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ABSTRACT
Dictionary-based entity extraction from documents is an important
task for several real applications. To improve the effectiveness
of extraction, many previous studies focused on the problem of
approximate dictionary-based entity extraction, which aims at
finding all substrings in documents that are similar to pre-defined
entities in the reference entity table. However, these studies only
consider syntactical similarity metrics, such as Jaccard and edit
distance. In the real-world scenarios, there are many cases where
syntactically different strings can express the same meaning. For
example, MIT and Massachusetts Institute of Technology refer
to the same object but they have a very low value of syntactic
similarity. Existing approximate entity extraction work fails to
identify such kind of semantic similarity and will definitely suffer
from low recall.

In this paper, we come up with the new problem of approximate
dictionary-based entity extraction with synonyms and propose
an end-to-end framework Aeetes to solve it. We propose a new
similarity measure Asymmetric Rule-based Jaccard (JACCAR)
to combine the synonym rules with syntactic similarity metrics
and capture the semantic similarity expressed in the synonyms. We
propose a clustered index structure and several pruning techniques
to reduce the filter cost so as to improve the overall performance.
Experimental results on three real world datasets demonstrate
the effectiveness of Aeetes. Besides, Aeetes also achieves high
performance in efficiency and outperforms the state-of-the-art
method by one to two orders of magnitude.

1 INTRODUCTION
Dictionary-based entity extraction [11] identifies all substrings
from a document that match predefined entities in a reference
entity table i.e. the dictionary. Compared with other kinds in-
formation extraction approaches, such as rule-based, machine
learning and hybrid ones, dictionary-based entity extraction is
good at utilizing extra domain knowledge encoded in the dictio-
nary [24]. Therefore, it has been widely adopted in many real
world applications that required Named entity recognition (NER),
such as academic search, document classification, and code auto-
debugging.

A typical application scenario is the product analysis and re-
porting system [10]. These systems maintain a list of well-defined
products and require to find the mentions of product names in
the online acquired documents. More precisely, these systems
receive many consumer reviews, then they extract the substrings
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Figure 1: Example of institution name extraction.

that mentioned reference product names from those reviews. Such
mentions of referenced entities serve as a crucial signal for further
analyzing the review documents, such sentiment analysis, opin-
ion mining and recommendation. High-quality extraction of such
mentions will significantly improve the effectiveness of these sys-
tems. Furthermore, the large volume of documents such systems
receive turns improving the efficiency of extraction into a critical
requirement.

To provide high-quality entity extraction results and improve
the recall, some prior work [12, 13, 35] studied the problem of Ap-
proximate dictionary-based Entity Extraction (AEE). As entities
in the dictionary are represented as strings, they employ syntactic
similarity functions (e.g. Jaccard and Edit Distance) to measure
the similarities between entities and substrings from a document.
The goal is to find not only the exactly matched substrings but
also those similar to entities in the dictionary.

Though prior work has achieved significant degree of success
in identifying the syntactic similar substrings from documents,
they would still miss some substrings that are semantically similar
to entities. In many cases, syntactically different strings can have
very close semantic meaning. For example, consider a substring

“Mitochondrial Disease” in a biomedical document and an entity
“Oxidative Phosphorylation Deficiency” in the dictionary. Prior
studies on AEE problems [13, 35] would fail in identifying this
substring since they have very low similarity score under any
syntactic similarity metric. However, “Mitochondrial Disease”
and “Oxidative Phosphorylation Deficiency” actually refer to the
same disease and they are expected to be included in the result.
Therefore, it is necessary to propose a new framework to take
both syntactic similarity and semantics carried by synonyms into
consideration.

We can capture such synonyms by applying synonym rules on
the basis of syntactic similarity. A synonym rule r is a pair of
strings with the form ⟨ lhs⇔ rhs⟩ that express the same semantics.
Here both lhs and rhs are token sequences. For example ⟨ Big
Apple⇔ New York⟩ is a synonym rule as “Big Apple” is actually a
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nickname for “New York”. Example 1.1 shows a real-life scenario
demonstrating the effectiveness of applying synonym rules in
entity extraction.

Example 1.1. Figure 1 provides an example document which
contains PVLDB 2018 PC members. The dictionary includes a
list of institution names, and the synonym rule table contains a list
of synonym rules. The exact match approach only finds s3 as it is
the only one having an exact match in the dictionary. AEE based
approaches like Faerie [13] can find s3 and s2 but misses s1 and s4.
By applying rules, we can find all similar results s1, s2, s3 and s4.

As motivated above, applying synonym rules can significantly
improve the effectiveness of approximate entity extraction. In this
paper, we formally introduce the problem of Approximate Entity
Extraction with Synonym (AEES) from dictionaries.

Though the application of synonym rules could improve ef-
fectiveness, it also brings significant challenges in computational
performance. To address this issue, we study and propose new
solutions for the AEES problem, along with techniques that opti-
mize the performance. In fact, we propose an end-to-end frame-
work called Approximate Dictionary-based Entity Extraction with
Synonyms (Aeetes) that effectively and efficiently solves the
AEES problem. We first propose a new similarity metric Asym-
metric Rule-based Jaccard (JACCAR) to evaluate the similarity
between substrings in documents and entities in the dictionary
by considering both syntactic similarity and semantic relevance
brought by synonyms. By properly designing the similarity mea-
sure, we can reduce the overhead of applying the synonym rules
and capture the rich semantics at the same time. To support ef-
ficient extraction, we devise a clustered inverted index structure
which enables skipping dissimilar entities when traversing the
index. We also apply efficient sliding-window based pruning tech-
niques to accelerate the filtering process by leveraging the overlaps
between adjacent substrings in the document. We evaluate our
proposed methods on three popular datasets with real application
scenarios. Experimental results demonstrate the superiority of our
method in both effectiveness and efficiency.

To summarize, we make the following contributions.
• We identify and formally define a new problem dictionary-

based Approximate Entity Extraction from documents with
Synonyms. And we propose an end-to-end framework
Aeetes to efficiently address the problem.
• We devise a clustered index structure and several pruning

techniques to improve the performance. Specifically, we
proposed a dynamic prefix maintenance algorithm and a
lazy candidate generation method to take advantage of the
shared computation between substrings in a document so
as to reduce the filter cost.
• We conduct an extensive empirical evaluation on three real-

world datasets to evaluate the efficiency and effectiveness
of the proposed algorithms. Experimental results demon-
strate the effectiveness of our method. In addition, our
method also achieved good efficiency: it outperforms the
baseline methods by one to two orders of magnitude in
extraction time.

The rest of this paper is organized as follows. We formalize
the problem of AEES and introduce the overall framework in Sec-
tion 2. We propose a clustered inverted index structure in Section 3.
We devise the sliding window based filter techniques in Section 4.
We make necessary discussions about some important issues in
Section 5. The experimental results are reported in Section 6. We

summarize the related work in Section 7. Finally, conclusions are
made in Section 8.

2 PRELIMINARY
In this section, we first define some basic terminology to describe
our work (Section 2.1). We then formulate the AEES problem and
justify its definition (Section 2.2). Finally we provide an overview
of our framework (Section 2.3).

