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ABSTRACT
Local outlier techniques are known to be effective for detecting

outliers in skewed data, where subsets of the data exhibit diverse

distribution properties. However, existing methods are not well

equipped to supportmodern high-velocity data streams due to the

high complexity of the detection algorithms and their volatility

to data updates. To tackle these shortcomings, we propose local

outlier semantics that operate at an abstraction level by lever-

aging kernel density estimation (KDE) to effectively detect local

outliers from streaming data. A strategy to continuously detect

top-N KDE-based local outliers over streams is designed, called

KELOS – the first linear time complexity streaming local outlier

detection approach. The first innovation of KELOS is the abstract

kernel center-based KDE (aKDE) strategy. aKDE accurately yet

efficiently estimates the data density at each point – essential for

local outlier detection. This is based on the observation that a

cluster of points close to each other tend to have a similar influ-

ence on a target point’s density estimation when used as kernel

centers. These points thus can be represented by one abstract

kernel center. Next, the KELOS’s inlier pruning strategy early

prunes points that have no chance to become top-N outliers. This

empowers KELOS to skip the computation of their data density

and of the outlier status for every data point. Together aKDE and

the inlier pruning strategy eliminate the performance bottleneck

of streaming local outlier detection. The experimental evaluation

demonstrates that KELOS is up to 6 orders of magnitude faster

than existing solutions, while being highly effective in detecting

local outliers from streaming data.

1 INTRODUCTION
Motivation. The growth of digital devices coupled with their

ever-increasing capabilities to generate and transmit live data

presents an exciting new opportunity for real time data analytics.

As the volume and velocity of data streams continue to grow,

automated discovery of insights in such streaming data is critical.

In particular, finding outliers in streaming data is a fundamental

task in many online applications ranging from fraud detection,

network intrusion monitoring to system fault analysis. In gen-

eral, outliers are data points situated away from the majority

of the points in the data space. For example, a transaction of a

credit card in a physical location far away from where it has

normally been used may indicate fraud. Over 15.4 million U.S

residents were victims of such fraud in 2016 according to [3]. On

the other hand, as more transactions take place in this new loca-

tion, the previous transaction may appear legitimate as it begins
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to conform to the increasingly expected behavior exemplified by

the new data. Thus, in streaming environments, it is critical to

design a mechanism to efficiently identify outliers by monitoring

the statistical properties of the data relative to each other as it

changes over time.

State-of-the-Art. To satisfy this need, several methods [20, 21]

have been proposed in recent years that leverage the concept

of local outlier [6] to detect outliers from data streams. The lo-

cal outlier notion is based on the observation that real world

datasets tend to be skewed, where different subspaces of the data

exhibit different distribution properties. It is thus often more

meaningful to decide on the outlier status of a point based on its

difference with the points in its local neighborhood as opposed

to using a global density [9] or frequency [5] cutoff threshold

to detect outliers [11]. More specifically, a point x is considered

to be a local outlier if the data density at x is low relative to that

at the points in x ’s local neighborhood. Unfortunately, existing
streaming local outlier solutions [20, 21] are not scalable to high

volume data streams. The root cause is that they measure the

data density at each point x based on the point’s distance to

its k nearest neighbors (kNN). Unfortunately, kNN is very sen-

sitive to data updates, meaning that the insertion or removal

of even a small number of points can cause the kNN of many

points in the dataset to be updated [20]. Since the complexity

of the kNN search [6] is quadratic in the number of the points,

significant resources may be wasted on a large number of un-

necessary kNN re-computations. Therefore, those approaches

suffer from a high response time when handling high-speed

streams. For example, it takes [20, 21] 10 minutes to process just

100k tuples as shown by their experiments. Intuitively, kernel

density estimation (KDE) [26], an established probability density

approximation method, could be leveraged for estimating the

data density at each point [16, 23, 27]. Unlike kNN-based density
estimation that is sensitive to data changes, KDE estimates data

density based on the statistical properties of the dataset. There-

fore, it tends to be more robust to gradual data changes and thus

a better fit for streaming environments. However, surprisingly,

to date no method has been proposed that utilizes KDE to tackle

the local outlier detection problem for data streams.

Challenges. Effectively leveraging KDE in the streaming context

comes with challenges. Similar to kNN search, the complexity of

KDE is quadratic in the number of points [26]. While the compu-

tational costs can be reduced by running the density estimation

on kernel centers sampled from the input dataset, sampling leads

to a trade-off between accuracy and efficiency. Although a low

sampling rate can dramatically reduce the computational com-

plexity, one must be cautious because the estimated data density

at each point may be inaccurate due to an insufficient number of

kernel centers. On the other hand, a higher sampling rate will

certainly lead to a better estimation of the data density. How-

ever, the computational costs of KDE increase quadratically with

more kernel centers. With a large number of kernel centers, KDE
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would be at risk of becoming too costly to satisfy the stringent re-

sponse time requirements of streaming applications. Due to this

accuracy versus efficiency trade-off, to the best of our knowledge,

no method has successfully adapted KDE to function efficiently

on streaming data to date.

1. Stream Clustering

Abstract Kernel Centers

Streaming Data
2. Inlier Pruning

Lower
Bound

Upper 
Bound

3. Outlier Score Calculation

Outliers

Previous WindowCurrent Window

Figure 1: An illustration of KELOS approach.

Proposed Solution. In this work, we propose a scalable KDE-

based strategy (Fig. 1) for detecting top-N local outliers over

streams, or in short KELOS. KELOS provides the first practical
solution for local outlier detection on streaming data. Our key

contributions are given below.

• New KDE-based semantics are proposed for the continuous

detection of the top promising outliers from data streams. This

establishes a foundation for the design of a scalable streaming

local outlier detection method.

• A notion of the abstract kernel center is introduced to solve

the accuracy versus efficiency trade-off of KDE. This leverages

the observation that kernel centers close to each other tend to

have a similar strength of influence on the densities at other

points. These nearby points thus can be clustered together and

considered as one abstract kernel center weighted by the amount

of data it represents. Compared to the traditional sampling-based

KDE, our strategy achieves accurate density estimation using

much fewer kernel centers. This in turn speeds up the quadratic

complexity process of local density estimation. This notion of ab-

stract kernel centers by itself could be applied to a much broader

class of density estimation related stream mining tasks beyond

local outlier detection.

• Unlike existing techniques [20, 21], which detect outliers by

computing the data density and then the outlierness score for

every data point, KELOS quickly prunes the vast majority of

the data points that have no chance to become outliers. The

more expensive KDE method itself is only used thereafter to

evaluate the remaining much smaller number of potential outlier

candidates.

• Putting these optimizations together, we obtain the first linear

time complexity streaming local outlier detection approach that

outperforms the state-of-the-arts by up to 6 orders of magnitudes

in speed confirmed by our experiments on real world datasets.

