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Foreword

The International Conference on Extending Database Technology (EDBT) is a leading international forum for database re-
searchers, developers, and users to present and discuss cutting-edge ideas, and to exchange techniques, tools, and experiences
related to data management. Data management is an essential enabling technology for scientific, business, and social com-
munities. It is driven by the requirements of applications across many scientific, business and social communities, and runs
on diverse technical platforms associated with the web, enterprises, clouds and mobile devices. The database community
has a continuing tradition of contributing with models, algorithms and architectures to the set of tools and applications that
enable day-to-day functioning of our societies. Faced with the broad challenges of today’s applications, data management
technology constantly broadens its reach, exploiting new hardware and software to achieve innovative results.
EDBT 2018 solicited submissions of original research contributions, descriptions of industrial solutions and applications, and
proposals for tutorials and software demonstrations. We encouraged submissions of research papers related to all aspects
of data management. In addition to regular research paper submissions, EDBT 2018 again encouraged the submission of
short research papers, which includes visionary papers that provide a forum for the identification and discussion of new or
emerging areas, innovative or risky approaches, or emerging applications that require extensions of established techniques.
Short papers are presented as posters at plenary poster sessions of the conference. This provides an excellent opportunity
to describe significant work in progress or research that is best communicated interactively and fosters discussions.
The program committees of EDBT accepted 35 out of 142 submitted regular research papers, resulting in an acceptance rate
of 24.6% for the research track; 23 out of 84 submitted short research papers, resulting in an acceptance rate of 27.4% for
short research papers; 16 out of 37 demos, resulting in an acceptance rate of 43.2% for the demonstration track; and 10 out
of 28 industrial and application papers, resulting in an acceptance rate of 35.7% for industrial and application papers. The
papers will be presented in twelve research paper sessions, three industrial and application sessions, as well as two plenary
poster and demonstration sessions. The program additionally features four workshops, one of which is the well-established
DOLAP workshop that has successfully been co-located with EDBT since many years. Finally, the conference program
includes four tutorials and an EDBT and ICDT joint session on research challenges.
I would like to thank all authors for their contributions: a successful conference crucially depends on high-quality sub-
missions. I also would like to thank all reviewers for serving on the EDBT 2018 program committee, in particular for the
high quality and timely handling of all reviews and discussions. This community service requires a lot of work on a tight
schedule, and is what makes our research community function and ensures the sustained impact of our research. Thanks to
this effort we can look forward to an exciting program and attractive EDBT conference in Vienna from March 26-29, 2018.
A warm thanks to Norman Paton and Divesh Srivastava for serving on the Test-of-Time Award committee to select the paper
from EDBT 2008 that has had the most lasting influence. The committee selected the paper Social ties and their relevance to
churn in mobile telecom networks by Koustuv Dasgupta, Rahul Singh, Balaji Viswanathan, Dipanjan Chakraborty, Sougata
Mukherjea, Amit A. Nanavati, and Anupam Josi for the test-of-time award.
Lei Chen, Wolfgang Lehner and Kian-Lee Tan generously accepted to serve on the Best Paper committee. As best paper, the
committee selected the paper Temporally-Biased Sampling for Online Model Management by Brian Hentschel from Harvard
University, Peter Haas from the University of Massachusetts Amherst, and Yuanyuan Tian from IBM Almaden Research
Center. The EDBT best paper runner-up was awarded to the paper GeoAlign: Interpolating Aggregates over Unaligned
Partitions by Jie Song from the University of Michigan, Danai Koutra from the University of Michigan, Murali Mani from
the University of Michigan, Flint, and H. Jagadish from the University of Michigan. Congratulations to the awardees and a
warm thanks to the committee members for their work.
The EDBT 2018 program is the result of the joint effort of many people who shared their experience and time to contribute to
the EDBT 2018 program and make the conference a success. Norman May served as PC chair for industrial and application
papers; Shan-Hung as PC chair for the demonstration track; Erhard Rahm as tutorial chair; Nikolaus Augsten as workshop
chair; and Dan Olteanu as challenge session organizer. My warmest thank to all these people.
The general chair, Reinhard Pichler and the local organizers worked hard to make all necessary arrange¬ments for a suc-
cessful event. Special thanks to Katja Hose, the proceedings chair; Dimitris Sacharidis, the sponsorship chair; and Shqiponja
Ahmetaj, Markus Kröll, and Wolfgang Fischl, the website chairs, for tirelessly finding solutions for all our needs and making
things happen. Norman Paton was most helpful in advising and coordinating with the EDBT Executive Board.
I hope that you find EDBT 2018 inspiring, informative, and enjoyable and look forward to meeting you in Vienna.

Michael Böhlen
EDBT 2018 Program Chair
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Test-of-Time Award

Since 2014, the Extended Database Technology (EDBT) Conference awards the EDBT test-of-time award, with
the goal of recognizing papers presented at EDBT Conferences that have had the most impact in terms of
research, methodology, conceptual contribution, or transfer to practice.
This year the award has been given to a paper from the EDBT 2008 Conference in Nantes, France. The award
was bestowed upon the paper:

Social ties and their relevance to churn in mobile telecom networks
by Koustuv Dasgupta, Rahul Singh, Balaji Viswanathan, Dipanjan Chakraborty, Sougata

Mukherjea, Amit A. Nanavati and Anupam Josi
published in the EDBT 2008 Proceedings, pp. 668–677, DOI: 10.1145/1353343.1353424.

This industry track paper reports on an analysis of mobile telecoms data, with a view to predicting which
customers will leave. The analysis involves commercial mobile telephony data, in which nodes are customers
and edges represent calls. The hypothesis tested is that it is possible to predict who will leave a network
based on earlier departures among their connections. The main technique investigated is the use of spreading
activation, to predict the heat of nodes based on the heat of connected notes. It is shown how the approach
based on connections is more effective than classification techniques based on other properties of the nodes.
As a result, the paper provides early and compelling experience on the combination an important real problem
(churn in mobile telecom networks) with a powerful technique (social ties) and applies it on large real data
(telecom operator network over 4 months). The approach has influenced many subsequent studies, for the
same problem, but also for analyses involving different types of network and different hypotheses. Social
network analysis continues as an important and active area ten years later, and this paper continues to be
widely cited.

The EDBT 2018 Test-of-Time Award Committee consisted of Michael Böhlen, Divesh Srivastava and Norman
Paton. The EDBT Test-of-Time award for 2018 will be presented during the EDBT/ICDT 2018 Conference,
March 26–29, in Vienna, Austria (http://edbticdt2018.at).
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Best Paper Award

The best paper award was bestowed upon the paper:

Temporally-Biased Sampling for Online Model Management
by Brian Hentschel from Harvard University, Peter Haas from the University of Massachusetts

Amherst, and Yuanyuan Tian from the IBM Almaden Research Center. DOI:
10.5441/002/edbt.2018.11

The paper proposes a temporally-biased sampling method for a stream of batches that weighs recent data items
more heavily. The inclusion probabilities of data items decay exponentially over time. The authors introduce
a reservoir-based temporally-biased sampling method that asserts an upper bound on the sample size while
keeping the decay of the sample predictable. The problem is well motivated and described, and the paper
offers an excellent solution that is formalized precisely, is robust in the presence of evolving data, and has
been implemented and evaluated for a distributed setting.

The best paper runner-up award was bestowed upon the paper:

GeoAlign: Interpolating Aggregates over Unaligned Partitions
by Jie Song from the University of Michigan, Danai Koutra from the University of Michigan,
Murali Mani from the University of Michigan, Flint, and H. Jagadish from the University of

Michigan. DOI: 10.5441/002/edbt.2018.32

This paper introduces a novel technique to integrate geographical summaries over unaligned geographical
regions, e.g., counties and ZIP codes. While traditional techniques assume that the data in each region is
uniformly distributed, the proposed approach infers the distribution based on other datasets. The proposed
idea is novel, refreshing, and nicely motivated. The described solutions are practical, have been implemented
and evaluated, and there is good potential for follow-up work.

The EDBT 2018 Best Paper Award Committee consisted of Michael Böhlen, Lei Chen, Wolfgang Lehner, and
Kian-Lee Tan. The EDBT Best Paper Awards for 2018 will be presented during the EDBT/ICDT 2018 Confer-
ence, March 26-29, in Vienna, Austria (http://edbticdt2018.at).
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ABSTRACT
In many surveillance applications, capture devices are set on fixed

locations to track entities, leading to valuable spatio-temporal

trajectories. However, sometimes the IDs of the entities in these

trajectories are incorrectly identified due to various reasons (e.g.,

illumination conditions and partial occlusion). Since very often

the movements of the entities are constrained by certain restric-

tions imposed by the application (e.g., vehicles must move along

the given road network), we consider how to repair the erro-

neous IDs using transition graphs derived from such restrictions.

Roughly speaking, the occurrence of erroneous IDs can cause a

valid trajectory to be broken into trajectory fragments that vio-

late some movement constraints imposed by the transition graph,

and we aim to repair them by rewriting the IDs and merging the

fragments. This problem is practically challenging since it is not

easy to judge which IDs in the dataset are correct, and also there

may be multiple candidates as the correct value for a single error.

We formulate the repair process as an optimization problem and

propose a two-phase repair paradigm, which includes candidate

repair generation and compatible repair selection, to maximize

the quality improvement estimated by a designed objective func-

tion. Though both phases are intractable, we propose effective

algorithms to solve them through exploiting the locality and spar-

sity of trajectories. We further devise an index structure, as well

as a pruning method to make the repair process more efficient.

Experiments on both real and synthetic datasets demonstrate the

effectiveness and efficiency of the proposed methods.

1 INTRODUCTION
Many surveillance related applications require the continuous

tracking of entities over time in a specified area. For example,

in maritime transport, surveillance devices can be set on ports

to track the ships; in traffic surveillance systems, cameras are

placed along city streets to capture images of passing vehicles.

One of the main tasks for these applications is to identify the

unique ID (which may be an atomic value or a composite one

consisting of multiple features, such as name, color and shape)

of each recorded entity (e.g., a ship or a vehicle) so that tracking

records of those entities can be constituted.

For instance, vision-based algorithms are used to identify both

the types [3] and names [15] of ships; similarly, optical character

recognition (OCR) techniques are used to distill license plate num-

bers from the captured vehicle images. Due to various reasons

(e.g., illumination conditions, partial occlusion or masking), it is

not uncommon for the IDs of some entities to be incorrectly iden-

tified. Although much effort has been devoted to developing new

techniques for improving the recognition accuracy, such errors

are still unavoidable, especially when deliberate efforts are made
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to prevent the entities from being recognized (e.g., in the case

of smuggling at sea
1
). According to recent studies [10, 15], the

recognition rates of modern approaches are generally over 90%

in lab environments, while in real-world settings, the rates may

drop (e.g., to about 83% in the real traffic dataset we examined).

In this paper, we take a different perspective and aim to repair

erroneous IDs by exploiting the inherent movement constraints,

which are formally represented as transition graphs, that each
entity must follow. Specifically, a transition graph is a directed

graph with each vertex corresponding to a location and each

edge a feasible move. Furthermore, some vertices are designated

as the entrance/exit locations. In general, the transition graphs

are the results of geographical restrictions (e.g., road networks),

regulations (e.g., shipping routes), etc., and thus can be easily

derived or sometimes even explicitly given.

1.1 A Motivating Example

A B C D E

(a) The Road Network

C

DA B E

entrance location
exit locationfeasible move

location

(b) The Transition Graph

Figure 1: A Transition Graph Example

Example 1.1. As a running example, consider the transition

graph depicted in Figure 1(b) for the road network shown in

Figure 1(a) with surveillance cameras installed at locations A,
B, . . ., E (where the hollow arrows indicate driving directions) .

The transition graph implies the following two movement con-

straints: (1) vehicles can only enter this area at locations A or C
and leave from location E; and (2) the move of a vehicle must

match a directed edge in this graph.

Table 1 shows an example of the tracking records captured by

the cameras in Figure 1(a). Without loss of generality, we assume

that each tracking record contains at least three fields – the ID,

the capture location and the capture timestamp. We also assume

that errors occur only in the ID field, as the locations are fixed

and the timestamps can be synchronized across cameras and are

thus much less error-prone. Records with the same ID can be

chronologically sorted and concatenated to form a trajectory.

For convenience, we denote a trajectory by the ID followed by

the sequence of locations, e.g., GL21348⟨A → B → D → E⟩
represents an entity with ID GL21348 moving from A to B to D
to E.

Suppose that the dataset is complete, i.e., there are no missing

records. Then each trajectory must satisfy both of the aforemen-

tioned movement constraints.

Example 1.2. Table 2 shows the composed trajectories from

the tracking records in Table 1. Among the three trajectories,

only the first one satisfies the movement constraints imposed by

1
https://goo.gl/bKGvhb
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Table 1: Tracking Records

ID Loc Time

GL21348 A 08:09:10

GL21348 B 08:13:07

GL03245 C 08:17:23

GL21348 D 08:19:13

GL83248 D 08:19:40

GL21348 E 08:21:29

GL83248 E 08:21:30

Table 2: Trajectories

No. Trajectory

1 GL21348⟨A→ B → D → E⟩
2 GL03245⟨C⟩
3 GL83248⟨D → E⟩

the transition graph in Figure 1(b) and is thus considered valid;

the second and third trajectories are invalid as they fail to satisfy

the first movement constraint in Example 1.1.

Note that ID misidentification can cause “fracture” of a valid

trajectory and therefore may render the trajectory invalid with

respect to the given transition graph. The transition graph is

distinct from most existing constraints [9, 25, 27], in that even

trajectories with correct IDs may violate the constraints imposed

by the graph and thus become invalid.

Example 1.3. Assume that the original trajectory for entity

with IDGL83248 isGL83248⟨C → D → E⟩. Unfortunately, its ID
is misidentified as GL03245 by the camera at C . The trajectory is

thus broken into the second and third trajectories in Table 2, both

of which are invalid (though the second trajectory is actually

error-free).

Some related approaches [27, 29] try to repair erroneous at-

tributes in temporal events (e.g., logs from manufacturing) by

exploiting the structural information or the neighborhood con-

straints of the activities. They propose efficient methods based

on graph structures to detect dirty events and devise heuristic

algorithms to repair them based on the minimum change prin-
ciple [4]. However, these approaches fall short in our scenario

mainly because (1) they perform isolated label rewritings while

in our problem a single repair option may involve multiple ID-

rewritings (as an ID may be identified as multiple erroneous

values), (2) they do not consider the spatial relationships between

the trajectories, which play an important role in our problem,

and (3) the minimum change principle they follow may no longer

be appropriate in our scenario.

1.2 The Present Work

GL21348
 �A→B→D→E>

GL03245
<C>

GL83248
 <D→E>

GL21348
<C>

GL83248
<C>

rewrite to GL21348

rewrite to GL83248

GL21348
<A→B→C→D→E>

merge

GL83248
<C→D→E>

merge

Figure 2: Two Repair Options for Trajectory GL03245[C]

We propose to repair the erroneous IDs through rewriting the

IDs andmerging the trajectory fragments to recover the “original”

trajectories that are valid with respect to the transition graph.

Example 1.4. Consider the trajectory GL03245⟨C⟩ in Table 2.

As shown in Figure 2, by exploring the inherent location and

timestamp relationships, we can rewrite the trajectory’s ID to

GL83248 (or, GL21348) and then merge the corresponding track-

ing records chronologically to form a valid trajectoryGL83248⟨C →
D → E⟩ (or GL21348⟨A→ B → C → D → E⟩).

As shown in Figure 2, there could be multiple options to repair

an invalid trajectory, which are mutually exclusive since it is

logically inconsistent to repair a single ID to different values at

the same time. As such, only one of the options can be used.

Various factors can be considered in evaluating the “goodness”

of the two repair options in Example 1.4, e.g., the ID similarity

and the number of invalid trajectories eliminated. In this example,

the bottom repair option in Figure 2 (i.e., rewriting to GL83248)
is more likely to be selected roughly because (1) compared with

“GL21348”, the string “GL83248” is more similar to “GL03245” (in
terms of edit distance), and (2) applying this option can eliminate

all the invalid trajectories in the dataset, while applying the other

one (i.e., rewriting to GL21348) will leave a dangling invalid

trajectoryGL83238⟨D → E⟩ without other trajectories to merge

with.

The examples above represent a simple case where the dataset

contains only one misidentified ID. In practice, the problem of

trajectory ID repair is much more complex because (1) it is non-

trivial to judge which IDs in the dataset are correct, (2) generating

the repair options, each of which may involve multiple trajecto-

ries, can be time consuming, and (3) there can be a large number

of interrelated repair options and we must consider them as a

whole to make global decisions.

To address these issues, we propose a repair paradigm that

consists of two phases. In the first phase, we generate all potential

repair options that meet certain criteria for later consideration; in

the second phase, we use an evaluation function to estimate the

data quality improvement brought by each repair option, and then

search for a set of such options that can be applied in tandem

to maximize an overall objective function (which reflects the

global quality improvement for the given dataset). Specifically,

we extract the core processes in these two phases as a clique

generation problem and a weighted independent set problem,

which are all NP-hard in general settings. To cope with the first

problem, we add some restrictions on the cliques of interest

and provide a backtracking algorithm. To solve the second one,

we propose an approximate greedy algorithm by exploiting the

probability of selecting a correct repair option. Furthermore, we

also devise an index structure and a pruning method to make the

whole repair approach more efficient.

In repairing the IDs, we do not invent new values and assume

the correct IDs can always be found from the dataset, which is in

line with most previous work on data repair or data matching in

other settings [4, 22, 32]. While the datasets often exhibit another

type of error, namely missing records, our focus in this paper is

on repairing erroneous IDs, which constitute the main source

of error in the datasets we have examined. The reason is that

the problem of missing records are often mitigated through the

deployment of other supporting or complementary technologies.

For example, inductive-loop traffic detectors [2] installed at the

same locations as the traffic cameras can detect almost all passing

vehicles and trigger shots by the corresponding cameras. There-

fore, it is rare for a vehicle not to be captured by the camera and

its plate (either correctly or incorrectly) recognized. In general,

dealing with missing records is a separate issue worthy of in-

vestigation in our future work; in fact, most existing methods

on missing value recovery [30, 31] focus on the issue of miss-

ing records itself without tackling other data quality problems

such as indistinguishable objects. Nonetheless, we conduct ex-

periments in Section 6.3.3 to empirically evaluate the impact of

missing records on the performance of the proposed methods.

2



1.3 Contributions
To the best of our knowledge, we are the first to study the prob-

lem of trajectory ID repair facilitated by the moving rules. In

summary, we make the following contributions in this paper.

(1) We propose a novel transition graph based trajectory ID

repair problem, as well as a two-phase repair paradigm to

solve it.

(2) By exploiting the locality and sparsity of the spatio-temporal

trajectories, we provide practical algorithms that can solve

the problem effectively.

(3) We further devise some optimization methods, which

make our approach more efficient.

(4) Extensive experiments are conducted on both real and

synthetic datasets, which demonstrate the effectiveness

and efficiency of the proposed methods.

The rest of the paper is organized as follows. In Section 2,

we provide the preliminaries and formally define the problem.

We present the two-phase repair paradigm and the detailed al-

gorithms in Section 3 and Section 4, respectively. We further

propose some optimization methods in Section 5, and show the

experimental results in Section 6. We provide an overview of the

related work in Section 7, and conclude this paper in Section 8.

2 PROBLEM DESCRIPTION
2.1 Preliminaries
We first define several terms that will be used throughout the

paper.

Definition 2.1. Transition Graph, Entrance Location and

Exit Location. A transition graph Gt = (V,E) is a directed graph
that represents the set of movement constraints that the entities

must follow. Each vertex loc ∈ V represents a location (e.g., where

a surveillance device is installed), and an edge (loci , loc j ) ∈ E
indicates that an entity can directly move from location loci to
location loc j . Among these vertices (locations), there are some

special ones from which the entities can enter or leave the area

of interest. We call them the entrace locations (the set of which is

denoted by I) and exit locations (the set of which is denoted by

O).

For the transition graph shown in Example 1.1, V = {A,B,
C,D,E}, E = {(A,B), (B,C ), (B,D), (C,D), (D,E)}, I = {A,C} and
O = {E}.

Definition 2.2. Valid Path. Given a transition graph Gt =

(V,E) with the entrance location set I and the exit location set

O, we call a location sequence loc1 → loc2 · · · → locq a valid
path if it satisfies the following three conditions: (1) loc1 ∈ I, (2)
(loci , loci+1) ∈ E(1 ≤ i < q), and (3) locq ∈ O.

Definition 2.3. TrackingRecord.A tracking record r is a triple
(id, loc, ts ), where id is the entity’s unique identifier (which may

be erroneous and is the subject of our study), loc is the location,
and ts is the timestamp.

Definition 2.4. Trajectory, Valid Trajectory, and Invalid
Trajectory. A trajectory T is a chronologically ordered sequence

of tracking records with the same ID (denoted by T.id), i.e., T =
r1 → r2 · · · → rq with T.id = r1.id = r2.id = · · · = rq .id and

r1.ts < r2.ts < · · · < rq .ts . We can represent a trajectory with

the ID followed by the location sequence, e.g.,GL12345⟨A→ B →
C⟩. Given a transition graph Gt and a trajectory T, we call T a

valid trajectory (orVT for short) if the location sequence r1.loc →

r2.loc · · · → rq .loc of T is a valid path w.r.t. Gt . Otherwise we

call T an invalid trajectory (or IVT for short).

In an ideal setting, each trajectory in a dataset is error-free and

contains all the tracking records of an entity (e.g., GL21348⟨A→
B → D → E⟩ in Example 1.2). Due to ID errors, however, a

trajectory may be broken into multiple fragments, each contain-

ing tracking records with a different ID (e.g., GL03245⟨C⟩ and
GL83248⟨D → E⟩ in Example 1.2). Certainly, at most one of the

IDs is correct, and the the rest are all erroneous. Most of the time,

those fragments are invalid trajectories (including the one with

the correct ID), but there does exist a slight possibility that each

of the fragments coincidentally corresponds to a valid path in

the transition graph and is thus deemed valid. Considering its

rarity, we ignore this case in our subsequent discussion.

We view the ID repair problem as one of “restoring" the origi-

nal true trajectory through ID rewriting. That is, we seek to find

a subset of trajectories and rewrite their IDs to (hopefully) the

correct one, and then merge those trajectories to form a valid

trajectory. As such, we introduce the following definitions.

Definition 2.5. Join, Joinable Subset and Target ID. Given a

transition graph Gt , we define join on a trajectory set T ′ and an

existing ID r from T ′ as first rewriting the ID for each T ∈ T ′

to r and then merging all tracking records in T ′ chronologically
to constitute a new trajectory T̂r , i.e., T̂r = join(T ′, r ). The join

is valid iff the newly formed trajectory T̂r is a VT w.r.t. Gt , and

we call r the target ID and T ′ a joinable subset iff such a valid

join exists.

Definition 2.6. Candidate Repair. A candidate repair (or re-
pair for short) R is a pair (T ′, r ) consisting of a joinable subset
T ′ and a target ID r . For a repair R, the corresponding joinable

subset and the invalid trajectories contained therein are denoted

by jns (R) and ivt (R). With R defined, the join operation can be

rephrased as T̂r = join(R). If r is the true ID for all trajectories

contained in T ′ (which implies that they actually come from the

same entity), and T̂r is the true trajectory for the entity with ID

r , we call R a correct candidate repair (or correct repair for short).
For two candidate repairs Ri and Rj , if their joinable subsets are
mutually exclusive, i.e., jns (Ri ) ∩ jns (Rj ) = ∅, we say that Ri and
Rj are compatible; otherwise incompatible. If all pairs of repairs in
a set of repairs are compatible, then we call this set a compatible
repair set.

Figure 2 shows two candidate repairs whose correctness is

unknown. They are incompatible due to the sharing of trajectory

GL03245⟨C⟩.
Given a trajectory set T and a compatible repair set R ′, a

new trajectory set T̂ can be produced by joining the trajectories

indicated by each R ∈ R ′. As illustrated before, the reason why

the repairs must be compatible is that it does not make sense to

rewrite a trajectory’s ID to more than one target ID at the same

time.

2.2 Problem Statement
Given a transition graph Gt , a set of trajectories T with ID errors,

we use R to represent the set which contains all the potential

candidate repairs. The ID repair problem can be regarded as

searching a compatible repair setR ′ ⊆ R , and joining trajectories

designated by the compatible candidate repairs in R ′ to obtain a

new trajectory set T̂ .

Note that there may exist various (incompatible) candidate

repairs in R for a single trajectory, and our goal is to find the
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most promising one. We thus need a function ω (R) to evaluate
the effectiveness of R, which serves as an estimate of how much

quality improvement can be gained by R.

2.2.1 The Evaluation Function for Repair Effectiveness. We

first discuss the factors that we have considered in devising a

suitable evaluation function for the effectiveness of a repair.

• The individual fitness of a repair. In real applications,

the erroneous IDs often bear some similarities with their

correct values, i.e., the more similar two IDs are, the more

likely they correspond to the same entity. In the case of

composite IDs, even if attempts are made to camouflage

the entities with a fake name, the remaining components

of the IDs, such as color and type, are more difficult to

conceal and thus the erroneous IDs would still be similar

to the true IDs. For that reason, we use ID similarity to

evaluate the individual fitness of a repair. This similarity

can be measured by the distance between the strings or

feature vectors representing the IDs, and there have been

dozens of metrics (e.g., edit distance, overlap coefficient,

and cosine similarity) proposed in the literature for this

purpose [24]. In this paper, we choose edit distance as

the similarity metric, but this can be replaced by other

metrics for different applications. Specifically, for a repair

R = (T ′, r ), we use the similarity function sim(R), which
is based on the minimum similarity from an ID in T ′ to

the target ID r , to evaluate the individual fitness of R:

sim(R) = min

T∈T ′

(
1 −

dist (r ,T.id )
max ( |r |, |T.id |)

)
(1)

where dist (r ,Ti .id ) is the edit distance between r and

Ti .id , and |Ti .id | is the length of Ti .id . Apparently, the
range of the similarity function is [0, 1].

• The potency of a repair. As illustrated before, ID errors

will cause invalid trajectories. Candidate repairs that fix

more IVT s are considered more “powerful" and are ex-

pected to bring greater quality improvement to a dataset.

• The rarity of a repair. For a set of trajectoriesT and a set

of corresponding potential candidate repairs R, each IVT
T′ ∈ T may be covered by multiple repairs in R. We call

the number of those repairs the degree of T′ (denoted by

d (T′)). A smaller degree implies that the trajectory is more

“endangered", i.e., there are fewer candidate repairs that

are able to fix it. On the other hand, each such candidate

is considered more precious or rarer and thus should be

preferred. We define the rarity of a repair R as

ra(R) = min

T∈ivt (R )
d (T) (2)

The value of ra(R) ranges from 1 to |R |. When ra(R) takes
the minimum value of 1, it means that only R can fix a

certain IVT in the dataset.

Different effectiveness evaluation functions can be designed

based on the factors above. We find the following one performs

well in our scenarios:

ω (R) =



0 |ivt (R) | = 0

sim(R) + λ logra (R )+1 |ivt (R) | |ivt (R) | ≥ 1

(3)

where sim(R) and ra(R) are the similarity function and the rarity

function respectively, |ivt (R) | represents the number of invalid

trajectories in R, and λ ∈ (0, 1] is a coefficient controlling the

trade-off between the two terms.

In Equation (3), the first term sim(R) acts as assurance on the

matching fitness and makes it unlikely for an ID to be rewritten

to another arbitrary ID. The second term logra (R )+1 |ivt (R) | rep-
resents the potency impact scaled by the rarity factor. According

to this term, repairs holding more invalid trajectories and being

more rare will be more effective. In general, ra(R) + 1 ≫ |ivt (R) |
and thus the range for logra (R )+1 |ivt (R) | is also [0, 1].

Note that due to the introduction of ra(R), the effectiveness
of a repair cannot be evaluated unless a full candidate repair set

R is provided.

2.2.2 The ID Repair Problem. Given a trajectory set T (with

ID errors), a transition graph Gt , and an evaluation functionw
for repair effectiveness, the ID repair problem is to search for a

compatible repair set R ′ that can maximize the sum of the repair

effectiveness. Formally, this can be described as

maximize

R′
Ω(R ′) =

∑
R∈R′

ω (R)

subject to jns (Ri ) ∩ jns (Rj ) = ∅,∀Ri ,Rj ∈ R
′.

(4)

2.3 Applicability and Assumptions
The ID repair approach we adopt exploits the locality and sparsity

properties of the real world spatio-temporal trajectories:

• Locality of movement – a given entity is more likely to

move within a local geospatial neighborhood than “jump-

ing” between far-away locations in a relatively short time

span. This implies that it is more likely to find the true

value of an erroneous ID based on entities that are close

in time and space.

• Sparsity of IDs – two entities with different but very sim-

ilar IDs are highly unlikely to appear in the same local

neighborhood during a relatively short period of time.

Based on these properties, we make the following assumptions.

First, we assume that identical IDs in the data, whether correct

or not, belong to the same entity. In other words, we would not

break a trajectory into smaller pieces. In exceptional cases, it may

so happen that a tracking record with an erroneous ID becomes

part of a valid trajectory in place of a missing record with the

true ID; but such cases are so rare due to the sparsity of IDs that

we could consider them negligible.

Second, we consider all records with the same ID constitute a

trajectory with bounded length and time span. The rationale is

that despite some entities intending to wander around in the area

of interest, the majority should be passing traffic and thus their

trajectories should not be too long. Based on this assumption, we

set two bounds θ and η, where θ is the maximum possible length

of a VT (i.e., the maximum number of tracking records in it) in a

dataset, and η is the maximum time span for a VT .
Finally, we assume that the error rate for ID identification is

not too high (which is consistent with what we observe from

real data), i.e., the number of trajectory fragments caused by

erroneous IDs in a trajectory is limited. We use a bound ζ to

represent the maximum possible number of trajectories in a join-

able subset. Although there may be extraordinary cases where

these assumed bounds do not hold, their establishment grants

us the opportunity to significantly improve the efficiency of the

proposed algorithms, as will be shown in Section 6.2.

3 A TWO-PHASE REPAIR PARADIGM
We now describe a two-phase repair paradigm that serves as

the framework for solving the ID repair problem. The detailed
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algorithms involved in this paradigm will be presented in Section

4.

3.1 Overview of the Paradigm
The basic idea of the proposed paradigm is to first generate all

possible candidate repairs and then select a set of repairs that can

maximize the objective function (Equation (4)). Figure 3 depicts

the repair paradigm consisting of two phases: candidate repair
generation and compatible repair selection.

GmT R Gr R0
Gt Gt

1. candidate repair generation

2. compatible repair selection

Figure 3: The Two-Phase Repair Paradigm
In the candidate repair generation phase, we generate all po-

tential candidate repairs R (which are not necessarily compatible

with each other) from the input trajectory set T according to

the transition graph Gt . This phase can be accomplished using

an undirected graph with each vertex representing a different

trajectory and each edge indicating that the two trajectories

corresponding to its connected vertices can appear in the same

joinable subset. We call this graph the trajectory graph (denoted

by Gm ).

In the compatible repair selection phase, we perform the actual

ID repair by selecting a set of compatible repairsR ′ ⊆ R that have

the maximum total effectiveness in terms of Equation (4). This

task can be carried out by introducing another undirected graph

that reflects the incompatible relationships between different

repairs in R . We call this graph the repair graph (denoted by Gr ).

3.2 Candidate Repair Generation
This phase performs two core tasks, namely joinable subset deter-
mination and target ID assignment.

3.2.1 Joinable subset determination. Before delving into the

details of joinable subset determination, we first introduce two

predicates.

(1) The cex predicate. Given a transition graph Gt , the cex
predicate works by checking whether two trajectories can

coexist in a joinable subset w.r.t. Gt , i.e., {Tx ,Ty |cex (Tx ,
Ty )} = {Tx ,Ty |∃T ′(Tx ,Ty ∈ T ′), and T ′ is a joinable
subset}. Apparently, only if the location sequence for the

chronologically merged records of the two trajectories is

a subsequence (which does not have to be continuous) of

a path in Gt , can this predicate evaluate to true.

(2) The jnb predicate. Given a transition graph Gt , the jnb
predicate is used to determine whether a set of trajec-

tories is a joinable subset w.r.t. Gt , i.e., {Tx |jnb (Tx )} =
{Tx |∃T

′(Tx = T
′), and T ′ is a joinable subset}. This

can be performed by checking whether the location se-

quence for the chronologically merged records is a valid

path in Gt . As a special case, for a trajectory set with only

one element, the jnb predicate evaluates to true if that

element is a valid trajectory.

We first use the cex predicate to construct the trajectory graph

Gm . Specifically, each vertex vi in Gm corresponds to a Ti ∈ T ,

and each undirected edge (vi ,vj ) corresponds to a trajectory pair
(Ti ,Tj ) such that cex (Ti ,Tj ) evaluates to true.

Example 3.1. Let us use T1, T2, and T3 to represent the three

trajectories shown in Table 2. To construct Gm , we first create

v1 v2 v3

(a) The Trajectory Graph

v0
3v0

2v0
1

!(R2) = 0:428

!(R1) = 0 !(R3) = 1:029

(b) The Repair Graph

Figure 4: Gm and Gr for the Running Example
three vertices v1, v2, and v3, corresponding to T1, T2, and T3
respectively. Since both cex (T1,T2) and cex (T2,T3) evaluate to
true, two edges (v1,v2) and (v2,v3) are added to Gm . Figure 4(a)

shows the constructed trajectory graph for the dataset.

Such construction allows the problem of searching for joinable

subsets to be transformed to operations on Gm , as shown in the

theorem below.

Theorem 3.2. A necessary but not sufficient condition for a
trajectory set to be a joinable subset is that its corresponding vertex
set in Gm is a clique.

To compute the joinable subsets, we first generate all cliques

in Gm and then use the jnb predicate to check whether their cor-

responding trajectory sets can really be joinable subsets. Actually,

the clique generation process can be regarded as a preprocessing

step which saves us from enumerating all the trajectory combina-

tions. In general settings, listing all cliques in a graph is NP-hard

[19]. Fortunately, since both the length of a VT and the number

of trajectories contained in a candidate repair are bounded ac-

cording to our aforementioned assumptions, the problem can be

solved in polynomial time in our case. We present the detailed

algorithm for generating the qualified-cliques in Section 4.1.2.

Example 3.3. For the trajectory graph shown in Figure 4(a),

there are five cliques: {v1}, {v2}, {v3}, {v1,v2}, and {v2,v3}. How-
ever, evaluating jnb on their corresponding trajectory sets re-

veals that there are only three joinable subsets: {T1}, {T1,T2},
and {T2,T3}.

3.2.2 Target ID Assignment. After generating all the joinable

subsets, we assign target IDs to them. Given a joinable subset

T ′, the target ID is decided by selecting a trajectory Tc that

maximizes the following equation.

Tc = arдmax
Ti ∈T ′

*..
,

∑
Tj ∈T ′

|Ti |
|Tj |

(
1 −

dist (Ti .id, Tk .id )
max ( |Ti .id |, |Tj .id |)

)+//
-

(5)

In this equation, |Ti | (|Tj |) is the length of trajectory Ti (Tj ),
|Tj .id | (|Tj .id |) is the length of ID Ti .id (Tj .id), and dist (Ti.id,
Tj .id ) is the edit distance between them. The rationale behind

the choice of this equation is that when all trajectories have the

same length, our goal is to choose a target ID that can maximize

the sum of similarities of all IDs with the target ID. We also

give preference to longer trajectories, as the error rate for ID

identification is usually low and it is unlikely for the same error

to be made at consecutive locations in a trajectory. Note that we

choose to use edit distance here to measure the (dis-)similarity

between IDs, but other distance measures can also be used where

appropriate.

Example 3.4. Based on Equation (5), we assignGL21348,GL21348,
and GL83248 as the target IDs for the three joinable subsets

{T1}, {T1,T2}, and {T2,T3} generated in Example 3.3 and com-

bine them respectively to generate three candidate repairs: R1 =
({T1},GL21348), R2 = ({T1, T2},GL21348) , and R3 = ({T2,T3},
GL83248). Then we calculate their effectiveness values accord-

ing to Equation (3), which are ω (R1) = 0, ω (R2) = 0.428, and

ω (R3) = 1.029.
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3.3 Compatible Repair Selection
In the previous phase, we have generated all candidate repairs

R. Next, we select compatible repairs from R to maximize the

objective function in Equation (4). The selection process can be

mapped to operations on another undirected graph, namely the

repair graph, Gr , which can be constructed as follows: (1) for each

candidate repair Ri ∈ R, add a corresponding vertex v ′i to Gr ;
(2) if Ri ,Rj ∈ R share an identical trajectory, add an undirected

edge (v ′i ,v
′
j ) to Gr .

Example 3.5. To construct Gr for the three candidate repairs

generated in Example 3.4, we first add three corresponding ver-

ticesv ′
1
,v ′

2
, and v ′

3
. Since jns (R1) ∩ jns (R2) = {T1} and jns (R2) ∩

jns (R3) = {T2}, two edges (v ′
1
,v ′

2
) and (v ′

2
,v ′

3
) are added. Finally,

we get the repair graph shown in Figure 4(b).

Such construction allows us to view the problem of select-

ing compatible repairs as packing vertices from Gr where no

pairs are adjacent. This translates to the well known weighted
independent set problem, which is NP-hard in common settings

[23]. Considering the inherent relationships between repairs, we

present a greedy algorithm to approximately solve this problem

in Section 4.2.

4 ALGORITHMS
In this section, we present the core algorithms for the two-phase

repair paradigm.

4.1 Algorithms for Repair Generation
4.1.1 Evaluating the cexnd jnbredicates. Given a transition

graph Gt , the cex predicate determines whether two trajectories

T1 and T2 can coexist in a joinable subset. The key idea in eval-

uating this predicate is to check whether the location sequence

for the chronologically merged records is a subsequence of a

path in Gt . This can be considered a reachability problem, i.e.,

for the merged location sequence loc1 → loc2 → · · · → locq
(q = |T1 | + |T2 |), if loci and loci+1 belong to different trajectories,
we check whether loci+1 is reachable from loci .

A straightforward solution for this problem using breadth-first

(or depth-first) search takes linear time, but we can do some pre-

processing to have it done in constant time. Specifically, the Floyd

Warshall algorithm [16] can be employed to calculate the shortest-

path matrixM for Gt , whereM[i][j] indicates the number of

edges in the shortest path from loci to loc j . After this preprocess-
ing step, the reachability queries can be answered instantly by

consulting the elements inM.

Moreover, recall that we have two user-defined bounds, the

maximum length θ and the maximum time span η for each VT .
Thus we should also check whether |T1 | + |T2 | ≤ θ and whether

the time span for the merged sequence exceeds η. Putting things

together, we show the algorithm for evaluating the cex predicate

in Algorithm 1.

Compared with the cex predicate, the jnb predicate is more

strict in that it evaluates to true only if the given trajectories

can perfectly make up a joinable subset. The algorithm for this

predicate is similar to that for the cex predicate with the follow-

ing two additional restrictions: (1) the location attributes in the

earliest and the latest records of the input trajectories must be an

entrance location and an exit location in Gt , respectively, and (2)

no matter whether two adjacent records (in the merged sequence)

ri and ri+1 belong to the same trajectory or not, there must be an

Algorithm 1 Algorithm for the cex predicate

Input: The reachability matrixM for Gt ; the maximum length

θ ; the maximum time span η; two trajectories T1 and T2.
Output: true if T1 and T2 can coexist in a joinable subset; f alse

otherwise.

1: if |T1 | + |T2 | > θ then
2: return f alse

3: merge records in T1 and T2 by their timestamps to get a

sequence r1 → r2 → · · · → rq ;
4: if rq .ts − r1.ts > η then
5: return f alse

6: for all ri and ri+1 in the merged sequence do
7: if ri .id , ri+1.id then
8: ifM[i][i + 1] ≥ θ then
9: return f alse

10: return true

edge from ri .loc to ri+1.loc . Due to space limitation, the detailed

algorithm for evaluating the jnb predicate is omitted.

4.1.2 Generating Qualified Cliques. We now introduce the

algorithm for generating the qualified cliques in Gm . In general,

enumerating all cliques in an undirected graph requires expo-

nential time, and the running time is output-sensitive (i.e., the

running time depends on the size of the output). However, when

the trajectory length and clique size are bounded (by θ and ζ
respectively), the problem can be much simplified. We show how

to generate the qualified cliques in Algorithm 2, which runs in

O ( |Vm |ζ ) time.

Algorithm 2 Algorithm for generating qualified cliques

Input: The adjacency matrix representation of trajectory graph

Gm = {Vm ,Em }; a set C to store vertices in the current

clique; an index list L for vertices; the maximum trajectory

length θ ; the maximum clique size ζ .
Output: a set of generated cliques results .
1: fill L with 1, 2, · · · , |Vm |
2: function Cliqe(C , L)
3: for i ← L.size (), 1 do
4: v ← L.дet (i )
5: C ← C ∪ {Tv }
6: create a new list Lnew
7: for j ← 0, i do
8: w ← L.дet (j )
9: if (v,w ) ∈ Em then
10: Lnew .add (w )

11: results ← results ∪ {C}
12: if ¬Lnew .empty () and C .RecordNumber < θ and
|C | < ζ then

13: Cliqe(C , Lnew )

14: C ← C \ {Tv }
15: L.remove (i )

16: return results

The main idea of the generation algorithm is backtracking.

It iteratively adds to a temporary vertex set C a vertex that is

adjacent to all existing ones inC from an input vertex list, outputs

the result, starts a recursion with a new list of vertices that are

adjacent to the newly added vertex, and finally removes the vertex

added in this round. As shown in Line 12, unnecessary recursions

are eliminated using the bounds θ and ζ .

6



v1

v5

v4

v2

v3
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(b) The Clique Generation Process

Figure 5: An Example of Clique Generation

Example 4.1. Figure 5 shows an example of the clique gen-

eration process. Given a trajectory graph with 5 vertices, the

15 cliques are generated in turn with Algorithm 2. As shown

in Figure 5(b), if ζ = 2, the algorithm will automatically skip

generating cliques beneath the dashed line.

4.2 Algorithms for Repair Selection
As discussed in Section 3.3, the repair selection problem corre-

sponds to a weighted-independent set problem on Gr , which

is NP-hard. In search of efficient solutions, consider the effec-

tiveness evaluation function in Equation (4). It is defined as an

indicator of the potential quality improvement due to a repair, but

by no means a definitive measure of the true improvement. That

is, for two compatible repair sets R ′
1
and R ′

2
, if Ω(R ′

1
) > Ω(R ′

2
),

it just indicates that R ′
1
is likely better than R ′

2
, but not definitely,

especially when the values of Ω(R ′
1
) and Ω(R ′

2
) are close. This is

confirmed by a large number of experiments on different datasets,

from which we find that the Ω values of the optimal compatible

repair sets (which include all the correct repairs) are randomly

distributed in the proximity of, but not exactly the same as, the

optimal results from the weighted-independent set problem.

The observation inspires us to seek approximate solutions to

the repair selection problem instead. Many heuristic algorithms

have been proposed for the weighted-independent set problem

(see [5] for a survey). Here we propose a greedy algorithm named

maximum-effectiveness first (EMAX), which gives superior empir-

ical results in our settings. As shown in Algorithm 3, the EMAX

algorithm always selects from Gr a vertex whose corresponding

repair is evaluated to be the most effective according to Equa-

tion (3), and then discards its adjacent vertices until there is no

vertex left.

Algorithm 3 The EMAX algorithm

Input: the repair graph Gr = (Vr ,Er ).
Output: a set of selected verticesV .

1: sort vertices in Vr by the ω values of their corresponding

repairs in a decreasing order

2: for all v in Vr do
3: if v .discard = f alse then
4: add v toV

5: for all va adjacent to v do
6: va .discard ← true

7: returnV

Compared with the exact algorithm that requires exponential

running time, the EMAX algorithm runs in only O ( |Vr | log |Vr |)
time. The rationale behind this heuristic is that, repairs evaluated

to be more effective are more likely to be correct, and thus giving

them priorities them makes it more likely to select the best result.

Example 4.2. For the repair graph shown in Figure 4(b), the

EMAX algorithm first selects the vertex v ′
3
corresponding to

candidate repair R3 (since it is the most effective according to

Equation (3)) and then discards v ′
2
adjacent to v ′

3
. Since the effec-

tiveness of R1, the only vertex left, is zero, v
′
1
will not be selected.
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Figure 6: Time Boundaries and the Data Structure for LIG
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Figure 7: Overview of the Length-Indexed Grids

5 OPTIMIZATION
In this section, we provide some optimization methods to make

the repair approach more efficient.

5.1 An Index for Constructing Gm
The candidate repair generation phase requires evaluating the

cex predicate on each pair of trajectories in T for constructing

the trajectory graph Gm . Suppose that there are |Vm | trajectories.
This procedure requires O ( |Vm |2) comparisons, which could be

costly in practice. Recall that valid trajectories are upper-bounded

in length and time span, and we thus make use of the bounds θ
and η to filter out some unnecessary comparisons.

Definition 5.1. Start Time and End Time. The start time and
the end time of a trajectory T are defined as the timestamps of

the earliest and latest records in T, respectively.

Given a trajectory Tk with start time tss and end time tse ,
another trajectory Tu that may constitute a joinable subset with

Tk must first meet the length criterion, i.e., |Tu | ≤ θ − |Tk |. Also,
for the bound on time span η, the max/min start time (denoted

by maxs and mins ) and max/min end time (denoted by maxe
andmine ) of Tu should satisfy the following inequalities (which

are demonstrated in Figure 6(a)): tse −mins ≤ η,maxs − tss ≤
η, tse − mine ≤ η, and maxe − tss ≤ η. According to these

inequalities, both the start time and end time of Tu should fall in

[tse − η, tss + η], and we can transform the criteria into a range

query on a three-dimensional index structure on the trajectories

called Length-Indexed Grids (LIG).

Overview. As shown in Figure 7(a), the three dimensions of

LIG are the length, the start time and the end time of a trajectory.

Specifically, we divide the time span of interest along both the

start time and end time dimensions into time bins with fixed

size tb , resulting in a two-dimensional time grid shown in Fig-

ure 7(b). A separate time grid is created for each trajectory length

appearing in the dataset.

The Data Structure. Figure 6(b) illustrates the data structure
of LIG. An array is used to store the grids with different trajectory

lengths. Each grid is actually a two-dimensional array. Trajec-

tories are distributed to grids according to their start/end times

and trajectories in the same grid are linked to be an element of
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the two-dimensional array. We construct LIG by successively

add trajectories. For each trajectory, we first decide the grid it

belongs to according to the trajectory’s length. Then we assign a

time grid for the trajectory and add it as a new element to the

tail of the corresponding list.

Usage.We use the index to answer the range query by first de-

ciding a set of feasible grids according to the trajectory’s length

and the threshold θ . After that, in each grid, we select trajec-

tory lists that meet the start/end time restrictions from the two-

dimensional array. Without loss of generality, suppose that the

timestamps of tracking records are represented as offsets to the

earliest timestamp in the dataset. Then the target trajectories we

are interested in should be contained in elements whose indices

are bounded by [⌊
tss−η
tb
⌋ × tb , ⌈

tse+η
tb
⌉ × tb ] in both dimensions.

With the index technique provided above, we can prune many

useless trajectory comparisons. As the time grids are static, the

index can be constructed efficiently in Θ( |Vm |) time. As such,

the running time for generating Gm can be significantly reduced.

5.2 A Pruning Method for Clique Generation
In Section 4.1.2, we show how to generate qualified cliques from

the trajectory graph Gm . All the trajectory sets corresponding

to the cliques will be further checked by the jnb predicate to see

if they are really joinable subsets. Considering that Algorithm 2

is output-sensitive, it will be more efficient if we can eliminate

some worthless vertex combinations early on during the clique

generation process. We propose an optimization method named

minimum cover prefix pruning for this purpose.

Time

Minimum Cover Prefix

Figure 8: The Minimum Cover Prefix

Definition 5.2. Minimum Cover Prefix. As shown in Fig-

ure 8, given a trajectory set T = {T1,T2, · · · , Tp }, we can

merge their tracking records chronologically to get a sequence

r1 → r2 → · · · rq . Theminimum cover prefix (abbreviated asMCP)

for T is defined as the minimum prefix of this sequence that con-

tains at least one tracking record from all trajectories in T .

Theorem 5.3. The MCP condition. Given a list of trajectories
[T1,T2, · · · ,Tp ] sorted by their start times in an increasing order
(i.e., Ti .startTime ≤ Ti+1.startTime), a necessary but not suffi-
cient condition for these trajectories to compose a joinable subset is
that the location sequence for the MCP of any {T1,T2, · · · ,Tp−k }(0
≤ k < p) must be a prefix of a valid path in Gt .

According to Theorem 5.3, when generating cliques, if the

vertices are added to C in an increasing order of the start times

of their corresponding trajectories, we can prune some unneces-

sary vertex combinations according to the MCP condition. The

checking is performed with a pck predicate.

The pck predicate. Similar to the cex and jnb predicates,

given a trajectory graph Gt , the pck predicate can be applied

on one or more trajectories and evaluates to true iff the MCP

condition holds, i.e., {Tx |(pck (Tx ))} = {Tx |∃P(r1.loc → · · · →
rk .loc = pre f ix (P)), [r1, · · · , rk ] is theMCP of Tx andpre f ix (P)
is the prefix of a valid path P in Gt }. In terms of “restrictiveness”,

this predicate falls somewhere between the cex and jnb predi-

cates. Compared with cex , it further requires that the location
sequence must be a prefix of a valid path, not just a subsequence;

compared with jnb, it just ensures that the first location is an

entrance location. Due to space limitation, the detailed algorithm

for evaluating this predicate is omitted.

With the pck predicate defined, we try to modify the qualified-

clique generation algorithm by pruning worthless results and

recursions. First of all, we must ensure that the cliques are gen-

erated in the order of their trajectories’ start times. Fortunately,

Algorithm 2 iterates through the vertices with an index list L.
Thus, to keep the generation order, we just need to sort the ver-

tices in Gm . Then, each time before outputting a generated clique

to the result set, we check its corresponding trajectory set with

the pck predicate, and only if it evaluates to true , can we accept

the clique and continue adding more vertices into the result set.

The modified algorithm snippet is shown in Algorithm 4.

Algorithm 4 Clique generation with pruning

. . .

sort vertices in Gm by their corresponding trajectories’ start

times in descending order

function Cliqe(C , L)
. . .

if pck (C .trajectories ) = true then
results ← results ∪ {C}
if ¬Lnew .empty () and C .RecordNumber < θ and

|C | < ζ then
Cliqe(C , Lnew )

. . .

Example 5.4. Suppose that the vertices in Figure 5(a) are al-

ready sorted by the start times of their corresponding trajectories,

i.e., T5.startTime ≤ T4.startTime ≤ · · · ≤ T1.startTime . If the
MCP condition does not hold on {T5}, any cliques containing v5
(e.g., {v5,v4} and {v5,v4,v1}) will be pruned by the modified al-

gorithm. For the same reason, if the MCP condition does not hold

on {T5,T2}, the cliques {v5,v2} and {v5,v2,v1} will be pruned.
Obviously, the modified algorithm is more efficient thanks to the

pruning of some cliques and unnecessary calculations.

6 EXPERIMENTS
We conduct extensive experiments on both real and synthetic

datasets to thoroughly evaluate the properties of the proposed

approach and compare it to baseline methods.

6.1 Experimental Settings
All algorithms are implemented in Java and run on a desktop

PC with a 2.5GHz Intel i5 CPU and 8GB of memory. Each set

of experiments are repeated at least 30 times and the average

results are recorded.

A real dataset and a series of synthetic datasets with different

characteristics are used in the experiments. According to Sec-

tion 2.3, the repair approach we proposed in this paper is in the

interest of local regions. For such small regions, the transition

graphs may seem simple. However, note that even for such seem-

ingly simple graphs, the repair problem is still quite challenging,

as revealed in Section 3.

6.1.1 Datasets. Real Dataset. The real dataset is obtained
from a real traffic surveillance system in a provincial capital

in China. We choose a specific region of this city and extract

699 trajectories of vehicles which contain 2,045 tracking records

between 8:00 a.m. and 9:00 a.m. on a particular day. Figure 9(a)

illustrates the road network and the distribution of surveillance
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(a) The Road Network

C DA B

(b) The Transition Graph

Figure 9: Road Network and Transition Graph
cameras in this region. The license plate numbers of the vehicles

are captured by cameras located at A, B,C , and D whenever they

pass by these sites. Figure 9(b) is the corresponding transition

graph we derived. Due to OCR errors and other issues, some of

the license plates in the dataset were misidentified. We manually

label the plate numbers by examining the original photos taken
by the cameras, which serves as the ground truth. In this way, we

obtain a labeled dataset that contains both the raw and the true

values. The default values of θ , η, ζ and λ for the real dataset are

empirically set to 4, 600 seconds, 4, and 0.5, respectively, unless

otherwise specified.

Synthetic Datasets. To generate a synthetic trajectory set

for ID repair, we first choose a transition graph, based on either

the real dataset or a sample of the California road network [21].

Then we repeatedly sample random valid paths and generate

corresponding trajectories until we have obtained the desired

number of trajectories. Without loss of generality, we assume

that an ID consists of 7 to 9 lower-case letters only, which are

independently and identically generated following a uniform

distribution. The time span is sampled from the empirical dis-

tribution of travel time between the corresponding locations in

the real dataset. After that, using the edit distance distribution

for erroneous IDs in the real dataset as a ballpark, we randomly

inject ID errors to the tracking records with a specified error rate,

and eventually get a synthetic dataset. The default error rate is

set to 20%, unless otherwise specified.

6.1.2 Metrics. Weuse elapsed time as themetric for efficiency,

and adopt precision, recall and f-measure as the general metrics

for effectiveness. Using Te to represent all the trajectories with

ID errors, Tr to represent those trajectories with ID rewritten by

applying candidate repairs, and Tc to represent all the trajectories

whose IDs are correctly repaired, we define recall = |Tc |/|Te |,

precision = |Tc |/|Tr |, and f-measure =
2·(precision·recall)
(precision+recall) . There

are also some specialized metrics used in certain groups of ex-

periments, which will be introduced later.

6.2 Effects of Parameters
We first evaluate the effects of different parameters through a

group of experiments on the real dataset.

The effects of θ , ζ , and η. Figures 10(a), 10(b) and 10(c) show
the f-measure and running time with varying values of θ , ζ , and
η, respectively, with all other parameter values fixed at their

default values. We observe that for each of these parameters, the

running time grows with increasing parameter values. For the

f-measure, it initially increases as well, but eventually flattens

out. This verifies our earlier observation that for a particular

dataset, there exist bounds on these parameters, beyond which

no further gains in repair effectiveness can be achieved. Thus, by

carefully choosing the bounds, we can reduce the running time

of the repair process significantly.

The effect of λ. Figure 10(d) shows the effect of λ in Equa-

tion (3). With λ varying from 0.1 to 0.9, the running time remains

stable, and the f-measure first increases and then decreases after
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Figure 10: Results with Different Bounds on the Real
Dataset
λ = 0.5. The results imply that (1) there exists an optimal λ value

with which the best results can be produced, and (2) the repair

results are not sensitive to changes in λ.

6.3 Effects of Data Characteristics
We next conduct a set of experiments using synthetic datasets

to investigate the impact of different data characteristics. All the

datasets used in this set of experiments are produced based on 500

original trajectories (before injecting errors). The actual number

of trajectories in a dataset is affected by different parameters

(e.g., error rate and record missing rate), and will be shown for

different groups of experiments. The default values of θ , η, ζ and

λ for the synthetic datasets used here are set to 8, 600 seconds, 4,

and 0.5, respectively.

6.3.1 Size and Density of the Transition Graph. The first data
characteristics we explore are the size (number of vertices) and

density (number of edges) of the transition graph. The experi-

ments are conducted on synthetic trajectory sets generated from

transition graphs with different sizes and different densities. We

vary the density of a transition graph with 8 vertices Gt =

(V,E, I,O), where V = {loc1, loc2, · · · , loc8}, E = {(loc1, loc2),
(loc2, loc3), · · · , (loc7, loc8)}, I = {loc1}, and O = {loc8}, by ran-

domly adding a specific number of edges (without duplicate) to

it.
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Figure 11: Effect of the Size and Density of Transition
Graphs

The effect of graph size. Figure 11(a) shows the results

on varying transition graph sizes. It is evident that both the

f-measure and the running time decrease with the number of

vertices increasing. That is because a transition graph with more

vertices tends to have longer valid paths, and the longer the valid

paths are, the harder it is to form candidate repairs that could

“reassemble" the original trajectory;

The effect of graph density. The results for adding varying
number of edges to a given transition graph are shown in 11(b).
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The f-measure decreases while the running time increases with

more edges added, due to the following reasons: (1) adding edges

to the transition graph will increase the number of valid paths

and thus there will be more candidate repairs; (2) with the number

of candidate repairs growing, there may be more false positive

repairs (vertices) being selected and that will cause the f-measure

to deteriorate; and (3) having more candidate repairs also leads

to longer candidate generation and selection time, resulting in

an increase in the total running time.

The results above imply that our ID repair approach is more

suitable for sparse transition graphs with limited number of ver-

tices, which is actually the case in many, if not most, application

scenarios. This is also consistent with our assumptions and anal-

ysis made in Section 2.3.

6.3.2 ID Error Rate. To evaluate the effect of the ID error rate,

we create a cohort of synthetic datasets by randomly injecting

ID errors, each time with a different error rate, into an identical

original trajectory set.
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Figure 12: Effect of ID Error Rate

The experiment results are reported in Figures 12(a) and 12(b),

from which we can observe that with the error rate increasing,

(1) the number of trajectories for the input dataset increases

linearly; (2) both the number of candidate repairs and the running

time increase polynomially; and (3) the f-measure drops near

linearly. The reason is as follows. Since ID errors can cause a

trajectory to break into multiple pieces, the input number of

trajectories grows linearly with respect to the error rate. Both the

number of candidate repairs and the running time also increase

accordingly. The f-measure drops mainly because intuitively it is

more difficult to “reassemble" the original trajectory with more

IDs misidentified. Also, recall that our repair approach assumes

that all the correct IDs exist in the dataset, which may no longer

hold if the error rate gets high. In summary, the lower the ID

error rate is, the better our repair approach works.

6.3.3 Record Missing Rate. As mentioned in Section 1, in this

work we only consider errors caused by ID misidentification,

ignoring the effect of missing records. In practice, however, there

may be a slight chance of recordmissing from the dataset.We thus

conduct experiments to evaluate whether this has a significant

impact on the effectiveness of the proposed approach. To this end,

we first generate a synthetic dataset and then randomly remove

records from it with varying record missing rates.
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Figure 13: Effect of Record Missing

As illustrated in Figures 13(a) and 13(b), with the missing rate

increasing from 0% to 20%, all the metrics decrease. The reason

is that (1) record missing will make some joinable subsets in-

complete and thus cannot compose the corresponding candidate

repairs (this is verified by the decrease of candidate repairs shown

in Figure 13(a)); (2) trajectories belonging to different entities

may be joined due to the absence of some trajectories; and (3)

records containing the true ID for an entity may have all been

removed, which makes some errors irreparable.

According to the experiment result, although having missing

records has a notable impact on the effectiveness of the proposed

ID repair approach, it is still applicable for datasets with relatively

low record missing rates.

6.4 Effectiveness of the Optimization
Methods

The main purpose of the next group of experiments is to explore

the performance improvements brought by the Length-Indexed

Grids (in Section 5.1), as well as the pruning method (in Sec-

tion 5.2).

We conduct the experiments on synthetic datasets with the

number of trajectories varying from 2,000 to 6,000 and the corre-

sponding number of records varying from 5,189 to 15,795. All the

datasets are generated using the same transition graph as that

for the real dataset.
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Figure 14: Effectiveness of Optimization Methods

Figure 14(a) shows the running time of the trajectory graph

construction process with different number of trajectories. From

this figure we can observe that without indexing, the construc-

tion time of Gm grows superlinearly with the number of tra-

jectories, whereas the trend becomes almost linear with the

Length-Indexed Grids. This observation indicates that the Length-

Indexed Grids can help eliminate a large number of unnecessary

trajectory comparisons.

Figure 14(b) reports the running time of the whole repair

process with the number of trajectories varying from 2,000 to

6,000. We can see that the time increases polynomially with the

number of trajectories. Besides, compared with the basic clique

generation algorithm, algorithm with the pruning method can

reduce about 30% running time.

6.5 Comparison with Competing Approaches
To evaluate the effectiveness of our proposed method, we com-

pare it with other approaches that use different repair selection

algorithms or exploit different constraints.

6.5.1 Alternative Repair Selection Algorithms. In this set of

experiments, we aim to investigate the performance of different

algorithms for the repair selection phase. In addition to EMAX

and the exact algorithms introduced in Section 4.2, we also imple-

ment three other algorithms for comparison. The first algorithm,
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named optimal selection, is an oracle machine based algorithm

that always selects and applies correct candidate repairs regard-

less of their ω values. Theoretically, this algorithm can achieve

the highest quality improvement. The second and the third algo-

rithms are minimum degree first (DMIN) and maximum degree

first (DMAX). As their names suggest, they select the vertex with

the minimum/maximum degree from Gr in each step and discard

adjacent vertices until there is no vertex left.

As the exact algorithm for weighted-independent set is time

consuming, the experiments are conducted on 5 small synthetic

datasets whose sizes do not exceed 100. Even so, the average

running time for the exact algorithm is still thousands times

longer than the other algorithms. Thus we only report on their

effectiveness rather than the performance.

To measure the real quality of a dataset, we employ the metric

trajectory accuracy, which is defined as the ratio of trajectories

with correct IDs. Thereby, the real quality improvement after

repairing can be measured by the increment in this metric. As

trajectory merging can change the data size, we will only per-

form ID rewritings. Using ∆E (∆A) and ∆Emax (∆Aopt ) to repre-

sent the selected Ω value (trajectory accuracy improvement) and

the maximum selected Ω value (maximum trajectory accuracy

improvement), the approximation ratio for maximum Ω value

selection and data quality improvement can be calculated by

∆E/∆Emax and ∆A/∆Aopt .
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Figure 15: Approximation Ratios for Different Selection
Algorithms on Synthetic Datasets

Figures 15(a) and 15(b) report the experiment results of max-

imum Ω value selection and data quality improvement, from

which we can observe that (1) the selected Ω value can reflect the

data quality improvement well, (2) the total selected Ω value for

the optimal selection algorithm is randomly distributed around,

rather than always coincides with, the maximum value, and (3)

remarkably, the proposed EMAX algorithm can achieve an av-

erage approximation ratio of more than 0.95 and 0.85 for repair

selection and real data quality improvement respectively, which

significantly beats the other two heuristic algorithms. In sum-

mary, as the optimal selection algorithm is evasive in practice

and the exact algorithm is time-consuming, the proposed EMAX

algorithm seems highly promising.

6.5.2 Comparison with Other Repair Approaches. To evalu-

ate our proposed ID repair approach, we implement a baseline

approach based on ID similarity = 3, i.e., trajectories with ID

similarity ≤ 3 are considered to come from the same entity and

thus will be merged. Also, we implement another greedy heuris-

tic method based on neighborhood constraints proposed in [27].

We take the transition graph Gt as the constraint graph and the

trajectory graph Gm as the instance graph. The cost function is

set to be the edit distance of two ID strings. To make sure the

algorithm terminates, we add a variation to the approach that

edges are allowed to be removed from Gm during relabeling.

The repair results of the three approaches are shown in Fig-

ure 16, from which we can observe that (1) while the precision

of the other competing approaches is somewhat close to our

proposed approach, their recall is significantly lower; and (2)

the neighborhood constraint based method performs even worse

than the baseline method for our problem. The recall of the ID

similarity based approach is better than that of the neighborhood

constraint based approach because it supports “partial recovery"

of the original trajectories. Actually, both the ID similarity based

approach and the neighborhood constraint based approach are

binary constraints that only consider the relationship between

trajectories pairs. In contrast, our transition graph based ap-

proach considers the relationships between multiple trajectories,

which is why it can cover more correct repairs.

7 RELATEDWORK
There has been a sizable body of work in the areas of data repair

and data matching that can be considered related to our work,

which we summarize below.

7.1 Data Repair
Most previous work on data repair has focused on relational data

by exploiting the different types of dependencies [1], e.g., match-

ing dependencies [12],differential dependencies [26], and order

dependencies [28]. Fan et al. extend the functional and inclusion

dependencies with conditions [6, 13] and also extend their data

inconsistency detection method to distributed environments [14].

Although highly successful, most of the work has not considered

spatial and temporal factors.

Moreover, sequential dependencies [18] are developed to con-

strain attributes’ transitions. Song et al. use neighborhood con-

straints to repair vertex labels in graphs [27]. Wang et al. employ

the Petri Net to repair the names of event logs [29]. Similar to

our study that focuses on repairing the IDs, Song et al. propose

a method for cleaning timestamps facilitated by temporal con-

straints [25].

For unified approaches, Ilyas et al. propose a novel holistic

repairing algorithm [8], as well as a general system [11] that puts

multiple constraints into consideration and repairs them all at

once. Similarly, Geerts et al. develop a uniform data-cleaning

framework with a cell group and partial order based cleaning se-

mantics [17]. However, thosemethods cannot be trivially adopted,

since it is difficult to transform the constraints posed by transi-

tion graphs in our setting into the denial constraints or equality-

generating dependencies required by those methods.

7.2 Data Matching
In the field of data matching, Yakout et al. try to identify the same

entity in different transactions by detecting regularity patterns

from merged behavior logs [32]. Similarly, Zhu et al. perform

heterogeneous event matching by finding an optimal mapping

that can maximize the frequency similarity of patterns [33].

When patterns are not explicitly given, Li et al. propose a

temporal model, as well as an algorithm to perform temporal

11
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Figure 16: Comparisons with Other Repair Approaches

records clustering [22]. They utilize both the usual similarity

metrics and the temporal model with collected evidences to make

the decision. Chiang et al. extend their work and develop a two-

phase method called “static first, dynamic second” to reduce the

complexity of the temporal model [7]. Also, they use signatures

to improve the computing efficiency. Note that both their work

and ours are to identify entities by exploring their transitions.

The main difference is that while their work mainly focuses on

when the state attributes of entities should change, we focus on

how (through which paths) the entities pass through the area of

interest.

8 CONCLUSIONS AND FUTUREWORK
We have studied a novel problem of repairing erroneous IDs in

spatio-temporal trajectories with transition graphs. A two-phase

repair paradigm, which includes candidate repair generation and

compatible repair selection, is proposed to address this problem.

Since both phases are intractable in general, we exploit the lo-

cality and sparsity properties of trajectories and present efficient

solutions in restricted but practical scenarios. For the candidate

repair generation phase, we propose a backtracking algorithm,

as well as a pruning method to speed it up. For the candidate

repair selection phase, we present a practical greedy algorithm.

Extensive experiments are conducted on both real and synthetic

data to study the effects of various parameters and data character-

istics. In addition, we compare our proposed approach with some

baseline methods and the results have confirmed its effectiveness.

One possible direction for future work would be to deploy our

algorithms on some distributed repair systems with UDF support

[20]. It would also be interesting to study solutions that could

perform ID repair as the tracking records stream in.
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ABSTRACT
In the last decade, many business applications have moved into the
cloud. In particular, the “database-as-a-service” paradigm has be-
come mainstream. While existing multi-tenant data management
systems focus on single-tenant query processing, we believe that
it is time to rethink how queries can be processed across multiple
tenants in such a way that we do not only gain more valuable
insights, but also at minimal cost. As we will argue in this paper,
standard SQL semantics are insufficient to process cross-tenant
queries in an unambiguous way, which is why existing systems use
other, expensive means like ETL or data integration instead. We
first propose MTSQL, an extension to standard SQL, which fixes
the ambiguity problem. Next, we present MTBase, a query pro-
cessing middleware that efficiently processes MTSQL on top of
SQL. As we will see, there is a canonical, provably correct, rewrite
algorithm from MTSQL to SQL, which may however result in
poor query execution performance, even on high-performance
database products. We further show that with carefully-designed
optimizations, execution times can be reduced in such ways that
the difference to single-tenant queries becomes marginal.

1 INTRODUCTION
Indisputably, cloud computing is one of the fastest growing busi-
nesses related to the field of computer science. Cloud providers
promise good elasticity, high availability and a fair pay-as-you-
go pricing model to their tenants. Moreover, corporations are
no longer required to rely on on-premise infrastructure which is
typically costly to acquire and maintain. While it is still an open re-
search question whether and how these good promises can be kept
with regard to databases [19, 32], all the big players, like Google
[30], Amazon [8], Microsoft [34] and recently Oracle [38], have
launched their own Database-as-a-Service (DaaS) cloud products.

All these products host massive amounts of data from multiple
clients and are therefore multi-tenant. However, as pointed out by
Chong et al. [17], the term multi-tenant database is ambiguous
and can refer to a variety of DaaS schemes with different degrees
of logical data sharing between tenants. On the other hand, as
argued by Aulbach et al. [11], multi-tenant databases not only
differ in the way how tenants logically share information, but also
how information is physically separated. We conclude that the
multi-tenancy spectrum consists of four different schemes: First,
there are DaaS products that offer each tenant her proper data-
base while relying on shared resources (SR), i.e. hardware (e.g.
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CPU, network, storage) and/or software (e.g. buffer pools, system
tables, system users, etc.). Examples include SAP HANA [42],
SqlVM [36], RelationalCloud [35], Snowflake [18] and Oracle’s
multitenant container database (CDB) [40]. Next, there are sys-
tems that share databases (SD), but each tenant gets her own set of
tables within such a database, as for instance Azure SQL DB [20].

Finally, there are the two schemes where tenants not only share
a database, but also the table layout (schema). Either, as for exam-
ple in Apache Phoenix [9], tenants still have their private tables,
but these tables share the same (logical) schema (SS), or the data
of different tenants is consolidated into shared tables (ST) which
is hence the layout with the highest degree of physical and logi-
cal sharing. Prominent examples for ST include Oracle’s Virtual
Private Database [3] as well as different Microsoft Azure DaaS
offerings [33, 34]. SS and ST layouts are not only used in DaaS,
but also in Software-as-a-Service (SaaS) platforms, as for exam-
ple in Salesforce [44]. The main reason why all these commercial
systems prefer ST over SS is cost [11]. Moreover, if the number of
tenants exceeds the number of tables a database can hold, which
is typically a number in the range of ten thousands, SS becomes
prohibitive. Conversely, ST databases can easily accommodate
hundred thousands to even millions of tenants.

An important feature of multi-tenant databases, which, to the
best of our knowledge, no DaaS or SaaS natively supports today,
is cross-tenant query processing, i.e. combining data of different
tenants and query this unified data set as if it was single-tenant,
using SQL. In order to illustrate that cross-tenant query processing
is indeed a highly relevant requirement, let us have a look at one
of the many initiatives to democratize the use of personal data, the
Health Data Cooperative (HDC) [27]. In HDC, all patient data is
stored in a single, multi-tenant SaaS database, each patient being
a tenant managing her own data. For clinical studies, however, it
is essential to be able to run queries over a cohort of patients who
give their consent, or, in other words enable cross-tenant query
processing. Clearly, the health data use case has also another big
challenge, which is data privacy. This aspect, despite being out of
the scope of this paper, is considered essential future work.

There are several existing approaches to cross-tenant query
processing which are summarized in Figure 1. The first approach
is data warehousing [29] where data is extracted from several data
sources (tenant databases/tables), transformed into one common
format and finally loaded into a new database where it can be
queried by the client. This approach has high integration trans-
parency in the sense that once the data is loaded, it is in the
expected format as required by the client and she can ask any
query she wants, using plain SQL. Moreover, as all data is in
a single place, queries can be optimized. On the down-side of
this approach – well-known and argued by many [10, 14, 37] –
are costs in terms of both, developing and maintaining such ETL
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Figure 1: Cross-tenant query processing systems

pipelines, as well as maintaining a separate copy of the data. An-
other disadvantage is data staleness in the presence of frequent
updates.

Federated Databases [26, 31] reduce some of these costs by
integrating data on demand, i.e. there is no data copying. How-
ever, maintenance costs are still significant as for every new data
source, a new integrator/wrapper has to be developed. As data
resides in different places (and different formats), queries can only
be optimized to a very small extent (if at all), which is why the
degree of integration transparency is considered sub-optimal. Fi-
nally, systems like SAP HANA [42] and Salesforce [44], which are
mainly tailored towards single-tenant queries, offer some degree
of cross-tenant query processing, but only through their applica-
tion logic, not natively. This means that the set of queries that can
be asked is limited, accounting for low integration transparency.

We believe that the reason why none of these previous works
uses a native approach, i.e. SQL plus transparent rewriting, for
cross-tenant query processing is that there is an ambiguity prob-
lem.1 Consider, for instance, the ST database in Figure 2, which
we are going to use as a running example throughout the paper.
Further assume that we would like to query the joint dataset of
tenants 0 and 1: As shown on the left, we might want to join
Employees with Roles. Joining on role_id alone is not e-
nough as this would also join Alice with executive, which
does not correspond to the expected output because Alice is a pro-
fessor, and only a professor. In this case, a rewrite algorithm would
have to add the tenant-ID ttid to the join predicate. On the other
hand, joining the Employees table with itself on E1.age =
E2.age, as illustrated on the right, does not require ttid to be
present in the join predicate because it actually makes sense to
include results like (Alice, Ed) because they are indeed the
same age.

An additional challenging fact is that different tenants might
store their data in different units. In our example, tenant 0 might
store her employees’ salaries in a different currency than tenant 1.
If this is the case, computing the average salary across all te-
nants clearly involves some value conversions that should, ideally,
happen without the client noticing or even worrying about.

This paper presents MTSQL as a solution to these ambigu-
ity problems, following a native approach. MTSQL extends the
SQL API and provides additional data definition syntax and cor-
responding semantics specifically-suited for cross-tenant query

1Note, however, that SQL plus transparent rewriting works for single-tenant query
processing in a multi-tenant system. Apache Phoenix [9] and Oracle’s Virtual Private
Database [3] do exactly that.

Figure 2: Multi-tenant database in basic layout (ST), illustrat-
ing the ambiguity problem in cross-tenant queries

processing. It enables high integration transparency because once
the schema is defined and the database connection established, any
client, with any desired data format, can ask any query at any time
and do so by using nothing else but plain SQL. Moreover, as data
resides in a single database (SS or ST), queries can be aggressively
optimized with respect to both, standard SQL semantics and addi-
tional MTSQL semantics. As MTSQL adopts the single-database
layout, it is also very cost-effective, especially if used on top of
ST. Also, data conversion only happens as needed, which perfectly
fits the cloud’s pay-as-you-go cost model and thus makes MT-
SQL an attractive option to complement existing DaaS offerings.
Specifically, the paper makes the following contributions:

• It defines the syntax and semantics of MTSQL, a database
language that extends SQL and solves the ambiguity prob-
lem for cross-tenant query processing.
• It presents the design and implementation of MTBase, a

database middleware that executes MTSQL on top of any
shared-table multi-tenant database.
• It studies MTSQL-specific optimizations for query execu-

tion in MTBase.
• It extends the well-known TPC-H benchmark in order

to run and evaluate MTSQL workloads, resulting in new
benchmark called MT-H.
• It evaluates the performance and the implementation cor-

rectness of MTBase with MT-H, concluding with satisfac-
tory results.

The rest of this paper is organized as follows: Section 2 defines
MTSQL, while Section 3 gives an overview on MTBase. Section 4
discusses the MTSQL-specific optimizations which are validated
in Section 5. Section 6 shortly summarizes lines of related work,
specifically focusing on the relation of MTSQL to data integra-
tion as well as data privacy, whereas the paper is concluded in
Section 7.

2 MTSQL
In order to model the specific aspects of cross-tenant query pro-
cessing in multi-tenant databases, we developed MTSQL, which
will be described in this section. MTSQL extends SQL in two
ways: First, it extends the SQL interface with two additional pa-
rameters, C and D. C is the tenant ID (or ttid for short) of the
client who submits a statement and hence determines the format
in which the result must be presented. The data set, D, is a set of
ttids that refer to the tenants whose data the client wants to query.
Secondly, MTSQL extends the syntax and semantics of SQL, as
well as its Data Definition Language (DDL), Data Manipulation
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Language (DML) and Data Control Language (DCL, consists of
GRANT and REVOKE statements).

As mentioned in the introduction, there are several ways how a
multi-tenant database can be laid out: Figure 2 shows an example
of the ST scheme, also referred to as basic layout in related work
[11] where tenants’s data is consolidated using the same tables.
Meanwhile, there also exists the SS scheme, also referred to as
private table layout, where every tenant has her own set of tables.
In that scheme, data ownership is defines as part of the table name
(e.g. Roles_1, Roles_2, ...) while in ST, records are explicitly
annotated with the ttid of their data owner, using an extra meta
column in the table which is invisible to the client.

As these two approaches are semantically equivalent, the MT-
SQL semantics that we are about to define, apply to both. In the
case of the SS, applying a statement s with respect to D simply
means to apply s to the logical union of all private tables owned
by a tenant in D. In SS, s is applied to tables filtered according to
D. In order to keep the presentation simple, the rest of this paper
assumes an ST scheme, but sometimes defines semantics with
respect to SS if that makes the presentation easier to understand.

2.1 MTSQL API
MTSQL needs a way to incorporate the additional parameters C
and D. As C is the ttid of the tenant that issues a statement, we
assume it is implicitly given by the SQL connection string. ttids
are not only used for identification and access control, but also
for data ownership. While this paper uses integers for simplicity
reasons, ttids can have any data type, in particular they can also
be database user names.

SET SCOPE = "IN (1,3,42)";

Listing 1: Simple SCOPE expression using IN

SET SCOPE = "FROM Employees WHERE E_salary > 180K";

Listing 2: Complex SCOPE expression with sub-query

D is defined using the MTSQL-specific SCOPE runtime para-
meter on the SQL connection. This parameter can be set in two
different ways: Either, as shown in Listing 1, as simple scope with
an IN list stating the set of ttids that should be queried, or as
in Listing 2, as a sub-query with a FROM and a WHERE clause
(complex scope). The semantics of the latter is that every tenant
that owns at least one record in one of the tables mentioned in
the FROM clause that satisfies the WHERE clause is part of D. The
SCOPE variable defaults to {C}, which means that by default
a client processes only her own data. Defining a simple scope
with an empty IN list, on the other hand, makes D include all the
tenants present in the database.

Making C and D part of the connection allowed for a clear
separation between the end users of MTSQL (for which ttids
do not make much sense and hence remain invisible) and adminis-
trators/programmers that manage connections (and are aware of
ttids).

2.2 Data Definition Language
DDL statements are issued by a special role called the data mod-
eller. In a multi-tenant application, this would be the SaaS provider
(e.g. a Salesforce administrator) or the provider of a specific ap-
plication. However, the data modeller can delegate this privilege
to any tenant she trusts using a GRANT statement, as will be de-
scribed in Section 2.3.

There are two types of tables in MTSQL: tables that contain
common knowledge shared by everybody (like the Regions
table in TPC-H [43]) and those that contain data of a specific
tenant (i.e. Employees and Roles in Figure 2). More formally,
we define the table generality of Regions as global and the one
of Employees as tenant-specific. In order to process queries
across tenants, MTSQL needs a way to distinguish whether an
attribute is comparable (can be directly compared against attribute
values of other tenants), convertible (can be compared against
attribute values of other tenants after applying a well-defined
conversion function) or tenant-specific (it does semantically not
make sense to compare against attribute values of other tenants).
An overview of these types of attribute comparability, together
with examples from Figure 2, is shown in Table 1.

type description examples

comparable can be directly compared to and
aggregated with other values E_age, R_name

convertible
other values need to be converted
to the format of the current tenant
before comparison or aggregation

E_salary

tenant-specific values of different tenants cannot
be compared with each other E_role_id, R.role_id

Table 1: Overview on attribute comparability in MTSQL

2.2.1 CREATE TABLE Statement. The MTSQL-specific
keywords for creating (or altering) tables are GLOBAL,
SPECIFIC, COMPARABLE and CONVERTIBLE. An example
of how they can be used is shown in Listing 3. Note that
SPECIFIC can be used for tables and attributes. Moreover, using
these keywords is optional as we define that tables are global by de-
fault, attributes of tenant-specific tables default to tenant-specific
and those of global tables to comparable.2

1 CREATE TABLE Employees SPECIFIC (
2 E_emp_id INTEGER NOT NULL SPECIFIC,
3 E_name VARCHAR(25) NOT NULL COMPARABLE,
4 E_role_id INTEGER NOT NULL SPECIFIC,
5 E_salary VARCHAR(17) NOT NULL CONVERTIBLE

@currencyToUniversal @currencyFromUniversal,
6 E_age INTEGER NOT NULL COMPARABLE,
7 CONSTRAINT pk_emp PRIMARY KEY (E_emp_id),
8 CONSTRAINT fk_emp FOREIGN KEY (E_role_id) REFERENCES Roles (

R_role_id)
9 );

Listing 3: Exemplary MTSQL CREATE TABLE statement,
MT-specific keywords marked in bold

2.2.2 Conversion Functions. Cross-tenant query process-
ing requires the ability to execute comparison predicates on com-
parable and convertible attribute. While comparable attributes
can be directly compared to each other, convertible attributes, as
their name indicates, have to be converted first, using conversion
functions. Each tenant has a pair of conversion functions for each
attribute to translate from and to a well-defined universal format.
More formally, a conversion function pair is defined as follows:

Definition 2.1. (toUniversal : X × T → X , f rom-
Universal : X ×T → X ) is a valid MTSQL conversion function
pair for attribute A, where T is the set of tenants in the database
and X is the domain of A, if and only if:

(i) There exists a universal format for attribute A:3

imaдe (toUniversal (·, t1)) = imaдe (toUniversal (·, t2))
= . . . = imaдe (toUniversal (·, t |T | ))

(ii) For every tenant t ∈ T , the partial functions toUniversal (·, t )
and f romUniversal (·, t ) are bijective functions.

2Global tables (shared among all tenants!) can only have comparable attributes
anyway.
3imaдe (f ) denotes the mathematical image, i.e. the range of function f .
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(iii) f romUniversal is the inverse of toUniversal : ∀t ∈ T ,
x ∈ X : f romUniversal (toUniversal (x , t ), t ) = x

These three properties imply the following two corollaries that
we are going to need later in this paper:

COROLLARY 1. toUniversal and f romUniversal are equality
preserving: ∀t ∈ T : toUniversal (x , t ) = toUniversal (y, t ) ⇔
x = y ⇔ f romUniversal (x , t ) = f romUniversal (y, t )

COROLLARY 2. Values from any tenant ti can be converted
into the representation of any other tenant tj by first applying
toUniversal (·, ti ), followed by f romUniversal (·, tj ) while
equality is preserved:
∀ti , tj ∈ T : x = y ⇔f romUniversal (toUniversal (x , ti ), tj )

=f romUniversal (toUniversal (y, ti ), tj )

The reason why we opted for a two-step conversion through
universal format is that it allows each tenant ti to define her share
of the conversion function pair, i.e. toUniversal (·, ti ) and f rom-
Universal (·, ti ), individually without the need of a central author-
ity. Moreover, this design greatly reduces the overall number of
partial conversion functions as we need at most 2 · |T | partial
function definitions, compared to |T |2 functions in the case where
we would define a direct conversion for every pair of tenants.

1 CREATE FUNCTION phoneToUniversal (VARCHAR(17), INTEGER) RETURNS
VARCHAR(17)

2 AS 'SELECT SUBSTRING($1, CHAR_LENGTH(PT_prefix)+1) FROM
Tenant, PhoneTransform WHERE T_tenant_key = $2 AND
T_phone_prefix_key = PT_phone_prefix_key;'

3 LANGUAGE SQL IMMUTABLE;

Listing 4: Converting a phone number to universal form
(without prefix), PostgreSQL syntax

1 CREATE FUNCTION phoneFromUniversal (VARCHAR(17), INTEGER)
RETURNS VARCHAR(17)

2 AS 'SELECT CONCAT(PT_prefix, $1) FROM Tenant, PhoneTransform
WHERE T_tenant_key = $2 AND T_phone_prefix_key =
PT_phone_prefix_key;'

3 LANGUAGE SQL IMMUTABLE;

Listing 5: Converting to a specific phone number format,
PostgreSQL syntax

Listings 4 and 5 show an example of such a conversion func-
tion pair. These functions are used to convert phone numbers with
different prefixes, like “+”, “00” or any other specific county exit
code4, and the universal format is a phone number without pre-
fix. In this example, converting phone numbers simply means to
lookup the tenant’s prefix and then either prepend or remove it, de-
pending whether we convert from or to the universal format. Note
that the exemplary code also contains the keyword IMMUTABLE
to state that for a specific input the function always returns the
same output, which is an important hint for the query optimizer.
While this keyword is PostgreSQL-specific, some other vendors,
but by far not all, offer a similar syntax.

It is important to mention that the equality-preserving property
as mentioned in Corollary 1 is a minimal requirement for conver-
sion functions to make sense in terms of producing coherent query
results among different clients. There are, however conversion
functions that exhibit additional properties, for example:

• order-preserving with respect to tenant t :
x < y ⇔ toUniversal (x , t ) < toUniversal (y, t )

4The country exit code is a sequence of digits that you have to dial in order to inform
the telco system that you want to call a number abroad. A full list of country exit
codes can be found on http://www.howtocallabroad.com/codes.html.

• homomorphic with respect to tenant t and function h:
toUniversal (h(x1,x2, ...), t ) =

h(toUniversal (x1, t ), toUniversal (x2, t ), ...)

We will call a conversion function pair fully-order-preserving
if toUniversal and f romUniversal are order-preserving with re-
spect to all tenants. Consequently, a conversion function pair can
also be fully-h-preserving.

Listings 6 and 7 show an exemplary conversion function pair
used to convert currencies (with USD as universal format). These
functions are not only equality-preserving, but also fully-SUM-
preserving: as the currency conversion is nothing but a multipli-
cation with a constant factor5 from CurrencyTransform, it
does not matter in which format we sum up individual values
(as long as they all have that same format). As we will see, such
special properties of conversion functions are another crucial in-
gredient for query optimization.

1 CREATE FUNCTION currencyToUniversal (DECIMAL(15,2), INTEGER)
RETURNS DECIMAL(15,2)

2 AS 'SELECT CT_to_universal*$1 FROM Tenant, CurrencyTransform
WHERE T_tenant_key = $2 AND T_currency_key =

CT_currency_key;'
3 LANGUAGE SQL IMMUTABLE;

Listing 6: Converting a currency to universal form (USD),
PostgreSQL syntax

1 CREATE FUNCTION currencyFromUniversal (DECIMAL(15,2), INTEGER)
RETURNS DECIMAL(15,2)

2 AS 'SELECT CT_from_universal*$1 FROM Tenant,
CurrencyTransform WHERE T_tenant_key = $2 AND
T_currency_key = CT_currency_key;'

3 LANGUAGE SQL IMMUTABLE;

Listing 7: Converting from USD to a specific currency,
PostgreSQL syntax

The conversion function examples shown in Listings 4 to 7
assume the existence of tables holding additional conversion infor-
mation (CurrencyTransmform and PhoneTransform) as
well as a table with references into these tables (named Tenants
table). The way how a tenant can define her portion of the con-
version functions is then simply to choose a specific currency and
phone format as part of an initial setup procedure. However, this
is only one possible implementation. MTSQL does not make any
assumptions or restrictions on the implementation of conversion
function pairs themselves, as long as they satisfy the properties
given in Definition 2.1.

MTSQL is not the first work that talks about conversion func-
tions. In fact, there is an entire line of work that deals with data
integration and in particular with schema mapping techniques
[11, 23, 25]. These works mention and take into account conver-
sion functions, like for example a multiplication or a division by a
constant. More complex conversion functions, including regular-
expression-based substitutions and other arithmetic operations,
can be found in Potter’s Wheel [41] where conversion is referred
to as value translation. All these different conversion functions
can potentially also be used in MTSQL which is, to the best of our
knowledge, the first work that formally defines and categorizes
conversion functions according to their properties.

2.2.3 Integrity Constraints. MTSQL allows for global in-
tegrity constraints that every tenant has to adhere to (with respect
to the entirety of her data) as well as tenant-specific integrity
constraints (that tenants can additionally impose on their own

5We are aware of the fact that currency conversion is not at all constant, but depends
on rapidly changing exchange rates. However, we want to keep the examples as
simple as possible in order to illustrate the underlying concepts. However, the general
ideas of this paper also apply to temporal databases.
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data). An example of a global referential integrity constraint is
shown in the end of Listing 3. This constraint means that for
every tenant, for each entry of E_role_id, a corresponding
entry R_role_id has to exist in Roles and must be owned
by that same tenant. Consider for example employee John with
R_role_id 0. The constraint implies that their must be a role 0
owned by tenant 0, which in that case is PhD student. If the con-
straint were only tenant-specific for tenant 1, John would not link
to roles and E_role_id 0 would just be an arbitrary numer-
ical value. In order to differentiate global from tenant-specific
constraints, the scope is used.6

2.2.4 Other DDL Statements. CREATE VIEW statements
look the same as in plain SQL. As for the other DDL statements,
anyone with the necessary privilege can define global views on
global and tenant-specific tables. Tenants are allowed to create
their own, tenant-specific views (using the default scope). The
selected data has to be presented in universal format if it is a
global view and in the tenant-specific format otherwise. DROP
VIEW, DROP TABLE and ALTER TABLE work the same way
as in plain SQL.

2.3 Data Control Language
Let us have a look at the MTSQL GRANT statement:

GRANT <privileges> ON <database|table> TO <ttid>;

Listing 8: MTSQL GRANT syntax

As in plain SQL, this grants some set of access privileges
(READ, INSERT, UPDATE and/or DELETE) to the tenant iden-
tified by ttid. In the context of MTSQL, however, this means
that the privileges are granted with respect to C. Consider the
following statement:

GRANT READ ON Employees TO 42;

Listing 9: Example of an MTSQL GRANT statement

In the private table layout, if C is 0, then this would
grant tenant 42 read access to Employees_0, but ifC is 1, tenant
42 would get read access to Employees_1 instead. If a grant
statement grants to ALL, then the grant semantics also depend
on D, more concretely if D = {7, 11, 15} the privileges would be
granted to tenants 7, 11 and 15.

By default, a new tenant that joins an MTSQL system is granted
the following privileges: READ access to global tables, READ,
INSERT, UPDATE, DELETE, GRANT and REVOKE on his own
instances of tenant-specific tables. In our example, this means that
a new tenant 111 can read and modify data in Employees_111
and Roles_111. Next, a tenant can start asking around to get
privileges on other tenants’ tables or also on global tables. The
REVOKE statement, as in plain SQL, simply revokes privileges
that were granted with GRANT.

2.4 Query Language
Just as in FlexScheme [11, 12], queries themselves are written
in plain SQL and have to be filtered according to D. Whereas in
FlexScheme D always equals {C} (a tenant can only query her
own data), MTSQL allows cross-tenant query processing, which
means that the data set can include other tenants than C and can
in particular contain more than one element. As mentioned in the

6Remembering that an empty IN list refers all tenants, this is exactly what is used to
indicate a global constraint. Additionally, all constraints created as part of a CREATE
TABLE statement are global as well.

introduction, this creates some new challenges that have to be
handled with special care.

2.4.1 Client Presentation. As soon as tenants can query
other tenants’ data, the MTSQL engine has to be make sure to
deliver results in the proper format. For instance, looking again at
Figure 2, if tenant 0 queries the average salary of all employees of
tenant 1, then this should be presented in USD because tenant 0
stores her own data in USD and expects other data to be in USD
as well. Consequently, if tenant 1 would ask that same query, the
result would be returned as is, namely in EUR.