2.1 Basic Terminology
Entity. An entity e is modeled as a token sequence, i.e, e =
e[1], ..., e[|e |] where |e | is the number of tokens in e. For example,
the entity e2 =“Purdue University USA” in Figure 1 has three to-
kens and e2[3] = “USA”. We use e[i, j] to denote the subsequence
of tokens e[i], ..., e[j] of e.
Applicable synonym rule. Given an entity e, a synonym rule r is
an applicable rule for e if either lhs or rhs is a subsequence
of e. In some cases, if two applicable rules have overlapping tokens
and cannot be applied simultaneously, we call them conflict
rules. For example, r4 and r5 are conflict rules as they have an
overlapping token “UW”. In order to generate derived entities, we
need to obtain the optimal set of non-conflict rules, which includes
all possible combinations. Unfortunately, finding the optimal set
of non-conflict rules requires exponential time. To improve the
performance, we propose a greedy algorithm to select the set of
non-conflict rules whose cardinality is as large as possible (details
in Section 5). We useA (e ) to denote the sets of non-conflict rules
of the entity e.
Derived entity. Given an entity e and one applicable rule r (⟨
lhs⇔ rhs⟩), without the loss of generality, we assume lhs is a
subsequence of e. Applying r to e means replacing the lhs in
the subsequence of e with rhs in r . The ith new generated entity
ei is called derived entity of e. And e is called origin
entity of ei . And the set of all derived entities of e is denoted
as D (e ).

According to the previous study [3], we get a derived entity ei

of e by applying rules in a subset of A (e ). In this process, each
original token is rewritten by at most one rule 1. Similar to pre-
vious studies [3, 29], different combination of rules in A (e ) will
result in different different derived entities. Following this routine,
we can get D (e ) by enumerating the combination of applicable
rules. The cardinality of |D (e ) | is O (2n ) where |A (e ) | = n.

Consider the example data in Figure 1 again. For the entity
e3=“UQ AU” in the dictionary, the applicable rules A (e3) =
{r1, r3}. Thus, D (e4) can be calculated as following: {“UQ AU”,

“University of Queensland AU”, “UQ Australia”, “University of
Queensland Australia”}.

For a dictionary of entities E0, we can generate the derived
dictionary E =

⋃
e ∈E0

D (e ).

2.2 Problem Formulation
For the problem of approximate string join with synonyms (ASJS),
previous studies have already defined some synonym-based simi-
larity metrics, such as JaccT [3], SExpand [19] and pkduck [29].
In the problem setting of ASJS, we know the threshold in off-line
step and need to deal with synonym rules and two collections of
strings in the on-line step. So the above similarity metrics apply

1As shown in [3], if a new generated token is allowed to apply rules again, then it
becomes a non-deterministic problem.
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the synonym rules on both strings during the join processing. Sup-
pose the lengths of two strings involved in join is S1 and S2, then
the search space for joining the two strings is O (2S1 · 2S2 )

However, for our AEES problem, we obtain the entity dictio-
nary and synonym rules in the off-line step but need to deal with
the documents and threshold in the on-line step. Moreover, the
length of a document will be much larger than that of entities.
Unlike ASJS which computes the similarity between two strings,
AEES aims at identifying substrings from a document that
are similar to entities. Therefore, applying rules onto documents
in the on-line step will be too expensive for the AEES problem.
Suppose the size of a document is D and the length of an entity is
e, if we directly use the similarity metrics of ASJS problem, the
search space for extracting e would be O (2D · 2e ). While r and
s will always be similar in ASJS problem, in AEES problem the
value of D is usually 10-20 times larger than e. Therefore such a
complexity is not acceptable.

Based on the above discussion, we devise our asymmetric simi-
larity metric JACCAR (for Asymmetric Rule-based Jaccard).
Unlike previous studies on the ASJS problem, we only apply the
synonym rules on the entities to generate derived entities in the
off-line step. In the on-line extraction step, instead of applying
rules on substrings in the document, we just compute the similarity
between the substrings and all derived entities which have been
generated in the off-line step. Here we use Jaccard to evaluate the
syntactic similarity. Our techniques can also be easily extended
to other similarity metrics, such as Overlap, Cosine and Dice. To
verify the JACCAR value between an entity e and a substring s
from the document, we first find A (e ) and generate all derived
entities of e. Then for each ei ∈ D (e ), we calculate the value of
JAC (ei , s). Finally we select the maximum JAC (ei , s) as the
value of JACCAR (e,s). The detailed definition is formalized in
Definition 2.1.

Definition 2.1 (Asymmetric Rule-based Jaccard). Given an
entity e in the dictionary and a substring s in the document, let
D (e ) be the full set of derived entities of e by applying rules in
A (e ). Then JACCAR(e, s )) is computed as follows:

JACCAR(e, s ) = max
e i ∈D (e )

JAC(ei , s ) (1)

We want to highlight that the main difference between previous
synonym-based similarity metrics for ASJS and JACCAR is that
previous approaches apply synonyms on both records that are in-
volved into the join process; while JaccAR only applies synonyms
on the entities in the dictionary. Recall the above time complexity,
by using JACCAR instead of similarity metrics for ASJS problem,
we can reduce the time complexity from O (2D · 2e ) to O (D · 2e ).
The intuition behind JACCAR is that some rules have the same
lhs/rhs, which might lead to potentially dissimilar derived entities.
In order to identify a similar substring, we should focus on the
derived entity that is generated by the set of synonym rules that is
related to the context of substrings. By selecting the derived entity
with the largest syntactic similarity, we can reach the goal of using
the proper set of synonym rules to extract similar substrings from
a document. JACCAR can achieve such a goal by avoiding the
synonym rules which would decrease the similarity and applying
those which increases the similarity.

Using the definition of Asymmetric Rule-based Jaccard,
we can now characterize the AEES problem by Definition 2.2
below. Following previous studies of ASJS [3, 19], it is safe to
assume that the set of synonym rules are given ahead of time. As

Figure 2: Architecture of Aeetes.

many studies can effectively discover synonyms 2, our work can
be seamlessly integrated with them. Although a recent study [29]
supports discovering rules from dataset, it can only deal with
abbreviations while our work here needs to support the general
case of synonyms.

Definition 2.2 (AEES). Given a dictionary of entities E0, a set
of synonym rules R, a document d, and a threshold of Asym-
metric Rule-based Jaccard τ , the goal of AEES is to return all
the (e, s ) pairs where s is a substring of d and e ∈ E0 such that
JACCAR(e, s ) ≥ τ .

Consider the dataset in Figure 1 again. Assume the threshold
value is 0.9, then AEES returns the following pairs as results:
(e2, s2), (e1, s3), (e3, s4). The JACCAR scores of the above three
pairs are all 1.0.

2.3 Overview of Framework
As shown in Figure 2, Aeetes is an end-to-end framework which
consists of two stages: off-line preprocessing and on-line extrac-
tion. The whole process is displayed in Algorithm 1. In the off-line
preprocessing stage, we first find applicable synonym rules for
each entity in the dictionary. Then we apply them to entities and
generate the derived dictionary (line: 3). Next we create a clustered
inverted index for the derived entities, which will be explained
later in Section 3 (line: 4).

In the on-line extraction stage, we have a similarity threshold
τ and a document d as input, and the goal is to extract all similar
substrings from d . To this end, we propose a filter-and-verification
strategy. In the filter step, if a derived entity ei is similar to a
substring s ∈ d, we will regard its corresponding origin entity
e as the candidate of s (line: 5). In this way, we can adopt the
filter techniques of Jaccard to get candidates for JACCAR. We
propose effective pruning techniques in Section 4 to collect such
candidates. In the verification phase, we verify the real value of
JACCAR for all candidates (lines: 6-9).

