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ABSTRACT
Many real-world phenomena are best represented as interaction

networks with dynamic structures (e.g., transaction networks,

social networks, traffic networks). Interaction networks capture

flow of data which is transferred between their vertices along a

timeline. Analyzing such networks is crucial toward comprehend-

ing processes in them. A typical analysis task is the finding of

motifs, which are small subgraph patterns that repeat themselves

in the network. In this paper, we introduce network flow motifs, a
novel type of motifs that model significant flow transfer among

a set of vertices within a constrained time window. We design an

algorithm for identifying flow motif instances in a large graph.

Our algorithm can be easily adapted to find the top-k instances

of maximal flow. In addition, we design a dynamic programming

module that finds the instance with the maximum flow. We eval-

uate the performance of the algorithm on three real datasets

and identify flow motifs which are significant for these graphs.

Our results show that our algorithm is scalable and that the real

networks indeed include interesting motifs, which appear much

more frequently than in randomly generated networks having

similar characteristics.

1 INTRODUCTION
Interaction networks include a large number of highly connected

components that dynamically exchange information. Examples of

such graphs are neural networks, food webs, signal transfer path-

ways, the bitcoin network, social networks, and traffic networks.

An interaction network captures flow of data (e.g., money, mes-

sages, passengers, etc.) which is transferred between its vertices

along a timeline. In such a network, there could be multiple edges

connecting the same pair of vertices, modeling data exchange

between them at different times. Figure 1(a) shows a small exam-

ple of an interaction network, where the vertices represent users

who exchange money. The edges are annotated by timestamped

interactions; e.g., edge u1u2 with label t = 2, f = 5 denotes that

user u1 sent 5 units of flow (money) to user u2 at time 2.

Interaction networks are a powerful and versatile model, and

as such they have been studied extensively in the literature

[12, 23, 24]. In this paper, we consider the problem of finding

small characteristic patterns in the networks, such as chains,

triangles or cycles. These patterns are called network motifs. A
motif is a subgraph that appears significantly more often in a real

network than in a randomized network with similar character-

istics [15]. Finding motifs is a method of identifying functional
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properties of a network. Previous work mainly focused on static

motif patterns [15, 21]. Recently, there has been increasing in-

terest in analyzing temporal networks [6, 8, 9, 17, 23, 24], where

edges carry timestamps that signify the time of interaction be-

tween vertices. However, to the best of our knowledge, there is

no previous work on motif search that considers the flow of data

between connected nodes. Motivated by this, we define the con-

cept of flow motifs in temporal interaction networks and study

their identification.

Our definition of flow motifs extends a well-accepted defi-

nition of temporal motifs [17]. We define flow motifs as small

graphs whose edges are ordered; the order defines how the data

flows between the vertices. An instance of the motif is a sub-

graph of the interaction network, whose edges obey the total

order specified by the edges of the motif. Moreover, the time

difference between the temporally last and first edges should not

exceed a pre-defined threshold δ which is a parameter of the

motif. These requirements are the same as in the temporal motif

definition of [17], which however disregards the data flow in

interactions. The distinctive feature of our flow motifs is that, in

a flow motif instance, multiple edges of the graph can instantiate

a single edge of the motif, if they satisfy the order constraint with

the edges that instantiate the motif’s previous and next edges.

The flow values in the edge-set that instantiates a motif edge

are aggregated to a single value, which captures the total flow
passing through the motif edge. Theminimum aggregated flow at

any motif edge defines the flow of the instance. In order for the

instance to be valid, we require that its flow exceeds a threshold

ϕ.
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Figure 1: Example of graph, motif, and instances

Consider again the interaction network of Figure 1(a). Assum-

ing that the motif of interest is a chain of three nodes (Figure

1(b)), where the labels in edges specify the flow order and that

δ = 5 and ϕ = 5, the two subgraphs of Figures 1(c) and 1(d) are

instances of the motif because the sets of edges mapped to each

motif edge satisfy (i) the time order constraint of the motif and

(ii) thresholds δ and ϕ. For example, in Figure 1(d), both edges

that connect u2 to u3 are temporally after the edge that connects

u1 to u2 and their aggregated flow is 6 (≥ ϕ); in addition, the
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time difference between the temporally first and last edges in the

instance is 5 − 2 = 3 (≤ δ ).
Overall, a valid flowmotif instance should satisfy three require-

ments: (a) a structural constraint, defined by the graph structure

of the motif; (b) a temporal constraint defined by the temporal

window size δ ; (c) a flow constraint defined by the minimum flow

value ϕ.
Flowmotifs correspond to frequently occurring sub-structures

with high activity that appear in short time windows. Finding

instances of flow motifs is of great importance in understand-

ing interaction networks. For instance, in networks that model

money transfers, flow motifs correspond to transaction patterns

involving significant flow of money that appear more frequently

than expected. Flow motif search is of particular interest to Fi-

nancial intelligent units (FIUs); these are organizations which

identify suspicious flow patterns thatmay suggest criminal behav-

ior (e.g., money laundering). Belize FIU (fiubelize.org) and Hong

Kong’s JFIU (www.jfiu.gov.hk) indicate as suspicious patterns

which include ‘smurfing’ (i.e., numerous small-volume transfers

which aggregate to large amounts), cyclic transactions between

parties, and chains of significant money transfers within limited

time (e.g., payments out which are paid in on the same or on

the previous day). In addition, bitcoin theft has been associated

to flow patterns in [14]. In communication and social networks,

flow motifs may reveal common patterns of influence [3, 11]. For

example, the strength of the relationships between two social

network users is correlated with the frequency of online interac-

tions between them [22]. This implies that groups of users with

frequent communication between them within a short period

have high chance to influence each other.

Given a large interaction network, we propose an algorithm

that takes as input a flow motif and efficiently finds its instances

in the network. Our algorithm operates in two phases. First, the

structural matches of the motif (disregarding temporal and flow

information) are identified. Then, for each structural match, we

find the motif instances which satisfy the temporal and flow

constraints. This is achieved by sliding a time window of the

same length as the duration constraint of the motif and system-

atically finding the combinations of edges that constitute motif

instances. Compared to motif search algorithms from previous

work, our algorithm is novel in that it considers the aggregated

flow on multiple edges that connect the same pair of nodes in the

network during the construction of the motif instances. Due to

the large number of possible edge combinations, the problem is

harder compared to finding instances of motifs, by disregarding

flows and multiple edges. Our algorithm effectively uses the du-

ration and flow constraints to prune the space. We also suggest

a variant of the algorithm that identifies the top-k instances of

an input flow motif with the highest flow. Finally, we propose a

dynamic programming module for the algorithm, for the problem

of finding the motif instance with the maximum flow.

