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ABSTRACT
Existing works for truth discovery in categorical data usually

assume that claimed values are mutually exclusive and only one

among them is correct. However, many claimed values are not

mutually exclusive even for functional predicates due to their

hierarchical structures. Thus, we need to consider the hierarchi-

cal structure to effectively estimate the trustworthiness of the

sources and infer the truths. We propose a probabilistic model

to utilize the hierarchical structures and an inference algorithm

to find the truths. In addition, in the knowledge fusion, the step

of automatically extracting information from unstructured data

(e.g., text) generates a lot of false claims. To take advantages

of the human cognitive abilities in understanding unstructured

data, we utilize crowdsourcing to refine the result of the truth

discovery. We propose a task assignment algorithm to maximize

the accuracy of the inferred truths. The performance study with

real-life datasets confirms the effectiveness of our truth inference

and task assignment algorithms.

1 INTRODUCTION
Automatic construction of large-scale knowledge bases is very

important for the communities of database and knowledge man-

agement. Knowledge fusion (KF) [8] is one of the methods used

to automatically construct knowledge bases (a.k.a. knowledge

harvesting). It collects the possibly conflicting values of objects

from data sources and applies truth discovery techniques for re-

solving the conflicts in the collected values. Since the values are

extracted from unstructured or semi-structured data, the col-

lected information exhibits error-prone behavior. The goal of

the truth discovery used in knowledge fusion is to infer the true

value of each object from the noisy observed values retrieved

from multiple information sources while simultaneously estimat-

ing the reliabilities of the sources. Two potential applications

of knowledge fusion are web source trustworthiness estimation

and data cleaning [10]. By utilizing truth discovery algorithms,

we can evaluate the quality of web sources and find systematic

errors in data curation by analyzing the identified wrong values.

Truth discovery with hierarchies: As pointed out in [6, 8, 25],

the extracted values can be hierarchically structured. In this case,

there may be multiple correct values in the hierarchy for an ob-

ject even for functional predicates and we can utilize them to

find the most specific correct value among the candidate values.

For example, consider the three claimed values of ‘NY’, ‘Liberty

Island’ and ‘LA’ about the location of the Statue of Liberty in Ta-

ble 1. Because Liberty Island is an island in NY, ‘NY’ and ‘Liberty
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Table 1: Locations of tourist attractions

Object Source Claimed value
Statue of Liberty UNESCO NY

Statue of Liberty Wikipedia Liberty Island

Statue of Liberty Arrangy LA

Big Ben Quora Manchester

Big Ben tripadvisor London

Island’ do not conflict with each other. Thus, we can conclude

that the Statue of Liberty stands on Liberty Island in NY.

We also observed that many sources provide generalized val-

ues in the real-life. Figure 1 shows the graph of the general-

ized accuracy against the accuracy of the sources in the real-life

datasets BirthPlaces and Heritages used for experiments in Sec-

tion 5. The accuracy and the generalized accuracy of a source are

the proportions of the exactly correct values and hierarchically-

correct values among all claimed values, respectively. If a source

claims exactly correct values without generalization, it is located

at the dotted diagonal line in the graph. This graph shows that

many sources in real-life datasets claim with generalized values

and each source has its own tendency of generalization when

claiming values.

Most of the existing methods [7, 9, 30, 38, 39] simply regard the

generalized values of a correct value as incorrect. Thus, it causes

a problem in estimating the reliabilities of sources. According to

[8], 35% of the false negatives in the data fusion task are produced

by ignoring such hierarchical structures. Note that there aremany

publicly available hierarchies such as WordNet [32] and DBpedia

[1]. Thus, a truth discovery algorithm to incorporate hierarchies

is proposed in [2]. However, it does not consider the different

tendencies of generalization and may lead to the degradation of

the accuracy. Another drawback is that it needs a threshold to

control the granularity of the estimated truth.

We propose a novel probabilistic model to capture the different

generalization tendencies shown in Figure 1. Existing probabilis-

tic models [7, 9, 30, 39] basically assume two interpretations of a

claimed value (i.e., correct and incorrect). By introducing three

interpretations of a claimed value (i.e., exactly correct, hierarchi-

cally correct, and incorrect), our proposed model represents the

generalization tendency and reliability of the sources.

Figure 1: Generalization tendencies of the sources
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Figure 2: Crowdsourced truth discovery in KF

Crowdsourced truth discovery: It is reported in [8] that upto

96% of the false claims are made by extraction errors rather than

by the sources themselves. Since crowdsourcing is an efficient

way to utilize human intelligence with low cost, it has been

successfully applied in various areas of data integration such as

schema matching [12], entity resolution [34], graph alignment

[17] and truth discovery [39, 41]. Thus, we utilize crowdsourcing

to improve the accuracy of the truth discovery.

It is essential in practice to minimize the cost of crowdsourc-

ing by assigning proper tasks to workers. A popular approach

for selecting queries in active learning is uncertainty sampling
[3, 18, 19, 39]. It asks a query to reduce the uncertainty of the con-

fidences on the candidate values the most. However, it considers

only the uncertainty regardless of the accuracy improvement.

QASCA algorithm [41] asks a query with the highest accuracy

improvement, but measures the improvement without consider-

ing the number of collected claimed values. It can be inaccurate

since an additional answer may be less informative for an object

which already has many records and answers.

Assume that there are two candidate values of an object with

equal confidences. If only a few sources provide the claimed

values for the object, an additional answer from a crowd worker

will significantly change the confidence distribution. Meanwhile,

if hundreds of sources already provide the claimed values for

the object, the influence of an additional answer is likely to be

very little. Thus, we need to consider the number of collected

answers as well as the current confidence distribution. Based

on the observation, we develop a new method to estimate the

increase of accuracy more precisely by considering the number

of collected records and answers. We also present an incremental

EM algorithm to quickly measure the accuracy improvement and

propose a pruning technique to efficiently assign the tasks to

workers.

An overview of our truth discovery algorithm: By combin-

ing the proposed task assignment and truth inference algorithms,

we develop a novel crowdsourced truth discovery algorithm using
hierarchies. As illustrated in Figure 2, our algorithm consists of

two components: hierarchical truth inference and task assignment.
The hierarchical truth inference algorithm finds the correct val-

ues from the conflicting values, which are collected from different

sources and crowd workers, using hierarchies. The task assign-

ment algorithm distributes objects to the workers who are likely

to increase the accuracy of the truth discovery the most. The

proposed crowdsourced truth discovery algorithm repeatedly alter-

nates the truth inference and task assignment until the budget

of crowdsourcing runs out. As discussed in [20], some workers

answer slower than others and increase the latency. However, we

do not investigate how to reduce the latency in this work since

we can utilize the techniques proposed in [13].

Our contributions: The contributions of this paper are sum-

marized below.

• We propose a truth inference algorithm utilizing the hi-

erarchical structures in claimed values. To the best of our

knowledge, it is the first work which considers both the re-

liabilities and the generalization tendencies of the sources.

• To assign a task which will most improve the accuracy, we

develop an incremental EM algorithm to estimate the ac-

curacy improvement for a task by considering the number

of claimed values as well as the confidence distribution.

We also devise an efficient task assignment algorithm for

multiple crowd workers based on the quality measure.

• We empirically show that the proposed algorithm outper-

forms the existing works with extensive experiments on

real-life datasets.

2 PRELIMINARIES
In this section, we provide the definitions and the problem formu-

lation of crowdsourced truth discovery in the presence of hierarchy.

2.1 Definitions
For the ease of presentation, we assume that we are interested

in a single attribute of objects although our algorithms can be

easily generalized to find the truths of multiple attributes. Thus,

we use ‘the target attribute value of an object’ and ‘the value of

an object’ interchangeably.

A source is a structured or unstructured database which con-

tains the information on target attribute values for a set of objects.

In this paper, a source is a certain web page or website and a

worker represents a human worker in crowdsourcing platforms.

The information of an object provided by a source or a worker is

called a claimed value.