2 PRELIMINARIES
2.1 Local Outlier
Given a point xi , it is a local outlier if the data density at xi (e.g.
inverse of average distances to its kNN) is significantly lower

than the densities at xi ’s neighbors.
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Figure 2: Local outlier detection using local densities.

As illustrated in Fig. 2, although the densities at x1 and x2 are
both low, the density at x1 is quite different than the densities

at the locations of its neighbors. However, the densities at the

neighbors of x2 is similar to x2. Therefore, x1 is more likely to be

an outlier than x2 due to its relatively low density in contrast to

those at its neighbors. Therefore, conceptually measuring a point

xi ’s status of being a local outlier corresponds to the two-steps:
(1) Estimate the density at xi and the densities at its neighbors;

(2) Compute the outlierness score of xi based on the deviation of

the density at xi in contrast to those at its neighbors.

2.2 Kernel Density Estimation

Gaussian Kernel Gaussian Kernel

(a) Bandwidth h = 0.1

Gaussian Kernel Gaussian Kernel

(b) Bandwidth h = 0.3

Figure 3: An example of univariate kernel density estimator us-
ing Gaussian kernel with different bandwidth.

Kernel density estimation (KDE) is a non-parametric method

to estimate the probability density function (PDF) of a dataset

X = {x1, · · · ,xn }. Given a point xi , the kernel density estimator

of X computes how likely xi is drawn from X . This computed

probability can be interpreted as the “data density” at xi in X .

The density at xi in X is:

˜f (xi ) =
1

m

m∑
j=1

Kh (|xi − kc j |). (1)
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Kernel Centers. kc j ∈ KCwhere 1 ≤ j ≤ m are called the kernel

centers in the estimator. Typically, kc j is a point sampled from X .

The selected set of kernel centers must be sufficient to represent

the data distribution of X [26]. Each kernel center kc j carries a
kernel function Kh . The density contribution by a kernel center

kc j is calculated based upon the distance from kc j to the target

point xi . The density at xi is estimated by the average density

contribution by all kernel centers. For example, in Fig. 3(a), there

are 7 kernel centers. Each of them carries a kernel function (red

dashed curve). The shape of the overall density function across

all kernels is represented by the blue solid line. Given a dataset

X with n points and m kernel centers, the time complexity of

computing the densities of all xi ∈ X is O(nm).
Kernel Function. A wide range of kernel functions can be used

in kernel density estimation [26]. The most commonly used ones

are the Gaussian and Epanechnikov kernel functions [11]. In this

study, we adopt the Gaussian kernel:

Kдauss (u) =
1

(
√
2π )h

e
(−

1

2

u2

h2
)
, (2)

Kepanechnikov (u) =
3

4h

(
1 − u2

h2

)
, (3)

where u represents the distance from a kernel center kc j to the

target point xi and h is an important smoothing factor, called

bandwidth. The bandwidth h controls the smoothness of the

shape of the estimated density function. The greater the value

h, the smoother the shape of the density function
˜f . As shown

in Figs. 3(a) and (b), using the same set of kernel centers but dif-

ferent bandwidth values, the estimated PDFs (the blue lines) are

significant different from each other. Therefore, an appropriate

bandwidth is critical to the accuracy of the density estimation.

Balloon Kernel. In balloon kernel [30], when estimating the

density at a target point xi , only the k nearest kernel centers

of xi denoted as kNN(xi ,KC) are utilized in the estimator. This

provides each point xi a customized kernel density estimator that

adapts to the distribution characteristics of xi ’s surrounding area,
hence also called local density. Therefore, Balloon kernel fits the

local outlier that detects outliers based on the local distribution

properties as shown in [23]:

˜f (xi ) =
1

k

k∑
j=1

Kh (|xi − kc j |) where kc j ∈ kNN(xi ,KC). (4)

Multi-dimensional Kernel. We adopt the product kernel [24]
as the form of the kernel function. The product kernel is typ-

ical in density estimation for multi-dimensional data. Given a

d dimensional target point xi and a kernel center kc j , for each
dimension l the product kernel (Eq. 5) first computes the density

contribution of kc j to xi based on the distance on dimension l .
The final density contribution by kc j to xi is the product of the
density contributions by kc j on all dimensions, so called prod-

uct kernel. As we will show in Sec. 7, this creates opportunities

for the design of constant time density update operation in the

streaming context. Moreover, product kernel allows the band-

width to be customized for each dimension, resulting in more

accurate estimation [24].

˜f (xi ) =
k∑
j=1

d∏
l=1

Khl (|x
l
i − kc

l
j |) where kc j ∈ kNN(xi ,KC). (5)
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Figure 4: A data stream in the form of sliding windows.

3 PROPOSED OUTLIER SEMANTICS
Next, we propose our semantics of KDE-based streaming local

outliers. We first introduce the notion of top-N local outliers that

captures the most extreme outliers in the input dataset. We then

apply this concept to sliding windows to characterize outliers in

data streams.

3.1 Top-N KDE-based Local Outliers
We first define a new outlierness measure, KDE-based local

outlierness measure (KLOME). The goal is to reduce the com-

putation costs of the existing KDE-based outlier semantics [23],

while still effective in detecting outliers.

Definition 3.1. KLOME. Given a set of data points X = {x1,
· · · , xn} and a set of kernel centers KC = {kc1, · · · , kcm }, the
KLOME score of a target point xi ∈ X is defined as KLOME(xi )

= z-score(f̃b(xi), {f̃b(kcj) | ∀kcj ∈ kNN(xi,KC)}).
Here z-score(s, S) = (s - S)/σS [33] indicates how many standard

deviations a value s is above or below the mean of a set of values

S . In this definition, KLOME(xi )measures how different the local

density at xi is from the average local density at xi ’s nearest
kernel centers denoted as kNN(xi,KC). A negative KLOME score

of a target point xi indicates that the local density at xi is smaller

than the local densities at its neighbors’ locations. The smaller
the KLOME score of a point xi is, the larger the possibility that

xi is an outlier.

The key property of our KLOME semantics is that the density

at xi is compared against the densities at its kNN in the kernel

center set KC (kNN(xi,KC)) instead of its actual kNN in the

dataset.

The intuition is as below. The kernel centers sufficient to

recover the distribution of the original dataset can well cap-

ture every local phenomenon. The density at xi is estimated

based on its location relative to the selected kernel centers kc j
∈ kNN(xi,KC). Naturally kc j can serve as the local neighbor of

xi in the density deviation computation of xi (z-score). In other

words, kNN(xi,KC) effectively models the local neighborhood of

a point xi . This in turn significantly reduces the computational

complexity compared to working with xi ’s kNNs in the much

larger input dataset X .

