an average of 6 tuples per second.
For both of the data sets, we project the timestamps and create
events with dummy content and the timestamps projected. We
use a simple pipeline that applies a count function on the content
of a time window. We report the window boundary, start and
end, the number of elements in the window and the difference
between window end and the watermark. The resulting tuples
are of the form ⟨start, end, count,delay⟩. We use these values to
construct the comparison metrics as we show next.
Metrics: We measure two metrics: the percentage of dropped
elements and the average delay between a window end and the
watermark after which the window function was triggered. We
call it the window delay and report it in milliseconds.
Parameters: For the periodic watermark generator, we set the
value for the generation period s ∈ {10, 200}ms . For the allowed
lateness,m ∈ {100, 1000}ms . For the adaptive watermark gen-
erator, we set w the number of tuples to initialize m to 10000,
we set the late arrival threshold l and the sensitivity change rate
∆δ to one of {1.0, 0.1, 0.01}, see Table 1 for descriptions of the
parameters. For the size of the time window in the query, we
vary it between 100 and 1000 milliseconds.
Results: For the data collected after running the pipeline for each
unique combination of configuration parameters, to compute
results we: 1) drop out result tuples for which the watermark is
Long.MAX_VALUE. Flink generates a watermark with this value to
flush any windows that were waiting for a watermark to trigger
its computation, 2) count the number of tuples (count above) and
subtract that from the total number of tuples we have in the
respective data set to obtain the tuple drop percentage, and 3)
average the delay over the computed windows remaining after
step 1. Table 2 shows the results for the periodic generator and
Table 3 shows the results for the adaptive one.

For the DEBS 2012 data, the periodic generator provides lower
delay for the shorter watermark generation period. But, with
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Figure 2: Evaluation of adaptive watermark generation

Table 3: Metrics for adaptive watermark generation
Dataset ∆δ l Win. Dropped Avg.

size % win. delay
(ms)

1 DEBS 1 1 1000 1.49 23,633
2 2012 1 1 100 1.49 16,796
3 1 0.1 1000 1.24 1,853,667
4 1 0.1 100 1.24 1,847,622
5 1 0.01 1000 1.17 2,467
6 1 0.01 100 1.17 2,469
7 0.1 1 1000 1.49 22,905
8 0.1 1 100 1.49 16,796
9 0.1 0.1 1000 1.24 1,851,629
10 0.1 0.1 100 1.24 1,847,523
11 0.1 0.01 1000 1.17 2,472
12 0.1 0.01 100 1.17 2,471
13 DEBS 1 1 1000 79.60 72,863,504
14 2015 1 1 100 79.60 72,863,574
15 1 0.1 1000 44.14 33,826,576
16 1 0.1 100 44.14 33,827,281
17 1 0.01 1000 43.82 45,279,068
18 1 0.01 100 43.82 45,279,328
19 0.1 1 1000 85.52 51,965,257
20 0.1 1 100 85.52 51,965,876
21 0.1 0.1 1000 44.42 36,007,475
22 0.1 0.1 100 44.42 36,007,727
23 0.1 0.01 1000 41.64 92,672,393
24 0.1 0.01 100 41.64 92,673,050

higher drop rate. This is logical because of the trade off between
tuple drop percentage and window delay. In the case of the adap-
tive watermark generator, with the default configuration (rows
1&2 in Table 3), it has almost the same tuple drop percentage as
the periodic generator but with at least an order of magnitude im-
provement in window delay. Setting late arrival threshold l = 0.1,
the tuple drop percentage is decreased but with two orders of
magnitude higher window delay (rows 3&4). Yet, the delay is still
below the delay of the periodic generator with the same tuple
drop percentage. Setting l = 0.01 improves the tuple drop per-
centage by 0.07% and with very low window delay (row 5). This
might look counterintuitive. But, by investigating the data for
this configuration, we found that several windows were just fired
by the termination of Flink’s job. Thus, we had fewer windows
that were processed due to the generated watermarks. This is
logical as with a lower value of l , less number of watermarks is
generated in general. Table 3 shows that changing the value of
∆δ for the DEBS 2012 data does not have much of an effect and
the results are almost identical. The control is mainly driven by l .

For the DEBS 2015 data set, we can see that the periodic gen-
erator drops almost all the tuples for the different configura-
tions (Table 2). The window delay is very huge. Using the adap-
tive generator, with the default configuration (rows 13 and 14 in
Table 3), we achieve a drop rate close to the percentage of the
out-of-order tuples in the data set. However, the delay is an order
of magnitude less than the periodic generator. Restricting the
late arrival threshold to 0.1 reduces the tuple drop percentage
and reduces the window delay by about 50% (rows 15 and 16).
Pushing l to 0.01 reduces the tuple drop rate slightly but with
an increase in window delay. The least tuple drop percentage is
achieved when ∆δ = 0.1 and l = 0.01 but with higher window
delay (row 23). Figure 2 visualizes the tuple drop percentage and
the average window delay for the different parameter values of
the adaptive generator.

Our experimental results show the superiority of adaptive
watermarks to baseline periodic ones. For both ordered and un-
ordered streams, less tuple drop rate as well as several orders of
magnitude saving in window delay.

4 CONCLUSION
In this paper, we have proposed an adaptive approach for gener-
ating low watermarks for event-time stream processing. It adapts
to changes in data arrival frequency as well as to late arrival ratio.
Compared to the baseline heuristic periodic watermark genera-
tion, and as indicated by application on data sets with different
arrival frequency and delay characteristics, our approach strikes
a balance between latency and accuracy of stream applications.

Currently, setting the late arrival threshold to very low per-
centage ceases the generation of the next watermark until the
threshold is reached. This might be inconvenient and might cause
high-latency. We intend to investigate an automated approach
that automatically balances between latency and accuracy with-
out having the user to specify threshold explicitly.
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ABSTRACT
One of the applications of string similarity measures regards
identifying the same entity within one or more corpora of data,
also known as the problem of entity resolution. While a lot of
methods have been introduced for assessing the similarity of
two strings, there has not been yet a study to examine whether
these methods are appropriate, in terms of effectiveness and
fairness when applied to names of specific groups of individuals.
In this paper, we provide extensive experimental results over a
number of popular string measures which indicate that string
comparison methods fall short when applied to specific groups,
a fact leading to algorithmic bias against these groups. We also
share some thoughts and guidelines on the way we envision,
database practitioners should address such cases.

1 INTRODUCTION
Recently, the problem of algorithmic bias and fairness has drawn
significant attention [8]. There is an increasing concern about
the potential risks of data-driven approaches in decision making
algorithms [2, 8, 15, 16, 18], raising a call for equal opportunities
by design [9]. Biases can be introduced at different stages of the
design, implementation, training and deployment of machine
learning algorithms.

The problem has mainly been studied in the context of fair-
ness in classification tasks, where individuals are classified in a
positive or negative class. Example applications include, among
others, hiring, school admission, crime risk factor estimation,
and advertisement selection. There are two general approaches
to defining fairness, namely group and individual fairness [6]. A
common example of group fairness is statistical parity, where the
proportion of members in a protected class that receive positive
classification is asked to be identical to the proportion in the gen-
eral population. Individual fairness requires that similar people
are treated similarly.

In this paper, we draw attention to issues of bias in the task of
entity resolution and, in particular, to string matching for name
matching tasks. Approximate string matching forms the basis of
a variety of algorithms in many applications where the ability to
identify a word, despite of misspellings or typographical errors,
is of crucial importance.

As such, there is a significant body of work on string com-
parison methods for name matching tasks [3, 7]. There has also
been work on assessing the performance of these string matching
algorithms [4, 17]. Amongst others, Lange and Naumann [11]
consider different similarity measures for different frequencies of
names in a database. Nevertheless, to the best of our knowledge,
it is the first time that the problem of bias occurring in name
matching is examined.

© 2019 Copyright held by the owner/author(s). Published in Proceedings of the
22nd International Conference on Extending Database Technology (EDBT), March
26-29, 2019, ISBN 978-3-89318-081-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

In this paper, we first provide a definition of bias in name
matching tasks. Intuitively, we consider a matching algorithm
to be negatively biased against a specific group of names, if
the mismatches occurring for names in this group exceed those
occurring on the average. Then, we examine a number of widely
used string similarity measures in terms of bias.

We provide extensive experimental evidence that there is bias
against certain race groups when applying string comparison
algorithms for name matching tasks. This kind of biased behavior
appears mainly against people with Asian origin, not intention-
ally, but as a consequence of the basic characteristic these names
have, which is short length, compared to the names of people of
other races. We then discuss approaches towards making meth-
ods for approximately matching names fair.

In brief, the contributions of this paper are outlined as follows:
• We identify the problem of bias in string comparison meth-
ods for name matching tasks.

• We propose a definition of bias for name matching tasks.
• We provide empirical evidence (in the form of extensive
experimentation) of bias in a number of string similarity
measures.

• We discuss how this problem may be addressed.
The rest of this paper is structured as follows. Section 2 in-

troduces our measure for quantifying bias in name matching
tasks, followed by a short description of the methods used in
our assessment. Next, in Section 3, we present our experimen-
tal evaluation. Finally, we conclude in Section 4, summing up
our findings, providing our vision on how bias cases for name
matching tasks should be addressed by database practitioners
and provide some thoughts for future work.

2 METHODOLOGY
In this section, we present our definition for bias in name match-
ing tasks and a brief description of the string matching methods
used in our evaluation.

2.1 Defining Bias
We need to quantitatively define the notion of bias in the context
of record matching. In general, we want to capture the fact that
for specific groups in the user population, there is unfair behavior.
Let us use U to represent the general set of users. We assume
that users are divided into m groups, Gi , ∪iGi = U , and Gi ∩

G j = ∅, for i , j, based on the value of some protected attribute,
such as, for example, race, or gender.

Intuitively, we assume that there is bias against some specific
user group G, if there are more errors in the results of matching
when it comes to users inG than in the general population. There
are two cases of errors, or mismatches. The first case is when
two records are falsely reported as a match. This corresponds to
a False Positive (FP). The second case is when two records that
correspond to the same entity are not matched. This corresponds
to a False Negative (FN). This is formalized in Definition 1.
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Definition 1 (group mismatch). The mismatchM for a user
group G of size N is defined asM(G) =

∑
u∈G F P (u)+FN (u)

N , where
FP(u) and FN (u) are the false positives and false negatives when
matching names referring to user u in G.

We determine whether a name matching method is biased to-
wards a particular group by comparing its mismatch performance
for this group with its mismatch performance for all groups of
the general populationU . To this end, we define

GM(U ) =

∑
Gi ∈U M(Gi )

m
(1)

Definition 2 (name matching bias). The bias B of a string
comparison method for a group population G is defined as:

B(G) =
GM(U ) −M(G)

GM(U )
(2)

Let us now discuss the values of bias and their meanings. If
G’s mismatches are equal to the average number of mismatches
of all groups, then its bias is equal to zero. On the other hand,
if the mismatches of G are more than the average, then bias
gets a negative value, and, in this case, we consider that the
method examined is negatively biased against G. Finally, when
the average number of mismatches is greater than that ofG , then
we assume that the method is biased in favor ofG . Values close to
0 indicate low bias, while as the absolute value of bias increases,
this is an indication of increased bias, either positive or negative.

In this paper, we consider string matching algorithms applied
to names and race as the protected attribute.

2.2 Methods for Name Matching
Let us now briefly present some popular string comparison meth-
ods for name matching tasks that we use in our empirical evalu-
ation. Let us consider two strings, which, in our case, represent
names, S1 and S2.

Edit Distance. The edit distance between S1 and S2 is the min-
imum number of edit operations required to transform S1 to S2.
We use the Levenshtein edit distance [12] where an edit opera-
tion is a character insertion, deletion or replacement, and each
operation has cost equal to 1.

Jaro & Jaro-Winkler Similarities. The Jaro similarity [10] be-
tween two strings S1 and S2 is defined as:

JS(S1, S2) =

{
0, if m=0

1
3 (

m
|S1 |
+ m

|S2 |
+ m−t

m ), otherwise , where |S1 |, |S2 |

are respectively the lengths of S1 and S2, m is the number of
matchings, and t is the number of transpositions defined as fol-
lows. Two characters are considered matching, if they are the
same and within distance less than

⌊
max ( |S1 |, |S2 |)

2

⌋
−1. The num-

ber of transpositions is calculated as follows: The i-th common
character in S1 is compared with the i-th character in S2. Each
nonmatching character is a transposition.

Jaro - Winkler similarity [19] is based on Jaro similarity, favor-
ing prefix matches, as they are considered of higher importance
for name matching. It is defined as: JWS(S1, S2) = JS(S1, S2) +
l p(1− JS(S1, S2)), where l is the length of common prefixes of S1,
S2, topping at four common characters and p a scaling parameter
defaulting to 0.1.

Q-gram based methods. Q-grams are successive substrings of a
string each of lengthQ . Each string is divided into a set of distinct
Q-grams. Let N1 and N2 be the sets of Q-grams of strings S1 and

Table 1: Soundex mapping table.

a, e, h, i, o, u, w, y → 0 l → 4
b, f , p, v → 1 m, n → 5
c, д, j, k, q, s, x, z → 2 r → 6
d, t → 3

S2 respectively. There are various set comparison measures [13].
In this paper, we use the Dice coefficient and Jaccard index, where
the Dice coefficient is defined as DC(S1, S2) = 2 |N1∩N2 |

|N1 |+ |N2 |
, and the

Jaccard index as to J I (S1, S2) =
|N1∩N2 |
|N1∪N2 |

.

Soundex. Soundex, based on English language pronunciation,
is the oldest (patented in 1918 [14]) and best known phonetic en-
coding algorithm. It keeps the first letter of a string and converts
the rest into numbers according to Table 1. All zeros (vowels
and ‘h’, ‘w’ and ‘y’) are then removed and sequences of the same
number are merged to a single one. The final code is the original
first letter and three numbers (longer codes are stripped off, and
shorter codes are padded with zeros).

3 EXPERIMENTAL EVALUATION
In this section, we present the findings of our empirical assess-
ment.

3.1 Experimental Setup
For our evaluation, we use data from the US Census Bureau1,
list of names. This list contains 162253 distinct names and the
frequency of appearance of each of these names in several race
groups in the agency’s database. We selected three of the most
popular of these race groups. These are the groups of names from
people characterized as White, Afro-americans and those with
Asian or Pacific origin. Since people of different races may have
the same name, we keep only those names for which at least
90% of the people having these names belong to a single group.
Then, we extracted the 50 most common names from each of
these groups. The statistics of the dataset used in this study are
depicted in Table 2.

Since our aim is to assess the effectiveness of string similar-
ity methods for name matching tasks, we need alternative or
erroneous versions of the names that we have extracted, for
matching them with their original versions. For this purpose,
we have employed the data corrupter from the German Record
Linkage center [1]. This was configured to perform one random
edit operation (insertion, deletion or replacement) in each of the
names we have extracted, so as to produce 1 error for each of
them, as it is rather unusual for a word to have more than one or
two typographical errors [5].

Then, we perform record linkage between the original and the
corrupted version of the datasets using each of the string com-
parison methods presented earlier. For each of these methods, we
perform the same experiment 10 times. The matching thresholds
used for each method are illustrated in Table 3.

For the Levenshtein distance, the minimum difference between
two strings is equal to 1, meaning one modification. Jaro, Jaro-
Winkler, Dice are Jaccard are similaritymeasures returning values
between 0, for total dissimilarity, and 1 for absolute similarity.
Finally, we desire codes produced by Soundex to totally coincide,
since its representation contains approximation characteristics.

1Available at https://www.census.gov/topics/population/genealogy/data/2010_
surnames.html

627



Table 2: Statistics of the dataset.

Race
Group

Average occurrences per
name in top-50

Average occurrences per
name in group

Number of distinct
names in group

Asian 68861.44 964.1 2897
Black 3027.06 272.52 2364
White 91959.86 681.72 100688

We built a testbed using Anaconda Python 3.5 and conducted
our experiments on Ubuntu 18.04 LTS, powered by an Intel i5
processor with 8 GBs of RAM. The results of our assessment are
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Figure 1: Length distributions for the top-50 names.

illustrated in Figure 2. In all plots, the horizontal axis is used to
display the various thresholds used in our evaluation, while the
vertical axis represents bias. In each plot, the results for all races
are illustrated using error bars, displaying the minimum, average
and maximum measurement.

3.2 Discussion of the Results
Figure 2 indicates that all measures treat names from different
groups differently, that is, all measures exhibit some form of
bias. As a first step to interpret this bias, we seek to identify
similar characteristics in each of the group of names. As such, we
measure the lengths of the names in each group. These results
are illustrated in Fig. 1. As we can see, the shortest names belong
to people whose race is characterized as Asian.

We will now attempt to associate the length of these race
groups with the behavior of the string comparison methods. As
we can observe from Fig.2(a), the Levenshtein distance method
performs worse for names with Asian origin than for names
associated with people of White or African race. For the Asian
group, the Levenshtein distance incurs negative bias lower than
-1.67 when considering as matching names featuring an edit dis-
tance equal to 2, which is the lowest score in our evaluation. We
speculate that, the reason for this behavior is the shorter length
of the Asian names, as opposed to the other two groups, causing
more ambiguous matches. The method seems to be slightly bi-
ased in favor of both the other two groups, with the White group
receiving higher positive bias between the two.

As shown in Fig 2(b), Jaro also exhibits a continuous negative
bias for the Asian group and a positive bias towards the African
group. For the White names dataset, however, the situation is
somewhat mixed. For matching threshold equal to 0.7, the bias
is negative, then it becomes almost zero for threshold equal to

0.8 and it turns positive for a threshold equal to 0.9. This occurs
because as we increase the threshold, the number of false posi-
tive matches drops, while the number of false negative matches
remains merely unchanged. For Jaro-Winkler (Fig. 2(c)) the nega-
tive bias against Asian names is evident, again, as the positive
bias in favor of African names. In this case, however, the method
seems to also be negatively biased against White names as well.

Let us now consider the case of breaking names into sets of
Q-grams. For the Dice coefficient 2(d), we observe that the bias
for all groups tends to converge to zero, when we use a high
matching thresholds equal to 0.9. This is because, there are zero
matches in most cases. As such, the number of false negatives is
almost the same for each case and the number of false positives
is the factor affecting the bias for each method. Examining each
group individually now, it is evident that, again, there is negative
bias towards the Asian group. The other two groups exhibit
similar behavior, with the African one receiving more positive
bias. The use of the Jaccard index (Fig. 2(e)) results in a similar
behavior. Again, the Asian dataset is far below average, while
the other two are very close and slightly positive. In both cases,
however, the incurred bias is much lower than in the previous
methods.

Table 3: Comparison methods and threshold values used.

Method Threshold values
Levenshtein 1, 2, 3

Jaro, Jaro-Winkler, Dice, Jaccard 0.7, 0.8, 0.9
Soundex 1

Finally, we consider the use of Soundex, which has been specif-
ically designed for name matching tasks. In this case, a threshold
is not used for matching, and there is a match when two pho-
netic codes coincide. The results for this case are illustrated in
Figure 2(f). As we may see, again, the results are similar with the
previous cases. The Asian names exhibit negative bias, exceeding
-0.5, while African names score very close to +0.5. White names
are very close to the average case, slightly positively biased, nev-
ertheless. A reason for this behavior is that, Soundex does not
consider vowels. As such, since Asian names are usually short
having similar vowels, it is very easy for the algorithm to be led
to false positives.

Summarizing, regardless of the string similarity measure used,
there is significant evidence that there is negative bias when
matching names of people belonging to the Asian race, while
there is positive bias when matching names of people belonging
to the African race. Depending on the method used, White names
may be either positively or negatively biased, falling, in most
situations, within the average case. Besides this general behavior,
some of the string measures are better than others in terms of the
volume of bias, with the Q-gram Jaccard method outperforming
the others by exhibiting the smaller bias.
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Figure 2: Bias of the string comparison methods.

4 CONCLUSIONS, THOUGHTS AND
FUTUREWORK

Bias of this or some other form may be present in different steps
of entity resolution and a lot of work is needed to formalize, detect
and remedy it in the many different algorithms and techniques
around this important task.

Our preliminary studies have revealed that, even in the basic
task of name matching, there may be bias, in the sense that the
quality of the results varies based on the group an individual
belongs to. In this case, bias is not malicious, but rather a side
effect of the data values (names) of the attributes of individuals
belonging to specific groups. For name matching, we believe
that we provide some useful insight to database practitioners
for handling such situations. To this end, considering a single
threshold for matching names from all origins, does not yield
correct results for the Asian names, therefore this is a factor
of concern. A first measure to alleviate this issue would be to
consider the lengths of the names, or race information, if available,
in cases of name matching tasks and maybe perform this task
separately for this class of names.

For the future, there are many additional steps to be taken, as
our study focuses on a very specific task, namely string match-
ing based on names. We aim at performing further experiments
considering data from more distinct groups which are going to
be addressed as hidden parameters and examining deeper the
structures of the names of each case, in order to reveal more
factors that cause algorithmic bias in name matching tasks.
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ABSTRACT
In this workwe present Rock, amethodwhere the pointsRoam to
their clusters using k-NN. Rock is a draft for an algorithm which
is capable of detecting non-convex clusters of arbitrary dimension
while delivering representatives for each cluster similar to, e.g.,
Mean Shift or k-Means. Applying Rock, points roam to the mean
of their k-NN while k increments in every step. Like that, rather
outlying points and noise move to their nearest cluster while the
clusters themselves contract first to their skeletons and further
to a representative point each. Our empirical results on synthetic
and real data demonstrate that Rock is able to detect clusters on
datasets where either mode seeking or density-based approaches
do not succeed.

1 INTRODUCTION
Mode seeking clustering algorithms aim for detecting the modes
of a probability density function (pdf) from a finite set of sample
points. This type of clustering algorithm serves the purpose of de-
tecting local maxima of density of a given distribution in the data
set. In contrast density-based methods have the capability of de-
tecting density-connected clusters of arbitrary shape. Rock posi-
tions itself between mode-seeking methods and density-based ap-
proaches. It is capable of detecting clusters of non-convex shapes
and arbitrary densities at the same time. Plus it provides repre-
sentatives for the detected clusters. Such an approach contributes
additional expressiveness to the density-connected clusters. Fur-
ther Rock provides the possibility to observe the directions of the
data points roaming to the representatives. As an example, Figure
1 shows the path every point travels to its cluster representatives
over time when Rock is applied. As Rock is not relying on any
predefined density kernel it is able to detect non-convex clusters,
which is a major advantage regarding other clustering methods.

The remainder of this paper is organized as follows: We pro-
vide a brief overview on the mode seeking method Mean Shift
and other k-NN-based mode seeking algorithms. We then pro-
ceed explaining the Rock algorithm. Following to the elaboration
on the algorithm we evaluate the performance of Rock against
k-Means, Mean Shift and DBSCAN. Here the linking-role of Rock
becomes clear, as our algorithm detects non-convex shaped ar-
eas where e.g., k-Means and Mean Shift fail and yet provides a
representative of each detected cluster similar to the centroids
in k-Means or modes in Mean Shift. We conclude this paper by
providing an overview of the core features of our method and
further elaborating on potential future work.

The main contributions of Rock are as follows:
• It finds non-convex shaped clusters of any density, which
neither density based clustering methods nor mode or
centroid based clustering methods are capable of

© 2019 Copyright held by the owner/author(s). Published in Proceedings of the
22nd International Conference on Extending Database Technology (EDBT), March
26-29, 2019, ISBN 978-3-89318-081-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Figure 1: All points of a dataset with two clusters: overlap-
ping final positions and the trajectories of all points on
the left, initial positions and clustering on the right

• The number of clusters does not have to be given by the
user

• It provides a representative for every cluster

2 RELATEDWORK
The most popular related work is Mean Shift, which has been
initially proposed in [5]. Its core idea is to regard the points in an
area around each point and iteratively shift the center of this area
to the mean of the points lying in the previously regarded area.
The Mean Shift method became popular in the field of clustering
by the work of [2]. The core concept of Mean Shift is to determine
the maxima (referred to as modes) of a given density function.
In contrast to Rock, Mean Shift requires a kernel function K by
which the weights of the nearby points are determined in order
to re-estimate the mean. Further the used kernel requires a size
of the area to be regarded around each point, which is also re-
ferred to as bandwidth. The choice of the bandwidth is not trivial,
additionally there can be the need of an adaptive bandwidth size.

Another algorithm for detecting modes is developed in [3]. In
contrast to theMean Shift approach they rely onk-Nearest Neigh-
bors (k-NN). While Mean Shift relies on a kernel density estimate
(KDE) the k-NN approach relies on a k-NN density estimate. The
algorithm in [3] defines for each input point xi a pointer to the
point within the k-Nearest Neighbors with the highest k-NN
density. The process is repeated until a pointer points to itself,
which represents then the local mode of xi . However, in contrast
to Rock, this method also relies on a density definition, where
the density of a point is defined as inversely proportional to the
distance of the k-th nearest neighbor. In a more recent work, [8]
proposed a k-NN clustering method relying on consensus clus-
tering, in which results of several clustering trials are combined
in order to get a better partition.

Regarding methods which generate a backbone of a cluster, in
a more recent work named ABACUS [1] the authors propose a
method which is specialized in identifying skeletons of clusters
using k-NN. However ABACUS and Rock differ in two major
aspects. First, Rock does not primarily aim for the skeletons of a
cluster but for a representative for each detected cluster (body
to representative). In contrast ABACUS is targeted to find first a

Short Paper

 

 

Series ISSN: 2367-2005 630 10.5441/002/edbt.2019.73

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2019.73
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Figure 2: Actual positions of the points at the given time t. First “skeletons” of the clusters emerge, which then tighten to
divisible clusters.

backbone of a cluster and then expand from the backbone until
a border of a cluster is reached (backbone to body). Secondly,
ABACUS uses a static k for the k-NN approach. In our work
in progress, we provide a method where k changes over each
iteration step.

In this paper we compare Rock with Mean Shift and k-Means
[7]. K-Means is a partitioning clustering algorithmwhere the user
provides the number of clusters k which shall be detected. The
cluster model of k-Means provides as a result the cluster centroids
µ and the assignment of the datapoints to their centroids. Finally
we evaluate the performance of Rock compared to DBSCAN
[4], which is a density based clustering method. We compare to
density based clustering since it is in contrast to other types of
clustering algorithms capable of detecting non-convex shaped
clusters. DBSCAN requires an ε-range and a minimum number
of points (minPts) which shall be located within this ε-range.
Through these two parameters the user can control how dense
the detected clusters have to be.

3 THE ALGORITHM
Rock implements the best of bothworlds, partitioning and density-
based clustering. It is able to detect non-convex clusters and
clusters of highly different densities. Since we use the k-Nearest
Neighbors as main indication for cluster membership the algo-
rithm works for arbitrary numbers of dimensions. Given a query
point p and a number of neighbors k , the k-Nearest Neighbors
at timepoint t (we will explain that later) are defined as a set
kNNt (p,k) ⊆ DB with exactly k objects, such that for all of
these objects {o1,o2, ...,ok } the distance to the query point p is
less or equal to the distance of any other data point o′ to p in our
data base DB:
∀o ∈ kNNt (p,k),∀o

′ ∈ DB \ kNNt (p,k) : dt (p,o) ≤ dt (p,o
′)

t refers to the timepoint at which the data base DB is looked
at, since each point will have a different position at different
timepoints in our algorithm. Similarly we use dt (p,o) to describe
the distance between points p and o for the status of the data
base at timepoint t . For detecting the k-Nearest Neighbors, our
implementation of Rock uses a Balltree [9] as index structure
according to the sklearn reference.

The idea of Rock is, that every point moves gradually to the
representative point ζ of its cluster by “wandering” into the
center of its k-Nearest Neighbors in every step. So Rock does not
need any other information than where the k-NN of each point
are located at time step t , which makes it easily parallelizable.
Equation 1 gives us the position ζ of a pointp at a time t usingk(t)
as the number of regarded neighbors: we get the new position
ζ (p,k, t) of p by calculating the mean position of all objects o ∈

kNNt−1(p,k(t)), i.e. of all k-NN of this point p at the previous
time step.

ζ (p,k, t) =
∑

o∈kNNt−1(p,k (t ))

ζ (o,k, t − 1)
k(t)

ζ (p,k, 0) = initialPosition(p)
(1)

We increase k linearly over time and stop if the algorithm
converged or a given maximal time tmax is reached. Of course
we do not only store the actual position at a time of each point p
but also its initial position initialPosition(p). With that we are in
the end able to put all points which have almost the same actual
position into one cluster. This is when the distance is smaller
than ε , which is described in equation 2. Therefore we regard
the 1-NN-distances of all points, which is the distance to the first
nearest neighbor each, and use half of the average 1-NN distances
of all points as ε :

ε =

∑
p∈DB

(∑
o∈kNN (p,1) dist(p,o)

)
2 · |DB |

(2)

We choose this ε since it delivers an intuitively good measure for
how close two points have to be to be "mergeable" in regards to
their initial distribution.
In summary the algorithm looks like follows:

Algorithm 1 Rock(pointset, tmax)
changed= true
t=0
while changed and t < tmax do

k=k(t)
changed=false
for p in pointset do

oldPosition= p.getOldPosition()
newPosition= meanOfKNN(pointset, p, k, t)
p.setActualPosition(newPosition)
if distance(oldPosition, newPosition)<ε then

changed=true
t++

Note that tmax is not mandatory a hyperparameter and can
be set beforehand to the same value for various experiments as
we will show in section 4. If we took a static k , most of the points
would only shrink together with their exact k-Nearest Neighbors.
Thus, we increase k over time, to receive stable clusters. The
minimal value with which we will also start should be k = 3,
since observing less nearest neighbors (including the point itself)
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would not lead to anything. The highest useful value for k is
n
2 for a dataset of n points since if more neighbors would be
regarded, it would lead to only one big cluster. We want to reach
that highest value at the maximal number of iterations tmax ,
thus we obtain for linear increase:

k(t) =
0.5n − 3
tmax

· t + 3

In order that k actually increases in every step the slope of
k(t) should be at least 1. Therefore tmax should be chosen such
that tmax < 0.5n−3. Choosing tmax significantly too low would
mean to early regard a high number k of nearest neighbors,
which potentially belong to other clusters, and therefore merging
several clusters into one. Vice versa, a significantly too high tmax
could result in clusters splitting up.

Figure 2 shows the positions of all points at expressive points
in time t while clustering the two moons dataset, which is fur-
ther described in section 4.1. Regarding that, we already note
an additional advantage: The skeleton which emerges already
in early steps for each cluster could be used for anytime results
or elimination of outliers, which we plan to examine further in
future work.

3.1 Complexity
Having described our algorithm, we now elaborate on the run-
time complexity of Rock and compare it on a theoretical ba-
sis to k-means and MeanShift. Focusing first on the used index
structure, according to [9] the runtime complexity of a Ball tree
is O(d log(N )) where d denotes the dimensionality and N the
number of data points. The runtime complexity of MeanShift is
O(iN 2) where i denotes the number of iterations. k-Means has
a runtime complexity of O(Nkid) where k refers to the number
of clusters which shall be found. For Rock, using the Balltree
structure, we get a runtime complexity of O(kNd log(N )) where
k denotes here the number of k-NN. Conclusively it can be stated
that our method performs with regards to its time complexity
between the performance of k-means and MeanShift. Since this is
a work in progress, it may be viable to consider query-strategies
which rely on different structures, such as e.g., Locality-Sensitive-
Hashing (LSH) as used in [10].

4 EVALUATION
We tested Rock on several datasets and compared our results to
the ones obtained by DBSCAN, k-Means and Mean Shift, since
Rock positions itself between them: it finds non-convex shaped
clusters as DBSCAN, but as well finds clusters of different densi-
ties with according representatives as k-Means and Mean Shift.
As quality measures we use the Normalized Mutual Information
(NMI) and the Adjusted Rand Index (ARI) in regards to the ground
truth. All experiments were executed with tmax = 15, which is
an empirically determined good value for the normalized data
we use (i.e. removing the mean and scaling to unit variance). For
all comparative methods the best parameters have been deter-
mined by iterating over a parameter range 1 and choosing those
parameters which yield the best NMI resp. the best ARI for each
of the methods. This shows again the simplicity of choosing the
one hyperparameter Rock requires in comparison to the several
parameters of our competitors, as Rock is not too sensitive to
tmax , as we will show in future work due to the lack of space.

1We tested ε with steps of 0.1 in a range of [0.1, 2.0],minPts with steps of 1 in
a range of [2, 10] and the bandwidth with steps of 0.1 in a range of [0.1, 2.0]

4.1 Two Moons
The dataset as shown in Figure 3 is a classical and well known
dataset consisting of two moon-shaped clusters. For Mean Shift
a bandwidth of 0.6 yielded the best NMI and a bandwidth of
1.2 yielded the best ARI. For DBSCAN ε = 0.3 andminPts = 2
yielded an NMI and ARI of 1 and for k-Means we chose k = 2. We
tested the dataset with 250 datapoints and 5% noise, obtaining
the optimal result with Rock as well as with DBSCAN. The non-
density based methods k-Means and Mean Shift assigned a part
of each moon to the false cluster as shown in Figure 3. As that,
k-Means reaches an NMI of 0.36 and an ARI of 0.46. Mean Shift
performed slightly better with an NMI of 0.53 (bandwidth 0.6)
and an ARI of 0.50 (bandwidth 1.2). It may seem unintuitively first

Figure 3: The clustering of two moons as received by k-
Means, Mean Shift and DBSCAN (in this order)

whyRock finds such shaped clusters even though regarding “only”
the k-NN, but it makes sense considering that we slowly increase
k . Figure 2 shows the development of the points’ positions: First,
the noise gets eliminated and the skeleton of the two clusters
emerges. Then the ends of the clusters shrink up more and more
into the middle of the clusters each. When the algorithm finishes
at tmax = 15, there are only the two representatives of the
clusters left as Figure 2d implies already.

4.2 Mouse

Figure 4: Result Rock
returns for the mouse
dataset

NMI ARI
k-Means 0.58 0.53

Mean Shift 0.67 0.66
DBSCAN 0.71 0.68

Rock 0.81 0.86

Table 1: Performances
of the algorithms on the
mouse dataset

To show how Rock deals with colliding clusters, we chose the
mouse dataset. It consists of three round clusters of different den-
sities which blend into each other at two points, where the “ears”
of the mouse touch the “head”. We conducted the experiment
with Mean Shift using a bandwidth of 0.9, with DBSCAN using
an ε-range of 0.2 andminPts = 4, and k-Means with k = 3. While
Rock is able to distinguish the three clusters without a problem,
the other algorithms cannot, as Figures 4.2 and 5 show: DBSCAN
does not find the correct dividing line between head and right
ear, k-Means puts a lot of the points from the head to the ears,
and Mean Shift performs only slightly better than k-Means. The
exact values of the resulting NMI and ARI can be seen in table 1.

4.3 Iris
Iris [6] may be the most famous dataset and one of the most
challenging ones, since two of the three clusters are very difficult
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Figure 5: Clustering of the mouse dataset as obtained by
the comparative methods k-Means, Mean Shift and DB-
SCAN (in this order).

Figure 6: The NMIs (top) andARIs (bottom) reached by the
comparative methods and Rock, using different combina-
tions of dimensions of the Iris dataset respectively.

to separate for they are overlapping in virtually every dimension.
Nevertheless, even here Rock delivers good results: depending on
which two of the four given dimensions it regards, we receive an
NMI between 0.6 and 0.8 and an ARI between 0.56 and 0.8. These
results are very good in comparison to the other methods, as
Figure 6 shows: regarding the NMI we achieve at least the second
best value, but most of the times the very best, no matter which
two dimensions of the dataset are regarded. Concerning the ARI
we mostly surpass the other algorithms, partially by far, as for
example by using dimensions 1 and 3 (which is also reflected in
the NMI). Since we claimed in Section 3 that Rock works with
higher number of dimensions, we conducted an experiment on
the full four-dimensional Iris dataset. Here our method yields the
best results compared to its competitors, especially with regards
to the computed ARI as can be seen in the rightmost case in
Figure 6. The exact parameters for the comparative methods are
shown in table 2 in the appendix.

5 CONCLUSION
In conclusion we developed an algorithm which is able to au-
tonomously find clusters of various kind. Due to the successive
increase of neighbors being decisive to a point, we are able to find
non-convex shaped clusters. Without this successive increase
Rock would be equivalent to a simple k-Means, but with the
increase we only obtain the advantages of k-Means: being simple

and providing kind of a cluster centroid which gives us evenmore
information about the found clusters than DBSCAN provides.
With the right use of index structures Rock is not only effective
but also efficient. We showed that Rock surpasses good methods
like Mean Shift, DBSCAN and k-Means in regards to non-convex
shaped clusters, colliding clusters of different densities and even
overlapping clusters like in the Iris dataset. Since it regards k-NN
and no other distance measures it works on high dimensional
datasets as well as on two dimensional ones. The rate of increase
of k will be treated in future work, as a logarithmic or hyperbolic
increase could lead to interesting results. Moreover we are also
curious to know the impact of using reverse k-Nearest Neighbors
instead of the k-NN, as well as using the median or mode of the
k-NN instead of the mean. The influence of the parameter tmax
was also not yet analyzed thoroughly. And, last but not least, the
feature of Rock to create skeletons of the clusters before reducing
them further to representatives could be used to detect advanced
structures, eliminate noise, or deliver anytime results.

A APPENDIX

Dimensions Mean Shift DBSCAN k-Means
bandwidth minPts ε k

(0, 1) 0.9 2, 8 0.4, 0.5 3
(0, 2) 0.8, 0.6 2 0.5 3
(0, 3) 0.7, 0.8 2 0.5 3
(1, 2) 1.0 2 0.59 3
(1, 3) 0.8 2 0.7 3
(2, 3) 0.5 2, 7 0.3, 0.2 3

(0, 1, 2, 3) 0.7 3 0.4 3

Table 2: Parameters used for the respective comparative
methods on Iris. Multiple values indicate that the first
value is optimizing the NMI and differed from the second
value, which optimizes the ARI.
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ABSTRACT
The discrete Fréchet distance (DFD) is widely used to measure

the similarity between two trajectories. Trajectory range query

has been extensively studied in trajectory analytical applications,

e.g., outlier detection, movement pattern analysis. With the dis-

crete Fréchet distance, the above applications are computation

bound rather than disk I/O bound. In this work, we propose

new lower and upper bound functions to speedup the evaluation

of trajectory range queries. Experimental studies on three real

datasets demonstrate the superiority of our proposal.

1 INTRODUCTION

The range query problem on trajectory dataset is a core

subroutine in trajectory analytical applications, e.g., anomaly

monitoring [3], traffic analysis [4]. In particular, given a query

trajectory q and trajectory database T , the trajectory range

query problem returns a subset S ⊆ T such that for each

t ∈ S , the distance between t and q is within given threshold

θ , i.e., dist(t,q) ≤ θ . Specifically, we use the discrete Fréchet

distance (DFD) dF , a widely used trajectory similarity mea-

sure [1, 5]. Given two trajectories t = ⟨t[1], t[2], · · · , t[n]⟩ and
q = ⟨q[1],q[2], · · · ,q[m]⟩, a coupling L between t and q is a

sequence ⟨(t[a1],q[b1]), (t[a2],q[b2]), · · · , (t[al ],q[bl ])⟩, where
a1 = 1,b1 = 1,al = n,bl = m, and for all i = 1, · · · , l , we have
ai+1 = ai or ai+1 = ai + 1, and bi+1 = bi or bi+1 = bi + 1. The
discrete Fréchet distance between t and q is defined as

dF (t,q) = min

L∈Ω
max

(t [ai ],q[bi ])∈L
| |t[ai ] − q[bi ]| |,

where Ω is the set of all possible couplings between t and q.
Figure 1(a) illustrates the discrete Fréchet distance (DFD) be-

tween two trajectories t and q. Computing discrete Fréchet dis-

tance between t and q is equivalent to find a path from (t[1],q[1])
to (t[n],q[m]) in a free space diagram such that (i) the path

travels along non-decreasing positions, and (ii) the maximum

| |t[ai ] − q[bi ]| | along the path is minimized [5]. For instance, the

value of dF (t,q) in Figure 1 is determined by the gray path in

Figure 1(b). Since it can be computed via dynamic programming,

the time complexity of DFD computation is O(mn).
In the literature, several lower and upper bounds have been

proposed for DFD [2, 5]. We will introduce these bounds in Sec-

tion 2. Nevertheless, the trajectory range query problem is still a

computationally intensive problem, takingO(|T |mn) time, where

|T | is the cardinality of trajectory dataset. To improve the query

performance, we devise new lower and upper bound functions

in this paper. Our experimental studies on real datasets reveal
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(a) DFD illustration (b) DFD computation

Figure 1: DFD illustration and computation

that our proposal improves the range query performance onDFD
by up to an order of magnitude when compared to a baseline

approach based on existing techniques.

The remainder of this paper is organized as follows. Section 2

formulates trajectory range query problem and presents the base-

line solution adapted from existing works. We present our novel

techniques in Section 3. Section 4 demonstrates the efficiency

of our proposal with experiments on real datasets. Finally, we

conclude the paper in Section 5.

2 PRELIMINARIES

In this section, we first define the trajectory range query prob-

lem in Section 2.1, then we present the baseline solution for it by

adapting existing techniques in Section 2.2.

2.1 Problem Definition
Definition 2.1 (Trajectory Range Query Problem). Given a query

trajectory q, and a trajectory dataset T and distance threshold

θ , the trajectory range query returns a subset S ⊆ T such that

for each trajectory t ∈ S , the discrete Fréchet distance (DFD)
between t and q is at most θ , i.e., dF (t,q) ≤ θ .

A straightforward approach for this problem (cf. Definition 2.1)

is to compute the exact discrete Fréchet distance (DFD) between
each trajectory t ∈ D and the query trajectory q. Its time com-

plexity isO(|T |mn), rendering it impractical for a large trajectory

dataset.

2.2 Baseline Solution
In this section, we briefly introduce a baseline approach for

the trajectory range query problem (cf. Definition 2.1) which

employs existing techniques in the literature. It follows the

filter-and-refinement paradigm. Let LB(t,q) and UB(t,q) de-

note the lower and upper bounds of dF (t,q) respectively, i.e.,
LB(t,q) ≤ dF (t,q) ≤ UB(t,q). A candidate t cannot be a result if
LB(t,q) > θ . A candidate t is definitely a result ifUB(t,q) ≤ θ . In
these two cases, we save an expensive exact DFD computation.
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Figure 2: Group-based DFD illustration and computation

We introduce existing lower and upper bounds as follows.

Cell-based lower bound LBcell (from [5]): The cell-based

lower bound is defined as

LBcell (t,q) = max(| |t[1] − q[1]| |, | |t[n] − q[m]| |).

The idea of LBcell is that any coupling L between q and t must

start from (1, 1) and end at (n,m). Its computation cost is O(1).

Row-based lower bounds LBrow and LBcross (from [5]): The
row-based and column-based lower bounds are defined as fol-

lows:

LBrow (t,q) = min

bi ∈[1,m]
(| |t[2] − q[bi ]| |).

LBcol (t,q) = min

ai ∈[1,n]
(| |t[ai ] − q[2| |).

The path leading to DFD pass through the second column and

row certainly contribute these two bounds. Both of them have

O(n) time complexity.

For example, the row-based and column-based lower bounds

for trajectory t and q are LBrow (t,q) = min{2, 4, 1, 4, 7, 7} = 1

and LBcol (t,q) = min{7, 6, 7, 5, 4, 3} = 3, respectively.

By combining row-based and column-based lower bounds, we

obtain a cross-based lower bound as follows.

LBcross (t,q) = max(LBrow (t,q), LBcol (t,q)).

Group-based bounds LBд andUBд (from [5]): The idea is to
partition a trajectory t (in Figure 1(a)) to a grouped trajectoryдt =
{дt[1],дt[2],дt[3]} (in Figure 2(a)), which can be represented by

a sequence of minimum bounding rectangles (MBRs). The length

of group-based trajectory is denoted as τ . The minimum and

maximum distance between дt[ai ] and дq[bi ] (two MBRs) are

denoted as dlbG (дt[ai ],дq[bi ]) and d
ub
G (дt[ai ],дq[bi ]).

They can be derived in O(1) cost. For example, in Figure 2

dlbG (дt[2],дq[2]) and dubG (дt[2],дq[2]) are 1 and 4, respectively.

The DFD computing procedure with group-based trajectory

adopts the minimum or maximum distances between MBRs leads

a lower or upper bound of dF (t,q), as follows:

LBд(t,q) = min

L∈дΩ
max

(дt [ai ],дq[bi ])∈L
dlbG (дt[ai ],дq[bi ]),

UBд(t,q) = min

L∈дΩ
max

(дt [ai ],дq[bi ])∈L
dubG (дt[ai ],дq[bi ])

As shown in Figure 2(b), the lower and upper bound DFD
distance between group-based trajectoryдt andдq areLBд(t,q) =
2 andUBд(t,q) = 6, respectively. It reduces computation cost as

O(τ 2) < O(mn).

Greedy-based upper boundUBдreedy (from [2]): In addition

to the above bounds, [2] proposed a greedy algorithm to compute

an upper bound for dF (t,q) with O(n) cost.
The idea of greedy algorithm is simple, e.g., the discrete Fréchet

distance (DFD) goes as follows: in every step, make the move

that minimizes the current distance, where a “move” is a step in
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Figure 4: Running example

either one sequence or in both of them. The greedy algorithm

guarantees 2
Θ(n)

-approximation of the discrete Fréchet distance

with linear time cost O(n). As shown in Figure 1(b), the greedy

algorithm produces the path shown as the circled numbers.

Baseline approach: We construct the baseline approach by ex-

ploiting existing techniques. It applies a filter-and-refinement

framework, as shown in Figure 3. It computes exact DFD dis-

tance for a candidate t only if it cannot be dismissed by lower

bounds (i.e., LBcell , LBcross , LBд ) or upper bounds. Specifically,
the computation cost of employed bounds are in an order from

quick-but-dirty one to slow-but-accurate one.

3 PROPOSED OPTIMIZATIONS

To improve the performance of trajectory range query (cf.

Definition 2.1), we propose several novel optimizations in this

section.

3.1 Group-based border bounds
The lower bound distance between two grouped trajectories

дt and дq is LBд(t,q) = min

L∈дΩ
max

(дt [ai ],дq[bi ])∈L
dlbG (дt[ai ],дq[bi ]),

where dlbG (дt[ai ],дq[bi ]) is the lower bound of ground distance

between дt[ai ] and дq[bi ], shown as the dashed line with the

label 1 in Figure 2(a). The effectiveness of the group-based lower

bound pruning depends on term LBд(t,q).

Group-based border lower bound. Instead of using

dlbG (дt[ai ],дq[bi ]) in baseline approach, we devise a tighter lower
bound for ground distance between two groups (дt[ai ],дq[bi ])
by the crucial observation as follows. Consider (дt[2],дq[2]) in
Figure 4, the minimum distance of (дt[2],дq[2]) is determined

by the gray cells, as if the DFD path of trajectory t and q passes

though the group pair (дt[2],дq[2]), dF (t,q) must be larger than
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or equal to the minimum value in entrance cells (red rectangles)

and exit cells (blue rectangles).

In particular, theminimum value of entrance cells and exit cells

in given pair (дt[ai ],дq[bi ]) is defined as denmin (дt[ai ],дq[bi ])
and dexmin (дt[ai ],дq[bi ]), respectively. Thus, the entrance and

exit cell based lower bound of ground distance of group pair

(дt[ai ],дt[bi ]) is

dlbee (дt[ai ],дq[bi ]) = max{denmin (дt[ai ],дq[bi ]),d
ex
min (дt[ai ],дq[bi ])}.

Consequently, we have a tighter lower bound LBb (t,q) by

LBb (t,q) = min

L∈дΩ
max

(дt [ai ],дq[bi ])∈L
dlbee (дt[ai ],дq[bi ]).

There is a trade-off between the tightness of

denmin (дt[ai ],дt[bi ]) (the same as dexmin (дt[ai ],дt[bi ])) and

its computation cost. The quick-and-loose one is taking the

smaller distance of t[ainτ ] with the MBR of дq[bi ] and the MBR

of дt[ai ] with q[
bim
τ ]. The slow-and-tight one is computing the

smallest distance of t[ainτ ] with all points (i.e., 3, 7, 5, 6 in red

rectangle) in дq[bi ] and all points in дt[ai ] with q[bimτ ] (i.e.,

3, 5, 4, 6 in red rectangle). In terms of time complexity, the former

one is O(τ 2) and the later one is O(τn) for every group pairs in

дt and дq.

Group-based border upper bound. As shown in Figure 5, the

upper bound of ground distance between t[ainτ ]with the MBR of

дq[bi ] and the MBR ofдt[ai ]with q[
bim
τ ] for each (дt[ai ],дq[bi ])

pair are computed withO(τ 2) cost. The upper bound of the DFD
path from (t[1],q[1]) to (t[n],q[m]) is equivalent to find a path

from left-bottom corner to right-top corner, where the maximum

value in that path is minimized, as the red path shown.

We denote that DFD upper bound as UBb (t,q), it is 10 in the

example of Figure 5.

3.2 DFD path transfer directions
Take (дt[1],дq[1]) in Figure 4 as an example, the minimum dis-

tance between дt[1] and дq[1] is max{min{3, 4},min{4, 6}} = 4.

Computing LBд(t,q) is equivalent to find a DFD path from

(дt[1],дq[1]) to (дt[τ ],дq[τ ]) among the minimum distances of

each group pairs, i.e., dlbG (дt[ai ],дq[bi ]). Even the minimum dis-

tance of each group pair is improved by entrance and exit cell

bounds as above, it still can be optimized by exploiting the path

transfer direction. For example, as shown in Figure 4, if the path is

from (дt[1],дq[1]) to (дt[1],дq[2]), the lower bound contributes

from (дt[1],дq[1]) is the minimum value among the magenta

cells and yellow cells. Similarly, The path from (дt[1],дq[1]) to
(дt[2],дq[2]) must pass the yellow cell. Obviously, the minimum

value from (дt[1],дq[1]) to (дt[1],дq[2]), and from (дt[1],дq[1])
to (дt[2],дq[2]) are 6 and 7, which is larger than 4, i.e., the dis-

tance between дt[1] and дq[1] by entrance and exit cells bound.

In summary, the transfer-based minimum values are used to

tight the group-based DFD lower bound (i.e., LBb (t,q)) during
the DFD computation on grouped trajectories дq and дt .

3.3 DFD computation acceleration
As illustrated in Figure 3, for these candidate trajectories cannot

be pruned by its lower bound or be detected as true results, it

will incur expensive DFD computation O(mn). Specifically, it
computes the distance between any two points among t and q,
i.e., each cell in Figure 4, then computes the dF (t,q) via dynamic

programming. In the subsequential section, we devise two novel

techniques, namely early termination and invalid cell ignoring,

to reduce the DFD computation cost.

Early termination.We define layeri , j among trajectory t and
q (cf. Figure 4) as either t[i] or q[j] are considered in that cells.

Formally, the lower bound of layeri , j is defined as:

LB
i , j
layer (t,q) = min{ min

k ∈[1, j]
{| |t[i]−q[k]| |}, min

k ∈[1,i]
{| |t[k]−q[j]| |}}.

Lemma 3.1. LB
i , j
layer (t,q) ≤ dF (t,q)

Proof. The proof is trivial as the path from (t[1],q[1]) to
(t[n],q[m]) must pass through the at least one cell of layeri , j ,
thus, dF (t,q) is not smaller than the minimum value in layeri , j .

�

Thus, we terminate DFD computation if LB
i , j
layer (t,q) ≥ θ

with Lemma 3.1. Suppose the distance threshold θ = 2, consider

the layer3,3 in Figure 4, LB3,3layer (t,q) = min{3, 3, 4, 3, 4} = 3. We

terminate the exactDFD computation earlier as LB3,3layer (t,q) > θ .

It improves computation cost by ignoring a lot of ground distance

pair computation and the exact DFD computation.

Invalid cell ignoring. Consider the example in Figure 4, sup-

pose the distance threshold θ = 7. Given cell (t[i],q[j]) its dis-
tance computation can be avoided if | |t[i],q[j−1]| |, | |t[i−1],q[j]| |,
and | |t[i − 1],q[j − 1]| | are larger than θ . We define such kind of

cells as invalid cells, set their distances as∞, as shown in Figure 4

without incurring expensive distance computation.

Put all it together: We present the framework of our advanced

approach (AA) for trajectory range query (with discrete Fréchet

distance) in Figure 6. Our proposed techniques are enclosed by

red rectangles, e.g., LBb (t,q),UBb (t,q), and optimized exactDFD
computation.
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Figure 7: Response time vs. distance threshold θ

4 EXPERIMENTAL EVALUATION

We evaluate the performance of the baseline approach (BB,
cf. Section 2) and our advanced approach (AA, cf. Section 3)

for trajectory range queries. In our experiments, we report the

average measurements over 10 different query trajectories.

Dataset: We used three real world trajectory datasets with di-

verse geographical coverage and scales of sizes.

GeoLife.1 The GeoLife project in Microsoft Research Asia col-

lected this dataset from 182 users over five years (April 2007-

August 2012). It has 18,655 trajectories and 24.9 million GPS

points.

OSM-FULL.2 This dataset contains 7.5 years of OpenStreetMap

trajectory data around the world. It includes total 2.4 million

trajectories constructed by 2.7 billion GPS points.

OSM-DE. It is a subset of OSM-FULL. We extracted trajecto-

ries that are located in Germany. OSM-DE has the highest data

density among all regions in OSM-FULL [6]. It has 0.5 million

trajectories and 0.5 billion GPS points in total.

We used C++ for the implementation and conducted all exper-

iments (with single thread) on a machine with AMD A10-7850K

3.70GHz processor and 16GB main memory.

Overall performance evaluation: We compare the perfor-

mance of BB and AA for trajectory range query problem on

all three real world datasets by varying distance threshold in

Figure 7. AA is faster than BB by 2.42 to 50.1 times. In addition,

the performance gap between AA and BB becomes large with the

rise of distance threshold θ . It also confirms AA is scalable. The

trajectories in GeoLife are much denser than other two datasets,

and that is the reason why range queries perform slower though

OSM-FULL and OSM-DE have large sizes.

Effect of optimizations: We then evaluate the effectiveness of

our proposed optimization techniques, e.g., group border-based

bound, path transfer direction-aware bound, etc. Due to space

limitation, we omit the experiment results onOSM-DE andOSM-
FULL as they are similar to GeoLife. The group-size τ is 8 in all

the experiments.

Table 1 illustrates the number ofDFD executions (per query) of

BB and AA with regard to distance threshold θ , respectively. Ob-
viously, our advanced approach outperforms baseline approach.

We then investigate the effectiveness of DFD lower and upper

bounds. Our proposed LBb is much better than LBд while both

withO(τ 2) cost. In addition LBb withO(τn) cost is slightly better

1
https://bit.ly/2E4sntq

2
https://bit.ly/2zwrKVH

Table 1: DFD executions on GeoLife dataset

θ 0.1 km 0.5 km 1km 5 km

BB 6.60 48.97 125.33 550.01

AA 1.87 21.15 19.32 88.1
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Figure 8: Tightness of DFD lower and upper bounds

than with O(mn), as shown in Figure 8(a). UBb is better than

UBдreedy andUBд as illustrated in Figure 8(b).

5 CONCLUSION

In this paper, we propose several novel techniques (e.g., group

border-based bound, DFD computation acceleration) to speedup

the trajectory range query problem on discrete Fréchet distance.

Our advanced approach is up to 50 times faster than the baseline

solution we construct from the literature. A promising direc-

tion for future work is to devise error-guaranteed approximate

solutions for the trajectory range query problem.
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ABSTRACT
Linking records from different data sources, referred to as record

linkage, is a longstanding but not yet satisfactorily resolved ques-

tion in many fields of science. For practitioners, it is difficult

to ensure the quality of linkage at the time of applying linkage

techniques in real world applications. Instead, linkage errors are

often detected later on, mostly by users of the applications. This

not only requires us to repair errors, but also provides us with

opportunities to observe the linkage quality and uncover why

such errors occur. In viewing that record linkage is a complex and

evolving process, we study how to acquire insights from linkage

errors for achieving high-quality linkage. We propose a generic

repairing framework which allows us to start with imperfect link-

age models, and dynamically repair linkage models and errors

for improved linkage quality. We have evaluated our repairing

framework over three real-world datasets and the experimental

results show that the performance of the proposed tree-structured

classifier SVM-tree outperforms the baseline methods.

1 INTRODUCTION
Determining which records from one or more datasets corre-

spond to the same real-world entities, referred to as record link-
age, is a fundamental problem arising in many fields of computer

science, e-commerce, health and social sciences [4]. Current re-

search on record linkage mainly focuses on developing accurate

and efficient linkage techniques, which are constrained by a num-

ber of factors (e.g., concerns about quality of data, ambiguity of

domain knowledge and unavailability of training labels) and fails

to capture the full variety of record linkage [8, 11]. Therefore,

it is generally difficult to guarantee linkage quality at the time

when record linkage techniques are applied.

One question that often arises is how to handle linkage er-

rors which cannot be detected at the time of applying linkage

techniques, but are reported later on, particularly by users of the

record linkage based applications. Since data may be enriched

with additional information over time, we can find linkage errors

that are hidden in the linkage process. Essentially, record linkage

is not a static and one-off task, but rather a complex, continuous

and evolving process. Based on the insight acquired from linkage

errors we may build a repairing framework to improve linkage

quality through repairing errors.

Nevertheless, building such a repairing framework is chal-

lenging. Can we generalise errors into insight and leverage such

insight into improving linkage models? Not all errors are equally

useful for finding insight. Some errors may be outliers and gen-

eralising such errors may even deteriorate the performance of

linkage models. Thus, we need a means for assessing the gener-

icity of linkage errors - to what extent a linkage error can act as

∗
Produces the permission block, and copyright information

© 2019 Copyright held by the owner/author(s). Published in Proceedings of the

22nd International Conference on Extending Database Technology (EDBT), March

26-29, 2019, ISBN 978-3-89318-081-3 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons

license CC-by-nc-nd 4.0.

?? 

? 
? 

? 

? 
? 

? 

? 

? 

? 

? 

? 

? 

? 

? 

? 

? 
? 

? 
? 

? 

? 
? 

? 

? 

? 

? 

? 

? 

? 

?? 

? 

? 

_ ? 
? 

? 

? 

? 

? 

? 

? 

? 

_ 

? 
? 

? 

? 
? 

? 

? 

? 

? 

? 

+ 

_ 

_ 

+ 

_ 

? 

? ? 

Error Analysor 

Normality 
check 

? ? ? 

Tree-structured Classifier  Weight Vector Space 
 (before classification)  

Weight Vector Space 
  (after classification)  

Errors to be repaired 

Clusters 

User Datasets 

Figure 1: Proposed repairing framework, where each cir-
cled questionmark represents an unlabeled weight vector,
and each weight vector labeled as matches is shown with
a blue ⊕, and non-matches with a yellow ⊖.

being a representative example of similar linkage errors. In this

paper, we propose a dynamic repairing framework, which aims to

turn errors into insight for improved linkage models and results.

The central idea is to leverage detected errors to derive simi-

lar and relevant errors for maximally repairing an “imperfect"

linkage model. Figure 1 presents a high-level overview of our

repairing framework which incorporates a tree-structured classi-

fier and an error analyser for supporting an iterative repairing

process. More specifically, linkage errors such as false matches or

non-matches may be detected by a user or governed by integrity

rules and sent to an error analyser. The error analyser uses an

error normality measure to determine whether an error can be

generalised for improving the linkage model. Then qualified link-

age errors are sent to the tree-structured classifier, and through

refining the tree structure of the classifier, the linkage quality

can be improved.

Our contributions are as follows: (1) We develop a generic

repairing framework which allows us to start with imperfect

linkage models and actively repair linkage models and errors for

improved linkage quality. (2) We design a novel measure to assess

the genericity of an linkage error, which indicates the probability

of generalising errors into insight. (3) We have experimentally

validated the effectiveness of the proposed repairing framework

using several real-world datasets.

