MINARET: A Recommendation Framework for Scientific Reviewers

Mohamed R. Moawad, Mohamed Maher, Ahmed Awad, Sherif Sakr
University of Tartu, Estonia
{mohamed.ragab,mohamed.abdelrahman,ahmed.awad,sherif.sakr}@ut.ee

ABSTRACT

We are witnessing a continuous growth in the size of scientific communities and the number of scientific publications. This phenomenon requires a continuous effort for ensuring the quality of publications and a healthy scientific evaluation process. Peer reviewing is the de facto mechanism to assess the quality of scientific work. For journal editors, managing an efficient and effective manuscript peer review process is not a straightforward task. In particular, a main component in the journal editors’ role is, for each submitted manuscript, to ensure selecting adequate reviewers who need to be: 1) Matching on their research interests with the topic of the submission, 2) Fair in their evaluation of the submission, i.e., no conflict of interest with the authors, 3) Qualified in terms of various aspects including scientific impact, previous review/authorship experience for the journal, quality of the reviews, etc. Thus, manually selecting and assessing the adequate reviewers is becoming tedious and time consuming task.

We demonstrate MINARET, a recommendation framework for selecting scientific reviewers. The framework facilitates the job of journal editors for conducting an efficient and effective scientific review process. The framework exploits the valuable information available on the modern scholarly Websites (e.g., Google Scholar, ACM DL, DBLP, Publons) for identifying candidate reviewers relevant to the topic of the manuscript, filtering them (e.g. excluding those with potential conflict of interest), and ranking them based on various metrics configured by the editor (user). The framework extracts the required information for the recommendation process from the online resources on-the-fly which ensures the output recommendations to be dynamic and based on up-to-date information.

1 INTRODUCTION

The world is witnessing a continuous growth in the size of scientific communities and the number of scientific publications. With the current rates, it is expected that the global scientific output doubles every nine years. For example, Figure 1 shows the statistics of the popular DBLP indexing services for computer science publications. In particular, the DBLP library is currently indexing over 3.8M publications. Out of these publications, the number of journal articles published in 2018 is about 120K articles. In 2017, Elsevier journals received 3919 submissions, out of which 530 were accepted with acceptance rate of 14%.

This situation raises a crucial need for continuous efforts to ensure and improve the quality of the scientific publication process.

In general, peer reviewing is a widely accepted practice to assess the quality of scientific publications. In this process, the selection of appropriate reviewers for evaluating the submitted manuscript is a significant step. For example, selecting reviewers without adequate knowledge in the topic of the submissions or selecting inexperienced reviewers would lead to poor reviews that harm the quality of the publishing venue, the scientific community, and the authors of the manuscript. In addition, it is crucial to avoid any reviewers with potential conflict of interest.

In practice, assigning reviewers for a conference submission is less challenging than assigning a reviewer for a journal submission. In particular, the universe of reviewers is closed where it is limited to the program committee (PC) members who are commonly selected based on their experience and reputation in the scientific field of the conference. In addition, accepting the membership for the PC of a scientific conference indicates explicit commitment for the assigned review workload of the conference within the defined review deadline. Moreover, conference management systems provide a bidding process where each PC member should select the submissions that he/she would like to review. Thus, with this setup and conditions, it is possible to automate the paper-reviewer assignment task.

The manuscript review process for a journal submission is different. In particular, the universe of reviewers is open with various aspects of uncertainty. Thus, it depends much on the editor’s experience, effort and professional network to select the adequate reviewers for a submitted manuscript. For example, there is no pre-defined agreement or arrangement between the journal and a set of committed reviewers. In particular, the manuscript review is a totally voluntary work with the only incentive of having a mutual benefit when the volunteering reviewer is an author of another manuscript submission that needs to be reviewed in the same or other journals. In addition, reviews’ deadlines are soft constraints that are not obligatory for the reviewer.

Thus, in order to achieve efficient and effective review process, it is the role of the editor to choose the reviewers that should at least cover the following main criteria: 1) Have matching research interests with the topic of the submitted manuscript, 2) Fair in their evaluation of the manuscript with no potential conflict of interest, 3) Have a good rank according to the editor’s preferences in various criteria.

In practice, the first point can be managed by the editors’ experience with the scholars of the scientific community of the journal and by browsing the profiles for candidate reviewers.
2 REVIEWER RECOMMENDATION

Figure 2 shows the workflow of our recommendation framework. Using the basic information of the submitted manuscript (e.g., keywords, authors list and their current affiliation), the recommendation workflow goes through three main phases: information extraction, filtration, and ranking of the candidate reviewer list.