3 INDEX CONSTRUCTION
In this section, we first review the length and prefix filter tech-
niques, which serves as the cornerstone of our approaches (Sec-
tion 3.1). Then we devise a clustered inverted index to facilitate
the filter techniques (Section 3.2).

3.1 Filtering Techniques Revisit
In order to improve the performance of overall framework, we
need to employ effective filtering techniques. As the length of
a document is much larger than that of an entity, we should be
able to exactly locate mentions of entities in the documents and
avoid enumerating dissimilar candidates. To describe the candidate
substrings obtained from the document, we use the following
terminologies in this paper. Given a document d, we denote a
2These are introduced in Section 7, whereas generalizations of this approach are
further discussed in Section 5.
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Algorithm 1: Aeetes (E0, R, d, τ )
Input: E0: The dictionary of entities; R: The set of synonym

rules; d: The given Docuemnt; τ : The threshold of
Asymmetric Rule-based Jaccard

Output:H = {< e, s > | e ∈ E ∧ s ∈ d ∧ JACCAR(e, s ) ≥ τ }
begin1

InitializeH as ∅;2

Generate a derived dictionary E using E0 and R;3

Construct the inverted index for all derived entities in E;4

Traverse substrings s ∈ d and the inverted index, generate5

a candidate set C of < s, e > pairs;
for each pair < s, e >∈ C do6

Verify the value of JACCAR(s, e );7

if JaccAR(s, e ) ≥ τ then8

Add < s, e > intoH ;9

returnH ;10

end11

substring with start position p and length l asWl
p . A token

t ∈ d is a valid token if there exists a derived entity e
j
i ∈ E

containing t . Otherwise it is an invalid token. We call a group
of substrings with the same start position p in the document as a
window, denoted asWp . Suppose the maximum and minimum
length of substrings in Wp is lmax and lmin respectively, this
window can further be denoted asWp (lmin , lmax ).

One primary goal of the filter step is to prune dissimilar can-
didates. To this end, we employ the state-of-the-art filtering tech-
niques: length filter [25] and prefix filter [9].
Length filter. The basic idea is that if two strings have a large
difference between their lengths, they cannot be similar. Specifi-
cally, given two strings e, s and a threshold τ , if |s | < ⌊|e | ∗ τ ⌋ or
|s | > ⌈ |e |τ ⌉, then we have JAC(s, e ) < τ .

Suppose in the derived dictionary E, the minimum and maxi-
mum lengths of derived entities are denoted as |e |⊥ = min{|e | |e ∈
E} and |e |⊤ = max{|e | |e ∈ E}, respectively. Then given a thresh-
old τ , we can safely claim that only the substring s ∈ d whose
length |s | is within the range [E⊥ E⊤] could be similar to the
entities in the dictionary where E⊥ = ⌊|e |⊥ ∗ τ ⌋, E⊤ = ⌈

|e |⊤
τ ⌉.

Prefix filter. It first fixes a global order O for all tokens from the
dataset (details in next subsection). Then for a string s, we sort
all its tokens according to O and use Psτ to denote the τ -prefix
of string s. Specifically, for Jaccard similarity, we can filter out
dissimilar strings using Lemma 3.1.

LEMMA 3.1 (PREFIX FILTER [9]). Given two strings e, s and
a threshold τ , the length of Psτ (Peτ ) is ⌊(1 − τ ) |s | + 1⌋ (⌊(1 −
τ ) |e | + 1⌋). If Psτ ∩ P

e
τ = ∅, then we have JAC(s, e ) < τ .

3.2 Index structure
With the help of length filter and prefix filter, we can check quickly
whether a substring s ∈ d is similar to an entity e ∈ E0. However,
enumerating s with all the entities one by one is time consuming
due to the huge number of derived entities.

To accelerate this process, we build a clustered inverted index
for entities in the derived dictionary. The inverted index of t ,
denoted as L[t], is a list of (ei ,pos ) pairs where ei is the identifier
of a derived entity containing the token t and pos is the position
of t in the ordered derived entity. For all tokens in the derived
entities, we assign a global order O among them. Then for one
derived entity, we sort its tokens by the global order and pos is the

Figure 3: Index structure.

Figure 4: Example of index structure.

position of t in ei under this order. Here as is same with previous
studies [5, 36], we use the ascending order of token frequency as
the global order O. It is natural to deal with invalid tokens: in the
on-line extraction stage, if a token t ∈ d is an invalid token, we
will regard its frequency as 0. With the help of pos, we can prune
dissimilar entities with the prefix filter.

According to a recent experimental survey [21], the main over-
head in set-based similarity queries comes from the filter cost. To
reduce such overhead caused by traversing inverted index, we can
skip some dissimilar entries by leveraging length filter: in each
L[t], we group all the (ei ,pos ) pairs by the length l = |ei |. And
such a group of derived entities is denoted as Ll [t]. Then when
scanning L[t] for t ∈ s, if l and |s | does not satisfy the condition
of length filter, we can skip Ll [t] in batch to reduce the number
of accessed entries in the inverted index.

In addition, by leveraging the relationship between origin and
derived entities, we can further cluster ei ∈ D (e ) within each
group Ll [t] according to their original entity. Here we denote the
group of entries with origin entity e and length l as Lel . When
looking for candidate entities for a substring s, if a derived entity
ei is identified as a candidate, we will regard its origin entity e
rather than the derived entity itself as the candidate of s. If an
origin entity e has already been regarded as the candidate of s,
we can skip Lel [t] in batch when traversing L[t] where t ∈ s.
Figure 3 visualizes the index structure.

Example 3.2. To have a better understanding of the index struc-
ture, we show the index (in Figure 4) built for the example data in
Figure 1. As we can see, the token t=“University” appears in five
derived entities e12 , e33 , e43 , e24 , and e34 . And the positions of “Uni-
versity” in the corresponding ordered derived entities are 2, 3, 3, 2,
and 2. Therefore, we store five (id, pos) pairs, i.e., (e12 , 2), (e

3
3 , 3),

(e43 , 3), (e
2
4 , 2) and (e34 , 2), in the inverted list L[University]. The

five pairs are organized into three groups (see the blue boxes)
based on their original entities. For instance, (e33 , 3) and (e43 , 3) are
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Algorithm 2: Index Construction(E0, R)
Input: E0: The dictionary of entities; R: The set of synonym

rules.
Output: CI: The Clustered Inverted Index of entities
begin1

Generate a derived dictionary E using E0 and R;2

Initilize CI = ∅ and obtain the global order O;3

foreach derived entitiy e ′ ∈ E do4

l ← |e ′ |, e ← origin entity of e ′;5

foreach token t ∈ e ′ do6

Add the pair (e ′,pos ) into the corresponding7

group in inverted list Lel [t];

foreach L[t] do8

CI = CI ∪ L[t]9

return CI;10

end11

grouped together as both e33 and e43 derived entities are from the
same original entity e3. In addition, they are further clustered into
a group based on their lengths (see the red boxes). In this example,
these five pairs are grouped into a length-4 group as the length of
the derived entities are 4.