2 RELATEDWORK
Record Linkage (RL) has long been central to the study of data

integration and data cleaning [2, 5, 13]. Previous research has

studied various aspects of the RL process such as: blocking, simi-

larity comparison, classification, evaluation, active learning, and

training data selection [6, 7, 9, 10, 12]. Nonetheless, these works

primarily focused on preventing rather than repairing errors in

linkage results.

In this paper, instead of only repairing detected errors, we

also study the problem of repairing linkage models through de-

tected linkage errors, i.e., linkage errors are leveraged to improve

the performance of linkage models. It is worthy to note that,
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different from database repair [1, 3], we do not stipulate a mini-

mal change requirement on our repairs. Existing approaches of

database repair mostly deal with data errors either by obtaining

consistent answers to queries [1] or by developing automated

methods to find a repair that satisfies required constraints and

also “minimally” differs from the original database [3]. These ap-

proaches are often computationally expensive and not applicable

to repairing linkage models in real-world applications.

3 PROBLEM STATEMENT
Let R be a finite, non-empty set of records from one or more data

sets. We assume that a set F = { f1, . . . , fn } of features is selected
for performing record linkage tasks and each record r ∈ R has a

number of feature values (v1, . . . ,vn ) over F . Accordingly, each
pair of records (ri , r j ) over R is associated with a n-dimensional

weight vector xij = (x1, . . . ,xn ) ∈ [0, 1]n where each xk repre-

sents the similarity between the feature values of fk in ri and r j .
For example, a pair of records (r1, r2) may have three features

{fname, sname, age} with r1.fname = Rob, r1.sname = Smith,
r1.age = 30, r2.fname = Robert , r2.sname = Smith and r2.age =
31, and correspond to a 3-dimensional weight vector (0.5, 1, 0.5).

LetX consist of the weight vectors to which all pairs of records

in R. Some blocking technique may also be applied for efficiency

[9, 11]. In viewing that weight vectors are a set of data points

in X , a weight vector space (X ,δ ) can be defined for X together

with a similarity metric δ : X × X 7→ [0, 1] that satisfies the non-
negativity, identity, symmetry and triangle inequality properties

as defined in [14]. Thus, the higher two data points x1 and x2 are
similar, the larger the value δ (x1, x2) is. A partition of X is a set

{X1, . . . ,Xq } of pairwise disjoint subsets with
⋃

1≤i≤m Xi = X .
We call each (Xi ,δ ) (i ∈ [1,q]) a weight vector subspace of (X ,δ ).

The label of a weight vector x ∈ X is denoted as y(x) and
y(x) ∈ {1,−1}, where 1 refers to a true match and −1 refers to
a true non-match. In this paper, we consider a linkage model as

a binary classifier c : X → {−1, 1}, which can classify a weight

vector x either as 1 or as -1. Thus, two kinds of errors may occur

in record linkage: (1) false positives (i.e. false matches) and (2)

false negatives (i.e. false non-matches):

• f p(c) = {x ∈ X |c(x) = −1 ∧ y(x) = 1};
• f n(c) = {x ∈ X |c(x) = 1 ∧ y(x) = −1}.

Definition 3.1. (RL repair problem) Let c be a linkage model

and E be a set of detected errors. Then the RL repair problem is to

find a linkage model c∗ such that the following objective function
is minimised:

argmin

c

f p(c∗) + f n(c∗)
f p(c) + f n(c) (1)

The focus of the RL repair problem is on maximally repair-

ing linkage models through detected errors, i.e., gain maximum

insights from errors, rather than repairing only detected errors.

4 REPAIRING FRAMEWORK
We propose a novel framework for solving the RL repair problem.

4.1 Error Analyser
Generally, linkage errors may be caused by various reasons, e.g.,

poor data quality, biased classifiers and insufficient training data.

Although it is desirable to repair all errors, linkage errors are not

equally informative for improving a linkage model. For instance,

repairing a linkage model based on errors that are indeed out-

liers often leads to the overfitting problem. On the other hand,
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Figure 2: A false match, denoted as xr and highlighted as
being red, is detected in a weight vector subspace Xi .

errors that repeatedly occur under certain similar conditions may

suggest a pattern of these errors which is more informative for

repairing a linkage model. To quantify the informativeness of

errors, we thus develop the notion of error normality to measure

the degree errors can be generalised from specific cases to more

structured ones.

Definition 4.1. Let (X ,δ ) be a weight vector subspace, x ∈ X ,
and N (x,X ) refer to the set of k nearest neighbours of x in (X ,δ ).
Then the normality of x in X , denoted as ρ(x), is defined as:

ρ(x) = y(x) ·

∑
x′∈N (x,X )

δ (x, x′) · y(x′)∑
x′∈N (x,X )

δ (x, x′) (2)

The values of normality range from -1 to 1, indicating the

possibility of generalising an error x into improving a linkage

model: (1) ρ(x) = −1 means that all the nearest neighbours in

N (x,X ) have the opposite label to x; (2) ρ(x) = 1 means that all

the nearest neighbours in N (x,X ) have the same label as x. In
addition to the labels, the distances of x and its nearest neighbours
are also taken into account by the normality. For each neighbour

in N (x,X ), the close its distance is to x, the more influence it has

on ρ(x). Intuitively, the normality of an error x is measured by

a weighted majority vote of their nearest neighbours, i.e., the

margin between strength of voting on the same label y(x) and
strength of voting on the opposite label −1 · y(x).

Example 4.2. Suppose that, for the detected error xr in Figure

2, we have N (xr,Xi ) = {x1, . . . , x6}, and δ (xr, xi) is 0.9, 0.8, 0.8,
0.8, 0.7 and 0.7 for i = 1, 2, 3, 4, 5, 6, respectively. Then ρ(xr) = 1

in Figure 2.b and ρ(xr) = (0.9+ 0.8+ 0.8+ 0.8+ 0.7− 0.7)/(0.9+
0.8 + 0.8 + 0.8 + 0.7 + 0.7) = 0.7 in Figure 2.c.

4.2 Tree-structured Classifiers
To repair linkage models effectively, the repairing framework

needs to offer great flexibility and expressive power in refining

linkage models. We thus propose to use a tree-based structure for

repairing classifiers. A tree-structured classifier can be formalised

as a tuple (T ,C,α , β), whereT is a binary tree,C is a set of binary

classifiers, α is a labeling function that assigns a classifier ci ∈ C
to each internal vertex vi of T , i.e., α(vi ) = ci , and β assigns a

label in {−1, 1} to each edge (vi ,vj ) of T , i.e., β(vi ,vj ) ∈ {−1, 1}.
Therefore, given a weight vector x ∈ X , a tree-structured clas-

sifier h = (T ,C,α , β) classifies x using the following condition:

h(x) = β(vn−1,vn ) if there exists a path ⟨v0,v1, . . . ,vn⟩ in T
starting from the root vertex v0 of T and ending at a leaf vertex

vn such that α(vk ) = ck and

∧
k ∈[0,n−1] ck (x) = β(vk ,vk+1).

Example 4.3. Consider two weight vectors x7 and x8 from the

weight vector space depicted in Figure 3.b. The tree-structured

classifier in Figure 3.a has classified this weight vector space into

many smaller weight vector subspaces, each being assigned a
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Figure 3: A schematic layout of a tree-structured classifier
and the corresponding classified weight vector space.

label of either −1 (highlighted by a yellow square) or 1 (high-

lighted by a blue square). We have h(x7) = −1 due to a path

⟨v0,v1,v3,v6⟩with c0(x7) = −1, c1(x7) = 1 and c3(x7) = −1. Sim-

ilarly, we haveh(x8) = 1 because there is a path ⟨v0,v2,v4,v5,v11⟩
with c0(x8) = 1, c2(x8) = 1, c4(x8) = −1, and c5(x8) = 1.

Initially, the binary tree T in a tree-structured classifier only

has one internal vertex as the root, which represents the initial

classifier c0, and two leaf vertices that represent two weight

vector subspaces X1 and X2 of the given weight vector space X
classified by the initial classifier c0 such that ∀x1 ∈ X1(c0(x1) =
1) and x2 ∈ X2(c0(x2) = −1). Then when a linkage error x is

detected, c can be repaired by extending T to T ′ such that one

of the leaf vertices of T (say vt ) is replaced by an internal vertex

with two leaf vertices. Accordingly, the weight vector subspace

associated with vt is divided into two smaller weight vector

subspaces (one with the label 1 and the other with the label -1).

This process is iteratively conducted when repairing errors.

As a result, an important property of tree-structured classifiers

is to support bounded repairs, i.e., only weight vectors in a speci-

fied subspace are affected by a repair. This property can reduce

the risk of incorrect repairs and lead to convergence on quality

of a linkage model after a finite number of repairing iterations.

4.3 Repairing Algorithm
Our repairing algorithm is provided in Figure 4. Given a weight

vector space X which is partitioned into {X1, . . . ,Xn } by an

initial classifier c0, the algorithm iteratively leverages errors to

repair a tree-structured classifier until the labelling budget is

used up or no more errors are detected (Line 2).

In this algorithm, Eh refers to detected errors of h, q keeps

record of the number of labels requested from the human ora-

cle, select_error(Eh ) randomly selects an error e from Eh , and
find_subspace(X, e) searches for a subspace Xcur of X which

contains e (Lines 3-4). If |Xcur | is greater than Smin (Line 5), then

nn_select(e,Xcur ,k) finds k nearest neighbours of e in Xcur ,
and their labels are requested (Lines 6-7). If the normality ρ(e) of
e is greater than the threshold t (Line 9), fn_select(e,Xcur ,k)
finds k farthest neighbours of e and their labels are requested

(Lines 10-11). If the purity of Xcur is lower than the threshold p
(Line 13), the classifier cq+1 is trained and extends cq by classi-

fying Xcur into two subspaces XM
cur (for matches) and XN

cur (for

non-matches) (Lines 14-16). Then accordingly, the tree-structured

classifier h is repaired by adding cq+1 (Line 17). We consider er-

rors whose normality values are lower than the threshold them

as outliers. The algorithm returns a tree-structured classifier h
with improved linkage quality (Line 23).

Input: initial classifier: c0, normality threshold: t ∈ [−1.1],
human oracle for labelling: oracle(), budget limit: b,
number of nearest neighbours: k , purity threshold p,
minimum size of weight vector subspaces: smin

Output: a tree-structured classifier h

1: X← {X1, . . . ,Xn }, q ← 1, h ← c0
2: while q ≤ b and |Eh | > 0 do:
3: e ← select_error(Eh )
4: Xcur ← find_subspace(X, e)
5: if |Xcur | ≥ smin then:
6: Vnn ← nn_select(e,Xcur ,k)
7: V L

nn ← oracle(Vnn )
8: V L ← V L ∪V L

nn
9: if ρ(e) ≥ t then:
10: Vf n ← fn_select(e,Xcur ,k)
11: V L

f n ← oracle(Vf n )
12: V L ← V L ∪V L

f n
13: if purity(Xcur ) < p then
14: cq+1 ← train(cq ,Xcur ,V L)
15: XM

cur ,X
N
cur ← cq+1.classify(Xcur )

16: X← X − {Xcur } ∪ {XM
cur ,X

N
cur }

17: h = repair_classifier(h, cq+1)
18: endif:
19: endif:
20: endif:
21: q ← q + 1
22: endwhile:
23: return h

Figure 4: Repairing Algorithm

5 EXPERIMENTS
We have implemented the repairing framework to experimentally

validate its effectiveness on three real-world datasets.

Baselinemethods.Wehave used support vectormachines (SVM)

with three different kernels: linear, polynomial, and Gaussian

(RBF) and a decision tree as the baseline methods. For our tree-

structured classifier, we used SVMs with linear kernel as binary

classifiers for its internal vertices, called SVM-tree. We also used

the following parameters: smin = 25, p = 0.97, and k = 50.

Sampling methods. We use KNN+FNN to refer to the k near-

est and farthest neighbours sampling method described in the

repairing algorithm in Figure 4. To evaluate its effectiveness,

we compared it with three other sampling methods: (1) KNN,

(2) FNN, and (3) random, in which k nearest, k farthest, and k

random neighbours of an error are sampled, respectively.

Datasets. We have used three datasets: (1) Cora, which con-

tains 1,295 publication records and is publicly available
1
, (2)

DBLP_ACM, which contains 4910 bibliographic records from the

DBLP and ACM websites [8], and (3) NCVR, using two datasets

with 1048576 and 613767 records respectively from the North

Carolina Voter Registration (NCVR) database
2
. We did not apply

any blocking on Cora but used publication year and the 1st char

of title for DBLP_ACM, and last_name and first_name for NCVR.

Performance of classifiers. Figure 5 shows the performance

of SVM-tree in comparison to the baseline methods. SVM-tree

1
Available from: http://secondstring.sourceforge.net

2
Available from: ftp://alt.ncsbe.gov/data/
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Figure 5: Comparison to the baseline methods, where the sampling method is KNN+FNN and normality threshold is -0.6.

Figure 6: SVM-tree with different normality thresholds, where the sampling method is KNN+FNN.

Figure 7: SVM-tree with different sampling methods, where the normality threshold is -0.6.

generally performs better than the other methods for all datasets.

For Cora, SVM-tree performs increasingly better when more

errors are detected. For DBLP_ACM, it has a significant increase

in performance. For NCVR, it is a clean dataset that produces

high quality results (around 0.988 f-measure) for all methods;

nonetheless, SVM-tree is still marginally better.

Effect of normality. Figure 6 presents the experimental results

for classification using SVM-tree with varying thresholds. The

KNN+FNN sampling method is used in this experiment. A nor-

mality threshold of -0.4 to -1 produces the best performance for

all datasets. The threshold of -0.6 produces consistently stable

good results over all datasets.

Performance of sampling. Figure 7 shows the performance of

SVM-tree using different sampling methods and the normality

threshold is set to -0.6. KNN+FNN generally produces the best and

most stable results among all the sampling methods, particularly

over the datasets Cora and DBLP_ACM. When the budget is

low, the performance of FNN is comparable to KNN+FNN. The

performance of KNN is not stable on Cora. The random sampling

has the worst performance among all the methods.
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ABSTRACT
Streaming join is an essential operation in many real-time ap-
plications. A lot of research has been devoted to the study of
distributed streaming join algorithms. However, existing solu-
tions rely on heuristics and cannot handle data skew optimally.
On non-streaming, static data, the HyperCube algorithm ensures
a balanced load across all processors in an optimal way. In this
paper, we extend this algorithm to the streaming setting, which
can adapt the HyperCube configuration depending on the cur-
rent data distribution. Some preliminary experimental results are
provided to demonstrate the efficiency our algorithm.

1 INTRODUCTION
The prevalence of applications in financial trading, sensor net-
works, traffic analysis and web data management has brought
attention to query processing over data streams. Various Dis-
tributed Stream Processing Systems (DSPSs) have emerged such
as Flink [1], Spark Streaming [2] and Apache Storm [3]. As one
of the most critical operations in database management systems,
join has been extensively studied in the literature both in static
models [5–8, 14, 16] and streaming models [11, 12, 17, 18].

Low latency and high throughput are two essentials for an effi-
cient streaming join algorithm. In a massively distributed system,
a key to achieving these goals is to ensure a good load balance
among the workers. Over static data, the HyperCube algorithm
[6] and its extensions [8] achieve an optimal load balance. How-
ever, this algorithm crucially depends on the data statistics, in
particular, the set of heavy hitters and their frequencies. In a dy-
namic setting like streaming data, these statistics are changing all
the time, which renders the HyperCube algorithm inapplicable.

In this paper, we propose Streaming HyperCube (SHC), an
adaption of the HyperCube algorithm to the streaming setting.
A key challenge in designing SHC is how to adaptively change
the HyperCube configuration as the data statistics change over
time. On the one hand, we want to keep the configuration as
close as possible to the optimal setting the HyperCube uses for
static data. On the other hand, we also want to avoid too frequent
configuration changes, since each configuration change requires
migration of states, which introduces communication overhead
and stalls streaming processing. The SHC algorithm supports
both full-stream joins as well as joins over a sliding window.

Below, we first review the related work in Section 2, in par-
ticular the static HyperCube algorithm. In Section 3 we describe
the Streaming HyperCube algorithm. We have implemented the
algorithm in Flink. In Section 4 we describe its implementation
and show some preliminary experimental results comparing with
some state-of-the-art stream join algorithms.

© 2019 Copyright held by the owner/author(s). Published in Proceedings of the
22nd International Conference on Extending Database Technology (EDBT), March
26-29, 2019, ISBN 978-3-89318-081-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

2 RELATEDWORK
2.1 Parallel Hash Join
The Parallel Hash Join (PHJ) algorithm is the default join algo-
rithm used in many state-of-the-art DSPSs [2, 3, 10, 19], including
Flink. Consider a (natural) join R(A,B) Z S(B,C). Let p be the
number of workers in the system, numbered 1, 2, . . . ,p. The algo-
rithm utilizes a random hash function h : B → [p] = {1, . . . ,p}
to assign tuples (a,b) ∈ R and (b, c) ∈ S to worker h(b). Each
worker is responsible for producing the join results on all tuples
assigned to it. More precisely, it maintains two hash tables built
on attribute B, one for tuples from R, one for tuples from S . Upon
the arrival of a tuple (a,b) ∈ R, it inserts it to the hash table on
R, and probes the hash table on S with key b to find all tuples in
S that can join with (a,b).

When there is no skew, this algorithm performs relatively well.
However, when there are heavy hitters, namely, many tuples in R
or S share the same value on attribute B, the load may no longer
be balanced, since all tuples with the same b value must be sent
to the same worker. In the worst case, if all tuples have the same
value on b, the join degenerates into a Cartesian product, and one
worker will be doing all the work while the other p − 1 workers
are idle.

2.2 HyperCube
The worst case scenario of the aforementioned PHJ algorithm
happens when there is only a single value b ∈ B. In this case,
the join degenerates into a Cartesian product. This problem was
solved in [6] by the following HyperCube algorithm.

1 . . .
hR (a)

. . . pR

1

. . .

hS (c)

. . .

pS

Figure 1: The HyperCube algorithm. Tuple (a,b) is sent to
all workers in the column hR (a), and the tuple (b, c) is sent
to all workers in the row hS (c). The worker at coordinate
(hR (a),hS (c)) produces the join result (a,b, c).

The p workers are organized into a pR ×pS grid (see Figure 1),
where pR = |R |

√
p

|R | · |S | , pS = |S |
√

p
|R | · |S | . Two hash functions

hR : A → [pR ], hS : C → [pS ] are used. Each tuple (a,b) ∈ R is
sent to all workers with coordinates (hR (a), ∗) and each (b, c) ∈ S
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is sent to all workers (∗,hS (c)). As figure 1 shows, each output
tuple is handled by exactly one worker. With high probability,
each worker receives

Õ

(
|R |

pR
+

|S |

pS

)
= Õ

(√
OUT

p

)
tuples, where the output sizeOUT = |R | · |S | for Cartesian product.
Assuming |R | = |S |, this is better than the O(|R |) load of the PHJ
algorithm by an O(√p) factor.

Beame et al. [8] have generalized this algorithm to general
joins. Let R(b) = σB=bR, and similarly define S(b). The idea is to
first partition the join attribute B into heavy hitters BH and light
hitters BL . Let N denote the total number of tuples:

BH =

{
b ∈ B

���� |R(b)| > N

p
or |S(b)| >

N

p

}
and BL is the remaining attribute values. The light hitters BL will
be handled by the PHJ algorithm. Since there is no skew in the
light hitters, the load is bounded by Õ(N /p) for any worker. For
each heavy value b ∈ BH , p(b) workers are allocated to handle it
using the shares algorithm, where

p(b) =
OUT (b)

OUTH · p =
|R(b)| · |S(b)|

OUTH · p

and OUTH =
∑
b ∈BH OUT (b) denotes the output size generated

by all heavy hitters. The load of each worker for handling heavy
hitters is upper bounded by Õ(

√
OUT /p). Therefore, the total

load is Õ
(
N
p +

√
OUT
p

)
, which has been shown to be optimal.

However, this algorithm does not work in the streamingmodel,
because it needs all the heavy hitter information to decide the
configuration of each cube, namely how to set p(b) for all the
b’s, and how to set the dimensions of each cube. Furthermore,
the heavy hitter set may change throughout stream processing,
which requires the HyperCube configuration to change corre-
spondingly. These will be solved by our algorithm described in
section 3.

2.3 BiStream Join
Lin et al. [17] proposed the Join-Biclique (JB) algorithm for com-
puting joins over distributed streaming data. Their BiStream sys-
tem divides the join into two stages, a routing stage for storage
and a joining stage for producing outputs. Their work outper-
forms existing systems [11] in terms of memory consumption,
scalability, latency and throughput. However, the algorithm re-
lies on heuristics and does not work well on highly skewed data.
We will compare SHC with a Flink implementation of the Join-
Biclique algorithm in Section 4.

2.4 Cell Join
Cell Join presented by Gedik et al. [12] solves the windowed
streaming join problem specifically on Cell processors. Following
the three-step procedure described by Kang et al. [15], the algo-
rithm parallelizes the scan task of streams over available work-
ers to achieve high performance. However, since re-partition is
needed whenever a new tuple arrives, this algorithm suffers from
scalability issues. Although it supports band joins and can be
extended to multi-way joins, its framework is solely designed for
the IBM’s cell processor.

Dispatcher

Task 1

Task 2

Task 3

Task 4

. . .

Task k

Worker 1

Worker 2

. . .

Worker p

Sink
source

Figure 2: System Architecture.

2.5 Handshake Join
Roy et al. [18] presented a highly parallelizable handshake join
for window streams. Hardware acceleration was implemented
to achieve high data throughput. The algorithm uses similar
window semantics to the ones in [15] by dividing the window into
subwindows. The two streams flow in opposite directions so that
each pair of subwindows has a handshake. This algorithm adopts
the batch-processing model and may introduce disorder in the
output tuple sequence, meaning it is not suitable for applications
requiring instant outputs.

3 STREAMING HYPERCUBE
3.1 System Architecture
Figure 2 describes the architecture of our system. There are
p workers along with a dispatcher and a sink. The dispatcher
preprocesses input tuples after receiving them. The tuples are
partitioned into tasks, which are then dynamically allocated to
physical workers at runtime. The workers compute join results
on-the-fly and pass them to the sink. Our system adopts the
event-triggered model of Flink, where the output is updated im-
mediately after the arrival of each tuple to ensure low latency.

3.2 Algorithm
The dispatcher runs an approximate heavy hitters tracking al-
gorithm [9] to keep track of the heavy hitters and their approx-
imate frequencies. Specifically, it classifies a join value b ∈ B

to be heavy hitter if N (b) = |R(b)| + |S(b)| > N
p and light hit-

ter if N (b) < ( 1p − ϵ)N , N is the current stream length (for full
stream joins) or window length (for sliding window joins), and ϵ
is some small constant. A value with frequency in between may
be either heavy or light. As long as ϵ ≤ 1

2p , there are at most 2p
heavy hitters. Note that the heavy hitter tracking algorithm also
maintains approximated frequencies |R(b)| and |S(b)| for each
heavy hitter b, each with at most ϵN additive error. Therefore
the corresponding output size OUT (b) = |R(b)| · |S(b)| can be
estimated with at most 2ϵN additive error. Summing over all the
heavy values, we obtain an estimate ofOUTH , the output size of
all heavy hitters, with no more than 2pϵN additive error.

Similar to the HyperCube algorithm, the dispatcher treats
heavy and light hitters differently. The light hitters are handled by
the PHJ algorithm using p tasks and an associated hash function
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hL : B → [p].1 Each heavy value b occupies p(b) tasks organized
into a pR(b) ×pS (b) grid. Two hash functions hR(b) : A → [pR(b)]
and hS (b) : C → [pS (b)] are involved.

Suppose a tuple (a,b) ∈ R arrives at time t . The dispatcher first
reflects the update to the heavy-hitter tracking algorithm, so that
the heavy hitter set and its statics are still valid approximations.
If b is a light hitter, it is sent to task hL(b) for light hitters and
the assigned worker produces the output. If b is a heavy hitter, it
is sent to all tasks labeled (hR(b)(a), ∗) in the pR(b) × pS (b) grid
allocated to b.

A key difference between SHC and the static HyperCube algo-
rithm is that the number of tasks allocated to each heavy hitter, as
well as the grid dimensions, may change over time. This is done
by a state migration between tasks. To see why this is necessary,
consider a value b, which starts light but continuously receives
tuples over time. If only a single task is allocated to handle it,
that worker will have a huge load. For efficient state migration,
the dispatcher stores the current number of tasks pR(b) × pS (b)
allocated for each heavy hitter b. According to the estimated
statistics, it can also calculate a desired number of tasks for b,
namely

pdR(b) =
|R(b)|

√
OUTH

√
p, and pdS (b) =

|S(b)|
√
OUTH

√
p

When the estimates of OUTH , |R(b)|, and |S(b)| change over
time, the dispatcher will compare the currently assigned grid
dimension with the desired one. If pR(b) > 2pdR(b), we reduce
pR(b) to half. Specifically, each task

(x,y), x =
1
2
pR(b) + 1, . . . ,pR(b),y = 1 . . . ,pS (b)

sends all its tuples in R(b) to task (x − 1
2pR(b),y) and then gets

released. If pR(b) < 1
2p

d
R(b), double pR(b). Specifically, create p(b)

new tasks and extend the grid to 2pR(b) × pS (b). Each task

(x,y), x = 1, . . . ,pR(b),y = 1 . . . ,pS (b)

sends all its tuples in S(b) to (x +pR(b),y). For each tuple (a′,b) ∈
R(b) in the task, apply a new hash function h′ : A → {0, 1} to it,
where 0 means that the tuple stays, and 1 means the tuple gets
sent to task (x +pR(b),y). The new hash function associated with
pR(b) is hR(b) + pR(b) · h′ : A → 2pR(b). It is similar for pS (b).

Finally, the dispatchermanages assignment of tasks to workers.
Since the tasks are almost balanced, the dispatcher keeps a count
on the total number of tasks each worker is currently handling.
When a new task is created, it will be sent to the worker with the
minimumnumber of tasks.When a task is released, the dispatcher
decreases the count of the corresponding worker by 1. Note that
some tasks may be assigned to the same worker, so that they
are only logically separated, but the communication between
them can be easily achieved. The worker nodes receiving tasks
compute join results, and send it to the sink.

3.3 A Running Example
Figure 3 gives a running example of state migration. Suppose
at some point of the algorithm, 500 tuples have been received,
where 200 tuples contain b1 and 250 tuples contain b2. There are
50 other tuples of light hitters. The output size from heavy hitters
is

OUTH = |R(b1)| · |S(b1)| + |R(b2)| · |S(b2)| = 20k

1[p] = {1, . . . , p }

Heavy Hitters Light Hitters
b1

|R(b1)| = 100
|S(b1)| = 100

b2

|R(b2)| = 50
|S(b2)| = 200

|R(b1)| = 100
|S ′(b1)| = 300

N = 500
OUTH = 20k

N ′ = 700
OUT ′H = 40k

Figure 3: Example task allocation for p = 8. There are 8
tasks for light hitters. 2 heavy values b1 and b2 each occu-
pies 4 tasks. The dotted circles represents the new tasks
created in state migration.

Also assume task allocation is optimal at this time. Indeed,pR(b1) =
2,pS (b1) = 2,pR(b2) = 1,pS (b2) = 4. Note that the task layouts are
different between two heavy hitters because they have different
internal skew.

Suppose after this state, we received 300 more tuples from
S(b1) and no other tuples. Consider b1, the dispatcher calculates
the new desired number of tasks as:

pdR(b1)
=

|R(b1)|
√
OUTH

√
p

=
100

√
40, 000

√
8 = 1.414

Since 2 = pR(b1) ≤ 2pdR(b1), state migration does not need to be
performed for pR (b1). However,

pdS (b1)
=

|S(b1)|
√
OUTH

√
p

=
300

√
40, 000

√
8 = 4.243

indicates that 2 = pS (b1) <
1
2p

d
S (b1)

. The dispatcher decidespS (b1)
should be doubled, and creates 4more tasks to handle it. As Figure
3 illustrates, the 2×2 grid is extended to a 2×4 one, where arrows
denote the flow of tuples.

For b2, the desired numbers are 0.707 and 2.828 respectively.
No migration is needed since the original 1 × 4 grid is sill an
optimal configuration, up to a factor of 2.

4 EVALUATION
In this section, we discuss implementation details and provide
comparative evaluations of our algorithm with the widely im-
plemented PHJ algorithm and state-of-the-art Join-Biclique (JB)
[17] algorithm.

4.1 Implementation
In the current implementation of our SHC algorithm, wemaintain
a copy of each stream in the dispatcher node in the form of
a hash table. The dispatcher is responsible for redistributing
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Figure 4: Zipf, varying α . Figure 5: Zipf, varying IN .

certain parts of the state hashtables to the join processingworkers
according to state migration policies. In addition, the dispatcher
may invalidate the state of certain heavy hitters from specific
workers.

4.2 Experimental Setup
Environment.We conduct all experiments on an Intel(R) Xeon(R)
CPU E5-2650 v4 @ 2.20GHz server that has 12 cores with 4
threads each and runs Red Hat 4.8.5. The server has 256 GB of
memory, which suffices for maintaining all raw and intermediate
data even if all tuples are sent to one processor only. Flink 1.4.2
is installed on the server and the implemented algorithms have
maximum parallelism of p = 48 processing units.
Data sets. Our preliminary experiments focus on full-stream
joins. We use two synthetic and one real data sets to evaluate our
algorithm.

The first synthetic data set is generated from the Zipf distri-
bution with varying value for α , which controls the level of the
skewness. The second synthetic data set is the TPC-H benchmark
[4]. Specifically, we choose to experiment on the Q5.

For the real data set, we use the same COREL dataset as in [13]
for applying SRHC on similarity joins. The data set contains a set
of 15,000 points with dimentionality 64. Each point corresponds
to a histogram of a unique color image collected from the COREL
repository. Based on a provided similarity threshold we apply a
locality-sensitive hash function on every point, and afterwards
we perform a self-join on the produced hash codes.

4.3 Performance Analysis
4.3.1 Zipf Distribution. Figure 4 and 5 demonstrates the per-

formance of three algorithms on the generated Zipf data set, with
respect to varying skewness and input size. For the JB algorithm,
we present the performance of the best setting, namely JBx48-
y24. The y parameter determines the number of groups that the
processing units are organized into. SHC clearly outperforms
both existing methods in terms of execution time.

4.3.2 TPC-H Benchmark. All TPC-H queries consists of pri-
mary key-foreign key joins, i.e., the join key is not skewed in one
side of each join. Under this scenario, SHC will only assign a
1 × p(b) grid for each heavy value, which is simply broadcast-
ing the primary key tuple to all allocations of the other stream.
For JB, we observe that the more groups used, the less efficient
the algorithm is. PHJ seems to yield the best performance. We
stress that SHC algorithm is better on many-many joins, where
skewness exists in both relations.

4.3.3 COREL data set. We perform self similarity join on this
high dimensional data set utilizing a (r , 10r , 0.9, 0.1)-sensitive
family of hash functions, i.e. points within r distance are hashed
to the same bucket with at least 0.9 probability and points with

Figure 6: TPC-H, varying α . Figure 7: COREL, varying r .

more than 10r distance have only 0.1 probability to be hashed to
the same bucket. This similarity join is a many-many join. Again,
SHC algorithm outperforms the other two in terms of execution
time. It is better especially when r is large, meaning a higher
skewness.

5 CONCLUDING REMARKS
In this paper, we proposed the Streaming HyperCube algorithm
that extends the static HyperCube algorithm to the streaming
setting. The algorithm continuously maintains an approximation
(up to a factor of 2) of the optimal HyperCube configuration,
while inuring small state migration overhead. In the future, we
plan to conduct a more thorough theoretical analysis and extend
it to multi-way joins.
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ABSTRACT
We study fairness of ranking in online job marketplaces. We focus

on group fairness and aim to algorithmically explore how a scor-

ing function, throughwhich individuals are ranked for jobs, treats

different demographic groups. Previous work on group-level fair-

ness has focused on the case where groups are pre-defined or

where they are defined using a single protected attribute (e.g.,

Caucasian vs Asian). In this paper, we argue for the need to exam-

ine fairness for groups of people defined with any combination

of protected attributes. To do this, we formulate an optimization

problem to find a partitioning of individuals on their protected

attributes that exhibits the highest unfairness with respect to the

scoring function. The scoring function yields one histogram of

score distributions per partition andwe rely on EarthMover’s Dis-

tance, a measure that is commonly used to compare histograms,

to quantify unfairness. Since the number of ways to partition in-

dividuals is exponential in the number of their protected attribute

values, we propose two heuristic algorithms to navigate the space

of all possible partitionings to identify the one with the highest

unfairness. We evaluate our algorithms using a simulation of

a crowdsourcing platform and show that they can effectively

quantify unfairness of various scoring functions.

INTRODUCTION AND POSITIONING
Online job marketplaces are gaining popularity as mediums to

hire people to perform certain tasks. Examples include freelanc-

ing platforms such as Qapa and MisterTemp’ in France, and

TaskRabbit and Fiverr in the USA. On those platforms, work-

ers can find temporary jobs in the physical world (e.g., looking

for a plumber), or in the form of virtual “micro-gigs” such as “help

with HTML, JavaScript, CSS, and JQuery”. A person who needs

to hire someone for a job can formulate a query and is shown a

ranked list of people. The resulting ranking naturally poses the

question of fairness. Algorithmic fairness has recently received

great attention from the data mining, information retrieval and

machine learning communities (See for instance [3, 5, 8, 10]). The

most common definition of fairness was introduced in [1, 11]

as demographic parity, that is the unfair treatment of a person

based on belonging to a certain group of people. Groups are de-
fined using protected attributes such as gender, age, ethnicity

or location. We carry these definitions in our work and define

unfairness in online marketplaces as the unequal treatment of

people by a scoring function based on their protected attributes.

This definition is inline with what is also commonly referred to

as group unfairness [2].
Most previous work on group-level fairness have either as-

sumed that groups are pre-defined [8] or that they are defined

using a single protected attribute (e.g., Caucasian vs Asian) [4].

© 2019 Copyright held by the owner/author(s). Published in Proceedings of the
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26-29, 2019, ISBN 978-3-89318-081-3 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons

license CC-by-nc-nd 4.0.

In this work, we consider groups of people defined with any

combination of protected attributes (the so-called subgroup fair-
ness [5]). The scoring function yields one histogram per demo-

graphic group as score distributions. We use the Earth Mover’s

Distance (EMD) [7], a measure that is commonly used to compare

histograms, to quantify distances between groups. Our intuition

is that if score distributions between groups are significantly

different, the scoring function does not treat the individuals in

these groups equally. For instance, consider two groups only,

namely young males and females living in France. Unfairness

can be computed as the distance between the score distributions

of those two groups.

Since we do not want to focus only on pre-defined groups,

we must exhaust all possible ways of partitioning individuals on

their protected attributes to quantify unfairness. For example, a

scoring function might treat both men and women equally but

might be unfair towards older Asian Americans compared to

younger White Americans. We define an optimization problem

as finding a partitioning of the ranking space, i.e., individuals and

their scores, that exhibits the highest average EMD between its

partitions. Exhaustively enumerating all possible partitionings

is exponential in the number of values of protected attributes.

Therefore, we propose two heuristic algorithms, balanced that

generates a balanced tree of partitions, and unbalanced that

generates an unbalanced tree of partitions. At each step, our

algorithms greedily split individuals on the worst attribute, i.e.,

the one that results in the partitioning with the highest EMD

between score distributions. This local decision is akin to the one

made in decision trees using gain functions [6]. The algorithms

stop when there are no further attributes left to split on or when

the current partitioning of individuals exhibits more unfairness

than it would if its partitions were split further.

PROBLEM DEFINITION
To quantify unfairness in online job marketplaces, we model the

problem as computing the highest average distance between the

score distributions of all possible partitions of individuals. Unlike

previous work where partitions were defined or known a priori

(e.g., [4]), we explore the space of all possible groups defined by

a combination of values of the individuals’ protected attributes.

The goal becomes finding an unfair partitioning of individuals

under the scoring function. We cast this goal as an optimization

problem as follows.

Definition 1 (Most Unfair Partitioning Problem). We
are given a set of individualsW , where each individual is asso-
ciated with a set of protected attributes A = {a1,a2, ...,an } and
observed attributes B = {b1,b2, . . . ,bm }. The protected attributes
are inherent properties of the individuals such as gender, age, eth-
nicity, origin, etc. The observed attributes represent the skills of
individuals for jobs and could include, for instance, the reputation
and writing skills of an individual. We are also given a scoring
function f :W → [0, 1], which is defined using observed attributes
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Figure 1: Optimum Partitioning of the Toy Example Data

as follows: f (w) =
m∑
i=1

αibi , where αi is a user-defined weight for

observed attributebi . A weight of zero indicates that the correspond-
ing attribute is not relevant for the user in ranking the individuals.
Our goal is to fully partition the individuals inW into k disjoint

partitions P = {p1,p2, . . . ,pk } based on their protected attributes
in A using the following optimization objective:

argmax

P
unfairness(P , f )

subject to ∀i, j pi
⋂

pj = ϕ

k⋃
i=1

pi =W

We now define how to compute the amount of unfairness of a

function f for a partitioning P , or unfairness(P , f ) in the above

optimization problem.

Definition 2 (Average Pairwise Unfairness). For a set of
individualsW , a full-disjoint partitioning of the individuals P =
{p1,p2, . . . ,pk } and a scoring function f , unfairness of f for the
partitioning P is quantified as the average pairwise Earth Mover’s
Distance (EMD) between the distribution of scores in the different
partitions of P , which is computed as follows:

unfairness(P , f ) = avg

i, j
EMD(h(pi , f ),h(pj , f ))

where h(pi , f ) is a histogram of the scores of individuals in pi using
f .

Figure 1 shows a toy example of the optimum partitioning of

10 workers in a freelancing platform, which are ranked based

on their qualification for some task using a scoring function f .
The optimum partitioning is the one resulting from splitting the

workers based on Gender first, and then splitting only the Male

partition based on Language to get the following partitioning of

workers: Male - English, Male - Indian, Male - Other, and Female.
To arrive to this partitioning, one must exhaust all possible full
disjoint partitionings of workers based on the protected attributes
A and for each possible partitioning compute the average EMD

between any two partitions. To do that, we generate a histogram

for each partition as indicated in Figure 1 based on the function

scores by creating equal bins over the range of f and counting the
number of workers whose function values f (w) fall in each bin.

Algorithm 1 balanced (W : a set of individuals, f : a scoring

function, A: a set of attributes)

1: a = worstAttribute(W , f ,A)
2: A = A − a
3: current = split(W ,a)
4: currentAvд = averaдeEMD(current , f )
5: while A , ∅ do
6: a = worstAttribute(current , f ,A)
7: A = A − a
8: children = split(current ,a)
9: childrenAvд = averaдeEMD(children, f )
10: if currentAvд ≥ childrenAvд then
11: break

12: else
13: current = children
14: currentAvд = childrenAvд
15: end if
16: end while
17: Add current to output

Once the partitioning with highest average pairwise unfairness

has been identified, it is up to the user, requester or platform

developer, to decide on the right subsequent action.

ALGORITHMS
Our optimization problem for finding themost unfair partitioning

is hard since there are is an exponential number of possible

partitionings P . For this reason, we propose heuristics-based

algorithms to identify a partitioning of individuals with respect

to our optimization objective within reasonable time.

We first propose balanced (Algorithm 1), an algorithm that

generates a partitioning of the individuals in a greedy manner

using the EMD of the partitions. balanced is based on decision

trees with EMD as utility [6]. It starts by splitting the individuals

on theworst attribute with respect to EMD. This is done by trying

out all possible attributes one at a time, and associating to each

attribute-value partition, one histogram of the scores of all the

individuals it contains. For each candidate attribute, balanced

computes the average pairwise EMD over histograms associated

to the partitions obtained with the values of that attribute. It then

returns the attribute with the highest average pairwise EMD

and splits on that attribute. In the subsequent splitting steps,

balanced iteratively partitions the individuals using the other

attributes in the same manner and only stops when the average

pairwise EMD of the current partitioning is greater than that of

the next candidate partitioning.

balanced results in a partitioning of all the individuals using

the same set of attributes (i.e., a balanced partitioning tree) since

each splitting uses the same attribute over all current partitions.

We also developed unbalanced (Algorithm 2), another algorithm

that partitions the individuals in a non-homogenous manner by

locally deciding for each partition whether to further split it or

not (i.e., resulting in an unbalanced partitioning tree).

unbalanced is a recursive algorithm that decides to split a

given partition by comparing the average EMD of that parti-

tion with its siblings to that of its children with its siblings. The

intuition behind this is that it assesses what would happen to

unfairness as measured by the average EMD if the partition was

replaced by its children. It only splits a partition if its average

pairwise EMD with its siblings is less than the average pairwise
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Algorithm 2 unbalanced (current : a partition, siblinдs: a set
of partitions, f : a scoring function, A: a set of attributes)

1: if A = ∅ then
2: Add current to output
3: else
4: currentAvд = averaдeEMD(current , siblinдs, f )
5: a = worstAttribute(current , f ,A)
6: A = A − a
7: children = split(current ,a)
8: childrenAvд = averaдeEMD(children, siblinдs, f )
9: if currentAvд ≥ childrenAvд then
10: Add current to output
11: else
12: for each partition p ∈ children do
13: unbalanced ({p}, children − {p}, f ,A)
14: end for
15: end if
16: end if

EMD of its potential children with the partition’s siblings. To

invoke the algorithm, we first split the given set of individuals

using the worst attribute as in the case of balanced and then the

algorithm unbalanced is called once for each resulting partition.

After all recursive calls of the algorithm terminate, the output is

returned as the final partitioning of the individuals.

EVALUATION
To evaluate the effectiveness of our approach in quantifying

unfairness, we run a simulation of a crowdsourcing platform

using two sets of active workers and various scoring functions

that rank those workers based on their qualification for tasks.

Setting. We generate two sets of active workersW of different

sizes: 500 and 7300 (the estimated number of Amazon Mechanical

Turk workers who are active at any time [9]). Each w in W

has 6 protected attributes: Gender = {Male, Female}, Country =

{America, India, Other}, Year of Birth = [1950, 2009], Language =

{English, Indian, Other}, Ethnicity = {White, African-American ,

Indian, Other}, and Years of Experience = [0,30], and two observed

attributes: LanguageTest = [25,100] and ApprovalRate = [25,100].

The values of those attributes are populated randomly so as

to avoid injecting any bias in the data ourselves. Moreover, we

define 5 different task qualification functions of the form f =
αb1 + (1 − α)b2, where b1 = Language Test and b2 = Approval

Rate and α ∈ {0, 0.3, 0.5, 0.7, 1}.

We compare our two proposed algorithms unbalanced and

balanced to a set of baselines. The first two baselines, which

we refer to as r-balanced and r-unbalanced, are copies of our

two algorithms balanced and unbalanced that use a random

attribute instead of the worst attribute to split the workers at each

step. The third baseline, which we refer to as all-attributes,

is an algorithm that splits the workers based on all their pro-
tected attributes resulting in a full partitioning. Note that we also

implemented an exhaustive algorithm that solves our optimiza-

tion problem exactly by generating all possible partitionings in a

brute-force manner and then returning the one with the highest

average EMD. However, this algorithm failed to terminate after

running for two days with only 6 attributes as in our simulation,

even when each attribute had only a maximum of 5 values.

Simulation Results. Our first observation from Tables 1 and 2

is that for both datasets, functions f4 and f5 exhibit the highest
unfairness as measured by the average pairwise EMD for all the

partitionings retrieved by all the algorithms. Recall that these two

functions are the ones that rely on one observed attribute only

(LanguageTest in case of f4 and ApprovalRate in case of f5). This
indicates that if the scoring function uses fewer observed attributes,
the chance of unfairness increases. In our simulation, since the
attribute values were generated at random, there is a higher chance
that the function scores correlate with a single protected attribute.

Second, we observe that our two algorithms unbalanced and

balanced consistently outperform or do as good as all other

baselines for all datasets and functions. For the case of 500 work-

ers, the unbalanced outperforms all other algorithms for the

last three functions f3, f4 and f5. On the contrary, the balanced

returns the partitioning with the highest average EMD in the case

of f1. In the case of f2, both balanced and r-balanced return

the highest average EMD over the partitionings they find. This
allows us to validate the stopping condition used in our algorithms.

Finally, in the case of 7300 workers, all the algorithms behave

similarly, with the balanced and all-attributes returning the

partitionings with slightly higher average EMD compared to all

other algorithms. Upon investigating the returned partitioning

by the different algorithms, we observed that in most cases all

the algorithms returned the full partitioning tree, i.e., using all

protected attributes, which is the same as the partitioning re-

turned by the all-attributes algorithm. We conjecture that it is
due to the random values of all attributes.

In terms of efficiency, the balanced algorithm took the most

time to terminate compared to all other algorithms. In addition,

the larger the dataset, the more time it took for all algorithms to

finish. This is very intuitive given that the larger the dataset, the

larger the individual histograms and the more time it takes to

compute the pairwise EMD between them. Moreover, the deeper

the partitioning tree, the larger the number of histograms that

need to be compared. Finally, our two algorithms, balanced

and unbalanced incur additional time since at each splitting

step, they need to examine all remaining attributes to determine

the worst one (i.e., the one which might result in the highest

average EMD). All these factors contributed to the increased

time to execute the balanced compared to all others. It is worth

noting nonetheless that balanced terminates in less than 1.6

hours in the worst case (for the case of 7300 workers).

Qualitative Results. In addition to our simulation where we

used a set of random task qualification functions, we also ran our

algorithms on the following set of carefully-constructed func-

tions, which are unfair by design:

• f6: this function discriminates against females by setting

the task qualification of workers as follows: f6(w) > 0.8 if

w is male and f6(w) < 0.2 ifw is female.

• f7: this function sets the qualification of workers in a

biased manner based on their gender and nationality as

follows: f7(w) > 0.8 if w is male and American, f7(w) <

0.2 ifw is female and American, 0.5 < f7(w) < 0.7 ifw is

Indian, either male or female, f7(w) > 0.8 if w is female

with any other nationality, and f7(w) < 0.2 if w is male

with any other nationality.

• f8 designed as follows: f8(w) > 0.8 if w is female and

American, 0.5 < f8(w) < 0.8 ifw is female and Indian and

f8(w) < 0.2 ifw is female with another nationality.
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Table 1: Average EMD and runtime for 500 workers and random functions

Algorithm Average EMD time (in secs)

f1 f2 f3 f4 f5 f1 f2 f3 f4 f5
unbalanced 0.195 0.191 0.179 0.247 0.257 20.987 23.715 22.823 29.504 28.845

r-unbalanced 0.193 0.193 0.177 0.243 0.253 28.33 26.871 28.354 27.333 28.372

balanced 0.196 0.194 0.177 0.246 0.253 311.17 323.16 326.68 330.61 327.22
r-balanced 0.195 0.194 0.177 0.246 0.253 131.87 122.49 119.97 127.06 124.46

all-attributes 0.195 0.193 0.177 0.246 0.253 42.708 42.494 42.597 42.235 42.337

Table 2: Average EMD and runtime for 7300 workers and random functions

Algorithm Average EMD time (in secs)

f1 f2 f3 f4 f5 f1 f2 f3 f4 f5
unbalanced 0.161 0.162 0.151 0.208 0.209 1169.224 1246.651 1205.963 1292.506 1245.037

r-unbalanced 0.162 0.163 0.151 0.208 0.209 1401.36 1391.541 1358.795 1290.977 1397.894

balanced 0.163 0.163 0.151 0.210 0.211 5733.528 5745.611 5693.681 5840.131 5808.715
r-balanced 0.163 0.163 0.122 0.210 0.211 3174.327 3240.727 2358.744 3115.123 3120.553

all-attributes 0.163 0.163 0.151 0.210 0.211 1453.626 1449.466 1450.712 469.839 1467.606

Table 3: Average EMD for 7300 workers & biased functions

Algorithm Average EMD

f6 f7 f8 f9
unbalanced 0.040 0.164 0.460 0.317

r-unbalanced 0.399 0.362 0.322 0.350

balanced 0.800 0.427 0.460 0.359
r-balanced 0.496 0.368 0.330 0.301

all-attributes 0.420 0.368 0.337 0.359

• f9 correlates with protected attributes ethnicity, language

and year of birth similarly to previous ones.

As can be seen from Table 3, balanced retrieves the parti-

tionings with the highest possible average EMD compared to all

other algorithms. In addition, the resulting partitionings are the

ones expected, i.e., using the attributes for which the functions

were designed to correlate with. For example, for f6, balanced
partitions the workers on only gender for all datasets. Similarly,

for f7, it partitions the workers on both gender and country. We

show only the results in the case of 7300 workers due to space

limitation. Finally, we observe that overall for all functions and
algorithms, the average EMD is much higher compared to the func-
tions used in our simulation experiment, which indicates that our
optimization problem is indeed effective in capturing unfairness of
the scoring functions as conjectured. The only exception was for

unbalanced in the case of f6 and f7, where the algorithm ended

up splitting the workers further than it should because of the

local nature of its stopping condition. In fact, since the function

scores were generated at random within the specified range, vari-

ous runs of the experiments resulted in different behavior, where

in some cases, unbalanced performed as well as balanced.

SUMMARY AND FUTUREWORK
We set out to examine fairness of ranking in online job market-

places. To do this, we defined an optimization problem to find a

partitioning of the individuals based on their protected attributes

that exhibits the highest unfairness by a given scoring function.

We used Earth Mover’s Distance between score distributions as a

measure of unfairness. Unlike previous work, we did not assume

a pre-defined partitioning of individuals and instead proposed

two heuristic algorithms, balanced and unbalanced, that effi-

ciently partition the individuals without exploring the full space

of partitionings. Our immediate plan is to test our algorithms

on real datasets from Qapa and TaskRabbit. We are also investi-

gating other formulations and metrics for fairness instead of the

Earth Mover’s Distance. We are also studying ways of "repairing”

bias in the context of ranking in online job marketplaces.
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ABSTRACT
Transactional database systems and data stream management
systems have been thoroughly investigated over the past decades.
While both systems follow completely different data processing
models, the combined concept of transactional stream processing
promises to be the future data processing model. So far, however,
it has not been investigated how well-known concepts found
in DBMS or DSMS regarding multi-user support can be trans-
ferred to this model or how they need to be redesigned. In this
paper, we propose a transaction model combining streaming and
stored data as well as continuous and ad-hoc queries. Based on
this, we present appropriate protocols for concurrency control
of such queries guaranteeing snapshot isolation as well as for
consistency of transactions comprising several shared states. In
our evaluation, we show that our protocols represent a resilient
and scalable solution meeting all requirements for such a model.

1 INTRODUCTION
Emerging application domains such as cyber-physical systems,
IoT, and healthcare have fostered the convergence of stream and
batch processing in data management. This can be observed not
only by market trends such as real-time warehousing but also
by architectural patterns like the lambda architecture aiming at
combining batch and online processing on Big Data platforms.

This convergence means that the input to the system is treated
as a continuous stream of data elements whose processing is im-
plemented as a stream processing pipeline (query) with one or
more persistent states/tables as sinks. Updates on these tables
trigger further processing implemented again as stream process-
ing pipeline. In addition, tables can be also queried in an ad-hoc
fashion, e. g., for snapshot reports. Hence, the query part of an
application is a mix of stream and ad-hoc queries while the data
objects are streams and tables. However, concurrency and the
need for providing fault tolerance require transaction support: at
least stream queries writing to or reading from a table should run
within a transaction context with ACID guarantees. This is nec-
essary for recovery in case of failures and to provide a consistent
view on (persistent) subsets of the stream (such as a window).
Here, we refer to this processing style as transactional stream pro-
cessing [2, 13] meaning that (a) a stream query writing to tables
represents a sequence of transactions and (b) stream or batch
queries on such tables require transaction isolation. Supporting
such queryable states raises several requirements:

1 state representations (tables) have to be queryable at all,
2 the isolation property for concurrently running stream

queries updating the state and ad-hoc queries on these
states has to be guaranteed, and

3 consistency among multiple states of the same stream
query is required even in the case of transaction aborts.

© 2019 Copyright held by the owner/author(s). Published in Proceedings of the
22nd International Conference on Extending Database Technology (EDBT), March
26-29, 2019, ISBN 978-3-89318-081-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Figure 1 sketches a possible smart metering scenario which
could benefit from transactional stream processing. Here, it is
getting data from private households and the global infrastructure
which is checked against respective specifications. It consists of
three continuous and one ad-hoc query accessing various (shared)
states whose semantic we explain in more detail in Section 3.

StateAd-hoc QueryStream OperatorData Flow

Window + 
Aggregate TO_TABLE

TO_TABLE

Measure-
ments 2

Local State 
(30 min)

Specifi-
cation

··· ···

··· ···  · · ·

Stream 1

Stream 2

Stream 3

TO_STREAM

FROM
(Analytics)

Verify

Transaction 
Management

Measure-
ments 1

TO_TABLE

··· ···

Infrastructure

Home
Smart Meters

Figure 1: Possible smart metering use case.

In this paper, we present techniques to address the require-
ments above. Based on the work introduced in [2, 13], we propose
a data-centric transaction model for data streams, discuss why
and how to realize snapshot isolation on queryable states together
with a consistency protocol. With the help of a micro benchmark,
we show the suitability and scalability of our approach.

2 RELATEDWORK
The first major investigation of a possible combination of rela-
tional and stream processing took place in the STREAM project
[14]. However, when designing the system the team focused only
on continuous queries instead of a hybrid query set of continuous
and single point in time queries. To model the transformations of
streams and relations, STREAM provides operations based on the
whole relation (RStream), inserts (IStream), or deletes (DStream).

A more recent development of a system supporting transac-
tions and data streaming is S-Store [13] which is built upon the
main memory OLTP system H-Store [9]. S-Store inherits the
ACID properties of H-Store by implementing data streaming con-
cepts like windows and streams as time-varying H-Store tables
with a timestamp as ordering property. Continuously running
stream queries are implemented as stored procedures. Together
with an input batch, which is the unit of a stream with the same
timestamp, the execution of the stored procedure over such a
batch forms a transaction over stream data.

Transactional Stream Processing [2] is a different notion to
combine streaming and pure transaction processing. Their ap-
proach defines a unified transaction model which assigns a times-
tamp to each transaction and transforms continuous queries into
a series of one-time queries, where each one-time query reads all
required data before writing the result set. Transactional Stream
Processing is based on a storage manager which transfers data
processing into a producer-store-consumer scenario and iden-
tifies different properties to provide the proper storage for a
producer-consumer combination.

In the context of scalable data stream processing platforms,
Apache Flink Streaming is one of the most advanced approaches
to consistent states and fault tolerance [3]. Their mechanism is
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based on distributed snapshots where stream barriers are moving
along with the data through the dataflow. At operator level, the
flow is aligned until all barriers with the same ID arrive and sub-
sequently the current state is persisted in the state backend (e. g.,
HDFS). Whenever a failure occurs, the last complete snapshot is
used for restoring a consistent state per streaming pipeline.

In [15] the authors present a platform combining OLTP, OLAP,
and stream processing in a single system. For that, they merge
Apache Spark with an in-memory transactional store and en-
hance it by additional features such as approximate processing.

MVCC is one of the most widely used concurrency control
protocols and has been implemented in, e. g., Postgres [18], Hy-
Per [10], Hekaton [5], and SAP HANA [12]. No precise standard
exists that describes how MVCC should be implemented. There
are several possibilities and adjustments that strongly depend on
the expected workload. In [20] the authors present an extensive
study of key design decisions when implementing MVCC in an
in-memory DBMS. In particular, these are concurrency control
protocol, version storage, garbage collection, and index manage-
ment. We have used the findings of this study to design our own
MVCC approach (see Section 4).

3 TRANSACTION MODEL
Addressing the scenario and requirements described in Section 1
requires to distinguish two basic concepts: tables for representing
states and streams. Tables represent a finite collection of data
structured in rows and columns, as known from relational DBMS.
Streams define a potentially infinite sequence of tuples of data,
where tuples carry an implicit or explicit ordering. While a table
requires a physical storage representation, streams are volatile.

Linking operators. As already proposed in the query lan-
guage for STREAM [1], two classes of query operators are re-
quired to link these objects: stream-to-table and table-to-stream.
Here, we call them TO_TABLE and TO_STREAM.

• TO_TABLE inserts, deletes, or updates tuples from a stream
in a table, e. g., to update an operator state, and

• TO_STREAM produces a stream of tuples from a table.
Whether a stream tuple is inserted or updated in a table depends
on the presence of a table tuple with the same key. A delete
occurs if the tuple is outdated (e. g., from a window) or explicitly
removed by a delete tuple. TO_STREAM unifies the two cases, where
stream tuples are just incrementally processed and, on the other
hand, table wide operations are executed before new tuples can
be emitted. Whenever a certain condition on a table is fulfilled,
TO_STREAM is executed and emits a new (set of) tuple(s) to a
stream. In addition to these operators, a standard ad-hoc query
operator FROM is required to either attach to a stream, i. e., read
all tuples of the stream starting at the point of attachment, or to
read data of a table. Figure 2 illustrates these operators.

TO_TABLE TO_STREAM

FROM (Table)

FROM (Stream)

Figure 2: Linking operators.
Transaction boundaries. A first question is how to define

transaction boundaries for data streams. Apart from the rather
trivial case where each stream element represents its own trans-
action (aka “auto-commit”), two basic approaches can be distin-
guished. In the data-centric approach, transaction boundaries

(BOT, COMMIT, ROLLBACK) are marked by dedicated stream ele-
ments, whereas the other stream elements are interpreted as in-
sert or update operations. Punctuations [19] or control tuples are
useful concepts for this purpose. This way each transaction can
be defined over a consecutive number of stream tuples. Thereby,
a transaction span can range from the length of an entire stream
to the length of a sub-stream or each tuple is considered a sin-
gle transaction. An alternative strategy is the traditional query-
centric approach meaning that transaction boundaries are spec-
ified as part of the query or dataflow program. Obviously, this
approach is better suited for ad-hoc and not for stream queries.

Unified tables for queryable states. For our system model,
we rely on a unified table model taken from the DBMS world
to cover all relevant aspects needed for transactional stream
processing. However, stateful stream operators such as windows
or aggregates also require structures for maintaining operator
related data. Such operators exploit tables as internal structures to
publish their state as a table allowing to share their content with
other queries or to query the content. Besides sharing operator
states, this approach also provides the advantage of re-using
persistence and recovery mechanisms.

Transactional semantics. Inserts, deletes, or updates on
states/tables need to run in a transactional context to guarantee
atomicity for writes to a table and isolation for reads. The only
way to modify a table in our model is provided by using the
TO_TABLE operator which has to guarantee atomicity based on
the transaction boundaries. Because a single stream query might
contain multiple operators maintaining a persistent state, consis-
tency among multiple states is a further requirement. This means
that all states updated within the same stream query should be
updated atomically with each commit, i. e., another query reading
these states should see updates from the same (most recent) com-
mitted transaction. For reads of the FROM operator, we have to
consider isolation properties. This also applies if FROM provides
access to a data stream: here different isolation levels should
provide different levels of visibility. For reads in TO_STREAM, we
have to consider the trigger policy in addition to the isolation
property. Trigger policy means the condition when a stream
element is produced (TO_STREAM) or modifications in form of
one or more transactions are generated into a back-to-the-table-
directed stream. Here, possible policies are to consider each tuple
modification or to rely on transaction commits.

4 TRANSACTIONAL STATE MANAGEMENT
From the transactional semantics described in Section 3, the fol-
lowing requirements can be derived that correspond to the ACID
principle applied to the transactional stream processing model.
First, there is atomicity, which occurs in several aspects. As men-
tioned before, the scope of a transaction that should be executed
atomically must be marked via certain transaction boundaries.
In addition, the individual operations must also be performed
atomically in order to ensure both fault tolerance and consistency
in case of concurrent access. This leads directly to the next two
requirements: persistence and isolation. The latter property must
ensure that both continuous and ad-hoc queries do not influence
each other in terms of correctness and consistency. Furthermore,
consistency must be ensured even if a query accesses multiple
states, also in the event of transaction aborts. The persistence
requirement means that the results of successfully committed
transactions are still available after a system restart or crash. This
goes hand in hand with recoverability, which must ensure that
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the states are brought back or always stay in a consistent form.
Taking these requirements into consideration, we have realized
a snapshot isolation approach comprising three components:

• multi-versioned data structures for queryable states,
• a transaction protocol to access these states, and
• a protocol guaranteeing consistency amongmultiple states.

