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ABSTRACT
Microblogging platforms constitute a popular means of real-time
communication and information sharing. They involve such a
large volume of user-generated content that their users suffer
from an information deluge. To address it, numerous recom-
mendation methods have been proposed to organize the posts
a user receives according to her interests. The content-based
methods typically build a text-based model for every individual
user to capture her tastes and then rank the posts in her time-
line according to their similarity with that model. Even though
content-based methods have attracted lots of interest in the data
management community, there is no comprehensive evaluation
of the main factors that affect their performance. These are: (i)
the representation model that converts an unstructured text into
a structured representation that elucidates its characteristics, (ii)
the source of the microblog posts that compose the user models,
and (iii) the type of user’s posting activity. To cover this gap,
we systematically examine the performance of 9 state-of-the-art
representation models in combination with 13 representation
sources and 3 user types over a large, real dataset from Twitter
comprising 60 users. We also consider a wide range of 223 plau-
sible configurations for the representation models in order to
assess their robustness with respect to their internal parameters.
To facilitate the interpretation of our experimental results, we
introduce a novel taxonomy of representation models. Our analy-
sis provides novel insights into the main factors determining the
performance of content-based recommendation in microblogs.

1 INTRODUCTION
Microblogging platforms enable the instant communication and
interaction between people all over the world. They allow their
users to post messages in real-time, often carelessly and ungram-
matically, through any electronic device, be it a mobile phone
or a personal computer. They also allow for explicit connec-
tions between users so as to facilitate the dissemination and
consumption of information. These characteristics led to the
explosive growth of platforms like Twitter (www.twitter.com),
Plurk (www.plurk.com), Sina Weibo (www.weibo.com) and Ten-
cent Weibo (http://t.qq.com).

Their popularity has led to an information deluge: the number
of messages that are transmitted on a daily basis on Twitter alone
has jumped from 35 million tweets in 2010 to over 500 million
in 2017 [29]. Inevitably, their users are constantly overwhelmed
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with information. As we also show in our experiments, this sit-
uation cannot be ameliorated by presenting the new messages
in chronological order; the relatedness with users’ interests is
typically more important than the recency of a post. Equally
ineffective is the list of trending topics, where the same messages
are presented to all users, irrespective of their personal interests.

A more principled solution to information deluge is offered
by Personalized Microblog Recommendation (PMR). Its goal is to
capture users’ preferences so as to direct their attention to the
messages that better match their personal interests. A plethora
of works actually focuses on Content-based PMR [6, 13, 15, 31,
40, 41, 45], which typically operates as follows: first, it builds a
document model for every individual post in the training set by
extracting features from its textual content. Then, it constructs
a user model by assembling the document models that capture
the user’s preferences. Subsequently, it compares the user model
to the models of recommendation candidates (documents) with
a similarity measure. The resulting similarity scores are used
to rank all candidates in descending order, from the highest to
the lowest score, thus placing the most relevant ones at the top
positions. Finally, the ranked list is presented to the user.

Content-based PMR is a popular problem that has attracted
a lot of attention in the data management community [1, 15,
29–31, 55]. However, the experimental results presented in the
plethora of relevant works are not directly comparable, due to
the different configurations that are used for several important,
yet overlooked parameters.

The core parameter is the representation model that is used
for converting a set of unstructured texts into a structured rep-
resentation that reveals their characteristics. The available op-
tions range from traditional vector space models [41, 65] to topic
models [39, 50]. Also crucial is the representation source, i.e.,
the source of the microblog posts that compose user models.
Common choices include the user’s tweets [36] together with
their retweets [17, 23, 41, 56] as well as the posts of followers
[31, 50, 65] and followees [15, 31, 39]. Another decisive factor is
the posting activity of a user, i.e., whether she is an information
producer or seeker [5, 35]. Other parameters include the novel
challenges posed by the short, noisy, multilingual content of mi-
croblogs as well as the external information that enriches their
textual content, e.g., concepts extracted from Wikipedia [41] or
the content of a Web page, whose URL is mentioned in a post [1].

Despite their significance, little effort has been allocated on
assessing the impact of these parameters on Content-based PMR.
To cover this gap, we perform a thorough experimental analysis
that investigates the following questions:Which representation
model is the most effective for recommending short, noisy, multilin-
gual microblog posts? Which is the most efficient one? How robust
is the performance of each model with respect to its configuration?
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Which representation source yields the best performance? How does
the behavior of individual users affect the performance of Content-
based MPR? We leave the investigation of external information as
a future work, due to the high diversity of proposed approaches,
which range from language-specific word embeddings like Glove
[49] to self-reported profile information [21].

To investigate the above questions, we focus on Twitter, the
most popular microblogging service worldwide, with over 335
million active users per month.1 We begin with a categorization
of the representation sources and the users it involves, based on
its special social graph: every user u1 is allowed to unilaterally
follow another user u2, with u1 being a follower of u2, and u2 a
followee foru1; ifu2 follows backu1, the two users are reciprocally
connected. Then, we list the novel challenges posed by the short,
noisy, user-generated tweets in comparison with the long and
curated content of traditional documents. We also introduce a
taxonomy of representation models that provides insights into
their endogenous characteristics. Based on it, we briefly present
nine state-of-the-art representation models and apply them to a
dataset of 60 real Twitter users (partitioned into three different
categories) in combination with 223 parameter configurations,
three user types and 13 representation sources. Finally, we discuss
the experimental outcomes in detail, interpreting the impact of
every parameter on the performance of Content-based PMR.

In short, we make the following contributions:
• We perform the first systematic study for content-based

recommendation in microblogging platforms, covering nine rep-
resentation models, 13 representation sources and three user
types. We have publicly released our code along with guidelines
for our datasets2.

•We organize the main representation models according to
their functionality in a novel taxonomy with three main cate-
gories and two subcategories. In this way, we facilitate the un-
derstanding of our experimental results, given that every (sub-
)category exhibits different behavior.

•We examine numerous configurations for every representa-
tion model, assessing their relative effectiveness, robustness and
time efficiency. Our conclusions facilitate their fine-tuning and
use in real recommender systems.

The rest of the paper is structured as follows: Section 2 pro-
vides background knowledge on Twitter and formally defines the
recommendation task we are tackling in this work. In Section 3,
we present our taxonomy of representation models and describe
the state-of-the-art models we consider. We present the setup
of our experiments in Section 4 and their results in Section 5.
Section 6 discusses relevant works, while Section 7 concludes the
paper along with directions for future work.

2 PRELIMINARIES
Representation Sources. We consider five sources of tweets
for modeling the preferences of a Twitter user, u:

(i) The past retweets of u, R(u), which are the tweets she has
received from her followees and has reposted herself. Apparently,
their subjects have captured u’s attention so intensely that she
decided to share them with her followers.

(ii) All past tweets of u except her retweets,T (u). They enclose
themes u is interested in chatting or in informing her followers.

(iii) All (re)tweets of u’s followees, E(u) = ⋃
ui ∈e(u)(R(ui ) ∪

T (ui )), where e(u) = {u1, . . . ,uk } is the set of her followees. E(u)

1https://en.wikipedia.org/wiki/Twitter, last accessed on 14 January 2019.
2See https://github.com/efikarra/text-models-twitter for more details.

models a user as an information seeker, who actively and explicitly
follows accounts providing interesting information [15, 31, 39].

(iv) All (re)tweets of u’s followers, F (u) = ⋃
ui ∈f (u)(R(ui ) ∪

T (ui )), where f (u) = {u1, . . . ,um } stands for the set of her fol-
lowers. Given that they have actively decided to follow u, due to
the interest they find in her posts, F (u)modelsu as an information
producer [31, 50, 65].

(v)All (re)tweets ofu’s reciprocal connections,C(u)=E(u)∩F (u).
Unlike the unilateral following relationship in Twitter, recipro-
cal connections may indicate users with very high affinity, thus
providing valuable information for user modeling.

Note that all these atomic representation sources are com-
plementary, as they cover different aspects of the activity of a
particular user and her network. For this reason,T (u) is typically
combined with R(u) [17, 23, 41, 56], with only rare exceptions like
[36], which considersT (u) in isolation. In this work, we consider
not onlyT (u) ∪ R(u) (TR for short), but also the seven remaining
pairwise combinations, which give rise to the following compos-
ite representation sources: T (u) ∪ E(u), R(u) ∪ E(u), E(u) ∪ F (u),
T (u)∪F (u),R(u)∪F (u),T (u)∪C(u), andR(u)∪C(u). For simplicity,
we denote them by TE, RE, EF, TF, RF, TC and RC, respectively.