2.4.2 Comparisons. Consider a join of Roles and
Employees on role_id. As long as the dataset size is only
one, such a join query has the same semantics as in plain SQL (or
FlexScheme). However, as soon as tenant 1, for instance, asks this
query with D = {0, 1}, the join has to take the ttids into account.
The reason for this is that role_id is a tenant-specific attribute
and should hence only be joined within the same tenant in order
to prevent semantically wrong results like John being an intern
(although tenant 0 does not have such a role) or Nancy being
a professor (despite the fact that tenant 1 only has roles intern,
researcher and executive).

Comparison or join predicates containing comparable and con-
vertible attributes, on the other hand, just have to make sure that
all data is brought into universal format before being compared.
For instance, if tenant 0 wants to get the list of all employees (of
both tenants) that earn more than 100K USD, all employee salaries
have to be converted to USD before executing the comparison.

Finally, MTSQL does not allow to compare tenant-specific
with other attributes. For instance, we see no way how it could
make sense to compare E_role_id to something like E_age or
E_salary.

2.5 Data Manipulation Language
MTSQL DML works the same way as in FlexScheme [11, 12]
if D = {C}. Otherwise, if D , {C}, the semantics of a DML
statement are defined such that it is applied to each tenant in
D separately. Constants, WHERE clauses and sub-queries are in-
terpreted with respect to C, exactly the same way as for queries
(c.f. Section 2.4). This implies that executing UPDATE or INSERT
statements might involve value conversion to the proper tenant
format(s).

3 MTBASE
Based on the concepts described in the previous section, we imple-
mented MTBase, an open-source MTSQL engine [1]. As shown
in Figure 3, the basic building block of MTBase is an MTSQL-to-
SQL translation middleware sitting between a traditional DBMS
and the client. In fact, as it communicates to the DBMS (and to
the client) by the means of pure SQL, MTBase works in conjunc-
tion with any off-the-shelve DBMS. For performance reasons,
the proxy maintains a cache of MT-specific meta data, which
is persisted in the DBMS along with the actual user data. Con-
version functions are implemented as UDFs that might involve
additional meta tables, both of which are also persisted in the
DBMS. MTBase implements the basic data layout, which means
that data ownership is implemented as an additional (meta) ttid
column in each tenant-specific table as illustrated in Figure 2).
There are some dedicated meta tables: Tenant stores each te-
nant’s privileges and conversion information and Schema stores
information about table and attribute comparability. Additional
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meta tables can (but do not have to) be used to implement conver-
sion function pairs, as for example CurrencyTransform and
PhoneTransform shown in Listings 4 to 7.

While the rewrite module was implemented in Haskell and
compiled with GHC [6], the connection handling and the meta
data cache maintenance was written in Python (and run with the
Python2 interpreter) [4]. Haskell is handy because we can make
full use of pattern matching and additive data types to imple-
ment the rewrite algorithm in a quick and easy-to-verify way, but
any other functional language, like e.g. Scala [5], would also do
the job. Likewise, there is nothing fundamental in using Python,
any other framework that has a good-enough abstraction of SQL
connections, e.g. JDBC [7], could be used.

Upon opening a connection at the middleware, the client’s ttid ,
C, is derived from the connection string and used throughout
the entire lifetime of that connection. Whenever a client sends
a MTSQL statement s, first if the current scope is complex, a
SQL query qs is derived from this scope and evaluated at the
DBMS in order to determine the relevant dataset D. After that, D
is compared against privileges ofC in the Tenant table and ttids
in D without the corresponding privilege are pruned, resulting in
D ′. Next, C, D ′ and s are input into the rewrite algorithm which
produces a rewritten SQL statement s ′ which is then sent to the
DBMS before relaying the result back to the client. Note that in
order to guarantee correctness in the presence of updates, qs and
s ′ have to be executed within the same transaction and with a
consistency level at least repeatable-read [13] (even if the client
does not impose any transactional guarantees). If s is a DDL
statement, the middleware also updates the MT-Specific meta
information in the DBMS and the cache.

The rest of this section explains the MTSQL-to-SQL rewrite
algorithm in its canonical form and proves its correctness with
respect to Section 2.4, while Section 4 shows how to optimize the
rewritten queries such that they can be run on the DBMS with
reasonable performance.

3.1 Canonical Query Rewrite Algorithm
Our proposed canonical MTSQL-to-SQL rewrite algorithm works
top-down, starting with the outer-most SQL query and recursively
rewriting sub-queries as they come along. For each sub-query,
the SQL clauses are rewritten one-by-one. The algorithm makes
sure that for each sub-query the following invariant holds: the
result of the sub-query is filtered according to D ′ and presented
in the format required by C. Note that this invariant also helps to
formally prove the correctness of the rewrite algorithm as we will
show in Section 3.2.

The pseudo code of the general rewrite algorithm for rewriting
a (sub-) query is shown in Algorithm 1. Note that FROM, GROUP
BY, ORDER BY and HAVING clause can be rewritten without any

additional context while SELECT and WHERE need the whole
query as an input because they might need to check the FROM
for additional information, for instance they must know to which
original tables certain attributes belong.

1: Input: C: ttid , D: set of ttids, Q: MTSQL query
2: Output: SQL query
3: function REWRITEQUERY(C,D,Q)
4: new-select ← rewriteSelect(C,D,Q)
5: new-f rom ← rewriteFrom(C,D,Q .from())
6: new-where ← rewriteWhere(C,D,Q)
7: new-дroup-by ← rewriteGroupBy(C,D,Q .groupBy())
8: new-order -by ← rewriteOrderBy(C,D,Q .orderBy())
9: new-havinд ← rewriteHaving(C,D,Q .having())

10: return new Query (new-select , new-f rom, new-where,
new-дroup-by, new-order -by, new-havinд)

Algorithm 1: Canonical Query Rewrite Algorithm

In the following, we will look at the rewrite functions for the
different SQL clauses. Because of space constraints, we only pro-
vide the high-level ideas and illustrate them with suitable minimal
examples. However, we strongly encourage the interested reader
to check-out the Haskell code [2] which in fact almost reads like
a mathematical definition of the rewrite algorithm.

SELECT The rewritten SELECT clause has to present every
attribute a in C’s format, which, if a is convertible, is achieved by
two calls to the conversion function pair of a as can be seen in the
examples of Listing 10 where --> simply denotes rewriting. If a
is part of compound expression (as in line 6), it has to be converted
before the functions (in that case AVG) are applied. Note that in
order to make a potential super-query work correctly, we also
rename the result of the conversion, either by the new name that it
got anyway (as in line 6) or by the name that it had before (as in
line 3). Rewriting a star expression (line 9) in the uppermost query
also needs special attention, in order not to provide the client with
confusing information, like ttids which should stay invisible.

1 -- Rewriting a simple select expression:
2 SELECT E_salary FROM Employees; -->
3 SELECT currencyFromUniversal(currencyToUniversal(E_salary, ttid)

, C) as salary FROM Employees;
4 -- Rewriting an aggregated select expression
5 SELECT AVG(E_salary) as avg_sal FROM Employees; -->
6 SELECT AVG(currencyFromUniversal(currencyToUniversal(E_salary,

ttid), C)) as avg_sal FROM Employees;
7 -- Rewriting star expression, hiding irrelevant info
8 SELECT * FROM Employees; -->
9 SELECT E_name, E_salary, E_age FROM Employees;

Listing 10: Examples for Rewriting SELECT clause

WHERE There are essentially three steps that the algorithm has
to perform in order to create a correctly rewritten WHERE clause
(as shown in Listing 11). First, conversion functions have to be
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added to each convertible attribute in each predicate in order make
sure that comparisons are executed in the correct (client) format
(lines 2 to 6). This happens the same way as for a SELECT clause.
Notably, all constants are always in C’s format because it is C
who asks the query. Second, for every predicate involving two or
more tenant-specific attributes, additional predicates on
ttid have to be added (line 9), unless if the attributes are part of
the same table, which means they are owned by the same tenant
anyway. Predicates that contain tenant-specific together
with other attributes cause the entire query to be rejected as was
required in Section 2.4.2. Last, but not least, for every base table in
the FROM clause, a so-called D-filter has to be added to the WHERE
clause (line 12). This filter makes sure that only the relevant data
(data that is owned by a tenant in D ′) gets processed.

1 -- Comparison with a constant:
2 .. FROM Employees WHERE E_salary > 50K -->
3 .. WHERE currencyFromUniversal(currencyToUniversal(E_salary,ttid

),C) > 50K) ..
4 -- General comparison:
5 .. FROM Employees E1, Employees E2 WHERE E1.E_salary > E2.

E_salary -->
6 .. WHERE currencyFromUniversal(currencyToUniversal(E1.E_salary,

E1.ttid),C) > currencyFromUniversal(currencyToUniversal(E1.
E_salary,E1.ttid),C) ..

7 -- Extend with predicate on ttid
8 .. FROM Employees, Roles WHERE E_role_id = R_role_id -->
9 .. FROM Employees, Roles WHERE E_role_id = R_role_id AND

Employees.ttid = Roles.ttid ..
10 -- Adding D-filters for D' = {3,7}
11 .. FROM Employees E, Roles R .. -->
12 .. WHERE E.ttid IN (3,7) AND R.ttid IN (3,7) ..

Listing 11: Examples for Rewriting WHERE clause

FROM All tables referred by the FROM clause are either base
tables or temporary tables derived from a sub-query. Rewriting the
FROM clause simply means to call the rewrite algorithm on each
referenced sub-query as shown in Algorithm 2. A FROM table
might also contain a JOIN of two tables (sub-queries). In that
case, the two sub-queries are rewritten and then the join predicate
is rewritten in the exact same way like any WHERE.

Notably, this algorithm preserves the desired invariant for
(sub-) queries: the result of each sub-query is in client format and
filtered according to D ′, and, due to the rewrite of the SELECT
and the WHERE clause of the current query, base tables, as well as
joins, are also presented in client format and filtered by D. We con-
clude that the result of the current query therefore also preserves
the invariant.

1: Input: C: ttid , D: set of ttids,
2: FromClause: MTSQL FROM clause
3: Output: SQL FROM clause
4: function REWRITEFROM(C,D, FromClause)
5: res ← extractBaseTables (FromClause )
6: for all q ∈ extractSubQueries (FromClause ) do
7: res ← res ∪ { rewriteQuery (C,D,q)}

8: for all (q1,q2, cond ) ∈ extractJoins (FromClause ) do
9: q′1 ← rewriteQuery (C,D,q1)

10: q′2 ← rewriteQuery (C,D,q2)
11: cond ′ ← rewriteWhere (C,D, cond )
12: res ← res ∪ { createJoin (q′1,q

′
2, cond

′))}
return res

Algorithm 2: Rewrite Algorithm for FROM clause

GROUP-BY, ORDER-BY and HAVING HAVING and
GROUP-BY clauses are basically rewritten the same way like the
expressions in the SELECT clause. Some DBMSs might throw a

warning stating that grouping by a comparable attribute a is am-
biguous because the way we rewrite a in the WHERE clause and
rename it back to a, we could actually group by the original or by
the converted attribute a. However, the SQL standard clearly says
that in such a case, the result should be grouped by the outer-more
expression, which is exactly what we need. ORDER-BY clauses
need not be rewritten at all.

SET SCOPE Simple scopes do not have to be rewritten at all.
The FROM and WHERE clause of a complex scope are rewritten
the same way as in a sub-query. In order to make it a valid SQL
query, the rewrite algorithm adds a SELECT clause that projects
on the respective ttids as shown in Listing 12.

1 SET SCOPE = "FROM Employees WHERE E_salary > 180K"; -->
2 SELECT ttid FROM Employees WHERE currencyFromUniversal(

currencyToUniversal(E_salary,ttid),C) > 180K;

Listing 12: Rewriting a complex SCOPE expression

3.2 Algorithm Correctness
PROOF. We prove the correctness of the canonical rewrite algo-

rithm with respect to Section 2.4 by induction over the composable
structure of SQL queries and by showing that the desired invariant
(the result of each sub-query is filtered according to D ′ and pre-
sented in the format required byC) holds: First, as a base, we state
that adding the D-filters in the WHERE clause and transforming
the SELECT clause to client format for every base table in each
lowest-level sub-query ensures that the invariant holds. Next, as
an induction step, we state that the way how we rewrite the FROM
clause, as it was described earlier, preserves that property. The
top-most SQL query is nothing but a composition of sub-queries
(and base tables) for which the invariant holds. This means that
the invariant holds for the entire query, which is hence guaranteed
to deliver the correct result. �

3.3 Rewriting DDL and DML Statements
Rewriting DDL and DML statements is very similar to rewriting
queries, in fact, predicates are rewritten in exactly the same way.
The remaining questions are how to rewrite tenant-specific refe-
rential integrity constraints (using check constraints) and how to
apply DML statements to a dataset D , {C} (by executing the
proper value transformations separately for each client). While
the semantics and the intuition how to implement them should be
clear, we refer again to the extended version of this paper [15] for
further examples and explanations.

4 OPTIMIZATIONS
As we have seen, there is a canonical rewrite algorithm that cor-
rectly rewrites MTSQL to SQL. However, we will show in Sec-
tion 5 that the rewritten queries often execute very slowly on the
underlying DBMS. The main reason for this is that the pure rewrit-
ten queries call two conversion functions on every transformable
attribute of every record that is processed, which is extremely
expensive. Luckily, the execution costs can be reduced dramati-
cally when applying the optimization passes that we describe in
this section. As we assume the underlying DBMS to optimize
query execution anyway, we focus on optimizations that a DBMS
query optimizer cannot do (because it needs MT-specific context)
or does not do (because an optimization is not frequent enough
outside the context of MTBase). We differentiate between seman-
tic optimizations, which are always applied because they never
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make a query slower and cost-based optimizations which are only
applied if the predicted costs are smaller than in the original query.

1 -- dropping D-filter if D is the empty scope:
2 SELECT E_age FROM Employees WHERE E_ttid IN (1,2); -->
3 SELECT E_age FROM Employees;
4 -- dropping ttid from join predicate if |D| = 1:
5 SELECT E_age, R_name FROM Employees, Roles WHERE E_role_id =

R_role_id AND E_ttid = R_ttid AND E_ttid IN (2) AND R_ttid
IN (2); -->

6 SELECT E_age, R_name FROM Employees, Roles WHERE E_role_id =
R_role_id AND E_ttid IN (2) AND R_ttid IN (2);

7 -- dropping conversion functions if D = {C}:
8 SELECT currencyFromUniversal(currencyToUniversal(E_salary,

E_ttid),0) AS E_salary FROM Employees; -->
9 SELECT E_salary FROM Employees;

Listing 13: Examples for trivial semantic optimizations

4.1 Trivial Semantic Optimizations
There are a couple of special cases for C and D that allow to save
conversion function calls, join predicates and/or D-filters. First, if
D includes all tenants, that means that we want to query all data
and hence D-filters are no longer required as shown in line 3 of
Listing13. Second, as shown in line 6, if |D | = 1, we know that all
data is from the same tenant, which means that including ttid in
the join predicate is no longer necessary. Last, if we know that a
client queries her own data, i.e. D = {C} corresponds to the default
scope, we know that even convertible attributes are already in the
correct format and can hence remove the conversion function calls
(line 9).

4.2 Other Semantic Optimizations
There are a couple of other semantic optimizations that can be
applied to rewritten queries. While client presentation push-up
and conversion push-up minimize the number of conversions by
delaying conversion to the latest possible moment, aggregation
distribution takes into account specific properties of conversion
functions (as mentioned in Section 2.2.2). If conversion functions
are UDFs written in SQL it is also possible to inline them. This
typically gives queries an additional speed up.

1 -- before optimization
2 SELECT Dom.name1, Dom.sal1 as sal, COUNT(*) as cnt FROM (
3 SELECT E1.name as name1, currencyFromUniversal(

currencyToUniversal(E1.E_salary, E1.E_ttid), C) as sal1
4 FROM Employees E1, Employees E2
5 WHERE currencyFromUniversal(currencyToUniversal(E1.E_salary,

E1.E_ttid), C) >
6 currencyFromUniversal(currencyToUniversal(E2.E_salary, E2.

E_ttid), C)
7 ) as Dom GROUP BY Dom.name1, sal, cnt ORDER BY cnt;
8 -- after optmimization
9 SELECT Dom.name1, currencyFromUniversal(Dom.sal1, C) as sal,

COUNT(*) as cnt FROM (
10 SELECT E1.name as name1, currencyToUniversal(E1.E_salary, E1.

E_ttid) as sal1
11 FROM Employees E1, Employees E2
12 WHERE currencyToUniversal(E1.E_salary, E1.E_ttid) >

currencyToUniversal(E2.E_salary, E2.E_ttid)
13 ) as Dom GROUP BY Dom.name1, sal, cnt ORDER BY cnt;

Listing 14: Example for client presentation push-up

4.2.1 Client Presentation and Conversion Push-Up. As
conversion function pairs are equality-preserving, it is possible
in some cases to defer conversions to later, for example to the
outermost query in the case of nested queries. While client presen-
tation push-up converts everything to universal format and defers
conversion to client format to the outermost SELECT clause, con-
version push-up pushes this idea even more by also delaying the
conversion to universal format as much as possible. Both optimiza-
tions are beneficial if the delaying of conversions allows the query
execution engine to evaluate other (less expensive) predicates first.
This means that, once the data has to be converted, it is already

more filtered and therefore the overall number of (expensive) con-
version function calls becomes smaller (or, in the worst case, stays
the same). Naturally, if we delay conversion, this also means that
we have to propagate the necessary ttids to the outer-more queries
and keep track of the current data format.

Listing 14 shows a query that ranks employees according to the
fact how many salaries of other employees their own salary domi-
nates. With client presentation push-up, salaries are compared in
universal instead of client format, which is correct because of the
equality-preserving property (c.f. Corollary 1) and saves half of
the function calls in the sub-query.

Conversion push-up, as shown in Listing 15, reduces the num-
ber of function calls dramatically: First, as it only converts salaries
in the end, salaries of employees aged less than 45 do not have
to be considered at all. Second, the WHERE clause converts the
constant (100K) instead of the attribute (E_salary). As the
outcome of conversion functions is immutable (c.f. Section 2.2.2)
and C is also constant, the conversion functions have to be called
only once per tenant and are then cached by the DBMS for the
rest of the query execution, which becomes much faster as we will
see in Section 5.

1 -- before optimization
2 SELECT AVG(X.sal) FROM (
3 SELECT currencyFromUniversal(currencyToUniversal(E_salary,

E_ttid), C) as sal
4 FROM Employees WHERE E_age >= 45 AND
5 currencyFromUniversal(currencyToUniversal(E_salary, E_ttid), C

) > 100K) as X;
6 -- after optimization
7 SELECT AVG(currencyFromUniversal(currencyToUniversal(X.sal, X.

sal_ttid),C)) FROM (
8 SELECT E_salary as sal, E_ttid as sal_ttid
9 FROM Employees WHERE E_age >= 45 AND

10 E_salary > currencyFromUniversal(currencyToUniversal(100K,
E_ttid), C) as X);

Listing 15: Example for conversion push-up

4.2.2 Aggregation Distribution. Many analytical queries
contain aggregation functions, some of which aggregate on con-
vertible attributes. The idea of aggregation distribution is to aggre-
gate in two steps: First, aggregate per tenant in that specific tenant
format (requires no conversion) and second, convert intermediary
results to universal (one conversion per tenant), aggregate those
and convert the final result to client format (one additional conver-
sion). This simple idea reduces the number of conversion function
calls for N records and T different data owners of these records
from (2N ) to (T + 1). This is significant because T is typically
much smaller than N (and cannot be greater).

Compared to pure conversion push-up, which works for any
conversion function pair, the applicability of aggregation distri-
bution depends on further algebraic properties of these functions.
Gray et al. [24] categorize numerical aggregation functions into
three categories with regard to their ability to distribute: distribu-
tive functions, like COUNT, SUM, MIN and MAX distribute with
functions F (for partial) and G (for total aggregation). For COUNT
for instance, F is COUNT and G is SUM as the total count is the
sum of all partial counts. There are also algebraic aggregation
functions, e.g. AVG, where the partial results are not scalar values,
but tuples. In the case of AVG, this would be the pairs of a partial
sums and partial counts because the total average can be computed
from the sum of all sums, divided by the sum of all counts. Finally,
holistic aggregation functions cannot be distributed at all.

We would like to extend the notion of Gray et al. [24] and
define the distributability of an aggregation function a with respect
to a conversion function pair ( f rom, to). Table 2 shows some
examples for different aggregation and conversion functions. First
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to (x ) = c · x to (x ) = a · x + b to = order-
preserving

to = equality-
preserving

COUNT 3 3 3 3

MIN 3 3 3 5

MAX 3 3 3 5

SUM 3 3 5 5

AVG 3 3 5 5

Holistic 5 5 5 5

Table 2: Distributability of different aggregation functions
over different categories of conversion functions

of all, we want to state that, as all conversion functions have
scalar values as input and output, they are always fully-COUNT-
preserving, which means that COUNT can be distributed over all
sorts of conversion functions. Next, we observe that all order-
preserving functions preserve the minimum and the maximum
of a given set of numbers, which is why MIN and MAX distribute
over the first three categories of conversion functions displayed
in Table 2. We further notice that if to (and consequently also
f rom) is a multiplication with a constant (first column of Table 2),
to is fully- MIN-, fully-MAX- and fully-SUM-preserving, which is
why these aggregation functions distribute. As SUM and COUNT
distribute, AVG, an algebraic function, distributes as well.

Finally looking at the second column of Table 2, we see that
even linear functions are SUM- and AVG-preserving. To see why,
we can think about computing the average over all tenants as a
weighted average of partial (per-tenant) averages for AVG and mul-
tiply these partial averages with the partial counts to reconstruct
the total sum [15, Appendix B].

1 -- before optimization
2 SELECT SUM(currencyFromUniversal(currencyToUniversal(E_salary,

E_ttid), C)) as sum_sal FROM Employees
3 -- after optimization
4 SELECT currencyFromUniversal(SUM(t.E_partial_salary), C) as

sum_sal FROM (SELECT currencyToUniversal(SUM(E_salary),
E_ttid) as E_partial_salary FROM Employees GROUP BY E_ttid)
as t;

Listing 16: Example for conversion function distribution
We conclude this subsection by observing that the conversion

function pair for phone format (c.f. Listings 4 and 5) is not even
order-preserving and does therefore not distribute while the pair
for currency format (c.f. Listings 6 and 7) distributes over all
standard SQL aggregation functions. An example of how this can
be used is shown in Listing 16.

1 -- before optimization
2 SELECT currencyFromUniversal(currencyToUniversal(E_salary,

E_ttid), C)) as E_salary FROM Employees
3 -- after optimization
4 SELECT (C1.CT_from_universal * C2.CT_to_universal * E_salary) as

E_salary
5 FROM Employees, Tenant T1, Tenant T2, CurrencyTransform1,

CurrencyTransform2
6 WHERE T1.T_tenant_key = C AND T1.T_currency_key =

CurrencyTransform1.CT_currency_key AND
7 T2.T_tenant_key = E_ttid AND T2.T_currency_key =

CurrencyTransform2.CT_currency_key

Listing 17: Example for function inlining

4.2.3 Function Inlining. As explained in Section 2.2.2, there
are several ways how to define conversion functions. However, if
they are defined as a SQL statement (potentially including lookups
into meta tables), they can be directly inlined into the rewritten
query in order to save calls to UDFs. Function inlining typical-
ly also enables the query optimizer of the underlying DBMS to
optimize much more aggressively. In WHERE clauses, conversion
functions could simply be inlined as sub-queries, which, however
often results in sub-optimal performance as calling a sub-query on
each conversion is not much cheaper than calling the correspond-
ing UDF. For SELECT clauses, the SQL standard does anyway
not allow to inline as a sub-query as this can result in attributes

not being contained neither in an aggregate function nor in the
GROUP BY clause, which is why most commercial DBMS reject
such queries (while PostgreSQL, for instance executes them any-
way). This is why the proper way to inline functions is by using
a join as shown in Listing 17. Our results in Section 5 suggest
that function inlining, though producing complex-looking SQL
queries, results in very good query execution performance.

It is important to mention that function inlining should only
happen after the other semantic optimization passes because these
other passes are able to reduce the number of required UDF calls,
while function inlining can only make a UDF call faster. Further-
more, it is important to understand that, while some clever query
optimizers do indeed inline UDF calls already, none of the query
optimizers that we looked at seems to perform client presentation
and conversion push-up, let alone aggregation distribution, de-
spite the fact that the foundation for these transformations [24, 28]
have been established already more than 20 years ago.

5 EXPERIMENTS AND RESULTS
This section presents the evaluation of MTBase using an extension
from the well-known TPC-H benchmark [43], called MT-H [15].
We first evaluated the benefits of different optimization steps from
Section 4 and found that the combination of all of these steps
brings the biggest benefit. Second, we analyzed how MTBase
scales with an increasing number of tenants. With all optimizations
applied and for a dataset of 100 GB on a single machine, MTBase
scales up to thousands of tenants with very little overhead. We
also validated result correctness as explained in Section 5.1 and
can report only positive results.

5.1 MT-H Benchmark
MT-H uses the same database schema as TPC-H, but considers the
Customer, Order, and Lineitem tables tenant-specific and
the remaining tables global. Attributes C_acctbal,
O_totalprice, and L_extendedprice are considered con-
vertible with respect to the conversion functions of Listings 6
and 7 and C_phone with respect to Listings 4 and 5. While
C_custkey, O_orderkey, O_custkey,L_orderkey are
tenant-specific, all remaining attributes are comparable. A de-
tailed description on this benchmark, including the validation of
query results, can be found in our technical report [15].

5.2 Setup
In our experiments, we used the following two setups: The first set-
up is a PostgreSQL 9.6 Beta installation, running on Debian Linux
4.1.12 on a 4x16 Core AMD Opteron 6174 processor with 256
GB of main memory. The second installation runs a commercial
database (which we will call System C) on a commercial operating
system and on the same processor with 512 GB of main memory.
Although both machines have enough secondary storage capacity
available, we decided to configure both database management
systems to use in-memory backed files in order to achieve the best
performance possible. Moreover, we configured the systems to
use all available threads, which enabled intra-query parallelism.

5.3 Workload and Methodology
As the MT-H benchmark has a lot of parameters and in order to
make things more concrete, we worked with the following two
scenarios: Scenario 1 handles the data of a business alliance of
a couple of small to mid-sized enterprises, which means there
are 10 tenants with s f = 1 and each of them owns more or less
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Level Q01 Q02 Q03 Q04 Q05 Q06 Q07 Q08 Q09 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22

tpch-0.1G 2.6 0.11 0.27 0.35 0.15 0.29 0.18 0.14 0.59 0.36 0.081 0.37 0.26 0.27 0.77 0.12 0.081 0.89 0.12 0.13 0.57 0.081
canonical 84 1.0 0.55 0.65 0.32 1.0 0.29 0.36 4.9 0.91 0.37 0.55 0.63 0.98 3.1 1.2 0.49 1.7 0.3 2.8 0.66 2.0
o1 2.7 1.0 0.43 0.61 0.22 0.43 0.23 0.56 3.8 0.76 0.37 0.55 0.92 0.56 0.91 1.2 0.48 1.6 0.3 2.8 0.66 0.085
o2 2.7 1.0 0.42 0.61 0.22 0.43 0.22 0.57 3.9 0.76 0.38 0.55 0.89 0.56 0.96 1.2 0.5 1.7 0.3 2.8 0.67 0.085
o3 2.7 1.0 0.43 0.61 0.22 0.43 0.23 0.56 3.9 0.76 0.37 0.55 0.92 0.56 0.91 1.2 0.48 1.6 0.3 2.8 0.66 0.085
o4 2.7 1.0 0.43 0.62 0.22 0.43 0.23 0.61 4.1 0.78 0.39 0.56 0.9 0.57 1.0 1.2 0.51 1.7 0.31 3.1 0.67 0.085
inl-only 2.7 1.0 0.42 0.65 0.22 0.43 0.22 0.57 3.8 0.76 0.37 0.55 0.92 0.56 0.92 1.2 0.48 1.6 0.3 2.8 0.66 0.085

Table 3: Response times [sec] of 22 TPC-H queries for MTBase-on-PostgreSQL with, s f = 1, T = 10, ρ = uniform, C = 1,
D = {1}, for different levels of optimizations, versus TPC-H with s f = 0.1

Level Q01 Q02 Q03 Q04 Q05 Q06 Q07 Q08 Q09 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22

tpch-0.1G 2.6 0.11 0.27 0.35 0.15 0.29 0.18 0.14 0.59 0.36 0.081 0.37 0.26 0.27 0.77 0.12 0.081 0.89 0.12 0.13 0.57 0.081
canonical 87 1.0 0.5 0.6 0.28 1.0 0.26 0.37 4.9 0.89 0.37 0.56 0.65 1.0 3.2 1.2 0.49 1.6 0.31 2.8 0.66 2.0
o1 87 1.0 0.5 0.69 0.33 1.0 0.27 0.38 5.2 0.9 0.39 0.56 0.92 1.0 3.1 1.2 0.51 1.6 0.32 3.1 0.68 2.0
o2 87 1.0 0.5 0.61 0.28 1.0 0.27 0.38 5.2 0.9 0.39 0.57 0.91 1.0 3.1 1.2 0.51 1.6 0.32 3.1 0.67 1.3
o3 32 1.0 0.45 0.63 0.28 0.44 0.24 0.37 4.3 0.83 0.38 0.56 0.91 1.1 1.9 1.3 0.51 1.6 0.32 3.1 0.67 1.3
o4 14 1.0 0.48 0.62 0.22 0.44 0.23 0.57 3.9 0.93 0.38 0.56 0.89 0.73 1.3 1.2 0.49 1.6 0.3 2.8 0.66 0.27
inl-only 45 1.0 0.47 0.61 0.27 0.64 0.24 0.58 4.2 0.94 0.37 0.55 0.91 0.73 2.2 1.2 0.48 1.7 0.3 2.8 0.66 0.27

Table 4: Response times [sec] of 22 TPC-H queries for MTBase-on-PostgreSQL with, s f = 1, T = 10, ρ = uniform, C = 1,
D = {2}, for different levels of optimizations, versus TPC-H with s f = 0.1

Level Q01 Q02 Q03 Q04 Q05 Q06 Q07 Q08 Q09 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22

tpch-1G 26 1.2 4.5 1.4 1.5 2.9 3.7 1.3 9.5 2.2 0.38 3.9 8.4 2.7 5.9 1.2 0.54 10 0.3 2.4 4.8 0.47
canonical 870 1.1 6.5 1.5 3.4 8.7 3.7 1.7 19 11 0.36 4.1 4.9 7.3 28 1.2 0.57 12 0.32 2.6 5.8 20
o1 860 1.1 6.5 1.5 3.4 8.7 3.7 1.7 19 11 0.36 4.1 4.9 7.3 28 1.2 0.62 12 0.33 2.7 5.9 20
o2 870 1.1 6.5 1.5 3.4 8.6 3.7 1.7 19 11 0.35 4.1 4.9 7.2 28 1.2 0.57 12 0.32 2.6 5.8 13
o3 310 1.1 5.5 1.5 3.1 3.1 3.4 1.6 11 10 0.36 4.1 4.9 7.3 12 1.2 0.55 12 0.32 2.6 5.9 13
o4 130 1.1 3.7 1.5 1.7 3.1 3.4 1.4 11 4.6 0.38 4.1 4.9 4.4 9.1 1.2 0.59 12 0.32 2.6 5.7 2.2
inl-only 450 1.1 4 1.6 1.8 5.1 3.5 1.4 14 4.9 0.39 4.1 4.8 4.4 19 1.2 0.55 12 0.32 2.6 5.8 2.3

Table 5: Response times [sec] of 22 TPC-H queries for MTBase-on-PostgreSQL with s f = 1, T = 10, ρ = uniform, C = 1,
D = {1, 2, ...10}, for different levels of optimizations, versus TPC-H with s f = 1

the same amount of data (ρ =uniform). Scenario 2 simulates the
HDC use case [27] and hence needs to be is a huge database
(s f = 100) of medical records coming from thousands of tenants,
like hospitals and private practices. Some of these institutions
have vast amounts of data while others only handle a couple of
patients (ρ=zipf). A research institution wants to query the entire
database (D={1,2,...,T}) in order to gather new insights for the
development of a new treatment. We looked at this scenario for
different numbers of T .

In order to evaluate the overhead of cross-tenant query process-
ing in MTBase compared to single-tenant query processing, we
also measured the standard TPC-H queries with different scaling
factors. When D was set to all tenants, we compared to TPC-H
with the same scaling factor as MT-H. For the cases where D had
only one tenant (out of ten), we compared with TPC-H with a
scaling factor ten times smaller.

Every query run was repeated three times in order to ensure
stable results. We noticed that three runs are needed for the re-
sponse times to converge (within 2%). Thus we always report the
last measured response time for each query with two significant
digits.

All experiments were executed with both setups (PostgreSQL
and System C). Whereas the major findings were the same on
both systems, PostgreSQL optimizes conversion functions (UDFs)
much better by caching their results. System C, on the other hand
does not allow UDFs to be defined as deterministic and hence
cannot cache conversion results. This eliminates the effect of con-
version push-up when applied to comparison predicates where we
convert the constant instead of the attribute (c.f. Listing 15). This
being said, the rest of this section only reports results on Post-
greSQL while we encourage the interested reader to also consult
our additional results [15] to confirm that the main conclusions
drawn from the PostgreSQL experiments generalize.

opt level optimization passes
canonical none
o1 trivial optimizations

o2
o1 + client presentation push-up
+ conversion push-up

o3 o2 + conversion function distribution
o4 o3 + conversion function inlining
inl-only o1 + conversion function inlining

Table 6: Different optimization levels for evaluation

5.4 Benefit of Optimizations
In order to test the benefit of the different combinations of opti-
mizations applied, we tested Scenario 1 with different optimiza-
tion levels as shown in Table 6. From o1 to o4 we added optimiza-
tions incrementally, while the last optimization level (inl-only)
only applied trivial optimizations and function inlining in order to
test whether the other optimizations are useful at all.

Table 3 shows the MT-H queries for different optimization lev-
els and Scenario 1 (s f = 1,T = 10) where client 1 queries her own
data. As we can see, in that case, applying trivial optimizations
in o1 is enough because these already eliminate all conversion
functions and joins and only the D-filters remain. Executing these
filters seems to be very inexpensive because most response times
of the optimized queries are close to the baseline, TPC-H with
s f = 0.1. Queries 2, 11 and 16 however, take roughly ten times
longer than the baseline. This is not surprising when taken into
account that these queries only operate on shared tables which
have ten times more data than in TPC-H. The same effect can be
observed in Q09 where a significant part of the joined tables are
shared.

Table 4 shows similar results, but for D = 2, which means
that now conversion functions can no longer be optimized away.
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Figure 4: Response times (relative to TPC-H) of o4 and inlining-only optimization levels for selected MT-H queries, s f = 100,
T scaling from 1 to 100,000 on a log-scale, MTBase-on-PostgreSQL

While most of the queries show a similar behaviour than in the
previous experiment, for the ones that involve a lot of conversion
functions (i.e. queries 1, 6 and 22), we see how the performance
becomes better with each optimization pass added. We also notice
that while function inlining is very beneficial in general, it is even
more so when combined with the other optimizations.

Finally, Table 5 shows the results where we query all data, i.e.
D = {1, 2, ..., 10}. This experiment involves even more conversion
functions from all the different tenant formats into universal. In
particular, when looking again at queries 1, 6 and 22, we observe
the great benefit of conversion function distribution (added with
optimization level o3), which, in turn, only works as great in
conjunction with client and conversion function push-up because
aggregation typically happens in the outermost query while con-
version happens in the sub-queries. Overall, o4, which contains
all optimization passes that MTBase offers, is the clear winner.

5.5 Cross-Tenant Query Processing at Large
In our final experiment, we evaluated the cost of cross-tenant
query processing up to thousands of tenants. More concretely, we
measured the response time of conversion-intensive MT-H queries
(queries 1, 6 and 22) for a varying number of tenants between 1
and 100,000, for a large dataset where s f = 100 and for the best
optimization level (o4) as well as for inlining-only. The obtained
results were then compared to plain TPC-H with s f = 100, as
shown in Figure 4. First of all, we notice that the cost overhead
compared to single-tenant query-processing (TPC-H) stays below
a factor of 2 and in general increases very moderately with the
number of tenants. An interesting artifact can be observed for
query 22 where MT-H for one tenant executes faster than plain
TPC-H. The reason for this is a sub-optimal optimization decision
in PostgreSQL: one of the most expensive parts of query 22,
namely to find customers with a specific country code, is executed
with a parallel scan in MT-H while no parallelism is used in the
case of TPC-H.

6 RELATED WORK
MTBase builds heavily on and extends a lot of related work. This
section gives a brief summary of the most prominent lines of work
that influenced our design.

Data Integration Data integration (DI) is generally about find-
ing schema and data mappings between the original schemas of
different data sources and a target schema specified by the client
application [23, 25, 41]. As such, DI techniques are applicable
to the entire spectrum of multi-tenant databases because even if
tenants use different schemas or databases, these techniques can
identify correlations and hence extract useful information. Our
work embraces and builds on top of the latest DI work, solving

the DI problem very efficiently for a specific case (SS and ST).
More concretely, we automatically determine join predicates from
schema meta data and optimize conversion functions similar to
those used in DI by thoroughly analyzing and exploiting their
algebraic properties. In addition, instead of translating data into a
specific client format (and update periodically), we convert it to
any required client format efficiently and just-in-time.

Database Federation: DI is often combined with database federa-
tion [26, 31], which means that there exist small program modules
(called integrators, mediators or simply wrappers) to map data
from different sources (possibly not all of them SQL databases)
into one common format. While data federation generalizes well
across the entire spectrum of multi-tenant databases, maintaining
such wrapper architectures is expensive, both in terms of code
maintenance and update processing. Conversely, MTSQL enables
cross-tenant query processing in a more efficient and flexible way
in the context of SS and ST databases.

Data Warehousing: Another approach how data integration can
happen is during extract-transform-load (ETL) operations from
different (OLTP) databases into a data warehouse [29]. Data
warehouses have the well-known drawbacks that there are costly
to maintain and that the data is possibly outdated [10, 14, 37].
Meanwhile, MTBase was specifically designed to work well in
the context of integrated OLTP/OLAP systems, also known as
hybrid transaction-analytical processing (HTAP) systems, and
could therefore be advocated as in-situ or just-in-time data inte-
gration. Another interesting approach to just-in-time, respectively
on-demand data integration, are lenses [45] which allow to speed
up ETL processes by lowering the result accuracy to the specific
level required by the application.

Shared-resources (SR) systems: In related work, this approach
is also often called database virtualization or database as a ser-
vice (DaaS) when it is used in the cloud context. Important lines of
work in this domain include (but are not limited to) SqlVM/Azure
SQL DB [20, 36], RelationalCloud [35], SAP-HANA [42], Snowflake
[18] and Oracle’s multitenant container database (CDB) [40],
most of which is well summarized in [22]. MTBase complements
these systems by providing a platform that can accommodate
more, but typically smaller tenants.

Shared-databases (SD) systems: This approach, while appear-
ing in the spectrum of multi-tenant databases by Chong et al. [17],
is rare in practice. Sql Azure DB [20] seems to be the only product
that has an implementation of this approach. However, even Mi-
crosoft strongly advises against using SD and instead recommends
to either use SR or ST [34].
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Shared-tables (ST) systems: Work in that area includes Sales-
force [44], Apache Phoenix [9], FlexScheme [11, 12] and Azure
SQL Database [34]. Their common idea, as in MTSQL, is to use
an invisible tenant identifier to identify which records belong to
which tenant and rewrite SQL queries in order to include filters
on this ttid. MTSQL extends these systems by providing the
necessary features for cross-tenant query processing.

Privacy/Confidentiality: Clearly, cross-tenant query processing
almost immediately raises the question of data confidentiality. In
the case of the HDC, for instance, patients might consent to their
data being used in aggregated analytics, but they most certainly
would not want sensitive, personal information, like their social
security number, to appear in any report. While it is out of the
scope of this paper to thoroughly discuss data confidentiality in a
multi-tenant system, this work establishes proper syntax and se-
mantics for cross-tenant query processing, which lays the ground
for building appropriate encryption mechanisms [16, 21] atop as
is sketched in our technical report [15].

UDFs and Complex Expressions: Oracle MLE [39] is a system
that allows for highly-optimized execution of user-defined func-
tions, which makes it a promising candidate to further investigate
optimization of conversion functions. For instance, we would like
to look at optimizing complex expressions, containing several
nested user-defined function calls, as a whole.

7 CONCLUSION
This paper presented MTSQL, a new language to address cross-
tenant query processing in multi-tenant databases. MTSQL ex-
tends SQL with multi-tenancy-aware syntax and semantics, which
allows to efficiently optimize and execute cross-tenant queries
in MTBase. MTBase is an open-source system that implements
MTSQL. At its core, it is an MTSQL-to-SQL rewrite middleware
sitting between a client and any multi-tenant DBMS of choice. The
performance evaluation with a benchmark adapted from TPC-H
showed that MTBase (on top of PostgeSQL) can scale to thousands
of tenants at very low overhead and that our proposed optimiza-
tions to cross-tenant queries are highly effective.

In the future, we plan to further analyze the interplay between
the MTBase query optimizer and its counter-part in the DBMS
execution engine in order to assess the potential of cost-based
optimizations. We also want to study conversion functions that
vary over time and investigate how MTSQL can be extended to
temporal databases. Moreover, we would like to look more into
the privacy issues of multi-tenant databases, in particular how to
enable cross-tenant query processing if data is encrypted.
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ABSTRACT
The plethora of graphs and relational data give rise to many inter-
esting graph-relational queries in various domains, e.g., finding
related proteins retrieved by a relational subquery in a biologi-
cal network. The maturity of RDBMSs motivated academia and
industry to invest efforts in leveraging RDBMSs for graph process-
ing, where efficiency is proven for vital graph queries. However,
none of these efforts process graphs natively inside the RDBMS,
which is particularly challenging due to the impedance mismatch
between the relational and the graph models. In this paper, we
propose to manage graphs as first-class citizens inside the rela-
tional engine. We realize our approach inside VoltDB [6], an open-
source in-memory relational database, and name this realization
GRFusion. The SQL and query engine of GRFusion are empow-
ered to declaratively define graphs and execute cross-data-model
query plans acting on graphs and relations, resulting in up to four
orders-of-magnitude in query-time speedup w.r.t. state-of-the-art
approaches.

1 INTRODUCTION
Graphs are ubiquitous in various application domains, e.g., social
networks, road networks, biological networks, and communication
networks [3, 8, 9, 12]. The data of these applications can be
viewed as graphs, where the vertexes and the edges have relational
attributes [46], or as traditional relational data with latent graph
structures [51]. Applications would issue queries that consult the
topology of the graphs along with the data associated with the
vertexes and the edges or other data sources (e.g., relational tables
in an RDBMS). For instance, a user may be interested to find the
shortest path over a road network while restricting the search to
certain types of roads, e.g., avoiding toll roads.

In an RDBMS, the filtering predicates can be expressed as
relational predicates, and they may reference relational tables that
have indirect relation with the queried graphs. We refer to these
queries as graph-relational queries (or G+R queries, for short).
G+R queries have two main ingredients: 1) graph operations,
e.g., shortest-path computation, and 2) relational predicates or
relational sub-queries. For example, selecting specific users from
relational tables to find the nearest hospitals using shortest-path
evaluation on top of a road-network.

As RDBMSs are pervasive and mature, various approaches for
using an RDBMS to manage graph data have been proposed, e.g.,
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Grail [25] and Aster [45]. The literature has two main approaches
that share the idea of building an application on top of an RDBMS
to support graphs without modifying the internals of the RDBMS.
We refer to these approaches as Native Relational-Core and Native
Graph-Core. In this paper, we propose and investigate a hybrid
approach that we term Native G+R Core that exploits the strengths
of the former two approaches, and we realize our approach inside
VoltDB [7, 10].

The Native Relational-Core approach (e.g., as in SQLGraph [46]
and Grail [25]) embeds a graph inside of relational tables of
specific schema. Then, an application on top of the RDBMS is
built to translate specific types of graph queries into SQL state-
ments for the RDBMS to execute. For example, Grail can translate
shortest-path queries to procedural SQL [25], while SQLGraph
translates Gremlin queries with some restrictions [5] into SQL
queries [46]. Figure 1(a) illustrates the general architecture of the
Native Relational-Core approach. Although many graph queries
and algorithms are hard to translate into SQL statements, tools can
be developed to automate the translation. However, the main issue
of the Native Relational-Core approach is that the graph operations
are evaluated by a sequence of relational operations (e.g., self-
joins) that may be more expensive than traversing a native graph
representation. Moreover, the Native Relational-Core approach
does not guarantee an easy-to-comprehend relational schema of
the embedded graphs in an RDBMS, e.g., the storage-optimized re-
lational schema generated automatically by SQLGraph is hard for
users to understand and write ad-hoc graph-relational queries [46].

The second approach, namely Native Graph-Core (e.g., as in
Ringo [38], GraphGen [51, 52]), assumes that graphs are already
stored in an RDBMS, where an application on top of the RDBMS
is built to extract these graphs to analyze them outside the realm of
the RDBMS. This approach follows the same philosophy as that
of specialized graph databases, where an RDBMS has nothing to
do with query execution. Figure 1(b) illustrates the general archi-
tecture of the Native Graph-Core approach. Notice that a graph
in the Native Graph-Core requires re-extraction if the relational
tables storing the graph in the RDBMS are updated. Moreover,
users cannot issue declarative graph-relational queries that refer-
ence both the extracted graphs and any other relational data in
the RDBMS. One solution to allow graph-relational queries in
the Native Graph-Core approach is to build another layer that
queries both the RDBMS and the extracted graph. This solution
is similar to that of Teradata Aster [45], where a data movement
fabric and two different query executors (i.e., a relational execu-
tor and a graph executor) are used in processing graph-relational
queries. However, integrating the results from the graph and the
relational executors imposes additional overhead. In summary, the

 

 

Series ISSN: 2367-2005 25 10.5441/002/edbt.2018.04

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2018.04


Relational Database

Relational Data

Relational Queries

(SQL)

Results

Graph Encoded into 

Relational Tables

Graph Queries

SQL Translation Layer

(a) Native Relational-Core

Relational Database

Relational Data

Graph Extraction 

Queries (SQL)

Graph Extraction and Materialization Engine

Extracted Graphs

Graph 

Database

Results

Graph Queries

(b) Native Graph-Core

In-Memory Relational Database

Graph Views (Topology 

+ Tuple Pointers)
Relational Data

Graph Construction

⋈

σ GraphOp

π Graph and 

Relational Operators 

in the Same QEP

Graph-Relational Queries (SQL)

Results

(c) Native G+R Core

Figure 1: Various approaches for leveraging relational databases in support of graph processing.

Native Relational-Core Native Graph-Core Native G+R Core

Hybrid QEPs ✗ ✗ ✓

Native Graph Processing ✗ ✓ ✓

No Query-Translation Overhead ✗ ✓ ✓

No Graph Reconstruction/Re-embedding on Updates ✗ ✗ ✓

Table 1: Contrasting various approaches for graph support in RDBMSs.

Native Relational-Core and the Native Graph-Core approaches
use a vanilla RDBMS, where graphs are not natively recognized
by the RDBMS. However, if the necessary layers of the RDBMS
are modified to manage graphs as first-class citizens, processing
and managing graphs will be more efficient.

In this paper, we investigate a third approach, namely Native
G+R Core, where graphs are recognized as first-class citizens
inside an RDBMS. We address the impedance mismatch between
the graph and the relational model, and we realize the Native G+R
Core approach in a centralized version of VoltDB [7, 10], the
open-source implementation of the H-Store in-memory relational
DBMS [32]. In-memory data management witnessed early aca-
demic and industrial contributions, where the current affordability
of large main-memory hardware motivated several and diverse
research efforts [14, 15, 23, 30, 33, 35, 36, 38, 39, 44, 49–51, 53].

We refer to our realization of this approach as GRFusion. The
main idea of GRFusion is to natively process graphs inside an
RDBMS by combining the Native Relational-Core and the Na-
tive Graph-Core approaches under the same umbrella. GRFusion
realizes this idea by separating the graph topology from the re-
lational data associated with the vertexes and the edges, and by
proposing graph operators to process the graph topology inside
the RDBMS, where the graph operators seamlessly co-exist with
other relational operators in the same query execution pipeline
(or QEP, for short). A graph topology in GRFusion is realized as
a native graph structure, where each vertex or edge has pointers
to the relational tuples describing their attributes. Hence, a graph
topology in GRFusion can be viewed as a traversal index of the
relational tuples of the vertexes and the edges. In short, GRFusion
presents cross-data-model QEPs, where the inputs to the QEPs
can be either relational data or native graph structures.

Figure 1(c) illustrates the general idea of the Native G+R Core
approach. First, the end-user provides a declarative statement to
create graph views that are initialized from relational data, where
a graph view is materialized as a new database object. Second,
the user is allowed to query the graph views as well as other
relational tables or views in the same query. Table 1 contrasts
the Native Relational-Core, Native Graph-Core, and Native G+R

Core approaches. The objective of this paper is not to replace the
specialized graph systems. However, the main objective is to em-
power the pervasive relational databases to support graph traversal
queries natively and efficiently. Consequently, the relational-data
owners can process important class of graph queries through their
RDBMS systems without the cost and the overhead of migrating
their data and manage it in a separate graph system. The contribu-
tions of this paper are as follows:

• Introducing graphs as native objects inside a relational
database system, namely VoltDB (Section 3), where online
graph updates are supported (Section 3.3).

• Allowing users to seamlessly query and operate on graphs
and relations simultaneously and declaratively without leav-
ing the realm of the relational database system (Section 4).

• Introducing graph operators for graph traversals (Sec-
tion 5.1), and showing their ability to seamlessly co-exist
with the relational operators to construct cross-data-model
query execution pipelines (Section 5.2).

• Addressing the impedance mismatch between the graph
model and the relational model (Section 5.3).

• Conducting an extensive performance study of GRFusion
w.r.t. state-of-the-art systems, and reasoning about the bene-
fits of processing graphs in a graph-native representation in-
side an RDBMS. We compare to SQLGraph, Grail, Neo4j,
and Titan, where GRFusion achieves up to four orders-of-
magnitude query-time speedup (Section 7).

2 OVERVIEW OF GRFUSION
In GRFusion, graphs are assumed to be initially stored in relations.
In the simplest case, a relational table may have a row for each
vertex, and another table may have a row for each edge. Also, the
vertexes or the edges data can be obtained through a relational
materialized view that joins or filters multiple relational tables.
To allow flexibility, GRFusion provides the user with a declarative
language to define and query graphs (see Figure 2). A graph is
defined in GRFusion by what we term дraph views. A дraph view
identifies the relational tables or the relational views that store
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the attributes of the vertexes and edges, namely, the vertexes
relational-source, and the edges relational-source, respectively.
Graph views define a view of the relational data in the graph
model and materializes the graph topology in main-memory in
native graph data structures. The materialized graph topology
has a native graph representation that holds pointers (e.g., tuple
identifiers) to the relational data that describe the vertexes and
the edges. The main idea behind materializing the graph topology
is to empower the relational database engine with the ability to
realize complex graph algorithms. Thus, GRFusion helps fill the
gap between the relational model and the massive body of research
that assumes a graph model. Listing 1 shows how a graph view
is created in GRFusion from the relational sources of Figure 3,
which is detailed in Section 3.1.

Once a graph view is defined, GRFusion allows the user to write
pure graph queries, pure relational queries, or queries that mix
both graph and relational operations. GRFusion’s query engine
views the relational data in either the relational or the graph model
according to the incoming query. In particular, the graph clauses in
a query are mapped to graph operators in the QEP, where a graph
operator accepts only graph representations as input. GRFusion
allows the graph operators and the relational operators to co-exist
in the same QEP, where the operator type determines the data
model of viewing the data (i.e., graph views for the graph model,
and relations for the relational model).

In-Memory Relational Database

Declarative Graph-Relational Queries

Graph ViewsRelational Data

Graph-Relational Query Engine

Query Parser

Query Optimizer

Plan Executor

Figure 2: GRFusion’s architecture allows the query engine to
process data in both the relational and the graph models.

3 GRAPHS AS DATABASE OBJECTS
As users can create tables in relational databases, they can also
create materialized graph views in GRFusion as database objects.
A graph view is created once as a singleton object, and can be
referenced by multiple users and queries. In Section 3.1, we high-
light how graph views are defined declaratively in GRFusion.
Section 3.2 illustrates how the topology of a graph in GRFusion is
decoupled from the graph data, and how they can be inter-linked.
Because dynamic graphs are essential in many applications, the
support for graph updates is addressed in Section 3.3.

3.1 Creating Graph Views
GRFusion has a declarative Create Graph View statement to create
graph views initialized from relational data. The statement has
four main objectives: (1) Identifying the name of the graph view
to create, (2) Identifying and extracting the graph’s set of vertexes

uId fName lName dob

1 Edy Smith 09-25-1971

2 Jones Parker 11-21-1980

3 Bill Patrick 02-01-1976

….. ….. …… ……

relId uId1 uId2 startDate isRelative

1 1 3 01-10-2009 true

2 2 3 12-31-2008 false

….. ….. …… ……

Users

Relationships

Figure 3: A sample social-network in the relational model.

from the underlying relational sources, (3) Identifying and ex-
tracting the graph’s set of edges from the underlying relational
sources, and (4) Materializing a native graph data structure in
memory that reflects the graph topology based on adjacency-list
structures. Notice that graph traversal operations can be performed
efficiently over this native graph representation and is linked back
to the corresponding relational data tuples that describe it. Notice
further that the relational source can either be a table or a mate-
rialized relational-view because the graph data attributes for the
edges and/or the vertexes can be constructed from multiple data
sources.

Figure 3 illustrates how a graph view is created in GRFusion.
Assume that the data of a social network is stored in the relational
tables as in the figure. Tables Users and Relationships represent
the vertexes and the edges of the social network, respectively. Each
vertex or edge has an identifier in the relational tables. To illustrate,
consider Listing 1 that shows an example of creating a graph view,
namely the SocialNetwork graph view, in GRFusion from the rela-
tional sources in Figure 3. A vertex in the SocialNetwork graph
has its Id from Users.uId and has the two attributes lName and
birthdate that get their values from Users.lName and Users.dob,
respectively. Similarly, Table Relationships defines the edges of
the SocialNetwork graph, where the edge Id comes from Rela-
tionships.relId, the endpoints come from Relationships.uId1 and
Relationships.uId2, and the two edge attributes sDate, relative
refer to Attributes startDate, isRelative of Table Relationships,
respectively. For the graph view defined by the Create Graph
View statement, if the set of vertexes is V, and the set of edges is E,
then, the endpoints of an edge in E are constrained to be included
in V.

Listing 1: A Social Network Graph View Example
CREATE UNDIRECTED GRAPH VIEW SocialNetwork
VERTEXES(ID = uId, lstName = lName,

↪→ birthdate = dob) FROM Users
EDGES (ID = relId, FROM = uId1, TO = uId2,

↪→ sDate = startDate, relative =
↪→ isRelative) FROM Relationships

3.2 Decoupling the Graph Topology and the
Graph Data

The Create Graph View statement updates the system catalog of
GRFusion to store the definition of the graph view. Creating a
graph view results in the materialization of the graph topology
as a native graph structure in the main-memory managed by GR-
Fusion (as a singleton object that multiple users and queries can
reference). However, the attributes of the vertexes and the edges
stored in the relational sources are not replicated in the native
graph structure, and main-memory tuple pointers are used to link
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Figure 4: A graph view materializes the topology and holds
pointers to the relational data of the vertexes and the edges.

the graph topology to the relational sources. To illustrate, Figure 4
demonstrates how the graph topology is separated from the graph
data (i.e., the relational attributes of the vertexes and the edges).
As in Figure 4, each vertex or edge has a main-memory tuple
pointer that points to the corresponding relational tuple storing
the attributes of this vertex or edge. Notice that the design of
GRFusion allows a vertex or edge in a graph topology to store
multiple tuple-pointers if the relational sources are vertically parti-
tioned (e.g., to support semistructured RDF data, where not all the
vertexes or edges share the same set of attributes). Without loss
of generality, we assume a single tuple pointer per vertex or edge
as the focus is to explore the benefits of empowering an RDBMS
with native graph-processing.

The graph topology follows the graph model, where the topol-
ogy is represented physically as a graph data-structure based on
adjacency-lists. The key idea behind this native graph represen-
tation is to allow for the efficient execution of graph traversals,
where relational joins can be mitigated when traversing a graph.
The reason is that materializing the topology of a graph view can
be thought of as a traversal index, where each vertex, say V , is
associated with the identifiers of both the outgoing edges and the
incoming edges of V . Given a graph view, say GV , its topology
can be constructed using a single pass over the relational sources
defining the vertexes and the edges of GV .

Notice that there is a bi-directional linkage between the graph
topology and the graph’s corresponding relational data. To illus-
trate, let T be a relational tuple containing the attribute values of
Vertex V . Using the VertexId attribute of T , GRFusion can locate
Vertex V in the graph representation in O(1) time using the hash
map of the native graph structure. Also, using the tuple pointer as-
sociated with Vertex V in the graph data-structure, Tuple T can be
located in O(1) time. The benefit of separating the graph topology
from the graph data is two-fold. First, the size of the graph view
is not affected by the size of the graph data that can be very large
in some cases. Second, the attributes of the vertexes and the edges
in the relational sources can be easily updated without affecting
the native graph representation.

3.3 Graph Updates
GRFusion supports serializable graph updates that affect the topol-
ogy or the attributes stored in the relational sources. The topology
is affected only when vertexes/edges are added or deleted. GR-
Fusion relies on the design and the implementation of VoltDB to
maintain pointers to the relational tuples on memory reallocations.

3.3.1 Graph-Data Updates. Updating the attribute data of
an edge or vertex is straightforward as the attributes are stored
in relations outside the native graph representation. Hence, these
relational attributes can be updated directly. However, updating the
VertexId and the EdgeId attributes need special handling because
these attributes are used for navigating from the relational store to
the native graph structure (e.g., to probe path-traversal operators in
a QEP as in Section 5). Although updating the identifiers are not
common, GRFusion maintains the consistency of the identifiers
in the graph representation when updating their corresponding
attributes in the relational sources. Also, GRFusion maintains the
referential integrity of the edges relational-source when updating
a vertex identifier in the vertexes relational-source.

3.3.2 Graph-Topology Updates. GRFusion allows topo-
logical updates when the relational sources are either relational
tables or a relational views selecting from a single table. GRFusion
associates each relational source, say R, with the identifiers of the
graph views that reference R. When inserting a new tuple into R,
the transaction of the insertion statement updates the graph-view
topology as part of the transaction (i.e., adding a new vertex or
adding a new edge in the graph representation). Similarly, when
deleting a vertex or edge, the deletion statement detects the graph
views associated with R and updates the affected graph views
accordingly as part of the deletion transaction. For example, if R
is an edges relational-source for a graph view, say GV , the edge
in GV corresponding to a deleted tuple is removed from GV .

4 THE PATHS QUERY CONSTRUCT
As graph traversal queries form a massive body of graph queries
(e.g., reachability and shortest path queries [19, 24, 26, 42, 43,
47]), GRFusion extends the SQL language to declaratively find
paths in graph views. GRFusion introduces the PATHS construct
to query its graph views. For a graph view, say GV, GRFusion
recognizes GV.PATHS in the From clause of a select statement (as
it is treated conceptually as a set of paths). Conceptually, this al-
lows GRFusion to traverse and retrieve simple paths from GV that
satisfy a path criteria (e.g., predicates on the attributes of the edges
forming the path). In addition to GV.PATHS, GRFusion recognizes
GV.VERTEXES, and GV.EDGES, to reference the vertexes, and the
edges of GV, respectively. We focus on the GV.PATHS construct
as the other constructs are straightforward.

GRFusion models a path as an ordered list of edges, where
each edge has a start and end vertexes. The edges and the vertexes
of a path, say PS , can be indexed and referenced by relational
predicates as follows:

• PS.Edges[StartIndex..EndIndex].EdgeAttribute: Ref-
erences an attribute of the edges starting from StartIndex
until EndIndex . A value of ‘*’ for the EndVertex place-
holder indicates that all the edges starting from StartIndex
should satisfy the relational predicate.

• PS.Vertexes[StartIndex..EndIndex].VertexAttribute:
References an attribute of the vertexes starting from
StartIndex until EndIndex . A value of ‘*’ for the
EndVertex placeholder indicates that all the vertexes
starting from StartIndex should satisfy the relational
predicate.

Observe that the aforementioned EdgeAttribute, and the Verterx-
Attribute placeholders can refer to any attribute of the edges or the
vertexes that have been defined at the time of creating Graph-view
GV . In addition, each vertex in Path PS has two additional inte-
gral attributes, namely FanIn and FanOut. Also, Path PS allows
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accessing to some path-specific properties, e.g., PS.StartVertexId
and PS.Length refer to the identifier of the start vertex and the
length of Path PS , respectively.

To illustrate how paths can be queried in GRFusion, consider
Query Qp in Listing 2. The From clause of Qp specifies that the
paths are being traversed from the SocialNetwork graph view,
where the vertexes relational-source of the SocialNetwork graph
is RelationUsers. The query displays the last names of the friends
of friends of all the users with Job = ‘Lawyer’. Conceptually,
Qp is evaluated by selecting the sub-graph, say Gsub , containing
edges with start dates after ‘1/1/2000’. Using Sub-graph Gsub ,
GRFusion explores paths consisting of two edges that originate
from the vertexes corresponding to lawyers in the social network.
Notice that Listing 2 could use SocialNetwork.VERTEXES instead
of Users. However, Listing 2 uses the Users relation to show
how relational tables can be joined with the paths of a graph
view. Notice that the details of the extended query language of
GRFusion are not the main focus of this paper. However, we
provide sample code snippets that are relevant to illustrating the
evaluation of the graph-relational queries supported by GRFusion.

Listing 2: Friends-of-Friends Path Query Qp

SELECT PS.EndVertex.lstName
FROM Users U, SocialNetwork.Paths PS
WHERE U.Job = 'Lawyer' AND PS.StartVertex.

↪→ Id = U.uId AND PS.Length = 2 AND PS.
↪→ Edges[0..*].StartDate > '1/1/2000'

Listing 3 presents a reachability queryQr that queries a protein-
interaction network represented by the BioNetwork graph view,
and checks if Protein X interacts directly (i.e., by an edge) or
indirectly (i.e., by a path) with Protein Y through either a cova-
lent or stable interaction types. PS.PathString corresponds to the
string representation of Path PS . Notice that many paths can exist
between the vertexes corresponding to the specified proteins. So,
Query Qr uses the LIMIT 1 clause because retrieving one path is
sufficient to decide on reachability.

Listing 3: Reachability Query Qr

SELECT PS.PathString
FROM Proteins Pr1, Proteins Pr2, BioNetwork

↪→ .Paths PS
WHERE Pr1.Name = 'Protein X' AND Pr2.Name =

↪→ 'Protein Y' AND PS.StartVertex.Id =
↪→ Pr1.Id AND PS.EndVertex.Id = Pr2.Id
↪→ AND PS.Edges[0..*].Type IN ('
↪→ covalent', 'stable') LIMIT 1

In addition to the ability of referencing the attributes of the
edges or vertexes forming a path, say PS , GRFusion allows ag-
gregation functions on the attributes of the vertexes or the edges
of PS . The aggregate functions on the attributes of paths have the
same usage and constraints as those on relational attributes. For
example, if the edges of PS have an attribute, sayWeiдht , a query
can compute the sum of the weight values across all the edges of
PS , i.e., sum(PS .Edдes .Weiдht) can appear in the select-clause of
a query to compute the sum of the weights associated with the
edges of Path PS .

The PATHS construct can also retrieve sub-graphs based on
specific patterns (e.g., the topology of the sub-graph, attributes
of the vertexes/edges of the subgraph). For instance, finding tri-
angular structures with specific edge properties, and counting
these triangles are important primitives for Machine-Learning,

SocialNetwork

σVertexes.lstName = ‘Smith’

VertexScan

πbirthdate, fanOut

MemGraph

Figure 5: QEP for Query Qv .

e.g., [48], where a triangle structure can be viewed as a loop of
three edges. Listing 4 presents Query Qt that counts the number
of triangles, where the edges have specific values for their Label
attribute. Notice the use of the Path.Length property, where it is
necessary to retrieve only triangles (as the sub-graph of interest
has only three edges).

Listing 4: Subgraph Pattern Query to Find Triangles Qt

SELECT Count(P)
FROM MLGraph.Paths P Where P.Length = 3 AND

↪→ P.Edges[0].Label = 'A' AND P.Edges
↪→ [1].Label = 'B' AND P.Edges[2].Label
↪→ = 'C' AND P.Edges[2].EndVertex = P.
↪→ Edges[0].StartVertex

More interestingly, paths can be joined to query more complex
sub-graph patterns. Similar to relational engines that can perform
self-joins for a relational table, GRFusion allows self-joins of the
paths of a given graph view. This is possible as the vertexes and
the edges of the paths to join can be referenced by relational join
predicates.

5 GRAPH-RELATIONAL QUERY
PROCESSING

In this section, we explain how GRFusion evaluates graph-
relational queries. Section 5.1 introduces the primitive graph op-
erators of GRFusion, while Section 5.2 illustrates how the graph
operators integrate with typical relational operators in a cross-
data-model QEP, where the graph operators appear in the leaf
level of the QEP. Then, Section 5.3 discusses the conceptual query
evaluation of graph-relational queries in GRFusion.

5.1 Graph Operators
GRFusion defines three primitive operators to evaluate the graph
constructs of graph-relational queries. In particular, GRFusion
defines the VertexScan, EdgeScan, and PathScan operators that
iterate over a graph view’s vertexes, edges, and paths, respectively.
The PathScan operator is a lazy operator following the iterator
model [28] to avoid eager generation of paths that might not be
required by parent operators. The reason of this design decision is
that many queries (e.g, reachability) limit the number of paths to
be retrieved, and consequently generating all/multiple paths may
be expensive and unnecessary.

5.1.1 Vertex Scan and Edge Scan Operators. Operators
VertexScan and EdgeScan allow GRFusion to iterate over the ver-
texes and edges of a given graph view, respectively. For example,
the VertexScan operator provides an alternative access method
for accessing the vertexes of a graph view, where the fan-in and
fan-out properties of any vertex can be efficiently retrieved in
constant time. To illustrate, consider Query Qv in Listing 5. Qv
selects from the set of vertexes of the SocialNetwork graph view,
and then applies some relational operators afterwards. To evaluate
Qv , GRFusion constructs the query execution pipeline, say QEPv ,
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as in Figure 5. Operator VertexScan scans the vertexes of the graph
defined by the SocialNetwork graph view from the in-memory
graph structure (represented as MemGraph in Figure 5, that refer-
ences the singleton graph structure of the graph view). Vertexes
with last name ‘Smith’ are selected and a relational projection
operation selects only the birth date and the fan-out properties.

Listing 5: Vertexes Selection Query
SELECT VS.birthdate, VS.fanOut
FROM SocialNetwork.Vertexes VS
WHERE VS.lstName = 'Smith'

5.1.2 The PathScan Operator. In GRFusion, the PathScan
operator is responsible for traversing a graph view to construct
simple paths identified by a graph query. PathScan is a logical op-
erator that has three physical operators with three corresponding
graph-traversal algorithms. All the physical operators explore a
traversed vertex only once to avoid loops, i.e., the paths in GRFu-
sion are simple paths. In particular, the query optimizer maps a
logical PathScan operator into DFScan, BFScan, or SPScan, cor-
responding to depth-first search, breadth-first search, or shortest-
path search physical operators, respectively. In this section, we
focus on the logical semantics of the path scan operator. We defer
the discussion of the physical operators to Section 6.

As a logical operation, the paths-discovery process in GRFu-
sion starts from a set of start vertexes to avoid materializing all
possible paths. These start vertexes are either stated explicitly in
the query (e.g., PS.StartVertex.Id = Value) or are generated by
other operators during query evaluation (e.g., PS.StartVertex.Id
= VS.Id as in Listing 2). In the latter scenario, the start vertexes
selected by some operators (e.g., TableScan, relational sub-query),
are used to probe the PathScan traversal operator. If the start ver-
texes of a path selection are not defined, all the vertexes of the
corresponding graph view will be used as starting vertexes. No-
tice that the paths in GRFusion are not eagerly materialized by a
PathScan operator, rather they are lazily generated.

To illustrate how paths are explored in GRFusion, consider
Query Qp in Listing 2. Qp explicitly states that the path discovery
process starts from the vertexes corresponding to lawyers in the so-
cial network. Figure 6 demonstrates the query evaluation pipeline
QEPp that evaluates Query Qp , where MemGraph refers to the
singleton materialized graph structure of the graph view. In par-
ticular, Qp starts the traversal process from each qualified vertex.
Notice that the qualified vertexes are retrieved using a relational
operator (e.g., by a TableScan or IndexScan operators) in Figure 6.
The reason is that using a relational access method with filtering
predicates on the vertexes relational-source is more efficient than
using the tuple pointers in the graph view to filter all the vertexes
on the fly. Because of the seamless integration of the relational
and graph models in GRFusion, this optimization alternative is
feasible. While traversing the graph view, only the edges with start
dates after ‘1/1/2000’ are considered. Also, QEPp explores paths
of length two only (i.e., consisting of two edges) that originate
from a given start vertex. As an effective optimization, GRFusion
pushes predicates, e.g., path-length predicates, to be considered
during the traversal process. This optimization allows GRFusion
to apply early pruning of paths, and to reduce the size of the inter-
mediate results flowing through the query pipeline. Consequently,
the performance of the query evaluation process is boosted w.r.t.
the processing time as well as the temporary memory used for the
intermediate results.

PathScanPathLength = 2 AND

E.StartDate > ‘1/1/2000’

πendVertex.lstName

SocialNetwork

MemGraph

TableScanJob = ‘Lawyer’

⋈Id = StartVertexId

Vertex
Relational
Source

Figure 6: GRFusion joins a relational table with a graph-view
traversal-operator for Query Qp .

5.2 Cross-Model Query-Execution-Pipelines
A query in GRFusion can reference relations or relational views
with graph views simultaneously. A pure relational engine has a
main structure (i.e., tuple) that is passed among the relational op-
erators in a query evaluation pipeline (QEP). GRFusion allows its
query engine to view data by two different data models, namely,
the relational model and the graph model. GRFusion allows a
single QEP to have two main categories of operators that interact
seamlessly in a QEP. The first category contains the relational
operators (e.g., select, project, relational join) that can interact
directly with relational tables. The second category contains graph
operators that can operate on graph views. GRFusion integrates
both categories of operators by allowing a relational operator to
operate on the result of a graph operator. In particular, GRFusion
unifies the interface of the output of both the relational and the
graph operators. Specifically, the query engine of GRFusion ab-
stracts graph processing by using three data types that extend the
Tuple data type, namely the Vertex , Edдe, and Path data types,
where each has a schema that depends on the queried graph-view,
as explained below.

In GRFusion, a vertex, say V , is represented in a QEP by a
tuple, say T , where each attribute of V becomes an attribute in T .
For example, a graph vertex in Listing 1 is represented by a tuple
with attributes: (uId, lstName, birthdate). In addition, Vertex V
has the following properties:

• FanOut: Contains the number of V ’s outgoing edges.
• FanIn: Contains the number of V ’s incident edges.

An edge E is represented by a tuple with attributes corresponding
to E’s attributes in addition to the following attributes:

• From: Contains the start vertex of Edge E.
• To: Contains the end vertex of Edge E.

GRFusion defines the Path data type, where a path, say P , is
a sequence of identifiers of the edges that form P . In particular,
P is an extended tuple with the following attributes defining its
schema:

• Length: Is the number of edges in P .
• StartVertex: Is the start vertex of P .
• EndVertex: Is the end vertex of P .
• Vertexes: Is the list of vertexes forming P .
• Edges: Is the list of edges forming P .

5.3 Conceptual Evaluation of Graph-Relational
Queries in GRFusion

GRFusion addresses the impedance mismatch between the graph
model and the relational model by unifying the type of the ele-
ments that move among the relational and the graph operators
within a QEP. To illustrate, we list below the high-level steps
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that describe GRFusion’s conceptual evaluation of declarative
graph-relational queries, i.e., ones that reference relation(s) and
graph-view(s):

• The relational tables and views are joined together using
all the relational predicates in the WHERE clause of the
query. This step yields a single resultant relation, say R.

• Each graph operator operates on a graph view, say GV ,
using its in-memory singleton graph-structure, sayMemGV .
In case of using different aliases on the same graph view,
each alias is assigned an independent pointer to MemGV .

• When querying a combination of relations, relational views,
vertexes, edges, or paths, all the graph operators operate
only on graph views. Observe that the output of each graph
operator is an extended type of the relational Tuple type.
Hence, the output of the graph operators can be ingested
by the relational operators (e.g., the joins) in the same QEP
seamlessly, where a relational join outer tuple can be used
to probe a graph operator in the inner (e.g., see Figure 6).

• The predicates in the WHERE clause of the query that have
not been consumed in producing R are used to join R with
all the vertexes, edges, and paths referenced by the query.

• The SELECT list is used to perform projection.

6 QUERY OPTIMIZATION
GRFusion optimizes graph-traversal queries with two objectives
in mind: (1) pruning undesired paths as early as possible to opti-
mize the runtime, and (2) favoring traversal algorithms with less-
memory requirements. The second goal is vital as memory should
be consumed discreetly in an in-memory system. Optimization
techniques for early pruning are discussed in Sections 6.1 and 6.2.
In Section 6.3, we address the traversal-algorithm selection.

6.1 Path Length Inference
The query optimizer of GRFusion infers the allowed length of
the paths described by the queries. The main objective is to make
sure that a path returned from the PathScan operator is unlikely
to be rejected by a parent operator (e.g., a join operator) due to a
predicate referencing the path length. For instance, if a query has
the filter "PS .Edдes[5..∗].Att1 = Value", then PathScan infers
that the minimum path length to return is 6 (indexing is zero-
based). Hence, PathScan will not return a path of length 5 or less.
Many real-world queries specify the length of the desired paths,
e.g., triangle-counting queries [48] specify a path length of three,
the popular friends-of-friends queries restrict a path length to two,
and many reachability queries put a cap on the maximum length
of the path connecting the queried endpoints.

For each collection of paths, say PS , that is referenced in the
From-clause, the query optimizer analyzes the predicates ref-
erencing the length of PS explicitly (e.g., PS.Length = value),
or implicitly (e.g., by analyzing the logical operators as in
PS.Edges[5..*].Att1 = X AND PS.Edges[7..9].Att2 = Y), to pre-
dict the range of allowed lengths of the paths to return. Then, the
inferred path length is considered by PathScan while traversing
the graph (e.g., an inferred maximum path length of 8 will prune
any path of length ≥ 9).

6.2 Pushing Filters Ahead of Path Scans
To prune paths early, all the filters related to discovering the
paths of a graph view are pushed ahead of the PathScan op-
erator. For instance, for a graph view’s paths, say PS , Predi-
cate "PS .Edдes[0..∗].Cost < 10" is pushed so that PathScan

can prune any potential path explored with an edge of cost
≥ 10. Similarly, predicates that refer to aggregates on a path’s
attributes will be computed and checked during the PathScan eval-
uation. For example, consider a query, say Q , with the predicate
"Sum(PS .Edдes .Cost) < 100". When PathScan explores Path P
while evaluating Q , PathScan will accumulate the cost-attribute
of the edges of P during the traversal. If the accumulated cost
exceeds 100, P will be dropped and will not flow to the operators
next in the QEP.

6.3 Logical to Physical Operator Mapping
Recall from Section 5.1.2 that the PathScan operator is a logical
operator that is mapped into one of three physical traversal opera-
tors for execution, namely, depth-first search, breadth-first search,
and shortest-path search based on Dijkstra’s algorithm [24].

The shortest-path physical operator, namely SPScan, is very
useful in top-k shortest path queries. Listing 6 illustrates how
the user can instruct the optimizer to use SPScan. Given a non-
negative numerical edge attribute, SPScan traverses the graph us-
ing Dijkstra’s algorithm [24], and returns the next shortest-path as
requested (i.e., pulled) by the parent operator in the QEP. SPScan
is useful in many applications, e.g., recommendation systems and
route discovery, to avoid the costly straightforward plan, i.e., avoid
enumerating all paths, then filtering, sorting, and then returning
the top ones.

For general graph-traversals where shortest paths are not de-
fined, GRFusion can use either a depth-first search (i.e., a DFScan
operator), or a breadth-first search (i.e., a BFScan operator). The
user can give a query hint to decide on depth-first or breadth-first
evaluations. To illustrate how GRFusion decides on the physical
operator to perform a general graph traversal in the absence of an
explicit query-hint, assume that a query, say Q , searches for Path
P of Length L. Assume further that Query Q targets a graph view
where the average fan-out is F . Following an analysis similar to
that in [41], a depth-first search can contain on average F ∗ L
vertexes in its stack data structure. In contrast, a breadth-first
search can contain FL vertexes in its queue data structure. Hence,
GRFusion uses BFS if F < L−1√

L to optimize for memory. This
optimization is applicable if the path length can be inferred and
by maintaining the average fan-out statistic for each graph view
in the system catalog. Otherwise, GRFusion uses the default scan
operator that the user can set based on the expected workload
(e.g., BFS can still be better if the underlying graph has a large
diameter and frequent queries find the desired paths after one or
two hops). GRFusion has a configuration to store the average
fan-out of graph views as a statistics object. If this configuration
is enabled, GRFusion runs a thread in the backend to compute the
average fan-out using the compact graph-view structures.

Listing 6: Declarative Shortest-Path Query
SELECT TOP 2 PS
FROM RoadNetwork.Paths PS HINT(SHORTESTPATH

↪→ (Distance)), RoadNetwork.Vertexes
↪→ Src, RoadNetwork.Vertexes Dest

WHERE PS.StartVertex.Id = Src.Id AND PS.
↪→ EndVertex.Id = Dest.Id AND Src.
↪→ Address = "Address 1" AND Dest.
↪→ Address = "Address 2"
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7 EXPERIMENTAL EVALUATION
We experimentally evaluate the performance of GRFusion, a re-
alization of the proposed Native G+R Core approach inside a
centralized version of VoltDB. We compare GRFusion to the state
of the art of the Native Relational-Core approach, namely SQL-
Graph [46], and we compare to Grail [25]. Although Grail uses
a different computational model than GRFusion, they both have
the common ground of executing queries through an RDBMS.
We also compare GRFusion to two popular specialized graph sys-
tems, Neo4j [4] and Titan [11]. The reason for comparing with
specialized graph systems, which follow the Native Graph-Core
approach, is to show that graph-traversal queries can be efficiently
handled by GRFusion.
Mitigating the disk IO cost from the baselines: As GRFusion
is an in-memory system, the experiments are designed to mitigate
the disk cost of all the baselines we compare to. We implemented
SQLGraph and Grail as described in [46], and [25], respectively,
on top of the in-memory VoltDB system. We configured Titan to
use the in-memory storage configuration, and we set Neo4j to run
and execute over a RAM disk on Linux.

We consider two important categories of graph queries, namely,
traversal-based queries and pattern-matching queries, where the
queries can take additional filtering predicates. For traversal-based
queries, we evaluate reachability queries (e.g., Listing 3). We
also evaluate shortest-path queries to compare with Grail [25].
For pattern-matching queries, we evaluate the triangle-counting
query using filtering predicates on the edges while varying selec-
tivity. The triangle-counting query is a primitive operator in many
machine-learning and knowledge-discovery techniques, e.g., [48].
Experiments are conducted on a machine running Linux ker-
nel 3.17.7 on 32 cores of Intel Xeon 2.90 GHz with 384 GB
of main-memory.

7.1 Datasets
We use real graph datasets that represent four different application
domains, namely, road networks, biological networks, authorship
networks, and social networks. For the road networks, we use
the continental-sized Tiger dataset [9] that covers the entire U.S.,
where the edges represent road segments, and the vertexes rep-
resent road intersections. For the biological networks, we use
the String protein-interaction dataset [8], where the vertexes rep-
resent proteins, and the edges represent interactions among the
proteins. We use the DBLP [1] dataset for the authorship networks,
where the vertexes represent authors, and the edges represent co-
authorship relations. We use the Twitter dataset [3] for the social-
network application, where the dataset represents the follower
graph of Twitter. The vertexes in Twitter represent users, where an
edge from User A to User B denotes that User A follows User B.
Table 2 summarizes the properties of these datasets.
Controlling sub-graph selectivity: We study the effect of select-
ing a subgraph from an underlying graph before performing a
graph operation (e.g., selecting a sub-graph containing 10% of the
edges of the entire graph before executing a shortest-path query or
a topological pattern-matching query on the selected sub-graph).
For each dataset, we vary the selectivity of the queries from 5%
to 50%.
Evaluating the effect of graph-views in the Native G+R Core
approach: To accurately study the performance gains due to the
graph-views of the Native G+R Core w.r.t. the Native Relational-
Core approach, we use breadth-firth search instead of depth-first
search, and we do not push the predicates ahead of the path scan
operator in GRFusion for all the reachability-queries experiments.

7.2 Unconstrained Reachability Queries
We contrast the performance of GRFusion with that of SQLGraph,
Neo4j, and Titan, when processing reachability queries without
filtering predicates on the graph edges. Given two nodes, say A
and B, a reachability query returns true if a path exists from Node
A to Node B. The query-processing time of a reachability query is
affected by the path length of the query result. The reason is that
the increase in the number of edges traversed directly corresponds
to the number of relational joins in the Native Relational-Core
approach (e.g., SQLGraph).

For each dataset in Table 2, we generate random reachability
queries with different path lengths that make the query endpoints
connected. We vary the path length from 2 to 20. For each path
length, say l , we generate 10, 000 random queries, say Ql . We
run Ql and measure the average query-processing time using
GRFusion, SQLGraph, Neo4j, and Titan.

Figure 7 shows the average query-processing time of running
the queries using all four systems, where the x-axis and the y-
axis give the path-length of the query answers and the query-
processing time in milliseconds, respectively. GRFusion achieves
up to four orders-of-magnitude speedup in query-processing time
compared to SQLGraph, where the speedup increases as the graph
size increases. For instance, the speedup reaches 599x for the
DBLP graph, and 2483x for the larger String graph. The reason
is that GRFusion uses the compact graph view that captures the
graph topology, where the graph views act as navigational in-
dexes. Hence, GRFusion does not perform any relational join on
the relational sources to traverse the graphs. In contrast, SQL-
Graph performs a relational join for each edge traversal during
the path discovery process. Consequently, the query-processing
time in SQLGraph increases as the path length of the query result
increases. Moreover, the SQLGraph approach may not scale in
main-memory RDBMSs when the graph size is very big due to the
size of the intermediate results of the relational joins. To illustrate,
in Figure 7(d), in the Twitter dataset, the Native Relational-Core
represented by SQLGraph does not execute if the query evaluation
requires more than four relational joins. The reason is that the in-
termediate temporary-memory of the join operators exceeds 6 GB,
which is 60 times the 100-MB recommended limit in VoltDB. To
allow room for query-evaluation pipelining to reduce the interme-
diate results, and to mitigate the limits of the main-memory, we
execute the Twitter queries on a popular disk-based commercial
RDBMS. The queries on the Twitter graph time-out after 5 hours
of execution when the traversal depth of the queries exceeds four.
In contrast, the systems following the Native Graph-Core repre-
sented by Neo4j and Titan scale for deep graph-traversal queries
on large graphs as the overhead of the relational joins does not
exist, where a deep graph-traversal query is a query that explores
paths of long lengths, i.e., many edges, which corresponds to
many joins in the Native Relational-Core. However, GRFusion
that realizes the proposed Native G+R Core approach is able to
scale for deep graph-traversal queries with better performance
than those of the native graph systems.

Comparing GRFusion to the specialized graph databases Neo4j
and Titan, GRFusion has a query-time speedup that exceeds three
orders-of-magnitude for the String graph (see Figure 7(c)). We at-
tribute these performance gains of GRFusion over the specialized
graph databases to implementation factors and not to a funda-
mental change in the computational model. The reason is that
GRFusion is based on VoltDB that has a low-overhead concur-
rency model (e.g., no lock overhead as in the specialized graph
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Dataset Number of Vertexes Number of Edges Construction Time Memory Size (GB)
Tiger Road Network 24,412,259 58,698,439 2.08 Min 0.88
DBLP Co-Author Network 1,007,047 6,592,656 1.59 Sec 0.09
String Protein Network 1,520,673 348,473,440 3.81 Min 4.17
Twitter Follower Network 41,652,230 1,468,365,182 10.87 Min 17.81

Table 2: The graph views in GRFusion are fast to construct with low memory overhead for the datasets of the evaluation.

databases). Moreover, VoltDB has an optimized memory manager
written in C++ that is significantly more efficient than the JAVA
memory managers of both Neo4j and Titan. Theoretically, if we
remove all the implementation-specific factors, the performance
of GRFusion should be comparable to that of the specialized graph
systems as both are processing native graph representations. In
Section 7.3, we present the performance of GRFusion when evalu-
ating queries that do not only consult the graph topology, but also
the edges’ attributes stored in the relational sources.

7.3 Reachability Queries with Filtering
Predicates

We evaluate the performance of reachability queries in GRFusion
and compare it to the baselines when the queries are associated
with a filtering predicate. To study the effect of sub-graph se-
lectivity (i.e., selecting the sub-graph to perform the query on),
we generate reachability queries similar to the ones described
in Section 7.2 with varying selectivities. We vary the selectivity
parameter from 5% to 50% using synthesized edge attributes to
control the selectivity. We limit the path length of the results of the
generated queries to 20 to emphasize the effect of the selectivity
of the sub-graph to operate on.

Figure 8 shows the average query-processing time for execut-
ing the reachability queries with filtering predicates using all 4
systems and datasets, where the x-axis and the y-axis are the
edge-selectivity of the queries, and the query-processing time in
milliseconds, respectively. Observe that, for the relatively-small
DBLP graph in Figure 8(a), SQLGraph outperforms Neo4j and
Titan as the relational engine can execute joins and apply filtering
predicates efficiently on relations of small cardinalities. GRFusion
outperforms both SQLGraph and the specialized graph engines.
There are two main reasons behind GRFusion’s performance gains.
First, GRFusion uses a compact graph data structure to perform
the traversal and avoids relational joins completely to explore
the underlying graph. Second, GRFusion relies on the relational
engine to evaluate the filtering predicates on the edges. Recall that
GRFusion has a direct pointer to an edge’s tuple that is accessed
in O(1) time to evaluate the query filtering-predicate using the ef-
ficient logic of the relational engine. Hence, GRFusion combines
the strengths of both the graph systems and the relational systems
to achieve the best-of-both-worlds in terms of performance. How-
ever, the efficient evaluation of the filtering predicates and the cost
of the relational joins in SQLGraph do not pay off when the size of
the relations increase. To illustrate, refer to Figure 8(b), where the
performance of SQLGraph degrades as more edges are selected.
For the String dataset in Figure 8(c), SQLGraph exceeds the tem-
porary memory limits of VoltDB after selecting a subgraph of size
larger than 25% of the queried graph for the reasons illustrated in
Section 7.2. For the largest Twitter dataset, SQLGraph is not able
to perform even on a subgraph of a 5% selectivity. The reason
is that the cost of 20 relational joins on the large Twitter table
exceeds the temporary-memory limits of VoltDB, and time-out

the queries on a commercial disk-based RDBMS after 5 hours of
execution. Also, as the number of self-joins increases in the Native
Relational-Core approach, the relational optimizer may not be
able to select the best join algorithm due to inaccurate cardinality
estimations of the intermediate results (see [27] for details).

The relational engine is efficient in performing filtering predi-
cates. This set of experiments demonstrates the power of extending
the relational engine with a native graph-core processor that is
optimized for graph traversals and that uses efficient memory
representation. Figure 8 demonstrates the scalability and the effi-
ciency of GRFusion in contrast to the baselines in handling graph
queries with filtering predicates. Notice that increasing the edge-
selectivity factor of the queries has less impact on Neo4j, Titan,
and GRFusion than on SQLGraph w.r.t. query-processing time.
The reason is that these queries are evaluated on a graph structure
by performing the filtering predicates on the fly as the graph is
being traversed. The selectivity affects the query performance of
all the approaches. However, it is more impactful in the case of
pure-relational evaluation. For example, in Figure 8(b), the pro-
cessing time of SQLGraph increases by 138x when changing the
selectivity from 5% to 50%, in contrast to an increase of 1.72x in
GRFusion on the same setup.

7.4 Sub-Graph Pattern Matching
We evaluate the performance of the triangle-counting query. Given
a graph, say G, a triangle-counting query, say QTC , counts all the
sub-graphs of a triangle pattern (e.g, see Listing 4). Notice that
the Native Relational-Core approach, e.g., SQLGraph, can scale
for this specific pattern query as only two relational joins are
needed for query evaluation. This is the reason for choosing this
pattern query besides its importance as a primitive in many applica-
tions [48]. Figure 9 gives the performance of evaluating triangles
queries on the DBLP, Tiger, and String graph datasets, where the
x-axis and the y-axis are the edge-selectivity of the queries and
the query-processing time in milliseconds, respectively.

Notice that in Figure 9, the SQLGraph approach outperforms
both Neo4j and Titan when the selected sub-graph size is small,
e.g., up to a selectivity of 10% for the DBLP dataset as in Fig-
ure 9(a). Also, notice that SQLGraph is more sensitive to the
selectivity parameter than all the other approaches including GR-
Fusion. Although only two joins are required by SQLGraph in this
type of queries, increasing the number of tuples to join increases
the query processing time, which results in better performance by
Neo4j and Titan when increasing the selectivity parameter. For
instance, Neo4j and Titan are more efficient than SQLGraph for
the String dataset in Figure 9(c) for a selectivity parameter greater
than 20%.

Figure 9 illustrates that GRFusion outperforms SQLGraph,
Neo4j, and Titan by up to one order of magnitude in query perfor-
mance. We attribute this performance advantage by GRFusion to
the same reasons reported in Section 7.2.
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Figure 7: GRFusion achieves up to 4 orders-of-magnitude query-time speedup for unconstrained reachability queries.
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Figure 8: GRFusion achieves up to 4 orders-of-magnitude query-time speedup for reachability queries with filtering predicates.

100

1000

10000

100000

0 5 10 15 20 25 30 35 40 45 50

E
x
e
c
u

ti
o

n
 T

im
e
 (

m
s
e
c

)

Edge Selectivity (%)

GRFusion SQLGraph Neo4j Titan

(a) DBLP Dataset

100

1000

10000

100000

0 5 10 15 20 25 30 35 40 45 50

E
x
e
c
u

ti
o

n
 T

im
e
 (

m
s
e
c

)

Edge Selectivity (%)

GRFusion SQLGraph Neo4j Titan

(b) Tiger Dataset

100

1000

10000

100000

1000000

10000000

0 5 10 15 20 25 30 35 40 45 50

E
x
e
c
u

ti
o

n
 T

im
e
 (

m
s
e
c

)

Edge Selectivity (%)

GRFusion SQLGraph Neo4j Titan

(c) String Dataset

Figure 9: GRFusion finds all the triangles with filtering predicates with a query-time speedup of one order-of-magnitude.

7.5 Shortest-Path Queries with Filtering
Predicates

We conduct an experiment using the Tiger road network to as-
sess the performance of GRFusion in evaluating the single-source
shortest-path query (or SSSP, for short) in contrast to Grail [25].
The purpose of this experiment is to show that a simple algo-
rithm, e.g., Dijkstra’s algorithm [24], executing inside a relational
database system can achieve significant performance gains over
a pure-relational approach, e.g., as in Grail [25], when evaluat-
ing SSSP queries, or more generally, intensive traversal queries.
Notice that the computational model of Grail is based on the
vertex-centric computational approach that is different from the
graph-traversal model of GRFusion. However, both approaches
have a common ground due to using an RDBMS in the evaluation.
We implement the SSSP query of Grail as reported in Listing 3 in
Grail’s paper [25]. Our Grail implementation is an in-memory im-
plementation on top of VoltDB to mitigate the disk IO cost, and we
allow Grail to filter the edges while processing to report the effect
of sub-graph selections on the query-execution performance.