These components are prototypically implemented as part of
our data stream processing framework PipeFabric1. We opted
for an MVCC approach as it has proven to be the most scalable
and widely used concurrency control protocol in the literature
for DBMSs [4, 16, 20]. We expect it to behave similarly in a
transactional stream processing environment. However, this still
has to be revealed, which we will pursue in the following sections.

4.1 Data Structures
As transactional state representation, we have designed a table
wrapper as shown in Figure 3. For the base table, any existing
backend structure with a key-value mapping can be used. There-
fore, every state type can use a suitable underlying structure
making our design extremely versatile. Here, each key is mapped
to an MVCC object. An entry in this object corresponds to the
typical structure for MVCC [17, 20] ( ≡ < [cts,dts],value >). The
commit and deletion timestamp (CTS/DTS) indicate the lifetime
of the value version. With the help of a bit vector (UsedSlots)
the available free version slots are managed.

Reference to
State Context

Transactional Table Uncommitted Write Set 

Tx
nI

D Key  Value···

Dirty Array

··· ···

Base Table

key2 MVCC Object

keyn MVCC Object
State Context

States
StateID   Location/Pointer

···

GroupID  List<StateID>  LastCTS
Topologies

···

OldestActiveVersionUsedSlots

Active Transactions
TxnID  List<StateID, Status>  List<GroupID, ReadCTS>

···

key1 MVCC Object UsedSlots

CTS1  DTS1···

Headers
Value1···

Values

MVCC Object

persistent

volatile

Figure 3: Transaction components.
Before new versions become visible to readers the changes

are transiently stored as Uncommitted Write Set. This enables
simple and fast aborts and also prevents the mixing of committed
and uncommitted versions. Furthermore, the transactional table
has a reference to the global context which contains all necessary
runtime information. It consists of metadata about the states,
topologies, and active transactions. For the states it contains
general information such as their ID and physical location (e. g.,
file system path). In PipeFabric a query is written by defining
a so-called Topology. It can be seen as graph where each node
is an operator and the edges represent their subscribed streams.
Each state is part of at least one topology for which we track the
states that must be written together atomically. This is neces-
sary for the correct application of the consistency protocol (see
Section 4.3) for which the last committed transaction (LastCTS)
per group is recorded. For recovery purposes, this information
needs to be persistent. At the beginning of each transaction, it is
assigned a unique timestamp (TxnID). All timestamps are logical
and generated by a global atomic counter. For currently running
transactions, we save a list of accessed states containing their ID
1PipeFabric: https://github.com/dbis-ilm/pipefabric

and status (Active, Abort, or Commit) as well as the global com-
mit timestamp at the time of reading for each topology. Again,
we use a bit vector2 to atomically manage the available slots. For
garbage collection, we clean up old versions on demand (using
OldestActiveVersion), i. e., if a new version has to be created
and no space is available in the version array. The state context of
the transaction management is completely latch-free and solely
uses atomic instructions.

4.2 Concurrency Protocol
Before considering global consistency, we look at the basic op-
erations required, namely read, write, commit, and abort. For a
better separation of the protocols, we first assume that only a sin-
gle state needs to be accessed consistently at a time. We further
assume a beginning punctuation to signal the start of a trans-
action that assigns a timestamp and registers it in the context.
To synchronize the actual access of MVCC blocks a lightweight
locking strategy with read-write locks (latches) can be used.

The read operation starts by checking whether the accessing
transaction has alreadywritten a new value (Uncommitted Write
Set) and returns it. Otherwise, the latest visible version will
be looked up using the commit and deletion timestamps. To
achieve snapshot isolation, the first read version timestamp of this
transaction must be transiently stored and used for subsequent
reads (readCTS). The found value is finally returned to the caller.

When a transaction wants to write a new value, it is merely
appended to its write set (Dirty Array). In case of a single
writer, no exclusive locks are required and writes never block. For
multiple writers, it could be checked if write sets overlap and then
prematurely abort/restart the later transaction. Alternatively, this
could be done only at commit time to prevent slower writes.

As all uncommitted changes are stored transiently together, it
is enough for the abort operation to simply clear the correspond-
ing write set and release the memory. The commit operation, on
the other hand, is a bit more complex since all changes must be
applied atomically and isolated from other readers. For each mod-
ification the MVCC object is loaded, the position of the new value
is determined, and the position of the current value is looked
up. The changes are then applied in memory. If no free insert
position could be found, the garbage collection is performed at
this point. Subsequently, the changes are populated atomically
and isolated into the base table. As a final step, the global commit
timestamp of the table is changed to the committing transac-
tion’s ID. By atomically setting this timestamp, the protocol can
guarantee that the changes of a transaction are either visible
completely or not at all. In the case of multiple writers, additional
write locks are introduced and the order of the commits must be
checked. If the current version is greater than the timestamp of
the transaction, it must abort (First-Committer-Wins rule).

The way we designed our operations eliminates the need for
undo operations within the actual table. In addition, read oper-
ations are generally not blocked by write operations and vice
versa. Only during the commit time, a short synchronization is
required. Therefore, we expect the performance to remain stable
even for high contention situations.

4.3 Consistency Protocol
If now a continuous query needs to update multiple states, they
must become visible together to maintain consistency. Assume a
simplified case where a data stream query writes two states and
2In fact, it is a 64-bit integer, which is updated by CAS operations.
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a second (ad-hoc) query reads from both states. We coordinate
the operators with the help of the state context (see Figure 3).
Whenever a commit arrives the corresponding status flag for this
transaction and state is set to Commit. The modifications are not
persisted until all states registered for this transaction are ready
for commit. The operator that sets the last status flag to Commit
becomes the coordinator and is responsible for the global commit.
In addition, a transaction must be aborted globally as soon as
Abort has been flagged for at least one state. In this respect, this
is a modified version of the 2-Phase-Commit protocol [11] relying
on proven concepts which adds almost no overhead in our case.

Readers can see the last completed transaction using LastCTS
for each topology which is set at the end of a commit (instead
of the transaction ID as described before). They must also check
in the context which states are written together. For these, the
version must be the same, otherwise, a commit has been executed
in the meantime. Therefore, the read version is noted within the
context (ReadCTS) and is only set at the first read per topology.
Thus, every operation reads from the same snapshot and inter-
leaved commits do not pose a problem. If there is an overlap when
reading multiple topologies with different versions (LastCTS),
the older version must be read to guarantee consistency.

5 EVALUATION
In this section, we present a micro benchmark to substantiate the
suitability and scalability of our approach. For this, we evaluate
our MVCC protocol against a simple strict two-phase locking
(S2PL) [6] and a backward-oriented optimistic concurrency con-
trol (BOCC) [8] protocol.We havemade every effort to implement
optimized versions of each protocol. All concurrency control
protocols use fundamentally the same consistency protocol for
multiple states as described in Section 4.3.

5.1 Setup and Workloads
The experiments were run on a 2-socket Intel Xeon E5-2630 each
6 cores à 2 threads, 128 GB DDR3, Linux kernel 4.15, and GCC
7.3. As a base table, we use a persistent key-value store, namely
RocksDB3. It has a log-structured merge-tree (LSM) design and
provides many configuration options for a wide range of require-
ments. We kept the default configuration and only set the sync
option to true to guarantee failure atomicity. As a benchmark,
we use a scenario having one stream continuously writing to
two states and multiple ad-hoc queries reading from these states.
Both are initialized with a table size of one million key-value
pairs (4 Byte key, 20 Byte value). During the experiments, we
vary the number of parallel ad-hoc queries and the contention
rate using a Zipfian distribution (θ = 2.9 =̂ 82% the same key) [7].

5.2 Performance Study
In the following, we compare the performance of all concurrency
control protocols for transactions of medium length (10 opera-
tions each). An excerpt of our measurements is shown in Figure 4.
Due to the synchronous writing, the readers (mostly only access-
ing memory) contribute almost exclusively to the total through-
put. While the other two protocols are dropping, the MVCC
protocol provides consistently a good performance. Interestingly,
the BOCC protocol is slightly faster (~5%) than MVCC with little
contention and many concurrent ad-hoc queries. However, this
is logical as it is designed for scenarios with few conflicts. If the
number of threads and the contention increases, it brings the
3RocksDB (version 5.15.10): https://github.com/facebook/rocksdb
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Figure 4: Contention and scalability checkwith persistent
synchronous writes and medium-sized transactions.

S2PL and BOCC to their knees relatively quickly. It is noticeable
that at least for MVCC caching effects are visible with a higher
contention. Overall, it shows that our MVCC approach combined
with the consistency protocol is highly scalable and resilient,
making it well suited for transactional state management.

6 CONCLUSION
Transactional stream processing systems itself offer a wide range
of research opportunities. In this paper, we presented a data-
centric transaction model and investigated concurrency and con-
sistency aspects within this model. We have found that our snap-
shot isolation approach meets all our initial requirements. We
designed a versatile state representation which is queryable by
both continuous and ad-hoc queries. Even under high parallelism
and contention, the ACID properties could always be maintained
with great performance even when involving multiple states.
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ABSTRACT
Prediction of human intent during a user interaction session with
the database received a significant amount of attention in the re-
cent past [1, 8]. State-of-the-art intent detection approaches such
as [5] insist that the human intent is dynamic and is constantly
changing throughout the user session. While the usage of classi-
fiers like SVMs and decision trees have been proposed to capture
static user intent [2], such models become ineffective in predict-
ing dynamic or ever-changing human intent. Recurrent Neural
Networks (RNNs) are powerful temporal predictors and have
recently been prominent in the database research community
for tasks such as entity matching [3, 6]. In this work, we discuss
the application of RNNs to the problem of dynamic user intent
prediction during a human-database interaction. We propose two
variants of SQL-specific embedding vectors for RNNs. We also
propose active learninд strategies for RNNs which consume a
fraction of the held-out training data to produce competitive
prediction quality as full training or supervised learninд. Our ex-
periments on real user sessions upon the NYCTaxiTrip dataset [9]
evaluate the effectiveness of vanilla, LSTM and GRU based RNNs.

1 INTRODUCTION
Prediction of user intent during a Human-Database Interaction
(HDI) session helps prefetching the results of the anticipated
queries [4] thus making the interaction seamless. Existing works
such as [1, 2] define the user intent as the last (target) query
asked by a user in an interaction session and the prediction
of user intent as a binary classification problem. The test data
at hand is classified as interesting or not by using a decision
tree or a Support Vector Machine (SVM) based on the training
the classifier has undergone. The positive class predictions are
evaluated against the results of the target SQL query held as
ground truth. This line of work assumes that the user intent is
static, contrary to which [5] emphasizes that the user can refine
and adapt her needs constantly until the termination of an HDI
session i.e., the target query changes continuously. Capturing
dynamic multi-user intent using [1, 2] requires a binary classifier
for each user session. Instead, we can model dynamic intent
discovery as a temporal prediction task using a single Recurrent
Neural Network (RNN) for all the user sessions because of its
ability to train on and predict several sequences of data.

For a query qui issued by the user at timestep i , we not only
retrieve the results of qui but also predict the intent vector of the
subsequent query at timestep i + 1. We use RNN as the intent
prediction middleware between the user and the database as
illustrated in Figure 1. A prior embedding layer can convert
raw text either into real-valued embeddings or one-hot vectors or
words in avocabulary which are fed to the RNNs as intent vectors.

© 2019 Copyright held by the owner/author(s). Published in Proceedings of the
22nd International Conference on Extending Database Technology (EDBT), March
26-29, 2019, ISBN 978-3-89318-081-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Figure 1: Intent Prediction Pipeline using RNNs

The performance of an RNN is dependent on the granularity
at which these embeddings and the corresponding vocabulary
are created. For instance, either an entire SQL query or each
distinct substring or character in the query can be considered
as a word in the vocabulary. In the latter case, external libraries
such as word2vec (https://code.google.com/archive/p/word2vec/)
or GloVe (https://nlp.stanford.edu/projects/glove/) can be used
to borrow pre-trained real-valued embeddings [6].

We create two variants of SQL-specific binary embeddings for
dynamic intent vector representation customized to relational
databases rather than relying on external libraries which are SQL-
agnostic. In the first variant of query embedding, we use a one-hot
vector which is a bitmap of 1s and 0s to represent each query
intent. It only has a single dimension set to 1 that corresponds
to a specific query among the collective set of queries issued
by the users until a given point of time. The second variant of
operator-based embedding breaks down a SQL query into several
smaller bitmaps each corresponding to a distinct family of SQL
operators. A concatenation of all the operator-specific bitmaps
produces an operator embedding as the user intent for that query.

RNNs are known to consume a lot of training data and time.
To reduce the amount of training data, we use active learning
on RNN to empirically test if it can make effective predictions
with limited user sessions. Active learning selectively includes
ambiдuous (hard-to-classify) examples into the training data and
incrementally refines the classifier based on the additional train-
ing data. Our approach differs from active learning for static
intent in [2] as we select query sequences that is more scalable
than labeling tuples. To minimize the training time and enhance
interactivity, we propose using an incrementally trained RNN.
We present our results on 139 sessions we collected from real
user interactions on the NYCTaxiTrip [9] dataset. The remaining
paper is organized as follows: we first present the details of the
experimental dataset and the construction of the embedding vec-
tors followed by the application of supervised learning and active
learning on RNN for dynamic intent prediction. We conclude the
paper with a discussion on the experimental results.

2 DATASET AND SYSTEM OVERVIEW
We collected 139 user sessions from 30 real world users with
4 to 5 average sessions per user. Each of them interacted with
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a sample of 100,000 trips loaded from a total of 10M taxi trips
that span over 5 weeks in June and July 2016. We used the vi-
sual interface of Tableau [7] connected to the database engine
of PostgreSQL 9.5.10. The reason for sampling is to increase the
interactivity between the user and the database without overload-
ing the Tableau interface. The visual interactions are translated
into SQL queries and stored in logs by Tableau. We obtained a
total of 1958 SQL queries with 1190 distinct queries from the user
interactions. Our offline vocabulary creation step ensures that
the embedding vectors of all the queries have the same pre-fixed
dimensionality. We do not have to handle "UNK"(unknown) to-
kens as RNNs conventionally do for out-of-vocabulary strings,
because of the offline step.

Query Embedding: Query-based intent uses the actual query
for intent representation. Each query is thus assigned a specific
dimension within the entire vocabulary space of 1190 distinct
SQL queries in the dataset. A bitmap of 1190 bits is created for
each query of which a single bit is set to 1 specific to the query.

Operator Embedding: The NYCTaxiTrips dataset is stored
as a single table and hence each SQL query intent vector is a
composite bit vector of all possible operators allowed over a
single relation and can be written asvec(quAддr ) = πvec Aддrvec
σvec GROUP BYvec ORDER BYvec HAVINGvec LIMITvec . Each
query vector vec(quAддr ) is a concatenation of bit vectors for
operators such as PROJECT, AGGREGATE, GROUP BY, ORDER
BY, HAVING and LIMIT. Every single operator out of these six has
a dimensionality equal to the number of attributes |Attr | in the
database schema (indicating the columns that the operator can
be associated with) except AGGREGATE and LIMIT. Aддrvec is
a concatenation of five most common aggregate operators - AVG,
MIN, MAX, SUM and COUNT and thus has a dimensionality of
|Attr | ∗ 5 bits. LIMIT operator contributes only to a single bit in
the operator vector as it is not associated with any attribute and
is more like a Boolean recording its presence in the query. The
total dimensionality of an operator embedding bitmap is thus
|Attr |x10+1 which is 18x10+1=181 for the NYC taxi trip dataset.

Operator Operator sub-vector #Dimensions
πvec 000000000000100000 #Columns = 18

Aддrvec 0...0111111111111111111 #Columns x 5 = 90
σvec 0000..0 #Columns = 18

GROUP BYvec 000000000000100000 #Columns = 18
ORDER BYvec 0000..0 #Columns = 18
HAVINGvec 0000..0 #Columns = 18
LIMITvec 0 1

The above table lists the operator (sub-)vectors for each ex-
pected category of SQL operators for the example query qui+1
from Figure 1, quAддr : SELECT COUNT(*), taxi_fare FROM
nyc_yellow_tripdata GROUP BY taxi_fare. Let taxi_fare be the
13th attribute among the list of 18 possible attributes. We can
see the corresponding bit position set to 1 in the 18-bit operator
sub-vector for the projection and group by operator while setting
all the attributes for the count operator to 1.

2.1 Supervised Learning
In this section, we describe how RNNs are trained and tested for
dynamic intent prediction. We use Keras API (https://keras.io/)
with TensorFlow library (https://www.tensorflow.org/) for RNNs.
Figure 2 illustrates RNN for two consecutive timesteps Ti and
Ti+1 in intent prediction. We use a “many-to-one” sequential
RNN with an input layer, a hidden layer and an output layer. The
input layer is fed with the sequence of query/operator embedding

Figure 2: Recurrent Neural Network for Intent Prediction

vectors until the current timestep in the session to get a temporal
prediction of the intent for the next timestep. The output layer
emits a probability vector with same dimensionality as the intent
vector. The value of each dimension indicates the probability of
that dimension being a 1. For example, in Figure 2, the output
vector < 0.6, 0.4, 0.01, 0.01, 0.9 > at Ti denotes the probabilities
of each of its five dimensions being 1.

During the training phase, the predicted probabilistic output
vector is compared to the target query which is the successor
query from the next timestep or the expected intent vector output
(of 11001 at Ti in the figure) using a loss function. The hidden
layer weights (wxh ,whh ,why ) are updated using backpropaga-
tion either by fitting the model simultaneously on the sequences
across all the timesteps so far (f ully trained) or updating the
model obtained thus far by fitting it only on the latest sequence
(incrementally trained). We limit the number of learning epochs
to 10 during training for interactivity. We append the target vec-
tor of timestep Ti to the session sequence as input to the RNN
at the subsequent timestep Ti+1. We empirically choose sigmoid
activation function for hidden layer and binary cross entropy
as the loss function at the output layer. During the test phase,
instead of predicting the most likely intent vector, we predict the
top-K candidate output intent vectors having the highest cosine
similarity to the probabilistic output vector. These top-K vectors
are picked from the historical sessions that the RNN has been
trained on, and this ensures that arbitrary bitmaps which may
not correspond to a meaningful SQL query are not predicted.

2.2 Active Learning
Active learning can be applied to RNN to test if it can perform
well with limited training data. Instead of learning the RNN
upon all the training session queries, the training set can be
divided into two parts - session query sequences which are made
available to the RNN, and query sequences held out from the
RNN. By training the RNN upon the available query sequences
and selecting informative sequences from the held-out data for
inclusion into the training set, the RNN is incrementally refined
to verify if it achieves high F1-scores on the test set without
exhausting the entire training set. It should be noted that by
query qui , we refer to its intent vector throughout this section.

For a given user session with queries qu1, qu2 and qu3, the tem-
poral sequences constructed are qu1 → qu2 and qu1,qu2 → qu3
as shown in Figure 3. A held-out session means that the an-
tecedent (e.g.,qu1,qu2 inqu1,qu2 → qu3 ) of a temporal sequence
dependency is available while keeping the consequent (e.g, qu3
in qu1,qu2 → qu3) invisible. Thus, the trained RNN is supposed
to predict the consequent of each temporal dependency given its
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Algorithm 1: Active Learning for intent prediction
input :T rA : Available training set of query sequences

T rH : Held-out training set of query sequences
T est : Test set of query sequences
L: learning algorithm for a classifier

output :C∗: An optimal temporal predictor of query intents
qupredicted : Test query successors predicted by C∗

1 i ← 0
2 while {T rH } , ϕ do // stopping criterion
3 Ci ←learnClassifier(L, T rA)
4 seqambiд ← pickAmbiguousQuerySequence(L,T rH )
5 seqlabeled ← obtainSuccessors(seqambiд )
6 T rH ← T rH − seqlabeled
7 T rA ← seqlabeled ∪T rA
8 qupredicted ← predictSuccessors(T est, Ci )
9 T estF 1 ← computeF1(T est, qupredicted )

10 i ← i + 1
11 C∗ ← Ci−1
12 return C∗, qupredicted

antecedent. Among all such held-out sequences, if the RNN finds
a particular sequence to be the hardest to predict the successor
for, it is deemed to be an ambiguous sequence for RNN. The
consequent or the successor query of that particular temporal
sequence is made available to the RNN and is included into the
available training set. In Figure 3, qu11,qu12, ...,qu20 → qu21 is
the hardest held-out temporal sequence and hence, it is included
into the training set.

Figure 3: Active learning for RNNs

Algorithm 1 describes the active learning based intent predic-
tion algorithm using RNN. TrA and TrH are the available and
held-out training datasets. In each active learning iteration, the
most ambiguous query sequence is picked from TrH for which
the successor query is the hardest to predict and the correspond-
ing successor query is made available to RNN (lines 4 and 5). The
query sequence is removed out ofTrH and is added toTrA (lines
6 and 7). At the end of each iteration, the RNN learned thus far
is evaluated on the fold test data until the held-out training set
is exhausted. The purpose of using active learning algorithm is
to verify if all the training set needs to be completely exhausted
during learning to achieve a significantly high enough test F-
measure. While ambiguous sequence selection is time consum-
ing, if it helps active learning reach an early convergence to high
F-measures, it is a trade-off worth considering.

2.2.1 Ambiguous Example Selection Strategy (Minimax). We
have described in section 2.1 that the output layer of the RNN
emits a probability vector. We compute the cosine similarity be-
tween the probability vector and the intent vectors of all the

historical session queries that the RNN has learned from until
then, and select the top-K intent vectors with the highest cosine
similarity as the predicted intents. Hence, we can use the value
of the maximum cosine similarity as the confidence measure
and the inverse of the confidence value denotes the ambiguity.
Among several temporal held-out sequences seq1, seq2, ..., seqn ,
the one for which predicting the successor query is the hardest
is inferred based on the value of the highest cosine similarity
between the weight vector and the historical intent vectors. If
the corresponding values of the highest cosine similarities are
maxSim1,maxSim2, ...,maxSimn , the most ambiguous query se-
quence is seqi if i=arд minni=1 {maxSimi }, i.e., it has the least
maximum cosine similarity (minimax) among all the sequences.

3 EXPERIMENTS
All our experiments were conducted on a Mac machine with a 4-
core 2.8 GHz Intel Core i5 processor, 16GB RAM and 1.02 TB hard
disk. Our experiments for supervised learning were conducted
on queries arriving in an interleaved order from concurrent user
sessions. Active learning experiments were conducted on 10-fold
splits of the data into 10 different training and test set pairs with
90% and 10% of the user session queries respectively. We compute
the precision and recall as follows:
Precision = #{PredDimi=1∩ActualDimi=1}

#{PredDimi=1}
Recall = #{PredDimi=1∩ActualDimi=1}

#{ActualDimi=1}
Each dimension PredDimi in the predicted intent vector is com-
pared to the corresponding dimension ActualDimi in the actual
vector, and the hits and misses are measured based on the fraction
of 1s predicted accurately. We report F1-scores in our results.

Concurrent User Sessions: The queries arrive in batches of
10 and hence the 1958 queries from the NYCTaxiTrip dataset are
divided across 196 learning episodes. While the RNN gets up-
dated at the end of each learning episode with additional training
data obtained from the queries during the episode, it is tested
throughout the episode with the arrival of new query. For each
new query, its embedding (query or operator) vector is fed to the
RNN, which predicts the top-K intent vectors for the next query.
K is set to 3 and we report the maximum F-measure among the
top-3 predictions by averaging it across all the queries in each
episode. Response time is the sum of the intent vector creation
and execution times for the current query added to the intent
vector prediction time for the next query. It is heavily dominated
by the RNN prediction time which also includes its cumulative
training time based on all the queries seen thus far. For incremen-
tally trained vanilla (simple backpropagation) RNN, the training
time depends only on the batch of queries from the latest episode.

LSTM (Long Short Term Memory) and GRU (Gated Recurrent
Unit) perform same as vanilla RNN on the operator embedding
intent vector (Figure 5) but GRUs perform slightly better than
LSTM and vanilla on query embedding (Figure 4) vectors. The
reason for this is that the average user session length is ≈18
queries per session which is not lengthy enough for advanced
RNN variants to exploit the long short term dependencies. On
an average, vanilla RNN seems to give competitive F-measures
while also consuming lesser response time than LSTM and GRU
(Figure 6). Incrementally trained RNN sacrifices test F-measures
on query embedding but produces comparable quality as fully
trained RNNs on operator embedding while incurring very low
response times. Time charts on query embedding demonstrate
similar patterns as operator embedding for both supervised and
active learning which is why we omitted them for brevity.
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Figure 4: Concurrent Sessions (Query)
Figure 5: Concurrent Sessions (Opera-
tor) Figure 6: Response Times (Operator)

Figure 7: Active Learning (Query) Figure 8: Active Learning (Operator) Figure 9: Selection Times (Operator)

A general observation is that operator embedding is more
expressive and produces better F-measures than query embed-
ding because predicting SQL operators in a query is easier than
predicting the query in its entirety. We can also notice that the
initial queries in concurrent sessions are easier to predict than
the later ones. In the real world sessions we collected, each user
arrives at a distinct goal by the end of the exploratory session.
The first few queries may be similar across users, but each ses-
sion becomes specialized with unique queries towards the end,
thus inducing little overlap across sessions. This in turn makes
workload prediction harder as the sessions progress concurrently.

Active Learning: Our 10-fold active learning experiments
were upon the fully trained vanilla version of RNN using stan-
dard backpropagation algorithm. There were ≈1648 examples
(temporal query sequence dependencies) in the training set and
≈190 test examples. We started with a seed available training
set of 30 randomly chosen training examples and 1618 held-out
training examples. We selected 200 examples in each iteration
from the hold-out set and added them to the available set. We
plot the average test F-measures over all the test sessions across
10 folds at each active learning iteration in Figures 7 and 8.

We compared the minimax example selection strategy de-
scribed in section 2.2.1 with random selection. Our observations
show that random strategy performs competitively to minimax
on operator embedding as shown in Figure 8 and achieves earlier
convergence to the eventual F-measure in the 2nd iteration with
230 examples (14% training data). Minimax achieves slower con-
vergence by iteration 3 with 430 examples and 26% training on
operator embedding. Examples chosen in an iteration are used for
training in the next iteration i.e., #training examples in iteration
i = 30 + 200 x (i-1). Figure 7 shows that both strategies perform
similarly on query embedding. A major drawback of using query
embedding for active learning is the non-monotonic behavior
with increasing iterations. This is due to the heavy sparsity in
query embedding vectors (1 bit set out of 1190 dimensions) and
fitting RNNs to more training points does not necessarily yield
higher test F-measures. Minimax strategy incurs more example

selection time than random selection (Figure 9) because of the ex-
pensive prediction done over the hold-out set which shrinks with
increasing iterations thus also decreasing the selection times.

4 CONCLUSION
In this paper, we proposed the application of RNNs for dynamic
intent prediction and two SQL specific embedding techniques for
intent vector creation. Our experiments show that operator em-
bedding is more effective than query embedding and that vanilla
RNNs perform better than LSTMs or GRUs for user sessions
of moderate length (#queries). We also show that an incremen-
tally updated vanilla RNN model achieves substantially lesser
response times than fully trained RNN models while making
little to no sacrifice in prediction quality. Our active learning ex-
periments show that random selection strategy achieves earlier
convergence to competitive test F-measures as full training with
just 14% of the training examples on operator embedding and
lesser example selection time than minimax strategy.

REFERENCES
[1] Kyriaki Dimitriadou, Olga Papaemmanouil, and Yanlei Diao. 2014. Explore-

by-example: An Automatic Query Steering Framework for Interactive Data
Exploration. In SIGMOD. 517–528.

[2] Kyriaki Dimitriadou, Olga Papaemmanouil, and Yanlei Diao. 2016. AIDE: An
Active Learning-Based Approach for Interactive Data Exploration. IEEE TKDE
28, 11 (2016), 2842–2856.

[3] Muhammad Ebraheem, Saravanan Thirumuruganathan, Shafiq Joty, Mourad
Ouzzani, and Nan Tang. 2018. Distributed Representations of Tuples for Entity
Resolution. Proc. VLDB Endow. 11, 11 (July 2018), 1454–1467.

[4] Niranjan Kamat, Prasanth Jayachandran, Karthik Tunga, and Arnab Nandi.
2014. Distributed and interactive cube exploration. In ICDE. 472–483.

[5] Ben McCamish, Vahid Ghadakchi, Arash Termehchy, Behrouz Touri, and
Liang Huang. 2018. The Data Interaction Game. In SIGMOD. 83–98.

[6] Sidharth Mudgal, Han Li, Theodoros Rekatsinas, AnHai Doan, Youngchoon
Park, Ganesh Krishnan, Rohit Deep, Esteban Arcaute, and Vijay Raghavendra.
2018. Deep Learning for Entity Matching: A Design Space Exploration. In
SIGMOD. 19–34.

[7] Dan Murray. 2013. Tableau Your Data!: Fast and Easy Visual Analysis with
Tableau Software (1st ed.). Wiley Publishing.

[8] Mohamed Sarwat, Raha Moraffah, Mohamed F. Mokbel, and Jamed L. Avery.
2017. Database System Support for Personalized Recommendation Applica-
tions. In ICDE. 1320–1331.

[9] Taxi and Limousine Commission. 2016. NYC Taxi Trip Dataset. {http://www.
nyc.gov/html/tlc/html/technology/raw_data.shtml}. (2016).

657



Optimal Algorithm for Profiling Dynamic Arrays
with Finite Values

Dingcheng Yang, Wenjian Yu, Junhui Deng

BNRist, Dept. Computer Science & Tech.,

Tsinghua Univ., Beijing, China

ydc15@mails.tsinghua.edu.cn,yu-wj@tsinghua.edu.cn,

deng@tsinghua.edu.cn

Shenghua Liu

CAS Key Lab. Network Data Science & Tech.,

Inst. Computing Technology, Chinese Academy of

Sciences, Beijing, China

liushenghua@ict.ac.cn

ABSTRACT
How can one quickly answer the most and top popular objects at

any time, given a large log stream in a system of billions of users?

It is equivalent to find the mode and top-frequent elements in a

dynamic array corresponding to the log stream. However, most

existing work either restrain the dynamic array within a sliding

window, or do not take advantages of only one element can be

added or removed in a log stream. Therefore, we propose a profil-

ing algorithm, named S-Profile, which is ofO(1) time complexity

for every updating of the dynamic array, and optimal in terms of

computational complexity. With the profiling results, answering

the queries on the statistics of dynamic array becomes trivial and

fast. With the experiments of various settings of dynamic arrays,

our accurate S-Profile algorithm outperforms the existing meth-

ods, showing at least 2X speedup to the heap based approach and

13X speedup to the balanced tree based approach.

1 INTRODUCTION
Many online systems, especially with billions of users, are gener-

ating a large stream of logs [6], recording users’ dynamics in the

systems, e.g. users (un)follow other users, “(dis)like” objects, en-

ter (exit) live video channels, and click objects. Then, a question

is raised:

How can we efficiently know the most popular objects (including
users), i.e. mode, top-K popular ones, and even the distribution of
frequency in a fast and large log stream at any time?

Mathematically, the questions converge to calculating and

updating the statistics of a dynamic array of finite values. Thus,

the existing fast algorithms on the statistics are as follows:

Mode of an array. The mode of an array and its corresponding

frequency can be calculated by sorting the array (if it’s of numeric

value) and scanning the sorted array inO(n logn) time, wheren is
the length of array [7]. Notice that through judging the frequency

of mode we can solve the element distinctness problem, which

was proven to have to be solved with Ω(n logn) time complexity

[12, 15]. Therefore, calculating the mode of an array has the

lower bound of Ω(n logn) as well. If the elements of array can

only take finite values, the complexity of calculating the mode

can be reduced. Suppose they can only takem values. One can

usem buckets to store the frequency of each distinct element.

Then, the mode can be calculated in O(n +m) time by scanning

them buckets.

The problem of range mode query, which calculates the mode

of a sub-array A[i . . . j] for a given array A and a pair of indices

(i, j), has also been investigated [4, 10, 13]. The array with finite
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values was considered. With a static data structure, the range

mode query can be answered in O(
√
n/logn) time [4].

Majority and frequency approximation. The majority is the ele-

ment whose frequency is more than half of n. An algorithm was

proposed to find majority in O(n) time and O(1) space [3]. Many

work on the statistics like frequency count and quantiles, are un-

der a setting of sliding window [1, 2, 5, 8, 11]. They consider the

most recently observed data elements (within the window) and

calculate the statistics. Space-efficient algorithms were proposed

to maintain the statistics over the sliding window on a stream.

However, those existing work slow down their algorithms

without considering that the increase and decrease of object

frequency are always 1 at a time in log streams. Therefore, we

propose an algorithm S-Profile to keep profiling the dynamic

array. With such a profile, we can answer the queries of the

statistics: mode, top-K and frequency distributions.

In summary, S-Profile has the following advantages:

- Optimal efficiency: S-Profile needs O(1) time complex-

ity and O(m) space complexity to profile dynamic arrays,

wherem is the maximum number of objects.

- Querying Statistics:With the profiling, we have sorted

frequency-object pairs, and can simply answer the queries

on mode, top-K, majority and other statistics in O(1).
- Applicable: Our S-Profile can be plugged into most of log

streams in many systems, and profiling objects of interest.

In experiments, S-Profile compares with the existing methods

in various settings of dynamic arrays, and shows its performance

and robustness.

2 AN O(1)-COMPLEXITY ALGORITHM FOR
UPDATING THE MODE AND STATISTICS

We define tuples (xi , ci ) as a log stream, where xi and ci is the
object id and action in the i-th tuple. Action ci can be either “add”

or “remove”, which, for example, can indicate object xi is “liked”
or “disliked”, or user xi is followed or unfollowed. Conceptually,

we could imagine a dynamic array A of objects associated with

a log stream, by appending object xi into A if ci is “add”, and
deleting object xi fromA if ci is “remove”. Dynamic arrayA is not

necessarily generated and stored, which is defined for convenient

description of our algorithm.

Therefore, our problem can be described as follows:

Informal Problem 1 (Profiling dynamic array). Given: a
log stream of tuples (xi , ci ) adding and removing an object each
time,

- To build: a data structure profiling the dynamic array A of
objects associated with the log stream,

- Such that: at any time answering the queries on mode,
top-K and other statistics of objects is trivial and fast.

Let m be the maximum number of distinct objects in a log

stream or dynamic arrayA. Without loss of generality, we assume
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id xi ∈ [1,m], i.e. integers between 1 andm. For anym distinct

objects, we can map them into the integers from 1 tom as ids.

We can usem buckets to store the frequency of each distinct

object. Let F be such a frequency array with lengthm. F [i] ∈ F is

the frequency of object with id i . With F , most statistics of A can

be calculated without visiting A itself. For example, the mode of

A refers to locations in F where the element has the maximum

value. Although updating F with each tuple of a log stream trivial

and costs O(1), finding the maximum value in F at each time is

still time consuming.

Therefore, we first introduce a proposed data structure of

a profile, named “block set”, which can answer the statistical

queries in a trivial cost. And we show later that we can maintain

such a profile inO(1) time complexity andO(m) space complexity.

2.1 Proposed data structure for profiling
In order to find the mode of A, we just need to care about the

maximum in F . If only integers are added to A, the maximum ele-

ment of F can be easily updated. However, in Problem 1 removing

integer is also allowed. This complicates the calculation of mode

and other statistics ofA. So, the sorted arrayT must be employed

and maintained. To facilitate the queries, T can be implemented

as a binary tree. The heap and balanced tree are two kinds of

binary tree, and are widely used for efficiently maintaining an

sorted array. Upon a modification onA, they both can be updated

in O(logm) time. The root node of a heap is the array element

with the extreme value. This means the heap is only suitable for

producing the A’s elements with either maximum frequency (the

mode) or the minimum frequency. The balanced tree is good at

answering the query of median of A, and can also output the

mode and top-K elements, etc. It should be pointed out, these

general algorithms do not take the particularity of Problem 1 into

account (the modification on F is restricted to plus 1 or minus

1). By the way, no one can maintain the sorted array under an

arbitrary modification with a time complexity below O(logm),
because it can be regarded as a sorting problem which has been

proven to have Ω(m logm) time complexity.

We use Figure 1 as an example to illustrate the proposed data

structure for maintaining T . Suppose T has frequency values

in ascending order. In order to locate the index of the i-th ele-

ment ofT in F and vice verse, two conversion arrays are defined:

TtoF and FtoT . In other words, we have T [i] = F [TtoFi ] and
F [i] = T [FtoTi ]. Here, we use both the subscript and bracket

notation to specify an element of array. As shown in Figure 1(c),

we can partition T into nonoverlapped segments according to its

elements. Each such segment is called block here and represented
by an integer triple (l, r , f ), where l and r are starting and ending
indices respectively, and f is the element value (frequency). So,

a block b = (l, r , f ) always satisfies:

• 1 ≤ l ≤ r ≤ m
• Ti = f , ∀i ∈ [l, r ]
• Tl > Tl−1

, if l > 1

• Tr < Tr+1, if r < m

There are at mostm blocks, which form a block set. It fully cap-

tures the information in the sorted array T . An array of pointers

called PtrB is also needed to make a link from each element in

T to its relevant block. According to the definition of block, we

always have:

Ti = PtrB[i]. f , and PtrB[i].l ≤ i ≤ PtrB[i].r . (1)

Here we use “.l” to denote the member l of a block, and so on.

0 3 1 3 0 0 0 0freq

0 0 0 0 0 1 3 3sorted
freq

1 3 1 3 0 0 0 0freq

1 0 0 0 0 1 3 3sorted
freq

(a) (b)

(c) (d)

0 3 1 3 0 0 0 0freq

0 0 0 0 0 1 3 3sorted
freq

(1,5,0) (6,6,1) (7,8,3)

1 3 1 3 0 0 0freq

0 0 0 0 1 1 3 3sorted
freq

(5,6,1) (7,8,3)(1,4,0)blockblock

0

Figure 1: Illustration of the proposed block set for main-
taining array T . (a) The initial F and T . (b) When “1”is
added to A, a brute-force approach to maintainT includes
four swaps of “1” rightwards and updates of FtoT andTtoF .
(c) The initial F andT , and the block set. F andT are up to be
modified. (d) With the information of block, the swapping
destination in T can be easily determined.

The block set B represents the sorted frequency arrayT , while
with arrays FtoS , StoF and PtrB we no longer need to store F and

T . These proposed new data structure well profile the dynamic

array A. The remaining thing is to maintain them and answer

the statistical queries on A in an efficient manner.

2.2 S-Profile: the O(1)-Complexity Updating
Algorithm

We first consider the situation where an integer is added to A. As
shown in Figure 1(a) and 1(b), a brute-fore approach to update T
is swapping the updated frequency to its right-hand neighbor one

by one, until T is in the appropriate order again. Now, with the

proposed PtrB and the block it points to, we can easily determine

the index of T which is the destination of swapping the updated

frequency. Then, we can update the relevant two blocks and

pointer arrays (see Figure 1(d)).

Now, based on the situation shown as Figure 1(d), we assume

a “4” is removed fromA. As shown in Figure 2, we first locate the

updated element in T . Then, with the information in its corre-

sponding block we know with which it should be swapped. We

further check if the updated frequency exists in T before. If it

does not we need to create a new block (the case in Figure 2(b)),

otherwise another block is modified.

The whole details of the algorithm for updating the data struc-

ture and returning the mode ofA is described as Algorithm 1. We

assume the data structures (B, FtoS , StoF and PtrB) have been

1 3 1 3 0 0 0 0freq

0 0 0 0 1 1 3 3sorted
freq

(5,6,1) (7,8,3)

1 3 1 2 0 0 0 0freq

0 0 0 0 1 1 2 3sorted
freq

(1,4,0) (5,6,1) (8,8,3)(7,7,2)

(a) (b)

(1,4,0)block block

Figure 2: Illustration of the proposed data structure for a
“remove” action onA. (a) The initial F andT , and the block
set. A “4” is going to be deleted from A. (b) With the infor-
mation of block and the pointer arrays, the block set can
be easily updated to reflect the ordered T .
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initialized, while Algorithm 1 responds to an event in the log

stream and returns the updated mode and frequency.

Algorithm 1 S-Profile for updating the mode of array

Input: A tuple (x, c) in log stream, block set B, pointer arrays
FtoT , TtoF and PtrB, the length of sorted frequency arraym
Output: The modeM , and the frequency v .

1: rank ← FtoT [x]
2: b ← PtrB[rank]
3: l ← b .l ; r ← b .r ;
4: if c is an “add” action then
5: b .r ← b .r − 1

6: if b .r < b .l then
7: Delete b
8: end if
9: if r < m and b . f + 1 = PtrB[r + 1]. f then
10: PtrB[r ] ← PtrB[r + 1]

11: PtrB[r ].l ← PtrB[r ].l − 1

12: else
13: Create a new block in B and assign it to PtrB[r ]
14: PtrB[r ] ← (r , r , b . f + 1)

15: end if
16: else /* It’s a “remove” action */

17: b .l ← b .l + 1

18: if b .r < b .l then
19: Delete b
20: end if
21: if l > 1 and b . f − 1 = PtrB[l − 1]. f then
22: PtrB[l] ← PtrB[l − 1]

23: PtrB[l].r ← PtrB[l].r + 1

24: else
25: Create a new block in B and assign it to PtrB[l]
26: PtrB[l] ← (l, l, b . f − 1)

27: end if
28: end if
29: M ← TtoF [PtrB[m].l . . . PtrB[m].r ]
30: v ← PtrB[m]. f

As the proposed data structure maintains the sorted frequency

array, it can be utilized to calculate the object with the minimum

frequency (maybe a negative number) as well. We just need to

replace Step 29 and 30 in Algorithm 1 with the following steps.

29a:M ← TtoF [PtrB[1].l . . . PtrB[1].r ]
30a: v ← PtrB[1]. f

We can observe that the time complexity of the S-Profile algo-

rithm isO(1), as there is no iteration at all. The space complexity

is O(m), wherem is the maximum number of objects in the log

stream. Precisely, it needs 3m integers to store the pointer arrays

and an additional storage for B. In the worst case B includesm
blocks, but usually this number is much smaller thanm.

Other queries on statistics of objects can also be answered. For

example, the top-K order element is that whose frequency is the

K-th largest. We can just use PtrB[m −K + 1] to locate the block.

Then, the frequency and object id can be obtained with block’s

member and the TtoF array. Especially, the median in frequency

can be located with the K/2-th element of the PtrB array.

2.3 Possible Applications
For somemission-critical tasks (e.g., fraud detection) in big graphs,

the efficiency to make decisions and infer interesting patterns is

crucial. As a result, recent years have witnessed an increasing in-

terest in heuristic “shaving” algorithms with low computational

complexity [9, 14]. A critical step of them is to keep finding low-

degree nodes at every time of shaving nodes from a graph. Thus,

S-Profile can be plugged into such algorithms for further speedup,

by treating a node as an object and its degree as frequency.

Furthermore, S-Profile can also deal with a sliding window

on a log stream, by letting every tuple (xi , ci ) outdated from the

window be a new incoming tuple (xi , c̄i ), where c̄i is the opposite
action of ci .

3 EXPERIMENTAL RESULTS
We have implemented the proposed S-Profile algorithm and its

counterparts in C++, and tested them with randomly generated

log streams. The streams are produced with the following steps.

We first randomly generate an "add" or "remove" action, with

70% and 30% probabilities respectively. Then, for each "add" ac-

tion we randomly choose an object id according to a probability

distribution (called posPDF ). For each "remove" action another

distribution (called negPDF ) is used to randomly choose an object

id. With this procedure, we obtained three test log streams:

• Stream1: both posPDF and negPDF are uniform random

distribution on [1,m].

• Stream2: both posPDF and negPDF are normal distribu-

tions with µ = 2m/3,m/3 and σ =m/6,m/6, respectively.
• Stream3: posPDF is a normal distribution (µ = 4m/5, σ =
m), while negPDF is a lognormal distribution (µ = 3m/5,
σ =m).

In the following subsections, we first compare the proposed

S-Profile with the heap based approach, for updating the mode

and frequency. Then, the comparison with the balanced tree is

presented for calculating the median. All experiments are carried

out on a Linux machine with Intel Xeon E5-2630 CPUs (2.30 GHz).

The CPU time (in second) of different algorithms are reported.

3.1 Comparison with the Heap
Heap is a kind of binary tree where the value in parent node must

be larger or equal to the values in its children. Used to maintain

the sorted frequency array, it is easy to obtain the mode (the

root has the largest frequency). Notice that the balanced tree is

inferior to the heap for calculating the mode.

In the experiment, a log stream is the input and the tested

algorithm calculates themode every time a tuple arrives. In Figure

3, we show the CPU times consumed by the heap based method

and our S-Profile for the three log streams with varied length.

The x-axis means the number of processed tuples (n). From the

Figure 3: CPU times (in second) of the heap based method
and our method for calculating the mode for n times (m =
10

8).
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results we see that our method is at least 2.2X faster than the

heap based method. Another experiment is carried out with fixed

n = 10
8
and variedm. The results shown in Figure 4 also reveal

that our S-Profile is at least 2X faster.

Figure 4: CPU times (in second) of the heap based method
and ourmethod for calculating themode forn = 10

8 times.

For different kinds of log streams, the performance of the heap

based method varies a lot. For the worst case updating the heap

needs O(logm) time, despite this rarely happens in our tested

streams. On the contrary, S-Profile needs O(1) time for updating

the data structure. This advantage is validated by the rather flat

trend shown in Figure 5.
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Figure 5: The trends of CPU time for variedm (n = 10
8).

It should be emphasized that, in addition to the speedup to

the heap based method, our S-Profile possesses the advantage of

wider applicability. Our method is not restricted to calculating

the mode and corresponding frequency. As it well profiles the

sorted frequency array, with it answering the queries on top-K

and other statistics of objects is trivial and fast.

3.2 Comparison with the Balanced Tree
The proposed S-Profile can also calculate the median of the dy-

namic array. We compare it with the balanced tree based method

implemented in the GNU C++ PBDS [16], which is more efficient

than our implementation of balanced tree. The trends of CPU

time are shown in Figure 6. They show that the runtime of the

proposed S-Profile increases much less than that of the balanced

tree based method whenm increases. We can observe that the

time of S-Profile is linearly depends on n, the number of modi-

fications on array A, and hardly varies with differentm. On the

contrary, the balanced tree based method exhibits superlinear

increase whether with n orm. Overall, the test results show that

S-Profile is from 13X to 452X faster than the balanced tree based

method on updating the median of a dynamic array.
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Figure 6: Comparison of the balanced tree based method
and our method for calculating the median. Left: CPU
time vs. n (m = 10

6). Right: CPU time vs.m (n = 10
6).

4 CONCLUSIONS
We propose an accurate algorithm, S-Profile, to fast keep profiling

the dynamic array from online systems. It has the following

advantages:

- Optimal efficiency: S-Profile needsO(1) time complexity

for every updating of a dynamic array, and totally linear

complexity in memory.

- Querying Statistics:With profiling, at any time we can

answer the statistical queries in a trivial and fast way.

- Applicable: S-Profile can be plugged into most of log

streams, and heuristic graph mining algorithms.
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ABSTRACT
In recent years, differential privacy has emerged as one formal
notion of privacy. Data release based on differential privacy can
help researchers to perform statistical analysis on sensitive data
of individuals. To publish differentially private datasets, there
is a need for preserving data utility, along with data privacy.
However, the utility of differentially private datasets is often
limited, due to the amount of noise being added to the results
of queries. In this paper, we address this issue by proposing a
microaggregation-based framework that incorporates microag-
gregation and differential privacy into the data publishing pro-
cess. We formulate a new notion of stable microaggregation to
characterize a desired property of microaggregation and further
develop a simple yet effective stable microaggregation algorithm.
We experimentally verify the utility reduction of our proposed
framework on real-world datasets. The experiments show that
the proposed framework outperforms the state-of-the-art meth-
ods by providing better with-in cluster homogeneity and also
reducing noise added into differentially private datasets signifi-
cantly.

1 INTRODUCTION
Publishing data about individuals often poses a privacy threat
because data may contain the sensitive information about indi-
viduals, e.g., medical history, and publishing them would intrude
upon individual privacy. Thus, to preserve data privacy of individ-
uals, various anonymization techniques have been proposed for
data publishing, such as k-anonymity and its extensions [10]. Par-
ticularly, with the emerging of differential privacy in recent years
[3, 5], a number of works have considered to release differentially
private datasets [6, 11]. Such differentially private datasets can
guarantee differential privacy controlled by a privacy parameter
ε in a robust statistical way.

Broadly speaking, there are two common methods used for
generating ε-differentially private datasets in the literature: one
is based on differential privacy compliant histograms [11] and
the other is based on record perturbation [9]. Histogram-based
approaches have some limitations, including: being limited to his-
togram queries and the exponential growth of the number of his-
togram bins with the number of attributes [8]. On the other hand,
record perturbation based approaches require a large amount of
noise being added into the results of queries [9], though these ap-
proaches are not limited to histogram queries and allow dealing
with any type of attributes.

Nevertheless, when generating differentially private datasets,
there always is a trade-off being made between privacy and util-
ity of published data. Ideally, we want to preserve the privacy
of individuals while still maintaining the usefulness of data for

© 2019 Copyright held by the owner/author(s). Published in Proceedings of the
22nd International Conference on Extending Database Technology (EDBT), March
26-29, 2019, ISBN 978-3-89318-081-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

performing statistical analysis. The utility of ε-differentially pri-
vate datasets is however limited due to the amount of noise being
added to guarantee differential privacy. To enhance the utility of
ε-differentially private datasets, in [9] a microaggregation-based
mechanism, i.e., insensitive microaggregation, has been proposed.
It uses microaggregation to achieve k-anonymity in which a cer-
tain correspondence between clusters in the microaggregated
datasets of two neighboring datasets is imposed. In doing so,
the noise added to guarantee differential privacy can be greatly
reduced. However, insensitive microaggregation still has the lim-
itations: (1) it yields worse within-cluster homogeneity due to a
total order relation required for the distance function [9], and (2)
the minimum cluster size k grows with the size n of the dataset
and one thus needs k ≥

√
n to reduce noise.

Contributions. In this paper, we consider the problem of gener-
ating ε-differentially private datasets by incorporating microag-
gregation into the data publishing process. Our work makes the
following contributions:
• We present a microaggregation-based framework for gen-
erating ε-differentially private datasets and formulate a
novel notion of stable microaggregation to characterize the
correspondence of clusters in microaggregated datasets.
• We propose a stable microaggregation algorithm that can
ensure the correspondence of clusters in the microaggre-
gated datasets of two neighboring datasets.
• We experimentally verify the utility reduction of our pro-
posed framework on two real-world datasets containing
numerical data. It shows that our algorithm can effectively
enhance the utility of released data by providing better
within-cluster homogeneity and reducing the amount of
noise, in comparison with the state-of-the-art methods.

Related work. Among early works on data anonymization, k-
anonymity [10] is a privacy model widely applied to guarantee
data privacy of individuals. The popularity of k-anonymity has
led to various attempts to address the limitations of k-anonymity
[10]. On the other hand, differential privacy [3, 5] is a recent
privacy notion that allows statistical analysis of sensitive data
while providing strong privacy guarantees. A number of works
[8, 9] have combined k-anonymity and differential privacy to
enhance the utility of data release. One of these works used mi-
croaggregation to achieve k-anonymity, which can reduce the
amount of noise added to differentially private datasets [2]. Mi-
croaggregation [1] is a family of anonymization algorithms that
group similar (homogeneous) records into clusters, then replace
each record with its cluster representative. MDAV [2] is the most
widely used microaggregation algorithm. The target of a mi-
croaggregation algorithm is to yield minimum information loss
by maximizing with-in cluster homogeneity. However, the exist-
ing works, including MDAV [2] and insensitive microaggregation
[9], either produce a low degree of with-in cluster homogeneity
or fail to reduce the amount of noise independent of the size of a
dataset. Our work in this paper can alleviate both issues.
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2 PROBLEM FORMULATION
Let D be a class of possible datasets. A dataset X ∈ D consists
of a set of records, each ri ∈ X being associated with a set of
attributes A. Each individual has only one record in a dataset X .

Definition 2.1. (Neighboring datasets) Two datasets X , Y ∈ D
are said to be neighboring, denoted as X ∼ Y , if |X | = |Y | = n,
but X and Y differ in one record.

Given a dataset X , we want to generate Xε (an anonymized
version of X ) that can provide ε-differential privacy guarantee
for protecting the privacy of individuals’ records in X .

Definition 2.2. (Differentially private datasets) A randomized
mechanismK : D → D provides ε-differentially private datasets,
if for each pair of neighboring datasets X ∼ Y , and all possible
outputs Dε ⊆ ranдe(K), it holds

Pr [K(X ) ∈ Dε ] ≤ eε × Pr [K(Y ) ∈ Dε ] (1)

where ε > 0 is the differential privacy parameter. Smaller values
of ε provide stronger privacy guarantees [4].

ε-differential privacy [3] was originally proposed as a privacy
model to protect the responses of interactive queries to a dataset.
A query is a function f that extracts data against records in
the dataset. A standard way for achieving ε-differential privacy
is by adding random noise to the true response of f , and the
random noise is calibrated according to the sensitivity (∆) of f ,
e.g. L1-sensitivity [5]. For numerical data, the addition of noise
can be drawn from a Laplace distribution by first computing
the answer f (X ) and then generating the noisy answer f (X ) =
f (X ) + Lap(∆(f )/ϵ) to provide ε-differential privacy. Although
ε-differential privacy was not initially adapted for the purpose of
generating anonymized datasets, but later in [7, 8] differentially
private datasets were generated by considering data publishing as
the answers to subsequent queries for each record in the dataset.

The L1-sensitivity of f measures the maximum variation in
the query f between two neighboring datasets X ∼ Y as follows.

Definition 2.3. (L1-sensitivity) The L1-sensitivity of a query
f : D → Rd is the smallest number ∆(f ) such that for all
neighboring datasets X ∼ Y ∈ D

∥ f (X ) − f (Y )∥1 ≤ ∆(f ), (2)

where ∥.∥1 denotes the L1-norm.

Given a dataset X , a microaggregated dataset X is created
by a microaggregation algorithmM in two stages. First, X is
partitioned into a set of clusters CX , such that each cluster in
CX has at least k records, where k is a preset constant value, and
the records within each cluster are as similar as possible (homo-
geneous). Second, it aggregates each cluster in CX by replacing
each record with the representative record of the cluster.

In this paper, we aim to generate ε-differentially private datasets
by using microaggregation for improving data utility. As illus-
trated in Figure 1, a microaggregated dataset X resulting from
runningM over X is added between X and Xε to increase utility
ofXε . In doing so, the original query f is approximated by f ◦M,
since f is run on the microaggregated dataset X rather than the
original dataset X . This thus introduces two kinds of errors: one
is the random noise, which depends on the sensitivity ∆(f ) of
query f to guarantee ε-differential privacy, and the other one is
due to computing f over X instead of X . As will be discussed in
Section 4, the first kind of error is much larger than the second
kind of error in terms of the information loss in ε-differentially

Figure 1: Problem setting.

private datasets. To increase the overall utility, the key challenge
is how to reduce ∆(f ◦M) such that ∆(f ◦M) ≤ ∆(f ).

3 PROPOSED FRAMEWORK
In this section we present the details of the proposed framework.

3.1 Stable Microaggregation
Given X ∼ Y that only differ in a single record, their microag-
gregated datasets X and Y however may generate considerably
different clusters, leading to a much larger ∆(f ◦M) than ∆(f ).
Suppose that we modify a record x in X to x ′ in Y , i.e., X ∼ Y .
As depicted in Figure 2, a microaggregation algorithmM (e.g.
MDAV [2]) with k = 4 can generate CX and CY over X and Y ,
respectively. Although X and Y only differ in one record, the
clusters in CX and CY are completely unrelated. The maximum
variation between one cluster from CX and another unrelated
cluster from CY is ∆(f ). Since there are n/k clusters in CX and
CY , ∆(f ◦M) = n/k × ∆(f ), which can be significantly higher
than ∆(f ) when the datasets are large, i.e., n is large.

Figure 2: Clusters CX and CY generated byM over X ∼ Y .

To address the above issue, the notion of insensitive microag-
gregation was proposed [9]. A microaggregation algorithmM
is said to be insensitive if, for every pair of neighboring datasets
X ∼ Y , there is a bijection between CX and CY such that each
pair of corresponding clusters differs at most in a single record.
This implies that the maximum variation between each pair of
corresponding clusters is reduced to 1/k × ∆(f ). Since there are
stilln/k clusters, ∆(f ◦M) isn/k×∆(f )/k . As a result, insensitive
microaggregation may greatly reduce sensitivity as compared
with n/k × ∆(f ) for standard microaggregation.

However, insensitive microaggregation still has some limi-
tations. First, to achieve ∆(f ◦ M) ≤ ∆(f ) as desired, (n/k ×
∆(f )/k) ≤ ∆(f ) must hold. Therefore, one needs k ≥

√
n in

order to reduce added noise in comparison with directly apply-
ing K over X [8]. For large datasets, k thus needs to be large
enough for reduced sensitivity. Second, as noted in the work [8]
and will also be discussed in Section 4, the clusters generated by
insensitive microaggregation are often less homogeneous than
the clusters generated by standard microaggregation, such as
MDAV [2]. This is because, to ensure the insensitive property,
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the distance function used by insensitive microaggregation al-
gorithms must be consistent with the total order relation ≤X
[9]. To alleviate these limitations, we define the notion of stable
microaggregation.

Definition 3.1. (Stable microaggregation) LetM be a microag-
gregation algorithm, CX = {c1, ..., cn } be the set of clusters that
results from runningM on X , and CY = {c ′1, ..., c

′
n } be the set

of clusters that results from runningM on Y .M is stable if, for
every pair of neighboring datasets X ∼ Y , there is a bijection
between CX and CY such that at most two pairs of corresponding
clusters in CX and CY differ in a single record.

Since stable microaggregation affects at most two pairs of
corresponding clusters inCX andCY , ∆(f ◦M) is further reduced
to (2 × ∆(f )/k) as compared to (n/k × ∆(f )/k) for insensitive
microaggregation. Thus, when k ≥ 2, the addition of noise can
always be reduced in comparison with directly applying K over
X , regardless of the size of a dataset.