2.1 Information Extraction

The information extraction phase consists of the following main steps:

- Verification of authors’ identities: This step is concerned with the disambiguation of authors’ names [1, 6, 7]. For example, in the far east, many scholars may share one of the popular names. The identification of the correct author profile is crucial as it influences the accuracy of the collected information. We use various services (e.g., DBLP, Google Scholar, ACM) to gather the information about the author list. In case of multiple matches, the user has to manually identify the correct profiles for the author list among the returned matches.

- Extracting the track records of the author list: This step focuses on extracting information about the publications list and affiliation history of the author list using multiple services (e.g., DBLP, Google Scholar, ACM, Publons). Extracting the authors’ track record is particularly important to allow discovering any potential for conflict of interest.

- Retrieval of candidate reviewers’ profiles: The main driver for candidate reviewers search is the list of keywords supplied as part of the manuscript details. Usually, this list contains three to five keywords defined by the authors to describe the research topic of their submission. To widen the search space of candidate reviewers, we employ a semantic keyword expansion. For this purpose, as our demonstration is focusing on the computer science community, we rely on an ontology of computer science topics. Each relevant expanded keyword is assigned a similarity score $sc \in [0, 1]$ that defines the relevance between the returned keyword from the ontology and the original keyword. For example, if one of the manuscript’s keywords is “RDF”, the expansion module

4 https://publons.com/
5 https://dblp.uni-trier.de/pers/hd/a/Zhou:Lei
6 https://cso.kmi.open.ac.uk/downloads
The last phase of our workflow is ranking the candidate reviewers. MINARET ranks the list of reviewers by means of a score which is computed as a weighted sum that fuses the following components:

- **Topic coverage**: Represents the reviewer’s coverage score for the keywords of the submitted manuscripts. For example, if the paper keywords were “Semantic Web” and “Big Data” and we have two recommended reviewers with fields of interest as “Semantic Web, Ontologies, RDF” and “Semantic Web, Big Data”, respectively. MINARET gives the second reviewer a higher rank than the first, because the second reviewer covers more topics/keywords of the paper and therefore is more related to the paper.

- **Scientific impact**: This component is based on the number of citations/H-index of the reviewer, as configured by the user. Clearly, the higher the number of citations/H-index, the higher the rank.

- **Recency**: Reviewers who have recently authored papers in the topic of the reviewed manuscript are ranked higher than others with less recent publications in the topic [5].

- **Experience with manuscript reviewing**: This component is based on the total number of manuscript reviews that is previously conducted by the candidate reviewer. This information is obtained from the Publons profile of the candidate reviewer.

- **Familiarity/Activity with the target outlet**: The reviewer’s familiarity score is calculated based on two sub-components. The first is the number of previous reviewers that are conducted by the candidate reviewer for the target outlet. The second sub-component is how many times this reviewer has published papers in this journal.

MINARET allows the user to configure the weights of the different components for computing the final ranking score for the candidate reviewers.

3 DEMO SCENARIO

MINARET is available both as a Web application\(^7\) as well as RESTful APIs\(^8\). In this demonstration\(^9\), we will present to the audience the workflow and the phases of the MINARET framework (Figure 2). We start by introducing to the audience the challenges we tackle, the main goal and the functionalities of our framework. Then, we take the audience through the reviewers recommendation process for sample manuscripts. We start by completing the manuscript details form (Figure 3) with the basic information including authors’ names, affiliations, and services (e.g., Google Scholar and Publons).

\(^7\)https://bigdata.cs.ut.ee/minaret/

\(^8\)The source code of the MINARET framework is available on https://github.com/DataSystemsGroupUT/Minaret

\(^9\)A demonstration screencast is available on https://www.youtube.com/watch?time_continue=7&v=rNHTqdY6GuI
authors’ current affiliations, submission topics/keywords, target journal in addition to any user-defined filters for the target reviewers (e.g., citation range, H-index range). Next, we will show how MINARET checks and verifies authors names (Figure 4). After this, we will show how MINARET queries the different scholarly sites for extracting the required information (Section 2) for candidate reviewers. Next, we will continue with the stage of reviewers’ filtration and ranking till returning the final results (Figure 5) where the computed score of each reviewer is shown. By clicking on the total score, score details for each ranking component will be displayed.

While MINARET is designed for tackling the more challenging case of recommending reviewer for journal submissions. It can be also integrated with conference management systems to automate the paper-reviewer assignment. In that case, the list of programme committee members can be used as a further filter. Thus, only candidate reviewers who belong to the programme committee are retained.

ACKNOWLEDGMENT
This work is funded by the European Regional Development Funds via the Mobilitas Plus programme (grant MOBT75)

REFERENCES