Algorithm 2 gives the details of constructing an inverted index.
It first applies synonyms to the entities in the dictionary to get a
derived dictionary (line 2). Then for each token t in the derived
entities, it stores a list of (e ′,pos ) pairs where e ′ is the identifier
of a derived entity containing t and pos is the position of t in this
derived entity according to the global order O (line: 4-7). The
(e ′,pos ) pairs in each list are organized into groups based on the
length l and their corresponding origin entity e (line 5). Finally,
we aggregate all the inverted lists and get the clustered index (line:
9).

4 SLIDING WINDOW BASED FILTERING
Based on the discussion in Section 3, we can come up with a
straightforward solution for the AEES problem: we slide the win-
dowWp (E⊥, E⊤) ∈ d from the beginning position of document
d. For each window, we enumerate the substrings and obtain the
prefix of each substring. Next, we recognize the valid tokens from
the prefix for each substring and scan the corresponding inverted
lists to obtain the candidates. Finally, we verify the candidates and
return all truly similar pairs.

Although we can prune many dissimilar substrings by directly
applying length filter and prefix filter with the help of inverted in-
dex, the straightforward method needs to compute the prefix for a
large number of substrings. Thus it would lead to low performance.
In this section, we propose a sliding window based filtering mech-
anism to efficiently collect the candidates from a given document.
To improve the overall efficiency, we devise effective techniques
based on the idea of sharing computations between substrings and
windows. We first devise a dynamic (incremental) prefix computa-
tion technique to take advantage of the overlaps between adjacent
substrings and windows in Section 4.1. Next we further propose
a lazy strategy to avoid redundant visits on the inverted index in
Section 4.2.

4.1 Dynamic Prefix Computation by Shared
Computation

We have the following observations w.r.t the windows and sub-
strings. On the one hand, for two substrings in the same window

with different length i.e. Wli
p and Wlj

p (E⊥ ≤ li < lj ≤ E⊤),
they share li common tokens. On the other hand, two adjacent
windowsWp (E⊥, E⊤) andWp+1 (E⊥, E⊤) share E⊤−1 common
tokens. This is very likely that there is a large portion of common
tokens between the prefixes ofWli

p andWlj
p and those ofWli

p

andWli
p+1.

Motivated by these observations, we can improve the perfor-
mance of the straightforward solution by dynamically comput-
ing the prefix for substrings in the document. Here we use Pp,lτ
to denote the set of tokens of the τ -prefix(i.e., prefix of length
⌊(1 − τ ) ∗ l + 1⌋) of substringWl

p . Then we can obtain the prefix
of one substring by utilizing that of a previous one. Specifically,
for a given windowWp , we first directly obtain Pp,0τ and then

incrementally compute Pp,lτ on the basis of Pp,l−1τ . Then for each
substringWl

p ∈ Wp , we scan the inverted lists of the valid to-
kens and collect the candidate entities. Similarly, for a substring
Wl

p+1 ∈ Wp+1, we can obtain its prefix Pp+1,lτ from Pp,lτ . Then
we can collect the candidate entities for each substring inWp+1
with the same way above.

To reach this goal, we propose two operations Window Ex-
tend and Window Migrate to dynamically compute the prefix of
substrings and collect candidate pairs for the above two scenarios.

Window Extend This operation allows us to obtain Pp,l+1τ

from Pp,lτ . Figure 5(a) gives an example of extending the window
Wl

p toWl+1
p . As shown, when performing Window Extend, the

length of the substring increases by 1. In this case, the length of
the τ -prefix ofWl+1

p (i.e. ⌊(1−τ ) ∗ (l +1)+1⌋) can either increase
by 1 or stay the same compared with the length of the τ -prefix of
Wl

p (i.e. ⌊(1 − τ ) ∗ l + 1⌋). Then we can perform maintenance on
the prefix accordingly:
• If the length of τ -prefix stays the same, we need to check

whether the newly added token d[p + l + 1] will replace
a token in Pp,lτ . If so, we need to replace a lowest ranked
token t ∈ Wl

p with d[p+l+1] in the new prefix. Otherwise,

there is no change in the prefix i.e. Pp,l+1τ = P
p,l
τ .

• If the length of τ -prefix increases by 1, then we need to
discuss whether the newly added token d[p + l + 1] belongs
to the new prefix Pp,l+1τ . If so, we can just have Pp,l+1τ =

P
p,l
τ ∪ d[p + l + 1]. Otherwise, we should find a token

t ∈ Wl
p and t < P

p,l
τ with the highest rank. Then we have

P
p,l+1
τ = P

p,l
τ ∪ t .

Example 4.1. Assume τ = 0.8, when extending window from
W3

3 to W4
3 (see Figure 6(a)), |P3,3

τ | = ⌊(1 − 0.8) ∗ 3 + 1⌋ = 1
and |P3,4

τ | = ⌊(1 − 0.8) ∗ 4 + 1⌋ = 1. So the length of τ -prefix
stays the same. P3,3

τ = {t4} as t4 has the highest rank in window
W3

3 . The rank of new token t6 in windowW4
3 is 18, so t6 will

not replace a token in P3,3
τ , so P3,4

τ = P
3,3
τ = {t4}. If the rank of

t6 is 2 instead of 18, then t6 will replace a token in P3,3
τ . In this

case, P3,4
τ = P

3,3
τ − {t4} ∪ {t6} = {t6}.

Now let’s see the example in Figure 6(b) where we extend
window fromW4

3 toW5
3 . The length of P3,4

τ is ⌊(1 − 0.8) ∗ 4 +
1⌋ = 1 and P3,4

τ = {t4}. But the length of P3,5
τ now is ⌊(1 −

0.8) ∗ 5 + 1⌋ = 2. The newly added token t7 with rank 2 is in
P
3,5
τ , so P3,5

τ = P
3,4
τ ∪ {t7} = {t4, t7}. If the rank of t7 is 10

instead of 2, then t7 should not be a token in P3,5
τ . In this case,
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Figure 5: Example of window extend and window migrate.

Figure 6: Example of the Window Extend operator and the
Window Migrate operator. Values in the boxes are the ranks
of tokens according to a global order. Value k means the rank-
ing of the token is top-k.

P
3,5
τ = P

3,4
τ ∪ {t5} = {t4, t5} as t5 has the highest rank, t5 ∈ W4

3
and t5 < P

3,4
τ .

Window Migrate This operation allows us to obtain the prefix of
Wl

p+1 from that ofWl
p . Figure 5(b) shows an example of migrat-

ing the windowWl
p toWl

p+1. We can see that when performing
Window Migrate, the length of substring will stay the same. In
this case, for a substringWl

p+1, the token told = d[p] will be
removed and the token tnew = d[p + 1+ l] will be inserted. Then
we discuss the maintenance of prefix according to told : .
• If told < P

p,l
τ , it makes no influence on the prefix, we only

need to check whether tnew will replace a token in Pp,lτ to
form Pp+1,lτ . If so, we need to replace the lowest ranked
token t ∈ Wl

p with tnew in Pp+1,lτ . Otherwise, we have

P
p,l+1
τ = P

p,l
τ .

• If told ∈ P
p,l
τ , we still need to check whether tnew will

appear in Pp+1,lτ in a similar way. If so, we need to replace
told with tnew to generate Pp+1,lτ ; Otherwise, we need to
replace told with a token t s.t. t ∈ Wl

p and t < P
p,l
τ with

the highest rank.