We generate 1000 random sources from which we execute an
SSSP query to all the other vertexes, and we report the average
query execution time for various sub-graph selectivity factors.
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Figure 10: GRFusion executes SSSP queries natively inside
an RDBMS few-thousand times faster than Grail.

Figure 10 gives the performance of evaluating SSSP queries on
the Tiger road network, where the x-axis and the y-axis are the
edge-selectivity of the queries and the query-processing time in
milliseconds, respectively. GRFusion achieves more than three
orders-of-magnitude query-time speedup w.r.t. Grail. Notice that
we do not use an advanced SSSP evaluation method. Instead, we
use a straightforward Dijkstra’s algorithm that utilizes efficient
filtering-predicates of the relational database engine. This empha-
sizes the point that having a native and an efficient graph represen-
tation inside an RDBMS can fill the gap between the RDBMSs and
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the graph algorithms that are designed for native graph structures,
where these graph algorithms can achieve significant performance
gains when compared to equivalent pure-relational query evalua-
tion approaches.

7.6 The Overhead of Graph Views
As graph views are materialized in GRFusion, we report the con-
struction time as well as the consumed memory space for each
dataset. Table 2 illustrates that the construction time ranges from
two seconds to 10 minutes according to the size of the graph. The
reason is that the construction process passes only once by the
vertexes relational-source as well as the edges relational-source.
Similarly, Table 2 shows the memory size due to the materializa-
tion of the topology of every graph. The consumed memory is of
acceptable overhead because only the graph topology is material-
ized, where each vertex and edge holds pointers to the relational
data instead of replicating the relational data inside the graph
views. For example, only 0.88 GB is needed to construct a graph
view for the continental-sized US road network. Moreover, the
overhead of updating the graph views is low. On average, it takes
0.04 milliseconds to add a new edge into an existing graph view,
i.e., the total time to insert a tuple in the relational source as well
as updating the topology of the corresponding graph view. For
both the deletions and insertions of vertexes and edges, GRFusion
incurs 5%-11% additional overhead to the time of manipulating
the relational sources. The reason for this low overhead is that the
logic of manipulating the graph views is linear in time w.r.t. the
number of affected vertexes or edges as illustrated in Section 3.3.

8 RELATED WORK
Graphs Integration with Relational Databases: There is a
plethora of database systems that adopt the graph data model
(e.g., Neo4j [4] and Titan [11]). These systems have powerful
graph querying features. However, it has been shown that for
many graph queries, the performance of these systems can be
achieved or exceeded by a vanilla relational database [25, 46].
For graph-relational queries, a graph database is useful if it is
feasible to: a) import all the relational data into the graph database,
or b) develop a custom layer where results from the graph data-
base and the relational database are integrated to form the final
results. In contrast, GRFusion allows efficient execution of graph-
relational queries with neither the overhead of importing data nor
the overhead of integrating query results from different systems.
Commercial systems, e.g., Oracle Graph and Aster [45], follow
the architecture of processing graph-relational queries using dif-
ferent run-time systems, where the results are combined at the end.
For example, Aster allows defining graph functions that can be
referenced in the FROM-Clause of a SQL statement. During query
execution, the graph function is extracted and evaluated using a
graph runtime system. Eventually, the result from the external
graph-runtime is transformed into a relational table that can be
integrated with the parent SQL query. Similarly, G-SPARQL [40]
is a SPARQL-like language for querying attributed graphs, where
a graph is represented and processed using a hybrid Memory/Disk
model, and the query-execution is split between the RDBMS and a
memory-based layer outside the RDBMS. In contrast, GRFusion
executes the graph operations as well as the relational operations
of a query through a cross-data-model QEP without leaving the
realm of the RDBMS.

Several graph libraries and systems target graph analytics, e.g.,
CRAY Graph Engine [13], Pregel [34] and its open source version

Giraph [2], GraphLab, GraphFrames [22]. For graph analytics,
it may be acceptable to import data from relational databases
for analytical purposes. In contrast, GRFusion also serves OLTP
scenarios. This is possible as the relational data in GRFusion is not
deeply copied into the graph views. Moreover, the updates to the
relational data that affect the topology of the defined graph views
incur little overhead to update the in-memory graph structures in
GRFusion.

Relational Databases with Modified Layers for Graph Pro-
cessing: In this category, the internals of an RDBMS are mod-
ified to some extent, but not to a level that executes a graph-
relational query through the same QEP as in GRFusion. For exam-
ple, SAP HANA Graph and GRAPHITE [37] allow graph opera-
tions to directly execute on the relational data in a column-store
without replication. However, two different runtime components
execute the graph-relational queries. In contrast, GRFusion uses a
single runtime leading to better performance. In [18], an access
method is proposed to process graphs stored on disk under certain
locality assumptions. In contrast, GRFusion is a main-memory
system that traverses a graph by realizing a light-weight structure
describing the graph topology.

Extracting Graphs from Relational Databases: In this cate-
gory, graphs stored in relational tables are extracted from the data-
base system to be under the control of an independent application.
This independent application allows for querying the extracted
graphs using graph APIs. Ringo [38] and GraphGen[51, 52] are
representatives of this approach. In contrast, GRFusion processes
graphs inside the relational database and does not extract the
graphs outside the realm of the database engine. Additionally,
GRFusion supports dynamic graphs, where online updates are
possible. Notice that to support graph-relational queries, e.g., in
Ringo or GraphGen, the relational part of the query should be
processed by the relational database, and the graph operations
should be processed by Ringo or GraphGen, where another exter-
nal layer will be responsible for integrating the graph results and
the relational results into the final query result.

Encoding Graphs in Relational Databases: In this line of
work (e.g., SQLGraph [46], Grail [25]), graphs are stored in re-
lational tables with schema optimized for specific graph queries.
After encoding graphs in a vanilla relational database, a transla-
tion layer is designed to translate the supported graph queries into
complex SQL statements for the relational database to execute.
Although the query performance of this approach is comparable
to specialized graph databases for specific queries, these systems
make it difficult for users to write declarative graph-relational
queries. In particular, the schema of the relations storing the graph
data may not be suitable for users to query directly and join with
other relational data. The reason is that the schema is usually auto-
generated based on the input graph for optimization purposes.

Tailored Operators for Specific Graph Operations: In this
category, several research efforts (e.g., [17, 20, 21]) have been con-
ducted since the 1980s and until recently (e.g., [16, 26]). However,
most of these efforts target specific query types (e.g., transitive
closure, shortest paths). Unlike GRFusion, these approaches also
do not support a unified/cross-model declarative language to query
both graph and relational objects simultaneously. In [17, 20], Re-
lational Algebra is extended with operators to allow for recursive
queries. Although the proposed recursive algebra helps execute
some graph traversal queries, query execution is not efficient be-
cause the graph operators execute over relational tables and not
over native graph representations. For instance, several iterations
with insertions into temporary tables are needed to keep track
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of the traversal state. Similarly, Vertica [31] presents optimiza-
tions for graph-relational queries. However, the graph operations
execute over pure relational structures and not on graph represen-
tations. Thus, costly relational joins are mandatory in many cases
to traverse graphs. In contrast, GRFusion’s graph operators pro-
cess native graph structures in main-memory without performing
costly joins and without manipulating temporary tables to traverse
a graph topology. Dar et al. [21] use relational operators repeti-
tively to compute the transitive closure of a graph represented in
a predefined relational schema. Gao et al. [26] present specific
optimizations to process shortest-path queries over graphs stored
in a relational database. GRFusion is more general and can join
graph views with relational tables in the same query. Moreover,
GRFusion addresses the impedance mismatch between the graph
model and the relational model. In EmptyHeaded [16], graphs in
a relational storage are queried using a datalog-like language [29].
The core idea of EmptyHeaded is to leverage join algorithms with
strong theoretical guarantees in addition to using advanced query-
compilation techniques. In contrast, GRFusion avoids relational
joins completely when traversing the topology of a graph view.

9 CONCLUSION
We introduce the notions of in-memory materialized graph views,
graph operators that seamlessly integrate with relational oper-
ators in query evaluation pipelines, memory management, and
query optimization techniques for optimizing graph-relational
queries. GRFusion is a realization of the proposed Native G+R
Core approach inside VoltDB. The key idea behind GRFusion is
to show the effect of extending an RDBMS to handle natively and
seamlessly graph and relational data through cross-data-model
QEPs. We introduce the PATH construct, and the extended SQL
language of GRFusion to declaratively express graph-relational
queries. GRFusion constructs in-memory graph structures to cap-
ture the graph topology and exploits the relational engine’s power
in evaluating the relational constructs of the queries. Consequently,
GRFusion efficiently handles deep graph-traversal queries with-
out any relational joins to explore the connectives of the vertexes
of a graph. We evaluate GRFusion using various graph queries
w.r.t specialized graph engines and systems following the Native
Relational-Core approach, where GRFusion achieves up to four
orders-of-magnitude query-time speedup.
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ABSTRACT
The trip planning query searches for preferred routes starting

from a given point through multiple Point-of-Interests (PoI) that

match user requirements. Although previous studies have in-

vestigated trip planning queries, they lack flexibility for finding

routes because all of them output routes that strictly match user

requirements. We study trip planning queries that output multi-

ple routes in a flexible manner. We propose a new type of query

called skyline sequenced route (SkySR) query, which searches for

all preferred sequenced routes to users by extending the shortest

route search with the semantic similarity of PoIs in the route.

Flexibility is achieved by the semantic hierarchy of the PoI cat-

egory. We propose an efficient algorithm for the SkySR query,

bulk SkySR algorithm that simultaneously searches for sequenced

routes and prunes unnecessary routes effectively. Experimental

evaluations show that the proposed approach significantly out-

performs the existing approaches in terms of response time (up

to four orders of magnitude). Moreover, we develop a prototype

service that uses the SkySR query, and conduct a user test to

evaluate its usefulness.

1 INTRODUCTION
Recently, technological advances in various devices, such as smart

phones and automobile navigation systems, have allowed users

to obtain real-time location information easily. This has triggered

the development of location-based services such as Foursquare,

which exploit rich location information to improve service qual-

ity. The users of the location-based services often want to find

short routes that pass through multiple Points-of-Interest (PoIs);

consequently, developing trip planning queries that can find the

shortest routes that passes through user-specified categories has

attracted considerable attention [4, 10]. If multiple PoI categories,

e.g., restaurant and shopping mall, are in an ordered list (i.e., a cat-
egory sequence), the trip planning query searches for a sequenced
route that passes PoIs that match the user-specified categories in

order.

Example 1.1. Figure 1 shows a road networkwith the following
PoIs: “Asian restaurant”, “Italian restaurant”, “Gift shop”, “Hobby

shop”, and “Arts&Entertainment (A&E)”. Assume that a user

wants to go to an Asian restaurant, an A&E place, and a gift

shop in this order from start point vq . The sequenced route

query outputs route R1 because it is the shortest route from vq
that satisfied the user requirements ⟨Asian restaurant, A&E, gift

shop⟩.

Existing approaches find the shortest route based on the user

query. However, such approaches may find an unexpectedly long
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route because the found PoIs may be distant from the start point.

A major problem with the existing approaches is that they only

output routes that perfectlymatch the given categories [5, 14, 16].

To overcome this problem, we introduce flexible similarity match-

ing based on PoI category classification to find shorter routes in

a flexible manner. In the real-world, category classification often

forms a semantic hierarchy, which we refer to as a category tree.
For example, in Foursquare

1
, the “Food” category tree includes

“Asian restaurant,” “Italian restaurant,” and “Bakery” as subcat-

egories, and the “Shop &Service” category includes “Gift shop,”

“Hobby shop,” and “Clothing store” as subcategories (Figure 2).

We employ this semantic hierarchy to evaluate routes in terms of

two aspects, i.e., route length and the semantic similarity between

the categories of the PoIs in the route and those specified in the

user query. As a result, we can find effective sequenced routes

that semantically match the user requirement based on the se-

mantic hierarchy. For example, in Figure 1, route R2 satisfies the
user requirement because it semantically matches the category

sequence because Italian and Asian restaurants are in the same

category tree. However, this approach may find a significantly

large number of sequenced routes because the number of PoIs

that flexibly match the given categories increases significantly.

To reduce the number of routes to be output, we employ the

skyline concept [2], i.e., we restrict ourselves to searching for

the routes that are not worse than any other routes in terms of

their scores (i.e., numerical values to evaluate the routes). Based

on this concept, we propose the skyline sequenced route (SkySR)
query, which applies the skyline concept to the route length and

semantic similarity (i.e., we consider route length and semantic

similarity as route scores). Given a start point and a sequence

1
https://developer.foursquare.com/categorytree
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Table 1: Example routes in New York city

Approach Distance Sequenced route

Existing

3239 meters Cupcake Shop→ Art Museum→ Jazz Club

(e.g., [16])

Proposed

3239 meters Cupcake Shop→ Art Museum→ Jazz Club

1858 meters Dessert Shop→ Art Museum→ Jazz Club

1392 meters Dessert Shop→Museum→ Jazz Club

823 meters Dessert Shop→Museum→Music Venue

of PoI categories, a SkySR query searches for sequenced routes

that are no worse than any other routes in terms of length and

semantic similarity.

Example 1.2. Table 1 shows real-world examples of sequenced

routes in New York city where a user plans to go to a cupcake

shop, an art museum, and then a jazz club in this order. The

existing approaches output a single route that matches the user’s

requirement perfectly. The proposed approach can output three

additional routes that are shorter than the route found by the

existing approach. Note that the additional routes also satisfy the

user query semantically. The user can select a preferred route

among all the four routes depending on how far he/she does not

want to walk or their available time.

The SkySR query can provide effective trip plans; however,

it incurs significant computational cost because a large num-

ber of routes can match the user requirement. Therefore, the

SkySR query requires an efficient algorithm. The challenge is to

search for SkySRs efficiently by reducing the search space with-

out sacrificing the exactness of the result. We propose bulk SkySR
algorithm (BSSR for short) that finds exact SkySRs efficiently.

Recall that a feature of SkySRs is that their scores are no worse

than those of other sequenced routes. BSSR exploits the branch-

and-bound algorithm [9], which effectively prunes unnecessary

routes based on the upper and lower bounds of route scores. In

addition, to improve efficiency more, we employ four techniques

to optimize BSSR. (1) First, we initially find sequenced routes

to calculate the upper bound. (2) We tighten the upper bound

by arranging the priority queue and (3) tighten the lower bound

by introducing minimum distances. (4) we keep intermediate

results for later processing, which refer to as on-the-fly caching.
Our approach significantly outperforms existing approaches in

terms of response time (up to four orders of magnitude) with-

out increasing memory usage or sacrificing the exactness of the

result.

The main contributions of this paper are as follows.

• We introduce a semantic hierarchy to the route search

query, which allows us to search for routes flexibly.

• We propose the skyline sequenced route (SkySR) query,
which finds all preferred routes related to a specified cate-

gory sequence with a semantic hierarchy (Section 4).

• We propose an exact and efficient algorithm and its op-

timization techniques to process SkySR queries (Section

5).

• We discuss variations and extensions of the SkySR query.

The SkySR query can be applied to various user require-

ments and environments (Section 6).

• We demonstrate that the proposed approach works well in

terms of response time and memory usage by performing

extensive experiments. (Section 7).

• We develop a prototype service that employs the SkySR

query and conduct a user test to evaluate usefulness of

the SkySR query. (Section 8).

The remainder of this paper is organized as follows. Section 2

introduces related work. Section 3 describes the problem formu-

lation, and Section 4 defines the SkySR query. Section 5 presents

the proposed algorithm. In Section 6, we discuss variations and

extensions of the SkySR query. Sections 7 and 8 present experi-

ment and user test results, respectively, and Section 9 concludes

the paper.

2 RELATEDWORK
First, we review trip planning query studies related to the SkySR

query. Then, we review some studies related to the skyline op-

erator. To the best of our knowledge, no study has considered

a skyline sequenced route; thus, our problem cannot be solved

efficiently using existing approaches.

Trip planning: We categorize trip planning queries in Table

2. Note that all existing trip planning queries only output routes

that perfectly match the user-specified category sequences. More-

over, since most trip planning queries assume Euclidean distance,

they cannot find SkySRs, in which road network distance is as-

sumed. Dai et al. [4] proposed a personalized sequenced route

and assumed that PoIs have ratings as well as categories and that

users assign weighting factors as preferences. Although this per-

sonalized sequenced route considers route lengths and ratings, it

only outputs the route that perfectly matches the given categories

and has the best score based on lengths, ratings, and preferences.

Only the optimal sequenced route (OSR) is applicable to find

SkySRs without modification because the OSR and SkySR are

based on the same settings (except for scoring). Sharifzadeh et al.

[16] proposed two algorithms to find OSRs in road networks: the

Dijkstra-based solution and the Progressive Neighbor Exploration
(PNE) approach. The main difference between these algorithms is

that the Dijkstra-based solution employs the Dijkstra algorithm

to search for PoIs and the PNE approach employs the nearest

neighbor search. It has been reported that these algorithms are

comparable in terms of performance [16]. Thus, we consider both

algorithms to verify the performance of the proposed approach.

Skyline: The skyline operator was proposed previously [2].

Few studies have considered the skyline concept for route searches.

Recently, the skyline route (or skyline path) has received consid-

erable attention [1, 6, 8, 13, 17, 18, 20]. A skyline route assumes

that edges on road networks are associated with multiple costs,

such as distance, travel time, and tolls. Here, the objective is to

find skyline routes from a start point to a destination considering

these multiple costs. However, since we specify a category se-

quence rather than a destination, we cannot apply conventional

algorithms to find SkySRs. The continuous skyline query in road

networks (e.g., [7]) searches for the skyline PoIs for a moving

object considering both the PoI category and the distances to the

moving object. Because continuous skyline queries search for a

single PoI category, these solutions are not applicable to SkySR

queries, which obtain routes that pass through multiple PoIs.

3 PRELIMINARIES
Table 3 summarizes the notations used in this paper. We assume

a connected graph G = (V ∪ P,E), where V, P, and E ⊆ (V ∪
P) × (V ∪ P) represent the sets of vertices, PoI vertices, and

edges, respectively. This graph corresponds to a road network

that contains PoIs. The numbers of vertices, PoI vertices, and

edges are denoted |V|, |P|, and |E|, respectively. PoI vertex p ∈ P
is associated with category c ∈ C, where C is the set of categories.

We denote the category of PoI vertex p as cp , and assume that
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Table 2: Types of trip planning queries.

Type Distance metrics Order Destination Result Scores

SkySR (proposed) Network Total Yes or No Exact Length and semantic

Optimal sequenced route (OSR) [16] Euclidean or Network Total Yes or No Exact Length

Sequenced route [5, 14] Network Total Yes Exact Length

Personalized sequenced route [4] Euclidean Total No Approximate Length and rating

Trip planning [10] Euclidean or Network Non Yes Approximate Length

Multi rule partial sequenced route [3] Euclidean Partial No Approximate Length

Multi rule partial sequenced route [11] Euclidean Partial No Exact Length

Multi-type nearest neighbor [12] Euclidean Non No Exact Length

Table 3: Notations

Symbol Meaning

V Set of vertices

P Set of PoI vertices

E Set of edges

p PoI vertex

C Set of categories

c Category

t Category tree

cp Category of PoI vertex p
tc Category tree of c
Pc Set of PoI vertices associated with c
Pt Set of PoI vertices associated with t
S Category sequence (sequence of categories)

R Route (sequence of PoI vertices)

SR Sequential PoI categories in R
l (R) Length score of R
s (R) Semantic score of R
R Set of routes

E (R) Set of super-routes of R
S Minimal set of sequenced routes

Sq Category sequence specified by user

vq Start point specified by user

each PoI is associated with a single category. Each category is

associated with category tree t , and we denote the category tree

of category c as tc . We denote the set of PoI vertices associated

with c and the set of PoI vertices associated with the category

tree t as Pc and Pt , respectively. If a PoI vertex is associated

with category c , it is also associated with all ancestor categories

of c in tc . Each edge e (ui ,uj ) in E is associated with a weight

w (ui ,uj ) (≥ 0). The weight can represent either travel duration

or distance. Next, we define several terms required to introduce

the skyline sequenced route (SkySR).

Definition 3.1. (Category sequence) A category sequence S =
⟨cS [1], cS [2], . . . , cS [|S|]⟩ is a sequence of categories, where |S|
is the size of S. cS [i] ∈ C denotes the i-th category in S. A super-
category sequence of S is a category sequence where each i-th
category is either cS [i] or an ancestor of cS [i] (1 ≤ i ≤ |S|) in the

category tree.

Definition 3.2. (Route) A route R = ⟨pR [1], . . . ,pR [|R|]⟩ is a
sequence of PoI vertices in a road network, where pR [i] ∈ P and
|R| denote the i-th PoI vertex in R and the size of R, respectively.
SR denotes the category sequence of R (i.e., ⟨cpR [1], . . . , cpR [ |R |]⟩).
In addition, we define a super-route of R as an extended route

of R, such as ⟨R,pi ,pj , . . .⟩. In other words, a super-route of R is

obtained by adding a sequence of PoI vertices to the end of R. R
and E (R) denote a set of routes and a set of super-routes of R,
respectively. Moreover, given a route R = ⟨pR [1], . . . ,pR [|R|]⟩
and a PoI vertex p, we define R ⊕ p = ⟨pR [1], . . . ,pR [|R|],p⟩.

Definition 3.3. (Category similarity) Given two categories

c and c ′, the similarity sim(c, c ′) ∈ [0, 1] is calculated by an

arbitrary function such as the Wu and Palmer similarity or path

length [15, 19]. We assume the following relations in the similar-

ity.

• c is irrelevant to c ′ if both exist in different category trees;

thus, we obtain sim(c, c ′) = 0.

• c semantically matches c ′ if c and c ′ are in the same cate-

gory tree; thus, we obtain 0 < sim(c, c ′) ≤ 1.

• c perfectly matches c ′ if c and c ′ are the same; thus, we

obtain sim(c, c ′) = 1.

Note that a semantic match subsumes a perfect match.

We define a sequenced route using the above definitions. The
difference between our definition of sequenced route and the

previous definition [16] is that we consider category similarity.

Definition 3.4. (Sequenced route) Given category sequence

S = ⟨cS [1], . . . , cS [|S|]⟩, R = ⟨pR [1], . . . ,pR [|R|]⟩ is a sequenced
route of category sequence S if and only if it satisfies (i) |R| = |S|,
(ii) cS [i] semantically matches cpR [i] for all i such that 1 ≤ i ≤ |S|,
and (iii) all PoI vertices in R differ each other.

Definition 3.5. (Route scores) Given category sequence S and
vertex v as a start point, we define two scores for route R: length
score l (R) ∈ [0, inf] and semantic score s (R) ∈ [0, 1]. We define

the length score l (R) as follows:

l (R) = D (v,pR [1]) + Σ |R |−1i=1 D (pR [i],pR [i + 1]), (1)

where D (ui ,uj ) denotes the smallest weight sum of the edges

on the routes between vertices (or PoIs) ui and uj . The semantic

score s (R) is calculated by an aggregation function f as follows:

s (R) = f (h1,h2, . . . ,h |R | ), (2)

where hi denotes sim(cS [i], cpR [i]). We assume that, if all hi = 1,

s (R) = 0, i.e., if all PoI vertices in a route perfectly match the

categories, the semantic score of the given route is 0. We also

assume that s(R) is the possible minimum semantic score of R
when it is a sequenced route. Without loss of generality, preferred

routes have small length and semantic score.

4 THE SKYLINE SEQUENCED ROUTE
QUERY

Here, we define the SkySR query. Intuitively, a SkySR is a po-

tential route that may be the best route related to the user’s

requirement. A potential route is a route that is not dominated
by any other routes; the notion of dominance is used in the sky-
line operator [2]. We define dominance for sequenced routes and

SkySR query in the following.

Definition 4.1. (Dominance) Let R be the set of all sequenced

routes starting from point v for category sequence S. For two
sequenced routes R,R′ ∈ R, we say that R dominates R′ if we
have (i) l (R) < l (R′) and s (R) ≤ s (R′) or (ii) s (R) < s (R′) and
l (R)≤ l (R′). If two sequenced routes have the same length and
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semantic scores, the routes are equivalent in the dominance, and

a set of sequenced routes isminimal if it has no equivalent routes.

Definition 4.2. (SkySR query)Given vertexvq as a start point

and category sequence Sq , a skyline sequenced route is a se-

quenced route not dominated by other routes. Let R be the set of

all sequenced routes from start point vq for category sequence

Sq , and let S be a minimal set of the sequenced routes. The

SkySR query returns S that includes sequenced routes such that

all R ∈ S are SkySRs and all R′ ∈ R \ S are dominated by or

equivalent to some of R ∈ S.

An naive solution to find SkySRs is to first enumerate SkySR

candidates by iteratively executing OSR queries for any super-

category sequences of Sq and then check the dominance among

the routes. The number of super-category sequences of Sq in-

creases exponentially as the depth of the category in the category

tree and the size of Sq increase. Thus, although OSR algorithms

can find a sequenced route efficiently, we must repeat many

searches. As a result, the naive solution needs significantly high

computational cost to find SkySRs.

5 PROPOSED ALGORITHM
In this section, we present the proposed approach, which we

refer to as the bulk SkySR algorithm (BSSR), that finds SkySRs ef-
ficiently. Section 5.1 presents the BSSR design policy, and Section

5.2 explains the BSSR procedure. In Section 5.3, we propose opti-

mization techniques for BSSR. We also theoretically analyze its

performance in Section 5.4. Finally, we show a running example

of BSSR in Section 5.5. In Section 5, we assume undirected graphs

in which each PoI vertex is associated with only one category

and that users give sequences of single PoI categories. However,

in a real application, the graphs would be directed graphs, each

PoI vertex would be associated with multiple categories, and

users may specify complex categories. Section 6 describes how

we handle the above conditions.

5.1 Design Policy
Our idea to improve efficiency is to find sequenced routes simul-

taneously (i.e., by searching sequenced routes in bulk) in order to

reduce the search space. We have two choice as the basis for our

approach; Dijkstra-based or nearest neighbor-based approaches

[16]. We use the Dijkstra-based approach as the basis of our al-

gorithm. Recall that a SkySR query has two scores for a route,

i.e., length and semantic scores. To find all SkySRs, we must find

routes that have small category scores even if the routes have

large length scores. However, PoIs that are included in the routes

with small category scores could be distant from the start point.

Although the nearest neighbor-based approach finds the closest

PoIs, it cannot efficiently find such PoIs. On the other hand, the

Dijkstra-based approach searches for all PoI vertices that match

a PoI category. Therefore, the Dijkstra-based approach is more

suitable for the SkySR query than the nearest neighbor-based

approach.

Although our approach finds sequenced routes simultane-

ously, it entails a large number of executions of the Dijkstra

algorithm. This is because, since the number of PoI candidates

increases, a large number of possible routes increases. The search

space does not become small effectively. To effectively reduce

the search space, we exploit the branch-and-bound algorithm,

which uses the upper and lower bounds of a branch of the search

space to solve an optimization problem effectively. With BSSR,
each branch corresponds to each route. For the upper and lower

bounds, we compute the bounds during finding the set of SkySRs.

Specifically, we compute the upper bound of a route from the al-

ready found sequenced routes, and we compute the lower bound

from the current searched route (i.e., not a sequenced route yet).

With the upper and lower bounds, we can safely prune unneces-

sary routes to improve efficiency.

To further increase efficiency, we propose optimization tech-

niques for BSSR. In order to exploit the branch-and-bound algo-

rithm, it is necessary to initialize the upper bound. Thus, we first

search for a sequenced route to initialize the upper bound. How-

ever, it may take high computational cost to find a sequenced

route. Therefore, we propose a nearest neighbor-based initial
search method (NNinit) that finds sequenced routes efficiently by

greedily finding PoI vertices. In addition, to effectively update

the upper bound, we assign a priority to each route and use the

priority queue to efficiently find routes that are likely to give an

effective upper bound. To compute the lower bound, we compute

the possible minimum distance and add it to the length score of a

route to safely prune unnecessary routes. Moreover, to avoid ex-

ecuting the Dijkstra algorithm iteratively from the same vertices,

we materialize search results of the Dijkstra algorithm and reuse

them to search the PoI vertices. By using BSSRwith optimization

techniques, we can perform the SkySR query efficiently.

5.2 Bulk SkySR algorithm
Bulk SkySR algorithm (BSSR) finds all SkySRs by finding simul-

taneously sequenced routes with checking dominance on de-

mand. The naive solution must execute OSR queries for all super-

category sequences of Sq one by one because it only searches

for the PoIs that perfectly match the given category. In contrast,

BSSR searches for all PoIs that semantically match the given

category.

The basic process of BSSR is simple as shown in Algorithm 1:

(i) start searching the PoI vertices that match the first category

from start pointvq and insert the route found into priority queue

Qb which stores all found routes (line 4), (ii) fetch a route from

Qb (line 6), (iii) search for the next PoI vertices that semantically

match the next category cd from PoI vertex pd which is the end

of the fetched route, and insert the fetched route with each of the

found PoI vertices intoQb (lines 7–9), and (iv) ifQb is not empty,

return to (ii), otherwise output the minimal set of sequenced

route S (line 10). In steps (i) and (iii), we find PoI vertices from

the end of the fetched route using a Dijkstra algorithm modified

for the SkySR query as described in Section 5.2.2.

Algorithm 1: Bulk SkySR algorithm

1 procedure BSSR(vq , Sq)
2 S ← ϕ ;
3 priority_queue Qb ← ϕ ;
4 mDijkstra(ϕ , cS [1], vq , Qb , S);
5 while Qb is not empty do
6 R← Qb .dequeue();

7 cd ← cS [ |R | + 1];
8 pd ← pR [ |R |];
9 mDijkstra(R, cd , pd , Qb , S);

10 return S;

11 end procedure

5.2.1 Branch-and-bound. We search for sequenced routes si-

multaneously to reduce the search space. Our idea to safely re-

duce the search space is to exploit the branch-and-bound algo-

rithm, which can reduce unnecessary search space. This section
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describes the theoretical background of using the branch-and-

bound algorithm. We use the following three lemmas to reduce

the search space:

Lemma 5.1. Let S be a minimum set of sequenced routes while
searching for SkySRs and S′ be the minimum set of sequenced
routes after finding SkySRs. If sequenced route R is dominated by a
sequenced route in S, R cannot be included in S′.

proof: FromDefinition 4.2, we search for a set of SkySRs, which

are not dominated by the other sequenced routes. If we find a

sequenced route not dominated by any sequenced routes in S,

we update S by inserting the new sequenced route and deleting

a sequenced route dominated by the new one. Therefore, any

sequenced routes in S after the update are not dominated by any

sequenced routes in S prior to the update. As a result, sequenced

routes in S′ are not dominated by any sequenced routes in S. In

other words, R is not included in S′ if we have sequenced route

R′ in S such that l (R′) ≤ l (R) and s (R′) ≤ s (R). □

Lemma 5.2. Let E (R) be a set of super-routes of R starting from
the same start point. For any route R′ in E (R), the length and
semantic scores l (R′) and s (R′) cannot be less than l (R) and s(R),
respectively.

proof: Let R′ be a route included in E (R). Since we have

D (ui ,uj ) ≥ 0, the following property holds for a route R from

Equation (1) of Definition 3.5.

D (vq ,pR′[1]) + Σ |R
′ |−1

i=1 D (pR′[i],pR′[i+1])

= D (vq ,pR [1]) + Σ |R |−1i=1 D (pR [i],pR [i+1])

+Σ |R
′ |−1

i= |R | D (pR′[i],pR′[i+1])

≥ D (vq ,pR [1]) + Σ |R |−1i=1 D (pR [i],pR [i+1]).

Therefore, we have l (R) ≤ l (R′). s(R) is the possible minimum

semantic score of R when it becomes a sequenced route. Thus,

even if PoI vertices are added to R, we have s(R) ≤ s (R′). As a
result, we have l (R) ≤ l (R′) and s(R) ≤ s (R′). □

In terms of the branch-and-bound algorithm, Lemma 5.1 and

5.2 give us the upper and lower bounds of the scores of a route,

respectively. We can prune routes according to the following

lemma.

Lemma 5.3. (pruning condition) If (i) R is a sequenced route
included in the set S of sequenced routes and (ii) l (R) ≤ l (R′) and
s (R) ≤ s(R′), any routes in E (R′) cannot be included in S.

proof: If we have l (R) ≤ l (R′) and s (R) ≤ s(R′), R′ is not
included in S (Lemma 5.1). From Lemma 5.2, the scores of R′

cannot become less than l (R′) and s (R′) even if we expand R′.
Therefore, any routes in E (R′) cannot be included in S because

R′ is dominated by or equivalent to the sequenced route with

l (R) and s (R) . □
Lemma 5.3 gives us the length score threshold for a route, and,

if the length score of a route is greater than this threshold, we

can prune the given route. We define the length score threshold

of a route as follows:

Definition 5.4. The threshold l (R) of the length score of route

R is given by the following equation:

l (R) = min

R′∈S
{l (R′) |s(R) ≥ s (R′)}. (3)

If l (R) ≤ l (R), we can safely prune R because it cannot be

included in the result. Thus, we can reduce the search space

without sacrificing the exactness of the result. Equation (3) has a

small computation cost because S includes only a small number

of sequenced routes as shown in Section 7.

5.2.2 Themodified Dijkstra Algorithm. We search the next PoI

vertices that semantically match the next PoI category using the

modified Dijkstra algorithm. The modified Dijkstra algorithm can

prune unnecessary routes based on Lemma 5.3. Moreover, based

on the following lemma, it terminates unnecessary traversal of

the graph and avoids inserting unnecessary routes.

Lemma 5.5. Let R = ⟨pR [1], . . . ,pR [i],pR [i + 1],pR [i + 2] . . . ,
pR [|R|]⟩ be a route and pi :i+1 be a PoI vertex on a path between
pR [i] and pR [i + 1]. Route R must be dominated by or equivalent
to another route if we have sim(cS [i + 1], cpi :i+1 ) ≥ sim(cS [i +
1], cpR [i+1]).

proof: Let R′ = ⟨pR [1], . . . ,pR [i],pi :i+1,pR [i+2], . . . , pR [|R|]⟩
be a route such that the difference between R and R′ is only in

pi :i+1 and pR [i + 1]. Since the PoI vertex pi :i+1 is on the path

between pR [i] and pR [i + 1], we have l (R) ≥ l (R′) based on

triangle inequality (i.e., D (pi :i+1,pR [i + 1]) +D (pR [i + 1],pR [i +
2]) ≥ D (pi :i+1,pR [i + 2]) ). Moreover, if sim(cS [i + 1], cpi :i+1 ) ≥
sim(cS [i + 1], cpR [i+1]), we have s (R) ≥ s (R′). Therefore, R is

dominated by or equivalent toR′ because l (R) ≥ l (R′) and s (R) ≥
s (R′). □

Lemma 5.5 gives us two properties for the SkySR query: (i)

even if we find a PoI vertex that passes through another PoI

vertex that has a better category similarity, we can ignore the

PoI vertex, and (ii) if we find a PoI vertex that perfectly matches

the given category, we do not need to traverse the graph through

the PoI vertex. As a result, using Lemma 5.3 and 5.5, we can

efficiently find the next PoI vertices.

Algorithm 2 shows the pseudocode for the modified Dijkstra

algorithm, which is used to find PoI vertices that semantically

match cd from pd . In priority queueQd for the modified Dijkstra

algorithm, the top vertex is the closest vertex to pd . The queue is
initialized topd (line 3). The closest vertex topd is dequeued from

Qd (line 5). Rt is a route expanded from Rd , which is Rd with

fetched vertex u (line 7). If the length score of Rt is greater than
or equal to the threshold of Rd , the modified Dijkstra algorithm

terminates the process (Lemma 5.3) (line 8). We check whether

(i) u semantically matches cd and (ii) u does not proceed through

another PoI vertex whose category similarity is greater than or

equal to that of u (line 9). If we satisfy the above conditions and

the length score of Rt is less than its threshold (line 10), we insert

Rt into the priority queue or the set of sequenced routes (lines

10–12). Otherwise, we skip the process to insert Rt (Lemma 5.3

and 5.5). The neighbor vertices of u are inserted intoQd unless u
perfectly matches cd (Lemma 5.5) (lines 13–17).

5.3 Optimization techniques
In this section, we propose four optimization techniques for BSSR.
Section 5.3.1 explains an initial search for sequenced routes and

proposes NNinit. We then explain tightening the upper and the

lower bounds in Section 5.3.2 and Section 5.3.3, respectively.

Furthermore, in Section 5.3.4 we propose an on-the-fly caching
technique to reuse previous search results of the modified Dijkstra

algorithm.

5.3.1 Initial search. We prune unnecessary routes efficiently

using the branch-and-bound algorithm. However, we cannot

calculate the threshold of R if there are no sequenced routes in

S whose semantic scores are not greater than that of s(R) based
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Algorithm 2:Modified Dijkstra algorithm to find the next

PoI vertices matching cd from pd
1 procedure mDijkstra(Rd , cd , pd , Qb , S)
2 dist [u] = inf for all u ∈ V ∪ P, dist [pd ] = 0;

3 priority_queue Qd ← {pd };
4 while Qd is not empty do
5 u ← Qd .dequeue;

6 if u is already visited then continue;

7 Rt ← Rd ⊕ u ;
8 if l (Rt ) ≥ l (Rd ) then break;

9 if u ∈ Ptcd and u is not through the PoI vertex whose category
similarity is higher than that of u then

10 if l (Rt ) < l (Rt ) then
11 if Rt is a sequenced route then S.update(Rt );
12 else Qb .enqueue(Rt );

13 if u < Pcd then
14 for each u′ for e (u, u′) ∈ E do
15 if dist [u] +w (u, u′) < dist [u] then
16 dist [u′] = dist [u] +w (u, u′).w ;

17 Qd .enqueue(u′);

18 end procedure

on Equation (3). Therefore, initially, we search for the sequenced

route whose semantic score is 0. However, the length score of

the sequenced route can be large if its semantic score is 0. To

tighten the threshold, we also search for sequenced routes whose

semantic scores are greater than 0 because the length scores of

them are less than that of the sequenced route with a semantic

score of 0. We initially find several sequenced routes to tighten

the upper bound.

We propose NNinit, which searches for several sequenced

routes efficiently. NNinit performs a nearest neighbor search

repeatedly to find PoI vertices that perfectly match the given cat-

egories. With this process, we can find a sequenced route whose

semantic score is 0. Moreover, NNinit can find the PoI vertex

that semantically matches the given category during the nearest

neighbor search. When we find the last visited PoI vertex, we

may find PoI vertices that semantically match the last category in

Sq . Therefore, we can obtain sequenced routes whose semantic

scores are greater than 0 and length scores are small. As a result,

NNinit can find several sequenced routes without incurring addi-

tional cost, and one of the sequenced routes has a semantic score

of 0.

We present the pseudocode for NNinit in Algorithm 3. Here,

priority queueQ is initialized to start point vq (line 3). NNinit re-
peats the Dijkstra algorithm |Sq | times to find sequenced routes

(line 4). The Dijkstra algorithm is executed to search for the

closest PoI vertex that perfectly matches cSq [i] from the initial

vertex (the first initial vertex is vq ) (lines 5–19). Here, the clos-
est vertex to the initial vertex is dequeued from Q (line 7). If

the algorithm finds a PoI vertex that perfectly matches cSq [i],
this vertex is added to R and Q is initialized to the PoI vertex

(lines 12–15). When it finds the last PoI vertex that semantically

matches cSq [|Sq |], it inserts the sequenced route into S (lines

9–11). Finally, we obtain a set of sequenced routes, and one of

the sequenced routes in S has a semantic score of 0.

Example 5.6. We show an example of NNinit using Example

1.1, which searches an Asian restaurant, an A&E place, and a gift

shop in this order from start point vq . NNinit executes the Dijk-
stra algorithm three times because the size of category sequence

is three. First, NNinit searches PoI vertices that perfectly match

Asian restaurant from vq . Then, it finds p2 that is the closest PoI

Algorithm 3: Initial search for finding sequenced routes

with a small cost

1 procedure NNinit(vq , Sq)
2 S ← ϕ , R← ϕ ;
3 priority_queue Q ← {vq };
/* execute Dijkstra algorithm |Sq | times */

4 for i : 1 to |Sq | do
5 dist [u] = inf for all u ∈ V ∪ P, dist [Q .top] = 0;

6 while Q is not empty do
7 u ← Q .dequeue;

8 if u is already visited then continue;

9 if i = |Sq | and u ∈ PtcSq [i] then

10 R′ ← R ⊕ u ;
11 S.update(R′);

12 if u ∈ PcSq [i] then
13 R← R ⊕ u ;
14 Q ← {u };
15 break;

16 for each u′ for e (u, u′) ∈ E do
17 if dist [u] +w (u, u′) < dist [u′] then
18 dist [u′] = dist [u] +w (u, u′);
19 Q .enqueue(u′);

20 return S;

21 end procedure

that perfectly match Asian restaurant to vq . Next, it searches
the closest PoI vertex that perfectly matches A&E to p2 and then

finds p5. From the next search, NNinit inserts sequenced routes

to S when it finds PoI vertices that semantically match gift shop.

NNinit finds p7 whose category is Shop&Service (i.e., semanti-

cally match) and thus inserts ⟨p2,p5,p7⟩ to S. After finding p7, it
finds p8 that perfectly matches gift shop and inserts ⟨p2,p5,p8⟩
to S. Finally NNinit returns S including {⟨p2,p5,p8⟩, ⟨p2,p5,p7⟩}.
The length score of ⟨p2,p5,p7⟩ is 12, which is less than the length

score of ⟨p2,p5,p8⟩ of 15.

5.3.2 Tightening upper bound: Arranging routes in the priority
queue. We use the upper bound to prune unnecessary routes. The

upper bound is computed from the obtained sequenced routes.

To tighten the upper bound, it is important to efficiently find se-

quenced routes that have small length and semantic scores. BSSR
extends a route at the top of the priority queue to search for a se-

quenced route, as shown inAlgorithm 1. Note that priority queues

in existing algorithms conventionally consider only distances

(i.e., a distance-based priority queue). If we use a distance-based

priority queue, BSSR preferentially extends a route with a small

length score. Although we must increase the size of a route to

|Sq | to find a sequenced route, a route that has a small length

score likely has a small size. Therefore, it is difficult to search

for sequenced routes efficiently using a distance-based priority

queue.

To search for sequenced routes efficiently, we preferentially

extend a route that has a large size. Here, since many routes in

the priority queue could have the same size, we must consider

an additional priority, which is expected to affect performance.

If multiple routes in the priority queue are the same size, we

preferentially extend the route with the smallest semantic score.

We can reduce the search space by searching for sequenced routes

in ascending order of semantic score. Moreover, if routes are the

same size and have the same semantic score, we preferentially

extend the route with the smallest length score. As a result, we

can efficiently obtain sequenced routes with small length and

semantic scores.
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5.3.3 Tightening lower bound: Possible minimum length score.
As described in Section 5.2.1, we use the length scores of routes as

the lower bound, i.e., we prune a route if the length score of the

route is not less than the threshold. Note that the length score of

the route increases as the route size increases. This indicates that

it is difficult to prune routes before the route size increases. Our

approach to tighten the lower bound of the route is to estimate the

increase of the length score. However, if we carelessly estimate a

future length score, we may sacrifice the exactness of th result.

The basic idea of this estimation is to calculate the possible min-
imum distance. Here, we compute the smallest distance among

any pair of PoI vertices in sets of PoI vertices. We use the follow-

ing two minimum distances, semantic-match minimum distance
ls and perfect-match minimum distance lp :

Definition 5.7. (minimumdistance) The semantic-matchmin-

imum distance ls and perfect-match minimum distance lp are

given by the following equations:

ls (R)=Σ
|Sq |−1
i= |R | ls [i],where ls [i]= min

pi∈Pti ,pi+1∈Pti+1
D (pi ,pi+1). (4)

lp (R)=Σ
|Sq |−1
i= |R | lp [i],where lp [i]= min

pi∈Pti ,pi+1∈Pci+1
D (pi ,pi+1). (5)

In Equations (4) and (5), Pti and Pci denote the set of PoI vertices
associated with a category tree of cSq [i] and the set of PoI vertices
whose category is cSq [i], respectively.

We compute the semantic-match minimum distance based on

the distance to the PoI vertices that semantically match the next

category. We can safely add the semantic-match minimum dis-

tance to the current length score without restriction. However,

the semantic-match minimum distance is much less than the

threshold. Thus, it could be difficult to improve pruning perfor-

mance; thus, we use the perfect-match minimum distance to

increase pruning performance. The perfect-match minimum dis-

tance is computed based on the distance to the PoI vertices that

perfectly match the next category. We can improve pruning per-

formance using the perfect-match minimum distance compared

to the semantic-match minimum distance because the perfect-

match minimum distance is much greater than the semantic-

match minimum distance; therefore, the perfect-match minimum

distance tightens the lower bound more than the semantic-match

minimum distance. However, we can use the perfect-match mini-

mum distance only in a special case, i.e., where a route must pass

only PoIs that perfectly match the given categories so as not to

be dominated. The perfect-match minimum distance works well

if the number of sequenced route in S is large because the con-

straint is usually satisfied by increasing the number of sequenced

route in S.

Lemma 5.8. Let R′ and R′′ be sequenced routes in S and R
be a route such that (i) l (R) ≥ l (R′) and s (R) < s (R′) and (ii)
l (R) < l (R′′) and s (R) ≥ s (R′′). Let δ be the minimum increment
of a semantic score2. We can pruneR if we have (a) l (R) ≥ l (R′) and
s (R) + δ ≥ s (R′) and (b) l (R) + lp (R) ≥ l (R′′) and s (R) ≥ s (R′′).

proof: First, we consider case (a). If we have l (R) ≥ l (R′) and
s (R) + δ ≥ s (R′), R is dominated by or equivalent to R′ if its
semantic score increases. Therefore, R must only pass through

PoI vertices that perfectly match the given categories not to be

dominated. If R passes through only PoI vertices that perfectly

2
The least increase of the semantic score is computed from the category tree.

Specifically, we can compute the least increase from the category that is most

similar (but not equal) to the next category.

match the given categories, the length score of R increases by

at least lp (R). For case (b), if we have l (R) + lp (R) ≥ l (R′′) and
s (R) ≥ s (R′′), R is dominated by or equivalent to R′′ if its length
score increases by lp (R). As a result, if we have two routes R′

and R′′, such as (i) l (R) ≥ l (R′) and s (R) + δ ≥ s (R′) and (ii)

l (R) + lp (R) ≥ l (R′′) and s (R) ≥ s (R′′), R is dominated by or

equivalent to at least one of R′ and R′′. □
To compute the estimation of the lower bound, we compute

two types of possible minimum distances ls and lp . A naive ap-

proach computes all minimum distances from the PoI vertices

that semantically match cSq [i] to cSq [i + 1] for 1 ≤ i ≤ |Sq | − 1
by iteratively executing the Dijkstra algorithm. However, this

has a high computational cost. To reduce the cost, we execute

a multi-source multi-destination Dijkstra algorithm. In this algo-

rithm, all start points are inserted into the same priority queue.

Then, the algorithm dequeues vertices in the same manner as the

conventional Dijkstra algorithm. Here, the process is terminated

if the top of the priority queue becomes one of the destinations.

This approach only needs |Sq | − 1 times to compute the possible

minimum distance. The multi-source multi-destination Dijkstra

algorithm guarantees the minimum distance by the following

lemma:

Lemma 5.9. The multi-source multi-destination Dijkstra algo-
rithm guarantees the minimum distance from the start points to
the destinations.

proof: We first insert multiple start points into the priority

queue, and their distances from the start points are initialized as

0. If we find a vertex, it is inserted into the queue and the distance

to the vertex is updated from the closest start point to the vertex.

The vertex with the smallest distance from the start point in the

priority queue is dequeued from the priority queue. If the top

vertex in the priority queue is one of the destinations, there are

no destinations with smaller distance than the top one. Therefore,

we can guarantee the minimum distance from the start points to

the destinations. □
Algorithm 4 shows the pseudocode to compute the semantic-

match minimum distance. The estimation of the lower bound is

executed after line 4 in Algorithm 1. Here, we initialize Pi and

Pi+1 (lines 3–4). l (ϕ) denotes the threshold for a route whose se-

mantic score is 0. The difference between computing the semantic-

match and perfect-match minimum distances is whether the PoI

vertices in Pi+1 semantically or perfectly match the given cate-

gory.

Example 5.10. We show an example to compute the semantic-

match minimum distance using Example 1.1. P1, P2, and P3 in-
clude {p1,p2,p6,p10,p11}, {p5,p9,p12}, and {p3,p4,p7,p8,p13}, re-
spectively. First, PoI vertices in P1 are inserted to priority queue

Q , and the set of destinations is P2. By processing the Dijkstra al-

gorithm, we compute possible minimum distance ls [1] = 2 (from

p6 to p9). Next, we search PoI vertices that semantically match

A&E to gift shop. Then, we compute ls [2] = 1 (from p12 to p13).
Finally, we obtain semantic-match minimum distance ls = {2, 1}.
We can compute the perfect-match minimum distance in the

same way and obtain lp = {3, 1}, which is greater than ls .

5.3.4 Reuse of the temporal result: On-the-fly caching tech-
nique. Although BSSR efficiently prunes unnecessary routes, it

may iteratively execute the modified Dijkstra algorithm at the

same vertex because, in Algorithm 1 (line 8), pd could be the

43



Algorithm 4: Computing possible minimum distance

1 procedure EstimationLowerbound(vq , Sq)
2 for i : 1 to |Sq | − 1 do
3 Pi ← {p |p ∈ PtcSq [i] and D (vq, p ) < l (ϕ ) };

4 Pi+1 ← {p |p ∈ PtcSq [i+1] and D (vq, p ) < l (ϕ ) };

5 dist [u] = inf for all u ∈ V ∪ P, dist [p] = 0 for all p ∈ Pi ;
6 priority_queue Q ← {p } ∈ Pi ;
7 while Q is not empty do
8 u ← Q .dequeue;

9 if u is already visited then continue;

10 if u ∈ Pi+1 then
11 ls [i] = dist [u];
12 break;

13 for each u′ for e (u, u′) ∈ E do
14 if dist [u] +w (u, u′) < dist [u′] then
15 dist [u′] = dist [u] +w (u, u′);
16 Q .enqueue(u′);

17 return ls ;

18 end procedure

same as the former executions of the modified Dijkstra algo-

rithms. Thus, we reuse the result starting at the same PoI vertex

by materializing the result of the modified Dijkstra algorithm

(i.e., keeping PoI vertices matching cd and distances from pd to

the PoI vertices), which we refer to as on-the-fly caching.
After finding SkySRs, on-the-fly caching frees the results of

the modified Dijkstra algorithms (this is why we call it on-the-fly),
because the search space rarely overlaps across different inputs

(i.e., Sq and vq differ).

5.4 Theoretical Analysis
In this section, we theoretically analyze the cost and correctness

of the proposed BSSR.

Theorem 1. (Time complexity) Let γ be a ratio of pruning
and α be a ratio of the size of a graph to find the SkySRs. The time
complexity of BSSR isO (γ (α |P|) |Sq |α ( |E|+ ( |V|+ |P|) log(α ( |V|+
|P|)))).

proof: The time complexity of the Dijkstra algorithm isO ( |E|+
|V| log |V|) if the number of vertices is |V|. In our setting, we

have |V| + |P| vertices because we have two types of vertices. In

addition, we do not need to search the whole graph by reducing

the graph size according to the threshold. Therefore, the time

complexity of the modified Dijkstra algorithm isO (α ( |E|+ ( |V|+
|P|) log(α ( |V| + |P|))). The time complexity of BSSR depends on

the number of times the modified Dijkstra algorithms is executed.

The number of modified Dijkstra algorithms is equal to all the

potential routes |P| |Sq | . Recall that we can prune the number of

routes using the branch-and-bound algorithm. Finally, the time

complexity of BSSR isO (γ (α |P|) |Sq |α ( |E|+ ( |V|+ |P|) log(α ( |V|+
|P|)))). □

In our approach, γ and α depend on the upper and lower

bounds. These are affected by the graph structure, the category

trees, and the ratio of PoI vertices, and the time complexity of

BSSR depends on these factors.

Theorem 2. (Space complexity) Let γ be the pruning ratio,
and α be the ratio of the size of the graph to find the SkySRs. The
space complexity of BSSR is O ( |E| + |V| + |P| + γ |Sq |(α |P|) |Sq | ).

proof: We store the whole graph of size O ( |E| + |V| + |P|). We

also store routes into the priority queue andS, and the maximum

number of routes is |P| |Sq | . We can prune the number of routes

using the branch-and-bound algorithm. The size of the routes is

proportional to |Sq |. Therefore, the space complexity of BSSR is

O ( |E| + |V| + |P| + γ |Sq |(α |P|) |Sq | ). □
If the number of routes in the priority queue is small, the

graph size becomes the main factor related to the memory usage.

Otherwise, the number of routes in the priority queue is the main

factor.

Theorem 3. (Correctness) BSSR guarantees the exact result.

proof: BSSR prunes routes based on the upper and lower

bounds. BSSR safely prunes routes dominated by or equivalent

to the obtained sequenced routes. As a result, BSSR does not

sacrifice the exactness of the search result. □

5.5 Running Example
We demonstrate BSSR with optimization techniques using Exam-

ple 1.1. Table 4 shows routes in priority queueQb and sequenced

routes in S. To compute category similarity and semantic score,

we use Equations (6) and (7), respectively.

First, we process NNinit, and S initially includes {⟨p2,p5,p8⟩,
⟨p2,p5,p7⟩}. 1st step: BSSR starts to find PoI vertices that seman-

tically match Asian restaurant from vq with the threshold of 15.

Then, it finds p1, p2, p6, p10, and p11. Both p2’s and p10’s category
similarities are 1, and their lengths are 6 and 8, respectively. Thus,

p2 comes the top inQb . 2nd step: BSSR searches PoI vertices that

semantically match Arts&Entertainment from p2, and finds p5.
Since ⟨p2,p12⟩ passes through p5 and l (⟨p2,p9⟩) is more than 15,

both routes are not inserted to Qb . 3rd step: as the top route is

⟨p2,p5⟩, BSSR searches PoI vertices that semantically match gift

shop from p5. BSSR does not find any routes due to the thresh-

old. 4th step: BSSR fetches ⟨p10⟩ from Qb and inserts two routes

⟨p10,p5⟩ and ⟨p10,p12⟩ toQb . 5th step: BSSR fetches ⟨p10,p12⟩ and
finds sequenced route ⟨p10,p12,p13⟩. Since ⟨p10,p12,p13⟩ domi-

nates ⟨p2,p5,p8⟩, ⟨p2,p5,p8⟩ is deleted from S. 6th step: The top

route ⟨p10,p5⟩ is deleted from Qb because its length score is not

smaller than the threshold of 13. 7th step: BSSR fetches ⟨p1⟩ and
inserts ⟨p1,p5⟩ and ⟨p1,p9⟩. 8th step: BSSR fetches ⟨p1,p9⟩ and
finds a sequenced route ⟨p1,p9,p8⟩. ⟨p1,p9,p8⟩ is inserted to S,

and ⟨p2,p5,p7⟩ is deleted from S. 9th step: ⟨p1,p5⟩ is deleted due

to the threshold. 10th step: BSSR fetches ⟨p6⟩ and finds a route

⟨p6,p9⟩. 11th step: BSSR finds a sequenced route ⟨p6,p9,p8⟩, and
the route dominates ⟨p1,p9,p8⟩. 12th step: The distance from p11
to the PoI vertices that match A&E is larger than the threshold.

Finally, BSSR returns the set of SkySRs S.

6 VARIATIONS AND EXTENSIONS
The SkySR query has a number of variations and extensions. We

discuss some of these in the following.

Directed graphs: The SkySR query can be easily applied to

directed graphs. We only need to use the Dijkstra algorithm

for directed graphs. Here, no modification of the main idea is

required.

PoI with multiple categories: To treat PoIs with multiple cat-

egories, we can change the definitions of sequenced routes and

category similarity. Specifically, we change condition (ii) in Defi-

nition 3.4 to state that at least one cpi [j] (1 ≤ j ≤ ki ) semantically

matches cS [i] for 1 ≤ i ≤ |S|, where cpi [j] is the j-th category

of pi and ki is the number of categories associated with pi . The
category similarity is either the highest or the average value

among the category similarities.
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Table 4: Example of BSSR algorithm

0 Qb :
S: ⟨p2, p5, p8⟩, ⟨p2, p5, p7⟩

1 Qb : ⟨p2⟩, ⟨p10⟩, ⟨p1⟩, ⟨p6⟩, ⟨p11⟩
S: ⟨p2, p5, p8⟩, ⟨p2, p5, p7⟩

2 Qb : ⟨p2, p5⟩, ⟨p10⟩, ⟨p1⟩, ⟨p6⟩, ⟨p11⟩
S: ⟨p2, p5, p8⟩, ⟨p2, p5, p7⟩

3 Qb : ⟨p10⟩, ⟨p1⟩, ⟨p6⟩, ⟨p11⟩
S: ⟨p2, p5, p8⟩, ⟨p2, p5, p7⟩

4 Qb : ⟨p10, p12⟩, ⟨p10, p5⟩, ⟨p1⟩, ⟨p6⟩, ⟨p11⟩
S: ⟨p2, p5, p8⟩, ⟨p2, p5, p7⟩

5 Qb : ⟨p10, p5⟩, ⟨p1⟩, ⟨p6⟩, ⟨p11⟩
S: ⟨p10, p12, p13⟩, ⟨p2, p5, p7⟩

6 Qb : ⟨p1⟩, ⟨p6⟩, ⟨p11⟩
S: ⟨p10, p12, p13⟩, ⟨p2, p5, p7⟩

7 Qb : ⟨p1, p9⟩, ⟨p1, p5⟩, ⟨p6⟩, ⟨p11⟩
S: ⟨p10, p12, p13⟩, ⟨p2, p5, p7⟩

8 Qb : ⟨p1, p5⟩, ⟨p6⟩, ⟨p11⟩
S: ⟨p10, p12, p13⟩, ⟨p1, p9, p8⟩

9 Qb : ⟨p6⟩, ⟨p11⟩
S: ⟨p10, p12, p13⟩, ⟨p1, p9, p8⟩

10 Qb : ⟨p6, p9⟩, ⟨p11⟩
S: ⟨p10, p12, p13⟩, ⟨p1, p9, p8⟩

11 Qb : ⟨p11⟩
S: ⟨p10, p12, p13⟩, ⟨p6, p9, p8⟩

12 Qb :
S: ⟨p10, p12, p13⟩, ⟨p6, p9, p8⟩

Complex category requirement:We can specifymore detailed

category requirements, such as conjunction, disjunction, and nega-
tion. For example, we can specify that a PoI category is “American

restaurant” or “Mexican restaurant” (disjunction), but not “Taco

Place” (negation). If PoI vertices are associated with more than

two categories, we can specify a conjunction such as “Cafe” and

“Bakery”. Note that the time complexity of our algorithm does

not change if we specify a detailed requirement because the de-

tailed requirements are equivalent to increasing the number of

categories.

Skyline trip planning query: The proposed algorithm can be

applied to the trip planning query without category order. For

searching routes without category order, the proposed algorithm

searches PoI vertices that semantically match a category in a

given set of categories. Then, if the algorithm finds PoI vertices,

it deletes the categories that are already included in the routes

to find next PoI vertices. Note that we need to modify some

definition and scoring functions for routes without category

order. By this procedure, we can find skyline routes efficiently.

SkySR with destination: Note that we can specify the destina-

tion. The simple way to calculate a SkySR with a destination is to

add the distance from the last visited PoI vertex to the destination

to the length score after finding the sequenced route. To improve

efficiency, we traverse PoI vertices from both the destination and

the start point.

7 EXPERIMENTAL STUDY
We perform experiments to evaluate the effectiveness of the

proposed algorithm. All algorithms are implemented in C++ and

run on an Intel(R) Xeon(R) CPU E5620 @ 2.40GHz with 32 GB of

RAM.

7.1 Experimental settings
Algorithm. We compare the proposed BSSR and algorithms

that iteratively find OSRs using the Dijkstra-based solution and

the PNE approach (denoted Dij and PNE, respectively), as de-
scribed in Section 3. We evaluate performance with respect to

(i) response time, and (ii) maximum resident set size (RSS) to

represent memory usage.

Table 5: Summery of dataset

Dataset Area |V | |P | |E |
Tokyo Tokyo 401,893 174,421 499,397

NYC New York city 1,150,744 451,051 1,722,350

Cal California 21,048 87,365 108,863

Dataset. We conduct experiments using various maps (Tokyo,

New York city, and California). Table 5 summarizes each dataset.

For the Tokyo and NYC datasets, the road network is extracted

from OpenStreetMap
3
and the PoI information is extracted from

Foursquare. Each PoI is embedded on the closest edge in the

same way as [10] and is associated with the Foursquare category

trees. Note that the number of category trees in Foursquare is 10.

For the Cal dataset, the road network and PoI information are

available online
4
. The number of categories in the Cal dataset

is 63
5
. For each dataset, we use distances based on longitude

and latitude as edge weights and treat the graphs as undirected

graphs. The graphs are implemented using adjacency lists.

For each dataset, we generate 100 searches, in which the size

of a sequence is |Sq |. The start points are selected randomly from

vertices in the maps. The categories of sequences are selected

randomly from the leaf nodes in the category trees with the con-

straint that they have different category trees. Since the number

of PoI vertices associated with each category is significantly bi-

ased, we select only categories that have a large number of PoI

vertices.

Here, category similarity is calculated based on the Wu and
Palmer similarity measure [19] and the semantic score is calcu-

lated as the product of the category similarities of the sequence

members. Specifically, we calculate the category similarity and

semantic score using the following equations:

sim(c, c ′) = maxci ∈a (c ′)
2·d (cm )

d (c )+d (c ′) , (6)

s (R) = 1 − Π
min( |R |, |Sq |)
i=1 sim(cpR [i], cSq [i]), (7)

where a(c ), d (c ), and cm denote the set of ancestor categories of

c (including c), the depth of c , and the deepest common ancestor

category of c and ci , respectively.

7.2 Overview of results
First, we present an overview of the performance of all algorithms.

Figure 3 shows the response time with various category sequence

sizes, and Table 6 shows the RSS for a category sequence of size

four. Here, “BSSR w/o Opt” denotes BSSR without optimization

techniques. In Figure 3, there are missing bars for the case of size

of sequence 5, because the executions were not finished after a

month.

BSSR achieves the least response time with all datasets and

reduces the search space by exploiting the branch-and-bound

algorithm and the proposed optimization techniques. By compar-

ing BSSR and BSSR w/o Opt, we confirm that the optimization

techniques increase efficiency. When the size of the category

sequence is small, PNE finds SkySRs efficiently because it can

search for sequenced routes efficiently if the category sequence

size is small. On the other hand, as category sequence size in-

creases, the response time of PNE and Dij increases significantly.

3
https://www.openstreetmap.org

4
http://www.cs.utah.edu/∼lifeifei/SpatialDataset.htm

5
Since the PoIs in the Cal dataset have no category tree information, we generate a

category of height three where a non-leaf node has three child nodes.
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Figure 3: Results obtained for the datasets with various |Sq |

Table 6: RSS Comparison

BSSR BSSR w/o Opt PNE Dij
Tokyo 239.6 MB 497.5 MB 239.8 MB 4.8 GB

NYC 658.0 MB 659.4 MB 658.7 MB 9.7 GB

Cal 36.7 MB 53.7 MB 36.6 MB 70.3 MB

Table 7: Effect of initial search for various |Sq |

Dataset Approach Metrics 2 3 4 5

Tokyo

Proposed

Weight sum 0.009 0.013 0.017 0.021

Response time [msec] 3.5 5.1 6.9 8.6

# of routes 1.49 1.33 1.36 1.49

Ratio 0.74 0.79 0.82 0.86

Existing Weight sum 0.32 (regardless |Sq |)

NYC

Proposed

Weight sum 0.044 0.066 0.073 0.078

Response time [msec] 10.7 16.5 19.5 24.1

# of routes 1.76 1.79 1.81 1.82

Ratio 0.67 0.81 0.85 0.83

Existing Weight sum 1.31 (regardless |Sq |)

Cal

Proposed

Weight sum 0.79 1.28 1.57 1.85

Response time [msec] 1.4 2.3 2.9 3.9

# of routes 2.27 2.37 2.28 2.25

Ratio 0.70 0.79 0.85 0.86

Existing Weight sum 12.14 (regardless |Sq |)

If the category sequence size is large, BSSR achieves better per-

formance than PNE and Dij even if we do not use optimization

techniques. By comparing Dij to PNE, it can be seen that their

performance depends on the datasets and the category sequence

size. Although the PNE approach was proposed to be a more

sophisticated algorithm than the Dijkstra-based solution [16],

PNE requires more time than Dij for the NYC and Cal datasets,

which implies that it is not effectively robust to datasets. In terms

of RSS, BSSR and PNE achieve nearly the same performance.

These two algorithms do not store many routes in the priority

queue; therefore, RSS is highly dependent on the graph size. On

the other hand, as Dij stores many routes in the priority queue,

RSS is significantly larger than those of the other algorithms.

Although we do not show the routes returned by each algorithm

due to space limitations, all algorithms output the same routes.

As a result, BSSR achieves the fastest response time with small

memory usage without sacrificing the exactness of the result.

7.3 Optimization Techniques
The optimization techniques improve the efficiency of BSSR.
Here, we evaluate each optimization technique.

Initial Search: We show the search spaces with and without

an initial search for the first modified Dijkstra algorithm to eval-

uate the effect of the initial search. Moreover, we evaluate NNinit
in terms of response time. Table 7 shows the weight sum, which

Table 8: Effect of priority queue for various |Sq |

Dataset Approach 2 3 4 5

Tokyo

Proposed 3750 17600 112000 397000

Distance-based 3890 23500 189000 1760000

NYC

Proposed 13800 108000 172000 637000

Distance-based 14800 165000 444000 1520000

Cal

Proposed 4900 24800 84900 383000

Distance-based 5300 34900 168000 899000

represents the search space, the response time of NNinit, and the
number of sequenced routes found by NNinit for various cate-
gory sequence sizes. In addition, we show the ratio of the length

score of the sequenced route with the largest semantic score

among the sequenced routes found in the initial search to the

length score of the sequenced route whose semantic score is 0 in

the initial search. The weight sum with the initial search is signif-

icantly smaller than that without the initial search. We can avoid

traversing the whole graph using the initial search; thus, this can

significantly reduce the search space of BSSR. Moreover, since

the response time ofNNinit is significantly less than that of BSSR
(Figure 3), we confirm that NNinit can reduce the search space

efficiently. Note that the number of sequenced routes found by

the initial search is not large. On the other hand, the length score

of the sequenced route with the largest semantic score is much

smaller than that of the sequenced route whose semantic score

is 0. As a result, NNinit reduces the search space significantly

without increasing total response time.

Tightening Upper Bound: The priority queue aims at effi-

ciently tightening the upper bound to reduce the search space.

Here, we show the total number of vertices visited by BSSR,
which is highly related to the response time. Table 8 shows the to-

tal number of vertices visited by the proposed priority queue and

distance-based priority queue for various category sequence sizes.

The number of vertices visited by the proposed priority queue is

less than that of the distance-based priority queue. In particular,

as the size of the category sequences increases, the performance

gap increases because, as the category sequence size increases,

the distance-based priority queue cannot find sequenced routes

efficiently. Thus, the upper bound is rarely updated. On the other

hand, the proposed priority queue can update the upper bound

efficiently because the route with the largest size is dequeued

preferentially. Thus, the proposed priority queue is more suitable

than the distance-based approach for finding SkySRs.

Tightening Lower Bound: To tighten the lower bound, we

propose two types of possible minimum distances, i.e., semantic-

match and perfect-match minimum distances. If the minimum

possible distance is large, we can prune routes even if the routes
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Figure 5: Effect of on-the-fly caching for various |Sq |
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include a small number of PoI vertices. Figure 4 shows the ratios

of the possible minimum distances to the sum weights of the

initial search when we set the category sequence size to five. The

semantic-match and perfect-match minimum distances in the

Tokyo dataset effectively reduce the search space by tightening

the lower bound. However, different from the Tokyo dataset, the

possible minimum distances in the NYC and Cal datasets are

small. Since the PoI vertices in the two datasets are relatively

concentrated in a small area, the possible minimum distances

become small. The effect of the possible minimum distances

highly depends on the skews of locations of the PoI vertices.

On-the-fly Caching: On-the-fly caching can reuse the re-

sults of former modified Dijkstra algorithm executions; thus,

the number of executions of the Dijkstra algorithm decreases.

Figure 5 shows the numbers of executions of modified Dijkstra

algorithms by BSSR with all optimization techniques and those

except for on-the-fly caching. The number of executions of the

Dijkstra algorithms decreases using on-the-fly caching. In partic-

ular, when the category sequence size increases, the performance

gap increases because, as the category sequence size increases,

we have more opportunities to reuse former results. Thus, we

confirm that on-the-fly caching is effective to reduce the number

of executions of the Dijkstra algorithms.

7.4 Number of skyline sequenced routes
Figure 6 shows the number of SkySRs obtained with each dataset

for various |Sq |. As shown, the Cal dataset returns the largest
number of SkySRs. The response time and RSS obtained with

the Tokyo and NYC datasets are much greater than the those of

the Cal dataset, which implies that the number of SkySRs does

not affect response time and RSS significantly. Moreover, if we

use a complete real-world dataset, we may not require a ranking

function because the number of SkySRs would be small.

Table 9: Example SkySRs in Tokyo

Distance Sequenced route

7451 meters Beer Garden→ Sushi Restaurant→ Sake Bar

1295 meters Bar→ Sushi Restaurant→ Sake Bar

0

13 2

4

Sushi
restaurant

Bar

Sake 
Bar

Sake 
Bar

Beer
Garden

Sushi
restaurant

Second route
First route

Start 
point

Destination

Figure 7: Visualization of routes in Tokyo: black circles
(with 0 and 4) denote a start point and a destination, re-
spectively. Blue and red circles denote sequences of PoIs
for the first and second routes in Table 9, respectively, and
their numbers indicate the order of PoIs to be visited.

7.5 Usecase
We show an example of SkySRs in Tokyo. We assume that we

plan to go to places for dinner and drinks. We want to visit

a “Beer garden”, a “Sushi restaurant”, and a “Sake bar” from

our current location and finally go to our hotel. Table 9 and

Figure 7 show two representative SkySRs from the four identified

SkySRs. Note that the other two routes are similar to either of

the representative routes. In the Foursquare category trees, “Bar”

includes “Beer Garden” and “Sake bar”, and “Japanese restaurant”

includes “Sushi restaurant”. Thus, we find routes using “Bar”

and/or “Japanese restaurant”. The second route is much shorter

than the first route that perfectly matches the user requirement,

and the difference between them is only whether they pass a

“Bar” or “Beer garden”. The best route depends on the users and

situations (e.g., weather); thus, we confirm that SkySRs are useful

to help users make decisions.

8 USER STUDY
We developed a prototype SkySR query service

6
using Open-

StreetMap and the Santander Open Data platform from San-

tander, Spain
7
. Figure 8 shows a screenshot of the prototype

system, which outputs one of the SkySR route. We performed

a test in July, 2017. To gather users for this test, the Santander

municipality arranged meetings with different groups of people

6
https://ss.festival.ckp.jp/OuRouteSuggestion/dispSearchRoute/index. The default

language is Spanish.

7
http://datos.santander.es
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Figure 8: Screenshot of the prototype system
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Figure 9: Ratios of answers for each question

to present the service: municipal staff (computing, convention

and tourism municipal services), students from vocational train-

ing departments who are developing webpages and apps, and

citizens. We also provided a leaflet that shows the concept of the

SkySR query and how to use the service. In this test, users freely

used the service and answered a questionnaire (25 respondents).

The questionnaire included the following three questions.

Q1 What do you think about this service?

Answer. 1. I love it, 2. I like it, 3. I do not like it.

Q2 Would you recommend it to anyone?

Answer. 1. Yes, 2. Maybe, 3. No.

Q3 Do you think that it is a good idea for the city: citizens,

tourists, commercial sectors?

Answer. 1. Yes, 2. Maybe, 3. No.

We summarize the ratios of answers for each question in Figure

9. As shown, more than 80% of the users liked the service. In

addition, the questionnaire shows that the service is valuable for

the city. From the user experiment, we confirm that the SkySR

query is useful for users and cities.

9 CONCLUSION
In this paper, we have first introduced a semantic hierarchy for

trip planning. We then proposed the skyline sequenced route

(SkySR) query, which finds all preferred routes from a start point

according to a user’s PoI requirements. In addition, we have

proposed an efficient algorithm for the SkySR query, i.e., BSSR,
which simultaneously searches for all SkySRs by a single traver-

sal of a given graph. To optimize the performance of BSSR, we
proposed four optimization techniques. We evaluated the pro-

posed approach using real-world datasets and demonstrated that

it comprehensively outperforms naive approaches in terms of

response time without increasing memory usage or sacrificing

the exactness of the result. Moreover, we developed a SkySR

query service using open data, and conducted a user test, which

confirmed that SkySR queries are useful for both users and cities.

In future work, we would like to extend the proposed approach

in several directions. First, because we assume a forest structure

for the category classification in this paper, a more complex

classification may provide better granularity. Second, because we

have not used any preprocessing techniques such as indexing, we

plan to propose a suitable preprocessing method for the SkySR

query. Finally, although the SkySR query proposed in this paper

considers two scores (length and category similarity), it could be

extended to consider many attributes of a PoI (e.g., text, keywords,

and ratings) and the cost/quality of a graph (e.g., route popularity,

tolls, and the number of traffic lights).
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ABSTRACT
Mutual Information (MI) is an established measure for the de-

pendence of two variables and is often used as a generalization

of correlation measures. Existing methods to estimate MI focus

on static data. However, dynamic data is ubiquitous as well, and

MI estimates on it are useful for stream mining and advanced

monitoring tasks. In dynamic data, small changes (e.g., insertion

or deletion of a value) may often invalidate the previous estimate.

In this article, we study how to efficiently adjust an existing MI

estimate when such a change occurs. As a first step, we focus

on the well-known nearest-neighbor based estimators for static

data and derive a tight lower bound for their computational com-

plexity, which is unknown so far. We then propose two dynamic

data structures that can update existing estimates asymptotically

faster than any approach that computes the estimates indepen-

dently, i.e., from scratch. Next, we infer a lower bound for the

computational complexity of such updates, irrespective of the

data structure and the algorithm, and present an algorithm that

is only a logarithmic factor slower than this bound. In absolute

numbers, these solutions offer fast and accurate estimates of MI

on dynamic data as well.

1 INTRODUCTION
Motivation. Finding and quantifying dependencies between

variables is an essential task in data analysis. Conventional meth-

ods to detect (in)dependent attributes, like correlation coefficients

and covariance matrices, are limited in the types of dependencies

they detect. Mutual Information (MI) in turn is a notion from

Information Theory that captures both linear and arbitrary non-

linear dependencies. However, MI is defined on the probability

density of the data. This makes exact computation impossible on

samples. Nevertheless, existing MI estimators yield good results

even for small samples [13]. In consequence, a wide range of

applications, such as Feature Selection [22], Text Analysis [7]

and Computer Vision [23], uses MI.

A popular choice are estimators based on nearest-neighbor

distances [9, 16, 17]. This is because such estimators essentially

are non-parametric and yield very good results [13, 14, 21, 29].

Nearest-neighbor based estimation of MI is often perceived as

equivalent to the concrete estimation formula by Kraskov et

al. (KSG)[17]. However, the KSG is just one estimation formula for

MI using the nearest-neighbor entropy estimator by Kozachenko

and Leonenko [16]. There exists at least one other MI estimator

using a different formula, while relying on the same entropy

estimator (3KL)[9]. In the following, the term estimator names

∗
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concrete formulas that estimate the MI value (e.g., KSG, 3KL), and

nearest-neighbor based estimation is the group of these estimators.

So far, algorithms to compute nearest-neighbor based MI esti-

mates and thus their practical applications focus on static data.

However, data streams are ubiquitous as well and also require

suitable analysis methods. The problem studied in this article

is nearest-neighbor based estimation of MI on dynamic data. In

this setting, an elementary task called update is the incremental

maintenance of an estimate when adding or deleting a point.

With dynamic data, scalability with the number of data points

is crucial. A good, data-independentmeasure is the computational

complexity of the respective algorithms. In order to evaluate the

efficiency of a new solution, it also is important to know the

complexity of the problem. That is, a lower bound for any algo-

rithm that computes such estimates, independent of the concrete

approach. So far, no lower bound for nearest-neighbor based MI

estimation is known, be it for updating an existing estimate, be

it for computing the estimate on static data.

Challenges. Designing the estimators envisioned with con-

trolled complexity is challenging. Two reasons for this are as

follows: First, while nearest-neighbor based estimation of en-

tropy depends on distances to the nearest neighbor, this does not

imply that it has the same computational complexity as nearest-

neighbor search. Put differently, it may be possible to obtain the

same results using different methodologies. Consequently, one

must prove the complexity based only on the result and not hinge

on the complexity of certain tasks that seem mandatory in the

context at first sight, such as nearest-neighbor search.

Second, to design a dynamic data structure that answers cer-

tain queries faster than any static algorithm, it is necessary to

identify expensive computations whose results are relatively easy

to maintain in the presence of updates. This means that the time

required to incrementally maintain the results after a change

must be limited in all cases. But this is not obvious here. At the

same time, availability of these results must significantly speed

up the query.

Our Contributions. Our work focuses on the time required to

maintain an estimate of MI on dynamic data. We concentrate on

the computational efficiency of nearest-neighbor based estima-

tors on static data and the implications for dynamic estimation.

We present solutions for dynamic data that maintain an estimate

with the same estimation quality as static estimators, but with

less time required. Specifically, our contributions are as follows:

Computational complexity of nearest-neighbor based estimators.

In Section 4 we provide a complexity analysis of nearest-neighbor

based MI estimators. Using a proof by reduction, we establish

a lower bound in the algebraic computation tree model for any

algorithm estimatingMI using 3KL or KSG. To our knowledge, we

are the first to prove any lower bound for the time complexity of

such estimators. The lower bounds we prove are tight. This means

that there already exist algorithms that have this asymptotically
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optimal running time. Additionally, we use this result to infer

lower bounds for the maintenance of KSG and 3KL estimates on

dynamic data.

Dynamic data structures. In this article, we present two dy-

namic data structures. The first one is DEMI, which estimates

nearest-neighbor based MI on a dynamic data set, see Section 5.

This data structure holds a set of data points and some interme-

diate computation results we use for the estimation. The data

structure allows insertion and deletion of data points and query-

ing the estimate using all data points stored. Both the 3KL and

the KSG estimator can use this data structure. We prove that

updating an estimate using DEMI is asymptotically faster than

the lower bound for static estimates, i.e., computing the estimate

from scratch. To our knowledge, we are first to present a way

of maintaining a KSG estimate on dynamic data that requires

asymptotically less time than static estimation and preserves the

estimate without any approximation.

Near-optimal computation time. The second data structure we

present, ADEMI, integrates existing state-of-the-art data struc-

tures and algorithms into DEMI to reduce computation time, see

Section 6. While the structure does not offer a speedup when

maintaining the KSG estimate, we can maintain the 3KL estimate

in polylogarithmic time. In particular, we are only a logarithmic

factor slower than the lower bound shown in Section 4.

Systematic experimental evaluation. Finally, we evaluate our

approaches experimentally, using a broad variety of dependency

types and noise levels, in Section 7. We show that both KSG

and 3KL converge to the true MI values with a good rate of con-

vergence. This is a stark contrast to another recently published

estimator for MI on sliding windows [3]. Additionally, we show

that our data structures perform very well when maintaining MI

estimates on large samples.

2 FUNDAMENTALS
We begin by revisiting the foundations of MI and its estimation.

Mutual Information. Introduced by Shannon [26], the notion of

entropy is a measure for the expected information from observing

the value of a random variable X , noted as H (X ). The expected
information for observed values of two random variablesX andY
is the natural extension joint entropy H (X ,Y ). This gives way to

the notion of Mutual Information

I (X ;Y ) = H (X ) + H (Y ) − H (X ,Y ), (1)

which describes the information shared between both variables.

Using the definition of entropy for continuous random variables

in Equation 1 yields the differential definition of MI

I (X ;Y ) =

∫
Y

∫
X
p(x ,y) log

(
p(x ,y)

p(x)p(y)

)
dx dy (2)

where p(x), p(y) and p(x ,y) are the marginal and joint probability

density functions of X and Y , respectively [8]. Using the natural

logarithm, MI is then measured in the natural unit of information

(nat).

Nearest-Neighbor based Estimation. Kozachenko and Leonen-

ko [16] presented a nearest-neighbor based estimator for (joint)

entropies for a given sample. They used the distance to the k-th
nearest neighbor as a means to approximate the density of the

distribution for that region. They also have proven that this

method yields a consistent estimator for entropy independent of

the choice of k . ‘Consistent’ means that, with increasing sample
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Figure 1: Illustration of the notation used for the 3KL.

size, the estimate converges towards the true entropy value. Their

method is as follows:

Let Q = {q1, . . . ,qn } ⊆ R
d
be a set of points in a d-dimen-

sional euclidean space, and let ϵkQ (qi ) be the distance between

qi and its k-th nearest neighbor in Q using the L∞-norm, also

known as maximum distance. Using the notation by Kraskov et

al. [17], the entropy estimator by Kozachenko and Leonenko [16]

is

Ĥ (Q) = ψ (n) −ψ (k) + log(2d ) +
d

n

n∑
i=1

log(ϵkQ (qi )), (3)

whereψ is the digamma function. That is,ψ (x) =
∑x−1
m=1(

1

m ) −C ,
for x ≥ 1 with C ≈ 0.577 being the Euler-Mascheroni-Constant.

We now say how this entropy estimator is used to estimate

MI. Let P = {p1 = (x1,y1), . . . ,pn = (xn ,yn )} ⊆ R
2
be a sample

of a random variable with two attributes. Note that we use P for

the sample whose MI value we are interested in. This may be

the original, full data set as well as the set of the most recent

points of a data stream or any other subsample. Additionally, let

X = {x1, . . . ,xn } and Y = {y1, . . . ,yn } be the sets of all values

of the respective attribute in the sample. We use ϵkP (pi ), ϵ
k
X (xi )

and ϵkY (yi ) to refer to the distance of pi ,xi and yi to its k-th near-

est neighbor in P ,X and Y , respectively. Figure 1 illustrates an
exemplary set P , with k = 1 and pi ,xi and yi marked as squares.

Inserting Equation 3 into Equation 1 yields the MI estimator

Î3KL(P) = ψ (n) −ψ (k) +
1

n

n∑
i=1

log

(
ϵkX (xi ) · ϵ

k
Y (yi )

(ϵkP (pi ))
2

)
. (4)

Because this estimator estimates each of the three entropies in

Equation 1 separately with the estimator by Kozachenko and

Leonenko, we call the estimator 3KL. This estimator has also been

used by Evans [9] for MI estimation on static data. Additionally,

because each term in Equation 1 is estimated using a consistent

estimator, the 3KL also is a consistent estimator.

Varying numbers of nearest neighbors. A different approach to

use Equation 3 for MI estimation was proposed by Kraskov et

al. [17]. While the 3KL uses the same k when estimating Ĥ (X ),
Ĥ (Y ) and Ĥ (P) to obtain a compact formula, Kraskov et al. adjust

k for every point such that the logarithmic term is 0. The idea

is to make the distances ϵkP (pi ), ϵ
k
X (xi ) and ϵ

k
Y (yi ) of a point to

its nearest neighbors in X ,Y and P identical. To achieve this,

the parameter k for ϵkX (xi ) and ϵ
k
Y (yi ) has to be set accordingly

and may be different for each point. Specifically, each nearest

neighbor pj of pi in P should result in x j being a nearest neighbor
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Figure 2: Illustration of the notation used for the KSG.

of xi in X and yj being a nearest neighbor of yi in Y . To this

end, the k-th nearest neighbor distance ϵkP (pi ) is determined and

afterwards kx and ky for ϵkxX (xi ) and ϵ
ky
Y (yi ) is set accordingly.

Figure 2 features an illustration of the notation that follows, using

the same exemplary set P and k as Figure 1. As before, the set

kNN of k nearest neighbors of a point pi ∈ P using the L∞-norm

is determined first. Let δkx (pi ) = maxpj ∈KNN |xi − x j | be the

greatest distance between xi and any other x-value among its k

nearest neighbors. Then themarginal count Ckx (pi ) is the number

of elements in X as close to xi as this distance, i.e.,

Ckx (pi ) = |{x ∈ X \ {xi } : |xi − x | ≤ δ
k
x (pi )}|. (5)

Another marginal count Cky (pi ) is defined analogously using yi

and δky (pi ). When these marginal counts are used as k per point

in the estimator Ĥ (X ) and Ĥ (Y ), the distances ϵX (xi ), ϵY (yi ) and
ϵP (pi ) in Equation 4 (mostly) cancel out. However, one has to

adjust the formula for using a different k , i.e., the marginal counts,

for each point. The resulting estimator, called KSG due to its

inventors Kraskov, Stögbauer and Grassberger, is

�IKSG (P) = ψ (n) +ψ (k) − 1

k
−
1

n

n∑
i=1

ψ (Ckx (pi )) +ψ (C
k
y (pi )). (6)

While there exist many other approaches to estimateMI, we fo-

cus on nearest-neighbor based estimation due to its performance

in comparative studies [13, 14, 21, 29]. Because these studies con-

sider only the KSG, we use the same distributions in Section 7 to

assess the estimation quality of the 3KL.

Another point is that it is generally recommended [13, 14, 17]

to use a small k , that is k < 10. The choice of k has only been

studied extensively for the KSG but not for the 3KL. However,

because Equation 3 is consistent for any k [16], the 3KL is the

sum of three consistent estimators and thus consistent for any k
as well. Consequently, we assume k < 10 in this work, i.e., k is a

constant for asymptotic considerations.

3 RELATEDWORK
Data Streams. Data streams, a constantly growing form of

dynamic data, are ubiquitous. Because data streams grow over

time, and memory and storage is limited, it is impossible to store

all data points. This means that information is lost over time.

Nevertheless, there exist space-efficient estimators for entropy

of discrete distributions on streams. With Equation 1, entropy

estimators can also be used to estimate MI, but with accumulating

error. The estimator of Chakrabarti et al. [5] provides multiplica-

tive approximations of entropy on insert-only streams. In con-

trast, the estimator by Harvey et al. [10] offers multiplicative and

additive approximations of entropy on streams with insertions

and deletions, but requires knowledge about the maximum length

of the stream. However, both estimators are restricted to discrete

distributions. Estimating MI on discrete distributions is easier,

because their relative count of points is a good estimator for the

probability. Estimating the density of continuous distributions in

turn is not trivial.

The estimation of MI of continuous distributions on streams

has received less attention. The MISE framework [12] offers esti-

mates of MI between continuous variables for any time interval

on data streams. While both MISE and our approach offer nearest-

neighbor based MI estimation, the difference is as follows: Results

with MISE are approximations of the KSG estimate for consecu-

tive subsets of the data. We in turn provide exactly the estimates

of KSG and 3KL on a dynamic data set. Maintaining an accu-

rate KSG estimate for a dynamic set of data points, e.g., the last

1000 data points, would incur prohibitively high (and growing)

resource consumption with MISE. This is because it cannot ex-

plicitly delete points. In consequence, the target application and

the optimizations are too different to allow for a fair comparison.

SlidingWindows. A common approach to process data streams

are sliding windows. Maintaining only a fixed number of points

ensures a fixed problem size that allows for bounded resource

consumption. By construction, this technique rules out the usage

of any information outside the window, but allows for accurate

computations on data within it. There already are very good

general approaches for sliding-window aggregation [27]. How-

ever, no competitive MI estimator is known so far that can be

aggregated and thus used with this framework. Most MI estima-

tors have stronger relations to concrete items than to collective

values, e.g., distances to the nearest neighbor instead of distances

to the mean. In consequence, previous analytics tasks that use

MI estimates over a sliding window [15, 24] had to recompute

the estimate from scratch for each window.

There is little work regarding algorithmic optimization of the

computation time for such tasks. A very recent work by Boidol

and Hapfelmeier [3] has introduced an estimator that approxi-

mates the 3KL inside a sliding window. In contrast, our approach

allows for arbitrary insertions and deletions, and we provide the

exact results of the 3KL and KSG. To show the difference between

their approximation and accurate 3KL estimates, we include their

method in our experiments in Section 7.

Computational Complexity. There has been little research re-

garding the computational complexity of the KSG and 3KL. Sev-

eral proposals to compute the KSG appear in the original KSG ar-

ticle [17] with the claimed time complexity O(n) for their fastest,
so-called “box-assisted” algorithm on smooth distributions. Ve-

jmelka et al. [28] compare their own approach with the box-

assisted algorithm and cite [25] for different conditions for a

linear runtime of the box-assisted algorithm. In the end, the

best universal time complexity of their presented algorithms is

Θ(n logn). The same complexity is given for the algorithm com-

puting the 3KL by Evans [9]. In the following section we prove

that this limit is not a coincidence, i.e., we prove that no algo-

rithm computing these estimators can have a time complexity

lower than O(n logn).

4 LOWER BOUNDS
In this section we present our first contribution, the lower bounds

for computing and maintaining estimates using the KSG and 3KL.
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All existing approaches to compute the 3KL and KSG follow

the original description in the sense that they first compute the

nearest neighbors of all points. In the case of the KSG, the mar-

ginal counts Ckx and Cky are computed afterwards. However, it is

not known if this is the only approach to compute Î3KL(P) and�IKSG (P), or if it is computationally optimal. For instance, there

could be a different formula for either of these estimators that

does not require explicit computation of the nearest neighbors.

Consequently, the complexity of computing the 3KL and KSG can

only be based on the result and not on intermediate steps such

as determining the nearest neighbors. The problems whose com-

plexities we want to study in general, i.e., without confinement

to specific algorithms, are the following ones.

Problem 1 (3KL-Estimation). For a set P ⊆ R2 of points, deter-

mine Î3KL(P).

Problem 2 (KSG-Estimation). For a set P ⊆ R2 of points, deter-

mine �IKSG (P).
In the following, we show the complexity of Problem 1. By

reducing a problem with known complexity to 3KL-Estimation,

we prove that it has a lower bound of Ω(n logn) in the algebraic

computation tree model [1]. For brevity, all formal proofs in

this article are available in Appendix A. We use the algebraic

computation tree model because it allows us to prove bounds

without assuming any statistical properties of the data. This is

important because we want general-purpose estimation of MI. If

knowledge regarding the data or its distribution was known, it

could be used to model the density function in Equation 2.

Theorem 4.1. The problem 3KL-Estimation has time complex-

ity Ω(n logn).

Proof. The formal proof is available in Appendix A.1. �

This lower bound matches the running time of the algorithm

presented by Evans [9] to solve 3KL-Estimation. Consequently,

this algorithms is already asymptotically optimal, and the lower

bound is tight.

Corollary 4.2. The computational complexity of 3KL-Estima-

tion is Θ(n logn).

We use the same approach to prove a lower bound for

KSG-Estimation. With the algorithms presented by Vejmelka et

al. [28] this lower bound is tight as well.

Theorem 4.3. The problem KSG-Estimation has a time com-

plexity in Ω(n logn).

Proof. The formal proof is available in Appendix A.2. �

Corollary 4.4. The computational complexity of KSG-Estima-

tion is Θ(n logn).

