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ABSTRACT
Answering exact shortest path distance queries is a fundamental
task in graph theory. Despite a tremendous amount of research
on the subject, there is still no satisfactory solution that can
scale to billion-scale complex networks. Labelling-based meth-
ods are well-known for rendering fast response time to distance
queries; however, existing works can only construct labelling
on moderately large networks (million-scale) and cannot scale
to large networks (billion-scale) due to their prohibitively large
space requirements and very long preprocessing time. In this
work, we present novel techniques to efficiently construct dis-
tance labelling and process exact shortest path distance queries
for complex networks with billions of vertices and billions of
edges. Our method is based on two ingredients: (i) a scalable la-
belling algorithm for constructingminimal distance labelling, and
(ii) a querying framework that supports fast distance-bounded
search on a sparsified graph. Thus, we first develop a novel la-
belling algorithm that can scale to graphs at the billion-scale.
Then, we formalize a querying framework for exact distance
queries, which combines our proposed highway cover distance
labelling with distance-bounded searches to enable fast distance
computation. To speed up the labelling construction process, we
further propose a parallel labelling method that can construct
labelling simultaneously for multiple landmarks. We evaluated
the performance of the proposed methods on 12 real-world net-
works. The experiments show that the proposed methods can
not only handle networks with billions of vertices, but also be
up to 70 times faster in constructing labelling and save up to 90%
of labelling space. In particular, our method can answer distance
queries on a billion-scale network of around 8B edges in less than
1ms, on average.

1 INTRODUCTION
Finding the shortest-path distance between a pair of vertices is
a fundamental task in graph theory, and has a broad range of
applications [5, 11, 20, 26, 30, 31, 33]. For example, in web graphs,
ranking of web pages based on their distances to recently visited
web pages helps in finding the more relevant pages and is re-
ferred to as context-aware search [30]. In social network analysis,
distance is used as a core measure in many problems such as
centrality [11, 26] and community identification [5], which re-
quire distances to be computed for a large number of vertex pairs.
However, despite extensive efforts in addressing the shortest-path
distance problem for many years, there is still a high demand for
scalable solutions that can be used to support analysis tasks over
large and ever-growing networks.
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Traditionally, one can use the Dijkstra algorithm [27] for
weighted graphs or a breadth-first search (BFS) algorithm for un-
weighted graphs to query shortest-path distances. However, these
algorithms are not scalable, i.e., for large graphs with billions of
vertices and edges, they may take seconds or even longer to find
the shortest-path distance between one pair of vertices, which
is not acceptable for large-scale network applications where dis-
tances need to be provided in the order of milliseconds. To im-
prove query time, a well-established approach is to precompute
and store shortest-path distances between all pairs of vertices
in an index, also called distance labelling, and then answer a
distance query (i.e., find the distance between two vertices) in
constant time with a single lookup in the index. Recent work [15]
shows that such labelling-based methods are the fastest known
exact distance querying methods on moderately large graphs
(million-scale) having millions of edges, but still fail to scale to
large graphs (billion-scale) due to quadratic space requirements
and unbearable indexing construction time.

Thus, the question is still open as to how scalable solutions
to answer exact distance queries in billion-scale networks can
be developed. Essentially, there are three computational factors
to be considered concerning the performance of algorithms for
answering distance queries: construction time, index size, and
query time. Much of the existing work has focused on exploring
trade-offs among these computational factors [1–4, 8, 12, 14, 15,
17, 19, 22, 23, 29, 32], especially for the 2-hop cover distance
labelling [3, 9]. Nonetheless, to handle large graphs, we believe
that a scalable solution for answering exact distance queries
needs to have the following desirable characteristics: (1) the
construction time of a distance labelling is scalable with the size
of a network; (2) the size of a distance labelling is minimized so
as to reduce the space overhead; (3) the query time remains in
the order of milliseconds, even in graphs with billions of nodes
and edges.

In this work, we aim to develop a scalable solution for exact dis-
tance queries which can meet the aforementioned characteristics.
Our solution is based on two ingredients: (i) a scalable labelling
algorithm for constructing minimal distance labelling, and (ii) a
querying framework that supports fast distance-bounded search
on a sparsified graph. More specifically, we first develop a novel
labelling algorithm that can scale to graphs at the billion-scale.
We observed that, for a given number of landmarks, the distance
entries from these landmarks to other vertices in a graph can
be further minimized if the definition of 2-hop cover distance
labelling is relaxed. Thus, we formulate a relaxed notion for la-
belling in this paper, called the highway cover distance labelling,
and develop a simple yet scalable labelling algorithm that adds
a significantly small number of distance entries into the label
of each vertex. We prove that the distance labelling constructed
by our labelling algorithm is minimal, and also experimentally
verify that the construction process is scalable.
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Method Ordering- 2HC- HWC- Parallel?dependent? minimal? minimal?
HL (ours) no n/a yes landmarks
FD [15] no no no neighbours
IS-L [12] yes no no no
PLL [3] yes yes no neighbours
HDB [16] yes no no no
HHL [2] yes no no no

Figure 1: High-level overview of the state-of-the-art methods and our proposedmethod (HL) for exact distance queries: (a)
performance w.r.t. query time and labelling size on networks of size up to 400M, (b) scalability w.r.t. labelling construction
time and network size, and (c) several important properties related to labelling methods.

Then, we formalize a querying framework for exact distance
queries, which combines our proposed highway cover distance
labelling with distance-bounded searches to enable fast distance
computation. This querying framework is capable of balancing
the trade-off between construction time, index size and query
time through an offline component (i.e. the proposed highway
cover distance labelling) and an online component (i.e. distance-
bounded searches). The basic idea is to select a small number
of highly central landmarks that allow us to efficiently compute
the upper bounds of distances between all pairs of vertices using
an offline distance labelling, and then conduct distance-bounded
search over a sparsified graph to find exact distances efficiently.
Our experimental results show that the query time of distance
queries within this framework is still in millionseconds for large
graphs with billions of vertices and edges.

Figure 1 summarizes the performance of the state-of-the-art
methods for exact distance queries [2, 3, 8, 12, 15, 16, 21, 27], as
well as our proposed method in this paper, denoted as HL. In
Figure 1(a)-1(b), we can see that, labelling-based methods PLL
[3], HDB [16], and HHL [2] can answer distance queries in a
considerably small amount of time. However, they have very
large space requirements and very long labelling construction
time. On the contrary, traditional online search methods such as
Dijkstra [27] and bidirectional BFS (denoted as Bi-BFS) [21] are
not applicable to large-scale networks where distances need to be
provided in the order of milliseconds because of their very high
response time. The hybrid methods FD [12], IS-L [15] and HL
(our method) combine an offline labelling and an online graph
traversal technique, which can provide better trade-offs between
query response time and labelling size. In Figure 1(b), we can also
see that only our proposed method HL can handle networks of
size 8B, and is scalable to perform distance queries on networks
with billions of vertices and billions of edges.

Figure 1(c) presents a high-level overview for several impor-
tant properties of labelling methods. The column ordering de-
pendent refers to whether a distance labelling depends on the
ordering of landmarks when being constructed by a method.
Only our method HL and FD are not ordering-dependent. The
columns 2HC-minimal and HWC-minimal refer to whether a
distance labelling constructed by a method is minimal in terms
of the 2-hop cover (2HC) and highway cover (HWC) properties,
respectively. PLL is 2HC-minimal, but not HWC-minimal. Our
method HL is the only method that is HWC-minimal. The column
Parallel refers to what kind of parallelism a method can sup-
port. FD and PLL support bit-parallelism for up to 64 neighbours

of a landmark. Our method HL supports parallel computation
for multiple landmarks, depending on the number of processors.
Other methods did not mention any parallelism.