We evaluate the performance of the algorithm on three real

datasets of different nature (bitcoin user network, facebook net-

work, and Passenger flow network).We compare the performance

of our algorithm to a baseline method which builds up motif

instances by joining their components and demonstrate the supe-

riority of our approach against this alternative method. We also

show that our tested flow motifs indeed appear more frequently

in real networks than in randomized networks having the same

characteristics as the real ones.

In summary, this paper makes the following contributions:

• We propose the novel concept of flow motif. To our knowl-

edge, this is the first work that defines and studies the

search of flow motifs in interaction networks.

• We propose an efficient algorithm for finding flow motif

instances in large interaction networks and variants of it

that identify the instances of a motif with the maximum

flow.

• We evaluate our approach using three real datasets, and

demonstrate that it scales well for large data.

• We investigate the significance of the tested motifs in the

real networks.

The rest of the paper is organized as follows. Section 2 de-

scribes work related to network flow motifs, which are then

formally defined in Section 3. Our motif search algorithm is pre-

sented in Section 4. Section 5 shows how to extend our algorithm

to find the k instances of a given motif with the maximum flow.

In Section 6, we experimentally evaluate our algorithm and the

significance of the motifs by using a randomization approach.

Finally, in Section 7, we conclude our paper and give directions

for future work.

2 RELATEDWORK
There has been a lot of research interest in motif search and

mining in interaction networks [5, 20, 21]. In this section we

summarize the most representative works in static and temporal

networks.

Static Networks. Milo et al. [15] introduced the concept of

motifs and studied their identification in large graphs. They de-

fined a network motif as a “pattern of interconnections occurring
in complex networks at numbers that are significantly higher than
those in randomized networks”. They investigated motif discovery

in directed networks, which do not carry temporal information

(i.e., the motifs do not consider the time when the interactions

took place).

FANMOD [21] is an efficient tool for finding network motifs in

static networks, up to a size of eight vertices. Given a subgraph

size, the tool either enumerates all subgraphs of that size or

samples them uniformly. The identified subgraphs are grouped

into classes based on their isomorphism. The significance of

each class is finally measured by counting their frequencies in a

number of random graphs (generated by swapping edges between

vertices in the original network).

Temporal Networks. In temporal networks, the interactions
between vertices are labeled by the time when they happen.

Fundamental definitions, concepts, and problems on temporal

networks are given in [6]. For instance, the concept of time-
respecting path and its relation to network flows are defined and

studied here.

Paranjape et al. [17] define motifs in temporal networks as

small connected graphs, whose edges are temporally ordered. In-

stances of a motif are subgraphs that structurally match the motif

and their edges obey the order. In addition, the time-difference

between the temporally last and the first edges should not exceed

a motif duration constraint δ . They propose a general algorithmic

framework for computing the number of motif instances in a

graph and fast algorithms that count certain classes of tempo-

ral motifs. Our network flow motifs are similar to the temporal

motifs of [17], however, in our case (i) a motif edge can be instan-

tiated by multiple edges of the graph and (ii) we introduce and

consider a minimum flow requirement.
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Another work that defines and studies the enumeration of

temporal motifs is [8]. In the context of this work, the interactions

between vertices are not instantaneous but they carry a duration

interval. Motifs are again subgraphs whose edges are temporally

ordered. As opposed to [17], there is no δ threshold between the

last and the first edge in a motif instance. Instead, a maximum

time-difference ∆t between consecutive edges in a motif instance

is allowed.

Rocha et al. [2] also define motifs that model the information

spread in temporal networks. They study the impact of time

ordering information by comparing the instances of the motifs

by considering or not the temporal order. The flowmotifs defined

and used in [2] are different to ours, because in our case (i) we

consider the flow on edges (ii) we define the flow in a motif

differently and (iii) our input graph and the motif instances are

multigraphs.

Communication motifs are suggested as a model for capturing

the structure of human interaction in networks over time. Zhao et

al. [23] studied the evolution of such behavioral patterns in social

networks. For any two adjacent interactions, the term maximum
flow is used to characterize those interactions that are the most

probable to belong to the same information propagation path

among any such adjacent interactions. On the other hand, in

our context, flow refers to the data (e.g., money, messages, etc.)

being transferred from one node along network paths. Another

work that studies behavioral patterns in social networks by defin-

ing and mining communication motifs between people in social

networks is [4]. A scalable mining technique (called COMMIT)

for such communication motifs is proposed.

A recent work that studies the structure of social networks and

the temporal relations between entities in them is [24]. Temporal

pattern search is proposed as a tool in this direction. In order to

facilitate the efficient retrieval of pattern instances, occurrences

of small patterns are precomputed and indexed.

Flow can also be used to describe other concepts. In [9], the

authors study the information propagation problem. They try to

identify all time-respecting paths in temporal networks to model

potential pathways for information spread. Our work is differnt

in that (i) we are interested in specific motifs and (ii) we consider

the flow on edges. The identification of time-respecting paths

(as defined in [9]) that form cycles is studied in [10], where an

efficient algorithm (2SCENT) is proposed.

Motif discovery inHeterogeneous InformationNetworks (HiNs)

which carry temporal information was also recently studied [12].

In such graphs, some nodes are associated to events (which hap-

pened at a specific time). A motif is then defined by a graph and

a maximum temporal difference between the events that instan-

tiate its event nodes. As in the rest of previous work, any data

flow on the edges of the network is disregarded in the definition

and search of motifs.

3 DEFINITIONS
In this section, we formally define flow motifs and the graph

wherein they are identified. Table 1 shows the notations used

frequently in the paper.

The input to our problem is a directed multigraph G(V ,E),
where each pair of nodes u,v ∈ V can be connected by any

number of edges in E. We denote by E(u,v) the edge-set from
u ∈ V to v ∈ V . Each edge e ∈ E is annotated by a unique

timestamp t(e) in a continuous time domain T and a positive real

number f (e), called flow.

Table 1: Table of notations

Notations Description

GM (VM , EM ) graph structure of motif M
δ duration constraint of a motif

ϕ flow constraint of a motif

ℓ(e) order of edge e in a motif M
SPM spanning path of motif M

ei or SPM [i] i-th edge of motif M
SPM [i : j] subpath ei . . . ej of SPM
G(V , E) input graph

E(u, v) set of edges in G from u to v
f (e) flow on edge e
t (e) timestamp of edge e
f (GI ) flow of motif instance GI

GT (V , ET ) time-series graph equivalent to G(V , E)
(t, f ) flow interaction element on an edge of ET
R(u, v) time series on edge (u, v) ∈ ET
R(ei ) time series on edge of ET mapped to ei
S set of structural matches of a motif

Gs structural match of a motif

Figure 2 shows an example of an input graph G from a real

application, where vertices correspond to users (addresses) of the

bitcoin network and edges correspond to transactions between

them. Each edge is annotated by the timestamp of the transaction

followed by the transaction amount. For example, user u1 at

timestamps 13 and 15 sent 5 and 7 bitcoins, respectively, to u2.