As a next step, we consider dynamic data. The distinctive

feature of dynamic data is that the data changes over time. For

a set P of points, all changes can be modeled using insertion of

new points and deletion of existing points. For instance, moving

a point from (x ,y) to (x ′,y′) can be modeled with one deletion of

(x ,y) and one insertion of (x ′,y′). To maintain an estimate of MI

with the 3KL or KSG, we need to adjust the estimate according

to such insertions or deletions. We see this as a problem for a

dynamic data structure and thus allow storage of some auxiliary

information about P , noted as state SP of a dynamic data structure.

The formal problem is then:

Problem 3 (3KL-Update). Let P ⊆ R2 be a set of points, SP
the state for P and p ∈ R2 a point. Determine Î3KL(P ∪ {p}) and

SP∪{p } if p is inserted and Î3KL(P \ {p}) and SP\{p } if p is deleted

using only SP and p.

Problem 4 (KSG-Update). Let P ⊆ R2 be a set of points, SP
the state for P and p ∈ R2 a point. Determine �IKSG (P ∪ {p}) and
SP∪{p } if p is inserted and �IKSG (P \ {p}) and SP\{p } if p is deleted

using only SP and p.

Because these problems can be used to solve 3KL-Estimation

and KSG-Estimation, respectively, we can use the previous re-

sults to infer lower bounds for their time complexities. If we

start with an empty set P and incrementally insert n points, the

total time required cannot generally be asymptotically faster

than Ω(n logn) by Theorem 4.1 and Theorem 4.3. Because this

includesn insertions, the time complexity of individual insertions

is in Ω(logn).

Corollary 4.5. The problem 3KL-Update has a time complex-

ity in Ω(logn).

Corollary 4.6. The problem KSG-Update has a time complex-

ity in Ω(logn).

In this section we have established formal problem descrip-

tions for the tasks of estimating and maintaining MI estimates

using the 3KL and KSG. Furthermore, we have proven lower

bounds for the time required to solve these problems. These

bounds are tight for computing estimates on static data. This

means that no asymptotic speed-up is achievable. In contrast,

we are not aware of any data structures or algorithms that solve

the problems of maintaining 3KL or KSG estimates when points

are inserted or deleted. In the following sections, we present two

data structures for these tasks, evaluate their time complexity

and compare them to the lower bounds presented in this section.

5 ESTIMATING MUTUAL INFORMATION
ON DYNAMIC DATA

Naturally, the simplest solution to KSG-Update and 3KL-Update

is storing exactly P in SP and computing Î3KL(·) and �IKSG (·),
respectively, with every change. The result from the previous

section is that any such approach would require Ω(n logn) time

for 3KL-Update and KSG-Update. In the following we show that

this is not optimal and present a more efficient solution.

We propose the data structure DEMI (Dynamic Estimation

of Mutual Information) that focuses on updating an estimate

of the 3KL or KSG for a single insertion or deletion. First, we

present how this data structure works with 3KL estimates. In

Section 5.2 we describe the differences when maintaining a KSG

estimate. In more detail, we describe the changes to the 3KL

estimate that can occur by inserting or deleting a point. Then we

describe which information our data structure stores and how

it determines the changes in the 3KL estimate efficiently. Lastly,

we evaluate the space complexity of our data structure as well as

the time complexity of adding or deleting a point.

5.1 Updating 3KL Estimates
Let P = {p1 = (x1,y1), . . . ,pn = (xn ,yn )} ⊆ R

2
be the set

of points in our sample and let X = {x1, . . . ,xn } and Y =
{y1, . . . ,yn } be the set of values per attribute. When we in-

sert a point pn+1 = (xn+1,yn+1) ∈ R
2
, let P ′ = P ∪ {pn+1},

X ′ = X ∪ {xn+1} and Y ′ = Y ∪ {yn+1} be the sets including
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Data Structure 1: DEMI

struct {
real x ,y
real ϵkP , ϵ

k
X , ϵ

k
Y

} DemiPoint;

struct {
DemiPoint[ ] PD
BST<DemiPoint*> Tx ,Ty
real base, sum

} state;

pn+1,xn+1 and yn+1, respectively. Considering Equation 4, the

change from Î3KL(P) to Î3KL(P
′) consists of three partial changes:

(1) ψ (n) increases toψ (n + 1) = ψ (n) + 1

n ,

(2) the arithmetic mean includes n + 1 logarithms instead of

n,
(3) and the nearest-neighbor distances ϵkP (pi ), ϵ

k
X (xi ) and

ϵkY (yi ) may change for any i ∈ {1, . . . ,n}.

While Change (1) is trivial, Change (2) requires the computa-

tion of ϵkP ′(pn+1), ϵ
k
X ′(xn+1) and ϵ

k
Y ′(yn+1). However, Change (3)

could require the re-evaluation of all nearest-neighbor distances.

Clearly, these changes apply analogously if p1 is removed from

P instead of inserting pn+1. Following these observations, we

propose a dynamic data structure that determines these changes

efficiently and evaluate its computation complexity.

Overview. Our data structure, DEMI, is given in Data Struc-

ture 1. For each point pi ∈ P of our sample, we store its at-

tributes xi ,yi and k-th nearest-neighbor distances ϵkP (pi ), ϵ
k
X (xi )

and ϵkY (yi ) as a DemiPoint. In addition, we store references to

all DemiPoints, ordered by the x-component and y-component

of the point, in binary search trees (BST) Tx and Ty , respec-
tively. Using self-balancing BST like red-black-trees, we can in-

sert, delete and search items in logarithmic time. Additionally,

we also maintain the values base = ψ (|P |) − ψ (k) and sum =∑n
i=1 log

(
ϵkX (xi )·ϵ

k
Y (yi )

(ϵkP (pi ))
2

)
. The collection of all stored data is the

state SP of our data structure for the sample P . Because we store
a constant amount of information per point, the space complexity

of DEMI is Θ(n). Given State SP , one can query the 3KL estimate

on the set P in constant time as Î3KL = base+ sum

|P | . However, this

data structure requires adjustment of SP after every change of P .

Insertion Algorithm. To insert a point pn+1 into a state SP , il-
lustrated in Algorithm 2, we distinguish two phases of the update.

First (Lines 1-6), we add pn+1 as a DemiPoint to PD and update

base and sum accordingly. Second (Lines 7-18), we determine

which nearest-neighbor distances change and adjust sum accord-

ing to the changes. We now describe these steps in more detail,

together with the computational complexity of elementary op-

erations, to allow for an easier evaluation. We discuss possible

improvements in Section 6.

To add pn+1 to SP , we first compute its k-th nearest neigh-

bor in P ′ by linear search and derive the k-th nearest-neighbor

distance ϵkP ′(pn+1) (O(n), Line 1). To determine the k-th near-

est neighbor distances ϵkX ′(xn+1) and ϵ
k
Y ′(yn+1) we can use the

binary search tree and evaluate the distance to the next k and

preceding k elements (O(k · logn), Line 2). With this information

we construct the DemiPoint for pn+1 and insert it into PD (O(1),

Algorithm 2: Insert(SP ,pn+1)

1 Compute ϵkP ′(pn+1) O(n)

2 Compute ϵkX ′(xn+1) and ϵ
k
Y ′(yn+1) O(k · logn)

3 Insert pn+1 into PD O(1)

4 Reference pn+1 in Tx , Ty O(logn)

5 base← base + 1

n O(1)

6 sum← sum + log

(
ϵkX ′ (xn+1)·ϵ

k
Y ′ (yn+1)

(ϵkP ′ (pn+1))
2

)
O(1)

7 A← {pi ∈ P : max(|xi − xn+1 |, |yi − yn+1 |) < ϵ
k
P (pi )} O(n)

8 B ← {pi ∈ P : |xi − xn+1 | < ϵ
k
X (xi )} O(n)

9 C ← {pi ∈ P : |yi − yn+1 | < ϵ
k
Y (yi )} O(n)

10 forall pi ∈ A do
11 Compute ϵkP ′(pi ) O(|A| · n)

12 sum← sum + log((ϵkP (pi ))
2) − log((ϵkP ′(pi ))

2) O(|A|)

13 forall pi ∈ B do
14 Compute ϵkX ′(xi ) O(|B | · k · logn)

15 sum← sum − log(ϵkX (xi )) + log(ϵ
k
X ′(xi )) O(|B |)

16 forall pi ∈ C do
17 Compute ϵkY ′(yi ) O(|C | · k · logn)

18 sum← sum − log(ϵkY (yi )) + log(ϵ
k
Y ′(yi )) O(|C |)

Line 3). References to this point are then inserted into Tx and

Ty (O(logn), Line 4). Then, we add the appropriate terms to base

and sum (O(1), Lines 6 and 7), respectively.
Next, we find all previous nearest-neighbor distances that

changed, by linear search. For each i ∈ {1, . . . ,n}we test whether

pn+1,xn+1 and yn+1 is closer than ϵ
k
P (pi ), ϵ

k
X (xi ) and ϵ

k
Y (yi ), re-

spectively. This takes time in O(n) and yields the sets A, B and

C (Lines 7-9), respectively. For each point pi ∈ A we compute

ϵkP ′(pi ) analogously to ϵkP ′(pn+1), which takes O(n) each. Then
we adjust sum accordingly (O(1), Line 12). The sets A and B are

handled in an analogous way, using ϵkX ′(xi ) and ϵ
k
Y ′(yi ), respec-

tively, instead (Lines 13-18). Note that these distances can be

computed in timeO(k · logn) each, instead ofO(n), analogous to

ϵkX ′(xn+1) and ϵ
k
Y ′(yn+1).

Computational Complexity. The total runtime for inserting a

point into our structure therefore is in O(k · n + |A| · n + (|B | +
|C |) · k · logn). In the following theorem we show that |A|,|B |
and |C | are in O(k), because there are at most 8 · k points for

which pn+1 is one of the k nearest neighbors. Consequently, our

insertion time is inO(k ·n+k2 · logn). Since k is suggested to be a

small constant, e.g. less than 10, in the literature, we can assume

k to be constant. This means that an insertion is in O(n). This
results in the total time complexity of O(n). Because deleting a
point changes the estimate analogously, we can use an analogous

algorithm with the same complexity, i.e., O(n).

Theorem 5.1. Let P ⊆ R2 be a set of points. For any point p ∈ P
there exist at most 8k points q ∈ P such that p is one of the k nearest

neighbors of q using the L∞-norm.

Proof. The formal proof is available in Appendix A.3. �

As context for the update time of O(n), Theorem 4.1 proves

that any algorithm requires time in Ω(n logn) to compute the

3KL from scratch. As a result, updating an estimate using DEMI

is asymptotically faster than recomputing it, independently of

the method used. In Section 6 we show how the time for updates
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Data Structure 3: DEMI-KSG

struct {
real x ,y
real ϵkP ,δ

k
x ,δ

k
y

int Ckx ,Cky
} DemiPointKSG;

struct {
DemiPointKSG[ ] PD
BST<DemiPointKSG*> Tx ,Ty
real base, sum

} state;

on the 3KL can be improved even further. However, we will first

discuss how we use the same approach to update KSG estimates.

5.2 Updating KSG Estimates
In this section, we describe how we achieve the same results, that

is linear space and linear time for updates, using KSG estimates

instead of 3KL estimates. As with the 3KL, we decompose the

KSG estimate into �IKSG = base + sum

|P | . Comparing Equation 4

and Equation 6, it follows that base and sum need to maintain

different values when maintaining 3KL or KSG estimates. The

change for base, that is base = ψ (|P |)+ψ (k)− 1

k instead of base =

ψ (|P |) −ψ (k), does not have any influence on the overall proce-

dure. However, the change from sum =
∑n
i=1 log

(
ϵkX (xi )·ϵ

k
Y (yi )

(ϵkP (pi ))
2

)
to sum = −

∑n
i=1ψ (C

k
x (pi ))+ψ (C

k
y (pi )) has stronger implications.

Most notably, we do not require explicit nearest neighbor dis-

tances per point but need marginal counts. We need to update a

marginal count Ckx (pi ) if and only if the nearest neighbors of pi
in P changes, or a point (x ,y) with |x − xi | ≤ δ

k
x (pi ) is inserted

or deleted, see Figure 2. As a consequence, per point pi we do

not store ϵkX (xi ) and ϵ
k
Y (yi ) but the distances to the furthest x-

and y-values among the k nearest neighbors in P , i.e., δkx (pi )

and δky (pi ). Additionally we track the marginal counts Ckx (pi )

and Cky (pi ). These slight changes are displayed in Data Struc-

ture 3. Furthermore, this means that we still store a constant

amount of information per point, and the space complexity of

the data structure remains Θ(n).
Updating the data structure follows the same principles as

before, that is, we include the new point into the data structure

and evaluate its impact on other marginal counts afterwards. In

the following we describe the changes in specific steps between

the update algorithm for 3KL estimates and KSG estimates, that

is, Algorithm 2 and Algorithm 4.

Tracking marginal counts, instead of nearest-neighbor dis-

tances, per attribute allows for faster updates, because the counts

only need increments and decrements (O(1) each, Lines 16 and
18), instead of recomputation. However, a change of nearest

neighbors does also invalidate the marginal counts and requires

computing them and correct adjustment of sum (Lines 11-14).
Computing marginal counts from scratch can be done with linear

search (O(n) each, Lines 2 and 13).
Regarding the time complexity of Algorithm 4, it is important

to note that B and C are not sets of points with changed nearest

neighbors. As a consequence, only the size of A has an upper

bound of 8 · k by Theorem 5.1. In the worst case, B andC contain

all points, that is, |B | ≤ n and |C | ≤ n. The total time complexity

Algorithm 4: Insert-KSG(SP ,pn+1)

1 Compute δkx (pn+1),δ
k
y (pn+1) and ϵ

k
P ′(pn+1) O(n)

2 Compute Ckx (pn+1) and C
k
y (pn+1) O(n)

3 Insert pn+1 into PD O(1)

4 Reference pn+1 in Tx , Ty O(logn)

5 base← base + 1

n O(1)

6 sum← sum − psi(Ckx (pn+1)) − psi(C
k
y (pn+1)) O(1)

7 A← {pi ∈ P : max(|xi − xn+1 |, |yi − yn+1 |) < ϵ
k
P (pi )} O(n)

8 B ← {pi ∈ P : |xi − xn+1 | < δ
k
x (pi )} O(n)

9 C ← {pi ∈ P : |yi − yn+1 | < δ
k
y (pi )} O(n)

10 forall pi ∈ A do
11 sum← sum + psi(Ckx (pi )) + psi(C

k
y (pi )) O(|A|)

12 Compute δkx (pi ),δ
k
y (pi ) and ϵ

k
P ′(pi ) O(|A| · n)

13 Compute Ckx (pi ) and C
k
y (pi ) O(|A| · n)

14 sum← sum − psi(Ckx (pi )) − psi(C
k
y (pi )) O(|A|)

15 forall pi ∈ B do
16 sum← sum − 1

Ck
x (pi )

; Ckx (pi ) ← Ckx (pi ) + 1 O(|B |)

17 forall pi ∈ C do
18 sum← sum − 1

Ck
y (pi )

; Cky (pi ) ← Cky (pi ) + 1 O(|C |)

therefore is O(n + |A| · n) = O(k · n). As before, k is taken as

constant, which yields the time complexity O(n). This is asymp-

totically faster than recomputing the estimate by Theorem 4.3.

6 POLYLOGARITHMIC UPDATES
Because DEMI relies only on simple algorithms like linear search

and binary search trees during insertions and deletions, faster

solutions might exist. In this section we determine which parts

of our insertion algorithm have a high computational cost and

present solutions for these tasks. There are two factors that lead

to the linear time complexity of Algorithm 2.

(1) Computing the nearest neighbors, with linear search

(2) Finding the points whose nearest neighbors changed by

linear search

6.1 Geometric Structures
Computing the nearest neighbors. Computing the k nearest

neighbors of a point is a classic problem of computational ge-

ometry, which has received a lot of research. While there exist

many solutions, most of them are built for static data and are

not compatible with the incremental changes in dynamic data.

But there also exist solutions that allow for insertions and dele-

tions. Chan [6] proposed a dynamic data structure that computes

nearest neighbors in two-dimensional spaces with sub-linear

times for insertion, deletion and queries. However, the computa-

tional complexity of deletions is O(log6 n), which is quite high.

Kapoor and Smid [11] provide an alternative based on dynamic

range trees [30]. With dynamic fractional cascading [20] the time

complexities for insertions, deletions and querying the nearest

neighbor of a point are inO(logn log logn). To query two nearest
neighbors, we can query one nearest neighbor, delete this point

from the tree, query the new nearest neighbor and insert the

deleted point. Querying the k nearest neighbors can thus easily

be achieved through a sequence of k queries, k − 1 deletions, and
k − 1 insertions, with total time in O(k · logn log logn).
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Finding the points whose nearest neighbors have changed. Find-

ing all points whose nearest neighbors have changed is also a

geometric problem, that is, finding the reverse nearest neighbors

of the inserted or deleted point. For each point p = (x ,y) with
nearest neighbor distance ϵ , all nearest neighbors of p (using the

L∞-norm) are within the square [x −ϵ,x +ϵ]× [y−ϵ,y+ϵ] ⊆ R2.
To find all points whose nearest neighbors contain a point p′, the
task is to determine which squares contain p′. One data structure
to solve this problem is the segment tree by Bentley [2]. The

technique of dynamic fractional cascading is also applicable for

segment trees [20] and yields the time complexities for inser-

tions and deletions in O(logn log logn). Queries require time in

O(logn log logn+m), wherem is the number of squares returned.

6.2 Improving DEMI
To achieve sublinear time complexity for updates, we integrate

a two-dimensional dynamic range tree and a two-dimensional

dynamic segment tree into DEMI. We call this the augmented

version of DEMI (ADEMI). The insertion algorithm is nearly iden-

tical to Algorithm 2, except for changes in time complexities and

insertions and deletions to the integrated tree structures. In con-

sequence, we only mention the changes relative to Algorithm 2

in this section. The full data structure and insert algorithm can

be found in Appendix B.

Using the dynamic range tree, Line 1 requires only time in

O(k · logn log logn), and Line 11 requires time in O(|A| · k ·
logn log logn). Using the dynamic segment tree, Line 7 can be

done in time O(logn log logn + |A|). Additionally, B and C can

only contain elements that are at most k positions before and

after xn+1 and yn+1 in Tx and Ty , respectively. Consequently,
Lines 8-9 can also be done using the binary search trees in time

O(k · logn).
Additionally, we need to maintain the integrated tree struc-

tures. Specifically, we insert pn+1 into the dynamic range tree

and insert the square of its nearest neighbors, that is,

square(pn+1, P
′) = [xn+1 − ϵ

k
P ′(pn+1),xn+1 + ϵ

k
P ′(pn+1)]

× [yn+1 − ϵ
k
P ′(pn+1),yn+1 + ϵ

k
P ′(pn+1)], (7)

into the dynamic segment tree. The dashed lines in Figure 1 illus-

trate this square. Both insertions require time inO(logn log logn).
Finally, for each point pi ∈ A we delete its old square of nearest

neighbors square(pi , P) from the dynamic segment tree and in-

sert the new square square(pi , P
′). This requires time in O(|A| ·

logn log logn).
For an overview of the new time complexity, the updated inser-

tion algorithm can be found in Appendix B. Because |A|, |B |, |C | ∈
O(k), the total time complexity of an insertion is O(k2 · logn ·
log logn). As before, k can be assumed to be a small constant,

which leads to an insertion time of O(logn log logn). Deleting
a point is completely analogous to insertions in (A)DEMI, and

the used tree structures have the same complexity for insertions

and deletions. Consequently, deletions in ADEMI also have a

deletion time of O(logn log logn). Since the time complexity of

queries is in O(1), ADEMI solves problem 3KL-Update in time

O(logn log logn). This means that ADEMI is a nearly optimal,

since its time complexity is only a factor log logn higher than

the lower bound from Corollary 4.6.

The drawback of ADEMI is an increased space complexity.

The space complexity of the two-dimensional range tree and

segment tree are O(n logn) and O(n log2 n), respectively. Addi-
tionally, the improvements to the time complexity cannot be used

when maintaining KSG estimates. This is because the number of

points whose marginal counts change during an update has no

bound lower than n. Additionally, the impact of incrementing or

decrementing a marginal count on the overall estimate depends

on the current count, which can be any value between k and n.
As a consequence, it remains unclear whether any dynamic data

structure can solve KSG-Update in sublinear time, or whether

there exists a stronger lower bound.

7 EXPERIMENTS
In this section we empirically validate the estimation quality and

time efficiency of our approach. To this end, we use data with

knownMI values and show that the 3KL converges to these values

even with small samples. We also do so for the KSG. For brevity

we only present the results for k = 4, since this value offers

good rates of convergence for both the KSG and 3KL and follows

the general recommendation of small values for k . Additionally,
we compare the runtimes for maintaining 3KL estimates using

ADEMI, DEMI and repeated estimation from scratch (REFS). For

REFS we compute Equation 4 repeatedly with a state-of-the-art

static approach [9], i.e., using sorting and space-partitioning trees

for nearest-neighbor searches. While we have already proven a

clear hierarchy regarding their asymptotic scalability, the com-

plexity classes neglect constant factors. So it remains interesting

how their concrete runtimes compare.

Setup. All approaches are implemented in C++ and compiled

using the Gnu Compiler (v. 5.4) with optimization (-O3) enabled.

We use the non-commercial ALGLIB
1
implementation of KD-

Trees as space-partitioning trees in REFS. We conduct all exper-

iments on Ubuntu 16.04.2 LTS using a single core of an AMD

Opteron™ Processor 6212 clocked at 2.6 GHz and 128GB RAM.

7.1 Data
For our evaluation, we use synthetic and real data sets. In par-

ticular, we use the dependent distributions with noise used for

comparing MI estimators [13]. These distributions have a noise

parameter σr , which we vary from 0.1 to 1.0. Thus, we use 10

distributions for each of these dependency types. Additionally,

we use the uniform distributions used to compare MI with the

maximal information coefficient [14] as well as independent uni-

form and normal distributions. As real data sets, we use sensor

data of randomly charged and discharged batteries [4] and time

series of household power consumption [18]. Monitoring MI on

such data could be useful to monitor the condition of battery cells

for maintenance or to infer knowledge about the behavior of the

households inhabitants. In the following, we briefly describe the

different distributions and data sets.

Linear. To construct the point pi ∈ P , we draw the value xi
from the normal distribution N (0, 1). Additionally, we draw some

noise ri from the normal distribution N (0,σr ), where σr is the
noise parameter of the distribution. This yields the point pi =
(xi ,xi + ri ).

Quadratic. This distribution is generated analogously to the lin-

ear distribution, except that the point is pi = (xi ,x
2

i + ri ).

Periodic. For each point pi ∈ P , we draw the value xi from the

uniform distributionU [−π ,π ]. Additionally, we draw some noise

ri from the normal distribution N (0,σr ), where σr is the noise
parameter. This yields the point pi = (xi , sin(xi ) + ri ).

1
ALGLIB (www.alglib.net), Sergey Bochkanov
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Figure 3: An overview of the uniform distributions used.

Chaotic. This distribution uses the classical Hénon Map, that is,

hxi+1 = 1 − α · h2xi + hyi

hyi+1 = β · hxi ,

with α = 1.4, β = 0.3 and (hx0 ,hy0 ) = (0, 0). For a point pi we
additionally independently draw noise rxi , ryi from the distribu-

tion N (0,σr ), where σr is the noise parameter. Each point pi ∈ P
is then pi = (hxi + rxi ,hyi + ryi ).

Uniform. The uniform distributions A to H we use are illustrated

in Figure 3. Note that the striped areas contain twice as many

points as the dotted areas. For these distributions, each striped

area with size 0.25 · 0.25 contains 25% of all points, while dotted

areas of the same size contain 12.5% of all points. The distribution

A simply draws values vi from U[0,1] and constructs the points

pi = (vi ,vi ).

Independent. Lastly, we use the distributions UInd and NInd,

where each point consists of two values drawn independently

and identically distributed fromU [0, 1] and N (0, 1), respectively.

Battery Data. This data set, available at the NASA Prognostics

Center of Excellence [4], monitors voltage, current and tempera-

ture of battery cells during random loads. We use the data corre-

sponding to battery cell “RW9” and use each combination of the

attributes as bivariate sample.

Power Consumption. This data set, available at the UCI Machine

Learning Repository [18], monitors the power consumption of a

household in France. We use each combination of global active

power, global reactive power and voltage as a bivariate sample.

Data Precision. The nearest-neighbor based entropy estimator,

and by consequence the 3KL and KSG, expects samples from

continuous distributions and require samples without duplicate

values. Because of the limited precision of the battery and the

power consumption data, we add noise to the sample. Kraskov

et al. also have observed this issue and recommend the addition

of low intensity noise, e.g., a normal distribution with variance

10
−10

, to eliminate duplicate points [17]. However, we think that

filling the missing precision with uniform noise is a better com-

pensation for rounded or imprecise data. Figure 4 illustrates both

approaches with the number of duplicates per value of an im-

precise data set in parentheses. For our experiments we use the

second approach.

7.2 Quality of Estimation
To evaluate the quality of estimation, we use all data sets with

well-defined MI values. That is, all synthetic data sets except the

chaotic distributions, whose probability densities are unknown,

X

p(x)
X

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
(2) (3) (1) (2) (2) (3)(1)(4)

Figure 4: Avoiding duplicates in a sample by adding mini-
mal noise (top) or filling the missing precision uniformly
(bottom).
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Figure 5: Average difference of estimates to trueMI values
depending on sample size.

and the uniform distribution A, whose MI is infinite. We use these

distributions to evaluate the consistency and the rate of conver-

gence of the KSG, 3KL and the estimator used by DIMID [3].

Specifically, we are interested in the difference between the es-

timated MI and true value for the distribution as well as the

variance of estimates for samples of the same distribution. Since

the behavior has turned out to be very homogeneous across the

different distributions, we restrict our presentation to selected

results.

Development with sample size. For each distribution we cre-

ated samples with sample sizes between 10 and 10000 and 1000

repeats per size. Figure 5 graphs the average difference between

the estimate and the true MI value of the respective distribution.

Additionally, Figure 6 shows the standard deviation of estimates

of the same distribution and sample size, averaged across all

distributions. One can see in these diagrams, that both the 3KL

and the KSG converge quickly to the true values and have only

small variance. In contrast, the approximate estimator in DIMID

has a strong variance and difference. We think the reason is the

random projection used by that estimator. It may retain enough

information such that estimates are comparable to each other,

as shown in their work [3]. However, we think that the projec-

tion loses too much information regarding the joint probability

density to allow for good MI estimates.

Different dependency types. We also studied whether the qual-

ity of estimation changes for different dependency types. As we

have seen in the previous paragraph, both the 3KL and KSG are

very consistent even with moderate sample sizes. As a result we

will use a small sample size, i.e. 100, to highlight differences. Fig-

ure 7 shows the average estimation error and standard deviation

of estimates using 3KL, KSG and DIMID for each dependency

type. While the variance of both KSG and 3KL are comparable
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for all dependency types, the difference to the true value is im-

balanced for the KSG but not the 3KL. Unfortunately, we do not

have any explanation for this difference. As before, we notice

strong differences between the DIMID approximation and the

results of KSG and 3KL.

7.3 Runtime Analysis
We have benchmarked runtimes of our data structures for all data

sets. Because we are not aware of any competitor that offers good

MI estimates on dynamic data, we compare our performance to

naïve recomputation of the estimate when an update occurs. We

compare the runtime to maintain 3KL estimates using DEMI and

ADEMI as well as repeated recomputation (REFS). We use a slight

simplification of the ADEMI trees, compared to the description in

Section 6. Specifically, we did not implement dynamic fractional

cascading and relied only on the technique of Willard [30] for

insertion and deletion of nodes. The reason is that dynamic frac-

tional cascading provides a small asymptotic benefit, i.e. reducing

a factor logn to log logn, but requires a lot of overhead. As a re-
sult, the structure labeled ADEMI in this section has insertion

and deletion time in O(log2 n) instead of O(logn log logn).
By design, both DEMI and ADEMI require only constant time

for querying the current MI value, but require more time to

update the data structure during insertions and deletions. The

repeated static estimation REFS has inverse properties, i.e., con-

stant time insertions and deletions but expensive queries. To

provide a good overview we use the task of monitoring the MI

of a changing data set of fixed size. That is, each update consists

of deleting one point, inserting a different point and querying
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Figure 8: Average time for an update depending on sample
size for the synthetic distributions.
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Figure 9: Average time for an update depending on sample
size for the used real data set.

the current MI estimate. For these experiments we averaged the

time required per update using 1000 updates per distribution and

sample size.

Figure 8 shows the average update time required across all

synthetic distributions per sample size. The same graph based on

the real data sets instead of the synthetic distributions is Figure 9.

As expected, the time complexity of each approach translates

directly to asymptotic scaling with sample sizes, that is, steepness

of the curve in the double log plot. To highlight this, the graphs

include different asymptotic functions with dashed and dotted

lines. An interesting result is that ADEMI has by far the worst

performance for small windows and by far the best performance

for large ones. Our explanation is as follows: The maintenance of

the range trees and even more so the segment trees is expensive,

even if it scales favorably. For instance, when inserting a square

into a two-dimensional segment tree, 8 · (1 + logn) nodes are
created in the tree. This is a lot even for small n but does not

increase significantly for large n.

7.4 Discussion
To summarize this section, we confirmed the estimation quality of

3KL and KSG across all dependency types tested. Additionally, we

compared the performance of DEMI, ADEMI and REFS both on

synthetic and real data. As expected, DEMI consistently outper-

forms the SE. The evaluation of ADEMI depends on the context

and application. While it is slow for small window sizes, it barely

slows down for larger sizes. On the one hand, this means that

it is often recommendable to use DEMI if the data size is small.

On the other hand, ADEMI can be used for very data-intensive
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tasks such as monitoring high-throughput streams. A problem

with stream monitoring often is the multiplicative cost of high

temporal resolutions: A stream with frequent items permits less

time to process a new item, and a window with fixed time length

contains more items. This leads to increased time to process a

new item. As we have seen, the second factor is nearly negligible

when using ADEMI.

8 CONCLUSIONS
In this work we have studied the efficiency of estimating mutual

information using nearest-neighbor distances. We have consid-

ered the estimator by Kraskov et al. [17](KSG) and the direct

application of the entropy estimator [9, 16](3KL). We have in-

vestigated the computational complexity of these estimators on

static data and have proven a tight lower bound for both in the

algebraic computation tree model. Next, we have turned to the

maintenance of 3KL and KSG estimates on dynamic data and

have examined possible optimizations and limitations. We have

inferred a lower bound for the computational complexity of this

task. We also have presented two dynamic data structures DEMI

and ADEMI that maintain 3KL and KSG estimates. We have

proven that both data structures require asymptotically less time

to update their estimate than the lower bound to recompute it.

Additionally, for maintenance of 3KL estimates, the time com-

plexity of ADEMI is near optimal. Finally, we have validated the

performance of our approach empirically. We have shown that

the 3KL has a good rate of convergence for various dependen-

cies. We also have benchmarked our data structure using both

synthetic and real data and have shown that ADEMI is very fast

for large data sets.

Future Work. In this work we have focused on exact computa-

tions of nearest-neighbor based MI estimators for dynamic data.

It remains open whether our approach offers the best trade-off

between estimation quality and computation time.

For one, it would be interestingwhich results one could achieve

by binning the data and using estimators for discrete distribu-

tions [5, 10]. However, it is unclear how the bin width should be

chosen, given the evolving nature of a stream. If the bin width

needs adjustment, this is computationally expensive or reduces

the quality of estimation if there is no adjustment.

It would also be interesting to study which provable quality

one might achieve with approximations. While there exist ap-

proximations of static estimators [3, 12], there are no bounds

for additive or multiplicative errors. But these would be very

important because there exists a lot of work comparing static

estimators. In addition, empirical assessments of new estimators

often cover only some of the dependencies that MI quantifies.

A FORMAL PROOFS
A.1 Proof of Theorem 4.1

Theorem 4.1. The problem 3KL-Estimation has time complex-

ity Ω(n logn).

Proof. The proof is by reduction from the problem Inte-

gerElementDistinctness. Given a multiset A = {a1, . . . ,an }
of integers, are there two indices i , j such that ai = aj are
duplicates. The problem IntegerElementDistinctness has a

known lower bound of Ω(n logn) in the algebraic computation

tree model [19]. For an instance A of IntegerElementDistinct-

ness, we construct an instance of 3KL-Estimation P as follows.

For ai ∈ A, the set P contains two points pi = (i,ai +
1

4+i ) and
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Figure 10: An illustration of the construction of P in Ap-
pendix A.1.

pn+i = pi + (0.25, 0.25). Note that pi and pn+i are closer than
any other pair, because i and ai are integers. Additionally, we
add the offset

1

4+i to the y-coordinates, because duplicates in A
would otherwise lead to a nearest-neighbor distance of 0 and

thus log(0) in Equation 4. Figure 10 features an example for this

construction for the IntegerElementDistinctness instance

A = {1, 2, 4, 3, 1}. The point p1 is highlighted as circle and its

nearest-neighbor distances are highlighted.

Claim 1. A contains a duplicate if and only if Î3KL(P) , ψ (|P |)−
ψ (1) for k = 1.

Subproof. Let i, j ∈ {1, . . . ,n} be two integers with i , j.
Based on the construction of P , it follows that |xi −x j | = |xn+i −
xn+j | ≥ 1. Additionally, it is |xi − xn+i | = |yi − yn+i | = 0.25.

Using the reverse triangle inequality, it is |xi −xn+j | ≥ |xi −x j | −
|x j − xn+j | ≥ 0.75. This holds for any i , j , which means that pi
is the nearest neighbor of pn+i and vice versa, because we use

the L∞ norm. As a consequence the nearest neighbor distances

are ϵ1P (p) = 0.25 for all p ∈ P and ϵ1X (x) = 0.25 for all x ∈ X .
Note that this means that the nearest neighbor distances in P and

X are independent of the existence of duplicates in A.
If A does not contain any duplicates, it follows that |yi −

yj | = |yn+i − yn+j | ≥
4

5
, since A only contains integers and the

difference between
1

4+i and
1

4+j is less than 0.2. By the same

arguments as above it follows that |yi − yn+j | ≥ 0.55 and that

ϵ1Y (y) = 0.25 for all y ∈ Y . We can then use these values in

Equation 4, which yields:

Î3KL(P) = ψ (|P |)−ψ (1)+
1

|P |

|P |∑
m=1

log

(
0.25 · 0.25

(0.25)2

)
= ψ (|P |)−ψ (1).

(8)

Conversely, if A contains the duplicates ai = aj , it is |yi −

yj | = |
1

4+i −
1

4+j | ≤ 0.2 and |yi − yn+j | ≥ |0.25 −
1

4+j | and thus

ϵ1Y (yi ) ≤ 0.2. Additionally, because of j , i it also is ϵ1Y (yi ) > 0.

It follows that

log

(
ϵ1Y (yi ) · ϵ

1

X (xi ))

(ϵ1P (pi ))
2

)
<0⇒

1

|P |

|P |∑
m=1

log

(
ϵ1X (xm ) · ϵ

1

Y (ym )

ϵ1P (pm ))
2

)
<0

(9)

and analogously to Equation 8 we obtain Î3KL(P) < ψ (|P |)−ψ (1).
This concludes the subproof. �

It is clear that P can be constructed in time O(|A|), which

means |P | ∈ O(|A|). After computing Î3KL(P), the result is only
compared to a sum over |P | numbers, because ψ (|P |) −ψ (1) =∑ |P |−1
m=1

1

m by definition of the digamma function. Note that this
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Figure 11: An illustration of the construction of P in Ap-
pendix A.2.

reduction works analogously for any fixed k > 0 by placing

k − 1 points evenly spaced on the diagonal between each pair

pi and pn+i . Because k is fixed, the size of P increases only by a

constant factor. Therefore, the complexity of the reduction is in

O(n). This means that determining Î3KL(P) has a lower bound of

Ω(n logn). �

A.2 Proof of Theorem 4.3
Theorem 4.3. The problem KSG-Estimation has a time com-

plexity in Ω(n logn).

Proof. Similarly to the Proof of Theorem 4.1, see Appen-

dix A.1, we reduce the problem to IntegerElementDistinct-

ness. For any instance A of IntegerElementDistinctness, we

construct an instance of KSG-Estimation P as follows. For

ai ∈ A, the set P contains two points pi = (i,ai ) and pn+i =
(i + 0.25,ai + 0.25). We use 0.25 because it means that this pair

of points is closer than any other pair, because i and ai are in-
tegers. Figure 11 features an example for this construction for

the IntegerElementDistinctness instance A = {1, 4, 2, 5, 3, 2}.
The dashed lines in the figure illustrate the areas of the marginal

counts C1

x (p3) and C
1

y (p3).

Claim 2. A contains a duplicate if and only if �IKSG (P) ,∑ |P |−1
m=1 (

1

m ) − 1 for k = 1.

Subproof. Let i, j ∈ {1, . . . ,n} be two integers with i , j.
Based on the construction of P , it follows that |xi −x j | = |xn+i −
xn+j | ≥ 1. Additionally, it is |xi − xn+i | = |yi − yn+i | = 0.25.

Using the reverse triangle inequality, it is |xi −xn+j | ≥ |xi −x j | −
|x j − xn+j | ≥ 0.75. This holds for any i , j , which means that pi
is the nearest neighbor of pn+i and vice versa, because we use

the L∞ norm. As a consequence, the marginal countsC1

x (p) are 1
for all p ∈ P , independent of the existence of duplicates in A.

If A does not contain any duplicates, it follows that |yi −yj | =
|yn+i − yn+j | ≥ 1, since A only contains integers. By the same

arguments as above it follows that |yi − yn+j | ≥ 0.75 and that

C1

y (p) = 1 for allp ∈ P . We can then use these values in Equation 6

and because ofψ (x) =
∑x−1
m=1(

1

m ) −C it is:

�IKSG (P) = ψ (1)+ψ (|P |)− 1
1

−
1

|P |

|P |∑
m=1

ψ (1)+ψ (1) =

|P |−1∑
m=1

(
1

m

)
−1

(10)

Conversely, if A contains the duplicates ai = aj , it is |yi −

yj | = 0 and |yi − yn+j | = 0.25 and thus C1

y (pi ) ≥ 3. Because

of ψ (x + 1) = ψ (x) + 1

x > ψ (x) for all x ≥ 0, it is, analogously

to Equation 10, �IKSG (P) < ∑ |P |−1
m=1 (

1

m ) − 1. This concludes the

subproof. �
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QLD QRD
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Figure 12: The partioning
of Q in Appendix A.3.
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Figure 13: An example for
QRU .

It is clear that P can be constructed in time O(|A|), which
means |P | ∈ O(|A|). Note that this reduction works analogously

for any fixed k > 0 by placing k − 1 points evenly spaced on the

diagonal between each pair pi and pn+i . Because k is fixed, the

size of P increases only by a constant factor. After computing�IKSG (P), the result is only compared to a sum over |P | numbers.

Therefore the complexity of the reduction is inO(n). This means

that determining �IKSG (P) has a lower bound of Ω(n logn). �

A.3 Proof of Theorem 5.1
Theorem 5.1. Let P ⊆ R2 be a set of points. For any point p ∈ P

there exist at most 8k points q ∈ P such that p is one of the k nearest

neighbors of q using the L∞-norm.

Proof. Let p = (x ,y) ∈ P be a point and Q ⊆ P be the

set of points such that for each point q ∈ Q , p is one of the k
nearest neighbors of q. We separate Q into eight sets based on

their relative location to p, as illustrated in Figure 12. There are

four axis-aligned rays QL ,QR ,QU ,QD ⊆ Q centered at p such

that points on any of these rays share one component with p
and differ in the other one. Additionally, there are four quad-

rants QRU ,QLU ,QLD ,QRD ⊆ Q centered at p excluding the

axis-aligned rays. Because p cannot be its own nearest neighbor,

these eight sets partition Q . To prove the lemma we proceed to

show that each of these eight sets contains at most k points.

Let r = (xr ,yr ) be the most distant point to p in the axis-

aligned ray QR , that is, |x − xr | = max(xi ,yi )∈QR |x − xi |. Then
all other points in QR are on the line between p and r and thus

closer to r thanp. This means thatQR cannot contain more thank
points, because p would not be a nearest neighbor of r otherwise.
By symmetry, this result also holds for the sets QL ,QU ,QD .

Similarly, Let r = (xr ,yr ) be the most distant point to p in the

quadrant QRU and let ∆ be that distance. More formally, it is

∆ = max(|x − xr |, |y −yr |) = max

(xi ,yi )∈QRU
max(|x − xi |, |y −yi |).

An exemplary illustration can be found in Figure 13 with the

set QRU = {s, r }. For any other point qi = (xi ,yi ) ∈ QRU with

qi , r it is x < xi ≤ x + ∆ and y < yi ≤ y + ∆, because r is the
point most distant to p. Figure 13 illustrates this by delimiting the

area in which all points of QRU lie with dashed lines. Because of

xr > x and yr > y, it follows that |xr −xi | < ∆ and |yr −yi | < ∆.
This means that qi is a nearest neighbor of r . Figure 13 shows this
by highlighting the area of nearest neighbors of r with dotted

lines. Analogously to the axis-aligned rays, QRU cannot contain

more than k points, because p would not be a nearest neighbor

of r otherwise. By symmetry, this result also holds for the sets

QLU ,QLD ,QRD . �
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B ADEMI

Data Structure 5: ADEMI

struct {
real x ,y
real ϵkP , ϵ

k
X , ϵ

k
Y

} DemiPoint;

struct {
DemiPoint[ ] PD
BST<DemiPoint*> Tx ,Ty
real base, sum
2D dynamic range tree Tranдe
2D dynamic segment tree Tseд

} state;

Algorithm 6: ADEMI-Insert(SP ,pn+1)

1 Compute ϵkP ′(pn+1) O(k · logn log logn)

2 Compute ϵkX ′(xn+1) and ϵ
k
Y ′(yn+1) O(logn)

3 Insert pn+1 into PD O(1)

4 Reference pn+1 in Tx , Ty O(logn)

5 Insert pn+1 into Tranдe O(logn log logn)

6 Insert square(pn+1, P
′) into Tseд O(logn log logn)

7 base← base + 1

n O(1)

8 sum← sum + log

(
ϵkX ′ (xn+1)·ϵ

k
Y ′ (yn+1)

(ϵkP ′ (pn+1))
2

)
O(1)

9 A← {pi ∈ P : max(|xi − xn+1 |, |yi − yn+1 |) < ϵ
k
P (pi )}

O(logn log logn + |A|)

10 B ← {pi ∈ P : |xi − xn+1 | < ϵ
k
X (xi )} O(k · logn)

11 C ← {pi ∈ P : |yi − yn+1 | < ϵ
k
Y (yi )} O(k · logn)

12 forall pi ∈ A do
13 Delete square(pi , P) from Tseд O(|A| · logn log logn)

14 Compute ϵkP ′(pi ) O(|A| · k · logn log logn)

15 Insert square(pi , P
′) into Tseд O(|A| · logn log logn)

16 sum← sum + log((ϵkP (pi ))
2) − log((ϵkP ′(pi ))

2) O(|A|)

17 forall pi ∈ B do
18 Compute ϵkX ′(xi ) O(|B | · k · logn)

19 sum← sum − log(ϵkX (xi )) + log(ϵ
k
X ′(xi )) O(|B |)

20 forall pi ∈ C do
21 Compute ϵkY ′(yi ) O(|C | · k · logn)

22 sum← sum − log(ϵkY (yi )) + log(ϵ
k
Y ′(yi )) O(|C |)
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ABSTRACT
Cliques are commonly used for social network analysis tasks, as

they are a good representation of close-knit groups of people. For

this reason (as well as for others), the problem of enumerating,

i.e., finding, all maximal cliques in a graph has received extensive

treatment. However, considering only complete subgraphs is too

restrictive in many real-life scenarios where “almost cliques” may

be even more useful. Hence, the notion of an s-clique, a clique
relaxation that allows every node to be at distance at most s
from every other node, has been introduced. Connected s-cliques
add the natural requirement of connectivity to the notion of an

s-clique.
This paper presents efficient algorithms for finding all maximal

connected s-cliques in a graph. We present a provably efficient al-

gorithm, which runs in polynomial delay. In addition, we present

several variants of the well-known Bron-Kerbosch algorithm

for maximal clique generation. Extensive experimentation over

both real and synthetic datasets shows the efficiency of our algo-

rithms, and their scalability with respect to graph size, density,

and choice of s .

1 INTRODUCTION
Maximal cliques have long been considered a key component in

the analysis of social networks [34]. Cliques are indeed highly

cohesive sets of nodes, and as such are used to detect close-knit

overlapping communities [13, 29, 36]. For this reason (among

others), there has been extensive work on algorithms for finding

all maximal cliques in a given graph, e.g., [1, 6, 8, 11, 17].

While the notion of a clique captures a completely cohesive

group of nodes within a graph, this definition is often overly re-

strictive. In practice, it is obvious that sets of nodes can represent

cohesive groups even if several links are missing; for example,

within a community not all pairs of people will be friends. In ad-

dition, as networks are often built from observation of empirical

data, there may be real-life links that are missing within the data

captured. Searching for groups of nodes that are cliques will miss

highly related groups of nodes for which links have been omitted

from the dataset. To overcome these limitations, relaxations to

the notion of a clique have been studied [30].

One useful relaxation to the notion of a clique, called an s-
clique, was introduced over 65 years ago [24] to describe and

measure connectivity in social groups. Given a graphG, we say
that a set of nodesU is an s-clique, where s is a (typically small)

natural number, if every pair of nodes u,v ∈ U is at distance at

most s one from another in G. In particular, when s = 1, the no-

tions of a clique and an s-clique coincide. An s-clique is maximal
if it cannot be extended with additional nodes, while retaining

the required distances property. Unlike cliques, s-cliques may be

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the 21st

International Conference on Extending Database Technology (EDBT), March 26-29,

2018, ISBN 978-3-89318-078-3 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons

license CC-by-nc-nd 4.0.

Bob Eli

Ann Dan Fay Hal

Cal Guy

Figure 1: Example of a small social network G.

unconnected. Connected s-cliques add the natural requirement

of connectivity.

Example 1.1. Consider the example of a small social network

G in Figure 1. Graph G contains six maximal cliques, namely

{a,b, c}, {b, c,d}, {d, e, f }, {e, f ,h}, {d,д}, {д,h}, where a is a

shorthand for Ann,b is a shorthand for Bob, and so on. This graph
contains three maximal 2-cliques {a,b, c,d}, {b, c,d, e, f ,д} and
{d, e, f ,д,h}. Intuitively, the 2-cliques seem to better capture the

graph communities, as they are a bit coarser. They also highlight

the fact that d is a bridge between the communities.

GraphG contains twomaximal 3-cliques {a,b, c,d, e, f ,д} and
{b, c,d, e, f ,д,h}, which (by their symmetric difference) indicate

the people who, if linked, could help merge the communities.

Thus, such a link might be suggested to Ann and Hal. Finally, we

note that there is a single maximal 4-clique in G , as the diameter

of G is four.

This paper studies the problem of enumerating (i.e., finding) all

maximal connected s-cliques in a graph. Maximal clique enumer-

ation has been shown to be useful in other areas (beyond social

network analysis), e.g., finding subgraphs common to a set of in-

put graphs [19], genome mapping and protein clustering in bioin-

formatics [14, 25], clustering for wireless sensornetworks [4],

and statistical analysis of financial networks [5]. As s-cliques are
relaxations of cliques, they allow significantly greater flexibil-

ity, and may be useful for the above applications, e.g., to find

subgraphs that are “almost common” to input graphs (i.e., that

appear in slight variations in the various input graphs), to inte-

grate genome mappings based on very similar subportions or

to cluster protein sequences while allowing more flexibly for

missing information.

An algorithm for enumerating maximal connected s-cliques
can be used for new and interesting applications, such as link

prediction in social networks [22], since missing direct links in

large s-cliques are prime candidates for link suggestion. Note

that large cliques could not be used for this purpose, as they are

missing no links at all, by definition. Similarly, another possi-

ble application would be to help identify hidden connections in

a social network, by finding maximal s-cliques that may form

unidentified communities. We leave the development of such ap-

plications to future work, and focus in this paper on algorithms

for efficiently enumerating all maximal s-cliques from a given

graph.

 

 

Series ISSN: 2367-2005 61 10.5441/002/edbt.2018.07

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2018.07


The main contributions of this paper are three new algorithms

for enumerating all maximal connected s-cliques from a given

graph G. While it may seem from Example 1.1 that graphs have

a small (polynomial) number of maximal s-cliques, this is in fact

not always the case. As we demonstrate later, a graph may have

exponentially many maximal s-cliques. (This was already well

known for s = 1, and is true for larger values of s as well.) Hence,
we cannot hope to derive a polynomial time algorithm for the

problem at hand, as it may take exponential time to simply print

the output. Instead, our first algorithm guarantees polynomial

delay between results, i.e., the time to produce the first result,

between every pair of subsequent results, and from the final

result until completion, is polynomial.

The other two algorithms we present are adaptations of the

well-known Bron-Kerbosch method, originally developed for

finding all maximal cliques, to the problem at hand. While Bron-

Kerbosch clique enumeration does not run in polynomial delay,

it is known to be the fastest method, in practice, for maximal

clique enumeration (when used with some specific optimizations).

Hence, adapting this method to s-cliques is of interest. Optimiza-

tions for our adaptations, including pivoting and checking for

feasibility, are studied. Extensive experimentation, over both real

and synthetic datasets, proves the efficiency of our techniques,

as well as their suitability for use over social network data.

2 RELATEDWORK
Due to their numerous uses, the problem of finding all maximal

cliques of a graph has received extensive attention. In the worst

case, there can be exponentially many maximal cliques in a graph.

In fact, [26] shows that the maximal number of cliques in graph

with n nodes is O(3n/3). Thus, the focus is on finding maximal

cliques in time that is efficient with respect to the input and

output. One well-known algorithm is that of Bron-Kerbosch [6],

which, with the pivoting improvement of [32], guarantees a worst-

time complexity of O(3n/3) for graphs of size n. Hence the total
time spent is no worse than required to return all maximal cliques

on the graph with the most possible cliques.

Additional work on maximal clique enumeration has focused

on output-efficient algorithms, i.e., algorithms whose runtime

is a function of the number of maximal cliques in the given

input graph [1, 17]. Several works have studied enumeration

over sparse graphs [7, 12], as such graphs tend to be common

in practice. Recent work has also focused on maximal clique

enumeration over uncertain graphs [38], and over massive net-

works [9, 11].

Enumeration of maximal graphs for several relaxations of the

notion of a clique has also been studied. The problem of mining

all maximal k-plexes was studied in [3, 35], and enumeration of

maximal c-isolated cliques was studied in [15]. There has also

been work on mining quasi-cliques (i.e., densest subgraphs) in a

single graph [23, 33, 37], and over a set of graphs [16], as well as

mining locally dense subgraphs [31].

Among clique relaxations, both quasi-cliques and s-clubs ap-
pear to be most related to s-cliques. Formally, quasi-cliques are
parameterized by a value γ , i.e., a subset S of nodes in a graph

G is a γ -quasi-clique if every node in S is connected to at least

γ (|S | − 1) nodes in S . It has been shown [16] that there is a strong

relationship between the parameter γ , and the diameter of the

induced subgraph ofG on S . For example, if
1

2
≤ γ ≤ |S |−2

|S |−1
, then

the induced subgraph on S will have diameter at most 2. At first

glance, it would seem then that this property can be utilized to

enumerate (connected) s-cliques, e.g., by enumerating γ -quasi-
cliques with an appropriate (s-dependent) choice of γ . In fact,

this is not the case, and previous algorithms for γ -quasi-cliques
do not enumerate s-cliques. The difference is subtle, as every pair
of nodes in an s-clique S is of distance at most s inG , but may be

of larger distance in the graph induced by S .
A subsetU of nodes in a graphG is an s-club, if the diameter of

U is at most s , i.e., if there is a path between every two nodes in

U that only traverses nodes inU , that is of length at most s . This
definition is different from that of s-cliques, where the distance
between nodes is determined by the shortest path in the entire

graph G. Similar to the maximum clique problem, the problem

of finding an s-club of maximum size is also NP-complete [2].

However, unlike cliques and s-cliques, s-clubs are not heredi-

tary (i.e., a subgraph of an s-club is not necessarily an s-club),
and indeed s-club maximality testing is NP-complete [28]. Since

maximal s-clubs cannot be efficiently recognized, enumerating

maximal s-clubs cannot be achieved in polynomial delay (unlike

enumerating maximal connected s-cliques, as we show in this

paper).

The enumeration problem for connected s-cliques has not yet
been studied. However, the optimization problem for s-cliques,
i.e., the NP-complete problem of finding an s-clique of maximal

size, was studied in [2]. Enumerating s-cliques with given labels,

over a labeled graph, is also NP-complete problem, and is stud-

ied in [18]. Finally, [28] has shown that for graphs with some

special properties, the notions of connected s-cliques and s-clubs
coincide.

3 FORMAL FRAMEWORK
Graphs and Induced Subgraphs.We useG, H (possibly with

subscripts or superscripts) to denote simple undirected graphs.

We use V (G) to denote the nodes of G and E(G) to denote the

edges of G. Note that an edge is a pair {v,u} where v and u are

two different nodes in V (G).
We will often be interested in induced subgraphs of a given

graph G. Formally, a subset of nodes U ⊆ V (G) defines the in-
duced subgraphG[U ] ofG consisting of precisely the set of nodes

U , and the edges in E(G) that are incident only on nodes inU . In

notation, we have V (G[U ]) = U and E(G[U ]) = E(G) ∩U 2
. We

say that H is an induced subgraph of G if H = G[U ], for someU ,

and denote this fact by H ⊑ G.
We use distG (u,v) to denote the number of edges on the short-

est path between u and v in G and N i
G (v) to denote the set

N i
G (v) := {u | distG (v,u) ≤ i and u , v}

of the nodes at distance at most i from v in G. We use NG (v)
for the special case where i = 1, i.e., NG (v) contains all direct

neighbors of v . Extending this notation, we use N∀,i
G (V ) and

N∃,i
G (V ) to denote the set of nodes at distance at most i from all

and at least one, respectively, v in V , i.e.,

N∀,i
G (V ) := {u | ∀v ∈ V , distG (v,u) ≤ i and u < V } ,

N∃,i
G (V ) := {u | ∃v ∈ V , distG (v,u) ≤ i and u < V } .

If G is clear from the context, we will omit the subscript.

Example 3.1. Consider graph G from Figure 1. Let V = {e,h}.
We have:

N∃,1(V ) = {d, f ,д} N∀,1(V ) = { f }
N∃,2(V ) = N∃,1(V ) ∪ {b, c} N∀,2(V ) = N∃,1(V ) .
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Figure 2: Graph G ′.

Cliques and s-Cliques. A set of nodes U in a graph G is a

clique if all pairs u,v ∈ U are adjacent one to another in G.
Cliques are useful in many problem areas, as they represent fully

cohesive portions ofG. As discussed earlier, in many scenarios,

the requirement that a set of nodes form a clique may be overly

restrictive.

Previous work [30] has studied various relaxations of the no-

tion of a clique. In the following, let s be an integer and U be a

set of nodes in a graph G. We say that

• U is an s-clique if, for allu,v ∈ U , it holds that distG (u,v) ≤
s .
• U is a connected s-clique ifU is an s-clique and the induced
graph G[U ] is connected.

When s = 1, cliques coincide with both s-cliques and connected

s-cliques.

Example 3.2. Consider graphG from Figure 1. The set of nodes

{a,b, c,d, e, f ,д} is a (connected) 3-clique, but is not a 2-clique,
e.g., distG (a, f ) = 3 > 2. The set of nodes {a,b, c,d} is a con-

nected 2-clique, and the set {a,d} is a 2-clique, but is not a con-
nected 2-clique.

We say that U is a maximal (connected) s-clique in G, if U is

a (connected) s-clique, and for allU ′ such that U ( U ′, it holds
thatU ′ is not a (connected) s-clique. It is natural to focus onmax-
imal (connected) s-cliques. Indeed, every (connected) s-clique is
contained in some maximal (connected) s-clique. Hence, maximal

(connected) s-cliques can be viewed as a succinct representation

for all (connected) s-cliques.

Example 3.3. Consider graph G ′, from Figure 2. Let

V = {v1,v2,v3} U = {u1,2,u1,3,u2,1,u2,3,u3,1,u3,2}

V ′ = {v ′
1
,v ′

2
,v ′

3
} W = {w,w ′}

Now, it is easy to observe that every subset C of V ∪ V ′ that
does not contain both vi and v

′
i for some i ≤ 3 is a 2-clique.

Such 2-cliques are not maximal, however. A subset C ⊆ V ∪
V ′ ∪W will be a maximal connected 2-clique if (1) C contains

precisely one amongvi ,v
′
i for each i ≤ 3, and (2)C containsw,w ′.

Thus, for example, {v1,v2,v
′
3
} is a 2-clique (but not maximal

nor connected), and {v1,v2,v
′
3
,w,w ′} is a maximal connected 2-

clique inG . Note that there are additional ways to form maximal

connected 2-cliques, when taking nodes from U . For example,

{v1,v
′
2
,w,w ′,u1,2} is also a maximal connected 2-clique.

We can now formally state our problem of interest: Given a
graph G and an integer s , enumerate (i.e., find, one after another)
all maximal connected s-cliques in G. As larger s-cliques can,
naturally, be more interesting, we will also briefly consider a

v1

v2 v6

v3 v4 v5

(a) H

v1

v2 v6

v3 v4 v5

(b) H 2

Figure 3: Graph H and corresponding graph H2.

related problem, i.e., that of finding maximal s-cliques of size at
least k , for some given number k .

Remark 1. We do not consider enumeration of maximal s-
cliques that are not necessarily connected. This is because enu-
meration of maximal s-cliques over a graph G can be reduced to
maximal clique enumeration: DefineGs as the graph containing an
edge between nodes u,v if they are of distance at most s inG . Then,
the maximal cliques inGs are precisely the maximal s-cliques inG .
However, this reduction is not applicable for connected s-cliques,
as cliques in Gs can correspond to unconnected sets in G. Hence,
enumeration of maximal connected s-cliques is more difficult, as
the following example demonstrates.

Consider the graphs H , H2 in Figures 3 (a) and (b). The graph
H2 contains an edge between every pair of nodes in H that are
of distance at most 2 one from another. Every 2-clique in H is a
clique (in the standard sense) in H2. Observe, for example, that
the sets C1 = {v1,v2,v6} and C2 = {v1,v3,v5} are 2-cliques in H
and cliques in H2. Unlike the set C1, the set C2 is not a connected
2-clique. Indeed no two nodes in C2 are connected in H , and thus,
C2 forms an unconnected subgraph of H . This cannot be seen when
looking at H2 alone; the information about connectedness is lost in
the given graph transformation.

Wenote that due to the fact that the number of sets in the result

can be exponential in the size of G, the problem of enumerating

all maximal connected s-cliques cannot be solved in polynomial

time. Hence, exponential time may be needed just to print the

output. Therefore, we focus on finding algorithms whose runtime

is either provably efficient with respect to the output size (e.g.,

polynomial delay) or of high efficiency in practice.

Example 3.4. We demonstrate a graph with exponentially

many maximal connected s-cliques for s = 2. It is easy to extend

this idea to derive a graph with exponentially many maximal

connected s-cliques for other values of s . Let n be an integer. Let

V = {vi | i ≤ n} U = {ui, j | i , j ≤ n}

V ′ = {v ′i | i ≤ n} W = {w,w ′}

be sets of nodes. We add edges {vi ,ui, j }, {ui, j ,v
′
j } for all i ,

j ≤ n, as well as edges {vi ,w}, {v
′
i ,w
′} for all i ≤ n. Finally, we

add the edge {w,w ′}. Graph G ′ from Figure 2 has precisely this

structure, for n = 3.

Every pair of nodesvi ,v
′
j where i , j have distance 2 one from

another, while vi ,v
′
i have distance 3. Nodesw,w

′
are at distance

at most 2 from every node in the graph. Thus, it is easy to see

that every choice of nodes including precisely one among vi ,v
′
i ,

for all i ≤ n, as well as nodesw,w ′, yields a maximal connected

2-clique. (Note that nodes ui, j cannot be added to such sets.)

Thus, the graph derived has at least 2
n
maximal connected 2-

cliques, while it has only 2n +n(n − 1)+ 2 nodes, i.e., the number

of maximal connected 2-cliques is exponential in the size of the

graph.
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Algorithm PolyDelayEnum(G, s)
1. Q ← EmptyQueue()

2. I ← EmptyIndex()

3. C ← ExtendMax(∅,G, s)
4. Enqeue(Q,C)
5. Insert(I,C)
6. while NotEmpty(Q)
7. do C ← Deqeue(Q)

8. Print(C)

9. for v ∈ N∃,1
G (C)

10. C ′ ← ExtendMax({v},G[C ∪ {v}], s)
11. C ′′ ← ExtendMax(C ′,G, s)
12. if C ′′ < I
13. then Enqeue(Q,C ′′)
14. Insert(I,C ′′)

Algorithm ExtendMax(C,G, s)
1. if C = ∅
2. then add an arbitrary node to C

3. while ∃v ∈ N∀,s
G (C) ∩ N∃,1

G (C)
4. do C ← C ∪ {v}
5. return C

Figure 4: An polynomial delay algorithm for enumerating
all maximal connected s-cliques.

4 A POLYNOMIAL DELAY ALGORITHM
We present a provably efficient algorithm for enumerating all

maximal connected s-cliques in a given graph G. This algorithm
is inspired by the general purpose algorithm for enumerating

maximal subgraphs satisfying some connected-hereditary prop-

erty, appearing in [10]. Our algorithm, called PolyDelayEnum,

appears in Figure 4.

The algorithm PolyDelayEnum uses two data structures:

• Q, a queue, containing maximal connected s-cliques that
must still be processed. Later, in Section 6, we will also

consider using a priority queue for Q.

• I, an index containing maximal connected s-cliques that
have already been generated. In order to achieve the re-

quired runtime, access to I (both insertions and member-

ship checks) must be in time that is at most logarithmic in

the size of I. Thus, for example, I can be implemented as

a BTree.

PolyDelayEnum uses a sub-procedure, called ExtendMax,

which is given, as input, a set C , a graph G and the integer s .
We note that the set C provided as input is always a connected

s-clique. ExtendMax returns a set C ′ such that

• C ⊆ C ′ (this is ensured as C ′ is created by adding nodes

to C);
• C ′ is a connected s-clique (as we only add a node that is

connected to and of distance at most s from the nodes

presently in C);
• C ′ is maximal in G, with respect to the above two proper-

ties (as we continue to add nodes as long as possible).

For example, when callingExtendMaxwith the empty set (Line 3

of PolyDelayEnum), a single maximal connected s-clique is re-
turned. In general, the output of ExtendMaxmay differ, depend-

ing on the order in which we iterate over the nodes of G. In the

special case that G is almost a connected s-clique, i.e., contains
a single node that contradicts this property (as occurs in the

invocation of ExtendMax in Line 10 of PolyDelayEnum), there

is only one possible output for ExtendMax.

Now, PolyDelayEnum begins by finding a single maximal

connected s-clique, using ExtendMax, and adding this set to

both Q and I (Lines 1–5). While Q is not empty, we remove

a maximal connected s-clique C from Q, and print C (Lines 6–

8). Now, for each node v that is a neighbor of some node in C ,
we proceed as follows. First (Line 10) we find the s-clique C ′

containing v that is maximal with respect to G[C ∪ {v}]. Next
(Line 11), we extend this set so as to derive an s-clique C ′′ that
is maximal with respect to G. If we have not created C ′′ yet (i.e.,
C ′′ < I), we add it to Q and I (Lines 12–14). We note that a

key aspect of the algorithm is the fact that ExtendMax is called

twice, consecutively (Lines 10 and 11) with different graphs as

input. The first invocation guides the creation of a new connected

s-clique C ′ to contain portions from C . The second invocation

ensures maximality with respect to the input graph G.

Example 4.1. Consider calling PolyDelayEnumwith the graph

G from Figure 1 and s = 2. At first, an arbitrary 2-clique will

be created, such as C = {a,b, c,d}. This set C will be added into

the queue Q. When removed from the queue (Line 7), we will

print C and then iterate over the set N∃,1
G (C) = {e, f ,д}. Con-

sider the case where we choose v = e (in Line 9). We will call

ExtendMax({e},G[C ∪ {e}], 2), deriving the setC ′ = {b, c,d, e}.
There is only one way to extend C ′ in order to derive a maximal

connected 2-clique. This extension will be returned from the next

call to ExtendMax in Line 11,C ′′ = {b, c,d, e, f ,д}, and inserted
into the queue. Execution will proceed similarly, first for all other

neighbors of C , which will return the same result C ′′, that will
not be enqueued again. Then, the next graph dequeued will be

C ′′, that will form the last s-clique {d, e, f ,д,h} when h is added.

The following result holds. (In practice, the delay between

answers is typically lower than the theoretical result.)

Theorem 4.2. Given a connected graph G and an integer s ,
the algorithm PolyDelayEnum prints every maximal connected s-
clique inG , precisely once. In addition, the delay before printing the
first answer, and between every two consecutive answers, and from
the time the last answer is printed until termination, is O(|V (G)|3).

Proof. We start by showing correctness of the algorithm.

First, it is immediate from the structure of ExtendMax that

every set printed must be a maximal connected s-clique. Second,
observe that every set in printed at most once, as we only insert

C into Q if it was not already generated in the past (i.e., does not

appear in I). It remains to show that every maximal connected

s-clique is indeed printed.

Let v be an arbitrary node in G. Then, there is some set C ,
printed by PolyDelayEnum, that containsv . (This can be shown

by induction on the distance of v from the closest node in the

first set generated by PolyDelayEnum.)

We can now prove that every maximal connected s-clique is
printed. Let C∗ be some maximal connected s-clique. Let Cm be

the set printed by PolyDelayEnum for which the largest con-

nected component inC∗∩Cm is maximal. (If there are ties, choose

Cm arbitrarily among all such sets.) If Cm = C∗, we have indeed
printed C∗. Suppose otherwise. Observe first that Cm ∩C∗ can-
not be empty, as PolyDelayEnum must print some set contain-

ing each node in C∗. Now, since Cm , C∗, there is some node

v ∈ C∗ −Cm , such that v is connected to the largest connected

component inCm ∩C∗. After dequeuingCm from Q in Line 7, we

will iterate over the node v in Line 9. Then, Line 10 will return a
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Algorithm Cliqes(R, P ,X )

1. if P = ∅ and X = ∅
2. then print(R)
3. for v ∈ P
4. do Cliqes(R ∪ {v}, P ∩ N (v),X ∩ N (v))
5. P ← P − {v}
6. X ← X ∪ {v}

Figure 5: Bron-Kerbosch algorithm for enumerating max-
imal cliques.

set C ′ containing v , as well as the largest connected component

inCm ∩C∗ (since these together form a connected s-clique). This
set will be enlarged to C ′′ in Line 11. Now, C ′′ is either inserted
into Q (and eventually printed) or was already inserted in Q (and

eventually printed). Observe that the largest connected compo-

nent in C ′′ ∩ C∗ must be larger than that in Cm ∩ C∗, which
contradicts the maximality of choice of Cm . Hence, it must be

Cm = C∗, and C∗ is indeed printed.

We will now show that the delay is O(|V (G)|3). First, note
that by a preprocessing step we can compute N s

G (v) for every

node v ∈ V (G) in time O(|V (G)|3). In addition, ExtendMax

runs in O(|V (G)|2), since it traverses each edge at most once, in

increasing distance from the setC . Now, the delay before printing
the first answer is determined by (1) the preprocessing step which
finds the distances between nodes and (2) running ExtendMax

in Line 3. Therefore the delay before printing the first answer is

O(|V (G)|3).
The delay between every two consecutive answers, and from

the time the last answer is printed until termination, is deter-

mined by the runtime of a single iteration of the while loop in

Line 6 in PolyDelayEnum, because in each iteration a single

answer is printed and the last answer is printed in the last iter-

ation. In each iteration, the for loop in Line 9 goes over the set

N∃,1
G (C), that is of size O(|V (G)|), and for each node v in the set

calls ExtendMax, which runs in O(|V (G)|2). In total we derive

that each iteration runs in O(|V (G)|3). �

5 ADAPTATION OF BRON-KERBOSCH
ALGORITHM

We start by reviewing the Bron-Kerbosch algorithm for enumerat-

ing maximal cliques. We then present strategies and optimization

techniques to adapt this algorithm for enumerating maximal

connected s-cliques.

5.1 Maximal Cliques
The Bron-Kerbosch algorithm for enumerating maximal cliques

appears in Figure 5. This algorithm, called Cliqes, recursively

searches for all maximal cliques. When called with sets R, X and

P , it searches for all maximal cliques containing all nodes in R,
possibly some nodes in P , and no nodes in X . In particular, in the

first invocation, we send the empty set for R and X , and the set

V (G) for P .
Throughout the execution, R is always a clique. The sets P and

X are disjoint, and always satisfy that P ∪ X contains precisely

every node that is connected to all nodes in R (i.e., those can

potentially be used to extend R). Therefore, when P and X are

both empty, R is a maximal clique. Otherwise, if P is not empty,

the algorithm attempts to add each node v ∈ P in turn to R,
updating P and X to contain only nodes that are connected to

v (in addition to being connected to the rest of R). After the
recursive call that includes v , the node v is added to X , so as to

create additional unseen cliques—those that exclude v . (Cliques
containing v will be produced in the recursive call.)

The algorithm Cliqes, as presented in Figure 5, runs quite

poorly in practice. To improve the runtime, [32] presented a

technique called pivoting to reduce the branching factor of the

recursion, by iterating over only a subset of P . In particular,

instead of iterating over P , their algorithm:

• first, chooses a pivot node u ∈ P ∪ X .

• then, iterates only over the nodes v in P − N (u).

The intuition behind this improvement is that, for any node

u, every maximal clique must either contain u, or contain some

node that is not a neighbor ofu. (Otherwise, if the maximal clique

contains only neighbors of u, it must also contain u.) Hence, it is
sufficient to iterate over the nodes in P , other than the neighbors

of u. The pivot node is chosen so as to minimize the set P −N (u).

This optimization ensures a worst case runtime of O(3n/3), which

is order of the largest number of cliques possible in a graph of n
nodes. Previous work has shown that this improvement causes

the algorithm to run very well in practice.
1

5.2 Maximal Connected s-Cliques
We adapt the Bron-Kerbosch algorithm to return all maximal

connected s-cliques, instead of all maximal cliques. There are,

perhaps, two different natural approaches to adapt the algorithm

Cliqe to this new setting:

(1) R is always a connected s-clique: In the Cliqe algo-

rithm, we have seen that R is always a clique. It is natural

to adapt this algorithm so as to preserve the invariant that

R is always a connected s-clique. This approach is taken

in CsCliqes1 in Figure 6. Thus, when choosing a node

v with which to extend R (Line 3), we will only choose

nodes from P that are adjacent to some node in R. After
choosingv , we perform a recursive call, withv added to R
and we intersect sets P and X with the nodes of distance

at most s from v . Thus, throughout the algorithm, P and

X always contain precisely the nodes at distance at most

s from every node in R. Only such nodes may possibly be

used to extend R in the future.

Note the final change in the algorithm, in the condition

for printing R (Line 1). We print R only if it is maximal,

i.e., there are no nodes at distance at most s from R (i.e.,

nodes in P or X ) that are adjacent to R.
(2) R is always an s-clique, but may be unconnected: In

the second adaptation, we do not requireR to be connected.

In the algorithm CsCliqes2 in Figure 7, the set R may be

unconnected. To observe this, see that in Line 3 we can

add any node v from P to R, even if v is not adjacent to R.
Thus, R will be an s-clique throughout the execution, but
may be unconnected. This requires an additional change

to the condition for printing R in Line 1—we print R only

if it is connected.

Example 5.1. Consider using CsCliqes1 to find all maximal

connected 2-cliques for graph H in Figure 3. When first called,

R = X = ∅, P = {v1, . . . ,v6} and s = 2. Since, R is empty, we

iterate over all nodes in P . Suppose the first node chosen is v1.

1
Additional optimizations to the algorithm have been considered in the past, such

as iterating over v in the outermost recursion according to a degeneracy ordering

of G [12] and early recognition of special branching cases [27]. Such optimizations

can also be included in our algorithm.
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Algorithm CsCliqes1(R, P ,X , s)
1. if P ∩ N∃,1(R) = ∅ and X ∩ N∃,1(R) = ∅
2. then print(R)
3. for v ∈ P ∩ N∃,1(R)

◃ If R = ∅, then take N∃,1(R) = G(V )
4. do CsCliqes1(R ∪ {v}, P ∩ N s (v),X ∩ N s (v), s)
5. P ← P − {v}
6. X ← X ∪ {v}

Figure 6: Adaptation of Bron-Kerbosch algorithm for enu-
merating all maximal connected s-cliques. Throughout
the execution, R is always a connected s-clique.

Algorithm CsCliqes2(R, P ,X , s)
1. if P ∩ N∃,1(R) = ∅ and X ∩ N∃,1(R) = ∅ and

R is connected

2. then print(R)
3. for v ∈ P
4. do CsCliqes2(R ∪ {v}, P ∩ N s (v), X ∩ N s (v), s)
5. P ← P − {v}
6. X ← X ∪ {v}

Figure 7: Adaptation of Bron-Kerbosch algorithm for enu-
merating all maximal connected s-cliques. Throughout
the execution, R is always an s-clique, but may be uncon-
nected.

In the recursive call to CsCliqes1, we will have R = {v1}, P =
{v2,v3,v5,v6} and X = ∅. When a recursive call is made for the

second node v2, we will have R = {v2}, P = {v3,v4,v6} and X =
{v1}. (Note thatv1 was removed from P in Line 5 and added to X
in Line 6, in the previous iteration.) Now, consider the execution

of CsCliqes1({v2}, {v3,v4,v6}, {v1}, 2). We will iterate over

nodes that are neighbors of {v2} in {v3,v4,v6}, i.e., only over v3.

This will cause a single recursive call toCsCliqes1({v2,v3}, {v4}

, {v1}, 2), which will eventually produce the maximal connected

2-clique {v2,v3,v4}.

We contrast this execution with the execution of algorithm

CsCliqes2. At first, the algorithms will proceed in the same

fashion, as R = ∅ and both algorithms will iterate over all nodes

in the graph. However, consider the execution of the recursive

call to CsCliqes2({v2}, {v3,v4,v6}, {v1}, 2). Instead of iterat-

ing only over neighbors of v2 in {v3,v4,v6}, we will iterate

over all nodes in this set. Assuming the order of iteration is

v3 < v4 < v6, this will cause two additional recursive calls:

CsCliqes2({v2,v4}, ∅, {v3}, 2) andCsCliqes2({v2,v6}, ∅, {v1

,v4}, 2). Neither of these calls will produce maximal connected

s-cliques.

When comparing these two approaches, it is immediately

obvious that CsCliqes2 does extra work that is avoided by

CsCliqes1, as CsCliqes2 can create many sets that will never

be printed, as they are unconnected. The algorithm CsCliqes1

completely avoids this by ensuring that R is connected through-

out its execution. Notwithstanding the fact that CsCliqes1

would seem to be much superior to CsCliqes2, in fact, we will

see that the latter is much more amenable to optimizations (in-

cluding the pivoting technique). This will be discussed further

in Section 5.3. However, before discussing this further, we prove

correctness of both algorithms.

In order to prove correctness, let ≺ be an arbitrary ordering

of the nodes in G. We assume that the iteration over (the subset

of) P in Line 3 of both cscliqesi and CsCliqes2 follows this

ordering, i.e., if v,v ′ ∈ P (resp. v,v ′ ∈ P ∩ N∃,1(R)) and v ≺ v ′,
then we will choose to iterate over v before iterating over v ′.
The ordering ≺ implies two types of total orderings over nodes

in a connected s-clique C . Let ω2(C) = v1, . . . ,vk be the total

ordering overC , defined by ≺. Letω1(C) = u1, . . . ,uk be the total

ordering over C , defined as follows:

• u1 = v1;

• for all i > 1, it holds thatui = vj wherevj in the first node

according to ω2(C) that is not already among u1, . . . ,ui−1,

for which G[{u1, . . . ,ui }] is connected.

Example 5.2. Consider graph G ′ from Figure 2. Let ≺ be the

total ordering that orders the nodes as seen in the graph from

left to right, top to bottom, i.e.,

v1 ≺ · · · ≺ w ≺ u1,2 ≺ · · · ≺ u3,2 ≺ v
′
1
≺ · · · ≺ w ′ .

Consider the setC = {v1,v
′
2
,w,w ′,u1,2}. Then, we haveω1(C) =

v1,w,u1,2,v
′
2
,w ′.

We consider the execution tree Ti formed by (recursive) calls to

CsCliqesi , for i = 1, 2. To be precise, this tree has nodes of the

form (R, P ,X ) where R, P ,X are subsets of V (G). An edge from a

node (R, P ,X ) to a node (R′, P ′,X ′) is labeled by a node v . This
tree is defined recursively as follows: The root of Ti is (∅,V (G), ∅).
A node (R, P ,X ) has a child (R′, P ′,X ′) with a connecting edge

labeled v if the call to CsCliqesi with parameters (R, P ,X )
results in a recursive call with parameters (R′, P ′,X ′) when the

node v is chosen in Line 3.

Given a series of nodes ū = u1, . . . ,un , we say that ū is a path

in Ti if there is a path of edges starting from the root of Ti with

labels u1, . . . ,un (precisely in that order). A node (R, P ,X ) in Ti
is an output node if R is printed by CsCliqesi , during the call

with parameters (R, P ,X ).
Several important properties of Ti hold.

Lemma 5.3. Let G be a graph and let Ti be the execution tree
derived by callingCsCliqesi(∅,V (G), ∅, s). Let (R, P ,X ) be a node
in Ti .

(1) The set R is an s-clique;
(2) If i = 1, the set R is connected;
(3) P ∪ X = N∀,s (R);
(4) Letu1, . . . ,uk be the path to (R, P ,X ) in execution tree Ti . If

u1, . . . ,uk is a prefix of ωi (C) for some maximal connected
s-clique C , then C − R ⊆ P ;

(5) For every other node (R′, P ′,X ′) in Ti it holds that R , R′;
(6) If C is a maximal connected s-clique, then ωi (C) is a path

in Ti .

Proof. We show Properties 1–4 by induction on the depth

(i.e., distance from the root) of the node (R, P ,X ). For base case
of distance 0, i.e., the root node, all four properties are immediate.

(For Property 3, note that R = ∅, and thus, every node inG is of

distance at most s from all nodes in R. Indeed P = V (G)).
Now, assume that Properties 1–4 hold for nodes of distance at

most k from the root. We prove the required for nodes at distance

k + 1. Let (R, P ,X ) be a node at distance k + 1 from the root,

and let (R′, P ′,X ′) be its parent. Let v be the label of the edge

from (R′, P ′,X ′) to (R, P ,X ). By the induction hypothesis, R′ is
an s-clique, if i = 1, R′ is connected, and every node in P ′ is of
distance at most s from all nodes in R′. Since v is chosen from
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P ′, and is chosen so as to be connected to R′, if i = 1, it follows

immediately that R satisfies Properties 1 and 2.

Let S ′ = N∀,s (R′). By the induction hypothesis, S ′ = P ′ ∪ X ′.
During the loop of Line 3, before the recursive call CsCliqesi(R,
P ,X , s), we remove nodes from P ′ and add them to X ′. Thus,
when node v is chosen in Line 3, it still holds that S ′ = P ′ ∪ X ′.
Let S be the set of nodes that are of distance at most s from all

nodes in R′. Clearly, S = S ′ ∩ N s (v). Now, since P = P ′ ∩ N s (v)
and X = X ′ ∩ N s (v), it follows that S = P ∪ X , as required in

Property 3.

Finally, suppose that u1, . . . ,uk+1
is a prefix of ωi (C) for some

maximal connected s-cliqueC . This implies that alsou1, . . . ,uk is

also a prefix of ωi (C). Hence, C − R
′ ⊆ P ′. Since we only choose,

in Line 3, a node that is in P ′ (and hence, by Property 3 is of

distance at most s from every node in R′) and if i = 1, we only

continue with nodes that are connected to R, it follows that no
node in C is removed from P in Line 5. Otherwise, this would

contradict the minimality of choice of uk+1
in the definition of

ωi (C). Hence, it follows thatC −R ⊆ P , as required in Property 4.

Now, we show Property 5. Let (R′′, P ′′,X ′′) be the lowest

common ancestor of (R, P ,X ) and (R′, P ′,X ′). We consider two

cases:

• Case 1: (R′′, P ′′,X ′′) is the node (R, P ,X ). (The case is

which (R′′, P ′′,X ′′) is the node (R′, P ′,X ′) is identical.)
In this case, Let v be the node on the outgoing edge of

(R, P ,X ) on the path leading to (R′, P ′,X ′). Clearly, v < R
and v ∈ R′, and therefore R , R′.
• Case 2: Neither node among (R, P ,X ) and (R′, P ′,X ′) is
an ancestor of the other. Let v and v ′ be the nodes on the

outgoing edges of (R′′, P ′′,X ′′) on the paths leading to

(R, P ,X ) and (R′, P ′,X ′), respectively. Suppose, without
loss of generality, that the node v was chosen before v ′ in
the loop of Line 3. Clearly, R contains v . However, since v
is removed from the set P ′′ before the recursive call with
v ′, it follows that v is not in R′. Hence, R , R′.

Finally, we show Property 6. Let ωi (C) = u1, . . . ,un . We show,

by induction, that for every prefix u1, . . . ,uk of ωi (C), it holds
thatu1, . . . ,uk is a path in Ti . Obviously, this holds for the empty

prefix. Assume the required for a prefix of length k , and we

show that the claim holds for a prefix of length k + 1. By the

induction hypothesis, u1, . . . ,uk is a path in Ti leading to a node

(R, P ,X ). Observe that R = {u1, . . . ,uk }. By Property 4, it holds

that C − R ⊆ P , i.e., uk+1
∈ P . For i = 1, by the definition of

ωi (C), it holds that uk+1
is connected to R. Hence, at some point,

the node uk+1
will be chosen in Line 3. Therefore, there will be

a recursive call made where uk+1
is added, i.e., u1, . . . ,uk+1

is a

path in Ti . �

We can now show correctness of the algorithm.

Theorem 5.4. Let G be a graph. Then, calling the procedure
CsCliqesi(∅,V (G), ∅, s) will result in the printing of every max-
imal connected s-clique in G precisely once, and no other sets of
nodes will be printed.

Proof. First observe that no set will be printed more than

once. This follows immediately from the Property 5 of Lemma 5.3,

since we print the set R, and there are no two nodes in the exe-

cution tree that contain the same set R.
Next, we show that every set that is printed is a maximal s-

clique. Assume that R is printed. Let (R, P ,X ) be the node of Ti
in which R is printed. By Property 1 of Lemma 5.3, it follows

that R is an s-clique. If i = 1, R is also connected (Property 2 of

Lemma 5.3). If i = 2, R must be connected if it is printed, as this

is part of the requirement before printing (Line 1). Hence, R is a

connected s-clique. Suppose, by way of contradiction, that R is

not maximal. Then there is a node v that is connected to R and

is of distance at most s from every node in R. By Property 3 of

Lemma 5.3, it holds that v ∈ P ∪ X . Hence, either P ∩ N (R) , ∅
or X ∩N (R) , ∅, and thus, R will not be printed, in contradiction

to the assumption.

Finally, we show that every maximal connected s-clique will
be printed. LetC be a maximal connected s-clique. By Property 6

of Lemma 5.3, it holds that ωi (C) is a path in Ti leading to a node

(R, P ,X ). Assume, byway of contradiction, that this node is not an

output node. It then follows that there is a nodev ∈ (P ∩N (R)) ∪
(X ∩N (R)), i.e.,v is connected to R and is in P orX . By Property 3

of Lemma 5.3, it follows thatv is of distance at most s from every

node in R. Hence, R ∪ {v} is a connected s-clique. However,
R = C , and thus, this is a contradiction to the assumption that

C is maximal. Hence, it follows that if C is a maximal connected

s-clique, C will be printed during execution. �

5.3 Optimizing the Algorithm
We consider two different strategies to optimize the algorithm

CsCliqes2. Unfortunately, neither of these strategies are appli-

cable to CsCliqes1, as will be made clear.

Pivoting.As discussed earlier, a critical improvement toCliqes,

which renders the algorithm efficient in practice, is that of piv-

oting [32]. This strategy reduces the branching factor in the

execution tree by avoiding iteration over the entire set P , and
iterating over P − N (u), for some u ∈ P ∪ X , instead. Node u is

called the pivot. This technique can be applied when generating

maximal connected s-cliques, due to the following proposition.

Proposition 5.5. Let C be a maximal connected s-clique and
let u ∈ V (G) be a node. Then, one of the following conditions must
hold: (1) u ∈ C , (2) C * N s (u) or (3) C ∩ N (u) = ∅.

Proof. Suppose, by way of contradiction, that none of the

above conditions hold. Then,

(1) u < C;
(2) C ⊆ N s (u);
(3) C contains a node in N (u).

It immediately follows that C is not maximal, in contradiction to

the assumption, as u can be added to C (since it is close enough

to all nodes in C , and has a neighbor in C). �

It may not be immediately obvious how to utilize this property,

to improve the runtime, as it states that every clique must either

contain u, or contain some node that is not at distance s from u,
or cannot contain any neighbor of u. Thus, if instead of iterating

over P , we iterate over P − N s (u) (in a similar fashion to the

pivoting of Cliqe), we can miss maximal connected s-cliques
that do not contain any node from P − N s (u) (and also contain

no neighbor of u).
To overcome this problem, we will always choose the pivot

as a neighbor of some node in R. To be precise, we choose a

pivot node u ∈ (P ∪ X ) ∩ N∃,1(R) that minimizes P − N s (u).
Then, in Line 3 of CsCliqes2, instead of iterating over P , we
iterate over P − N s (u). Now, every maximal connected s-clique
containing R must either contain u, or must contain some node

that is not within N s (u). (Otherwise, if it does not contain any

node in N s (u), we could always add u, since u is connected to R
and of distance at most s from every node in R.)
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Figure 8: Graph used to demonstrate the reduction of Theorem 5.6
.

We note that this improvement cannot be integrated with

CsCliqes1, as it requires us to iterate over nodes that may not

be neighbors of R. The algorithm CsCliqes1 always preserves

the invariant that R is connected, and iterating over such nodes

would cause them to be added toR, thereby, losing the correctness
of the invariant.

To summarize, integrating pivoting into CsCliqes2 is per-

formed by replacing Line 3 with the following two lines:

3.1 u ← arg minu {|P − N
s (u)| | u ∈ (P ∪ X ) ∩ N∃,1(R)}

3.2 for v ∈ P − N s (u)

Checking for Feasibility. CsCliqes1 never creates a set R
that is unconnected. On the other hand, CsCliqes2 may go

deep into the recursion tree even if a set R is being considered,

for which it is not possible to add nodes and derive a connected

maximal s-clique. It would be preferable to prune branches for

calls of the form (R, P ,X , s) if there is no connected s-clique C
such that R ⊆ C and C ⊆ R ∪ P . (Recall that we will only try to

add nodes from P to R.) In such cases, the branches cannot lead

to a solution. Unfortunately, this cannot be verified efficiently, in

the general case, as shown stated by the following theorem.

Theorem 5.6. Let G be a graph, s > 1 be an integer, and R be
an s-clique. Determining whether there exists a connected s-clique
C such that R ⊆ C is NP-complete.

Proof. Membership in NP is immediate, as we can guess a

set C and check whether it satisfies all requirements. We show

NP-hardness by a reduction from 3-SAT.

Letψ be a 3-SAT formula withm clausesC1, . . . ,Cm , over the

variables X1, . . . ,Xk . We assume, without loss of generality, that

no clause contains both a variable and its negation.

Let V0 be the set of nodes:

{cki | i ≤ m,k ≤ s} ∪ {x
j
i | i ≤ m, j ≤ 3} ∪ { f }

Let G0 be the graph derived by taking the nodes in V0, and

adding the following edges:

• {c
j
i , c

j+1

i } for every i ≤ m and j < s;

• {csi ,x
j
i } for every i ≤ m and j ≤ 3;

• {x
j
i , c

1

i+1
} for every i < m and j ≤ 3;

• {x
j
m , f } for every j ≤ 3.

We say that a pair of nodes inV0 is conflicting if they are of the
form x

j
i ,x

j′
i′ and the j-th literal in Ci is the negation of the j ′-th

literal in Ci′ . Let G be the graph derived by taking the graph G0,

and adding a path of length s (using new nodes) between every

pair of non-conflicting nodes in V0 that are at distance greater

than s in G0.

Figure 8 (a) demonstrates graph G0 for s = 2,m = 3 and the

3-SAT formulaψ = (X1∨X̄2∨X3)∧(X1∨X2∨X3)∧(X̄1∨X̄2∨X3).

Figure 8 (b) focuses on the framed subgraph in (a) and shows all

the nodes and edges that will appear in G. Observe that there is
no path of length s = 2 between x2

1
and x2

2
as they correspond to

X̄2 and X2.

Now, we make several observations about the graph G.

(1) Let U be any subset of V0 that does not contain nodes

corresponding to a literal and its negation. Then,U is an s-
clique (although may be unconnected). This is immediate,

since we have paths of length s between every two nodes

inU .

(2) Let U be any subset of V (G) that does contain nodes cor-

responding to a literal and its negation. Then, U is not an

s-clique. This is also apparent, from a careful analysis of

the graph. We did not include paths of length s between
such nodes, in the beginning. Furthermore, when adding

edges between nodes in V0, we never create a path of

length at most s between such nodes. Indeed, the use of s
nodes c1

i , . . . , c
s
i is precisely to avoid such cases.

(3) LetU be any subset ofV (G) containing the nodes c1

1
, . . . , c1

m
, f . If U is an s-clique, then U must be a subset of V0, i.e.,

cannot contain the additional new nodes. To see why this

is so, observe that every node that is not among V0 is on

a path of length s between two nodes in V0, and will be

at distance greater than s from at least one node among

c1

1
, . . . , c1

m , f .

Now, consider s-clique R = {c1

1
, . . . , cs

1
, . . . , c1

m , . . . , c
s
m , f }.

We claim that there exists a connected s-cliqueC such that R ⊆ C
if and only ifψ is satisfiable. Suppose first thatψ is satisfiable, and

let µ be a satisfying assignment forψ . LetC be the set containing

R, as well as all nodes corresponding to literals that are satisfied

in µ. Clearly,C is an s-clique, by our first observation. In addition,

since C must include at least one node x
j
i corresponding to a

satisfied literal in each clause ci , the setC is connected (as x
j
i will

connect between csi and c
1

i+1
).

For the other direction, suppose there exists such a set C .
By Observation 3, C can contain only nodes from V0, and by

Observation 2,C will not contain nodes corresponding to a literal

and its negation. Therefore, C defines a truth assignment forψ ,
in which true is assigned to literals corresponding to nodes in

C . As before, the fact that C is connected implies that the truth

assignment gives the value of true to at least one literal in each

Ci , i.e.,ψ is satisfiable. �

Theorem 5.6 implies that we cannot have an efficient algorithm

that prunes useless branches whenever possible. Instead, we
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apply a simple optimization, that is sufficient, but not complete,

for pruning (i.e., branches are pruned only if they cannot lead to

a result, but not all such branches will be pruned). In particular,

we remove from P each nodev for which the set of nodes R∪{v}
is not completely contained in a single connected component of

G[R ∪ {v} ∪ (P ∩ N s (v))] .