In summary, our contributions in this paper are as follows:
• We introduce a new labelling property, namely highway
cover labelling, which relaxes the standard notion of 2-
hop cover labelling. Based on this new labelling property,
we propose a highly scalable labelling algorithm that can
scale to construct labellings for graphs with billions of
vertices and billions of edges.
• We prove that the proposed labelling algorithm can con-
struct HWC-minimal labellings, which is independent of
any ordering of landmarks. Then, due to this determinstric
nature of labelling, we further develop a parallel algorithm
which can run parallel BFSs from multiple landmarks to
speed up labelling construction.
• We combine our novel labelling algorithm with online
bounded-distance graph traversal to efficiently answer
exact distance queries. This querying framework enables
us to balance the trade-offs among construction time, la-
belling size and query time.
• We have experimentally verified the performance of our
methods on 12 large-scale complex networks. The results
that our methods can not only handle networks with bil-
lions of vertices, but also be up to 70 times faster in con-
structing labelling and save up to 90% of labelling space.

The rest of the paper is organized as follows. In Section 2, we
present basic notations and definitions used in this paper. Then,
we discuss a novel labelling algorithm in Section 3, formulate
the querying framework in Section 4, and introduce several op-
timization techniques in Section 5. In Section 6 we present our
experimental results and in Section 7 we discuss other works that
are related to our work here. The paper is concluded in Section 8.

2 PRELIMINARIES
Let G = (V ,E) be a graph where V is a set of vertices and E ⊆
V ×V is a set of edges. We have n = |V | andm = |E |. Without
loss of generality, we assume that the graph G is connected and
undirected in this paper. Let V ′ ⊆ V be a subset of vertices of G.
Then the induced subgraphG[V ′] is a graph whose vertex set is
V ′ and whose edge set consists of all of the edges in E that have
both endpoints in V ′. Let NG (v) = {u ∈ V |(u,v) ∈ E} denote a
set of neighbors of a vertex v ∈ V in G.

The distance between two vertices s and t in G, denoted as
dG (s, t), is the length of the shortest path from s to t . We consider
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dG (s, t) = ∞, if there does not exist a path from s to t . For any
three vertices s,u, t ∈ V , the following triangle inequalities are
satisfied:

dG (s, t) ≤ dG (s,u) + dG (u, t) (1)
dG (s, t) ≥ |dG (s,u) − dG (u, t)| (2)

Ifu belongs to one of the shortest paths from s to t , thendG (s, t) =
dG (s,u) + dG (u, t) holds.

Given a special subset of vertices R ⊆ V ofG, so-called land-
marks, a label L(v) for each vertex v ∈ V can be precomputed,
which is a set of distance entries {(u1,δL(u1,v)), . . . , (un ,δL(un ,v)
)} where ui ∈ R and δL(ui ,v) = dG (ui ,v) for i = 1, . . . ,n. The
set of labels L = {L(v)}v ∈V is called a distance labeling over G.
The size of a distance labelling L is defined as size(L)=Σv ∈V |L(v)|.

Using such a distance labeling L, we can query the distance
between any pair of vertices s, t ∈ V in graph G as follows,

Q(s, t ,L) = min{δL(u, s) + δL(u, t)|(u,δL(u, s)) ∈ L(s),

(u,δL(u, t)) ∈ L(t)} (3)

We define Q(s, t ,L) = ∞, if L(s) and L(t) do not share any land-
mark. If Q(s, t ,L) = dG (s, t) holds for any two vertices s and t of
G, L is called a 2-hop cover distance labeling over G [2, 9].

Given a graph G and a set of landmarks R ⊆ V , the distance
querying problem is to efficiently compute the shortest path dis-
tance dG (s, t) between any two vertices s and t in G, using a
distance labeling L over G in which labels may contain distance
entries from landmarks in R.

3 HIGHWAY COVER LABELLING
In this section, we formulate the highway cover labelling prob-
lem and propose a novel algorithm to efficiently construct the
highway cover distance labelling over graphs. Then, we provide
theoretical analysis of our proposed algorithm.

3.1 Highway Cover Labelling Problem
We begin with the definitions of highway and highway cover.

Definition 3.1. (Highway) A highwayH is a pair (R,δH ), where
R is a set of landmarks and δH is a distance decodinд f unction,
i.e. δH : R × R → N+, such that for any {r1, r2} ⊆ R we have
δH (r1, r2) = dG (r1, r2).

Given a landmark r ∈ R and two vertices s, t ∈ V \R (i.e.
V \R = V − R), a r -constrained shortest path between s and t is a
path between s and t satisfying two conditions: (1) It goes through
the landmark r , and (2) It has the minimum length among all
paths between s and t that go through r . We use Pst to denote
the set of vertices in a shortest path between s and t , and Prst
to denote the set of vertices in a r -constrained shortest path
between s and t .

Definition 3.2. (Highway Cover) LetG = (V ,E) be a graph and
H = (R,δH ) a highway. Then for any two vertices s, t ∈ V \R and
for any r ∈ R, there exist (ri ,δL(ri , s)) ∈ L(s) and (r j ,δL(r j , t)) ∈
L(t) such that ri ∈ Pr s and r j ∈ Pr t , where ri and r j may equal
to r .

If the label of a vertex v contains a distance entry (r ,δL(r ,v)),
we also say that the vertex v is covered by the landmark r in the
distance labelling L. Intuitively, the highway cover property guar-
antees that, given a highwayH with a set of landmarks R and r ∈
R, any r -constrained shortest path distance between two vertices

s and t can be found using only the labels of these two vertices
and the given highway. A distance labelling L is called a highway
cover distance labelling if L satisfies the highway cover property.

Example 3.3. Consider the graph G depicted in Figure 2(a),
the highway H has three landmarks {1, 5, 9} as highlighted in
red in Figure 2(b). Based on the graph in Figure 2(a) and the
highway in Figure 2(b), we have ⟨11, 1, 4⟩ which is a shortest
path between the vertices 11 and 4 constrained by the landmark
1, i.e. 1-constrained shortest path between 11 and 4. In contrast,
neither of the paths ⟨11, 10, 9, 1, 4⟩ and ⟨11, 4⟩ is a 1-constrained
shortest path between 11 and 4.

In Figure 2(b), the outgoing arrows from each landmark point
to vertices inG that are covered by this landmark in the highway.
The distance labelling in Figure 2(c) satisfies the highway cover
property because for any two vertices that are not landmarks
and any landmark r ∈ {1, 5, 9}, we can find the r -constrained
shortest path distance between these two vertices using their
labels and the highway.
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Figure 2: An illustration of highway cover distance la-
belling: (a) an example graphG, (b) a highway structure H
and (c) a distance labelling that fulfills the highway cover
property over (G,H ).

Definition 3.4. (Highway Cover Labelling Problem) Given a
graph G and a highway H over G, the highway cover labelling
problem is to efficiently construct a highway cover distance la-
belling L.

Several choices naturally come up: (1) One is to add a distance
entry for each landmark into the label of every vertex inV −R, as
the approach proposed in [15]; (2) Another is to use the pruned
landmark labelling approach [3] to add the distance entry of a
landmark r into the labels of vertices in V − R if the landmark
has not been pruned during a BFS rooted at r ; (3) Alternatively,
we can also extend the pruned landmark labelling approach to
construct the highway cover labeling by replacing the 2-hop
cover pruning condition with the one required by the highway
cover as defined in Definition 3.2 at each step of checking possible
labels to be pruned.