Algorithm 1

• Example of Step 1:
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Figure 2: Example of an interaction graph (bitcoin user
graph)

Definition 3.1 (Flow Motif). A network flowmotifM is a triplet

(GM ,δ ,ϕ) consisting of (i) a directed graph GM (VM ,EM ) with
m = |EM | edges, where each edge e is labeled by a unique number

ℓ(e) in [1,m]; (ii) a value δ , which defines an upper-bound on the

duration of the motif; and (iii) a value ϕ, which defines a lower

bound on the flow of the motif.

The labels of the edges in the motif graph GM define a total

order of the edges that models the direction of the flow in GM .

For example, if GM consists of two edges (u,v) and (v,w) and
we have ℓ(u,v) = 1 and ℓ(v,w) = 2, this means that the flow in

the graph originates from node u, it is first transferred to v , and
then from v tow .

Figure 3 shows some examples of motifs (we only show the

motif graphs GM , but not the thresholds δ and ϕ). The numbers

in the parentheses denote the number of nodes and edges in the

motifs. For example, the motif labeled M(3, 3) models a cyclic

flow between three nodes.

We assume that the ordering of the edges according to their

labels defines a path in the graph GM . We refer to this path as

the spanning path of the motif, and we denote it as SPM . The

spanning path is not necessarily a simple path, i.e., there may be

repeated vertices in the path.We sometimes refer to a motif graph
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Motifs Considered for WSDM
• Requirement: all edges of the motif form a single path
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Figure 3: Examples of motifs.

GM by its spanning path SPM = e1e2 . . . em , i.e., the total order of

its edges, where ei denotes the edge with label i . For example, we

may refer to motifM(3, 3) in Figure 3 by the sequence SPM (3,3) =
e1e2e3 of its three edges. In addition, we use ei or SPM [i] to
denote the i-th edge of the motif, and SPM [i : j] to denote the

subsequence of edges ei . . . ej along the path. We now define

motif instances as follows.

Definition 3.2 (Flow Motif Instance). An instance of a motif

M = (GM ,δ ,ϕ) in the graph G(V ,E) is a subgraph, GI (VI ,EI ),
VI ⊆ V , EI ⊆ E of G with the following properties:

• There is a bijection µ : VM → VI from the vertex set of

the motif graph VM to the instance vertex set VI .
• For every edge (u,v) ∈ EM there is a non-empty set

of edges EI (µ(u), µ(v)) in GI , such that EI (µ(u), µ(v)) ⊆
E(µ(u), µ(v)). In addition, EI =

⋃
(u,v)∈EM EI (µ(u), µ(v)).

• The edge-sets in GI are time-respecting: For every pair of

edges (u,v) and (v,w) in EM , if l(u,v) < l(v,w), then for

every pair of edges ei ∈ EI (µ(u), µ(v)), ej ∈ EI (µ(v), µ(w)),
t(ei ) < t(ej ).
• The maximum time difference between any two edges in

EI is at most δ .
• The sum of flows of any edge-set in EI is at least ϕ.

The first two conditions express a structural requirement on

the matching subgraph, the third and fourth conditions temporal

constraints, and the last condition a minimum flow constraint.

Figure 4(a) shows an instance ofM(3, 3) in the graph of Figure 2,

assuming that δ = 10 and ϕ = 7. u3,u1, and u2 are mapped to the

first, second, and third node ofM(3, 3) according to the order of its
edges.u1 andu2 in the instance are linked by two edges which are
both temporally after the edge(s) that link u3 to u1 and before the
edge(s) that link u2 to u3. The maximum time difference between

any two edges is 8 (≤ δ ) and the aggregate flows on EI (u3,u1),
EI (u1,u2), and EI (u2,u3) are 10, 12, and 20, respectively (i.e., each
of them is at least ϕ). If we denoteM(3, 3) by its spanning path

SPM (3,3) = e1e2e3, we can express the instance of Figure 4(a) by

[e1 ← {(10, 10)}, e2 ← {(13, 5), (15, 7)}, e1 ← {(18, 20)}].
For the ease of exposition, we define the flow f (GI ) of an

instance GI of motif M as the minimum total flow among all

edge-sets EI (µ(u), µ(v)) which instantiate the edges (u,v) ofM .

Formally:

f (GI ) = min

(u,v)∈EM

∑
e ∈EI (µ(u),µ(v))

f (e) (1)

We now define the concept of motif instance maximality.

Definition 3.3 (Instance Maximality). An instance GI (VI ,EI )
of a motif M = (GM ,δ ,ϕ) is maximal iff, the addition of one

Motif and instances
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Figure 4: Examples of motif instances

more edge to any edge-set EI (µ(u), µ(v)) of GI from the corre-

sponding edge-set E(µ(u), µ(v)) ofG violates the duration or flow

constraints of the motif.

For example, assuming that δ = 10 and ϕ = 7, Figure 4(b)

shows an instance ofM(3, 3) in the graph of Figure 2, which is not
maximal. This is because the addition of edge (13,5) to EI (u1,u2)
results in the valid instance of Figure 4(a). In this paper, we

focus on finding maximal instances of motifs only, because non-

maximal ones are redundant and considering them can mislead

towards the importance of a motif. For example, if ϕ = 0, all

combinations of subsets of the edge-sets that form a valid motif

instance are also valid (but not maximal) instances. Considering

them would exponentially increase the total number of motif

instances, potentially over-estimating its importance.

4 FINDING FLOWMOTIF INSTANCES
We now present an efficient algorithm for enumerating the max-

imal instances of a given motif M(VM ,EM ) in an input graph

G(V ,E). For the ease of presentation, we consider the input graph
G not as a temporal multi-graph, but as a graph where all original

edges from a vertex u ∈ V to a vertex v ∈ V are merged to a

single edge. The single edge (u,v) is associated with an interac-
tion time-series R(u,v) = {(t1, f1), (t2, f2), . . . }. Each pair (ti , fi )
represents a flow interaction occurring at time ti with flow trans-

fer fi from u to v . The interaction time series is ordered in time.

Figure 5 shows an example of how the edges of a multigraph G
are merged to time series. For example, the two edges from u1
to u2 are considered as a single edge; the two edges with times-

tamps 13 and 15 are now considered as a time series on a single

edge (u1,u2). The conversion of the multigraph to a graph does

not have to be explicitly performed; for each connected pair of

vertices, it suffices to consider their multiple edges ordered by

timestamp. We will use GT (V ,ET ) to denote this graph and we

will refer to it as the time series graph.