Twitter Challenges. Tweets have some special characteris-
tics that distinguish them from other conventional domains and
pose major challenges to representation models [17, 44, 48].

(C1) Sparsity. Tweets are short, comprising up to 280 characters
for most languages, except for Chinese, Korean and Japanese,
where the length limit is 140 characters. As a result, they lack
sufficient content for user and document modeling.

(C2) Noise. The real-time nature of Twitter forces users to
tweet quickly, without taking into account the frequent grammar
errors and misspellings; these are corrected in subsequent tweets.

(C3) Multilingualism. The global popularity of Twitter has led
to a high diversity in tweet languages. This renders inapplica-
ble most language-specific pre-processing techniques, such as
stemming and lemmatization. Even tokenization becomes dif-
ficult: unlike the European ones, many Asian languages, such
as Chinese, Japanese, and Korean, do not use spaces or other
punctuation in order to distinguish consecutive words.

(C4) Non-standard language.Tweets offer an everyday informal
communication, which is unstructured, ungrammatical or simply
written in slang; words are abbreviated (e.g., “gn” instead of
“goodnight”), or contain emoticons, such as :), hashtags like #edbt
and emphatic lengthening (e.g., “yeeees” instead of “yes”).

We consider the above challenges when discussing the out-
comes of our experimental analysis in Section 5.

User Categories. Twitter users are typically classified into
three categories [5, 35]: (i) Information Producers (IP) are those
users who tweet and retweet more frequently than they receive
updates from their followees, (ii) Information Seekers (IS) are
those users who are less active compared to their followees, and
(iii) Balanced Users (BU) are those exhibiting a symmetry between
the received and the posted messages.

To quantify these categories, we use the ratio of outgoing
to incoming tweets. For a particular user u, the former involve
the tweets and retweets she posts, R(u) ∪T (u), while the latter
comprise the tweets and retweets of her followees, E(u). Dividing
the outgoing with the incoming tweets, we get the posting ratio.
Apparently, BU is the set of users with a posting ratio close to
1, i.e., |R(u) ∪ T (u)| ≃ |E(u)|. To ensure significantly different
behavior for the other two categories, we define IP as the set of
users with a posting ratio higher than 2, thus indicating that they
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post at least twice as many tweets as they receive. Symmetrically,
we define IS as the set of users with a posting ratio lower than
0.5, receiving at least twice as many tweets as those they publish.

Problem Definition. The task of Content-based PMR aims
to distinguish a user’s incoming messages, R∪T, into irrelevant
and relevant ones. A common assumption in the literature [17,
33, 41, 56], which allows for large-scale evaluations, is that the
relevant messages are those that are retweeted by the user that
receives them, an action that implicitly indicates her interests –
intuitively, a user forwards a tweet to her followers after carefully
reading it and appreciating its content.

In this context, Content-based PMR is usually addressed via
a ranking-based recommendation algorithm [11, 17, 20], which
aims to rank relevant posts higher than the irrelevant ones. More
formally, let D denote a set of documents,U a set of users andM
the representation space, which is common for both users and
microblog posts (e.g.,M could be the real vector space). Given a
user modelUM : U→M and a document model DM : D→M , we
define this type of recommendation algorithms as follows:

Definition 2.1. Content-based Personalized Microblog
Recommendation learns a ranking model RM : M × M →
R, which, given a user u and a set of testing posts Dtest (u) =
{d1, . . . ,dk } ⊆ E(u), calculates the ranking scores RM(UM(u),
DM(di )),∀i ∈ {1 . . .k}, and returns a list with Dtest (u) ranked
in decreasing score.

We consider a user u as the set of documents that stem from
a particular representation source s , i.e., s(u), and we build a
differentUMs (u) for each s . Given a set of usersU along with a
representation source s = {s(u) : u ∈ U } and a set of labeled data
Ds
tr = {Ds

tr (u) : u ∈ U }, where Ds
tr (u) = {(di , li ),di ∈ s(u), li ∈

L} and Ds
tr (u) ∩ Dtest (u) = ∅, the recommendation algorithm is

trained as follows for each individual source s : (i) for each u ∈ U ,
we learn UMs (u) and DM(di ) for each di ∈ Ds

tr (u), and (ii) we
train RM on

⋃
u ∈U {(UMs (u),DM(di )) : i ∈ {1, . . . |Ds

tr (u)|}.
As a recommendation algorithm, we employ the one com-

monly used in the literature for ranking-based PMR [15, 31, 40]:
in essence, RM is a similarity function and RM(UM(u),DM(di ))
measures the similarity of document model di and user model u.

3 REPRESENTATION MODELS
3.1 Taxonomy
We first present a taxonomy of the state-of-the-art representation
models based on their internal functionality, i.e., the way they
handle the order of n-grams. Figure 1 presents an overview of
their relations, with every edge A → B indicating that model B
shares the same n-grams with A, but uses them in a different
way when representing users and documents. Based on these
relations, we identify three main categories of models:

(i) Context-agnostic models disregard the order of n-grams
that appear in a document, when building its representation.
E.g., the token-based models of this category yield the same
representation for the phrases “Bob sues Jim” and “Jim sues Bob”.

(ii) Local context-aware models take into account the rela-
tive order of characters or tokens in the n-grams that lie at the
core of their document representations. Yet, they lose contextual
information, as they ignore the ordering of n-grams themselves.
Continuing our example, the token-based models of this category
are able to distinguish the bigram “Bob sues” from “sues Bob”,
but cannot capture the bigrams that precede or follow it.

Character N-
gram Graphs [25] 

Token N-gram 
Graphs [53] 

Vector Space Model [43] 

Character  
N-grams [43] 

Token 
N-grams [43] 

PLSA [32] 

Labeled 
LDA [51] 

LDA [10] 

HDP [60] HLDA [8,16] 

BTM 
[18,61] 

n
=2

 

character-based models  

graph models  

topic models  

nonparametric models  

context-agnostic models 

global context-aware models 

bag models  

local context-aware models 

Figure 1: Taxonomy of representation models.

(iii) Global context-aware models incorporate into their
representations both the relative ordering of tokens or characters
in an n-gram and the overall ordering between n-grams in a
document. Continuing our example, models of this category dis-
tinguish “Bob sues” from “sues Bob” and know that the former is
followed by “sues Jim”, while the latter is preceded by “Jim sues".

The first category comprises the topic models [9]. These are
representation models that uncover the latent semantic structure
of texts by determining the topics they talk about. The topics and
their proportions in a document are considered as the hidden
structure of a topic model, which can be discovered by exclusively
analyzing the observed data, i.e., the individual tokens (words)
in the original text. In general, they regard each document as a
mixture ofmultiple topics, where each topic constitutes a set of co-
occurring words. As a result, topic models are typically described
in terms of probabilistic modeling, i.e., as generative processes
that produce documents, words and users from distributions over
the inferred topics [7].

A subcategory of context-agnostic (topic) models pertains to
nonparametric models [16, 60], which adapt their representations
to the structure of the training data. They allow for an unbounded
number of parameters that grows with the size of the training
data, whereas the parametric models are restricted to a param-
eter space of fixed size. For example, the nonparametric topic
models assume that the number of topics is a-priori unknown,
but can be inferred from the documents themselves, while the
parametric ones typically receive a fixed number of topics as an
input parameter before training.

The category of local context-aware models encompasses the
bag models [43], which impose a strict order within n-grams:
every n-gram is formed by a specific sequence of characters
or tokens and, thus, two n-grams with different sequences are
different, even if they involve the same characters or tokens;
for example, the bigrams “ab” and “ba” are treated as different.
The only exception is the token-based vector model with n=1,
which essentially considers individual words; its context-agnostic
functionality actually lies at the core of most topic models.