Intuitively, v can be added to R, only if eventually, we may find

nodes in P ∩ N s (v) (= N∀,s (R ∪ {v})) that can fill in the gaps

between the nodes in R to derive a single connected graph. There-

fore, if we discover that this is not the case, we can remove v
from P , as it can never be in a connected s-clique together with R.

Example 5.7. Consider running CsCliqes2 algorithm with

the above feasibility check, on graph H from Figure 3 (a). When

first called, R = X = ∅, P = {v1, . . . ,v6} and s = 2. Since, R
is empty, we iterate over all nodes in P . Suppose the first node
chosen is v1. In the recursive call to CsCliqes2, we will have

R = {v1}, P = {v2,v3,v5,v6} and X = ∅. We will iterate over

all nodes in P . In the second iteration of the loop of Lines 3-6,

v = v3 (v2 was removed from P at the end of the first iteration)

and P ∩ N s (v) = v5. Now R ∪ {v} = {v1,v3} is not a connected

component in G[R ∪ {v} ∪ (P ∩ N s (v))] = {v1,v3,v5} and v3

will be removed from P without calling the recursion.

6 FINDING LARGE RESULTS
We now consider the problem of finding large maximal connected

s-cliques. In particular, assume we are given an integer k ≥ 0, and

our goal is to find all maximal connected s-cliques C such that

|C | ≥ k . When s = 1, s-cliques are standard cliques. For this case,

it is well known that determining whether there exists a clique

of size k is NP-complete. Therefore, it is interesting to consider

k as a parameter of the problem and determine whether a fixed

parameter algorithm exists, i.e., whether there is an algorithm

that runs in time O(f (k) · |G |O(1)), for an arbitrary function f .
Sincek is expected to bemuch smaller than |G |, such an algorithm
would be useful. Unfortunately, determining existence of a clique

is known to beW [1]-complete, i.e., we cannot expect to find an

algorithm with time O(f (k) · nO(1)).
We now consider the case in which s > 1. Interestingly, deter-

mining whether there exists a s-clique of size k is fixed param-

eter tractable with respect to k , for both the case of connected

s-cliques, and for arbitrary s-cliques. This gives hope that large
maximal connected s-cliques can be enumerated with delay be-

tween answers that is exponential in k , but not in |G |. Unfortu-
nately, for general s-cliques, this is not the case, as the following
theorem states. (The proof has been omitted due to space limita-

tions.) For connected s-cliques this problem is still open.

Theorem 6.1. Let k and s > 1 be integers.
(1) The problem of determining whether a graph G contains

a (connected) s-clique of size k is NP-complete, but is fixed
parameter tractable with respect to k .

(2) It is not possible to enumerate all maximal s-cliques of size
at least k in a graph G with fixed parameter delay with
respect to k , unlessW [1] =W [0].

Our algorithms can already mine all maximal connected s-
cliques of size at least k , by simply finding all maximal con-

nected s-cliques, and then filtering out all those that do not sat-

isfy the size bound. This process may be highly inefficient, as

many smaller s-cliques will be generated. We consider optimiza-

tions that can be made to our algorithms to speed up the process

of finding all maximal connected s-cliques of size at least k . In
PolyDelayEnum, we replace the queue with a priority queue

that returns larger maximal connected s-cliques first. In the algo-

rithms CsCliqes1 and CsCliqes2, we prune (i.e., do not make

recursive calls) the cases in which |R | + |P | < k . Clearly, in such

cases it is not possible to create maximal connected s-cliques
with k nodes at least.

7 EXPERIMENTAL RESULTS
Our algorithms were implemented in 32bit C++, as an extension

of the SNAP library [21]. All experimentation was run on a Win7

desktop with 16GB RAM and an Intel i5-4570 processor, with

2GB of memory allocated to the program.

We run our algorithms on synthetic Erdős-Réyni (ER) graphs

and scale-free (SF) graphs (which simulate social networks) of

varying sizes, generated by the SNAP library. All data points in

our figures are derived by generating three random graphs of the

same size, and taking the average runtime in seconds. We also

use several real datasets, as follows, taken from [20]. (Some of

these datasets are directed graphs, but for our experimentation,

we ignore the direction of the edges.)

• DBLP, with 317,080 nodes and 1,049,866 edges

• Amazon, with 334,863 nodes and 925,872 edges

• LiveJournal, with 3,997,962 nodes and 34,681,189 edges

• Twitter, with 81,306 nodes and 1,768,149 edges

• YouTube, with 1,134,890 nodes and 2,987,624 edges

One of the most costly operations in all algorithms is comput-

ing the set N s (v) for various nodes v . To save time, whenever

we compute this set, we store it in a hash table, to be reused

again later on, if needed. For large data sets, there is insufficient

memory to store all neighbors of distance s within the hash table.

When memory begins to run low, we remove some entries from

the hash table (using an LRI ordering) to make room for new

neighbor results.

Comparing Bron-Kerbosch Adaptations. We start by com-

paring the baseline versions of our Bron-Kerbosch adaptations,

i.e., CSCliqe1 and CSCliqe2, with the versions including the

two optimizations considered. We append the letter “P” and “F”

to CSCliqe2 to indicate that pivoting is used and that our feasi-

bility check is performed.

Figure 9a shows the result of running our adaptations of the

Bron-Kerbosch algorithm to find 100 connected 2-cliques, with

and without various optimizations, for random ER graphs of vary-

ing numbers of nodes (between one thousand and one million),

and average node degree 10. As was to be expected, CSCliqe1

is significantly superior to CSCliqe2. However, all three ver-

sions that do not use pivoting are much slower that the pivoting

versions (the two overlapping lines at the bottom of the graph),

running 30 to 60 times slower than the pivoting versions, for

graphs of one million nodes. For SF graphs, the gap is even larger,

with the non-pivoting versions running approximately 120 times

slower on graphs with only one thousand nodes (and average

node degree 10). For this reason, in the remainder of the exper-

imentation, we only consider the algorithms CSCliqe2P and

CSCliqe2PF, along with PolyDelayEnum (which will be de-

noted PD in our graphs).

Varying Node Size. We continue in our study of how the size

of the graph (as determined by the number of its nodes) affects

runtime. As before, we generated random graphs with between
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Figure 9: Execution times for varying parameters.

one thousand and one million nodes, and average node degree 10.

We chose s = 2 and measured the time to return 100 connected

s-cliques.
This experiment appears in Figures 9b and 9c. All times are

in seconds, and that in Figure 9c the times are in log-scale. Algo-

rithm PolyDelayEnum (PD in the graphs) slightly outperforms

CsCliqes2P and CsCliqes2PF on the ER graphs, but is signifi-

cantly worse on the SF graphs. In addition, all algorithms perform

worse on the latter, than on the former, probably due to the fact

that average size of connected 2-cliques generated is much larger

in a scale-free graph. For example, PolyDelayEnum returned

connected 2-cliques of average size 10.79 and 105.83, respectively,

on the ER and SF graphs of size one million. The change in the

trend of Figure 9b between 1M and 10M follows since the average

size of connected 2-cliques is smaller over graphs with 10 million

nodes, as the graph is sparser.

Varying Edge Density. We consider how the density of the

edges affects the speed in which results can be returned. We gen-

erated random graphs with 100 thousand nodes, and an average

degree of 4, 10, 20, 40 and 80. We chose s = 2, and measure the

time to return 100 connected 2-cliques.

Figures 9d and 9g contain the result of this experiment for

ER and SF graphs, respectively. As the density increases, algo-

rithm PolyDelayEnum once again outperforms CsCliqes2P

and CsCliqes2PF on the ER graphs. CsCliqes2PF is superior

toCsCliqes2P for degree density 80, as it avoids many recursive

calls. (This is in contrast to the many other cases in which we ob-

serve that its time is inferior, as the overhead for testing feasibility

is large.) On the SF graphs, on the other hand, PolyDelayEnum

is the slowest and CsCliqes2PF performs slightly worse than

CsCliqes2P probably do to the high connectivity of scale-free

graphs, which causes the feasibility check to always return true.

Varying s. We study how the choice of s affects the runtime.

Once again, we generated a random graph with 100K nodes

and average degree of 10. We measure the time to generate 100

connected s-cliques for values of s varying from 1 to 3. Recall

that when s = 1, we actually return cliques.

The runtime appears in Figures 9e and 9h. Runtime increases as

s increases, as it is increasingly more expensive to find neighbors

of distance s . As before, runtime is significantly slower for SF

graphs, as they have s-cliques that are much larger. The algorithm

PolyDelayEnum is slower than the others, but returns s-cliques
that are larger, on average. (For example, for s = 3, on SF graphs,
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Figure 10: Execution time for returning large results.
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PolyDelayEnum returns 3-cliques of average size 1084, while

the other algorithms return 3-cliques with average size 668.) Even

for s = 3, the runtime remains reasonable, and in practice, larger

values of s are usually not of interest.

Returning all Results.We consider the runtime when return-

ing all connected s-cliques in a graph. For this experiment, we

generated an ER graph with 100 thousand nodes and average

degree of 10. This graph has 112,134 connected 2-cliques. We

measure time elapsed between generating every 10 thousand

results, until all results are generated.

Figures 9f contains the result of this experiment. Recall that

PolyDelayEnum runs in polynomial delay (Theorem 4.2), i.e.,

the delay between results is polynomial in |V (G)|. However, the
CsCliqesi variations have no such guarantee. It is therefore

somewhat surprising to see that, in practice, the delay between

successive sets of 10 thousand results grows for PolyDelayEnum

while for CsCliqes2P and CsCliqes2PF remaining almost

steady. Perhaps this can be explained by the high memory re-

quirements of PolyDelayEnum (e.g., as it must store all results

created), which makes access to auxiliary data structures more

expensive as more results are created.
2

Non-synthetic Datasets. In Figure 9i we show the results of

returning 100 connected 2-cliques over the real datasets presented

in the beginning of this section. Once again, the algorithms

CsCliqes2P and CsCliqes2PF outperform PolyDelayEnum

almost consistently. PolyDelayEnum performs better only over

the LiveJournal dataset, but the difference in runtime is small.

Returning Large Results.We consider the heuristics presented

in Section 6 to find 100 connected 2-cliques that are larger than k ,

2
Also, the reader may note that while the delay given by Theorem 4.2 is polynomial

in the input, it is still quite large.

for some given size k . Once again, we generated random graphs

with 100K nodes and average degree of 10 and used the real

datasets as well. Our range of values for k for the random graphs

was determined by the average size of answers returned by the

algorithms when no size restriction was given. (With no size

restriction, the average result size for the ER graph was approxi-

mately 10, and for the SF graphwas between 35 and 60, depending

on the algorithm used.) For the real graphs, we set k = 50.

In Figures 10a, 10b and 10c, the result of this experiment ap-

pears, comparing the optimized version of the algorithms (in

black) against the regular algorithms (in red) until a hundred large

results are found. Interestingly, the time for PolyDelayEnum on

SF graphs is steady, as this algorithm naturally creates large re-

sults in this setting. The Bron-Kerbosch adaptations timed out

on SF graphs with large k and PolyDelayEnum timed out on

the youtube graph, running over an hour. Clearly, the optimiza-

tions for CsCliqes2P and CsCliqes2PF improve the runtime

significantly in most cases, but the optimization for algorithm

PolyDelayEnum is not consistently superior.

We note that the optimizations discussed in Section 6 were

very important in achieving the runtimes shown. The speedup

with respect to the regular (non-optimized) versions were signif-

icant in most cases.

Comparing cliques and s-cliques size. To further motivate

enumerating s-cliques for s > 1, we compare the sizes of s-
cliques for s = 1, 2, 3 over the real datasets. For this experiment

we randomly sampled 100 s-cliques, for each of the datasets

and each of the values of s . We then calculated both average

and maximum sizes. The result of this experiment appears in

Figure 11. The datasets are organized by increasing edge density,

and for each graph, we plot the average and maximum size of

cliques, 2-cliques and 3-cliques. Unsurprisingly, the size of s-
cliques is larger (for all choices of s) when the graph is more

dense. In addition, observe that as s grows larger, the average
and maximum size of the s-cliques increases. Note that the sizes
are in log scale, and hence, differ significantly.

Depending on the application, finding highly cohesive sets

of larger (or smaller) sizes may be more useful. For example, in

many settings, communities that are very small, or very large,

may be less useful. Smaller communities may not well-represent

the actual facts on the ground, while huge communities may

contain people who are not sufficiently related. The ability to

choose a value for s , and then enumerate (as our algorithms do)

gives the user maximum flexibility.
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Summary of Results. As is apparent from the results above, all

algorithms PolyDelayEnum, CsCliqes2P and CsCliqes2PF

have runtimes that are quite reasonable. Usually, the adaptations

of Bron-Kerbosch have superior runtime to that of the algorithm

PolyDelayEnum, but the latter may be preferable for returning

larger s-cliques, particularly on sparse graphs. When comparing

CsCliqes2P and CsCliqes2PF, one can observe that usually

the overhead of checking for feasibility (done in the latter algo-

rithm) is larger than the gains derived by avoiding unnecessary

recursive calls. (The only exception was for highly dense ER-

graphs, in which feasibility checking clearly pays off.)

Another important difference between PolyDelayEnum and

the Bron-Kerbosch adaptations is in memory requirements. Run-

ning PolyDelayEnum requires additional data structures (e.g.,

the queue Q and index I). Thus, its memory requirements are

linear in the size of the output. This contrasts with the Bron-

Kerbosch adaptations, which require memory that is linear in

the input. In our implementation, we assumed that the structures

for PolyDelayEnum fit in main memory, but for larger inputs

(or when desiring to run the algorithm until all results have been

found), it would be necessary to use external memory structures.

8 CONCLUSION
This paper studied the problem of finding maximal connected

s-cliques in a graph—a problem of high interest, due to the use-

fulness of clique relaxations. We have presented the first algo-

rithms for this problem, by taking two completely different ap-

proaches for solving this problem. The correctness of our algo-

rithms is proven and experimentation shows the efficiency of

our approaches.

As future work, we intend to study applications in which con-

nected s-cliques can be useful, such as community detection and

link prediction. Optimizations of the algorithms, for special types

of graphs (e.g., sparse graphs or bipartite graphs) are also an

interesting direction for future work. Another important direc-

tion is adapting the algorithms to a distributed environment, as

returning all s-cliques for large graphs can become infeasible for

a single machine.
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ABSTRACT
Record linkage has received significant attention in recent years

due to the plethora of data sources that have to be integrated to

facilitate data analyses. In several cases, such an integration in-

volves disparate data sources containing huge volumes of records

and must be performed in near real-time in order to support

critical applications. In this paper, we propose the first summa-

rization algorithms for speeding up online record linkage tasks.

Our first method, called SkipBloom, summarizes efficiently the

participating data sets, using their blocking keys, to allow for

very fast comparisons among them. The second method, called

BlockSketch, summarizes a block to achieve a constant num-

ber of comparisons for a submitted query record, during the

matching phase. Additionally, we extend BlockSketch to adapt

its functionality to streaming data, where the objective is to use

a constant amount of main memory to handle potentially un-

bounded data sets. Through extensive experimental evaluation,

using three real-world data sets, we demonstrate the superiority

of our methods against two state-of-the-art algorithms for online

record linkage.

1 INTRODUCTION
Massive amounts of data, stored in disparate data sources, have

to be integrated and matched to support data analyses that can

be highly beneficial to businesses, governments, and academia.

Record linkage, also known as entity resolution or data matching,
is the process of identifying records that match, i.e., refer to the

same real-world entity. The lack of common unique identifiers

for records that belong to different data sources, as well as the

existence of variations, errors, misspellings, and typos in various

data fields, constitute record linkage a challenging process. Tradi-

tionally, record linkage consists of two main steps: blocking and

matching. In the blocking step, records that potentially match

are grouped into the same block. Subsequently, in the matching

step, records that have been blocked together are examined to

identify those that match. Matching is implemented using either

a distance function, which compares the respective field values of

a record pair against specified distance thresholds, or a rule-based
approach, e.g., “if the surnames and the zip codes match, then

classify the record pair as matching".

Several blocking approaches have been developed with the

aim to scale the record linkage process to Big data sets without

sacrificing accuracy [1, 6, 14, 32]. These methods perform the

linkage process offline and provide the result set only when the

entire linkage process has been completed. Given the size of mod-

ern data sets and the costly operations that have to be performed

for record linkage, offline methods can take a significant amount

of time to produce the matchings. There are many cases though,

where the linkage process has to return a fast response in order

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the 21st

International Conference on Extending Database Technology (EDBT), March 26-29,

2018, ISBN 978-3-89318-078-3 on OpenProceedings.org.
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to allow for emergency actions to be triggered. Let us assume, for

example, a central crime detection system that collects data from

several sources, such as crime and immigration records, central

citizens’ repositories, and airline transactions. Query data about a

suspect could be submitted to this system in order to be matched

with any possible similar records found therein. The results of

this process have to be reported as fast as possible or, at least,

within an acceptably low time period, in order to trigger police

enforcement actions.

As another example, consider the recent series of bank and

insurance company failures, which triggered a financial crisis of

unprecedented severity. In order for these institutions to recover

and return to normal business operation, they had to engage in

merger talks. One of the driving forces of such mergers is the

appreciation of the extent to which the customer databases of

the constituent institutions are shared, so that the benefits of the

merger can be proactively assessed in a timelymanner. A very fast

estimation of the extent of the overlap of the customer databases

is thus a decisive factor in the merger process. To achieve this,

the data custodians could use summaries of their databases in
order to quickly estimate the overlap of their customers, instead

of engaging in a tedious record linkage task. Although our moti-

vation comes from the summarization of the blocking structure

of a database, we believe that database summarization is an area

of great interest with applications beyond record linkage.

To support real-world applications where record linkage has

to be performed in near real-time, several online record linkage

approaches have been proposed in the literature [5, 10, 24, 31].

These approaches require the availability of large amounts of

main memory, which is necessary in order to store their corre-

sponding data structures. For instance, [5] utilizes large inverted

indexes, while [10, 24, 31] sort the records to form blocks by

leveraging large matrices or huge graphs. Despite several efforts

to utilize small amounts of memory, e.g., [24], the results in terms

of performance clearly indicate the inability of these algorithms
to handle an increasingly large volume (or a continuous stream) of
records in a real-time fashion. Given that main memory is always

bounded and the number of records may in several real-world

applications be unbounded, the performance of these data struc-

tures quickly degrades significantly. Furthermore, in order to

deal with this plethora of records and detect the matching pairs,

the proposed methods usually resort to conducting an excessive
number of distance computations. This strategy, however, is not
efficient, since it incurs significant delays to the record linkage

process.

In this paper, we introduce three methods for efficiently man-

aging large volumes of records in the context of online record

linkage. Our first method, called SkipBloom, performs a summa-

rization (synopsis) of the blocking structure of a data set using a

small footprint of main memory, whose size is logarithmic in the

number of distinct processed blocking keys. This synopsis can

be easily transferred to another site (or used remotely) to esti-

mate the common number of blocking keys. Such a preliminary

estimation may bring to surface important insights, which can
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be further analyzed by the data custodians. The outcome of such

analyses may encourage (or discourage) the data custodians to

conduct a full-scale record linkage task.

Our second method, called BlockSketch, tackles the prob-

lem of blocks that are overwhelmed with records, which should

be compared against a query record to detect matching pairs.

BlockSketch instead of implementing the naïve linear approach,

compares the query record with a constant number of records
in the target block, which entails a bounded matching time. In

order to achieve this optimization, BlockSketch compiles, for

each block, a number of sub-blocks, which reflect the distances

of the underlying blocked records from the blocking key. The

algorithm places a query record to the sub-block whose records

exhibit the smallest distances from the query record.

Our third method, called SBlockSketch, operates on data

streams, where the entire data set is not known a-priori but,

instead, there is an unbounded stream of incoming data records.

SBlockSketch maintains a constant number of blocks in main

memory at the cost of a time overhead during their replacement

with blocks that reside in secondary storage. In this scheme, we

propose a selection algorithm to effectively select the blocks that

should be replaced, by taking into account their selectivity (by

the incoming records) and age.

To the best of our knowledge, SkipBloom is the first algorithm
for creating an appropriate synopsis of a blocking structure, while

BlockSketch and SBlockSketch are the first methods for suffi-

ciently summarizing a block for the needs of the matching phase

of a record linkage task.

The rest of this paper is structured as follows: Section 2 presents

the related work, while Section 3 outlines the building blocks

utilized by our algorithms and provides the formal problem defi-

nition. Sections 4, 5, and 6 present our proposed algorithms from

both a practical and a theoretical point of view. The results of

our experimental evaluation, including a detailed comparison

with baseline methods, are reported in Section 7, while Section 8

concludes this work.

2 RELATEDWORK
A significant body of research work has been conducted in record

linkage during the last four decades. This work has been nicely

summarized in a number of survey articles [4, 9, 30]. However,

only a very limited amount of work has targeted the area of near

real-time record linkage, such as [5, 7, 8, 12, 15].

In [5], Christen et al. present an approach that involves a pre-

processing phase, where the authors compute the similarities be-

tween commonly blocked values, using a set of inverted indexes.

The authors use the double metaphone [3] method to encode the

string values, which are then inserted into the inverted indexes.

This scheme is extended in [27], where a heuristic method is

presented to index the most frequent values of data fields. This

method, though, requires a-priori knowledge of the values in

certain fields and is not well-suited for settings where highly

accurate results are needed. Ramadan and Christen in [26] utilize

a tree structure where a sorting order is maintained according

to a chosen field(s). A query record scans not only the node that

is inserted, but also its neighboring nodes where similar records

may also reside. Nevertheless, the distance computations that

should be performed may degrade considerably the performance

of this method in online settings.

Dey et al. in [7] develop a matching tree to speed up the

decision about the matching status for a pair of records, so that

it can be made without the need to compare all field values.

However, the performance of this method depends heavily on

the training of the matching tree, which requires a large number

of record pairs. Moreover, the authors do not draw any attention

to the acute problem of reducing the record pairs comparisons.

Ioannou et al. in [8] resolve queries under data uncertainty, using

a probabilistic database. The effectiveness of their method heavily

depends on the potential of the underlying blocking mechanism,

which is used implicitly, to produce blocks of high-quality. In

[12], Altwaijry et al. propose a set of semantics to avoid resolving

certain record pairs. Their scheme, however, focuses on how to

resolve generic selection queries (e.g., range queries), rather than

on minimizing the query time.

There is also another body of related literature that deals with

progressive record linkage (e.g., [10, 24, 31]). These techniques

report a large number of matching pairs early during the linkage

process and are quite useful in the event of an early termination

of the linkage process, or when there is limited time available for

the generation of the complete result set.

The solutions proposed byWhang et al. in [31] and Papenbrock

et al. in [24] are empirical and rely heavily on lexicographically

sorting the input records to formulate clusters of similar records.

Although the sorting technique is quite effective in finding simi-

lar values in certain cases, it cannot guarantee identification of

matching record pairs. Consider, for example, the similar strings

‘Jones’ and ‘Kones’, where the first letter has been mistyped; us-

ing [24, 31], the corresponding records would definitely reside

in different clusters (assuming a large number of records). Con-

sequently, the corresponding pair of records would never be

considered as matching.

More recently, Firmani et al. [10] introduced two progressive

strategies that provide formal guarantees of maximizing recall,

focusing though only on minimizing the number of queries to

an oracle (which is an entity that replies correctly about the

linkage status of a pair) and not on minimizing the running

time. Both strategies implicitly assume an underlying blocking

mechanism that has been applied on the data sets, and heavily

rely on the effectiveness of that blocking mechanism. Their most

serious shortcoming is the excessive amount of time-consuming

similarity computations, which need to be performed between

the formulated pairs in the blocks, without achieving any increase
in recall. For example, in a data set of 3million records (including

the query set), more than 1.3 billion similarity computations

should be performed without reporting any results!

There is also another body of work, termed as meta-blocking
[22, 23], which investigates how to restructure the generated

blocks with the aim of discarding redundant comparisons. Meta-

blocking techniques, however, conduct a cumbersome transfor-

mation of a blocking structure into a graph, which renders these

techniques not applicable to online settings.

In Section 7, we elaborate further on the approaches of Chris-

ten et al. and Firmani et al., which are the state-of-the-art methods

with which we compare our proposed techniques.

3 BACKGROUND AND PROBLEM
STATEMENT

In this section, we first introduce the necessary background and

terminology for the understanding of our proposed schemes, and

subsequently derive the problem statement.
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current Bloom filter of ‘Jack’.
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current Bloom filter

Figure 1: SkipBloom inserts and locates a key in logarithmic time using a small amount of main memory. The blue rectan-
gles and arrows indicate the route to locate the nearest key to k .

3.1 Skip List
A skip list [25] is a probabilistic data structure that is designed

to provide fast access to an ordered set of items. It is actually

a sequence of lists, or levels, where the first list, termed as the

base level, contains all the items inserted so far in sorted order.

Each successive list is a copy of the previous with some elements

skipped, until the empty list is reached. Its randomization lies in

the number of levels an item will join, determined by tossing a

fair coin
1
. Each item of each list is linked to the same item in the

previous list, as well as to the next item at the same level. The

query operation for an item starts at the top-level, by horizontally

scanning the items therein until it encounters either the target

item or a larger item. In the case of a larger item, the same process

is repeated at the lower level until the base level is reached. The

running time to insert an item, as well as to report the existence

of an item, is O(log(n)), where n is the number of inserted items.

3.2 Bloom Filter
A Bloom filter [2] is a probabilistic data structure for representing

a large number of items using a small number of bits, which are

initialized to 0, to efficiently support membership queries. Each

item is hashed by a set of universal hash functions that map

it to certain positions, chosen randomly and uniformly, in the

Bloom filter. Accordingly, these positions are set from 0 to 1.

Upon querying for an item, the same process is followed, where:

• one can definitely infer that this item has not appeared, if

all retrieved positions are set to 0.

• one can conjecture that this item has appeared with cer-

tain probability, if all retrieved positions are set to 1. The

probabilistic nature of the reply is due to the fact that these

positions may have been set to 1 by other items and not

the query item.

3.3 Problem Formulation
Consider two data custodians who own data sets A and B, re-
spectively. For each record r of A (or B), the data custodians use

1
As long as tails come up, we add the item to each successive list. We terminate

this process when we encounter heads.

a function k = block(r ) that generates the blocking key k of r .
This key is used to locate a target block in the blocking struc-

ture to either insert r into the target block (blocking), or iterate

all the records already found therein and compare them with

r (matching). We use DA and DB to denote the set of blocking

keys of each of these data sets. Moreover, we refer to the fraction

D =
|DA∩DB |
|DB |

, as the overlap coefficient between A and B.

In this workwe introduce three algorithms, namely SkipBloom,
BlockSketch, and SBlockSketch, for addressing the following
problems

2
:

Problem Statement 1. Calculate the overlap coefficient for
A and B, by accurately summarizing DA and DB using sublin-
earmemory requirements and sublinear running time in the
number of inserted blocking keys.

Problem Statement 2. For each query record of A (or, equiv-
alently, B), find the set of its matching records from B (or, equiva-
lently, A) in constant running time.

Problem Statement 3. For each query record of A (or, equiv-
alently, B), find the set of its matching records from B (or, equiv-
alently, A) in constant time, using also a constant amount of
main memory.

4 THE OPERATION OF SKIPBLOOM
SkipBloom is an efficient blocking data structure that reports

membership queries of blocking keys (derived from a large data

set) to the blocking structure, using only a small footprint of

main memory. It implements the following generic operations:

• query(k): Reports the membership (true or false) of key
k to SkipBloom.
• insert(k): Inserts key k into SkipBloom.

The operation of SkipBloom is based on a skip list that imple-

ments a mechanism to locate efficiently a blocking key, as well

2SkipBloom aims to address Problem 1, BlockSketch targets Problem 2, while

SBlockSketch tackles Problem 3.
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Figure 2: SkipBloom inserts a reference from the list of
Bloom filters of ‘Johnson’ to the first Bloom filter of
‘Johns’, in order to maintain the consistency of the block-
ing mechanism.

as on a series of Bloom filters, which are used as fast memory-

bounded buffers.

SkipBloommaintains, in expectation,

√
n blocks in main mem-

ory, stored in the base level of the skip list. Each such block,

which is represented by its key
3
, includes a list of Bloom filters

in order to store keys that have been driven by the mechanism

of the skip list to this block. This actually means that the keys

stored in the Bloom filters of a block are greater than the value

of the corresponding key.

The operation of SkipBloom is illustrated in Figure 1. In this

figure, a skip list is shown that contains five keys in the base

level. Upon receiving a query record, which is first filtered by a

blocking function to generate its key (e.g.,k = ‘John’), SkipBloom
locates the block ‘Jack’ very fast, using the logarithmic runtime

property of the underlying skip list. According to the operation

of skip lists, this block is alphabetically the nearest key to k from

the left. The next step is a simple insertion of k into a Bloom

filter of ‘Jack’. Each block has an active Bloom filter, termed as

current, and a number of inactive Bloom filters, which are used

only during the query process, as we will shortly explain.

To answer a query on whether a certain key k exists or not,

SkipBloom follows almost the same process as described above.

Assume, for example, that SkipBloom receives the query k =
‘Jonathan’. First, the skip list will be scanned to eventually locate

‘Larry’. Subsequently, each Bloom filter of this block will be it-

eratively queried until k is found, or the Bloom filters of ‘Larry’
are exhausted.

In what follows, we provide details that will justify certain

design choices, such as the reason for maintaining a series of

small (in length) Bloom filters in each block, instead of having

a larger one. In order to populate the skip list with keys, we

apply a simple Bernoulli random sampling algorithm that chooses

each key with probability equal to n−1/2. This sampling process

ensures the uniform reflection of the distribution of keys from

the data set to the skip list. This is an appealing feature, since

SkipBloom easily tackles distribution anomalies, such as skews of

certain ranges of keys, by choosing these keys and inserting them

into the skip list to effectively reduce the bottleneck of certain

keys and maintain uniformity (in expectation). Any uniform

sampling method can be applied; we refer the interested readers

to a comprehensive survey in [13].

If a large number of similar keys are generated, then the sam-

pling routine will choose randomly similar keys to create the

corresponding blocks. For example, consider the case of blocking

a large number of surnames from the US census data. Then, possi-

ble blocks might be ‘Johns’, ‘Johnson’, and ‘Johnston’, which will

3
Henceforth, key and blocking key will be used interchangeably.

be created in this particular chronological order. Consequently,

there will be keys other than ‘Johns’, e.g., ‘Jordan’ or ‘Jolly’, that
will be inserted into the Bloom filters of ‘Johns’. These Bloom
filters should be now transferred to (or referenced by) ‘Johnson’,
and then to (by) ‘Johnston’. For this reason, we keep the number

of keys that can be inserted into each Bloom filter small; this

number will be accurately specified later. Moreover, we anno-

tate each Bloom filter with its smallest and its greatest key, in

terms of alphabetical order. By doing so, upon inserting ‘Johnson’,
SkipBloom scans iteratively the Bloom filters of ‘Johns’ to locate

Bloom filters that might contain ‘Johnson’, or any greater values.

If such Bloom filters exist, a simple reference is established be-

tween the block of ‘Johnson’ and the corresponding Bloom filters.

Figure 2 illustrates the reference of a block to a Bloom filter that

belongs to the previous block.

Eventually, a record is stored into a key/value database system,

maintaining its original blocking key, regardless of the block that

was used in SkipBloom.

Algorithm 1 The query operation of SkipBloom.

Input: Skip list SL, query key k
Output: true if k is found, false otherwise
1: Key p ← SL.query(k )
2: while (p.hasBloomfilters()) do
3: bf← p .nextBloomfilter()
4: if (k ≥ bf.min AND k ≤ bf.max ) then
5: if (bf.member(k ) == true) then
6: return true
7: end if
8: end if
9: end while
10: return false

4.1 Algorithms
Algorithm 1 illustrates the query operation of SkipBloom. First,
the skip list SL is queried to locate the nearest key p to the query

k (line 1). Then, the Bloom filters that are both maintained and

referenced by p4 (line 2) are scanned iteratively to find k using

the min and max values of each Bloom filter (line 4). If k is found,

then the algorithm terminates (line 6). In case of composite keys,

we perform a conjunction using the individual keys.

Algorithm 2 outlines the insertion of a key in SkipBloom.
For each key k derived from each record, we determine with

probability
1√
n
whether k will be inserted into the skip list or

not (line 1). In more detail, we generate a random value in (0, 1)

and then pick k if this value is less than
1√
n
. Since the generation

of a random value is an expensive operation, we exploit the fact

that the number of keys skipped between successive inclusions

follow a geometric distribution [13]; accordingly, each time we

pick a key, we generate the position of the next key, in the stream

of records, that will be picked.

If a key k will be inserted into the skip list as a base level key,

then a block is created after the nearest key to k (line 2). Then,

SkipBloom has to locate each Bloom filter of p that may contain

keys that should be now transferred to the newly created block

of k (lines 4–8). In order to easily locate these Bloom filters, we

annotate each Bloom filter used with the min and max keys it

contains (line 5). The inclusion of a Bloom filter with a valid

range of keys is achieved through a reference from p to k .
If a key will not be stored in the skip list, then the nearest key

p to k is located in order to insert k in the current Bloom filter of

4SkipBloom locates these Bloom filters performing a recursive process.
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Algorithm 2 The insert operation of SkipBloom.

Input: Skip list SL, key k
1: if (nextSample() == true) then
2: Key p← SL.insert(k ) ▷ Key p is the nearest (previous) key to k
3: List bfList← k .createList() ▷ The list bfList that will

host the Bloom filters of k is created

4: for each bf in p do
5: if (k ≥ bf.min AND k ≤ bf.max) then
6: bfList.add(bf) ▷ A reference is added

to each Bloom filter found in p
that might contain keys that belong to k

7: end if
8: end for
9: else
10: Key p ← SL.query(q)
11: bf← p .getCurrentBloomFilter()
12: bf.insert(k)
13: if (k ≤ bf.min) then
14: bf.min← k
15: end if
16: if (k ≥ bf.max) then
17: bf.max← k
18: end if
19: end if

p (lines 10–12). Algorithm 2 eventually updates the min and max
annotations of the current Bloom filter of p (lines 13–18).

4.2 Accuracy and Complexity Analysis
As we expect

√
n blocks in the base level of the skip list, where

the sampling process ensures a uniform distribution of the corre-

sponding blocking keys, the expected number c of keys in each

block is:

E[c] =
n
√
n
=
√
n. (1)

By setting u =
√
n/m to be the maximum number of keys that

will be stored in each Bloom filter, wherem is a constant value

(e.g., m = 10), the number of Bloom filters in each block will

be (in expectation) equal tom. Furthermore, the numbermbt of

Bloom filters contained in block b at time t , specifies the upper
and lower bound of the number nbt of the distinct keys inserted,
which is:

(mbt − 1)

√
n

mbt
≤ nbt ≤ mbt

√
n

mbt
. (2)

The accuracy of SkipBloom to report the existence of a key

depends on the false positive probability parameter fp of the

Bloom filters. First, consider the event where a query key does

not exist in any Bloom filter of the resulting block. The probability

of reporting correctly this event, using one such Bloom filter, is

1 − fp. Hence, the same probability by using collectively all the

m Bloom filters is:

(1 − fp)m , (3)

since the content of a Bloom filter is independent from that of

another Bloom filter.

In the case that a query key does exist in any
5
Bloom filter

of the resulting block, the probability of reporting this event

is 1. Therefore, we bound from below the error probability of

SkipBloom by 1 − (1 − fp)m .

Computational complexity: Based on Algorithm 1, the run-

ning time of querying SkipBloom isO(log(
√
n)+m+m

√
n), where

the first term denotes the time of scanning the skip list to locate

the appropriate block, the second term denotes the time of scan-

ning the Bloom filters found therein, and the last term is the time

of scanning the Bloom filters referenced directly or indirectly by

the chosen block.

5
Since, we expect to have duplicate keys, it is quite natural that the same key may

be stored into multiple Bloom filters of a block.

Algorithm 2 suggests that the running time of an insertion of

a key into SkipBloom is O(log(
√
n) +m), where the two terms

are the time of inserting a key into the skip list and the time of

scanning the Bloom filters of the nearest key, respectively.

Memory complexity:Thememory requirements of SkipBloom
are O(2

√
n+
√
nm) = O(

√
n(2+m), because the skip list contains

O(2
√
n) keys and each key in the base level of the skip list consists

of O(m) Bloom filters.

4.3 Using SkipBloom as a Synopsis of the
Universe of Blocking Keys

SkipBloom can be used as a synopsis, termed also as summariza-
tion, of the universe of the blocking keys of a database, in order to
facilitate an accurate pre-blocking process. During the execution

of this process, the data custodians will resolve very fast the com-

mon blocks, which will be of great assistance in estimating the

running time, in terms of the number of comparisons that will be

needed (by exchanging the number of records in each common

block). In turn, the data custodians will determine whether they

will perform the linkage process or not, by considering several

factors based on these preliminary results. For instance, if the

number of common blocks is very small, then (a) the chances of

identifying similar, or matching, record pairs are rather slim, and

(b) the record linkage process itself may not be cost-effective.

Let us now consider the following scenario. Data custodian

A generates a SkipBloom from database A, which is submitted

to data custodian B. Subsequently, data custodian B iterates her

blocking keys and queries the SkipBloom, which reports positive

or negative answers for the existence of the query keys. This

entails O(n(log(
√
n)+m +m

√
n)) = O(n(log(

√
n)+
√
n)) running

time,
6
since each key of B is queried against the SkipBloom of A.

To further accelerate this process, data custodian B also gen-

erates a SkipBloom, to compile a uniform sample of keys and

to use this SkipBloom to report membership queries. The keys

found in the base level of the skip list are now queried against

the SkipBloom of A, as illustrated in Figure 3.

Figure 3: The blocking keys of the databases are packed
into their corresponding synopses, each of which is imple-
mented as a SkipBloom (symbolized by SB). These synopses
are used to draw inferences about the source databases.

Since, the keys of B constitute a randomly and uniformly cho-

sen sample, they can be used as input to a Monte Carlo simulation

[21], which will estimate the proportion (or the number) of identi-

cal blocking keys between the data sets of the two data custodians.

Using only the synopses, the data custodians will acquire a clear

picture about the overlapping keys with certain approximation

guarantees. Monte Carlo simulation requires (ϵ2ϑ )−1 (ignoring a
small constant factor) keys from B in order to exhibit relative er-

ror ϵ with high probability. Since the proportion of identical keys

is unknown, we bound it from below with a reasonable value, e.g.,

ϑ = 0.05, to approach the number

√
n of the sampled keys that

6
We assume that the number of distinct blocking keys is n in both A and B .
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Figure 4: Illustration of a block with λ = 2 sub-blocks,
whose key is <‘John’, ‘Jon’>. BlockSketch inserts records
into the sub-blocks based on the distance of the key values
of these records from the chosen representative(s). The
sub-block for which one of its representatives exhibits the
smallest distance from the key values of a record, is cho-
sen as the target sub-block.

are contained in the SkipBloom of B. Even for a relatively small

n = 10
8
, the Monte Carlo simulation will provide its guarantees,

since

√
n is greater than the required number of sampled keys

for ϵ ≥ 0.05. The fraction of the overlapping keys found in the

sample is used as an estimate for the overlap coefficient of the

keys between the two databases. By comparing the synopses, we

eventually achieve the much faster O(
√
n(log(

√
n)+
√
n)) running

time, compared to using only the synopsis of data custodian A.

5 THE OPERATION OF BLOCKSKETCH
The existence of blocks that contain a large number of records

makes the matching phase (i.e., the comparison of query records

against every record found in a target block) prohibitively expen-

sive in highly demanding environments. The situation becomes

even more challenging in environments where the matching

record pairs have to be reported in near real-time.

To address this shortcoming, in this work we opt for a dif-

ferent strategy: we compare the query record with a constant
number of records of the target block, which entails a bounded

matching time. This optimization requires maintaining λ sub-

blocks (S1, S2, . . . , Sλ) in each block, whose aim is to represent

sufficiently the records inserted so far. In our proposed represen-

tation, a number of records play the key role of representatives for
each sub-block. This allows to formulate groups of records inside

each block that are more likely to match. We term our proposed

algorithm as BlockSketch, because a small number of records

comprise a sketch that represents sufficiently the records of an

entire block. The concept of sufficient representation boils down

to choosing representatives that exhibit certain distances from

the corresponding blocking key. We note that BlockSketch can

operate either autonomously or in conjunction with SkipBloom,
where the latter will be used as a fast bounded memory to report

whether a certain blocking key has appeared or not.

The fact that certain records are inserted into a block, using

a blocking function, implies that all these records share some

degree of similarity. Therefore, it is reasonable to assume that the

distance between a key and a record
7
will be upper bounded by

λθ . Hence, BlockSketch formulates λ sub-blocks, each of which

7
The distance either between a pair of records, or between a blocking key and a

record, is determined by the distances of the certain field values, part of which

usually make up the blocking key.

represents records with distances ≤ θ , ≤ 2θ , . . . , ≤ λθ from the

key, where θ is the distance threshold of the keys of a pair of

matching records. Upon receiving a key, BlockSketch aims to

insert this record into the sub-block of the target block, where it

is more likely to formulate matching record pairs. For this reason,

each key is compared against all representatives found in a block,

in order to locate the sub-block whose representative exhibits

the smallest distance from the newly arrived key.

As an example, assume that we use edit distance as the sim-

ilarity metric, θ = 2 and λ = 3, and a blocking key is used that

consists of the first three letters and the whole value of the sur-
name and given name attributes, respectively. As Figure 4 shows,
record <‘John’, ‘Jones’, 1970>, whose key values exhibit a total

distance of 2 ≤ θ from <‘John’, ‘Jon’>, is inserted into the 1-st

sub-block, because of the representative <‘John’, ‘Jon’>. Similarly,

<‘John’, ‘Jonker’, 1975>, whose distance is 3 ≤ 2θ from <‘John’,
‘Jon’>, is inserted into the 2-nd sub-block, due to the comparison

with the representative <‘John’, ‘Jonkers’>.
It is important to note that for threshold θ any metric that

is used in record linkage processes can be supported, whether

satisfying the triangle inequality or not. For example, a very

commonly used metric in record linkage is the Jaro-Winkler

similarity function [3], which takes on values in [0, 1]. Hence,

one by setting the similarity threshold to θ ′, and then by choosing
θ = 1 − θ ′, produces very reasonable sub-blocks.

The probability for a record to fall into a certain sub-block

that holds its matching record, depends on the representatives of

the target sub-block, as well as on the left and right neighboring

sub-blocks. For instance, assume two neighboring sub-blocks

with representatives ‘Jacks’ and ‘Jackson’, respectively. The keys
of these representatives comprise the values of the ‘surname’
attribute. Key ‘Jackson’ arrives, whose record is inserted into the

identical sub-block of ‘Jackson’. At a later time, ‘Jacksn’ arrives,
that suffers from a typo, whose record is inserted into the sub-

block of ‘Jacks’. We have thus missed the formulation of one

matching record pair. BlockSketch tackles this deficiency by

using more than one representatives for each sub-block8, so as

to give more chances for grouping together matching record

pairs. By doing so, if record a has been inserted into a sub-block,

BlockSketch compares the key of its matching record b with

more similar representatives to record a. To keep the number

of representatives of a sub-block constant, whenever a key is

chosen for inclusion in a sub-block, the algorithm tosses a coin

to determine if this newly inserted key would be a representative

as well. If it is chosen, a randomly picked old representative is

evicted from the set of representatives.

As a last step, the query record is inserted into that sub-block

which is maintained by a key/value database. The pairs formu-

lated in this sub-block constitute the final result set.

5.1 Algorithm
Algorithm 3 outlines the basic operation of BlockSketch. For
a query record q, the algorithm first retrieves an object S that

contains the corresponding sub-blocks, either from a key/value

database or from a cache structure in main memory (line 2).

BlockSketch then iterates over the representatives of each sub-

block and performs the distance computations between the key

values of q and these representatives,
9
whose results are stored

in array u (line 5). The representative that exhibits the smallest

8
The exact number of representatives will be specified later.

9
A representative, being essentially a blocking key, has only key values.
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distance from the key values of q specifies the sub-block (line 12)

into which q is finally inserted (line 17). For ease of presentation,

we omit from Algorithm 3 the details regarding the random

choice and eviction of a representative from a sub-block.

Algorithm 3 The core operation of BlockSketch.

Input: Query record q
1: k← block(q) ▷ Function block(·) generates the

blocking key, which will be used to

look up the corresponding sub-blocks.

2: SubBlocks S ← retrieve(k ) ▷ S , which is retrieved

from secondary storage or

from a cache structure,

contains the sub-blocks of block k .
3: for i = 1 to λ do
4: for j = 1 to ρ do
5: u[i][j] ← d (k, S [i][j]) ▷ S [i][j] denotes the j-th

representative of the i-th sub-block.

6: end for
7: end for
8: min← u[1][1]
9: for i = 1 to λ do
10: for j = 1 to ρ do
11: if (min > u[i][j]) then
12: min← i ▷ Find the i-th sub-block whose at least

one of its representatives exhibits

the smallest distance from k .
13: end if
14: end for
15: end for
16: represent(k , min) ▷ Determine with a coin toss

if k would be a representative for

the chosen sub-block.

17: insert(q, k, min) ▷ Store q in a key/value database by

setting the key as the concatenation of k and min.

5.2 Accuracy and Complexity Analysis
The probability of a record to fall into the correct sub-block is 1/λ,
since it completely relies on the distance from the corresponding

representative. Hence, the inverse probability of a record not

falling into the correct sub-block, and therefore not formulating

a record pair, is ≤ 1 − 1/λ. In order to amplify the probability of

formulating a matching record pair, we give more chances for

grouping together the two constituent records, by comparing

each key with a number ρ of representatives, chosen randomly

and uniformly from the underlying stream. We rigorously spec-

ify the required number of representatives that each sub-block

should maintain, as the following lemma suggests.

Lemma 5.1. If a pair of records, which constitute a matching
pair, has been brought in a certain block, then by maintaining
ρ = λ ln( 1δ ) representatives in each sub-block, this matching pair
is detected with probability at least 1 − δ .

Proof. The probability of not detecting a matching pair that

exists in a certain block is (1 − 1

λ )
ρ
. We bound this probability

above by δ and solve for ρ in the following:

(1 −
1

λ
)ρ < δ ≊ −

ρ

λ
< ln(δ ) ⇐⇒ ρ > λ ln(

1

δ
), (4)

since ln(1 − 1

λ ) ≤ −
1

λ . □

We subsequently apply the ceiling function on the value of ρ
(⌈·⌉), in order to select the smallest integer following ρ for the

sake of optimality. ■
Computational complexity: The running time of

BlockSketch is O(logn + λρ), which consists of the time

to retrieve a block from the database (which is logarithmic
10
),

and the execution of the subsequent λ × ρ distance computations

(ρ representatives for each of the λ sub-blocks).

Memory complexity: The storage requirements of

BlockSketch are O(λn), where n is the number of block-

ing keys.

6 THE OPERATION OF SBLOCKSKETCH
Let us now suppose that the number of records, which are ini-

tiated from multiple sources, e.g., from different hospitals, is

unbounded (or endless). This literally turns the record linkage

scenario of a large number of records, into the record linkage of a

stream of records. Therefore, BlockSketch will grow in both di-

rections; it will not grow only in terms of sub-blocks, but also its

number of blocks might unexpectedly grow considerably. Since

our main memory is bounded, BlockSketch adapts its operation
to record linkage tasks that involve streams of records.

In this version of BlockSketch, called SBlockSketch, we
bound the number of blocks, that are maintained in main mem-

ory, by an integer value µ which depends on the available main

memory. Since the number of blocks is bounded, SBlockSketch
applies an eviction strategy, so as to insert a newly arrived block-

ing key from the stream, when there is not an empty slot to

accommodate the corresponding block. We annotate each live11

block with (a) the number of incoming records that generated

its key, i.e., the number ξ of times this block has been chosen as

the target block, and with (b) its age α , in terms of the number

of times that this block has survived eviction, since its admission

into main memory. We derive the eviction status of each block

as follows:

es = e(wξ−α ), (5)

where factorw adjusts the weight of successes ξ of a block to its

es. The intuition behind this scheme is that we promote (a) newer

blocks against older ones, and (b) blocks that exhibit higher eligi-

bility. The status of old blocks, that are additionally not chosen

by the incoming records, will exponentially decay, which will

result in their eviction from the main memory. SBlockSketch is

materialized by a hash table, which holds the live blocks, and the

corresponding sub-blocks, and a priority queue, that is used to

indicate which of these live blocks should be evicted in case of a

newly arrived block (key).

Figure 5 illustrates the components of SBlockSketch, namely

the hash table T and the priority queue pq. T exists in main

memory and contains a specified number µ of rows, each of

which holds a block, as a function of the available main memory.

Each row of T contains the sub-blocks of the corresponding

block. The priority queue pq stores the eviction status of each

live block in ascending order, so as to return the key of the block

that holds the minimum eviction status. In the example shown

in Figure 5, we observe that the block with key k4 has survived
α = 4 evictions and has not been chosen as target block since its

admission intoT . These two events lead inevitably to its eviction,
despite the existence of block k2, which has α = 10 survivals, but

it additionally exhibits ξ = 6 successes.

10
For instance, LevelDB (see https://github.com/google/leveldb) uses an in-memory

highly efficient multi-level data structure, which enables logarithmic disk seeks in

the number of stored blocking keys.

11
A live block is a block that is stored in main memory.
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Figure 5: In this example, SBlockSketch uses a hash table
T with µ = 4 blocks, λ = 3 sub-blocks, and the weight of
successes set to w = 1.5. On the arrival of an incoming
new key, the block with key k4 is evicted because of its low
eviction status. The priority queue pq stores the eviction
status (on a logarithmic scale) of each live block.

6.1 Algorithm
Algorithm 4 illustrates the operation of SBlockSketch, using a
stream of data records. Upon receiving a record from the stream,

the algorithm first derives its key, and then queriesT (line 2). Only

if this query is fruitless, SBlockSketch resorts to the structures

of secondary storage (line 4). If the block that corresponds to

the incoming record exists neither inT nor in secondary storage,

then SBlockSketch initiates the eviction of the block fromT that

exhibits the minimum eviction status, as indicated by pq (line 7).

Eventually, SBlockSketch computes the eviction status of each

live block and rebuilds pq.

Algorithm 4 The eviction algorithm of SBlockSketch using a
stream of records.

Input: Query record q
1: k← block(q)
2: SubBlocks S ← T.get(k ) ▷ Function get() retrieves an

entry from hash table T .

3: if (S == NULL) then
4: SubBlocks S ← retrieve(k)
5: end if
6: if (S == NULL) then
7: SubBlocks S← pq.poll(); ▷ pq is a priority queue

that holds the eviction status

of each live block in ascending order.

8: S.evict(); ▷ Function evict() transfers a certain
block, which is essentially a structure

of sub-blocks, from main memory

into secondary storage.

9: calculateStatus(); ▷ Function calculateStatus()
computes the status of each

live block and inserts it into pq.
10: end if

6.2 Accuracy and Complexity Analysis
The accuracy of SBlockSketch is not affected by the use of T ,
since the block in question might exist either in main memory or

in secondary storage. However, T , whose operations are of O(1)
time, affects both running time and space.

Computational complexity:The running time depends on two

mutually exclusive possibilities. The first one is when a block

exists inT , where the running time is O(λ) (see Section 5.2), while
the other possibility is when a block should be evicted from T .
The eviction requires accessing the priority queue, which is of

O(
√
µ) time, and then transferring the incoming block intoT . The

Table 1: Technical characteristics of the data sets used. The
blocking fields used, and their length (in characters) are
shown in bold (m = 5).

DBLP NCVR LAB

|Q | 300K 500K 100K

|A| 300M 500M 100M

fields ‘author’[50%], ‘given name’, ‘assay’[6],
‘venue’, ‘year’ ‘surname’[50%], ‘result’

‘address’, ‘town’ ‘year’
u = 3,465 u = 4,473 u = 2,000

latter step consumes, as we discussed in Section 5.2, O(log(n))
time in the number n of available blocks found in the secondary

storage. Finally, we have to add the time to build the priority

queue, which is O(µ log(
√
µ)). Hence, the total running time for

replacing a block is O(
√
µ + log(n) + µ log(

√
µ)).

Memory complexity: The space occupied in main memory is

exactly O(µλ), where µ corresponds to the rows and λ to the cells
of T (by assuming T as a two-dimensional array).

7 EXPERIMENTAL EVALUATION
For the experimental evaluation, we used three real-world data

sets, namely (a) DBLP
12
, which includes bibliographic data records,

(b) NCVR
13
, which comprises a registry of voters, and (c) LAB

14
,

which includes biological assays (e.g., albumin, hepatitis, or crea-

tinine) and their corresponding results. The technical characteris-

tics of these data sets are summarized in Table 1. For each record

of each data set, denoted by Q , we generated 1,000 perturbed

records, which were placed in a separate data set symbolized by

A. We perturbed all the available fields using at most four edit,

delete, insert, or transpose operations, chosen at random.

The blocking methods that were used for the needs of the

evaluation were standard [4] and LSH blocking [18], which relies

on the Locality-Sensitive-Hashing [11] technique. LSH blocking

generates from a single record a certain number of blocking keys

that are placed in multiple hash tables. This number of blocking

keys is a function of several parameters [19] of LSH blocking,

such as the distance threshold. The LSH technique is commonly

used in the domain of record linkage [17, 18, 20, 29] because

of its efficiency and accuracy guarantees. We used Hamming

LSH blocking [18], in which records are embedded into the Ham-

ming space using record-level Bloom filters [28]. LSH blocking

implements redundant blocking, because a record is inserted

into multiple independent blocks, which are accommodated into

independent hash tables. In contrast, standard blocking inserts

records that exhibit identical values, in an appropriately chosen

blocking field(s), into the same block.

For performing the standard and the LSH blocking, we utilized

LevelDB15 and LSHDB [16], respectively. The length of each

Bloom filter, utilized by SkipBloom, was set to 32,000 bits for

storing 5,000 keys, with false positive probability set to fp = 0.05.

We evaluated our schemes and their competitors according to

the time needed, and the memory that was consumed to perform

the record linkage process, as well as the recall and precision rates

12
http://dblp.uni-trier.de/xml

13
http://dl.ncsbe.gov/index.html?prefix=data/

14
https://idash-data.ucsd.edu/community/43

15
https://github.com/google/leveldb
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that were achieved. We ran each experiment 20 times and plotted

the average values in the figures. The software components were

developed using the Java programming language (ver. 1.8) and

the experiments were conducted in a virtual machine utilizing 4

cores of a Xeon CPU and 32GB of main memory.

7.1 Baseline Methods
We compared our schemes with two state-of-the-art methods

for online record linkage. The first method, termed as INV [5],

uses inverted indexes as its basic blocking structure. The main

idea behind this method is the pre-computation of similarities

between field values that have been inserted into the same block.

An inverted index is used for this purpose, which stores the

blocking keys encoded by the double metaphone method
16
. A

weakness of this structure regards the storage of all field values

of a record into the same set of indexes. As a result, one cannot

be certain for a value encountered therein, to which field this

value belongs. This ambiguity affects negatively the recall rates

of INV.

The second method we compared against is the Edge Ordering

strategy, termed as EO, which was introduced in [10]. EO utilizes

an oracle, which is aware of the ground-truth, to resolve the

matching status of a record pair. A graph is constructed by as-

suming each record pair, which materializes an edge connecting

two vertices/records, formulated in each block. The algorithm

performs all similarity computations in the target block in order

to assign a probability estimate to each edge (pair) based on its

similarity. In turn, EO selects those edges that are expected to

maximize the recall, and submits them to the oracle that returns

their matching status.

Both EO and INV utilize only key/value pairs, materialized by

hash tables that map a key to list of record Id’s. These methods

do not offer any component to report efficiently the membership

of a certain key, or to adequately summarize the data set. Thus,

in order to be fair in our comparison with these methods, we

maintained the key/Id’s mappings, as well as the entire records,

in secondary storage.

Both the baseline methods and our proposed schemes used

the Jaro-Winkler [3] function as the similarity measure, where

the corresponding threshold was set to θ = 0.75.

7.2 Experimental Results
In our first set of experiments, we evaluated the running time

and memory performance, as well as the ability of the SkipBloom
algorithm to provide accurate estimates in the pre-processing

step of record linkage.

Figure 6a shows the total time needed to build the SkipBloom,
by scaling the number of the streaming records using the NCVR

data set. It is quite obvious that the time increases by a constant

factor, depending on the number of records that are processed.

The consumption of main memory is illustrated in Figure 6b,

where SkipBloom exhibits almost linear performance. Specifi-

cally, although the number of records increases by 10 and 50

times, SkipBloom utilizes 0.6GB, 0.8GB, and 1.4GB of main mem-

ory, respectively. In contrast, a map data structure, symbolized

by MAP, e.g., a HashMap in the Java programming language, ex-

hibits a steep linear performance. In both scenarios, MAP throws

fatal errors and terminates when it reaches the processing of

500M records.

16
Using the double metaphone encoding method, ‘SMITH’ and ‘SMYTH’ are both

encoded as ‘SM0’.

10M 100M 500M

100

500

800

1000

number of records

T
im

e
 (

in
 s

e
c
s
)

SB

MAP

(a) Time consumption

10M 100M 500M

1

5

15

number of records

R
A

M
 (

in
 G

B
)

SB

MAP

(b) Main memory usage

Figure 6: Scaling the number of records to measure the
time and space requirements of SkipBloom.

Table 2: Time (in seconds) consumed by SkipBloom for re-
porting the existence of a key.

10M 100M 500M

Time 0.000277 0.000315 0.000365

Table 3: Evaluating the accuracy of SkipBloom in estimat-
ing the fraction of matching pairs.

ϵ DBLP NCVR LAB

.10 0.94 ± .023 0.95 ± 0.021 0.94 ± 0.022

.05 0.97 ± .022 0.98 ± 0.021 0.98 ± 0.024

Table 2 illustrates the time consumed by SkipBloom to report

the existence of a key. We remind to the reader the probabilistic

nature of SkipBloom, whose performance depends on the num-

ber of comparisons that will take place until the target block is

located (which is O(log(
√
n))). For this reason, we observe that

SkipBloom almost consumes the same amount of time when it

has to process either 100M or 500M records.

The accuracy of SkipBloom is evaluated by the fraction of

overlapping keys it estimates using the above-mentioned data

sets. Table 3 clearly shows that SkipBloom approximates the

overlap coefficient of A and Q for each data set, where in the

worst case it exhibits an error nearly equal to 0.06 (which is

within its approximation guarantees specified by ϵ).
In the next set of experiments, we compared our schemes

against EO and INV. Figures 7a and 7b display the recall rates

achieved by all methods using standard and LSH blocking, respec-

tively. We observe in Figure 7a that EO exhibits slightly better

recall rates than BlockSketch, by using all data sets, although

the differences lie in the small range [0.01, 0.04]. Also, INV falls

short in formulating those matching pairs that exhibit a high

degree of perturbation, which is due to the weakness of the dou-

ble metaphone scheme to group together such pairs into the

same blocks. The recall rates of DBLP and NCVR are also higher

than LAB, which is due to the longer (in characters) blocking

keys, which render them more tolerant to the perturbation errors.

BlockSketch achieves to maintain high recall rates, although

we have to stress that the underlying blocking method drives

the whole linkage process. As Figure 7b suggests, LSH blocking,

which leverages redundancy, scores much better rates than stan-

dard blocking. Only BlockSketch and EO can use LSH blocking,

because they essentially run on top of the blocking mechanism.
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Figure 7: Measuring the recall and precision rates using
standard blocking and LSH blocking.

On average, BlockSketch and EO achieve 10% and 8% higher

recall rates, respectively, using LSH blocking.

Figures 7c and 7d show the precision rates using the two dif-

ferent blocking approaches described before. As one can observe,

BlockSketch outperforms both EO and INV by a large margin,

due to the effective categorization of records into the sub-blocks

of each block. This minimizes significantly the required num-

ber of comparisons. Specifically, the precision rates of EO and

INV fall by 18% and 21%, respectively, compared with the rates

of BlockSketch. The reasons for this recession vary between

the two methods. EO starts to produce meaningful recall rates

after performing a large number of comparisons to derive the

probability estimates for each pair. These comparisons, however,

considerably reduce the precision rates. On the other hand, the

double metaphone scheme of INV groups a large number of non-

matching pairs into the same block, whose comparisons also

result in low precision rates. The redundancy of LSH blocking

accounts for the reduced precision rates of both BlockSketch
and EO, as shown in Figure 7d, since both methods perform a

larger number of comparisons for the pairs formulated in the

blocks of each hash table. We observe though that BlockSketch
retains its superiority over EO by scoring, on average, rates that

are very close to 0.75. The time needed to perform the block-

ing step is illustrated in Figures 8a and 8b. EO and INV block

each record a little faster than the combination of SkipBloom
and BlockSketch, which for each insertion have to perform a

constant number of comparisons with the representatives of the

sub-blocks. Specifically, BlockSketch, through a single get oper-
ation, retrieves the representatives of a block from the database,

as well as replaces them, through a single set operation, when
needed. INV utilizes three hash tables to store the precomputed

similarities, the encoded, and the original field values, which

leads to certain delays.

Table 4: Average time (in seconds) for resolving a query
record.

DBLP NCVR LAB

standard 0.0051 0.0055 0.0045

LSH 0.0097 0.0098 0.0088
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Figure 8: Measuring the time needed for blocking and
matching for BlockSketch.

In Figures 8c and 8d, we present the time performance of

BlockSketch and its competitors for resolving the query data

sets, symbolized by Q (see Table 1), after having populated the

blocking structures with the records of A. For each query record

of Q , BlockSketch performs a constant number of comparisons

in each target block, which results in superior performance. As

Figure 8c suggests, BlockSketch is 2× and 1.5× faster than EO

and INV, respectively, which both struggle to compare all records

found in a block. Moreover, EO should build the graph to locate

these record pairs that are expected to maximize the recall. Using

LSH blocking, which is shown in Figure 8d, both BlockSketch
and EO exhibit longer time rates, which are nearly 3× slower than

before, due to the inherent redundancy of LSH. Since, a record

pair might appear several times during the matching phase, for

each record of Q , we utilize a map data structure
17

to discard

the comparisons of duplicate record pairs. Table 4 illustrates

the time for resolving a single query record of Q during the

matching phase. The constant number of distance computations

for a single record accounts for the stable time performance of

BlockSketch regardless of the size of the corresponding data set.
In contrast, EO and INV consume running times which apart from

the fact that in most cases they are almost the double of those of

BlockSketch, they also depend on the number of records found

in each block.

17
The map structure is initialized for each record of Q .
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Figure 9: Measuring the time needed for blocking and
matching for SBlockSketch.
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Figure 10: Measuring the time needed for blocking and
matching for SBlockSketch by varying µ using the NCVR
data set.

In SBlockSketch, we initially set µ to a moderate size (µ =
1M

18
). In Figures 9a and 9b, we observe an average of 10% in-

crease in time consumption than BlockSketch, only in NCVR

and DBLP. The large number (over 60M) of distinct blocking

keys that are generated in these data sets, resulted in relatively

frequent evictions and disk seeks for the replacement of blocks

in T . Nevertheless, the eviction status of highly selective (high

ξ ) but old (high α ) blocks remained high during the blocking

phase, which prevented their eviction from T . The running time

of LAB remained almost intact due to the small number of block-

ing keys (about 10M) and the corresponding replacements. Since,

SBlockSketch utilizes a single hash table T , LSH keys were for-

mulated in a composite format HashTableNo_Key to accommo-

date all of them in T .
We next varied the values of µ and initiated the streaming

of records of the NCVR data set. Figures 10a and 10b illustrate

the time performance of SBlockSketch, where we observe that
by doubling µ, we achieve significantly lower running time. For

instance, by setting µ = 1M, the corresponding time value is 43

minutes, which is almost 4× faster than the previous value (156

minutes) on the y-axis. In LSH blocking, the number of incoming

records increases by a constant factor, which is the number of

the LSH keys that are generated for each record. Since a large

number of these keys are identical, the running time increases

by 156% on average, as Figure 10b suggests, compared to the use

of standard blocking.

18
We had 32GB of main memory available.

Summary: Based on our conducted experiments, it becomes

apparent that our proposed schemes are suitable for processing

online queries for performing record linkage by using synopses of

the blocking structures maintained in the persistent storage. They

significantly outperform the state-of-the-art baselines, which rely

their operation on memory-resident indexes regardless of the

increasing volume of the underlying data sets.

8 CONCLUSIONS
In recent years, several applications have emerged which require

access to consolidated information that has to be computed and

presented in near real-time, through the linkage of records resid-

ing in voluminous disparate data sources. To address this need,

we proposed the first summarization algorithms that operate

in the blocking and matching steps of online record linkage to

boost their performance. SkipBloom compiles a synopsis of the

blocking structure of a data set using a small footprint of main

memory, while BlockSketch compares each query record with a

constant number of records in the target block, which results in a

bounded matching time. Our experimental findings indicate that

SkipBloom and BlockSketch outperform the state-of-the-art al-

gorithms, in terms of the time needed, the memory used, and the

recall and precision rates that are achieved during the linkage

process. SBlockSketch utilizes a constant memory footprint to

perform the linkage in settings that use streaming data.
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ABSTRACT
We study the problem of continuous object dissemination—given
a large number of users and continuously arriving new objects,
deliver an object to all users who prefer the object. Many real
world applications analyze users’ preferences for effective object
dissemination. For continuously arriving objects, timely finding
users who prefer a new object is challenging. In this paper, we
consider an append-only table of objects with multiple attributes
and users’ preferences on individual attributes are modeled as
strict partial orders. An object is preferred by a user if it belongs
to the Pareto frontier with respect to the user’s partial orders.
Users’ preferences can be similar. Exploiting shared computation
across similar preferences of different users, we design algorithms
to find target users of a new object. In order to find users of
similar preferences, we study the novel problem of clustering
users’ preferences that are represented as partial orders. We also
present an approximate solution of the problem of finding target
users which is more efficient than the exact one while ensuring
sufficient accuracy. Furthermore, we extend the algorithms to oper-
ate under the semantics of sliding window. We present the results
from comprehensive experiments for evaluating the efficiency and
effectiveness of the proposed techniques.

1 INTRODUCTION
Many applications serve users better by disseminating objects
to the users according to their preferences. User preferences
can be modeled via a variety of means including collaborative
filtering [19], top-k ranking [7, 8], skyline [2], and general pref-
erence queries [5, 12]. In various scenarios, users’ preferences
stand or only change occasionally, while the objects keep coming
continuously. Such scenarios warrant the need for a capability
of continuous monitoring of preferred objects. While previous
studies have made notable contributions on continuous evaluation
of skyline [14, 28] and top-k queries [29], we note that two
important considerations are missing from prior works:
• Many users: There may be a large number of users and the

users may have similar preferences. Prior studies focus on the
query needs of one user and thus their algorithmic solutions
can only be applied separately on individual users. A solution
can potentially attain significant query performance gain by
leveraging users’ common preferences.

• Partially ordered attributes: Prior works focus on top-k and
skyline queries. In multi-objective optimization, a more general
concept than skyline is Pareto frontier. Consider a table of
objects with a set of attributes. An object is Pareto-optimal (i.e.,
it belongs to the Pareto frontier) if and only if it is not dominated
by any other object [1, 13]. Object y dominates x if and only

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the 21st
International Conference on Extending Database Technology (EDBT), March 26-29,
2018, ISBN 978-3-89318-078-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

if y is better than or equal to x on every attribute and is better
on at least one attribute. In defining the better-than relations,
most studies on skyline queries assume a total order on the
ordinal or numeric values of an attribute, except for [17, 30]
which consider strict partial orders. The psychological nature
of human’s preferences determines that it is not always natural
to enforce a total order. Oftentimes real-world preferences can
only be modeled as strict partial orders [5, 12, 17].

Consider the following motivating applications which monitor
Pareto frontiers on partially ordered attributes for many users.
• Social network content and news delivery: It is often impossible

and unnecessary for a user to keep up with the plethora of
updates (e.g., news feeds in Facebook) from their social circles.
When a new item is posted, if the item is Pareto-optimal with
respect to a user, it can be displayed above other updates in
the user’s view. Similar ideas can be adopted by mass media to
ensure their news reaches the right audience. User preferences
can be modeled on content creator, topic, location, and so on.
Enforcing total orders on such attributes is both cumbersome
and unnatural.
• Publication alerts: Bibliography servers such as PubMed and

Google Scholar can notify users about newly published articles
matching their preferences on venues and keywords. Such
attributes do not welcome total orders either.
• Product recommendation: When a new product becomes avail-

able, a retailer can notify customers who may be interested.
It can distill customers’ preferences on product specifications
(e.g., brand, display and memory for laptops) from profiles, past
transactions and website browsing logs. Example 1.1 discusses
this application more concretely.
Example 1.1. Consider an inventory of laptops in Table 1 and

customers’ preferences on individual product attributes (display,
brand and CPU) modeled as strict partial orders in Table 2. For
an attribute, the corresponding strict partial order is depicted as a
directed acyclic graph (DAG), more specifically a Hasse diagram.
Given two values x and y in the attribute’s domain, the existence of
a path from x to y in the DAG implies that x is preferred to y. With
respect to customer c1 and attribute brand, the path from Lenovo to
Toshiba implies that c1 prefers Lenovo to Toshiba. There is no path
between Toshiba and Samsung, which indicates c1 is indifferent
between the two brands.

The strict partial orders on various attributes together represent
a customer’s preferences on objects. For instance, c1 prefers
o2=⟨14, Apple, dual⟩ to o1=⟨12, Apple, single⟩, since they prefer
13−15.9 to 10−12.9 on display and dual to single on CPU. With
regard to o1 and o3=⟨15, Samsung, dual⟩, c1 does not prefer one
over the other because, though they prefer 13−15.9 to 10−12.9 and
dual to single, they prefer Apple to Samsung on brand.

According to the data in Tables 1 and 2, if the existing products
are o1 to o14 (ignore o15 and o16 for now), the Pareto frontiers of
c1 and c2 are {o2} and {o2, o3}, respectively. Suppose o15=⟨16.5,
Lenovo, quad⟩ just becomes available. For c1, o15 does not belong
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display brand CPU
o1 12 Apple single
o2 14 Apple dual
o3 15 Samsung dual
o4 19 Toshiba dual
o5 9 Samsung quad
o6 11.5 Sony single
o7 9.5 Lenovo quad
o8 12.5 Apple dual
o9 19.5 Sony single
o10 9.5 Lenovo triple
o11 9 Toshiba triple
o12 8.5 Samsung triple
o13 14.5 Sony dual
o14 17 Sony single

o15 16.5 Lenovo quad

o16 16 Toshiba single

Table 1: Product table.

display brand CPU

c1

13−15.9

10−12.9

16−18.9 19−up

9.9−under

Apple

Lenovo

Sony

Toshiba Samsung

dual

triple quad

single

c2

13−15.9

10−12.9 16−18.9

19−up

9.9−under

Apple

Lenovo

Sony

Toshiba

Samsung

dual

triple

quad

single

U

13−15.9

10−12.9 16−18.9

19−up

9.9−under

Apple Lenovo

SonyToshiba Samsung

dual triple quad

single

Û

13−15.9

10−12.9

16−18.9

19−up

9.9−under

Apple Lenovo

Sony Toshiba

Samsung

dual

triple

quad

single

Table 2: User preferences. U={c1,c2}.

to the Pareto frontier. It is dominated by o2, because c1 prefers
14-inch display over 16.5-inch, Apple over Lenovo, and dual-core
CPU over quad-core CPU. However, o15 is a Pareto-optimal object
for c2 since it is not dominated by any other object according to
c2’s preferences. It is thus recommended to c2, and the Pareto
frontier of c2 is updated to {o2, o3, o15}. △

This paper formulates the problem of continuous monitor-
ing of Pareto frontiers: given a large number of users and continu-
ously arriving new objects, for each newly arrived object, discover
all users for whom the object is Pareto-optimal. Users’ preferences
are modeled as strict partial orders, one for each attribute domain
of the objects.

It is key to devise an efficient approach to this problem. The
value of a Pareto-optimal object diminishes quickly; the earlier it
is found to be worth recommendation, the better. For instance, a
status update in a social network keeps getting less relevant since
the moment it is posted; a customer’s need for a product may be
fulfilled by a less preferred choice, if an even better option was
not shown to the customer in time.

A simple, brute-force approach is to, given a newly arrived
object, compute for every user if the object belongs to the Pareto

Apple

Lenovo

Samsung

Toshiba Apple

Lenovo

Samsung

Toshiba Apple

Lenovo

Samsung

Toshiba

c1 c2 U1

Samsung

Apple

Lenovo

Toshiba

Samsung

Apple

Lenovo

Toshiba

Samsung

Apple

Lenovo

Toshiba

c3 c4 U2
Lenovo

Apple Toshiba

Samsung

Lenovo

Apple

Toshiba Samsung

Lenovo

Apple Toshiba

Samsung

c5 c6 U3
Table 3: User preferences with respect to brand. U1={c1,c2 },
U2={c3,c4 }, U3={c5,c6 }.

frontier with respect to the user’s preferences. This entails contin-
uous maintenance of Pareto frontier for each and every user. The
brute-force approach is subject to a clear drawback—repeated and
wasteful maintenance of Pareto frontier for every user.

Sharing computation across users To tackle the aforemen-
tioned drawback, we partly resort to sharing computation across
users. The challenge lies in the diversity of corresponding partial
orders—a Pareto-optimal object with respect to one user may or
may not be in the Pareto frontier for another user. Nonetheless,
users have common preferences. In Table 2, both c1 and c2 prefer
13 − 15.9 inch display the most. Both prefer Apple and Lenovo
to Toshiba and Sony, and they both prefer single-core CPU the
least. In Table 2,U is a virtual user whose partial orders depict the
common preferences of c1 and c2. Intuitively, users having similar
preferences can be clustered together.

We thus design algorithms to mitigate repetitive computation
via sharing computation across similar preferences of users. To
intuitively understand the idea, consider two example scenarios. i)
If o is dominated by o′ with respect to the common preferences
of a set of users, then o is disqualified in Pareto-optimality for all
users in the set. In Example 1.1, consider o16=⟨16,Toshiba, single⟩
as the new object. With respect to U , o16 is dominated by both
o2=⟨14,Apple, dual⟩ and o15=⟨16.5, Lenovo, quad⟩. Therefore,
o16 belongs to the Pareto frontier of neither c1 nor c2. ii) Before the
arrival of o2, obviously o1=⟨12, Apple, single⟩ is the only Pareto-
optimal object for U , c1 and c2. Now consider the entrance of o2.
As o1 is dominated by o2 with respect to U , o1 is replaced by o2
in the Pareto frontier. This comparison is sufficient to decide that
o1 is dominated by o2 for both c1 and c2.

Clustering users To find users sharing similar preferences,
we study the novel problem of clustering strict partial orders,
which are used to model the preferences of both users and clusters.
We measure the similarity between clusters and users by their
common preferences. Such similarity measures factor in the dif-
ferent significance of preferences at various levels of the partial
orders. Table 3 depicts six customers’ preferences on brand, in
which c4, c5, and c6 prefer Lenovo to all other brands except that
c4 prefers Samsung over Lenovo. Consider the objects in Table 1.
For both c5 and c6, the Pareto frontiers contain {o7,o10,o15}, while
c4 has {o3,o5,o12} as its Pareto frontier. We can say that c5 and c6
are more similar than c4 and c5 or c4 and c6.

Approximation The clustering algorithm may produce clus-
ters that comprise few users, due to diverse preferences. With

86



small clusters, the shared computation mentioned above may not
pay off its overhead. Our response to this challenge is to use
approximation. As in many data retrieval scenarios, insisting on
exact answers is unnecessary and answers in close vicinity of the
exact ones can be just good enough. Specifically, given a set of
users, if a sizable subset of the users agree with a preference, the
preference can be considered an approximate common preference.
This relaxation eases the aforementioned concern regarding small
clusters as more approximate common preferences lead to larger
clusters. As an example, in Table 2, while c2 does not share with
c1 the preference of Apple over Samsung, its preference does not
oppose it either. We can consider “Apple over Samsung” as an
approximate common preference. A possible set of approximate
common preferences of c1 and c2 form the strict partial orders in
the row for virtual user Û .

Alive objects Objects can have limited lifetime. The trends
in social networks and news media change rapidly. Similarly, in
any inventory, products become unavailable over time. In these
scenarios users look for alive objects only. To meet this real-world
requirement, we further extend our algorithms to operate under the
semantics of a sliding window and thus to disseminate an object
only during its lifespan.

In summary, the contributions of this paper are as follows:
• We study the problem of continuous object dissemination and

formalize it as finding Pareto-optimal objects regarding partial
orders. Given a large number of users and continuously arriving
objects, our goal is to swiftly disseminate a newly arrived object
to a user if the user’s preferences—modeled as strict partial
orders on individual attributes—approve the object as Pareto-
optimal.
• We devise efficient solutions exploiting shared computation

across similar preferences of different users.
• We study the novel challenge of clustering user preferences rep-

resented as strict partial orders. Particularly we design similarity
measures for such preferences.
• To address performance degradation due to small clusters, we

present an approximate similarity measure that achieves high
efficiency and accuracy of answers.
• We extend our proposed solutions to deal with Pareto frontier

maintenance under sliding window.
• We conduct extensive experiments using simulations on two

real datasets (a movie dataset and a publication dataset). The re-
sults demonstrate clear strengths of our solutions in comparison
with baselines, in terms of execution time and efficacy.

2 RELATED WORK
Pareto-optimality is a subject of extensive investigation. Its study
in the computing fields can be dated back to admissible points [1]
and maximal vectors [13]. Börzsönyi et al. [2] introduced the
concept of skyline—a special case of Pareto frontier—in which all
attributes are numeric and amenable to total orders. Kießling [12]
defined preferences as strict partial orders on which preference
queries operate. After that, several studies specialized on skyline
query evaluation over categorical attributes [3, 17, 18, 30], among
which [17, 18, 30] particularly considered query answer mainte-
nance and only [17, 30] allow partial orders on attribute values.
Nevertheless, they all consider only one user and none utilizes
shared computation across multiple users’ partial orders.

Given a set of objects, Wong et al. [25–27] identify the mini-
mum set of preference relations that preclude an object from being
in the Pareto frontier. This minimum set is the combination of
each possible preference relation with regard to the values of all

unique objects in the set. In case of any update in the object set,
the minimum disqualifying condition must be recomputed. Hence,
it is not designed for continuously arriving objects.

Vlachou et al. [23, 24] and Yu et al. [29] aimed at finding all
users who view a given object as one of their top-k favourites, i.e.,
the results of a reverse top-k query. Dellis et al. [6] studied reverse
skyline query—selecting users to whom a given object is in the
skyline. These works consider only numeric attributes. There is no
clear way to extend them for categorical attributes or even partial
orders.

All these studies, while about object dissemination, focused
on different aspects of the problem than ours. Particularly, no
previous studies on Pareto frontier maintenance have exploited
shared computation across users’ preferences. Besides, as Sec. 5
shall explain, no prior work studied similarity measures for partial
orders or how to cluster partial orders.

3 PROBLEM STATEMENT
Consider a set of users C and a table of objects O that are described
by a set of attributes D. For each user c ∈ C, their preference re-
garding O is represented by strict partial orders. For each attribute
d ∈ D, the strict partial order corresponding to c’s preference on
d is a binary relation over dom(d )—the domain of d, as follows.

Definition 3.1 (Preference Relation and Tuple). Given a user
c ∈ C and an attribute d ∈ D, the corresponding preference
relation is denoted ≻dc . For two attribute values x ,y ∈ dom(d ), if
(x ,y) belongs to ≻dc (i.e., (x ,y) ∈≻dc , also denoted x ≻dc y), it is
called a preference tuple. It is interpreted as “user c prefers x to
y on attribute d”. A preference relation is irreflexive ((x ,x ) <≻dc )
and transitive ((x ,y) ∈≻dc ∧(y, z) ∈≻

d
c⇒ (x , z) ∈≻dc ), which

together also imply asymmetry ((x ,y) ∈≻dc⇒ (y,x ) <≻dc ). △

Definition 3.2 (Object Dominance). A user c’s preferences
regarding all attributes induce another strict partial order ≻c that
represents c’s preferences on objects. Given two objects o,o′ ∈ O,
c prefers o′ to o if o′ is identical or preferred to o on all attributes
and o′ is preferred to o on at least one attribute. More formally,
o′ ≻c o (called o′ dominates o), if and only if (∀d ∈ D : o.d =
o′.d ∨ o′.d ≻dc o.d ) ∧ (∃d ∈ D : o′.d ≻dc o.d ). If (∀d ∈ D : o.d =
o′.d ), we say that o and o′ are identical, denoted as o = o′. △

Definition 3.3 (Pareto Frontier). An object o is Pareto-optimal
with respect to c, if no other object in O dominates it. The set
of Pareto-optimal objects (i.e., the Pareto frontier) in O for c is
denoted Pc , i.e., Pc = {o ∈ O|∄o′ ∈ O s.t. o′ ≻c o}. Note that
the concept of skyline points [2] is a specialization of the more
general Pareto frontier, in that the preference relations for skyline
points are defined as total orders (with ties) instead of general
strict partial orders. △

Definition 3.4 (Target Users). Given an object o, the set of
all users for whom o belongs to their Pareto frontiers are called
the target users. The target user set is denoted Co , i.e., Co =
{c ∈ C|o ∈ Pc }. △

Example 3.5. Consider Table 1 and Table 2. O = {o1, o2,
. . ., o15} (ignore o16 for now), C = {c1, c2}, and D = {display,
brand, CPU}. With respect to c1, (10−12.9, 16−18.9), (Apple,
Samsung) and (dual, triple) are some of the preference tuples
on attributes display, brand and CPU, respectively. Similarly, for
c2, (16−18.9, 19−up), (Toshiba, Sony) and (triple, dual) are some
sample preference tuples.
Pc1 = {o2}, since all other objects are dominated by o2 with

respect to c1. Pc2 = {o2, o3, o15}, as o2, o3 and o15 dominate {o1,
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o4, o6, o8, o9, o13}, {o4, o6, o8, o13} and {o4, o5, o7, o10, o11, o12,
o14}, respectively. Therefore, Co2 = {c1, c2} and Co3 = Co15 = {c2}.
Objects other than o2, o3, o15 do not have target users in C, i.e.,
Co = ϕ, ∀o ∈ O − {o2,o3,o15}. △

Problem Statement The problem of continuous monitoring
of Pareto frontiers is, given a set of users C, their preference
relations on attributes D, and a set of continuously growing
objects O with the latest object o, find Co—the target users of
o.

In this problem setting, we assume a sizable preference re-
lation is available for each user. In reality, we have insufficient
information about the preferences of a less active user, i.e., the
corresponding partial orders may contain very few preference
tuples. In the extreme case, a new user, for whom we have no
information regarding their preferences, admits all objects as
Pareto-optimal. Such less active users and new users are the
subject of the well-known cold-start problem in recommendation
systems, which is outside of the scope of this work.

4 SHARING COMPUTATION ACROSS
USERS

Algorithm Baseline A simple method to our problem will
check, for every user, whether a new object belongs to the cor-
responding Pareto frontier. The pseudo code of this approach,
named Baseline, is shown in Alg. 1. Upon the arrival of a new
object o, for every user c, it sequentially compares o with the
current Pareto-optimal objects in Pc . 1) If o is dominated by any
o′ or o is identical to o′, further comparison with the remaining
objects in Pc is skipped. In the case of o being dominated by
o′, o is disqualified from being a Pareto-optimal object; if o is
identical to o′, then o is Pareto-optimal, i.e., it is inserted into
Pc . 2) If o dominates any o′, o′ is discarded from Pc . It can
be concluded already that o belongs to Pc , but the comparisons
should continue since o may dominate other existing objects in Pc .
3) If o is not dominated by any object in Pc , it becomes an element
of Pc . Readers familiar with the literature on skyline queries may
have realized that the gist of the algorithm is essentially the basic
skyline query algorithm [2]. The crux of its operation is based on
an important property, that it suffices to compare new objects with
only the Pareto-optimal objects, since any new object dominated
by a non Pareto-optimal object must be dominated by some Pareto-
optimal objects too.

Algorithm 1: Baseline
Input: C: all users; O: existing objects; o: a new object
Output: Co : target users of o

1 Co ← ∅;
2 foreach c ∈ C do
3 updateParetoFrontier(c, o);

4 return Co ;

Procedure: updateParetoFrontier (c, o)
1 isPareto ← true;
2 foreach o′ ∈ Pc do
3 if o ≻c o′ then
4 Pc ← Pc − {o′ }; Co′ ← Co′ − {c };
5 else if o′ ≻c o then isPareto ← false;break ;
6 else if o′.D = o.D then isPareto ← true;break ;

7 if isPareto then
8 Pc ← Pc ∪ {o }; Co ← Co ∪ {c };

With regard to a user c, the complexity of finding the Pareto
frontier among n objects isO (n2). Alg. 1 needsO (n2 · |C|) time to
compute the Pareto frontiers for all users in C. The drawback of
Baseline is it repeatedly applies the same procedure for every user.
In terms of computation efficiency, the approach may become
particularly unappealing when there are a large number of users
and new objects constantly arrive. To counter this drawback, our
idea is to share computations across the users that exhibit similar
preferences. To this end, our method is simple and intuitive. If
several users share a set of preference tuples, it is only necessary
to compare two objects once, if they attain the attribute values in
the preference tuples. If an object is dominated by another object
according to these common preference tuples, it is dominated
with respect to all users sharing the same preferences. This idea
guarantees to filter out only “true negatives” for these users, and it
only needs to further discern “false positives” for each individual
user.

Definition 4.1 (Common Preference Tuple and Relation). Given
a set of users U ⊆ C, an attribute d ∈ D, and two values x ,y ∈
dom(d ), if (x ,y) belongs to preference relation ≻dc for all c ∈ U ,
then it is called a common preference tuple. The set of common
preference tuples of U on attribute d is denoted ≻dU , i.e., ≻dU =⋂
c ∈U ≻

d
c . By definition, ≻dU also represents a strict partial order

(Theorem 4.2, proof omitted). We call it a common preference
relation. It can be viewed as the preference of a virtual user that is
denoted U . △

THEOREM 4.2. ≻dU is a strict partial order. △

Since, for each d, ≻dU is a strict partial order, the set of users’
preferences (i.e., the virtual user U ’s preferences) regarding all
attributes in D induce another strict partial order ≻U on objects.

Definition 4.3 (Pareto Frontier for U ). An object o is Pareto-
optimal with respect toU if no other object dominates it according
to ≻U . The Pareto frontier of O for U is denoted PU , i.e., PU =
{o ∈ O|∄o′ ∈ O s.t. o′ ≻U o}. △

Example 4.4. From Table 2, ≻CPU
c1 = {(dual, single), (dual,

quad), (dual, triple), (triple, single), (quad, single)} and ≻CPU
c2 =

{(dual, single), (triple, single), (quad, single), (triple, dual), (quad,
dual), (quad, triple)}. According to Def. 4.1, the common pref-
erence relation of c1 and c2 is ≻CPU

{c1,c2 }
= {(dual, single), (triple,

single), (quad, single)}. Similarly we can derive ≻display
{c1,c2 }

and

≻brand
{c1,c2 }

. In Table 2, the three partial orders are depicted in a row
labeled as a virtual user U . The Pareto frontier of U is PU = {o2,
o3, o10, o15}. △

THEOREM 4.5. Given any set of users U , for all c ∈ U , PU ⊇
Pc and PU ⊆

⋂
c ∈U Pc . △

Proof: We prove by contradiction. Suppose that there exists c
∈ U such that PU ⊉ Pc , which would mean there exists o ∈ O
such that o ∈ Pc and o < PU . That implies the existence of an
o′ ∈ O such that o′ ≻U o and o′ ⊁c o. However, by Def. 4.1, o′

≻U o implies o′ ≻c o. Therefore, the existence of o′ is impossible.
This contradiction eventually leads to that PU ⊇ Pc . Hence,
PU ⊇

⋃
c ∈U Pc , which implies PU ⊆

⋂
c ∈U Pc according to

De Morgan’s laws.

LEMMA 4.6. Given any set of users U , for all c ∈ U , Pc =
{o ∈ PU |∄o′ ∈ PU s.t. o′ ≻c o}. △
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Example 4.7. In Table 2, PU = {o2, o3, o10, o15} and Pc1 ∪
Pc2 = {o2, o3,o15}. PU ⊇ Pc1 ∪ Pc2 . Moreover, PU = {o1, o4, o5,
o6, o7, o8, o9, o11, o12, o13, o14} and Pc1 ∩ Pc2 = {o1, o4, o5, o6,
o7, o8, o9, o10, o11, o12, o13, o14, o15}. PU ⊆ Pc1 ∩ Pc2 . △

Theorem 4.5 suggests an appealing quality of the common
preference relations of U . By PU ⊇ Pc , the Pareto frontier of U
subsumes the Pareto frontier of every user member in U . What it
means is that, if we simply compute the Pareto frontier of U , we
get to retain all the objects that we eventually look for. Consider
Pc as the ground truth and PU as the predictions. The objects
that are filtered out (PU ) are all “true negatives” and there are no
“false negatives”. The set PU may contain “false positives”, which
we just need to throw out after further verification, as Lemma 4.6
suggests.

This approach’s merit is the potential saving on object compar-
isons. For a cluster of users, many non Pareto-optimal objects may
be filtered out altogether for all the users, without incurring the
same comparisons repeatedly for each user.

To capitalize on the above ideas, our method must answer three
questions. (1) How to find users sharing similar preferences? (2)
For a set of similar users U , how to maintain the corresponding
Pareto frontier PU based on their common preference relations
≻dU for different attributes d? (3) For each user c in U , how to
discern the “false positives” in PU and thus find Pc . Note that the
second and the last challenges need to be addressed for constantly
arriving new objects.

For (1), our method is to cluster users based on the similarity be-
tween their preference relations. While many clustering methods
have been developed for various types of data, none is specialized
in clustering partial orders. Our clustering method is discussed
in Sec. 5. For (2) and (3), our algorithm takes a filter-then-verify
approach and is thus named FilterThenVerify, of which the pseudo
code is displayed in Alg 2.

Alg. FilterThenVerify Upon the arrival of a new object o,
for every cluster U , FilterThenVerify compares o with the current
members of PU based on the preference relations of the virtual
user U . Various actions are taken, depending on the comparison
outcomes, as follows:

I) If o dominates any o′ in PU according to ≻dU of all relevant
d , o′ is removed from PU (Line 7 of Procedure updateParetoFron-
tierU in Alg. 2). For every c ∈ C such that o′ ∈ Pc , o′ is also
discarded from Pc (Line 6 of Procedure updateParetoFrontierU).

II) If o is dominated by any o′ in PU , then o does not oc-
cupy the Pareto frontier of any user in U (Theorem 4.5). Further
operations involving o are unnecessary (Line 8 of Procedure
updateParetoFrontierU).

III) After comparing o with all current objects in PU , if it
is realized that o is not dominated by any o′, then o becomes a
member of PU (Line 9 of updateParetoFrontierU). Furthermore,
for each c ∈ U , o is further compared with the members of
Pc based on the preference relations of c, by using Procedure
updateParetoFrontier of Alg.1 (Line 6 of Alg.2).