In all these cases, the labelling construction process would not
be scalable nor be suitable for large-scale complex networks with
billions of vertices and edges. Moreover, these approaches would
potentially lead to the construction of distance labellings with
different sizes. A question arising naturally is how to construct
a minimal highway cover distance labelling without redundant
labels? In a nutshell, it is a challenging task to construct a highway
cover distance labelling that can scale to very large networks,
ideally in linear time, but also with the minimal labelling size.
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3.2 A Novel Algorithm
We propose a novel algorithm for solving the highway cover
labelling problem, which can construct labellings in linear time.

The key idea of our algorithm is to construct a label L(v) for
vertexv ∈ V \R such that the distance entry (ri ,δL(ri ,v)) of each
landmark ri ∈ R is only added into the label L(v) iff there does
not exist any other landmark that appears in the shortest path
between ri and v , i.e. Priv ∩ R = {ri }. In other words, if there is
another landmark r ∈ R and ri is in the shortest path between r
and v , then (ri ,δL(ri ,v)) is added into L(v) iff ri is the “closest"
landmark to v . To compute such labels efficiently, we conduct a
breadth-first search from every landmark ri ∈ R and add distance
entries into labels of vertices that do not have any other landmark
in their shortest paths from ri .

Example 3.5. Consider vertex 7 in Figure 2(c), the label L(7)
contains the distance entries of landmarks {5, 9}, but no dis-
tance entry of landmark 1. This is because 5 and 9 are the closest
landmarks to vertex 7 in the shortest paths ⟨5, 7⟩ and ⟨9, 7⟩, re-
spectively. However, for either of two shortest paths ⟨1, 9, 7⟩ and
⟨1, 5, 7⟩ between 1 and 7, there is another landmark (i.e. 5 or 9)
that is closer to 7 compared with 1 in these shortest paths. Thus
the distance entry of landmark 1 is not added into L(7).

Our highway cover labelling approach is described in Algo-
rithm 1. Given a graphG and a highway H overG , we start with
an empty highway cover distance labelling L, where L(v) = ∅ for
every v ∈ V \R. Then, for each landmark ri ∈ R, we compute the
corresponding distance entries as follows. We use two queues
Qlabel and Qprune to process vertices to be labeled or pruned
at each level of a breadth-first search (BFS) tree, respectively. We
start by processing vertices in Qlabel . For each vertexu ∈ Qlabel
at depth n, we examine the children of u at depth n + 1 that are
unvisited. For each unvisited child vertex v ∈ NG (u) at depth
n + 1, if v ∈ R then we prune v , i.e., we do not add a distance
entry of the current landmark ri into L(v) and we also enqueue
v to the pruned queue Qprune (Line 11). Otherwise, we add
(ri ,δBFS (ri ,v)) to the label of v , i.e., we add it into L(v) and we
also enqueue v to the labeled queue Qlabel (Lines 13-14). Here,
δBFS (ri ,v) refers to BFS decoded distance from root ri tov . Then
we process the pruned vertices in Qprune . These vertices are ei-
ther landmarks or have landmarks in their shortest paths from
ri , and thus do not need to be labeled. Therefore, for each vertex
v ∈ Qprune at depth n, we enqueue all unvisited children of v
at depth n + 1 to the pruned queue Qprune . We keep processing
these two queues, one after the other, until Qlabel is empty.

Example 3.6. We illustrate how our algorithm conducts pruned
BFSs in Figure 3. The pruned BFS from landmark 1 is depicted
in Figure 3(a), which labels only four vertices {4, 11, 13, 14} be-
cause the other vertices are either landmarks or contain other
landmarks in their shortest paths to landmark 1. Similarly, in the
pruned BFS from landmark 5 depicted in Figure 3(b), only ver-
tices {7, 2, 12, 3, 8} are labelled, and none of the vertices 4, 11, 13
and 14 is labelled because of the presence of landmark 1 in their
shortest paths to landmark 5. Indeed, we can get the distance
between landmark 5 to these vertices by using the highway, i.e.
δH (5, 1), and distance entries in their labels to landmark 1. The
pruned BFS from landmark 9 is depicted in Figure 3(c), which
works in a similar fashion.

Note that, although a highway H is given in Algorithm 1, we
can indeed compute the distances δH for a given set of landmarks
R along with Algorithm 1.

Algorithm 1: Constructing the highway cover labelling L
Input: G = (V .E), H = (R,δH )
Output: L

1 L(v) ← ∅,∀v ∈ V \R
2 foreach ri ∈ R do
3 Qlabel ← ∅

4 Qprune ← ∅

5 n ← 0
6 Enqueue ri to Qlabel and set ri as the root of BFS
7 while Qlabel is not empty do
8 foreach u ∈ Qlabel at depth n do
9 foreach unvisited child v of u at depth n + 1 do

10 if v is a landmark then
11 Enqueue v to Qprune
12 else
13 Enqueue v to Qlabel
14 Add {(ri , δBFS (ri ,v))} to L(v)
15 end
16 end
17 end
18 n ← n + 1
19 foreach v ∈ Qprune at depth n do
20 Enqueue unvisited children of v at depth n + 1

to Qprune
21 end
22 end
23 end
24 return L
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Figure 3: An illustration of the highway cover labelling al-
gorithm: (a), (b) and (c) describe the pruned BFSs that are
rooted at the landmarks 1, 5 and 9, respectively, where yel-
low vertices denote roots, green vertices denote those be-
ing labeled, red vertices denote landmarks, and white ver-
tices are not labelled. LS and ET at the top right corner de-
note the labelling size and the number of edges traversed
during the pruned BFSs, respectively.

3.3 Correctness
Here we prove the correctness of our labelling algorithm.

Lemma 3.7. In Algorithm 1, for each pruned BFS rooted at ri ∈ R,
(ri ,δL(ri ,v)) is added into the label of a vertex v ∈ V \R iff there is
no any other landmark appearing in the shortest path between ri
and v , i.e., Priv ∩ R = {ri }.

Proof. Suppose that Algorithm 1 is conducting a pruned BFS
rooted at ri and v is an unvisited child of another vertex u in
Qlabel (start from Qlabel = {ri }) (Lines 6-9). If v ∈ R (Line 10),
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then we have (Priw ∩R) ⊇ {ri ,v} (Lines 11, 19-21), (ri ,δL(ri ,w))
cannot be added into the label of any child w of v , i.e., put w
into Qprune . Otherwise, by v < R and v is an unvisited child of
a vertex u in Qlabel (Lines 8-9), we know that Priv ∩ R = {ri }
and thus (ri ,δL(ri ,v)) is added into L(v) (lines 12-14). □

Then, by Lemma 3.7, we have the following corollary.

Corollary 3.8. Let r ∈ R be a landmark,v ∈ V \R a vertex, and
L a distance labelling constructed by Algorithm 1, if (r ,δL(r ,v)) <
L(v), then there must exist a landmark r j such that (r j ,δL(r j ,v)) ∈
L(v) and dG (r ,v) = δL(r j ,v) + δH (r , r j ).

Theorem 3.9. The highway cover distance labelling L over
(G,H ) constructed using Algorithm 1 satisfies the highway cover
property over (G,H ).