Definition 2.1. A record is a data describing the information

about an object from a source. A record on an object o from

a source s is represented as a triple (o, s,vso ) where v
s
o is the

claimed value of an object o collected from s . Similarly, if a worker

w answers that the truth on an object o is vwo , the answer is

represented as (o,w,vwo ).

Let So be the set of the sources which claimed a value on the

object o and Vo be the set of candidate values collected from So .
Each worker inWo answers a question about the object o by

selecting a value from Vo .
In our problem setting, we assume that we have a hierarchy

tree H of the claimed values. If we are interested in an attribute

related to locations (e.g., birthplace), H would be a geographi-

cal hierarchy with different levels of granularity (e.g., continent,

country, city, etc.). We also assume that there is no answer with

the value of the root in the hierarchy since it provides no in-

formation at all (e.g., Earth as a birthplace). We summarize the

notations to be used in the paper in Table 2.

Example 2.2. Consider the records in Table 1. Since the source

Wikipedia claims that the location of the Statue of Liberty is

Liberty Island, it is represented by vso =‘Liberty Island’ where

o =‘Statue of Liberty’ and s =‘Wikipedia’. If a human worker

‘Emma Stone’ answered Big Ben is in London, it is represented

by vwo =‘London’ where o =‘Big Ben’ andw =‘Emma Stone’.

2.2 Problem Definition
Given a set of objects O and a hierarchy tree H , we define the

two subproblems of the crowdsourced truth discovery.
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Figure 3: A graphical model for truth inference

Definition 2.3 (Hierarchical truth inference problem). For a set
of records R collected from the sources and a set of answers A
from the workers, we find the most specific true value v∗o of each

object o ∈ O among the candidate values in Vo by using the

hierarchy H .

Definition 2.4 (Task assignment problem). For each workerw
in a set of workersW , we select the top-k objects from O which

are likely to increase the overall accuracy of the inferred truths

the most by using the hierarchy H .

We present a hierarchical truth inference algorithm in Sec-

tion 3 and a task assignment algorithm in Section 4.

3 HIERARCHICAL TRUTH INFERENCE
For the hierarchical truth inference, we first model the trust-

worthiness of sources and workers for a given hierarchy. Then,

we propose a probabilistic model to describe the process of gen-

erating the set of records and the set of answers based on the

trustworthiness modeling. We next develop an inference algo-

rithm to estimate the model parameters and determine the truths.

3.1 Our Generative Model
Our probabilistic graphical model in Figure 3 expresses the con-

ditional dependence (represented by edges) between random

variables (represented by nodes). While the previous works [5,

15, 31, 35] assume that all sources and workers have their own

reliabilities only, we assume that each source or worker has its

generalization tendency as well as reliability. We first describe

how sources and workers generate the claimed values based on

their trustworthiness. We next present the model for generating

the true value. Finally, we provide the detailed generative process

of our probabilistic model.

Model for source trustworthiness: For an object o, let v∗o be

the truth and vso be the claimed value reported by a source s .

Table 2: Notations

Symbol Description

s A data source

w A crowd worker

vso Claimed value from s about o
vwo Claimed value from w about o

R Set of all records collected from the set of sources S
A Set of all answers collected from the set of workersW
Vo Set of candidate values about o

So Set of sources which post information about o
Wo Set of workers who answered about o
Os Set of objects that source s provided a value

Ow Set of objects that worker w answered to

Go (v)
Set of values in Vo which are ancestors of a value v
except the root in the hierarchy H

Do (v) Set of values in Vo which are descendants of v

Recall that Vo is the set of candidate values for an object o. Fur-
thermore, we let Go (v) denote the set of candidate values which
are ancestors of a value v except for the root in the hierarchy H .

There are three relationships between a claimed value vso and

the truth v∗o : (1) v
s
o = v∗o , (2) v

s
o ∈ Go (v

∗
o ) and (3) otherwise.

Let ϕs = (ϕs,1,ϕs,2,ϕs,3) be the trustworthiness distribution of a

source s where ϕs,i is the probability that a claimed value of the

source s corresponds to the i-th relationship. In each relationship,

a claimed value is generated as follows:

• Case 1 (vso = v∗o ): The source s provides the exact true
value with a probability ϕs,1.
• Case 2 (vso ∈ Go (v

∗
o )): The source s provides a general-

ized true value vso with a probability ϕs,2. In this case, the

claimed value is an ancestor of the truth v∗o in H . We as-

sume that the claimed value is uniformly selected from

Go (v
∗
o ).

• Case 3 (otherwise): The source s provides a wrong value

vso not even in Go (v
∗
o ). The claimed value is uniformly

selected among the rest of the candidate values in Vo .

The probability distribution ϕs is an initially-unknown model

parameter to be estimated in our inference algorithm. Accord-

ingly, the probability of selecting an answervso among the values

in Vo for an object o is represented by

P (vso |v
∗
o, ϕs ) =


ϕs,1 if vso = v

∗
o ,

ϕs,2/ |Go (v∗o ) | if vso ∈ Go (v∗o ),
ϕs,3/( |Vo | − |Go (v∗o ) | − 1) otherwise.

(1)

For the prior of the distribution ϕs , we assume that it follows a

Dirichlet distribution Dir (α), with a hyperparameter α = (α1,α2,
α3), which is the conjugate prior of categorical distributions.

LetOH be the set of objects who have an ancestor-descendant

relationship in their candidate set. In practice, there may exist

some objects whose candidate values do not have an ancestor-

descendant relationship. In this case, the probability of the sec-

ond case (i.e., ϕs,2) may be underestimated. Thus, if there is no

ancestor-descendant relationship between the claimed values

about o (i.e., o < OH ), we assume that a source generates its

claimed value vso with the following probability

P (vso |v
∗
o, ϕs ) =

{
ϕs,1 + ϕs,2 if vso = v

∗
o ,

ϕs,3/( |Vo | − 1) otherwise.

(2)

Model for worker trustworthiness: Let vwo be the claimed

value chosen by a workerw among the candidates in Vo for an

object o. Similar to the model for source trustworthiness, we

also assume the three relationships between a claimed value

vwo and the truth v∗o : (1) v
w
o = v∗o , (2) v

w
o ∈ Go (v

∗
o ) and (3)

otherwise. Each worker w has its trustworthiness distribution
ψw = (ψw,1,ψw,2,ψw,3) where ψw,i is the probability that an

answer of the workerw corresponds to the i-th relationship. We

assume that the trustworthiness distribution is generated from

Dir (β) with a hyperparameter β = (β1, β2, β3).
Since it is difficult for the workers to be aware of the correct

answer for every object, a worker can refer to web sites to answer

the question. In such a case, if there is a widespread misinforma-

tion across multiple sources, the worker is also likely to respond

with the incorrect information. Similar to [9, 30], we thus ex-

ploit the popularity of a value in Cases 2 and 3 to consider such

dependency between sources and workers.

• Case 1 (vwo = v∗o ): The workerw provides the exact true

value with a probabilityψw,1.