Next, we define the top-N KDE-based local outlier:

Definition 3.2. Given a set of data points X = {x1, · · · ,xn }
and a count threshold N , the top-N KDE-based local outliers
are a set of N data points, denoted by Top-KLOME(X ,N ) such
that ∀xi ∈Top-KLOME(X ,N ) and ∀x j ∈ X \Top-KLOME(X ,N ),
KLOME(xi ) ≤ KLOME(x j ).

3.2 Local Outlier Detection in Sliding
Window

We work with periodic sliding window semantics, illustrated in

Fig. 4, commonly adopted to model a finite substream of interest

from the otherwise infinite data stream [4]. Such semantics can be

either time or count-based. Each data point xi has an associated

time stamp denoted by xi .time . The window size and slide size

of a stream S are denoted as S .win and S .slide correspondingly.
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Each windowWc has a starting timeWc .Tstar t and an ending

timeWc .Tend = Wc .Tstart + S.win. Periodically the current win-

dowWc slides, causingWc .Tstar t andWc .Tend to increase by

S .slide respectively. For count-based windows, a fixed number

(count) of data points corresponds to the window size S .win. Ac-
cordingly S .slide is also measured by number of data points.SWc

denotes the set of data points falling into the current windowWc .

The local outliers are then always detected in the current active

windowWc . An outlier in the current window might turn into

an inlier in the next window.

Next, we define the problem of continuously detecting Top-
KLOME(X ,N ) over sliding windows:

Definition 3.3. Given a stream S , a window size S .win, a
slide size S .slide , and an integer N , continuously compute

Top-KLOME(SWc ,N ) over sliding windows.

Next, we introduce our KELOS framework for supporting

continuous local outlier detection over windows stream with our

proposed KLOME semantics.

4 THE KELOS FRAMEWORK
KELOS framework, depicted in Fig. 5, consists of three main com-

ponents, namely, stream data abstractor, density estimator
and outlier detector.
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Figure 5: The KELOS framework.

The stream data extractor is composed of the window pro-
cessor and the data abstractor. The window processor feeds the
latest data that falls into the current streamwindow to the system.

By leveraging a lightweight stream clustering approach, the data
abstractor dynamically organizes the data points in each window

into evolving clusters based on their affinity. It then generates and

maintains statistics that reflect the key distribution properties of

each cluster. These statistics are essential to performing density

estimation and the inlier pruning during outlier detection.

The estimator constructor in the density estimator builds ker-
nel density estimators utilizing abstract kernel centers where each
abstract kernel center represents one data cluster. The bandwidth
estimator leverages the statistics associated with each cluster

to approximate an optimal bandwidth for each density estima-

tor customized for each target. The constant time complexity

of the bandwidth estimator ensures that the bandwidth can be

continuously updated online to best fit the data.

The outlier detector continuously computes the top-N out-

liers, that is, the N points with the highest outlierness scores. It

avoids having to compute the density and the outlierness score

for each and every point by pruning clusters that as a whole do

not have a chance to contain any outlier. This leverages the stable
density property of a tight cluster and the characteristics of local

outliers (Sec. 6.1).

In Sec. 5, we present the key strategies of our density esti-
mator, namely abstract kernel center-based KDE. In Sec. 6, we

introduce the techniques core to our outlier detector. It effi-

ciently identifies and prunes the points that are guaranteed not

to be outliers. Finally, in Sec. 7, we introduce our stream data
abstractor. It features a low complexity dual-purpose clustering

algorithm that continuously constructs data clusters, while at the

same time generating the statistics needed to support the density

estimator and outlier detector.

5 DENSITY ESTIMATOR
In this section, we propose our abstract kernel center-based KDE

strategy (aKDE). It solves the problem of accurately yet efficiently

estimating the density at a given point. In contrast to the tradi-

tional sampling-based KDE approach [26], our density estimation

is performed on top of a set of clusters (Fig. 1) that succinctly

summarize the distribution characteristics of the dataset. This

approach is inspired by our abstract kernel center observation
below.

Abstract Kernel Center Observation. In KDE, the density at

a given point xi is determined by the additive influences of the
kernel centers, while the influence from one center kc j is de-
termined by the distance between kc j and xi . The centers close
to each other tend to have similar influence on the target point

xi . Using them redundantly instead of representing them as a

whole perplexes the density estimation by unnecessarily enlarg-

ing the center space. To obtain succinct while informative repre-

sentatives as kernel centers, KELOS first performs a lightweight

clustering that groups close points together. The centroid of the

cluster weighted by the cluster’s data cardinality, called abstract

kernel center (AKC) is then selected as a kernel center to perform

density estimation.

Fig. 6(b) shows an example estimation using the abstract kernel

centers. The original 7 points in Fig. 3(a) are abstracted into three

clusters. The estimations (blue line) in Fig. 6(b) with 3 centers

and Fig. 6(a) using all 7 points as kernel centers are similar.

Gaussian Kernel Gaussian Kernel

(a) All points as kernel centers

Gaussian Kernel

(b) Abtract kernel centers

Figure 6: Local kernel density estimator.

On the performance side, real world data sets tend to be

skewed. Therefore, typically most points can be clustered into

a small number of tight clusters. Correspondingly, the number

of the abstract kernel centers tends to be much smaller than the

number of sampled kernel centers that would be sufficient to

represent the overall data distribution of the dataset. Since the

bottleneck of local density estimation is on the computation of

the k nearest kernel centers for each to be estimated point xi , the
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small number of abstract kernel centers promises to reduce the

complexity of the successive density estimation process.

Furthermore, the abstract kernel centers allow us to use a

small k while establishing a diversified neighborhood – hence a

comprehensive density estimator for each point. This not only

reduces the complexity of the kNN search and kernel density

computation, but also alleviates the problem of selecting an ap-

propriate k because of the reduced range of possible k .

Definition 5.1. Given a stream window SWc
= {x1, · · · ,xn }, the

abstract kernel centers of SWc
are a set of pairs AKC(SWc ) =

{⟨cc1 , |c1 |⟩, · · · , ⟨ccm , |cm |⟩}, where cci (1 ≤ i ≤ m) corresponds

to the centroid of the respective data cluster ci and |ci | the number

of points in ci . Here
⋃m
i=1 ci = SWc

and ∀i, j, i , j ci ∩ c j = ∅.

WeightedKernel Density Estimator. Intuitively, each abstract
kernel center represents the centroid of a cluster of points close to

each other along with the data cardinality of this cluster. Utilizing

these abstract kernel centers, we construct a weighted kernel

density estimator [13], where the kernel centers correspond to

the centroids in AKC(SWc ) (the first component of AKC) and
the weight corresponds to the cardinality of the data cluster

represented by the centroid (the second component). Therefore,

the weighted kernel density estimator reflects the distribution

characteristics of the entire dataset by utilizing only a small

number of kernel centers. The formula is shown below:

˜fAKC(SWc )(xi ) =
k∑
j=1

ω(cc j )
d∏
l=1

Khl (|x
l
i − c

l
c j |) (6)

where

ω(cc j ) =
|c j |∑k

m=1 |cm |
, (7)

and ccm ∈ kNN(xi ,AKC(S
Wc )). Here ˜fAKC(SWc )(xi ) in Eq. 6 cor-

responds to a weighted product kernel estimator that computes

the local density at xi and kNN(xi ,AKC(S
Wc )) corresponds to

the k nearest centroids of xi in the abstract kernel centers.