Proof. To prove that, for any two vertices s, t ∈ V \R and for
any r ∈ R, there exist (ri ,δL(ri , s)) ∈ L(s) and (r j ,δL(r j , t)) ∈ L(t)
such that ri ∈ Pr s and r j ∈ Pr t , we consider the following
4 cases: (1) If r ∈ L(s) and r ∈ L(t), then r = ri = r j . (2) If
r ∈ L(s) and r < L(t), then ri = r and by Lemma 3.8, there
exists another landmark r j such that r j is in the shortest path
between t and r and (r j ,δL(r j , t)) ∈ L(t). (3) If r < L(s) and
r ∈ L(t), then similarly we have r j = r , and by Lemma 3.8, there
exists another landmark ri such that ri is in the shortest path
between s and r and (ri ,δL(ri , s)) ∈ L(s). (4) If r < L(s) and
r < L(t), then by Lemma 3.8 there exist another two landmarks
ri and r j such that ri is in the shortest path between s and r and
(ri ,δL(ri , s)) ∈ L(s), and r j is in the shortest path between t and
r and (r j ,δL(r j , t)) ∈ L(t). The proof is done. □

3.4 Order Independence
In previous studies [1–3, 9], given a graphG , a distance labelling
algorithm builds a unique canonical distance labelling subject to a
labelling order (i.e., the order of landmarks used for constructing
a distance labelling). It has been well known that such a labelling
order is decisive in determining the size of the constructed dis-
tance labelling [24]. For the same set of landmarks, when using
different labelling orders, the sizes of the constructed distance
labelling may vary significantly.

The following example shows how different labelling orders
in the pruned landmark labelling approach [3] can lead to the
distance labelling of different sizes.

Example 3.10. In Figure 4, the size of the distance labelling
constructed using the labelling order ⟨1, 5, 9⟩ in Figure 4(a)-4(c) is
different from the size of the distance labelling constructed using
the labelling order ⟨9, 5, 1⟩ in Figure 4(d)-4(f). In both cases, the
first BFS adds the distance entry of the current landmark into all
the vertices in the graph. Then, the following BFSs check each
visited vertex whether the shortest path distance between the
current landmark and the visited vertex can be computed via the
2-hop cover property based on their labels added by the previous
BFSs. A distance entry is only added into the label of a vertex
if the shortest path distance cannot be computed by applying
the 2-hop cover over the existing labels. Thus, the choice of the
labelling order could affect the size of labels significantly. Take
the vertex 11 for example, its label contains only one distance
entry (1, 1) using the labelling order depicted in Figure 4(a)-4(c),
but contains three distance entries (1.1), (5, 2), and (9, 2) when
the labelling order depicted in Figure 4(d)-4(f) is used.

Unlike all previous approaches taken with distance labelling,
our highway cover labelling algorithm is order-invariant. That
is, regardless of the labelling order, the distance labellings con-
structed by our algorithm using different labelling orders over
the same set of landmarks always have the same size. In fact, we
can show that our algorithm has the following stronger property:
the distance labelling constructed using our algorithm is deter-
ministic (i.e., the same label for each vertex) for a given set of
landmarks.

Lemma 3.11. Let G = (V ,E) be a graph and H = (R,δH ) a
highway over G. For any two different labelling orders over R, the
highway cover distance labellings L1 and L2 over (G,H ) constructed
by these two different labelling orders using Algorithm 1 satisfy
L1(v) = L2(v) for every v ∈ V \R.

Proof. LetOL1 andOL2 be two different labelling orders over
R. For any landmark r in OL1 and OL2 , Algorithm 1 generates
exactly the same pruned BFS tree. This implies that, for each
vertex v ∈ V \R, either the same distance entry (r ,δBFS (r ,v))
is added into L1(v) and L2(v), or no distance entry is added to
L1(v) and L2(v). Thus, Algorithm 1 satisfy L1(v) = L2(v) for
every v ∈ V \R. □

3.5 Minimality
Here we discuss the question of minimality, i.e., whether the
highway cover distance labelling constructed by our algorithm
is always minimal in terms of the labelling size. We first prove
the following theorem.

Theorem 3.12. The highway cover distance labelling L over
(G,H ) constructed using Algorithm 1 is minimal, i.e., for any high-
way cover distance labelling L′ over (G,H ), size(L′) ≥ size(L)
must hold.

Proof. We prove this by contradiction. Let us assume that
there is a highway cover distance labelling L′ with size(L′) <
size(L). Then, this would imply that there must exist a vertex
v ∈ V \R and a landmark r ∈ R such that r ∈ L(v) and r < L′(v).
By Lemma 3.7 and r ∈ L(v), we know that there is no any other
landmark in R that is in the shortest path between r and v . How-
ever, by the definition of the highway cover property (i.e. Defini-
tion 3.2) and r < L′(v), we also know that theremust exist another
landmark (ri ,δL(ri ,v)) ∈ L(v) and ri ∈ Prv , which contradicts
with the previous conclusion that there is no any other landmark
in the shortest path between r and v . Thus, size(L′) ≥ size(L)
must hold for any highway cover distance labelling L′. □

The state-of-the-art approaches for distance labelling is pri-
marily based on the idea of 2-hop cover [1, 3, 12]. One may ask
the question: how is the highway cover labelling different from
the 2-hop cover labelling, such as the pruned landmark labelling
[3]? It is easy to verify the following lemma that each pruned
landmark labelling satisfies the highway cover property for the
same set of landmarks.

Lemma 3.13. Let L be a pruned landmark labelling over graph
G constructed using a set of landmarks R. Then L also satisfies the
highway cover property over (G,H ) where H = (R,δH ).

As the pruned landmark labelling algorithm [3] prunes labels
based on the 2-hop cover property, but our highway cover label-
ing algorithm prunes labels based on the property described in
Lemma 3.7, by Theorem 3.12, we also have the following corol-
lary, stating that, for the same set of landmarks, the size of the
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Figure 4: An illustration of the pruned landmark labelling algorithm [3]: (a)-(c) show an example of constructing labels
through pruned BFSs from three landmarks in the labelling order ⟨1, 5, 9⟩; (d)-(f) show an example of constructing labels
using the same three landmarks but in a different labelling order ⟨9, 5, 1⟩. Yellow vertices denote landmarks that are the
roots of pruned BFSs, green vertices denote those being labeled, grey vertices denote vertices being visited but pruned, and
red vertices denote landmarks which have already been visited.

highway cover labelling is always smaller than the size of any
pruned landmark labelling.

Corollary 3.14. For a highway cover distance labelling L1
produced by Algorithm 1 over (G,H ), where H = (R,δH ), and a
pruned landmark labelling L2 overG using any labelling order over
R, we always have |L1 | ≤ |L2 |.

Example 3.15. Figure 4 shows the labelling size (LS) of the
pruned landmark labelling at the top right corner, which is con-
structed using two different orderings. The first ordering ⟨1, 5, 9⟩
labels 25 vertices whereas the second ordering ⟨9, 5, 1⟩ labels 30
vertices. On the other hand, the LS of the highway cover dis-
tance labelling is 13 as shown in Figure 3. Note that the LS of the
highway cover distance labelling does not change, irrespective of
ordering. Since the highway cover distance labelling constructed
by our algorithm is always minimal, the LS of the highway cover
distance labelling in Figure 3 is much smaller than the LS of either
pruned landmark labelling in Figure 4.

4 BOUNDED DISTANCE QUERYING
In this section, we describe a bounded distance querying frame-
work that allows us to efficiently compute exact shortest-path
distances between two arbitrary vertices in a massive network.

4.1 Querying Framework
We start with presenting a high-level overview of our querying
framework. To compute the shortest path distance between two
vertices s and t in graph G, our querying framework proceeds
in two steps: (1) an upper bound of the shortest path distance
between s to t is computed using the highway cover distance
labelling; (2) the exact shortest path distance between s to t is
computed using a distance-bounded shortest-path search over a
sparsified graph from G.