Example 4.2. Consider the case when migrating window from
W4

3 toW4
4 (see Figure 6(c)), bothW4

3 andW4
4 have the length

⌊(1 − 0.8) ∗ 3 + 1⌋ = 1 (assume τ = 0.8). P3,4
τ = {t4} as t4 has

the highest rank in windowW4
3 . After this migration, we have

told = t3 (with rank 10) and tnew = t7 (with rank 2). Then we
know told < P

3,4
τ and tnew will replace a token in P3,4

τ , thus we
have P4,4

τ = P
3,4
τ − {t4} ∪ {t7} = {t7}. If the rank of t7 is 10 rather

than 2 (see the blocks with gray color), then tnew will not replace
a token in P3,4

τ and P4,4
τ = P

3,4
τ = {t4}.

Further, if the rank of t3 is 1 instead of 10 (see the blocks with
yellow color), then P3,4

τ = {t3} as now t3 has the highest rank in
the windowW4

3 . Then we know told ∈ P
3,4
τ and tnew (with rank

2) will occur in P4,4
τ , so P4,4

τ = P
3,4
τ − {told } ∪ {tnew } = {t7}. If

the rank of t7 is 10 rather than 2 (see the blocks with gray color),
then we need to replace told with t4 as t4 has the highest rank
such that t4 ∈ W4

3 and t4 < P
3,4
τ . Therefore, P4,4

τ = {t4}.

We show the steps of candidate generation with dynamic prefix
computation in Algorithm 3. To implement the operations defined
above, we need to use some helper functions. First, we define
the function ScanInvetedIndex which takes the inverted index
and Pp,lτ as input and return all the candidate entities ofWl

p by
visiting the inverted indexes that are corresponding to valid tokens
in Pp,lτ . For a valid token t ∈ P

p,l
τ , we can obtain the candidates

from the inverted index L[t]. Note that since we have grouped all
items in the inverted index by length, for a group Lle [t] ∈ L[t],
if le and l does not satisfy the length filter, we can skip Lle [t] in
batch. Similarly, if the position of t is beyond the τ -prefix of a
derived entity ei , we can also discard ei .

Then we devise the function ExtCandGeneration to support
the Window Extend operation. It first derives the prefix of the
current substring from the prefix of previous substring according
to the above description; then it obtains the candidates for the cur-
rent substring. Similarly, we also devise the MigCandGeneration
function to support Window Migrate operation. Due to the space
limitation, we omit their pseudo codes here.

Algorithm 3: Candidate Generation(CI, d, τ )
Input: CI: The Inverted Index; d: The given Document; τ :

The threshold of Asymmetric Rule-based Jaccard
Output: C: The set of candidate pairs
begin1

Initialize C ← ∅, p ← 1;2

Obtain the prefix Pp,E⊥τ ;3

C = C∪ ScanInvetedIndex(CI,Pp,E⊥τ );4

for len ∈ [E⊥ + 1, E⊤] do5

Clenp , Pp,lenτ ← ExtCandGeneration(Pp,len−1τ );6

C = C ∪Clen ;7

while p < |d | − E⊥ do8

if Cp−1 , ∅ then9

for len ∈ [E⊥, E⊤] do10

C = C∪MigCandGeneration(Pp−1,lenτ );11

else12

Obtain the candidates of Cp in the same way of13

line 6 to line 7;
p ← p + 1;14

Perform Window Extend on the last window with length15

|d | − E⊥ + 1 to collect candidates;
return C;16

end17
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The whole process of the algorithm is as follows. We first
initialize the candidate set C and start from the first position of the
document (line: 2). Here we denote the candidates from window
Wp as Cp . For the first window, we perform Window Extend and
collect all the candidates of substringsWl

0 (line: 4-line: 7). Next
we enumerate the start position of the window and look at the
previous window. If the previous window has candidate substrings,
we will perform Window Migrate on the previous window to
obtain the prefix for each substring in the current window and
then collect the candidates for each substring (line: 9). Otherwise,
we will obtain the prefix of each substring with Window Extend
(line: 12). Such processes are repeated until we reach the end of
the document. Finally, we return all the candidates and send them
to the verification step (line: 16).

Example 4.3. Consider the example data in Figure 1 again. We
have E⊥ = 1 and E⊤ = 5. Assume document d has 1000 tokens.
The total number of the function calls of ExtCandGeneration
and MigCandGeneration is 1000×(E⊤−E⊥) = 4000. Notice that,
both ExtCandGeneration and MigCandGeneration compute
the prefix incrementally. However, the straightforward method
needs to compute the prefix for 500, 500 substrings, as it requires
to enumerate all possible substrings and compute the prefix for
each of them independently.

4.2 Lazy Candidate Generation
With the dynamic prefix computation method, we avoid obtaining
the prefix of each substring from scratch. However, there is still
room for improvement. We can see that in Algorithm 3, we need
to traverse the inverted indexes and generate candidates for all
the valid tokens after obtaining the prefix. As substrings within
the same window could have a large overlap in their prefix, they
could also share many valid tokens. Moreover, a valid token t is
also likely to appear anywhere within the same document. Even
if t belongs to disjoint substrings, the candidate entities are still
from the same inverted index L (t ).

To further utilize such overlaps, we come up with a lazy strategy
for candidate generation. The basic idea is that after we compute
the prefix of a substring, we will not traverse the inverted indexes
to obtain candidates immediately. Instead, we just collect the
valid tokens for each substring and construct a global set of valid
tokens T . Finally, we will postpone the visits to inverted indexes
after we finish recognizing all the valid tokens and corresponding
substrings. In this way, for each valid token t ∈ T , we only need
to traverse its associated inverted index Lt once during the whole
process of extraction for one document.

The difficulty of implementing the lazy strategy is two-fold.
The first problem, i.e. the one of large space overhead required
is discussed next, whereas the second one, i.e. the one related
to different substring lengths is discussed later. Since we do not
collect candidates immediately for each substring, we need to
maintain the valid tokens for each substring. As the number of
substrings is rather large, there will be heavy space overhead. To
solve this problem, we take advantage of the relationship between
substrings within the same window. Here we denote the valid
token set of a substringWl

p as Φp (l ). For one windowWp , we
only keep the full contents of Φp (E⊥). To obtain Φp (l ), l > E⊥,
we utilize a light-weighted structure delta valid token,
which is represented as a tuple < t , ◦ >. Here t is the valid token
that is different from the previous substring; ◦ is a symbol to
denote the operation on t . If ◦ is + (−), it means we need to insert
t into(remove t from) the previous valid token set. We denote the

set of delta valid tokens of substringWl
p as ∆ϕ (l ). And then we

have:

Φp (l + 1) = Φp (l )
⊎

∆ϕ (l ) (2)

where
⊎

means applying all operations of the corresponding token
in ∆Φ(l ) on the given valid token set. If ∆ϕ (l ) = ∅, it means that
Φp (l + 1) = Φp (l ). Then we can obtain all valid tokens and the
corresponding candidate substrings of windowWp as:

Ψ(p) =
⋃

l ∈[E⊥,E⊤]
<Wl

p ,Φp (E⊥)
⊎

Σli=E⊥∆ϕp (i ) > (3)

Example 4.4. Consider the example document in Figure 6
again. Assume we have E⊥ = 1, E⊤ = 4 and τ = 0.6. Φ3 (1) = {t3}
as t3 is the only valid token in P3,1

τ . Then Φ3 (2) = Φ3 (1)
⊎
{<

t3,− >, < t4,+ >} as t3 is not a valid token for W2
3 but t4 is.

