
http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2019.94






(a) Average precision (b) Average recall (c) Average synthesis time

Figure 3: Experimental Results

advantage over algorithms such as FlashFill which considers all

possible transformations that are consistent with the examples

before ranking them and choosing the best one.

5 EVALUATION
In this section we perform a comparative evaluation

4
involving

SynthEdit and an implementation of FlashFill from PROSE SDK
5
,

using 33 real world datasets
6
, used in a related work [12]. Each

dataset consists of up to 200 example instances from several

domains such as person names, websites, songs, etc.

We report the average precision, recall and synthesis time over

all datasets computed using k-fold cross-validation (k = 10) and

various number of examples. At each iteration (fold), we synthe-

size a transformation program from n randomly picked example

instances and test on the remaining instances. For the purposes

of computing precision and recall, we count as a true positive
any input string that is correctly transformed, i.e., the result of

the transformation is similar to the expected output; as a false
positive any input string that is incorrectly transformed; and as a

false negative any input string that is left unchanged, i.e., there is

no transformation synthesized for its format representation.

Comparative e�ectiveness: Avg. precision and recall as the
number of examples varies. The precision results are shown

in Figure 3a. SynthEdit achieves lower precision compared with

FlashFill for the different numbers of examples. The difference

can be explained by the ability of FlashFill to better generalize

transformations as more examples are added by using a clas-

sifier trained on example instances. This allows it to correctly

transform strings with format representations not covered by the

examples. Conversely, SynthEdit performs a strict mapping be-

tween format representations and transformations and, therefore,

requires at least one example instance for each format representa-

tion it transforms. For the last two cases, i.e., 64 and 128 examples,

FlashFill required more RAM memory than was available.

The classifier employed by FlashFill to pick the right transfor-

mation given a new input string can become confused when some

examples are too similar to each other in terms of the features

used during learning. This means that for some input strings

FlashFill fails to identify an appropriate transformation or the

transformation picked is not consistent with the input, e.g., the

transformation expects a type of token that is not present in

the input. The consequence is a drop in recall visible in Figure

3b as the number of examples increases. By contrast, SynthEdit

4
Experiments were run on a 2.60 GHz Intel Core i7-4720HQ CPU with 8 GB RAM.

5
https://microsoft.github.io/prose/

6
www.microsoft.com/en-us/research/wp-content/uploads/2016/12/

WebTableBenchmark.zip

achieves better recall because more examples enables it to better

differentiate between transformation cases.

Comparative e�ciency: Avg. synthesis time as the num-
ber of examples varies. Figure 3c confirms the high complexity

of FlashFill when the number of examples increases. Conversely,

SynthEdit proves more than two orders of magnitude faster in

synthesizing transformations. As opposed to FlashFill, SynthEdit
does not aim to exhaust the search space of transformations for

each example instance. Our algorithm uses edit distance com-

putations to find the shortest path between the token-type rep-

resentations of the source and target strings. Consequently, the

transformation language is simpler but more efficient to learn.

6 CONCLUSIONS
We have contributed an effective and efficient solution to the

problem of automating format transformation given input-output

examples. We have used an edit distance based approach that

identifies the shortest path from a source string to a target string

and uses fuzzy matching of source and target tokens to generalize

transformations applicable on new input strings, similar in format

representation with the examples. Results from a comparative

evaluation provide evidence that SynthEdit performs substan-

tially more efficiently than the state-of-the-art while achieving

better recall at the cost of slightly reduced precision.

Acknowledgement: This work is supported by the VADAGrant

of the UK Engineering and Physical Sciences Research Council.

REFERENCES
[1] A. Bartoli, A. De Lorenzo, E. Medvet, and F. Tarlao. 2016. Inference of Regular

Expressions for Text Extraction from Examples. IEEE Trans. Knowl. Data Eng.
28, 5 (2016), 1217–1230.

[2] A. Bogatu, N. Paton, A. Fernandes, and M. Koehler. 2018. Towards Automatic

Data Format Transformations: Data Wrangling at Scale. Comput. J. (2018).
[3] T. Furche, G. Gottlob, L. Libkin, G. Orsi, and N.W. Paton. 2016. DataWrangling

for Big Data: Challenges and Opportunities. In EDBT. 473–478.
[4] S. Gulwani. 2011. Automating String Processing in Spreadsheets Using Input-

output Examples. In POPL ’11. ACM, New York, NY, USA, 317–330.

[5] Y. He, X. Chu, K. Ganjam, Y. Zheng, V. Narasayya, and S. Chaudhuri. 2018.

Transform-data-by-example (TDE): An Extensible Search Engine for Data

Transformations. Proc. VLDB Endow. 11, 10 (June 2018), 1165–1177.
[6] Z. Jin, M. R. Anderson, M. Cafarella, and H. V. Jagadish. 2017. Foofah: Trans-

forming Data By Example. In SIGMOD. 683–698.
[7] M. Koehler, A. Bogatu, C. Civili, N. Konstantinou, E. Abel, A. A. A. Fernandes,

J. A. Keane, L. Libkin, and N. W. Paton. 2017. Data context informed data

wrangling. In IEEE BigData, Boston, MA, USA, December 11-14, 2017. 956–963.
[8] N. Konstantinou, M. Koehler, E. Abel, C. Civili, B. Neumayr, E. Sallinger, A.

Fernandes, G. Gottlob, J. Keane, L. Libkin, and N. Paton. 2017. The VADA

Architecture for Cost-Effective Data Wrangling. In SIGMOD. 1599–1602.
[9] M. Mohri. 2002. Edit-Distance of Weighted Automata. In CIAA, 2002. 1–23.
[10] M. Raza, S. Gulwani, and N. Milic-Frayling. 2014. Programming by Example

Using Least General Generalizations. In AAAI. 283–290.
[11] R. Singh. 2016. BlinkFill: Semi-supervised Programming by Example for

Syntactic String Transformations. PVLDB 9, 10 (June 2016), 816–827.

[12] E. Zhu, Y. He, and S. Chaudhuri. 2017. Auto-join: Joining Tables by Leveraging

Transformations. Proc. VLDB Endow. 10, 10 (June 2017), 1034–1045.


	SynthEdit: Format transformations by example using edit operationsAlex Teodor Bogatu, Alvaro A. A. Fernandes, Norman W. Paton, Nikolaos Konstantinou