Given a graph G and a highway H = (R,δH ) over G, we can
precompute a highway cover distance labelling L using the land-
marks in R, which enables us to efficiently compute the length
of any r -constrained shortest path between two vertices in V \R.
The length of such a r -constrained shortest path must be greater
than or equal to the exact shortest path distance between these
two vertices and can thus serve as an upper bound in Step (1). On
the other hand, since the length of such a r -constrained short-
est path between two vertices in V \R can always be efficiently
computed by the highway cover distance labelling L, the distance-
bounded shortest-path search only needs to be conducted over a

sparsified graph G ′ by removing all landmarks in R from G, i.e.
G ′ = G[V \R].

More precisely, we define the bounded distance querying prob-
lem in the following.

Definition 4.1. (Bounded Distance Querying Problem) Given a
sparsified graph G ′ = (V ′,E ′), a pair of vertices {s, t} ∈ V ′, and
an upper (distance) bound d⊤st , the bounded distance querying
problem is to efficiently compute the shortest path distance dst
between s and t over G ′ under the upper bound d⊤st such that,

dst =

{
dG′(s, t), if dG′(s, t) ≤ d⊤st
d⊤st , otherwise

In the following, we discuss the two steps of this framework
in detail.

4.2 Computing Upper Bounds
Given any two vertices s and t , we can use a highway cover dis-
tance labelling L to compute an upper bound d⊤st for the shortest
path distance between s and t as follows,

d⊤st = min{δL(ri , s) + δH (ri , r j ) + δL(r j , t)|

(ri ,δL(ri , s)) ∈ L(s),

(r j ,δL(r j , t)) ∈ L(t)} (4)

This corresponds to the length of a shortest path from s to
t passing through landmarks ri and r j , where δL(ri , s) is the
shortest path distance from ri to s in L(s), δH (ri , r j ) is the shortest
path distance from ri to r j through highway H , and δL(r j , t) is
the shortest path distance from r j to t in L(t).

Example 4.2. Consider the graph in Figure 2(a), wemay use the
labels L(2) and L(11) to compute the upper bound for the shortest
path distance between two vertices 2 and 11. There are two cases:
(1) for the path ⟨2, 5, 1, 11⟩ that goes through landmarks 5 and 1,
we have δL(5, 2) + δH (5, 1) + δL(1, 11) = 1 + 1 + 1 = 3, and (2)
for the path ⟨2, 9, 1, 11⟩ that goes through landmarks 9 and 1, we
have δL(9, 2)+ δH (9, 1)+ δL(1, 11) = 2+ 1+ 1 = 4. Thus, we take
the minimum of these two distances as the upper bound, which
is 3 in this case.

4.3 Distance-Bounded Shortest Path Search
We conduct a bidirectional search on the sparsified graphG[V \R]
which is bounded by the upper boundd⊤st from the highway cover
distance labelling. For a pair of vertices {s, t} ⊆ V \R, we run
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breadth-first search algorithm from s and t , simultaneously [15].
Algorithm 2 shows the pseudo-code of our distance-bounded
shortest path search algorithm. We use two sets of vertices Ps
and Pt to keep track of visited vertices from s and t . We use two
queues Qs and Qt to conduct both a forward search from s and
a reverse search from t . Furthermore, we use two integers ds and
dt to maintain the current distances from s and t , respectively.

During initialization, we set Ps and Pt to {s} and {t}, and
enqueue s and t into Qs and Qt , respectively. In each iteration,
we increment ds or dt and expand Ps or Pt by running either
a forward search (FS) or a reverse search (RS) as long as Ps
and Pt have no any common vertex or ds + dt is equal to the
upper bound d⊤st , and Qs and Qt are not empty. In the forward
search from s , we examine the neighbors NG[V \R](v) of each
vertex v ∈ Qs . Suppose we are visiting a vertexw ∈ NG[V \R](v),
if w is included in vertex set Pt , then it means that we find a
shortest path to vertex t of length ds + 1+dt , because the reverse
search from t had already visited w with distance dt . At this
stage, we return ds + 1+dt as the answer since we already know
ds + dt + 1 ≤ dG (s, t) ≤ d⊤st . Otherwise, we add vertex w to Ps
and enqueuew into a new queue Qnew . When we could not find
the shortest distance in the iteration, we replace Qs with Qnew
and increase ds by 1, and check if ds + dt = d⊤st . If it holds, then
we return d⊤st since d

⊤
st ≤ dG (s, t) ≤ ds + dt + 1.

Algorithm 2: Distance-Bounded Shortest Path Search
Input: G[V \R], s , t , d⊤st
Output: dG[V \R](s, t)

1 Ps ← {s}, Pt ← {t}, ds ← 0, dt ← 0
2 Enqueue s to Qs , t to Qt
3 while Qs and Qt are not empty do
4 if |Ps | ≤ |Pt | then
5 f ound ← FS(Qs )

6 else
7 f ound ← RS(Qt )

8 end
9 if found = true then

10 return ds + 1 + dt
11 else if ds + dt = d⊤st then
12 return d⊤st
13 end
14 end
15 return∞

Example 4.3. In Figure 5(b), the upper distance bound between
vertices 2 and 11 is 3, as computed in Example 4.2. Suppose that
we run BFSs from vertices 2 and 11 respectively. First, a forward
search from 2 enqueues its neighbors 7, 12 and 14 into Q2 and
increases d2 by 1. Then a reverse search from 11 enqueues 4 and
10 into Q11 and also sets d11 to 1. At this stage, we have not
found any common vertex between Q2 and Q11, and d2 +d11 = 2
which is less the upper bound 3. Therefore, we continue to start
a search from the vertices in Q11, which enqueues 5 into Q11 and
increments d11 to 2. Now, we have d2 + d11 == 3 reaching the
upper bound, hence we do not need to continue our search.

4.4 Correctness
The correctness of our querying framework can be proven based
on the following two lemmas. More specifically, Lemma 4.4 can

7

610

11

4

13

8 3

12

14 2

7

610

11

4

13

8 3

12

14 2

(a) (b)

Figure 5: An illustration of the distance-bounded shortest
path search algorithm [15]: (a) shows the sparsified graph
after removing three landmarks {1, 5, 9} from the graph
in Figure 2(a); (b) shows an example of computing the
bounded distance between vertices 2 and 11 as highlighted
in yellow, and green vertices denote the visited vertices in
the forward and reverse searches.

be derived by the highway cover property and the definition of
d⊤st . Lemma 4.5 can also be proven by the property of shortest
path and the definition of the sparsified graph G[V \R].

Lemma 4.4. For a highway cover distance labelling L over (G,H ),
we have d⊤st ≥ dG (s, t) for any two vertices s and t ofG , where d⊤st
is computed using L and H .

Lemma 4.5. For any two vertices {s, t} ⊆ V \R, if there is a
shortest path between s and t inG that does not include any vertex
in R, then dG (s, t) = dG[V \R](s, t) holds.

Thus, the following theorem holds:

Theorem 4.6. Let G = (V ,E) be a graph, H a highway over G
and L a highway cover distance labelling. Then, for any two vertices
{s, t} ⊆ V , the querying framework over (G,H ,L) yields dG (s, t).

Proof. We consider two cases: (1) Pst contains at least one
landmark. In this case, By Lemma 4.4 and the definition of the
highway cover property, we have d⊤st = dG (s, t). (2) Pst does not
contain any landmark. By Lemma 4.5, we have dG[V \R](s, t) =
dG (s, t). □

5 OPTIMIZATION TECHNIQUES
In this section, we discuss optimization techniques for label con-
struction, label compression, and query processing.