• Case 2 (vwo ∈ Go (v
∗
o )): The workerw provides a general-

ized true value with a probability ψw,2. We assume that
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f vo,s =
P(vso |v

∗
o =v,ϕs )·µo,v∑

v ′∈Vo P(v
s
o |v
∗
o =v

′,ϕs )·µo,v ′

f vo,w =
P(vwo |v

∗
o =v,ψw )·µo,v∑

v ′∈Vo P(v
w
o |v
∗
o =v

′,ψw )·µo,v ′

д1o,s =
ϕs,1 ·µo,vso∑

v∈Vo P(v
s
o |v
∗
o =v,ϕs )·µo,v

д2o,s =


∑
v∈Do (vso )

ϕs,2
|Go (v )|

·µo,v∑
v∈Vo P (v

s
o |v∗o=v,ϕs )·µo,v

if o ∈ OH

ϕs,2 ·µo,vso∑
v∈Vo P (v

s
o |v∗o=v,ϕs )·µo,v

otherwise

д3o,s =

∑
v ∈¬Do (vso )

ϕs,3
|Vo−Go (v) |−1

· µo,v∑
v ∈Vo P(v

s
o |v
∗
o =v,ϕs ) · µo,v

д1o,w =
ψw,1 · µo,vwo∑

v ∈Vo P(v
w
o |v
∗
o =v,ψw ) · µo,v

д2o,w =


∑
v∈Do (vwo )

ψw,2 ·Pop2(vwo |v
∗
o=v)·µo,v∑

v∈Vo P (v
w
o |v∗o=v,ψw )·µo,v

if o ∈ OH

ψw,2 ·µo,vwo∑
v∈Vo P (v

w
o |v∗o=v,ψw )·µo,v

otherwise

д3o,w =

∑
v ∈¬Do (vwo )ψw,3 · Pop3(v

w
o |v
∗
o =v) · µo,v∑

v ∈Vo P(v
w
o |v
∗
o =v,ψw ) · µo,v

Figure 4: E-step for the proposed truth inference algorithm

the claimed value vwo is selected according to the popu-

larity Pop2(v
w
o |v
∗
o ) =

| {s |s ∈So,vso=v } |
| {s |s ∈So,vso ∈Go (v∗o )} |

which is the

proportion of the records whose claimed value is vwo out

of the records with generalized values of v∗o .
• Case 3 (otherwise): The claimed value is selected from the

wrong values according to the popularity Pop3(v
w
o |v
∗
o ) =

| {s |s ∈So,vso=v } |
| {s |s ∈So,vso<Go (v∗o ),vso,v∗o } |

.

By the above model, the probability of selecting an answervwo
for the truth v∗o of an object o is formulated as

P (vwo |v
∗
o, ψw )=


ψw,1 if vwo = v

∗
o ,

ψw,2 · Pop2(vwo |v
∗
o ) if vwo ∈ Go (v∗o ),

ψw,3 · Pop3(vwo |v
∗
o ) otherwise.

(3)

Similar to the model for source trustworthiness, if there is no

ancestor-descendant relationship in the candidate values of an

object o, the probability of selecting a claimed value vwo is

P (vwo |v
∗
o, ψw ) =

{
ψw,1 +ψw,2 if vwo = v

∗
o ,

ψw,3 · Pop3(vwo |v
∗
o ) otherwise.

(4)

Model for truth: We introduce the probability distribution over

the candidate answers to determine the truth, called confidence
distribution. Each object o has a confidence distribution µo =
{µo,v }v ∈Vo where µo,v is the probability that the value v ∈ Vo
is the true answer for o. We also use a dirichlet prior Dir (γo )
for the confidence distribution µo where γo = {γo,v }v ∈Vo is a

hyperparameter.

Based on the above three models, the generative process of

our model works as follows.

Generative process: Given a set of objects O , a set of sources
S and a set of workersW , our proposed model assumes the fol-

lowing generative process for the set of records R and the set of

answers A:

(1) Draw ϕs ∼ Dir (α) for each source s ∈ S

(2) Drawψw ∼ Dir (β) for each workerw ∈W

(3) For each object o ∈ O

(a) Draw µo ∼ Dir (γo )

(b) Draw a true value v∗o ∼ Cateдorical(µo )

(c) For each source s ∈ So

(i) Draw a value vso following P(vso |v
∗
o ,ϕs )

(d) For each workerw ∈Wo

(i) Draw a value vwo following P(vwo |v
∗
o ,ψw )

3.2 Estimation of Model Parameters
We now develop an inference algorithm for the generative model.

Let Θ = ϕϕϕ ∪ψψψ ∪ µµµ be the set of all model parameters where

ϕϕϕ= {ϕs |s ∈S},ψψψ = {ψw |w ∈W } and µµµ= {µo |o ∈O}. We propose an

EM algorithm to find the maximum a posteriori (MAP) estimate

of the parameters in our model.

The maximum a posteriori (MAP) estimator: Recall that
R = {(o, s,vso )} is the set of records from the sources and A =
{(o,w,vwo )} is the set of answers from the workers. For every

object o, each source s ∈ So and each workerw ∈Wo generates

its claimed values independently. Then, the likelihood of R and

A based on our generative model is

P (R, A |Θ)=
∏
o∈O

∏
s∈So

P (vso |ϕs , µo ) ·
∏
o∈O

∏
w∈Wo

P (vwo |ψw , µo )

where the probability of generating a claimed value by a source

or a worker becomes

P (vso |ϕs , µo ) =
∑
v∈Vo

P (vso |ϕs , v
∗
o = v) · µo,v (5)

P (vwo |ψw , µo ) =
∑
v∈Vo

P (vwo |ψw , v∗o = v) · µo,v . (6)

Consequently, the MAP point estimator is obtained by maximiz-

ing the log-posterior as

Θ̂ = argmax

Θ
{log P(R,A|Θ) + log P(Θ)} = argmax

Θ
F (7)

where the objective function F is

F =
∑
o∈O

∑
s∈So

log

∑
v∈Vo

P (vso |ϕs , v
∗
o = v) · µo,v

+
∑
o∈O

∑
w∈Wo

log

∑
v∈Vo

P (vwo |ψw , v∗o = v) · µo,v (8)

+
∑
s∈S

logp(ϕs |α )+
∑
w∈W

logp(ψw |β )+
∑
o∈O

logp(µo |γo ).

Note that although we assumed that each claimed value is

generated independently according to its probability distribution

defined in Eq. (5) and (6), the dependencies between sources and

workers are already considered in Pop2(v
w
o |v
∗
o ) and Pop3(v

w
o |v
∗
o ).

The EM algorithm: We introduce a random variable Cv to rep-

resent the type of the relationship between the claimed value v
and the truth v∗o . It is defined as follows:

Cv =


1 if v = v∗o ,

2 if v ∈ Go (v
∗
o ),

3 otherwise.

In the E-step, we compute the conditional distributions of the

hidden variables Cvso , Cvwo and v∗o under our current estimate of

the parameters Θ. Let f vo,s , f
v
o,w , д

t
o,s and д

t
o,w denote the con-

ditional probabilities P(v∗o =v |v
s
o , µo ,ϕs ), P(v

∗
o =v |v

w
o , µo ,ψw ),

P(Cvso = t |µo ,ϕs ) and P(Cvwo = t | µo ,ψw ), respectively. Using
Bayes’ rule, we can update the conditional probabilities as shown

in Figure 4 where Do (v) = {v
′ |v ∈ Go (v

′) ∧ v ′ ∈ Vo } is the set
of descendants of v among the candidate values and ¬Do (v) =
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Vo−Do (v)−{v} is the set of candidate values each of which is

neither a descendant of the value v nor the v itself.

In theM-step, we find the model parameters Θ that maximize

our objective function F. We first add Lagrange multipliers to

enforce the constraints of model parameters.

L = F+
∑
s∈S

λϕ,s

(
1−

3∑
t=1

ϕs,t

)
+

∑
w∈W

λψ ,w

(
1−

3∑
t=1

ψw,t

)
+

∑
o∈O

λµ,o
©­«1−

∑
v∈Vo

µo,v
ª®¬

We obtain the following equations for updating the model

parameters Θ by taking the partial derivative of the Lagrangian

L with respect to each model parameter and setting it to zero:

µo,v =

∑
s∈So f

v
o,s +

∑
w∈Wo f

v
o,w + γo,v − 1

|So | + |Wo | +
∑
v ′∈Vo

(
γo,v ′ − 1

) (9)

ϕs,t =

∑
o∈Os д

t
o,s + αt − 1

|Os | +
∑

3

t ′=1 (αt ′ − 1)
(10)

ψw,t =

∑
o∈Ow дto,w + βt − 1

|Ow | +
∑

3

t ′=1 (βt ′ − 1)
(11)

where Os and Ow are the sets of objects claimed by s and w ,

respectively. We infer the truth by choosing the value with the

maximum confidence among the candidate values as

v∗o = argmax

v ∈Vo
µo,v . (12)

Extension to numerical data: In the world wide web, numer-

ical data also have an implicit hierarchy due to the significant

digits which carry meaning contributing to its measurement reso-

lution. For example, even though the area of Seoul is 605.196km2
,

different websites may represent the area in various forms de-

pending on the significant figures (e.g., 605.2km2
, 605km2

). An ex-

isting algorithm [21] to handle numerical data utilizes a weighted

sum of the claimed values to consider the distribution of the

claimed values. However, such method is sensitive to outliers

and thus need a proper preprocessing to remove the outliers. To

overcome the drawbacks, we generate the underlying hierarchy

in the numerical data by assuming thatvd is a descendant ofva if

a value va can be obtained by rounding off a value vd . Then, we
can use our TDH algorithm to find the truths in numerical data

by taking into account the relationship between the values in the

implicit hierarchy. Our algorithm is also robust to the outliers

with extremely small or large value since we estimate the truth

by selecting the most probable value from the candidate values

rather than computing a weighted average of the claimed values.