Finally, the category of global context-aware models includes
the n-gram graph models, which represent every document as a
graph in a language-agnostic way [25]: every node corresponds
to an n-gram and edges connect pairs of n-grams co-located
within a window of size n, with their weights indicating the co-
occurrence frequency. These weighted edges allow graph models
to capture global context, going beyond the local context of the
bag models that use the same n-grams. Recent works suggest
that the graph models outperform their bag counterparts in vari-
ous tasks [42], which range from Information Retrieval [53] to
Document Classification [48].
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It should be stressed at this point that the bag and graphmodels
share the second subcategory of our taxonomy: the character-
based models. These operate at a finer granularity than their
token-based counterparts, thus being more robust to noise [48].
For example, consider the words “tweet” and “twete”, where the
second one is misspelled; they are considered different in all
types of token-based models, but for character bi-gram mod-
els, they match in three out of four bigrams. In this way, the
character-based models capture more precisely the actual simi-
larity between noisy documents.

In the following, we collectively refer to local and global
context-aware models as context-based models.

3.2 State-of-the-art Models
We now elaborate on the main representation models that are
widely used in the literature. To describe topic models, we use
the common notation that is outlined in Table 1, while their
generative processes are illustrated in Figures 2(i)-(vi) using plate
diagrams: shaded nodes correspond to the observed variables,
the unshaded ones to the hidden variables, the arrows connect
conditionally dependent variables, and finally, the plates denote
repeated sampling for the enclosed variables for as many times
as the number in the right bottom corner.

Bag Models [43]. There are two types of n-grams, the char-
acter and the token ones. These give rise to two types of bag
models: the character n-grams model (CN) and the token n-grams
model (TN). Collectively, they are called bag or vector space mod-
els, because they model a document di as a vector with one
dimension for every distinct n-gram in a corpus of documents D:
DM(di ) = (wi1, . . . ,wim ), wherem stands for the dimensionality
of D (i.e., the number of distinct n-grams in it), whilewi j is the
weight of the jth dimension that quantifies the importance of
the corresponding n-gram for di .

The most common weighting schemes are:
(i) Boolean Frequency (BF) assigns binary weights that indi-

cate the absence or presence of the corresponding n-gram in di .
More formally, BF (tj ,di )=1 if the n-gram tj of the jth dimension
appears in document di , and 0 otherwise.

(ii) Term Frequency (TF) sets weights in proportion to the
number of times the corresponding n-grams appear in document
di . More formally, TF (tj ,di )=fj/Ndi , where fj stands for the
occurrence frequency of tj in di , while Ndi is the number of n-
grams indi , normalizing TF so as to mitigate the effect of different
document lengths on the weights.

(iii)Term Frequency-Inverse Document Frequency (TF-IDF) dis-
counts the TF weight for the most common tokens in the en-
tire corpus D, as they typically correspond to noise (i.e., stop
words). Formally, TF -IDF (tj ,di ) = TF (tj ,di ) · IDF (tj ), where
IDF (tj ) is the inverse document frequency of the n-gram tj , i.e.,
IDF (tj ) = log |D |/(|{dk ∈ D : tj ∈ dk }| + 1). In this way, high
weights are given to n-grams with high frequency in di , but low
frequency in D.

To construct the bag model for a specific user u, we aggregate
the vectors corresponding to the documents that capture u’s in-
terests. The end result is a weighted vector (a(w1), ....,a(wm )),
where a(w j ) is the aggregation function that calculates the impor-
tance of the jth dimension for u.

The main aggregation functions are: (i) the sum of weights,
i.e., a(w j ) =

∑
di ∈D wi j . (ii) the centroid of unit (normalized)

document vectors, i.e., a(w j ) = 1
|D | ·

∑
di ∈D

wi j
| |DM (di ) | | , where

Table 1: The notation describing topic models.
Symbol Meaning
D the corpus of the input documents
|D | the number of input documents
d an individual document in D
Nd the number of words in d , i.e., the document length
U the set of users
u an individual user inU
Nd,u the number of words in document d of user u
Du the documents posted by a user u
|Du | the number of documents posted by user u
V the vocabulary of D (i.e., the set of words it includes)
|V | the number of distinct words in D
w an individual word in V
wd,n the word at position n in d
Z the set of latent topics
|Z | the number of latent topics
z an individual topic in Z
zd,n the topic assigned to the word at position n in document d
θd the multinomial distribution of document d over Z , {P (z |d )}z∈Z
θd,z the probability that topic z appears in document d , P (z |d )
ϕz the multinomial distribution of topic z over V , {P (w |z)}w∈V
ϕz,w the probability that wordw appears in topic z , P (w |z)
Dir (α ) a symmetric Dirichlet distribution parameterized by α

| |DM(di )| | is the magnitude of DM(di ). (iii) the Rocchio algo-
rithm, i.e., a(w j ) = α/|Dp | · ∑di ∈Dp wi j/| |DM(di )| | − β/|Dn | ·∑
di ∈Dn wi j/| |DM(di )| |, whereDp andDn are the sets of positive

(relevant) and negative (irrelevant) documents in D, respectively,
while α , β ∈ [0, 1] control the relative importance of positive and
negative examples, respectively, such that α + β = 1.0 [43].

To compare two bag models, DM(di ) and DM(dj ), one of the
following similarity measures is typically used:

(i) Cosine Similarity (CS) measures the cosine of the angle of
the weighted vectors. Formally, it is equal to their dot product
similarity, normalized by the product of their magnitudes:
CS(DM(di ),DM(dj )) =

∑m
k=1wikw jk/| |DM(di )| |/| |DM(dj )| |.

(ii) Jaccard Similarity (JS) treats the document vectors as sets,
with weights higher than (equal to) 0 indicating the presence
(absence) of the corresponding n-gram. On this basis, it defines as
similarity the ratio between the sizes of set intersection and union:
JS(DM(di ),DM(dj ))=|DM(di )∩DM(dj )|/|DM(di )∪DM(dj )|.

(iii) Generalized Jaccard Similarity (GJS) extends JS so that it
takes into account the weights associated with every n-gram:
G JS (DM (di ), DM (dj ))=

∑m
k=1min(wik , w jk )/

∑m
k=1max (wik , w jk ).

Note that for BF weights, GJS is identical with JS.
GraphModels [25, 53]. There are two graph models, one for

each type of n-grams, i.e., token n-gram graphs (TNG) [53] and
character n-gram graphs (CNG) [25]. Both models represent each
document d as an undirected graphGd that contains one vertex
for each n-gram in d . An edge connects every pair of vertices/n-
grams that co-occur within a window of size n in d . Every edge
is weighted according to the co-occurrence frequency of the
corresponding n-grams. Thus, the graphs incorporate contextual
information in the form of n-grams’ closeness.

To construct the model for a user u, we merge the graphs
of the documents representing u’s interests using the update
operator, which is described in [26]. To compare graph mod-
els, we can use the following graph similarity measures [25]:
(i) Containment Similarity (CoS) estimates the number of edges
shared by two graph models, Gi and G j , regardless of the corre-
sponding weights (i.e., it merely estimates the portion of com-
mon n-grams in the original texts). Formally: CoS(Gi ,G j ) =∑
e ∈Gi µ(e,G j )/min(|Gi |, |G j |), where |G | is the size of graph

G, and µ(e,G) = 1 if e ∈ G, or 0 otherwise. (ii) Value Sim-
ilarity (VS) extends CoS by considering the weights of com-
mon edges. Formally, using wk

e for the weight of edge e in Gk :
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V S (Gi , G j ) =
∑
e∈(Gi∩Gj )

min(w i
e ,w

j
e )

max (w i
e ,w

j
e )·max (|Gi |, |Gj |)

. (iii) Normal-

ized Value Similarity (NS) extends VS by mitigating the impact of
imbalanced graphs, i.e., the cases where the comparison between
a large graphwith amuch smaller one yields similarities close to 0:
NS (Gi , G j )=

∑
e∈(Gi∩Gj )min(w i

e , w
j
e )/max (w i

e , w
j
e )/min( |Gi |, |G j |).

Probabilistic Latent Semantic Analysis (PLSA) [32]. This
model assigns a topic z to every observed wordw in a documentd .
Thus, every document is modeled as a distribution over multiple
topics, assuming that the observed variablesw and d are condi-
tionally independent given the unobserved topic z: P(w |d, z) =
P(w |z). For an observed pair (w,d), the joint probability distri-
bution is: P(w,d) = P(d)·∑zP(w, z |d) = P(d)·∑zP(z |d)·P(w |z) =
P(d)·∑zθd,z ·ϕz,w , where θd,z stands for the probability that a
topic z appears in documentd , whileϕz,w denotes the probability
that a wordw appears in topic z (see Table 1).