Algorithm 1: Stable Microaggregation Algorithm
Input: X ∼ Y where r := X − Y and r ′ := Y − X

M : a standard microaggregation algorithm
Output: X , Y

1 CX ← {c1, ..., cn } generated byMp over X
2 CY ← replace(CX , r , r

′)

3 D,L := ϕ

4 foreach ci ∈ CX do
5 D := D ∪ {(dist(r ′, rci ), ci )}

6 dmin , cmin ← Fmin (D)

7 if r ′ ∈ cmin then
8 Y ←Ma (CY )

9 else
10 ci := c(r ′)
11 D := D − {(Gdist (D, ci ), ci )}

12 foreach c j ∈ CX \ {ci } do
13 dj ← Gdist (D, c j )

14 D := D − {(dj , c j )} ∪ {(dist(rci , rc j ) + dj , c j )}

15 dmin , cmin ← Fmin (D)

16 foreach ri ∈ cmin do
17 swap(CY , r

′, ri )

18 Y i ←Ma (CY )

19 L := L ∪ {(Iloss (Yi ,Y i ),Y i )}

20 Y ← Fmin (L)

21 X ←Ma (CX )

22 Return X ,Y

3.2 Algorithm Description
Our proposed stable microaggregation algorithm is described in
Algorithm 1. Given X ∼ Y , we start with partitioning the dataset
X into CX byMp , i.e., the partition function of a microaggre-
gation algorithmM. Then we replace the record r ∈ CX with
r ′ and initialize D and L (Lines 1-3). For each cluster ci ∈ CX ,
by means of function dist(), we compute distance between r ′

and rci , where rci is the representative record of ci . Then, we
compute dmin , i.e., the minimum distance in D, and cmin , i.e., the
cluster in CX with dmin , by means of Fmin function (Lines 4-6).
If r ′ is in the cluster cmin of CY , then we aggregate CY byMa

Figure 3: Proposed framework to generate ε-differentially
private datasets via stable microaggregation.

that is the aggregation function of the microaggregation algo-
rithmM (Lines 7-8). In this case, only one pair of corresponding
clusters in CX and CY is affected. Otherwise, for each cluster
c j ∈ CX \ {ci } where r ′ ∈ ci , we compute the distance between
the representative records of clusters ci and c j , i.e., rci and rc j . We
proceed with updating D by summing up both distances of the
corresponding clusters, excluding the distance of ci obtained by
function Gdist (Lines 10-14). In order to get the cluster c j that is
of the minimum distance from ci , we finddmin , i.e., the minimum
distance, and cmin , i.e., the cluster c j ∈ CX with dmin from D, by
means of Fmin function. After that, we swap r ′ in ci of CY with
each record ri in cmin of CY , and compute CY with the minimum
information loss by function Iloss (Lines 15-20). In this case, at
most two pairs of clusters differ at most in a single record. The
algorithm terminates by returning the microaggregated datasets
X and Y that have the minimum information loss.

A high-level description of our proposed framework is pre-
sented in Figure 3, in which stable microaggregation is applied
to generate X and Y by running Algorithm 1 over X ∼ Y . Then
ε-differentially private datasets Xε and Yε are generated by ap-
plying K over X and Y , respectively.

4 EXPERIMENTS
We evaluated the proposed framework to study how stable mi-
croaggregation enhances the utility of differentially private datasets.

Datasets.We used two datasets in the experiments: (1) CENSUS
dataset1 contains 1,080 records [2, 8, 9]. As in [9] we took 4 nu-
merical attributes FEDTAX (Federal income tax liability), FICA
(Social security retirement payroll deduction), INTVAL (Amount
of interest income) and POTHVAL (Total other persons income).
(2) EIA dataset1 contains 4,092 records [1]. We took 4 numerical
attributes attributes RESREVENUE (Revenue from sales to resi-
dential consumers), RESSALES (Sales to residential consumers),
TOTREVENUE (Revenue from sales to all consumers), and TOT-
SALES (sales to all consumers).

Following [9], we consider the sensitivity of an attribute to be
the difference between the lower bound (i.e. 0) and upper bound
(1.5 × the maximum value) of the attribute. For both CENSUS
and EIA datasets, the value of k is set to between 2 and 100.

Evaluation measure. We used the measure IL1s [12] to com-
pute the information loss between the original and differentially
private datasets. Formally, for each record ri ,

IL1s =
1
|A| · n

n∑
i=1

|A |∑
j=0

|xi j − x
′
i j |

√
2Sj

(3)

where |A| is the number of attributes, n is the number of records
in the dataset, xi j is the value of attribute aj ∈ A for record ri in
the original dataset, x ′i j is the value of attribute aj ∈ A for record

1http://neon.vb.cbs.nl/casc/CASCtestsets.htm
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Figure 5: Evolution of IL1s using S-MDAV, I-MDAV and ε-
DP for different values of k and ε in CENSUS.

ri in the corresponding differentially private dataset, and Sj is
the standard deviation of attribute aj ∈ A in the original dataset.

Baseline Methods.We considered the following baseline meth-
ods: (1) MDAV, which is a standard microaggregation algorithm
[2], (2) I-MDAV, which is an insensitive microaggregation al-
gorithm proposed in [9], and (3) ε-DP, which is a standard ε-
differential privacy algorithm in which noise is added using the
Laplace mechanism [5]. We use S-MDAV to refer to our pro-
posed stable microaggregation algorithm, which extends MDAV
in partitioning and aggregation.

2 20 40 60 80 100
k

200

400

600

800

1000

1200

IL1
s

(a) CENSUS

S-MDAV
I-MDAV

2 20 40 60 80 100
k

200

400

600

800

1000

1200

IL1
s

(b) EIA

S-MDAV
I-MDAV

Figure 4: Evolution of IL1s using MDAV and I-MDAV for
different values of k: (a) CENSUS and (b) EIA.

Experimental results. We first conducted experiments to com-
pare the information loss of microaggregated datasets that are
generated by MDAV and I-MDAV under varying k between 2 to
100. The results are shown in Figure 4. We observe that, for both
CENSUS and EIA datasets, the information loss of microaggre-
gated datasets is less with MDAV as compared to I-MDAV. This is
because the clusters generated by MDAV are more homogeneous
than the clusters generated by I-MDAV. As we used MDAV in
our algorithm S-MDAV to generate the clusters in CX as well as
most of the clusters in CY , S-MDAV decreases the sensitivity of
f ◦M and thus reduces the errors caused by microaggregation.

Then, to verify the overall utility of ε-differentially private
datasets, we conducted experiments to compare the information
loss between the original and ε-differentially private datasets gen-
erated by using our algorithm S-MDAV and the baseline methods
I-MDAV and ε-DP. Figures 5 and 6 present our experimental
results. For ε-DP, we used the following privacy parameters
ε = [0.01, 0.1, 1.0, 10.0], which cover the range of differential
privacy levels widely used in the literature [4, 7, 8]. For each
parameter setting of ε , we ran 3 times and take the average result.
The information loss for ε-DP is displayed as horizontal lines, as
ε-DP does not depend on k .
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Figure 6: Evolution of IL1s using S-MDAV, I-MDAV and ε-
DP for different values of k and ε in EIA.

Regarding the evolution of IL1s values shown in Figures 5 and
6, we can see that, for every value of ε , I-MDAV is only able to
achieve ∆(f ◦ M) ≤ ∆(f ) if k ≥

√
n, i.e., (k =

√
1, 080 ≈ 33 for

CENSUS and k =
√
4, 092 ≈ 64 for EIA). This is consistent with

the previous discussion in Section 3. Nonetheless, this also means
that for large datasets I-MDAV requires k to be enough large in
order to effectively reduce ∆(f ◦ M), i.e., the size of k grows
with the size of a dataset n. In contrast, for S-MDAV, as stated
in Section 3, one needs k ≥ 2 to reduce ∆(f ◦M) as compared
to ε-DP. As the experiments show that our proposed algorithm
S-MDAV leads to less information loss for every value of ε as
compared to I-MDAV and ε-DP in both CENSUS and EIA datasets.
This is because the sensitivity ∆(f ◦M) is significantly reduced
when S-MDAV is used for microaggregation.

We have also noticed that by approximating a query f to f ◦M
via microaggregation, the errors caused by random noise that
depends on the sensitivity of f ◦M dominate the impact on the
utility of differentially private datasets generated via microag-
gregation, compared to the errors existing between the original
and microaggregated datasets.
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ABSTRACT
Privacy is a major concern in cloud computing since clouds are
considered as untrusted environments. In this study, we address
the problem of privacy-preserving range query processing on
clouds. Several solutions have been proposed in this line of work,
however, they become inefficient or impractical for many moni-
toring applications, including real-time monitoring and predict-
ing the spatial spread of seasonal epidemics (e.g., H1N1 influenza).
In this case, a system often confronts a high rate of incoming data.
Prior schemes may thus suffer from potential performance issues,
e.g., overload or bottleneck. In this paper, we introduce an exten-
sion of PINED-RQ to address these limitations. We also demon-
strate experimentally that our solution outperforms PINED-RQ.

1 INTRODUCTION
Reducing the impact of seasonal epidemics (e.g., H1N1 influenza)
is demanding for public health officials. Early detection of spatial
spread of the epidemics could help alleviate severe consequences.
It is thus important to track and predict the spread of such dis-
eases in the population. To do that, an individual can interact
with a website or mobile application to report personal data
(e.g., age, phone, sex, symptoms, travel plan, social network user
name, ...), to be utilized for real-time predicting analyses. Sys-
tems usually run in very short periods, a few days or weeks after
an epidemic emerges. Due to the need of significant computing
capacity and the high speed of incoming data, it is desirable to
use cloud services for managing and exploiting submitted data.
However, cloud computing suffers from privacy issues, e.g., sen-
sitive information can be exploited by cloud’s administrators.
Encrypting outsourced data is a common solution to handle pri-
vacy issues in clouds. In this study, we focus on range queries over
encrypted data since it is a fundamental operation. Over the last
years, different approaches have attempted to strike a trade-off
between security and practical efficiency [2, 10, 11]. Index-based
schemes [5, 13, 15] have also been proposed to increase query
performance while ensuring strong security. Nevertheless, prior
schemes cannot cope with the high rate of incoming data that
occurs in a wide range of monitoring applications, especially in
the proposed context.
To solve the drawback of existing works, we propose a solution
based on PINED-RQ [15] that enables the building of a secure
index over sensitive data at a trusted component (hereinafter
referred to as a collector). The collector then publishes the se-
cure index and the encrypted data to the cloud for serving range
queries. Our choice is motivated by the fact that PINED-RQ of-
fers strong privacy protection while it has significantly faster

© 2019 Copyright held by the owner/author(s). Published in Proceedings of the
22nd International Conference on Extending Database Technology (EDBT), March
26-29, 2019, ISBN 978-3-89318-081-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

range query processing and requires less storage space, com-
pared to its counterparts [5, 13]. Nonetheless, PINED-RQ has to
publish data in batches and partially processes data at the col-
lector. Consequently, a bottleneck may occur as incoming data
and query requests arrive at a high rate. Moreover, since PINED-
RQ partially evaluates queries at the collector, which often has
limited resources, they may also confront scalability problems.
Publishing small batches may help PINED-RQ ease those po-
tential problems, however, because it is built upon differential
privacy [6, 8], small batches would cause large aggregation noise,
destroying index’s utilities.
Therefore, in order to adapt PINED-RQ to the targeted context,
we aim to shift heavy workload from the collector to the cloud,
that is able to provide on-demand capacity. In particular, instead
of publishing data in batches, when a new tuple arrives, the col-
lector immediately sends it to the cloud. The challenge to our
approach is how to build PINED-RQ’s index for the new tuples
that are previously moved to the untrusted cloud.
In this paper, we propose PINED-RQ++, an extension of PINED-
RQ, to mainly prevent potential bottlenecks at the collector while
ensuring a secure index for new data. The key idea behind our
prototype is to reverse the process of constructing PINED-RQ’s
index. This allows the sending of new data to the cloud as soon
as possible without sacrificing privacy. The experimental results
give promising performance, e.g., the publishing time of the
NASA dataset (∼0.5M tuples) [1] is reduced up to ∼35x while
maximum data rate at the collector experiences a reduction of up
to∼2.7x. In particular, our solution eliminates query processing at
the collector, making the systemmore scalable. The contributions
of this paper are as follows.

(1) We introduce a notion of index template within PINED-RQ
to support frequently published data.

(2) We propose a mechanism, PINED-RQ++, for updating the
index template while still retaining privacy protection for
frequently published data comparable to PINED-RQ.

(3) We also develop a parallel version of PINED-RQ++ to
improve the throughput of the system.

(4) We implement (non-)parallel PINED-RQ++ to show the
superiority of our solutions compared with PINED-RQ.

The paper is structured as follows. In Section 2, we briefly review
background. We then introduce our solution in Section 3. In
Section 4, we present our experimental results before giving
conclusion and future work in Section 5.

2 BACKGROUND
2.1 Related Work
Various schemes have been developed to preserve privacy for
processing range queries in clouds over the last years. Hidden
vector encryption approaches [4, 16] use asymmetric cryptogra-
phy to conceal data’s attributes in an encrypted vector. These
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methods incur prohibitive computation costs. Many bucketiza-
tion schemes [9–11] have been proposed for range query pro-
cessing in clouds. These solutions partition an attribute domain
into a finite number of buckets. The range query retrieves all
data falling within the range. However, bucketing approaches
disclose data distribution and suffer from large aggregation false
positives. Agrawal et al. [2] and Boldyreva et al. [3] present order-
preserving encryption schemes that preserve the relative order
of plain data under encryption. A downside of these schemes
is that they leak the total order of plain data to the cloud. This
is vulnerable to statistical attacks. Meanwhile, Li et al. [13] and
Demertzis et al. [5] propose index-based strategies for answering
range queries over outsourced data. Unfortunately, both suffer
from prohibitive storage cost. On the other hand, Sahin et al. [15]
present PINED-RQ for serving efficient range query processing in
clouds via secure indexes. Nonetheless, the high rate of new data
is not discussed in this work. Based on PINED-RQ, we develop
our solution to tackle the limitations of the current works.

2.2 Differential Privacy
Definition 1 (ϵ-differential privacy [6, 8]): A randomised mecha-
nismM satisfies ϵ-differential privacy, if for any setO ∈ Ranдe(M),
and any datasets D and D ′ that differ in at most one tuple,

Pr [M(D) = O] ≤ eϵ .Pr [M(D ′) = O]
where ϵ represents the privacy level the mechanism offers.
Laplace Mechanism [7]: Let D and D ′ be two datasets such that
D ′ is obtained from D by adding or removing one tuple. Let
Lap(β) be a random variable that has a Laplace distribution
with the probability density function pd f (x , β) = 1

2β e
−|x |/β .

Let f be a real-valued function, the Laplace mechanism adds
Lap(max ∥ f (D) − f (D ′) ∥1 /ϵ) to the output of f , where ϵ > 0.
Theorem 1 (Sequential Composition [14]): Let M1,M2, ...,Mr de-
note a set of mechanisms and eachMi gives ϵi -differential privacy.
LetM be another mechanism executingM1(D),M2(D), ...,Mr (D).
Then,M satisfies (

∑r
i=1 ϵi )-differential privacy.

2.3 PINED-RQ
We briefly describe PINED-RQ [15], which is built upon differen-
tial privacy [6]. We only focus on the insertion operation in this
study. There are two main steps for building a PINED-RQ index.
(a) Building an index: Given a dataset at the collector, a PINED-
RQ’s index is constructed based on a B+Tree. In PINED-RQ, the
set of all nodes is defined as a histogram covering the domain
of an indexed attribute. For example, the students’ GPA is used
to build histograms (see Figure 1a). Each leaf node has a count
representing the number of tuples falling within its interval. It
also keeps pointers to those tuples. Likewise, the root and any
internal node have a range and a count, combining the intervals
and the counts of their children, respectively.
(b) Perturbing an index: All counts in the index are independently
perturbed by Laplace noise [7]. The noise may be positive or
negative, thus, after this step, the count of a node may increase or
decrease, respectively. As shown in Figure 1b, the count of node
6 changes from 1 to -1 while the count of node 5 changes from 1
to 2. Such changes consequently lead to inconsistencies between
a leaf node’s noisy count and the number of pointers it holds. To
address that issue, PINED-RQ adds dummy tuples (fake tuples) to
the dataset as a leaf node receives positive noise. Otherwise, if a
leaf node receives negative noise, real tuples are moved from the
dataset to the corresponding overflow array. An overflow array
[15] of a leaf node is a fixed-size array, which is randomly filled

with dummy tuples at the publishing time to conceal removed
tuples from the adversary. As illustrated in Figure 1b, the tuple
(Chloe) belonging to node 6 is deleted from dataset while one
dummy tuple is added and linked to node 5. Finally, the perturbed
index is sent to the cloud along with the encrypted dataset.
Notably, PINED-RQ satisfies (ϵ,δ )n-Probabilistic-SIM-CDP pri-
vacy model [15], a variant of differential privacy [8]. Intuitively,
this variant results from the introduction of the encryption and
the overflow arrays to the index building process.

(a) Clear index (b) Secure index
Figure 1: Example of PINED-RQ index

Clearly, an update directly to such published indexes would vio-
late differential privacy [6, 8], thus, PINED-RQ cannot support
live updates. Furthermore, PINED-RQ is also reluctant to publish
very small datasets since the aggregation noise would destroy
index’s utilities. These properties make PINED-RQ impractical
for high speed monitoring applications. In contrast, our proposal
aims to send new data immediately to the cloud. Thus, one tech-
nical challenge is how to manage such dummy and removed
tuples, which help protect the privacy of the index, as new data
are stored at the cloud instead of at the collector.

3 PINED-RQ++
We focus on the architecture as depicted in Figure 2. Data genera-
tors produce raw data and send them to a collector. The incoming
data are then pre-processed prior to being sent to a cloud. A con-
sumer poses range queries to the cloud. In PINED-RQ++, we
assume that the cloud is honest-but-curious while the other com-
ponents are trusted. Thus, the adversary can use all information
exchanged between the cloud and the other trusted components
to deduce anything in a computationally-feasible way.

Figure 2: Proposed architecture
At the beginning, an index template is built at the collector.When-
ever a new tuple arrives, the index template is updated with that
tuple. Next, the tuple is encrypted and forwarded to the cloud.
When the index template is published at a later time, the cloud
associates it with unindexed data to produce a secure index as
described in Section 2.3. The collector then initiates a new index
template for future incoming data.
A query is only processed at the cloud which holds both indexed
and unindexed data at time. As a result, as a consumer issues
a query, it is first evaluated on indexed data (as in PINED-RQ’s
query processing [15]), the result of this evaluation and all the un-
indexed data are returned to the consumer. Finally, the consumer
decrypts and filters the returned data for the final results.

3.1 Index Template
The process of building an index template is typically the same as
in PINED-RQ (see Section 2.3). However, since initially there are
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no data, its count variables only contain Laplace noise [7] and
its leaves have no pointers. Such count variables and pointers
are updated during a publishing time interval, which is defined
as the period from when an index template is initiated to when
it is published. This poses several challenges to our approach,
for instance, how to publish dummy tuples generated during the
index template building process or how to ensure that pointers
between leaves and the new data do not leak privacy. Section 3.2,
and 3.3 discuss these challenges as well as possible solutions.

3.2 Matching Table
Recall that when an index template is published, the cloud as-
sociates it with unindexed data to form a PINED-RQ’s index for
those data. To prepare for this association, the collector needs to
keep the pointers between unindexed data and leaves. To do that,
a simple way is to mark the ciphertext of a new tuple by the id
of the leaf node to which the tuple belongs, and send the marked
ciphertext to the cloud. Later, the cloud can rebuild pointers from
marked ciphertexts when the index template is published. How-
ever, these marked ciphertexts reveal the real pointers between
unindexed data and leaves during a time interval. PINED-RQ++
consequently discloses more extra information, e.g., the actual
distribution of the incoming time of real data, when compared
to PINED-RQ.
To prevent the leakage of such information, we use unique ran-
dom numbers which are viewed as temporary ids of tuples and
a matching table (see Figure 3). The first column in this match-
ing table stores leaves’ id while each row of the second column
holds the temporary id of tuples belonging to the corresponding
leaf node. For instance, tuples 1 and 7 belong to node 6 while
tuple 5 belongs to node 9. In particular, when a tuple arrives, the
collector encrypts it, generates a unique random number, and
sends the <random number, ciphertext> pair to the cloud. This
number is stored in the corresponding row in the matching ta-
ble at the collector. The randomness guarantees that no useful
information about the index template is leaked to the adversary.
When an index template and its matching table are published, the
cloud simply loops over the matching table and replaces random
numbers with the leaves’ pointers.

Figure 3: Perturbed index template and matching table

3.3 Noise Management
One challenge to our approach is that the collector initiates
and perturbs the index template without any existing data. This
means that no tuples are available to be deleted in case of negative
noise. Also, when leaves receive positive noise, the collector can
initially generate dummy tuples. However, when those dummy
tuples are published to ensure privacy protection must be con-
sidered. To this end, we present two approaches as follows.
Regarding positive noise, the collector can immediately gener-
ate and send dummy tuples to the cloud at any random time
point within a time interval. However, the arrival of all dummy
tuples at the same time could be unsafe since the distribution
of arrivals may be exploited by an adversary. Instead, we ran-
domly release dummy tuples over the time interval. For instance,
given 10 dummy tuples and a time interval of 100ms, then 10

discrete points can be randomly chosen between 1 and 100. At
each chosen time point, a dummy tuple will be published along
with a unique random number. It is, however, true that the pri-
vacy would be leaked as a dummy tuple might arrive at a chosen
time at which real tuples are improbable. To avoid that case, the
collector sends dummy data according to the actual distribution
of the sending time of the real tuples. With this approach, when
a <random number, ciphertext> pair comes to the cloud, the ad-
versary cannot distinguish which pair is dummy or real data.
For negative noise, if a leaf node initially receives negative noise
c, the collector moves the first c tuples (when they arrive) of that
leaf node to the corresponding overflow array. At publication
time, the collector randomly fills all overflow arrays with dummy
tuples and sends these overflow arrays to the cloud. Notably, the
movement of tuples only occurs at the collector and the adver-
sary does not know which nodes receive negative noise. Thus,
the privacy of such movements is also preserved.

3.4 Index Template Update Management
The main goal is to guarantee that the counts of PINED-RQ++’s
index template are the same as those of PINED-RQ’s index when
the index template is published. In PINED-RQ, a leaf node’s count
represents the number of tuples falling within its interval. The
count of internal nodes and the root is a summation of their
children’s counts. All counts are then perturbed by noise. In
contrast, an index template only contains noise at first and it will
increase its counts as soon as a tuple arrives at the collector.
Basically, when a tuple arrives at the collector, the leaf node to
which the tuple belongs is determined. Then, the count of that
leaf node and all its ancestors will be increased by 1. As shown
in Figure 4, as the new tuple <Madison, 3> has GPA lying within
the interval of node 7, the count of node 7 and all its ancestors
(node 2 and node 0) are increased to 1, 2 and 3, respectively.

Figure 4: Index template and matching table are updated
after the arrival of a new tuple

3.5 Parallel PINED-RQ++
Since the collector, that is assumed to be a small private node with
a few cores, updates the index template, its throughput would be
impacted as the rate of incoming tuples increases. We therefore
parallelize the construction of the index template to improve
the collector’s throughput. Instead of keeping only one index
template for updating, we create many clones of the original, each
of which is independently updated. As a result, incoming tuples
are equally distributed to clones for local updating. At publish
time, all clones are merged together and sent to the cloud.

3.6 Privacy Analysis
As compared to PINED-RQ, both PINED-RQ++ and its parallel
version only leak extra information of <random number, cipher-
text> pairs and the time, when such pairs arrive at the cloud, to
the adversary. Random numbers will not disclose any informa-
tion about the data. Besides, as discussed in Section 3.3, when
a pair arrives at the cloud, an adversary cannot distinguish be-
tween a dummy and a real tuple. Thus, PINED-RQ++’s privacy
protection is similar to that of PINED-RQ.
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4 EVALUATION RESULTS
4.1 Benchmark Environment
We ran our experiments on a cluster, whose configuration is
illustrated in Table 1.

Table 1: Experimental environment
Component CPU (2.4 GHz) Memory (GB) Disk (GB)
Collector 12 16 20
Cloud 16 16 40
Data generator 4 8 80
Consumer 4 16 10

We evaluate our proposal on four metrics namely network
traffic, the time needed to publish an index (template), time re-
sponse latency, and throughput. We use two real datasets NASA
log [1] (1569898 tuples, five attributes) and Gowalla [12] (6442892
tuples, three attributes) for our experiments. We use the reply
byte and check-in time as indexed attributes, respectively. Based
on the values in the datasets, the reply byte’s domain is divided
into 350 bins while that of check-in time into 1502 bins. The
fanout is set to 16. We use a time interval of 1 minute.

4.2 Results
(a) Network traffic: The network traffic metric gives an idea of
the stability of the overall system, which is crucial for analyt-
ical processing. In this scenario, the data generator sends 3K
tuples/second. Network traffic in terms of data rate is monitored
at the collector over ten minutes. Figure 5 shows that the net-
work traffic in PINED-RQ++ is much more stable than that in
PINED-RQ. The maximum data rate is reduced by up to ∼2.7x
(NASA) and ∼2.5x (Gowalla) in PINED-RQ++.

Figure 5: Network traffic over a ten minutes period
(b) Publishing time: We compare the time required to publish an
index (template) according to dataset size. This metric is essential
for monitoring applications since a long delay may cause bottle-
necks at the collector. Different sizes of datasets are obtained by
adjusting the incoming data speed and time interval parameter.
As shown in Figure 6, when the dataset size increases, the time
gradually rises in PINED-RQ while the publishing time in PINED-
RQ++ remains almost unchanged. In particular, the publishing
time is reduced by up to ∼35x for NASA (514972 tuples) and
∼16x reduction for Gowalla (1116907 tuples). Notably, when the
dataset size rises, the gap between the two prototypes goes up.

Figure 6: Average publishing time of 10 datasets
(c) Response time latency: We turn our attention to query latency.
The data generator produces 2K tuples/second. The consumer
sends one query per second. The query range is randomly cho-
sen between 25% and 100%. In Figure 7, the results indicate
that PINED-RQ has lower latency for small ranges compared
to PINED-RQ++. However, our approach performs slightly better
with large ranges (100%) because PINED-RQ’s collector experi-
ences higher workload for processing consumers’ queries.

Figure 7: Average response time latency of 1000 queries

(d) Throughput:We compare the parallel PINED-RQ++’s through-
put with the non-parallel version. The incoming data rates are
chosen to be higher than the maximum throughput of the non-
parallel version, 6.5K and 18K tuples/second for NASA andGowalla,
respectively. The different data rates are chosen since the tuple
size of NASA is larger than that of Gowalla. The parallel version
always has better throughput than the non-parallel version. The
results in Figure 8 show that when the number of clones increases,
the throughput is improved. The two-clone setting gives the best
throughput, increasing by about 18% (to ∼3K tuples/second) for
NASA and about 47% (to ∼8.3K tuples/second) for Gowalla when
compared to the non-parallel version. Using a larger number of
clones is not meaningful due to the merging process’s costs.

Figure 8: Parallel PINED-RQ++

5 CONCLUSION
We developed PINED-RQ++ to address the challenges of high
rates of incoming data for processing range queries in clouds and
the scalability problems of the prior schemes. The experimen-
tal results show that our solution provides better performance
than PINED-RQ while privacy is also protected. This proves
that PINED-RQ++ is appropriate for real-world monitoring ap-
plications. Besides, we introduce the parallel version, that helps
enhance throughput.
Future work includes improving query performance, caching
techniques and a dynamic adaptation to the query workload.
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ABSTRACT
When searching for complex data entities, such as products in an
e-shop, relational attributes are used as filters within structured
queries. However, in many domains the visual appearance of an
item is important for a user, while coverage of visual appearance
by relational attributes is left to database designer at design time
and is by nature an incomplete and imperfect representation of
the entity. Recent advances in computer vision, dominated by
deep convolutional neural networks (DCNNs), are a promising
tool to cover the gaps. It has been shown that activations of neu-
rons of DCNNs correspond to understandable visual-semantic
features of an input image. We envision that activations of neu-
rons are of great use for search queries in domains with strong
visual information, even when obtained from DCNNs models
pre-trained on general imagery. Locally scoped visual features ob-
tained using them can be combined to form search masks which
would correlate to what humans understand as an attribute, when
applied on the entire dataset. Ultimately, combination of visual
features can be identified automatically and formed into imme-
diate suggestion of a new relational attribute, leaving one last
task for humans to turn this into augmentation of the database
schema – putting a label on it.

1 INTRODUCTION
Many approaches to information retrieval tasks, e.g., querying or
exploration, assume structured data entities. These are modelled
using composition of simple attributes and relations to other
structured entities and as such, they represent a simplified model
of the real world entity. Object’s attributes either comply to a
fixed schema in relational database model, or there is an im-
plicit schema defined by existence of attributes in non-relational
models such as document databases, key-value stores or linked
data. Even though some data representations (e.g., JSON, XML)
might be referred as schema-less and compliance is not always
enforced, applications are working against an expected structure
of the data and their attributes. In either case, these attributes
are defined in a supervised manner by domain experts.

As an example application, let us consider an e-shop with a
search interface. Within its search interface, users can define
structured queries, which operate on a pre-defined set of at-
tributes, utilizing range filters, exact matching or similar filtering
mechanisms. An example query might be "category = ’shoes’ AND
price between 100 and 200 AND color = ’black’ AND description
matches ’summer’". Usability of the querying mechanism is lim-
ited both by the expressiveness of the database schema as well as

© 2019 Copyright held by the owner/author(s). Published in Proceedings of the
22nd International Conference on Extending Database Technology (EDBT), March
26-29, 2019, ISBN 978-3-89318-081-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

capability of the user. In many domains (e.g., art, cars, dating, dec-
orations, fashion or furniture), schema expressiveness is rather
inferior due to the low information gain of available structured
data. Therefore, the final filtering step of a retrieval task has to be
executed by a human via examination of non-structured data (im-
ages, audio, video, etc). Scientific communities have been trying
to reveal the internal structures of multimedia content in the last
decades with gradually improving results. However, disclosing
the multimedia object’s representation in a way comprehensible
for end-users remains extremely challenging. Partial solutions
of this challenge are query-by-example search or multimedia
exploration paradigms, accompanying the classical structured
search as a refinement step.

Recent advances in neural network architectures, such as deep
convolutional neural network AlexNet [8] represent a promising
direction in revealing the internal structure of multimedia. Due
to their layered nature, learned concepts are more high-level,
and can bridge the semantic gap in computer vision. Although
the task of many pioneer architectures was to classify data into
a fixed set of pre-defined categories, it has been shown that
the trained models can generalize to unknown domains, if the
activation of neurons is used as a high-dimensional descriptor of
objects [3]. Existing network models can also be fine-tuned to
operate on a finer subset of data, increasing the precision for a
particular dataset [4]. Finally, a layered networks’ architecture
allows to generate descriptors on different levels of a semantic
scale [13, 19], ranging from low-level visual features (e.g., edges)
up to high-level concepts, such as a cat. It is also possible to focus
on individual regions of an image, denoted as patches [5, 18].

In our vision, we propose to extract information encoded in
these descriptors via identification of commonly occurring com-
bination of features. In order to analyze the behaviour of de-
scriptors in the domain of product imagery, we implemented a
multi-example similarity search mechanism [15]. This was also
used to better understand applicability of different layers of the
network by evaluating precision of their descriptors against man-
ually selected proposals of new attributes acting as a test dataset.
In this first step, the similarity was evaluated only globally, by
extracting and comparing descriptors representing the whole
object. As a second step, evaluation of individual image parts,
patches, was done [14]. Human users were tasked to manually
highlight interesting part of the image when selecting a set of
images as an input for the search. Selected parts of an image
were powering the search mechanism, which operated on an
aggregation of global representations of images as well as on
individual descriptors of each image patch, matching patches
in the input query and in the overall database. This was partly
done as an analytical step to better understand the behaviour and
patterns within the data and how they correlate to what humans
understand as an attribute.
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Figure 1: Examples of two proposed attributes. First row
are "hand watches without labels". Second row are "lady
shoes with sharp corner in the ankle area".

In the final stage of our vision, patterns of descriptors occur-
ring frequently in the dataset can be automatically suggested
as candidates for new attributes, immediately augmenting the
original database schema (see Figure 1). Once the schema is aug-
mented, all of the existing applications using it as a building block,
e.g., recommender systems, data analytics, search functions and
many others, can utilize this augmentation and therefore cummu-
latively increase the added value of the newly discovered "virtual"
attribute. This implies benefits from an overall data-engineering
perspective, and not just an application-specific improvement of
a search function.

2 RELATEDWORK
To the best of our knowledge, there have been no attempts to
augment database schema using multimedia features. However,
there are many similar disciplines that were used as inspiration
and many technologies that could be used as building blocks to
help implementing the vision. We want to highlight that rather
than solving a single application-specific task (e.g., using im-
ages for product recommendation) we define the problem from
database-engineering perspective, so that each service utilizing
a database schema could benefit from its refinement.

Deep learning approaches have been evolving in the last years.
Recent advances include inception modules (Googlenet), resid-
ual networks (ResNet, ResNeXt, DenseNet), and meta-learning
approaches for searching an optimal architecture automatically
(NAS), with better architectures being proposed every year. The
target of our vision is to work with any network pre-trained
on general imagery, making the choice of network architecture
orthogonal to the main problem.

One of anticipated outcomes of our vision is an improvement
of product recommendation techniques. Several papers focusing
on fashion recommendation were published recently [6, 7, 9, 12,
17]. In fashion domain, visual-similarity based recommending
approaches managed to considerably improve conversions of
visitors to buyers [12]. In [6, 7, 12], authors focused on similarity
and identity matching of "wild" images (i.e., pictures taken on
streets or non-canonical representations of objects), while our
scenario allows us to restrict on canonical representations of
objects shot from similar angles with uniform background, etc.

Somewhat similar to our work is the approach by Yu et al. [17]
on utilization of aesthetic-based features of objects together with
commonCNN features. However, using sole aesthetic features did
not improve over CNN features and therefore we kept focusing
on local visual similarity of objects instead of their aesthetics. The

main difference between our vision and mentioned related work
is the aim on materializing relevant similarity pattern instead of
just utilizing them as a part of similarity calculations.

The topic of schema augmentation is not new, however, it
has not been targeted via latent visual information so far. Selke
et al. [11] focused on crown-enabled databases, which could
enrich database schema at the query-time by utilization ofmanual
labor to power search execution. Yakout et al. [16] automatically
augmented entities via scraping of online available HTML tables
and matching their information.

3 ROAD MAP
In this section, we overview the main points of our vision, de-
scribe the context, where it brings the most benefit, and define
individual milestones and already completed goals, which alto-
gether form a road map towards turning the vision into reality.

3.1 Vision
The body of our vision is to provide global as well as a user-based
schema extensions by virtual attributes not present in the original
database schema. Virtual attributes are to be derived from a
visual information in domains, where it can provide a significant
information gain, e.g., fashion, art, decorations, furniture, etc.
We do not meant to replace classical search or recommendation
methods, but rather boost them by providing additional relevant
features. In addition to the applications in automated content
processing methods, virtual attributes (if properly labeled) can
be revealed to the end-users or utilized in data analytics.

Implicit feedback collected in an application-specific scope,
such as browsing history in an e-shop, can be used as crowd-based
evidence for the suggested attributes. If an attribute correlates
with contents of search history, it is likely to have a meaning to
humans. The evidence could naturally grow from single random
visitors, over long-term users, up to large groups of similar users
and thus increasing the level of confidence for the suggestion.

A particular objective aims at straightforward applicability
for general usage; not relying on extensive training phase and
pre-existing definitions of attributes/classes. The main challenge
relies in an operation on previously unseen and undefined at-
tributes, and an evolution of the model at runtime. Generally,
training images and classes are essential for today’s state-of-the-
art computer vision models such as neural networks. However,
the real world has unlimited number of classes assignable to
objects, and it is impossible to prepare such data upfront. At the
same time, requiring a special design and training phase would
implicitly mean a need for a trained machine learning specialist,
which limits the benefits to a small portion of data owners. We
believe that it is possible to finalize the envisioned method in a set
of unsupervised-pipeline steps, leading to a deployment-enabled
black-box component which can be integrated into a broad range
of today’s applications.

3.2 Context
The envisioned approach of automatically detecting attributes
is not guaranteed to be beneficial within all domains, not even
when restricting the idea to products with visual information.
The main preconditions are that visual information is an impor-
tant factor influencing users’ decisions and that information gain
of existing relational attributes is low compared to information
retrieved from multimedia data. This condition disqualifies prod-
uct domains such as computer components, where the visual
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information is available, but existing relational attributes cover
most of the users’ information needs.

The applicability of our approach rises in scenarios, where
objects may contain multiple important visual attributes and
therefore it is not possible to simply label objects w.r.t. some class
hierarchy. It is the dynamic point of view making it a challenge,
since different users looking at the exact same image might have
different understanding what is the attribute of interest for them.
For example, several virtual attributes, e.g., leather-build, high
heel, floral texture and black zipper may be detected for a single
shoe, however for various users, only some of the attributes may
be relevant in their decisions.

3.3 Milestones
In the following we summarize the milestones of the road map,
also sketched in Figure 2.

Descriptor extraction (a). As a first step of our vision, proper
image descriptors need to be selected. However, due to the broad
range and complexity of today’s techniques, it is almost impossi-
ble to evaluate all possible variants and combinations. Even with
simple DCNN like AlexNet, there are several layers to choose
from and different aggregation methods to turn convolutional
layers into a single vector. We have evaluated performance of
different layers in [15] with the conclusion that there is no sin-
gle dominating layer for all search tasks. Therefore, this aspect
still deserves more research attention. Nonetheless, as all fur-
ther tasks are independent on the choice of image descriptors, it
is plausible to start with some simple selections, e.g., based on
AlexNet and research this area in parallel with further tasks.

Image patches (b) are regions of an image that enable to
focus on a particular part of it and, as a consequence, evaluate its
similarity locally. Within standardized product datasets, it can
be sufficient to cut images using regular grids, since all images
have same orientation, centering and background. If we move
towards "images in the wild" scenario, some trainable image seg-
mentation approach might be necessary. In either case, the final
image representation is a list of patches’ descriptors. Another
challenge in this task is to define methods to aggregate similarity
w.r.t. different patches. We already reported results of some basic
aggregation methods in [14].

Similarity sets (c), defined by image patches that are similar
to each other in a given feature-space, could be the first step
towards a virtual attribute. There are multiple ways to model
similarity between image patches, e.g., by evaluating only the
distance between their respective descriptors or by weighting it
together with global similarity of the entire entity.

Noise removal (d) in the area of similarity sets is a challeng-
ing problem given the unsupervised nature of the desired pipeline,
i.e., the only available information are images, their descriptors,
and similarity values. The distribution of distance values can be a
useful heuristic to filter out sets which are unlikely to form a good
attribute, such as near-duplicates (distance close to zero), trivial
patches (small distance to single-color patches) or sets being too
large (attributes would no longer be discriminatory). Another
possibility is to eliminate noise by cross-checking data coverage
by existing relational attributes, e.g., to remove suggestion for an
attribute that is already known in the data and correlates highly
with the new suggestion.

Frequent patterns (e)within the filtered similarity sets should
be prioritized in order to provide a ranked list of suggested at-
tributes to the domain administrators. Existing approaches to the

Figure 2: Road map/architecture of the vision.

frequent patterns mining, such as the Market Basket Analysis [1],
could be utilized. The algorithm should be optimized to reduce
the number of suggested patterns/rules, while preserving a good
coverage of entities in the database and a reasonable confidence
level that can be used for sorting purposes.

Domain administrator (f) could be presented with n-tuples
of items that match a suggested attribute. Furthermore, if the
feedback from users is available (e.g., their browsing history or
shopping baskets), frequently co-occurring items possessing a
suggested attribute may be prioritized. The interface could also
highlight the features on which the similarity of the set is based,
e.g., by highlighting relevant image patches. If the suggestion
gets approved and labeled, the similarity set could be turned into
a search mask, evaluated w.r.t. the full database of descriptors to
turn it into a new attribute. Since the database of descriptors con-
tains also individual patches, certain attributes could be detected
multiple times within a single object (a 1:N relation).

Collaborative techniques (g) based on implicit user feed-
back could not only refine suggestions to the domain adminis-
trators, but could also establish sets of latently approved virtual
attributes specific for a cluster of users, or a single long-term
user. In such a way, we may postpone the work of domain ad-
ministrators and label the attributes only upon a request from a
component that disclose attributes to the users (e.g., data analyt-
ics or attribute search). Challenges of this task are balancing the
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granularity of collected feedback (e.g., a single user, top-k simi-
larity, user clustering), maintaining different augmented schemes
for multiple user scopes and proposing methods capable to aggre-
gate more granular augmented schemes (e.g., on a level of single
users) and bring them to the higher level, eventually reaching
the main database schema.

3.4 Challenges
In this section, we summarize the major challenges of the pro-
posed vision and offer ideas on how to address them. The chal-
lenges are evaluation, noise reduction, scalability, personalization,
continuous schema evolution and applicability on other forms of
content.

By far the most significant challenge for database augmen-
tation is the lack of an established evaluation framework and
standardized datasets. The nature of human-system interaction
will require time-consuming user studies in order to collect suffi-
cient training data and feedback. The evaluation metrics could
measure the overall user satisfaction, impact on speed in infor-
mation retrieval tasks, as well as indirect impact obtained due to
improved recommendation and search, e.g., the conversions ratio.
Also, the practically unbound volume of possible attribute sug-
gestions and the lack of training data for ranking the candidates
makes human-in-the-loop a critical part of the evaluation.

The second challenge is the reduction of noise. The amount of
attributes within a dataset is subject to a combinatorical explosion
of common patterns across the dataset. The system can verify
their meaningfulness using automated techniques operating on
similarity data and visual descriptors, but it might be very difficult
to systematically estimate if a pattern is indeed a new attribute,
or if it was a random set of data points.

In order to deal with a large volume of possible patterns, the
system must be efficient and scalable in all parts of data process-
ing pipeline. In the existing work, the MapReduce paradigm was
used in the implementation, allowing the computation to run on
a large cluster of machines. The computationally intensive step
of similarity self-join identifying common patterns across the
dataset, was executed using the Hadoop MapReduce algorithms
of Čech et al. [2].

The fourth challenge is personalization. Whenever the system
starts inferring new attributes based on the implicit feedback
input, the correct scope must be identified. The trivial cases
are single-user scoped and globally scoped attributes. However,
collaborative approaches may consider various, possibly overlap-
ping clusters of similar users. This would require more extensive
verification of an attribute across different user clusters, in order
to estimate its benefit for the respective user groups.

The fifth challenge is the continuous schema evolution, fos-
tered by a stream of new attributes, and its propagation into
classical database tasks, e.g., similarity search. Therefore, the
inclusion of new attributes must be done in a transparent way, so
the successive techniques can automatically incorporate it with-
out explicit intervention. Transitively, this has also impact on
all other components operating on a set of relational attributes,
such as data exploration or recommendation engine.

The last challenge is to generalize the proposed model into
other forms of multimedia, such as sound or video. This might be
appealing in domains, where short video material represents an
inherent part of information retrieval tasks. One example might
be a database of movies with their trailers. Recently, there have
been significant improvements in video browsing techniques,

such as the work of Lokoč et al [10]. The proposed schema aug-
mentation approach could be beneficial in such scenarios as well.

4 CONCLUSION
This vision paper outlines a novel research problem, which aims
at augmenting database schemes by attributes extracted from
visual information. Initial attempts have outlined a possible di-
rection for future research and identified several sub-problems
and challenges to solve.
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ABSTRACT
Modern main memory-optimized column stores employ a variety
of compression techniques. Deciding for one compression tech-
nique over others for a given memory budget can be challenging
since each technique has different trade-offs whose impact on
large workloads is not obvious. We present an automated selec-
tion framework for compression configurations. Most database
systems provide means to automatically choose a compression
configuration but lack two crucial properties: The compression
selection cannot be constrained (e.g., by a given storage budget)
and robustness of the compression configuration is not consid-
ered. Our approach uses workload information to determine
robust configurations under the given constraints. The runtime
performance of the various compression techniques is estimated
using adapted regression models.

1 COLUMN COMPRESSION IN HYRISE
Two of the main driving forces of current database development –
both industrial and research – are autonomous database systems
and cloud-based installations. Both topics are strongly connected
as database vendors are increasingly interested in optimizing
their operational costs for large self-hosted database installations.

One way to lower the costs – especially for main memory-
optimized database systems – is to reduce the memory consump-
tion of large databases. Such a reduction allows storing databases
on smaller and thus less expensive server machines or adding
more instances to a shared server. But the sheer size of large
cloud installations hampers manual optimization of compression
configurations by database administrators. This development has
recently sparked the research on autonomous database systems.

The work presented in this paper is an intermediate step to
approach the issue of optimizing memory consumption while
still retaining the performance advantages of main memory-
optimized databases. When cost considerations are gaining im-
portance, the optimization objective for compression configura-
tions is less runtime performance rather than to retain the current
runtime performance while minimizing the storage requirements.
With the goal of automatically finding a compression configura-
tion for a given memory budget, this project intends to provide
the building blocks for autonomous systems.

The area of data compression has been thoroughly studied
for decades in database research. Virtually all modern database
systems implement various techniques to compress data and
most commercial systems further provide means to adjust the
compression level (e.g., Oracle’s declarative policies for the auto-
matic data compression (ADO), cf. [12], or SQLServer’s database

© 2019 Copyright held by the owner/author(s). Published in Proceedings of the
22nd International Conference on Extending Database Technology (EDBT), March
26-29, 2019, ISBN 978-3-89318-081-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

engine tuning advisor (DTA), cf. [11]). However, we see two dis-
tinct issues that remain open from a research perspective: (i)
workload- and constraint-based compression configurations and
(ii) determination of configurations whose runtime performance
is robust to changing workloads.

We present and discuss the three main components in our
research database Hyrise [10] with which we approach workload-
driven and robust compression configurations:

• We introduce Hyrise’s compression framework which im-
plements an efficient and maintainable interface for vari-
ous column compression techniques (Section 2).

• We present our runtime estimation, which predicts the
performance of compression techniques (Section 3).

• We discuss the applicability of existing approaches for the
optimization of physical database designs and how they
perform for the task of compression selection (Section 4).

2 COLUMN COMPRESSION FRAMEWORK
Virtually every database management system for hybrid trans-
actional and analytical processing (HTAP) employs a variety of
compression schemes. Besides the advantage of reducing the
main memory footprint, light-weight compression can even im-
prove runtime performance, e.g., by reducing the memory traffic
(cf. [2, 4]) or broadening applicability of vectorization (cf. [17]).

But supporting a variety of compression schemes is challeng-
ing as it needs to balance maintainability and efficiency. Most
existing approaches optimize either (i) for performance while
hampering maintainability and increasing complexity or (ii) pro-
vide unified interfaces for improved maintainability which po-
tentially introduces runtimes issues.

2.1 Hyrise’s Storage Concept
Hyrise is a main memory-optimized database with a column-
major storage format [10]. Each table in Hyrise is horizontally
partitioned into n chunks with a predefined maximum size. Each
attribute of a table is hence distributed over all chunks whereby a
column in a chunk is referred to as a segment. Modifications (i.e.,
insertions or MVCC-enabled updates) are appended to the most
recent mutable chunk. When this chunk reaches its size limit,
the chunk is considered immutable and a new mutable chunk is
created. Immutable chunks might be compressed asynchronously.
Hyrise encodes and compresses segments independently.

2.2 Balancing Performance and
Maintainability

There are multiple approaches to integrate column compression
schemes into the database system. One is to decompress vectors
before an operator accesses the data, eliminating the need to
handle different compression schemes in every operator. While
this approach might be sufficient for analytical purposes which
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are dominated by sequential operations, it is not feasible for
HTAP processing where single row accesses are frequent.

Another approach is to adapt operators so that they can di-
rectly execute on compressed data using late materialization.
This approach lowers the memory bandwidth required and fur-
ther allows to exploit encoding-specific optimizations (e.g., early
exiting a predicate when the searched value does not exist in the
dictionary). While this approach promises the best performance,
it also increases maintenance efforts significantly.

The middle ground between the upfront decompression of seg-
ments and encoding-specialized operators are abstraction layers
that provide a unified interface to access data (cf. [2, 14]). How-
ever, this approach usually introduces dynamic polymorphism
and thus virtual method calls per tuple, which are prohibitively
expensive in analytical scenarios [5]. Dynamic polymorphism
adds instructions, impedes cache utilization, and further hinders
compilers to automatically apply vectorization primitives.

2.3 Integrating Compression Schemes
To overcome the issues mentioned in the previous section, Hyrise
implements an efficient abstraction layer that provides a uni-
fied interface while still allowing encoding-specific optimization
when desirable. The implementation uses zero-cost abstractions
based on C++ metaprogramming and templating.

The column compression framework handles both encoding
as well as decoding of compressed segments. The framework
separates the various concerns by splitting data storage, encod-
ing, and decoding into separate components. To decode columns,
Hyrise uses C++’s iterator concept which – amongst other ad-
vantages – allows to apply algorithms of the standard library
as if data would simply reside unencoded in an std::vector.
Moreover, iterators can have state which enables block-based
compression schemes to cache the most recently decoded block
for potential upcoming accesses to the same block.

In Hyrise, column segments are usually accessed in two ways:
fully sequentially or semi-randomly via a position list. As a con-
sequence, each compression scheme provides these two access
paths via a sequential iterator and a point-access iterator which
accepts a position list. The impact of providing a positional access
path over upfront decompression is shown in Figure 1.

Following the separation presented in [8], Hyrise distinguishes
between logical-level and physical-level compression techniques
and allows to cascade them. The logical-level techniques cur-
rently implemented are dictionary, frame of reference, and run
length encoding. The physical-level techniques include fixed-size
byte-aligned (FSBA) compression and SIMD-BP128 compression
(cf. [8] for more details on the mentioned techniques).

Implementation Aspects: Hyrise is written using C++17 and
uses of Boost Hana1 for metaprogramming. To provide static in-
terfaces within the encoding framework, we use the curiously re-
curring template pattern (CRTP). The runtime effects of static over
dynamic polymorphism are shown in Figure 1. The combination
of Boost Hana, CRTP, and C++14’s generic lambda expressions
allows us to avoid typical type resolving patterns such as the
visitor pattern or hardly maintainable switch/case statements.

Hyrise’s Execution Model: The mentioned iterators cover both
major reading access patterns: full sequential and point accesses.
The basic execution model in Hyrise (with few exceptions for the
query compilation engine) follows the principles used in most

1Boost Hana: https://boostorg.github.io/hana/

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

Polymorphism Comparison:
Dynamic Polymorphism

Polymorphism Comparison:
Static Polymorphism

Materialization Comparison:
Full Materialization

Materialization Comparison:
Positional Materialization

10−5 10−4 10−3 10−2 10−1 100 10−5 10−4 10−3 10−2 10−1 100

0

3

6

9

0

3

6

9

Selectivity

R
un

ti
m

e 
(m

s)

● Dictionary (FSBA)  

Dictionary (SIMD−BP128)  

FOR (FSBA)  

FOR (SIMD−BP128)  

Run Length  

Unencoded  

Figure 1: Positional aggregation (i.e., aggregating 25% of
the tuples via a given position list) on a vector of 1M in-
tegers. Top: impact of decompressing the full column up-
front vs. positional accesses. Bottom: impact of dynamic
polymorphism vs. static polymorphism for row accesses.

modern columnar databases (cf. [1]). Predicates are descendingly
ordered by their estimated costs and executed successively where
each operator passes a list of qualifying positions to the next
operator (i.e., position lists instead of materialized vectors). When
parallel reads are preferable (e.g., as SIMD can be used), filters
are executed in parallel and the results are intersected afterwards.
Hence, the sequential iterator is typically used for the first filter
predicate, while the following operators (e.g., following filters,
joins, and aggregates) use the point-access iterator.

3 ESTIMATING PERFORMANCE
In order to decide for one compression technique over another,
the runtime performance as well as the resulting storage require-
ments need to be estimated. Estimating runtime of a particular
action is implemented in any database that optimizes incoming
queries and needs to decide on the order of actions to some ex-
tent. However, we think that existing approaches are by far too
inaccurate for our goals. The reason is that most databases do not
optimize for the accuracy of each runtime prediction they make,
but rather optimize to correctly estimate the order of alternative
decisions to take. As soon as the order is sufficiently accurate,
better models with smaller errors do not provide any further
advantages. We argue, however, that for any reasonable decision
on the physical database design, both the potential advantages
(here, reduction of allocated memory) as well as the drawbacks
(here, potentially increased runtimes) need to be known upfront.

While storage requirements are rather straightforward to es-
timate for most compression techniques (assuming knowledge
about, e.g., the row count and the number of distinct elements),
we found manually crafted cost models for runtime predictions
to be problematic. Due to the various CPU and compiler optimiza-
tion techniques on modern platforms (e.g., out of order execution,
branch prediction, code reordering) manually crafted runtime
models often turn out to be too inaccurate and cumbersome.

To accurately estimate runtimes nonetheless, we create an
array of regression models for each compression technique (e.g.,
for different data types). We measured the runtimes of sequential
as well as random accesses to compressed data structures. Note
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that we do not estimate the compression runtime or write perfor-
mance of encoded schemes for two reasons. First, Hyrise ensures
that mutable chunks are never compressed but only immutable
chunks are. Hence, no writes to immutable chunks occur apart
from MVCC modifications. Second, the decoding of segment
columns for reading happens significantly more often than en-
coding. Thus, we consider the compression costs to be amortized
soon after anyways and ignore them.

We evaluated three established regression methods: gradient-
boosted regression trees (in our case, XGBoost [7]) and two linear
regressions with different minimization objectives. One linear
regression variant uses ordinary least squares (OLS) and the other
has been adapted to use a relative (normalized) error metric. The
reason to use a model minimizing relative errors is that non-
normalizing models are less suitable in our case as they tend to
optimize the prediction of long runtimes.

Typically, the runtimes of database operators are, however,
heteroscedastic, meaning that the variance differs significantly
for varying input parameters (e.g., the selectivity or the table
size). As a result, when estimating runtimes of operations with
very short expected runtimes (e.g., a scan operation on a small
dimension table with a low selectivity), extrapolating models
often estimate negative runtimes. In our case, a relative error
metric is a better fit as estimation errors are equally important
on short and long running operations.

Table 1 shows the error rates on the example of the dictionary-
encoded model for integer values. We evaluated three data sets
(each set has previously been split for training and testing), one
including all measurements, one including measurements below
the median runtime, and one including measurements equal to or
above the median runtime. For typical regression metrics, such
as the mean squared error (MSE), XGBoost shows the best results
for all data sets. However, looking at the relative error metrics
mean average percentage error (MAPE) and Ln Q [15] shows that
the adapted linear regression has a lower error on two of the
three data sets. In Hyrise, we consider relative error metrics to be
superior as the resulting model’s applicability increases. On top
of determining accurate rankings during access path selection, it
can also be used to estimate the runtime of complex queries (e.g.,
queries containing nested queries which are short running but
executed many times).

Quartiles Metric Linear Regression XGBoost

(OLS) (adapted)

MSE 498 499 323
(Q1 −Q4) MAPE 1.18 1.03 2.07

Ln Q 0.000 250 0.000 172 0.001 72

MSE 3.34 3.34 2.80
(Q1,Q2) MAPE 1.39 1.10 3.29

Ln Q 0.000 352 0.000 196 0.003 35

MSE 993 995 643
(Q3,Q4) MAPE 0.971 0.969 0.855

Ln Q 0.000 148 0.000 148 0.000 099 0

Table 1: Comparison of three regression models and vary-
ing error metrics (model for dictionary-encoded columns
storing integers; green showing the best model).

As a consequence, we decided for the adapted linear regression
model as it yields lower estimation errors and has two further
advantages over more sophisticated approaches such as gradient-
boosted trees or net-based approaches. First, most tree-based
approaches do not support inter- and extrapolating predictions

of out of sample values, which regularly happens in our scenario.
Second, both learning as well as predicting of linear models is
efficient, fast, and can be implemented without additional depen-
dencies in a comparably short time frame.

While the current approach to estimate runtimes is suitable
for the scenario described here, i.e., finding the best configuration
for a given memory budget, it is not sufficiently covering other
important scenarios. Besides storage constraints, one common
constraint is limiting the expected end-to-end runtime for a given
workload to be at most n% larger than the runtime with the
current configuration. Think of cloud scenarios where a database
system can be redeployed on another (potentially virtualized)
server at any time. A given workload in this example can consist
of a set of queries with tight runtime constraints (e.g., caused by
existing service level agreements).

4 COMPRESSION SELECTION
Selecting a suitable compression configuration requires knowl-
edge about the particular data characteristics as well as the work-
load. Most current databases use simple heuristics to choose a
compression scheme for a given column. However, those ap-
proaches neglect three major issues that we deem crucial: Com-
pression configurations ought to be (i) adaptable with respect to
a given memory budget, (ii) consider its impact on the decisions
the query optimizer is going to make given the configuration, and
(iii) consider opportunity costs usually exploitable in real-world
systems and workloads.

While cost considerations always played an important role in
database systems, the current trend towards self-adapting cloud
systems emphasizes the need to reduce the memory consumption
(amongst others) as much as possible while ensuring acceptable
performance. In fact, a large database vendor told us that formany
cloud installations, TCO (total cost of ownership) reductions are
a far more pressing issue than performance.

As such, the database must understand the performance im-
pact of varying memory budgets. It needs to understand the
interplay between space consumption and performance, e.g., to
apply maximum compression to a table that is virtually never
accessed. At the same time, such a memory budget-driven system
should degrade gracefully for decreasing budgets.

Our selection framework accepts a given memory budget that
should not be exceeded. The system uses heavier compression
schemes for data that is rarely accessed or whose access patterns
do not suffer from heavy compression, while frequently accessed
tables might use light-weight compression schemes or no com-
pression at all. With the workload at hand, it might make sense
to lose certain performance by applying heavier compression
for a less often accessed table and invest that gained space to
frequently accessed tables (cf. opportunity costs).

4.1 Greedy Selection Heuristics
The goal of compression selection is to determine a compression
configuration for a given data set and workload. The selected
configurations should gracefully degrade for decreasing memory
budgets. The memory consumption of the resulting compression
configuration ought to be within the given memory budget. We
evaluated two heuristics and static configurations for a syntheti-
cally generated CH-benCHmark-like workload.

To gather workload information, Hyrise parses the database’s
query plan cache. This information is fed to the selection heuris-
tics and includes for each physical column, e.g., which operations
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are executed with which access path taken (e.g., full linear ac-
cesses or random probing accesses).

We implemented two greedy heuristics which have been pro-
posed for a related field of physical design optimization: in-
dex selection. As the first heuristic, we implemented a density-
based heuristic that chooses the first compression technique from
all applicable techniques ordered ascendingly by their size-to-
performance improvement ratio, comparable to [16]. As the sec-
ond heuristic, we implemented a performance-greedy heuristic
that selects compression schemes ordered ascendingly by their
expected performance improvement, comparable to [11].

The results are shown in Figure 2. We make two observations.
First, the “All FOR (FSBA)” configuration has shown to be a good
trade-off between performance and memory consumption. No
heuristic was able to find a comparable configuration as FOR
encoding is often neglected by both greedy heuristics. Second,
simple greedy heuristics are not sufficient as they (i) fall short in
covering the whole range of permitted memory budgets and (ii)
can even be outperformed by simple static heuristics.
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Figure 2: Comparison of static compression configura-
tions and budget-driven heuristics.

The reason is that simple heuristics do not incorporate in-
teractions affecting the optimization of query plans (cf. index
interaction). One simple example is the effect of ordering conjunc-
tive filter chains when the predicate with the lowest selectivity
(hence, preferably being executed first) happens to be heavily
compressed and hence slow to access. Optimizers using non-
logical cost models – as done in Hyrise – might yield completely
different query plans. To cover such cases, we think more elabo-
rate selection approaches (e.g., recursive approaches as [3] and
[6], or ILP-based approaches as [9]) are a necessary next step.

4.2 Robustness
The robustness of compression configurations is another crucial
aspect. The more a segment is compressed as the expected work-
load is infrequently or not accessing it at all, the more expensive
this decision might turn out when workloads shift.

To provide robust configurations, we use a simple framework
to generate additional workloads which are evaluated together
with the actually provided workload. Instead of selecting the
compression configuration with the lowest runtime for the given
workload, we choose the configuration minimizing the aggre-
gated runtime of all workloads.

The creation of alternative workloads is done by shuffling
and adding queries. First, for every query being part of the pro-
vided workload, we randomly select a new execution count based
on the normal distribution around the actual execution count.

Second, to counter the problem of heavy-weight compression
for infrequently accessed segments, we manually add a query
for each table to the workload that projects all columns. Both
the number of generated workloads as well as the number of
executions for the manually added query are configurable.

5 RELATEDWORK
The object of integrating and selecting compression schemes
has been researched in several previous works. Abadi et al. pre-
sented their C-Store extension to support various compression
schemes [2] allowing operations directly on compressed data. A
unified interface allows exploiting several compression scheme-
unique optimizations while some operations have to fall back to a
virtual method call-based interface. Further, the authors proposed
a decision tree for the selection of compression schemes which
uses both workload and data properties, but which does not adapt
to changing environments nor considers memory budgets.