4 TASK ASSIGNMENT TOWORKERS
In this section, we propose a task assignment method to select

the best objects to be assigned to the workers in crowdsourcing

systems. We first define a quality measure of tasks called Expected
Accuracy Increase (EAI) and develop an incremental EM algorithm

to quickly estimate the quality measure. Finally, we present an

efficient algorithm for assigning the k questions to each worker

w in a set of workersW based on the measure.

4.1 The Quality Measure
Given a workerw , our goal is to choose an object to be assigned

to the workerw which is likely to increase the accuracy of the

estimated truths the most. Thus, we define a quality measure for

a pair of worker and an object based on the improvement of the

accuracy. As discussed in [41], the improvement of the accuracy

by a task can be estimated by using the difference between the

highest confidence as follows:

(Accuracy improvement ) = {max

v
µo,v |w −max

v
µo,v }/ |O | (13)

where µo,v |w is the estimated confidence on v if the worker w
answers about an object o.

The quality measure used by QASCA: The QASCA[41] algo-
rithm calculates the estimated confidence by using the current

confidence distribution and the likelihood of the answervwo given

the truth v∗o = v as

µo,v |w ∝ µo,v · p(v
w
o = v

′ |v∗o = v)

where v ′ is a sampled claimed value. There are two drawbacks

in the quality measure of QASCA. First, since it computes the

estimated confidence µo,v |w based on a sampled answer vwo = v ,
the value of the quality measure is very sensitive to the sam-

pled answer. In addition, QASCA does not consider the number

of claimed values collected so far and the estimated confidence

µo,v |w may not be accurate. For instance, assume that there exist

two objects which have identical confidence distributions. If one

of the objects already has many collected claimed values, an addi-

tional answer is not likely to change the confidence significantly.

Thus, task assignment algorithms should select another object

who has a smaller number of collected records and answers.

Our quality measure: To avoid the sensitiveness caused by

sampling answers, we develop a new quality measure Expected
Accuracy Improvement (EAI) which is obtained by taking the

expectation to Eq. (13). That is,

EAI (w, o) = {E[max

v
µo,v |w ] −max

v
µo,v }/ |O |. (14)

By the definition of expectation, E[maxv µo,v |w ] becomes

E[max

v
µo,v |w ]=

∑
v ′∈Vo

P (vwo =v
′ |ψw , µo ) ·max

v
µo,v |vwo =v ′ . (15)

where µo,v |vwo =v ′ is the conditional confidence when a worker

w answers with v ′ about the object o.
Since P(vwo = v

′ |ψw , µo ) can be computed by Eq. (6), to com-

pute E[maxv µo,v |w ] by Eq. (15), we need the estimation of the

conditional confidence µo,v |vwo =v ′ with an additional answer

vwo = v ′. Recall that the estimated confidence computed by

QASCA may not be accurate because it does not consider the

collected records and answers so far. To reduce the error, we

use them to compute the conditional confidence µo,v |vwo =v ′ . We

can compute the conditional confidence µo,v |vwo =v ′ by applying

the EM algorithm in Section 3.2 with the collected records and

answers including vwo = v
′
. However, since it is computationally

expensive, we next develop an incremental EM algorithm.

4.2 The Incremental EM Algorithm
Let Fvwo =v ′ be the objective function in Eq. (7) after obtaining an

additional answer (o,w,v ′). Then, we have

Fvwo =v ′ = F + log
∑
v ∈Vo

P(vwo = v
′ |ψw ,v

∗
o = v) · µo,v

by adding the related term of the additional answer (log likeli-

hood of the additional answer) to Eq. (8). Instead of running the

iterative EM algorithm in Section 3.2, we incrementally perform

a single EM-step to speed up for only the additional answer with

the current model parameters and the above objective function.

E-step: Since we use the current model parameters, the proba-

bilities of the hidden variables for collected records and answers

are not changed. Thus, we only need to compute the conditional

probabilities of the hidden variable given the additional answer

as

f vo,w |vwo =v ′
=

P(vwo =v
′ |v∗o=v,ψw ) · µo,v∑

v ′′∈Vo P(v
w
o =v

′ |v∗o =v
′′,ψw ) · µo,v ′′

(16)
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based on the equation for f vo,w used at the E-step in Figure 4.

M-step: For the objective function Fvwo =v ′ , we obtain the fol-

lowing equation of the M-step for the confidence distribution µo
with the additional answer vwo = v

′

µo,v |vwo =v ′ =

∑
s ∈So f vo,s+

∑
w ′∈Wo f vo,w ′+ f

v
o,w |vwo =v ′

+γo,v −1

|So |+ |Wo |+1+
∑
v ′′∈Vo

(
γo,v ′′ − 1

)
by adding the related terms f vo,w |vwo =v ′

and 1 to the numerator

and the denominator of the update equation in Eq. (9), respec-

tively. Let No,v and Do be the numerator and the denominator in

Eq. (9), respectively. Then, the above equation can be rewritten

as

µo,v |vwo =v ′ =
No,v + f vo,w |vwo =v ′

Do + 1
. (17)

By substituting f vo,w |vwo =v ′
in Eq. (17) with Eq. (16), the condi-

tional confidence becomes

µo,v |vwo =v ′ =
No,v +

P (vwo =v
′ |v∗o=v,ψw )·µo,v∑

v′′∈Vo P (v
w
o =v ′ |v∗o=v ′′,ψw )·µo,v′′

Do + 1
. (18)

Since No,v and Do are proportional to the number of the existing

claimed values, the confidence will be changed very little if there

are many claimed values already. Thus, we can overcome the

second drawback of QASCA. Since No,v s and Dos are repeatedly

used to compute µo,v |vwo =v ′ , our truth inference algorithm keeps

No,v s and Dos in main memory to reduce the computation time.

Time complexity analysis: To calculate E[maxv µo,v |w ] by
Eq. (15), P(vwo = v

′ |ψw , µo ) is computed |Vo | times and µo,v |vwo =v ′

is calculated for every pair ofv andv ′ (i.e.,O(|Vo |
2) times). More-

over, computing P(vwo = v
′ |ψw , µo ) and µo,v |vwo =v ′ take O(|Vo |)

time. Thus, it takesO(|Vo |
3) time to compute EAI (w,o) by Eq. (14).

In reality, |Vo | is very small compared to |O |,|S | and |W |. In addi-

tion, by utilizing the pruning technique in the next section, we

can significantly reduce the computation time. Therefore, the

task assignment step can be performed within a short time com-

pared to the truth inference. The execution time for each step

will be presented in the experiment section.

4.3 The Task Assignment Algorithm
To find the k objects to be assigned to each worker, we need

to compute EAI (w,o) for all pairs of w and o. To reduce the

number of computing EAI (w,o), we develop a pruning technique
by utilizing an upper bound of EAI (w,o).

An upper bound of EAI: We provide the following lemma

which allows us to compute an upper boundUEAI (o).