Algorithm 1

• Example of Step 1:
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(b) time series graph

Figure 5: From a multigraph to a time series graph

Our algorithm takes as input the multigraph G(V ,E) and a

motif M = (GM ,δ ,ϕ), and finds all instances of M in G. The
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algorithm operates on the time series graph GT and works in

two phases P1 and P2:

P1 Find the set S of all structural matches of graph GM in

graph GT , disregarding the labels on the edges and con-

straints δ and ϕ.
P2 For each Gs ∈ S , using the time series of the edges in Gs ,

find all instances of M in Gs (which should satisfy the

duration and flow constraints defined by δ and ϕ).

We now elaborate on the two phases.

Phase P1: To illustrate phase P1, as an example, consider the

graph GT of Figure 5(b) and the motifM(3, 3) shown in Figure 3.

Figure 6 shows all six structural matches ofM(3, 3) in GT found

in phase P1. The labels {e1, e2, e3} on the edges of the matches

indicate the edges of the motif on which they are mapped. For

example, edge (u1,u2) of the first match is mapped to the first

edge e1 of the motif.Time/flow agnostic instances of M(3,3)

30
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Figure 6: Structural matches ofM(3, 3) (phase P1)

Algorithmically, for phase P1, any graph pattern matching

algorithm for static graphs can be used (e.g., [21]). In our im-

plementation, we exploit the fact that the ordering of the edges

defines a path. Using a modified depth-first search algorithm on

GT , we can extract all paths of length |EM | that are structural
matches ofGM inGT . Specifically, in a loop, we map every node

in GT to the first node in GM (i.e., the origin node of the first

edge in GM ) and recursively find all paths that originate from

that node and map them to the spanning path SPM ofGM . For ex-

ample, for motifM(3, 3), the depth-first search algorithm should

make sure that the last vertex of the traversed path is the same as

the first vertex of the path. Hence, the algorithm on the graph G
of our running example would identify path u1u2u3u1 as a match

ofM(3, 3).
Phase P2: In phase P2, given the set of structural matches S , for
eachGs ∈ S , we process the time series on the edges ofGs in order

to find valid flow motif instances. In a nutshell, we slide a time

window of length δ along the set of all (ti , fi ) interactions on the

edges of Gs ; for all sets of interactions within δ time difference,

we find all combinations thereof which constitute valid motif

instances. Note that each structural matchGs from phase P1 may

produce an arbitrary number of flow motif instances, as each

time window position can generate different instances depending

on the combinations of edge flows we use.

To illustrate, consider again M(3, 3) (for δ = 10) and a pos-

sible structural match, shown in Figure 7. We will get differ-

ent flow motif instances depending on whether we consider

window [10, 20] or [15, 25]. Furthermore, even for the specific

time-window [10, 20], we can get different flow motif instances

depending on how we combine the edges in this window. For ex-

ample, one possible flow motif instance is [e1 ← {(10, 5)}, e2 ←

The case of total orders
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Figure 7: Example for Algorithm 1

{(11, 3), (16, 3)}, e3 ← {(19, 6)}], while another flow motif in-

stance is [e1 ← {(10, 5)}, e2 ← {(11, 3)}, e3 ← {(14, 4), (19, 6)}].
Note that the flow in the former case is 5, while in the latter is 3,

meaning that the latter instance would be rejected for ϕ = 5.

Algorithm 1 is applied in phase P2 to find all instances of the

motifM in a match Gs (found in phase P1). The algorithm slides

a window T of length δ over the time domain, to find subsets

of edges in Gs that satisfy the duration constraint δ and can

generate maximal motif instances. Given a specific windowT we

run procedure FindInstances in order to generate all possible

maximal flow-motif instances that satisfy the flow constraint ϕ.
The procedure is recursive on the lengthm of the spanning path

SPM = e1e2 . . . em of the motif.

FindInstances takes as input the graph instanceGs , a span-

ning path SP , a time-window T and the threshold ϕ. Let R(ei ) be
the interaction time series on the edge ofGs which is mapped to

edge ei of the motif. If the spanning path consists of a single edge

e1, then the procedure finds the set RT (e1) ⊆ R(e1) of all elements

in R(e1), which are within the time-window T , and aggregates

their flow. If the total flow f (RT (ei )) of these elements satisfies

the flow constraint ϕ, the edge-set of G corresponding to RT (ei )
becomes an instance of SP and it is returned. For longer spanning

paths, the procedure considers again the first edge e1 = SP[1].
For every prefix Tp of the window T that contains instances of

the edge e1, it computes the set RTp (e1) ⊆ R(e1) of all (t , f ) inter-

action elements in R(e1) for which t ∈ Tp . If RTp (e1) is non-empty

and satisfies the flow constraint, then FindInstances is recur-

sively called on the rest of the spanning path SPnext = SP[2 :m],
with time windowTnext = T −Tp . This recursive call will return
the set of valid instances within time-window Tnext for the sub-
motif defined by SPnext . Each of these instances is concatenated
to RTp (e1) to create a new valid instance for SP .

The condition at line 16 of the algorithm helps us to find

invalid prefixes of the motif instances early. In other words, if a

sub-series RTp (e1) which is candidate for instantiating a motif

edge does not qualify ϕ, we do not consider the possible instances
that include the elements of RTp (e1) as an instance of e1. Hence,
the search space is effectively pruned.

Figure 7 illustrates the functionality of Algorithm 1. On top,

the figure shows motif M(3, 3) and a structural match Gs of it,

where each edge is labeled by the time series of flows between

the corresponding nodes (e.g., at time 10, u2 sent to u1 a flow of

5). The elements on the edges of Gs are illustrated (as sequences

of dots ordered by time) at the bottom of the figure, colored by
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Algorithm 1 Instance finding module

Require: δ , ϕ , time window T , structural match Gs
1: I ← ∅ ▷ set of instances of Gs in T
2: for each maximal time window T that satisfies δ do
3: I ← I ∪ FindInstances(Gs , SPM , T , ϕ)
4: end for
5: return I

6: procedure FindInstances(Gs , SP, T , ϕ)
7: I ← ∅ ▷ set of instances of Gs in T
8: if lenдth(SP ) = 1 then
9: RT (e1) ← all (t, f ) elements of R(e1) in T
10: if f (RT (e1)) ≥ ϕ then ▷ ϕ condition check

11: add RT (e1) to I
12: end if
13: else
14: for each prefix Tp of time window T do
15: RTp (e1) ← all (t, f ) elements of R(e1) in Tp
16: if f (RTp (e1)) ≥ ϕ then ▷ ϕ condition check