Figure 2(i) depicts the generative process of PLSA: (1) Select
a document d with probability P(d). (2) For each word position
n ∈ {1, . . . ,Nd }: (a) Select a topic zd,n from distribution θd . (b)
Select the word wd,n from distribution ϕzd,n . Note that P(d) is
the frequency of d in the corpus, thus being uniform in practice.

In total, PLSA should estimate |D | · |Z | + |Z | · |V | parameters:
θd = {P(z |d)}z∈Z for each d ∈ D and ϕz = {P(w |z)}w ∈V for
each z ∈ Z . Consequently, the number of parameters grows lin-
early with the number of documents, leading to overfitting [10].

LatentDirichletAllocation (LDA) [10].Unlike PLSA, which
regards each document d as a list of probabilities θd , LDA assigns
a random variable of |Z | parameters with a Dirichlet prior to dis-
tribution θd . In a latter variant, a |V |-parameter variable with a
Dirichlet prior was also assigned to ϕz [28]. The number of topics
|Z | is given as a parameter to the model and raises the following
issue: the smaller the number of topics is, the broader and more
inaccurate is their content, failing to capture the diverse themes
discussed in the corpus; in contrast, for large values of |Z |, the
model is likely to overfit, learning spurious word co-occurrence
patterns [58].

Figure 2(ii) shows the generative process of LDA: (1) For each
topic z ∈ Z , draw a distribution ϕz from Dir (β). (2) For each
document d ∈ D: (a) Select a distribution θd from Dir (α). (b) For
each word position n ∈ {1, . . . ,Nd }: (i) Draw a topic zd,n from
distribution θd . (ii) Draw the wordwd,n from distribution ϕzd,n .

Note that the hyperparameters α and β of the Dirichlet priors
on θ and ϕ, respectively, distinguish LDA from PLSA. The former
denotes the frequency with which a topic is sampled for a docu-
ment, while the latter shows the frequency of a word in a topic,
before actually observing any words in D.

Labeled LDA (LLDA) [51]. This is a supervised variant of
LDA that characterizes a corpus D with a set of observed labels
Λ. Each document d is modeled as a multinomial distribution of
labels from Λd ⊆ Λ. Subsequently, each word w ∈ d is picked
from a distribution ϕz of some label z contained in Λd . Besides
the observed labels, LLDA can also use |Z | latent topics for all
documents, assigning the labels "Topic 1",. . . , "Topic |Z |" to each
document d ∈ D [50].

Figure 2(iii) presents the generative process of LLDA: (1) For
each topic z ∈ Z , draw a distribution ϕz from Dir (β). (2) For
each document d ∈ D: (a) Construct distribution Λd by selecting
each topic z ∈ Z as a label based on a Bernoulli distribution
with parameter Φz . (b) Select a multinomial distribution θd over
Λd from Dir (α). (c) For each word position n ∈ {1, . . . ,Nd }: (i)
Draw a label zd,n from distribution θd . (ii) Draw the wordwd,n
from distribution ϕzd,n . Note that the prior probability of adding

Figure 2: Plate diagrams for: (i) Probabilistic Latent Se-
mantic Analysis (PLSA), (ii) Latent Dirichlet Allocation
(LDA), (iii) Labeled LDA (LLDA), (iv) Hierarchical Dirich-
let Process (HDP), (v) Hierarchical LDA (HLDA), and (vi)
Biterm Topic Model (BTM).

a topic z to Λd (Φz ) is practically superfluous, as Λd is observed
for each document d .

Hierarchical Dirichlet Process (HDP) [60]. This Bayesian
nonparametric model is crafted for clustering the observations
of a group into mixing components. In PMR, each document
corresponds to a group, the words of the document constitute
the observations within the group, and the topics comprise the
mixing components in the form of distributions over words.

Two are the main properties of HDP: (i) The number of mix-
ing components is countably infinite and unknown beforehand.
This is achieved by assigning a random variable G j to the jth

group distributed according to DP(α ,G0), where DP stands for
a Dirichlet Process, which is a probability distribution over dis-
tributions (i.e., samples from a DP are probability distributions
themselves). G0 is the base probability distribution, playing the
role of the mean around which distributions are sampled by DP ,
while α is called concentration parameter and can be thought as
an inverse variance. G0 also follows a DP(γ ,H ). (ii) The groups
share the same components. This is achieved by linking the DPs
of all groups, under the same G0. More formally, HDP is defined
as: G0 |γ ,H ∼ DP(γ ,H ) and G j |α ,G0 ∼ DP(α ,G0) ∀j.

Figure 2(iv) shows the generative process for 1 hierarchical
level: (1) Draw G0 from DP(γ ,H ), where H is a Dir (β). G0 pro-
vides an unbounded number of ϕz distributions, i.e., topics that
can be assigned to any document d ∈ D [60]. (2) For each doc-
ument d ∈ D: (a) Associate a subset of distributions ϕz with
d , by drawing Gd from DP(α ,G0). (b) For each word position
n ∈ {1, . . . ,Nd }: (i) Pick a distribution ϕzd,n from Gd . (ii) Draw
the wordwd,n from ϕzd,n .

Note that it is straightforward to add more hierarchical lev-
els to HDP, by exploiting its recursive nature. For example, in
multiple corpora, where documents are grouped into broader cat-
egories, topics shared between categories are revealed and can be
compared with topics shared between individual documents [60].

Hierarchical LDA (HLDA) [8, 16]. This model extends LDA
by organizing the topics in Z into a hierarchical tree such that
every tree node represents a single topic. The broader a topic is,
the higher is its level in the tree, with the most specific topics
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Table 2: Statistics for each user group in our dataset.
IS BU IP All Users

Users 20 20 9 60
Outgoing tweets (TR) 47,659 48,836 42,566 192,328
Minimum per user 1,100 766 1,602 766
Mean per user 2,383 2,442 4,730 3,205
Maximum per user 6,406 8,025 17,761 17,761
Retweets (R) 27,344 32,951 38,013 140,649
Minimum per user 840 445 1,198 445
Mean per user 1,367 1,648 4,224 2,344
Maximum per user 2,486 6,814 17,761 17,761
Incoming tweets (E) 390,638 49,566 10,285 484,698
Minimum per user 8,936 696 525 525
Mean per user 19,532 2,478 1,143 8,078
Maximum per user 53,003 7,726 1,985 53,003
Follower’s tweets (F) 665,778 166,233 50,330 1,391,579
Minimum per user 1,074 110 348 110
Mean per user 33,289 8,312 5,592 23,193
Maximum per user 144,398 52,318 33,639 447,639

assigned to the leaves. Although the tree levels are fixed, the
branching factor is inferred from the data, leading to a nonpara-
metric functionality. Each document is modeled as a path from
the root to a leaf and its words are generated by the topics across
this path. Hence, every document representation is derived from
the topics of a single path, rather than all topics in Z (as in LDA).

Specifically, HLDA is based on the Chinese Restaurant Process
(CRP), which is a distribution over partitions of integers. CRP
assumes the existence of a Chinese restaurant with an infinite
number of tables. The first customer selects the first table, while
the nth customer selects a table based on the following probabil-
ities [8]: P1=P(occupied tablei |previous customers)=ni/(n-1+γ ),
P2=P(next unoccupied tablei |previous customers)=γ/(n-1+γ ),
where γ is a parameter controlling the possibility for a new cus-
tomer to sit to an occupied or an empty table, and ni are the
customers already seated on table i . The placement of M cus-
tomers produces a partition ofM integers.

In fact, HLDA relies on the nested Chinese Restaurant Process
(nCRP), which extends CRP by building a infinite hierarchy of
Chinese restaurants. It assumes that there exists an infinite num-
ber of Chinese restaurants, each with an infinite number of tables.
One of the restaurants is the root and every restaurant’s table has
a label, pointing to another restaurant – a restaurant cannot be
referred by more than one label in the hierarchy. To illustrate the
functionality of this process, assume a customer that visits the
restaurants for L days. Starting from the root, she forms a path of
L restaurants, one per day, following the labels of the tables she
has chosen to sit based on P1 and P2. The repetition of this process
forM customers yields an L-level hierarchy of restaurants.