Bandwidth Estimation. One additional step required to make

the weighted kernel density estimator work is to establish an

appropriate bandwidth for the kernel on each dimension. Here

we show that the data driven strategy introduced in [25] (Eq. 8)

can be efficiently applied here by leveraging the abstract kernel

centers.

hl = 1.06σ lk−1/(d+1). (8)

In Eq. 8, d denotes the data dimension. σ l denotes the weighted
standard deviation of the kernel centers on the lth dimension

computed by:

σ l =

√√√ k∑
m=1

ω(ccm )(c
l
cm − µ

l )2, (9)

where

µl =

∑k
m=1 ω(ccm )c

l
cm

k
, (10)

and ccm ∈ kNN(xi ,AKC(S
Wc )).

Efficiency. The time complexity of KDE is O(nm), where n is

number of data points and m is the number of kernel centers.

Since aKDE dramatically reduces the number of kernel centers,

it significantly speeds up the KDE computation. On the other

hand, data clustering introduces extra computation overhead.

In this work, we apply the low complexity micro-clustering [2]

strategy that processes each point only once. This overhead is

significantly outweighed by the saved KDE computation costs.

Therefore, overall aKDE is much faster than the traditional KDE

– as shown in Sec. 8.2.

6 OUTLIER DETECTOR
Our outlier detector fully utilizes the data clusters produced for

aKDE by leveraging our stable density observation described

below.

Stable Density Observation. Data points in a tight cluster are

close to each other. Therefore, they tend to share the same kernel

centers and have similar local densities. By the definition of local

outliers, the outlierness score of a point x depends on the relative

density at x in contrast to those at its neighbors. Therefore, these

points tend to have similar outlierness scores. Since outliers only

correspond to small subset of points with the highest outlierness

scores, it is likely that most of the data clusters do not contain

any outlier.

Assume we have a method to approximate the highest (upper

bound) and lowest (lower bound) outlierness scores for the points

in each data cluster. Using these bounds, the data clusters that

have no chance to contain any outlier can be quickly identified

and pruned from outlier candidate set without any further inves-

tigation. More specifically, if the upper bound outlierness score of

a data cluster ci is smaller than the lower bound outlierness score

of a data cluster c j , then the whole ci can be pruned (under the

trivial premise that c j has at least N points). This is so because

there are at least N points in the dataset whose outlierness scores

are larger than any point in ci .
Leveraging this observation, we now design an efficient local

outlier detection strategy. The overall process is given in Alg. 1.

We first rank and then prune data clusters based on their upper

KLOME score bounds. As shown in Sec. 3.1, a small KLOME

score indicates large outlier possibility. Therefore, the upper

KLOME bound corresponds to the lower outlierness score bound.

Similarly, the lower KLOME bound corresponds to the upper

outlierness score bound. Therefore, if the lower KLOME bound

of a cluster ci is higher than the upper KLOME bound of another

cluster c j , all points in ci can be pruned immediately. Only the

clusters with a small lower KLOME bound (large outlierness score

upper bound) are subject to further investigation. The densities

and KLOME scores at the data point-level are computed only

for the data points in these remaining clusters. Finally, the top-

N results are selected among these points by maintaining their

KLOME scores in a priority queue.

6.1 Bounding the KLOME Scores
Next, we present an efficient strategy to establish the upper and

lower KLOME bounds for each given data cluster.

By Def. 3.1, the KLOME score of a point xi corresponds to z-
score( ˜f (xi ), S), where S refers to the local densities at xi ’s kernel
centers. Since the points in the same cluster ci typically share the
same kernel centers, the data point xmin ∈ ci with the minimal

density determines the lower bound KLOME score of the entire

cluster ci . Similarly the upper bound is determined by the point

xmax with the maximal density. Obviously it is not practical to

figure out the lower/upper bound by computing the densities at

all points and thereafter finding xmin and xmax .
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Algorithm 1 : Top-N Outlier Computation.

Input: Clusters C.
Output: Top-N Outliers.

1: Pr ior ityQueue<Cluster> P of size N /*by upperbound

in ascending order*/

2: P ← first N in C

3: for rest of the cluster c in C do
4: if KLOMElow (c) > KLOMEup (P .peek ) then
5: prune c
6: else if KLOMEup (c) < KLOMElow (P .peek ) then
7: P .poll & P .add(c )
8: else
9: P .add(c )
10: Pr ior ityQueue<Data> R of size N /*by KLOME in

ascending order*/

11: for cluster c in P do
12: for data d in c do
13: compute KLOME of d
14: R .add(d )
15: return R
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Figure 7: An example of lower KLOME bound.

Lower bound. We now show that by utilizing the statistical

property of each data cluster – more specifically the radius, the
bounds can be derived in constant time. Here we use the lower

bound as example to demonstrate our solution (Fig. 7).

Lemma 6.1. Given a data cluster ci , its k nearest kernel cen-
ters {cc1 , · · · , cck } and the data point xmin which has the mini-
mum density among all points in ci , ˜fmin (ci ) ≤ ˜f (xmin ), where
˜fmin (ci ) =

∑k
j=1 ω(cc j )Kh (|cci − cc j | + r ). Here r is the radius of

ci and cci is the centroid of ci .

Proof. The density contributionKh (|xi−cc j |) is inversely pro-
portional to the distance between the evaluated point xi and the

kernel center cc j . The longer the distance, the smaller the density

contribution is from the kernel center. The radius r of a cluster ci
is the distance from ci ’s centroid cci to the furthest possible points
in ci . The longest possible distance from a kernel center cc j to any
point in ci is denoted as dc = |cci −cc j | + r . The distance from cc1
to xmin is denoted as dx = |cc j − xmin |. dc ≥ dx by the triangle

inequality. ThereforeKh (dx ) ≤ Kh (dc ). This holds for any kernel

center cc j . Therefore
˜fmin (ci ) =

∑k
j=1 ω(cc j )Kh (|cc j − cci | + r ) ≤

˜f (xmin ). □

Intuitively, the density at a data point is measured by the

summation of the density contributions of all relevant kernel

centers. The summation of the density contribution from each

kernel center cc j to the point x j that is the point furthest to cc j
in ci is guaranteed to be smaller or equal to the density at point

xmin . This is so because the distance from xmin to each kernel

center cc j cannot be larger than the distance between cc j and x j .
According to Lemma 6.1, given the radius of a data cluster ci

and its k nearest kernel centers cc1 · · · cck , the lower KLOME
bound of cluster ci is computed as:

KLOMElow (ci ) = z-score( ˜fmin (ci ), { ˜f (cc1 ) · · ·
˜f (cck )}). (11)

Upper Bound. Similarly, we can show that the maximal local

density at a cluster ci , denoted by ˜fmax (ci ), can be obtained based
on the shortest distance from each kernel center to the points in

ci .