Lemma 4.1. (Upper Bound of Expected Accuracy Increase) For
an object o and a workerw , we have

EAI (w,o) ≤ UEAI (o) =
1 −maxv µo,v
|O | · (Do + 1)

. (19)

Proof. From Eq. (18), since

∑
v ′ P(v

w
o =v

′ |ψw , µo )=1, we get

E[max

v
µo,v |w ] =

∑
v ′∈Vo

P (vwo =v
′ |ψw , µo ) ·max

v
µo,v |vwo =v ′

≤ max

v,v ′
µo,v |vwo =v ′ ·

∑
v ′∈Vo

P (vwo =v
′ |ψw , µo )

= max

v,v ′
µo,v |vwo =v ′ . (20)

Moreover, from Eq. (17), we obtain

µo,v |vwo =v ′ =
No,v + f vo,w |vwo =v ′

Do + 1
≤

No,v + 1
Do + 1

. (21)

Algorithm 1 Task Assignment

Input: set of workersW , number of questions k
1: Compute the upper boundUEMCI (o) for o ∈ O
2: hU B ← BuildMaxHeap({⟨UEAI (o), o ⟩|o ∈ O })

3: Sort workers in the decreasing order ofψw,1

(i.e.,ψ1,1 ≥ψ2,1 ≥ · · · ≥ψ |W |,1).
4: forw = 1 to |W | do
5: hEAI [w ] ← BuildMinHeap({})

6: while True do
7: ⟨UEAI (o), o ⟩ ← hU B .extractMax()

8: if hEAI [ |W |].size =k and hEAI [w ].min >UEAI (o) for allw then
9: break
10: forw = 1 to |W | do
11: if w already answered on o or hEAI [w ].min >UEAI (o) then
12: continue
13: Compute EAI (w, o)
14: hEAI [w ].insert(⟨EAI (w, o), o ⟩)
15: if hEAI [w ].size ≤ k then
16: break
17: o ← hEAI [w ].extractMin().value()

By substituting Eq. (21) for µo,v |vwo =v ′ in Eq. (20), we derive

E[max

v
µo,v |w ] ≤ max

v,v ′
µo,v |vwo =v ′ ≤

maxv No,v + 1
Do + 1

. (22)

In addition, by applying Eq. (22) to Eq. (14), we get

EAI (w, o) ≤ (maxv No,v+1
Do+1

−maxv µo,v )/ |O |.

Since µo,v =
No,v
Do

, we finally obtain the upper bound ofEAI (w,o).

EAI (w, o) ≤ (
maxv No,v+1

Do+1
−

maxv No,v
Do

)/ |O |

=
1−

maxv No,v
Do

|O |·(Do+1)
=

1−maxv µo,v
|O |·(Do+1)

= UEAI (o).

�

We devise an algorithm to assign the best k objects to each

available worker in crowdsourcing systems. Since a single answer

is sufficient to find the correct value for some objects, we assign

an object to only a single worker in each round. If the answer is

not sufficient to find the correct value of the object, we assign

the object to another worker in the next round.

Our task assignment algorithm sequentially assigns each ob-

ject to a worker by scanning the objects o with non-increasing

order of the upper bound UEAI (o). To allocate an object to a

worker, sinceψw,1 is the probability of answering the truth, we

consider the workersw with non-increasing order ofψw,1. After

assigning an object to a worker w , if the number of assigned

objects to the workerw exceeds k , we remove the object o with
the minimum EAI (w,o) and assign the deleted object to the next

worker and perform the same step. While scanning the objects,

we stop the assignment if the upperboundUEAI (o) is smaller than

the minimum EAI (w,o′) among the EAI (w,o′)s of all assigned
objects and each worker has k assigned objects. The reason is

that the EAI (w,o) of the remaining objects o can be larger than

that of any assigned object.

The pseudocode: It is shown in Algorithm 1. We first compute

the upper bound UEAI (o) for every object o ∈ O by Lemma 4.1

and build a maxheap hU B of all objects by usingUEAI (o) as the
key to assign the objects to workers in the decreasing order of

UEAI (o) (in lines 1-2). The workers are sorted in the decreasing

order ofψw,1 to give a higher priority to reliable workers (in line

3). We next initialize a minheap hEAI [w] for each worker w to

contain the k assigned objects (in lines 4-6). Then, we repeatedly

extract an object from hU B and assign the object to a worker

in the sorted order ofψw,1 (in lines 12-18). Before assigning an

object o, if the heaps hEAI [w]s of all workers are full and the
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minimum value of EAI (w,o′) of the objects o′ in all hEAI [w]s is
larger than the upper boundUEAI (o), we stop immediately.

5 EXPERIMENTS
The experiments are conducted on a computer with Intel i5-7500

CPU and 16GB of main memory.

Datasets:We collected the two real-life datasets publicly avail-

able at http://kdd.snu.ac.kr/home/datasets/tdh.php.

BirthPlaces: We crawled 13,510 records about the birthplaces of

6,005 celebrities from 7 websites (sources). For the gold standard

data to evaluate the correctness of discovered birthplaces, we

used IMDb biography which is available at http://www.imdb.com.

Moreover, the geographical hierarchy was created by using the

IMDb data. For example, if there is a person who was born in

‘LA, California, USA’, we assigned ‘LA’ as a child of ‘California’

and ‘California’ as a child of ‘USA’. The hierarchy contains 4,999

nodes (e.g., countries, cities and etc.) and its height is 5.

Heritages: This is a dataset of the locations of World Heritage

Sites provided by UNESCO World Heritage Centre, available

at http://whc.unesco.org. We queried about the locations of 785

World Heritage Sites with Bing Search API and obtained 4,424

claimed values from 1,577 distinct websites. The hierarchy was

created in the same way as we did for BirthPlaces and it has 1,027
nodes. The height of this hierarchy tree is 6.

Quality Measures: We use Accuracy, GenAccuracy and AvgDis-
tance to evaluate the truth discovery algorithms. Let to be the

truth of the object o in the gold standard and v∗o be the estimated

truth by an algorithm. Note that to may not exist in the set of

candidate values. In this case, the most specific candidate value

among the ancestors of the truth is assumed to be to . Accuracy is

the proportion of objects that the algorithm discovers the truth

exactly. It is actually used in [10, 39–41] to evaluate truth discov-

ery algorithms.

(Accuracy) = Σo∈O I (v
∗
o = to )/|O |

The ancestors of to are less informative but still correct values.

Thus, we develop an evaluation measure named GenAccuracy
which is the proportion of objects o whose estimated truth v∗o is

either the truth to or an ancestor of the truth.

(GenAccuracy) = Σo∈O I (v
∗
o ∈GH (to )∪{to })/|O |

Ancestors of the truth have a different level of informativeness

depending on the distance to the truth. For example, ‘New York’

is more informative than ‘USA’ as the location of the Statue

of Liberty. Thus, we utilize another evaluation measure named

AvgDistance which weights the estimated truth based on the

distance from the ground truth. More specifically, it is the average

number of edges d(v∗o , to ) between the truth to and the estimated

truth v∗o in the hierarchy H .

(AvgDistance) = Σo∈Od(v
∗
o , to )/|O |

AvgDistance is robust to the case where the ground truth is less

specific than the estimated truth. The estimated truth is regarded

as a wrong value when we compute Accuracy and GenAccuracy
even though the estimate truth is correct and more specific. Since

the distance between the less specific ground truth and the es-

timated truth is generally small, AvgDistance compensates the

drawback of Accuracy and GenAccuracy.