Similarly, we have Φ3 (3) = Φ3 (2)
⊎
{< t5,+ >} and Φ3 (4) =

Φ3 (3). Therefore, according to Equation 3, the valid tokens and
the corresponding candidate substrings of window W4

3 can be
expressed as:

Ψ(3) = <W1
3 , {t3} >

⋃
<W2

3 , {t4} >
⋃

<W3
3 , {t4, t5} >

⋃
<W4

3 , {t4, t5} >

The second issue follows from the fact that the candidate sub-
strings have different lengths. For one valid token t ∈ T , it might
belong to multiple Φp (l ) with different values of l . Then we should
be able to identifyWl

p with different l by scanningL[t] only once.
To reach this goal, we propose an effective data structure to con-
nect the candidate substrings and list of entities. Specifically, after
moving to the end of the document using Window Extend and
Window Migrate, we collect the first valid token set Φp (E⊥)
and delta valid token sets ∆ϕ (l ) for all windows Wp . Next we
obtain Ψ(p) using Equation 3 and construct an inverted index I
for candidate substrings. Here a substringWl

p ∈ I[t] means that

Wl
p is a candidate for entities in L[t]. Then to meet the condition

of length and prefix filter, we also groupWl
p ∈ I[t] by length

l , denoted as Il [t]. For substrings s ∈ Il [t], only the entities in
groups L |e |[t] s.t. |e | ∈ [⌊l ∗ τ ⌋, ⌈ lτ ⌉] can be candidate of s. In
this way, we can obtain the entity for allWl

p with t ∈ Φp (l ) by

scanning L[t] only once. Then for a candidate substringWl
p , the

set of entities can be obtained by
⋃

t ∈Wl
p

L |e |[t].

Algorithm 4 demonstrates the steps of lazy candidate gener-
ation. We first collect Φp (0) and ∆ϕp (l ) for each window using
the same method in Algorithm 3. We then initialize the global
token dictionary and inverted index for substrings (line: 3). But
unlike Algorithm 3, here we only track the valid tokens for each
substring instead of generating the candidates. Next, we generate
the valid token set for each substring using Equation 2 (line: 4).
And we can collect all the valid tokens and their corresponding
substrings from them (line: 5- 7). With such information, we can
build a mapping between the groups with different lengths |e |
in the inverted index and the candidate substrings with different
lengths l s.t. ⌊|e | ∗ τ ⌋ ≤ l ≤ ⌈ |e |τ ⌉(line: 9). Then we scan the
inverted list only once and collect the candidates. Finally, the enti-
ties for a candidate substring can be obtained from the union of the
inverted indexes of all its valid tokens (line: 11). We summarize
the correctness of Lazy Candidate Generation in Theorem 4.5.

THEOREM 4.5 (CORRECTNESS). The Lazy Candidate Gener-
ation method will not involve any false negative.
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Algorithm 4: Lazy Candidate Generation(CI, d, τ )
Input: CI: The Inverted Index; d: The Document; τ : The

threshold of JAC
Output: C: The candidates
begin1

Use similar methods in Algorithm 3 to generate Φp (0)2

and ∆ϕp (l ) for each windowWp .
Initialize T and I;3

Generate all valid token set ϕl (p) using Equation 2;4

foreach ϕp (l ) do5

collect the valid tokens, update T ;6

Construct the inverted index for substrings I;7

foreach t ∈ T do8

Map entities in L |e |[t] with candidate substrings in9

Il [t] s.t. length filter;
Scan L[t], obtain candidates for each l ;10

C = C∪ <Wl
p ,
⋃
t ∈Wl

p
L |e |[t] >;11

return C;12

end13

5 DISCUSSION
In this section, we discuss about the scope as well as the general-
ization of our work.
Gathering Synonym Rules We first discuss about the way to
obtain synonym rules. In our work, we make an assumption that
the set of synonyms are known ahead of time. But it will not influ-
ence the generalization of our Aeetes framework. For a collection
of documents, there are multiple sources of the synonyms rules.
We list some of them below:

• Firstly, the synonym rules can come from common sense
as well as knowledge bases. For example, we can use the
synonyms provide by WordNet 3 as the input of Aeetes.
The common sense knowledge can also provide rich source
of synonyms, such as the abbreviation of institutes, address
and locations used in our DBWorld and USJob datasets.
• Secondly, some domain specific applications provided the

set of synonyms. For example, in the PubMed dataset,
the synonyms are created by domain experts, which are
very important information in understanding the medical
publications. Therefore, performing AEES on such kinds
of applications is with great values of practical application.
• Lastly, we can also discover the synonyms from docu-

ments with existing systems. For example, the output of [7]
and [22] can be utilized directly as the input of our frame-
work.

There are also some previous studies about data transformation
and learning by example, which are summarized in Section 7.
These studies are orthogonal to our work as they focused on
detecting high-quality set of rules while our problem is about how
to perform approximate entity extraction with predefined synonym
rules. The synonyms discovered by them can also be used as the
input of our framework.
Generation of Non-conflict Rule Set Given an entity e, let
Ac (e ) be the set of complete applicable rules of e and lhsi be the
left-hand of the rule ri (⟨ lhsi⇔ rhsi ⟩). Without loss of generality,
we assume the lhs of an applicable rule is a subsequence of the
entity. Two rules ri and r j are conflict rules if lhsi ∩ lhsj , ∅. Our

3https://wordnet.princeton.edu/

Figure 7: Hypergraph for the applicable rules of the entity
{a,b, c,d }.

goal is to choose a non-conflict setA (e ) ⊆ Ac (e ) such that (i) all
rules in A (e ) are non-conflict and (ii) the cardinality of A (e ) is
as large as possible.

The non-conflict rule set can be obtained in the following way:
(1) First build a hypergraph G = (V ,E,W ) for Ac (e ). Each

vertex v ∈ V corresponds to a set of applicable rules whose
left-hands are the same. The number of rules in the vertex
v is the weight w of v. There is an edge e ∈ E between two
vertices whose rules are non-conflict.

(2) With such a hypergraph, we can obtain the set of non-
conflict rules by finding the maximum weighted clique in
the hypergraph G.

Example 5.1. Consider the set of complete applicable rules
Ac (e ) for the entity e = {a,b, c,d } in Figure 7(a). The correspond-
ing hypergraphG is shown in Figure 7(b). For instance,v1 contains
{r1, r2, r3} as they have identical left-hands, i.e., {a,b}. There is an
edge between v1 and v2 since {a,b} ∩ {c} = ∅. In this hypergraph,
{v1,v2,v3} is the maximal weighted clique. Therefore, the final
non-conflict applicable rules A (e ) = {r1, r2, r3, r4, r5}.

Unfortunately, finding the maximal weighted clique is a well-
known NP-Complete problem. In order to efficiently find A (e )
with large enough cardinality, we adopt a greedy algorithm with
the following steps. Firstly, we choose the vertex v∗ with maximal
weight as a start point. Next we pick the next vertex v with the
maximal weight among the unseen vertices such that adding v to
the current clique is still a clique. Then we repeat step 2 until no
more vertex can be added into the result set.