Lemke et al. presented a performance-optimized approach for
TREX, the predecessor to SAP HANA [14]. At the cost of code
complexity and maintenance efforts, compression schemes are
explicitly handled within most database operators allowing to
fully exploit vectorization and other optimizations.

Lang et al. presented data blocks for HyPer [13]. The authors
focus the interplay of vectorizing operation on compressed vec-
tors and their query compilation engine. HyPer selects compres-
sion schemes based on data characteristics.

6 CONCLUSION
We presented the current state of column compression in Hyrise.
We think that compression selection will be an increasingly cru-
cial topic. Mostly caused by (i) an increasing autonomy of data-
base systems adapting themselves to changing environments and
(ii) the move from on-premise to cloud-based installations which
emphasizes the need for reduced main memory footprints.
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ABSTRACT
Record linkage aims at identifying duplicate records across datasets.
Most existing record linkage techniques have been designed
for monolingual datasets. In this paper, we propose a novel ap-
proach, CLRL, that links the records in a cross-language set-
ting, where each input dataset is in a different language. CLRL
combines monolingual similarity measures with multilingual
cross-language word embedding similarities to identify the corre-
spondence of records across datasets. As our experiments show,
CLRL outperforms baseline approaches in cross-language data
integration settings.

1 INTRODUCTION
Record linkage is one of the most relevant tasks in a data inte-
gration process. The goal of record linkage is to identify records
from two different datasets that represent the same real-world
entity. One of the major challenges in record linkage is to identify
similarity heuristics that are effective at approximating the equal-
ity of two heterogeneously represented entities [8]. Numerous
similarity measures have been proposed so far to capture vari-
ous similarity levels such as character-based and phonetic-based
similarities [3]. These measures are effective in the monolingual
setting, where similar words have a high lexical similarity. How-
ever, they are often ineffective in a cross-language settings, where
each dataset adheres to a different language.

A naive solution to overcome this problem is to first translate
one dataset into the other corresponding language and then apply
an off-the-shelf record linkage approach. However, this approach
suffers from two major problems.

(1) Ambiguity in translation. Short texts in structured datasets
do not usually provide enough context for machine trans-
lation models to translate accurately.

(2) Out-of-vocabulary terms. The machine translation model
cannot translate out-of-vocabulary terms, such as the con-
catenation "firstsight", which is not among the standard
language vocabulary.

Motivation example. Table 1 illustrates two movie datasets
in English (dataset A) and German (dataset B). Among all the
4 possible pairs of records in A × B, only the second record of
the English dataset should be linked to the first record of the
German dataset. Traditional record linkage approaches would
fail to identify their correspondence as there is no lexical simi-
larity between the title "Forbidden Planet" and the title "Alarm
im Weltall". Translating one of the datasets and then applying a
traditional record linkage approach also fails because the trans-
lation of "Alarm im Weltall" is "Alarm in the Universe"; it is still
not lexically similar to "Forbidden Planet".

© 2019 Copyright held by the owner/author(s). Published in Proceedings of the
22nd International Conference on Extending Database Technology (EDBT), March
26-29, 2019, ISBN 978-3-89318-081-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

User

𝑠1 … 𝑠 𝑆

𝑎1

…

𝑎 𝐴

Dataset 
𝑨

Linked Records

𝑠1 … 𝑠 𝑆

𝑏1

…

𝑏 𝐵

Dataset
𝑩

Blocker
Sampler and 

Labeller
Out-of-Vocabulary 

Term Expander
Feature 

Generator

Input

2 4

1

3

Matcher

Output

5

Expanded
Vocabulary

Labels

Features

Candidate 
SetIndexes

𝒂𝒊, 𝒃𝒋
…

Figure 1: The workflow of CLRL.

Table 1: Two movie datasets in English and German.
ID Name Year

1 Heat 1995
2 Forbidden Planet 1956

ID Name Jahr

1 Alarm im Weltall 1956
2 Der Pate 1972

However, our approach is able to identify the correspondence
by using the latent similarity of these two multilingual short
movie titles based on cross-language word embedding mod-
els [14]. In particular, our maximum vector similarity feature
(see Section 3.2) captures the similarity of the words "Planet"
and "Weltall" (means "universe" in German) as these semantically
similar words have similar word embedding vectors. □
Contributions. In this paper, we propose a novel approach to
link the records across multilingual datasets. To this end, we
make the following contributions:

• Wedesign a term expansion scheme (Section 3.1) to expand
each out-of-vocabulary term into a set of in-vocabulary
terms. In fact, CLRL leverages a three-step policy to expand
different types of out-of-vocabulary terms differently.

• We propose an effective set of similarity features (Sec-
tion 3.2) for cross-language record linkage problem. In
addition to state-of-the-art monolingual similarity mea-
sures, we include four multilingual similarity measures,
adopted from cross-language word embedding models.

• We empirically evaluate our approach on six real-world
datasets (Section 4). In particular, we show that CLRL
outperforms three existing record linkage approaches in
cross-language setting.

2 CLRL OVERVIEW
Figure 1 illustrates the record linkage procedure with CLRL. The
multilingual datasets and the user feedback are the input and the
set of linked records is the output of the approach.

CLRL adheres to the well-known pipeline of existing record
linkage approaches, i.e., preprocessing, blocking, and matching.
In addition to standard preprocessing operations, such as value
normalization and identifying corresponded attributes, our ap-
proach can apply a novel preprocessing step to expand out-of-
vocabulary terms into in-vocabulary terms (Step 1). We will detail
this step in Section 3.1. In the blocking step, a state-of-the-art
blocker is used to generate a set of candidate links between record
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pairs of the input datasets (Step 2). Then, CLRL generates fea-
tures for each candidate pair (Step 3). We will detail this step
in Section 3.2. Depending on the sampling strategy and user-
interaction model, a sample set of candidates are chosen to be
labeled by the user as matches or non-matches (Step 4). Finally,
a state-of-the-art classifier takes the features and labeled record
pairs to classify all record pairs in the candidate set (Step 5).

3 FEATURE ENGINEERING
We first explain how out-of-vocabulary terms are expanded into
in-vocabulary terms. Then, we describe our extensive feature set.

3.1 Out-of-Vocabulary Term Expansion
Out-of-vocabulary terms are those terms that could not be found
in formal vocabularies and therefore are not translatable. The
goal of out-of-vocabulary term expansion is to transform these
non-translatable terms into in-vocabulary terms. This way, we
can later leverage cross-language word embedding models to
capture the similarity of these terms as well. CLRL applies the
following steps to the out-of-vocabulary terms.
Morphological checking. CLRL first tries to find morpholog-
ical variants of the out-of-vocabulary term. In morphological
check, the out-of-vocabulary term is transformed into its mor-
phemes (i.e., primitive units), if applicable. For example, the out-
of-vocabulary term "firstsight" is transformed into in-vocabulary
terms "first" and "sight".We leverage Polyglot Pythonmodule [16],
which supports 100 languages, to conduct morphological trans-
formations. Note that our morphological checking already covers
lighter lemmatization and stemming transformations as well.
Spell checking. Spelling errors could be the emerging cause
of many out-of-vocabulary terms. Therefore, in case of failure
in morphological transformation, CLRL tries to fix spelling er-
rors. To this end, the approach collects all the in-vocabulary
terms whose Damerau-Levenshtein edit distance to the out-of-
vocabulary term is less than equal to θdist = 1. To minimize
the risk of replacing an out-of-vocabulary term with the wrong
in-vocabulary term, we restrict the threshold to the minimum
possible distance, i.e., θdist = 1, and replace the term only when
exactly one in-vocabulary candidate has been found.
Ostrich policy. CLRL ignores transforming all the other out-of-
vocabulary terms that could not be transformed by the previous
treatments. These out-of-vocabulary terms are mainly numbers
(e.g., "2001" in "2001: A Space Odyssey") or named entities (e.g.,
"Lebowski" in "The Big Lebowski") that do not need any trans-
formation.

3.2 Feature Vector
Each pair of records in the candidate set is mapped to a feature
vector that contains all the similarity scores of the two records.
Let A = {a1,a2, . . . ,a |A |} and B = {b1,b2, . . . ,b |B |} be two
relational datasets with different languages, where each a ∈ A or
b ∈ B is a record. Let S = {s1, s2, . . . , s |S |} be the set of mapped
attributes in these datasets. Therefore, the data cell a[s] refers
to the record a ∈ A and the attribute s ∈ S . Let f be a similarity
function that takes two data cells a[s] and b[s] and returns a
similarity score f (a[s],b[s]) ∈ [0, 1]. Therefore, the feature vector
of a candidate record pair (a,b) is

V (a,b) = [f (a[s],b[s]) | ∀f ∈ F ∧ ∀s ∈ S], (1)

where F is the set of all the similarity functions. Due to the
cross-language setting, the similarity functions should be able to
capture, not only the monolingual similarity, but also the mul-
tilingual similarity of terms in different languages. That is why,
we leverage monolingual and multilingual similarity functions.

3.2.1 Monolingual Similarity Functions. Monolingual similar-
ity functions are typical lexical similarity measures. The goal of
incorporating these measures is to capture lexical similarity of
named entities, such as "Brad Pitt", which are written similarly in
languages with the same scripting system. In particular, we calcu-
late Jaccard, Levenshtein, Jaro, Jaro-Winkler, Needleman-Wunsch,
Smith-Waterman, and Monge-Elkan similarity measures [5].

3.2.2 Multilingual Similarity Functions. Multilingual similar-
ity functions capture the similarity of data values across different
languages. We leverage cross-language word embedding mod-
els [14] to capture the similarity of short multilingual data values
of datasets. Word embedding models, such as word2vec [12],
learn to map each term into a dense vector in a way that terms
with similar context (i.e., surrounding words) have similar vector
representations as well. Cross-language word embedding models,
such as fastText [7], are a special kind of word embedding models.
These models share the same cross-language space for two dif-
ferent languages so that similar words from different languages
can have similar vector representations. Thus, a cross-language
word embedding modelm can take a wordw and returns its cor-
respondent vectorm(w) in a cross-language shared space. In this
shared space, not only monolingual similar words such as "Dog"
and "Puppy" would have close vector representations, but also
cross-language similar words such as "Dog" and "Hund" (means
"dog" in German) would have close vector representations, i.e.,
m(”Dog”) ≈m(”Hund”).

Now, letm be the cross-language word embedding model and
let P = {p1,p2, . . . ,p |P |} and Q = {q1,q2, . . . ,q |Q |} be the sets
of words in data cells a[s] and b[s], respectively. We define the
following four similarity functions.
Mean vector similarity (MeVS). The Mean of word vectors
in a data cell is a representative vector for the whole data cell.
Considering each data cell as a set of word vectors, we calculate
the cosine similarity of mean vectors of data cells. Formally,

MeVS(P ,Q) = cosine
( 1
|P |

∑
p∈P

m(p),
1
|Q |

∑
q∈Q

m(q)
)
. (2)

Maximum vector similarity (MaVS). When the data cell con-
tains noisy (i.e., irrelevant) words, it is desirable to represent the
data cell by the vector of its most important word. For example,
"Forbidden Planet" and "Alarm im Weltall" are the same movie
titles in English and German. Since "Weltall" means "universe"
in German, m("Weltall") is a more accurate representation for
the German movie title rather than mean of all the word vectors
inside the complete German movie title. This similarity function
outputs the maximum cosine similarity between all the pairs of
words P ×Q . Formally,

MaVS(P ,Q) = max
(p,q)∈P×Q

cosine
(
m(p),m(q)

)
. (3)

Optimal alignment similarity (OAS). If two data cells are
matched, they might have an optimal one-to-one alignment of
words, where each word in the first data cell corresponds directly
to one word in the other data cell. This similarity function looks
for such an optimal alignment between words of P and Q , where
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the sum of similarity scores between aligned word pairs is maxi-
mal. Finding the optimal one-to-one alignment of words is the
classical assignment problem. We leverage the Hungarian algo-
rithm [9] to find the optimal one-to-one alignment of words in
two data cells. Since the aligning needs both P andQ to have the
same length of words, the shorter one is padded with arbitrary
out-of-vocabulary words, hence inducing dissimilarity. Let us
assume that P is the shorter one and its padded version is P ′.
Formally,

OAS(P ,Q) =

∑
(p,q)∈L(P ′,Q ) cosine

(
m(p),m(q)

)
× (|P | + |Q |)

2 × |P | × |Q |
,

(4)
where L(P ′,Q) = {(p,q) | p ∈ P ′,q ∈ Q} is the optimal one-to-
one alignment of words in P ′ andQ . Note that since this similarity
function depends on the word count in P andQ , we normalize its
value by the harmonic mean of these word counts, as suggested
in literature [4].
Maximum alignment similarity (MAS). Two matching data
cells might not necessarily have an optimal one-to-one alignment
of words. For example, although the English data value "Purchase
Price" is matched to the German data value "Kaufpreis", there
is no optimal one-to-one alignment for words. Instead, here we
have a two-to-one alignment for the words. Thus, in general, we
also need a similarity function that can capture the similarity of
m-to-n alignments. This similarity function allows each word in
the first data value be aligned to the most similar word in the
second data value, regardless of whether these two words are
already aligned to any other words or not. Formally,

MAS(P ,Q) =
1
2

( 1
|P |

∑
p∈P

cosine
(
m(p),m(q∗p )

)
+

1
|Q |

∑
q∈Q

cosine
(
m(q),m(p∗q )

))
,

(5)

where, q∗p ∈ Q is the most similar word to word p ∈ P , i.e.,

q∗p = max
q∈Q

cosine
(
m(q),m(p)

)
.

4 EVALUATION

Experimental setup. We evaluate our approach on six real-
world datasets, which are described in Table 2. Universities and
Universités contain information of universities around the world
in English and French, respectively. An example of matched uni-
versities in these datasets is "Technical University of Berlin" and
"Université technique de Berlin". Movies and Películas contain in-
formation on movies in English and Spanish, respectively. An ex-
ample of matched movies in these datasets is "The Godfather" and
"El padrino". Wikipedia Titles and Wikipedia-Titel contain wider
domains including titles of Wikipedia pages in English and Ger-
man, respectively. An example of matched titles in these datasets
is "1982 World Snooker Championship" and "Snookerweltmeis-
terschaft 1982". We extracted these datasets from the DBpedia
knowledge base [10]. We leveraged inter-language links inside
DBpedia to obtain the ground truth for these datasets, i.e., the
pairs of records that are actually linked.We evaluate our approach
with precision P =

the number of correctly identified linked records
the number of all outputted linked records , re-

call R = the number of correctly identified linked records
the number of all actual linked records , and F1 mea-

sure F1 = 2×P×R
P+R . We mainly report only the F1 measure, which

combines the precision and recall, due to the space constraints.

Table 2: Datasets.
Name Language #Rows #Common

Attributes
Candidate
Set Size

#Actual
Linked
Records

Universities English 8758 16 124559 940Universités French 3957

Movies English 1273 14 59198 72Películas Spanish 15334

Wikipedia Titles English 1976 2 51211 83Wikipedia-Titel German 2159

We apply cross-validation and report the mean and standard de-
viation of these measures. As the default parameter setting, we
setup our approachwith all the introduced features.We also lever-
age fastText [7] as the cross-languageword embeddingmodel and
XGBoost [1] as the classifier. Our prototype is available online1.
Effectiveness versus baselines. We compare the effectiveness
of CLRL to the following three baseline approaches:

(1) Magellan (M).Magellan is an end-to-end entity matching
system that uses monolingual lexical similarity features
to learn links between records [8]. In our experiments, we
include the following default set of features: Jaccard, Lev-
enshtein, Jaro, Jaro-Winkler, Needleman-Wunsch, Smith-
Waterman, and Monge-Elkan similarity measures.

(2) Machine translation plus Magellan (MT+M). This ap-
proach first translates non-English language datasets into
English using the Joshua machine translation toolkit [11]
and then applies Magellan on two English datasets.

(3) Machine translationplus semanticmatching (MT+SM).
This approach also leverages machine translation to have
both datasets in English. However, instead of using Mag-
ellan, it applies a monolingual word embedding model to
link records [15].

Figure 2 illustrates the effectiveness of CLRL in comparison to
these baseline approaches. CLRL always outperforms the other
approaches as it leverages a broad set of features to capture
monolingual and multilingual similarities. This superiority is
more obvious on Wikipedia Titles/Wikipedia-Titel datasets, as
they contain more linguistically different content. In fact, in uni-
versity and movie domains there are many named entities such as
"Berlin" and "Brad Pitt" that remain the same in many languages.
Therefore, even a traditional record linkage approach, such as
Magellan, with lexical similarity measures can capture the simi-
larity. However, in Wikipedia title domain there are fewer named
entities, hence cross-language techniques are more promising.
Out-of-vocabulary term expansion analysis. Figure 3 illus-
trates the influence of out-of-vocabulary term expansion on the
effectiveness of CLRL. Leveraging out-of-vocabulary term expan-
sion, CLRL has a higher F1 measure as the similarly functions
can capture the similarities with higher recall, i.e., CLRL can iden-
tify more linked records. Again, the improvement is higher on
Wikipedia Titles/Wikipedia-Titel datasets as the out-of-vocabulary
terms in these datasets are mainly morphological and spell errors,
which are transformed into in-vocabulary terms.
Feature analysis. Table 3 illustrates the effectiveness of CLRL
when it leverages different features separately. In general, all the
similarity features are informative for the task as CLRL works
best with all the features. Furthermore, the proposed multilingual
similarity features provide higher F1 measure than the traditional
monolingual features.
1https://github.com/BigDaMa/clrl
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Figure 2: Effectiveness of different approaches on different datasets.
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Figure 3: F1 measure of CLRL with and without out-of-
vocabulary term expansion.

Table 3: F1 measure of CLRLwith different feature groups.
Feature Name Universities/Universités Movies/Películas Wikipedia Titles/

Wikipedia-Titel

Monolingual 0.69 ± 0.02 0.75 ± 0.04 0.53 ± 0.10

MeVS 0.70 ± 0.01 0.76 ± 0.08 0.67 ± 0.09
MaVS 0.71 ± 0.02 0.79 ± 0.09 0.60 ± 0.13
OAS 0.72 ± 0.02 0.75 ± 0.03 0.59 ± 0.10
MAS 0.75 ± 0.01 0.80 ± 0.04 0.70 ± 0.14

Full 0.77 ± 0.02 0.80 ± 0.06 0.77 ± 0.12

5 RELATEDWORK

Cross-language record linkage. There are only few pieces of
work on cross-language record linkage because this is relatively
a new topic. Song et al. [15] translated the Japanese datasets into
English and then appliedmonolingual word embeddingmodels to
identify linked records. As shown in the experiments, CLRL out-
performs this approach because of two reasons. First, CLRL does
not rely on direct translation of datasets, which can be ambiguous
as explained earlier. Second, instead of only one monolingual
word embedding-based similarity feature, CLRL leverages vari-
ous monolingual and multilingual similarity features to capture
the similarities of multilingual records more accurately.
Record linkage. Numerous works have tackled the similar-
ity representation challenge of record linkage task by different
similarity measures [3]. In addition to these common mono-
lingual similarity measures, CLRL leverages multilingual word
embedding-based similarity measures as well-suited similarity
features for cross-language setting. We showed the benefit of the
new similarity features in our experimental comparison.
Cross-language matching. Cross-language matching has been
mainly studied for unstructured text data in tasks such as infor-
mation retrieval [6] and entity matching [13]. While the entity is
usually surrounded with a rich context of words in these tasks,
in structured datasets the texts are mainly short, which make
the cross-language matching task more challenging. That is why,

CLRL leverages cross-language word embedding models to cap-
ture the semantic similarity of short multilingual texts accurately.
Out-of-vocabulary term expansion. Out-of-vocabulary term
expansion has been addressed for the record linkage problem
using the top-K co-occurring words with the out-of-vocabulary
term [2]. CLRL does not hold any assumption on the term fre-
quency of the out-of-vocabulary terms in the dataset.

6 CONCLUSION
We addressed the problem of cross-language record linkage. In
addition to themonolingual similarity measures, we leverage four
novel cross-language word embedding-based similarity measures.
As our experiments show, CLRL outperforms three record linkage
baseline approaches in cross-language setting. In future, we plan
to extend the blocking step. Since the records are in different
languages, simple blocking heuristics, such as having a word in
common, do not work effectively in cross-language setting.
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ABSTRACT
In the last decade we are witnessing a widespread adoption of
architectural styles such as microservices, for building event-
driven software applications and deploying them in cloud infras-
tructures. Such services favor the separation of a database into
independent silos of data, each of which is owned entirely by
a single service. As a result, traditional oltp systems no longer
fit the architectural picture and developers often turn to ad-hoc
solutions that rarely support acid transaction consistency.

At the same time, we are witnessing the gradual maturation of
distributed streaming dataflow systems. These systems nowadays
have departed from the mere analysis of streaming windows and
complex-event processing, employing sophisticated methods for
managing state, keeping it consistent, and ensuring exactly-once
processing guarantees in the presence of failures.

The goal of this paper is threefold. First, we illustrate the
requirements of stateful software services in terms of consistency
and scalability. Second, we present how well existing solutions
meet those requirements. Finally, we outline a set of challenging
problems and propose research directions for enabling event-
driven applications to be developed on top of streaming dataflow
systems. We strongly believe that streaming dataflows can have
a central place in service-oriented architectures, taking over the
execution of acid transactions, ensuring message delivery and
processing, in order to perform scalable execution of services.

1 INTRODUCTION
Event-driven Applications (eda) are software applications that
act on incoming events. edas nowadays span a multitude of
areas. Some very common examples are gui applications (for
web services, gaming, design, etc), complex event processing (for
fraud detection, pattern matching, etc.), computations on stream-
ing graphs and machine learning, and analytical queries over
streams, such as window aggregation. In this paper we focus on
two emerging application types named after the architectural
pattern they follow, namely microservices [20] and actor-based
systems [1], such as Erlang [22], Akka,1, but most importantly,
higher lever abstractions such as Microsoft’s Orleans [3]. Our
work is motivated by the observation that these emerging archi-
tectural patterns do not receive the necessary amount of attention
from the database community, although they are extremely ubiq-
uitous and growing in popularity by the day.

Microservices and actors have a surprising number of com-
monalities. Microservices, like actors, are founded on the princi-
ple of separation of concerns: each microservice (or actor) man-
ages its own data and implements a set of endpoints (actors offer
1https://akka.io

© 2019 Copyright held by the owner/author(s). Published in Proceedings of the
22nd International Conference on Extending Database Technology (EDBT), March
26-29, 2019, ISBN 978-3-89318-081-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

function calls). The only way for a microservice to get data from
another microservice is to make a call on an endpoint (a function
call/shipping for an actor). However, the two have a consider-
able amount of differences. More specifically, microservices favor
communication via synchronous rest api calls2 and ensure fault
tolerance by relying on an external database for persistence. Ac-
tors, on the other hand, communicate via asynchronous messages
and typically persist state in a local data structure or even in an
external storage system [3]. The local state of actors can be used
for recovering after failures, but also for migrating to different
machines. To alleviate data management and consistency issues
from actors, Bernstein et. al. [10] proposed the concept of virtual
actors, backed by actor-oriented database systems, with the goal
of integrating database concepts inside actor systems.

Stateful microservices can scale particularly well, but almost
always implement eventual consistency, such as sagas [11]. In
case that strict consistency is required, orchestration and Two-
Phase Commit (2pc) take place at the application level: users
hard-code database logic in their applications, using apis such
as Java xa, by implementing commit, rollback, and prepare for
2pc to work. Worse, transactions today contain more and more
complex business logic. However, encoding complex business
logic in a stored procedure is not preferred nowadays [2]. As a
result, strict consistency – an old and difficult problem that was
once only the responsibility of very few database programmers –
is now part of daily work for application programmers. Finally,
stateful services (including virtual actors) require state locality
in order to achieve low latency - not only when writing data, but
most importantly when reading data. As applications become
more and more interactive, reacting to state changes renders
latency requirements even stricter. At the same time, serverless
computing [23], an emerging trend allowing the execution of
user-supplied functions as a service, is proven to be a bad fit for
stateful microservices. This is because it necessitates shipping
data to the code and forces communication between executing
components through the storage layer, which is slow compared
to a direct network connection [14].

The aforementioned shortcomings call for a principled solu-
tion that will allow implementing edas with innate support for
transactions, loose-coupling of service modules with local state,
and consistent global state. In this paper we argue that such a
fabric can be based on streaming dataflows. More specifically,
modern streaming dataflow systems, such as Apache Flink [7]
and Samza [17], execute a topology of continuously executing
operators with local state and maintain a consistent snapshot of
their global state. Operators cooperate to provide analytics on
bounded and unbounded data. Moreover, features like Flink’s
Savepoints [6] or Kafka’s Streams offer a deterministic time ma-
chine for debugging and replaying dataflow executions, and can
be used to hide failures from application developers by offering

2Certain microservice implementations such as reactive microservices opt for asyn-
chronous messaging.

Short Paper

 

 

Series ISSN: 2367-2005 682 10.5441/002/edbt.2019.86

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2019.86


exactly-once processing guarantees. Finally, dataflow systems
scale extremely well. As a result, at the time of writing, we are
witnessing a trend towards building stateful applications on top
of streaming engines.

In this paper we present the vision of operational stream pro-
cessing whose goal is to render stream processors full-fledged
data management engines, capable of executing transactions,
performing analytics, and embedding complex business logic
of stateful services inside dataflow operators. We organize this
paper as follows: in Section 2 we focus on current best practices
for implementing edas and their requirements for scalability and
consistency. In Section 3 we review existing possible solutions to
fill those requirements. Finally, in Section 4 we argue that stream-
ing dataflow systems, such as Apache Flink [7] and Samza [17],
can serve as an efficient, and scalable backend for executing edas,
given that our community tackles a set of important challenges.

2 REQUIREMENTS OF EDAS
In this section we first briefly outline the main requirements
of edas with respect to the backend technology required for
their execution. We then focus on a set of advanced operational
requirements of microservices and actors.

2.1 General Requirements
The following requirements manifest themselves in almost all
edas. We believe that a fabric that can be used as a backend for
edas should at least provide support for the following.
Fault-Tolerant State. State is a first-class citizen in virtually ev-
ery event-driven computation. State in a streaming computation
can be counters (e.g., counting elements in a stream), database
contents in a microservice or the current computation state of an
actor program. At the same time a distributed event-processing
application, needs to ensure that, even in the presence of failures,
the state of the system remains consistent and the application
continues its operations fromwhere it left off.Whenever possible,
failures should be transparent to the application programmer.
Event Partitioning & Scaling Out. Computations over parti-
tioned data are typically used for computing aggregates, and for
scaling-out actor instances and load-balancing user requests (e.g.,
by partitioning per user id). Similarly, scalability in microservices
can be typically achieved by running multiple service instances,
balancing the load among them using http proxies.

2.2 Advanced Requirements
Apart from the general requirements, which are needed by most
edas, most modern applications demand a special set of require-
ments for the operation of the services that comprise them.
Transactions. One of the largest problems in running services is
the lack of coordination schemes in order to perform transactions
and retain consistent state across services.
State Locality. Access to local state is important for boosting
the performance of services [8], yet it is not always leveraged
in microservice or actor architectures in favor of keeping those
services stateless. In those cases, the state is offloaded to an exter-
nal storage system. However, stringent latency requirements of
interactive server applications require state to remain embedded
in the service.
Global State View & Analytics. Services often need to consol-
idate data from multiple other services in a bulk fashion. For
instance consider the case of joining orders with transactions,

in order to obtain insight about sales. Since each service owns
its data, consolidating that state via multiple calls to service end-
points is currently slow and cumbersome.
Loose coupling. One of themost important reasons that services
are so popular is that they allow developers to develop, test, and
deploy them in a loosely-coupled fashion. We consider this a
defining trait of services that must be respected.
Debugging and Auditing. Given their distributed nature, ser-
vices inherit the difficulty to reason, understand, and debug. To
this end, services need inherent support for debugging and test-
ing in a reproducible manner.
Dynamic (re)configuration. During the lifetime of a service,
the load of the service (e.g., due to churn), its assigned hard-
ware (e.g., due to failures), and even the service itself (e.g. due
to updates) can change dramatically. Services need to transpar-
ently adapt to those changes without being affected in terms of
performance and availability.

3 EXISTING SOLUTIONS
Many existing solutions meet the general requirements presented
in Section 2.1. The advanced requirements of Section 2.2 are a
lot more challenging to support though. This section presents
which of the advanced requirements are fulfilled by existing
systems, namely microservices frameworks, oltp systems, actor
programming frameworks, and stream processors.

3.1 Microservices frameworks
Transactions. The most widespread solutions for performing
transactions in microservices frameworks are sagas [11] and
application-level transaction managers implementing the Java
Transactions api (jta). A transaction in the saga pattern al-
lows microservices to make local state changes (e.g., book a
flight/hotel) independently of the rest of the microservices taking
part in the transaction. On failure, all microservices that have
already updated their state, need to issue compensating actions
(e.g., cancel the flight booking). sagas pose two main issues:
i) state consistency across microservices cannot be achieved and
ii) not every action can be compensated. Various web application
development frameworks, such as Spring, offer eXtended Trans-
actions (xa), an implementation of 2pc with acid-like properties
for web applications [18]. The solutions based on application-
level transaction managers require a tight coupling of services,
and demand from developers to implement 2pc functions (e.g.,
prepare and abort) in application-level code which is very error
prone and necessitates deep understanding of database concepts.
State Locality. The state locality requirement contradicts the
design of stateless microservices, which dictates handing over
the responsibility of persisting state to an external database sys-
tem. Thus, current microservice frameworks fail to fulfill this
requirement. Scaling-out microservices requires very sophisti-
cated design of the backing database architecture. The service’s
state in these cases is external; accessing it requires a call to an
external system, introducing latency.
Global State View. Microservices frameworks are not suitable
for providing global state views. Since each microservice owns its
data and state, having a complete view over the complete system’s
data state requires manually making a snapshot of all services’
individual databases and importing those in a central database
to perform analytics. Such a process cannot be done without
special software and protocols; naively dumping all individual
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databases into a data warehouse without taking down all services
in advance will most certainly result into data inconsistencies.
Debugging & Auditing. Developing microservices using event-
sourcing and Command Query Responsibility Segregation (cqrs)
[5] allows developers to replay message exchanges between ser-
vices and debug their applications by rebuilding the state of an
application at the time that a bug occurred.

3.2 Distributed OLTP Systems
Distributed OnLine Transaction Processing (oltp) systems such
as VoltDB [21] and H-Store [15], can be used as a backend for
edas since they provide scalability, consistency, global view of
the application state, and analytics. However, they introduce a
number of issues. First, oltp systems require that transactional
code is included in the database as a stored procedure. However,
transactional code is often an indivisible part of application code,
a microservice’s business logic for instance. Pushing the business
logic into the database is largely disliked [2]. Second, distributed
oltp systems partition their state as they see fit, yet in order to
achieve low latency, the state of each service should be locally
available and even in the same memory space as the service itself.
Finally, having one distributed database that manages the state
of all applications goes against loose-coupling and requires that
different services agree on a given schema, database system, etc.

3.3 Actor programming frameworks
Actors are good examples of loosely-coupled systems, that can be
reconfigured in the presence of failures and environment changes.
In addition, effective debugging can be achieved by use of the
event sourcing and cqrs patterns, like in reactive microservices.
Erlang, Akka, and Microsoft Orleans are popular actor-based
programming frameworks. In the rest of this section, we focus
on Orleans, which offers the highest level of abstraction among
actor-based systems.
Transactions. Actors in general do not providemeans for execut-
ing distributed transactions. Orleans appears to be implementing
some form of acid transactions with 2pc based on batching [10].
Global State View & Analytics. Actors can offer state locality
but they lack the capability to provide a consolidated view of
the global state and perform analytics on that state. For instance,
Orleans can save the persistent state of actors locally or in inex-
pensive cloud storage that can be replicated for scalability and
fault tolerance. Adopting the encapsulation principle, each actor
has local access to its own data and state and restricted access
to the state of other actors as per their public interface. This
organization works for established actor-local operations, but
leaves much to be desired in terms of a consistent global state
view that can be used to answer queries on the complete state of
an application. Performing analytics on global state in an actor
system would be similar to a microservices.

3.4 Stream Processing Systems
So far stream processors are primarily known for their capacity
to support high-throughput and low-latency analytics. However,
modern stream processors such as Apache Flink [7], also support
distributed state consistency via exactly-once state processing
guarantees. Stream processors can serve as a platform for run-
ning edas in a scalable [16] and consistent fashion [6]. We argue
that additional research needs to be performed in order for stream
processors to be able to satisfy the operational requirements of

edas, namely transactions, query-able global state, and loose cou-
pling at the api level. Current stream processors lack appropriate
programming models that allow developing microservice archi-
tectures. At present, they only offer functional apis focused on
bulk event processing, rather than message exchange that allows
for loose microservice coupling. Moreover, stream processor sys-
tems need transactional facilities to support advanced business
logic and coordination. The only two exceptions that are avail-
able at the time of writing are i) a closed-source implementation
of multi-key transactions in Apache Flink, as well as S-Store [19],
which provides acid guarantees on shared mutable state on a
single machine. Having a global state view of an application is
also missing. Apache Flink, for instance, only supports external
querying of a single operator’s state.

Finally, stream processors can serve as a good basis for debug-
ging distributed services. For instance, message brokers, such
as Apache Kafka [17], can be used for storing all messages that
are exchanged among microservices and replaying them during
debugging. Moreover, Apache Flink’s savepoints3 can be used to
replay events from a specific past consistent state of the stream
topology in order to debug an application.

4 THE ROAD AHEAD
This section summarizes the research directions our community
needs to take in order to realize the operational stream processing
vision. We envision edas to be authored in a service-oriented
api. Such an api would enable a service to have custom business
logic, to communicate with other services via (a)synchronous
message exchange, and to have access to local state.

A set of services authored in that api can be compiled into
a dataflow graph, an example of which is depicted in Figure 1.
Edges represent channels of message exchange among services.
Vertices execute custom business logic, and are given access to
managed local state. The dataflow engine takes care of the state’s
consistency, as well as the routing and exactly-once processing
of messages within services. For the services executing in the
dataflow graph to send and receive requests to/from external
systems, they have to write or read to a message queue/log (e.g.,
Apache Kafka). This, not only enables exactly-once processing
and delivery of messages, but it can also hide failures from the
application programmers who can assume that, if a message
has been sent, their application will receive an answer to that
message exactly-once. Finally, certain parts of the inputs can be
replayed in order to debug/audit a given service deployment.

One would argue that such an architecture could be imple-
mented on existing systems such as Apache Flink, Samza, or
Kafka. However, a set of requirements that we introduced in the
previous section remain unsatisfied and require further research.
Transactions. Current dataflow systems guarantee consistency
of single-event changes on a given partition of state. In order
to guarantee consistency during multi-key, multi-partition state
changes, we need to extend existing approaches of consistent
snapshots [6] drawing ideas from distributed systems [9], and
traditional oltp systems. Some form of timestamp-based concur-
rency control could be employed [4, 13], especially given that
processing- or event-time is a first-class citizen of all events en-
tering a stream processor. Furthermore, we can invent 2pc-like
protocols that take advantage of the fifo connections between
computation vertices in dataflow graphs, and ensure the order in
which transactions arrive and state changes are applied.
3 https://ci.apache.org/projects/flink/flink-docs-stable/ops/state/savepoints.html
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Figure 1: A set of services running inside a streaming
dataflow graph. The business logic of services runs as an
operator that processes messages and produces responses,
the state of the service is managed by the dataflow engine,
and all inputs and outputs of a given system are logged.

(Non-Dataflow) APIs for Loosely-coupled Services. Current
dataflow systems only allow developers to author data pipelines,
by defining data dependencies among operators and user-defined
functions such as Map and Reduce in an explicit manner. To allow
developers to develop loosely-coupled data-intensive services,
we need novel apis which will allow developers to individually
develop, test, and debug services. Those services can be auto-
matically compiled into a single, efficient, and scalable dataflow
graph. To this end, we can derive the data dependencies from the
defined messages/endpoints that applications send to each other,
building the dataflow graph dynamically.
Consistent Access to Global State. Consistent snapshots [6]
of transactional dataflows need to provide safe and consistent
read access to global state, i.e., we need the means to execute
distributed queries over the state of different operators. More
specifically, we could provide the means for services to publish
(views over) their state on top of which other services can build
materialized views. Materialized views can maintain fresh results
[12] and guarantee locality.
Dynamic (re)configuration. Currently, dataflow systems build
a dataflow graph statically and then parallelize and deploy it,
since all the data dependencies among operators are pre-defined.
However, frequent and independent updates of services necessi-
tate highly dynamic graphs with network channels that can be
created or destroyed at any given time during the execution of
a service. The ultimate goal is that the performance of existing
services is not affected by changes in the dataflow graph. An
important use case of dynamic configuration is the automatic
parallelization of services. As we mentioned earlier, each service
obtains access to managed local state. However, both the state
and the input messages that are directed to a given service should

be partitioned whenever possible, in order to ensure parallel exe-
cution. To this end, given a key for each state object, we aim at
automatically parallelizing and even replicating service deploy-
ments and optimizing them for throughput and latency, without
sacrificing consistency.

5 CONCLUSIONS & FUTUREWORK
In this paper we made a case for using streaming dataflow sys-
tems as a backend for stateful event-driven applications, such
as microservices. We listed a set of requirements that include
acid transactions, global state consolidation, and the need for de-
bugging and auditing. We then used those requirements to draw
a rough outline of the future work that we believe has to take
place, to materialize the vision of operational stream processing.
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ABSTRACT
Recently, an optimal probability distribution was proposed to

sample vertices for estimating betweenness centrality, that yields

the minimum approximation error. However, it is computation-

ally expensive to directly use it. In this paper, we investigate

exploiting Metropolis-Hastings technique to sample based on

this distribution. As a result, first given a networkG and a vertex

r ∈ V (G), we propose a Metropolis-Hastings MCMC algorithm

that samples from the space V (G) and estimates betweenness

score of r . The stationary distribution of our MCMC sampler is

the optimal distribution. We also show that our MCMC sampler

provides an (ϵ,δ )-approximation. Then, given a network G and

a set R ⊂ V (G), we present a Metropolis-Hastings MCMC sam-

pler that samples from the joint space R and V (G) and estimates

relative betweenness scores of the vertices in R. We show that

for any pair ri , r j ∈ R, the ratio of the expected values of the

estimated relative betweenness scores of ri and r j with respect

to each other is equal to the ratio of their betweenness scores.

We also show that our joint-space MCMC sampler provides an

(ϵ,δ )-approximation of the relative betweenness score of ri with
respect to r j .

1 INTRODUCTION
Centrality is a structural property of vertices (or edges) in a net-

work that quantifies their relative importance. For example, it

determines the importance of a person within a social network,

or a road within a road network. Freeman [14] introduced and

defined betweenness centrality of a vertex as the number of short-

est paths from all (source) vertices to all others that pass through

that vertex. He used it for measuring the control of a human over

the communications among others in a social network [14]. Be-

tweenness centrality is also used in some well-known algorithms

for clustering and community detection in social and information

networks [16].

Although there exist polynomial time and space algorithms

for betweenness centrality computation, the algorithms are ex-

pensive in practice. Currently, the most efficient existing exact

method is Brandes’s algorithm [5]. Time complexity of this al-

gorithm is O(nm) for unweighted graphs and O(nm + n2 logn)
for weighted graphs with positive weights, where n andm are

the number of vertices and the number of edges of the network,

respectively. This means exact betweenness centrality compu-

tation is not applicable, even for mid-size networks. However,

there exist observations that may improve the computation of

betweenness scores in practice.
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• First, in several applications it is sufficient to compute

betweenness score of only one or a few vertices. For in-

stance, this index might be computed for only core vertices

of communities [23] in social/information networks or for

only hubs in communication networks. Chehreghani [9]

has discussed some situations where it is required to com-

pute betweenness score of only one vertex. Note that these

vertices are not necessarily those that have the highest be-

tweenness scores. Hence, algorithms that identify vertices

with the highest betweenness scores [21] are not applica-

ble. While exact computation of this index for one vertex

is not easier than that for all vertices, Chehreghani [9]

and later Riondato and Kornaropoulos [21] respectively

showed that this index can be estimated more effectively

for one arbitrary vertex and for k vertices that have the

highest scores.

• Second, in practice, instead of computing betweenness

scores, it is usually sufficient to compute betweenness ratios
or rank vertices according to their betweenness scores [21].
For example, Daly and Haahr [12] exploited betweenness

ratios for finding routes that provide good delivery per-

formance and low delay in Mobile Ad hoc Networks. The

other application is handling cascading failures [1].

While the above mentioned observations do not yield a better

algorithm when exact betweenness scores are used, they may

improve approximate algorithms. In the current paper, we exploit

both of these observations to design more effective approximate

algorithms. In the first problem studied in this paper, we assume

that we are given a vertex r ∈ V (G) and we want to estimate

its betweenness score. In the second problem, we assume that

we are given a set R ⊂ V (G) and we want to estimate the ratios

of betweenness scores of vertices in R. The second problem is

formally defined as follows: given a graph G and a set R ⊂ V (G),
for any two vertices ri and r j in R, we want to estimate the

relative betweenness score of ri with respect to r j , denoted by

BCr j (ri ) (see Equation 8 of Section 4.3 for the formal definition

of relative betweenness score). The ratio of the expected values

of our estimations of BCr j (ri ) and BCri (r j ) is equal to the ratio
of betweenness scores of ri and r j .

In [9], Chehreghani presented the optimal probability distri-

bution for estimating betweenness centrality, that yields the min-

imum approximation error 0. However, this distribution cannot

be directly used, as computing the constant factor of probabil-

ity densities is computationally expensive. A natural solution

for this problem is to use Metropolis-Hastings sampling [18].

In this short paper, we investigate the possibility of using such

a sampling method for the two aforementioned problems and

theoretically analyze the resulted algorithms. More precisely, our

key contributions are as follows.

• Given a graphG and a vertex r ∈ V (G), in order to estimate

betweenness score of r , we develop an MCMC sampler
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that samples from the space V (G). Unlike existing work,
our samples are non-iid and the stationary distribution of

our MCMC sampler is the optimal probability distribution
[9]. We also show that our MCMC sampler provides an

(ϵ,δ )-approximation of the betweenness score of r (ϵ ∈ R+

and δ ∈ (0, 1)).

• Given a graph G and a set R ⊂ V (G), in order to estimate

relative betweenness scores of all pairs of vertices in R,
we develop an MCMC sampler that samples from the joint

space R and V (G). This means each sample (state) in our

MCMC sampler is a pair ⟨r, v⟩, where r ∈ R and v ∈ V (G).
For any two vertices ri , r j ∈ R, we show that our joint-

space MCMC sampler provides an (ϵ,δ )-approximation of

the relative betweenness score of ri with respect to r j .

Techniques similar to our algorithm (the second algorithm

that estimate relative betweenness centrality) have already been

used in statistical physics to estimate free energy differences [3].
However, they are new in the context of network analysis. Our

current work takes the first step in bridging these two domains.

This step can be further extended by proposing algorithms similar

to our work for estimating other network indices. As a result,

a novel family of techniques might be introduced to the field

of network analysis. We leave efficient implementations of our

proposed algorithms and evaluating their empirical efficiency for

future work.

2 PRELIMINARIES
Throughout the paper, G refers to a graph (network). For sim-

plicity and without loss of generality, we assume that G is an

undirected, connected and loop-free graph without multi-edges.

Also, we assume that G is an unweighted graph, unless it is ex-

plicitly mentioned thatG is weighted.V (G) and E(G) refer to the
set of vertices and the set of edges ofG , respectively. For a vertex
v ∈ V (G), byG \v we refer to the set of connected graphs gener-

ated by removing v fromG . A shortest path between two vertices

u,v ∈ V (G) is a path whose size is minimum, among all paths

between u and v . For two vertices u,v ∈ V (G), we use d(u,v), to
denote the size (the number of edges) of a shortest path connect-

ing u and v . By definition, d(u,u) = 0 and d(u,v) = d(v,u). For
s, t ∈ V (G), σst denotes the number of shortest paths between s
and t , and σst (v) denotes the number of shortest paths between s
and t that also pass through v . Betweenness centrality of a vertex

v is defined as:

BC(v) =
1

|V (G)| · (|V (G)| − 1)

∑
s,t ∈V (G)\{v }

σst (v)

σst
.

A notion which is widely used for counting the number of short-

est paths in a graph is the directed acyclic graph (DAG) con-

taining all shortest paths starting from a vertex s (see e.g., [5]).
In this paper, we refer to it as the shortest-path-DAG, or SPD
in short, rooted at s . For every vertex s in graph G, the SPD
rooted at s is unique, and it can be computed in O(|E(G)|) time

for unweighted graphs and inO (|E(G)| + |V (G)| log |V (G)|) time

for weighted graphs with positive weights [5]. Brandes [5] in-

troduced the notion of the dependency score of a vertex s ∈

V (G) on a vertex v ∈ V (G) \ {s}, which is defined as: δs•(v) =∑
t ∈V (G)\{v,s } δst (v), where δst (v) =

σst (v)
σst .We have: BC(v) =

1

|V (G) | ·( |V (G) |−1)

∑
s ∈V (G)\{v } δs•(v).

A Markov chain is a sequence of dependent random variables

(states) such that the probability distribution of each variable

given the past variables depends only on the last variable. An

MCMC has stationary distribution if the conditional distribution

of the k + 1
th

state given the kth state does not depend on k .
Let P[x] be a probability distribution defined on the random

variable x . When the function f (x), which is proportional to

the density of P[x], can be efficiently computed, the Metropolis-

Hastings algorithm is used to draw samples from P[x]. In a simple

form (with symmetric proposal distribution), the Metropolis-

Hastings algorithm first chooses an arbitrary initial state x0. Then,
iteratively: i) let x be the current state. It generates a candidate

x ′ using the proposal distribution q(x ′ |x), and ii) it moves from

x to x ′ with probability min

{
1,

f (x ′)

f (x )

}
. The proposal distribution

q(x ′ |x) defines the conditional probability of proposing a state

x ′ given the state x . In the Independence Metropolis-Hastings
algorithm, q(x ′ |x) is independent of x , i.e., q(x ′ |x) = д(x ′).

3 RELATEDWORK
Brandes [5] introduced an efficient algorithm for computing be-

tweenness centrality of a vertex, which is performed inO(|V (G)| |E(G)|)
and O(|V (G)| |E(G)| + |V (G)|2 log |V (G)|) times for unweighted

andweighted networkswith positiveweights, respectively. Çatalyürek

et. al. [7] presented the compression and shattering techniques

to improve efficiency of Brandes’s algorithm for large graphs.

The two natural extension of betweenness centrality to sets of

vertices are group betweenness centrality [13] and co-betweenness
centrality [8]. Brandes and Pich [6] and Bader et.al. [2] proposed

approximate algorithms based on selecting k source vertices

and computing dependency scores of them on the other ver-

tices in the graph. To estimate betweenness score of vertex v ,
Chehreghani [9] presented a non-uniform sampler, defined as

follows: P[s] = 1/d (v,s)∑
u∈V (G )\{v } 1/d (v,u)

, where s ∈ V (G)\{v}. Similar

to these algorithms, our proposed algorithms are source vertex
samplers, too. However, they use a new mechanism for sampling

which is based on the Metropolis-Hastings algorithm. Riondato

and Upfal [22] introduced a pair sampler for estimating between-

ness scores of all (or top-k) vertices in a graph. Riondato and

Kornaropoulos [21] and Borassi and Natale [4] presented shortest
path samplers for estimating betweenness centrality of all ver-

tices or the k vertices that have the highest betweenness scores.

The algorithm of [4] uses balanced bidirectional BFS (bb-BFS) to

sample shortest paths. In bb-BFS, a BFS is performed from each of

the two endpoints s and t , in such a way that they are likely to ex-

plore about the same number of edges. Finally, Chehreghani et.al.

[11] presented exact and approximate algorithms for computing

betweenness centrality in directed graphs.

4 MCMC ALGORITHMS FOR ESTIMATING
BETWEENNESS CENTRALITY

In this section, we present our MCMC sampler for estimating

betweenness score of a single vertex; and our joint-space MCMC

sampler for estimating relative betweenness scores of vertices in

a given set.

4.1 Betweenness centrality as a probability
distribution

Chehreghani [9] presented a randomized algorithm that admits

a probability mass function as an input parameter. Then, he pro-

posed an optimal sampling technique that computes betweenness

score of a vertex r ∈ V (G)with error 0. In optimal sampling, each
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vertex v is chosen with probability

Pr [v] =
δv•(r )∑

v ′∈V (G) δv ′•(r )
(1)

In other words, for estimating betweenness score of vertex r , each
source vertex v ∈ V (G) whose dependency score on r is greater
than 0, is chosen with probability P [v] defined in Equation 1.

In the current paper, for r ∈ V (G) we want to estimate BC(r )
and also for all pairs of vertices ri , r j in a set R ⊂ V (G), the ra-

tios
BC(ri )
BC(r j )

. For this purpose, we follow a source vertex sampling
procedure where for each vertex r , we consider Pr [·] defined in

Equation 1 as the target probability distribution used to sample

vertices v ∈ V (G). It is, however, computationally expensive to

calculate the normalization constant

∑
v ′∈V (G) δv ′•(r ) in Equa-

tion 1, as it gives the betweenness score of r . However, for two
vertices v1,v2 ∈ V (G), it might be feasible to compute the ratio

Pr [v1]

Pr [v2]
=

δv
1
•(r )

δv
2
•(r )

, as it can be done in O(|E(G)|) time for un-

weighted graphs and in O(|E(G)| + |V (G)| log |V (G)|) time for

weighted graphs with positive weights. This motivates us to pro-

pose Metropolis-Hastings sampling algorithms that for a vertex

r , sample each vertex v ∈ V (G) with the probability distribution

Pr [v] defined in Equation 1.

4.2 A single-space MCMC sampler
In this section, we propose an MCMC sampler, defined on the

space V (G), to estimate betweenness centrality of a single vertex

r . Our MCMC sampler consists of the following steps:

• First, we choose a vertex v0 ∈ V (G), as the initial state,
uniformly at random.

• Then, at each iteration t , 1 ≤ t ≤ T :
– Let v(t) be the current state of the chain.
– We choose vertex v′(t) ∈ V (G), uniformly at random.

– With probability min

{
1,

δv′(t )•(r )
δv(t )•(r )

}
we move from state

v(t) to the state v′(t).

The sampler is an iterative procedure where at each iteration

t , one transition may occur in the Markov chain. Let M be the

multi-set (i.e., the set where repeated members are allowed) of

samples (states) accepted by our sampler. In the end of sampling,

betweenness score of r is estimated as

ÞBC(r ) =
1

(T + 1)(|V (G)| − 1)

∑
v ∈M

∑
u ∈V (G)\{v }

σvu (r )

σvu
. (2)

This estimation does not give an unbiased estimation of BC(r ),
however as we discuss below, by increasingT , ÞBC(r ) can become

arbitrarily close to BC(r ). In the rest of this section, we show that

our MCMC sampler provides an (ϵ,δ )-approximation of BC(r ),
where ϵ ∈ R+ and δ ∈ (0, 1).

Theorem 4.1. Let δ (r ) be the average of dependency scores of

vertices in V (G) on r , i.e., δ (r ) =
∑
v∈V (G ) δv•(r )

|(V (G) |
, and ∆(r ) be the

maximum dependency score that a vertex in G has on r . Let also
µ(r ) denote ∆(r )

δ (r )
. Then, for a given ϵ ∈ R+, by our MCMC sampler

and starting from any arbitrary initial state, we have

P
[
| ÞBC(r ) − BC(r )| > ϵ

]
≤ 2 exp

{
−
T

2

(
2ϵ(|V (G)| − 1)

µ(r )∆(r )
−

3

T

)
2

}
.

(3)

Due to space limitations, in this short paper we omit all the

proofs. However, the interested reader may find them in a longer

version of this text in [10]. In general, our (ϵ,δ )-approximation

proofs are based on a theorem presented in [17] for the concen-

tration analysis of MCMC samples and a theorem presented in

[19] for the uniformly ergodicity of Independence Metropolis-

Hastings algorithms.

Note that Inequality 3 does not depend on the initial state.

Furthermore, in Inequality 3 it is not required to discard an initial

part of the chain, called burn-in. More details on this can be found

in [10]. T is usually large enough so that we can approximate
3

T
by 0. Hence, Inequality 3 yields that for given values ϵ ∈ R+ and

δ ∈ (0, 1), if T is chosen such that

T ≥
µ(r )2∆(r )2

2ϵ2(|V (G)| − 1)2
ln

2

δ
(4)

our MCMC sampler will estimate the betweenness score of r
within an additive error ϵ with a probability at least 1 − δ .

4.3 A joint-space MCMC sampler
In this section, we present an MCMC sampler to estimate the

ratios of betweenness scores of the vertices in a set R ⊂ V (G).
Each state of this sampler is a pair (r, v), where r ∈ R and v ∈

V (G). Since this sampler is defined on the joint space R andV (G),
we refer to it as joint-space MCMC sampler. Given a state s of the

chain, we denote by s.r the first element of s, which is a vertex in

R; and by s.v the second element of s, which is a vertex in V (G).
Our joint-spaceMCMC sampler consists of the following steps:

• First, we choose a pair ⟨r0, v0⟩, as the initial state, where r0
and v0 are chosen uniformly at random from R and V (G),
respectively.

• Then, at each iteration t , 1 ≤ t ≤ T :
– Let s(t) be the current state of the chain.
– We choose elements r(t) ∈ R and v(t) ∈ V (G), uniformly

at random.

– With probability min

{
1,

δv(t )•(r(t ))
δs(t ).v•(s(t ).r)

}
we move from

state s(t) to the state ⟨r(t), v(t)⟩.

Techniques similar to our joint-space MCMC sampler have

been used in statistical physics to estimate free energy differences
[3]. Our joint-space MCMC sampler is a Metropolis-Hastings

algorithm that possesses a unique stationary distribution [15, 20]

defined as follows:

P [r ,v] =
δv•(r )∑

r ′∈R
∑
v ′∈V (G) δv ′•(r ′)

. (5)

All samples that have a specific value r for their r component

form an Independence Metropolis-Hastings chain that possesses

the stationary distribution defined in Equation 1. Samples drawn

by our MCMC and joint-space MCMC samplers are non-iid. In

Theorem 4.2, we showhow our joint-spaceMCMC sampler can be

used to estimate the ratios of betweenness scores of the vertices

in R.

Theorem 4.2. In our joint-space MCMC sampler, for any two
vertices ri , r j ∈ R, we have:

BC(ri )

BC(r j )
=
EPrj [v]

[
min

{
1,

δv•(ri )
δv•(r j )

}]
EPri [v]

[
min

{
1,

δv•(r j )
δv•(ri )

}] (6)

whereEPri [v] (respectivelyEPrj [v]) denotes the expected value with
respect to Pri [v] (respectively Pr j [v]).

The proof of Theorem 4.2 is based on the detailed balance
property of Metropolis-Hastings algorithms and can be found in

[10].
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Let ri , r j ∈ R, andM(i) andM(j) be the multi-sets of samples

taken by our joint-space MCMC sampler whose r components

are respectively ri and r j . Equation 6 suggests to estimate
BC(ri )
BC(r j )

as the ratio:

1

|M (j) | ×
∑
s∈M (j)min

{
1,

δs.v(ri )
δs.v(r j )

}
1

|M (i) | ×
∑
s∈M (i)min

{
1,

δs.v(r j )
δs.v(ri )

} . (7)

We use Equation 7 to estimate the ratio of the betweenness
scores of ri and r j . We then define the relative betweenness score
of ri with respect to r j , denoted by BCr j (ri ), as follows:

BCr j (ri ) =
1

|V (G)|

∑
v ∈V (G)

min

{
1,
δv•(ri )

δv•(r j )

}
. (8)

When we want to compare betweenness centrality of vertices ri
and r j , using relative betweenness score makes more sense than

using the ratio of betweenness scores. In relative betweenness

centrality, for each v ∈ V (G), the ratio of the dependency scores

of v on ri and r j is computed and in the end, all the ratios are

summed. Hence, for each vertex v independent from the others,

the effects of ri and r j on the shortest paths starting from v are

examined. Note that the notion of relative betweenness score can
be further extended and presented as follows:

BCr j (ri ) =

∑
v ∈V (G)

∑
t ∈V (G)\{v } min

{
1,

δvt (ri )
δvt (r j )

}
|V (G)| · (|V (G)| − 1)

.

In the following, we show that the numerator of Equation 7,

i.e.,

1

|M(j)|

∑
s∈M (j)

min

{
1,
δs.v(ri )

δs.v(r j )

}
,

can accurately estimateBCr j (ri ).We refer to this value as ÞBCr j (ri ).
For a pair of vertices ri , r j ∈ R, in Theorem 4.3 we derive an error

bound for ÞBCr j (ri ).

Theorem 4.3. Let ri , r j ∈ R, M(j) be the multi-set of samples
whose r components are r j , and δ (r j ) be the average of dependency

scores of vertices inV (G) on r j , i.e., δ (r j ) =
∑
v∈V (G ) δv•(r j )

|(V (G) |
. Suppose

that there exists some value µ(r j ) such that for each vertexv ∈ V (G),
the following holds: δv•(r j ) ≤ µ(r j ) × δ (r j ). Then, for a given
ϵ ∈ R+, by our joint-space MCMC sampler and starting from any
arbitrary initial state, we have

P
[
| ÞBCr j (ri ) − BCr j (ri )| > ϵ

]
≤ 2 exp

{
−
|M(j)| − 1

2

(
2ϵ

µ(ri )
−

3

|M(j)| − 1

)
2

}
. (9)

Similar to Inequality 3, Inequality 9 does not depend on the

initial state and it holds without need for burn-in. Furthermore,

for given values ϵ ∈ R+ and δ ∈ (0, 1), if we have

|M(j)| ≥
µ(r j )

2

2ϵ2
ln

2

δ
,

then our joint-space MCMC sampler can estimate relative be-

tweenness score of ri with respect to r j within an additive error

ϵ with a probability at least 1 − δ .

5 CONCLUSION
In this paper, first given a network G and a vertex r ∈ V (G), we
proposed a Metropolis-Hastings MCMC algorithm that samples

from the space V (G) and estimates betweenness score of r . We

showed that ourMCMC sampler provides an (ϵ,δ )-approximation.

Then, given a network G and a set R ⊂ V (G), we presented a

Metropolis-Hastings MCMC sampler that samples from the joint

space R and V (G) and estimates relative betweenness scores of

the vertices in R. We showed that for any pair ri , r j ∈ R, the ra-
tio of the expected values of the estimated relative betweenness

scores of ri and r j with respect to each other is equal to the ratio

of their betweenness scores. We also showed that our joint-space

MCMC sampler provides an (ϵ,δ )-approximation of the relative

betweenness score of ri with respect to r j . We leave efficient im-

plementations of our proposed algorithms and evaluating their

empirical efficiency for future work.
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ABSTRACT
Copernicus is the European programme for monitoring the Earth.
It consists of a set of systems that collect data from satellites and
in-situ sensors, process this data and provide users with reliable
and up-to-date information on a range of environmental and
security issues. The data and information processed and dissemi-
nated puts Copernicus at the forefront of the big data paradigm,
giving rise to all relevant challenges, the so-called 5 Vs: volume,
velocity, variety, veracity and value. In this short paper, we dis-
cuss the challenges of extracting information and knowledge
from huge archives of Copernicus data. We propose to achieve
this by scale-out distributed deep learning techniques that run
on very big clusters offering virtual machines and GPUs. We
also discuss the challenges of achieving scalability in the man-
agement of the extreme volumes of information and knowledge
extracted from Copernicus data. The envisioned scientific and
technical work will be carried out in the context of the H2020
project ExtremeEarth which starts in January 2019.