5.1 Label Construction
A technique called Bit-Parallelism (BP) has been previously used
in several methods [3, 15] to speed up the label construction
process. The key idea of BP is to perform BFSs from a given
landmark r and up to 64 of its neighbors simultaneously, and
encode the relative distances (-1, 0 or 1) of these neighbors w.r.t.
the shortest paths between r and each vertex v into a 64-bit
unsigned integer. In the work [3], BP was applied to construct bit-
parallel labels from initial vertices without pruning, which aimed
to leverage the information from these bit-parallel labels to cover
more shortest paths between vertices. Then, both bit-parallel
labels and normal labels are constructed in the pruned BFSs. The
work in [15] also used BP to construct thousands of bit-parallel
shortest-path trees (SPTs) because it is very costly to construct
thousands of normal SPTs in memory owing to their prohibitively
large space requirements and very long construction time.

In our work, we develop a simple yet rigorous parallel algo-
rithm (HL-P) which can run parallel BFSs from multiple land-
marks (depending on the number of processors) to construct
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Table 1: Datasets, where |G | denotes the size of a graph G with each edge appearing in the forward and reverse adjacency
lists and being represented by 8 bytes.

Dataset Network Type n m m/n avg. deg max. deg |G | Sources
Skitter computer undirected 1.7M 11M 6.5 13.081 35455 85 MB [28]
Flickr social undirected 1.7M 16M 9.1 18.133 27224 119 MB [28]
Hollywood social undirected 1.1M 114M 49.5 98.913 11467 430 MB [6, 7]
Orkut social undirected 3.1M 117M 38.1 76.281 33313 894 MB [28]
enwiki2013 social directed 4.2M 101M 21.9 43.746 432260 701 MB [6, 7]
LiveJournal social directed 4.8M 69M 8.8 17.679 20333 327 MB [28]
Indochina web directed 7.4M 194M 20.4 40.725 256425 1.1 GB [6, 7]
it2004 web directed 41M 1.2B 24.9 49.768 1326744 7.7 GB [6, 7]
Twitter social directed 42M 1.5B 28.9 57.741 2997487 9.0 GB [6, 7]
Friendster social undirected 66M 1.8B 22.5 45.041 4006 13 GB [18]
uk2007 web directed 106M 3.7B 31.4 62.772 979738 25 GB [6, 7]
ClueWeb09 computer directed 2B 8B 5.98 11.959 599981958 55 GB [25]

labelling in an extremely efficient way for massive networks,
with much less time as will be demonstrated in our experiments.

5.2 Label Compression
The choice of the data structure for labels may significantly affect
the performance of index size and memory usage. As noted in
[19], some works [2, 10] did not elaborate on what data structure
they have used for representing labels. Nonetheless, for the works
that are most relevant to ours, such as FD [15] and PLL [3], they
used 32-bit integers to represent vertices and 8-bit integers to
represent distances for normal labels. In addition to this, they
also used 64-bits to encode the distances from a landmark to up to
64 of its neighbors in their shortest paths to other vertices. Since
our approach only selects a very small number of landmarks
to construct the highway cover labelling (usually no more than
100 landmarks), we may use 8 bits to represent landmarks and
another 8 bits to store distances for labels. In order to fairly
compare methods from different aspects, we have implemented
our methods using both 32 bits and 8 bits for representing vertices
in labels. However, different from the BP technique that uses 64-
bits to encode the distance information of up to 64 neighbours of
a landmark, our parallel algorithm (HL-P) does not use a different
data structure for labels constructed in parallel BFSs.

5.3 Query Processing
We show that computing the upper bound d⊤st can be optimized
based on the observation, captured by the following lemma.

Lemma 5.1. For a highway cover distance labelling L over (G,H ),
where G = (V ,E) and H = (R,δH ), and any {s, t} ⊆ V \R, if a
landmark r appears in both L(s) and L(t), then δL(r , s)+δL(r , t) ≤
δL(r , s) + δH (r , r

′) + δL(r
′, t) holds for any other r ′ ∈ R.

Proof. By the definition of the highway cover property, we
know that r is not in the shortest path between r ′ and t . Then by
triangle inequality in Equation 1, this lemma can be proven. □

Thus, in order to efficiently compute the upper bound d⊤st , for
any landmarks that appear in both L(s) and L(t), we compute
the r -constrained shortest path distance between s and t using
Equation 2, while for a landmark r ′ that only appear in one of
L(s) and L(t), we use Equation 4 to calculate the r ′-constrained
shortest path distance between s and t . This would lead to more
efficient computations for queries when the landmarks appear in
both labels of two vertices.

6 EXPERIMENTS
To compare the proposed method with baseline approaches, we
have implemented our method in C++11 using STL libraries and
compiled using gcc 5.5.0 with the -O3 option. We performed all
the experiments using a single thread on a Linux server (having
64 AMD Opteron(tm) Processors 6376 with 2.30GHz and 512GB
of main memory) for sequential version of the proposed method
and up to 64 threads for parallel version of the proposed method.
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Figure 6: Distance distribution of 100,000 random pairs of
vertices on all the datasets.

6.1 Datasets
In our experiments, we used 12 large-scale real-world complex
networks, which are detailed in Table 1. These networks have
vertices and edges ranging from millions to billions. Among
them, the largest network is ClueWeb09 which has 2 billions of
vertices and 8 billions of edges. We included this network in our
experiments for the purpose of evaluating the robustness and

20



Table 2: Comparison of construction times and query times between our methods, i.e., HL-P and HP, and the state-of-the-
art methods, where CT denotes the CPU clock time in seconds for labelling construction, QT denotes the average query
time in milliseconds, and ALS denotes the average number of entries per label.

Dataset CT[s] QT[ms] ALS
HL-P HL FD PLL IS-L HL FD PLL IS-L Bi-BFS HL FD PLL IS-L

Skitter 2 13 30 638 1042 0.067 0.043 0.008 3.556 3.504 12 20+64 138+50 51
Flickr 2 14 41 1330 8359 0.015 0.028 0.01 33.760 4.155 10 20+64 290+50 50
Hollywood 3 17 107 31855 DNF 0.047 0.075 0.051 - 6.956 12 20+64 2206+50 -
Orkut 10 62 366 DNF DNF 0.224 0.251 - - 21.086 11 20+64 - -
enwiki2013 9 77 308 22080 DNF 0.190 0.131 0.027 - 19.423 10 20+64 471+50 -
LiveJournal 9 77 166 DNF 20583 0.088 0.111 - 56.847 17.264 13 20+64 - 69
Indochina 8 50 144 9456 DNF 1.905 1.803 0.02 - 9.734 5 20+64 441+50 -
it2004 66 304 1623 DNF DNF 2.684 2.118 - - 92.187 10 20+64 - -
Twitter 133 1380 1838 DNF DNF 1.424 0.432 - - 426.949 14 20+64 - -
Friendster 135 2229 9661 DNF DNF 1.091 1.435 - - 534.576 19 20+64 - -
uk2007 110 1124 6201 DNF DNF 11.841 18.979 - - 355.688 8 20+64 - -
ClueWeb09 4236 28124 DNF DNF DNF 0.309 - - - - 2 - - -

Table 3: Comparison of labelling sizes between our meth-
ods, i.e., HL(8) and HL, and the state-of-the-art methods.