Example 4.8. In this example we explain the execution of
FilterThenVerify on Table 1 and Table 2. Suppose users c1 and c2
form a cluster U , of which the preference relations are depicted
in Table 2. The existing objects are o1 to o14, and o15 = ⟨16.5′′,
Lenovo, quad⟩ is the object that just becomes available. Before
o15 arrives, the Pareto frontier of U is PU = {o2, o3, o7, o10}.
The algorithm starts by comparing o15 with each element in PU .
As o15 dominates o7 = ⟨9.5′′, Lenovo, quad⟩ according to U ’s

Algorithm 2: FilterThenVerify
Input: U1, U2,..., Un : clusters of users; O: existing objects; o: a new

object
Output: Co : target users of o

1 Co ← ∅;
2 foreach U ∈ {U1, U2, ..., Un } do
3 isPareto ← updateParetoFrontierU(U , o);
4 if isPareto then
5 foreach c ∈ U do
6 updateParetoFrontier(c, o); //Algorithm 1

7 return Co ;

Procedure: updateParetoFrontierU (U , o)
1 isPareto ← true;
2 foreach o′ ∈ PU do
3 if o ≻U o′ then
4 foreach c ∈ U do
5 if o′ ∈ Pc then
6 Pc ← Pc − {o′ }; Co′ ← Co′ − {c };

7 PU ← PU − {o′ };
8 else if o′ ≻U o then isPareto ← false; break ;

9 if isPareto then PU ← PU ∪ {o } ;
10 return isPareto;

preference relations, o7 is discarded from PU . Before o15 arrives,
o7 belongs to Pc2 and Co7={c2}. Hence, o7 is removed from Pc2
and Co7 becomes empty. o15 does not dominate any other object
in PU . It is not dominated by any either. Therefore, it is inserted
into PU .

o15 is further compared with the existing members of Pc1 and
Pc2 . It is dominated by o2=⟨14′′, Apple, dual⟩ according to c1’s
preference relations. Thus it is not part of Pc1 . According to c2’s
preferences, o15 does not dominate any existing Pareto optional
object (except the aforementioned o7 which by now is already
discarded). Therefore Pc2 is not further changed and o15 becomes
part of Pc2 . Overall, Co15={c2}.

Moreover, consider the arrival of o16 = ⟨16′′, Toshiba, single⟩
after o15. In the process of comparing o16 with PU = {o2, o3, o10,
o15}, it is realized that o16 is dominated by o2 according to U ’s
preference relations. Therefore, it does not belong to PU . It is
thus unnecessary to further compare o16 with Pc1 or Pc2 . Co16=∅.
Thereby, updateParetoFrontierU acts as a sieve to filter out non
Pareto-optimal objects such as o16. In this way FilterThenVerify
reduces computation cost by avoiding repeated comparisons with
such objects. △

Complexity Analysis of Alg. 2 As we discussed earlier, given
a user c, the complexity of finding Pareto frontier among the
n objects is O (n2). Assume k is the number of clusters. With
regard to the virtual user for each cluster U , the complexity of
finding Pareto frontier PU among the n objects isO (n2 ·k ) (calling
Procedure updateParetoFrontierU in Line 3 of Alg. 2). Assume
each PU on average has m objects. In Lines 4-6, Alg. 2 finds
Pc from PU for each user c in U (recall that PU ⊇ Pc ). As
Lines 4-6 iterate for each cluster (Line 2), the algorithm eventually
computes Pc for each c ∈ C. Therefore, the complexity of finding
Pareto frontier Pc among the m objects is O (m2 · |C|). Overall,
FilterThenVerify needs O (n2 · k +m2 · |C|) time to find the target
users for all objects. We compare FilterThenVerify and Baseline in
terms of time complexity. Apparently k < |C| and m < n. Thus,
n2 · k < n2 · |C| andm2 · |C| < n2 · |C|.
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5 SIMILARITY MEASURES FOR
CLUSTERING USER PREFERENCES

This section discusses how to cluster users based on their prefer-
ence relations. Our focus is on the similarity measures rather than
the clustering method. The method we adopt is the conventional
hierarchical agglomerative clustering algorithm [9]. At every
iteration, the method merges the two most similar clusters. The
common preference relation of the merged cluster U on each
attribute d, i.e., ≻dU , is computed. It then calculates the similarity
between U and each remaining cluster. Given two clusters U1 and
U2, their similarity sim(U1, U2) is defined as the summation of
the similarities between their preference relations on individual
attributes, as follows. This resembles the high-level idea of using
L1 norm distance between centroids for measuring inter-cluster
similarity in conventional hierarchial clustering.

sim(U1,U2) =
∑
d ∈D

simd (U1,U2) (1)

Individual users’ and clusters’ preference relations on attributes
are strict partial orders. No prior work studied clustering ap-
proaches or similarity measures for partial orders. Similarity
measures commonly used in clustering algorithms assume nu-
meric or categorical attributes. Kamishima et al. [10, 11] and
Ukkonen et al. [22] cluster total orders but not partial orders. Given
two totally ordered attributes, these works use the comparative
ranks of the corresponding values to measure similarity. Clearly,
such similarity measures are not applicable for partially ordered
attributes.

In this section we propose four different similarity functions
for defining simd (U1,U2).

1) Intersection size This is simply the size of the intersection
of ≻dU1

and ≻dU2
, i.e., the number of common preference tuples of

all users in the two clusters U1 and U2. It is defined as

simd
i (U1,U2) = | ≻

d
U1
∩ ≻dU2

| (2)

Example 5.1. Table 3 shows three clusters U1 ({c1, c2}), U2
({c3, c4}), and U3 ({c5, c6}) and the common preference relation
associated with each cluster on attribute brand. U1 and U2 do
not share any preference tuple and thus simbrand

i (U1,U2) = 0.
U1 and U3 have (Apple, Samsung) and (Lenovo, Samsung) as
common preference tuples, i.e., simbrand

i (U1,U3) = 2. Similarly,
U2 and U3 share (Lenovo, Apple) and (Lenovo, Toshiba), i.e.,
simbrand

i (U2,U3) = 2. △

2) Jaccard similarity The measure simi captures the abso-
lute size of the intersection of two preference relations. It does not
take into account their differences. Consider three clusters U1, U2
andU3 such that simd

i (U1,U2) = simd
i (U1,U3) (i.e., | ≻dU1

∩ ≻dU2
|

= | ≻dU1
∩ ≻dU3

|) and | ≻dU1
∪ ≻dU2

| < | ≻dU1
∪ ≻dU3

|. We can
argue that the similarity between U1 and U2 should be higher than
(instead of equal to) that between U1 and U3, because U1 and U2
have a larger percentage of common preference tuples than U1
and U3. To address this limitation of simi , we define the Jaccard
similarity between two preference relations as their intersection
size over their union size, i.e., the ratio of common preference
tuples to all preference tuples in the two preference relations.
Formally,

simd
j (U1,U2) =

| ≻dU1
∩ ≻dU2

|

| ≻dU1
∪ ≻dU2

|
=

simd
i (U1,U2)

| ≻dU1
∪ ≻dU2

|
(3)

Example 5.2. Continue Example 5.1. ≻brand
U1

and ≻brand
U3

have

6 preference tuples in total while ≻brand
U2

and ≻brand
U3

have 7. Thus,

simbrand
j (U1,U3)=2/6 and simbrand

j (U2,U3)=2/7. △

3) Weighted intersection size Intersection size and Jaccard
similarity are based on the cardinalities of intersection and union
sets of preference relations. In counting the cardinalities, they
both treat all preference tuples equal. We argue that this is counter-
intuitive. Values at the top of a partial order matter more than
those at the bottom, in terms of their impact on which objects
belong to the Pareto frontier. Accordingly we introduce weighted
intersection size, a modified version of intersection size simi .
In counting the common preference tuples of two preference
relations, it assigns a weight to each preference tuple. Formally,

simd
wi (U1, U2) =

∑
(v,v ′)∈≻dU1

∩≻dU2

1
2
× (

1
min
s∈SdU1

D (s, v )+1
+

1
min
s∈SdU2

D (s, v )+1
) (4)

In the above equation, with regard to an attribute d , the similar-
ity between two clusters’ preference relations is a summation over
their common preference tuples. For each common preference
tuple (v,v ′), it computes the average weight of the better value
v with respect to U1 and U2, respectively. Given a cluster U , SdU
is the set of maximal values in the partial order ≻dU and D (s,v )

for each s ∈ SdU is the shortest distance from s to v in ≻dU . The
weight of v in U is the inverse of the minimal distance from any
maximal value tov (plus 1, to avoid division by zero). The concept
of maximal value is defined as follows.

Definition 5.3 (Maximal Value). With regard to ≻dU , value x ∈
dom(d ) is a maximal value if no other value in dom(d ) is preferred
over x . The set of maximal values for ≻dU is denoted SdU . Formally,
SdU = {x ∈ dom(d ) | ∄y ∈ dom(d ) s .t . (y,x ) ∈ ≻dU }. △

Example 5.4. Continue Example 5.1. The maximal values in
≻brand
U1

, ≻brand
U2

and ≻brand
U3

are Sbrand
U1

={Apple, Toshiba}, Sbrand
U2

=

{Samsung} and Sbrand
U3

={Lenovo}, respectively. In the partial order

corresponding to ≻brand
U1

, the minimal shortest distances to Apple,
Lenovo, Samsung, and Toshiba from the maximal values {Apple,
Toshiba} are 0, 1, 1 and 0, respectively. The corresponding weights
are 1, 1/2, 1/2 and 1. Similarly, in ≻brand

U2
, the weights of Apple,

Lenovo, Samsung and Toshiba are 1/3, 1/2, 1 and 1/3, respectively.
In ≻brand

U3
, the corresponding weights are 1/2, 1, 1/3 and 1/2,

respectively.
U1 and U3 have (Apple, Samsung) and (Lenovo, Samsung) as

common preference tuples. For the two better-values in these pref-
erence tuples—Apple and Lenovo, the average weights are both

3/4. The similarity simbrand
wi (U1,U3)=

1+ 1
2

2 +
1
2+1
2 =

3
2 . Similarly,U2

and U3 have (Lenovo, Apple) and (Lenovo, Toshiba) as common
preference tuples. In U2 and U3, the average weight of Lenovo—
the better-value in both common preference tuples—is 3/4. The

similarity simbrand
wi (U2,U3)=

1
2+1
2 +

1
2+1
2 =

3
2 . △

4) Weighted Jaccard similarity This measure is a combi-
nation of the last two ideas—Jaccard similarity and weighted
intersection size. As in Jaccard similarity, weighted Jaccard simi-
larity computes the ratio of intersection size to union size. Similar
to weighted intersection size, the values in a preference relation
are assigned weights corresponding to their minimal shortest dis-
tances to the preference relation’s maximal values. The measure’s
definition is as follows.
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simd
w j (U1, U2) =

∑
(v,v ′)∈≻dU1

∩≻dU2

1
2
× (

1
min
s∈SdU1

D (s, v )+1
+

1
min
s∈SdU2

D (s, v )+1
)

/ ∑
(v,v ′)∈≻dU1

∪≻dU2

1
2
× (

1
min
s∈SdU1

D (s, v )+1
+

1
min
s∈SdU2

D (s, v )+1
)

= simd
wi (U1, U2)

/ [
simd

wi (U1, U2) +
∑

(v,v ′)∈≻dU1
−≻dU2

1
min
s∈SdU1

D (s, v ) + 1

+
∑

(v,v ′)∈≻dU2
−≻dU1

1
min
s∈SdU2

D (s, v ) + 1

]
(5)

Example 5.5. Continue Example 5.4. Now simbrand
wj (U1,U3)=

3
2

(1+1)+(1+1)+ 3
2

= 3
11 , since ≻dU1

−≻dU3
={(Apple, Lenovo), (Toshiba,

Samsung)} and ≻dU3
− ≻dU1

={(Lenovo, Apple), (Lenovo, Toshiba)}.

Similarly, simbrand
wj (U2,U3)=

3
2

(1+1+1)+(1+ 1
2 )+

3
2

= 3
12 , as ≻dU2

− ≻dU3

={(Samsung, Lenovo), (Samsung, Apple), (Samsung, Toshiba)}
and ≻dU3

−≻dU2
={(Lenovo, Samsung), (Apple, Samsung)}. Note that

simbrand
wj (U1,U3) > simbrand

wj (U2,U3) although simbrand
wi (U1,U3)

=simbrand
wi (U2,U3). △

6 APPROXIMATE USER PREFERENCES
Two conflicting factors have crucial impacts on the effectiveness
of FilterThenVerify. One is the size of the common preference
relations. The other is the size of the clusters. Specifically, the
more preference tuples a cluster’s users share, the more objects can
be filtered out and thus the less verifications need to be done for
individual users. On the contrary, the more users a cluster contains,
the more repeated comparisons are avoided for these individual
users. There is a clear tradeoff between these two factors, since
larger clusters (i.e., more users in each cluster) naturally leads to
smaller common preference relations.

Our approach to this challenge is approximation. As discussed
in Sec. 1, it suffices for many applications to approximately
identify target users. In this section, we show that we can find such
approximation through a relaxed notion of common preference
tuple, namely approximate common preference tuple. For a set of
users, it allows a preference tuple to be absent from a tolerably
small subset. If a sizable subset of the users agree with the prefer-
ence tuple, it is considered an approximate common preference
tuple. This relaxation addresses the aforementioned concern, since
more approximate common preferences lead to larger clusters.

6.1 Approximate Common Preference Tuples
and Relations

Based on the aforementioned objective, we procedurally construct
approximate common preference relations. Before we provide its
formal definition, we explain the intuition, as follows. Given a clus-
ter of users, the resulting approximate common preference relation
always includes the common preference tuples. The remaining
possible preference tuples are considered in descending order of
their frequencies, since preference tuples with higher frequencies
are shared by more users. A preference tuple is included into
the approximate common preference relation only if its reverse
tuple is not included. This guarantees asymmetry. Furthermore,
when a preference tuple is included, the transitive closure of the
updated approximate common preference relation is also included.

This guarantees transitivity. Irreflexivity is guaranteed too since
this procedure never considers preference tuples in the form of
(x ,x ). These altogether assure the constructed preference relation
is a strict partial order. Given an append-only database of objects,
a strict partial order ensures that preference query results are
independent of the order by which objects are appended to the
database. We denote the approximate common preference relation
by ≻̂dU . It can be viewed as the preference of a virtual user (denoted
Û ) on attribute d. Moreover, we denote the Pareto frontier of O
for Û as P̂U .

Definition 6.1 (Approximate Common Preference Tuple and
Relation). Given a set of users U⊆C, an attribute d∈D of which
|dom(d ) |=m, considerA1...Pm2 which is an ordered permutation of
all possible preference tuples {(x ,y) ∈ dom(d ) × dom(d ) | x , y}
such that f req(Ai )≥ f req(Ai+1) for i ∈ [1, Pm2 − 1], in which
f req(Ai ) denotes the percentage of users in U whose prefer-
ence relations contain preference tuple Ai . The approximate com-
mon preference relation ≻̂dU is defined as Rj in which j is the
largest index i ∈ [1, Pm2 ] that satisfies the condition ( |Ri | < θ1 ∧
f req(Ai ) > θ2) ∨ f req(Ai ) = 1 where Ri is defined as

Ri =




{A1 } if i = 1
(Ri−1 ∪ {Ai })+ if Ri−1 ∪ {Ai } is a strict partial order
Ri−1 otherwise

and θ1 and θ2 are two given thresholds. θ1 limits the size of the
resulting ≻̂dU while θ2 excludes infrequent preference tuples from
≻̂
d
U . △

θ1 and θ2 regulate the size of ≻̂dU . A pair of large θ1 and small θ2
allows ≻̂dU to include infrequent preference tuples. In such a case
the approximate common preference relation becomes ineffective,
since Procedure updateParetoFrontierU in Alg.2 may retain a large
number of candidates that must be verified for each c ∈ U . On
the other hand, a pair of small θ1 and large θ2 may limit ≻̂dU
to contain only ≻dU , in which case the concern regarding small
common preference relation remains.

As Def. 6.1 itself is procedural, it naturally corresponds to a
greedy algorithm for constructing approximate preference relation
≻̂
d
U . The pseudo code GetApproxPreferenceTuples is in Alg. 3.

First, all the common preference tuples are included (Lines 2-
3). After that, preference tuples are considered in the order of
frequency, as long as the two thresholds are satisfied (Line 4).
For each preference tuple in consideration, if it together with all
chosen tuples hitherto do not violate the properties of a strict par-
tial order, their transitive closure is included into the approximate
preference relation (Lines 6-7).

Example 6.2. We use Figure 1 to explain the execution of
GetApproxPreferenceTuples. Figure 1a depicts three users’ prefer-
ence relations on brand. Suppose together these three users form
a cluster. Assume θ1 = 7 and θ2 = 60%.

Table 4 shows the frequencies of all possible preference tuples
after sorting. For instance, since all users prefer Apple to Toshiba,
the corresponding frequency is 3/3; the frequency of (Apple,
Samsung) is 2/3 as two of these three users prefer Apple to
Samsung. At first GetApproxPreferenceTuples includes the com-
mon preference tuple (Apple, Toshiba) into ≻̂dU . It then includes
(Apple, Samsung), (Lenovo, Toshiba), and (Toshiba, Samsung)
as approximate preference tuples too. Furthermore, upon the
addition of (Toshiba, Samsung), GetApproxPreferenceTuples in-
cludes (Lenovo, Samsung) as well since (Lenovo, Toshiba) and
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Algorithm 3: GetApproxPreferenceTuples
Input: Ai : ordered permutation of all possible preference tuples,

defined on dom (d ), in descending order of their frequencies
among users U , θ1 and θ2: thresholds

Output: ≻̂dU : approximate common preference relation of U on
attribute d

1 for i = 1 to P |dom (d ) |
2 do

2 if freq(Ai ) = 1 then
3 ≻̂

d
U ← ≻̂

d
U ∪ {Ai }; continue;

4 if | ≻̂dU | ≥ θ1 or freq(Ai ) ≤ θ2 then
5 break;

6 if ( ≻̂dU ∪ {Ai }) is a strict partial order then
7 ≻̂

d
U ← ( ≻̂

d
U ∪ {Ai })

+;

8 return ≻̂dU ;

Apple Lenovo

Toshiba

Samsung

Apple

Lenovo

Toshiba

Samsung

Apple

Lenovo

Toshiba

Samsung

(a)
Apple Lenovo

Toshiba

Samsung

1

2

3

4
4

(b)

Apple Lenovo

Toshiba

Samsung

(c)

Figure 1: Execution of GetApproxPreferenceTuples. a) Input:
the preferences of 3 users w.r.t. brand. b) The sequence of included
approximate preference tuples. c) Output: the final Hasse diagram
representation of the partial order.

(A, T) (A, S) (L, T) (T, S) (S, L) (A, L) (L, S) (T, L) (S, T) (L, A) (T, A) (S, A)
3/3 2/3 2/3 2/3 2/3 1/3 1/3 1/3 1/3 0/3 0/3 0/3

Table 4: All possible preference tuples in order of frequency. (A, L,
S and T stand for Apple, Lenovo, Samsung and Toshiba.)

(Toshiba, Samsung) transitively induce it. The algorithm then con-
siders (Samsung, Lenovo), which is disqualified since its reverse
tuple (Lenovo, Samsung) is already included. Otherwise the tuples
will not form a strict partial order. The algorithm stops at (Apple,
Lenovo) because its frequency is below the threshold 60%. Fig.1b
illustrates the sequence of the included tuples and Fig.1c depicts
the output approximate preference relation in the form of a Hasse
diagram. △

6.2 False Positives and False Negatives due to
Approximation

FilterThenVerify (Alg.2) is extended to use approximate preference
tuples and thus we rename it FilterThenVerifyApprox. The algo-
rithm itself remains the same. Procedure updateParetoFrontierU
maintains P̂U as the candidate Pareto frontier. The algorithm
eventually returns P̂c for each user c ∈ U , in which P̂c = {o ∈
P̂U |∄o′ ∈ P̂U s.t. o′ ≻c o}, i.e., P̂U ⊇ P̂c . Thus, Ĉo = {c ∈
C|o ∈ P̂c }. We use the example below to explain its execution
over approximate preference relations.

III IV

V

VI

I
II

Figure 2: Venn diagram depict-
ing O, PU , P̂U , Pc and P̂c .

Set Area Covered

O I,II,III,IV,V,VI
PU II,III,IV,V,VI
P̂U IV,V,VI
Pc III,IV
P̂c IV,V

Table 5: Areas covered by O,
PU , P̂U , Pc and P̂c in Fig.2.

Exact

Approx.
Pareto frontier Non Pareto frontier

Pareto frontier IV V
Non Pareto frontier III I,II,VI

Table 6: Confusion matrix w.r.t. c .

Example 6.3. Reconsider Example 4.8, but use the approximate
preference relations associated with virtual user Û in Table 2.
Upon the arrival of o15, it is compared with the elements in
P̂U = {o2, o7}. P̂U becomes {o2, o15} since o15 dominates o7.
o7 is then also removed from P̂c2 . o15 is further compared with
P̂c1 = {o2} and P̂c2 = {o2}, which does not lead to any further
change. Overall, Ĉo15 = {c2}. The target users using approximate
preference relations remain identical to the exact ones, i.e., no loss
of accuracy in this case. △

The rest of this section focuses on the accuracy of FilterThen-
VerifyApprox. It produces false positives if there exists such an o

that o ∈ P̂c but o < Pc . It produces false negatives if there exists
such an o that o < P̂c but o ∈ Pc . Below we present Theorems 6.5
and 6.7 to analyze how P̂U and P̂c relate to PU and Pc .

LEMMA 6.4. Given a set of users U and an attribute d, the
common preference relation ≻dU and an approximate common

preference relation ≻̂dU satisfy the following properties:
1) The approximate preference tuples are a superset of the

common preference tuples, i.e., ≻̂dU ⊇≻
d
U .

2) If any preference tuple along with its reverse tuple do not
belong to the approximate common preference relation, neither
of them belongs to the common preference relation either, i.e.,
(x ,y)< ≻̂

d
U ∧ (y,x )< ≻̂

d
U ⇒ (x ,y) < ≻dU ∧ (y,x ) < ≻dU . △

THEOREM 6.5. Given objects O and users U , the Pareto
frontier with regard to approximate common preference relations
is a subset of the Pareto frontier with regard to common preference
relations, i.e., P̂U ⊆ PU . △

Proof: We prove by contradiction. Suppose P̂U ⊈ PU , which
would mean there exists o ∈ O such that o ∈ P̂U and o < PU .
That leads to the existence of an o′ such that o′ ≻U o and o′ ⊁Û o.

However, o′ ≻U o implies o′ ≻Û o because ≻̂dU ⊇≻
d
U for every d

(Lemma 6.4). Therefore, the existence of o′ is impossible. This
contradiction proves that P̂U ⊆ PU .

LEMMA 6.6. Given any set of users U , for all user c ∈ U ,
P̂U ⊇ P̂c . △

THEOREM 6.7. Given any set of users U , for all user c ∈ U ,
P̂U ∩ Pc ⊆ P̂c . △

Proof: We prove by contradiction. Suppose P̂U ∩ Pc ⊈ P̂c ,
which would mean there exists o ∈ O such that o ∈ P̂U ∩ Pc
and o < P̂c . o < P̂c implies the existence of an o′ ∈ O such that
o′ ∈ P̂c and o′ ≻c o (since o ∈ P̂U ∩ Pc and thus o ∈ P̂U which
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means o′ ⊁Û o). Since o′ ≻c o, o < Pc (Def. 3.3) and thus o <

P̂U ∩ Pc . In other words, the existence of o′ is impossible. This
contradiction proves that P̂U ∩ Pc ⊆ P̂c .

Consider a cluster U and a user c ∈ U . The Venn diagram in
Fig. 2 shows the effect of approximation through depicting O
(rectangle), PU (outer blue circle), P̂U (outer red ellipse), Pc
(inner blue circle), and P̂c (inner red ellipse). Besides, Table 5
elaborates the area covered by these sets while Table 6 shows
the confusion matrix for c. Note that using approximate common
preference relations results in false negatives (III). Mistakenly
declaring III as not Pareto-optimal further allows false positives
(V) to sneak in.

With these notations in place, we are ready to quantify the
accuracy of FilterThenVerifyApprox using standard evaluation mea-
sures in information retrieval. Specifically, precision is the fraction
of objects found by FilterThenVerifyApprox that are truly Pareto-

optimal, i.e.,
∑
c∈C P̂c∩Pc∑

c∈C P̂c
. Recall is the fraction of Pareto-optimal

objects that are correctly found by FilterThenVerifyApprox, i.e.,∑
c∈C P̂c∩Pc∑

c∈C Pc
. With regard to a specific user c, the algorithm’s

precision, recall and accuracy can be represented using the areas
in Fig. 2, as follows.

precision =
| IV |
| IV ∪ V |

(6)

r ecall =
| IV |

| III ∪ IV |
(7)

accuracy =
| I ∪ II ∪ IV ∪ VI |

| I ∪ II ∪ III ∪ IV ∪ V ∪ VI |
(8)

6.3 Similarity Functions
To make the clustering solution in Sec. 5 compatible with ap-
proximate preference relations, we extend the similarity measures,
using ideas inspired by the Jaccard similarity for non-negative
multidimensional real vectors [4].

1) Jaccard Similarity Consider an attributed with |dom(d ) | =
m. For each cluster U , construct a vector U = (U(1), U(2), . . .,
U(Pm2 )). For i ∈ [1, Pm2 ], U(i ) represents the frequency of Ai
(Definition 6.1) in U . Given two clusters U and V , their Jaccard
similarity on attribute d is

simd
j (U ,V ) =

∑
i min(U(i ),V(i ))∑
i max(U(i ),V(i ))

(9)

Example 6.8. Consider U1 and U3 in Table 3. Suppose A(i )
for i ∈ [1, Pm2 ] are ((Apple, Lenovo), (Apple, Samsumg), (Apple,
Toshiba), (Lenovo, Apple), (Lenovo, Samsung), (Lenovo, Toshiba),
(Toshiba, Apple), (Toshiba, Lenovo), (Toshiba, Samsung), (Sam-
sung, Apple), (Samsung, Lenovo), (Samsung, Toshiba)). The two
vectors are U1 = (2/2, 2/2, 0/2, 0/2, 2/2, 0/2, 0/2, 1/2, 2/2, 0/2,
0/2, 0/2) and U3 = (0/2, 2/2, 1/2, 2/2, 2/2, 2/2, 0/2, 0/2, 1/2, 0/2,
0/2, 0/2). For instance, U1 has 1/2 on the 8th -dimension since
only one of the two users’ preference relations contains (Toshiba,
Lenovo). Hence, simbrand

j (U1,U3) = 0.36. △

2) Weighted Jaccard Similarity This measure, denoted as
simd

w j , extends the namesake measure in Sec. 5 with the idea
above. Its definition is the same as Eq. 9 except that a value U(i )
in a vector represents the frequency of Ai in U that takes into
consideration the weights explained in Sec. 5. Consider Ai as the
preference tuple (Ai (x ),Ai (y)). This similarity measure is defined
as follows.

simd
w j (U , V ) =

∑
i
(min(

1
|U |
×
∑
c∈U

1
min
s∈Sdc

D (s, Ai (x ))+1
,

1
|V |
×
∑
c∈V

1
min
s∈Sdc

D (s, Ai (x ))+1
))

/ ∑
i
(max(

1
|U |
×
∑
c∈U

1
min
s∈Sdc

D (s, Ai (x ))+1
,

1
|V |
×
∑
c∈V

1
min
s∈Sdc

D (s, Ai (x ))+1
)) (10)

Example 6.9. In Table 3, in the partial order depicting ≻brand
c6 ,

the distance to Apple from the maximal value Lenovo is 1, i.e.,
the weight of Apple is 1/2. Since only one of the two users in U3

has (Apple, Toshiba) in their preference relation, U3 has
1
2+0
2 =

1
4 on the 3rd -dimension. In this way, we get U1 = (2/2, 2/2,
0/2, 0/2, 1/2, 0/2, 0/2, 1/2, 2/2, 0/2, 0/2, 0/2) and U3 = (0/2,
1/2, 1/4, 2/2, 2/2, 2/2, 0/2, 0/2, 1/4, 0/2, 0/2, 0/2). Therefore,
simbrand

wj (U1,U3) = 0.19. △

7 ALIVE OBJECT DISSEMINATION
In Sec. 1, we discussed motivating applications such as social
network content dissemination, news delivery and product recom-
mendation. The significance of a particular social network content
(e.g. a post in Facebook) or a piece of news diminishes eventually.
Similarly, in any inventory, products are consumed and perishable
products expire over time. In other words, objects can have limited
lifetime. Thus, upon the arrival of a new object, it needs to compete
only with the alive objects. To meet this requirement, we extend
our problem as continuous monitoring of Pareto frontiers over
alive objects for many users and formalize it as finding Pareto
frontiers over sliding window.

Suppose O = {o1, o2, . . ., oN } is a stream of objects, in which
the subscript of each object is its timestamp. We consider a
sliding window as a sequence of W recent objects. Upon the
arrival of an incoming object oin , an object oout expires if in −
out =W . Specifically, the sliding window contains objects whose
timestamps are in (out , in], i.e., an object oi ∈ O is alive during
(out , in] if i ∈ (out , in]. Given the concept of sliding window, we
extend the definition of Pareto frontier in Def. 3.3 and the problem
statement in Sec. 3.

Definition 7.1 (Pareto Frontier). An alive object o is Pareto-
optimal with respect to c, if no other alive object dominates it. Pc
= {oi ∈ O|∄oj ∈ O s.t. oj ≻c oi ∧ i, j ∈ (out , in]}. The target users
of oin is Coin = {c ∈ C|oin ∈ Pc } (Def. 3.4). △

Problem Statement The problem of continuous monitoring
of Pareto frontiers over sliding window is, given a set of users C,
their preference relations on attributes D, and a stream of objects
O with the incoming object oin as well as the outgoing object
oout , find Coin—the target users of oin .

Algorithms BaselineSW and FilterThenVerifySW We ex-
tend Baseline and FilterThenVerify to BaselineSW and FilterThen-
VerifySW, respectively, to accommodate sliding window. We note
that no prior work studied Pareto frontier maintenance with regard
to strict partial orders over sliding window. [15, 16, 21] studied
skyline maintenance over sliding window, assuming numeric
attributes. [18] considered total orders (with ties) on categorical
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attributes instead of general partial orders. There is no clear way
to extend these works for partially ordered attributes.

Due to space limitations, we leave the detailed pseudo codes
and descriptions of BaselineSW and FilterThenVerifySW to the
extended version of this paper [20]. Below we highlight the key
concepts that dictate the design of these algorithms.

Under the constraint of having a sliding window, an object can
be excluded from Pareto frontier forever if it is dominated by any
succeeding object. This observation is formalized as Theorem 7.2.

THEOREM 7.2. Consider a user c ∈ C and two objects oi ,oj ∈
O such that oi ≺c oj and i < j. After the arrival of oj , oi can
never be part of Pc in its remaining lifetime. △

Proof: Since i < j, oi expires before oj and the sliding window
always includes oj if it includes o . Since oj dominates oi , oi will
never get into Pc after the arrival of oj .

By Theorem 7.2, we extend our algorithms to maintain a Pareto
frontier buffer which stores at mostW recent objects that are not
dominated by any succeeding object. Clearly, oin is part of the
Pareto frontier buffer.

Definition 7.3 (Pareto Frontier Buffer). With regard to user c
and the sliding window (out , in], an alive object o belongs to the
Pareto frontier buffer if it is not dominated by any succeeding
object. The Pareto frontier buffer is PBc = {oi ∈ O|∄oj ∈
O s.t. oj ≻c oi ∧ i, j ∈ (out , in]∧ i < j}. By definition, PBc ⊇ Pc
(Def. 7.1). △

THEOREM 7.4. Given a set of users U , for all c ∈ U , i)
PBU ⊇ PU and ii) PBU ⊇ PBc . △

Proof: i) Together Def. 7.1 and 7.3 imply that PBU ⊇ PU .
ii) We prove by contradiction. Suppose that there exists c ∈ U

such that PBU ⊉ PBc , which would mean there exists o ∈ O
such that o ∈ PBc and o < PBU . That implies the existence of an
o′ ∈ O such that o′ ≻U o and o′ ⊁c o. However, by Def. 4.1, o′

≻U o implies o′ ≻c o. Therefore, the existence of o′ is impossible.
In conclusion, PBU ⊇ PBc .

Note that, BaselineSW needs to maintain an exclusive Pareto
frontier buffer for each user (PBc ) while a Pareto frontier buffer
per cluster (PBU ) is sufficient for FilterThenVerifySW.

8 EXPERIMENTS
8.1 Experiment Setup
The algorithms were implemented in Java. The maximal heap size
of Java Virtual Machine (JVM) was set to 16 GB. The experiments
were conducted on a computer with 2.0 GHz Quad Core 2 Duo
Xeon CPU running Ubontu 8.10.

Datasets Currently there exists no publicly available dataset
that captures real users’ preferences in partial orders. We thus
simulated such partial orders using two real datasets of users’
preferences.

Movie Dataset We joined the Netflix dataset (netflixprize.com)
with data from IMDB (imdb.com). The Netflix dataset contains
the ratings (ranging from 0 to 5) given by users to movies. From
IMDB we fetched the movies’ attribute values, including actors,
directors, genres, and writers. In this way, we found the attributes
of 12, 749 Netflix movies. The goal is to, for each particular movie,
identify users who may like it according to their preferences on
those attributes. The mapping from our problem formulation to
this dataset is the following: (i) O is the set of 12, 749 movies.
(ii) C is the set of users. It includes the 1, 000 most active users
based on how many movies they have rated. (iii) D = {actor,

director, genre, writer}. (iv) Given the lack of user preference
data, for each attribute, the partial order corresponding to a user’s
preferences is simulated as follows. For two attribute values, the
user’s preference is based on the average rating and the count
of movies satisfying these attribute values. More specifically,
consider a user c who has rated m movies featuring actor a.
Suppose the ratings of these movies are r1, r2, . . ., rm . Given
c and a, the average rating is Ra =

∑
i ri
m and the count is Ma =m.

Consider another actor b. If (Ra > Rb ∧ Ma ≥ Mb ) ∨ (Ra ≥ Rb
∧ Ma > Mb ), then (a,b) ∈≻actor

c . Intuitively, if user c watches
more movies featuring a than b and gives them higher ratings, our
simulation assumes the user prefers a to b.

Publication Dataset We collected from the ACM Digital
Library (dl.acm.org) 17, 598 publications and their attributes, in-
cluding affiliations, authors, conferences and topic keywords. The
users are the authors themselves. The goal is to notify them about
newly published articles. The recommendations are based on
the users’ preference relations on the attributes. The mapping
from our problem formulation to this dataset is the following:
(i) O is the set of papers. (ii) C is the set of authors. It includes
the 1, 000 most prolific authors based on how many publications
they have, similar to the 1, 000 most active users in the movie
dataset. (iii) D = {affiliation, author, conference, keyword}. The
domain of attribute author is the same 1, 000 authors in C. (iv)
Given a user, the partial order on each attribute is simulated
based on their preferences on the attribute values. The prefer-
ence between two values on affiliation (and similarly author) is
based on the number of collaborations between the user and the
affiliation/author and the number of citations. For conference and
keyword, the preference between two values is based on number of
publications and number of citations. More specifically, consider
a user c and an affiliation (or similarly another author) a. Suppose
c has pa collaborations with a and has cited articles from a qa
times. If (pa > pb ∧ qa ≥ qb ) ∨ (pa ≥ pb ∧ qa > qb ), then
(a,b) ∈≻affiliation

c (or (a,b) ∈≻author
c ). With regard to a conference

(keyword) x , suppose c has rx publications associated with x and
has cited publications associated with x sx times. If (rx > ry ∧

sx ≥ sy ) ∨ (rx ≥ ry ∧ sx > sy ), then (x ,y) ∈≻conference
c (or

(x ,y) ∈≻
keyword
c ).

8.2 Baseline, FilterThenVerify, and
FilterThenVerifyApprox

We conducted experiments to compare the performance of Base-
line, FilterThenVerify and FilterThenVerifyApprox. For FilterThen-
Verify (resp. FilterThenVerifyApprox), users are clustered by the
conventional hierarchical agglomerative clustering algorithm [9]
using the similarity functions in Sec. 5 (resp. Sec. 6.3) and, for
each cluster, it extracts the common preference relation (resp.
approximate common preference relation). The experiments use
three parameters which are number of objects (|O|), number of
attributes (d), and branch cut (h). In hierarchical clustering, the
branch cut h is a threshold that controls the number of clusters
by governing the minimum pairwise similarity that two clusters
must satisfy in order to be merged into one cluster. The sequential
order of merging clusters is depicted as a tree called dendrogram.
The branch cut thus controls where to cut the dendrogram. In
Example 5.5, the set of clusters are {{c1, c2, c5, c6}, {c3, c4}} for
h ∈ (0, 311 ]. This is because sim(U4,U2)=0 where U2={c3,c4} and
U4 is the cluster composed of c1, c2, c5, and c6.
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(b) Object comparisons

Figure 3: Comparison of Baseline, FilterThenVerify and
FilterThenVerifyApprox on the movie dataset. Varying |O |, h = 0.55,
d = 4.
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(b) Object comparisons

Figure 4: Comparison of Baseline, FilterThenVerify and
FilterThenVerifyApprox on the publication dataset. Varying |O |, h
= 0.55, d = 4.
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(b) Object comparisons

Figure 5: Comparison of Baseline, FilterThenVerify and
FilterThenVerifyApprox on the movie dataset. Varying d , |O | =
12, 749, h = 0.55.
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Figure 6: Comparison of Baseline, FilterThenVerify and
FilterThenVerifyApprox on the publication dataset. Varying d , |O |
= 17, 598, h = 0.55.

Dataset |O |
h = 0.70 h = 0.65 h = 0.60 h = 0.55

Precision Recall F-measure Precision Recall F-measure Precision Recall F-measure Precision Recall F-measure

Movie 12, 749 100 95.43 97.67 100 93.93 96.87 99.99 93.28 96.52 99.99 90.46 94.99
Publication 17, 598 100 96.59 98.27 100 95.85 97.88 100 95.54 97.72 100 95.13 97.51

Table 7: The precision, recall and F-measure (in percentage) of FilterThenVerifyApprox. Varying h, d=4.

Fig.3a shows, for each of the three methods on the movie
dataset, how its cumulative execution time (by milliseconds, in
logarithmic scale) increases while the objects (i.e., movies) are
sequentially processed. Fig.4a depicts similar behaviours of these
methods on the publication dataset. Fig.3b and Fig.4b, for the two
datasets separately, further present the amount of work done by
these methods, in terms of number of pairwise object comparisons
(in logarithmic scale) for maintaining Pareto frontiers. The fig-
ures show that FilterThenVerify and FilterThenVerifyApprox beat
Baseline by 1 to 2 orders of magnitude. The reason is as follows.
With regard to a user c, Baseline considers all objects as candidate
Pareto-optimal objects and compares all pairs. On the contrary,
FilterThenVerify eliminates an object o if the corresponding com-
mon preference tuples disqualify o. FilterThenVerifyApprox incurs
even less comparisons by benefiting from shared computations
for clusters of users.

Fig.5a (Fig.6a) shows that the execution time of all these meth-
ods increased super-linearly by number of attributes (d). Fig.5b
(Fig.6b) further reveals that the number of object comparisons also
increases similarly. This is not surprising because more attributes
result in larger Pareto frontiers, which makes it necessary for
objects to be compared with more existing Pareto-optimal objects.

Table 7 reports the precision, recall and F-measure of Fil-
terThenVerifyApprox on varying h. We can observe that, when
h got smaller, the recall slowly decreased. This is expected be-
cause smaller h results in larger clusters and potentially more
approximate common preference tuples for each cluster. Those
approximate common preference tuples cause false negatives—
the domination and elimination of objects that are instead in the
Pareto frontier under the true common preference tuples, which
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Figure 7: Effect of window size. VaryingW , |O | = 1M, h = 0.55, d =
4.

are a subset of the approximate common preference tuples. What
can be more surprising is the almost perfect precision under the
various h values in Table 7, i.e., almost no false positives were
introduced into the results. For a user c, an object o becomes a
false positive if every single Pareto optimal object that dominates o
becomes a false negative. As long as one of its dominating objects
is not mistakenly filtered out, o will not be mistakenly introduced
into the Pareto frontier. Therefore, an object is much less likely to
become a false positive than a false negative. Overall, under the h
values in Table 7, both precision and recall remain high. This may
suggest that the thresholds θ1 and θ2 (Sec. 6.1) effectively ensure
that the approximate common preference relation only includes
frequent preference tuples and does not overgrow in size.

8.3 BaselineSW, FilterThenVerifySW, and
FilterThenVerifyApproxSW

We further compare the performance of FilterThenVerifySW and
FilterThenVerifyApproxSW with BaselineSW. In this regard, we
simulated two data streams—movie and publication where O is
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Data stream W h = 0.70 h = 0.65 h = 0.60 h = 0.55
Precision Recall F-measure Precision Recall F-measure Precision Recall F-measure Precision Recall F-measure

Movie

400 100 89.36 94.38 100 87.33 93.24 100 85.94 92.44 100 81.95 90.08
800 100 87.87 93.54 100 85.78 92.34 100 84.04 91.33 100 80.10 88.95
1600 100 88.65 93.98 100 86.58 92.81 100 85.01 91.90 100 81.10 89.56
3200 99.99 94.80 97.33 100 93.08 96.41 100 92.29 95.99 100 88.99 94.17

Publication

400 100 94.58 97.21 100 93.57 96.68 100 92.98 96.36 100 92.06 95.87
800 100 94.79 97.32 100 93.60 96.70 100 93.01 96.38 100 91.98 95.82
1600 100 94.62 97.24 100 93.44 96.61 100 92.85 96.29 100 91.81 95.73
3200 100 96.71 98.33 100 95.98 97.95 100 95.67 97.79 100 95.27 97.58

Table 8: The precision, recall and F-measure (in percentage) of FilterThenVerifyApproxSW. VaryingW and h, |O |=1M, d=4.

composed of duplicated sequence of the corresponding dataset
such that |O|=1 million. Following [21], we experimented with
windows of size 400, 800, 1,600, and 3,200. Fig.7a shows the cumu-
lative execution times (by milliseconds, in logarithmic scale) of the
aforementioned methods on the movie stream. Fig.7a reveals that
the cumulative execution times increase super-linearly byW as
wider window broadens the size of Pareo frontiers. These figures
illustrate that both FilterThenVerifySW and FilterThenVerifyAp-
proxSW outperformed BaselineSW by 1 to 2 orders of magnitude,
which concurs with the comparative behaviours of FilterThen-
Verify, FilterThenVerifyApprox and Baseline. This concurrence is
also applicable for the publication stream (Fig.7b). The reason
behind the comparative behaviour of Baseline, FilterThenVerify and
FilterThenVerifyApprox is also applicable in this case. Moreover,
BaselineSW maintains exclusive Pareto buffer for each user (PBc )
while FilterThenVerifySW shares a Pareto buffer across users in a
cluster (PBU ). Therefore, in sliding window protocol, the filter-
then-verify approach attains the benefit of clustering in a greater
extent.

Table 8 demonstrates the precision, recall and F-measure of
FilterThenVerifyApproxSW on varyingW and h. We can observe
that the recall declines slowly by h. Yet h does not have significant
impact on the efficacy of FilterThenVerifyApproxSW. Besides,
the loss of accuracy is due to false negatives rather than false
positives. These behaviors concur with FilterThenVerifyApprox
and the reasons behind are same as before. In addition, Table 8
reveals that W does not have noticeable impact on efficacy and
FilterThenVerifyApprox remains effective on varyingW .

9 CONCLUSION
We studied the problem of continuous object dissemination, which
is formalized as finding the users who approve a new object in
Pareto-optimality. We designed algorithm for efficient finding of
target users based on sharing computation across similar prefer-
ences. To recognize users of similar preferences, we studied the
novel problem of clustering users where each user’s preferences
are described as strict partial orders. We also presented an ap-
proximate solution of the problem of finding target users, further
improving efficiency with tolerable loss of accuracy. Experimen-
tal evaluation validated the efficiency and effectiveness of our
proposed solutions.
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ABSTRACT
Data confidentiality is concerned in database-as-a-service (DBaaS)

model. The cloud server should not have access to user’s plain

data. Data is encrypted before they are stored in cloud database.

Query computation over encrypted data by the server is not

straight-forward. Many research works have been done on this

problem. A common goal is to let the server obtain the selection

result without leaking information about plain data. In existing

solutions, the selection result is simply dumped by the server af-

ter the query answer is returned. Our idea is to make use of such

past results of selections to improve processing speed for new

queries. We developed an indexing mechanism called past result
knowledge base (PRKB) to improve processing speed of selection

with comparison predicate(s) in EDBMS. All operations related to

PRKB are done by the server only. In our empirical studies, PRKB

can reduce processing cost by orders of magnitudes compared to

the case PRKB is not used.

1 INTRODUCTION
In database-as-a-service (DBaaS) model, a data owner (DO) up-

loads its data to a database managed by a third party service

provider (SP) who is responsible to answer DO’s queries and

provides administrative services, e.g., backup recovery and ac-

cess control. Data confidentiality is concerned when SP is com-

promised, e.g., by a malicious DBA administrating the database

server. For instance, a rogue DBA has stolen 2.3 millions customer

records of a Fortune 500 company
1
, including bank account and

credit card information. Encrypted database management sys-

tems (EDBMSs), such as Cipherbase [2–4] and SDB [19, 35], are

recently developed to address data confidentiality concerns in

case SP is compromised. The idea in EDBMS is to use application
level encryption where data is encrypted and decrypted by DO

and the private keys are only known to DO. Even if an attacker

somehow gets access to the database at SP, the attacker can only

obtain encrypted information without the keys to decrypt the

data.

A challenge in EDBMS is to allow SP to compute selection

over encrypted data, without knowing any other information

about plain data (so that minimal number of encrypted tuples are

processed in the next operations, e.g., join and/or aggregation).

Many solutions were proposed, e.g., [12, 25] for range query and

[13] for keyword search. In this paper, we address optimization

of computing selection with comparison predicate(s) in EDBMS.

Fig. 1 shows an overview of our method, past result knowledge
base (PKRB). The results of past selections are consolidated and

stored in PRKB at SP. SP can use PRKB to reduce processing cost

1
http://www.computerworld.com/article/2542360/security0/database-admin-

steals-2-3m-consumer-records-at-fidelity-national-subsidiary.html
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Encrypted Selection

tuples σ1 σ2 σ3
t1 X X X

t2 X X X

t3 X X ?

t4 X X ?

Table 1: Example scenario. If an encrypted tuple satisfies
(or does not satisfies resp.) a selection, a ‘X’ (or ‘X’ resp.) is
shown. ‘?’ denotes that the result for the encrypted tuple
is not known yet.

of a new selection. We use the following example to illustrate

the cost reduction idea.

Suppose there are 4 encrypted tuples ti for i = 1 to 4. Each

tuple has one attribute X only. There are 3 selections σ1, σ2, and
σ3, each with a simple comparison predicate in the form of ‘X < c’
or ‘X > c’ where c is a user-defined parameter unknown to SP.

σ1 and σ2 are computed already. σ3 is partially computed. The

scenario is shown in Table 1.

SP can reason as following to determine the values of ‘?’ in

Table 1. The result of σ1 partitions the encrypted tuples into two

groups, P1 = {t1, t3, t4} and P2 = {t2}. We use Pi > Pj to denote

that all tuples in Pi have a larger plain value than all tuples in

Pj . Since σ1 is a simple comparison predicate, there are only

two possible scenarios: either (i) P1 > P2 or (ii) P2 > P1. We

assume it is the case of scenario (i), i.e., t2 has the smallest plain

value. Similarly, from the result of σ2, SP obtains two partitions

P3 = {t1} and P4 = {t2, t3, t4}. It must be either P3 > P4 or

P4 > P3. Since t2 ∈ P4 and t2 has the the smallest value, it must

be the case P3 > P4. As a result, SP obtains the order of (plain

values of) all encrypted tuples in this scenario as ‘t2 < t3, t4 < t1’.
This order information is partial only as SP cannot determine

which encrypted tuple is larger for t3 and t4. For σ3, t1 and t2
are found to satisfy the selection condition. t3 and t4 are ordered
between t1 and t2, so t3 and t4 must also satisfy the selection

condition, i.e., both ‘?’ must be ‘X’ in Table 1. SP can perform the

same analysis for scenario (ii) and obtains the same conclusion.

In the above example, SP can determine whether t3 and t4
satisfy a new selection σ3 without accessing them and thus saves

the processing cost on these two encrypted tuples. Such saving

is significant because the process to check whether an encrypted
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tuple satisfies a comparison predicate is usually expensive. For

example, in Cipherbase [2], the encrypted tuple is decrypted

(within a trusted hardware) before the predicate is tested. The

additional decryption cost is significant compared to the cost of a

simple comparison. As demonstrated in our empirical evaluation,

only a small portion of encrypted tuples cannot be determined

using PRKB and only this group of tuples require to be processed

by SP using the usual cryptographic way. The overall processing

cost is greatly reduced.

We highlight the distinguished features of PRKB as follows:

• DO is not involved in any part (e.g., building or using) of

PRKB. No information is required to be sent from DO to

SP for PRKB. All information in PRKB is solely based on

what SP has observed in past query computation. It can be

realized easily that PRKB does not leak more information

than the underlying EDBMS.

• PRKB is compatible to any encryption scheme that tells SP
which encrypted tuples satisfy the selection. As long as

the encryption scheme provides such trapdoor, PRKB can

be used on top of it. This allows PRKB to be deployed on

top of many existing systems, e.g., Cipherbase and SDB.

• Information in PRKB is in plain. Unlike encrypted index,

PRKB consists of information about past selection results.

All operations related to PRKB are efficient and the size of

PRKB is compact.

The rest of this paper is organized as follows. We discuss re-

lated work in Sec. 2. In Sec. 3, we define the models used in our

problem. We describe what PRKB is and how SP builds PRKB in

Sec. 4. In Sec. 5 and Sec. 6, we describe our algorithms for process-

ing a single comparison predicate and multi-dimensional range

query respectively. We describe how to handle database update

in Sec. 7. We empirically evaluate PRKB and related algorithms

in Sec 8. We conclude this paper in Sec. 9.

2 RELATEDWORK
Different solutions were developed for computing individual

database operations over encrypted data, e.g., range query [6, 12,

25, 28], keyword search [7, 13] and join [26]. A potential problem

of these solutions is that integration of the above solutions is

not trivial. Encrypted database management system (EDBMS)

[2, 4, 5, 19, 29, 33, 35] offers an integrated solution that supports a

wide range of SQL operations. We aim to deploy our optimization

technique for selection with comparison predicate(s) in EDBMS.

We first review existing EDBMSs in Sec. 2.1. Then, we review

indexing options for EDBMS in Sec. 2.2. Lastly, we review tech-

niques that hide selection results from SP in Sec. 2.3.

2.1 EDBMS
There are several approaches to implementing EDBMS.

The first approach, e.g., TrustedDB [5] and Cipherbase [2, 4],

makes use of a trusted hardware. There is a trusted machine (TM)

at SP. For instance, TrustedDB uses Cryptographic Coprocessor

and Cipherbase uses FPGA. Such hardware devices are (physi-

cally) tamper-resistant. An attacker is assumed not to be able to

see the data or process inside TM. TM is given the decryption

key of DO. Any computation related to encrypted data can be

handled by TM. For instance, to process a comparison predicate,

the encrypted value of each tuple and the instructions (with en-

crypted user parameters) are passed to TM. TM decrypts the data,

makes the comparison, and returns the comparison result to SP.

The second approach uses secret sharing methods, e.g., SDB

[19, 35]. Secret sharing splits each data item into shares. Some

shares are stored at DO
2
while some are stored at SP. Without

collecting all the shares of a data item, SP cannot recover its plain

value. Multi-party computation (MPC) operators are developed to

execute database operations by DO and SP communicating with

each other in multiple rounds. An advantage of MPC approach is

that any computation can be computed [15]. However, it incurs

a high communication cost in query processing.

Another approach is to use multiple encryption schemes, each

to support a different set of operations. Example system is CryptDB

[29] / MONOMI [33]. (MONOMI is an extension of CryptDB to

further support aggregation.) Specifically, CryptDB uses order

preserving encryption (OPE), e.g., [1, 28], to process comparison

predicates. OPE preserves the numerical order of plain data un-

der encryption, i.e., if x > y, E(x) > E(y) for any x , y where E
denotes the encryption function. Comparison predicates can be

computed efficiently and indexing over OPE-encrypted data is

just like indexing over plain data. A downside of this approach is

that it leaks the total order of plain data to SP. Recent studies show

that inference attack [22, 27] can recover accurately the plain

data of OPE-encrypted data using the total order information.

2.2 Indexing on encrypted data
Our method, PRKB, is similar to indexing, because SP uses ad-

ditional space to remember past results in order to boost the

performance in query computation. PRKB has a significant dif-

ference to mainstream indexing methods for encrypted data:

PRKB is solely done by SP, while existing indexing mechanisms

for encrypted data require DO’s involvement, e.g., to build the

encrypted index, or requires DO to encrypt data using specific

algorithms. In the following, we briefly discuss existing indexing

methods for encrypted data.

In [11, 14, 31], an encrypted index tree is built by DO and

stored at SP. SP simply serves as a storage without processing

capabilities. DO retrieves parts of the index from SP iteratively

to traverse the index. Data confidentially can be proven as SP

never see any data in plain. Access pattern of the index can

also be protected from SP, e.g., in [14], at the cost of increased

processing and communication cost. DO has a significant amount

of workload. We do not prefer this approach in DBaaS where DO

may not be as powerful as SP.

[12, 23, 25] developed new encryption methods for computing

comparison predicate or range query with indexing support. In

[23], data is encrypted using a special vector encryption method

[34]. An index can be built over these encrypted values. A prob-

lem is there is information leaked in the encryption scheme, as

shown in [17], and plain data can be recovered in some scenarios.

In [25], a security notion of index indistinguishable is introduced

and an index is developed that achieves the proposed security

notion. However, such security notion is proven to be weak [10].

In [12], it transforms the problem of range query into keyword

search and uses existing searchable symmetric encryption (SSE)

[7, 8] to compute the result. A series of schemes with different

indexing options, each offers different security strength, is devel-

oped. In all methods above, SP see the selection results as this is

the objective of the problem. Our method PRKB can also be im-

plemented on top of these encryption methods. In our empirical

studies, we will compare our method to [12].

2
In SDB, the shares at DO can be generated using an RSA-like share-generating
function. This reduces storage cost at DO.
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Some EDBMSs we discussed in Sec. 2.1 also use indexing.

Cipherbase uses an encrypted B+-tree. The index reveals the

total order of plain data to SP and is thus also vulnerable to

inference attack. SDB uses domain-partitioning index [18, 21].

The data domain is divided into partitions by DO. SP is informed

by DO the partition each data item falls into. Due to additional

information leak, we do not consider these methods suitable for

our problem.

2.3 Hiding selection result from SP
Our problem assumes the selection result is known by SP. The se-

lection result can potentially be hidden by access pattern hiding

technique, e.g., oblivious RAM (ORAM) [16, 32] and/or private

information retrial [9]. For instance, [4] discussed an option to

integrate ORAM in Cipherbase. The trade-off is that each data ac-

cess has a polylog cost. Due to high overhead, ORAMwas not im-

plemented in Cipherbase. Similar to Cipherbase, other EDBMSs

we reviewed in Sec. 2.1 do not use any access pattern hiding

technique. Our method can be deployed on existing EDBMSs,

including TrustedDB, CipherBase and SDB.

3 MODELS
3.1 Preliminary: EDBMS
Our problem is based on an underlying encrypted database man-

agement system (EDBMS). In this section, we describe the EDBMS

model, that is compatible to EDBMSs that we discussed in Sec.

2.1.

Parties. There are two parties: data owner (DO) and service

provider (SP). DO has a set of relational tables in the database.

Each table T is a set of tuples, i.e., T = {ti } where ti denotes the

i-th tuple. DO encrypts T to be T such that T = {ti | ti = E(ti )
for every ti ∈ T } where E denotes the encryption function. (We

use X to represent the encrypted version of X in the rest of the

paper.) T is sent to SP for storage and DO does not store T . The
private keys are only known by DO.

Selection processing. EDBMS allows selection to be computed

over encrypted data by SP. The selection contains one or more

comparison predicates, e.g., ‘X > 10’. SQL supports a wide range

of comparison predicates, e.g., comparison operators (>, <, ≥,

and ≤), and BETWEEN operator etc. In general, for existing

EDBMSs that employ attributed-based encryption, SP can tell

(i) which type of operator is used because the algorithms to

process them are different
3
; and (ii) which encrypted attribute

is concerned so that other encrypted values of other attributes

are not accessed during selection processing. In our problem,

we focus on comparison predicate in the form of ‘X op c’ where
op is a comparison operator. In Appendix A, we briefly discuss

how BETWEEN operator can be handled. As we discussed in Sec.

2.1, there are different ways to implement EDBMS to support

selection processing. An ideal method allows SP to observe the

selection result without seeing any information about plain data.

We use the following model (based on the model in [24]) to

capture the selection processing mechanism of EDBMS.

QPF model. Let pi , pi be the plain and encrypted version of a

comparison predicate. There is a query processing function (QPF)

Θ such that

Θ(pi , tj ) =

{
1, if tj satisfies pi

0, otherwise

3
Comparison operators (>, <, ≥, and ≤) are handled by the same algorithm and

hence SP cannot distinguish them.

pi is generated by DO and acts as a trapdoor that allows SP to

observe the selection result of pi . SP cannot observe the selection

result of any predicate without such trapdoor, i.e., SP’s knowledge

of selection results is limited by number of comparison predicates
issued by DO.

Applications. The above QPF model is generic [24] such that

the selection processing mechanisms of majority of related work

can be captured. For instance, among the EDBMSs that we have

studied in Sec. 2.1, TrustedDB [5], Cipherbase [2, 4], and SDB [19,

35] satisfy this model, i.e., our method can be implemented on top

of these systems. CryptDB [29] andMONOMI [33] also satisfy our

EDBMSmodel, but they also reveal the total order of plain data (in

addition to selection results) to SP. With total order known, there

are simpler options to optimize query processing and security

strength is significantly lowered. CryptDB and MONOMI are not

our target applications and our underlying EDBMS should not

reveal the total order information.

Our method can also be integrated to many other standalone

methods for selection processing on encrypted database, e.g., [12,

20, 25, 30]. As long as these methods reveal the selection results

to SP, our method can be applied. Methods that do not reveal the

selection results to SP (see Sec. 2.3) are not our target applications.

In our empirical studies, we will compare our method to the

indexing method in [12], the state-of-the-art method for range

query processing on encrypted data.

3.2 Problem in this paper: optimizing
selection with comparison predicate

Our objective is to reduce the processing cost of selection at SP.

A baseline method for SP is to test all encrypted tuples using the

QPF one by one. The bottleneck of performance is QPF evaluation.

Note that a comparison can be done extremely fast, e.g., in one

cycle. QPF evaluation is relatively more expensive in general. For

example, in Cipherbase, the encrypted tuple is decrypted within

a trusted machine before the comparison is done. The decryption

cost is significant compared to the simple comparison. Our goal

is to reduce number of QPF uses.
Our problem is similar to an indexing problem, which trades

(SP’s) storage for speed. However, unlike traditional indexing

problem for encrypted data, our method (i) does not rely on

specific encryption method; and (ii) does not require DO’s in-

volvement
4
in building and using “our index”.

Our indexing mechanism, namely past result knowledge base

(PRKB), composes of the following 4 algorithms.

I ← initPRKB(T ): is run by SP to initialize the index I.

I ← updatePRKB(I,pi ): is run by SP to update the index I with

an encrypted predicate pi .

⟨TW,TNS⟩ ← QFilter(T ,I,pi ): is run by SP to find two exclusive

subsets of T using the index: (i) TW represents the ‘Win-

ner’ group. All encrypted tuples in this group must satisfy

the plain predicate pi ; and (ii) TNS represents the ‘Not sure’
group. Encrypted tuples in this group may satisfy pi but
some may be false positives. This group of encrypted tu-

ples requires further processing by SP to confirm the exact

selection result.

4
DO may still be involved in QPF evaluation, e.g., in SDB [19, 35], and our method

does invoke QPF. We do not count this as DO’s involvement for the index because

such involvement exists in EDBMS without our index.
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TWNS ← QScan(TNS,I,pi ): is run by SP to confirm the exact

selection result by examining each encrypted tuple one by

one. QScan is similar to a linear scan but with optimization

using information from PRKB.

SP can initiate PRKB (for an attribute) by initPRKB to create an

‘empty’ knowledge base as there is no past result observed by SP

yet. As SP receives queries from DO, SP observes new selection

results and can use them to extend PRKB using updatePRKB.
After executing QFilter and QScan, the selection result is then

TW ∪TWNS. Fig.2b shows the procedure and messages in com-

munication of EDBMS using PRKB. In contrast, Fig.2a shows the

same procedure of EDBMS without using PRKB. As we will show

in the paper, QFilter is cheap andTNS is significantly smaller than

T . Only TNS is processed by QScan. The overall cost can be thus

reduced.

3.3 Security discussions
In the security model of EDBMS, an attacker has compromised

SP and is able to observe anything SP can see. Or in simpler

interpretation, SP is the attacker. An ideal situation is that SP

observes no information about plain data. Unfortunately, there is

some inherit information leak that we cannot avoid. The selection

results and any information derived from them can be seen by SP

because it is the objective of selection processing over encrypted

data. The security goal of EDBMS is then to minimize leakage of

any other information about plain data.

In our problem, we use the same attack model as EDBMS

that the attacker has compromised SP. The security goal is to

minimize additional leakage to SP caused by our method. As we

will show in the paper, our indexing method PRKB is built and
used solely by SP using existing selection results. No (encrypted or

plain) information is ever sent from DO to SP for our index. For

instance, readers can compare Fig.2b and Fig.2a which show the

communication between DO and SP in EDBMS with or without

using PRKB. The messages in the two cases are identical. Any

information that can be derived by SP from PRKB can also be

obtained by SP in EDBMS without PRKB. There is no additional

leakage caused by PRKB.

Another important issue is that selection results are assumed

to be observed by SP. We remark that this assumption is held

in many existing methods. As discussed in [24] that selection

results allow SP to eventually recover a total order of encrypted

data on their plain values. The total order information can then

be used in inference attack [22, 27] to recover accurate plain

values. Data confidentiality is completely lost. The technique

in [24] requires SP to observe O(D4) queries, where D is the

domain size of an attribute, so as to let SP recover the total order

information. Experiments in [24] showed that the total order

can be recovered in a short time for a small data domain (e.g.,

D ≤ 365). On the other hand, when the domain size D is large, it

becomes impractical for SP to collectO(D4) queries for the attack.

Yet, SP is able to observe certain number of queries. This allows

SP to observe partial ordering information. We thus performed

empirical evaluation to see how much ordering information SP

can recover when SP observes limited number of queries. The

details are presented in Sec. 8.1.

4 BUILDING PAST RESULT KNOWLEDGE
BASE (PRKB)

In this section, we present what information SP can observe in

query processing of EDBMS and how SP can use the observed

information to build a past result knowledge base (PRKB). PRKB

can then be used by SP to reduce query processing cost for new

range queries.

Consider a comparison predicate pC in the form of ‘C op x ’
where x is a user-defined query parameter and op is one of the

following: >, <, ≥, and ≤. pC is a trapdoor generated by DO

that allows SP to observe, using QPF Θ, whether an encrypted

tuple satisfies the predicate without seeing the plain data and

plain predicate. Note that SP does not know which comparison

operator op is used in pC . SP can divide the encrypted tuples in

T into two partitions: (i) PT : the partition of encrypted tuples

where QPF outputs 1, i.e.,

PT = {ti | ti ∈ T and Θ(pC , ti ) = 1}

and (ii) PF : the partition of encrypted tuples PF where QPF out-

puts 0, i.e.,

PF = {ti | ti ∈ T and Θ(pC , ti ) = 0}

We can easily prove that either all encrypted tuples in PT have

a larger plain value on C than all encryped tuples in PF or it is

the reverse case. For example, consider a comparison predicate

‘C < 9’. PT contains all encrypted tuples with plain values on C
less than 9. PF contains all encrypted tuples with plain values

on C greater than or equal to 9. All encrypted tuples in PF have

a larger plain value on C than any encrypted tuple in PT . Note
that if the comparison predicate is ‘C > 9’, all encrypted tuples in

PT have a larger plain value on C . SP cannot distinguish which

set of encrypted tuples, PT or PF , is having larger plain values

than the other. To capture the above special ordering relationship

between two sets of encrypted tuples, we define two symbols

below.

Definition 4.1. (Relationship between partitions.) Let P1 = {ti }
and P2 = {tj } be two sets of encrypted tuples, ti [C] be the plain

value of ti on attribute C . We write P1
C
< P2 if ∀ti ∈ P1,∀tj ∈

P2, ti [C] < tj [C]. We write P1
C
7→ P2

C
7→ ...

C
7→ Pn if either (i)

P1
C
< P2

C
< ...

C
< Pn or (ii) P1

C
> P2

C
> ...

C
> Pn .

If the comparison predicate is ‘C < 9’, PT
C
< PF . However, SP

does not observe the plain comparison predicate. SP can only

conclude that PT
C
7→ PF . The ordering information SP can learn

from pC is partial only because (i) SP does not know the ordering

relationship between individual tuples in a partition; and (ii) SP

cannot conclude which partition of PT and PF is actually larger.

Definition 4.2. (Partial order partitions of a relational table.) Let
T be a set of encrypted tuples. We define partial order partitions

of T , denoted as POPCk , as a set of k partitions Pi ⊂ T s.t. (i)

Pi
⋂

Pj = ∅ for i , j; (ii)
⋃k
i=1 Pi = T ; and (iii) P1

C
7→ P2

C
7→ ...

C
7→

Pk .

From a single encrypted predicate pC in the above example,

SP finds POPC
2

: PT
C
7→ PF . With more encrypted predicates

observed, SP can enhance its past result knowledge by extending

POPC
2
. Before we discuss how SP extends its knowledge, we

define two concepts related to a new encrypted predicate on

existing partition order partitions POPCk for k ≥ 2.

Definition 4.3. (Trapdoor equivalence.) Let p1 and p2 be two
encrypted comparison predicates on the same attribute C of an

encrypted table T . Let Pab = {ti | ti ∈ T and Θ(pa , ti ) = b} for

100



Initialization

Query

DO SP

𝑝𝑖

𝑅𝑖

𝑅𝑖 = {𝑡𝑗 | 𝑡𝑗 ∈  𝑇 and Θ 𝑝𝑖, 𝑡𝑗 = 1}

𝑇

(a) EDBMS without PRKB

Initialization

Query

DO SP

𝑝𝑖

𝑅𝑖

𝑇𝑊 , 𝑇𝑁𝑆 = 𝐐𝐅𝐢𝐥𝐭𝐞𝐫 , 𝑇 𝐼, 𝑝𝑖

𝑇𝑊𝑁𝑆  = 𝐐𝐒𝐜𝐚𝐧(𝑇𝑁𝑆, 𝐼, 𝑝𝑖)
𝐼 = 𝐮𝐩𝐝𝐚𝐭𝐞𝐏𝐑𝐊𝐁(𝐼, 𝑝𝑖)

𝑅𝑖 = 𝑇𝑊  ∪ 𝑇𝑊𝑁𝑆

𝑇

𝐼 = 𝐢𝐧𝐢𝐭𝐏𝐑𝐊𝐁(𝑇)

(b) EDBMS with PRKB

Figure 2: Communication protocol of EDBMS between DO and SP

a = 1 or 2, b = 0 or 1. p1 is said to be equivalent to p2 if either (i)
P10 = P20 and P11 = P21; or (ii) P10 = P21 and P11 = P20.

Definition 4.4. (Homogeneous partition & output-isomorphic

partitions.) Given POPCk : P1
C
7→ P2

C
7→ ...

C
7→ Pk and an en-

crypted predicate p on attribute C . A partition Pa is said to

be homogeneous w.r.t. p if ∀ti , tj ∈ Pa ,Θ(p, ti ) = Θ(p, tj ). Pa
is said to be T-homogeneous (F-homogeneous resp.) w.r.t. p if

∀ti ∈ Pa ,Θ(p, ti ) = 1 (0 resp.). Two partitions Pa , Pb are said

to be output-isomorphic w.r.t. p if either (i) both partitions are

T-homogeneous or (ii) both partitions are F-homogeneous.

We explain the intuition of the above two definitions below.

Two equivalent encrypted predicates divide the encrypted table

T into the same two partitions. All encrypted tuples in a homo-

geneous partition have the same QPF output. A homogeneous

partition is further labeled T-homogeneous (or F-homogeneous)

if the QPF output is 1 (or 0) for all encrypted tuples in the parti-

tion. A non-homogenoeus partition contains tuples with mixed

QPF outputs, i.e., some gives 1 and some gives 0. Two output-

isomorphic partitions means that all encrypted tuples in the

partitions have the same QPF output. Two encrypted predicates

are equivalent if they divide the encrypted tuples into the same

two partitions. Note that two equivalent encrypted predicates

do not necessary mean their plain comparison predicates are

the same. For example, if two comparison predicates are ‘C < 9’

and ‘C > 8’ and there is no tuple with value 8-9, the two cor-

responding encrypted predicates give the same two partitions,

i.e., they are equivalent. Since equivalent encrypted predicates

give the same partitions, only inequivalent encrypted predicates

provide different partitioning information which can enhance

SP’s knowledge.

Now, we consider what SP observes when there is a new en-

crypted predicate with an existing POPCk . We summarize the

scenario in the following lemma.

Lemma 4.5. Given POPCk : P1
C
7→ P2

C
7→ ...

C
7→ Pk . Let P be

the set of encrypted predicates for deriving POPCk . Let p be a new
encrypted predicate on attribute C . The following two cases must
hold.

Case 1: p is equivalent to some encrypted predicate in P if and
only if there is a separating point s s.t. (i) all partitions Pi for i = 1

to s are output-isomorphic, (ii) all partitions Pj for j = s +1 to k are
output-isomorphic; and (iii) Pi and Pj are not output-isomorphic
for i = 1 to s and j = s + 1 to k .

Case 2: p is inequivalent to all encrypted predicates in P if and
only if there is a separating point s s.t. (i) all partitions Pi for i = 1

to s − 1 are output-isomorphic, (ii) all partitions Pj for j = s + 1 to

 

Figure 3: Example instance of Case 1 in Lemma 4.5.

Figure 4: Example instance of Case 2 in Lemma 4.5.

k are output-isomorphic; (iii) Pi and Pj are not output-isomorphic
for i = 1 to s − 1 and j = s + 1 to k ; and (iv) Ps is non-homogeneous.

Fig. 3 and Fig. 4 show the examples of Case 1 and Case 2.

Now, SP obtain POPCk : P1
C
7→ P2

C
7→ ...

C
7→ Pk , generated

based on a set of encrypted predicates P. Note that when SP is

given a new encrypted predicate p′, SP does not know whether

p′ is equivalent to some encrypted predicate in P. According to
Lemma 4.5, SP observes a non-homogeneous partition only in

case 2. Reversely, if SP observes a non-homogeneous partition, SP

can conclude that p′ is inequivalent, i.e., p′ allows SP to extend

POPCk .
Assume now SP receives a new inequivalent encrypted predi-

cate p′. Let Ps be the non-homogeneous partition in POPCk . Since
Ps is non-homogeneous, SP can divide Ps into two smaller parti-

tions based on the outputs of Θ:

PsT = {ti | ti ∈ Ps | Θ(p
′, ti ) = 1} and

PsF = {ti | ti ∈ Ps | Θ(p
′, ti ) = 0}

For example, in Fig. 4, the encrypted predicate divides Ps into
PsT on the right and PsF on the left. PsT and PsF are now ho-

mogeneous. Either one of them must be output-isomorphic to

Ps−1 and the other partition must be output-isomorphic to Ps+1.
Without loss of generality, assume PsF is output-isomorphic to

Ps−1 and PsT is output-isomorphic to Ps+1 (like the scernaio in

Fig. 4). SP can conclude that P1
C
7→ P2

C
7→ ...

C
7→ Ps−1

C
7→ PsF

C
7→

PsT
C
7→ Ps+1

C
7→ Pk . As a result, SP extends POPCk to POPCk+1 with

one more inequivalent encrypted predicate. By mathematical in-

duction, SP can compute POPCk with k−1 inequivalent encrypted
predicates.

The above discussion only shows that SP can observe POPCk
with k − 1 inequivalent encrypted predicates. We will describe

how SP can efficiently update POPCk to POPCk+1 with an addi-

tional encrypted predicate in Sec. 5.3 after we discuss how we
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make use of POPCk to optimize selection processing of compari-

son predicates. POPCk represents the knowledge extracted from

past queries. Technically, PRKB contains only one item: POPCk .
When SP decides to build PRKB on attribute C , the algorithm

initPRKB(T ) initiates PRKB as POPC
1
where all encrypted tuples

in T residue in one big partition. As SP receives an inequivalent

encrypted predicate, SP extends its PRKB from POPCk to POPCk+1.

5 SINGLE COMPARISON PREDICATE
PROCESSING

In this section, we describe our method of SP processing com-

parison predicate using PRKB. As discussed in Sec. 4, PRKB con-

tains one single item POPCk , which is a set of k partitions of

encrypted tuples. Let Pi be a partition in POPCk for i = 1 to k

s.t. P1
C
7→ P2

C
7→ ...

C
7→ Pk . Let p be an encrypted predicate SP

receives from DO. From lemma 4.5, there is a separating point s
such that it divides the partitions (except the non-homogeneous

partition in Case 2) into two groups where all partitions in the

same group are output-isomorphic to each other w.r.t. p, i.e., Θ
outputs the same for all encrypted tuples in all partitions within

the same group. If SP knows the value of s , SP can determine the

QPF outputs of all encrypted tuples in the above two groups with

2 QPF uses only. This can significantly save the computational

cost at SP. However, SP does not know s in the beginning. So,

the first task of SP in processing a comparison predicate is to

find out the separating point s . This is done by the algorithm

QFilter . QFilter can narrow the possible candidates of s down
to just two candidates, i.e., only two out of k partitions could

be non-homogeneous. Since there are always two candidates of

partitions, we call them Not-sure pair (NS-pair). The QPF outputs
of encrypted tuples in all the other k − 2 partitions can be de-

termined right away. Then, the algorithm QScan will scan every

encrypted tuple in NS-Pair to confirm the value of s , with early

stop strategy applied.

In the following, we first present how QFilter helps SP find

out the separating point efficiently in Sec. 5.1. Then, we present

QScan in Sec. 5.2. Finally, we discuss how SP updates PRKB from

POPCk to POPCk+1 efficiently in Sec. 5.3.

5.1 QFilter: searching for NS-Pair
Before we talk about the algorithm QFilter , we present the fol-
lowing lemma about searching for separating point s .

Lemma 5.1. Given partial order partitions POPCk of an encrypted
table t and an encrypted predicate p on C . Let Pi be a partition

in POPCk for i = 1 to k s.t. P1
C
7→ P2

C
7→ ...

C
7→ Pk . Let s be the

separating pointmentioned in lemma 4.5. Let tx , ty be 2 encrypted
tuples in Pa , Pb respectively s.t. a < b. We have if Θ(p, tx ) =
Θ(p, ty ), then s ≤ a or s ≥ b.

In the beginning, the separating point s may be any value from

1 to k . Lemma 5.1 helps to prune the candidates of s . There are
two important observations from Lemma 5.1: (i) SP just needs to

test on one sample encrypted tuple in Pa and Pb ; and (ii) Lemma

5.1 does not prune the case of s = a and s = b.
Following observation (i), SP adopts a sampling strategy to

make use of the pruning shown in lemma 5.1. In the rest of the

paper, we use ‘Pi .sample’ to denote the random encrypted tuple

drawn from a partition Pi . Then, in observation (ii), since the

pruning always leave at least two candidates, SP cannot confirm

the actual separating point using only sampled encrypted tuples.

The sampling technique will always reduce the number of candi-

dates to exactly 2. Thus, we call the two partitions corresponding

to these 2 candidates Not-sure pair (NS-pair). After SP finds NS-

Pair using the sampling technique, SP scans the two partitions

and confirm the separating point using QScan.
Algorithm 1 shows the pseudo code of QFilter.

Algorithm 1: QFilter

Input :Encrypted table T

Input :PRKB I = POPCk : P1
C
7→ P2

C
7→ ...

C
7→ Pk

Input :Encrypted predicate pi
Output :<TW,TNS>

1 label1 = Θ(pi , P1.sample) ;
2 labelk = Θ(pi , Pk .sample) ;
3 if label1 = labelk then
4 // boundary case

5 if label1 = 1 then
6 TW =

⋃k−1
j=2 Pj ;

7 else
8 TW = ϕ ; // TW is empty

9 end
10 TNS = ⟨P1, Pk ⟩ ;

11 else
12 // use binary search to locate NS-Pair

13 a = 1 ; // first partition (head)

14 b = k ; // last partition (tail)

15 do
16 m = ⌊ a+b

2
⌋;

17 labelm = Θ(pi , Pm .sample) ;
18 if labela = labelm then
19 a =m ;

20 else
21 b =m ;

22 end
23 while b − a > 1;

24 TNS = ⟨Pa, Pb⟩ ;

25 if label1 = 1 then
26 TW =

⋃a−1
j=1 Pj ;

27 else
28 TW =

⋃k
j=b+1 Pj ;

29 end
30 end
31 return <TW,TNS>;

SP starts the search by applyingΘ on P1.sample and Pk .sample
(line 1-2). There are two possible scenarios.

Scenario (i): if Θ(pi , P1.sample) = Θ(pi , Pk .sample), we call

this the boundary case (line 5-10). Following Lemma 5.1, s ≤ 1

or s ≥ k , i.e., s = 1 or k . In this scenario, ⟨P1, Pk ⟩ is the NS-Pair
returned by this phase (line 10). Any two partitions Pu and Pv
for u,v = 2 to k − 1 must be output-isomorphic and have the

same QPF output as the samples of P1 and Pk . The Winner group

TW can be found accordingly (line 5-8).

Scenario (ii): if Θ(pi , P1.sample) , Θ(pi , Pk .sample), we call
this the recursive case (line 13-28). SP uses binary search to lo-

cate NS-Pair. SP applies Θ to the sample in the middle partition
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Pm .samplewherem = ⌊ 1+k
2
⌋. IfΘ(pi , P1.sample) = Θ(pi , Pm .sample),

following lemma 5.1, s ≤ 1 or s ≥ m. If s = 1, all partitions

Pi for i > 1 should be output-isomorphic to each other. Since

Θ(pi , Pm .sample) , σ (Pk .sample), s cannot be 1. Thus, s must lie

in [m,k]. SP recursively repeats the above procedure to find the

separating point s in [m,k]. The search ends when there are two

candidates left, x and x + 1. ⟨Px , Px+1⟩ is the NS-Pair returned.
The rest of the partitions can be divided into two groups: the

first group is P1 to Px−1 and the second group is Px+1 to Pk . Any
two partitions in the same group must be output-isomorphic and

partitions in either one of the groups must be T-homogeneous.

By looking at the QPF output of a sample encrypted tuple from

the two groups, the Winner group TW can be set (line 25-28).

5.2 QScan: finding exact selection result
Let ⟨Pa , Pb ⟩ be the NS-Pair SP obtained from QFilter . Encrypted
tuples in these two partitions are tested using QPFΘ to see which

one is actual answer in the selection result. Note that there are

two cases in lemma 4.5. Case 1: pi is equivalent to an encrpyted

predicate in P; or Case 2: pi is inequivalent to all encrypted

predicates in P. The difference between the two cases is that

the separating partition in Case 2 is non-homogeneous while

all partitions are homogeneous in Case 1. SP can make use of

the above difference and adopts an early stop strategy: SP first

applies Θ on every encrypted tuples in Pa . If Pa is found to be

non-homogeneous, it must be Case 2 and s = a. SP does not

need to apply Θ on any encrypted tuples in Pb . In the other case

where Pa is found to be homogeneous, SP continues to apply Θ
on every encrypted tuples in Pb . If Pb is non-homogeneous, it is

Case 2 and s = b. Otherwise, it is Case 1. In either case, QScan
finds the set of encrypted tuplesTWNS ⊆ Pa ∪ Pb that satisfy the

predicate, i.e.,

TWNS = {tj | tj ∈ Pa ∪ Pb and Θ(pi , tj ) = 1}

Algorithm 2 shows the pseudo code of QScan.

Algorithm 2: QScan

Input :TNS = ⟨Pa , Pb ⟩ where a < b

Input :PRKB I = POPCk : P1
C
7→ P2

C
7→ ...

C
7→ Pk

Input :Encrypted predicate pi
Output :TWNS = {tj | tj ∈ Pa ∪ Pb and Θ(pi , tj ) = 1}

1 // First scan Pa
2 PaT = {tj | tj ∈ Pa and Θ(pi , tj ) = 1}; PaF = Pa − PT ;

3 TWNS = PaT ;

4 if PaT = ∅ or PaF = ∅ then
5 // Pa is homogeneous, SP scans Pb as well

6 PbT = {tj | tj ∈ Pb and Θ(pi , tj ) = 1}; PbF = Pb − PT ;

7 TWNS = TWNS

⋃
PbT ;

8 else
9 // Pa is non-homogeneous, early stop is applied

10 if labelb = 1 ; // labelb is found in QFilter

11 then
12 TWNS = TWNS

⋃
Pb ; // Pb is T-homogeneous

13 end
14 end
15 return TWNS

The complexity of the entire selection processing isO(nk +lgn)

where n is number of encrypted tuples in T and k is number of

partitions in PRKB.

5.3 updatePRKB: update procedure of PRKB
Recall that only inequivalent encrypted predicate can help SP

to extend PRKB (see Sec. 4). During the execution of QScan,
SP already knows whether the new encrypted predicate pi is
equivalent to some encrypted predicate in P, which generates

SP’s current PRKB, POPCk . Only when either Pa or Pb is non-

homogeneous (found in QScan), pi is inequivalent (see Lemma

4.5). In such case, QScan (line 2 or line 6) has divided an existing

partition Ps into two smaller partitions PsT and PsF where s = a
(line 2) or b (line 6). Without further QPF uses, SP can easily up-

date POPCk to POPCk+1 by replacing Ps with PsT and PsF in POPCk .
The order of PsT and PsF in POPCk+1 is determined by whether

Ps−1 is T-homogeneous or F-homogeneous. Like Fig. 4, if Ps−1

is F-homogeneous, we have POPCk+1 : P1
C
7→ P2

C
7→ ...Ps−1

C
7→

PsF
C
7→ PsT

C
7→ Ps+1

C
7→ ...

C
7→ Pk .

updatePRKB is efficient since it does not require additional

QPF uses.

6 MULTI-DIMENSIONAL RANGE QUERY
In this section, we will introduce the method to optimize pro-

cessing of a d-dimensional range query for d ≥ 2. We address

the most common form of d-dimensional range: the query is

to retrieve all encrypted tuples with plain values falling into a

d-dimensional hyper-rectangle defined by DO. The query can

be described in SQL in the following form: SELECT * FROM R
WHERE c1a < C1 < c

1b AND c2a < C2 < c
2b AND ... AND

cda < Cd < cdb , whereCi is an attribute in the relational table R
and cia < cib are query parameters defined by DO for i = 1 to d .

Recall that SP is not able to see the plain query parameters and

the plain values of encrypted tuples. In EDBMS, thed-dimensional

range query is processed as 2d comparison predicates (two com-

parisons for each dimension: cia < Ci and Ci < cib ). DO gener-

ates and gives 2d encrypted predicates to SP for processing the

query. In existing EDBMS, SP has to apply up to 2d encrypted

predicates on all tuples
5
, i.e., the total number of QPF uses can be

2dn where n is number of encrypted tuples in T . A better alter-

native now is to use the single comparison predicate processing

technique in Sec. 5. SP finds out the satisfying tuples of each

comparison predicate. Then, SP intersects the set of satisfying

tuples to find out the final selection result. Number of QPF uses

can be greatly reduced compared to existing processing mech-

anism of EDBMS. This is our baseline method for processing

multi-dimensional range query. In this section, we will describe

our solution for multi-dimensional range query that is more effi-

cient than the baseline method. In our discussion below, we will

focus on 2D case for easier illustration.

6.1 Visualization of partitions on a grid
For a 2D range query, two attributes, say X and Y , are concerned.
SP has maintained two partial order partitions, say POPXkx and

POPYky of the encrypted table T . POPXkx and POPYky are two par-

titioning ways of T , i.e., every encrypted tuple t in T will be

located in one and only one partition of POPXkx and one and

5
EDBMS can stop processing for a tuple when one of the predicates is not satisfied.

Actual number of QPF uses varies.
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Figure 5: Visualization of the grid in 2D space

 

(a) Baseline

 

(b) Our solution

Figure 6: Illustration of partitions scanned in processing
2D range query by different methods. Encrypted tuples in
the central T-region must be part of answer set.

only one partition in POPYky . Let P
X
i be a partition in POPXkx for

i = 1 to kx and PYj be a partition in POPYky for j = 1 to ky . Let

Gi, j = PXi
⋂

PYj . We prepare a kx × ky grid. Gi, j is represented

as a cell at location (i, j) in the grid. Each encrypted tuple falls
into one and only one grid cell Gi, j for some i , j. The grid then

represents the visualization of partitions of encrypted tuples in

the 2D space. Fig. 5 shows the generated 2D grid. We remark that

SP does not know the plain values of boundaries of partitions

or the plain values of encrypted tuples in Gi, j , and the complete

grid is not actually computed in query processing.

Now, we use the grid to visualize the processing mechanism of

existing methods and identify redundancy in them. A linear scan

on all encrypted tuples is equivalent to scanning all the grid cells.

A better baseline solution using our single comparison predicate

processing method can narrow the search on each dimension to

just NS-Pairs. Only the partitions of NS-Pairs require full scan on

all encrypted tuples, thus saving a significant amount of QPF uses

by SP. For a 2-dimensional range query, there are two comparison

predicates on each dimension. Thus, we have 4 NS-Pairs, two on

each dimension to be scanned. Fig. 6a shows the illustration of

scanning only the NS-Pairs in the grid. Scanning for each NS-

Pair is done independently and thus a full column or row in the

grid is scanned. In multi-dimensional range query, an encrypted

tuple has to satisfy the comparison predicates in all dimensions.

In the process of finding NS-Pairs, some of the partitions are

also known to be F-homogeneous. For example, in Fig. 6a, there

are 2 NS-Pairs on X . Let (PXa , P
X
a+1) and (P

X
b , P

X
b+1) be these two

NS-Pairs, where a < b. Partitions from PX
1

to PXa−1 must be F-

homogeneous. Thus,Gi, j for i = 1 to a−1 are not necessary to be
scanned and SP can safely conclude that all encrypted tuples in

these cells will not be part of the result set. Similarly, SP can apply

the same pruning in other dimensions. The remaining partitions

to be scanned is shown in Fig. 6b. Number of QPF uses of SP is

thus reduced.

Use 𝑝𝑌1

Use 𝑝𝑌2

Use 𝑝𝑋1 Use 𝑝𝑋2

{{

{

{

NS-Pair X1 NS-Pair X2

N
S-

Pa
ir 

Y1
N

S-
Pa

ir 
Y2

Figure 7: SP tests different encrypted predicates on en-
crypted tuples in different regions. NS-Pair X1, X2, Y1
and Y2 are generated according to encrypted predicates
pX 1,pX 2,pY 1 and pY 2 respectively

6.2 Systematic scanning procedure for
multi-dimensional range query

In this section, we present how SP can systematically and effi-

ciently perform the scan. There are two major issues we need to

address to achieve efficiency.

First, note that SP does not test all the encrypted predicates on

the encrypted tuples in the area shown in Fig.6b. Recall that there

are 2d encrypted predicates where d is the number of dimension

of the query. Each encrypted predicate gives an NS-Pair. Let

p be the encrypted predicate giving the NS-Pair (Pa , Pb ). Only
grid cells that are computed by intersecting Pa or Pb with other

partitions require testing by p. For example, Fig. 7 shows the

encrypted predicates needed for different cells in Fig. 6b.

Second, as we presented in Sec. 5.2, an early stop strategy

can be used to further reduce the number of QPF uses by SP in

comparison predicate processing. SP can use the same strategy in

processing multi-dimensional range query as well. Each dimen-

sion has two comparison predicates resulting in two NS-Pairs.

Let (Pa , Pa+1) and (Pb , Pb+1) be the two NS-Pairs, where a < b.
We call Pa+1 and Pb the inner NS-partition; and Pa and Pb+1 the
outer NS-partition. If SP first scans the outer NS-partition and

finds that it is non-homogeneous, SP can further conclude that

the inner NS-partition is T-homogeneous. On the other hand, if

SP scans the inner NS-partition first and finds out that it is non-

homogeneous, SP can conclude that the outer NS-partition of

the same NS-Pair is F-homogeneous. Besides, once an encrypted

tuple is found to have QPF ouput 0 for an encrypted predicate,

it can never be in the selection result. SP does not need to test

other encrypted predicates on this encrypted tuple.

In summary, the procedure to process multi-dimensional range

query is done by the following steps:

(1) Use QFilter to find the NS-Pair for each encrypted predicate.

(2) Compute the required grid cells, e.g., in Fig. 6b, by intersecting

the partitions in different POPCikCi
for different attributes Ci .

(3) Test encrypted predicates using QPF on encrypted tuples in

different regions of the grid, e.g., according to Fig. 7, and apply

early stop strategy when possible. (Details are described above

in this section.)

(4) Return as selection result those encrypted tuples with QPF

output 1 for all encrypted predicates in step (3) and the encrypted

tuples in the central T-region, e.g., in Fig. 6b.

The entire process takesO(d(nα
d−1

k + lgk))where n is number

of encrypted tuples in T , k is number of partitions in PRKB, d is
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number of dimensions of the query andα is the selectivity on each

dimension. Assume α remains the same, the query cost decreases

as d increases. Our selection processing technique for multi-

dimensional range query is scalable to number of dimensions.

7 DATABASE UPDATE HANDLING
The selection processing techniques we presented in Sec. 5 and

Sec. 6 are designed for a static database where the contents of

encrypted tuples do not change. In this section, we discuss how

we can support update operations in a database.

There are 3 kinds of update operations in SQL: (1) INSERT

statements; (2) DELETE statements; and (3) UPDATE statements.

UPDATE statements can be considered as insertion of a new

tuple after deletion of an existing tuple. We just need to cater for

insertion and deletion.

7.1 Insertion Handling
When there is a new encrypted tuple to be inserted to EDBMS,

SP needs to update PRKB, POPCk , to assign the new encrypted

tuple to the correct partition. To facilitate the update, SP needs

to remember the set of past k − 1 encrypted predicates P that

generates POPCk . SP can order the encrypted predicates in P ac-

cording to POPCk : P1
C
7→ P2

C
7→ ...

C
7→ Pk because the encrypted

predicates are the separators that form the partitions. Let px
be the encrypted predicate s.t. partitions Pi for i = 1 to x are

output-isomorphic and partitions Pj for j = x + 1 to k are output-

isomorphic but Pi and Pj are not output-isomorphic, e.g., the

encrypted predicate in Fig. 3 is refereed as ps . A binary search

can be used by SP to find out the partition the new encrypted

tuple belongs to: SP first uses the encrypted predicate in the

middle pm , wherem = ⌊ k
2
⌋, to determine whether the encrypted

tuple belongs to the first half or the second half of POPCk ; then re-

cursively reduces the list by half until only one partition remains

and this partition is where the new encrypted tuple belongs to.

It takes O(lgk) time to update PRKB for the new encrypted

tuple. Let β be number of attributes with indexing. The total

update cost is then O(β lgk).

7.2 Deletion Handling
Deletion handling is easy as SP simply removes the correspond-

ing encrypted tuple from the corresponding partitions. When

there is no tuple remained in a partition of POPCk , the partition
is removed from POPCk , i.e., the knowledge of partial order parti-
tions becomes POPCk−1.

8 EMPIRICAL STUDIES
There are two purposes in our experiments. First, as we men-

tioned in Sec. 3.3, SP can observe partial order information in

existing EDBMS (even without implementing PRKB). We want to

evaluate whether existing EDBMSmodel is acceptable in practice.

Second, we empirically evaluate the performance of our indexing

method, PRKB.