Settings for simulated crowdsourcing: To evaluate the truth

discovery algorithms with varying the quality of the answers

from workers, we conducted experiments with simulated crowd

Table 3: Performance of truth inference algorithms

Dataset

BirthPlaces Heritages
Algorithm Accuracy GenAccuracy AvgDistance Accuracy GenAccuracy AvgDistance

TDH 0.8913 0.8988 0.3151 0.7414 0.8726 0.5210
VOTE 0.7900 0.8924 0.4961 0.6892 0.8994 0.6382

LCA 0.8834 0.8923 0.3414 0.6930 0.8866 0.6611

DOCS 0.8828 0.8916 0.3409 0.6904 0.8866 0.6599

ASUMS 0.8543 0.8571 0.4573 0.6229 0.7414 1.2000

MDC 0.8263 0.8432 0.5320 0.7254 0.8087 0.6869

ACCU 0.8137 0.8296 0.6063 0.5834 0.7656 1.0637

POPACCU 0.8133 0.8300 0.6070 0.6561 0.8586 0.7554

LFC 0.8085 0.8743 0.4669 0.6803 0.8076 0.8076

CRH 0.8083 0.8271 0.6120 0.6841 0.8828 0.6688

workers. In our simulation, we assumed that each simulated

worker answers a question correctly with its own probability pw
and randomly selects an answer from the candidate values with

probability 1−pw . We sampled the probability pw from a uniform

distribution ranging from πp−0.05 to πp+0.05 where the default
value of πp is 0.75. In the experiments, each of 10 worker answers

5 questions for each round.

5.1 Implemented Algorithms
We implemented 10 truth inference algorithms and 4 task assign-

ment algorithms in Python for comparative experiments. The

truth inference algorithms are referred to as follows:

• TDH: This is our algorithm proposed in Section 3. For the

prior distribution Dir (α), we set the hyperparameter α =
(3, 3, 2) since correct values are more frequent than wrong

values for most of the sources. For the other hyperparameters

β and γ , we set every dimension of β and γ to 2.

• ACCU: It is the algorithm proposed in [7] which considers

the dependencies between sources to find the truths. The al-

gorithm exploits Bayesian analysis to find the dependencies.

• POPACCU: This denotes the algorithm in [9] which extends

ACCU. It computes the distribution of the false values from

the records while ACCU assumes that it is uniform.

• LFC: This algorithm is proposed in [31] and utilizes a confu-

sion matrix to model a source’s quality.

• CRH: It is proposed in [22] to resolve conflicts in heteroge-

neous data containing categorical and numerical attributes.

• LCA: It is a probabilistic model proposed in [30]. We select

GuessLCA to be compared in this paper which is one of the

best performers among the 7 algorithms proposed in [30].

• ASUMS: This is proposed in [2] by adapting an existing

method SUMS [29] to hierarchical truth discovery.

• MDC: This denotes the truth discovery method designed for

medical diagnose from non-expert crowdsourcing in [24].

• DOCS: This is the state-of-the-art technique presented in

[39] that suggests the domain-sensitive worker model.

• VOTE: This is a baseline that selects a value with the highest

frequency in the claimed values.

We implemented the following task assignment algorithms.

• EAI : This is our proposed algorithm in Section 4.

• MB: It is the task assignment algorithm used by DOCS [39].

• QASCA: It is a task assignment algorithm proposed in [41].

• ME: This is our baseline algorithm which utilizes an uncer-

tainty sampling. It selects an object o∗ whose confidence dis-
tribution has the maximum entropy. (i.e., o∗ = arдmaxo∈O
(−

∑
v ∈Vo µo,v · log µo,v ))
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Figure 5: Source reliability distribution in BirthPlaces

Note that EAI and MB are the task assignment algorithms

specially designed to work with TDH and DOCS, respectively.
QASCA can work with truth inference algorithms based on prob-

abilistic models such as TDH, DOCS, LCA, ACCU and POPACCU.
All the truth inference algorithms can be combined with ME.

5.2 Truth Inference
We first provide the performances of the truth inference algo-

rithms without using crowdsourcing in Table. 3.

BirthPlaces: Our TDH outperforms all other algorithms in

terms of all quality measures since TDH finds the exact truths by

utilizing the hierarchical relationships. Since TDH estimates the

reliabilities of the sources and workers by considering the hierar-

chies, it does not underestimate the reliabilities of the sources and

workers. Thus, TDH also finds more correct values including the

generalized truths. We will discuss the reliability estimation in

detail at the end of this section by comparing TDH with ASUMS.

LCA is the second-best performer and VOTE shows the lowest

Accuracy among all compared algorithms. However, in terms

of GenAccuracy, VOTE performs the second-best. It is because

many websites claim the generalized values rather than the most

specific value.

Heritages: In terms of AvgDistance and Accuracy, TDH performs

the best among those of the compared algorithms. VOTE shows

the highest GenAccuracy because many sources provide the gen-

eralized truths. In fact, a high GenAccuracy with low Accuracy
and AvgDistance can be easily obtained by providing the most

general values for the truths. However, such values usually are

not informative. Since our algorithm shows much higher Accu-
racy and much lower AvgDistance than VOTE, we can see that

the estimated truth by TDH is more accurate and precise than

the result from VOTE. Heritages contains many sources and most

of the sources have a few claims. Thus, it is very hard to estimate

the reliability of each source accurately. Therefore, most of the

compared algorithms show worse performance than VOTE in

terms of AvgDistance. In particular, ACCU has the lowest Ac-
curacy. The reason is that ACCU requires many shared objects

between two sources in order to accurately determine the depen-

dency between the sources. The average accuracy of the sources

in Heritages is 58.0% while that of the sources in BirthPlaces is
72.1%. Thus, every algorithm shows a lower Accuracy in this

dataset than in BirthPlaces.

Comparison with ASUMS: Since ASUMS [2] is the only ex-

isting algorithm which utilizes hierarchies for truth inference,

we show the statistics related to the reliability distributions esti-

mated by TDH and ASUMS for BirthPlaces dataset in Figure 5.

Accuracy and GenAccuracy represent the actual reliabilities of

each source computed from the ground truths. Recall that ϕs,1
and ϕs,2 are the estimated probabilities of providing a correct

value and a generalized correct value respectively for a source

s by our TDH, as defined in Section 3. In addition, t(s) is the
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Figure 6: Evaluation of task assignment algorithms

estimated reliability of a source s by ASUMS which ignores the

generalization level of each source. The reliabilities of the sources

4, 5 and 7 computed by ASUMS (i.e. t(s)) are quite different from
the actual reliabilities (i.e., Accuracy). As we discussed in Sec-

tion 1, for a pair of sources that provide different claimed values

with an ancestor-descendant relationship in a hierarchy, existing

methods may assume that one of the claimed values is incorrect.

Thus, the reliability of the source with the assumed wrong value

tends to become lower by the existing methods. ASUMS suffers

from the same problem and underestimates the reliabilities of

the sources 4, 5 and 7 which provide a small number of claimed

values. Meanwhile, our proposed algorithm TDH accurately esti-

mates the reliabilities of the sources by introducing another class

of the claimed values (generalized truth).

5.3 Task Assignment
Before providing the full comparison of all possible combinations

of truth inference algorithms and task assignment algorithms, we

first evaluate the task assignment algorithms with our proposed

truth inference algorithm.We plotted the averageAccuracy of the
truth discovery algorithms with different task assignment algo-

rithms for every 5 round in Figure 6. The points at the 0-th round

represent the Accuracy of the algorithms without crowdsourcing.

All algorithms show the same Accuracy at the beginning since

they use the same truth inference algorithm TDH. As the round

progresses, the Accuracy of TDH+EAI increases faster than those

of all other algorithms. The Accuracy of TDH+ME is the lowest

since ME selects a task based only on the uncertainty without

estimating the accuracy improvement by the task.