Dataset HL(8) HL FD PLL IS-L
Skitter 42MB 102MB 202MB 2.5GB 507MB
Flickr 34MB 81MB 178MB 3.7GB 679MB
Hollywood 28MB 67MB 293MB 13GB -
Orkut 70MB 170MB 756MB - -
enwiki2013 83MB 200MB 743MB 12GB -
LiveJournal 123MB 299MB 778MB - 3.8GB
Indochina 81MB 192MB 999MB 21GB -
it2004 855MB 2GB 5.6GB - -
Twitter 1.2GB 2.8GB 4.8GB - -
Friendster 2.5GB 5.2GB 11.8GB - -
uk2007 1.8GB 4.3GB 14.1GB - -
ClueWeb09 4.7GB 9GB - - -

scalability of the proposed method. In previous works, the largest
dataset that has been reported is uk2007 which has only around
100 millions of vertices and 3.7 billions of edges. For all these
networks, we treated them as undirected and unweighted graphs.

To investigate the query time of finding the distance between
two vertices, we randomly sampled 100,000 pairs of vertices from
all pairs of vertices in each network, i.e., V × V . The distance
distribution of these 100,000 randomly sampled pairs of vertices
are shown in Figure 6(a)-6(b), from which we can confirm that
most of pairs of vertices in these networks have a small distance
ranging from 2 to 8.

6.2 Baseline Methods
We compared our proposed method with three state-of-the-art
methods. Two of these methods, namely fully dynamic (FD) [15]
and IS-L [12], combine a distance labelling algorithmwith a graph
traversal algorithm for distance queries on complex networks.
The third one is pruned landmark labelling (PLL) [3] which is
completely based on distance labelling to answer distance queries.
Besides these, there are a number of other methods for answering
distance queries, such as HDB [16], RXL and CRXL [10], HCL [17],
HHL [2] and TEDI [32]. However, since the experimental results
of the previous works [3, 15] have shown that FD outperforms

HDB, RXL and CRXL, and PLL outperforms HCL, HHL and TEDI,
we omit the comparison with these methods.

In our experiments, the implementations of the baseline meth-
ods FD, IS-L and PLL were provided by their authors, which were
all implemented in C++. We used the same parametric settings
for running these methods as suggested by their authors. For
instance, the number of landmarks is chosen to 20 for FD [15],
the number of bit-parallel BFSs is set to 50 for PLL [3], and k is 6
for graphs larger than 1 million vertices for IS-L [12].

6.3 Comparison with Baseline Methods
To evaluate the performance of our proposed approach, we com-
pared our approach with the baseline methods in terms of the
construction time of labelling, the size of labelling, and querying
time. The experimental results are presented in Tables 2 and 3,
where DNF denotes that a method did not finish in one day or
ran out of memory. In order to make a consistent comparison
with the baseline methods [3, 12, 15], we chose top 20 vertices
as landmarks after sorting based on decreasing order of their
degrees, and also used 32-bit integers to represent vertices and
8-bit integers to represent distances.

6.3.1 Construction Time. As shown in Table 2, our proposed
method (HL) has successfully constructed the distance labelling
on all the datasets for a significantly less amount of time than
the state-of-the-art methods. As compared to FD, our method is
on average 5 times faster and have results on all the datasets. In
contrast to this, FD failed to construct labelling for the largest
dataset ClueWeb09. PLL failed for 7 out of 12 datasets, including
the datasets Orkut and LiveJournal which have less than 120
millions of edges, due to its prohibitively high preprocessing time
and memory requirements for building labelling. IS-L failed to
construct labelling for all the datasets that have edges more than
100 million due to its very high cost for computing independent
sets on massive networks, i.e. failed for 9 out of 12 datasets. We
can also see from Table 2 that the parallel version of our method
(HL-P) is much faster than the sequential version (HL). Compared
with FD, HL-P is more than 50-70 times faster for the two large
datasets Friendster and uk2007. This confirms that our method
can construct labelling very efficiently and is scalable on large
networks with billions of vertices and edges.
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Figure 7: (a)-(d) Construction times using our method HL under 10-50 landmarks on all the datasets; (e)-(g) Query times
using our method HL under 10-50 landmarks on all the datasets.

6.3.2 Labelling Size. As we can see from Table 3 that the
labelling sizes of all the datasets constructed by the proposed
method are significantly smaller than the labelling sizes of FD and
much smaller than PLL and IS-Label. Specifically, our labelling
sizes using 32-bits representation of vertices (HL) are 2-5 times
smaller than FD except for ClueWeb09 (as discussed before, FD
failed to construct labelling for ClueWeb09), 7 times smaller than
IS-Label on Skitter, Flickr and LiveJournal and more than 60 times
smaller than PLL for Skitter, Flickr, Hollywood, enwiki2013 and
Indochina. The compressed version of our method that uses 8-bits
representation of vertices (i.e. HL(8)) produces further smaller
index sizes as compared to uncompressed version (HL). Here,
It is important to note that the labelling sizes of almost all the
datasets are also significantly smaller than the original sizes of
the datasets shown in Table 1. This also shows that our method is
highly scalable on large networks in terms of the labellng sizes.

6.3.3 Query Time. The average query times of our method
(HL) are comparable with FD and PLL and faster than IS-L. Par-
ticularly, the average query time of our method on Hollywood is
even faster than FD and PLL. This is due to a very small average
labelling size (i.e., 12) as compared with FD and PLL (i.e., 20+64
and 2206+50, respectively) and a very small average distance.
The average query time of HL on Twitter is 3 times slower than
FD. This may be due to a large portion of covered pairs by FD
as shown in Figure 9 which contributes towards an effective
bounded traversal on the sparsified network since the landmarks
of Twitter have very high degrees and the average distance is also
very small. Moreover, the average query times of HL and FD on
Indochina, it2004, Friendster and uk2007 are more than 1ms due
to comparatively large average distances than other datasets as
shown in Figure 6(b). Note that all the baseline methods are not
scalable enough to have results for ClueWeb09 and the average
query time on ClueWeb09 of our method HL is small because of a
very large portion of covered pairs and a small average label size.
We also reported the average query time for online bidirectional
BFS algorithm (Bi-BFS) using randomly selected 1000 pairs of
vertices in Table 2. As we can see that Bi-BFS has considerably

long query times, which are not practicable in applications for
performing distance queries in real time.

6.4 Performance under Varying Landmarks
We have also evaluated the performance of our method (HL) by
varying the number of landmarks between 10 and 50, which are
again selected based on highest degrees.

6.4.1 Construction Time. The construction times of ourmethod
HL against different numbers of landmarks (from 10 to 50) are
shown in Figure 7(a)-7(d). We can see that the construction times
are linear in terms of the number of landmarks, which confirms
the scalability of our method. In Figure 7(a)-7(b), our method is
able to construct labelling for 7 datasets under 50 landmarks from
20 seconds to 2 minutes, which is not possible with any state-of-
the-art methods. In Figure 7(c), the construction time using 50
landmarks of Friendster is 3 times faster and the construction
time of uk2007 is 4 times faster than FD using only 20 landmarks
as shown in Table 2. Figure 7(d) shows the construction time
for ClueWeb09 which has 2 billion vertices and 8 billion edges.
The significant improvement in construction time allows us to
compute labelling for a large number of landmarks, leading to
better pair coverage ratios to tighten upper distance bounds (will
be further discussed in Section 6.4.4).