17: SPnext ← SP [2 :m] ▷ suffix of SP
18: Tnext ← T −Tp ▷ suffix of T
19: Inext ← FindInstances(Gs , SPnext , Tnext , ϕ)
20: for each I ∈ Inext do
21: add RTp (e1) ◦ I to I
22: end for
23: end if
24: end for
25: end if
26: return I
27: end procedure

the edge they belong to (e.g., black for e2). The first row of dots

includes all (t , f ) elements, i.e., the first black dot corresponds

to element (9, 4) on edge (u1,u2), which is mapped to the second

edge e2 ofM(3, 3). To find the motif instances that comprise of

nodes and edges in Gs , we slide a window of length δ along the

timeline. Assuming that δ = 10, the first position of the sliding

window is [10, 20]. The algorithm finds all prefixes of elements

in R(e1) that fall in this window and for each such prefix, it

generates recursively the combinations of elements from other

edges that form valid instances (according to δ ). For example,

for the prefix Tp = [10, 10], which includes just the first element

(10, 5) from e1, the 2nd and the 3rd line of dots in the figure

show the valid instances formed. Specifically, these instances

are [e1 ← {(10, 5)}, e2 ← {(11, 3)}, e3 ← {(14, 4), (19, 6)}] and
[e1 ← {(10, 5)}, e2 ← {(11, 3), (16, 3)}, e3 ← {(19, 6)}]. Note

that the ϕ constraint is applied at every prefix in order to prune

the search space if it is violated (e.g., if ϕ = 5, any instance

[e1 ← {(10, 5)}, e2 ← {(11, 3)}, . . . ] would be rejected. Note also
that there is no instancewhich contains just the first two elements

of e1 but not the third one, because there is no element from e2
which is temporally between (13, 2) and (15, 3). Finally, note that

the next position of the sliding window is [15, 25] because the

position [13, 23] which starts from the 2nd element of e1 does
not include any new elements from e3 compared to the previous

window position [10, 20]; hence, considering window position

[13, 23] would result in redundant (i.e., non-maximal) instances

and this position is skipped.

We have not explained yet how window positions are skipped

in Algorithm 1. First, only window positions which start at ele-

ments of R(e1) are considered; in-between positions (e.g., window
[11, 21] in Figure 7) would result in redundant (non-maximal)

instances because there will be a subsequent position for which

R(e1) (and the other sets) can only expand (e.g., window [13, 23]

in Figure 7). Second, from those window positions that are con-

sidered, we skip those, where R(em ) (i.e., the interaction time

series, which is mapped to the last edge em of the motif) is not

expanded with new elements, compared to the previous valid

window position. In our example, [13, 23] is skipped because no

element is added to R(e3), compared to position [10, 20]. If we

used window position [13, 23], we would generate instances that

would not be maximal because we could add to each of them ele-

ment (10, 5) of e1 without violating the δ constraint. In summary,

in consecutive window positions where module FindInstances

is applied, the first elements of R(e1) should be different and the

last elements of R(em ) should also be different.

Algorithm 1 does not miss any maximal instances because it

systematically explores the combinations of edge-sets which are

time-respecting and maximal within a window. Moreover, the

windows have maximal lengths and in each of them the produced

instances essentially include the temporally first (ti , fi ) element

that maps to e1 and the temporally last (ti , fi ) element that maps

to em . At least one of these pairs changes in the next window

position; therefore, instances produced at different windows do

not violate the maximality condition.

Complexity Analysis. In the worst case, for each Gs and each

time window, we should consider all combinations of edges in

G that instantiate the edges of the motif. For example, when

ϕ = 0, prefix-based pruning cannot be applied. In the worst case,

Gs = G and the edges inG ordered by timestamp are assigned to

the sequence of motif edges in a round-robin fashion. That is, the

temporally first edge ofG is mapped to e1, the second to e2, etc. In
this case, assuming the loosest possible constraints δ = ∞,ϕ = 0,

the number of combinations of pairs to be considered (which

all form valid motif instances) is O(|E |/m)m , i.e., exponential to

the number of edges m in the motif. In addition, the number

of structural matches is also exponential tom. In practice, GT
is sparse (or V is small) and the constraints δ and ϕ help in

pruning combinations of edges that do not form instances early,

which renders the algorithm scalable, as we will show in the

experimental evaluation.

5 TOP-K FLOWMOTIF SEARCH
Setting an appropriate value for the parameters δ and ϕ could be

hard for non-experts of the domain. Parameter δ is intuitively

easier to be set to a time constraint that makes sense to the appli-

cation (for example, the analyst could be interested in patterns

of bitcoin transactions which happen within an hour or day).

On the other hand, ϕ is less intuitive, as too large values could

result in too few or zero instances, whereas too small values

could result in thousands of instances which may overwhelm the

user. One solution to this problem is to replace the ϕ constraint

by a ranking of the motif instances GI with respect to their flow

(see Equation 1). In other words, we may opt to search for the k
instances GI of the motif (with ϕ = 0) that satisfy δ , which have

the maximum flow f (GI ).

To solve this top-k flow motif search problem, we can use our

algorithm with a small number of modifications. Phase P1 is iden-

tical; we should still find the set S of all structural matches. Then,

for each Gs ∈ S , we apply phase P2, by making the following

changes to Algorithm 1. First, we keep track in a priority queue

(heap) the top-k instances in terms of their minimum flow so far.

Second, in place of ϕ, we use the flow f (Gk
I ) of the k-th instance

Gk
I so far as a dynamic (floating) threshold.
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5.1 Finding the top motif instance
For the special case, where k=1, the top-1 motif instance search

problem can potentially be solved faster with the help of a dy-

namic programming (DP) algorithmic module. Recall that the

objective of procedure FindInstances in Algorithm 1 is to find

the motif instances in a structural match Gs , within a time win-

dowT , which qualify ϕ. We can replace this module by a dynamic

programming algorithm that finds the instance of maximum flow

within T . This DP module can be described by Algorithm 2.