1 INTRODUCTION
Copernicus is the European programme for monitoring the Earth.
It consists of a set of systems that collect data from satellites and
in-situ sensors, process this data and provide users with reliable
and up-to-date information on a range of environmental and
security issues. The Earth observation satellites that provide the
data of Copernicus are the Sentinels, which are developed for the
specific needs of the Copernicus programme, and the contributing
missions, which are operated by national, European or interna-
tional organizations. The access to Sentinel data is regulated
by EU law and it is full, open and free. Information extracted
from Copernicus data is made available to users through the
Copernicus services addressing six thematic areas: land, marine,
atmosphere, climate, emergency and security.

The data and information processed and disseminated puts
Copernicus at the forefront of the big data paradigm, giving rise
to all relevant challenges, the so-called 5 Vs, discussed below.

Volume: The repository of Sentinel products managed by the
European Space Agency (ESA) has so far published more than
5 million products, and it has more than 100 thousand users
© 2019 Copyright held by the owner/author(s). Published in Proceedings of the
22nd International Conference on Extending Database Technology (EDBT), March
26-29, 2019, ISBN 978-3-89318-081-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

who have downloaded more than 50 PB of data since the start
of the operations of the system. This volume will increase in the
following years, as new Sentinel satellites are launched.

Velocity: Copernicus data has to be delivered and processed in
a short time frame to allow the provision of 24/7 information to
users requiring fast responses. By the end of 2016, 6 TB of data
were generated and 100 TB of data were disseminated every day
from the Sentinel product repository. These rates will increase
in forthcoming years as new Sentinel satellites are launched.

Variety: The Sentinel satellites have different types of sensors
(e.g., radar and optical) and different levels of processing (from
raw data to advanced products). Moreover, datasets used for
geospatial applications can be not only satellite data but also
aerial imagery, in-situ data and other collateral information (e.g.,
public government data). This wealth of data is processed by
Earth Observation actors to extract information and knowledge.
This information and knowledge is also big and similar big data
challenges apply. For example, 1PB of Sentinel data may consist
of about 750.000 datasets which, when processed, about 450TB
of content information and knowledge (e.g., classes of objects
detected) can be generated.

Veracity:Decision-making and operations require reliable sources.
Thus, assessing the quality of the data is important for the whole
information extraction chain.

Value: The extraction of information from the Copernicus
data has direct economic benefits for Europe. Several economic
studies have concluded that the Copernicus programme has the
potential to significantly impact job creation, innovation and
growth. The Copernicus Market report of 2016 estimates that the
overall investment in Copernicus will reach EUR 7.4 billion in the
years 2008-2020, while the cumulative economic value generated
by it in the same period will be around EUR 13.5 billion, and it
will support 28.030 job years in the Earth Observation sector.

An important activity related to Copernicus is the thematic ex-
ploitation platforms (TEPs) of the European Space Agency (ESA).
A TEP is a collaborative, virtual work environment addressing a
class of users and providing access to EO data, algorithms and
computing/networking resources required to work with them,
through one coherent interface. The fundamental principle of the
TEPs is to move the user to the data and tools as opposed to the
traditional approach of downloading, replicating, and exploiting
data “at home”. Now the user community is present and visible in
the platform, involved in its governance and and enabled to share
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and collaborate. There are currently 7 TEPs addressing the fol-
lowing application areas: coastal, forestry, hydrology, geohazards,
polar, urban themes, and food security.

Another important development in the context of Copernicus
is the implementation of five Copernicus Data and Information
Access Services (DIAS). The European Commission has awarded
in December 2017 four contracts to industrial consortia for the
development of four cloud-based platforms for Copernicus DIAS.
The fifth DIAS is built by EUMETSAT in collaboration with Mer-
cator Ocean and the EuropeanCentre forMedium-RangeWeather
Forecasts. Like the TEPs, these five platforms will also bring com-
puting resources close to the data and enable an even greater
commercial exploitation of Copernicus data.

Although the TEPs and DIAS activities funded by ESA have
been welcomed by the EO data user community, they both have
a significant disadvantage: they target users that are experts in
EO data and technologies, and ignore the myriad of software
developers that might not be experts in EO but still have a lot
to gain by integrating EO data in their applications. Therefore,
opening up the TEPs and DIASs by extracting information and
knowledge hidden in the data, publishing this information and
knowledge using linked data technologies, and interlinking it with
data in other TEPs and DIASs and other non-EO data, informa-
tion and knowledge can be an important way of making the
development of downstream applications easy for both EO and
non-EO experts.

In the last few years, there have been four highly successful
European research projects that have pursued this idea: the FP7
projects TELEIOS , LEO and Melodies , and the on-going project
Copernicus App Lab . These projects pioneered the use of linked
geospatial data in the EO domain, and demonstrated the potential
of linked data and semantic web technologies by developing pro-
totype environmental and business applications. However, none
of these projects has faced the challenges of big data, information
and knowledge that users and application developers are facing in
the context of the Copernicus program. The above four projects
have developed tools for knowledge discovery and data mining
from satellite images and related geospatial data sets, as well as
tools for linked geospatial data integration, querying and analyt-
ics. However, none of these tools scales to the many PBs of data,
information and knowledge present in the Copernicus context. For
example, the state-of-the art geospatial and temporal RDF store
Strabon implemented in TELEIOS [15] can only handle up to 100
GBs of point data and still be able to answer simple geospatial
queries (selections over a rectangular area) efficiently (in a few
seconds). Competitor systems like GraphDB by company Onto-
Text performs similarly [2]. If the complexity of geometries in
the dataset increases (i.e., we have multi-polygons), not even the
aforementioned performance can be achieved for both Strabon
and GraphDB.

In addition, contrary to multimedia images, for which highly
scalable Artificial Intelligence techniques based on deep neural
network architectures have been developed by big North Amer-
ican companies such as Google and Facebook recently [7, 8],
similar architectures for satellite images, that can manage the ex-
treme scale and characteristics of Copernicus data, do not exist
today. The deep neural network architectures can classify ef-
fectively and efficiently multimedia images because they have
been trained using extremely large benchmark datasets consist-
ing of millions of images (e.g., ImageNet ) and have utilized the
power of big data, cloud and GPU technologies. Training datasets
consisting of millions of data samples in the Copernicus context

do not exist today and published deep learning architectures for
Copernicus satellite images typically run using one GPU and do
not take advantage of recent advances like distributed scale-out
deep learning [8].

2 MAIN OBJECTIVE AND TECHNICAL
CHALLENGES

The main objective of ExtremeEarth is to go beyond the four
projects mentioned above by developing extreme Earth analytics
techniques and technologies that scale to the PBs of big Copernicus
data, information and knowledge, and applying these technologies
in two of the ESA TEPs: Food Security and Polar. The technologies
to be developed will extend the HOPS data platform [9, 12, 13, 17]
to offer unprecedented scalability to extreme data volumes and
scale-out distributed deep learning for Copernicus data. The
extended HOPS data platform will run on a DIAS selected after
the project starts and will be available as open source to enable its
adoption by the strong European Earth Observation downstream
services industry.

The detailed scientific and technical challenges of ExtremeEarth
are the following.

Challenge C1. To develop scalable deep learning and extreme
earth analytics techniques for Copernicus big data. The constella-
tions of Sentinel-1/2/3 satellites have the important capability to
acquire long time series of multispectral and Synthetic Aperture
Radar (SAR) images where the temporal dimension plays a very
important role for the characterization of the information con-
tent of the image (e.g., land cover or sea ice) and its dynamics.
Moreover, this results in the availability of very large archives
of images covering long time periods. Another key aspect of the
Sentinel missions is the multimodal structure of the platforms.
Different kinds of sensors (radar, optical, multi/multispectral) are
available and can be used in synergy. Each modality provides
specific information that can be used to cope with the limitations
of another. ExtremeEarth will advance the state of the art in
this area [20] by developing distributed scale-out deep learning
techniques for the classification of remote sensing images based
on architectures that can effectively exploit the spatial, spectral,
temporal and multimodal properties of Sentinel data.

Two deep learning architectures for the classification of Sen-
tinel remote sensing images will be developed; one for determin-
ing crop boundaries and type, and one for sea ice mapping. These
will be used in the two applications described in the Challenges
A1 and A2 below. The developed algorithms will be supported by
a scale-out open-source platform for distributed deep learning
and big data, based on the HOPS data platform [12].

Challenge C2. To develop very large training datasets for deep
learning architectures targeting the classification of Sentinel images.
In deep learning architectures, the availability of large amounts
of high quality training data is equally important to the learning
models. Computer vision and other image processing areas have
developed during the last few years huge training data sets (e.g.,
ImageNet) consisting of manymillions of objects. Satellite remote
sensing is largely lacking this development since the complexity
and physical meaning of the sensor data make the generation
of training datasets much more complex. Moreover, from an
operational viewpoint it is not feasible to assume the availability
of enough ground truth or annotated labeled data for training
a deep network. In this area, the largest benchmark dataset is
Eurosat which was proposed recently [11]. It uses Sentinel 2 data
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and covers 13 different spectral bands and 10 land cover classes
with a total of 27,000 labeled images.

In ExtremeEarth, we will develop tools to generate EO training
datasets by enlarging existing datasets currently in development
by the German Aerospace Center [4, 18] and by leveraging exist-
ing cartographic/thematic products which are now available at
continental or planetary scale (e.g., OpenStreetMap). Two train-
ing datasets consisting of millions of samples will be developed
aimed at the two deep learning architectures of Challenge C1.
The datasets will be published as open source to be used by the
whole Remote Sensing community.

Challenge C3. To develop techniques and tools for linked geospa-
tial data querying, federation and analytics that scale to big Coper-
nicus data, information and knowledge. The paradigm of linked
geospatial data and relevant technologies has been pioneered
by previous projects TELEIOS, LEO, Melodies and Copernicus
App Lab mentioned above. The technologies developed include
state-of-the-art systems for transforming geospatial data into
RDF (GeoTriples [16]), interlinking with other geospatial data
sources (geospatial/temporal extensions of Silk [21]), visualizing
(Sextant [5]), querying, federating (Semagrow [3]) and perform-
ing data analytics (Strabon [15] and Ontop-spatial [1]). These
systems are open-source and they currently represent the in-
ternational state-of-the-art in the area of linked geospatial and
EO data [6, 14]. In ExtremeEarth, the systems GeoTriples and
Strabon will be re-engineered so that they scale to big linked
geospatial data and extreme geospatial analytics. In addition, the
JedAI linking framework [19] will be extended to enable the scal-
able discovery of geospatial relations in big geospatial RDF data
sources. Finally, the engine Semagrow will be extended so that it
can manage efficiently federations of big geospatial data sources
and answer extreme geospatial analytical queries. To achieve the
required extreme scalability, we will develop these three systems
on top of the highly scalable HOPS data platform [12].

Challenge C4. To extend the capabilities for EO data discovery
and access with semantic catalogue services that scale to the big
data, information and knowledge of Copernicus. Currently, Coper-
nicus data catalogues (e.g., the Copernicus Open Access Hub or
the catalogues of the various TEPs) allow a user to access data
by drawing an area of interest on the map and specifying search
parameters such as sensing date, mission, satellite platform, prod-
uct type etc. The new semantics-based catalogue we will develop
in ExtremeEarth will expose the knowledge hidden in Sentinel
satellite images and related data sets, and will allow a user to ask
sophisticated queries such as “How many icebergs were embed-
ded in the Norske ÃŸer Ice Barrier at its maximum extent in 2017?”
which currently cannot be answered by the catalogue of the Nor-
wegian Meteorological Institute, although all this knowledge is
available in the Sentinel archive and related European data sets.
We will demonstrate how to develop semantics-based catalogues
and how to implement them efficiently for the extreme scale
of the Copernicus context using the advances of ExtremeEarth
in the area of big linked geospatial data discussed in Challenge
C3 above. Two semantic catalogues (one for each TEP) will be
developed operating in the selected DIAS platform and scaling
to trillions of metadata records.

Challenge C5. To integrate the big data and extreme earth ana-
lytics technologies of Challenges C1-C4 in the HOPS data platform
and deploy them in the selected DIAS and the two TEPs. The Ex-
tremeEarth technologies presented above will be implemented
and evaluated in the elastic cloud environment of the startup

LogicalClocks participating in the consortium. This cloud envi-
ronment is managed by LogicalClocks and currently provides
the HOPS data platform [9, 12, 13, 17] together with significant
storage, compute and GPU resources that will be made available
to the project. Copernicus data will also be made available in the
same environment and will be used to develop the ExtremeEarth
technologies. The HOPS data platform provides services to move
the processing to where the data is and it is based on a cloud
computing platform-as-a-service approach. HOPS supports state-
of-the-art parallel processing on big data with Apache Spark and
deep learning with TensorFlow/Keras , as well as distributed deep
learning using TensorFlow’s distribution strategies, including
collective allreduce and parameter server . HOPS also provides
its own libraries for parallel deep learning experiments (hyper-
parameter search and model-architecture search). Once the Ex-
tremeEarth technologies are integrated in HOPS, they will be
deployed in the two TEPs and the selected DIAS.

The technologies discussed above will be demonstrated in
two application areas: Food Security and Polar addressed by the
relevant ESA TEPs. The challenges to be addressed in these two
applications are the following.

Challenge A1. To develop high resolution water availability maps
for agricultural areas allowing a new level of detail for wide-scale ir-
rigation support. The maps will be available as linked data together
with other geospatial layers (e.g., OpenStreetMap, field boundaries,
crop types etc.) and made available to farmers. ExtremeEarth will
tackle the combination of hydrological and agricultural moni-
toring, both in the sense that the thematic areas will be brought
together, but also in the sense that the federation of the data
sources and the cloud platforms used for the processing will be
integrated. Both TEPs are already up and running, with the Food
Security TEP, as the youngest of the TEPs, still in its second
development phase, and the Polar TEP being in pre-operational
mode. On both platforms, the first pre-processing chains for the
information needed in ExtremeEarth are already running. These
will be the baseline for bringing the two applications together in
one combined application for irrigation. In practice this means
that processing has to be widened to include whole watersheds
(or catchment areas), to include all necessary Copernicus satellite
input data from radar and optical imagery and to span the whole
year instead of just the winter season or vegetation period. Addi-
tionally, scalable deep learning techniques discussed in Challenge
C1 will be used to derive field boundaries and crop types, making
it possible for the processing chains to include this information
as linked data on a large scale (formerly, this information was
only available at farm level). This will allow crop type specific
deduction of crop variables, and thus a higher degree of accuracy
for each field. The information generated with the ExtremeEarth
approach will then be fed into the PROMETmodel [10] to provide
high resolution (10m) water availability maps for the agricultural
area in the whole watershed, allowing a new level of detail for
wide-scale irrigation support. This application, which combines
different TEPs, different Earth observation types and remotely
sensed information and land surface modelling can be seen as
a blueprint for further such applications, where the focus will
lie on a federation of specialized knowledge and working envi-
ronments (data and workflows). This type of federation of TEPs
with methods, tools and data specialised for their topic rather
than one broad platform for everything is seen by us as the way
into the future.

Challenge A2. To produce high resolution ice maps from massive
volumes of heterogeneous Copernicus data. The maps will be made
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available as linked data and will be combined with other infor-
mation such as sea surface temperature and wind information for
informing maritime users. The anticipated economic development
of the Arctic, partially driven by reductions in sea ice cover, will
see an increase in maritime shipping activity. High quality, timely
and reliable information about sea ice and iceberg conditions is
vital to ensure that vessels navigate efficiently and safely with
minimal risk to the environment. This information is required
by vessels in many sectors, including cargo transport, fisheries,
tourism, research vessels, resource exploration and extraction,
destination shipping and national coast guard vessels.

The functionality provided by both the DIAS infrastructure
and the ESA Polar TEP as part of the ExtremeEarth infrastructure
are well suited to answering the challenges of this application. Ac-
cess to the required data interfaces is already established for some
data sources in Polar TEP and further work to reinforce this will
happen with integration of the DIAS infrastructure. Effort will be
required to ensure data access is optimised for these purposes, for
example ensuring near-real-time access to all required datasets.
Building on the Polar TEP and DIAS as part of the ExtremeEarth
infrastructure will also provide access to compute resources for
processing. Since this is potentially going to be a significant pro-
cessing load, but for limited periods of time as data is acquired
and becomes available, then processing resources will need to be
on demand and scalable to ensure efficiency. This will be achived
by building on top of the HOPS data platform. Integration of
established delivery systems into the ExtremeEarth infrastruc-
ture will support delivery of information products to polar users,
such as tourist ships and fishing vessels operating in ice infested
waters. This will include systems for information delivery and
visualisation such as the Polar Code Decision Support System
(PCDSS) which is currently being developed by company Polar
View. PCDSS is designed to be used over restricted communica-
tion links, to bridge between the service production and users
onboard ships in the Polar Regions. The scalable deep learning
algorithms for sea ice classification, discussed in Challenge C1
above, will be integrated in the HOPS data platform to produce
high resolution ice maps from massive volumes of heterogeneous
Copernicus data. The aim is to deliver sea ice concentration and
type maps, displaying stage of development (in accordance with
the World Meteorological Organization - WMO Sea Ice Nomen-
clature), including fraction of leads and ridges, over the Polar
Regions, at a resolution of 1 km or better.

3 THE EXTREMEEARTH CONSORTIUM
ExtremeEarth brings together a consortium of two companies
leading the activities of the Food Security and Polar TEPs (VISTA
and Polar View), one organization specializing in polar science
for the Arctic and the Antarctic (British Antarctic Survey), one
company specializing in big data, analytics and deep learning
technologies (LogicalClocks), the German Aerospace Center with
its TerraSAR-X satellite and expertise in SAR and multispectral
EO (DLR), five top European academic institutions specializing
in big data, linked data, Artificial Intelligence, deep learning and
extreme earth analytics (National and Kapodistrian University
of Athens, University of Trento, University of Tromsø, KTH and
DLR), one research institute specializing in big data and Artificial
Intelligence (National Center for Scientific Research - Demokri-
tos), and one research institute specializing in big data, high
performance computing applications, and provision of Metocean

information, including sea ice (Norwegian Meteological Insti-
tute). The consortium is led by the National and Kapodistrian
University of Athens.

ExtremeEarth starts in January 1, 2019 andwill have a duration
of 3 years. The project consortium is fully aware of the huge
challenges that lay in front of us, and it is looking forward to
meet them!

4 CONCLUSIONS
We have presented the vision of Horizon 2020 European project
ExtremeEarth addressing the challenges of how to extract in-
formation and knowledge from the PBs of satellite data of the
Copernicus programme using deep learning techniques, how to
manage this information and knowledge efficiently using the
HOPS data platform, how to develop two applications with eco-
nomic and environmental importance (Food Security and Polar),
and how to deploy these applications on the two relevant ESA
TEPs and DIAS.
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ABSTRACT
Today’s databases excel at processing data using simple, mostly
arithmetic operators. They are, however, not efficient at process-
ing that includes pattern matching, speech recognition or similar
tasks humans can execute quickly and efficiently. One of the few
ways to integrate such powerful operators into data processing
is to simulate neural networks or to resort to the crowd.

Neuromorphic hardware will become common-place in com-
plementing traditional computing infrastructure and will, for the
first time, enable the time-efficient emulation of neural networks.
Given the impact hardware accelerators like FPGAs and GPUs
had on querying, the question is if neuromorphic devices can be
used to a similar effect by enabling richer database operators.

In this paper we thus discuss how neuromorphic devices can
be used as database co-processors. The goal of this paper is to
understand their potential as well as limitations, what future
developments will make them suitable to accelerate databases and
what the research challenges are. We also evaluate a prototype
implementation of a query operator on neuromorphic hardware.

1 INTRODUCTION
While today computers have a clear advantage over the brain
in terms of raw computing power, the brain is superior in error
resilience and speed for approximate tasks like understanding
speech or recognizing objects. It is for these reasons but also
due to the limitations of current CPU designs (pin bottleneck
limiting data transfer, limited heat dissipation, power supply)
that scientists have developed neuromorphic devices which for
the first time enable the energy and time-efficient simulation of
spiking neural networks (SNNs).

The vision is that neuromorphic devices will be as prevalent as
FPGAs or GPUs are today: in a first instance neuromorphic chips
can be plugged into existing systems and computations are of-
floaded (e.g., image recognition). Later, neuromorphic chips may
share sockets and caches to accelerate exchange of data. With
Intel, IBM and others developing neuromorphic hardware, the
question is not if, but rather when, it will become commonplace.

Research has developed methods by which hardware accel-
erators are used to accelerate queries. GPUs are used to offload
parallel computation (e.g., joins [14]) while FPGAs are used to
compute histograms when data is read from storage [13, 20].

The question we thus ask is how neuromorphic hardware will
support query execution in databases. In this paper we first dis-
cuss what neuromorphic hardware is and how it can be used to
simulate spiking neural networks. We then discuss how neuro-
morphic hardware has the potential to act as a co-processor for
databases to offload computation which is best executed using a
SNN. We finally also discuss a prototype application.

© 2019 Copyright held by the owner/author(s). Published in Proceedings of the ACM
Conference, July 2017, ISBN 978-x-xxxx-xxxx-x/YY/MM on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

2 SIMULATING NEURAL NETWORKS
The simulation of neural networks and neuronal activity is not a
new development. Perceptron-based multilayer networks have
been used for decades in applications like pattern recognition
and memory. With neuromorphic hardware, however, it is for
the first time possible to efficiently emulate large SNNs.

In neural networks, neurons communicate via spikes, that is,
discrete events that occur at defined times. Depending on the
weight of the synapse, these events either increase or decrease
the probability that the receiving neuron will produce a spike.

Over time, neuron models of increasing bio-realism and thus
complexity have been proposed. Early models did not use voltage
spikes, but used neurons as threshold gates that simply add input
and fire once the threshold is exceeded [18]. These neuronmodels
only take binary input, produce binary output and can thus be
used to compute any boolean function.

Next generation neuron models based on the perceptron [24]
use an activation function (typically sigmoid or a linear satu-
ration function) on the sum of weighted inputs to compute a
continuous, differentiable output. Concatenated ensembles of
perceptron units are able to approximate arbitrary functions and
can thus be used as universal classifiers in pattern recognition.

More powerful than this are networks with spiking neurons.
They use a model of a neuron that receives several spikes, adds
them up to the local potential P over time and fires a spike once
P exceeds a given threshold. Information can thus not only be
encoded in the number of spikes, the firing rate, but also in
the timing of spikes [10]. From an information theory point of
view we can encode more information and reduce the number of
neurons to perform the same computation with this approach.

Additionally, the time-dependence of spiking neuralmodels en-
ables using additional learning algorithms that operate in the time
domain. In neural networks that use non-spiking models, learn-
ing is achieved through backpropagation of errors [25], where
synaptic weights are iteratively adjusted until the applied stimu-
lus leads to the desired output. In spiking networks, this learning
rule is extended with spike timing or spike-timing-dependent
plasticity (STDP). In STDP, the weight of a synapse changes as
a function of the time difference between spikes produced by
the pre- and the postsynaptic neuron (neuron before and after
the synapse). In STDP, a synapse is strengthened when the pre-
synaptic neuron fired a spike shortly before the post-synaptic
neuron fired. Vice versa, the synapse is weakened if the post-
synaptic spike precedes the pre-synaptic one [2]. STDP thus
extends firing-rate based learning by including spike timing.

3 NEUROMORPHIC DEVICES
The brain is a massively parallel system of highly interconnected
but computationally simple neurons. Neurons act entirely event
driven and thus operate asynchronously, integrating incoming
spikes and sending spikes to other neurons.

Integrating spikes is very efficiently done on von Neumann
based hardware (traditional CPUs or GPUs) while other aspects
cannot be executed efficiently. First, to simulate, a very high
number of very small messages (i.e., spikes) must be sent be-
tween neurons. While spikes are encoded with a few bits, most
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communication protocols require an order of magnitude more
bits for header and routing information alone. Moreover, today’s
communication protocols lack efficient means for multi-cast com-
munication which is crucial to send the same spike to a large set
of neurons. Second, while neurons are only active when receiving
and processing spikes, traditional CPUs or GPUs are always on,
rendering the simulation of SNNs energy inefficient.

3.1 Brain-like Hardware
With these challenges, traditional CPUs or GPUs cannot effi-
ciently simulate SNNs. As a consequence, neuromorphic hardware
is being developed to better support simulation of SNNs. While
the design depends on the manufacturer, all proposals are driven
by similar ideas.
Computation: Key to neuromorphic hardware is massive par-
allelism, i.e., a large number of computational units/cores. Each
of the cores has the relatively simple task of simulating several
neurons and it can thus be comparatively wimpy (few FLOPS).
Communication: Unlike traditional communication between
cores or computers, the payload sent between neurons is very
small as only the timing of the spikematters. This information can
be encoded in a few bits (40-72). Key to neuromorphic hardware
thus is an efficient communication optimized for small payloads.

Given the massive number of connections between neurons,
multicast communication must also be efficiently supported.
Energy Efficiency: Since the computational requirements to
model neurons are modest, the computing infrastructure can be
of low complexity. Also, since neurons operate fully event-driven,
there is no need for global synchronization. These properties
allow for making neuromorphic devices very energy efficient.

3.2 State of the Art Devices
The prototypes developed share key features like a massively par-
allel infrastructure with a fast interconnect for small messages.

For example, the SpiNNaker architecture is based on a large
number of ARM processors [8]. Memory with little capacity is
local to each processor (which itself has several cores) while there
is also slower, global memory used for communication between
processors. More important is a very efficient communication
infrastructure for small packets (~24 Bytes for a spike).

IBM’s TrueNorth project is a platform with 4096 cores each
simulating 256 neurons [19]. Similar to SpiNNaker, memory,
computation and networking is handled locally by each core,
therefore moving past the von Neumann architecture. With an
event driven model where cores are only powered when needed,
TrueNorth reduces energy consumption similarly to SpiNNaker.

Intel’s design reduces energy consumption by using spin de-
vices to simulate the neurons (thereby restricting the neuron
models that can be used) as well as memristor as local memory
(to store synapse weight) [27].

Spikey [23] takes energy efficiency even further by using a
mixed-signal approach. Neurons are implemented using analog
elements. While this makes them more bio-realistic, it limits
the flexibility to use arbitrary neuron models. New models can-
not simply be implemented through programming, but require
changes in the hardware. Nevertheless, Spikey has proven to be
versatile enough to implement a wide range of networks [23].

4 APPLICATIONS IN DATA MANAGEMENT
Spiking neural networks are capable of modelling arbitrary com-
plex processes thanks to their ability to represent different infor-
mation dimensions, such as time, space, frequency and phase.

In this section we discuss applications where neuromorphic
hardware can support databases. In the applications we discuss,
extracting all features a priori and storing them in a database
may at first seem an option but is unfeasible as the feature space
will explode, thus requiring excessive storage space.

The simulation of SNNs is thus key. Any application based on a
SNN can be simulated on a CPU or GPU but only inefficiently. The
benefit of using neuromorphic hardware is that it can run bigger
SNNs faster and crucially, substantially more energy efficient.

While there is a plethora of potential applications which can
be simulated with SNNs, our discussion is primarily driven by
application domains where SNNs are used successfully.

4.1 Multimedia Databases
Neural networks can be used for data classification [26] but they
prove particularly useful for recognising media. Several SNNs
have been trained based on supervised learning methods [3, 21,
22, 26] and have been tested on imaging benchmarks. SNNs
frequently outperformed non-spiking classification methods [3].
Content-based Image Retrieval Research has produced mul-
tiple approaches for content-based image retrieval in multimedia
databases [4]. Most approaches are based on two phases: feature
extraction (i.e., color, shape and others) and the indexing of the
features [17]. Feature extraction is application specific [4] while
indexing is general and based on high-dimensional indexes for
similarity searches (R-Trees [11] and variants).

State-of-the-art approaches generally have two shortcomings.
First, the semantic gap [6] means that it is very challenging to de-
termine the semantics of an image from its low-level features, i.e.,
there is little connection between pixel statistics and the seman-
tics of an image. Second, due to the high number of dimensions of
extracted features and the curse of dimensionality, content-based
retrieval of images is not efficient and scales poorly [5].

Spiking neural networks, however, are very useful for image
and pattern recognition [1]: using a network with spike-timing
dependent plasticity, one of the images is presented to a two layer
network in the learning phase. The presentation triggers a single
spike in each neuron in the first network layer and the incoming
activity propagates to the next layer. The first neuron to fire
in the second layer inhibits its neighbors and triggers learning.
As a result each neuron fires if again presented with the same
image. The learning step is substantially faster compared to other
methods (particularly backpropagation) as is the recognition step.

Using spiking neural networks for image retrieval in multi-
media databases (or databases in general) thus has two major
advantages. First, using SNNs, no feature extraction is neces-
sary and the method consequently can work directly on the raw
data. By doing so there is less risk of basing retrieval on a highly
specific set of features. Whether the use of SNNs bridges the
semantic gap, however, has not been determined yet [1] but it de-
couples image recognition from features. Second, by using SNNs,
no high-dimensional indexes are needed and image retrieval is
more efficient and scales better. By simulating SNNs efficiently,
neuromorphic hardware enables their use for image retrieval.
Audio & Video Retrieval The problem of audio and video re-
trieval is very similar to image retrieval with the difference that
both also have a time dimension, e.g., videos have consecutive
different frames. Simple approaches for video retrieval are based
on the same ideas as image retrieval with a additional features
drawn from changes between frames. By doing so they have the
same drawbacks as current image retrieval methods.

Spiking neural networks support time very well. Any stimuli
of a SNN is time-based, e.g., even images need to be encoded as a
succession of neuron stimuli over time. SNNs and neuromorphic
hardware thus lend themselves well for audio or video [28].

4.2 Spatial Indexing
A vast number of spatial indexes has been developed [9]. Many
spatial indexes (particularly based on data-oriented partition-
ing like the R-Tree and variants), however, suffer from limited
performance due to overlap and dead space in the index [11].
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SNNs have also been used for spatial navigation: through
learning mental maps of the environment it enables planning of
paths [12]. The particular neuron in the network is activated as a
simulated animal explores different locations in the environment
and connections between neurons activated in a close temporal
proximity are strengthened, i.e, cells representing neighboring
locations develop strong synaptic interactions. This mechanism
can be used for answering nearest neighbor queries.

A SNN run on neuromorphic hardware thus has the potential
to execute nearest neighbor queries and planning paths.

5 CHALLENGES
We propose to use neuromorphic hardware as a co-processor for
databases. We use the hardware to efficiently simulate a SNN
for a complex query operator, e.g., pattern recognition for image
retrieval. The associated research challenges can be identified for
neuroscience and data management research alike.

On the level of hardware, while existing neuromorphic hard-
ware already scales substantially better than traditional von Neu-
mann architectures, it has to be investigated how current ap-
proaches can scale to simulate SNNs beyond millions of neurons,
so that more sophisticated operators can be implemented.

Regarding neuroscience, the challenge lies in finding more
SNNs that solve generic computing problems and are amenable to
simulation on neuromorphic hardware. Several such SNNs have
been developed but more applications from human cognition
need to be considered as they are useful as database operators.

On the level of databases the challenges are as follows:

5.1 Data Preparation/Encoding
The data in the database and the query need to be encoded for
the neuromorphic hardware. More precisely, as is common for
SNNs, the data needs to be encoded as temporal spikes that can
be fed into the system. Consider, for example, pattern recognition
in images. All images as well as the query need to be encoded as
temporal spiking patterns for it to be matched on a SNN.

Encodings for video and audio can be computed very effi-
ciently: because they already have a temporal structure, data
like movies or sound are converted to sequences of spikes using
little computational effort. Similarly, for imaging data, sensors
are available that efficiently produce time series of spikes [16].

As numerous examples of functional SNNs show, it is often
possible to convert arbitrary data into spikes. Whether the effort
to produce such an encoding is outweighed by the gain in compu-
tational power that a SNN will provide over more conventional
approaches of data processing, however, is questionable.

Furthermore, while the same encoding can be used for match-
ing different queries, it is very likely that different query opera-
tors will benefit from encoding that is tuned to that particular
operator. A more difficult challenge thus is to decide what en-
codings should be stored and the organization in storage. It may
suffice to only store the difference between encodings instead of
storing one encoding per operator.

Themost difficult challenge, however, is how to execute queries
on multiple attributes. Going back to the imaging example: a
query may restrict the area in which to find a particular pattern.
Restricting the area on an already encoded imaging is difficult as
all positional information (about the area) is lost in the encoding.

5.2 Query Planning
Current prototypes of neuromorphic hardware have a very lim-
ited interface to move data making query execution challenging.
Modelling Execution Cost A crucial question is when SNNs
are run faster on neuromorphic hardware compared to the CPU.
The query plan has to consider a cost model with the time to
transfer data to and from the device and the execution time of

the simulation. Execution time, however, is not the only con-
sideration as running an operator on the device is more energy
efficient than on the CPU. A second consideration thus has to be
the energy needed to move the data and to run the SNN.
Query Optimization Given the high cost of moving data, mov-
ing all data to the device should be avoided. Considering the
selectivity of predicates other than SNN (e.g., metadata infor-
mation) early in the query plan is therefore imperative. Further,
a crucial research challenge is to investigate if features in the
raw data can be identified, extracted and indexed such that they
can be used early in the query execution to curb data movement.
Selecting the features is very challenging without reintroducing
the semantic gap known from image retrieval.

5.3 Query Execution
Setting Up New Operators To define an operator, a network
needs to be trained by adjusting synaptic weights. Key to the
training phase is to encode the stimulus appropriately and inject-
ing all learning stimulus consecutively to train the network. The
learning phase can also be performed in a simulated environment
and the resulting weights can be transferred to the hardware.
Swapping Operators One network cannot serve all purposes
so operators/networks need to be loaded and unloaded. The state
of a SNN or operator is captured in the neurons, their placement,
their interconnections and the synaptic weights.

To swap an operator, a new SNN needs to be set up by loading
neurons and synapse weights which is a slow process. In many
cases, however, it may suffice to only define rules and derive the
precise connections/network on the fly.
Interpreting Results Depending on the SNN, the result is in-
dicated differently. In some cases the result is binary, i.e., one
neuron being active indicates the result. In other cases, for ex-
ample in case of the spatial application, the proximity of two
points is expressed by the proximity of two active neurons. Each
operator must therefore come with an implementation of an
interpreter able to understand the result.

The major research challenge is how ambiguous simulation
results are interpreted. The result is rarely precise and this ambi-
guity has to be propagated to the user. One approach is the use of
ideas from uncertain databases, e.g., attribute-level uncertainty.

6 CURRENT LIMITATIONS
Neuromorphic hardware still is a new proposition and most
available prototypes focus on the efficient execution of SNNs as
a proof of concept whereas the programmability, data transfer
and others are currently only second order considerations.
Moving Data: Current hardware, in particular the SpiNNaker
system, has a very limited interface to move data to and from
the device (Ethernet interface with 100MBps). The issue of band-
width will, however, be addressed if neuromorphic hardware
demonstrates its usefulness.
Simulation Size: The current challenge for hardware developers
is increasing the capacity of neuromorphic systems. The largest
systems today can simulate at most millions of neurons. Nev-
ertheless, it is believed that scaling the number of neurons up
to the human brain (i.e., 1010 neurons) will give neuromorphic
systems the ability to infer relationships in data of a complexity
that is inaccessible to conventional computers [7].

7 PROTOTYPE IMPLEMENTATION
To show the basic feasibility of using neuromorphic hardware as
a database co-processor, we implement a proof of concept based
on a simple application. Clearly this is only an example with
several obvious optimizations which we address in future work.
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7.1 Sample Application
As our sample application we use the recognition of digits in
images [26]. Images containing hand written digits are stored
as bitmaps in the database and a users query to find images
containing a particular digit. To answer a query, a SNN run on
neuromorphic hardware infers the digit in the image. The SNN is
trained offline by showing sample digits (0 - 9) from MNIST [15].

In the current implementation we use the same digits for learn-
ing and querying. We do so to avoid the challenge of interpreting
the result — an open research challenge as we discussed. Hence,
when training we store the response (active neurons) to the stim-
ulus for a particular digit. When asking what images contain a
particular digit, we present the stored images to the SNN and
compare the stimulus response (active neurons) with stored re-
sponses. Due to the nondeterminism of SNNs, the stored and the
current result may not be identical. We thus compute the share of
active neurons the current and the stored response agree on and
consider the result a match if it exceeds a predefined threshold.

Compared to preprocessing all data and storing the result, we
remain flexible as the SNN can be updated and ran on the hard-
ware to query the data (with potentially more accurate results).

7.2 Setup
For the current implementation we use Postgres. Given the im-
ages from MNIST are stored as bitmaps, we store them as two
dimensional arrays without need for transformation.

We use a user defined C function in Postgres: given a number
n and a images stored in a table t , the UDF presents all images in
t to the classifier and returns the ones likely to contain n.

For the experiments we use a 4 chip SpiNNaker board [8], the
smallest board but adequate for a proof of concept. The board has
72 identical Arm968 processors (18 per SpiNNaker chip) operating
at 200MHz. The SpiNNaker board currently only provides an
Ethernet interface which connect to the host running Postgres.

7.3 Experimental Analysis
Training the SNN takes on average 68.2 seconds. The vast major-
ity (95.5%) of time is spent transferring data: images to the device
(8.4%), reading the stimulus responses (29.2%) and reading the
trained SNN (57.9%). Learning only takes 3.1 seconds as each of
the hundred digits is exposed to the SNN for 20ms.

Querying for one number — classifying all images and finding
the ones matching the user input — takes on average 52.5 seconds.
Most time is spent on moving data, i.e., moving the trained SNN
(84.4%) and sending all images (10.5%) to the device. Classification
on the device takes 0.2s while the time spent in the UDF is 2.48s.

Clearly, querying (as well as learning) suffers from loading
(and storing) the SNN — the main bottleneck. Even without,
however, moving the images is a very costly operation. The time
for learning and classifying, on the other hand, is insignificant.

7.4 Open Challenges
As simple as the example used is, it shows some of the challenges
discussed. A major challenge is the transfer of data. Currently
this can only be done through Ethernet and is slow but future
versions will have SATA and TrueNorth, for example, uses PCI.

Related to the limited bandwidth is the challenge of reducing
the data moved: only images which contain the digit with high
probability should be moved. Means to index the stimuli need to
be devised so that a preselection of images can be performed.

Finally, scoring the result (and the inherent uncertainty) is a
challenge which we worked around. Clearly, better approaches
need to be devised for more sophisticated applications.

8 CONCLUSIONS
While neuromorphic hardware systems are still maturing, the
high-level design is well-defined and the benefits are clear. It is

thus the right time to start assessing the viability of neuromor-
phic applications. In this paper we have sketched the research
challenges for query execution. Some challenges are implied by
the prototypic nature of the hardware, but most are due to more
fundamental reasons (e.g., query planning). By addressing these
challenges we believe neuromorphic hardware will enable the
efficient execution of more sophisticated query operators.
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ABSTRACT
Data has become a major priority for customer facing businesses

of all sizes. Companies put a lot of effort and money into storing,

cleaning, organizing, enriching and processing data to better

meet user needs. Usually in large scale systems such as big e-

commerce sites these tasks involve machine learning methods,

relying on training data annotated by domain experts. Since

domain experts are an expensive resource in terms of monetary

costs and latency, it is desired to design algorithms that minimize

the interaction with them.

In this paper we address the problem of minimizing the num-

ber of annotation tasks with respect to a set of queries.We present

a dedicated algorithm based on efficient labeling, that dictates

the strategy for constructing a minimal set of classifiers sufficing

to answer all queries. Our approach not only reduces monetary

costs and latency, but also avoids data redundancy and saves

storage space. We first consider a typical scenario of two expres-

sions per query, and further discuss the challenges of extending

our approach to multiple expressions. We examine two common

models: batch and stream configurations, and devise offline and
online algorithms, respectively. We analyze the number of anno-

tations, and demonstrate the efficiency and effectiveness of our

algorithm on a real-world dataset.

1 INTRODUCTION
Data has become a major priority for customer facing businesses

of all sizes. Companies put a lot of effort and money into stor-

ing, cleaning, organizing, enriching and processing data to better

meet user needs. For example, news articles published on news

websites, are often annotated, e.g., tagged with "World Cup 2018"

or "Elections in the United States", enabling readers to easily

consume relevant content, hereby improving personalization

and accessibility. E-commerce websites invest in generating a

reliable catalog of products combining human and machine in-

telligence [4, 10, 17]. This allows potential customers to find

the best matching product either by navigating through faceted

categories, or by executing search queries. Since catalogs are

often huge and cannot be maintained solely by human experts,

automatic solutions based on machine learning (ML) are also

employed. Combining both experts and ML is a widely-used

approach also in fraud detection applications [9], text catego-

rization [15] and other classification tasks [19, 20]. One of the

most common usages of ML with human in the loop is harness-

ing domain experts to generate adequate labeled data as a base-

line for supervised learning. Thus, generating sufficient annota-

tions, while minimizing domain experts’ effort, is highly desired.

This trade-off between high quality and low cost is the holy

grail of training data preparation. Much research has been de-

voted in the literature to minimizing the interaction with regular

crowds [8, 12, 20]. However, these techniques are best suited for
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mundane classification tasks, whereas for questions that require

particular expertise, as shown in [6], gathering multiple answers

from various crowd workers does not always produce a desired

accuracy level. In light of this, we present a novel query driven ap-

proach with human experts that avoids redundant labeling tasks

and finds the minimal set of necessary tasks. We note that our

approach may be combined in a regular crowdsourced schema

with probabilistic settings. To illustrate our approach, consider

the following example.

Example 1.1. A database Products contains a relation Shirts
with attributes product_id , product_title , product_description,
product_imaдe , product_price , color andmaterial . This relation
contains a list of shirts sold on an e-commerce website. While the

product title and description are provided by the seller, its color

and material are usually missing and should be automatically

extracted from the title, description or image using ML classifiers.

Assume a customer performs a keyword-based search for orange

cotton shirts, which translates into the following SQL query via

NLP-based methods
1
:

SELECT * FROM Shirts
WHERE `color` = 'Orange'
AND `material` = 'Cotton';

Providing an answer to such queries, should rely on correctly

enriched color and material attributes values for every product.

Toward this end, one may train various classifiers with respect

to suitable labeled data. Classifiers shall be incorporated to an-

swer "Is this product’s color is X and material is Y?". Given that

any classifier needs N labeled examples for training, in order to

answer the query above one can either train two classifiers: one
for detecting orange shirts and one for detecting cotton shirts,

and separately apply them for each product. This requires 2N
labeled examples. Alternatively, one could train a more specific

classifier that detects orange cotton shirts, using only N labeled

examples. Clearly, for this specific case, it is better to choose the

latter. However, given a general list of queries with different val-

ues of colors or materials, minimizing the number of classifiers

may be difficult.

In this paper we propose an algorithm that minimizes the

number of classifiers (labeling tasks) that are sufficient to answer

all queries. We focus on the case of having at most two expres-

sions per query, which is the most common case in e-commerce

search [3]. The extension of our approach tomulti-criteria queries

is discussed in the future work section. We present a dedicated

algorithm based on efficient labeling, that dictates the strategy

for constructing a minimal set of classifiers sufficing to answer

all queries. Our approach not only reduces monetary costs and

latency, but also avoids data redundancy and saves storage space

entailed in the enriched attribute values. The contributions of

this paper can be summarized as follows:

• We formulate the problem of experts labeling effort mini-

mization with respect to a database and a list of queries.

1
This methods involve NER-based solutions and assumed to be given, hence it is

out of the scope of this paper.
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Shirts
pr_id pr_title pr_description pr_image pr_price color material

P17892 Linen White 
Shirt

http://… $9.99

P42947 Cotton Shirt 
(White)

White shirt. Made 
from cotton. 

http://… $14.90

P68203 Red Cotton 
Shirt (D&G)

New collection by 
D&G

http://… $50

P31415 Umbro 
Black Shirt

Perfect cotton sport 
shirt by Umbro

http://… $39.99

P86229 Linen Shirt Material: Linen, 
Color: Blue

http://… $25

Figure 1: ‘Shirts’ relation example.

• We propose an algorithm that solves the special (yet highly

common) case of having at most two expressions per query

and provide theoretical analysis of this algorithm.

• We extend the solution to a streaming scenario, where

queries are processed piece-by-piece in a serial fashion,

and provide approximation guarantees for our approach.

• We conduct an experimental evaluation with a real-world

setting, demonstrating the efficiency and effectiveness of

our approach, with respect to the number of annotation

tasks and the additional storage required.

The paper is organized as follows. The next section defines the

model and the problem statement and describes the technical

details of the solution (Section 2). We then present our exper-

imental evaluation (Section 3). Finally, we discuss related and

future work (Sections 4-5).

2 OUR APPROACH
We start by explaining the data model composed of queries and

attributes, followed by the description of the algorithm and its

online fashion variant for the streaming scenario.

2.1 Preliminaries and Model
Data: Our model consists of a database D with relation R, a set

of attributes F occupied with values for all t ∈ R and a set MF
of attributes with missing values for some (or all) t ∈ R. Each of

the attributes has its domain, the set of all possible values per

attribute, i.e., dom(Ai ) = {v1i ,v
2

i , ..., }.

Binary Classifier: Missing attribute values can be discovered

with full certainty by constructing a proper binary classifier based
on labeled data generated by domain experts

2
. Formally, a binary

classifier maps every tuple t ∈ R with its predefined attributes val-

ues to {0, 1}, and can be used for filling holes in missing attribute

values. For example, followed our running example, the prede-

fined attributes F are all the product_∗ attributes (title, image,

price, etc.) while two missing attributes are color andmaterial .
In order to reveal missing values for colors, one can learn binary

classifiers for various colors that indicate whether a tuple t has
the objective color, e.g., Cr ed (t) = 1 if t is red. Figure 1 depicts a
small sample of such relation that contains products from “Shirts”

category. Note that since data is provided by various sellers, the

information is concealed within different patterns, usually semi-

structured or free-text fields. In some cases the relevant missing

values exist only in the title, in other in the description, or in a

combination of both. Hence, extracting the desired attributes is

a difficult task, which needs well-trained classifiers. We assume

that the construction of every classifier is the same. We discuss

how to relax this assumption in Section 5, which is a part of our

ongoing work.

2
A common method of multi-label classification amounts to independently training

one binary classifier for each label [16]. There are other solutions, e.g., reduction

to the multi-class classification problem or adaption methods, which are out of the

scope of this work.

SELECT * FROM `Shirts` WHERE `color` = ‘Red’ AND `material` = ‘Cotton’
SELECT * FROM `Shirts` WHERE `color` = ‘Black’ AND `material` = ‘Cotton’
SELECT * FROM `Shirts` WHERE `color` = ‘White’ AND `material` = ‘Polyester’
SELECT * FROM `Shirts` WHERE `color` = ‘Red’ AND `material` = ‘Linen’
SELECT * FROM `Shirts` WHERE `color` = ‘White’ AND `material` = ‘Linen’

Color Material

R

B

W

L

C

P

Queries:

Graph 
Representation:

Figure 2: Queries and their graph representation.

Queries: In addition to the information stored in D, there is a

set of queries Q that is used to extract the relevant tuples fromD.

The queries assumed to be only over missing attribute values
3
.

Formally, the query is of the following form:

SELECT * FROM R WHERE `A_1` = 'v_1_j1' AND
`A_2` = 'v_2_j2' AND ... AND `A_n` = 'v_n_jn';

We denote the queries that specify all the attributes fromMA as

full queries, while the queries that specify only subset ofMA as

partial queries.
Query Expressiveness: We assume that queries may specify

up to two equality expressions over a set of missing attributes

valuesMF . While this sounds limiting, having one or two tokens

is the most common case both in e-commerce [3] and general pur-

pose search engines [7]. Extending our solution to multi-criteria

queries is a part of the open problems and ongoing effort dis-

cussed in Section 5.

Graph Model: We represent the set of queries in an undirected

graphG = (V ,E), where the verticesV are the values that appear

in the queries (unique per attribute) and the edges E correspond

to the queries such that if a query clause consists of two equality

expressions with values v
j
1
and vl

2
of attributes A1 and A2, resp.,

we construct an edge between their corresponding nodes in the

graph. To support partial queries with one equality expression,

we use self edges on the corresponding node. Figure 2 illustrates

the set of unique queries and their corresponding graph repre-

sentation. The graph consists of 6 nodes, 3 unique value per each

of the attributes and 5 edges (the number of queries). Note that

the graph is not necessarily connected. For example, removing in

the mentioned example the “white linen shirt” query, splits the

graph into two separate connected components. In addition, the

provided example has no self-loops since all queries have two

expressions. Adding a query such as:

SELECT * FROM `Shirts` WHERE `color` = ‘Black’;

generates a self-loop in the graph (“B” node).

2.2 The Algorithm
We start by presenting the offline algorithm assuming the set of

queries is given as a whole. We extend our solution to support

streaming fashion in the next subsection. Considering the general

case, the algorithm should determine the set of suitable binary

classifiers: either a query-oriented classifier corresponding to spe-

cific query (denoted by “label the edges”) or a predicate-oriented
classifier corresponding to single attribute value (denoted by “la-

bel the nodes”). The goal is to minimize the number of classifiers

that are sufficient to answer all queries. Note that in order to

answer all queries, our algorithm must determine which edges

and nodes to assign a classifier.

Assuming a relation R and a set of queries Q. The algorithm

first constructs a graph representation of the queries, as described

3
Clauses that involve F attributes can be filtered without any classification.
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in previous section. For every connected component C in the

graph, the algorithm determines whether labeling edges or nodes

(in accordance with query-oriented and predicate-oriented clas-

sifiers, resp.) by calculating |EC | and |VC |. If |EC | ≥ |VC |, the
algorithm labels nodes

4
and edges otherwise. Since we focus

on connected components, the number of edges |EC | is at least
|VC | − 1. Therefore, the algorithm labels edges if and only if

|EC | = |VC | − 1, i.e., if the connected component is a tree.

Lemma 2.1. Given a relation R and a set of queries Q with
a corresponding graph G = (V ,E), the algorithm minimizes the
number of classifiers that are sufficient to answer all queries.

Proof. Since connected components are independent, it suf-

fices to prove correctness with respect to a single connected

component C . Assume that there is a better solution with a

set of classifiers T , |T | < min(|EC |, |VC |). If C is a tree with

|EC | = |VC | − 1 < |VC | then there is an edge (vqi ,vqj ) with
no query-oriented classifier from T and at least one of vqi or
vqj does not have a predicate-oriented classifier in T . Thus, the
query corresponds to this edge is insoluble. On the other hand, let

|VC | ≤ |EC |, then some vqi does not have a predicate-oriented
classifier in T , thus all (vqi ,u) ∈ E must have query-oriented

classifiers, d = |(vqi ,u) ∈ E |. Since a query-oriented classifier

matches a single edge, the number of edges is reduced by d while

the number of nodes is reduced by at most d , since otherwise
vqi and its neighbours form a tree. Thus, applying these query-

oriented classifiers induces a sub-graph C ′ ⊂ C with at least

|V |−d nodes and |E |−d edges. Sincemin(|V |−d, |E |−d) > |T |−d
it follows, by induction, that the set of classifiers is insufficient

to answer all queries. □

Corollary 2.2. Let q be a partial query, vq its corresponding
vertex and Cvq the connected component containing vq , then the
set of classifiers derived by labeling all nodes in Cvq is a minimal
set that suffices to answer all queries projected to Cvq .

Proof. Since partial query with one attribute corresponds to

a self-loop in a graph, a cycle is created. Therefore, the connected

component is not a tree and its nodes should be labeled. □

2.3 Online Algorithm
We now assume that the queries arrive in a streaming manner,

i.e., piece-by-piece in a serial fashion, and the algorithm makes a

decision based on limited information.

The practical motivation for this setting is the common sce-

nario where the already existing classifiers are not sufficient to

provide accurate answers to users’ query, thus a deficient result

is retrieved based on a simple full-text query against a text index.

to improve for future times where such a query will be issued,

suitable labeling tasks are generated.

Here again we assume a relation R and a set of queries Q

arriving in a streaming manner, one at a time, and our algorithm

makes labeling decisions thatmay later turn out to be sub-optimal.

Our algorithm initializes an empty graph and for every query q
being processed, it updates (or creates) the connect component

Cq with the corresponding edge and nodes. Similar to the offline

version, it labels the new edge if Cq is a tree, and the nodes o/w.

Lemma 2.3. Given a query q being processed from a stream of
queries, vq its corresponding vertex and Cvq the connected compo-
nent containing vq . If the algorithm decides to label the node vq ,
the optimal strategy henceforth w.r.t to Cvq is labeling nodes.
4
This decision has no effect in the offline case, but helps in the streaming scenario.

V1

Vn Un

U1

... ...
V1

Vn Un

U1
... ...

(a)

(c) (d)

(b)

V1

Vn Un

U1

... ...

V1

Vn Un

U1

... ...

Figure 3: Worst case analysis of "label the edges" strategy.
Proof. Given a query q with vertexvq within connected com-

ponentC . Assume that |EC | ≥ |VC | for the first time immediately

after updating the graph, and the algorithm decides to label vq .
Now, since every processed query q′ with v ′

q in C contributes

at most one vertex and at least one edge to C , it follows that
|EC | − |VC | can only increase and |EC | ≥ |VC | holds. □

For every connected componentC , we refer to the point when
C abandoned its tree structure, as the swapping point, since our
strategy swapped from label edges to label nodes.

Relative Bounds Analysis: First, as proven in Lemma 2.3, once

we have swapped strategy from labeling edges to labeling nodes,

the optimal strategy is labeling nodes henceforth. Thus, our error

derives in between those states, if exist. Till the swapping point

|VC | − 1 edge classifiers were generated and in the worst case,

each one of them turns out to be redundant. On the other hand,

since every solution must contain at least |VC | − 1 classifiers, our

approximation ratio is at most 2.

We now illustrate two unfortunate cases. In Figure 3a there are

|E | connected components, each consists of two nodes and one

edge. Figure 3b makes the original strategy sub-optimal, where

each connected component has one redundant edge classifier.

In this case, the ratio is (n + 2n)/(2n) = 3/2. Figures 3c and 3d

present the worst case scenario where the graph is a tree till the

swapping point. Therefore, the approximation ratio in the case is

(|VC | − 1 + |VC |)/|VC | = 2 − 1/|VC |, demonstrating we can make

the relative error as close as we like to 2.

3 EXPERIMENTAL EVALUATION
3.1 Experimental setup
Competitors: To evaluate our approach we implemented our

algorithm and its three natural competitors. Given a query graph:

• Predicate-Oriented - Regardless of any relationships

among the queries, the algorithm always labels nodes.

• Query-Oriented - Regardless of any relationships among

the queries, the algorithm always labels edges.

• Random - The algorithm randomly decides whether to

label nodes or edges, till it has sufficient information to

answer all queries.

Dataset: The dataset contains a real-world public dataset taken

from BestBuy with around 1000 search queries over the electron-

ics domain [1]. Each query is written in a structured format, e.g.,

the query "LG TV" is represented as {“Brand” : “LG”, “Cateдory” :
“TV ”}), which allows a straightforward execution of our experi-

ment. The dataset contains 7 different attributes (Category,Model,

Brand, ScreenSize, Price, Storage, RAM) with 97% of the queries

specify up to 3 attributes: Category, Model, Brand. Out of this

subset, around 95% of the queries are of length one or two (66.5%

and 29.2% respectively), which corresponds to our assumption on

the number of attributes in the e-commerce search queries being

small. Interestingly, the longest query in the dataset contains

only four attributes (Category, Brand, Model, ScreenSize).
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Figure 4: Experimental results.

3.2 Evaluation results
We evaluate our algorithm and its competitors with respect to

two configurations: offline and online. Considering the offline

configuration, we first execute the algorithms against two types

of sets: (i) the full set of relevant queries (that contain one or

two expressions), and (ii) randomly selected subsets of varying

sizes (200, 400, 600, 800). Considering the online configuration,

we simulate random arrivals of successive queries from a stream

of queries, and measure the number of classifiers generated by

every competitor. Furthermore, we evaluate a micro-batching
approach, where each iteration is executed with respect to a win-

dow of queries with varying sizes (5, 10, 20, 50).

Offline Evaluation: Results are depicted in Figure 4a. As ex-

pected, our algorithm outperforms the competitors and reduces

the number of classifiers as the dataset size increases. Observe

that the query-oriented algorithm is constantly superior to the

predicate-oriented algorithm. In general, the predicate-oriented

algorithm performs better when there is a small set of attributes

which covers multiple queries. On the other hand, for queries

that do not share many attributes the query-oriented algorithm

performs better. Since our algorithm decides the best strategy per

connected component, it outperforms both competitors. While

reducing “only” 5%, it may save hundreds of thousands of dollars

annually in workers cost [2] and terabytes of storage (entailed in

the labeled data and the additional attributes in the relation).

Streaming Scenario Evaluation: Results are depicted in Fig-

ure 4b. We can see that even in small micro-batches of size 5,

our algorithm outperforms all competitors, and significantly sur-

passes the competitors for larger windows. Observe that only in

the extreme case of completely online scenario it is sub-optimal.

Queries Dispersion Evaluation: In this set of experiment, we

examine the effect of attributes overlapping between queries on

the number of labeling tasks. To examine it, we fix the size of the

graph with n nodes and vary its density by increasing the size of

connected components, from 2 to n, which corresponds to the

queries dispersion. Figure 4c depicts the results for our algorithm

and its two deterministic competitors: predicate-oriented and

query-oriented algorithms. First, we can see that our algorithm

is consistently superior with comparable competitors in the two

extreme cases. In between those cases, our algorithm beats the

competitors by large margins and when |E | = |V |, it conducts

approximately two times less labeling tasks.

4 RELATEDWORK
In recent years, crowd workers and human experts are widely

employed with various tasks to amend the performance of su-

pervised ML models, e.g., contributing to feature selection [13],

learning of semantic attributes [18] and others. Several systems

propose hybrid mechanisms [5, 14, 17] that interweave humans

and machines. One family of algorithms focus on reducing the

error of crowd annotators [4, 8], e.g., combining crowd and ma-

chines for multi-predicate classification tasks [11]. In contrast

to the probabilistic models employed in these algorithms, they

are less suitable for the experts-based setting. To the best of our

knowledge, this is the first attempt that aim at minimizing the

effort of experts in annotation tasks and the required storage en-

tailed by obtaining classifiers sufficing to answer a set of queries.

5 FUTUREWORK
The most intriguing direction is extending our approach to sup-

port longer queries, which is our main ongoing process. Simply

extending our graph representation to queries with multiple

equality expressions results in a hypergraph representation, thus

other approaches might be more suitable. In addition, supporting

general weights for various classification tasks, is interesting.

Finally, extending our evaluation to additional datasets with dif-

ferent types of queries is a part of our future work.
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ABSTRACT
In different research domains conducted experiments aim for the
detection of (hyper)linear correlations among multiple features
within a given data set. For this purpose methods exist where
one among them is highly robust against noise and detects linear
correlated clusters regardless of any locality assumption. This
method is based on parameter space transformation. The cur-
rently available parameter transform based algorithms detect the
clusters scanning explicitly for intersections of functions in pa-
rameter space. This approach comes with drawbacks. It is difficult
to analyze aspects going beyond the sole intersection of func-
tions, such as e.g. the area around the intersections and further it
is computationally expensive. The work in progress method we
provide here overcomes the mentioned drawbacks by sampling
d-dimensional tuples in data space, generating a (hyper)plane
and representing this plane as a single point in parameter space.
By this approach we no longer scan for intersection points of
functions in parameter space but for dense regions of such pa-
rameter vectors. By this approach in future work well established
clustering algorithms can be applied in parameter space to detect
e.g. dense regions, modes or hierarchies of linear correlations in
parameter space.

1 INTRODUCTION
Typing into Google Scholar 1 the query "linear correlation
between" yields around 343.000 scientific works from various
domains such as medical science, chemistry, biology, pharmacol-
ogy, electric engineering, economics, physics. Further limiting
the search by adding "multivariate" to the previous query reduces
the results down to around 20 scientific works. The insights are
here twofold: first, there is a demand for detecting linear cor-
relations in various domains and second, as for now only few
scientific works have investigated linear correlations between
multiple variables. One real-world example for linear correlations
among multiple features is in the wages data set2. It contains
the statistics of potentially influencing factors of wages from
1985 Current Population Survey. Visualizing the data reveals that
there are linearly correlated clusters among the features "years of
education", "years of work" and age. As a second example in the
scientific domain of water research in a work by [4] the authors

1scholar.google.com
2http://lib.stat.cmu.edu/datasets/CPS_85_Wages

© 2019 Copyright held by the owner/author(s). Published in Proceedings of the
22nd International Conference on Extending Database Technology (EDBT), March
26-29, 2019, ISBN 978-3-89318-081-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

revealed a linear correlation between the hydroxyl-radical con-
centration and the inactivation time of E.coli in a photocatalytic
disinfection substance.