˜fmax (ci ) =
k∑
j=1

ω(cc j )Kh (|cc j − cci | − r ). (12)

Accordingly, the upper KLOME bound of each cluster ci
KLOMEup(ci) is derived based on

˜fmax (ci ).

KLOMEup (ci ) = z-score( ˜fmax (ci ), { ˜f (cc1 ) · · ·
˜f (cck )}). (13)

7 THE EFFICIENT STREAM DATA
ABSTRACTOR

The stream data abstractor adapts a lightweight stream clustering

algorithm similar to [2, 8] that clusters the extremely close data

points together. As the clusters are continuously constructed and

incrementally maintained, the statistics needed by both aKDE
and inlier pruning, namely the cardinality, the centroid, and the

radius of the cluster, must also be continuously generated. We

thus refer to this as dual-purpose clustering. The dual-purpose

clustering is based on two key ideas: additive meta data and

pane-based meta data maintenance.
The additivemeta data is inspired bymicro-clustering [2] – a

popular stream clustering approach. The idea is that by maintain-

ing meta data that satisfies the additive properties, the statistics

required by both the density estimator and the outlier detector

can be computed in constant time whenever the window evolves.

Definition 7.1. A cluster ci in a d-dimensional data set

SWc = {x1, · · · ,xm } corresponding to the data in the cur-

rent window Wc of stream S is represented as a 4-tuple set

{M,LS,Rmin ,Rmax } whereM denotes the cardinality of the clus-

ter, LS =<
∑m
i=1 x

1

i , · · · ,
∑m
i=1 x

d
i > is the linear sum of the

points by dimension, Rmin =< x1min , · · · ,x
d
min > and Rmax =<

x1max , · · · ,x
d
max > are the minimum and maximum values of

the points in each dimension.

Cardinality and Centroids for aKDE. In Def. 7.1,M refers to

data cardinality of cluster ci . M is used to compute the weight
(Eq. 7) and the centroid of the abstract kernel center. The linear

sum LS is used to compute the centroid of cluster ci =
LS
M .

The Radius for Inlier Pruning. Rmin and Rmax representing

the minimal and maximal values in each dimension are utilized to

compute the radius of cluster ci . Radius is a key statistic needed

by our outlier detector to quickly prune the clusters from the

outlier candidate set.

Since the radius is defined as the distance from the centroid

cci to its furthest point in cluster ci , the radius changes whenever
the centroid changes. All points in ci then have to be re-scanned
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Figure 8: An example of an evolving cluster.

to find the point “furthest” from the new centroid. This, being

computational expensive, is not acceptable in online applications.

The remedy comes from our carefully selected product kernel

function (Eq. 5). In the product kernel, each dimension has its own

customized bandwidth. Accordingly, we only need the radius on

each single dimension to estimate the bandwidth instead of the

radius over the multi-dimensional data space. Since updating the

minimum or maximum value per insertion or deletion to an array

is constant cost, the cost of radius maintenance for k separated

dimensions (Rmin and Rmax ) is constant as well.

Pane-based meta data maintenance. The pane-based meta

data maintenance strategy [17] is utilized to effectively update

the meta data for each cluster as the window slides. Given the

window size S.win and slide size S.slide, a window can be divided

into
S .win

дcd (S .win,S .sl ide) small panes where дcd refers to greatest

common divisor. The meta data of a cluster ci is maintained at

the pane granularity instead of maintaining one meta data struc-

ture for the whole window. Since the data points in the same

pane arrive and expire at the same slide pace, the meta data can

be quickly computed by aggregating the meta data structures

maintained for the unexpired panes as the window moves. This

process is illustrated in Fig. 8. Since the meta data satisfies the

additive property, the computation can be done in constant time.

In this way, no explicit operation is required to handle the expi-

ration of outdated data from the current window. Therefore, our

stream clustering algorithm only needs to exclusively deal with

the new arrivals.

The Dual-Purpose Stream Clustering Algorithm. Once a

new data point x arrives, The algorithm first finds its nearest

cluster according to the distance of x to all the centroids. If the

distance from x to its nearest cluster ci denoted as dist(x, cci )
is smaller than a radius threshold θ , x is inserted into ci . The
corresponding 4-tuple meta data is updated accordingly. On the

other hand, if dist(x, cci ) > θ , a new cluster will be created. This

logic is described in Alg. 2.

7.1 Time Complexity Analysis of KELOS
The complexity of the clustering comes from the nearest centroid

search. The complexity is O(mc) with m the number of new

arrivals and c the number of centroids. In the density estimation

step, each point has to find its k nearest kernel centers from

the c centroids. Therefore, in worst case the complexity is O(c)
for each point. In the outlier detection step, the cluster-based

pruning takes O(c2).
One more pass is required for the remaining points to com-

pute the density and the outlierness score. Assuming the number

of remaining points is l , the density computation takes O(lc),
while the outlierness score computation takes O(l logN ), where

Algorithm 2 : Dual-Purpose Stream Clustering

Input: Data batch D at time ti , window size S .win and

threshold θ .
Output: Clusters C.
1: Array<Cluster> C
2: for every data d in D do
3: distmin ← +∞

4: Cluster cn
5: for every cluster c in C do
6: dist ← distance(d, c .centroidti−S .win+1→ti )

7: if dist < distmin then
8: distmin ← dist
9: cn ← c
10: if distmin < threshold θ then
11: cn .insert(d ,ti )
12: else
13: Cluster cnew
14: cnew .insert(d ,ti )
15: C.add(cnew )

16: return C

O(logN ) comes from the priority queue operation for maintain-

ing the top-N outlierness score points. Therefore, the overall

computation costs for a batch of newly arriving data points is

O(mc) + O(c2) + O(lc) + O(l logN ). In summary, the time com-

plexity of our KDE based outlier detection approach is linear

in the number of points. Since typically N ≪ c ≪ l ≪ m, the

complexity is dominated by the clustering step.

8 EXPERIMENTAL EVALUATION
8.1 Experimental Setup & Methodologies
In this section, we compare the efficiency and effectiveness of

KELOS against the state-of-art local outlier detection approaches

for data streams. All experiments are conducted on an Ubuntu

server with 56 Intel(R) Xeon(R) 2.60GHz cores and 512GB mem-

ory. Overall, our KELOS is 1-6 orders of magnitude faster, while

still at least as accurate as the alternative approaches.

We utilize the public as well as synthetic datasets generated

using the data mining framework ELKI [1] to measure the effi-

ciency of KELOS. We also work with real labeled datasets so that

we can evaluate the effectiveness of KELOS.