Algorithm 2 DP module for top-1 instance search

Require: δ , time window T , structural match Gs
1: maxflow← 0 ▷ keeps track of max flow found at any instance

2: for each maximal time window T that satisfies δ do
3: for all timestamps ti in T do
4: compute F low ([t1, ti ], 1) = f low ([t1, ti ], 1)
5: end for
6: for κ = 2 to n do
7: for all timestamps ti in T do
8: compute F low ([t1, ti ], κ) by Eq. 2

9: end for
10: end for
11: maxflow = max (maxflow, F low ([t1, tτ ,m]))
12: end for
13: return maxflow

Specifically, let [t1, t2, . . . , tτ ] be the sequence of timestamps

in T for which there is a (t , f ) interaction element in Gs . Let

Mκ be the prefix of M which includes its fist κ edges only and

Flow([t1, ti ],κ) be the flow of the top-1 motif instance ofMκ in

the time window [t1, ti ]. Then, Flow([t1, ti ],κ) can be recursively

computed as follows:

F low ([t1,ti ],κ)=max

1< j≤i
{min(F low ([t1,tj−1],κ−1),f low ([tj ,ti ],κ))}, (2)

where f low([tj , ti ],κ) is the total flow of all (t , f ) elements of the

time series R(eκ ) on the κ-th edge ofGs , whose timestamps are in

the time interval [tj , ti ]. The Flow([t1, ti ], 1) array is initialized by
scanning the elements of the first edge ofGs inT . Then, for each
κ > 1, Flow([t1, ti ],κ) is computed using array Flow([t1, ti ],κ−1).
Finally, Flow([t1, tτ ],m) corresponds to the top-1 flow of any

motif instance in Gs within time window T . By applying this

algorithm for every window T , we can find the top instance in

Gs . Repeating this for each Gs gives us the top-1 instance ofM
in G.

Table 2 shows the steps of the DP module in the course of

finding the top-1 instance in time window [10, 20] (assuming that

δ=10) for the structural match ofM(3, 3) shown in Figure 7. The

first row shows the values of Flow([t1, ti ], 1) for the first edge
of the motif and for all values of ti (i.e., columns of the table).

(Recall that the starting timestamp t1 of the time window is 10.)

The second row shows, for the first two edges of the motif, the

value of Flow([t1, ti ], 2) for all values of ti , as well as the value
of tj , which determines Flow([t1, ti ], 2). For all ti , the value of tj
that maximizes the flow is 11 and for ti ≥ 16 the flow becomes

min(5, 3 + 3) = 5. Finally, the last row shows the maximum flow

for the best arrangement of (t , f ) pairs to all three edges of the

motif, for all prefixes of the time window. Note that the last

value corresponds to the entire window and contains the flow

of the best instance of the entire motif in [10, 20], which is 5.

The cells of the matrix in bold show how the top-1 instance, i.e.,

[e1 ← {(10, 5)}, e2 ← {(11, 3), (16, 3)}, e3 ← {(19, 6)}], can be

identified.

Table 2: Example of the DP module

ti 10 11| 13 14 15 16 18 19

κ=1 5 5| 7 7 7 7 10 10

κ=2 3 (tj =11)| 3 (tj =11) 3 (tj =11) 3 (tj =11) 5 (tj =11) 5 (tj =11) 5 (tj =11)
κ=3 | 0 (tj =13) 4 (tj =14) 4 (tj =14) 4 (tj =14) 4 (tj =14) 5 (tj =19)

Complexity Analysis. For each Gs and each time window, we

should consider all binary splits of the window at each iteration

(i.e., for each edge inM). Hence the time complexity is O(τ 2 |E |),
where τ is the number of timestamps in T for which there is an

(ti , fi ) element in Gs . The space complexity is O(τ · |E |) because
we only need all Flow([t1, ti ],κ−1) for κ−1 when we process the
κ-th edge. The overall time complexity per structural match in S
isO(|S |δτ 2 |E |), since the number of windows to be considered is

O(δ ). The number of structural matches |S | is exponential tom,

as discussed in our previous analysis.

Extensibility. The DP module can be used to solve top-1 prob-

lems at a finer granularity. In particular, it can be used to find

the top-1 instance for each structural match Gs . This may be

desirable if we want to compare the sets of entities that consti-

tute the structural instances (e.g., groups of bitcoin users) based

on their max-flow interactions. In addition, we might be inter-

ested in finding the top-1 instance for each position of the sliding

time window T . This can be part of analysis tasks that compare

the volume of interactions (according to the motif structure) at

different periods of time.

6 EXPERIMENTAL EVALUATION
The goal of our experimental evaluation is twofold: test the per-

formance and scalability of our algorithms and study the signifi-

cance of flow motifs. We implemented the algorithm presented

in Section 4 and its two variants proposed in Section 5 (top-k
instance search, dynamic programming module for top-1 search).

As a baseline, we also implemented an alternative motif instance

finding method based on finding and joining instances of motif

components in a hierarchical manner.

We evaluate the performance of all these methods on three

real networks, to be described in Section 6.1. We measure the

efficiency and scalability of the tested methods as a function of

the problem parameters δ and ϕ on the motif structures shown

in Figure 3. These graphs model representative flows of inter-

action that could be of interest to data analysts (e.g., M(3, 3)
corresponds to cyclic transactions in a money-exchange network,

M(4, 3) corresponds to paths of region-to-region movements in

a passenger flow network). We also assess the statistical signif-

icance of the tested motifs in three real graphs. All algorithms

were implemented in Python3 and we ran all the experiments on

a machine with an Intel Xeon CPU E5-2620 prossesor running

Ubuntu 18.04.1 LTS.

6.1 Dataset Description
We used three datasets extracted from real interaction networks:

the Bitcoin network, the Facebook network and a Passenger
flow network. Table 3 shows statistics of the datasets. The third

column is the distinct number of node pairs (u,v) ∈ V , for which

there is at least one edge (i.e., interaction) from u to v . This
number equals to the number |ET | of edges in the corresponding

time-series graph GT . We now provide more details about them.

Bitcoin network. We downloaded all transactions in the bit-

coin blockchain [16] in the period February 1st 2014 to November
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Figure 8: Our two-phase algorithm vs. the join algorithm

Table 3: Statistics of Datasets

Dataset #nodes #connected node pairs #edges Avg. flow per edge

Bitcoin 24.6M 88.9M 123M 4.845

Facebook 45800 264000 856000 3.014

Passenger 289 77896 215175 1.933

30 2014 and converted them to a bitcoin user graph.1 Nodes cor-
respond to users and for each transaction of f bitcoins in the

blockchain from useru to userv at time t , we added an edge from
u to v with label (t , f ). Since the same bitcoin user may control

and use multiple addresses, we applied a well-known heuristic

[1, 7] tomerge addresses that are considered to belong to the same

user to a single network node. Specifically, we merged addresses

that appear together as input in the same transaction. We did

not take into account insignificant transactions with amounts

under 0.0001 BTC. Bitcoin is a relatively sparse graph and the

cases of two nodes being connected by multiple edges is rare.

Finding motif instances in the Bitcoin network can help towards

understanding complex interactions between users and can pos-

sibly help toward identifying suspicious transactions like money

laundering and bitcoin theft [14].