As discussed in Section 4.1, our task assignment algorithm EAI

estimates the accuracy improvement by considering the num-

ber of existing claimed values and the confidence distribution

whereas QASCA considers the confidence distribution only. We

plotted the actual and estimated accuracy improvements by EAI

and QASCA in Figure 7. The graphs show that the estimated

accuracy improvement by EAI is similar to the actual accuracy

improvement while QASCA overestimates the accuracy improve-

ment at every round. On average, the absolute estimation errors

Table 4: Accuracy of the algorithms after the 50th round

BirthPlaces Heritages

EAI MB QASCA ME EAI MB QASCA ME

TDH 0.9601 - 0.9500 0.9109 0.9304 - 0.8999 0.8884
DOCS - 0.9052 0.9341 0.8842 - 0.7546 0.7661 0.7631

LCA - - 0.8823 0.9089 - - 0.7136 0.8507

POPACCU - - 0.9295 0.8987 - - 0.7512 0.8336

ACCU - - 0.8468 0.8257 - - 0.5796 0.5896

ASUMS - - - 0.8700 - - - 0.7427

CRH - - - 0.9000 - - - 0.8459

MDC - - - 0.8254 - - - 0.7241

LFC - - - 0.8287 - - - 0.7327

VOTE - - - 0.8261 - - - 0.8634
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Figure 7: Actual and estimated accuracy improvement by EAI and QASCA
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Figure 8: Accuracy with crowdsourced truth discovery
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Figure 9:GenAccuracy with crowdsourced truth discovery
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Figure 10:AvgDistance with crowdsourced truth discovery

from EAI are 0.08 and 0.26 percentage points (pps) while those

errors from QASCA are 0.28 and 2.66 pps in BirthPlaces and
Heritages datasets, respectively. This result confirms that EAI

outperforms QASCA by effectively estimating the accuracy im-

provement. In terms of the other quality measures GenAccuracy
and AvgDistance, our proposed EAI also outperforms the other

task assignment algorithms in both datasets. Due to the lack of

space, we omit the results with the other quality measures.

5.4 Simulated Crowdsourcing
We evaluate the performance of crowdsourced truth discovery

algorithms with the simulated crowdsourcing.

For all possible combinations of the implemented truth in-

ference and task assignment algorithms, we show the Accuracy
after 50 rounds of crowdsourcing in Table 4 where the impossible

combinations are denoted by ‘-’. As expected, TDH+EAI has the

highest Accuracy in both datasets for all possible combinations.

The result also shows that both TDH and EAI contribute to in-

creasing Accuracy. The improvement obtained by EAI can be esti-

mated by comparing the result of TDH+EAI to that of the second

performer TDH+QASCA. The accuracies of TDH+EAI in Birth-
Places and Heritages datasets are 1 and 3 percentage points (pps)

higher than those of TDH+QASCA, respectively. In addition, for

each combined task assignment algorithm, the improvement by

TDH can be inferred by comparing the results with those of other

truth inference algorithms. In both datasets, TDH shows the high-

est Accuracy among the applicable truth inference algorithms

for each task assignment algorithm. For example, TDH+QASCA

shows 2.6 and 13 pps higherAccuracy in BirthPlaces andHeritages
datasets, respectively, than the second performer DOCS+QASCA

among the combinations with QASCA. In the rest of the paper,

we report Accuracy, GenAccuracy and AvgDistance of TDH+EAI,
DOCS+MB, DOCS+QASCA, LCA+ME and VOTE+ME only since

these combinations are the best or the second-best for each task

assignment algorithm.

Cost efficiency:We plotted the average Accuracy of the tested

algorithms for every 5 rounds in Figure 8. TDH+EAI shows

the highest Accuracy for every round in both datasets. For the

BirthPlaces dataset, DOCS+QASCA was the next best performer

which achieved 0.9341 ofAccuracy at the 50-th round. Meanwhile,

TDH+EAI only needs 17 rounds of crowdsourcing to achieve the

sameAccuracy. Thus, TDH+EAI saved 66% of crowdsourcing cost

compared to the second-best performer DOCS+ QASCA. Like-

wise, TDH+EAI reduced the crowdsourcing cost 74% in Heritages
dataset compared to the next performer. In terms of GenAccu-
racy and AvgDistance, TDH+EAI also outperforms all the other

algorithms as plotted in Figure 9 and Figure 10. The results con-

firm that TDH+EAI is the most efficient as it achieves the best

qualities in terms of both Accuracy and GenAccuracy.

Varying πp :We plotted the average Accuracy of all algorithms

with varying the probability of correct answer πp of simulated

workers for BirthPlaces and Heritages datasets in Figure 11(a) and

Figure 11(b), respectively. As we can easily expect, the accuracies

increase with growing πp for most of the algorithms. For both

datasets, TDH+EAI achieves the best accuracy with all values of

πp . In Heritages dataset, a source provided less than 10 claims

on average and it makes difficult for truth discovery algorithms

to estimate the reliabilities of sources. Therefore, the baseline

VOTE+ME shows good performance on Heritages dataset. Mean-

while, the performance of the state-of-the-art DOCS is signifi-

cantly degraded on the Heritages dataset.

Execution times: We plotted the average execution times of

the tested algorithms over every round in Figure 12. VOTE,

CRH+ME, DOCS+MB and TDH+EAI run in less than 2.0 sec-

onds per round on average for both datasets. Other algorithms

except for ACCU+ME, POPACCU+ME and LFC+ME also take

less than 5 seconds, which is acceptable for crowdsourcing. Since

LFC builds the confusion matrix whose size is the square of the

number of candidate values, LFC is the slowest with BirthPlaces
data. On the other hand, for Heritages dataset which is collected
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Figure 13: Execution time for task assignment per round

from much more sources than BirthPlaces dataset, ACCU and

POPACCU take longer time for truth inference to calculate the

dependencies between sources.

Effects of the filtering for task assignments: To test the scal-
ability of our algorithm, we increase the size of both datasets

by duplicating the data by upto 15 times. In Figure 13, with in-

creasing data size, we plotted the execution times of our task

assignment algorithm EAI with and without exploiting the upper

bound proposed in Section 4.3. The filtering technique saved 78%

and 94% of the computation time for the task assignment at the

scale factor 15. The graphs show that the proposed upper bound

enables us to scale for large data effectively. For the total exe-

cution time, including the truth inference, the filtering reduced

21% and 6% of the execution time on BirthPlaces and Heritages
respectively at the scale factor 15.

5.5 Crowdsourcing with Human Annotators
We evaluated the performance of the truth discovery algorithm

by crowdsourcing real human annotations. For this experiment,

we selected DOCS+QASCA, DOCS+MB and LCA+ME for com-

parison with the proposed algorithm TDH+EAI. This is because

they are the best existing algorithms for each task assignment

algorithm. We conducted this experiment with 10 human an-

notators for 20 rounds on our own crowdsourcing system. For

each worker, we assigned 5 tasks in each round. Figure 14,15 and

16 show the performances of the algorithms against the rounds.
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Figure 14: Accuracy with human annotations
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Figure 15: GenAccuracy with human annotations
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Figure 16: AvgDistance with human annotations

For both of the datasets, the results confirm that the proposed

TDH+EAI algorithm outperforms the compared algorithms as

in the previous simulations. Without crowdsourcing, the other

algorithms show a higher GenAccuracy than TDH for Heritages
dataset, because these algorithms tend to estimate the truths

with more generalized form than TDH does. However, TDH+EAI

shows the highest GenAccuracy after the 3rd round because it

correctly estimates the reliabilities and the generalization levels

of the sources by using the hierarchy. For BirthPlaces dataset,
Accuracies of the algorithms increase a little bit faster than those

in the experiment with simulated crowdsourcing. However, for

Heritages dataset, Accuracies of the algorithms increase much

slower than in the experiment with simulated crowdsourcing. It

seems that finding the locations of a world heritages is a quite

harder task than finding the birthplaces of celebrities because

the birthplaces are often big cities (such as LA), which are famil-

iar to workers, but World Cultural Heritages and World Natural

Heritages are often located in unfamiliar regions.

5.6 Crowdsourcing with AMT
We evaluate the performances of TDH+EAI, DOCS+QASCA,

DOCS+MB and LCA+ME based on the answers collected from

Amazon Mechanical Turk (AMT). We collected answers for all

objects in Heritages dataset from 20 workers in AMT. We made

the collected answers available at http://kdd.snu.ac.kr/home/

datasets/tdh.php. To evaluate the algorithms based on the col-

lected answers, we assign 5 tasks for each worker in a round. We

plotted the performance of the algorithms in Figure 17. Since we

use more workers than we did in Section 5.5, the performances
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Figure 17: Crowdsourced truth discovery in Heritages

improve a little bit faster, but the trends are very similar to those

with 10 human annotators in the previous section. We observe

that our TDH+EAI outperforms all compared algorithms even

with a commercial crowdsourcing platform.