Figure 2(v) presents the generative process of HLDA, with
T denoting an infinite tree drawn from nCRP(γ ) (i.e., the infi-
nite set of possible L-level paths): (1) For each restaurant z in
T , draw a distribution ϕz from Dir (β). (2) For each document
d ∈ D: (a) Draw an L-level path from T as follows: Let cd,1 be
the root restaurant. For each level l ∈ {2, . . . ,L} pick a table
from restaurant cd,l−1 using P1 and P2 and set cd,l−1 to refer to
the restaurant cd,l , which is indicated by that table. (b) Select a
distribution θd over {1, . . . ,L} from Dir (α). (c) For each word
position n ∈ {1, . . . ,Nd }: (i) Draw a level ld,n ∈ {1, . . . ,L} from
θd . (ii) Draw the wordwd,n from distribution ϕzd,n , where zd,n
is the topic corresponding to the restaurant cd,ld,n .

Biterm Topic Model (BTM) [18, 61]. At the core of this
model lies the notion of biterm, which is an unordered pair of
words that are located in close distance within a given text. In
short documents, close distance means that both words belong to
the same document, whereas in longer texts, it means that they
co-occur within a window of tokens that is given as a parameter
to BTM. Based on this notion, BTM addresses the sparsity in
short texts like tweets (Challenge C1) in two ways: (i) It models
the word co-occurrence for topic learning explicitly by consid-
ering biterms (rather than implicitly as in LDA, where word
co-occurrence is captured by drawing a document’s words from
topics of the same topic distribution θd ). (ii) It considers the entire
corpus D as a set of biterms B, extracting word patterns from the
entire training set (rather than an individual document). Overall,
BTM assumes that the corpus consists of a mixture of topics and
directly models the biterm generation from these topics.

Figure 2(vi) shows the generative process of BTM: (1) For each
topic z ∈ Z , draw a distribution ϕz from Dir (β). (2) For the entire
corpus D, select a multinomial distribution θ over Z from Dir (α).
(3) For each biterm position n in the entire corpus {1, . . . , |B |}: (a)
Draw a topic zn from θ . (b) Draw two wordswn,1,wn,2 from ϕzn .

Note that BTM does not contain a generation process for
documents. The distribution θd for an individual document d ∈
D is inferred from the formula P(z/d) = ∑

b ∈d P(z/b) · P(b/d),
which presumes that the document-level topic proportions can
be derived from the document-level generated biterms [18, 61].

Other models. There is a plethora of topic models in the
literature. Most of them lie out of the scope of our experimen-
tal analysis, because they encapsulate external or non-textual
information. For example, [54] and [12] incorporate temporal
information from users’ activity, while [21] proposes a representa-
tion model called badges, which combines the posting activity of
Twitter users with self-reported profile information. Other topic
models are incompatible with the ranking-based recommenda-
tion algorithm for Content-based PMR. For example, Twitter-LDA
[64] and Dirichlet Multinomial MixtureModel [47] assign a single
topic to every tweet, thus yielding too many ties when ranking
document models in decreasing similarity score - all tweets with
the same inferred topic are equally similar with the user model.

Using Topic Models. To build a topic model for a particular
user u, we average the distributions corresponding to the docu-
ments that capture her preferences. To compare user models with
document models, we use the cosine similarity. To address the
four Twitter challenges, which hamper the functionality of topic
models due to the scarcity of word co-occurrence patterns, we
apply two different pooling schemes to the training data: (i) the
aggregation on users, called User Pooling (UP), where all tweets
posted by the same user are considered as a single document,
and (ii) the aggregation on hashtags, called Hashtag Pooling (HP),
where all tweets annotated with the same hashtag form a sin-
gle document (the tweets without any hashtag are treated as
individual documents). We also consider No Pooling (NP), where
each tweet is considered as an individual document. Finally, we
estimate the parameters of all topic models using Gibbs Sampling
[24], except for PLSA, which uses Expectation Maximization [19].

4 EXPERIMENTAL SETUP
All methods were implemented in Java 8 and performed in a
server with Intel Xeon E5-4603@2.20 GHz (32 cores) and 120GB
RAM, running Ubuntu 14.04.
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Table 3: The 10 most frequent languages in our dataset, which collectively cover 1,879,470 tweets (91% of all tweets).

English Japanese Chinese Portuguese Thai French Korean German Indonesian Spanish
Total Tweets 1,710,919 71,242 35,356 14,416 13,964 12,895 10,220 5,038 4,339 1,081
Relative Frequency 82.71% 3.44% 1.71% 0.70% 0.68% 0.62% 0.49% 0.24% 0.21% 0.05%

Our dataset was derived from a large Twitter corpus that
captures almost 30% of all public messages published on Twitter
worldwide between June 1, 2009 and December 31, 2009 [62].
Although slightly dated, recent studies have verified that core
aspects of the users activity in Twitter remain unchanged over
the years (e.g., retweet patterns for individual messages and
users) [29]. Most importantly, this dataset can be combined with
a publicly available snapshot of the entire social graph of Twitter
as of August, 2009 (https://an.kaist.ac.kr/traces/WWW2010.html).
Given that every record includes the raw tweet along with the
corresponding usernames and timestamps, we can simulate the
tweet feed of every user during the second half of 2009 with
very high accuracy. To ensure that there is a critical mass of
tweets for all representation sources and a representative set of
testing documents for every user, we removed from our dataset
those users that had less than three followers and less than three
followees. We also discarded all users with less than 400 retweets.

From the remaining users, we populated each of the three user
types we defined in Section 2 with 20 users. For IS, we selected the
20 users with the lowest posting ratios, for BU the 20 users with
the closest to 1 ratios, and for IP, the 20 users with the highest
ratios. The difference between the maximum ratio for IS (0.13)
and the minimum one for BU (0.76) is large enough to guarantee
significantly different behavior. However, the maximum ratio
among BU users is 1.16, whereas the minimum one among IP
users is 1.20, due to the scarcity of information providers in
our dataset. This means that the two categories are too close, a
situation that could introduce noise to the experimental results.
To ensure distinctive behavior, we placed in the IP group the nine
users that have a posting ratio higher than 2. The remaining 11
users with the highest ratios are included in the group All Users,
which additionally unites IS, BU and IP to build a large dataset
with 2.07 million tweets and 60 users, in total. The technical
characteristics of the four resulting user groups appear in Table 2.

Each user has a different train set, which is determined by the
representation source; for example, the train set for T contains
all tweets of a user, except for her retweets. In contrast, the test
set of every user is independent of the representation source and
contains her incoming tweets; the retweeted ones constitute the
positive examples and the rest are the negative examples [17, 33, 41,
56]. However, the former are sparse and imbalanced across time
in our dataset. Following [17], we retain a reasonable proportion
between the two classes for each user by placing the 20% most
recent of her retweets in the test set. The earliest tweet in this
sample splits each user’s timeline in two phases: the training
and the testing phase. Based on this division, we sampled the
negative data as follows: for each positive tweet in the test set,
we randomly added four negative ones from the testing phase
[17]. Accordingly, the train set of every representation source is
restricted to all the tweets that fall in the training phase.

Based on this setup, we build the user models as follows: for
the bag and graph models, we learn a separate model UMs (u)
for every combination of a user u and a representation source
s , using the corresponding train set. For the topic models, we
first learn a single model M(s) for each representation source,
using the train set of all 60 users. Then, we use M(s) to infer

the distributions over topics for the training tweets of u that
stem from s . Finally, the user model UMs (u) is constructed by
computing the centroid of u’s training vectors/tweets [50].

Note that for all models, we converted the raw text of all
training and testing tweets into lowercase. For all token-based
models, we tokenized all tweets on white spaces and punctuation,
we squeezed repeated letters and we kept together URLs, hash-
tags, mentions and emoticons. We also removed the 100 most
frequent tokens across all training tweets, as they practically cor-
respond to stop words. We did not apply any language-specific
pre-processing technique, as our dataset is multilingual.

In more detail, Table 3 presents the 10 most frequent languages
in our dataset along with the number of tweets that correspond to
them. To identify them, we first cleaned all tweets from hashtags,
mentions, URLs and emoticons in order to reduce the noise of non-
English tweets. Then, we aggregated the tweets per user (UP) to
facilitate language detection. Finally, we automatically detected
the prevalent language in every pseudo-document (i.e., user) [46]
and assigned all relevant tweets to it. As expected, English is
the dominant language, but our corpus is highly multilingual,
with 3 Asian languages ranked within the top 5 positions. This
multilingual content (Challenge C3) prevents us from boosting
the performance of representation models with language-specific
pre-processing like stemming, lemmatization and part-of-speech
tagging, as is typically done in the literature [4, 17, 65]. Instead,
our experimental methodology is language-agnostic.