Facebook network: We consider Facebook as an interaction

network between users. We divide the time into 30-second inter-

vals [ts , te ) and for each pair of users u and v we aggregate all

interactions from u to v and add an edge from u to v with label

(ts , f ), where f is the total number of interactions from u to v
in this interval. We consider as interactions the posts of likes by

u targeting v or the messages sent from u to v . We created the

Facebook user network using data from April 2015 to October

2015; the same dataset is used in [19]. The Facebook network is

relatively sparse and each pair of connected nodes have about

four edges on average. Motif search on this graph can help in

analyzing influence [3, 11] and finding important interactions

among users [13].

Passenger flow network: We processed trips of yellow taxis

in NYC in January 2018.
2
. Each record includes the pick-up and

drop-off taxi zones (regions) the date/time of the pick-up and

drop-off, and the number of passengers inside the taxi. Using

these records, we created an interaction network where the nodes

are the taxi zones; for each record, we generate an edge that links

the corresponding nodes and carries the timestamp of the activity

(i.e., the pickup time) and the corresponding flow (i.e., the number

of passengers). This Passenger flow network is dense; in addition,

each pair of connected nodes have about three edges on average.

1
data obtained from http://www.vo.elte.hu/bitcoin

2
obtained from http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml

Motif instances found in this passenger flow graph can help in

understanding the flow of movement between different regions.

6.2 Efficiency and Scalability
In this section, we evaluate the efficiency and scalability of our

algorithm when applied to find the instances of the motifs de-

picted in Figure 3. The default values for the duration constraint

δ are 600 sec., 600 sec., and 900 sec. on Bitcoin, Facebook, and

Passenger, respectively. These value represent realistic time in-

tervals for the corresponding applications. The corresponding

default values for ϕ are 5, 3, and 2, respectively.

6.2.1 Comparison to a competitor. In our first set of experi-

ments, we compare our algorithm with an alternative motif in-

stance finding algorithm which is based on progressively finding

and joining instances of motif subgraphs.

Specifically, this join algorithm starts by accessing each edge

(u,v) of the time series graph GT and finding all time-intervals

of length at most δ and their aggregated flows. For each such

interval [ts , te ] a quintuple (u,v, ts , te , f ) is generated. These
tuples are kept in two tables; C1 sorts them by starting vertex u
and C2 sorts them by ending vertex v . In the next step, C2 and

C1 are merge-joined to find all pairs (c2, c1) having c2.u = c1.v
and also satisfying c1.te − c2.ts ≤ δ . The set P of all these tuple

pairs constitute results of all sub-motifs of M which include

two consecutive edges. In the next step, P is self-joined again

to produce instances of sub-motifs ofM with three consecutive

edges. This is done by finding pairs {(c2, c1), (c
′
2
, c ′
1
)} of couples

in P for which c1 = c ′
2
and c ′

1
.te − c2.ts ≤ δ . The next steps are

applied in a similar manner until the instances of the entire motif

M are constructed. Note that for each motif or sub-motif that

closes a cycle (e.g., M(3, 3)), we check the additional condition

that the starting vertex of the first motif edge in the instance is the

same as the target vertex of the last edge. At each step, we apply a

merge join for the production of sub-motif instances, after having

sorted the tuples produced in the previous step accordingly.

Figure 8 compares the runtime cost of the join algorithm with

that of our two-phase algorithm presented in Section 4. For all

motifs, we used the default values for δ and ϕ. Our two-phase
algorithm is typically twice as fast as the join algorithm. This is

due to the fact that the join algorithm produces a large number of

intermediate results (i.e., sub-motif instances), which are avoided

by our method. Many of these sub-motif instances do not end up

as components of any instance of the complete motif, so their

generation is redundant. In the rest of this section, we do not

include additional comparisons with the join algorithm since it

was always found to be slower than our approach.
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Table 4: Number of structural matches and runtime in phase P1 of motif search

Motif M(3,2) M(3,3) M(4,3) M(4,4)A M(4,4)B M(4,4)C M(5,4) M(5,5)A M(5,5)B M(5,5)C

Bitcoin

Instances 634K 485K 484K 210K 205K 213K 145K 122K 124K 121K

Time (sec) 47.02 49.23 50.15 57.05 60 61.16 64.35 69.11 73.02 75.15

Facebook

Instances 415K 276K 272K 113K 113K 114K 97K 90K 91K 90K

Time(sec) 40.02 43.43 44.21 48.45 49.32 49.01 52.33 50.12 52.07 54.31

Passenger

Instances 27893 16455 25778 14877 14569 14903 22134 12345 12567 12009

Time(sec) 19.14 21.33 22.15 26.22 29.03 29.11 25.04 30.45 31.14 32
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Figure 9: Number of instances and time for different values of δ
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Figure 10: Number of instances and time for different values of ϕ
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6.2.2 Sensitivity to δ and ϕ. The next set of experiments eval-

uate the performance of our algorithm on the different datasets

and motifs, for various values of the constraints δ and ϕ. Table
4 shows the number of structural matches found and the time

spent by the algorithm just for its first phase, which is indepen-

dent of the δ and ϕ values (since these constraints are not used

when searching for the structural matches). This cost constitutes

a lower bound for our algorithm. Naturally, more complex motifs

require more time but they also have fewer structural matches.

Figures 9 and 10 show the number of instances and total run-

time of our algorithm for different values of δ (in seconds) and ϕ.
When we vary δ , we set ϕ to its default value and vice versa. As

expected, in all cases, when δ increases the number of instances

and the runtime increases. The algorithm scales well as its cost

increases at a lower pace compared to the results found.

When comparing the different motifs, note that the simpler

ones (e.g.,M(3, 2) andM(3, 3)) naturally have more instances and

are cheaper to search compared to the more complex ones (e.g.,

M(5, 5)A). The relative order between the motifs is similar in the

Bitcoin and Facebook networks. In both networks, cyclic flow

is quite common; i.e., motifs containing cycles have a similar

number of instances as motifs without cycles having the same

number of edges. On the other hand, in the Passenger network,

acyclic motifs dominate in terms of number of instances. This is

expected, as it is relatively rare that passengers move between

regions on a map forming cycles compared to moving along a

chain of different regions.

The behavior is also consistent to our expectation when ϕ
varies; the number of instances and the runtime drop when ϕ
increases. The algorithm becomes faster because partial motif

instances that do not qualify ϕ are pruned early.

6.2.3 Top-k flow motif instance search. We now evaluate the

results and the performance of top-k motif search on the three

datasets, when using the default values of δ . In the first experi-

ment, we run the version of our algorithm which finds the top-k
motif instances that have the maximum flow. For each run, we

record the flow of the k-th instance in Figure 11. As expected, the

flow of the k-th instance drops as k increases; the drop rate de-

creases when k becomes large (note that the x-axis is not linear).