Real Datasets. We work with 3 labeled public datasets. The

HTTP dataset [10] contains in total 567,479 network connec-

tion records with 2,211 among them being outliers. The labeled

outliers correspond to different types of network intrusions in-

cluding DOS, R2L, U2R, etc. Three numerical attributes, namely

duration, src_bytes and dst_bytes are utilized in our experiments.

The points in the HTTP dataset are ordered by their arrival time.

Therefore we can generate a data stream simply by enforcing a

sliding window on it.

The Yahoo! Anomaly Dataset (YAD) [15] is considered as one
of the industry standards for outlier detection evaluation. It is

composed of 4 distinct data sets. In this work we utilize Yahoo! A1

and Yahoo! A2. Yahoo! A1 is based on the real production traffic to

some of the Yahoo! services. The anomalies are marked by Yahoo!

domain experts. Yahoo! A2 is a synthetic data set containing time-

series with random seasonality, trend and noise. Yahoo! A1 and

Yahoo! A2 contain 94,866 points with 1,669 outliers and 142,101

points with 312 outliers respectively. Each data point has three

attributes: timestamp, value, and label.
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Synthetic Datasets. We generate synthetic datasets to measure

the efficiency of KELOS under various scenarios with different

distribution properties. We first create static datasets containing

different number of data clusters and then utilize these datasets

to simulate windowed streams. For example, to simulate a win-

dowed stream with three clusters and some outliers, we first

create a static dataset containing three clusters. The size and

shape of the clusters are controlled by different parameter set-

tings in ELKI such as type of distribution, standard deviation,

etc. When generating a sliding window data stream, different

windows correspond to different datasets with different cluster

densities.

Comparative Methods. We compare KELOS against five base-

lines, namely sLOF, sKDEOS, pKDEOS, iLOF [20] andMiLOF [21].

LOF [6] is the seminal and most popular local outlier detection

method. KDEOS [23] leverages KDE in local density estimation

which is then used to compute an outlierness score for each point.

Since their performance bottleneck is the kNN search, we imple-

mented the skyband stream kNN search algorithm [29] to speed

up their outlier detection process for windowed streams and

named the modified methods as sLOF and sKDEOS. iLOF [20]

and MiLOF [21] are two incremental LOF algorithms specifically

designed for landmark windows. iLOF computes the LOF score

for each inserted data point and update the LOF score of the

affected data points following the reverse kNN relationships.

MiLOF improves iLOF in a scenario where the memory is lim-

ited. When the memory limit is reached, part of the existing data

points are summarized into small clusters as references for the

future LOF approximation. Since iLOF and MiLOF do not handle

data expiration, they have to start from scratch for each new win-

dow. In the original KDEOS, every data point in the input dataset

is used as kernel center. We also implemented a sampling-based

sKDEOS called pKDEOS, since it is the common practice for KDE

to use only the data points uniformly sampled from the input

dataset as kernel centers. All methods continuously return the

N points with the highest outlierness scores as outliers in each

window.

Efficiency Measures. We measure the end-to-end execution

time.

Effectiveness Measures. We measure the effectiveness using

the Precision@N (P@N ) metric typical for the evaluation of out-

lier detection techniques [7].

P@N =
# of True Outliers

N
. (14)

Intuitively, P@N measures the true positive of the detected

top-N outliers. An ideal P@N equals to 1, where all outliers are

found and no inlier is returned as result. Here we measure the

P@N metric window by window and report the average P@N
over all windows. Following [7], we replace N with |O | in the

P@N computation for each window, where |O | corresponds to
the total number of labeled (ground truth) outliers falling in this

window. Only the top-|O | points out of the top-N outlier list are

used in the evaluation. Therefore, the P@|O | for n consecutive

stream windows is:

P@|O | =

∑n
i=1 # of True Outliers in top-|O |i∑n

i=1 |O |i
, (15)

where |O |i denotes the number of the true outliers in the ith
window.

To investigate the quality of the ranking in the Top-|O | outlier
list, we also measure the average precision (AP) [31]:

Averaдe Precision(AP) =
1

|O |

∑
o∈O

P@rank(o). (16)

Here P@rank(o) measures the P@N , where N is set as rank(o)

representing the position at which a true outlier o appears. AP
measures how well the true outliers are ranked among all data

points.

8.2 Efficiency Evaluation
We evaluate the end-to-end execution time and memory con-

sumption by varying the number of the neighbors k , the window
size and the window overlap rate.

Number of Neighbors k . The k parameter defines the number

of the neighbors to be considered in the computation of outlier-

ness score for each point. We first report the execution time of all

methods on real datasets with varied k from 10 to 100. The radius

threshold θ of KELOS appropriate for HTTP, Yahoo! A1, and

Yahoo! A2 are set as 0.095, 0.1 and 40 (See Sec.8.4 for parameter

tuning). The window size of HTTP is set to 6,000 and window

sizes of Yahoo! A1 and Yahoo! A2 are set as 1,415, and 1,412 based

on the instruction of the data provider for the effectiveness of

outlier detection. The sampling rates of pKDEOS is set as 10%

which is a relatively high sampling rate ensuring that pKDEOS

always has more than k kernel centers to use as k increases. For

MiLOF, we configured it to keep 10% of the data in memory for

LOF score approximation.

As shown in Fig. 9(a), KELOS is about 2-6 orders of magnitude

faster than the alternatives. Among all alternative methods, iLOF

and MiLOF are the slowest. To reduce the influence of the new

arrivals they use a point-by-point processing strategy that com-

putes the LOF score for each new point and update the LOF score

of the affected data points immediately after a single insertion. It

wastes significant CPU time on unnecessarily updating the LOF

scores of some points that are modified again later due to the

insertion of other new arrivals. sLOF and sKDEOS are 1-2 orders

of magnitude faster than the previous two, as they compute the

outlierness score only once for each data point in the entire win-

dow. pKDEOS is faster than sKDEOS and sLOF, because pKDEOS

only utilizes the sampled points as kernel centers. Searching for

the k nearest kernel centers from the sampled kernel center set

is much faster than searching among all points in each window.

However, pKDEOS is still at least 1 order of magnitude slower

than KELOS on HTTP. This is because in order to satisfy the

accuracy requirement, the number of the sampled kernel cen-

ters has to be large enough to represent the distribution of the

data stream. While the aKDE approach of KELOS only uses the

centroid of each cluster as abstract kernel center. Therefore, the

number of the clusters tends to be much smaller than the number

of the sampled kernel centers. Furthermore, KELOS effectively

prunes most of the inliers without conducing the expensive den-

sity estimation, while in contrast, others have to compute the

outlierness score for each and every data point.