6.4.2 Labelling Size. Figure 8 shows the labelling sizes of HL
using 10, 20, 30, 40 and 50 landmarks on all the dataset, and
of FD using only 20 landmarks on all the datasets except for
ClueWeb09 (as discussed before, FD failed to construct labeling
for ClueWeb09). It can be seen that the labelling sizes of HL
increase linearly with the increased number of landmarks, and
even the labelling sizes of HL using 50 landmarks are almost
always smaller than the labelling sizes constructed by FD using
only 20 landmarks. This reduction in labelling sizes enables us
to save space and memory, thus makes our method scalable on
large networks.

6.4.3 Query Time. Figure 7 shows the impact of using differ-
ent numbers of landmarks between 10 and 50 on average query
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Figure 8: Labelling sizes using our method HL under 10-50 landmarks and using FD on all the datasets.
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Figure 9: Pair coverage ratios using our method HL under 10-50 landmarks and using FD on all the dataset.

time of our method. The average query times either decrease
or remain the same when the number of landmarks increases,
except for Orkut when using 30 landmarks and for Friendster
when using landmarks greater than 20. In particular, on Friend-
ster, labelling sizes are very large as shown in Figure 8 and the
fraction of covered pairs (i.e., pair coverage ratio) is very small
as shown in Figure 9, which may have slowed down our query
processing due to a longer time for computing upper distance
bounds and ineffective use of bounded-distance traversal.

6.4.4 Pair Coverage. Figure 9 presents the ratios of pairs of
vertices covered by at least one landmark (i.e., pair coverage ra-
tios) in HL using 10-50 landmarks and in FD using 20 landmarks.
As we can observe that the pair coverage ratios for HL increase
when the number of landmarks increases and 40 turns out to be
the better choice on the number of landmarks for most of the
datasets. Specifically, pair coverage ratios on Orkut, enwiki2013,
Indochina and uk2007 with 40 landmarks are good, resulting in
better query times than using 20 landmarks, as shown in Figure 7.
On datasets such as Hollywood and it2004, 30 landmarks are a bet-
ter option than 40 landmarks because they only slightly differ in
the pair coverage ratios and query times w.r.t. using 40 landmarks,
but with reduced labelling sizes. The pair coverage ratios by FD
are greater than HL on all the datasets except for ClueWeb09,
which may be the reason behind its better query times for some
datasets as shown in Table 2. Note that, on ClueWeb09, we obtain
almost hundred percentage for pair coverage due to its very high
degree landmarks.

7 RELATEDWORK
A naive solution for exact shortest-path distance computation
is to run the Dijkstra search for weighted graphs or BFS for un-
weighted graphs, from a source vertex to a destination vertex
[27]. To improve search efficiency, a bidirectional scheme can
be used to run two such searches: one from the source vertex
and the other from the destination vertex [21]. Later on, Gold-
berg et al. [13] combined the bidirectional search technique with

the A* algorithm to further improve the search performance. In
their method, they precomputed labeling based on landmarks to
estimate the lower bounds, and used that estimate with a bidi-
rectional A* search for efficient computation of shortest-path
distances. However, this method is known to work only for road
networks and do not scale well on complex networks [15].

To efficiently answer exact shortest-path distance queries on
graphs, labelling-based methods have been developed with great
success [1–3, 12, 17, 19]. Most of them construct a labeling based
on the idea of 2-hop cover [9]. It has also been shown that com-
puting a minimal 2-hop cover labeling is NP-hard [2, 9]. In [1],
the authors proposed a hub-based labeling algorithm (HL) which
constructs hub labelling by processing contraction hierarchies
(CH) and is among the fastest known algorithms for distance
queries in road networks. However, the method is not feasible
for complex networks as reported by the same authors and they
thus proposed a hierarchical hub-labeling (HHL) algorithm for
complex networks in [2]. In this work, a top-down method was
used to maintain a shortest-path tree for every vertex in order
to indicate all uncovered shortest-paths at each vertex. Due to
very high storage and computation requirements, the method
is also not scalable for handling large graphs. Another method
called Highway Centric Labeling (HCL) was proposed by Jin
et al. [17] which exploits highway structure of a graph. This
method aimed to find a spanning tree which can assist in opti-
mal distance labelling and used that spanning tree as a highway
to compute a highway-based 2-hop labelling for fast distance
computation. After that, in [3], Akiba et al. proposed the pruned
landmark labeling (PLL) method which precomputes a distance-
aware 2-hop cover index by performing a pruned breadth-first
search (BFS) from every vertex. The idea is to prune vertices
whose distance information can be obtained using a partially
available 2-hop index constructed via previous BFSs. This work
helps to achieve low construction cost and smaller index size
due to reduced search space on million-scale networks. It has
been shown that PLL outperforms other state-of-the-art methods
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available at the time of publication, including HHL [2], HCL [17]
and TEDI [32]. However, PLL is still not feasible for constructing
2-hop cover indices for billion-scale networks due to a very high
memory requirement for labelling construction.

Fu et al. [12] proposed IS-Label (IS-L) which gained significant
scalability in precomputing 2-hop cover distance labellings for
large graphs with hundreds of millions of vertices and edges. IS-L
uses the notion of an independent set of vertices in a graph. First,
it computes an independent set of vertices from a graph, then it
constructs a graph by removing the independent set of vertices
from the previous graph recursively and augments edges that pre-
serve distance information after the removal of the independent
set of vertices. All the vertices in the remaining graph preserve
their distance information to/from each other. Generally, IS-L is
regarded as a hybrid method that combines distance labelling
with graph traversal for complex networks [19]. Following the
same line of thought, very recently, Akiba et al. [15] proposed
a method to accelerate shortest-path distances computation on
large-scale complex networks. To the best of our knowledge, this
work is most closely related to our work presented in this paper.
The key idea of the method in [15] is to select a small set of
landmarks R and precompute shortest-path trees (SPTs) rooted at
each r ∈ R. Given any two vertices s and t , it first computes the
upper bound by taking the minimum length among the paths that
pass through R. Then a bidirectional BFS from s to t is conducted
on the subgraphG\R to compute the shortest-path distances that
do not pass through R and take the minimum of these two results
as the answer to an exact distance query. The experiments in
[15] showed that this method can scale to graphs with millions of
vertices and billions of edges, and outperforms the state-of-the-
art exact methods PLL [3], HDB [16], RXL and CRXL [10] with
significantly reduced construction time and index size, while the
query times are higher but still remain among 0.01-0.06 for most
of graphs with less than 5M vertices.

Although the method proposed in [15] has been tested on
a large network with millions of vertices and billions of edges,
it still fails to construct labelling on billion-scale networks in
general, particularly with billions of vertices. In contrast, our
proposed method not only constructs labellings linearly with the
number of landmarks in large networks with billions of vertices,
but also enables the sizes of labellings to be significantly smaller
than the original network sizes. In addition to these, the determin-
istic nature of labelling allows us to achieve further gains in com-
putational efficiency using parallel BFSs over multiple landmarks,
which is highly scalable for handling billion-scale networks.

8 CONCLUSION
We have presented a scalable solution for answering exact short-
est path distance queries on very large (billion-scale) complex
networks. The proposed method is based on a novel labelling
algorithm that can scale to graphs at the billion-scale, and a query-
ing framework that combines a highway cover distance labelling
with distance-bounded searches to enable fast distance compu-
tation. We have proven that the proposed labelling algorithm
can construct HWC-minimal labellings that are independent of
the ordering of landmarks, and have further developed a parallel
labelling method to speed up the labelling construction process
by conducting BFSs simultaneously for multiple landmarks. The
experimental results showed that the proposed methods signifi-
cantly outperform the state-of-the-art methods. For future work,
we plan to investigate landmark selection strategies for further
improving the performance of labelling methods.
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