Performance Measures.We assess the effectiveness of rep-
resentation models using the Average Precision (AP) of a user
modelUMs (u), which is the average of the Precision-at-n (P@n)
values for all retweets. Formally [17, 41]:AP(UMs (u)) = 1/|R(u)|·∑N
n=1P@n · RT (n), where P@n is the proportion of the top-n

ranked tweets that have been retweeted, RT (n)=1 if n is a retweet
and 0 otherwise, N is the size of the test set, and |R(u)| is the
total number of retweets in the test set. Thus, AP expresses the
performance of a representation model over an individual user.
To calculate the performance of a user group U , we define Mean
Average Precision (MAP) as the average AP over all users inU .

To assess the robustness of a representation model with re-
spect to its internal configuration, we consider itsMAP deviation,
i.e., the difference between the maximum and the minimumMAP
of the considered parameter configurations over a specific group
of users. The lower the MAP deviation, the higher the robustness.

To estimate the time efficiency of representation models, we
employ two measures: (i) The training time (TTime) captures
the aggregated modeling time that is required for modeling all
60 users. For topic models, this also includes the time that is
required for training once the modelM(s) from the entire train
set. (ii) The testing time (ETime) expresses the total time that is
required for processing the test set of all 60 users, i.e., to compare
all user models with their testing tweets and to rank the latter in
descending order of similarity. For a fair comparison, we do not
consider works that parallelize representation models (e.g., [16,
57, 63]), as most models are not adapted to distributed processing.

Parameter Tuning. For each representation model, we tried
a wide range of meaningful parameter configurations. They are
reported in Tables 4 and 5. In total, we employed 223 different
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Table 4: Configurations of the 5 context-agnostic (topic)
models. CS, NP, UP and HP stand for cosine similarity, no
pooling, user pooling and hashtag pooling, respectively.

LDA LLDA BTM HDP HLDA

#Topics {50,100,150,200} - -
#Iterations {1,000, 2,000} 1,000
Pooling {NP, UP, HP} UP

α 50/#Topics 1.0 {10, 20}
β 0.01 {0.1, 0.5}
γ - - - 1.0 {0.5, 1.0}
Aggregation function {centroid, Rocchio}
Similarity measure CS

Fixed parameters - - r=30 - levels=3

#Configurations 48 48 24 12 16

configurations – excluding those violating thememory constraint
(the memory consumption should be less than 32GB RAM), or the
time constraint (TTime should be less than 5 days). As a result, we
excluded PLSA from our analysis, since it violated the memory
constraint for all configurations we considered.

In total, 9 representation models were tested in our experi-
ments. For LDA, LLDA and BTM, α and β were tuned according
to [58]. For LLDA, the number of topics refers to the latent topics
assigned to every tweet in addition to the tweet-specific labels.
For the latter, we followed [50], using: (i) one label for every
hashtag that occurs more than 30 times in the training tweets,
(ii) the question mark, (iii) 9 categories of emoticons (i.e., “smile”,
“frown”, “wink”, “big grin”, “heart”, “surprise”, “awkward” and
“confused”), and (iv) the @user label for the training tweets that
mention a user as the first word. Most of these labels were quite
frequent in our corpus and, thus, we considered 10 variations for
them, based on [50]. For example, “frown” produced the labels:
:(-0 to :(-9. The only labels with no variations are the hashtag ones
and the emoticons “big grin”, “heart”, “surprise” and “confused”.

For HLDA, we did not employ the pooling strategies NP and
HP and more than three hierarchical levels, as these configura-
tions violated the time constraint. Hence, we only varied α and γ .

For BTM, we selected 1,000 iterations following [61]. For indi-
vidual tweets, we set the context window (r ), i.e., the maximum
distance between two words in a biterm, equal to the size of the
tweet itself. For the large pseudo-documents in user and hashtag
pooling, we set r=30 based on [61]; for greater values, BTM con-
veys no significant improvement over LDA, since the larger the
distance between the words in a biterm is, the more irrelevant
are their topics. Larger window sizes yield higher TTime , too.

For bag models, some configuration combinations are invalid:
JS is applied only with BF weights, GJS only with TF and TF-IDF,
and the character-based n-grams, CN, are not combined with
TF-IDF. Also, BF is exclusively coupled with the sum aggregation
function, which in this case is equivalent to applying the boolean
operator OR among the individual document models. For the
Rocchio algorithm, we set α=0.8 and β=0.2, and we used only the
CS similarity measure in combination with the TF and TF-IDF
weights for those representation sources that contain both posi-
tive and negative examples, namely C, E, TE, RE, TC, RC and EF.

5 EXPERIMENTAL ANALYSIS
Effectiveness & Robustness. To assess the performance of the
9 representation models, we measure their Mean MAP, Min MAP
and Max MAP, i.e., their average, minimum and maximum MAP,

Table 5: Configurations of the 4 context-based models. Re-
member that BF and TF stand for boolean and term fre-
quency weights, respectively, while (G)JS, CoS, VS, and
NS denote the (generalized) Jaccard, the containment, the
value and the normalized value graph similarities, resp.

TN CN TNG CNG

n {1,2,3} {2,3,4} {1,2,3} {2,3,4}
Weighting scheme {BF,TF,TF-IDF} {BF,TF} - -
Aggregation function {sum, centroid, Rocchio} - -
Similarity measure {CS, JS, GJS} {CoS, VS, NS}

#Configurations 36* 21* 9 9
* excluding invalid configuration combinations

respectively, over all relevant configurations for a particular com-
bination of a user type and a representation source. The outcomes
for All Users are presented in Figure 3, which considers the 5
individual representation sources along with the 3 combinations
that achieve the best average performance. Due to space limita-
tions, the remaining 5 combinations along with the figures for
IP, BU and IS are only presented in the extended version of the
paper [59]. Nevertheless, we consider them in the discussion of
our experimental results.

Every diagram also reports the MAP for two baseline methods:
(i) the Chronological Ordering (CHR), which ranks the test set
from the latest tweet (first position) to the earliest one (last posi-
tion), and (ii) the Random Ordering (RAN), which sorts the test
set in an arbitrary order. For RAN, we performed 1,000 iterations
per user and considered the overall average per user type.

Starting with All Users in Figure 3, we observe that TNG con-
sistently outperforms all other models across all representation
sources. Its Mean MAP fluctuates between 0.625 (EF) and 0.784
(T). The second most effective model is TN, whose Mean MAP
ranges from 0.541 (EF) to 0.673 (T). The dominance of TNG over
TN is statistically significant (p<0.05) and should be attributed
to its ability to capture the relations between neighboring token
n-grams through the weighted edges that connect them. In this
way, TNG incorporates global contextual information into its
model and inherently alleviates sparsity (Challenge C1). Instead,
TN exclusively captures local contextual information in the form
of token sequences. The same holds for Challenges C2 and C4:
both models fail to identify misspelled or non-standard token
n-grams, but TNG is better suited to capture their patterns by
encapsulating their neighborhood.

Regarding robustness, TN is more sensitive to its configuration.
Its MAP deviation ranges from 0.359 (TF, RF) to 0.444 (EF), while
for TNG, it fluctuates between 0.096 (T) and 0.281 (EF). In all cases,
the difference between the two models is statistically significant
(p<0.05). TNG is superior, because its performance is fine-tuned
by just two parameters: the size of n-grams (n) and the similarity
measure. TN additionally involves the aggregation function and
the weighting scheme, increasing drastically its possible con-
figurations. In general, every configuration parameter acts as a
degree of freedom for a representation model; the higher the overall
number of parameters is, the more flexible the model gets and the
less robust it is expected to be with respect to its configuration.

Comparing the character-based instantiations of bag and graph
models, we notice that their difference in Mean Map is statisti-
cally insignificant. For CNG, it fluctuates between 0.368 (TF) and
0.477 (R), while for CN, it ranges from 0.334 (TF) to 0.436 (RC).
This implies that there is no benefit in considering global contextual
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Figure 3: Effectiveness of the nine representation models over All Users in combination with the five individual represen-
tation sources and their three best performing pairwise combinations with respect to MAP. Higher bars indicate better
performance. The red line corresponds to the performance of the best baseline, RAN.

information for representation models that are based on character
n-grams. The strength of these models lies in the local contextual
information that is captured in the sequence of characters.