Example 5.2. Consider the set of complete applicable rules
Ac (e ) for entity e = {a,b, c,d } in Figure 7 again. The greedy
algorithm first chooses v1 as it has the maximal weight. Then
the algorithm picks v2 since , it is still a clique after adding
v2. Similarly, v3 is also added. Finally, the clique is {v1,v2,v3}
and the corresponding non-conflict applicable rules are A (e ) =
{r1, r2, r3, r4, r5}. Here the greedy algorithm achieves the optimal
result.

6 EXPERIMENTS
6.1 Environment and Settings
In this section, we evaluated the effectiveness and efficiency of all
proposed algorithms on three real-life datasets:
• PubMed. It is a medical publication dataset. We selected
100, 000 paper abstracts as documents and keywords from
10, 000, 000 titles as entities to construct the dictionary. In
addition, we collect 50, 476 synonym Mesh 4 (Medical
Subject Headings)5 term pairs, which are provided by the
domain experts.

4https://www.ncbi.nlm.nih.gov/mesh
5Mesh is the NLM controlled vocabulary thesaurus used for indexing articles for
PubMed.
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• DBWorld. We collected 1, 000 message contents as docu-
ments and keywords in 1, 414 titles as entities in the dictio-
nary. We also gather 1076 synonym rules including confer-
ence names, university names and country names which
are common sense knowledge.
• USJob. We chosen 22, 000 job descriptions as documents,

and 1, 000, 000 keywords in the job titles as entities in the
dictionary. In addition, we collected 24, 305 synonyms in-
cluding the abbreviations of company names, state names
and the different names of job positions.

Table 1 gives the statistics of datasets, including the average num-
ber of tokens in documents (avg |d |), average number of tokens in
entities (avg |e |), and average number of applicable rules on one
entity (avg |A (e ) |).

Table 1: Dataset statistics.

# docs # entities # synonyms avg |d | avg |e | avg |A (e ) |

PubMed 8, 091 370, 836 24, 732 187.81 3.04 2.42
DBWorld 1, 414 113, 288 1, 076 795.89 2.04 3.24

USJob 22, 000 1, 000, 000 24, 305 322.51 6.92 22.7

All experiments were conducted on a server with an Intel(R)
Xeon(R) CPU processor (2.7 GHz), 16 GB RAM, running Ubuntu
14.04.1. All the algorithms were implemented in C++ and com-
piled with GCC 4.8.4.

6.2 Evaluation of Effectiveness
First, we evaluate the effectiveness of our metric JACCAR by
comparing with the state-of-the-art syntactic similarity metrics.
Ground truth For our task, there is no ground truth on these
datasets. Borrowing the idea from previous studies on ASJS prob-
lem [19, 29], we manually create the ground truths as following:
We marked 100 substrings in the documents of each dataset such
that each of the marked substrings has one matched entity in
the origin entity dictionary. Each pair of marked substring and
the corresponding entity is a ground truth. For example, (Pri-
mary Hypertrophic Osteoarthropathy, Idiopathic Hypertrophic
Osteoarthropathy), (Univ. of California Berkeley USA, UC Berke-
ley USA), and (SDE in FB, software development engineer in
Facebook) are ground truths in PubMed, DBWorld and USJob
dataset respectively.

Baseline methods To demonstrate the effectiveness of applying
synonym rules, we compare JACCAR with two state-of-the-art
syntactic similarity metrics: (i) Jaccard, which is the original Jac-
card similarity; and (ii) Fuzzy Jaccard (FJ), which is proposed
in [32]. As they are just based on syntactic similarity, they cannot
make use of the synonym rules.

We evaluate the effectiveness of all the similarity measures by
testing the Precision (short for “P”), Recall (short for “R”), and
F-measure (short for “F”), where F-measure = 2×P×R

P+R on the three
datasets.

Results Table 2 reports the precision, recall and the F-measure
of all similarity measures on three datasets. We have the following
observations. Firstly, JACCAR obtains higher F-measure scores
than Jaccard and FJ. The reason is that JACCAR can use synonym
rules to detect the substrings that are semantically similar to the
entities, which indicates the advantage of integrating syntactic
metrics with synonyms in the entity extraction problem. Secondly,
FJ has higher Precision scores than Jaccard as FJ can identify

tokens with minor typos. However, Jaccard has higher Recall
scores than FJ because FJ may increase the similarity score for
substrings that are not valid ground truth.

We present a sample of ground truth for each dataset in Fig-
ure 8 to perform a case study on the quality of three similarity
metrics. We can see that in PubMed, both Jaccard and FJ are
equal to 0. This is because the ground truth substring has no com-
mon (or similar) tokens with the entity. JACCAR =1.0 as JACCAR
can apply the second synonym to the entity. In DBWorld, FJ has
higher similarity score than Jaccard. The reason is that Jaccard can
only find three common tokens “The University of ” between the
substring and the entity. But FJ can get extra benefit by identifying
“Aukland” in the document is similar to “Auckland” in the entity
(as their edit-distance is only 1). JACCAR achieves the highest
score as JACCAR can apply the first synonym on the entity to ob-
tain two more common tokens, i.e., “New Zealand”. Similarly, in
USJob, FJ has a higher score than Jaccard and JACCAR achieves
the highest score.

6.3 Evaluation of Efficiency
Next we look at the efficiency of proposed techniques. We use
the average extraction time per document as the main metric for
evaluation.
End-to-end performance First we report the end-to-end perfor-
mance. As there is no previous study on the AEES problem, we
extend Faerie [13], which reports the best performance in AEE
task, and propose FaerieR to serve as the baseline method. In
order to let FaerieR handle the AEES problem, for each dataset
we perform a preprocessing by using all applicable synonym rules
to all entities in the dictionary so as to construct a derived dictio-
nary. Then we use such a derived dictionary as the input of Faerie.
After that, we conduct post-processing to recognize the pairs of
origin entity and substrings in the document. For FaerieR, we
omit the preprocessing and post-processing time and only report
the extraction time by the original Faerie framework. For the
implementation of Faerie, we use the code obtained from the
original authors.

We compare the overall performance of Aeetes and FaerieR
with different threshold values ranging from 0.7 to 0.9 on all three
datasets. As shown in Figure 9, Aeetes outperforms FaerieR
by one to two orders of magnitudes. The main reason is that
we proposed a series of pruning strategies to avoid duplication
computation came from applying synonyms and the overlaps in
documents.

In the experiment, we observe that the bottleneck of memory
usage is index size. And we report it for Aeetes and FaerieR as
following. In PubMed, the index sizes of Aeetes and FaerieR
are 10.6 MB and 6.9 MB, respectively. In DBWorld, the index
sizes of Aeetes and FaerieR are 4.2 MB and 1.9 MB, respec-
tively. While in USJob, the results are 113.2 MB and 54.3 MB,
respectively. We can see that compared with FaerieR, the clus-
tered inverted index of Aeetes has around twice larger size than
FaerieR. The main reason is that we need to record the group
relation for clustered index and use hashing tables to accelerate
the query processing. But Aeetes can achieve much better perfor-
mance by proper designing the search algorithm and utilizing the
memory space smartly.

Optimizations Techniques We evaluate the filtering techniques
proposed in Section 4. We implement four methods: Simple is the
straightforward method to directly apply length and prefix filter
by enumerating substrings; Skip is the method that adopts the
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Table 2: Quality of similarity measures (P: short for Precision, R: short for Recall, F: short for F-measure).