The experiment settings and its result for the first purpose is

presented in Sec. 8.1. Information of experiments for the second

purpose is presented in Sec. 8.2.

Number of queries

Victims Size 250 1K 10K 100K 1M

Hospital 2,426,516 0.007 0.020 0.115 0.605 2.846

Labor 6,156,470 0.042 0.117 0.484 1.673 5.807

Latitude 1,122,932 0.008 0.025 0.212 1.650 11.167

Longitude 1,122,932 0.011 0.038 0.331 2.440 13.592

Table 2: Recovered portion of ordering information
(RPOI) (%) on real datasets varying number of queries ob-
served by attacker

8.1 Experiment on security of EDBMS model
revealing selection result

As discussed in Sec. 3.3, we want to see how much partial order

information can be derived by SP/attacker in existing EDBMS

model in practice. To quantify how close the recovered partial

order is to total order, we define recovered portion of ordering
information (RPOI) as

Recovered partial order length

Total order length
. (Partial order

length is the size of the longest chain, e.g., the length of total

order is n for a dataset of n distinct numbers.)

We follow the scenario used in [24] to perform the experi-

ment. SP is able to receive certain number of queries, randomly

generated by DO. Unlike [24], SP in our case receives limited

number of queries only and we pick attributes with large domain

sizes as victims. Each query has has one encrypted predicate. We

vary number of queries from 250 to 1M and measure RPOI in

these cases. We tested on 4 victim attritubes from 3 different real

datasets:

(1) Hospital Charges: Hospital Inpatient Discharges 2013
dataset

6

(2) Labor Salary: US Labor Statistic 20177

(3) Latitude: US Buildings dataset8

(4) Longitude: US Buildings dataset
The result is presented in Table 2.

The result shows that the partial order information observed

by SP is still far from complete as the total order. RPOI increases

at decreasing speed as SP observes more queries. It is because

it gets harder for SP to observe a useful query to enhance the

partial order knowledge. According to Quantcast
9
, it could take

weeks for a top-1000 website to get a million of traffic, which is

still far away from recovering the total order in an attack attempt.

We consider our current model of EDBMS revealing selection

result as practically secure for large domain data. In contrast, if

OPE is used, e.g., in CryptDB [29], RPOI is 100% even SP has not

yet processed any query.

8.2 Performance evaluation of PRKB
8.2.1 Algorithm implementation. We separately evaluate single-

dimensional (SD) query and multi-dimensional (MD) range query.

Note that there are different processing techniques in using PRKB.

To differentiate them, we use (i) ‘PRKB(SD)’ to denote the process-

ing method for single-dimensional query (Sec. 5), (ii) ‘PRKB(SD+)’

to denote the naive extension of PRKB(SD) for multi-dimensional

range query (see Sec. 6), and (iii) ‘PRKB(MD)’ to denote the al-

gorithm designed for multi-dimensional range query (see Sec.

6.2).

6
https://health.data.ny.gov/

7
https://catalog.data.gov/

8
http://www.geonames.org/

9
https://www.quantcast.com/top-sites
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As a competitor, we implemented the indexingmethod ‘Logarithmic-

SRC-i’ in [12]. Note that Logarithmic-SRC-i may return false

positives to DO. DO needs to decrypt them to confirm whether

they are actual answer in the selection result. This may require a

significant amount of DO’s involvement to process the query. In

our implementation, we deployed a trusted machine (TM), like

Cipherbase [2], to perform this confirmation process on behalf of

DO. In PRKB, we use the same confirmation process as QPF, i.e.,

SP sends the encrypted data to TM; TM decrypts and returns the

QPF output of the encrypted tuple. Besides, Logarithmic-SRC-i

is an encrypted index computed and maintained by DO. This is

also done by TM in our implementation. In our experiment, both

TM and SP equip with a machine with the same power. We also

compare with the case where no indexing is used, denoted as

Baseline.

PRKB replies on past queries to operate effectively. In all ex-

periments, number of queries is limited to small values (at most

600) so as to show that PRKB is effective even without a lot of

past result knowledge.

All algorithms were implemented in C/C++. All machines in

the experiment equip with 2GHz CPU and 4GB RAM running

Linux platform.

8.2.2 Datasets and Tests. We performed our experiments on

both synthetic and real datasets. We performed most of the exper-

iments on synthetic datasets to evaluate the performance varying

different parameters, e.g., number of tuples and selectivity. In the

synthetic datasets, the data domain of all attributes is set to be

integers in [1, 30M]. The plain value on each attribute of each

tuple is randomly generated
10
.

We simulated a use case on a real dataset. The US buildings

dataset contains 1,122,932 records about information of buildings

in US, including location (latitude and longitude). A tourist (user)

is interested to know what buildings are around the location he

will visit. The user issues a range query to retrieve all buildings

within a 1km × 1km region in the dataset, i.e., it is a 2D range

query.

We measure the average number of QPF uses
11

(# QPF use)

and average execution time out of 20 runs for each experiment.

8.2.3 Experiment on Building PRKB. This experiment simu-

lates SP building PRKB from scratch on a synthetic dataset with

10M tuples. We assume SP receives 600 distinct queries, each with

one comparison predicate, and we monitor the performance of

query processing cost. For reference, the performance of Baseline

and Logarithmic-SRC-i is also shown. Fig. 8 shows the result of

query cost and Table 3 shows the space consumption of PRKB.

We make the following observations from the result:

(1) In the beginning, PRKB has no knowledge. Query pro-

cessing is as slow as Baseline. However, when SP receives

queries, the cost drops fast. At 50-th query, the cost has

already dropped by an order of magnitude and PRKB has

almost the same performance as Logarithmic-SRC-i. At

600-th query, the query time of PRKB is one order ofmagni-

tude smaller than Logarithmic-SRC-i. It shows that PRKB

is practical, reducing the query processing cost signifi-

cantly with a small amount of past result knowledge.

10
We have tested on data generated with different distributions, including uniform,

normal, correlated and anti-correlated. The results are similar and so we just present

the results for uniform distribution in this paper.

11
Since majority of actions in Logarithmic-SRC-i are related to its index structure,

we do not show # QPF use for Logarithmic-SRC-i.
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Figure 8: Performance of Query with growing PRKB on
10M tuples (1% Selectivity)

Dataset size (in millions)

Method 10 12 14 16 18 20

PRKB-250 38.2 45.8 53.4 61.0 68.7 76.3

PRKB-600 38.2 45.9 53.5 61.1 68.8 76.4

Logarithmic-SRC-i 3589 4050 4493 4918 6356 6758

Table 3: Storage size of the index (in MB)
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Figure 9: Performance on single-dimensional query vary-
ing dataset size (1% selectivity)

(2) PRKB occupies a small space, as PRKB is simply parti-

tion information of encrypted tuples. There is a slight

increase in space consumption (from 76.3MB to 76.4MB

for 20M dataset) of PRKB. It is because SP needs to keep

more encrypted predicates to handle database update (see

Sec. 7). The increase in space consumption is negligible.

Logarithmic-SRC-i requires much more space due to its

more complex index structure.

(3) The query processing cost is consistent with number of

QPF uses. This shows that QPF computation is the domi-

nant cost in EDBMS. Reducing number of QPF uses can

help to reduce the overall query cost.

8.2.4 Experiment for Single-dimensional Query. We tested

the performance of algorithms in handling a single-dimensional

query under different settings. The query is in the form of “SE-

LECT * FROM Dataset WHERE lb < X < ub”. X is an attribute

on synthetic dataset. lb and ub are two parameters generated

randomly according to selectivity. We use a static PRKB with

250 partitions for the experiment. There are 2 parameters in the

experiment: (i) dataset size, varying from 10M to 20M tuples; (ii)

selectivity, varying from 1% to 10%.

Fig. 9 and Fig. 10 show the results of experiments in varying

dataset size and selectivity respectively.

We make the following observations from the results.

(1) All algorithms scale well with increasing number of tuples.

Cost reduction of PRKB(SD) over Baseline and Logarithmic-

SRC-i is consistent, at about two orders of magnitude and

a factor of 4, respectively.

(2) PRKB(SD) shows a steady performance no matter how

selectivity increases. It is because PRKB simply requires

SP to examine two NS-Pairs defining the boundary of the
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Figure 10: Performance on single-dimensional query vary-
ing selectivity (dataset of 10M tuples)
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Figure 11: Performance onmulti-dimensional query vary-
ing dataset size (Dimensionality of 3, 2% selectivity per di-
mension)
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Figure 12: Performance onmulti-dimensional query vary-
ing dimensionality (Dataset of 5M tuples, 2% selectivity
per dimension)

answer set. All encrypted tuples in partitions between the

two NS-Pairs can be returned as answer without applying

QPF on them. The cost of PRKB is independent to size of

answer set.

8.2.5 Experiment for Multi-dimensional Range Query. In this

experiment, we study the difference in performance between

PRKB(SD+), PRKB(MD) and Logarithmic-SRC-i under different

settings to validate the importance of our optimization method

for handling multi-dimensional range query. The range query

tested is in the form of “SELECT * FROM Dataset WHERE lb1 <
X1 < ub1 AND ... AND lbd < Xd < ubd ”. Xi is an attribute

in the synthetic dataset. lbi and ubi are generated randomly

according to selectivity (per dimension), which is set to be 2%.

Both algorithms use a static PRKB with 250 partitions. There are

2 parameters in the experiment: (i) dimensionality d , varying
from 2 to 6, and (ii) dataset size, varying from 1M to 10M tuples.

Figure 11 and 12 show the results. Improvement of PRKB(MD)

over PRKB(SD+) and Logarithmic-SRC-i is consistent with in-

creasing dataset size. The cost of PRKB(SD+) increases as num-

ber of dimensions increases because PRKB(SD+) processes each

dimension separately. However, number of results actually de-

creases with more comparison predicates. Logarithmic-SRC-i

sent a set of hashed values for keyword search for each di-

mensions. The cost of Logarithmic-SRC-i is getting closer to

PRKB(SD+) in Figure 12. PRKB(MD), on the other hand, can

make use of the fact that more comparison predicates filter more

candidate tuples. Thus, the cost of PRKB(MD) decreases with
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Figure 13: Performance of Query with growing PRKB on
US buildings dataset (2% selectivity)

Batch

Method 1 2 3 4 5

PRKB 32,356 32,104 32,117 32,167 32,168

Logarithmic-SRC-i 2,936 2,967 2,967 2,935 2,937

Table 4: Average throughput (Tuples / Second) of inserting
5 batches (each with 2M tuples) of data to PRKB with 10M
tuples

increasing number of dimensions. PRKB(MD) can perform well

even for higher dimensional range queries.

8.2.6 Experiment on Real Dataset. We tested PRKB and Logarithmic-

SRC-i in a simulated use case (described in Sec. 8.2.2) on real

dataset to validate its practicality.

In this dataset, the space consumed by PRKB is less than 1% of

the size of encrypted dataset (
8.81MB

1.04GB ) while Logarithmic-SRC-i

consumed more than 43% space (
441.346MB

1.04GB ).

Similar to the experiments on synthetic datasets, the query

processing time is high in the beginning. Initially, the query time

of Logarithmic-SRC-i is smaller than that of PRKB. After answer-

ing 50 queries, the query time of PRKB is already below 100ms

and performs better than Logarithmic-SRC-i. After answering

600 queries, the query time of PRKB is further reduced to 9ms.

In contrast, if EBDMS does not use any index, it takes 15.9s to

process a query, which is impractical in reality. Besides, if DO

wants to avoid the poor performance of EBBMS using PRKB in

the beginning, DO can arbitrarily generates queries (as few as 50

queries in this case) to help SP to build an initiate PRKB.

8.2.7 Experiment for Handling Database Update. In this ex-

periment, we evaluate the cost of SP updating PRKB in handling

database update. Since deletion is simple, we only show the re-

sults for insertion here. PRKB has 250 partitions. The experiment

is done on a synthetic dataset with 10M tuples. We inserted 5

batches, each with 2M new tuples, to the database, i.e., the data-

base contains 20M tuples in the end. We measure the average

throughput (number of tuples inserted per second) achieved by

PRKB in each batch. For comparison, we measure the through-

put of Logarithmic-SRC-i in the same setting. Table 4 shows the

result.

The throughput of PRKB remains almost the same. The obser-

vation can be explained in our analysis in Sec. 7.1, as the update

cost is independent to database size. SP can easily bear the update

cost to maintain PRKB for optimizing query processing.

9 CONCLUSIONS AND FUTUREWORK
In this paper, we proposed a novel indexing method - past result

knowledge base (PRKB) for EDBMS. Unlike traditional indexing

problem for encrypted data, PRKB is built solely by SP based on

results of past queries. None of existing indexing methods work

without DO’s involvement or customized encryption method.
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We showed that PRKB is effective in reducing the processing

cost of new queries. Our experiments showed that PRKB consis-

tently outperforms a state-of-the-art competitor in [12] and PRKB

achieves a speed-up of at least an order of magnitude compared

to EDBMS without implementing PRKB. Since SP is just making

use the information that is already available to SP to build PRKB,

security of PRKB is ensured. In the future, we plan to extend

PRKB to incorporate different query result and to support more

query types. The partial order information in PRKB can also be

used in optimizing queries like Min, Max or Skyline queries.
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A SUPPORTING BETWEEN OPERATOR
Somemethods, e.g., [12], support specifically BETWEEN operator.

BETWEEN operator returns the overall result of whether the

encrypted tuple falls into the range instead of two results of two

comparisons, i.e., SP observes less information for BETWEEN.

In fact, as we will show below, BETWEEN is equivalent to two

separate comparisons, w.r.t. building PRKB, in most cases.

Say SP has POPC
5
: P1

C
7→ P2

C
7→ P3

C
7→ P4

C
7→ P5. Let p be an

encrypted predicate that computes ‘X BETWEEN a and b’. We

can derive a similar observation like lemma 4.5 that, in general,

Θ returns 1 for encrypted tuples in partitions in the middle and

0 for encrypted tuples in partitions in the two ends. Say (i) P3 is
T-homogeneous, (ii) P1, P5 are F-homogenous, and (iii) P2 and
P4 are non-homogeneous. Each of P2 and P4 is divided into two

partitions and we have P2T , P2F , P4T , and P4F where PiT (PiF
resp.) denotes the set of tuples in Pi that get 1 (0 resp.) from Θ. SP

obtains POPC
7
: P1

C
7→ P2F

C
7→ P2T

C
7→ P3

C
7→ P4T

C
7→ P4F

C
7→ P5. SP

obtains the same POPC
7
as if SP obtains two encrypted predicates

for ‘X ≥ a’ and ‘X ≤ b’. The BETWEEN predicate reveals the

same partial order information to SP as two separate comparison

predicates in this scenario.

Only when the range in the BETWEEN operator is very small

such that only some encrypted tuples in one partition get 1 from

Θ, SP cannot determine the order information of other tuples in

this partition.

Computing a BETWEEN operator using PRKB is similar to

comparison handling. SP looks for two separating points using

the samples of partitions, like QFilter . When a sample encrypted

tuple with QPF output 1 is found, two binary searches are per-

formed to find two NS-pairs, each containing a separating point

on the two ends of the range of BETWEEN predicate. The process

after that is the same as comparison handling. However, when no

sample with QPF output 1 is found, SP cannot conclude whether

other tuples will return 1 or 0 from QPF due to the existence

of the above exceptional case. SP needs to draw more samples

from partitions. The worst case is that SP finds that there is no

satisfying tuple after scanning all encrypted tuples.

REFERENCES
[1] Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, and Yirong Xu. 2004.

Order-Preserving Encryption for Numeric Data. In SIGMOD.
[2] Arvind Arasu, Spyros Blanas, Ken Eguro, Manas Joglekar, Raghav Kaushik,

Donald Kossmann, Ravishankar Ramamurthy, Prasang Upadhyaya, and Ra-

marathnam Venkatesan. 2013. Secure database-as-a-service with Cipherbase.

In SIGMOD.
[3] Arvind Arasu, Spyros Blanas, Ken Eguro, Raghav Kaushik, Donald Kossmann,

Ravi Ramamurthy, and Ramaratnam Venkatesan. 2013. Orthogonal Security

With Cipherbase. In CIDR.

[4] Arvind Arasu, Ken Eguro, Manas Joglekar, Raghav Kaushik, Donald Kossmann,

and Ravi Ramamurthy. 2015. Transaction processing on confidential data

using cipherbase. In ICDE.
[5] Sumeet Bajaj and Radu Sion. 2011. TrustedDB: a trusted hardware based

database with privacy and data confidentiality. In SIGMOD.
[6] Alexandra Boldyreva, Nathan Chenette, and Adam O’Neill. 2011. Order-

Preserving Encryption Revisited: Improved Security Analysis and Alternative

Solutions. In CRYPTO.
[7] David Cash, Joseph Jaeger, Stanislaw Jarecki, Charanjit S. Jutla, Hugo

Krawczyk, Marcel-Catalin Rosu, and Michael Steiner. 2014. Dynamic Search-

able Encryption in Very-Large Databases: Data Structures and Implementation.

In NDSS.
[8] David Cash, Stanislaw Jarecki, Charanjit S. Jutla, Hugo Krawczyk, Marcel-

Catalin Rosu, and Michael Steiner. 2013. Highly-Scalable Searchable Symmet-

ric Encryption with Support for Boolean Queries. In CRYPTO.
[9] Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu Sudan. 1998. Pri-

vate Information Retrieval. JACM 45, 6 (1998).

[10] Reza Curtmola, Juan A. Garay, Seny Kamara, and Rafail Ostrovsky. 2006.

Searchable symmetric encryption: improved definitions and efficient construc-

tions. In CCS.
[11] Ernesto Damiani, Sabrina De Capitani di Vimercati, Sushil Jajodia, Stefano

Paraboschi, and Pierangela Samarati. 2003. Balancing confidentiality and

efficiency in untrusted relational DBMSs. In CCS.
[12] Ioannis Demertzis, Stavros Papadopoulos, Odysseas Papapetrou, Antonios

Deligiannakis, and Minos N. Garofalakis. 2016. Practical Private Range Search

Revisited. In SIGMOD.
[13] Ioannis Demertzis and Charalampos Papamanthou. 2017. Fast Searchable

Encryption with Optimal Locality. In SIGMOD.
[14] Sabrina De Capitani di Vimercati, Sara Foresti, Stefano Paraboschi, Gerardo

Pelosi, and Pierangela Samarati. 2015. Shuffle Index: Efficient and Private

Access to Outsourced Data. TOS 11, 4 (2015).
[15] O. Goldreich, S. Micali, and A. Wigderson. 1987. How to Play any Mental

Game. In STOC.
[16] Oded Goldreich and Rafail Ostrovsky. 1996. Software Protection and Simula-

tion on Oblivious RAMs. J. ACM 43, 3 (1996).

[17] Chunsheng Gu and Jixing Gu. 2014. Known-plaintext attack on secure kNN

computation on encrypted databases. Security and Communication Networks
7, 12 (2014).

[18] Hakan Hacigümüs, Balakrishna R. Iyer, Chen Li, and Sharad Mehrotra. 2002.

Executing SQL over encrypted data in the database-service-provider model.

In SIGMOD.
[19] Zhian He, Wai Kit Wong, Ben Kao, David Wai-Lok Cheung, Rongbin Li, Siu-

Ming Yiu, and Eric Lo. 2015. SDB: A Secure Query Processing System with

Data Interoperability. PVLDB 8, 12 (2015).

[20] Bijit Hore, Sharad Mehrotra, Mustafa Canim, and Murat Kantarcioglu. 2012.

Secure Multidimensional Range Queries over Outsourced Data. The VLDB
Journal (2012).

[21] Bijit Hore, Sharad Mehrotra, and Gene Tsudik. 2004. A Privacy-Preserving

Index for Range Queries. In VLDB.
[22] Mohammad Saiful Islam, Mehmet Kuzu, and Murat Kantarcioglu. 2014. In-

ference attack against encrypted range queries on outsourced databases. In

CODASPY.
[23] Panagiotis Karras, Artyom Nikitin, Muhammad Saad, Rudrika Bhatt, Denis

Antyukhov, and Stratos Idreos. 2016. Adaptive Indexing over Encrypted

Numeric Data. In SIGMOD.
[24] Georgios Kellaris, George Kollios, Kobbi Nissim, and Adam O’Neill. 2016.

Generic Attacks on Secure Outsourced Databases. In CCS.
[25] Rui Li, Alex X. Liu, Ann L. Wang, and Bezawada Bruhadeshwar. 2014. Fast

Range Query Processing with Strong Privacy Protection for Cloud Computing.

PVLDB 7, 14 (2014).

[26] Sha Ma, Bo Yang, Kangshun Li, and Feng Xia. 2011. A Privacy-Preserving Join

on Outsourced Database. In ISC.
[27] Muhammad Naveed, Seny Kamara, and Charles V. Wright. 2015. Inference

Attacks on Property-Preserving Encrypted Databases. In SIGSAC.
[28] Raluca A. Popa, Frank H. Li, and Nickolai Zeldovich. 2013. An Ideal-Security

Protocol for Order-Preserving Encoding. In SP.
[29] Raluca A. Popa, Catherine M. S. Redfield, Nickolai Zeldovich, and Hari Bal-

akrishnan. 2011. CryptDB: protecting confidentiality with encrypted query

processing. In SOSP.
[30] Elaine Shi, John Bethencourt, T-H. Hubert Chan, Dawn Song, and Adrian Per-

rig. 2007. Multi-Dimensional Range Query over Encrypted Data. In Proceedings
of the 2007 IEEE Symposium on Security and Privacy (SP ’07).

[31] Erez Shmueli, Ronen Waisenberg, Yuval Elovici, and Ehud Gudes. 2005. De-

signing Secure Indexes for Encrypted Databases. In DBSec.
[32] E. Stefanov and E. Shi. 2013. ObliviStore: High Performance Oblivious Cloud

Storage. In SP.
[33] Stephen Tu, M. Frans Kaashoek, Samuel Madden, and Nickolai Zeldovich.

2013. Processing Analytical Queries over Encrypted Data. PVLDB 6, 5 (2013).

[34] Wai Kit Wong, David Wai-Lok Cheung, Ben Kao, and Nikos Mamoulis. 2009.

Secure kNN computation on encrypted databases. In SIGMOD.
[35] Wai KitWong, Ben Kao, DavidWai-Lok Cheung, Rongbin Li, and Siu-Ming Yiu.

2014. Secure query processing with data interoperability in a cloud database

environment. In SIGMOD.

108



Temporally-Biased Sampling for Online Model Management
Brian Hentschel

∗

Harvard University

bhentschel@g.harvard.edu

Peter J. Haas*

University of Massachusetts

phaas@cs.umass.edu

Yuanyuan Tian

IBM Research – Almaden

ytian@us.ibm.com

ABSTRACT
To maintain the accuracy of supervised learning models in the

presence of evolving data streams, we provide temporally-biased

sampling schemes that weight recent data most heavily, with

inclusion probabilities for a given data item decaying exponen-

tially over time. We then periodically retrain the models on the

current sample. This approach speeds up the training process

relative to training on all of the data. Moreover, time-biasing lets

the models adapt to recent changes in the data while—unlike

in a sliding-window approach—still keeping some old data to

ensure robustness in the face of temporary fluctuations and pe-

riodicities in the data values. In addition, the sampling-based

approach allows existing analytic algorithms for static data to be

applied to dynamic streaming data essentially without change.

We provide and analyze both a simple sampling scheme (T-TBS)

that probabilistically maintains a target sample size and a novel

reservoir-based scheme (R-TBS) that is the first to provide both

complete control over the decay rate and a guaranteed upper

bound on the sample size, while maximizing both expected sam-

ple size and sample-size stability. The latter scheme rests on the

notion of a “fractional sample” and, unlike T-TBS, allows for

data arrival rates that are unknown and time varying. R-TBS and

T-TBS are of independent interest, extending the known set of

unequal-probability sampling schemes. We discuss distributed

implementation strategies; experiments in Spark illuminate the

performance and scalability of the algorithms, and show that our

approach can increase machine learning robustness in the face

of evolving data.

1 INTRODUCTION
A key challenge for machine learning (ML) is to keep ML models

from becoming stale in the presence of evolving data. In the

context of the emerging Internet of Things (IoT), for example, the

data comprises dynamically changing sensor streams [26], and a

failure to adapt to changing data can lead to a loss of predictive

power.

One way to deal with this problem is to re-engineer existing

static supervised learning algorithms to become adaptive. Some

parametric algorithms such as SVM can indeed be re-engineered

so that the parameters are time-varying, but for non-parametric

algorithms such as kNN-based classification, it is not at all clear

how re-engineering can be accomplished. We therefore consider

alternative approaches in which we periodically retrain ML mod-

els, allowing static ML algorithms to be used in dynamic settings

essentially as-is. There are several possible retraining approaches.

Retraining on cumulative data: Periodically retraining a

model on all of the data that has arrived so far is clearly infeasible

because of the huge volume of data involved. Moreover, recent
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data is swamped by the massive amount of past data, so the

retrained model is not sufficiently adaptive.

Sliding windows: A simple sliding-window approach would

be to, e.g., periodically retrain on the data from the last two hours.

If the data arrival rate is high and there is no bound on mem-

ory, then one must deal with long retraining times caused by

large amounts of data in the window. The simplest way to bound

the window size is to retain the last n items. Alternatively, one

could try to subsample within the time-based window [14]. The

fundamental problem with all of these bounding approaches is

that old data is completely forgotten; the problem is especially

severe when the data arrival rate is high. This can undermine the

robustness of an ML model in situations where old patterns can

reassert themselves. For example, a singular event such as a holi-

day, stock market drop, or terrorist attack can temporarily disrupt

normal data patterns, which will reestablish themselves once the

effect of the event dies down. Periodic data patterns can lead to

the same phenomenon. Another example, from [27], concerns

influencers on Twitter: a prolific tweeter might temporarily stop

tweeting due to travel, illness, or some other reason, and hence

be completely forgotten in a sliding-window approach. Indeed, in

real-world Twitter data, almost a quarter of top influencers were

of this type, and were missed by a sliding window approach.

Temporally biased sampling: An appealing alternative is a

temporally biased sampling-based approach, i.e., maintaining a

sample that heavily emphasizes recent data but also contains a

small amount of older data, and periodically retraining a model

on the sample. By using a time-biased sample, the retraining

costs can be held to an acceptable level while not sacrificing

robustness in the presence of recurrent patterns. This approach

was proposed in [27] in the setting of graph analysis algorithms,

and has recently been adopted in the MacroBase system [3]. The

orthogonal problem of choosing when to retrain a model is also

an important question, and is related to, e.g., the literature on

“concept drift” [13]; in this paper we focus on the problem of how

to efficiently maintain a time-biased sample.

In more detail, our time-biased sampling algorithms ensure

that the “appearance probability” for a given data item—i.e., the

probability that the item appears in the current sample—decays

over time at a controlled exponential rate. Specifically, we assume

that items arrive in batches (see the next section for more details),

and our goal is to ensure that (i) our sample is representative

in that all items in a given batch are equally likely to be in the

sample, and (ii) if items i and j belong to batches that have arrived
at (wall clock) times t ′ and t ′′ with t ′ ≤ t ′′, then for any time

t ≥ t ′′ our sample St is such that

Pr[i ∈ St ]/Pr[j ∈ St ] = e−λ(t
′′−t ′). (1)

Thus items with a given timestamp are sampled uniformly, and

items with different timestamps are handled in a carefully con-

trolled manner. The criterion in (1) is natural and appealing in

applications and, importantly, is interpretable and understand-

able to users. As discussed in [27], the value of the decay rate λ
can be chosen to meet application-specific criteria. For example,

by setting λ = 0.058, around 10% of the data items from 40 batches
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ago are included in the current analysis. As another example,

suppose that, k = 150 batches ago, an entity such as a person

or city was represented by n = 1000 data items and we want

to ensure that, with probability q = 0.01, at least one of these

data items remains in the current sample. Then we would set

λ = −k−1 ln
(
1 − (1 − q)1/n

)
≈ 0.077. If training data is available,

λ can also be chosen to maximize accuracy via cross validation.

The exponential form of the decay function has been adopted

by the majority of time-biased-sampling applications in practice

because otherwise one would typically need to track the arrival

time of every data item—both in and outside of the sample—and

decay each item individually at an update, which would make

the sampling operation intolerably slow. (A “forward decay" ap-

proach that avoids this difficulty, but with its own costs, has been

proposed in [9]; we plan to investigate forward decay in future

work.) Exponential decay functions make update operations fast

and simple.

For the case in which the item-arrival rate is high, the main

issue is to keep the sample size from becoming too large. On

the other hand, when the incoming batches become very small

or widely spaced, the sample sizes for all of the time-biased

algorithms that we discuss (as well as for sliding-window schemes

based on wall-clock time) can become small. This is a natural

consequence of treating recent items as more important, and

is characteristic of any sampling scheme that satisfies (1). We

emphasize that—as shown in our experiments—a smaller, but

carefully time-biased sample typically yields greater prediction

accuracy than a sample that is larger due to overloading with too

much recent data or too much old data. I.e., more sample data is

not always better. Indeed, with respect to model management,

this decay property can be viewed as a feature in that, if the

data stream dries up and the sample decays to a very small size,

then this is a signal that there is not enough new data to reliably

retrain the model, and that the current version should be kept

for now.

It is surprisingly hard to both enforce (1) and to bound the

sample size. As discussed in detail in Section 7, prior algorithms

that bound the sample size either cannot consistently enforce

(1) or cannot handle wall-clock time. Examples of the former

include algorithms based on the A-Res scheme of Efraimidis and

Spirakis [12], and Chao’s algorithm [5]. A-Res enforces conditions

on the acceptance probabilities of items; this leads to appearance

probabilities which, unlike (1), are both hard to compute and not

intuitive. A similar example is provided by Chao’s algorithm [5].

In Appendix D of [16] we demonstrate how the algorithm can

be specialized to the case of exponential decay and modified to

handle batch arrivals. We then show that the resulting algorithm

fails to enforce (1) either when initially filling up an empty sample

or in the presence of data that arrives slowly relative to the decay

rate, and hence fails if the data rate fluctuates too much. The

second type of algorithm, due to Aggarwal [1] can only control

appearance probabilities based on the indices of the data items.

For example, after n items arrive, one could require that, with 95%

probability, the (n−k)th item should still be in the sample for some

specified k < n. If the data arrival rate is constant, then this might

correspond to a constraint of the form “with 95% probability a

data item that arrived 10 hours ago is still in the sample”, which

is often more natural in applications. For varying arrival rates,

however, it is impossible to enforce the latter type of constraint,

and a large batch of arriving data can prematurely flush out older

data. Thus our new sampling schemes are interesting in their

own right, significantly expanding the set of unequal-probability

sampling techniques.

T-TBS:Wefirst provide and analyze Targeted-Size Time-Biased

Sampling (T-TBS), a simple algorithm that generalizes the sam-

pling scheme in [27]. T-TBS allows complete control over the

decay rate (expressed in wall-clock time) and probabilistically

maintains a target sample size. That is, the expected and average

sample sizes converge to the target and the probability of large

deviations from the target decreases exponentially or faster in

both the target size and the deviation size. T-TBS is simple and

highly scalable when applicable, but only works under the strong

restriction that the mean data arrival rate is known and constant.

There are scenarios where T-TBS might be a good choice (see

Section 3), but many applications have non-constant, unknown

mean arrival rates or cannot tolerate sample overflows.

R-TBS:We then provide a novel algorithm, Reservoir-Based

Time-Biased Sampling (R-TBS), that is the first to simultaneously

enforce (1) at all times, provide a guaranteed upper bound on

the sample size, and allow unknown, varying data arrival rates.

Guaranteed bounds are desirable because they avoid memory

management issues associated with sample overflows, especially

when large numbers of samples are being maintained—so that

the probability of some sample overflowing is high—or when sam-

pling is being performed in a limited memory setting such as at

the “edge” of the IoT. Also, bounded samples reduce variability in

retraining times and do not impose upper limits on the incoming

data flow.

The idea behind R-TBS is to adapt the classic reservoir sam-

pling algorithm, which bounds the sample size but does not allow

time biasing. Our approach rests on the notion of a “fractional”

sample whose nonnegative size is real-valued in an appropri-

ate sense. We show that, over all sampling algorithms having

exponential decay, R-TBS maximizes the expected sample size

whenever the data arrival rate is low and also minimizes the

sample-size variability.

Distributed implementation: Both T-TBS and R-TBS can

be parallelized. Whereas T-TBS is relatively straightforward to

implement, an efficient distributed implementation of R-TBS is

nontrivial. We exploit various implementation strategies to re-

duce I/O relative to other approaches, avoid unnecessary con-

currency control, and make decentralized decisions about which

items to insert into, or delete from, the reservoir.

Organization: The rest of the paper is organized as follows.

In Section 2 we formally describe our batch-arrival problem set-

ting and discuss two prior simple sampling schemes: a simple

Bernoulli scheme as in [27] and the classical reservoir sampling

scheme, modified for batch arrivals. These methods either bound

the sample size but do not control the decay rate, or control the

decay rate but not the sample size. We next present and ana-

lyze the T-TBS and R-TBS algorithms in Section 3 and Section 4.

We describe the distributed implementation in Section 5, and

Section 6 contains experimental results. We review the related

literature in Section 7 and conclude in Section 8.

2 SETTING AND PRIOR SCHEMES
After introducing our problem setting, we discuss two prior sam-

pling schemes that provide context for our current work: simple

Bernoulli time-biased sampling (B-TBS) with no sample-size con-

trol and the classical reservoir sampling algorithm (with no time

biasing), modified for batch arrivals (B-RS).

Setting: Items arrive in batches B1,B2, . . ., at time points

t = 1, 2, . . ., where each batch contains 0 or more items. This
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simple integer batch sequence often arises from the discretization

of time [24, 28]. Specifically, the continuous time domain is parti-

tioned into intervals of length ∆, and the items are observed only

at times {k∆ : k = 0, 1, 2, . . .}. All items that arrive in an interval[
k∆, (k + 1)∆

)
are treated as if they arrived at time k∆, i.e., at

the start of the interval, so that all items in batch Bi have time

stamp i∆, or simply time stamp i if time is measured in units of

length ∆. As discussed below, our results can straightforwardly

be extended to arbitrary real-valued batch-arrival times.

Our goal is to generate a sequence {St }t ≥0, where St is a

sample of the items that have arrived at or prior to time t , i.e., a
sample of the items in Ut = S0 ∪

(⋃t
i=1 Bi

)
. Here we allow the

initial sample S0 to start out nonempty. These samples should

be biased towards recent items so as to enforce (1) for i ∈ Bt ′

and j ∈ Bt ′′ while keeping the sample size as close as possible to

(and preferably never exceeding) a specified target n.
Our assumption that batches arrive at integer time points can

easily be dropped. In all of our algorithms, inclusion probabilities—

and, as discussed later, closely related item “weights”—are up-

dated at a batch arrival time t ′ with respect to their values at the

previous time t = t ′ − 1 via multiplication by e−λ . To extend our

algorithms to handle arbitrary successive batch arrival times t

and t ′, we simply multiply instead by e−λ(t
′−t )

. Thus our results

can be applied to arbitrary sequences of real-valued batch arrival

times, and hence to an arbitrary sequences of item arrivals (since

batches can comprise single items).

Bernoulli Time-Biased Sampling (B-TBS): In the simplest

sampling scheme, at each time t , we accept each incoming item

x ∈ Bt into the sample with probability 1. At each subsequent

time t ′ > t , we flip a coin independently for each item currently

in the sample: an item is retained in the sample with probabil-

ity p = e−λ and removed with probability 1 − p. It is straightfor-
ward to adapt the algorithm to batch arrivals; see Appendix A

of [16], where we show that Pr[x ∈ St ′] = e−λ(t
′−t )

for x ∈ Bt ,
implying (1). This is essentially the algorithm used, e.g., in [27]

to implement time-biased edge sampling in dynamic graphs. The

user, however, cannot independently control the expected sample

size, which is completely determined by λ and the sizes of the

incoming batches. In particular, if the batch sizes systematically

grow over time, then sample size will grow without bound. Ar-

guments in [27] show that if supt |Bt | < ∞, then the sample size

can be bounded, but only probabilistically. See Remark 1 below

for extensions and refinements of these results.

Batched Reservoir Sampling (B-RS): The classic reservoir
sampling algorithm can be modified to handle batch arrivals; see

Appendix B of [16]. Although B-RS guarantees an upper bound

on the sample size, it does not support time biasing. The R-TBS

algorithm (Section 4) maintains a bounded reservoir as in B-RS

while simultaneously allowing time-biased sampling.

3 TARGETED-SIZE TBS
As a first step towards time-biased sampling with a controlled

sample size, we describe the simple T-TBS scheme, which im-

proves upon the simple Bernoulli sampling scheme B-TBS by

ensuring the inclusion property in (1) while providing probabilis-

tic guarantees on the sample size. We require that the mean batch

size equals a constant b that is both known in advance and “large

enough” in that b ≥ n(1 − e−λ), where n is the target sample size

and λ is the decay rate as before. The requirement on b ensures

that, at the target sample size, items arrive on average at least as

fast as they decay.

Algorithm 1: Targeted-size TBS (T-TBS)
1 λ: decay factor (≥ 0)

2 n: target sample size

3 b : assumed mean batch size such that b ≥ n(1 − e−λ )

4 Initialize: S ← S0 ; p ← e−λ ; q ← n(1 − e−λ )/b
5 for t ← 1, 2, . . . do
6 m ← Binomial( |S |, p) //simulate |S | trials
7 S ← Sample(S,m) //retain m random elements

8 k ← Binomial( |Bt |, q)
9 B′t ← Sample(Bt , k ) //down-sample new batch

10 S ← S ∪ B′t
11 output S

The pseudocode is given as Algorithm 1. T-TBS is similar to

B-TBS in that we downsample by performing a coin flip for each

item with retention probability p. Unlike B-TBS, we downsample

the incoming batches at rate q = n(1 − e−λ)/b, which ensures

that n becomes the “equilibrium” sample size. Specifically, when

the sample size equals n, the expected number n(1 − e−λ) of
current items deleted at an update equals the expected number

qb of inserted new items, which causes the sample size to drift

towards n. Arguing similarly to Appendix A of [16], we have for

t ′ ≥ t ≥ 1 and x ∈ Bt that Pr[x ∈ St ′] = qe−λ(t
′−t )

, so that the

key relative appearance property in (1) holds.

For efficiency, the algorithm exploits the fact that for k inde-

pendent trials, each having success probability r , the total number

of successes has a binomial distribution with parameters k and

r . Thus, in lines 6 and 8, the algorithm simulates the coin tosses

by directly generating the number of successesm or k—which
can be done using standard algorithms [17]—and then retaining

m or k randomly chosen items. So the function Binomial(j, r )
returns a random sample from the binomial distribution with

j independent trials and success probability r per trial, and the

function Sample(A,m) returns a uniform random sample, with-

out replacement, containing min(m, |A|) elements of the set A;
note that the function call Sample(A, 0) returns an empty sample

for any empty or nonempty A.
Theorem 3.1 below precisely describes the behavior of the

sample size; the proof—alongwith the proofs of most other results

in the paper—is given in Appendix C of [16]. Denote by Bt =
|Bt | the (possibly random) size of Bt for t ≥ 1 and by Ct =
|St | the sample size at time t for t ≥ 0; assume that C0 is a

finite deterministic constant. Define the upper-support ratio for a
random batch size B as r = b∗/b ≥ 1, where b = E[B] and b∗ is
the smallest positive number such that P[B ≤ b∗] = 1; set r = ∞
if B can be arbitrarily large. For r ∈ [1,∞), set

ν+ϵ,r = (1 + ϵ) ln
(
(1 + ϵ)/r

)
− (1 + ϵ − r ).

for ϵ > 0 and

ν−ϵ,r = (1 − ϵ) ln
(
(1 − ϵ)/r

)
− (1 − ϵ − r )

for ϵ ∈ (0, 1). Note that ν+ϵ,r > 0 and is strictly increasing in ϵ
for ϵ > r − 1, and that ν−ϵ,r increases from r − 1 − ln r to r as ϵ
increases from 0 to 1. Write “i.o.” to denote that an event occurs

“infinitely often”, i.e., for infinitely many values of t , and write

“w.p.1” for “with probability 1”.

Theorem 3.1. Suppose that the batch sizes {Bt }t ≥1 are i.i.d
with common mean b ≥ n(1 − e−λ), finite variance, and upper
support ratio r . Then, for any p = e−λ < 1,

(i) for allm ≥ 0, we have Pr[Ct =m i.o.] = 1;
(ii) E[Ct ] = n + p

t (C0 − n) for t > 0;
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(c) Stable Batch Size (Unif.)
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Figure 1: Targeted TBS: Sample Size Behavior, λ = decay rate and ϕ = batch size multiplier.

(iii) limt→∞(1/t)
∑t
i=0Ci = n w.p.1;

(iv) if C0 = n and r < ∞, then
(a) Pr[Ct ≥ (1 + ϵ)n] ≤ e−nν

+
ϵ,r

(
1 +O(nϵpt )

)
and

(b) Pr[Ct ≤ (1 − ϵ)n] ≤ e−nν
−
ϵ,r

(
1 +O

(
n(1 − ϵ)pt

) )
for (a) ϵ, t > 0 and (b) ϵ ∈ (0, 1) and t ≥ ln ϵ/lnp.

In Appendix C of [16], we actually prove a stronger version

of the theorem in which the assumption in (iv) that r < ∞ is

dropped.

Thus, from (ii), limt→∞ E[Ct ] = n so that the expected sample

size converges to the target size n as t becomes large; indeed, if

C0 = n then the expected sample size equalsn for all t > 0. By (iii),

an even stronger property holds in that, w.p.1, the average sample

size—averaged over the first t batch-arrival times—converges

to n as t becomes large. For typical batch-size distributions, the

assertions in (iv) imply that, at any given time t , the probability
that the sample size deviates fromn bymore than 100ϵ% decreases

exponentially with n and—in the case of a positive deviation as

in (iv)(a)—super-exponentially in ϵ . However, the assertion in

(i) implies that any sample sizem, no matter how large, will be

exceeded infinitely often w.p.1; indeed, it follows from the proof

that the mean times between successive exceedances are not only

finite, but are uniformly bounded over time. In summary, the

sample size is generally stable and close to n on average, but is

subject to infrequent, but unboundedly large spikes in the sample

size, so that sample-size control is incomplete.

Indeed, when batch sizes fluctuate in a non-predicable way, as

often happens in practice, T-TBS can break down; see Figure 1,

in which we plot sample sizes for T-TBS and, for comparison,

R-TBS. The problem is that the value of the mean batch size b
must be specified in advance, so that the algorithm cannot handle

dynamic changes in b without losing control of either the decay

rate or the sample size.

In Figure 1(a), for example, the (deterministic) batch size is

initially fixed and the algorithm is tuned to a target sample size

of 1000, with a decay rate of λ = 0.05. At t = 200, the batch size

starts to increase (with Bt+1 = ϕBt where ϕ = 1.002), leading

to an overflowing sample, whereas R-TBS maintains a constant

sample size.

Even in a stable batch-size regime with constant batch sizes

(or, more generally, small variations in batch size), R-TBS can

maintain a constant sample size whereas the sample size under

T-TBS fluctuates in accordance with Theorem 3.1; see Figure 1(b)

for the case of a constant batch size Bt ≡ 100 with λ = 0.1.

Large variations in the batch size lead to large fluctuations

in the sample size for T-TBS; in this case the sample size for

R-TBS is bounded above by design, but large drops in the batch

size can cause drops in the sample size for both algorithms; see

Figure 1(c) for the case of λ = 0.1 and i.i.d. uniformly distributed

batch sizes on [0, 200] so that E[Bt ] ≡ 100. Similarly, as shown in

Figure 1(d), systematically decreasing batch sizes will cause the

sample size to shrink for both T-TBS and R-TBS. Here, λ = 0.01

and, as with Figure 1(a), the batch size is initially fixed and then

starts to change at time t = 200, with ϕ = 0.8 in this case. This

experiment—and others, not reported here, with varying values of

λ and ϕ—indicate that R-TBS is more robust to sample underflows

than T-TBS.

Overall, however, T-TBS is of interest because, when the mean

batch size is known and constant over time, and when some

sample overflows are tolerable, T-TBS is simple to implement and

parallelize, and is very fast (see Section 6). For example, if the data

comes from periodic polling of a set of robust sensors, the data

arrival rate will be known a priori and will be relatively constant,

except for the occasional sensor failure, and hence T-TBS might

be appropriate. On the other hand, if data is coming from, e.g., a

social network, then batch sizes may be hard to predict.

Remark 1. When q = 1, Theorem 3.1 provides a description

of sample-size behavior for B-TBS. Under the conditions of the

theorem, the expected sample size converges to n = b/(1 − e−λ),
which illustrates that the sample size and decay rate cannot

be controlled independently. The actual sample size fluctuates

around this value, with large deviations above or below being

exponentially or super-exponentially rare. Thus Theorem 3.1

both complements and refines the analysis in [27].

4 RESERVOIR-BASED TBS
Targeted time-biased sampling (T-TBS) controls the decay rate

but only partially controls the sample size, whereas batched reser-

voir sampling (B-RS) bounds the sample size but does not allow

time biasing. Our new reservoir-based time-biased sampling al-

gorithm (R-TBS) combines the best features of both, controlling

the decay rate while ensuring that the sample never overflows

and has optimal sample size and stability properties. Importantly,

unlike T-TBS, the R-TBS algorithm can handle any sequence of

batch sizes.

4.1 The R-TBS Algorithm
To maintain a bounded sample, R-TBS combines the use of a

reservoir with the notion of item weights. In R-TBS, the weight

of an item initially equals 1 but then decays at rate λ, i.e., the

weight of an item i ∈ Bt at time t ′ ≥ t is wt ′(i) = e−λ(t
′−t )

.

All items arriving at the same time have the same weight, so

that the total weight of all items seen up through time t isWt =∑t
j=1 Bje

−λ(t−j)
, where, as before, Bj = |Bj | is the size of the jth

batch.

R-TBS generates a sequence of latent “fractional samples”

{Lt }t ≥0 such that (i) the “size” of each Lt equals the sample
weight Ct , defined as Ct = min(n,Wt ), and (ii) Lt contains ⌊Ct ⌋
“full” items and at most one “partial” item. For example, a latent

sample of size Ct = 3.6 contains three “full” items that belong to

the actual sample St with probability 1 and one partial item that
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Algorithm 2: Reservoir-based TBS (R-TBS)

1 λ: decay factor (≥ 0)

2 n: maximum sample size

3 Initialize: A← A0 ;W ← C ← |A0 |; π ← ∅ // |A0 | ≤ n
4 for t ← 1, 2, . . . do
5 ifW < n then //has been unsaturated

6 W ← e−λW //decay current items

7 ifW > 0 then
8 (A, π , C) ← Dsample

(
(A, π , C),W

)
9 A← A ∪ Bt //accept all items in Bt

10 W ←W + |Bt | //update total weight

11 ifW > n then //sample is now saturated
//adjust for overshoot

12 (A, π , C) ← Dsample

(
(A, π ,W ), n

)
13 else //has been saturated

14 W ← e−λW + |Bt | //new total weight

15 ifW ≥ n then //still saturated
16 m ← StochRound( |Bt |n/W )

//replace m A-items with m Bt -items

17 A← A \ Sample(A,m) ∪ Sample(Bt ,m)
18 else //now unsaturated

//adjust for undershoot

19 (A, π , C) ← Dsample

(
(A, π , n),W − |Bt |

)
20 A← A ∪ Bt //all batch items are full

21 S ← getSample(A, π , C)
22 output S

a b c d

partial item

a b ca b c a b c d

Figure 2: Latent sample Lt (sample weight Ct = 3.6) and possible
realized samples.

belongs to St with probability 0.6. Thus St is obtained by includ-

ing each full item and then including the partial item according

to its associated probability, so that Ct represents the expected
size of St . E.g., in our example, the sample St will contain either

three or four items with respective probabilities 0.4 and 0.6, so

that the expected sample size is 3.6; see Figure 2. Note that if

Ct = k for some k ∈ {0, 1, . . . ,n}, then with probability 1 the

sample contains precisely k items, and Ct is the actual size of St ,
rather than just the expected size. Since each Ct by definition

never exceeds n, no sample St ever contains more than n items.

More precisely, given a set U of items, a latent sample of U
with sample weight C is a triple L = (A,π ,C), where A ⊆ U
is a set of ⌊C⌋ full items and π ⊆ U is a (possibly empty) set

containing at most one partial item. At each time t , we randomly

generate St from Lt = (At ,πt ,Ct ) by sampling such that

St =

{
At ∪ π with probability frac(Ct );

At with probability 1 − frac(Ct ),
(2)

where frac(x) = x − ⌊x⌋. That is, each full item is included with

probability 1 and the partial item is included with probability

frac(Ct ). Thus

E[|St |] = ⌈Ct ⌉ frac(Ct ) + ⌊Ct ⌋
(
1 − frac(Ct )

)
= (⌈Ct ⌉ − ⌊Ct ⌋) frac(Ct ) + ⌊Ct ⌋

= frac(Ct ) + ⌊Ct ⌋ = Ct

(3)

as previously asserted. By allowing at most one partial item, we

minimize the latent sample’s footprint: |At ∪ πt | ≤ ⌊Ct ⌋ + 1.
The key goal of R-TBS is to maintain the invariant

Pr[i ∈ St ] =
(
Ct /Wt

)
wt (i) (4)

for each t ≥ 0 and each item i ∈ Ut , where, as before,Ut denotes
the set of all items that arrive up through time t , so that the

appearance probability for an item i at time t is proportional to
its weight wt (i). This immediately implies the desired relative-

inclusion property (1). Sincewt (i) = 1 for an arriving item i ∈ Bt ,
the equality in (4) implies that the initial acceptance probability

for this item is

Pr[i ∈ St ] = Ct /Wt . (5)

The pseudocode for R-TBS is given as Algorithm 2. Suppose

the sample is unsaturated at time t − 1 in thatWt−1 < n and

hence Ct−1 =Wt−1 (line 5). The decay process first reduces the

total weight (and hence the sample weight) toW ′t−1 = C ′t−1 =

e−λWt−1 (line 6). R-TBS then downsamples Lt−1 (line 8) to re-

flect this decay and maintain a minimal sample footprint; the

downsampling method, described in Section 4.2, is designed to

maintain the invariant in (4). If the weight of the arriving batch

does not cause the sample to overflow, i.e.,C ′t−1 + |Bt | < n, then
Ct = C ′t−1 + |Bt | =W

′
t−1 + |Bt | =Wt . The relation in (5) then

implies that all newly arrived items are accepted into the sample

with probability 1 (line 9); see Figure 3(a) for an example of this

scenario. The situation is more complicated if the weight of the

arriving batch would cause the sample to overflow. It turns out

that the simplest way to deal with this scenario is to initially

accept all incoming items as in line 9, and then run an additional

round of downsampling to reduce the sample weight ton (line 12),
so that the sample is now saturated; see Figure 3(b). Note that

these two steps can be executed without ever causing the sample

footprint to exceed n.
Now suppose that the sample is saturated at time t − 1, so that

Wt−1 ≥ n and hence Ct−1 = |St−1 | = n. The new total weight is

Wt =W
′
t−1 + |Bt | as before (line 14). IfWt ≥ n, then the weight

of the arriving batch exceeds the weight loss due to decay, and

the sample remains saturated. Then (5) implies that each item

in Bt is accepted into the sample with probability p = n/Wt .

Letting Ij = 1 if item j ∈ B is accepted and Ij = 0 otherwise, we

see that the expected number of accepted items is

m = E

[ ∑
j ∈Bt

Ij
]
=

∑
j ∈Bt

E[Ij ] =
∑
j ∈Bt

Pr[Ij = 1] = Btn/Wt .

There are a number of possible ways to carry out this acceptance

operation, e.g., via independent coin flips. To minimize the vari-

ability of the sample size (and hence the likelihood of severely

small samples), R-TBS uses stochastic rounding in line 16 and

accepts a random number of items M such that M = ⌊m⌋ with
probability ⌈m⌉ −m andM = ⌈m⌉ with probabilitym − ⌊m⌋, so
that E[M] =m by an argument essentially the same as in (3). To

maintain the bound on the sample size, the M accepted items

replace M randomly selected “victims” in the current sample

(line 17). IfWt < n, then the sample weight decays toW ′t−1 and
the weight of the arriving batch is not enough to fill the sample

back up. Moreover, (5) implies that all arriving items are accepted

with probability 1. Thus we downsample to the decayed weight

ofW ′t−1 =Wt − |Bt | in line 19 and then insert the arriving items

in line 20.

4.2 Downsampling
Before describing Algorithm 3, the downsampling algorithm, we

intuitively motivate a key property that any such procedure must

have. For any item i ∈ L, the relation in (4) implies that we must

have Pr[i ∈ S] = (C/W )wi and Pr[i ∈ S ′] = (C ′/W ′)w ′i , where
W andwi represent the total and item weight before decay and

113



c d e a

c d e

aa b

(a) Unsat.→ Unsat.

a c e g

ac d e f g

c d e f g

aa b

(b) Unsat.→ Sat.

a b c d a b c d

b d e

b d

e

(c) Sat.→ Unsat.

a b c d a b c d

f b c g
e f g

(d) Sat.→ Sat.

Figure 3: R-TBS scenarios for n = 4 and e−λ = 0.5. For simplicity, we takeWt−1 = Ct−1. “DS” denotes downsampling.

Algorithm 3: Downsampling

1 L = (A, π , C): input latent sample

2 C ′: input target weight with 0 < C ′ < C
3 L′ = (A′, π ′, C ′): output latent sample

4 U ← Uniform()

5 if ⌊C ′⌋ = 0 then //no full items retained
6 if U > frac(C)/C then
7 (A′, π ′) ← Swap1(A, π )

8 A′ ← ∅
9 else if 0 < ⌊C ′⌋ = ⌊C ⌋ then //no items deleted

10 if U >
(
1 − (C ′/C) frac(C)

)
/
(
1 − frac(C ′)

)
then

11 (A′, π ′) ← Swap1(A, π )

12 else //items deleted: 0 < ⌊C ′⌋ < ⌊C ⌋
13 if U ≤ (C ′/C) frac(C) then
14 A′ ← Sample(A, ⌊C ′⌋)
15 (A′, π ′) ← Swap1(A′, π )
16 else
17 A′ ← Sample(A, ⌊C ′⌋ + 1)
18 (A′, π ′) ← Move1(A′, π )

19 if C ′ = ⌊C ′⌋ then //no fractional item
20 π ′ ← ∅

downsampling, andW ′ andw ′i represent the weights afterwards.
Since decay affects all items equally, we have w/W = w ′/W ′,
and it follows that

Pr[i ∈ S ′] = (C ′/C) Pr[i ∈ S]. (6)

That is, the inclusion probabilities for all items must be scaled

down by the same fraction, namely C ′/C . Theorem 4.1 (later in

this section) asserts that Algorithm 3 satisfies this property.

In the pseudocode for Algorithm 3, the function Uniform()

generates a random number uniformly distributed on [0, 1]. The

subroutine Swap1(A,π ) moves a randomly selected item from

A to π and moves the current item in π (if any) to A. Similarly,

Move1(A,π )moves a randomly selected item fromA to π , replac-
ing the current item in π (if any). More precisely, Swap1(A,π ) ex-
ecutes the operations I ← Sample(A, 1),A← (A\I )∪π , and π ←
I , and Move1(A,π ) executes the operations I ← Sample(A, 1),
A← A \ I , and π ← I .

To gain some intuition for why the algorithm works, consider

a simple special case, where the goal is to form a fractional sample

L′ = (A′,π ′,C ′) from a fractional sample L = (A,π ,C) of integral
sizeC > C ′; that is, L comprises exactlyC full items. Assume that

C ′ is non-integral, so that L′ contains a partial item. In this case,

we simply select an item at random (from A) to be the partial

item in L′ and then select ⌊C ′⌋ of the remaining C − 1 items at

random to be the full items in L′; see Figure 4(a). By symmetry,

each item i ∈ L is equally likely to be included in S ′, so that the

inclusion probabilities for the items in L are all scaled down by

the same fraction, as required for (6). For example, taking t = 0

in Figure 4(a), item a appears in St with probability 1 since it is

a full item. In S ′t , where the weights have been reduced by 50%,

item a (either as a full or partial item, depending on the random

outcome) appears with probability 2 · (1/6) + 2 · (1/6) · 0.5 = 0.5,

as expected. This scenario corresponds to lines 17 and 18 in the

algorithm, where we carry out the above selections by randomly

sampling ⌊C ′⌋ + 1 items from A to form A′ and then choosing a

random item in A′ as the partial item by moving it to π .
In the case where L contains a partial item i∗ that appears in S

with probability frac(C), it follows from (6) that i∗ should appear

in S ′ with probability p = (C ′/C)P[i∗ ∈ S] = (C ′/C) frac(C).
Thus, with probability p, lines 13–15 retain i∗ and convert it to

a full item so that it appears in S ′. Otherwise, in lines 17 and

18, i∗ is removed from the sample when it is overwritten by a

random item from A′; see Figure 4(b). Again, a new partial item

is chosen from A in a random manner to uniformly scale down

the inclusion probabilities. For instance, in Figure 4(b), item d
appears in St with probability 0.2 (because it is a partial item)

and in S ′t , appears with probability 3 · (0.1/3) = 0.1. Similarly,

item a appears in St with probability 1 and in S ′t with probability

(1.8)/6 + 0.6 · (1.8/6) + 0.6 · (0.1/3) = 0.5.

The if-statement in line 5 corresponds to the corner case in

which L′ does not contain a full item. The partial item i∗ ∈ L
either becomes full or is swapped into A′ and then immediately

ejected; see Figure 4(c).

The if-statement in line 9 corresponds to the case in which

no items are deleted from the latent sample, e.g., when C =
4.7 and C ′ = 4.2. In this case, i∗ either becomes full by being

swapped into A′ or remains as the partial item for L′. Denoting
by ρ the probability of not swapping, we have P[i∗ ∈ S ′] =
ρ · frac(C ′) + (1 − ρ) · 1. On the other hand, (6) implies that

P[i∗ ∈ S ′] = (C ′/C) frac(C). Equating these expression shows

that ρ must equal the expression on the right side of the inequality

on line 10; see Figure 4(d).

Formally, we have the following result.

Theorem 4.1. For 0 < C ′ < C , let L′ = (A′,π ′,C ′) be the
latent sample produced from a latent sample L = (A,π ,C) via
Algorithm 3, and let S ′ and S be samples produced from L′ and L
via (2). Then Pr[i ∈ S ′] = (C ′/C) Pr[i ∈ S] for all i ∈ L.

4.3 Properties of R-TBS
Theorem 4.2 below asserts that R-TBS satisfies (4) and hence

(1), thereby maintaining the correct inclusion probabilities; see

Appendix C of [16] for the proof. Theorems 4.3 and 4.4 assert that,

among all sampling algorithms with exponential time biasing,

R-TBS both maximizes the expected sample size in unsaturated

scenarios and minimizes sample-size variability. Thus R-TBS

tends to yield more accurate results (from more training data)

and greater stability in both result quality and retraining costs.

Theorem 4.2. The relation Pr[i ∈ St ] = (Ct /Wt )wt (i) holds
for all t ≥ 1 and i ∈ Ut .

Theorem 4.3. LetH be any sampling algorithm that satisfies (1)
and denote by St and SHt the samples produced at time t by R-TBS
and H. If the total weight at some time t ≥ 1 satisfiesWt < n, then
E[|SHt |] ≤ E[|St |].

Proof. SinceH satisfies (1), it follows that, for each time j ≤ t
and i ∈ Bj , the inclusion probability Pr[i ∈ SHt ] must be of the
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Figure 4: Downsampling examples (t = 0).

form rte
−λ(t−j)

for some function rt independent of j. Taking
j = t , we see that rt ≤ 1. For R-TBS in an unsaturated state, (4)

implies that rt = Ct /Wt = 1, so that Pr[i ∈ SHt ] ≤ Pr[i ∈ St ] ,
and the desired result follows directly. □

Theorem 4.4. LetH be any sampling algorithm that satisfies (1)
and has maximal expected sample sizeCt and denote by St and SHt
the samples produced at time t by R-TBS and H. Then Var[|SHt |] ≥
Var[|St |] for any time t ≥ 1.

Proof. Considering all possible distributions over the sample

size having amean value equal toCt , it is straightforward to show
that variance is minimized by concentrating all of the probability

mass onto ⌊Ct ⌋ and ⌈Ct ⌉. There is precisely one such distribution,
namely the stochastic-rounding distribution, and this is precisely

the sample-size distribution attained by R-TBS. □

5 DISTRIBUTED TBS ALGORITHMS
In this section, we describe how to implement distributed versions

of T-TBS and R-TBS to handle large volumes of data.

5.1 Overview of Distributed Algorithms
The distributed T-TBS and R-TBS algorithms, denoted as D-T-

TBS and D-R-TBS respectively, need to distribute large data sets

across the cluster and parallelize the computation on them.

Overview of D-T-TBS: The implementation of the D-T-TBS

algorithm is very similar to the simple distributed Bernoulli time-

biased sampling algorithm in [27]. It is embarrassingly parallel,

requiring no coordination. At each time point t , each worker in

the cluster subsamples its partition of the sample with probability

p, subsamples its partition ofBt with probabilityq, and then takes
a union of the resulting data sets.

OverviewofD-R-TBS:This algorithm, unlikeD-T-TBS,main-

tains a bounded sample, and hence cannot be embarrassingly

parallel. D-R-TBS first needs to aggregate local batch sizes to com-

pute the incoming batch size |Bt | to maintain the total weight

W . Then, based on |Bt | and the previous total weightW , D-R-

TBS determines whether the reservoir was previously saturated

and whether it will be saturated after processing Bt . For each

possible situation, D-R-TBS chooses the items in the reservoir

to delete through downsampling and the items in Bt to insert

into the reservoir. This process requires the master to coordinate

among the workers. In Section 5.3, we introduce two alternative

approaches to determine the deleted and inserted items. Finally,

the algorithm applies the deletes and inserts to form the new

reservoir, and computes the new total weightW .

BothD-T-TBS andD-R-TBS periodically checkpoint the sample

as well as other system state variables to ensure fault tolerance.

The implementation details for D-T-TBS are mostly subsumed by

those for D-R-TBS, so we focus on the latter.
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5.2 Distributed Data Structures
There are two important data structures in the D-R-TBS algo-

rithm: the incoming batch and the reservoir. Conceptually, we

view an incoming batch Bt as an array of slots numbered from

1 through |Bt |, and the reservoir as an array of slots numbered

from 1 through ⌊C⌋ containing full items plus a special slot for

the partial item. For both data structures, data items need to be

distributed into partitions due to the large data volumes. There-

fore, the slot number of an item maps to a specific partition ID

and a position inside the partition.

The incoming batch usually comes from a distributed stream-

ing system, such as Spark Streaming; the actual data structure is

specific to the streaming system (e.g. an incoming batch is stored

as an RDD in Spark Streaming). As a result, the partitioning strat-

egy of the incoming batch is opaque to the D-R-TBS algorithm.

Unlike the incoming batch, which is read-only and discarded at

the end of each time period, the reservoir data structure must be

continually updated. An effective strategy for storing and operat-

ing on the reservoir is thus crucial for good performance. We now

explore alternative approaches to implementing the reservoir.

Distributed in-memory key-value store: One quite nat-

ural approach implements the reservoir using an off-the-shelf

distributed in-memory key-value store, such as Redis [25] or

Memcached [23]. In this scheme, each item in the reservoir is

stored as a key-value pair, with the slot number as the key and

the item as the value. Inserts and deletes to the reservoir naturally

translate into put and delete operations to the key-value store.
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There are two major limitations to this approach. Firstly, the

hash-based or range-based data-partitioning scheme used by a

distributed key-value store yields reservoir partitions that do not

correlate with the partitions of incoming batch. As illustrated in

Figure 5(a), when items from a given partition of an incoming

batch are inserted into the reservoir, the inserts touch many (if

not all) partitions of the reservoir, incurring heavy network I/O.

Secondly, key-value stores incur needless concurrency-control

overhead. For each batch, D-R-TBS already carefully coordinates

the deletes and inserts so that no two delete or insert operations

access the same slots in the reservoir and there is no danger of

write-write or read-write conflicts.

Co-partitioned reservoir: In the alternative approach, we

implement a distributed in-memory data structure for the reser-

voir so as to ensure that the reservoir partitions coincide with the

partitions from incoming batches, as shown in Figure 5(b). This

can be achieved in spite of the unknown partitioning scheme

of the streaming system. Specifically, the reservoir is initially

empty, and all items in the reservoir are from the incoming

batches. Therefore, if an item from a given partition of an in-

coming batch is always inserted into the corresponding “local”

reservoir partition and deletes are also handled locally, then the

co-partitioning and co-location of the reservoir and incoming

batch partitions is automatic. For our experiments, we imple-

mented the co-partitioned reservoir in Spark using the in-place

updating technique for RDDs in [27]; see Appendix E of [16].

Note that, at any point in time, a given slot number in the

reservoir maps to a specific partition ID and a position inside the

partition. Thus the slot number for a given full item may change

over time due to reservoir insertions and deletions. This does

not cause any statistical issues, because the functioning of the

set-based R-TBS algorithm is oblivious to specific slot numbers.

5.3 Choosing Items to Delete and Insert
In order to bound the reservoir size, D-R-TBS requires careful

coordination when choosing the set of items to delete from, and

insert into, the reservoir. At the same time, D-R-TBS must ensure

the statistical correctness of random number generation and

random permutation operations in the distributed environment.

We consider two possible approaches.

Centralized decisions: In themost straightforward approach,

the master makes centralized decisions about which items to

delete and insert. For deletes, the driver generates slot numbers

of the items in the reservoir to be deleted, which are then mapped

to the actual data locations in a manner that depends on the rep-

resentation of the reservoir (key-value store or co-partitioned

reservoir). For inserts, the driver generates the slot numbers of

the incoming items Bt at time t that need to be inserted into

the reservoir. Suppose that Bt comprises k ≥ 1 partitions. Each

generated slot number i ∈ {1, 2, . . . , |Bt |} is mapped to a par-

tition pi of the Bt (where 0 ≤ pi ≤ k − 1) and a position ri
inside partition pi . Denote by Q the set of “item locations”, i.e.,

the set of (pi , ri ) pairs. In order to perform the inserts, we need

to first retrieve the actual items based on the item locations. This

can be achieved with a join-like operation between Q and Bt ,

with the (pi , ri ) pair matching the actual location of an item in-

side Bt . To optimize this operation, we make Q a distributed

data structure and use a customized partitioner to ensure that

all pairs (pi , ri ) with pi = j are co-located with partition j of Bt
for j = 0, 1, . . . ,k − 1. Then a co-partitioned and co-located join

can be carried out between Q and Bt , as illustrated in Figure 6(a)

for k = 3. The resulting set of retrieved insert items, denoted as

S, is also co-partitioned with Bt as a by-product. After that, the

actual deletes and inserts are then carried out depending on how

reservoir is stored, as discussed below.

When the reservoir is implemented as a key-value store, the

deletes can be directly applied based on the slot numbers. For

inserts, the master takes each generated slot number of an item

in Bt and chooses a companion destination slot number in the

reservoir into which theBt itemwill be inserted. This destination

reservoir slot might currently be empty due to an earlier deletion,

or might contain an item that will now be replaced by the newly

inserted batch item. After the actual items to insert are retrieved

as described previously, the destination slot numbers are used to

put the items into the right locations in the key-value store.

When the co-partitioned reservoir is used, the delete slot num-

bers in the reservoir are mapped to (pi , ri ) pairs of partitions
of the reservoir and positions inside the partitions. As with in-

serts, we again use a customized partitioner for the set of pairs R

such that deletes are co-located with the corresponding reservoir

partitions. Then a join-like operation on R and the reservoir per-

forms the actual delete operations on the reservoir. For inserts,

we simply use another join-like operation on the set of retrieved

insert items S and the reservoir to add the corresponding insert

items to the co-located partition of the reservoir. In this approach,

we don’t need the master to generate destination reservoir slot

numbers for these insert items, because we view the reservoir as

a set when using co-partitioned reservoir data structure.

Distributed decisions: The above approach requires gener-

ating a large number of slot numbers inside the master, so we

now explore an alternative approach that offloads the slot num-

ber generation to the workers while still ensuring the statistical

correctness of the computation. This approach has the master

choose only the number of deletes and inserts per worker ac-

cording to appropriate multivariate hypergeometric distributions.

For deletes, each worker chooses random victims from its local

partition of the reservoir based on the number of deletes given

by the master. For inserts, the worker randomly and uniformly

selects items from its local partition of the incoming batch Bt
given the number of inserts. Figure 6(b) depicts how the insert

items are retrieved under this decentralized approach. We use the

technique in [15] for parallel pseudo-random number generation.

Note that this distributed decision making approach works

only when the co-partitioned reservoir data structure is used.

This is because the key-value store representation of the reser-

voir requires a target reservoir slot number for each insert item

from the incoming batch, and the target slot numbers have to be

generated in such a way as to ensure that, after the deletes and

inserts, all of the slot numbers are still unique and contiguous in

the new reservoir. This requires a lot of coordination among the

workers, which inhibits truly distributed decision making.

6 EXPERIMENTS
In this section, we study the empirical performance of D-R-TBS

and D-T-TBS, and demonstrate the potential benefit of using

them for model retraining in online model management. We im-

plemented D-R-TBS and D-T-TBS on Spark (refer to Appendix E

of [16] for implementation details).

Experimental Setup:All performance experimentswere con-

ducted on a cluster of 13 IBM System x iDataPlex dx340 servers.

Each has two quad-core Intel Xeon E5540 2.8GHz processors and

32GB of RAM. Servers are interconnected using a 1Gbit Ether-

net and each server runs Ubuntu Linux, Java 1.7 and Spark 1.6.
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One server is dedicated to run the Spark coordinator and, each

of the remaining 12 servers runs Spark workers. There is one

worker per processor on each machine, and each worker is given

all 4 cores to use, along with 8 GB of dedicated memory. All

other Spark parameters are set to their default values. We used

Memcached 1.4.33 as the key-value store in our experiments.

For all experiments, data was streamed in from HDFS using

Spark Streaming’s microbatches. We report run time per round

as the average over 100 rounds, discarding the first round from

this average because of Spark startup costs. Unless otherwise

stated, each batch contains 10 million items, the target reservoir

size is 20 million elements, and the decay parameter is λ = 0.07.
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6.1 Runtime Performance
Comparison of TBS Implementations: Figure 7 shows the

average runtime per batch for five different implementations

of distributed TBS algorithms. The first four (colored black) are

D-R-TBS implementations with different design choices: whether

to use centralized or distributed decisions (abbreviated as "Cent"

and "Dist", respectively) for choosing items to delete and insert,

and whether to use key-value store for storing reservoir or co-

partitioned reservoir (abbreviated as "KV" and "CP", respectively).

The first two implementations both use the key-value store rep-

resentation for reservoir together with the centralized decision

strategy for determining inserts and deletes. They only differ in

how the insert items are actually retrieved when subsampling

the incoming batch. The first uses the standard repartition join

(abbreviated as "RJ"), whereas the second uses the customized

partitioner and co-located join (abbreviated as "CJ") as described

in Section 5.3 and depicted in Figure 6(a). This optimization ef-

fectively cuts the network cost in half, but the KV representation

of reservoir still requires the insert items to be written across

the network to their corresponding reservoir location. The third

implementation employs the co-partitioned reservoir instead,

resulting in an significant speedup of over 2.6x. The fourth imple-

mentation further employs the distributed decision for choosing

items to delete and insert. This yields a further 1.6x speedup. We

use this D-R-TBS implementation in the remaining experiments.

The fifth implementation (colored grey) in Figure 7 is D-T-

TBS using co-partitioned reservoir and the distributed strategy

for choosing delete and insert items. Since, D-T-TBS is embar-

rassingly parallelizable, it’s much faster than the best D-R-TBS

implementation. But, as we discussed in Section 3, T-TBS only

works under a very strong restriction on the data arrival rate,

and can suffer from occasional memory overflows; see Figure 1.

In contrast, D-R-TBS is much more robust and works in realistic

scenarios where it is hard to predict the data arrival rate.

Scalability of D-R-TBS: Figure 8 shows how D-R-TBS scales

with the number of workers. We increased the batch size to 100

million items for this experiment. Initially, D-R-TBS scales out

very nicely with the increasing number of workers. However,

beyond 10 workers, the marginal benefit from additional workers

is small, because the coordination and communication overheads,

as well as the inherent Spark overhead, become prominent. For

the same reasons, in the scale-up experiment in Figure 9, the run-

time stays roughly constant until the batch size reaches 10 million

items and increases sharply at 100 million items. This is because

processing the streaming input and maintaining the sample start

to dominate the coordination and communication overhead.With

10 workers, R-TBS can handle a data flow comprising 100 million

items arriving approximately every 14 seconds.

6.2 Application: Classification using kNN
We now demonstrate the potential benefits of the R-TBS sampling

scheme for periodically retraining representative ML models in

the presence of evolving data. For each model and data set, we

compare the quality of models retrained on the samples generated

by R-TBS, a simple sliding window (SW), and uniform reservoir

sampling (Unif). Due to limited space, we do not give quality

results for T-TBS; we found that whenever it applies—i.e. when

the mean batch size is known and constant—the quality is very

similar to R-TBS, since they both use time-biased sampling.

Our first model is a kNN classifier, where a class is predicted

for each item in an incoming batch by taking a majority vote of

the classes of the k nearest neighbors in the current sample, based

on Euclidean distance; the sample is then updated using the batch.

To generate training data, we first generate 100 class centroids

uniformly in a [0, 80] × [0, 80] rectangle. Each data item is then

generated from a Gaussian mixture model and falls into one of

the 100 classes. Over time, the data generation process operates

in one of two “modes". In the “normal" mode, the frequency of

items from any of the first 50 classes is five times higher than

that of items in any of the second 50 classes. In the “abnormal"

mode, the frequencies are five times lower. Thus the frequent

and infrequent classes switch roles at a mode change. We gener-

ate each data point by randomly choosing a ground-truth class

ci with centroid (xi ,yi ) according to relative frequencies that

depend upon the current mode, and then generating the data

point’s (x ,y) coordinates independently as samples from N (xi , 1)
and N (yi , 1). Here N (µ,σ ) denotes the normal distribution with

mean µ and standard deviation σ .
In this experiment, the batch sizes are deterministic with

b = 100 items, and k = 7 neighbors for the kNN classifier. The

reservoir size for both R-TBS and Unif is 1000, and SW contains

the last 1000 items; thus all methods use the same amount of data

for retraining. (We choose this value because it achieves near

maximal classification accuracies for all techniques. In general,

we choose sampling and ML parameters to achieve good learning

performance while ensuring fair comparisons.) In each run, the

sample is warmed up by processing 100 normal-mode batches

before the classification task begins. Our experiments focus on

two types of temporal patterns in the data, as described below.

Single change: Here we model the occurrence of a singular

event. The data is generated in normal mode up to t = 10 (time is

measured here in units after warm-up), then switches to abnormal
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mode, and finally at t = 20 switches back to normal (Figure 10(a)).

As can be seen, the misclassification rate (percentage of incorrect

classifications) with R-TBS, SW and Unif all increase from around

18% to roughly 50% when the distribution becomes abnormal.

Both R-TBS and SW adapt to the change, recovering to around

16% misclassification rate after t = 16, with SW adapting slightly

better. In comparison, Unif does not adapt at all. But, when the

distribution snaps back to normal, the error rate of SW rises

sharply to 40% before gradually recovering, whereas R-TBS error

rate stays low around 15% throughout. These results prove that

R-TBS is indeed more robust: although slightly more sluggish

than SW in adapting to changes, R-TBS avoids wild fluctuations

in classification error as with SW.
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Figure 10: Misclassification rate (percent) for kNN

Periodic change: For this temporal pattern, the changes from

normal to abnormal mode are periodic, with δ normal batches

alternating with η abnormal batches, denoted as Periodic(δ ,η),
or P(δ ,η) for short. Figures 10(b) shows the misclassification

rate for Periodic(10, 10). Experiments on other periodic patterns

(in Appendix F of [16]) demonstrate similar results. The robust

behavior of R-TBS described above manifests itself even more

clearly in the periodic setting. Note, for example, how R-TBS

reacts significantly better to the renewed appearances of the ab-

normal mode. Observe that the first 30 batches of Periodic(10, 10)

display the same behavior as in the single event experiment in

Figure 10(a). We therefore focus primarily on the Periodic(10, 10)

temporal pattern for the remaining experiments.

Robustness and Effect of Decay Parameter: In the context
of online model management, we need a sampling scheme that

delivers high overall prediction accuracy and, perhaps even more

importantly, robust prediction performance over time. Large fluc-

tuations in the accuracy can pose significant risks in applications,

e.g., in critical IoT applications in the medical domain such as

monitoring glucose levels for predicting hyperglycemia events.

To assess the robustness of the performance results across dif-

ferent sampling schemes, we use a standard risk measure called

expected shortfall (ES) [22, p. 70]. ES measures downside risk,

focusing on worst-case scenarios. Specifically, the z% ES is the

average value of the worst z% of cases.

For each of 30 runs and for each sampling scheme, we compute

the 10% ES of themisclassification rate (expressed as a percentage)

starting from t = 20, since all three sampling schemes perform

poorly (as would be expected) during the first mode change,

which finishes at t = 20. Table 1 lists both the accuracy, measured

in terms of the average misclassification rate, and the robustness,
measured as the average 10% ES, of the kNN classifier over 30

runs across different temporal patterns. To demonstrate the effect

of the decay parameter λ on model performance, we also include

numbers for different λ values in Table 1.

In terms of accuracy, Unif is always theworst by a largemargin.

R-TBS and SW have similar accuracies, with R-TBS having a

slight edge in most cases. On the other hand, for robustness, SW

is almost always the worst, with ES ranging from 1.4x to 2.7x the

maximum ES (over different λ values) of R-TBS. Mostly, Unif is

also significantly worse than R-TBS, with ES ratios ranging from

1.4x to 1.7x. The only exception is the single-event pattern: since

the data remains in normal mode after the abnormal period, time

biasing becomes unimportant and Unif performs well. In general,

R-TBS provides both better accuracy and robustness in almost

all cases. The relative performance of the sampling schemes in

terms of accuracy and robustness tend to be consistent across

temporal patterns. Table 1 also shows that different λ values affect
the accuracy and robustness, however, R-TBS provides superior

results over a fairly wide range of λ values.

Varying batch size: We now examine model quality when

the batch sizes are no longer constant. Overall, the results look

similar to those for constant batch size. For example, Figure 11(a)

shows results for a Uniform(0,200) batch-size distribution, and

Figure 11(b) shows results for a deterministic batch size that

grows at a rate of 2% after warm-up. In both experiments, λ = 0.07

and the data pattern is Periodic(10, 10). These figures demon-

strate the robust performance of R-TBS in the presence of varying

data arrival rates. Similarly, the average accuracy and robustness

over 30 runs resembles the results in Table 1. For example, pick

λ = 0.07 and a Periodic(10, 10) pattern. Then, the misclassifica-

tion rate under uniform/growing batch sizes is 1.16x/1.14x that

of R-TBS for SW, and 1.47x/1.40x for Unif. In addition, the ES is

1.82x/1.98x that of R-TBS for SW, and 1.76x/1.78x for Unif.

Table 1: Accuracy and robustness of kNN performance
Single Event P(10,10) P(20,10) P(30,10)

λ Miss% ES Miss% ES Miss% ES Miss% ES

0.05 19.8 17.7 18.2 24.2 17.9 28.2 15.5 31.6

0.07 19.1 18.7 17.4 23.2 17.2 28.1 14.9 31.0
0.10 18.0 20.0 16.6 24.1 16.6 29.9 15.1 31.0
SW 19.2 53.3 19.0 49.8 18.8 47.3 16.5 44.5

Unif 25.6 19.3 25.4 42.3 25.0 43.2 21.0 47.6
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Figure 11: Varying batch sizes for kNN classifier

6.3 Application: Linear Regression
We now assess the effectiveness of R-TBS for retraining regres-

sion models. The experimental setup is similar to kNN, with data

generated in “normal” and “abnormal”modes. In bothmodes, data

items are generated from the standard linear regression model

y = b1x1 + b2x2 + ϵ , with the noise term ϵ distributed according

to a N (0, 1) distribution. In normal mode, (b1,b2) = (4.2,−0.4)
and in abnormal mode, (b1,b2) = (−3.6, 3.8). In both modes, x1
and x2 are generated according to Uniform(0, 1) distribution. As

before, the experiment starts with a warm-up of 100 “normal”

mode batches and each batch contains 100 items.

Saturated samples: Figure 12(a) shows the performance of

R-TBS, SW, and Unif for the Periodic(10, 10) pattern with a maxi-

mum sample size of 1000 for each technique. We note that, for

this sample size and temporal pattern, the R-TBS sample is always

saturated. (This is also true for all of the prior experiments.) The

results echo that of the previous section, with R-TBS exhibiting
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slightly better prediction accuracy on average, and significantly

better robustness, than the other methods. The mean square er-

rors (MSEs) across all data points for R-TBS, Unif, and SW are

3.51, 4.43, 4.02 respectively, and their 10% ES of the MSEs are

6.04, 10.05, 10.94 respectively.

Unsaturated Samples: We now investigate the case of un-

saturated samples for R-TBS. We increase the target sample size

to n = 1600. With a constant batch size of 100, and a decay rate

λ = 0.07, the reservoir of R-TBS is never full, stabilizing at 1479

items, whereas Unif and SW both have a full sample of 1600

items.

For the Periodic(10, 10) pattern, shown in Figure 12(b), SW

has a window size large enough to keep some data from older

time periods (up to 16 batches ago), making SW’s robustness

comparable to R-TBS (ES of 5.86 for SW and 5.97 for R-TBS).

However, this amalgamation of old data also hurts its overall

accuracy, with MSE rising to 4.17, as opposed to 3.50 for R-TBS.

In comparison, the shape of R-TBS remains almost unchanged

from Figure 12(a), and Unif behaves as poorly as before. When the

pattern changes to Periodic(16, 16) as shown in Figure 12(c), SW

doesn’t contain enough old data, making its prediction perfor-

mance suffer from huge fluctuations again, and the superiority of

R-TBS is more prominent. In both cases, R-TBS provides the best

overall performance, despite having a smaller sample size. This

backs up our earlier claim that more data is not always better. A

smaller but more balanced sample with good ratios of old and

new data can provide better prediction performance than a large

but unbalanced sample.

6.4 Application: Naive Bayes
In our final experiment, we evaluate the performance of R-TBS

for retraining Naive Bayes models with the Usenet2 dataset (mlkd.

csd.auth.gr/concept_drift.html), which was used in [18] to study

classifiers coping with recurring contexts in data streams. This

dataset contains a stream of 1500 messages on different topics

from the 20 News Groups Collections [21]. They are sequentially

presented to a simulated user who marks whether a message is

interesting or not. The user’s interest changes after every 300

messages. More details of the dataset can be found in [18].

Following [18], we use Naive Bayes with a bag of words model,

and set the optimal parameters for SW with maximum sample

size of 300 and batch size of 50. Since this dataset is rather small

and contexts change frequently, we use the optimal value of 0.3

for λ. We find through experiments that R-TBS displays higher

prediction accuracy for all λ in the range of [0.1, 0.5], so precise

tuning of λ is not critical. In addition, there is not enough data to

warm up the models on different sampling schemes, so we report

the model performance on all the 30 batches. Similarly, we report

20% ES for this dataset, due to the limited number of batches.

The results are shown in Figure 13. The misprediction rate for

R-TBS, SW, and Unif are 26.5%, 30.0%, and 29.5%; and the 20% ES

values are 43.3%, 52.7%, and 42.7%. Importantly, for this dataset

the changes in the underlying data patterns are less pronounced

than in the previous two experiments. Despite this, SW fluctuates

wildly, yielding inferior accuracy and robustness. In contrast,

Unif barely reacts to the context changes. As a result, Unif is very

slightly better than R-TBS with respect to robustness, but at the

price of lower overall accuracy. Thus, R-TBS is generally more

accurate under mild fluctuations in data patterns, and its superior

robustness properties manifest themselves as the changes become

more pronounced.

7 RELATEDWORK
Time-decay and sampling: Work on sampling with unequal

probabilities goes back to at least Lahiri’s 1951 paper [20]. A grow-

ing interest in streaming scenarios with weighted and decaying

items began in the mid-2000’s, with most of that work focused

on computing specific aggregates from such streams, such as

heavy-hitters, subset sums, and quantiles; see, e.g., [2, 7, 8]. The

first papers on time-biased reservoir sampling with exponential

decay are due to Aggarwal [1] and Efraimidis and Spirakis [12];

batch arrivals are not considered in these works. As discussed in

Section 1, the sampling schemes in [1] are tied to item sequence

numbers rather than the wall clock times on which we focus;

the latter are more natural when dealing with time-varying data

arrival rates.

Cormode et al. [9] propose a time biased reservoir sampling

algorithm based on the A-Res weighted sampling scheme pro-

posed in [12]. Rather than enforcing (1), the algorithm enforces

the (different) A-Res biasing scheme. In more detail, if si denotes
the element at slot i in the reservoir, then the algorithm in [12]

implements a scheme where an item x is chosen to be at slot i + 1
in the reservoir with probabilitywx /(

∑x
j=1w j −

∑i
j=1wsj ). From

the form of this equation, it becomes clear that resulting sam-

pling algorithm violates (1). Indeed, Efraimidis [11] gives some

numerical examples illustrating this point (in his comparison of

the A-Res and A-Chao algorithms). Again, we would argue that

the constraint on appearance probabilities in (1) is easier to un-

derstand in the setting of model management than the foregoing

constraint on initial acceptance probabilities.

The closest solution to ours adapts the weighted sampling

algorithm of Chao [5] to batches and time decay; we call the

resulting algorithm B-Chao and describe it in Appendix D of [16].

Unfortunately, as discussed, the relation in (1) is violated both

during the initial fill-up phase and whenever the data arrival

rate becomes slow relative to the decay rate, so that the sample

contains “overweight” items. Including overweight items causes

over-representation of older items, thus potentially degrading

predictive accuracy. The root of the issue is that the sample size

is nondecreasing over time. The R-TBS algorithm is the first

algorithm to correctly (and optimally) deal with “underflows”

by allowing the sample to shrink—thus handling data streams

whose flow rates vary unrestrictedly over continuous time. The

current paper also explicitly handles batch arrivals and explores

parallel implementation issues. The VarOpt sampling algorithm

of Cohen et al. [6]—which was developed to solve the specific

problem of estimating “subset sums”—can also be modified to our

setting. The resulting algorithm is more efficient than Chao, but

as stated in [6], it has the same statistical properties, and hence

does not satisfy (1).

Model management: A key goal of our work is to support

model management; see [13] for a survey on methods for detect-

ing changing data—also called “concept drift” in the setting of

online learning—and for adapting models to deal with drift. As

mentioned previously, one possibility is to re-engineer the learn-

ing algorithm. This has been done, for example, with support-

vector machines (SVMs) by developing incremental versions of

the basic SVM algorithm [4] and by adjusting the training data in

an SVM-specific manner, such as by adjusting example weights

as in Klinkenberg [19]. Klinkenberg also considers using curated

data selection to learn over concept drift, finding that weighted

data selection also improves the performance of learners. Our ap-

proach of model retraining using time-biased samples follows this
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Figure 12: Mean square error for linear regression
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Figure 13: Misclassification rate (per-
cent) for Naive Bayes

latter approach, and is appealing in that it is simple and applies to

a large class of machine-learning models. The recently proposed

Velox system for model management [10] ties together online

learning and statistical techniques for detecting concept drift. Af-

ter detecting drift through poor model performance, Velox kicks

off batch learning algorithms to retrain the model. Our approach

to model management is complementary to the work in [10] and

could potentially be used in a system like Velox to help deployed

models recover from poor performance more quickly. The de-

velopers of the recent MacroBase system [3] have incorporated

a time-biased sampling approach to model retraining, for iden-

tifying and explaining outliers in fast data streams. MacroBase

essentially uses Chao’s algorithm, and so could potentially bene-

fit from the R-TBS algorithm to enforce the inclusion criterion (1)

in the presence of highly variable data arrival rates.

8 CONCLUSION
Our experiments with classification and regression algorithms,

together with the prior work on graph analytics in [27], indicate

the potential usefulness of periodic retraining over time-biased

samples to help ML algorithms deal with evolving data streams

without requiring algorithmic re-engineering. To this end we

have developed and analyzed several time-biased sampling algo-

rithms that are of independent interest. In particular, the R-TBS

algorithm allows simultaneous control of both the item-inclusion

probabilities and the sample size, even when the data arrival rate

is unknown and can vary arbitrarily. R-TBS also maximizes the

expected sample size and minimizes sample-size variability over

all possible bounded-size algorithms with exponential decay. Us-

ing techniques from [9], we intend to generalize these properties

of R-TBS to hold under arbitrary forms of temporal decay.

We have also provided techniques for distributed implementa-

tion of R-TBS and T-TBS, and have shown that use of time-biased

sampling together with periodic model retraining can improve

model robustness in the face of abnormal events and periodic be-

havior in the data. In settings where (i) the mean data arrival rate

is known and (roughly) constant, as with a fixed set of sensors,

and (ii) occasional sample overflows can be easily dealt with by

allocating extra memory, we recommend use of T-TBS to pre-

cisely control item-inclusion probabilities. In many applications,

however, we expect that either (i) or (ii) will violated, in which

case we recommend the use of R-TBS. Our experiments showed

that R-TBS is superior to sliding windows over a range of λ values,
and hence does not require highly precise parameter tuning; this

may be because time-biased sampling avoids the all-or-nothing

item inclusion mechanism inherent in sliding windows.
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ABSTRACT
Database Management Systems (DBMSes) secure data against
regular users through defensive mechanisms such as access con-
trol, and against privileged users with detection mechanisms
such as audit logging. Interestingly, these security mechanisms
are built into the DBMS and are thus only useful for monitoring
or stopping operations that are executed through the DBMS API.
Any access that involves directly modifying database files (at file
system level) would, by definition, bypass any and all security
layers built into the DBMS itself.

In this paper, we propose and evaluate an approach that detects
direct modifications to database files that have already bypassed
the DBMS and its internal security mechanisms. Our approach
applies forensic analysis to first validate database indexes and
then compares index state with data in the DBMS tables. We
show that indexes are much more difficult to modify and can
be further fortified with hashing. Our approach supports most
relational DBMSes by leveraging index structures that are already
built into the system to detect database storage tampering that
would currently remain undetectable.

1 INTRODUCTION
DBMSes use a combination of defense and detection mechanisms
to secure access to data. Defense mechanisms, such as access
control, determine the data granularity and system access granted
to different database users; defense mechanisms, such as audit
logging, monitor all database activity. Regardless of the defense
mechanisms, security breaches are still a legitimate concern –
sometimes due to unintentional granting of extra access control
and sometimes due to outright hacking, such as SQL injection.
Security breaches are typically detected through analysis of audit
logs. However, audit log analysis is unreliable to detect a breach
that originated from privileged users.

Privileged users, by definition, already have the ability to
control and modify access permissions. Therefore, audit logs
fundamentally cannot be trusted to detect suspicious activity.
Additionally, privileged users commonly have access to database
files. Consider a system administrator who maliciously, acting
as the root, edits a DBMS data file in a Hex editor or through a
programming language, such as Python. The DBMS, unaware
of external file write activity taking place outside its own pro-
grammatic access, cannot log it, and thus the tampering attack
remains undetected.