As shown in Fig. 9(b), although pKDEOS is faster than KE-

LOS on Yahoo! A1 due to the smaller population of the sampled

kernel centers, KELOS outperforms pKDEOS in the effective-

ness measurements (Tab. 1). On average, KELOS keeps slightly

more kernel centers in the memory than pKDEOS for Yahoo!

A2 (Fig. 12(c)). However, KELOS still outperforms pKDEOS on

execution time because of our inlier pruning strategy.

Window Size. To evaluate how window size affects the effi-

ciency of KELOS, we measure and compare the average window
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(c) Yahoo! A2

Figure 9: Execution time of varied number of neighbors k . Note the maximum k that each method can reach is different.
For LOF-basedmethods, it depends on the total number of data points. For KDE-basedmethods, it depends on the number
of the kernel centers available.
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(c) Six-Cluster Stream

Figure 10: Execution time on synthetic datasets of varied window size.
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(c) Six- Cluster Stream

Figure 11: Execution time on synthetic datasets of varied overlap rate.

processing time of each method by varying the window size of

synthetic datasets from 5,000 to 100,000. For these experiments,

we created three data streams with one, three and six Gaussian

clusters with various parameter configurations (mean, variance

and etc.) across the timeline and 10 outliers for each window.

The parameters of different all the methods are configured such

as they achieve the same accuracy (P@|O | > 0.95) with as lit-

tle memory consumption as possible while k=10. As shown in

Fig. 10, in general, the execution time increases with the increase

of the window size (average data points within a single window).

KELOS constantly outperforms all other baselines by 1-5 orders

of magnitude.

Window Overlap Rate. We evaluate the efficiency of KELOS

by varying synthetic streams’ window overlap rate from 0% to

90%. The synthetic streams are created in the same fashion to

the previous experiments. The parameters of different all the

methods are configured such as they achieve the same accuracy

(P@|O | > 0.95) with as little memory consumption as possible

and k=10. Based on this controlled accuracy, we evaluate the

average window processing time.

When the overlap rate increases, the execution time of all six

approaches decrease as demonstrated in Fig. 11. This is because

iLOF and MiLOF are designed to process the data incrementally.

Although iLOF and MiLOF are not capable of handling data prun-

ing, in these experiments, we simply assume that the overlapped

data are already processed and we report the their processing

times for the rest of the window. sKDEOS, pKDEOS and sLOF

all leverage the skyband stream kNN search that incrementally

computes the kNN for each point as window slides, while the

clustering algorithm used by KELOS is incremental by nature

as shown in Sec. 7. As shown in Fig. 11, KELOS is 2-5 orders of

magnitude faster than iLOF, MiLOF, sKDEOS, sLOF and pKDEOS

in all settings on all three streams. iLOF and MiLOF are the

slowest. sLOF and sKDEOS are faster than the previous two but

slower than pKDEOS. Although they all can save computation by

avoiding some unnecessary reprocessing of the existing data, the
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reason of the performance difference is the same as we already

explained in the previous experiments.

Memory Consumption. The memory consumption shown

in Fig. 12 is evaluated by counting the number of the kernel

centers and data points kept in the memory by each approach.

sKDEOS, iLOF and sLOF (represented by sLOF in Fig. 12) utilizes

all points as kernel centers or reference points, while pKDEOS

and MiLOF (represented by pKDEOS in Fig. 12) dramatically

reduces the number of the kernel centers by sampling and the

number of the references by clustering. KELOS uses the smaller

number of kernel centers as compared to sLOF which facilitate

more accuracte density estimation. The number of the kernel

centers is equivalent to the number of the clusters that tends

to be small. sLOF and iLOF measures the local density at each

point by computing the local reachability density (LRD). Since

the LRD computation requires the access to all points falling

in each window, it is equivalent to using all points as kernel

centers similar to sKDEOS. On synthetic data stream, Similar to

the memory consumption on the real HTTP dataset, KELOS uses

the least number of kernel centers. pKDEOS and MiLOF uses

fewer kernel centers or references than sKDEOS, iLOF and sLOF

because of the sampling and clustering.

8.3 Effectiveness Evaluation
We report the accuracies of our KELOS, sKDEOS (≈ pKDEOS)

and sLOF methods on the real data streams. Tab. 1 (with pKDEOS

included) shows the peak P@|O | and AP for each approach on

each dataset. KELOS outperforms all other approaches in all

cases. We are not reporting the results of iLOF and MiLOF, since

they perform equally to sLOF in effectiveness. Similarly, for the

KDE-based methods we only report the results on sKDEOS for

various configurations.

Number of Neighbors k . The number of the neighbors k is the

most influential factor that affects the detection accuracies of all

methods. The parameter settings are the same to the efficiency

evaluation when varying k .
Fig. 13& 14 demonstrate the trend of P@|O | and AP as k varies.

The line of KELOS stops at 800 in Fig. 13(a)&14(a), because KELOS

uses cluster-based aKDE approach. The number of the kernel

centers is restricted by the number of the clusters. Fig. 13(a) shows

the results on the HTTP dataset. For our KELOS, as k increases,

the P@|O | increases until k reaches 80. It then starts decreasing

after k is larger than 100. Overall sKDEOS and sLOF show the

similar trend. Compared to KELOS they have to use a much

larger k to get relative high accuracy. The trends on the Yahoo

A1 and A2 datasets are different from that on the HTTP dataset

as shown in Fig. 13(b)% 13(c). The P@|O | continuously increases

and gets stable after k reaches certain value. This confirms our

observation that using as many as possible kernel centers in the

density estimator does not always lead to more accurate density

estimation. This justifies our decision of adopting the balloon

kernel that only takes the close kernels into consideration when

estimating the density at a point x .
The trends of AP are similar to the trends of P@|O | on all

datasets as shown in Fig. 14. Overall, KELOS is as accurate or

more accurate than alternative approaches. Furthermore, com-

pared to the alternatives, KELOS uses a smaller k to achieve high

accuracy. This also contributes to the performance gain of KELOS

in execution time.

8.4 Hyper Parameter Tuning
In KELOS, the radius threshold θ defines the maximum possible

radius of the formed clusters, that is, the tightness of the clusters.

Since the effectiveness of our aKDE approach (Sec. 5) and the

pruning strategy (Sec. 5) rely on the tightness of the clusters, θ is

important for the accuracy of KELOS. In this set of experiments,

we vary θ from small to large on the large HTTP dataset that

contains multiple data clusters. As shown in Fig. 15(a), when θ is

at 0.1, the P@|O | is at the peak. Then P@|O | and AP of KELOS

starts to decrease gradually as θ increases. Large θ results in a

small number of clusters that have large radius. Potentially the

centroid of a large radius cluster might not precisely represent

all points in the cluster. This leads to inaccurate density esti-

mation. Furthermore, a larger radius causes looser upper and

lower KLOME bound. This makes the inlier pruning less effective.

However, a smaller radius θ inevitably leads a large number of

clusters. This increases the computation costs of both stream clus-

tering and the cluster-based aKDE method as shown in Fig. 15(b).