Regarding robustness, the relative sensitivity of character-
based models exhibits the same patterns as their token-based
counterparts: the bag models are significantly less robust than
the graph ones, due to their larger number of parameters and con-
figurations. In more detail, the MAP deviation ranges from 0.061
(T) to 0.114 (RF) for CNG and from 0.077 (T) to 0.476 (RC) for CN.

Concerning the topic models, we observe that BTM consis-
tently achieves the highest effectiveness across all representation
sources. Its Mean MAP fluctuates between 0.340 (EF) and 0.434
(R). All other topic models exhibit practically equivalent perfor-
mance: their highest Mean MAP ranges from 0.337 (forHDPwith
TR) to 0.360 (for LLDA with R), whereas their lowest Mean MAP
fluctuates between 0.265 (for HDP over F) and 0.270 (for LLDA
over TF). As a result, HDP, LDA, LLDA and HLDA outperform
only CHR to a large extent. This indicates that recency alone
constitutes an inadequate criterion for recommending content in
microblogging platforms. Any model that considers the personal
preferences of a user offers more accurate suggestions.

Compared to the second baseline (RAN),HDP, LDA, LLDA and
HLDA are more effective, but to a minor extent. The Mean MAP
of RAN amounts to 0.270, thus, some configurations of these
topic models perform consistently worse than RAN, across all
representation sources. Most of these configurations correspond
to the absence of pooling (NP), where every tweet is considered as
an individual document. In these settings, these four topic models
fail to extract distinctive patterns from any representation source,
producing noisy user and document models. This suggests that
sparsity is the main obstacle to most topic models.

Regarding robustness, we can distinguish the 5 topic mod-
els into two categories: the first one involves 3 models that are
highly sensitive to their configuration, namely LDA, LLDA and
HDP. Their MAP deviation starts from 0.119, 0.075, and 0.077,
respectively, and raises up to 0.250, 0.264 and 0.211, respectively.
These values are extremely high, when compared to their ab-
solute Mean MAP. This means that extensive fine-tuning is re-
quired for successfully applying most topic models to text-based

PMR. In contrast, MAP deviation fluctuates between 0.034 and
0.109 for both HLDA and BTM. For the former, this is probably
caused by the limited number of configurations that satisfied our
time constraint, while for the latter, it should be attributed to its
Twitter-specific functionality.

Discussion. We now discuss the novel insights that can be
deduced from our experimental analysis. We start by comparing
token- with character-based models. We observe that the former
are significantly more effective than the latter for both bag and
graph models. At first, this seems counter-intuitive, as CNG
and CN are in a better position to address Challenge C1: they
extract more features from sparse documents than TNG and
TN, respectively [48]. They are also better equipped to address
Challenges C2 and C4: by operating at a finer granularity, they
can identify similarities even between noisy and non-standard
tokens. Yet, the character-based models seem to accumulate noise
when aggregating individual tweet models into a user model.
Their similarity measures fail to capture distinctive information
about the real interests of a user, yielding high scores for many
irrelevant, unseen documents. The lower n is, the more intensive
is this phenomenon. In fact, most bigrams are shared by both
relevant and irrelevant examples, which explains why the poorest
performance corresponds to n=2 for both CNG and CN. The
only advantage of character-based models over their token-based
counterparts is their higher robustness. However, their lower
values for MAP deviation are probably caused by their lower
absolute values for MAP.

Among the topic models, BTM consistently performs best with
respect to effectiveness and robustness. Its superiority stems from
the two inherent characteristics that optimize its functionality
for the short and noisy documents in Twitter: (i) it considers
pairs of words (i.e., biterms), instead of individual tokens, and (ii)
it bypasses sparsity (Challenge C1) by capturing topic patterns
at the level of entire corpora, instead of extracting them from in-
dividual documents. Compared to context-based models, though,
BTM is significantly less effective than the token-based bag and
graph models. Its performance is very close to the character-
based models, especially CNG, with their difference in terms of
effectiveness and robustness being statistically insignificant.
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Table 6: Performance of all 13 representation sources over the 4 user types with respect to Min(imum), Mean and
Max(imum) MAP across all configurations of the 9 representation models. The rightmost column presents the average
performance per user type.

R T E F C TR RE RF RC TE TF TC EF Average

Min MAP 0.225 0.217 0.196 0.208 0.199 0.222 0.205 0.199 0.212 0.201 0.205 0.201 0.198 0.207
All Users Mean MAP 0.456 0.429 0.392 0.378 0.410 0.448 0.402 0.386 0.427 0.387 0.377 0.406 0.377 0.406

Max MAP 0.796 0.816 0.771 0.764 0.768 0.797 0.775 0.758 0.783 0.775 0.764 0.776 0.780 0.779

Min MAP 0.193 0.199 0.192 0.191 0.196 0.212 0.199 0.195 0.188 0.200 0.192 0.195 0.195 0.196
IS Mean MAP 0.415 0.383 0.351 0.336 0.364 0.407 0.357 0.340 0.374 0.347 0.342 0.357 0.336 0.362

Max MAP 0.776 0.818 0.733 0.699 0.732 0.790 0.732 0.699 0.733 0.732 0.699 0.733 0.736 0.739

Min MAP 0.212 0.174 0.168 0.192 0.168 0.198 0.168 0.182 0.178 0.167 0.179 0.171 0.175 0.179
BU Mean MAP 0.474 0.430 0.400 0.376 0.420 0.453 0.419 0.389 0.443 0.391 0.381 0.406 0.376 0.412

Max MAP 0.733 0.775 0.747 0.746 0.745 0.753 0.746 0.741 0.753 0.746 0.741 0.743 0.741 0.747

Min MAP 0.243 0.220 0.200 0.198 0.186 0.242 0.200 0.202 0.182 0.189 0.212 0.198 0.208 0.206
IP Mean MAP 0.524 0.446 0.460 0.458 0.488 0.493 0.470 0.467 0.497 0.428 0.443 0.444 0.440 0.466

Max MAP 0.878 0.857 0.854 0.858 0.839 0.854 0.854 0.856 0.854 0.854 0.858 0.857 0.854 0.856

Generally, we can conclude that all topic models fail to im-
prove the token-based bag and graph models in the context of
Content-based PMR. Both TN and TNG achieve twice as high
Mean MAP, on average, across all representation sources. The
poor performance of topic models is caused by two factors: (i)
they disregard the contextual information that is encapsulated
in word ordering, and (ii) the Challenges C1 to C4 of Twitter.
Indeed, most topic models were originally developed to extract
topics from word co-occurrences in individual documents, but
the sparse and noisy co-occurrence patterns in the short text of
tweets reduce drastically their effectiveness.

User Types.We notice that the relative performance of repre-
sentationmodels for IP, BU and IS remains practically the same as
in Figure 3. Yet, there are significant differences in their absolute
performance. On average, across all models and representation
sources, IP users have higher Mean MAP than IS and BU users
by 30% and 13% respectively, while BU surpasses IS by 15%. Com-
pared to All Users, IP increases Mean MAP by 12%, BU by just 1%,
while IS decreases it by 11%, on average, across all models and
representation sources. These patterns are also demonstrated
in the rightmost column of Table 6, which essentially expresses
the average values for Min(imum), Mean and Max(imum) MAP
per user type across all combinations of representation models,
configurations and representation sources.

Therefore, we can conclude that the more information an indi-
vidual user produces, the more reliable are the models that represent
her interests, and vice versa: taciturn users are the most difficult to
model. This should be expected for R and T, since the posting ac-
tivity of a user increases the content that is available for building
their models. However, this pattern applies to the other repre-
sentation sources, too, because IP users are typically in closer
contact with their followees, followers and reciprocal users, who
thus can represent their interests effectively. The opposite holds
for IS users. In the middle of these two extremes lie BU users,
which exhibit a balanced activity in all respects.

Overall, these patterns suggest that the user categories we
defined in Section 2 have a real impact on the performance of
Content-based PMR. Therefore, they should be taken into account
when designing a Content-based PMR approach, as different user
types call for different recommendation methods.