5.7 Multi-truths Discovery Algorithms
Since there are multiple correct values including generalized val-

ues, we also implement multi-truth discovery algorithms such

as DART[27], LFC[31] and LTM[38] to compare with our TDH

algorithm. Since the multi-truths discovery algorithms indepen-

dently generate the correct values, they may output the true

values where there exist a pair of true values without ancestor-

descendant relationship in the hierarchy. For example, from the

given claimed values in Table 1, the multi-truth algorithms can

answer that the ‘Statue of Liberty‘ is located in LA and Liberty

island. In this case, we cannot evaluate the result by our evalu-

ation measures Accuracy, GenAccuracy and AvgDistance. Thus,
to evaluate the performance of the tested algorithms, we utilize

precision, recall and F1-score which are the evaluation measures

typically used for multi-truths discovery. To use the multi-truths

algorithms and the evaluation measures, we treat the ancestors

of v and v itself as the multi-truths of v . LFC can work as either

a single truth algorithm or a multi-truths algorithm. We refer to

the multi-truth version of LFC as LFC-MT to avoid the confusion.

Table 5: Performance of truth discovery algorithms

Dataset

BirthPlaces Heritages
Algorithm Precision Recall F1 Precision Recall F1

Single

truth

TDH 0.899 0.921 0.910 0.873 0.795 0.832
VOTE 0.892 0.804 0.846 0.899 0.717 0.798

LCA 0.892 0.913 0.903 0.878 0.711 0.786

DOCS 0.892 0.913 0.902 0.887 0.722 0.796

ASUMS 0.857 0.888 0.872 0.741 0.660 0.698

POPACCU 0.847 0.858 0.852 0.859 0.694 0.768

LFC 0.874 0.838 0.856 0.808 0.727 0.765

MDC 0.844 0.853 0.848 0.807 0.792 0.800

ACCU 0.830 0.842 0.836 0.766 0.631 0.692

CRH 0.827 0.833 0.830 0.883 0.716 0.791

Multi

-truths

LFC-MT 0.763 0.723 0.742 0.898 0.684 0.777

DART 0.590 0.855 0.698 0.357 0.994 0.525

LTM 0.780 0.472 0.588 0.871 0.672 0.759

Table 6: Performance evaluation for numerical data

Change rate Open price EPS

Algorithm MAE R/E MAE R/E MAE R/E

TDH 0.0006 0.1011 0.0195 0.0354 0.0352 1.9513
LCA 0.0006 0.1011 0.0195 0.0354 0.3831 16.2212

CRH 0.0020 1.6339 0.0195 0.0354 0.0610 1.9882

CATD 0.0104 2.3529 0.0211 0.0395 0.0803 3.2059

VOTE 0.0006 0.1011 0.0195 0.0354 0.0765 2.8402

MEAN 0.2837 30.8747 0.4047 0.5782 0.1762 7.3937

Table 5 shows the performance of the truth discovery algo-

rithms in terms of precision, recall and F1-score. For both datasets,

the TDH algorithm is the best in terms of F1-score. Recall that

the VOTE algorithm tends to find a generalized value of the ex-

act truth. Since a generalized truth generates a small number of

multi-truths, the VOTE algorithm shows the highest precision in

Heritages dataset. However, since its recall is much lower than

that of our TDH algorithm, the F1-score of the VOTE algorithm

is lower than that of the TDH algorithm. Similarly, although

the DART algorithm has the highest recall in Heritages dataset,
the precision of the DART algorithm is the smallest among the

precisions of all compared algorithms.

5.8 Performance on a Numerical Dataset
To evaluate the extension to numerical data, we conducted an

experiment on the stock datatset [23] which is trading data of

1000 stock symbols from 55 sources on every work day in July

2011. The detailed description of the data can be found in [23].

As we discussed at the end of Section 3.2, we can utilize our TDH

algorithm for numeric dataset with implied hierarchy. We select

three attributes ‘change rate’, ‘open price’ and ‘EPS’ of the dataset,

and compared our TDH algorithmwith the LCA, CRH, CATD[21],

VOTE and MEAN algorithms. Among the second best performers

DOCS and LCA in Table 4, we use only LCA for this experiment

since DOCS requires the domain information while it is not

available for this dataset. In addition to LCA, we implemented

and tested the two algorithms CRH[22] and CATD[21] which are

designed to find the truth in numerical data. Recall that VOTE is

a baseline algorithm which selects the candidate value collected

frommajority sources.We also implemented a baseline algorithm,

called MEAN, which estimates the correct value as the average

of the claimed numeric values.

Table 6 shows the mean squared error (MAE) and the relative

error (R/E) of the tested algorithms. The TDH algorithm performs

the best for every attribute. The MEAN and CATD algorithms

show worse performance than the other algorithms. Since they

utilize an average or a weighted average of the claimed values,

they are sensitive to outliers. The result confirms that our TDH

algorithm is effective even for numerical data.

6 RELATEDWORK
The problem of resolving conflicts from multiple sources (i.e.,

truth discovery) has been extensively studied [4, 5, 5, 7, 9, 16,

22, 24, 26, 27, 31, 33, 35–39, 42]. Truth discovery for categorical

data has been addressed in [5, 7, 9, 22, 24, 31, 36, 39]. According

to a recent survey [40], LFC[31] and CRH[22] perform the best

in an extensive experiment with the truth discovery algorithms

[4, 5, 16, 21, 35, 40, 42]. There exist other interesting algorithms

[7, 9, 24, 39] which are not evaluated together in [40]. Accu[7] and

PopAccu[9] combine the conflicting values extracted from differ-

ent sources for the knowledge fusion [8]. They consider the de-

pendencies between data sources to penalize the copiers’ claims.

DOCS[39] utilizes the domain information to consider the differ-

ent levels of worker expertises on various domains. MDC[24] is a

truth discovery algorithm devised for crowdsourcing-based med-

ical diagnosis. The works in [26, 33, 37] studied how to resolve

conflicts in numerical data from multiple sources.

The truth discovery algorithms in [30, 37–39] are based on

probabilistic models. Resolving the conflicts in numerical data is

addressed in [37] and discovering multiple truths for an object

is studied in [38]. Probabilistic models for finding a single truth
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for each object is proposed in [30, 39]. However, none of those

algorithms exploit the hierarchical relationships of claimed values

for truth discovery. The work in [2] adopts an existing algorithm

to consider hierarchical relationships.

Task assignment algorithms[3, 11, 14, 28, 39, 41] in crowd-

sourcing have been studied widely in recent years. The works in

[3, 39, 41] can be applied to our crowdsourced truth discovery.

For task assignment, AskIt[3] selects the most uncertain object

for a worker. Meanwhile, the task assignment algorithm in [39]

selects the object which is expected to decrease the entropy of

the confidence the most. QASCA [41] chooses an object which

is likely to most increase the accuracy. Since QASCA outper-

forms AskIt in the experiments presented in [39, 41], we do not

consider AskIt in our experiments. In [14], task assignment for

binary classification was investigated but it is not applicable to

our problem to find the correct value among multiple conflicting

values. Meanwhile, the task assignment algorithm is proposed

in [28] for the case when the required skills for each task and

the skill set of every worker is available. However, it is not appli-

cable to our problem. A task assignment algorithm proposed in

[11] assigns every object to a fixed number of workers. However,

since we already have claimed values from sources, we do not

have to assign all objects to workers.

7 CONCLUSION
In this paper, we first proposed a probabilistic model for truth

inference to utilize the hierarchical structures in claimed values

and an inference algorithm for the model. Furthermore, we pro-

posed an efficient algorithm to assign the tasks in crowdsourcing

platforms. The performance study with real-life datasets confirms

the effectiveness of the proposed algorithms.
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