Figure 1: Triple of 3D data points sampled in data space
yield this spherical galaxy of correlations in a Hessian
Normal Form parameter space. Highly dense regions rep-
resent areas with high correlations between data points.

Among the various methods for detecting linear correlated
clusters in high dimensional data there is one particular method
which relies on parameter space transform: CASH [1]. This
method comes, compared to its competitors, with advantages
that it is highly robust against noise and detects global linear
correlated clusters, being independent of any kind of locality
assumption. As we shall elaborate more in detail in section 3
this method works by projecting data points from data space to
parameter space becoming a data point functions. The param-
eter space is then scanned for intersections of such data point
functions which represent data points being linearly correlated.
However the scan for intersections in parameter space is compu-
tationally expensive and the capabilities to further analyze the
area around the intersection areas are not given by this approach.
We provide the following two major contributions in this work:

• Providing a novel approach for detecting regions of inter-
section by generating d-dimensional samples from which
a linear function is derived. This linear function is then
represented in parameter space as a vector eliminating
the need to scan for intersections resulting in galaxy-like
shapes as seen in Figure 1 and

• An opportunity to analyze further aspects on the detected
clusters such as e.g. different densities and thus variances
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Table 1: Selected Parameter Transform Methods

Method Strategy Strengths Weaknesses
Hough
Transform

grid-based
(accumula-
tors)

Simple strat-
egy

No pruning

CASH iterative pa-
rameter axis
splitting

efficiency
from DFS

Slow on
high-noise
data

D-MASC De-noising
with Mean-
Shift, Ras-
terization of
functions

Effective
against high
levels of
noise

slow on low-
jitter and
low-noise
data

of linear correlated clusters as well as density connected
clusters and their semantics.

2 RELATEDWORK
The parameter transform, which is also known as Hough trans-
form, has been first introduced in a patent by Paul V.C. Hough in
[6] in context of edge detection on images. The first application
of parameter transform in context of detecting (hyper)linear cor-
related clusters was in the work by [1]. This approach despite its
high level of sophistication suffered regarding its runtime if the
data has a high amount of noise and jitter. To approach this issue
in a recent work [7] the authors provide a method in which the
data is pre-aggregated using Mean Shift [3] in data space which
yields modes. These modes are transformed into mode-functions
in parameter space, which then are rasterized into cells. Those
cells frommode functions which are overlapping most with other
mode-function cells are considered as candidates for linear corre-
lated clusters. All the mentioned related works aim primarily at
finding intersections in parameter space at a specific resolution.
The intuition behind this resolution is that the smaller the de-
tected cells in parameter space, the more are the points located
on a specific line, plane or hyperplane. An overview on the men-
tioned linear parameter transform methods are provided in Table
1. It would be of interest to detect e.g. chains of dense regions by
applying DBSCAN [5], or centroids by applying centroid or mode
based methods such as e.g. MeanShift, or determining hierarchies
of linear correlated clusters by applying e.g. single-link to the
parameter space. Since we are dealing with functions and not
with points in parameter space, we can not apply the mentioned
methods.

3 PROJECTING SAMPLED K-TUPLES TO
PARAMETER SPACE

Having given an overview on the related work, we elaborate in
this section on our work in progress in more detail and compare
it to the currently used approach. In the methods described in
the related work section, each data point pi in data space D is
projected to parameter space P as a data point function pi 7→ fpi
where fpi := b = y −m · x , wherem represents the slope of a
line and b the intercept. An intersection of several of such data
point functions at a specific point (ms ,bs )means that their corre-
sponding data points are located on a line with a common slope
and common intercept as it can be seen in Figure 2. Since data
points are rarely located perfectly on a line, in the related work it
is looked for at leastminpoint data point functions intersecting

within a maximum (m,b)-range. Hereminpoint is a hyperparam-
eter set by the domain experts. Further regarding the range, the
intuition is the following: the smaller the range for the slope
and intercept, the more precise are the data points located on an
explicit line, and the higher the linear correlation.

In contrast to the related work, in our method all k-Tuples
(here all pairs) of data points are taken. From these tuples (pi ,pj ),
for each of them a line with a specific slope and intercept is
calculated. From the lines we obtain the slope and intercept for
each tuple which is a point in parameter space. A point or region
in parameter space where these slope-intercept coordinates are
densely located represent a correlation in data space as it can be
seen in Figure 2. In a formalized manner:

∀(pi ,pj ),wherep ∈ D : (pi ,pj ) 7→ fpi ,pj = (mpi ,pj .bpi ,pj ) ∈ P

(1)
,

For detecting the dense regions in parameter space we apply
density based clustering algorithms such as DBSCAN [5] and
OPTICS [2]. In DBSCAN we have two hyperparamters, namely
minpoints which defines the minimum number of data points
which are expected to be located within an ϵ-neighborhood. In
context of the parameter space, the effects of controlling min-
points and ϵ are the following:

minpoints 7→ |S | ∈ Corr(m,b),

where S := {(p0,p1), ..., (pi ,pj )} ⊆ DB

and ϵ 7→ σ (Corr(m,b))

(2)

Here the intuition is as follows: the minpoints in DBSCAN
represent the minimum number of data point tuples which are
expected to have the same parameter values (or value ranges)
and thus belonging to the same linear correlation. The ϵ hyper-
parameter represents the variance σ or resolution we allow for
the data points around a linear correlation.

Figure 2: Comparison of current parameter space trans-
form approaches (top) to our method (bottom).

At this point we have to highlight that a question which may
rise immediately is: how do we choose the two parameters? This
can be partially addressed by using OPTICS which eliminates
mostly the issue of determining a proper ϵ value and enables the
detection of density hierarchies. Having determined the dense
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regions or sampled linear correlations, our method computes the
median of such regions. The median comes with a pleasant effect
that it weeds out the influence of outlier k-tuple correlations in
parameter space. As for now our method can be summarized into
the following steps as it can be seen in Figure 3

Figure 3: Pipeline with its single stages of our method.

The parameter space provided in our example is the slope-
intercept form. There is a variety of linear parameter space rep-
resentations. Since the slope-intercept form comes with various
drawbacks (unbounded dimensions, unable to project y-axis par-
allel linear correlations, non-ambiguous representations in higher
dimensions etc.) we use in this work the Hessian Normal Form
(HNF) since it comes with the advantages of the slope-intercept
and other representations but with none of their disadvantages
as stated in [8]. In the HNF representation a line or (hyper)plane
is represented through:

δ =< p,n >,wherep := (p0,p1, ...,pd ) ∈ Dd ,

and n := (n0,n1, ...,nd ) ∈ Pd
(3)

,
Here n represents the normal vector and δ represents the

distance from origin orthogonal to the hyperplane.
Further we shall see in the complexity section why a full k-

Tuple construction is computationally infeasable, especially in
higher-dimensional settings.

4 COMPLEXITY
The runtime complexity of the related work CASH is in worst
case O(s · c · n · 2d ) where s reflects the number of intersec-
tions and thus the resolution of the grid, c denotes the num-
ber of found clusters, n represents the number of data points
in the data set and d stands for the dimensionality of the data
space. In comparison D-MASC has a runtime complexity of
O(Tn log(n)+( len(boundsd )w )dm2)withT denoting the number of
iterations of the MeanShift algorithm for initially reducing noise
and jitter in data space, len(boundsd ) representing the range of
the parameter space range in which we are looking for intersec-
tions,w standing for the width of the cells being generated in a
rasterization process andm for the number of resulting modes
after applying MeanShift. Our method requires for computing
the parameter coordinates for all data point all k-tuples, where
k corresponds to the dimensionality d of the original data set.
With regards to the dimensionality, we require in a 2D data set
all two-tuples, in a 3D data set all three-tuples etc. This yields
a runtime of O(

(n
d
)
). DBSCAN requires with an indexing struc-

ture that executes the neighborhood query an overall runtime
of O(n log(n)). Thus we get for our method in total a runtime
of O(

(n
d
)
+ n log(n)). From a runtime point of view, our method

has an exponential runtime with regards to the dimensionality
like CASH and D-MASC. However instead of generating all

(n
d
)

tuples, one strategy is to sample over the data points. In some
preliminary experiments we could observe that sampling yielded
in most cases as accurate results as performing a full enumera-
tion of all k-tuples. As for now, our assumption is, that if data
points are correlated in data space, so do their samples reflect the

correlation up to a certain extent. However, since this is a work
in progress, an exhaustive analysis on theoretical as well as on
experimental level is required to prove the assumptions.

5 EXPERIMENTS AND DISCUSSION
Now that we have elaborated on our method and its runtime
complexity we provide here experiments which focus on the
quality of the detected clustering results. As a first experiment
we take one of the data sets which is used in D-MASC. The two-
dimensional data set consists of 100 data points contributing to
three linear correlated clusters with irregular densities. To these
100 data points 90% noise is contributed. According to the pipeline
mentioned in section 3, first all 2-tuples of data points are created,
then projected into the parameter space. In the parameter space
we can already observe dense regions. Applying OPTICS we get
the following plot as seen in Figure 4.

Figure 4: OPTICS plot of the parameter vectors in param-
eter space.

The three valleys indicate three almost equally high-dense re-
gions in parameter space. As a result of DBSCANwithminpoints =
33 and ϵ = 0.015 we obtain the following regions in parameter
space which are marked with an ’x’ in Figure 5

Figure 5: Detected three high-density regions in parame-
ter space.

After having computed the median from each of the dense
regions, our method was capable of detecting all three linear
correlated clusters with all the data points being assigned to their
respective cluster as it can be seen in Figure 6.

As a teaser for its performance on data sets with a dimen-
sionality higher than two, we have a three dimensional data set
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Figure 6: Detected three linear correlated clusters in data
space.

consisting of 66 data points. From which 36 data points belong
to planar correlations and 30 data points are randomly gener-
ated noise. The 36 data points belong to two planar correlated
clusters, with 18 data points per correlation. In parameter space
we generate thus

(66
3
)
= 45760 parameter vectors in parameter

space. Our method detects in parameter space two clusters as
it can be seen in Figure 7 where two very deep valleys can be
seen. The first figure in the introduction of the paper is the actual
parameter space of this data set. The three axes represent each a
dimensional of the normal vector. The color (black) represents
the distance δ . The parameters for the density based clustering
wereminpoints = 250 and ϵ = 0.01.

Figure 7: OPTICS plot of the 3D data set with two highly-
dense clusters.

As an result we get both planes detected correctly and all
points assigned to their corresponding planar correlated clusters
as seen in Figure 8.

6 CONCLUDING REMARKS AND FUTURE
PROSPECTS

In this work in progress, we have provided a first concept for a
different approach in detecting (hyper)linear correlated clusters
in parameter space by sampling k-Tuples in data space, gen-
erating k-dimensional (hyper)planes. The parameters of these
(hyper)planes are projected to parameter space. In the parameter
space we used as an example density based methods for detect-
ing highly dense regions. This approach of dealing with points
in parameter space instead with (hyper)linear functions opens
new possibilities of analysis. Primary targets for future work
are evaluating sampling strategies, applying the experiments to
high-dimensional and also real world data and evaluating differ-
ent clustering models in parameter space (hierarchical, centroid-
based, subspace etc.). We hope to encourage with this paper to

Figure 8: Two planar correlated clusters

not only develop different approaches for clustering using param-
eter transform itself, but also fostering the research of parameter
space transformation based methods making discoveries in the
galaxies of correlations.
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ABSTRACT
In recent years the demand for having algorithms which provide
not only their results, but also add explainability up to a certain
extent increased. In this paper we envision a class of clustering
algorithms where the users can interact not only with the input
or output but also intercept within the very clustering process
itself, which we coin with the term process-aware clustering.
Further we aspire to sketch the challenges emerging with such
type of algorithms, such as the need of adequate measures which
evaluate the progression through the computation process of a
clustering method. Beyond the explainability on how the results
are generated, we propose methods tailored at systematically
analyzing the hyperparameter space of an algorithm, determining
in a more ordered fashion suitable hyperparameters rather then
applying a trial-and-error schema.

1 INTRODUCTION
Performing a query to the computer science bibliography search
engine dblp with the keyword "explainable"1 delivers an interest-
ing insight looking at the "refine by year" area of the search result
as it can be seen in Figure 1 . As for now (November 2018) the
number of publications dealing with the aspect of explainability
increased from 33 in 2017 up to 101 in 2018. However the scientific
works are tailored towards deep learning systems. Since it can
be agreed on that deep learning systems have some kind of black
box character as stated in e.g. [8], classical clustering methods are
fairly transparent regarding the way they generate the clustering
results. In the majority of publications dealing with clustering,
the whole system can be represented as in Figure 2. Data is given
to a clustering algorithm additionally with hyperparameters. The
algorithm of choice is executed on that data and yields a clus-
tering result. If clustering methods are already transparent and
so easy to comprehend, why should we bother then with the
aspect of explainability? Despite the fact that we know how a
clustering algorithm works, questions arise like e.g. "what is a
good hyperparameter setting?", or "how do my clusters change
(or not change) with different hyperparameter settings?", "why
did the clusters change that particular way choosing different
settings?". Only because we know how the clustering algorithms
work, we do not yet fully utilize the potential of this knowledge.
Having algorithms like e.g. MeanShift [3] domain experts may
want to know what happens with the emerging clusters during
the clustering process to understand the resulting clusters. In
this vision paper we elaborate in the upcoming sections more in
1https://dblp.uni-trier.de/search?q=explainable

© 2019 Copyright held by the owner/author(s). Published in Proceedings of the
22nd International Conference on Extending Database Technology (EDBT), March
26-29, 2019, ISBN 978-3-89318-081-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Figure 1: Number of publications indexed at dblp for the
keyword explainable from 1985 to 2018.

Figure 2: A classic clustering pipeline.

detail on different aspects which are ultimately connected to the
idea of including insights from the clustering process itself. For
this we address in our vision targets such as points of interaction,
hyperparameter analysis, methods and measures as well as po-
tential impacts of our vision on areas such as explainability and
didactics. During our tour through these targets we will mention
the current related work, and highlight potential difficulties and
needs motivating the need for process-aware clustering.

2 INTERACTION TARGETS
In context of interactiveness a rich body of literature is present.
Exemplarily we mention iPCA as an interactive tool for PCA-
based visual analytics [5]. Despite its high level of sophistication
regarding the used visualization techniques, it enables the user
to interact with the system after a PCA has been performed. The
users can not browse through some imtermediate computation
steps of PCA and intercept. Also advanced interactive clustering
tools like VISA [2] enable human interaction for inspecting the
detected clusters and subspaces but do not facilitate to intercept
within the clustering process itself. Even in a more recent work
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Figure 3: Clustering pipeline in an interactive setting
where the users can intercept within each of the steps of
the clustering.

[9] , the users can decide on modifying the results in context of
hierarchical clustering, yet they do not offer a history of steps
which the utilized hierarchical clustering has performed so far.

In a more recent work, a simple but also limited tool PAR-
ADISO [6] provides the users the opportunity to explore and
intercept within the clustering process itself. In PARADISO our
classic clustering pipeline from Figure 2 is re-defined to a pipeline
as seen in Figure 3. Here the users can intercept at each of the
iterations of a MeanShift algorithm. In this algorithm data points
roam within a specific bandwidth (also known as Parzen win-
dow) to their mean with regards to the position of other data
points located within the bandwidth. The data points thus roam
themselves towards their respective mode. In PARADISO the
bandwidth hyperparameter can be modified, stats regarding the
current clusters are provided, and visualizations for intermediate
results at each iteration step are given.

2.1 Multi-instance hyperparameter settings
One aspect from PARADISO which we’d like to emphasize on, is
the capability to assign at any iteration step of the algorithm a
different bandwidth value, which we coin with the term multi-
instance hyperparameter setting, where multi-instance refers to
either the iteration step or in general the steps of a clustering
algorithm. Going beyond the classical setting where the users
provide in the beginning one fixed (set of) hyperparameter(s)
which remain(s) valid until the end of an algorithms run, leads us
to the case of intercepting within the clustering process and de-
liberately changing the hyperparameter values at different times.
This method becomes even more significant in streaming context.
By the simple fact that in a stream setting the data changes over
time, a hyperparameter which has been selected in the beginning
may no longer be suitable. Thus we may need different hyperpa-
rameter values at different times while a clustering algorithm is
computing at each iteration on different snapshots of the data.

Further in context of multi-instance hyperparameter settings
it is vital to keep track of which changes the users have made.
Similar to a version control system, the users shall be given a tool
at hand to keep track of the history of changes they have made.
By knowing which changes have been made at which iteration,
the users can move arbitrarily through the iteration timeline
and create alternative branches of changes. Despite giving new
targets of interaction, like changing at arbitrary iterations the hy-
perparameters, the concepts of interactivenes as described so far
do bare their own problems which need to be addressed: While
on small amounts of data the intermediate computations can be
stored, it is in-feasible to store each of the iteration steps at larger
data sets. Here potential research targets are e.g. compression
strategies and significance measures to determine which of the
iteration steps are relevant (enough) to be kept in memory. Such
measures could indicate e.g. at which iterations the most changes
are taking place.

One question which may arise in context of multi-instance
hyperparameter settings is: what are the implications of such an
approach? What would it change if we choose different band-
widths within a MeanShift run vs. re-running MeanShift multiple
times with different bandwidths? Suppose we are given a data set
and apply the MeanShift algorithm with a specific bandwidth (e.g.
0.7) in the beginning. Depending on the data set it may happen
that a subset of points collapses after a few iterations into one
mode. Intercepting a few iterations beforehand by choosing a
much smaller bandwidth (e.g. 0.2) may prevent the collapse to one
singular mode, leading to multiple modes. Depending at which
iteration the interception has taken place, a re-run of MeanShift
with a bandwidth of 0.2 may not lead to the same result as in the
variant where we start with 0.7 and change it after i-iterations to
0.2. However a proof for this claim is required, which is subject
of future works further investigating the multi-instance hyperpa-
rameter settings aspect. Yet, we’d like to provide a brief intuition
for why it can lead to different results using different bandwidths
at different iterations. We envision that MeanShift executed in
two instances with each having a bandwidth b0 and b1 is like
two objects moving among distinct trajectories where time is
represented through the single iteration steps. Intercepting in
the MeanShift with b1 is comparable to deflecting the object b1
leading to a potentially different trajectory than its original path
by forces from other modes acting on the object. It may lead to
the same destination as MeanShift executed with b0 but can as
well have its destination at a different positions in data space.

3 MEASURING METHODS
Besides the concept of intercepting into the clustering process
itself and assigning multiple instances of hyperparameters at
different iteration steps, there is a need for measuring meth-
ods which are suitable in context of process-aware clustering.
The requirements to such measures would be e.g. to capture the
dynamics within the clustering process like data points being
assigned to specific clusters or subspaces and the change of such
over the course of a clustering run.

3.1 Entanglement
The first propositions for such a measure were made in [7]. Here
the concept of entanglement has been raised which is intended
to support interactive data clustering with the purpose to supply
additional information to users. In [7], the entanglement between
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Figure 4: Parameter grid, with the parameters of DBSCAN.
Each point represents the entanglement difference com-
puted to its previous entanglement values.

two data points is defined as the dynamic time warp distance
between the trajectories of both points roaming over time to
their modes in a MeanShift clustering algorithm. If those data
point trajectory pairs are sufficiently similar to each other over
the iterations, they are considered as entangled. This definition is
however limited to centroid-based approaches like in MeanShift.
In our vision we aspire to provide such entanglement definitions
for various clustering models (e.g. density-based, hierarchical,
spectral, subspace, correlation etc.) and, if possible, a more gen-
eralized definition of it.

3.2 Resilience
The entanglement of two data points can be highly varying or
remaining stable. This stability depends on the chosen hyperpa-
rameters. In [7] the so called resilience has been defined, which
computes the variation of the entanglement over different hyper-
parameter settings. The lower the variance of the entanglement
at different hyperparameters, the more resilient is the specific
subset of data points. However the work in [7] is highly limited to
the MeanShift setting. In our vision auspicious directions include
the research of resilience in context of other clustering models,
especially also in context of subspaces where the resilience and
entanglement is not only determined among subset of data points
but also among a subset of subspaces. It remains for future work
to investigate in how far the concepts of entanglement and re-
silience can be applied to different clustering models (e.g. density
based, hierarchical, subspace, correlation, spectral etc.) and with
which kind of adaptations.

3.3 Hyperparameter Analysis
The research on entanglement and resilience bares potential
for the aspect of hyperparameter analysis. In many of the pub-
lications on clustering so far, the hyperparameters in e.g. the
conducted experiments were chosen on an experience basis. Dif-
ferent settings are tried out until a good (enough) clustering result
is achieved. We envision that measures like e.g. resilience can
be used together with more systematic approaches in determin-
ing the quality of parameters. For example in context of density
based clustering like in DBSCAN [4], where we have a minpnts
and ϵ parameter, a grid-based approach can prove effective as
seen in Figure 4.

Here the granularity of the grid is set by the users on how
fine they want to sample the grid. It is advised to start with a
coarse grid first. In an initial step, one computes for each of the
(minpnts, ϵ) combinations the entanglement. Then the resilience
over different parameter settings is computed. Those points on
the grid (which represent (minpnts, ϵ) hyperparameters) which
have the highest difference in resilience can be considered as
interesting, since this specific hyperparameter setting impacts

Figure 5: Resilience in context of ensemble clustering.

the entanglement of subsets of points. Then in a follow-up step,
the grid is refined around such interesting points on the grid.
The users can thus successively explore the impact of the hy-
perparameters. In this context the users can use clusering with
a different goal in mind: given a subset of points Sin where we
want them to be in the same cluster, and further we are given a
subset of points Snot−in which we do not want to be in the same
cluster. Under which parameter settings do we get a clustering
fulfilling these constraints? In this setting it is also of interest
for future research to approach the scientific problem: how can
the users be informed on how "unintuitive" it would be for the
clustering algorithm with its underlying model to respect the
given constraints as in Sin and Snot−in?

3.4 Ensemble Settings
The concept of resilience can further be used as a measure for
ensembles of clustering models. Given a dataset, in an ensemble
setting, the most resilient subsets are considered per model. The
intersection of the resulting resilient subsets over all the models
yields a subset which is highly resilient among all (or most) of the
clustering models which can be seen in Figure 5. The intuition of
this intersection subset is, that it is a consensus of different cluster
models at different hyperparameter settings, yielding clusters or
at least subsets of clusters being valid among different cluster
models. On the contrary, removing the consensus subset, leaves
subsets which may be (a) not resilient among their respective
models, or (b) are highly resilient, but only within their models.
The latter case is exciting since this potentially facilitates the
extraction of highly model specific subsets of data points.

4 IMPACTS
Having elaborated on interaction targets, and measuring meth-
ods, we now discuss potential impacts of our vision within the
upcoming subsections providing some outlook on the potential
magnitudes that this vision may trigger.

4.1 Explainability
Since we have mentioned in the beginning of this vision paper
the aspect of explainability we now elaborate on this aspect as
a potential impact. The propositions for methods and measures
so far enable to look at different parts of an clustering algorithm.
The entanglement supports to look into the clustering process
itself detecting data points which have the same trajectories
or are assigned to the same clusters, subspaces etc. Resilience
enables to understand which data points remain (based on entan-
glement) together even over different hyperparameter settings.
The interaction concept of multi-instance hyperparameter setting
permits the users to intercept and explore the effects of choos-
ing different values for hyperparameters during the clustering
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process. Each of the mentioned methods and aspects can reveal
information which can, best to our knowledge, not be gained
by simply adding data and some chosen hyperparameter values
for a clustering algorithm that once executed only returns the
clustering results. However, words of caution are also need to
be stated here, since questions that remain open are e.g.: How
are the information from the clustering process itself best being
presented to the users, and in which form? Which other forms
of interaction-tracking may be required, since with increasing
number of interaction targets, also the complexity of what can
be changed and observed increases.

4.2 Didactics
A connection which may not be obvious on first sight, but be-
comes rather evident when thinking more from an educational
perspective is the relation between explainability and didactics.
Besides the theory and exercises in tutorials, demonstrations of
the discussed clustering algorithms significantly contribute to
the understanding. For such purposes tools like e.g. ELKI [1]
exist which can also be used to demonstrate how datasets are
clustered and to explore the effects of different hyperparameters
by re-running the algorithm every time with a different parame-
ter setting. We are convinced that in our vision process-aware
clustering can enable even more insights into the clustering pro-
cess itself, understanding the behavior, the strengths and also
limitations of the process-aware clustering models. It may further
aid graduate students which are writing their bachelor or master
thesis to evaluate the effects of potential enhancements that they
develop and apply to the clustering models they are working
with, providing a different approach to evaluate.

5 CONCLUSIONS
In this vision paper we have elaborated on the idea of process-
aware clustering, and on its concepts which can be seen sum-
marized in Figure 6. Regarding interaction targets, we have the
pillar of multi-instance hyperparameter settings and the pillar
of hyperparameter-change tracking with history. While the first
pillar enables the interception into the clustering process, the
latter provides the capability to track changes and explore dif-
ferent settings. The pillars of entanglement and resilience from
the aspect of measuring methods provide the very basis for (a)
hyperparameter analysis, which itself serves as the foundation
for (b) ensemble settings. All the mentioned fields pose the very
foundation for explainability and didactics in the field of interac-
tive process-aware clustering. Further ideas regarding the vision
would be to connect process-aware clustering with the research
field of process mining. Since various methods are developed
for the analysis of processes, some of them (with or without
adaptations) may be beneficial to the process-aware clustering
concept. Since this vision aims to reveal what happens within
the clustering process itself, we conclude this vision paper with
a quote from Dr. Faust from a tragic play by Johan Wolfang von
Goethe:

That I may understand whatever
Binds the world’s innermost core together,
See all its workings, and its seeds,
Deal no more in words’ empty reeds.
––Faust, lines 382–385.

Figure 6: Pillars of process-aware clustering.
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ABSTRACT
Index structures such as B-trees and bloom filters are the "petrol
engines" of database systems, but these structures do not fully
exploit patterns in data distribution. To address this, researchers
have suggested using machine learning models as "electric en-
gines" that can entirely replace index structures. Such a paradigm
shift in data system design, however, opens many unsolved de-
sign challenges, e.g. more research is needed to understand the
theoretical guarantees and design efficient support for insertion
and deletion.
In this paper we adopt a different position: index algorithms

are good enough, and that instead of going back to the drawing
board to fit data systems with learned models, we should develop
lightweight "hybrid engines", where a helping model "boosts" clas-
sical index performance using techniques from machine learning.

As a case study, we show how interpolation techniques can be
integrated with a B-trees with negligible change to the structure
and memory footprint of the base algorithm. We show that such
a simple helping model, called Interpolation-Friendly B-tree (IFB-
tree), can boost the speed of B-trees by up to 50%.

1 INTRODUCTION
Data engines exploit efficient implementations of algorithmic
index structures, such as hash tables, B-trees, radix-trees, bloom
filters, etc. Index structures fit different tasks and workloads, e.g.
B-trees are efficient for range lookups and hash tables are the
tool of choice for point queries. Different aspects for each of
these indexes have been studied for decades. Many tuning sug-
gestions exist, for example, for B-trees to efficiently fit hardware
specifications including the latency/bandwidth ratio and cache-
sizes, and various extensions have been suggested to improve
the performance even further. [4, 5, 11, 12].
Recently, it was suggested that general-purpose index struc-

tures such as B-tree cannot exploit common patterns in data
distribution of the real-world data, hence proposing the use of
machine learning (ML) models [9]. In this approach, a learned
model entirely replaces a classical index and learns how to per-
form the same behavior. For example, a B-tree can be replaced by
a learned index (based on deep learning models) that takes the
key as input and estimates the position of the corresponding data
record in a sorted set, i.e., a clustered index or sorted list of keys.
Learned indexes can be effective for read-only lookups over

many data distributions. However, lack of theoretical perfor-
mance guarantees for a learned model and the challenges for
handling update operations in a learned model has lead to an
extensive debate in the community. In general, and similar to the
analogy of ’petrol vs electric’ engines, adopting machine learning
techniques could yield elegant methods in data management but

© 2019 Copyright held by the owner/author(s). Published in Proceedings of the
22nd International Conference on Extending Database Technology (EDBT), March
26-29, 2019, ISBN 978-3-89318-081-3 on OpenProceedings.org.
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the design and maintenance of an ML-enhanced DBMS opens
numerous challenges that require comprehensive research. In
the meantime, we need hybrid engines that do not render cur-
rent algorithms and indexes unnecessary. We refer to the hybrid
engines as "helping models". Figure 1 illustrates a classical B-tree
index (a) vs a learned index (b), the hybrid approach (c) where
helping models improve a classical index on different stages.

In this work, we try to bridge the gap between traditional index
structures and the ML approach, suggesting that a helping model
can be integrated with a traditional index without incurring un-
due overhead.We suggest that the ability of anMLmodel to make
distribution-aware indices is not a rival for classical indexes, but
indeed complements them.
We therefore present the Interpolation-Friendly B-tree (IFB-

tree), which sticks with the traditional B-tree structures to enjoy
their performance guarantees, yet is able to exploit the basic ideas
of a learned index such as bounding error-windows for intra-node
lookups. More specifically, we demonstrate how linear interpola-
tion can be integrated with a B-tree index to reduce unnecessary
operations with a negligible memory footprint. The process can
be done by analyzing a B-tree and labeling interpolation-friendly
nodes, so that further access to such nodes can be accelerated
using interpolation. Our experiments show that the Interpolation-
Friendly B-trees (IFB-trees) gives up to 50% improvement over
B-trees.

2 TO B-TREE OR NOT TO B-TREE?
2.1 B-tree overview
The B-tree is a generic data structure. State-of-the-art B-trees
are n-ary binary trees, i.e., generic data structures that do not
assume any specific pattern in the underlying key distribution [4,
5, 11, 12]. B-tree lookup time consists of the time to search within
each node, plus the time to follow the pointers and load the next
nodes in bottom levels. This takes time and requires keeping a
portion of data (inner nodes) in memory.
One of the key issues in a B-tree is that, to locate an item in

each of the B-tree nodes, the entire node should be searched,
either by linear scan or binary search.
In the following, we consider the alternative approaches that

provide "smarter" methods for looking up keys in B-trees. The
general solution for a more targeted lookup in a B-tree node (i.e.,
a sorted list of keys) is to use a method that effectively leverages
the underlying key distribution.
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2.2 Learned indexes
Machine learning provides various tools for learning a distri-
bution. Recently, Kraska et al. [9] suggested that if a machine
learning model can fully learn the CDF of the key distribution,
it can directly predict the location of the queried keys in the
table pages. They exploited a hierarchy of deep learned mod-
els to help shrink the problem space. Since all predictions in
machine learning are susceptible to errors, the maximum error
for the models needs to be computed in advance. Once the po-
sition is estimated, we can scan a range around the estimated
position in the table pages. This is called the error window, i.e.
[ ˆpos(key) −MaxErrLeft , ˆpos(key) +MaxErrRight]. As shown in
Figure 1(a,b), a learned index entirely replaces a classical data
structure (like B-tree). If the prediction error is small enough, a
learned model can ultimately beat B-tree’s lookup time.

Challenges of learned indexes. A learned index can learn
many complex distributions and locate the position of the key
with a considerably low error margin. The idea of ML-indexes is
be very effective for modeling some specific CDFs, yet MLmodels
are not efficient for every key distribution. Moreover, state-of-
the-art learned models are mostly suitable for read-only data.
Despite that these models can handle a few insertions and dele-
tions by reserving empty spaces in the sorted list, more update
requests require re-training the model, which is computationally
expensive. Since the model is bound to the mapping between the
key’s value and the position’s offset, any changes to this mapping,
such as inserts and deletes, make the learned model ineffective.
Moreover, learned indexes require that the table pages be stored
in a continuous block of memory so that records can be retrieved
once the position is estimated. This assumption does not hold
when the keys are not sorted, e.g. in a secondary (non-clustered)
index, hence limits the applicability of a learned index.

2.3 IFB-tree
We believe that the main issue behind the challenges in a learned
index is that it "replaces" an algorithmic data structure, but cannot
deliver all the same operations. Alternatively, we suggest that a
similar ideas of a learned index can be embedded within a data
structure, such as the B-tree. Unlike theML index approachwhich
entirely replaces conventional index structures with a learned
model over the sorted page of keys, we stick with the genuine
structure of the B-tree. In fact, the B-tree itself is very effective in
modeling the CDF of the key distribution by repeatedly breaking
it into smaller parts. We consider the fact that a considerable
share of B-tree lookup time is spent on intra-node search, i.e., to
find the smallest value in a B-tree node that is larger (or equal)
to the query point q. If we manage to outperform the intra-node
search in a B-tree, the efficiency of B-trees can be improved
without changing its theoretical performance guarantees.

Learning node distribution. Since keys are sorted in each
B-tree node, we can think of a smarter lookup instead of naively
doing a linear or binary search over all keys in the node. Similar
to the learned indexes, a tiny model can predict the position
of a key in each node, which reduces the search space within
each B-tree node. However, even the simplest models (e.g. linear
regression) requires keeping model parameters for each node in
memory, and the cost of managing and loading the parameters
does not lead to any performance improvements.

Node interpolation. Following the general idea ofML indexes,
our solution is to estimate a range that guarantees the target key
resides in. While interpolation looks like a naive approach, it

could be very effective and has near-zero cost: it simply requires
one bit per key, and the computation is very fast and simple.
Figure 2b illustrates how interpolation can be done in a B-tree
node. If the queried key vq is between the two keys in a B-tree
node, say vi , vi+1 , it should be located on the next level, which
could be the next node in the tree or a node in the physical table
pages if the current node is a leaf. The interpolated index of the
entry corresponding to vq is: p̂q =

⌊
vq−vi
vi+1−vi × node_size

⌋
The interpolation has an error, unless the keys follow an ex-

act arithmetic progression, which is almost never the case in
real-world except in case of auto-generated key sequences. Let’s
assume the maximum error for any value in a node is MaxErrLeft
and MaxErrRight, respectively. This means that the area between
p̂q −MaxErrLeft + p̂q +MaxErrRight should be scanned to find
the actual position corresponding to vq .

Global error window. Storing the errors values MaxErrLeft
and MaxErrRight alongside the keys in the B-tree node will in-
crease the memory footprint and hence greatly reduces the per-
formance. Moreover, having variable error values for each node
makes it challenging to exploit the SIMD capabilities for in-
terpolation and search. We prefer not to store any extra in-
formation in each node and keep the structure of B-tree un-
touched to the extent possible. Therefore, we define a global
threshold for error for the entire B-tree, called the interpola-
tion diameter ∆. We call a B-tree node “interpolation-friendly” if
any key can be found with interpolation error of at most ∆, i.e.
∆ ≥ max(MaxErrLeft,MaxErrRight). If a node is interpolation-
friendly, we can estimate the location corresponding to the query
point q, say p̂q , and then search the area

[
p̂q − ∆, p̂q + ∆

]
, as

the result is guaranteed to be in this area. Another advantage of
having a pre-defined value for ∆, is that the length of the loop
for searching in a node is defined in compile time, hence the
program can be efficiently optimized using efficient branch-free
and/or loop-unrolled code for either linear or binary search [2].

Marking IFB-tree nodes. Building an IFB-tree involves two
steps. The first step is to build a simple B-tree. In the second
stage, we analyze all nodes in B-tree to find which nodes are
interpolation friendly. More specifically, a node is interpolation-
friendly if |pkeyi − i | < ∆,∀ 0 ≤ i ≤ K . Once a node is identified
as interpolation-friendly, it should be flagged somewhere. In case
that the interpolation error for a node is above ∆, the default
search procedure should be used without interpolation, which
can be done by either linear or binary search.

A typical B-tree node consists of a list of keys and pointers to
next nodes. However, the MSB of the 64-bit pointer is rarely used
in practice, because the memory address in commodity operating
systems is less than 264−1 bytes = 2 Exabytes. Therefore, we can
use the MSB of the pointer to flag if the node is interpolation-
friendly. To use the pointer, we need to mask the MSB of the
pointer value before using it. Figure 2a shows the layout of an
IFB-tree node. Note that if IFB-tree is used as a primary index, the
data tables are sorted too, hence interpolation can be also done on
the leaf node to predict the position of the result in physical table
pages. Moreover, marking an IFB-tree is a lightweight process
compared to B-tree build time, but it can be easily parallelized as
well.

2.4 Complexity analysis
The complexity of IFB-tree is the same as the B-tree for all op-
erations. Whenever an IFB-tree node is created or modified, the
interpolation error must be re-computed for all values in the
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Figure 2: Interpolation in IFB-tree

node. For a node with node size of p, the time taken to find the
maximum interpolation error for all values in the node is O(p).
In the following, we analyze the time taken to build and update
the IFB-tree and show that none of the theoretical complexities
are different than that of B-tree.

Build time.. Bulk-loading data in a B-tree takes O(n logp n)
time. In IBF-trees, there is a second phase for evaluating the nodes
and marking interpolation-friendly nodes, which takesO(n). The
complexity of bulk insertion thus isO(n logp n+n) = O(n logp n).

Update time. For insertion and deletion, the complexity of the
B-tree isO(p logp n), which consists ofO(logp n) access/modification
of nodes times O(p) time for modifying each node. When using
IFB-trees, we simply re-evaluate the interpolation-friendliness of
each node when an element in the node is modified. The complex-
ity of accessing a node thus still is O(p + p) = O(p), leaving the
overall O(p logp n) complexity unchanged for update operations.

Lookup time. Finding the position corresponding to the query
in each node takes O(t) time if the node is interpolation-friendly
(t=interpolation diameter), and O(p) otherwise. Depending on
how many of the nodes are interpolation-friendly. As t < p, the
lookup time is between O(t logp n) if all nodes are interpolation-
friendly and O(p logp n) in the worst case.

3 EVALUATION
In this section we compare the performance of the IFB-tree for
both synthetic and real-world data to analyze its lookup time and
the effectiveness of interpolation.

Experimental Setup. IFB-tree and B-tree are implemented in
C++ and compiled with gcc (7.3.0). Note that all data resides in
main memory. The range index finds the first the first indexed
key that is equal or higher than the lookup key. Also, the keys on
the physical layout are sorted (i.e. it is a clustered index), so that
the entire result set can be returned once the first key is found.

Datasets. We used three datasets for performance evaluation,
namely accessLog, lognormal, and longitudes. The accesslog data
contains web-server log records from a hotel booking website.
Lognormal is a synthetic data generated from lognormal distri-
bution. Longitudes are sampled without replacement from the
longitudes of over 1.5 billion locations extracted from the Open-
StreetMap database [17].

Implementation details. For both B-tree and IFB-tree, we
used 64-bit keys and 64-bit payload. Scanning in each node can
be done by either linear or binary search. When the baseline
methods use linear search, the performance improvements of
IFB-trees are expected to be higher and more predictable, because
shrinking the scan area will linearly reduce the lookup time in
nodes. However, it is generally reported that binary search is
more effective on new hardware, even for medium-sized nodes [2,

Figure 3: Speedup gained by interpolation (IFB-tree)

7]. We consequently use binary search for both IFB-tree and the
baseline B-tree methods.

Speedup. Figure 3 shows the speedup obtained by the IFB-tree
over the B-tree on different datasets with 5M and 500M keys.
After tuning the parameters for both indexes (i.e., page size and
interpolation diameter), the IFB-tree improves the performance
by 10% to 55%.

Effect of page size. The key parameter in a B-tree is the page
size (= node size). Figure 4a shows how the B-tree lookup time is
affected by the page size. Choosing a large page size decreases
the branching factor and the tree depth, but searching through
each nodes takes more time.

Speedup analysis. The performance speedup of the IFB-tree
depends of B-tree nodes that are interpolation-friendly, as well
as the interpolation diameter (the area that should be searched
within each page). As shown in Figure 4b, the number of interpolation-
friendly nodes is almost proportional to ∆

page size , i.e., to inter-
polate the majority of nodes on large pages, we need a larger
error window. However, a larger error window also decreases the
speedup gained by interpolation. Figure 4c shows the speedup
of IFB-tree against a B-tree with the same page size, suggesting
that the best error window is obtained when ∆ = 1

4 × page size.
The lookup times (in nanoseconds) are depicted in Figure 4d.

4 RELATEDWORK
Interpolation search. Interpolation is an alternative to index
structures for estimating the location of records in a clustered
index. The technique is known to be very effective when the
underlying data distribution is close to uniform [4].

Learning database engine. The use of machine learning on
learned indices is just recently proposed. Kraska et al. suggested
a learned index based on a hierarchy of deep models, called the
Recursive Model Index (RMI) [9]. Further research is done on
linear learned indexes [3], inverted indexes [18], and enhanced
learned bloom filters [15, 18]. Moreover, some theoretical analysis
is done on the maximum capacity of deep learning models for
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Figure 4: IFB-tree analysis on Longitudes dataset

keeping index key information [20]. Machine learning has been
also adopted for other database operations [6, 8, 10, 13, 13, 16, 19].

Data transformation. Following a different line of work, it
is suggested that the performance of index structures can be
greatly improved by pre-processing the input data and trans-
forming the keys using a mapping function, in a way that the
index structure be more efficient for indexing the distribution
of the transformed keys. This idea is exploited for bloom fil-
ters [14] and multi-dimensional data [1]. Interestingly, a data
transformation that makes the key distribution closer to uniform
can benefit IFB-tree and further decreases the interpolation er-
ror, hence boosting the speedup of an IFB-tree against its B-tree
equivalent.

B-tree enhancement techniques. Several suggestions have
been made to design B-trees efficient for the modern hardware.
For example, Levandoski et al. suggested BW-trees, a latch-free
and cache-friendly B-tree that is used in several Microsoft data
engines [12]. Optimizing B-trees can involve compression tech-
niques such as prefix-based splitting. Leis et al. suggested Adap-
tive Radix Trees, which consumes less memory especially on
top levels of the tree. Since all tree-based data structures follow
the basic principles of B-trees, such as maintain data in sorted
order and splitting the distribution using hierarchies of the table,
IFB-tree can be customized for these variants, too.

5 CONCLUSION AND FUTUREWORK
We suggest that the ideas behind learned indexes can be inte-
grated with classical index structures to make them aware of the
distribution, hence boosting the performance of the current algo-
rithm. By adopting a computationally lightweight method like
interpolation, we boosted the performance of B-trees by up to
50% without modifying the overall structure of B-trees or deteri-
orating their theoretical performance guarantees. The intra-node
interpolation idea is indeed independent from the layout of the
tree and hence can be integrated in different extensions to B-tree,
including B+-trees, BW-trees [12], and radix trees [11].
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ABSTRACT
Format transformation is one of the most labor intensive tasks

of a data wrangling process. Recent advances in programming

by example proposed synthesis algorithms that showed promis-

ing results on spreadsheet data. However, when employed on

repositories consisting of multiple sources and large number of

examples, such algorithms manifest scalability issues. This paper

introduces a new transformation synthesis technique based on

edit operations that enables efficient learning of transformation

programs. Empirical results show comparable effectiveness and

dramatic improvements in efficiency over the state-of-the art.

1 INTRODUCTION
Format transformation is a sub-task of data wrangling ([3], [8])

that carries out changes to the representation of textual infor-

mation, with a view to reducing inconsistencies. Such tasks are

typically coded manually by experienced users through scripts

that change the representation of data. Recent advances in Pro-

gramming By Example (PBE) led to algorithms such as FlashFill
[4] and BlinkFill [11] that synthesize transformation programs

from user given input-output examples. These algorithms repre-

sent important steps towards automatic format transformation in

the fields for which they have been devised: spreadsheets. Spread-

sheet processing often involves datasets of manageable size, a

small number of examples and active user involvement in provid-

ing additional example data when needed. In contrast, in areas

of data wrangling and data analysis, the task of format trans-

formation is applied repetitively on large datasets from many

sources, where more examples are available and user supervision

is impractical [2]. Increased volume of example data reveals the

opportunity for taking the human factor out of the synthesis

process. Automating format transformation by increasing the

number of examples represents a challenge for current synthe-

sis algorithms due to their high complexity: exponential in the

number of examples and highly polynomial in the length of the

examples [10].

In this paper we contribute a solution, which we call SynthEdit,
to the problem of automatic format transformation. We are moti-

vated by the high computational cost of current state-of-the-art

techniques when the number of available examples increases,

and propose an approach based on finite state automata that

scales better than algorithms such as FlashFill when there are

more than a few examples available - typically tens or hundreds.

The improved efficiency comes at the expense of expressiveness,

but allows SynthEdit to benefit from substantial example data

when available, and, therefore, to cover many inconsistency cases

and to eliminate the need for user involvement.

© 2019 Copyright held by the owner/author(s). Published in Proceedings of the

22nd International Conference on Extending Database Technology (EDBT), March

26-29, 2019, ISBN 978-3-89318-081-3 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons
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Related work: The problem of learning transformations from

examples has been addressed in a number of settings ranging

from restructuring of textual information [4], [11], to table for-

matting [6], and text extraction [1]. More complex systems such

as TDE [5] embody a wider range of transformations using ex-

ternal information in addition to user-provided examples.

The closest to our work are algorithms such as FlashFill which

have specifically been designed for spreadsheets, assume high

user involvement and use DAG-based synthesis solutions that

aim to cover the entire space of possible transformations between

two given strings. The user’s main task in such systems is to

provide additional examples for cases not covered by the previous

instances. The resulting algorithms have exponential complexity

w.r.t. the number of examples [10].

While recent works [2], [7] have proposed techniques that

minimize the user involvement in generating examples, Syn-
thEdit aims to fully automate the task of format transformation

for larger repositories such as data lakes, richer in potentially

useful example data, and challenging to address through manual

authoring of scripts due to their size and diversity.

2 PRELIMINARIES
We start by describing a representative example where our algo-

rithm can be employed, inspired by web real world data.

Example 2.1. 1900s NY state governor names and term years:

Source Target

Hugh Leo Carey (74-82) Hugh L. Carey (1974-1982)

Jay Henry Lehman (33-42) Jay H. Lehman (1933-1942)

In Example 2.1, the task is to derive a transformation that can

generate the Target values using the Source values. In this paper

we refer to such pairs of strings as example instances.
Tokens: We view a string s as a collection of tokens, where

each token represents a sub-string of s . Similarly to existing

algorithms for format transformation, e.g., FlashFill, SynthEdit
supports three types of tokens: (i) regular expression tokens -

that match a predefined regular expression pattern; (ii) constant

string tokens - with a value equal to the corresponding constant

string, and (iii) special tokens - beginning/end of a string.

Regular expression primitives: Obtaining the set of tokens
for a string s builds on a set of primitive lexical classes defined

by regular expressions. The regular expression primitives we

use are notated as follows: N = [0-9]+, U = [A-Z ]+, L = [a-z]+,
A = [A-Za-z]+, Q = [A-Za-z0-9]+, P = [., ; : /-_?!&$]+, W = \s+.

Transformations:Going back to Example 2.1, we can express

the source string in the first row as a collection of token types,

henceforth called a token-type representation: A W A W A W P N P N P.
Such representations will be used to derive a transformation

that will produce the target string from the source string. One

simple such transformation would have the following English

language specification: Replace "Leo", "74", and "82" from the source
with "L", "1974", and "1982" from the target, resp.. Although such
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Reдex pr imitive r := N | U | L | A | Q | P | W

Posit ion expression P := Pos(r1, r2, c)

Token t := (r, P)

Str inд expression E := Copy(t) | Const (s)

| Substr (t, i, j) | Concat (E1, . . . , En )

Edit operation O := I N S (E) | DEL(t) | SU B(t, E)

T ransf ormation T := O1; O2; . . . ; On ;

Figure 1: Transformation language syntax

a transformation is consistent with the first example instance,

it is too specific to correctly transform the string in the second

row. Fortunately, we can generalize the transformation by using

token types instead of actual sub-string values: Replace the second
A-type token, the first N-type token, and the second N-type token
from the source with the first U-type token, the first N-type token,
and the second N-type token from the target, resp.. Now, the same

transformation is consistent with both example instances.

3 TRANSFORMATION LANGUAGE
In this section we propose a transformation language that is

expressive enough to describe the previous transformation using

simple edit operations: Insert (referred to as INS), Delete (referred
to as DEL), and Substitute (referred to as SUB). The complete

syntax of the transformation language is in Figure 1, while the

semantics are described below. We use the notation ϵ to denote

an empty string, len(s) for the length of a string s , s[i : j] for the
sub-string that starts at index i in s and ends at index j, and c to

denote the cth occurrence of a token type in a string
1
.

The semantics of a position expression, Pos(r1, r2, c), is to
evaluate to a sub-string s[j : k] of a given string s , such that

∃ i, j,k, l 0 ≤ i < j < k < l ≤ len(s) − 1, where s[i : j]matches r1
and s[k : l] matches r2. Furthermore, s[j : k] is the cth such sub-

string in s . If such a sub-string does not exist then the expression

evaluates to ϵ . Such an expression allows us to uniquely identify

each token in a given string using its neighbour tokens and, at the

same time, ensures that the expression will (likely) evaluate to ϵ
when applied on strings with different format representations.

We can now redefine a token t as a pair consisting of a token

type r and a position expression P. Note that t only exists if the

string value returned by P matches r.
The Copy(t) expression evaluates to the string value of t.

Const(s) evaluates to a constant string s . Substr (t, i, j) returns
the sub-string that starts at position i and ends at position j −
1 of the string value of t. Concat(E1, . . . ,En ) performs string

concatenation on the results of the underlying string expressions

E1, . . . ,En . The edit operations INS(E), DEL(t), and SUB(t, E)
perform insertion, removal, and replacement, resp. of some string

resulting from the expressions given as parameters, on a given

string s . Lastly, T is a sequence of edit operations applied on s .
Figure 2 shows 5 operations (from a total of 12) of a transfor-

mation that can be used to edit both source strings from Example

2.1 into their corresponding target strings. Considering the first

row from Example 2.1, the intuition in (1) and (2) is to replace

the first occurrences of an A-type token, i.e., Hugh, and the first

white space with a copy of themselves. Similarly, in (3), the to-

ken Leo from the source string is replaced with the first letter of

itself. In (4), a dot, ".", is inserted after the result of operation (3).

1
All string positions, i.e. indexes, start from 0.

SU B((A, Pos( ,̂ W, 0)), Copy((A, Pos( ,̂ W, 0)))); (1)

SU B((W, Pos(A, A, 0)), Copy((W, Pos(A, A, 0)))); (2)

SU B((A, Pos(W, W, 0)), Substr ((A, Pos(W, W, 0)), 0, 1)); (3)

I N S (Const (”.”)); (4)

SU B((N, Pos(P, P, 0)), Concat (Const (”19”), Copy((N, Pos(P, P, 0))))); (5)

Figure 2: Transformation for Example 2.1

Operation (5) replaces the first number between two punctuation

tokens, i.e., 74, with the result of the concatenation of a constant

string, 19, and the same number to obtain 1974. Note that the
transformation in Figure 2 is applied on a copy of the source,

as opposed to modifying the string in-place. This ensures that

source tokens used by later operations are not lost if an early

operation deletes/substitutes them.

4 SYNTHESIS ALGORITHM
In this section we describe an algorithm that, starting from the

example instances provided in Example 2.1, learns the transfor-

mation from Figure 2. Given an example instance, the algorithm

consists of 4 phases: 1) tokenize the source and target strings; 2)

synthesize edit operations; 3) synthesize string expressions; 4)

merge the results of 2) and 3) to create a transformation.

Tokenization: Both source and tarдet strings are split into to-
kens using a function Tokenize. Specifically, the function searches
for sub-strings that match one of the regular expression primi-

tives defined in Section 2. Each such match represents a new to-

ken ti . Next, by looking at the neighbouringmatches, the function

learns a position expression which uniquely identifies ti in the

parent string. Tokenizing the source string of the first row in Ex-

ample 2.1 returns: (A, Pos(ˆ, W, 0)), (W, Pos(A, A, 0)), (A, Pos(W, W, 0)),
(W, Pos(A, A, 1)), (A, Pos(W, W, 1)), (W, Pos(A, P, 0)), (P, Pos(W, N, 0)),
(N, Pos(P, P, 0)), (P, Pos(N, N, 0)), (N, Pos(P, P, 1)), (P, Pos(N, $, 0))

Edit operation synthesis: The top-level transformation is a

collection of edit operations parameterized with tokens and/or

string expressions. Given an example instance, with its corre-

sponding token-type representation of source (Ts ) and target

(Tt ) derived from the token sets obtained at the previous step,

a function EditSynthesis(Ts ,Tt ) generates a sequence of edit
operations that edits Ts into Tt . This can be done using an edit

distance algorithm, such as the one proposed in [9], where the

composition operation on weighted finite state automata (WFSA)

is used to generate all possible edit operations that transform the

source into the target. By assigning equal weights to each edit

operation, the shortest path of the lattice of operations returned

by the composition of WFSA denotes the simplest way to obtain

the token-type representation of the target. Note that each path

of the obtained lattice denotes a valid sequence of edit opera-

tions which would produce the target string, but we are only

interested in the simplest one. As an example, consider again the

first row from Example 2.1 with the token-type representations

Ts = A W A W A W P N P N P and Tt = A W U P W A W P N P N P.
EditSynthesis(Ts ,Tt ) can produce the following sequence of

edit operations
2
that transform Ts into Tt :

SU B(As0, A
t
0); SU B(Ws0, W

t
0); SU B(As1, U

t
0); I N S (Pt0);

SU B(Ws1, W
t
1); SU B(As2, A

t
1); SU B(Ws2, W

t
2); SU B(Ps0, P

t
1);

SU B(Ns0, N
t
0); SU B(Ps1, P

t
2); SU B(Ns1, N

t
1); SU B(Ps2, P

t
3);

(6)

Asi/A
t
j : the i

th
/jth token of type A from source/target, i, j ≥ 0.

Note that Expression (6) denotes the transformation between

a given source and a given target, but it cannot be used directly

2
Expression (6) omits the Pos constructors for clarity.
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Algorithm 1 String expression synthesis

Input: Index entry: ti → pairs ti
Output: A string expression E

1: function ExpressionSynthesis

2: if pairs ti == [] then return Const (ti ) end if
3: (sj , lcs j ) ← best_pair(pairsti )
4: if sj == lcs j == ti then E ← Copy(sj )
5: else if lcs j ⊂ sj && lcs j == ti then
6: E ← Substr (sj , indexOf(lcs j , sj ))
7: else
8: E ← Concat (ConcatSynthesis(ti , pairs ti ))
9: end if
10: return E
11: end function

when the target is not given. As such, our next objective is to

express each target token in Expression (6) as a string expression

applied on some source token, e.g., Figure 2. This will allow us

to apply the newly obtained operations on new input strings.

String expression synthesis: Expressing a target token ti as
a processing of some source tokens requires the identification of

the source token (or the group of source tokens) whose value(s)

are the closest to ti . To this end, we create an inverted index I

in which each target token value ti identifies a list of pairs of
the form (sj , lcs j ), where lcs j is the longest common sub-string
between a source token value sj and ti . The first two columns

from Table 1 depict three index entries obtained for the first row

of Example 2.1. The third column indicates the type of string

expressions that can be applied on the source tokens to obtain ti ,
as described next.

For each entry of I , we can apply a function StringSynthesis
(defined in Algorithm 1) to synthesize a string expression that

uses some source tokens to obtain the target token. The function

at line 3 in Algorithm 1 returns a pair (sj , lcs j ) where sj is the
source token value that best covers the target token value. Note

that we only process the best such pair because its source token

has the most useful value to derive the target token. For when

the best pair is not the desired one, i.e. the target token has to

be obtained from a different source token, we rely on multiple

example instances to disambiguate and to generalize a transfor-

mation. The indexOf(lcs j , sj ) function at line 6 returns the start

and end indexes of lcs j in sj .
When there is no source token that can be used to obtain ti ,

ExpressionSynthesis returns aConst expression. Alternatively,
when the longest common sub-string, the source and target token

values are all identical, the result is a Copy expression, e.g., Row

1 in Table 1. If the longest common sub-string is only equal to

the target token value, it means that ti can be obtained from the

source token using a Substr expression, e.g., Row 2 in Table 1.

Finally, a Concat expression is synthesized, using Algorithm

2, when the source token value is a sub-string of the target to-

ken value. The ConcatSynthesis function processes all pairs of

the current index entry, as opposed to only the best pair, and

consumes the target token value as soon as it is able to derive a

sub-string of it. For example, for Row 3 in Table 1, 74 is a source
token and, therefore, the condition at line 4 in Algorithm 2 is met.

At the next iteration ti = ”19” (because we consume the previous

value) but there are no pairs in pairsti that cover the new value

which means that the condition at line 9 evaluates to true and

the next expression learned is Const .
Transformation synthesis: The last step of the algorithm re-

places the target tokens in Expression (6) with the corresponding

Algorithm 2 Concat expression synthesis

Input: Index entry: ti → pairs ti
Output: A list of string expression exp
1: function ConcatSynthesis

2: exp ← [ ]
3: for all (sj , lcs j ) ∈ pairs ti do
4: if sj == lcs j then exp ← exp + [Copy(sj )]
5: else exp ← exp + [Substr (sj , indexOf(lcs j , sj ))]
6: end if
7: ti ← replace(ti , lcs j , ””)
8: end for
9: if len(ti ) > 0 then exp ← exp + [Const (ti )] end if
10: return exp
11: end function

Table 1: Index entries

ti [(sj , lcs (sj ,ti ))] Expression

1 Hugh [(Hugh, Hugh)] Copy
2 L [(Leo, L)] Substr
3 1974 [(74, 74)] Concat

string expressions learned by Algorithm 1. The result, listed be-

low, is a transformation consistent with the example instance and

applicable on new input strings, similar in format representation

with the source string of the example instance.

SU B(As0, Copy(A
s
0)); SU B(Ws0, Copy(W

s
0)); SU B(As1, Substr (A

s
1, 0, 1));

I N S (Const (”.”)); SU B(Ws1, Copy(W
s
0)); SU B(As2, Copy(A

s
2));

SU B(Ws2, Copy(W
s
0)); SU B(Ps0, Copy(P

s
0));

SU B(Ns0, Concat (Const (”19”), Copy(N
s
0))); SU B(Ps1, Copy(P

s
1));

SU B(Ns1, Concat (Const (”19”), Copy(N
s
1))); SU B(Ps2, Copy(P

s
2));

Learning from multiple examples: SynthEdit assumes the

existence of several example instances from which it can learn

multiple transformations. Although it is possible for a valid trans-

formation to be synthesized from a small sample of the examples,

it is not always possible to automatically identify the relevant

sample and, therefore, all examples have to considered. Synthesiz-

ing transformations from multiple example instances that follow

more than one format representation results in a conditional trans-
formation program. To create such a program, we first partition

the example instances into groups with source strings that follow

the same format representation and synthesize a transformation

for each partition
3
. Before transforming a new input string, we

match its format representation against the ones for which we

have synthesized transformations and apply the transformation

of the matching format. If such a format representation does not

exist the input string is left unchanged.

Complexity: There are two dominant tasks in SynthEdit in
terms of complexity. Firstly, EditSynthesis runs in O(m×n) time

[9], wherem is the length of the source string and n is the length

of the target string. Secondly, the generation of inverted index I
implies the identification of the longest common sub-string be-

tween two token string values which is a dynamic programming

problem that runs in O(k × l × u ×v), where k is the number of

source tokens, l is the number of target tokens, u is the source

token value length, and v is the target token value length.

Synthesizing string expressions using Expression Synthesis
only for the simplest token-based transformation, previously

obtained using EditSynthesis, gives SynthEdit a computational

3
If more than one transformation is possible per partition, we pick the one consistent

with the majority of the example instances of that partition
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(a) Average precision (b) Average recall (c) Average synthesis time

Figure 3: Experimental Results

advantage over algorithms such as FlashFill which considers all

possible transformations that are consistent with the examples

before ranking them and choosing the best one.