Representation Sources. We now examine the relative ef-
fectiveness of the five representation sources and their eight
pairwise combinations. Table 6 reports the performance for ev-
ery combination of a user type and a representation source with
respect to Min(imum), Mean and Max(imum) MAP over all con-
figurations of the nine representation models.

Starting with individual representation sources, we observe
that R consistently achieves the highest Mean MAP across all
user types. This suggests that retweets constitute the most effective
means of capturing user preferences under all settings, as users
repost tweets that have attracted their attention and approval.

The second best individual source is T. This applies to all
user types, except for IP, where T actually exhibits the worst
performance across all individual sources. These patterns suggest
that the tweets of a user offer valuable information for her interests
as long as her posting ratio is lower than 2; such users post their
messages thoughtfully, when they have something important to
say. Instead, the IP users are hyperactive, posting quite frequently
careless and noisy messages that do not reflect their preferences,
e.g., by engaging into irrelevant discussions with other users.

Among the remaining individual sources, C achieves the best
performance, followed by E and F. This pattern is consistent
across all user types, with the differences being statistically sig-
nificant in most cases. We can deduce, therefore, that the recip-
rocal connections in Twitter reflect friendships between users that
share common interests to a large extent. Instead, the one-way
connections offer weaker indications of common tastes among
users, especially when they are not initiated by the ego user: the
followers’ posts (F) invariably result in noisy user models.

For the eight pairs of sources, we observe the following pat-
terns: (i) All combinations of R with another source X result in
higher performance for X, with the difference being statistically
significant. Hence, R is able to enrich any representation source
with valuable information about user preferences. (ii) All combi-
nations of Twith another source result in a (usually insignificant)
lower performance in all cases but two, namely TF over IS and BU.
This means that T typically conveys noisy, irrelevant information.
(iii) For both R and T, all pairwise combinations degrade their
own performance. The only exception is TR, which improves the
effectiveness of T.

On the whole, we can conclude that a user’s retweets (R) should
be used as the sole information source for building her model. There
is no need to combine it with T.

Time Efficiency. Figures 4(i) and (ii) depict the minimum, av-
erage and maximum values for TTime and ETime , respectively,
for every representation model across all configurations, repre-
sentation sources and users. The vertical axes are logarithmic,
with lower values indicating better performance.

Among the global context-aware models, we observe that on
average, TNG is faster than CNGwith respect to both ETime and
TTime by 1 and 2 orders of magnitude, respectively. Similarly,
among the local context-aware models, TN is faster than CN
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Figure 4: Time efficiency of the 9 representation models with respect to (i) Training Time (TTime), and (ii) Testing Time
(ETime), on average across all configurations, representation sources and users. Lower bars indicate better performance.

by 4 and 3 times, respectively. The reason in both cases is the
relative dimensionality of token- and character-based models.
Typically, the latter yield a much larger feature space than the
former, depending, of course, on the size of the n-grams – the
larger n is, the more character n-grams are extracted from a
corpus [48] and the more time-consuming is their processing.

Among the topic models, BTM exhibits the highest TTime .
The reason is that it operates on the level of biterms, which result
in a much higher dimensionality than the individual tokens that
lie at the core of the other topic models. However, our analysis
does not consider the most time-consuming configurations of the
second worst model (HLDA), as they violated the time constraint.
In practice, HLDA is expected to be slower than BTM, since
its nonparametric nature lies in exploring the possible L-level
hierarchical trees during topic inference. On the other extreme,
LDA is the fastest topic model, while LLDA is almost 5 times
faster than HDP, on average, due to its simpler models.

These patterns are slightly altered in the case of ETime . The
worst performance by far corresponds to HLDA, due to its non-
parametric functionality, while BTM turns out to be the fastest
model. Unlike the other topic models, which perform Gibbs sam-
pling for topic inference, BTM simply iterates over the biterms
in a document d in order to calculate P(z |d) for each topic z ∈ Z .

Comparing the model categories between them, we observe
that the graph models are more time-consuming than their bag
counterparts: on average, TNG and CNG are 1 and 2 orders
of magnitude slower than TN and CN, respectively, for both
TTime and ETime . This should be attributed to the contextual
information they incorporate in their edges, whose number is
much larger in the case of CNG. Similarly, most topic models are
at least 1 order of magnitude slower than their base model, TN, for
both time measures, due to the time required for topic inference.
Overall, TN is consistently the most efficient representation model,
due to the sparsity of tweets and the resulting low dimensionality.

These patterns are consistent across all user types and repre-
sentation sources. For the latter, we also observed that the size of
the train set affects directly TTime for all representation models:
the more tweets are used to build a user model, the more patterns
are extracted, degrading time efficiency.

6 RELATEDWORK
There has been a bulk of work on recommender systems over
the years [2, 3]. Most recent works focus on microblogging plat-
forms and Social Media, employing the bag model in order to
suggest new followees [13], URLs [15] and hashtags [40]. Others
employ topic models for the same tasks, e.g., hashtag recommen-
dations [27]. In the latter case, emphasis is placed on tackling
sparsity through pooling techniques, which aggregate short texts
that share similar content, or express similar ideas into lengthy
pseudo-documents [4, 44]. E.g., Latent Dirichlet Allocation [10]
and the Author Topic Model [52] are trained on individual mes-
sages and on messages aggregated by user and hashtag in [33].

Content-based PMR has attracted lots of interest in the data
management community [14, 16, 22, 55, 63], where many works
aim to improve the time efficiency of topic models. [16] paral-
lelizes the training of HLDA through a novel concurrent dynamic
matrix and a distributed tree. [14] scales up LDA through the
WarpLDA algorithm, which achieves O(1) time complexity per-
token and fits the randomly accessed memory per-document in
the L3 cache. Alongwith other state-of-the-art LDA samplers, this
work is incorporated into LDA*, a high-end system that scales
LDA training to voluminous datasets, using different samplers
for various types of documents [63]. Another approach for the
massive parallelization of LDA is presented in [57]. Other works
facilitate real-time content recommendations in Twitter. This is
done either by partitioning the social graph across a cluster in
order to detect network motifs in parallel [30], or by holding
the entire graph in the main memory of a single server in order
to accelerate random walk-based computations on a bipartite
interaction graph between users and tweets [55].

On another line of research, external resources are employed
in order to augment text representation and improve their per-
formance in various tasks. For short text clustering, Dual Latent
Dirichlet Allocation learns topics from both short texts and aux-
iliary documents [37]. For personalized Twitter stream filtering,
tweets can be transformed into RDF triples that describe their
author, location and time in order to use ontologies for build-
ing user profiles [38]. User profiles can also be enriched with
Wikipedia concepts [41] and with concepts from news articles
that have been read by the user [34]. These approaches lie out
of the scope of our analysis, which focuses on recommendations
based on Twitter’s internal content.

To the best of our knowledge, no prior work examines system-
atically Content-based PMR with respect to the aforementioned
parameters, considering a wide range of options for each one.

7 CONCLUSIONS
We conclude with the following five observations about Content-
based Personalized Microblog Recommendation: (i) The token-
based vector space model achieves the best balance between ef-
fectiveness and time efficiency. In most cases, it offers the second
most accurate recommendations, while involving the minimum
time requirements both for training a user model and applying
it to a test set. On the flip side, it involves four parameters (i.e.,
degrees of freedom), thus being sensitive to its configuration.
(ii) The token n-gram graphs achieve the best balance between
effectiveness and robustness. Due to the global contextual in-
formation they capture, they consistently outperform all other
representation models to a significant extent, while exhibiting
limited sensitivity to their configuration. Yet, they are slower than
the vector space model by an order of magnitude, on average.
(iii) The character-based models underperform their token-based
counterparts, as their similarity measures cannot tackle the noise
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that piles up when assembling document models into user mod-
els. (iv) The topic models exhibit much lower effectiveness than
the token-based bag models for three reasons: 1) most of them
are not crafted for the sparse, noisy and multilingual content
of Twitter, 2) they depend heavily on their configuration, and
3) they are context-agnostic, ignoring the sequence of words
in documents. Their processing is time-consuming, due to the
inference of topics, requiring parallelization techniques to scale
to voluminous data [16, 57, 63]. (v) All representation models per-
form best when they are built from the retweets of hyperactive
users (information producers).

In the future, we plan to expand our comparative analysis to
more recommendation tasks for microblogging platforms.
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