Therefore, KELOS will achieve the best performance when radius

θ is set to the largest value that is still ‘small’ enough to generate

tight data clusters.

Tuning Radius Threshold θ . Micro-clustering utilizes the ra-

dius threshold θ to make sure only the extremely similar points

fall into the same cluster and produce tight clusters. The smaller

the θ is, the tighter the formed clusters are. However, as shown

in Fig. 15(a), although small θ achieves high accuracy in density

estimation, it also slows down the overall speed of KELOS. There-

fore, it is important to find an appropriate θ threshold that can

balance the speed and the accuracy. Instead of trying to acquire

an optimal θ value at the beginning by exploring some expensive

preprocessing, in streaming context we recommend that the θ
threshold could be dynamically adapted to the optimal value.

More specifically, one can start by initializing the system using

a relatively small θ value to ensure the accuracy of the results.

Then the θ value can be gradually adjusted to larger values as

the data stream evolves as long as the accuracy is still reason-

ably good based on the user feedback. As concept drift occurs

when stream data evolves, the θ is adjusted again using the same

principle.

9 RELATEDWORK
Local Outlier Factor. Local outlier detection has been exten-

sively studied in the literature since the introduction of the Local

Outlier Factor (LOF) semantics [6]. A detailed survey of LOF and

its variations can be found in [7]. The concept of local outlier, LOF

in particular, has been applied in many applications [7]. However,

LOF requires kNN search for every data point and needs multiple

iterations over the entire dataset to compute these LOF values.

For this reason, to support continuously evolving streaming data,

iLOF was proposed [20] to quickly find the points whose LOF

scores are influenced by new arrivals. This avoids re-computing

the LOF score for each point as the window slides. However

as the velocity of the stream increases, most of the points in a

window will be influenced. Therefore this approach does not

scale to high volume streaming data. In [21] an approximation

approach MiLOF was designed to support LOF in streaming data

that focuses on the memory efficiency. However, MiLOF only

considers new incoming data. It does not offer any efficient strat-

egy to handle the update caused by data expiration. Therefore, it

is not efficient when handing windowed streams. As evaluated
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(d) Synthetic

Figure 12: Memory consumption for real and synthetic data streams (window size as 100,000).

�
���
���
���
���
���
���
���
���
���
�

�� ��� ����

��
��
�

������ �� ���������

����� ������ ����

(a) HTTP

�
���
���
���
���
���
���
���
���

� �� ��� ����

��
��
�

������ �� ���������

����� ������ ����

(b) Yahoo! A1

�
���
���
���
���
���
���
���
���

� � � � �� �� �� ��� ��� ���

��
��
�

������ �� ���������

����� ������ ����

(c) Yahoo! A2

Figure 13: P@|O | of varied number of neighbors k .
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Figure 14: AP of varied number of neighbors k .

Table 1: Peak accuracies among various k .
P@|O| AP

HTTP Yahoo! A1 Yahoo! A2 HTTP Yahoo! A1 Yahoo! A2
sLOF 87.06% 65.97% 75.11% 77.34% 69.16% 77.19%

sKDEOS 86.88% 64.17% 75.11% 76.06% 68.84% 76.95%
pKDEOS 87.43% 37.39% 74.89% 77.54% 36.43% 77.10%
KELOS 93.40% 67.83% 75.75% 85.92% 69.64% 77.30%

in our experiments, iLOF and MiLOF are much slower than our

skyband-based streaming LOF implementation sLOF.

Efficient Kernel Density Estimation. Kernel density estima-

tion is considered as a quadratic process O(nm) with n the total

number of data points andm the number of kernel centers. Pre-

vious efforts have aimed to accelerate this process while still

providing accurate estimation, such as utilizing sampling [26].

[14, 32] designed a method that incrementally maintains a small,

fixed size of kernel centers to perform density estimation over

data streams. However, to ensure the accuracy of density esti-

mation over skewed datasets, the sample size has to be large.

Therefore it cannot solve the efficiency problem of KDE in our

context. [12] studied the density-based classification problem.
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(b) Execution Time

Figure 15: Varying radius threshold θ .

It proposed a pruning method that correctly classifies the data

without estimating the density for each point by utilizing a user-

defined density threshold. However, this pruning method can not

be applied to solve our problem, since a point with low density

is not necessarily an outlier based on the local outlier semantics

we target on.
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Outlier Detection using KDE. For each point in the current

window of a sliding window stream, [27] utilizes KDE to approx-

imate the number of its neighbors within a certain range. This

information is then utilized to support distance-based outlier

detection and LOCI [19]. It directly applies off-the-shelf KDE

method on each window. No optimization technique is proposed

to speed up KDE in the streaming context. [16] is the first work

that studied how to utilize KDE to detect local outliers in static

datasets. This later was improved by [23] to be better aligned

with LOF semantics. Each data point’s density is estimated based

upon the surrounding kernel centers only, therefore called lo-

cal density. Instead of considering outliers only based on their

density value, data points are measured based on the density

in contrast to their neighbors. However, this work does not im-

prove the efficiency of KDE. Nor does it consider streaming data.

As confirmed in our experiment (Sec. 8.2), it is indeed orders of

magnitude slower than our KELOS.

Other Streaming Outlier Detection Approaches. LEAP [9]

and Macrobase [5] scale distance-based and statistical-based out-

lier detection respectively to data streams. They rely on the abso-

lute density at each point to detect outliers, while we work with

the local outlier method which determines whether a point is an

outlier based on the density relative to its neighbors. It tends to

be more effective than the absolute density-based methods [11].

Streaming HS-Trees [28] detects outliers by using a classification

forest containing a set of randomly constructed trees. The points

falling in the leafs that contain a small number of points are

considered as outliers. Similar to [5, 9], this method also relies

on absolute density of each point to detect outliers. RS-Hash [22]

proposed an efficient outlier detection approach using sample-

based hashing and ensemble. However, different from our local

outlier mining problem, it focuses on subspace outlier detec-

tion, that is, detecting outliers hidden in different subspaces of a

high dimensional dataset. Similar to iLOF [20] and MiLOF [21],

DILOF [18] processes the data stream in a point-by-point fashion

and incrementally detects outliers and sequential outliers from

landmark windows. It does not handle data expiration which is a

required operation in sliding windows scenario.

10 CONCLUSION
We present KELOS – the first solution for continuously monitor-

ing top-N KDE-based local outliers over sliding window streams.

First, we propose the KLOME semantics to continuously capture

the n points that have the highest outlierness scores in the stream-

ing data. Second, a continuous detection strategy is designed that

efficiently supports the KLOME semantics by leveraging the key

properties of KDE. Using real world datasets we demonstrate that

KELOS is 2-6 orders of magnitude faster than the baselines, while

being highly effective in detecting outliers from data streams.
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