PubMed DBWorld USJob

θ
Jaccard FJ JaccAR Jaccard FJ JaccAR Jaccard FJ JaccAR

P R F P R F P R F P R F P R F P R F P R F P R F P R F
0.7 0.24 0.73 0.36 0.35 0.73 0.47 0.96 0.89 0.92 0.24 0.67 0.35 0.39 0.68 0.50 0.92 0.91 0.92 0.20 0.71 0.31 0.37 0.77 0.50 0.94 0.94 0.94
0.8 0.14 0.88 0.24 0.34 0.77 0.47 0.95 0.93 0.94 0.24 0.89 0.38 0.36 0.84 0.50 0.90 0.94 0.92 0.20 0.83 0.32 0.29 0.85 0.43 0.92 0.97 0.94
0.9 0.12 0.92 0.21 0.28 0.85 0.42 0.95 0.98 0.96 0.23 0.92 0.37 0.35 0.90 0.50 0.88 0.93 0.90 0.18 0.90 0.30 0.25 0.86 0.39 0.92 0.98 0.95

Figure 8: Three examples to illustrate the quality of similarity measures. The substrings with red font in the documents are
marked as ground truth results.
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Figure 9: End-to-end performance

clustered inverted index to skip dissimilar groups; Dynamic is the
method that dynamically computes the prefix for substrings in a
document; Lazy is the method that generates candidates in a lazy
manner.

The results of the average extraction time are shown in Fig-
ure 10. We can see that Lazy achieves the best results. This is
because it only needs to scan the inverted index of each token
once. Although it requires some extra processing to allocate the
candidate substrings with entities, the overhead can be very slight
with proper implementation. The performance of Dynamic ranks
second as it can dynamically maintain the prefix and does not need
to compute from scratch. The reason it has worse performance
than Lazy is that if a valid token exists in different windows, it
needs to scan the same inverted index multiple times, which leads
to heavy filter cost. Skip performs better than Simple as it utilizes
the clustered inverted index to avoid visiting groups of entities
that do not satisfy the requirement of length filter.

To further demonstrate the effect of filter techniques, we report
in Figure 11 the average number of accessed entries in the inverted
indexes, which provides a good metric to evaluate the filter cost.
We can see that the results are consistent with those in Figure 10.
For example, on the PubMed dataset when τ = 0.8, Simple needs
to access 326, 631 inverted index entries per document; Skip re-
duces the number to 126, 895; while the numbers of Dynamic and

Lazy are 16, 002 and 6, 120, respectively.

Scalability Finally, we evaluate the scalability of Aeetes. In
Figure 12, we vary the number of entities in each dataset and test
the average search time for different threshold values. We can see
that as the number of entities increased, Aeetes scales very well
and achieves near linear scalability. For example, on the USJob
dataset for τ = 0.75, when the number of entities ranges from
200, 000 to 1, 000, 000, the average running time is 43.26, 48.82,
62.71, 80.43 and 125.52 ms respectively.

7 RELATED WORK
Approximate dictionary-based Entity Extraction Previous
studies focusing on this problem only consider syntactic simi-
larity. Chakrabarti et al. [8] proposed a hash-based method for
membership checking. Wang et al. [35] proposed a neighborhood
generation-based method for AEE with edit distance constraint,
while Deng et al. [12] proposed a trie-based framework to im-
prove the performance. Deng et al. [13] proposed Faerie, an
all-purposed framework to support multiple kinds of similarity
metrics in AEE problem. Wang et al. [34] addressed the local
similarity search problem, which is a variant of AEE problem but
with more limitations. All above methods only support syntactic
similarity and cannot take synonyms into consideration.
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Figure 10: Effect of Filtering techniques: Query Time
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Figure 11: Effect of Filtering techniques: Number of Accessed Entries
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Figure 12: Scalability: varying number of entities.

String Transformation and Synonym Discovery In some sce-
narios, the synonym rules may not exist, and it is impractical for a
human to manually create a large set of rules. To solve this prob-
lem, some previous studies learn the rules using both supervised
and unsupervised techniques. Arasu et al. [4] learned general syn-
tactic rules from a small set of given matched records. Singh et
al. improved the performance by leveraging language models [27]
and semi-supervised learning [26]. Abedjan at al. [1] proposed the
DataXFormer system to discover general transformations from
web corpus. Singh et al. [28] addressed the same problem using
program synthesis rules. Chakrabarti et al. [7] proposed novel
similarity functions for synonym discovery from web scale data
while He et al. [16] focused on finding synonyms in web tables.
Qu et al. [22] discovered synonyms from text corpus with the help
of knowledge base.

Entity Matching Entity matching has been a popular topic for
decades. An extensive survey is conducted in [14]. Bilenko et
al. [6] treated entity matching as a classification problem and
proposed machine learning based solutions. Argrawal et al. [2]
improved the quality of entity matching by considering errors

in words and proposed efficient indexing techniques to improve
performance. Wang et al. [33] proposed a learning-based frame-
work to automatically learn the rules for entity matching. Firmani
et al. [15] adopted a graph based model to develop an on-line
framework for entity matching. Verroios et al. [30] integrated hu-
man ratings into entity matching and designed a crowdsourcing
framework. Lin et al. [18] proposed a novel ranking mechanism
to investigate the combinations of multiple attributes. Such stud-
ies mainly worked on collections of entities, while our problem
requires to recognize approximate matching entities from docu-
ments. It could be an interesting direction of the future work to
extend our framework to support other semantic similarity func-
tions proposed here.
String Similarity Query Processing Approximate dictionary-
based Entity Extraction (AEE) is a typical application in the field
of string similarity query processing. There are also many studies
on string similarity queries. Most of them only support syntactic
similarity metrics. Among them some are designed for token-
based similarity metrics, i.e. Jaccard, Cosine and Overlap, such
as [9, 23, 36, 39, 40]; Others are designed for character-based sim-
ilarity metrics i.e. edit distance, [17, 31, 37, 38]. Wang et al. [32]
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combined above two categories of similarity metrics and proposed
an efficient framework to support string similarity join. Some
previous works tried to support synonym rules in the problem of
string similarity join. They proposed some similarity functions to
integrate the semantic of synonym rules into Jaccard similarities,
such as JaccT [3], SExpand [19, 20] and pkduck [29]. However,
they cannot be applied in the AEES problem as we have discussed
in Section 2.

8 CONCLUSION AND FUTURE WORK
In this paper, we formally introduced the important problem of Ap-
proximate dictionary-based Entity Extraction with Synonyms and
proposed an end-to-end framework Aeetes as the solution. We
proposed a new similarity metrics to combine syntactic similarity
metrics with synonyms and avoid the large overhead of on-line
processing documents. We then designed and implemented a filter-
and-verification strategy to improve the efficiency. Specifically,
for the filtering step, we proposed a dynamic prefix computing
mechanism and a lazy candidate generation method to reduce the
filter cost. Experimental results on real world dataset demonstrated
both the efficiency and effectiveness of our proposed framework.

For future work, we will (i) devise techniques to improve the
verification step; (ii) extend our framework to support character-
based similarity functions such as Edit Distance for tolerating
typos in documents; (ii) support weighted synonym rules by as-
signing different weights to different rules; and (iii) integrate our
techniques into open-source database systems.
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