5 EVALUATION
In this section we perform a comparative evaluation

4
involving

SynthEdit and an implementation of FlashFill from PROSE SDK
5
,

using 33 real world datasets
6
, used in a related work [12]. Each

dataset consists of up to 200 example instances from several

domains such as person names, websites, songs, etc.

We report the average precision, recall and synthesis time over

all datasets computed using k-fold cross-validation (k = 10) and

various number of examples. At each iteration (fold), we synthe-

size a transformation program from n randomly picked example

instances and test on the remaining instances. For the purposes

of computing precision and recall, we count as a true positive
any input string that is correctly transformed, i.e., the result of

the transformation is similar to the expected output; as a false
positive any input string that is incorrectly transformed; and as a

false negative any input string that is left unchanged, i.e., there is

no transformation synthesized for its format representation.

Comparative effectiveness: Avg. precision and recall as the
number of examples varies. The precision results are shown

in Figure 3a. SynthEdit achieves lower precision compared with

FlashFill for the different numbers of examples. The difference

can be explained by the ability of FlashFill to better generalize

transformations as more examples are added by using a clas-

sifier trained on example instances. This allows it to correctly

transform strings with format representations not covered by the

examples. Conversely, SynthEdit performs a strict mapping be-

tween format representations and transformations and, therefore,

requires at least one example instance for each format representa-

tion it transforms. For the last two cases, i.e., 64 and 128 examples,

FlashFill required more RAM memory than was available.

The classifier employed by FlashFill to pick the right transfor-

mation given a new input string can become confused when some

examples are too similar to each other in terms of the features

used during learning. This means that for some input strings

FlashFill fails to identify an appropriate transformation or the

transformation picked is not consistent with the input, e.g., the

transformation expects a type of token that is not present in

the input. The consequence is a drop in recall visible in Figure

3b as the number of examples increases. By contrast, SynthEdit

4
Experiments were run on a 2.60 GHz Intel Core i7-4720HQ CPU with 8 GB RAM.

5
https://microsoft.github.io/prose/

6
www.microsoft.com/en-us/research/wp-content/uploads/2016/12/

WebTableBenchmark.zip

achieves better recall because more examples enables it to better

differentiate between transformation cases.

Comparative efficiency: Avg. synthesis time as the num-
ber of examples varies. Figure 3c confirms the high complexity

of FlashFill when the number of examples increases. Conversely,

SynthEdit proves more than two orders of magnitude faster in

synthesizing transformations. As opposed to FlashFill, SynthEdit
does not aim to exhaust the search space of transformations for

each example instance. Our algorithm uses edit distance com-

putations to find the shortest path between the token-type rep-

resentations of the source and target strings. Consequently, the

transformation language is simpler but more efficient to learn.

6 CONCLUSIONS
We have contributed an effective and efficient solution to the

problem of automating format transformation given input-output

examples. We have used an edit distance based approach that

identifies the shortest path from a source string to a target string

and uses fuzzy matching of source and target tokens to generalize

transformations applicable on new input strings, similar in format

representation with the examples. Results from a comparative

evaluation provide evidence that SynthEdit performs substan-

tially more efficiently than the state-of-the-art while achieving

better recall at the cost of slightly reduced precision.
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ABSTRACT
Triad enumeration yields more detailed information than tri-

angle enumeration. However, triad enumeration is more complex
as it has to list the edges as well as the nodes of the triads. Fur-
thermore, it is challenging to do on large graphs because of two
reasons: how to deal with large amounts of data using limited
memory, and how to do the computation in a reasonable amount
of time. While distributed computing can take care of both prob-
lems, it requires large investment and high operating cost, as well
as a distributed algorithm design which is not always possible. In
this paper we show that triad enumeration of very large graphs
at the web-scale can actually be done on a single commodity
machine. Memory space limitation can be overcome by using
data compression and partial loading. Performance can be greatly
improved through optimized preprocessing and parallelization.

1 INTRODUCTION
Triangles play an important role in network analysis. For

example, the presence of triangles is an indicator of communities
in the network [13]. Triangles are also central to computing the
connectivity of a graph [2], the clustering coefficient [18], and
the transitivity [11]. There are many practical applications of
these, for example, detecting fake users in social networks [19]
and uncovering hidden thematic layers in the Web [9].

Most real world networks have directed relationships, and
therefore we should consider directed graphs for better represen-
tations of those networks. A triad is a subgraph of three nodes in
a directed graph [1, 8]. When each pair of the nodes is connected
we have a closely connected triad. Since we are only interested
in closely connected triads we will simply call them triads in this
paper. There are seven types of triads, called by some authors as
seven types of triangles [14, 16]. They are shown in Fig. 1. Note,
however, that we define our own numbering here.

Enumerating triads means listing the edges as well as the
nodes inside every triad. Triad enumeration would reveal a more
detailed picture of the network, and hence opening upmore possi-
ble applications. For example, transitivity can be more accurately
analyzed by using triads [2], and directed clustering coefficient
can be used as a measure of systemic risk in complex banking
networks [15]. Also, triad enumeration is an important element
in social network analysis [17].

Nonetheless, triad enumeration is more complex than triangle
enumeration. The general belief is that it is considerably more
difficult [14] and that it would take much longer running time.
We found that this is not necessarily the case. Although there are
some challenges, it is possible to devise an efficient algorithm

© 2019 Copyright held by the owner/author(s). Published in Proceedings of the
22nd International Conference on Extending Database Technology (EDBT), March
26-29, 2019, ISBN 978-3-89318-081-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Type 1 Type 2 Type 3 Type 4

Type 5 Type 6 Type 7

Figure 1: Seven types of triads.

which, combined with a compression framework such as Web-
Graph, is able to enumerate triads on a graph with a billion nodes
and billions of edges using a single commodity machine.

1.1 Related Work
Pajek is a well known graph analysis software for triad enu-

meration. The triad census algorithm by Batagelj and Mrvar [1],
which is employed in Pajek, has been known as the standard
algorithm to enumerate triads for several years. However, this
program is not suitable for very large graphs with millions of
nodes and edges.

Chin et al. [7] proposed a compact data structure where both
outgoing and incoming edges are listed in the same adjacency list,
and the edge direction is encoded using the 2 lowest bits out of the
32 bits (i.e., using int) in each entry. This data structure is suitable
for parallel computation using shared memory architectures.

This idea was further refined by Parimalarangan et al. [12],
who proposed two types of algorithms, intersection based (AI)
and marking based (AM), as the most efficient algorithms to
enumerate triads on shared memory platforms.

While those ideas significantly improve the running time,
there is a cost on the scalability. With two bits used for edge di-
rection, the order of the graphs that can be processed is reduced.
This becomes a problemwhen we want to analyse a graph of a bil-
lion nodes. Theoretically, we can switch to 64-bit integers and the
problem should be moot. Practically, however, this would at least
double the memory requirement. With limited memory budget,
space is already a problem for analysing very large graphs.

1.2 Contributions
1. We implemented Parimalarangan et. al. AI algorithm in

Java. We chose AI over AM because it uses less memory.
AM is unable to work in a consumer-grade machine of
32GB memory even for graphs of moderate size. Our code
is designed for execution on a single machine with parallel
threads. Together with optimized preprocessing on the
input graphs, we were able to run triad enumeration faster
than the ones reported in Parimalarangan’s paper, hence
raising the known record.
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2. For enormous graphs, such as ClueWeb12, AI is not able
to work in a consumer-grade machine of 32GB memory.
In order to address the case of such graphs we propose
another algorithm,which has better scalability. It uses both
the graph and transpose graph as input, and computes the
node connections on the fly.

3. We are able to employ WebGraph compression which
archives a more than 7-fold compression ratio and thus
allows loading big graphs (or significant parts of them) in
mainmemory. This enables our new algorithm to complete
triad enumeration on ClueWeb12 in the aforementioned
machine.

2 TRIAD ENUMERATION
The Batagelj and Mrvar triad census algorithm [1] assigns a

code to each pair of nodes to represent the directed edges between
them. For each triple of nodes it then uses a table to find the triad
types based on the combined codes. Although this algorithm can
do triad enumeration in subquadratic time, it is not fast enough
for very large graphs with millions of nodes and edges.

Chin et al. [7] developed a compact data structure whichmakes
it easier to parallelize the computation. They combined the ad-
jacency list to contain both outgoing and incoming edges. The
edge information or the link is coded using 2-bits: 01 (forward),
10 (backward), and 11 (both), embedded in the neighbour node
labels inside the list. Suppose the nodes were labeled by using
32-bit integers. The bits are shifted to the left by two, and the
two lowest bits are then used for the edge direction. Thus, only
30 bits can actually be used to label the nodes.

Parimalarangan et al. [12] took on this idea and combined it
with the most efficient algorithms known for triangle enumera-
tion on single machines [10]. They came up with two algorithms,
the AI algorithm which is intersection based, and the AM algo-
rithm which is marking based. Although AM can in some cases
be faster it requires more memory than AI. Therefore, we chose
AI and implemented it in Java for our base comparison. We use
parallel streams introduced in Java 8 to make use of the multiple
threads in our machine.

In our experiments, we use directed networks and their trans-
pose in compressed WebGraph format. For our implementation
of AI, we first build the compact data structure (of edges and
their direction 2-bit-encoding) from these datasets and save it in
plain text format, which is then used as input to the AI program.

TheWebGraph framework [5, 6] provides compression schemes
suitable for graph adjacency lists. The compression factor can
be more than seven-fold, significant in saving disk space. The
framework also provides some tools to work with files in We-
bGraph format. One of them is the loadMapped, which allows
partial loading of the dataset using memory-mapped files. As we
will see later, this is one of the key tools that enable us to process
very large graph such as ClueWeb12. Note, however, that using
WebGraph comes with the cost of decompressing the dataset.

To improve the performance, we did some preprocessing on
the graphs (before building the compact data structure). First,
note that each triad should be iterated only once. To avoid multi-
ple counting, we assert condition u < v < w for a triad (u,v,w).
Consequently, we only need to consider bigger neighbours. Also,
permutation on the labels should not change the number of triads
in a graph. Thus, we first sort the nodes according to degrees
from lowest to highest, relabel them, and then cut out smaller
neighbours from the adjacency list. That is, suppose Nu is the

Algorithm 1 Four Pointers Triad Enumeration

Input: A directed graph G = (V ,E) and its transpose GT

Output: The number of each type of triads in G, ∆i .
1: ∆1 ← 0, . . . , ∆7 ← 0
2: for all u ∈ V do ▷ Parallelize
3: while there is next do
4: Find next neighbour in N+(u) and/or N−(u): v .
5: Code the link uv as e1: either 01, 10 or 11
6: while there is next do
7: Find next common neighbour of u and v: w , in
(N+(u),N−(u)) and (N+(v),N−(v)).

8: Code the links vw as e2, andwu as e3.
9: Look up triad type i using e1, e2, e3.
10: enum(u,v,w,e1,e2,e3)
11: ∆i ← ∆i + 1
12: return ∆1, . . . , ∆7

set of neighbours of u after relabelling, then after the cut the
adjacency list only contains Nu \ {v |v < u}. This is done simul-
taneously for the graph and its transpose as the relabelling must
be the same for both. After this preprocessing, a node which
originally has the highest degree would have zero/no neighbours.
The degree distribution in the new adjacency list would have a
hill shape with highest (effective) degrees gathered in the middle.
When we parallelize on the first node iteration, this distribution
can lead to imbalanced workload among the threads. To alleviate
this, we do a further preprocessing which redistributes the nodes
in steps of 10,000. That is, we pick the nodes and rearrange them
in order (0, 10000, 20000, . . . , 1, 10001, 20001, . . . ), and then relabel
them as (0, 1, 2, . . . ).

The drawback of the compact data structure solution is that
it leads to a reduced scalability. In Java, the 32-bit integer data
type can be used to label up to 231 nodes (because we can have
only signed integers), but with 2 bits used for edge information,
it can label only up to 229 (or about 1/2 billion) nodes. This
becomes problematic when we want to analyze a graph such
as ClueWeb12 which has almost a billion nodes and about forty
two billion edges. Theoretically, we can switch to 64-bit long
data type and be able to do ClueWeb12. However, we still need
to overcome the memory limitation problem. With ClueWeb12,
forty two billion edges translates to more than 300GB RAM if we
use 8 bytes for each, which is way beyond the typical amount of
RAM in current commodity machines.

In order to process ClueWeb12, we tried several modifications
of the AI algorithm, separating the edge direction information
from the node labels in the adjacency list. For instance, we put it
in separate list of bytes, where each byte encoding a link. We also
tried to use BitSet to more compactly encode the edge and save
the space, and WebGraph for the combined adjacency list. How-
ever, none of our attempts succeeded in running on ClueWeb12
using 32GB RAM.

To this end, we develop a new algorithm which computes the
type of connections between each pair of nodes on the fly, using
both the graph and its transpose as input. Using this algorithm,
and partial loadingmethod ofWebGraph , wewere able to process
ClueWeb12 on our machine with a budget of 32GB RAM. The
algorithm, in a simplified version, is shown in Algorithm 1. We
call this Four Pointers Triad Enumeration algorithm due to the
fact that we use four pointers: one on each of N+(u), N−(u),
N+(v), and N−(v). Here, N+(u) is the set of out-neighbours of u
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in G, while N−(u) is the set of out-neighbours of u in GT . This
algorithm is an expansion of the 2-pointer algorithm commonly
used for set intersections.

Algorithm 1 iterates over the first node u. This iteration can
easily be parallelized. For each, it checks both N+(u) and N−(u)
to find the neighbours of u and their respective links. For each
neighbour of u, v , it finds their common neighbours using four
pointers. For each,w , it looks up the triad type based on the links
among the three nodes (u,v,w). In line 10, enum() is a space
holder for an enumeration or listing function.

3 EXPERIMENTS AND DISCUSSIONS
3.1 The Setup

We ran our experiments on a machine with dual Intel Xeon
E5620 CPUs and 64GBRAM. Its price is less than $3K, qualifying it
as a commodity machine. However, to make a better comparison
with other papers, we allowed only 32GB of RAM to be used by
the Java virtual machine. The Xeon CPU has a clock speed of
2.40 GHz and 8 threads (16 threads total for the dual). The OS is
Linux Ubuntu 14.04.5. We used Java 8 and the WebGraph 3.6.1.

We have five programs to run, listed in Table 1. Both AI and
4P are parallelized on the first node iteration.

Name Description
SC Sort and cut preprocessing
RD Node redistribution
CDt Build compact dataset
AI Our AI implementation
4P Four pointers enumeration

Table 1: The programs used in this experiment.

3.2 The Datasets
We applied our algorithms on five networks in compressed

WebGraph format. The datasets were downloaded from the Web-
Graph website [4] (http://law.di.unimi.it/datasets.php). For each,
we downloaded both the graph and the transpose graph.

Here are our selection of networks:

1. cnr-2000: a small crawl from the Italian CNR (Consiglio
Nazionale delle Ricerche).

2. ljournal-2008 (abbreviated as ljournal): a snapshot from
LiveJournal (https://www.livejournal.com/) in 2008.

3. arabic-2005 (abbreviated as arabic): a of websites that
contain arabic, performed by UbiCrawler [3] in 2005.

4. uk-2005: a shallow crawl of .uk domain, performed by
UbiCrawler [3] in 2005.

5. clueweb12 (abbreviated as clueweb): a crawl of English
webpages, created by the Lemur Project
(http://www.lemurproject.org/clueweb12/index.php), with
outlink nodes removed.

The statistics of these datasets are listed in Table 2. Notice
that G and GT can have different sizes because the results of the
compression can be different. The smallest dataset, cnr-2000,
has 3.2M edges, while the largest dataset, clueweb, has more
than 42B edges. The degree statistics are listed in Table 3. The
statistics of the resulting graphs after preprocessing are listed in
Table 4. Note that redistribution will not change these statistics.

Size of
Name |V | |E | G GT

cnr-2000 325,557 3,216,152 1.2M 920K
ljournal 5,363,260 79,023,142 105M 105M
arabic 22,744,080 639,999,458 141M 96M
uk-2005 39,459,925 936,364,282 201M 140M
clueweb 978,408,098 42,574,107,469 12G 7.0G

Table 2: Dataset statistics of the directed graphs. The sizes
are of the compressed WebGraph files, in bytes.

Name d+max d−max davg d−max/d
+
max

cnr-2000 2,716 18,235 9.9 6.7
ljournal 2,469 19,409 14.7 7.9
arabic 9,905 575,618 28.1 58.1
uk-2005 5,213 1,776,852 23.7 340.9
clueweb 7,447 75,611,690 43.5 10,153.3

Table 3: Degrees statistics in the original datasets.

Name |Eeff | |ET ,eff | d+,effmax d−,effmax
cnr-2000 2,580,192 548,518 1,336 81
ljournal 42,947,594 35,043,920 1,257 397
arabic 534,631,498 96,522,171 6,646 3,126
uk-2005 759,564,189 161,780,889 5,213 584
clueweb 36,605,200,001 5,968,907,468 5,873 4,242

Table 4: Dataset statistics of the effective directed graphs.

3.3 Results
We ran the AI, and 4P triad enumeration programs on the

chosen datasets. We verified that we got the same numbers from
both programs, when run with or without pre-processing. The
numbers of triads for each types are listed in Table 5.

In Table 6 we list the running times. The graphs had been
preprocessed by the SC program (sort and cut) before being used
as input, but without node redistribution. The running times
on graphs without preprocessing are not shown here. However,
note that this preprocessing is important in keeping the running
time low. The CDt program takes the graph and its transpose
in the compressed WebGraph format and produces a compact
dataset written into a plain text file which is then used as input
by the AI program. The 4P program takes the WebGraph files
directly as input. Therefore, we compare 4P with AI+CDt. Except
for cnr-2000, AI+CDt is faster than 4P. This is due to repeat
decompression cost in 4P. However, AI+CDt is unable to process
clueweb for the reason that is explained in the previous section
(inability to represent 1 billion nodes using 29 bits for each), while
4P can. Notice that our AI implementation can process arabic
in a shorter time than the one reported in Parimalarangan’s
paper [12] (In that paper they did not report the time to build
the compact data set, CDt, and excluded the loading time. Our
numbers here for AI include the loading time.).

Next, we checked whether redistribution can improve the per-
formance. In Table 7 we list the running times on the graphs that
had been preprocessed and which nodes had been redistributed.
The cost of redistributing the nodes is listed as RD. We see that
this RD cost can be quite significant. Taking this cost into consid-
eration, it is not always worth it to do redistribution. For example,
on ljournal, the 4P time without RD is 81 seconds, while RD +
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Name ∆1 ∆2 ∆3 ∆4 ∆5 ∆6 ∆7
cnr-2000 10,342 9,899,367 85,969 2,433,041 6,736,504 419,472 1,392,934
ljournal 530,051 86,777,707 10,421,919 69,748,792 44,608,271 80,177,727 118,890,977
arabic 2,668,704 6,906,765,421 30,427,662 1,571,745,235 11,765,868,185 384,594,679 16,233,290,956
uk-2005 5,335,890 5,198,533,331 48,779,535 1,773,901,843 9,499,139,863 411,396,906 4,842,278,688
clueweb 281,444,867 517,684,665,693 2,261,300,705 153,674,084,413 790,291,640,762 28,556,769,295 502,545,385,030

Table 5: The counts of triads of each types on the selected networks.

Name SC AI CDt AI+CDt 4P
cnr-2000 2.75 1.25 2.06 3.31 3.0
ljournal 74 27 28 55 81
arabic 200 429 206 635 2961
uk2005 311 354 319 673 796
clueweb 12,870 - - - 115,960

Table 6: The running time (in seconds) of triad enumera-
tion using Four Pointer algorithm (4P), and AI algorithm
(AI). Also listed are the preprocessing time (SC), and the
time to build the compact dataset (CDt). Since, 4P does not
need compact dataset, we compare 4P with AI+CDt.

4PRD is 86 + 30.5 = 116.5 seconds. For arabic, though, the RD
is helpful in bringing the overall cost down.

Name RD AIRD CDtRD AI+CDtRD 4PRD
cnr-2000 3.7 0.98 1.49 2.5 3.2
ljournal 86 18.4 22.8 41.2 30.5
arabic 453 215 154 369 483
uk2005 632 312 248 560 366
clueweb 30,413 - - - -*

Table 7: The running time (in seconds) of triad enumera-
tion using Four Pointer algorithm (4P), and AI algorithm
(AI) on redistributed graphs. *The run on clueweb cannot
be done in a reasonable amount of time.

Notice that with RD our 4P becomes competitive to AI+CDt.
This can be understood from the fact that workload imbalanced
affects 4P more than AI since 4P has to do decompression on the
adjacency list, and hence RD benefits 4P more as it reduces the
imbalance. It is faster on ljournal and uk2005, and just a bit
slower on cnr-2000 and arabic.

The redistribution, however, has an unwanted effect on Web-
Graph compression. The compression works best if the distances
among the neighbour nodes are not large. With redistribution,
there are large distances within a neighbour set, which in turn
lower the overall compression ratio. As such, we do not advise
performing redistribution on very large graphs such as clueweb.
For such graphs sort-and-cut preprocessing is all what is needed
for our algorithm 4P to complete in reasonable time.

4 CONCLUSIONS
We have shown that through optimized preprocessing and

parallelization we are able to run triad enumeration on very large
graphs using a single commodity machine in reasonable time. We
also designed an algorithm, 4P, with better scalability than the
state-of-the-art, which, with some trade-off on the performance,
can run on graphs of a billion nodes and billions of edges, count-
ing trillions of triads. In our solution, the WebGraph framework

plays an important role in alleviating the memory problem. In
conclusion, our results show that triad enumeration can be done
on a commodity machine even for very large graphs such as
ClueWeb12.
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ABSTRACT
Truss decomposition is popular for finding dense substructures

in graphs. Discovering trusses in deterministic graphs has been

widely discussed in the literature. However, with the intrinsic

uncertainty in many networks such as social, biological, and

communication networks, it is of great importance to study truss

decomposition in a probabilistic context, but this has received

much less attention till now. Furthermore, due to computation

challenges of truss decomposition in probabilistic graphs, the

state-of-the-art approaches are not scalable to large graphs.

Given a user-defined threshold, we are interested in finding

all the maximal subgraphs which are a k-truss with high proba-

bility. The most important challenge, which distinguishes truss

decomposition in probabilistic graphs from deterministic graphs,

is computing tail probabilities of edge supports. We employ a spe-

cial version of the Central Limit Theorem (CLT) to obtain the tail

probabilities efficiently. Based on our CLT approach we propose

a peeling algorithm for truss decomposition of a probabilistic

graph that scales to very large graphs and offers significant im-

provement over state-of-the-art. Our extensive experimental

results confirm the scalability and efficiency of our approach.

1 INTRODUCTION
Probabilistic graphs are graphs in which each edge has an exis-

tence probability [2]. Many real-world networks, such as social,

trust, communication, and biological networks, feature uncer-

tainty and thus can be modeled as probabilistic graphs.

Dense subgraph mining is an important way to analyze the

structure of networks [7]. A popular notion of cohesive graph is

thek-truss, which is defined as amaximal subgraph inwhich each

edge participates in at least (k −2) triangles within that subgraph.

The k-truss features a variety of applications [5]. For instance,

k-truss is a useful tool for visualization of complex networks [12].

Also, k-trusses are the basis of several community models [8]. It

is thus important to discover k-trusses in probabilistic graphs.

Truss decomposition in deterministic graphs is a straightfor-

ward task and has been broadly studied in the literature [4, 9, 11].

However, in probabilistic graphs, truss computation is challeng-

ing and has received much less attention. We use the notation

of local probabilistic (k,η)-truss introduced in [5], and will be

explained in more detail in the next section.

Challenges and contributions. Probabilistic truss decompo-

sition is associated with significant challenges due to intrinsic

uncertainty in probabilistic graphs. Thus, the general idea of

iterative edge removal in deterministic graphs does not work by

itself in probabilistic graphs. For instance, counting the number

of triangles which contain an edge is straightforward in determin-

istic graphs. But, in probabilistic graphs, the triangles in which

an edge might participate have combinatorial nature [5]. As a

result, the most difficult task is computing edge support prob-

abilities efficiently. This becomes particularly important when
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the input graph is huge. In [5], support probability of an edge

e = (u,v) is computed using dynamic programming (DP), which

has a complexity of O((min {d(u),d(v)})2), where d(u) and d(v)
is deterministic degree of u and v , respectively. Unfortunately,
the values of d(u) and d(v) can be in the millions in many real-

world social and web networks, and quadratic time complexity

of DP makes it impractical for huge graphs.

Realizing the fact that each triangle in probabilistic graph

can be defined as a Bernoulli random variable with an existence

probability, we design a novel approach based on Lyapunov’s

special version of the Central Limit Theorem [6] to approximate

probability distribution of the support of an edge. We show that

the proposed approximation is accurate for our problemwhen the

number of triangles is big. In addition, we derive an error bound

on the approximation to ensure that the output probabilities are

very close to the values obtained through exact computation.

We design a peeling algorithm for probabilistic k-truss decom-

position. Our algorithm takes advantage of the fast calculation

of edge support probabilities in time O(min {d(u),d(v)}) using
central limit theorem. It also uses optimized array-based data

structures for storing edge information of the graph.

In summary, our contributions are as follows.

• We introduce an efficient approach based on Lyapunov’s

central limit theorem to compute support probabilities of

edges in the input graph (Section 3.1).

• Using theoretical analysis, we obtain error bound of the

approximation, which shows that the higher the number

of triangles, the higher the accuracy of the approximation

results (Corollary 1).

• We develop a peeling algorithm based on recursive edge

deletions (Section 3.2), which, by utilizing central limit

theorem and additional data structures, is able to calculate

truss decomposition in very big probabilistic graphs not

possible with the pure DP approach (Section 4).

2 BACKGROUND
Trusses in deterministic graphs. Let G = (V ,E) be an undi-

rected graph with no self-loops. For a vertex v , let NG (v) be the
set of v’s neighbors inG . A triangle in the input graph is defined

as a cycle of length 3, denoted by △uvw , whereu,v,w ∈ V . Given

an edge e = (u,v), the support of e inG is the number of triangles

that contain e . Formally, supG (e) = |NG (v) ∩ NG (u)|.
The k-truss of G is defined as the maximal induced subgraph

Tk (G) = (V ′,EV ′) in which each edge e ∈ EV ′ has support of at

least (k − 2). The set of all k-trusses forms truss decomposition

ofG , where 2 ≤ k ≤ kmax, and kmax is the largest support of any

edge.

Probabilistic graphs. A probabilistic graph is defined as G =

(V ,E,p), where V and E are as before and p : E → (0, 1] is

a function that assigns existence probability p(e) to edge e . In
the most common probabilistic graph model [2], the existence

probability of each edge is assumed to be independent of other

edges.

To analyze probabilistic graphs, we use the concept of possible
worlds, which are deterministic graph instances of G. For each
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Figure 1: A probabilistic graph.

possible worldG = (V ,EG ) ⊑ G, where EG ⊆ E, the probability
of observing that possible world is obtained as follows: Pr(G) =∏

e ∈EG p(e)
∏

e ∈E\EG (1 − p(e)).
Given an edge e = (u,v), let ke = |N (u) ∩ N (v)|. We define

the notion of η-support, denoted by η-supG(e), as the maximum

k for which PrG⊑G[supG (e) ≥ k] ≥ η, where k = 0, . . . ,ke ,
and the probability is taken over all the possible worlds G ⊑

G. In the rest of the paper, we use Pr[supG(e) ≥ k] to denote

PrG⊑G[supG (e) ≥ k].
For instance, consider Figure 1, edge e = (2, 5), and η = 0.5.

With the assumption that e exists (with probability p(e) = 0.76),

edge e has support at least 2 with probability 0.76 · (0.99 · 0.68) ·

(0.23 · 0.75) = 0.0883 (product of the probabilities that triangles

△245 and △235 exist in a possible world), and it has support at least

1 with probability 0.76·
(
1−(1−0.99·0.68)·(1−0.23·0.75)

)
= 0.5545

(complementary probability that none of the two triangles are

in a possible world). Since 0.5545 is greater than the threshold η,
the η-support of edge e is 1.

In probabilistic context, supG(e) is a random variable which

can take on integer values form zero to ke . Furthermore, as k
increases, the value of Pr[supG(e) ≥ k] decreases.

Trusses in probabilistic graphs. In order to compute truss

decomposition in probabilistic graphs we follow the local (k,η)-
truss model defined in [5]:

Definition 1. Let G = (V ,E,p) be a probabilistic graph. Given
threshold η ∈ [0, 1], the local (k,η)-truss is the maximal induced
subgraph T(k,η)(G) = (V ′,EV ′ ,p) in which the η-support of each
edge e ∈ EV ′ is at least (k − 2). The set of all the local (k,η)-trusses
forms the local truss decomposition of G.

Similar to deterministic case, local (k,η)-trusses are unique and
nested into each other. The highest value of k for which e belongs
to a local (k,η)-truss is called η-truss number or probabilistic

trussness of e .

Computing η-supports using Dynamic Programming. Sup-
port probabilities are computed using Pr[supG(e) ≥ k] = 1 −∑k−1
i=0 Pr[supG(e) = i]. One way of calculating Pr[supG(e) = i]

is to use dynamic programming as proposed in [5]. Given an

edge e = (u,v), time complexity of this method of computation is

O(k2e ). Since ke ∈ O(min {d(u),d(v)}), where d(u) and d(v) are
deterministic degree of u and v in G, respectively, this method

of computation is not practical when the minimum degree of

two neighbors is big, say over 100, which is quite common in

all our datasets. In addition, web-scale graphs have millions of

such edges, and as a result, if DP is applied to each edge the

total processing time increases considerably. In the next section

we propose an alternative approach for fast computation of η-
support of an edge e using Lyapunov central limit theorem.

3 PEELING ALGORITHM FRAMEWORK
USING CENTRAL LIMIT THEOREM

We describe a CLT-focused algorithm to compute truss decompo-

sition in probabilistic graphs. The pseudocodes/proofs are omit-

ted due to page limit.

3.1 Computing η-Supports using Central
Limit Theorem

We first show how a special version of Central Limit Theorem

(CLT) can be applied to accurately estimate Pr

[
supG(e) ≥ k

]
.

Then, we show theoretical bounds on the accuracy of this ap-

proximation. Specifically, we show that CLT can produce a very

accurate approximation to tail probabilities of the support edge.

Based on CLT, the distribution of properly scaled sum of a

sequence of random variables converges to normal distribution

under specific conditions. In this paper, we consider a variant

called Lyapunov CLT that can be applied when random vari-

ables are independent, but not necessarily identically distributed.

Lyapunov CLT can be formally stated in the following:

Theorem 3.1. Lyapunov CLT. Let ζ1, ζ2, · · · , ζn be a sequence
of independent, but non-identically distributed random variables,
each with finite expected value µk and variance σk . Let

s2n =
n∑

k=1

σ 2

k , (1)

Lyapunov CLT states that if

lim

n→∞

1

s2+δn

n∑
k=1

E[|ζk − µk |
2+δ ] = 0, (2)

for some δ > 0, then 1

sn
∑n
k=1(ζk − µk ) converges in distribution

to a standard normal random variable.

Equation (2) is called Lyapunov’s condition which in practice

is usually tested for the special case δ = 1. The proof for this

theorem can be found in [3].

Computing η-supports using Lyapunov CLT. Given an edge

e , to compute Pr

[
supG(e) ≥ k

]
we assume that e exists. Thus,

the true edge support probability is obtained by multiplication

of Pr

[
supG(e) ≥ k

]
with p(e).

Each edge ej in probabilistic graph has existence probability

of p(ej ), which is independent of the other edge probabilities. As

a result, associated with each edge ej we can define a Bernoulli

random variable ζej which takes on 1 with probability p(ej ) and
0 with probability (1−p(ej )). Since each edge is assumed to exist

independently of other edges, ζej ’s are independent. Given an

edge e = (u,v), let Te be a set of all the common neighbors of u
and v in G. We have,

Te = N (u) ∩ N (v) =
{
t1, · · · , tke

}
.

For each common neighbor ti , let ζu,ti and ζv,ti be the cor-
responding Bernoulli random variables to the edges (u, ti ) and
(v, ti ), respectively. Let Xi = ζu,ti · ζv,ti . The following observa-

tions hold for each random variable Xi : (1) Xi ’s are independent,
since ζu,ti and ζv,ti are independent random variables. (2) Xi ’s
are Bernoulli random variables which take on 1 with probability

p(u, ti ) · p(v, ti ). This is because Xi can be equal to 1 when both

ζu,ti = 1 and ζv,ti = 1, with probability p(u, ti ) · p(v, ti ). Oth-
erwise, if at least one of them is 0, the value of Xi will become

zero. The probability that at least one of these random variables

become zero is 1 − (p(u, ti ) · p(v, ti )).
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Now, let us consider the triangle △uvti . It should be noted that

only common neighbours can create a triangle containing edge

e . With the assumption that e exists, the triangle △uvti exists

if both edges (u, ti ) and (v, ti ) exist, which is associated with

Xi = 1. On the other hand, the triangle does not exist if at least

one of edges, (u, ti ) and (v, ti ), does not exist, which corresponds

to Xi = 0. Therefore, corresponding to each triangle △uvti , we

can define the Bernoulli random variable Xi .
Let pi = p(u, ti ) · p(v, ti ). Since Xi is a Bernoulli random vari-

able, we know that E[Xi ] = µi = pi and Var[Xi ] = pi (1 − pi ).

Since supG(e) =
∑ke
i=1 Xi , we have:

Pr[supG(e) ≥ k] = Pr


ke∑
i=1

Xi ≥ k

 . (3)

Bernoulli random variables Xi ’s are independent, but may not

be identically distributed. Thus, if condition (2) is satisfied and

if ke is large enough, we can conclude that
1

ske

∑ke
i=1(Xi − µi )

has standard normal distribution, where ske =
√∑ke

i=1 pi (1 − pi ).

In order to compute the right-hand side of equation (3), we can

subtract

∑ke
i=1 µi from both sides of the inequality, and then divide

by ske which results in:

Pr

[ ke∑
i=1

Xi ≥ k
]
= Pr

[
1

ske

ke∑
i=1

(Xi − µi ) ≥
1

ske
(k −

ke∑
i=1

µi )

]
. (4)

Using Lyapunov CLT and setting

Z =
1

ske

ke∑
i=1

(Xi − µi ), (5)

we can conclude that Z has standard normal distribution. Thus

Pr

[
sup(e) ≥ k

]
� Pr

[
Z ≥ z

]
, (6)

where z = 1

ske
(k−

∑ke
i=1 µi ). Using the complementary cumulative

distribution function [13] of standard normal variable Z , we can
simply evaluate the right-hand side of Equation (6) for each value

of k . Thus, to find the η-support for an edge, we start with k = 1,

approximate Pr[sup(e) ≥ k] using Lyapunov CLT, and find the

maximum k for which the probability multiplied by p(e) is above
threshold η. For an edge e , the obtained value of k , which can be

in range from one to ke , is set as initial η-support for that edge.
Given an edge e = (u,v), time complexity of finding η-support is
O(ke ), where ke = |N (u) ∩ N (v)|. Recall that DP required O(k2e )
for this step.

In the following we show that Lyapunov’s condition in Theo-

rem 3.1 is satisfied for our problem.We set δ = 1 in Equation (2) to

show that this condition holds for a sequence of non-identically

distributed Bernoulli random variables.

Theorem 3.2. Given a sequence of random variables Xi ∼

Bernoulli(pi ), where 1 ≤ i ≤ n, the Lyapunov’s condition (2) for
δ = 1 is satisfied whenever s2n =

∑n
k=1 pk (1 − pk ) → ∞.

Accuracy of the Approximation. Using Berry–Esseen theo-

rem [14], in the following corollary we show how to obtain an

upper-bound on the maximal error while approximating the true

distribution of the sum of Xi ’s with the normal distribution.

Corollary 1. For each edge e in the probabilistic graph G with
Xi ’s being Bernoulli random variables defined as above in this

section, where i = 1, . . . ,ke , the error bound on the approxima-
tion of the right-hand side of Equation (6) to the standard normal
distribution is given as follows:

sup

x ∈R

��Fke (x) − Φ(x)
�� ≤ 0.56√

p1(1 − p1) + · · · + pke (1 − pke )
.

3.2 Peeling Algorithm (PA)
In [10], a peeling algorithm was proposed to calculate the k-truss
in deterministic graphs. While the algorithm is not applicable to

probabilistic graphs, its optimized array-based data structures

for storing edge information of the graph are useful. Our new

peeling algorithm, termed as CLT_based-PA algorithm, is built

on the same array-based data structures but utilizes central limit

theorem to compute and update support probabilities of edges

which participate in more than 100 triangles.
1

The CLT_based-PA algorithm consists of two main parts: (1)
initial probabilistic support computation, and (2) probabilistic
truss computation which involves updating probabilistic support

values once an edge is removed.

In initial support computation step, the η-support of each
edge e is computed using CLT and Equation (6), if ke is greater
than 100. Otherwise, DP can be used safely. The details on DP

approach can be found in [5]. The initial phase can be executed in

parallel, since probabilistic support of each edge can be computed

independently of other edges.

After initialization, the CLT_based-PA algorithm runs in three

steps: First, sort edges in ascending order of their η-support in
the array sortedEdge, and store their positions in the array.

Then, remove edges with the lowest η-support. The removal

of an edge e = (u,v) affects the η-support of all edges that can
constitute triangles with (u,v). As a result, the algorithm finds

all the common neighborsw of u and v , i.e., △uvw is a triangle

containing edge (u,v).
At the third step, the η-support of (u,w) and (v,w) is updated

if their η-supports are greater than e’s η-support. In the updating

part, if the number of remaining triangles which contain edges

(u,w) and (v,w) is greater than 100, we perform update phase

using CLT approach. Otherwise, we apply DP. Since theη-support
has been changed, we change the position of edges (v,w) and

(u,w) in sortedEdge array in constant time [10]. The algorithm

continues until all the edges in the graph are removed. Then,

the trussness of each edge is obtained by adding 2 to the final

η-support.

4 EXPERIMENTS
Our implementations are in Java and the experiments are con-

ducted on a commodity machine with Intel i7, 2.2Ghz CPU, and

12Gb RAM, running Ubuntu 14.03. The hard disk is Seagate Bar-

racuda ST31000524AS 2TB 7200 RPM.

The statistics for the datasets are shown in Table 1. We ob-

tained flicker, dblp, and biomine from the authors of [2], and the

rest of the datasets from Laboratory of Web Algorithmics.
2
Each

horizontal line in the table categorizes the datasets according

to their size, small (S), medium (M), and large (L). We use the

Webgraph framework [1] to store these datasets. The flickr, dblp,

and biomine datasets already contained edge probability values.

For the other datasets we generated probability values uniformly

distributed in [0, 1].

1
This value was chosen because it was large enough to keep the approximation

error obtained from Corollary 1 small.

2
http://law.di.unimi.it/datasets.php
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Name |V | |E |

flickr 24,125 300,836

dblp 684,911 2,284,991

cnr-2000 325,557 2,738,969

biomine 1,008,201 6,722,503

ljournal-2008 5,363,260 49,514,271

Table 1: Dataset Statistics

Dataset η
Running Time Running Time

gain (%)
DP_Pure CLT_based–PA

flickr 0.1 351 94 73%

dblp 0.1 37 34 8.50%

biomine 0.1 7642 2554 67%

cnr-2000 0.1 N.P. 7874 100%+

ljournal-2008

0.1 54627 26129 52%

0.2 50614 27064 47%

0.3 45052 24799 45%

0.4 36563 21332 42%

0.5 28773 16291 43

Table 2: Running times (sec) of DP_Pure and CLT_based–PA. The
column “gain (%)” reports the gain of CLT_with_DP algorithm over
DP_Pure algorithm. We use N.P. for “Not Possible”.

Dataset η-suppmax kmax η

flickr 49 47 0.1

dblp 42 14 0.1

biomine 151 33 0.1

cnr-2000 4672 13 0.1

ljournal-2008

1030 51 0.1

1015 43 0.2

1001 35 0.3

980 27 0.4

530 19 0.5

Table 3: Maximum η-support, maximum probabilistic trussness,
value of the threshold η.

Table 2 represents the running times of our proposed approach,

versus the running times of the state-of-the-art, which uses dy-

namic programming (DP) only and is referred as DP_Pure. The
last column shows the gain of CLT_based–PA algorithm over

DP_Pure. For ljournal-2008, we present the results for differ-

ent values of η ranging from 0.1 to 0.5. However, for the other

datasets, we only show the results for η = 0.1, and omit results

for η = 0.2, . . . , 0.5, since they are similar to those for η = 0.1 and

their performance trend is similar to what we see for ljournal-

2008. As can be seen, CLT_based–PA algorithm is significantly

faster than DP_Pure. For instance, for biomine, which is a large

dataset, the gain of our algorithm is 67 percent, making CLT_-
based–PA truss decomposition algorithm three times faster than

DP_Pure.
CLT_based–PA produced the results in about 1.5 minutes and

about 34 seconds for flickr and dblp, respectively. Although flickr

is smaller than dblp in terms of the number of vertices and edges,

its probabilistic maximum truss is much greater at value 47 com-

pared to 14 in dblp. We represent the maximum probabilistic

truss and maximum probabilistic support in Table 3. These values
are the same as those obtained by DP_Pure. On biomine which

is a large dataset, our proposed algorithm completed in about

43 minutes; which is quite impressive. In contrast, DP_Pure pro-
duced the results in more than 2 hours. The running time for

ljournal-2008 increases, which is quite reasonable, because this

graph has 49 million edges with probabilistic support of 1030

when η = 0.1. The same argument holds for cnr-2000 which has

probabilistic support of 4672 which is significantly big. DP_Pure
wasn’t able to run to completion in our machine after one day.
Effect of η values. The running time of both algorithms in-

creases as η becomes small. This is because as η decreases, the

chance for support probabilities to pass the threshold increases,

resulting in larger values of η-supports. This is particularly im-

portant in performance evaluation of DP_Pure algorithm– as η
decreases the DP algorithm approaches its worst case time com-

plexity,O(k2e ), for an edge e . As a result, for larger values of η, the
running time of DP_Pure improves, but is still by far slower than

CLT_based–PA. In terms of the effect of η on truss decomposi-

tion and support values, as can be seen in Table 3, the maximum

truss and maximum initial probabilistic support decrease as η
increases. As before, we report the maximum truss, and the max-

imum η-support for ljournal-2008 for η = 0.1, . . . , 0.5, whereas

for the other datasets we only show the values for η = 0.1.

5 CONCLUSIONS
We presented a peeling algorithm for computing truss decompo-

sition in probabilistic graphs at web scale. Our peeling algorithm

uses Lyapunov’s central limit theorem to obtain the probabilistic

support for an edge. Unlike the dynamic programming approach,

the computation does not rely on incremental evaluation of sup-

port probabilities. In addition, it can efficiently update probabilis-

tic support when a triangle is removed from the input graph,

without the need of storing all the previously computed support

probabilities. We evaluated our algorithm and showed that it is

significantly faster than state-of-the-art for large datasets. For

large and medium datasets our algorithm obtained approximately

50 percent gain over the proposed algorithm in the literature,

completing the biomine dataset in less than one hour.
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ABSTRACT
Given a network in which a undesirable rumor, disease, or con-
tamination spreads, which set of network nodes should we block
so as to contain that spread? Past research has proposed sev-
eral methods to address this network immunization (NI) problem,
which is to find a set of k nodes, such that the undesirable dissem-
ination is minimized in expectation when they are blocked. As
the problem is NP-hard, some algorithms utilize solely features of
the network structure in a preemptivemanner, to others that take
into account the specific source of a contamination in a data-
aware fashion. This paper presents an experimental study on
NI algorithms and baselines under the independent cascade (IC)
diffusion model. We employ a variety of synthetic and real-world
networks with diverse graph density, degree distribution, and
clustering coefficients, under realistically calculated influence
probabilities. We conclude that data-aware approaches based on
the construct of dominator trees usually perform best; however,
in networks with a power-law degree distribution, preemptive
approaches utilizing spectral network properties shine out by
virtue of their efficiency in identifying central nodes.

1 INTRODUCTION
Real-world networks facilitate the spread of ideas, behaviors,
inclinations, or diseases via diffusion processes [10]. Oftentimes
a diffusion of malicious nature needs to be contained via coun-
termeasures [11]. One such countermeasure is the blocking of a
subset of network nodes. Network Immunization (NI) calls to find
an optimal set of nodes to block so as to arrest a diffusion.

Early works on NI were motivated by epidemiology [3, 12],
categorizing individuals as Susceptible S, Infected I, or Recovered
R. Those who are infected infect their susceptible neighbors
with a transition rate β , and become recovered (hence immune)
with transition rate γ . In the context of social networks [14], the
Independent Cascade (IC) model [4] generalizes the SIR model,
assigning an independent transition rate β to each edge. Kempe
et al. [6] formulated the Influence Maximization (IM) problem
under the IC model, where the goal is to select k seed nodes that
maximize the expected diffusion spread; since then, the problem
has been studied extensively [10, 14].

The NI problem is complementary to the IM problem. Certain
notions are useful in both. For example, eigenvalue centrality [12]
has been used to guide seed selection in IM. Similarly, Chen et
al. [2] employ the first eigenvalue λ as a proxy to the objective
of NI problem, scoring nodes by the eigen-drop ∆λ that their
removal causes, leading to a succession of techniques aiming to
to maximize the eigen-drop of immunized nodes [20].

We distinguish two variants on network immunization: pre-
emptive immunization finds a solution before the epidemic starts;
by contrast, data-aware immunization tailors the solution to a
particular diffusion seed [19]. The state-of-the-art data-aware
solution, Data-Aware Vaccination Algorithm (DAVA) [21] employs

© 2019 Copyright held by the owner/author(s). Published in Proceedings of the
22nd International Conference on Extending Database Technology (EDBT), March
26-29, 2019, ISBN 978-3-89318-081-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

structures called dominator trees. Still, the experimental study
in [21] is limited to four datasets with synthetic propagation
probabilities; it is not clear how the topology of the network
influences the algorithm’s performance. At the same time, recent
preemtive immunization methods [11, 13] significantly outper-
form the baselines used in [21], yet have not been compared to
DAVA itself. Thus, to the best of our knowledge, no previous work
has studied how data-aware and and preemptive immunization
strategies fare under different graph topologies.

In this paper, we investigate the performance of state-of-the-
art data-aware and preemptive NI solutions on a variety of real-
world and synthetic network structures with diverse characteris-
tics, and under realistic influence probabilities with the IC model.
Our study features the first, to our knowledge, application of
the most recent algorithm for eigen-drop maximization and a
generic spectral method of activity shaping, to NI under the IC
model. We demonstrate that data-aware approaches are leading
in a majority of configurations, yet preemtive ones stand out
under particular settings of graph density, influence probabilities,
degree distribution, and clustering coefficients.

2 BACKGROUND
The classic approach to preemptive NI is the NetShield algo-
rithm [2]. NetShield greedily selects a set of nodes S , aiming to
maximize its Shield value:

Sv(S) =
∑
i ∈S

2λu(i)2 −
∑
i, j ∈S

A(i, j)u(i)u(j)

where λ and u are the largest eigenvalue and the corresponding
eigenvector of the network’s adjacency matrixA. A set S has high
Sv if its elements have high eigenscore u(i) and are not connected
to each other (zero A(i, j)). A high eigenscore implies that their
removal leads to a significant eigen-drop ∆λ. The algorithm has
a O(n |S |2) complexity, where n is the size of a network.

NetShield defines an epidemic threshold β ′ such that any edge
transition probability β > β ′ would result in a significant portion
of the network being contaminated. The algorithm utilizes the
fact that the epidemic threshold is related to the first eigenvalue of
the network adjacency matrix as β ′ = 1/λ [16]. Thus, λ expresses
the vulnerability of the network to an epidemic. Tariq et al. [13]
improved upon NetShield by approximating the eigen-drop, rely-
ing on the fact that λ can be expressed as the limit trace of the
p-exponential adjacency matrix A, which equals the number of
p-sized closed walks in the graph, cwp :

lim
p→inf,p even

(trace(Ap ))1/p = λ

trace(Ap ) = cwp (G)

The proposed method greedily selects a set of nodes to block
based on their contribution to closed walks, hence to network
vulnerability, approximating cwp by a submodular score function,
calculated by partitioning vertices into α equal-size groups by
means of a set of hash functions i = {1..γ }. In our experiments,
we use α = 200 and i ∈ {1..3}. The published version suggested
usingp = 6, yet in communication with the authors we confirmed
that p = 8 feasibly leads to improved results; we refer to this
algorithm as Walk8; its complexity is O(n2 + γ (n + α3) + nk2).
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(a) GRP (b) BA (c) Binomial (d) WS (e) Grid

Figure 1: Generated Graph Examples. Darker color indicates higher degree, normalized per graph.

Graph Type |V | [·103] |E | [·103]deдmin/avg/med/max clust. coeff. cl infl. prob.W seed fract. sf k fract. kf Other Parameters
Binomial 1.0 14.7 4/15/15/30 0.012 0.2 0.05 0.05 edge exist. p = 0.015
GRP 1.0 14.6 2/30/26/90 0.325 0.1 0.01 0.05 shape param. s = 20, v = 0.9, intra-group prob. pin = 0.4, inter-group pout = 0.001
WS 1.0 7.0 18/28/28/44 0.237 0.2 0.05 0.05 neighbors in a ring l = 15, rewiring prob. p = 0.3
BA 1.0 29.4 28/59/40/498 0.103 0.1 0.05 0.05 prob. of triangle p = 0.2, densitym = 15
Grid 1.0 39.7 4/8/8/8 0.000 0.7 0.05 0.05 –

Stanford 9.9 36.9 0/7/5/555 0.392 0.2 0.2 0.2
Gnutella 62.6 147.9 1/4/2/95 0.007 0.2 0.2 0.2 –

VK 2.8 40.9 1/29/14/288 0.235 – 0.2 0.2

Table 1: Default parameters for graph types

DAVA [21] accepts the seed set of a network diffusion as in-
put and builds its NI solution around dominator trees. A node u
dominates a node w w.r.t. a seed node s if all paths from s to w
pass through u. A dominator tree is a tree where each node is
dominated by its ancestors. The benefit of removing a node is
calculated as γ (v) = 1 +

∑
u ∈children of v γ (u) · pvu , where pvu

stands for the probability that influence propagates along any
path, approximated via the most probable path, from v to u.

DAVA iteratively removes the node of highest benefit and
reconstructs the tree. In a DAVA variant, DAVA-fast, the tree
is built only once and top-k nodes are selected based on their
benefit in one go. A dominator tree is built in O(E logN ) [8].

NetShape [11] immunizes a network via a convex relaxation
approach, maximizing the eigen-drop of the network’s integrated
and symmetrized Hazard matrix, a matrix of a continuous inte-
grable transition rate functions {β(u,v, t)}u,v ∈V , which indicate
the probability that v is influenced by u at time t after u gets
infected. The first eigenvalue bounds the expected spread of an
infection. We apply NetShape as a heuristic for the IC model,
setting the integral of the transition rate β(u,v, t) as equal to the
influence probability between u and v , and minimize the first
eigenvalue by the projected subgradient descent method in the
space of possible Hazard matrices after immunization, while set-
ting the effect of immunizing u on the integrated hazard matrix
element as 0, if u is a seed. The complexity is O( 1

ϵ 2p
2
maxE lnE),

where pmax is the maximum propagation probability, and ϵ is a
parameter affecting a step of subgradient descent.

3 METHODOLOGY
Consider a directed graphG = (V ,E) with set of nodesV and set
of edges E. Each edge is associated with a probability of propa-
gation. By the independent cascade model, a diffusion occurs in
discrete time steps. In step t0, a seed set S ⊂ V becomes activated.
Any node v activated in step ti attempts to activate each of its
inactive neighbors in step ti+1, and succeeds by the probability
associated with the edge from v to that neighbor. The process
terminates when there are no more newly activated nodes. The
Network Immunization (NI) problem calls to block a select set
of k nodes R ⊆ V \ S so as to minimize the expected spread of
activated nodes, by a given seed set S in a graph G.

3.1 Algorithms
We compare six solutions to the NI problem in three categories:

• Naïve: Degree selects the top-k nodes with highest degree;
Random selects k nodes uniformly at random.

• Preemptive: NetShield [2] andWalk8 [13],
• Data-Aware: NetShape [11] and DAVA [21].

On NetShape, we use the default ϵ = 0.2. As exact spread
computation is #P-hard, we estimate spread with any solution
via 1000 Monte-Carlo IC simulations. We use the original Matlab
code of Walk8. As seeds cannot be blocked, we fetch k+ |S | nodes
to be blocked with Walk8, ensuring that at least k nodes are
blocked. We implemented all other algorithms in Python1.

3.2 Data
We use both synthetic and real data obtained as follows.

3.2.1 Synthetic Data. We generated graphs of different prop-
erties using five models. By the Erdős-Rényi model, each edge
is present with probability p; generated graphs have a low clus-
tering coefficient and a binomial degree distribution. We refer
to this generator as Binomial. We render the graph directed by
selecting a random direction for each edge with 50% probability.

A Gaussian Random Partition (GRP) [1] selects edges as
with Erdős-Rényi, but with a prior grouping, where group size
follows a Gaussian distribution; it uses a probability value pin
for edges across nodes in the same group, and pout otherwise,
hence varying intra-group and inter-group density.

Watts Strogatz (WS) networks model self-organizing small-
world systems [17], which have small average shortest path
length, and are highly clustered, hence susceptible to infectious
spread. The generator employs two parameters: l indicates how
many nearest neighbors each node is joined with in a ring; p is a
probability of edge rewiring, which induces disorder.

Barabási-Albert (BA) networks have both high clustering
coefficients (as GRP andWS graphs) and power-law degree distri-
bution, hence are better imitations of real-world social networks.
We use the algorithm of Holme and Kim [5], which extends the
original Barabási-Albert model, yet use the BA label as its basis;
this algorithm randomly createsm edges for each node in a graph,
and for created edge with a probability p adds an edge to one of
its neighbors, thus creating a triangle.

Grid graphs have each node connected to four neighbors on a
lattice. With this graph type, we explore the applicability of solu-
tions on spatial graphs such as geosocial contact networks [22].

1 Available at https://github.com/allogn/Network-Immunization
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Figure 2: Experimental results on graphs generated by the binomial Erdős-Rényi model

Figure 3: Experimental results on graphs generated by the Gaussian Random Partition generator

Figure 4: Experimental results on Watts Strogatz networks

Figure 5: Experimental results on regular grids

Table 1 lists the default parameters for all models, where frac-
tions s f = |S |/|V | and k f = k/|V |. Figure 1 shows example
graphs. All synthetic graphs have 1000 nodes, as in [16].

3.2.2 Real-World Datasets. We use 3 real-world graphs. Stan-
ford and Gnutella, have been employed in related literature; a
third, VK, provides a case of real-world propagation probabilities.

The Stanford data consists of pages and hyperlinks in the
Stanford University website2 [21]. The Gnutella peer-to-peer
file sharing directed network is part of the SNAP dataset [9].
We use the biggest snapshot of 62586 nodes, with a diameter
of 11 nodes and a clustering coeficient of 0.0055. It has been
used in [11, 19, 21]. vKontakte3 (VK) is a Russia-based social
network of more than 500 million users4. Its public API allows to
download information about public profiles, subscriptions, and
posts. We fetch public posts of users to train the IC model.

3.3 Parameters
We consider blocked node set size k as a fraction of network
size [15]. We employ random seed selection [3, 18, 21]; we pick
10 random seed sets, and show the mean and standard devi-
ation of activated nodes. We choose influence probabilities
uniformly at random from 0 to a maximum valueW . We learn
influence probabilities on the VK data using user posts as ac-
tions. We download 100 latest posts at the moment of publishing
per user, resulting in 21M posts. Most posts are short, hence we
can apply the same Natural Language Processing methods as
for short messages. After preprocessing, we collected 536,073
non-empty messages belonging to non-isolated nodes in the VK
graph, with median length of 11 words, std 187 and max 2977,
leaving us with 3% of the original dataset. We define the closeness
of actions by comparing the content of text messages, as in [7],
2 https://www.cise.ufl.edu/research/sparse/matrices/Gleich/ 3 http://vk.com/
4 https://en.wikipedia.org/wiki/VKontakte

to learn vector embeddings of short messages. We define term
proximity as p(w2 |w1) =

1
|M |

c(w1,w2)
c(w1)

, where M is a set of all
posts with non-zero text content, c(w)m is the number of mes-
sages withw , and c(w1,w2) is the number of messages withw1
andw2 present together. We learn stemmed term proximities and
enrich the term frequency–inverse document frequency vectors
of messages by increasing the probability of any words similar to
words present in the message. We consider all message pairs with
similarity above the median as similar. Scanning the action log
to calculate the influence probability from a node u to any nove
v as the ratio of successful reposts of similar messages. Filtering
zero-probability edges, we select the largest component of 2.8K
nodes and 40.9K edges as our VK network.

4 EXPERIMENTAL RESULTS
Here we present the results of our study. We set a timeout of 1h
for all experiments for a single solver instance.

4.1 Synthetic Data
Figure 2 shows results with Binomial graphs. As the number of
blocked nodes grows, DAVA’s advantage of knowing the seeds
becomes evident. Surprisingly, NetShield achieves better results
than NetShape and Walk8 in this graph type. As the graph has a
uniform structure, spectral-based algorithms do not perform well.
This uniformity results in performance of algorithms not being
dependent on the number of seeds and influence probabilityW .
Still, as Figure 2c shows, with largeW DAVA is slightly worse
than preemptive approaches. DAVA assumes that the influence
probability between two successive dominators in the dominator
tree is equal to the probability along the shortest path. When
there are many paths between two dominators, this assumption
fails, hence the accuracy of the algorithm drops. We observe that
NetShape is the least scalable algorithm.
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Figure 6: Experimental results on graphs generated by the Barabasi-Albert growth model

Figure 7: Experimental results on Stanford network

Figure 8: Experimental results on Gnutella (a-d) and VK (e-f) networks

Figure 3 shows results with GRP graphs. Again, the gap in-
creases as k grows. DAVA achieves the best results on all pa-
rameters, except for the largest pout . We observe that, as the
inter-group probability pout grows, DAVA shows slightly worse
performance; in other words, as the graph forfeits its clustered
structure, DAVA provides less accurate probability estimates.

Figure 4 shows results with WS graphs. Here, preemptive
algorithms perform significantly better than DAVA, while the
difference is accentuated as the number of blocked nodes k grows.

Figure 5 shows results withGrid graphs. All algorithms except
DAVA fail to isolate seeds. NetShape outperforms other spectral
approaches thanks to its data-awareness. Runtimes are similar to
those in the Binomial case, with DAVA being sufficiently scalable.

Last, Figure 6 shows results withBA graphs; the degree heuris-
tic and NetShield perform best. This result indicates that there
are limits to the versatility of DAVA.

4.2 Real Data
Figure 7 shows results on the Stanford network. We employ the
fast DAVA that builds a dominator tree only once so as to scale.
Exploring a larger range of parameters than [21] reveals that
DAVA performs similarly to the Degree heuristic, and slightly
worse asW grows, due to the scale-free data topology. NetShape
and Walk8 could not scale to such size. Gnutella has a more
random topology than the Stanford network. Running on the 62K-
nodeGnutella snapshot, only fast-DAVA and baselines terminated
within the time limit. Figure 8 shows the results, with DAVA
reasserting its advantage. Our VK graph has high clustering
coefficient and power-law degree distribution. Figure 8 shows
that, on this data, DAVA is outperformed by preemptive methods.
We deduce that, in real-world social networks, isolating diffusion
sources is less critical than immunizing influence hubs.

5 CONCLUSIONS
We conducted an exhaustive experimental study of network im-
munization methods. We conclude that, while data-aware ap-
proaches stand out on networks with uniform topologies, spectral
structure-based approaches are competitive on networks with
power-law topologies. This result calls for further research.
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