In the second experiment, we compare the runtime of the general

top-k algorithm with its version that employs the dynamic pro-

gramming module proposed in Section 5.1. The barcharts show

that the second phase of the algorithm benefits from the use

of dynamic programming (the runtime drops 20% to 40%). The

improvement is better on the Passenger network.

6.2.4 Scalability to the dataset size. In the next experiment, we

test the performance of our algorithm on samples of the original

datasets having different sizes. For each of the three datasets, we

take samples defined by prefixes of the total period covered by

the timestamps of the edges included in the sample. Specifically,

for the Bitcoin network we define 5 samples: B1, B2, B3, B4, B5.

B1 includes all transactions happened in the first month of the

9-month period of the complete dataset. B2, B3, B4, and B5 cover

the first 2, 4, 6, and 9 months, respectively. Similarly, F1, F2, F3,

F4, and F5 cover the first 1, 2, 3, 4, and 6 months of the entire

dataset, respectively. Lastly, T1, T2, T3, and T4 cover the first 8,

16, 24, and 31 days of January 2018, respectively. Figure 13 shows

the growth in the number of instances and in the runtime of the

algorithm for the different motifs. Observe that the algorithm

scales well as its cost grows at a slower pace compared to the

number of instances and the size of the input data.

6.3 Significance of Motifs
In the last experiment, we assess the significance of the different

flow motifs in our networks. Following the standard practice

[18], we generated randomized versions of our datasets, we com-

puted the number of instances of each motif in each of these

datasets, and we compared it against the same number for the

real dataset. A large divergence between real and randomized

numbers indicates a significant motif.

Specifically, from each dataset (e.g.. Bitcoin network) we gen-

erated random datasets by keeping the structure of the corre-

sponding graph fixed, and permuting the flows on the edges.

Recall that in the original input multigraphG = (V ,E) each edge

e is associated with a timestamp t(e) and a flow value f (e). A pair

of nodes (u,v) is connected by a set of edges E(u,v). Given the

entire set of flow values { f (e) : e ∈ E}, we compute a random

permutation π of the flow values and reassign them to the graph

edges in this order. This generates a randomized datasetGr (V ,E)
with the same set of nodes and the same set of edges; each edge e
has the same timestamp t(e), and flow value π (f (e)). Hence, Gr
is derived from G by “shuffling” the flow values on the edges.

The random graph Gr has the same structure as G and the

edges in the graph appear at the same timestamps. Therefore, all

structural matches of the motifs in G will also appear in Gr . In

addition, putting aside the flow constraint ϕ, the motif instances

in the two graphs will be the same, when considering only δ .
What changes is the flow value of each motif instance, which will

result in a different number of flow motif instances in Gr com-

pared to G, for non-zero values of ϕ. Our goal is to see whether

the motif instances that satisfy the ϕ constraint in the real data

are significantly more than those in the randomized data.

We generated 20 different random graphs for each real network

according to the procedure we described above. We found the

instances of each motif in all these random datasets. In addition,

we computed the mean and standard deviation of the number

of motif instances in all 20 random graphs per real dataset. To

assess the significance of a motif in the real data, we compared

the number of instances in the real data with those in the random

data. Figure 14 shows, for each dataset and motif, the distribution

of the numbers of instances for all random graphs in a box plot,

and the corresponding number in the real graph (marked by

a diamond). Each real value is also associated with the z-score
(shown above the corresponding diamond), which is computed as

follows. For some motifM , let rM denote the number of instances

of the motif in the real data, let µM denote the mean number of

motif instances in the randomized data, and let σM denote the

standard deviation. The z-score zM of the motif is computed as

zM =
rM − µM

σM

The higher the z-score, the further the value rM from µM .

The first observation is that the number of instances in all ran-

dom graphs is much lower compared to that in the corresponding

real network and these values do not deviate much from their

mean. The empirical p-value (the fraction of random datasets

with number of instances greater than that of the real data) is

zero, indicating statistical significance of the motif occurrences in

all cases. This is consistent with the intuition that the flow is not

arbitrarily generated or consumed at the vertices of the network,

but it is transferred from one node to another. To discriminate

between the different motifs we look at the z-scores. We observe

that for the Bitcoin network, two out of the three top z-scores are
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Figure 11: Flow of k-th instance
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Figure 12: Efficiency of the dynamic programming module
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(f) Passenger: time per dataset

Figure 13: Scalability to input graph size

for motifs that contain cycles, indicating that large flow move-

ments that close a cycle are statistically over-represented in the

bitcoin network. A similar observation holds for the Passenger

flow network, where three out of the top-three motifs contain a

cycle. A different pattern emerges in the Facebook dataset, where

two out of the three highest z-scores are for chains of nodes. We

conjecture that this due to propagation trees of information in

the Facebook network, which result in chains with significantly
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Figure 14: Number of instances in random networks (box plots), in real networks (diamonds), and z-scores

high flow movement. It is interesting that the significance of

the discovered motifs varies in the different types of interaction

networks, indicating differences in the way flow is distributed.

7 CONCLUSION
In this paper, we introduced the novel concept of network flow
motifs. To the best of our knowledge we are the first to define

and study motifs in interaction networks, which consider both

the temporal and flow information of the interactions. We pro-

posed an efficient algorithm for enumerating flowmotif instances

in large graphs and variants of that find the top-k instances of

maximal flow. We evaluated our algorithm on three real datasets

and demonstrated its scalability. In addition, we compared it to

a baseline motif instance finding method based on joining in-

stances of motif components and showed its superiority. Finally,

we studied the statistical significance of a wide range of repre-

sentative motifs on the real graphs and showed that they indeed

appear more frequently than in random networks with the same

characteristics. This indicates that the flow is transferred from

one node to another (as opposed to being arbitrarily consumed

or generated) and that there are subgraphs in the network where

significant flow is transferred at certain periods of time.

In the future, we plan to investigate in more detail the distri-

bution of motif instances in the real networks. For example, we

can group the motif instances per structural match, in order to

identify the structural matches (i.e., sets of vertices in the graph

G) with the largest activity and how this activity is spread along

the timeline. Another direction is to improve the efficiency of

the algorithm, by processing multiple structural instances to-

gether in phase P2. Since two or more structural matches may

share the same prefix, we can compute the flow instances of their

common prefix simultaneously before expanding these instances

to complete ones for the different motifs. In addition, we will

work towards a version of the algorithm which focuses on count-

ing instances of (possibly multiple) motifs without constructing

them (along the direction of previous work [17]). Finally, we will

generalize the definition of flow motifs to capture other graph

structures besides paths (e.g., directed acyclic graphs with forks

and joins) and study their search in large networks.
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