Current DBMSes do not provide tools against insider threats
– in general, a built-in security mechanism is vulnerable to in-
sider attacks. While a DBMS will not be able to detect direct

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the 21st
International Conference on Extending Database Technology (EDBT), March 26-29,
2018, ISBN 978-3-89318-078-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

storage changes, file-level modifications potentially create incon-
sistencies within the auxiliary data structures maintained by a
DBMS. Forensics tools that examine file contents can be used
to detect such inconsistencies, and determine if insider threats
have taken place. Recently we proposed the first database foren-
sic tool, DBCarver, that can be used to detect deleted data from
database pages [31]. However, database forensic tools such as
DBCarver merely extract forensic artifacts but do not search for
inconsistencies within the data structures maintained by a DBMS.

In this paper, we propose a system, DBStorageAuditor, that
detects database file tampering by identifying inconsistencies in
storage through a direct inspection of internal database struc-
tures. DBStorageAuditor utilizes existing database forensic tech-
niques and expands them to extract additional necessary storage
artifacts. These artifacts are then used to detect inconsistencies
within indexes and between indexes and tables. The underlying
premise of our approach is that all relational databases follow
patterns in storage over which the privileged user has little or
no control. We inspect these storage patterns to detect unusual
activity. We motivate DBStorageAuditor through an example:

T1, 
DELETE 
FROM Orders 
WHERE ID = 2;

T2, 
DELETE 
FROM Orders 
WHERE ID = 6;

Orders Table
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Figure 1: Example attack through DBMS files.

Example 1. Malice is the system administrator for a shipping
company, FriendlyShipping. Malice is bribed by a competing com-
pany to interfere with the orders going to Seattle. Malice does not
have access to the DBMS, but she does have access to the server
where the database files reside.

Malice writes a Python script that will open and directly modify
the database file containing the Orders table. The script then opens
the database file, finds all records containing the string ‘Seattle’, and
explicitly overwrites entire records with the NULL ASCII character
(decimal value 0).

Figure 1 illustrates the result of Malice’s script actions. Since
the record was erased without the DBMS (API has never seen that
command) all DBMS security was bypassed, and the operation was
never recorded in the log file. When FriendlyShipping investigates
the missing Seattle orders, the audit log can only explain deleted
orders for (2, Chair, New York) and (6, Chair, Detroit).
The audit logs contain no trace of the Seattle order being deleted
because it was not deleted but rather wiped out externally.

To simplify in the above example, we have omitted some details
of database file tampering, which we expand on later in Section
5. Barring those details in Example 1, the value in the City index
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still exists in index storage even though the entire record is erased.
Therefore, an inconsistency can be identified by mapping back
the index value to the empty gap in table storage. The empty gap
in table storage exists because a database only marks a record
when it is deleted, and only overwrites the record with data from
a newly inserted record. However, making the mapping from
the index value to the associated record must be based on the
behavioral rules of database storage, such as page and record
layout. We use database forensic tools to understand database
layout, and using that layout, perform the necessary mapping.

It is not impossible for a scrupulous system administrator to
(i) tamper with the index and create a cascade of inconsistencies
throughout the index structure, or (ii) for an attacker who has
privileges to modify database files to acquire privileges to sus-
pend or kill logging mechanisms at the operating system level if
necessary, or (iii) for a knowledgeable adversary to easily avoid
corrupting storage and keep checksum values consistent. How-
ever, in spite of increased level of threat, we repeatedly show
that accurate knowledge about data layout can be used to gather
evidence and prove if any malicious activity has taken place.

Previously we developed an approach to detect malicious ac-
tivity when DBMS logging is disabled [28]. In this approach we
analyzed unlogged activity (executed through a proper DBMS
API) but strictly assumed that database files were not exposed to
tampering. In this paper, we address the tampering vulnerability
where the database files are physically altered. Developing an
auditing system for DBMSes is part of our larger goal to open
up the database system and its storage to users, for performance
and forensics investigation.

The rest of the paper is organized as follows: Section 2 cov-
ers related work. Section 3 discusses concepts of database stor-
age used throughout the paper. Section 4 defines the adver-
sary we seek to defend against. Section 5 details how to per-
form database file tampering. Section 6 provides an overview
of DBStorageAuditor. Section 7 describes how we utilize data-
base forensics. Section 8 addresses index tampering. Section 9
proposes a method to organize carved index output making our
system scalable. Section 10 discusses how to detect file tampering
using inconsistencies between carved index data and table data.
Section 11 provides a thorough evaluation of our system.

2 RELATEDWORK
This paper focuses on the detection of database file tampering.
Therefore, we discuss work related to protecting DBMSes against
privileged users as well as work that detects regular (non-DBMS)
file tampering. We outline why existing file tampering and anti-
forensic methods are inapplicable to database files.

2.1 Database Auditing and Security
Database audit log files are of great interest for database secu-
rity because they can be used to determine whether data was
compromised and what records were accessed. Methods to verify
log integrity have been proposed to detect log file tampering
[18, 25]. Pavlou et al. expanded upon this work to determine
the time of log tampering [17]. Sinha et al. used hash chains to
verify log integrity in an offline environment without requiring
communication with a central server [24]. Crosby et al. proposed
a data structure, history tree, to reduce the log size produced by
hash chains in an offline environment [2]. Rather than detecting
log tampering, Schneider and Kelsey developed an approach to
make log files impossible to parse and alter [23]. An event log
can be generated using triggers, and the idea of a SELECT trigger

was explored for the purpose of logging [3]. ManageEngine’s
EventLog Analyzer provides audit log reports and alerts for Ora-
cle and SQL Server based on actions, such as user activity, record
modification, schema alterations, and read-only queries [13]. We
previously described a method to detect inconsistencies between
storage and log files, allowing tampering detection when logging
was disabled (i.e., when an operation was excluded from the log)
[28]. All of this work assumes that database storage can not be
altered directly – an action which bypasses logging mechanisms.

Network-based monitoring methods have received attention
in audit log research because they provide independence and gen-
erality by residing outside of the DBMS. IBM Security Guardium
Express Activity Monitor for Databases [9] monitors incoming
packets for suspicious activity. Liu et al. [12] monitored DBAs
and other privileged users by identifying and logging network
packets containing SQL statements. The benefit of monitoring ac-
tivity over the network and, therefore, beyond the reach of DBA’s,
is the level of independence achieved by these tools. On the other
hand, relying on network activity ignores local DBMS connec-
tions and requires intimate understanding of SQL commands (i.e.,
an obfuscated command can fool the system).

2.2 Database Forensics
Stahlberg demonstrated the retention of deleted data and pro-
posed techniques to erase data for a MySQL DBMS [26]. While
this work was only ever implemented for MySQL, it validates
our threat model by imposing custom DBMS file modifications.

Database page carving [31] is a method for reconstructing the
contents of a relational database without relying on the file sys-
tem or DBMS. Page carving is inspired by traditional file carving
[6, 21], which reconstructs data (active and deleted) from disk
images or RAM snapshots without the need for a live system. The
work in [29] presented a comparative study of the page structure
for multiple DBMSes. Subsequent work in [30] described how
long forensic evidence resides within a database even after being
deleted or reorganized. While a multitude of built-in and third
party recovery tools (e.g., [15, 19, 20]) aim to extract database stor-
age, none of these tools are helpful for forensic analysis because
they can only recover “active” data. Forensic tools, such as Sleuth
Kit [1] and EnCASE Forensic [4], are commonly used by digital
investigators to reconstruct file system data, but they are not
capable of parsing database files. A database forensic tool (just
like a forensic file system tool) should also reconstruct unallo-
cated pieces of data, including deleted rows, auxiliary structures
(indexes) or buffer cache space.
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Figure 2: DBCarver architecture.

Our storage analysis relies on DBCarver tool described in [31],
which was revised to process additional artifacts for this paper.
Figure 2 provides an overview of DBCarver, which consists of two
main components: the parameter collector(A) and the carver(F).
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The parameter detector loads synthetic data into a DBMS(B), cap-
tures storage(C), deconstructs pages from storage, and describes
the page layout with a set of parameters which are stored in a
configuration file(E) – a text file that captures page-level layout
information for that particular DBMS. These configuration files
are used by the carver(F) to reconstruct DBMS content from disk
images, RAM snapshots, or any other input file(G). The carver
returns storage artifacts(H), such as user records, metadata de-
scribing user data, deleted data, and system catalogs.

2.3 File Tampering and Anti-Forensics
One-way hash functions have been used to detect file tampering
at the file system level [7, 11]. However, we expect database files
to be regularly modified by legitimate operations. Distinguishing
a malicious tampering operation and a legitimate SQL operation
would be nearly impossible at the file system level without knowl-
edge of metadata in DBMS storage. Authenticating cached data
on untrusted publishers has been explored by Martel [14] and
Tamassia [27]. Their threat model defends against an untrusted
publisher that provides cached results working with a trusted
DBMS and, while our work addresses an untrusted DBMS.

Anti-forensics is defined as a method that seeks to interfere
with a forensic process [8]; file tampering threat model we ad-
dress in this paper exhibits anti-forensics behavioral properties.
Two traditional anti-forensics techniques are data wiping and
data hiding [5, 10]: 1) data wiping explicitly overwrites data to
delete it rather thanmark it as deleted, 2) data hiding seeks to hide
the message itself. We are not aware of any existing literature
that addresses anti-forensics within DBMSes [22]; we consider
adding or erasing data through file tampering (that bypasses
DBMS itself) to be the equivalent of anti-forensics for DBMSes.
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3 BACKGROUND
The security threats we consider in this paper affect the lowest
level of database storage (details of which are hidden from the
users by design). In this section, we briefly generalize storage
of the RDBMS row-store pages and define terminology used
throughout this paper. The concepts formulated in this section
apply to (but are not limited to) IBM DB2, SQL Server, Oracle,
PostgreSQL, MySQL, Apache Derby, MariaDB, and Firebird.

3.1 Page Layout
When DBMS data is accessed or modified through an API, the
DBMS implements data changes within pages and maintains a
variety of additional metadata. While each DBMS employs its
own storage engine, there are many conceptual commonalities
between DBMSes in how data is stored and maintained. Every
DBMS uses fixed-size pages with three main structures: header,
row directory, and row data.

A DBMS page header stores metadata describing user records
stored in the page. The metadata of interest (to this paper) are
the checksum, object identifier, page identifier, free space pointer,
and record count. Figure 3 demonstrates an example of how this
metadata could be positioned in an 8K page. The checksum(A)
detects data corruption within a page; whenever a page is modi-
fied, the checksum is updated. The object identifier(B) represents
the database object to which the page belongs (the object name
is stored in a separate system table). In Figure 3, Pages 1-3 have
the object identifier 101, and Page 4 has the object identifier 105.
The page identifier(C) is unique to each page for either an object,
a file, or across all files. In Figure 3, the page identifier is unique
for each object because the value 1 occurs for both objects 101
and 105. The free space pointer(D) references unallocated space
within the page where a new record can be added. If the page is
full, the free space pointer is NULL (decimal value 0). In Figure 3,
Page1 is full since it has a NULL free space pointer, while Pages 2,
3, and 4 point to unallocated space. The record count(E) refers to
the number of active records in a page. If a record is a deleted,
the record count will be decremented by one, and if a record is
added to a page, it will be incremented by one. In Figure 3, Page1
has 80 active records, and Page2 has 81 active records.
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The row directory stores pointers to each page record (row) –
when a record is added to a page, a pointer is added to the row
directory. Figure 4 shows one example of how the row directory
(A) could be positioned; the row directory in this example has
two pointers referencing records within the row data.

The row data stores the user data along with additional meta-
data. Figure 4 shows an example of how the row data may be
structured (with some minor DBMS-specific variations). Each
record stores the user data values (E), a row delimiter that sepa-
rates the records (B), the number of columns for the record (C),
and the size of each string (D).

Deleted Data. When a record is deleted, a DBMS either over-
writes the row directory pointer for that record or marks the
record itself in the row data – it is important to note that the
record entry is not erased. Figure 4 shows an example of when the
row metadata is marked for a deleted record (F). Deleted records
become unallocated space, and DBMS settings and operations
dictate when records are (eventually) overwritten by new data.

Index Pages. Index value-pointer pairs are stored in pages,
which are similar to table pages including a header, row direc-
tory, and row data. The only significant difference between table
and index pages is the layout of records – index pages store
value-pointer pairs in the row data. Furthermore, in practice,
index values are not marked as unallocated space when a cor-
responding table record is deleted. Stale index values persist in
storage, typically until the B-Tree is explicitly rebuilt by the user
and long after the table record was overwritten.
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4 THREAT MODEL
In this section, we define the attack vectors, different possible
adversary types, and the privileges we expect them to wield. We
consider two types of privileged users: database administrator
(DBA) and system administrator (SA). A DBA can issue privileged
SQL commands against the DBMS including disabling logs or
granting privileges to users. However, a DBA would not have
administrative access to the server OS. The SA has administrative
access to the server OS including the ability to suspend processes
and read/write access to all files, but no access to privileged SQL
commands in the DBMS. The SA can still have a regular DB user
account without affecting our assumptions.

Since a DBA can bypass DBMS defense mechanisms, detection
mechanisms are best suited to identify anomalous behavior. An
audit log containing a history of SQL commands is accepted as
one of the best detection mechanisms for a DBMS. In Section 2,
we discussed prior work designed to prevent audit log tampering
and detect malicious behavior in the event that logging was
disabled. In this paper, we focus on a detection mechanism for a
user often ignored in DBMS security, the SA.

The SA can bypass all DBMS security defense and detection
mechanisms by reading and editing a database file with a tool
other than the DBMS. For example, a SA could use Python to
open a file and change the value ‘Hank’ to ‘Walt.’ In Section
5 we discuss additional steps that must be considered to suc-
cessfully perform such an operation, but it can ultimately be
achieved. Since this operation occurs outside of the DBMS, it
bypasses all DBMS access control, and it will not be included
any of the DBMS log files. Furthermore, one can assume that
the SA would have the ability to suspend any logging mecha-
nism in the server OS. Although changes to a file will also be
recorded in the file system journal, the SA has the ability to turn
off journaling to the file system by using tune2fs on Unix or the
FSCTL_DELETE_USN_JOURNAL control code on NTFS (Win-
dows). However, the file system must be shutdown first in order
to prevent possible corruption. Therefore, the SA may have to
effect a shutdown of the DBMS before making changes to the
database files. The shutting down and restarting of the database
instance and the system will generate events that are logged;
however, as mentioned earlier, the SA can turn off system log-
ging easily. Moreover, the SA could revise the DBMS log in order
to hide evidence of the shutdown and restart. Hence, it would
be somewhat involved but not difficult for a SA to cover his/her
tracks when tampering with a DBMS file.

5 FILE TAMPERING
The threats to data we consider in this paper occur at the OS
level outside of DBMS control. In this section, we formulate the
threat and introduce concepts and categories of tampering.

A DBMS allows users and administrators to access and modify
data through an API. Access control guarantees that users will be
limited to data they are privileged to access. In this section, we
discuss how an adversary can perform file tampering. To limit the
scope of this paper, we assume that file tampering involves user
data and not metadata (changing metadata can easily damage the
DBMS but that will not alter any of its records). We define user
data as records created by the user or copies of record values that
may reside in auxiliary structures (e.g., indexes). File tampering
actions that we discuss in this section ultimately produce one
of two results in storage: 1) Extraneous data is a record or a
value that has been added through file tampering or 2) Erased

data is a record that has been explicitly overwritten (rather than
marked deleted by a command as described in Section 3).

Three things must be considered when performing database
file tampering: 1) page checksum, 2) write lock on files, and 3)
dirty pages. In Section 3, we discussed the functionality and
placing of the page checksum. Figure 5 shows three different
page alterations, in all of which the checksum is (also) updated.
Some DBMS processes hold write locks on the database files.
Therefore, tampering would require that the attacker release or
otherwise bypass OS file write locks. DBMSes do not immediately
write pages back to disk after they are modified in the buffer
cache. That is significant because a maliciously altered page on
disk can be overwritten when a dirty page is flushed to disk –
or, alternatively, a dirty page could be altered directly in RAM
instead (bypassing file locks that way).

Write-Locks. The file locking system API, through the fcntl
system call in Unix, is set up so that a process can prevent writes
to (as well as reads from) a file that it has locked successfully. An
attacker can potentially cause the process holding the lock, in
this case the DBMS, to release the lock. Otherwise, a sophisti-
cated attacker with root privileges can release the lock without
involvement of the process by using kernel code. Once the lock
is released, the attacker would lock the file, tamper with its con-
tent, and then release the lock. The DBMS would not receive any
signal or other indication of the tampering and could continue
to use the file as if it were locked after the attacker releases the
lock. While the attacker holds the lock, however, DBMS access to
the file would be suspended. In order to prevent the DBMS from
discovering this condition, the attacker could suspend the DBMS
process temporarily until the tampering has been completed. An
attacker with root privileges could also mark memory used by
the DBMS as shared and tamper directly with memory.

Data Encryption. Different levels of encryption can be em-
ployed to protect database files, but they can ultimately be by-
passed by an adversary with SA privileges. It is reasonable to
assume that the SA would have the ability to decrypt any data
that has been encrypted at the OS level. The SA would most
likely not have the privileges to decrypt any internal database
encryption. However, individual (value or record based encryp-
tion) is still subject to tampering since the metadata describing
the encrypted values is still readable. Furthermore, column-level
encryption values are decrypted when they are read into memory
making it possible to map the decrypted values in memory back
to the encrypted values in persistent storage.

5.1 Value Modification
The first category of file tampering action we consider is value
modification. Value modification is logically similar to a SQL
UPDATE command; this type of tampering results in extraneous
data. Storage space and value encoding (see Section 3) are the
main considerations when modifying a value.

If a modified value requires the same storage space as the origi-
nal entry, no metadata needs to be updated. If the newly modified
value requires less storage than the original, then metadata needs
to be modified, and other values in the record may need to be
shifted. For example, many DBMSes explicitly store string sizes
on page – e.g., changing ‘Hank’ to ‘Gus’ requires metadata value
with the size of the string to be changed from 4 to 3. Furthermore,
if the modified value is not the last column in the record, all other
columns must be shifted by one byte. Only the columns in the
modified record need to be shifted; other records in the page can
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remain as-is, leaving a gap (1 byte in our example). Shifting all
other records in the page to close the gap would require all of
the corresponding row directory addresses and relevant index
pointers to be updated. If a value is modified to a value that re-
quires more storage space, the old version of the record must be
erased and the new version of the record must be appended to
the table. These operations are discussed in the remainder of this
section. Shifting the following records to accommodate a large
value modification is not practical – unless the modified value
happens to be in the last record on the page (and there is free
space at the end of the page).
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Figure 5: Database file tampering examples.

Figure 5.2 shows an example of a value changed to a smaller
size. Since ‘Andy’ is one byte smaller than ‘Alice’, the column
size must be changed from 5 to 4. Furthermore, the name is not
the last column so next column (‘Austin’) is shifted by one byte,
which overwrites the ‘e’ at the end of ‘Alice’ and leaves an unused
‘n’ character from ‘Austin’.

5.2 Record Addition
The next file tampering action we consider is new record addition,
which is logically similar to a SQL INSERT command. This type
of file tampering results in extraneous data generated within the
DBMS. When adding a record to a file, metadata in the row data,
row directory, and page header must be considered along with
the correct value encodings.

When a record is appended to an existing page, the structure
of the record must match the proper active record structure for
that DBMS. Section 3 discusses metadata that a DBMS uses to
store records. For the DBMS to recognize a newly added record, a
pointer must be appended to the page row directory. Finally, the
free space pointer must be updated and the active record count
(if used by the DBMS in question) must be incremented.

Figure 5.3 shows an example of the record (‘Carl’, ‘Chicago’)
added to the page. Along with the values themselves, additional
metadata is included in the row data. The size of each column,
4 and 7 bytes, is included, the column count, 2, and the row
delimiter, 44. Next, a pointer, 8050, is added to the row directory,
and the record count is updated to 3. Finally, the free space address
is updated since the record was added to free space of the page.

5.3 Record Wiping
The final tampering action category we discuss is record wiping.
Record wiping is logically similar to a SQL DELETE command, ex-
cept that it fully erases the record. A proper SQL DELETE command
will merely mark a record as deleted; record wiping explicitly
overwrites the record to destroy the data, even from a forensic
recovery tool. Record wiping erases data with no forensic trace
as there is no indication that a record existed in a place where it
was overwritten. Wiping a record from a file is essentially the
reverse operation of adding a record to a file: the metadata in the
row data, row directory, and page header must all be altered.

When a record is overwritten in a page, the entire record
(including the metadata) is overwritten with the NULL ASCII
character (a decimal value of 0). Next, the row directory pointer
must also be overwritten in the same way. Finally, the free space
pointer must be updated and the active record count (if used by
the DBMS) must be decremented.

Figure 5.4 shows an example of the record (‘Alice’, ‘Austin’)
erased from the page. Every byte used for the values and their
metadata (column sizes, column count, and row delimiter) is
overwritten with the decimal value 0. The row directory address
for that row is erased and the row directory is defragmented.
Finally, the record count is updated to 1.

Record Removal. Rather than explicitly overwriting a record,
the record metadata could also be marked to mimic a SQL DELETE.
We define such changes as a record removal (versus record wip-
ing). We do not address record removal in this paper because
such unlogged action can be detected by our previous work in
[28] by comparing and flagging inconsistencies between DBMS
storage forensic artifacts and the audit logs.

6 APPROACH OVERVIEW
Our goal in this paper is to eliminate a major security vulnerabil-
ity stemming from file tampering; our solution is envisioned as
a component of a comprehensive auditing system that employs
database forensics. We have previously built a tool that detects
malicious activity when database logging was disabled [28] by
comparing forensic artifacts and database logs. That approach
relied on forensic artifacts left by SQL commands and assumed
no OS level file tampering. DBStorageAuditor finds inconsisten-
cies that were done by direct file modification. Future work, such
as recovering a time line of events or user attribution, would
involve expanding upon the current components to the system.

The remainder of the paper describes our system to detect data-
base file tampering, DBStorageAuditor, followed by an experi-
mental evaluation in Section 11. Figure 6 provides an overview of
DBStorageAuditor, which consists of four components: foren-
sic extraction(A), index integrity verification(B), carved index
sorting(C), and tampering detection(D).

The forensic processing component is based on the forensic
tool DBCarver [31] described in Section 2. DBCarver retrieves
from storage all table records (including deleted records), record
metadata, index value-pointer pairs, and several additional stor-
age artifacts. We discuss new functionality that was added to
DBCarver for this paper in Section 7 (e.g., a page checksum ex-
traction and comparison, a generalized approach to pointer de-
construction for several RDBMSes).

We first verify the integrity of indexes (discussed in Section
8) because indexes are used later to detect tampering of table
data, so it is critical to verify index structure integrity. To achieve
that, we evaluate the B-Tree in storage, consider corrupt data that
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Figure 6: Architecture of the DBStorageAuditor.

matches B-Tree organization, and check for traces of an index
rebuild (e.g., REORG, VACUUM – depending on a DBMS).

We cannot assume that index artifacts can be fully stored in
RAM while matching index values to table records. Therefore,
the carved index sorting component discussed in Section 9 pre-
processes index artifacts to make DBStorageAuditor approach
scalable. We approximately sort the index values based on their
pointers which correspond to the physical location of records in
a file and improves the runtime the matching process.

Finally the tampering detection component discussed in Sec-
tion 10 detects cases of extraneous and erased data in storage. If
a record and its artifacts can not be reconciled with index value-
point pairs, such entries are flagged and returned to the user as
suspected file tampering.

7 FORENSIC ANALYSIS
Our proposed analysis relies on an expanded version of DBCarver
[31] to extract database storage artifacts that can not be queried
using the DBMS. These artifacts include record metadata, deleted
records, and index value-pointer pairs. In this section, we discuss
the addition of a checksum comparison and generalized pointer
deconstruction to DBCarver.

7.1 Checksum Comparison
In Section 3, we defined the checksum stored in the page header.
Whenever data or metadata in a page is updated, either legiti-
mately or through data tampering, the checksummust be updated
accordingly. If the checksum is incorrect, the DBMS will recog-
nize the page as corrupt. This will result in warnings as well as
data loss ranging from page to the table or the entire database
instance. Therefore, we can assert that if a checksum did not
change between time T1 (previous inspection) and T2 (current
inspection), then the page has not been modified and the records
have not been exposed to tampering.

We implemented a dictionary of checksums taken from the
DBMS pages that are to be evaluated by DBCarver (it is possible
to inspect any subset of the DBMS for tampering signs – focusing
only on data-sensitive tables). Our dictionary stores the checksum
values, where the object identifier and page identifier (Section
3) were the key and the checksum was the value. The checksum
dictionary should be stored off-site so it is not at risk of tampering.

If the checksum has changed for a given page, the entire page
must be inspected and validated by DBCarver. If the checksum
did not change for a page, only page metadata was necessary to
reconstruct. The metadata is needed to avoid false-positives in
Algorithm 2. Some DBMSes (e.g., Oracle, MySQL) allow the page
checksum to be disabled. If the checksum is disabled or believed
to have been disabled at some point, then a checksum comparison
is unreliable and all data must be carved and inspected.

7.2 Index Carving and Pointer
Deconstruction

DBStorageAuditor uses index value-pointer pairs to identify
inconsistencies in DBMS storage. Therefore, the value-pointer
pairs must be inspected. DBMSes do not allow indexes to be
queried directly (i.e., indexes can not appear in the FROM clause)
which is why we use DBCarver to retrieve index contents. How-
ever, the pointer parsing by DBCarver was limited and specific
to each DBMS; we developed a generalized approach to pointer
deconstruction allowing DBStorageAuditor to be compatible
with any investigated RDBMS.

We performed an analysis of pointers for 7 commonly used
RDBMSes. Table 1 lists these RDBMSes and summarizes our con-
clusions. We found that all of these DBMSes, except for MySQL,
stored a PageID and a Slot#. By default, MySQL creates an in-
dexed organized table (IOT) so the pointer deconstruction process
is slightly different. We address index pointers for IOTs later in
this section. The PageID refers to page identifier that is stored
in table page header (Section 3). The Slot# refers to a records
position within a page. SQLServer and Oracle both store a FileID,
which refers to file in which the page is located. The DBMSes
that do not include a FileID in the pointer, use a file-per-object
storage architecture (i.e., each table and index are stored in dif-
ferent files). The FileID for these pointers is the ObjectID or it
can be mapped back to the ObjectID if the object name is the file
name. Thus, an index pointer can be deconstructed into a FileID,
PageID, and Slot# to map a value back to a table record location.
Index pointers are typically the same as the internal DBMS row
identifier pseudo-column.

DBMS Version FileID PageID Slot#
SQLServer Yes Yes Yes
Oracle Yes Yes Yes
ApacheDerby No Yes Yes
PostgreSQL No Yes Yes
Firebird No Yes Yes
DB2 No Yes Yes
MySQL No Yes* No

*The pointer references the second level of an IOT.
Table 1: Pointer Deconstruction.

Figure 7 demonstrates how index values are mapped back to
the table records through our generalized pointer deconstruc-
tion. For each index value(A), the pointer stores a PageID(B) and
Slot#(C). The pointer PageID(B) corresponds to the page identi-
fier(D) in the table page header. The pointer Slot#(C) corresponds
to the row directory address(E) in the table page. For example,
the pointer for ‘Austin’ stores PageID = 8 and Slot# = 12. To find
the record, the table page with identifier = 8 is found and the
12th row directory address is used to locate the record (68, ‘Alice’,
‘Austin’) within the page.
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Index Organized Tables. While MySQL was the only evaluated
DBMS that created IOTs by default, IOTs are commonly used
in other DBMSes under different names (e.g., IOT in Oracle, In-
cluded Columns in SQL Server) so we incorporated their pointer
deconstruction. The pointer for a secondary index built on an IOT
is made of a PageID that references a page one level above the
IOT B-Tree leaf page, and the primary key value. The PageID for
the IOT leaf page can then be retrieved from the pointer stored in
the second level of the B-Tree. After performing this additional
IOT B-Tree access, we can associate every secondary index value
with a PageID and a primary key value, where the PageID refer-
ences an IOT leaf page and the primary key value replaces the
Slot#. Figure 8 illustrates how a secondary index value can be
mapped back to an IOT record. We have the same index on City
and the same records from Figure 7. However, the records are
now stored in an IOT, and we now have a B-Tree page one level
above the IOT leaf pages. The City index values(A) now store
the PageID for IOT B-Tree page(B) and the primary key values(C)
as the pointer. The IOT B-Tree page stores primary key values(F)
and leaf PageIDs(G) as the pointer. For example, the pointer for
‘Austin’ stores PageID 20 and the primary key 68. This directs
us to the IOT B-Tree page with PageID 20 and the value-pointer
pair (57, 8). The IOT B-Tree pointer tells us ‘Austin’ is in the
leaf page with PageID 8 and the primary key value 68.
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Figure 8: Mapping index values to an IOT record example.

8 VERIFYING INDEX INTEGRITY
It is plausible for an adversary to tamper with the relevant index
values in an attempt to conceal evidence of file tampering. In this
section, we address several types of index tampering, and how
to detect such activity.

8.1 B-Tree Integrity Verification
If the attacker changes a value, adds a record, or wipes a record
from a table, he may also perform a complimentary operation in
the index. For example, ‘Dan’ was changed to ‘Jane’ in a table
record could also be similarly modified in the index leaf node.

Interestingly, this type of activity creates inconsistencies in
the index B-Tree that do not arise in the table. We consider the
case where an index value is changed in-place and the case where
index value was erased (and possibly reinserted into the correct
position in the B-Tree). If the index value was changed in-place,
it would appear out-of-order in the leaf of the B-Tree. If the
index value was erased, it creates an uncharacteristic blank space
between values within the leaf page, which never occurs naturally.

8.2 The Neighboring Value Problem
An index value may sometimes be altered without violating the
correct ordering of the B-Tree. For example, in Figure 9 ‘Dan’
is changed to ‘Dog’ preserving a correct value ordering of the
Name index. This example shows how a table and an index can
be altered without producing an inconsistency.

We build a function-based index that stores the hash value of
column(s) to thwart tampering that involves neighboring range
values. The values in hash-index will have a different ordering
than the values in the secondary index so a neighboring value
can occur in one, but not both. Figure 9 shows an example of how
a hash index can be used to detect index tampering the involves
neighboring values. In both the table and the Name index, the
value was changed to ‘Dog.’ Changing the value in the Name
index preserved the correct ordering. However, changing the
value in the hash-index would result in an incorrect ordering
since the values are organized differently. Function-based indexes
are supported by many major DBMSes (e.g., IBM DB2, Oracle,
and PostgreSQL); a computed column can be used for DBMSes
that do not support function-based indexes (e.g., MySQL and
Microsoft SQL Server).
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Figure 9: Preventing the neighboring value problem.

8.3 SQL Index Rebuild
Although we assume that the attacker does not have privileges
to rebuild an index through SQL, the index may nevertheless be
rebuilt as part of routine maintenance. If an index is rebuilt post
tampering, the reconstruction of the index will eliminate any
inconsistencies (extraneous or erased data) between the table and
the index because indexes will be built anew using the current
table state. However, when an object is rebuilt, a new object is
created and artifacts (discarded pages) from the old object are
left behind in storage. Many of the pages from the old index are
likely to be overwritten, but some pages are going to persist in
storage following the rebuild [30].

Pages left behind from an index rebuild can serve as separate
evidence to detect tampering. The old index version (or the parts
recovered) can be treated as a separate index (It−1) from the
newly rebuilt version (It ). While the old index version does not
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contain a complete set of values due to having been partially
overwritten, it can still be used to detect tampering. This would
be applicable when auditing is not performed at regular intervals
relative to the frequency of index rebuilds.

8.4 Manual Index Rebuild
In order to deceive DBStorageAuditor, an attacker would have
to completely rewrite the entire index (or at least several differ-
ent pages in it). While such operation is possible, performing
it successfully poses several major challenges. We emphasize
that typical security solutions are designed to greatly increase
the level of difficulty to perform an attack, rather than create an
absolute defense.

Section 5 discussed cached dirty page problemwhen physically
modifying a page. Moreover, dirty index pages can introduce
additional complications. First, a given index page is more likely
to have a dirty version cached compared to a table page. An index
page is not only modified when the indexed column is updated,
but the index pointer must also be updated if an update causes
a record to be written to a new location. Furthermore, index
pages store significantly more values than table pages, increasing
their chance to be modified. Second, as the index changes, the
database may reorganize the B-Tree structure (e.g., page split).
As parts of the index are rebuilt, pages are likely to be written
to new locations in a file. We note that the physical order of a
B-Tree does not reflect the logical order of the B-Tree. Third,
the attacker may have to discover the physical location of other
connected index pages (i.e., just finding the page with needed
value is insufficient, several parts of the B-Tree would need to
reconstructed). Index leaf pages point to the next logical page
in the B-Tree and sometimes to the previous page as well. This
means that if a logically adjacent page is rebuilt and written
to a new location, then a modified index page would need to
reflect that change. Therefore, the attacker would need to be
aware of all internal B-Tree structure changes to guarantee a
successful manual index rebuild. Finally, if a function-based index
storing a hash value exists, we assume that an SA would not have
knowledge of this function. Therefore, inconsistencies would still
arise in any attempts to manually rewrite the index.

9 INDEX SORTING
When tables and indexes are carved, the data is extracted based on
the physical location within the files. Therefore, the relationship
between the ordering of the carved table records compared to the
index values is random, with a possible exception of a clustered
index (it is common for a clustered index to be manually updated,
such as PostgreSQLwith VACUUM command). Assuming that the
index can not be fully loaded into into RAM, expensive random
seeks must be performed to map index values to table records. In
this section we propose a method to reorder the index to make
the process of matching index values and table records scalable.

As demonstrated in Section 7, index pointers correspond to
the physical position of the table records. Therefore, sorting the
index values by the pointers produces the same ordering for index
values and table records. Carved table records and index values
are then read sequentially, similar to a merge join process.

For an index that is too large to fit into memory, sorting the
index pointers can be a costly operation. If we assume thatN table
pages will be read into memory when detecting table tampering
(Section 10), then index values need to be sorted across every
N pages, but values do not need to be sorted within N pages.

We call each set of index values that belong in N table pages a
bucket. We perform approximate sorting by re-ordering index
values across buckets but not within buckets.

For each index bucket, we record the minimum and maximum
table page identifier. If an index value is in the range of page
identifiers for a bucket, the page identifier, slot number, and
index value are stored in that bucket. When table pages are read
for table tampering detection, the relevant bucket(s) are read
into memory using the table page identifier and the index bucket
minimum and maximum values.

Figure 10 shows an example of an index that is approximately
sorted on the pointer. For each value in the index, there is a
pointer that contains a PageID and a Slot#. We first create a
set of buckets where each bucket contains 1000 PageIDs. We
read the carved index data, and assign a value to the appropriate
bucket using the pointer. For example, the first and second index
values ‘Alex’ and ‘Bob’ belong in bucket #2 because their PageIDs,
2000 and 1002 are between the minimum and maximum PageID
range for the bucket. We then store the PageID, Slot#, and Value
in the bucket. ‘Carl’ has a PageID 5 so that value belongs in
bucket #1. Bucket #2 demonstrates that PageIDs do not need to
be sorted within the bucket. Furthermore, we see that PageID
2000 in bucket #2 has two values. This can occur as a result of
legitimate SQL operations that create stale index values.
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Figure 10: An approximately sorted index example.

Our current implementation does not use the FileID evenwhen
it is stored in the pointer. We assume that each table is stored in
a single file, and that the user has directed DBStorageAuditor
to the relevant table and index files. DBMS-specific system tables
would allow us to connect FileID to the information on target
table and index files.

Index Organized Tables. Approximately sorting secondary in-
dexes for index organized tables (IOT) is a slightly different pro-
cess. When an IOT is used, the secondary index pointer is made
up of a PageID that references a second level B-Tree page and the
primary key value instead of a PageID that references the table
and a Slot#. To sort the secondary index values, the second level
BTree pages from the primary key is used to retrieve the table
PageIDs for each value. Furthermore, the primary key value is
now used in place of the Slot#.

The cost of approximate sorting is dependent on the amount of
available memory. A bucket must fit into memory. Fewer buckets
results in quicker bucket assignment for values, but buckets will
be larger requiring more memory. In Section 11.2 we provide
costs of approximately sorting an index.

10 DETECTING TABLE TAMPERING
In Section 5 we discussed how database files, specifically tables,
are vulnerable to tampering. We propose using the validated
indexes (Section 8) to verify the integrity of table records in
storage. Earlier in this paper, we classified data tampering that
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involves changing a value or adding records as extraneous data,
and we classified data tampering that involves wiping records as
erased data. In this section we present and discuss algorithms to
detect both extraneous and erased data.

10.1 Extraneous Data Detection
Extraneous data is a record or a value that has been added to a
table through file tampering. Since extraneous data is not added
using the DBMS, it is not reflected in the indexes. Therefore, if
a record does not have any corresponding index pointer, then
the entire record is suspected of having been added through file
tampering. Any table with a primary key can be tested because
an index is automatically created for a primary key constraint.
Similarly, if a table value does not match an index value with
the corresponding pointer, then the value is assumed to have
been modified through file tampering. This validation test does
require that an index exist on the column(s). We use the carved
data from Section 7 and an approximately sorted index (Section
9) that was not been subject to tampering (Section 8).

Algorithm 1 describes how to detect extraneous data. First,
we read N table pages at a time for evaluation; we then scan the
approximately sorted index buckets for the relevant table page
identifiers and read the index pages from the relevant bucket(s).
For every record in the N table pages, we find the corresponding
index pointer. If an index pointer does not exist, this record is
added to a list of likely extraneous data. If an index pointer does
exist for a record, the indexed column is compared to the index
value(s) for that pointer (there may be more than one index value
per pointer for legitimate reasons). If the table value is not in
the set of index values, then this value is added to a list of likely
extraneous data. This is evidence of a value that has been changed.
After all table pages have been read and all records evaluated,
the resulting extraneous data list is returned to the user.

Algorithm 1 Extraneous Data Detection
1: Table ← carved table data: PageIDs, Slot #s, and Records.
2: N ← the number of table pages to be read.
3: SortedIndex ← the approximately sorted index (Section 9).
4: Flaд← an empty list to store extraneous data.
5: for each NPaдes ∈ Table do
6: MinPID ← the minimum page ID from NPaдes .
7: MaxPID ← the maximum page ID from NPaдes .
8: Indexes ← an empty list to store index pages.
9: for each Bucket ∈ SortedIndex do
10: if (MinPID ∈ Bucket) ∨ (MaxPID ∈ Bucket) ∨
(MinPID < Bucket ∧MaxPID > Bucket) then

11: Indexes .append(Bucket)

12: for each Rec ∈ NPaдes do
13: RecPtr ← Rec .PaдeID.Slot#
14: if RecPtr ∈ Indexes .PaдeID.Slot# then
15: if Rec .Val < Indexes .PaдeID.Slot#.Vals then
16: Flaд.append([′ModVal ′,RecPtr ,Rec,Val])

17: else
18: Flaд.append([′HiddenRecord ′,RecPtr ,Rec])

19: return Flaд

10.2 Erased Data Detection
Erased data is data explicitly wiped from table storage through
file tampering. Deleted records are likely to be overwritten by
new records over time as the DBMS runs. However, a deleted

record will never be overwritten by something that is not an-
other record of the same structure. Therefore, if an index value
points to an area in storage that does not contain a proper record
(including metadata), then record wiping is suspected. We are
not concerned with matching the specific index value since this
is done in Algorithm 1, but rather that a pointer must reference
an area in storage that resembles a record.

Algorithm 2 describes how to detect erased data. First, we read
each bucket from the approximately sorted index. When a bucket
is read, the table pages with the relevant page identifiers are also
read. We iterate through each index value in the bucket. If the
pointer for an index value does not match any record in the table
pages, then the index value is appended to a list of erased data.
After all index buckets have been evaluated, the list of erased
data is returned to the user.

Algorithm 2 Erased Data Detection
1: Table ← carved table data: PageIDs, Slot #s, and Records.
2: SortedIndex ← the approximately sorted index (Section 9).
3: Flaд← an empty list to store erased data.
4: for each Bucket ∈ SortedIndex do
5: NPaдes ← pages from Table where PaдeID ∈ Bucket
6: for each IndexValue ∈ Bucket do
7: Ptr ← IndexValue .PaдeID.Slot#
8: if Ptr < NPaдes then
9: Value ← the index value
10: Flaд.append([′ErasedRecord ′, Ptr ,Value])

11: return Flaд

Adjacent Deleted Records. It is possible that multiple deleted
records can exist adjacent to one another in a page. When this
happens it is also possible the a single record could overwrite all
of one record and part of another. For example, (1, ‘Ed’) and (2,
‘Tom’) are deleted records that are next to each other in storage.
The inserted record (3, ‘Karen’) could overwrite all of (1, ‘Ed’)
and part of (2, ‘Tom’). This presents a problem because any old
index value for (2, ‘Tom’) would now point to the middle of
the inserted record, rather than to a full record. In this scenario,
Algorithm 2would return a false-positive for the index value from
(2, ‘Tom’). These false-positives can be eliminated by comparing
these results to audit log entries. For example, if a delete command
in the log could explain (2, ‘Tom’), then this could be declared as
not malicious. This functionality is not currently supported by
DBStorageAuditor, and it would be explored in future work to
achieve a more complete auditing system.

11 EXPERIMENTS
In this section, we present a set of experiments that evaluate the
performance, accuracy, and limitations of DBStorageAuditor.
Table 2 summarizes the experiments in this section.

MySQL 5.7, PostgreSQL 9.6, and Oracle 11g R2 DBMSes were
used in these experiments. We believe these three RDBMSes are
a good representative selection from the commonly used RDBM-
Ses. Not only are they widely used commercial and open-source
DBMSes, but they also represent the spectrum of different storage
decisions across about ten DBMSes we have studied. For example,
PostgreSQL does not support IOTs, Oracle offers an option to cre-
ate IOTs, and MySQL automatically uses IOTs. The default page
sizes for each DBMS were used: 8K for Oracle and PostgreSQL
and 16K for MySQL. Data from the Star Schema Benchmark
(SSBM) [16] was used to populate our DBMS instances. Table 3
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#1
Forensic analysis (Sec 7) cost evaluation. DB files were
carved at a rate of 1.2 MB/s. A checksum comparison
can improve carving costs.

#2 Approximate sorting (Sec 9) cost evaluation. Fewer buck-
ets improves runtime, but requires more memory.

#3 Algms 1 and 2 (Sec 10) cost evaluation. Both algorithms
increase linearly with table size.

#4

DBStorageAuditor detection evaluation. Algm 1 detects
an added record, Algm 1 detects a modified value only
for an indexed column, and Algm 2 reconstructs erased
data that was indexed.

#5
DBStorageAuditor detection limitations after an index
rebuild (Sec 8). DBStorageAuditor can use the old ver-
sion of an index depending on the DBMS.

Table 2: Summary of experiments.

can be used to reference table sizes used throughout this section.
DBMS instances ran on servers with an Intel X3470 2.93 GHz
processor and 8GB of RAM running Windows Server 2008 R2
Enterprise SP1 or CentOS 6.5.

Table Scale DB File Size(MB) Values(M)
Lineorder 1 600 6
Lineorder 4 2400 24
Lineorder 14 8300 84
Supplier 1 <1 2K

Table 3: SSBM table sizes used through the experiments.

The different DBMS storage-altering operations that we are
seeking to detect are discussed in Section 10. When modifying
files, we re-calculated and updated the page checksum value for
the PostgreSQL pages; in MySQL and Oracle we disabled the page
checksum validation. Before modifying files, we first shutdown
the DBMS instance.

11.1 Forensic Processing
The objective of this experiment is to evaluate the computa-
tional cost associated with the forensic processing component of
DBStorageAuditor discussed in Section 7. In Part-A, we provide
DBCarver runtimes against database files of various sizes from
MySQL, Oracle, and PostgreSQLDBMSes. In Part-B, we repeat the
same evaluation, further including a checksum re-computation.

Part-A. We created a series of database files for each DBMS to
pass to DBCarver. We created three LINEORDER tables: Scale 1, 4,
and 14. Each table was stored in a separate file. The PostgreSQL
files were carved at an average rate of 1.0 MB/s, the MySQL files
were carved at a rate of 1.2 MB/s, and the Oracle files were carved
at a rate of 1.5 MB/s.

Part-B. We used the PostgreSQL LINEORDER Scale 4 table from
Part-A to evaluate the checksum comparisonwe added to DBCarver.
We modified pages that induced a checksum change for 1%, 5%,
10%, and 100% of the pages in the database file. The carving
rate for each percent modification was 100%→ 1MB/s, 10%→ 9
MB/s, 5%→ 18 MB/s, and 1%→ 58 MB/s. The cost of forensic
pre-processing is thus proportional to the number of modified
pages rather than the total size of the DBMS storage.

11.2 Index Sorting
The objective of this experiment is to evaluate the costs associated
with approximately sorting the index values on the pointers. The
output produced by the forensic analysis is similar for all DBMSes

so this component of DBStorageAuditor is not tested for DBMS-
specific features. In Part-A, we vary the size of bucket; in Part-B,
we vary the size of the indexes.

Part-A. To evaluate approximate sortingwith respect to bucket
size, we used the carved output from PostgreSQL database files
containing a LINEORDER Scale 4 table, a secondary index on
LO_Revenue, and a secondary index on LO_Orderdate. Table
4 summarizes the performance results. As the number buckets
decreases the time to sort the data decreases. However, a bucket
must fit into memory, so increasing of bucket sizes is limited by
available RAM.

Bucket Size
(Pages)

Bucket
Count

Orderdate
(sec)

Revenue
(sec)

5,000 63 1366 1380
10,000 32 1121 1131
50,000 7 932 945
100,000 4 909 926
200,000 2 903 918
Table 4: Index sorting costs with varying bucket sizes.

Part-B. To evaluate approximate sorting with respect to the
size of an index, we used the carved output from PostgreSQL
database files containing LINEORDER Scale 1, 4, and 14 tables and
a secondary index on LO_Revenue for each table. Table 5 sum-
marizes the results. If the bucket size is increased proportionally
for the table size, the approximate sorting cost increases linearly.

Bucket Size Index sorting time (sec)
(Pages) Scale 1 Scale 4 Scale 14
10,000 239 1131 6193
50,000 231 945 3797
100,000 n/a* 926 3486
200,000 n/a* 918 3357
*Bucket size is larger than the table.

Table 5: Approximate sorting costs for varying table sizes.

11.3 Tampering Detection Costs
The objective of this experiment is to evaluate the costs associated
with of Algorithms 1 and 2. For this experiment we used the
LINEORDER Scale 4 table. We used one index on the LO_Revenue
and multiple indexes on the LO_Revenue and LO_Orderdate. We
approximately sorted the index using buckets with 50K pages.

Part-A: Algorithm 1. To evaluate the costs associated with
Algorithm 1, we used the output from two different secondary
indexes (LO_Revenue and LO_Orderdate) on LINEORDER Scale
4 and one secondary index (LO_Revenue) on LINEORDER Scale
14. Table 6 summarizes the runtime results. The runtime for Al-
gorithm 1 was the same for LO_Revenue and LO_Orderdate on
LINEORDER Scale 4, and the cost increased linearly for LO_Revenue
on LINEORDER Scale 14.

Table Index Part-A (sec) Part-B (sec)
Scale 4 LO_Revenue 966 503
Scale 4 LO_Orderdate 961 476
Scale 14 LO_Revenue 3482 1773

Table 6: Algorithm 1 and 2 runtimes.

Part-B: Algorithm 2. We used the same tables in indexes from
Part-A of this experiment to evaluate the costs associated with
Algorithm 2. Table 6 summarizes the runtime results. Similar to
Algorithm 1, the cost for Algorithm 2 was nearly the same for
LO_Revenue and LO_Orderdate on LINEORDER Scale 4, and the
cost increased linearly for LO_Revenue on LINEORDER Scale 14.
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11.4 Detection Capabilities
The objective of this experiment is to demonstrate the file tam-
pering activity that DBStorageAuditor is capable of detecting.
For each part in this experiment, we simulate one defined type of
malicious activity and explain how it was detected. We manually
add records to the database file (Part-A), change values in the
database file (Part-B), and erase records from the database file
(Part-C). We present results only for PostgreSQL because we our
results for Oracle and MySQL were very similar.

Setup. We created a LINEORDER Scale 4 table for a PostgreSQL
DBMS. An index existed on the primary key (LO_Orderkey,
LO_Linenumber) and we created a secondary index for
LO_Revenue and LO_Orderdate.

We also created a function-based index on LO_Revenue that
used the 32-bit version of the MurmurHash2 hash function.

Part-A. We manually added 5 records (shown in Figure 11) to
the file containing the LINEORDER table. We added a record to
five different pages (with PageIDs 11, 12, 13, 14, and 15). Existing
primary key values were included in each of the five records. For
each of these records, all of the data was the same as the existing
records with the same primary key except we used LO_Suppkey
-5 and LO_Revenue -100000.

Primary Key LO_Revenue = -100000LO_Suppkey = -5

1

2

3

4

5

101|1|108733|7417     |  -5 |19960319|‘3-MEDIUM’|0|49|
7352695|20527439|10|  -100000 |90033|0|19960529|‘AIR’

4001|1|38143|210370  |  -5 |19931228|‘1-URGENT’|0|26|
3328936|3362225|0     |  -100000 |76821|1|19940113|‘RAIL’

12001|1|2303|391486    |  -5 |19970718|‘4-NOT SPECI’|0|8|
1261976|17693973|1   |  -100000 |94648|1|19971011|‘SHIP’

100001|1|102599|383999| -5 |19941106|‘3-MEDIUM’|0|14|
2916172|2995491|4     |  -100000 |124978|7|19950117|‘SHIP’

200001|1|85157|130108  |  -5 |19960903|‘1-URGENT’|0|21|
2390010|2413431|1     |  -100000 |68286|2|19961005|‘REG AIR’

Figure 11: Records added to the LINEORDER file.

The addition of these five records produced several interesting
outcomes. First, these records bypassed the primary key con-
straint since they contained primary key values that previously
existed in the table. The DBMS only checks constraints when ex-
ecuting API-based load commands, and it does not retroactively
check the table for constraint violations. Adding the record to the
file bypasses all official channels and is thus never checked for
constraint violations. Second, these records also bypassed referen-
tial integrity since the LINEORDER table references the SUPPLIER
table, and LO_Suppkey -5 did not exist in the SUPPLIER. Similar
to the primary key violation, the constraint violation was never
caught by the DBMS. Finally, table access for the same query
could produce different results because the indexes were not
updated after we added these five records. For example, the two
versions of the following query returns different results:
• Query 1→ 34600180980

SELECT SUM(LO_Revenue) FROM Lineorder

WHERE LO_Orderdate = 19960319;

• Query 2→ 34600180980 - 100000
set enable_seqscan=true;

SELECT SUM(LO_Revenue) FROM Lineorder

WHERE LO_Orderdate = 19960319;

Query 1 uses the LO_Orderdate index to access the table while
Query 2 uses a full table scan. Record #1 from Figure 11 was
included in Query 2, but it was not included in Query 1.

Algorithm 1 successfully detected the fact that five new records
do not have corresponding pointers in the primary key index, the
two secondary indexes, and in the function-based index. Problem
was flagged by a False value for the line 14 If condition resulting
in the malicious records being added to the list of invalid data at
line 18. Each existing index serves as an additional validation to
detect table tampering – and the function-based makes sure that
small incremental changes are not possible.

Part-B. Next, we changed LO_Revenue for all 41 records where
the LO_Custkey 4321 and LO_Orderdate between 19930101 and
19931231. To simulate a neighboring value problem (a small
change that does not violate index ordering), we changed the
recordwith LO_Custkey 4321 and LO_Revenue 3271986 to 3271987
in both the table and the LO_Revenue index. For all other records
we subtracted 100000 from LO_Revenue in the table.

Algorithm 1 reported that 40 records had an inconsistent value
based on the LO_Revenue index and 41 records had an inconsis-
tent value based on the function-based index on LO_Revenue.
The difference of the one additional record was due to the neigh-
boring value attack which regular index may fail to detect. These
values were detected by a False value for the line 15 If condi-
tion resulting in the malicious values being added to the list of
invalid data at line 16. We can conclude that the primary key
and LO_Orderdate columns were not tampered with for these
and all records since they were not included in the invalid data.
However, we can not make any conclusion if any other of the
non-indexed columns for these or any records were tampered.

Part-C. Next, we erased all 3085 records with the LO_Suppkey
123 from the file. For data erasure, we explicitly overwrote the
records and their metadata with the NULL ASCII character.

Algorithm 2 returned that primary key index, the two sec-
ondary indexes, and the function-based index each had 3085
values that did not point to a valid record structure. These were
detected by a True value for the line 8 condition in Algorithm
2, resulting in malicious data being added to the list of invalid
data at line 10. By combining the values for each pointer we
reconstructed partial records containing the index columns to
explain the missing data. However, the data for the non-indexed
columns was unable to be reconstructed since it was not indexed.

11.5 Long-Term Detection
The objective of this experiment is to evaluate the artifacts pro-
duced by an index rebuild that can used by DBStorageAuditor.
We evaluate a different DBMS for each part of this experiment:
Oracle in Part-A, MySQL in Part-B, and PostgreSQL in Part-C.

We performed the following steps for each DBMS. After each
step, we copied the database file for analysis. Table 7 summarizes
the results.
• T0: Started with the Supplier Scale1 (2K records) table
and a secondary index on S_Name.
• T1: Erased/wiped all 829 records where S_Region equaled
‘ASIA’ or ‘EUROPE’.
• T2: Rebuilt the index. Each DBMS used a different index
rebuild command:
– Oracle: ALTER INDEX Supp_Name REBUILD ONLINE

– MySQL: DROP and CREATE commands
– PSQL: REINDEX TABLE Supplier

Part-A: Oracle. The index contained 1 root page and 9 leaf
pages after creation at T0. No changes were made to the index
after the table records were erased at T1. After the index rebuild
atT2, the new index contained 1 root page and 5 leaf pages. All of

131



DBMS T0(pgs) T1 T2
Oracle 1 root,

9 leaf
no
change

All index pages from the old
index remained in DB storage.

MySQL 1 root,
5 leaf

no
change

2 leaf pages from the old index
remained in DB storage.

PSQL 1 root ,
10 leaf

no
change

None of the old index re-
mained in DB storage.

Table 7: Index rebuild summary.

the pages from the original version atT0 remained in the database
file. The DBMS assigned a new ObjectID to the new version of the
index so index pages between versions were easily distinguished.
Since the entire version of index was found, it could be used by
DBStorageAuditor. The old version of the index still contained
pointers to the erased records, whereas the new version only
contained pointers to active records in the table.

Part-B: MySQL. The index contained 1 root page and 5 leaf
pages after creation at T0. No changes were made to the index
after the table records were erased at T1. After the index rebuild
atT2, the new index contained 1 root page and 3 leaf pages. 2 out
of the 5 leaf pages from the original index remained in database
storage. This demonstrates that the DBMS immediately reclaimed
the pages from the dropped index. Since the new index version
used less storage space, 2 pages from the old version remained
in the file. In this scenario, a B-Tree could not be fully validated
with only 2 leaf pages making them less useful as evidence for
DBStorageAuditor. It is likely that copies of the index could be
carved from a disk image due to activity such as writes that do
not occur in place and paging files. DBStorageAuditor does not
currently reconstruct entire B-Tree indexes from disk images.
Future work will seek to reconstruct objects from disk images,
which requires multiple versions of pages to be considered.

Part-C: PostgreSQL. The index contained 1 root page and 10
leaf pages after creation atT0. No changes were made to the index
after the table records were erased at T1. After the index rebuild
at T2, the new index contained 1 root page and 6 leaf pages. The
new version of the index was assigned a new ObjectID and a
separate file. All pages belonging to the old version of the index
were disassociated with its file, and this storage was reclaimed
by the file system. In this scenario, DBStorageAuditor can no
longer detect that the records were erased. As discussed in Part-B,
it is likely that the index could be carved from a disk image. This
will be explored in future work since a logical timeline would
need to be recreated to account for multiple page versions.

12 CONCLUSION
Database file tampering can be used to perform malicious oper-
ations while bypassing database security mechanisms (logging
and access control) and constraints. We presented and evaluated
DBStorageAuditor component that detects database file tam-
pering. Our approach relies on a forensic inspection of database
storage and identifies inconsistencies between tables and indexes.

Future work plans to expand upon this paper and work from
[28] to create a complete database auditing framework. This
future work would include creating a timeline of events and user
attribution of storage artifacts. Our auditing framework relies on
inherent characteristics of database storage that users, including
privileged users, are incapable of controlling.
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ABSTRACT
Repairing techniques for relational databases have leveraged in-
tegrity constraints to detect and then resolve errors in the data.
User guidance has started to be employed in this setting to avoid a
prohibitory exploration of the search space of solutions. In this pa-
per, we present a user-guided repairing technique for Knowledge
Bases (KBs) enabling updates suggested by the users to resolve
errors. KBs exhibit more expressive constraints with respect to
relational tables, such as tuple-generating dependencies (TGDs)
and negative rules (a form of denial constraints). We consider
TGDs and a notable subset of denial constraints, named contra-
diction detecting dependencies (CDDs). We propose user-guided
polynomial-delay algorithms that ensure the repairing of the KB
in the extreme cases of interaction among these two classes of
constraints. To the best of our knowledge, such interaction is so
far unexplored even in repairing methods for relational data. We
prove the correctness of our algorithms and study their feasibility
in practical settings. We conduct an extensive experimental study
on synthetically generated KBs and a real-world inconsistent KB
equipped with TGDs and CDDs. We show the practicality of our
proposed interactive strategies by measuring the actual delay time
and the number of questions required in our interactive framework.

1 INTRODUCTION
Integrity constraints have been used in relational databases to
detect inconsistencies and thus repair error-prone data within
tables. Notable classes of these constraints are represented by
functional dependencies (FDs) and conditional functional depen-
dencies (CFDs) that are both table-level constraints as they express
conditions without or with predicates on entire relations. Denial
constraints (DCs) [7] are more general first-order formulas that
encompass FDs and CFDs and strike a balance between expres-
siveness and complexity. Denial constraints are, however, difficult
to understand for end users and their intractability and prohibitive
search space make them unattractive for repairing algorithms [3].

In this paper, we focus on a subset of denial constraints, which
we call contradiction-detecting dependencies (CDDs) capturing
contradictions in the data. CDDs correspond to denial constraints
restricted to equality predicates in their respective bodies. They
are used mainly to capture contradictions and disjointness between
relations. They differ from other subfamilies of DCs such as keys,
functional dependencies and equality-generating dependencies.
Knowledge Bases (KBs) typically rely on the interaction of CDDs
(also known as negative rules or negative constraints) with tuple-
generating dependencies (also called existential rules) [5, 11]. The
following example underlines the importance of CDDs.
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Example 1.1. Figure 1 (a) shows our running example. Let F
contain the set of facts of a KB describing the prescriptions of
patients at a hospital and ΣC the set of CDDs.Aspirin is prescribed
to John who is allergic to it, whereas Mike has an allergy against
Penicillin. The CDD in ΣC dictates that prescribing a drug to a
person who has an allergy against it leads to a contradiction.

Several approaches to repair KBs exist, such as deletion-based
repairing, which amounts to remove the inconsistencies in order to
satisfy the constraints. However, the generated repairs are not com-
patible, as a consequence, choosing among them is not feasible
for end-users, as shown by the following example.

Example 1.2. Following the deletion-based repairing approaches,
one can either remove prescribed(Aspirin,John) or hasAllergy(John,
Aspirin) as either one of them is false according to the CDD. The
first one gives us the repair F1 that conveys the information that
Aspirin is prescribed to John. Conversely, the second repair F2
would lead us to conclude that John has an allergy against Aspirin.
Moreover, none of the above repairs preserves as much informa-
tion as possible. The information about John having an allergy
that could be against Aspirin or any other drugs is indeed lost in
F1 whereas the information that Aspirin is prescribed to someone
which could be John or someone else is also lost in F2. This ex-
ample also shows the impossibility for an end-user of making a
choice between these two repairs.

An alternative to deletion-based repairing is given by update-
based repairing [24, 28], which inspired our work. In update-based
repairing, atomic values can be modified instead of removing
entire facts from the knowledge base.

Example 1.3. By applying an update-based repairing to the
above inconsistent knowledge base, we obtain the set of facts
F3 (in which X1 is a labeled null referring to an unknown al-
lergy). Another possible repair is that John has an allergy against
Penicillin rather than Aspirin. Or, Penicillin is prescribed to John
rather than Aspirin. Clearly, all these update-based repairs pre-
serve more facts than the deletion-based ones illustrated above.

Although being beneficial, update-based repairing suffers from
the problem of choosing the positions to modify and the value
to use in repairing. For instance, do we need to change Aspirin
to Penicillin in hasAllerдy(John,Aspirin) or Aspirin to a labeled
null? Clearly, user intervention is compulsory in such a case in
order to reach a repair that meets the user’s requirements and his
expertise about the domain.

The problem becomes more complex when CDDs and TGDs
are considered as shown in Figure 1 (b). Besides the fact that F
already contains inconsistencies as illustrated in Figure 1 (a), we
consider ΣT and the new introduced atoms in F and a new CDD
in ΣC

′. In this KB, another inconsistency is raised due to the in-
teraction between TGDs and CDDs corresponding to the fact that
John was prescribed incompatible drugs, i.e. Aspirin and Nsaids.
Such a contradiction can only be discovered after applying the
TGD that results in deducing the fact John is prescribed Nsaids,
because he has Miдraine pain and Nsaid is a painkiller. In such a
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F = {prescr ibed (Aspir in, John), hasAllerдy(John, Aspir in), hasAllerдy(Mike, Penicil l in)}
ΣC = {prescr ibed (X , Y ), hasAllerдy(Y , X ) → ⊥}
F1 = {prescr ibed (Aspir in, John), hasAllerдy(Mike, Penicil l in)}
F2 = {hasAllerдy(John, Aspir in), hasAllerдy(Mike, Penicil l in)}
F3 = {prescr ibed (Aspir in, John), hasAllerдy(John, X1), hasAllerдy(Mike, Penicil l in)}

(a) An inconsistent knowledge base with only CDDs. Fi are repairs.

F′ = F ∪ {hasPain(John, Miдraine), isPainKiller For (Nsaids, Miдraine), incompatible(Aspir in, Nsaids)}
ΣT = {isPainKiller For (X , Y ), hasPain(Z , Y ) → prescr ibed (X , Z )}
ΣC
′ = ΣC ∪ {prescr ibed (X , Z ), prescr ibed (X , Y ), incompatible(Y , Z ) → ⊥}

(b) An inconsistent knowledge base with CDDs and TGDs.

Figure 1: Examples on tuple-based repairing and update-based repairing.

case, after applying the rule in ΣT , a new inconsistency has been
introduced. Hence, the choice of which inconsistency to handle
first and which atom to update is crucial. For instance, updating
the atom prescribed(Aspirin, John) will resolve automatically the
new inconsistency without updating other atoms, whereas updat-
ing the atom prescribed(Nsaids, John) will not. In addition, prop-
agating back the changed positions in prescribed(Nsaids, John)
should be done in order to establish consistency.

In this paper, we present a user-guided update-based repairing
framework that is capable of solving contradictions triggered by
CDDs. We study the interaction of such rules with more classi-
cal tuple-generating dependencies (or, existential rules) in KB
reasoning. The study of DCs in a relational setting has been exten-
sively conducted in the literature as witnessed by several papers
in the area [13, 24, 28]. We defer the discussion of the differences
between our work and previous work to the next subsection. In
this paper, we focus on the following problem statement, which
substantially deviates from the objectives of previous work.

(URP) Given a KB equipped with a set of TGDs and CDDs,
the User-guided Repairing Problem is to compute, by means of
user’s update fixes, an error-free KB by addressing two main
challenges: (i) minimizing user interactions and (ii) accounting
for the interplay of TGDs and CDDs. If the user is an oracle, then
the repair of the KB is also a u-repair, i.e. a repair with a minimal
(w.r.t ⊆) set of update fixes.

Contributions. The main contributions of our paper are as follows:

(1) Update-based repairing: We introduce contradiction detec-
tion dependencies (CDDs) and we formalize update-based re-
pairing in the presence of both CDDs and TGDs. We prove that
repairability is guaranteed and can be checked in polynomial time.

(2) Update-based repairing with user interaction: We define an
interactive framework letting the user repair the knowledge base
and meet his requirements. We prove two interesting properties:
(i) soundness, i.e. we show that the framework is sound, which
means that for every dialogue with a user we can reach a consistent
state of the knowledge base; (ii) soundness w.r.t. an oracle, i.e. we
assume that the interaction is done with an oracle that has a specific
repair in mind and we prove that the output of the dialogue with an
oracle is exactly the repair of the oracle. We show that the dialogue
algorithm has a polynomial delay in generating questions.1

We present an extensive experimental study, devoted to confirm
the polynomiality of delay time and showing the feasibility of
our interactive approach in terms of number of questions and
average number of conflicts per question in the knowledge bases.
In our assessment, we contrast the two cases of only CDDs and

1The delay between the asked questions is bounded by a polynomial.

CDDs alongside with TGDs and we study the impact of the chase
algorithm on the proposed interactive strategies in both cases.
Paper organization. The paper is organized as follows. In Section
2, we introduce the basic notions and definitions. In Section 3,
we introduce the update-based repairing framework and the re-
pairability of KBs. In Section 4, we formalize user intervention by
means of the notion of inquiry and we prove the soundness and
termination of an inquiry engaging the end-user. We also discuss
the case in which the user is an oracle and prove that the inquiry
has a polynomial delay time. In Section 5, we introduce different
interactive strategies with the user. In Section 6, we present our
experimental assessment. Finally, Section 7 concludes the paper.

1.1 Related Work
Rule-Based Repairing. Logical data cleaning has leveraged reason-
ing over more or less sophisticated classes of declarative depen-
dencies [9, 14] in order to detect and repair error-prone values and
tuples. A plethora of data quality constraints have been introduced
to this purpose, ranging from classical functional dependencies
and their approximate variants for relational tables [9, 27] to their
counterparts in graph databases [17]. Denial constraints [7] are
first-order formulas more expressive than functional dependencies
and conditional functional dependencies. Comprehensive classes
of graph constraints, including the expressive graph entity depen-
dencies (encompassing denial constraints) have been presented
in [16]. The detection problem [17] for these constraints consists
in checking whether a given database (or a graph) contains no
violations of the input set of constraints. While [16] focuses on the
detection problem along with satisfiability and implication among
constraints, our goal in this paper is to compute an update-based
repair for a knowledge base with an interactive exploration of
the search space of solutions. Our contradiction detecting depen-
dencies are a subset of denial constraints, limited to equality as
built-in predicate. While denial constraints have been already em-
ployed as data quality rules in the relational setting [13], their use
in the realm of knowledge bases characterized by the schema-less
nature of data and their combination with other KB constraints,
such as TGDs, is not explored. CLAMS [18] investigates the use
of DCs in data lakes, including RDF KBs, but it does not consider
the TGDs and their interactions with DCs. With that being said,
our approach goes with the same line of [13, 18] in reinforcing
and endorsing a holistic view of repairing for knowledge bases
by compiling the information coming from multiple violations in
a structure called the Conflicts Hypergraph [13, 24]. Repairing a
database [1, 7, 28] according to a set of constraints corresponds to
bringing the database to its legal state, in which all the constraints
are satisfied. Since many possible repairs for a given database
may exist, one would tend to prefer the (minimal) one, which
entails less modifications of the original database. Various notions
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of repairs have been used and many approaches have used insert
and delete operations on the original database to make it reach
its consistent state with respect to a given class of constraints.
Such approaches may exhibit drawbacks in that the granularity
of the operations performing the repairs is too coarse. Indeed,
deletions and insertions are typically executed at the tuple level
for relations, thus leading to discard possibly error-free values.
Our work has been inspired by update-based repairing proposed
in [10, 28] to allow value replacement on positional attributes in
relational tuples. While [28] focused on consistent query answer-
ing for update repairs aiming at finding the answers of a query
in the intersection of all possible repairs, our intent is to exploit
user interactions in the update-based repairing process of an entire
knowledge base. Repairing by value modification with functional
dependencies and inclusion dependencies has been tackled in [10]
with the aim of building minimal-cost repairs. Their algorithms
are not directly applicable to KBs due the inherent difference of
expressiveness of the constraints and the consequent interaction
between tuple-generating dependencies and the CDDs. In addition,
user intervention has not been considered in [10].

User-guided data cleaning. A fruitful line of work has led to
the design of several data cleaning tools, such as Llunatic [19],
GDR [29], Katara [14], Dance [4] and Falcon [21].

GDR [29] considers user-guided relational data repairing. CFDs
are used to generate candidate updates for the tuples that are vi-
olating them. The user is presented with groups of updates and
her feedback is fed into an active learning process that decides
about the correctness of updates without user involvement. The
convergence of updates in our method is ensured by the chase
algorithm involving CDDs and TGDs on KBs.

Llunatic [19] is mapping and cleaning tool accepting user sug-
gestions during the chase procedure with EGDs on relational
instances. Llunatic also explores the interaction among several
classes of constraints such as FDs, CFDs, editing rules and TGDs.
To the best of our knowledge Llunatic cannot be directly applied
to knowledge bases with constraints such as CDDs and TGDs.2

Falcon [21] relies on a set of SQL update queries instead of a
set of input logical constraints to entail the repair of a relational
database. A set of SQLU queries is inferred starting from one
triggering input tuple-based update proposed by the non-expert
user. Our approach is based on rule-based repairing of knowledge
bases and on a tight interaction with the domain expert to perform
data curation, not considered in the above system.

Dance [4] introduces a user-driven cleaning approach for rela-
tional tuples, by considering constraints similar to classical EGDs
and TGDs. Dance proposes a set of suspicious tuples whose up-
date can contribute to constraint resolution. However, neither they
consider DCs or subset thereof employed in our framework nor
they leverage their interaction with TGDs as in our approach.

Katara [14] is orthogonal to our work in that it leverages knowl-
edge bases and guidance from crowdsourcing to fix the errors
in RDBMS. Because of that, input KBs are assumed to be well
curated, as opposed to the assumption undertaken in our paper.

2 PRELIMINARIES
In this section, we briefly recap the notions needed in our frame-
work, namely the definition of a knowledge base and the corre-
sponding constraints, along with the definition of conflicts.

2Benchmarks on LUBM in [6] have been performed on a relational representation of
the LUBM ontology with vertical partitioning.

Constraints and KBs. A tuple-generating dependency (abbreviated
TGD) is of the form R : ∀x∀yB(x, y) → ∃zH (y, z), where x and
y are sequences of variables, B and H are conjunctions of atoms,
withvars(B) = x∪y, andvars(H ) = y∪z. B andH are respectively
called the body and the head of R. A contradiction-detecting
dependency (abbreviated CDD) is of the form N : ∀xB(x) → ⊥
where B is a conjunction of atoms, with vars(B) = x. The body B
may have equalities but no inequalities [12]. Inequalities are not
used as they lead to undecidability even for TGDs [20]. Notice
that whereas CDDs are a subset of DCs (Denial Constraints), they
are different from Keys, FDs and EGDs (subsets of DCs).

A dependency with an empty body B and a non-empty head H
is called a fact. Therefore, a fact is a set of atoms with existential
variables (i.e. labeled nulls). A knowledge base K = (F , ΣT , ΣC )
consists of a finite sets of facts, TGDs and CDDs, respectively.
Reasoning with a knowledge base is done via the chase. A rule R :
B → H is applicable to a fact F if there exists a homomorphism π
from B to F . The application of R to F w.r.t. π produces a finite set
of atoms (also called atomset) α(F ,R,π ) = F ∪π (sa f e(H )), where
sa f e(H ) is obtained from H by replacing existential variables
with fresh variables. The application of all TGDs to a set of facts
is called the chase. The result of the chase on F is denoted as
CℓΣT (F ) which produces an expanded set of facts F ∗. In this
paper, we restrict ourselves to weakly-acyclic TGDs to avoid non-
terminating chase sequences [15]. Let us consider the example in
Figure 1 (b), on which we show the result of the chase.

Example 2.1. The result of the chase on the set of fact F ′ is:
CℓΣT (F

′) = F ′ ∪ {prescribed(Nsaids, John)}.

Query Answering. Given a set of facts F , an answer to Q in
K = (F , ΣT , ΣC ) is a tuple of constants (A1, . . . ,Ak ) such that
there exists a homomorphism π fromQ toCℓΣT (F ), with (A1, . . . ,
Ak ) = (π (x1), . . . ,π (xk )). We denote by Q(F , ΣT ) the set of all
answers of Q over F in presence of ΣT .
Inconsistent knowledge bases and conflicts. A widely accepted
assumption in KBs is that the set of TGDs is compatible with the
set of CDDs, i.e. the union of the two sets is satisfiable [25]. A set
of facts F is inconsistent with respect to a set of TGDs ΣT and
CDDs ΣC (or inconsistent for short) if and only if there exists a
dependency N ∈ ΣC such thatCℓΣT (F ) |= body(N ). A knowledge
base K = (F , ΣT , ΣC ) is inconsistent if and only if there exists
a set of facts F ′ ⊆ F such that F ′ is inconsistent. We use the
alternative notation CℓΣT (F ) |= ⊥ hereafter.

Example 2.2 (Example 2.1 Ct’d). The knowledge base K =
(F ′, ΣT , ΣC

′) is inconsistent because the bodies of the two CDDs
are entailed from CℓΣT (F

′).

Inconsistency can also be characterized by conflicts.

Definition 2.3 (Conflict). Let K = (F , ΣT , ΣC ) be an inconsis-
tent knowledge base. A conflict is defined as a tuple X=(N ,h)
such that h is a homomorphism from body(N ) to CℓΣT (F ) such
that h(body(N )) ⊆ CℓΣT (F ).

Example 2.4. The knowledge base K = (F ′, ΣT , ΣC ′) has two
conflicts X1 = (N1,h1) and X2 = (N2,h2) defined as follows:

• N1 = prescribed(X ,Y ),hasAllerдy(Y ,X ) → ⊥.
• h1(X ) = Aspirin, h1(Y ) = John
• N2 = prescribed(X ,Z ),prescribed(Y ,Z ),
incompatible(X ,Y ) → ⊥.
• h2(X ) = Aspirin, h2(Y ) = Nsaids.
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We denote by conflict(K,N ) all the conflicts for a given
constraint N ∈ ΣC . The set of all conflicts of a given knowledge
base is denoted as:

allconflicts(K) =
⋃

N ∈ΣC

conflict(K,N )

A knowledge base K is consistent iff allconflicts(K)= ∅.
In order for CDDs to be meaningful, we impose that CDDs

contain atoms with join variables. This assumption is made to
avoid for instance CDDs of the form prescribed(X ,Y ) → ⊥ in the
above example. Such CDD is a schema constraint imposing that
prescribed should be removed from the vocabulary of the KB.

3 UPDATE-BASED REPAIRING
In this section, we introduce the framework of update-based re-
pairing for KBs. As opposed to deletion-based repairing, the gran-
ularity of update-based repairing is no longer an atom but instead
a position that we need to update within a given atom. In what
follows, we introduce the concept of a position and a fix on a
position. Then, we proceed by giving the definition of a repair
in such context, i.e. based on a minimal set of fixes needed to be
applied in order to recover the consistency of a KB.

Given an atom A = p(t1, . . . , tn ), we denote by arity(A) = n
the arity of the predicate pred(A) = p. The tuple (A, i) such that
i ∈ [1, arity(A)] is called a position and identifies the position
of the i-th argument of p. We denote by adom(A, i,F ) the active
domain of the argument i of p in F .

A position is a building block in update-based repairing as it
gives access to the inner structure of an atom. For instance, (A, 1)
such that A = prescribed(Aspirin, John) is a position that refers
to the first argument of A.

Given F , the set of all positions of F is defined as:
pos(F ) = {(A, i) | A ∈ F and i ∈ [1, arity(A)]}

The function valueiA(F ) returns the value of the position (A, i).
Since existential variables can be present in atoms, valueiA(F )
can be either an existentially quantified variable or a constant. The
set of all values of a set of facts F is defined as:

vals(F ) = {valueiA(F ) | (A, i) ∈ pos(F )}.

A position fix specifies an update on a given atom in a given
position.

Definition 3.1 (Position fix). A fix on a position (A, i) in F is a
triple (A, i, t) such that t ∈ adom(A, i,F ) \ valueiA(F ) or t = X

j
A

is an existential variable that is uniquely attributed to (A, i).

A fix on a position can specify a value that is within the active
domain of the predicate p and different from the actual value. A fix
can also specify an existential variable that refers to an unknown
individual. Please note that such a variable is unique to the position
in question and it is not used elsewhere in the knowledge base.

The application of a set of fixes P on F is defined as follows:
apply(F ,P) = {p(t ′1, . . . , t

′
n ) | A = p(t1, . . . , tn ) ∈ F and ∀i ∈

{1, . . . ,n} either (A, i, t ′i ) ∈ P or (A, i, t ′i ) < P and t ′i = ti }

We consider only valid set of fixes which are set of fixes P
such that there exist no two fixes (A, i, t), (A, i, t ′) ∈ P and t , t ′.
The application of a set of fixes P on a set of facts gives another
set of facts called the update of F by P. It is clear that |F ′ | = |F |
and pos(F ′) = pos(F ).

Example 3.2. The following is a set of fixes P = {(A, 2,X1), (A′,
2,Aspirin)} such that:
• A = hasAllerдy(John,Aspirin).
• A′ = hasAllerдy(Mike, Penicillin).

The update of F by P gives:
• F ′1 = {prescribed(Aspirin, John),hasAllerдy(John,X1),
hasAllerдy(Mike,Aspirin)}

The following set of fixes is not valid as it modifies the same
position with different values:
• P ′ = P ∪ {A, 2, Penicillin)}

An important notion that will be used later is the reconstruction
of a set of fixes P given a set of facts F and its update F ′. We
define the function diff(F ,F ′) as follows:

diff(F ,F ′) = {(A, i, t ′i ) | A = p(t1, . . . , tn ) ∈ F ,A
′ =

p(t ′1, . . . , t
′
n ) ∈ F

′ andmatch(A) = A′ and ∃j ∈
{1, . . . , arity(A)} such that t ′j , tj }

Notice that the functionmatch(x) puts the atoms of F and F ′

in one-to-one correspondence. Such one-to-one correspondence
exists because we know that F ′ is an update of F , therefore |F | =
|F ′ |. match(x) should satisfy the condition that match(x) = y if
and only if x ∈ F and y ∈ F ′ and pred(x) = pred(y).

Example 3.3. Consider F of Example 1.1 and its update F ′ of
Example 3.2, one can construct P by defining match(A1) = A′1,
match(A2) = A′2 andmatch(A3) = A′3 such that:

• A1 = prescr ibed (Aspir in, John) and
A′1 = prescr ibed (Aspir in, John).
• A2 = hasAllerдy(John, Aspir in) and
A′2 = hasAllerдy(John, X1).
• A3 = hasAllerдy(Mike, Penicil l in) and
A′3 = hasAllerдy(Mike, Aspir in).

Note that there may be finitely many one-to-one correspon-
dences between two sets of facts.

The set of fixes P gives a consistent update F ′. In fact, it
is minimal in the sense that only what is necessary to recover
consistency has been changed. In what follows, we introduce the
notion of consistent fixes, repair fixes and update repair.

Definition 3.4 (c-fix and r-fix). LetK be an inconsistent knowl-
edge base, P a set of fixes and F ′ = apply(F ,P) the update
of F by P. P is called consistent fixes (denoted c-fix) of K iff
K = (F ′, ΣT , ΣC ) is consistent. P is called repair fixes (denoted
r-fix) of K iff P is a c-fix and it contains no c-fix P ′ ⊂ P.

F ′ is an update-repair if P is an r-fix. A c-fix is a set of fixes
that gives a consistent update, an r-fix is a set of fixes that gives a
consistent update that is minimal with respect to the changes.

Example 3.5. P is a c-fix and P1 = P \ {(A′, 2,Aspirin)} is an
r-fix. However, P2 = P \ {(A, 2,X1)} is not a c-fix.

The following is a u-repair produced by P1:
F1 = {prescribed(Aspirin, John),hasAllerдy(John,X1),

hasAllerдy(Mike, Penicillin)}.

It is not hard to see that there exist finitely many r-fixes for
a given set of facts F because a position can take a finite set of
values assuming that the active domain is finite.

After having defined the basic notions for update-based repair-
ing, in what follows we introduce Π-repairability, a key concept in
our framework. For a given knowledge base K, we are interested
in knowing whether there always exists a way to repair K. In Ex-
ample 1.1, the knowledge base is repairable because there exists
an r-fix for F . In fact, for an arbitrary inconsistent knowledge base
K, repairability is guaranteed as one can change all positions to
fresh existential variables, and since such variables are unique to
the positions no constraint will be triggered. This gives us a c-fix,
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consequently an r-fix for K. Π-repairability is a generalization of
repairability where Π refers to those positions that are immutable
or not allowed to be changed. This generalization helps us to know
whether the KB is repairable when some positions are modified
by the user and not allowed to be changed.

Definition 3.6 (Π-repairability). LetK be an inconsistent knowl-
edge base and Π ⊆ pos(F ) be a set of positions. We say that K is
Π-repairable if and only if there exists an r-fix P of K such that
there exists no (A, i, t) ∈ P and (A, i) ∈ Π.

A knowledge base can be inconsistent but Π-repairable. In such
case, Π-repairability indicates in a sense the possibility of finding
a u-repair for K if certain positions are fixed prior to the repairing
process. If K is not Π-repairable then K has no u-repair whose
corresponding r-fix P changes the positions in pos(F ) \ Π.

As stated above, Π-repairability is a generalization of the con-
cept of repairability. When all positions are immutable then Π-
repairability reduces down to a consistency check. Formally, if
Π = pos(F ) and K is Π-repairable then K is consistent.

Algorithm 1 for checking Π-repairability proceeds by changing
all positions to fresh existential variables except those positions
that belong to Π. Then, we check the consistency of this new
knowledge base using CHECKCONSISTENCY(K). In fact, the al-
gorithm checks if fixing some positions with their corresponding
values will result in fixing the violations of some CDDs. If this is
the case, the knowledge base can never be repaired.

Example 3.7. Consider the following knowledge base K with
an empty ΣT :
• F = {p(a,b),q(b,d)}
• ΣC = {p(X ,Y ),q(Y ,Z ) → ⊥}

If we take Π = ∅ then K is Π-repairable. This is because the c-
fix P = {(p(a,b), 1,X1), (p(a,b), 2,X2), (q(b,d), 1,X3), (q(b,d), 1,
X4)} gives a consistent update. Consequently, P is a c-fix. Nec-
essarily, one can consider the r-fix P ′ = {(p(a,b), 2,X1)} ⊂ P
which gives a u-repair. However, if Π = {(p(a,b), 2), (q(b,d), 1)}
then K is not Π-repairable because regardless of the values that
the other positions can take the dependency will always be vi-
olated. Note that the fact that ΣT is empty does not change the
situation, given that the consistency check function is generic.

Checking Π-repairability is easy from a computational perspec-
tive. Algorithm 1 does perform such check in a polynomial time.
The function CHECKCONSISTENCY(K) in Algorithm 1 evaluates
on the body of every CDD N ∈ ΣC on CℓΣT (F ) and checks
whether the query has an answer. If this is the case, K is incon-
sistent, otherwise it proceeds until no CDD is left to be evaluated,
where the knowledge base achieves consistency. Clearly, the func-
tion Π-REP(K) runs in linear time of the size of pos(F ) plus the
computational overload of the function CHECKCONSISTENCY(K).
This gives a polynomial data complexity as evaluating boolean
conjunctive queries is polynomial in data complexity even in pres-
ence of weakly-acyclic TGDs [12, 22] .

We now need to prove that the algorithm is sound, i.e. if the
knowledge base is Π-repairable then the algorithm produces true
as an output, otherwise false.

PROPOSITION 3.8. K is Π-repairable iff Π-rep(K,Π) = true.

PROOF. (⇒): suppose thatK is Π-repairable and Π-REP(K,Π)
returns false. The former implies that there exists an r-fix P ′ of
K such that F ′′ = apply(F ,P ′) is the u-repair of F By P ′.
The latter implies that K ′ = (F ′, ΣT , ΣC ) in line 5 is inconsis-
tent, thus there exists a conflict X = (N ,h) in K ′. Since there

exists a homomorphism from body(N ) to F ′, we now show that
K ′′ = (F ′′, ΣT , ΣC ) is necessarily inconsistent by constructing a
homomorphism д from F ′ to F ′′ i.e. X would also be a conflict
in K ′′, thus K ′′ is inconsistent.

Recall that P ′ is the set of fixes that assigns to every position
(A, i) ∈ pos(F ), (A, i) < Π a unique existential variable X

j
A. Let

P ′′ = diff(F ′,F ′′), we define the homomorphism д : A 7−→
B such that A = {X i

A | (A, i,X
j
A) ∈ P

′}, B = {t | (A, i, t) ∈
P ′′}, and д(X i

A) = t such that (A, i, t) ∈ P ′′. Since there exists
a homomorphism from body(N ) to F ′, and from F ′ to F ′′ then
there exists necessarily a homomorphism from body(N ) to F ′.
Hence, K ′′ is inconsistent.

(⇐): it is trivial, if K ′ is consistent then P is a c-fix of K such
that @(A, i, t) ∈ P, (A, i). By definition, ∃P ′ ⊆ P such that P ′ is
an r-fix of K. �

Algorithm 1 Π-repairability

1: function Π-REP(K, Π)
2: Π′ ← pos(F) \ Π
3: P ← {(A, i, t ) | (A, i) ∈ Π′ and t = X i

A }

4: F′ ← apply(F, P)
5: K′ ← (F′, ΣT , ΣC )

return CHECKCONSISTENCY(K′)
6: end function

We have introduced so far the key concepts of our framework.
Nevertheless, as already mentioned in the introduction, update-
based repairing is unfeasible in practice because there are no
guidelines on (1) how to choose the positions among those possi-
ble, and (2) who provides the corresponding fixes. Our positioning
here is that update-based repairing should go hand in hand with
user intervention. In the next section, we introduce our interactive
framework serving this purpose.

4 USER INTERVENTION
The key idea behind user intervention is that the user may have
a repair in mind, which corresponds to how the knowledge base
should turn to be consistent. Obviously, it is impossible for a user
to manually repair the KB. In this section, we propose a framework
of inquiry dialogue that takes a place between the knowledge base
and the user. The basic idea is that the knowledge base asks
questions about some fixes and the user chooses which one is true
until he reaches a consistent knowledge base or, alternatively, a
u-repair under some conditions.

Definition 4.1 (Inquiry). Given an inconsistent knowledge base
K and a possibly empty set of positions Π. A question has the
form ϕ = { f1, . . . , fn } such that fk is a fix. An answer to ϕ
is a fix fk ∈ ϕ. Given a conflict X = (N ,h) in K, a ques-
tion ϕ = { f1, . . . , fn } is said to be sound if and only if for
every fix fk = (A, i, t) ∈ ϕ where Π′ = Π ∪ {(A, i)}, K =
(apply(F , { f }), ΣT , ΣC ) is Π′-repairable. An inquiry over K is
a finite sequence of pair of sound questions and answers ΩK =
((ϕ1, f1), . . . , (ϕn , fn )) such that fi ∈ ϕi .

A question ϕ is a set of fixes, whereas an answer is a fix that
the user chooses from ϕ. In the framework, questions are sound if,
once answered, will not render the knowledge base unrepairable.
These questions are crucial to guide the user.3

Example 4.2. Consider the knowledge base of Example 1.1
and the following sound question:

3Hereafter, every question is meant to be sound.
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• ϕ = {(A, 1,X1), (A, 2,X2), (A′, 1,Mike), (A′, 1,X3),
(A′, 2, Penicillin), (A′, 2,X4)} such that:
– A = prescribed(Aspirin, John) and,
– A′ = hasAllerдy(John,Aspirin).

An inquiry is a sequence of tuples of question and answer. In
what follows we show how a sound question can be generated and
how an inquiry with a user takes place.

Algorithm 2 generates a sound question from a given conflict
X. The choice of a conflict being the starting point of a question is
evident. In fact, fixing those atoms that are parts of some conflicts
necessarily solves inconsistencies. The algorithm in line 4 gen-
erates all positions of the atoms of the conflict X, then for each
position (A, i) that does not belong to Π, we generate all possible
fixes in lines 6-7. The fixes change the value of the position (A, i)
to other values in the active domain different than the actual value
and to an existential variable uniquely attributed to (A, i). Next in
line 10, we enter in a filtering step where each fix is omitted if it
renders the knowledge base not Π-repairable. Then it returns just
ϕ. The following lemma proves that Algorithm 2 always gives a
non-empty question which is necessarily sound.

LEMMA 4.3. Given an inconsistent knowledge base K and a
set of positions Π such that K is Π-repairable. Given a conflict
X = (N ,h), then soundquestion(K,Π,X) , ∅ and soundquestion
(K,Π,X) outputs a sound question.

PROOF. First, if Π = pos(F ) thenK is consistent (Π-repairability
reduces down to consistency in this case), therefore there will be
no conflict X in K . Assume that Π ⊂ pos(F ), then SOUNDQUES-
TION(K,Π,X) = ∅ if and only if: (1) In Line 5, Π′ ⊆ Π, or, (2) In
Line 8 , val = ∅ for each position (A, i) ∈ P , or, (3) In Line 16,
every fix is removed from ϕ.

For (1), suppose it is the case. We know that K is Π-repairable,
therefore there exists an r-fix P of K such that there exists no
(A, i, t) ∈ P and (A, i) ∈ Π. Let F ′ = apply(F ,P) be the up-
date repair of F by P. We know that h(body(N )) ⊆ F , and
∀A ∈ h(body(N )) and for every j ∈ [1, arity(A)], (A, i) < P
for some t because (A, i) ∈ Π′. Therefore, h(body(N )) ⊆ F ′,
which means that X = (N ,h) is a conflict in K = (F ′, ΣT , ΣC ),
consequently K ′ is inconsistent and F ′ is not a u-repair, thus
P is not r-fix, which contradicts the fact that K is Π-repairable.
For (2), it cannot be the case because val can always hold {X i

A}.
For (3), it is clear at each iteration the fix fk = (A, i,X

i
A) is

in ϕ and will not be removed because if K ′ is Π-repairable
then K ′ = (apply(F , fk ), ΣT , ΣC ) is also Π′-repairable where
Π′ = Π ∪ {(A, i)}.

The fact that SOUNDQUESTION(K,Π,X) returns a sound ques-
tion is quite straightforward since if SOUNDQUESTION(K,Π,X) ,
∅, the Algorithm in line 14 drops any answer that does not lead to
a Π-repairable knowledge base. �

This lemma tells us that if K is Π-repairable, we can always
find a sound question. This relies on the intuition that K is Π-
repairable, i.e. there necessarily exists some fixes that can be
applied to render the knowledge base consistent.

Engaging the user in an inquiry needs to guarantee that the
knowledge base is eventually repaired the way the user want it to
be. However, such goal may never be accomplished if the inquiry
cannot ensure that the resulting knowledge base is consistent. Al-
gorithm 3 is the principled procedure that undertakes an inquiry
dialogue with the user. The key idea is that we keep asking ques-
tions until there is no conflict left in the knowledge base. When

the user chooses a fix (A, i, t) from ϕ, the position (A, i) becomes
immutable to prevent modifying the value again. The algorithm
terminates and produces a consistent knowledge base.

Algorithm 2 Generate sound question

1: function SOUNDQUESTION(K, Π, X)
2: X = (N , h)
3: ϕ ← ∅
4: Π′ ← {(A, i) | A ∈ h(body(N )) and i ∈ [1, arity(A)]}
5: for each (A, j) ∈ Π′ \ Π do
6: val ← adom(A, i, F) \ {valueiA(F)}
7: val ← val ∪ {X i

A }

8: ϕ ← ϕ ∪ {(A, i, t ) | t ∈ val }
9: end for

10: for each fk = (A, i, t ) ∈ ϕ do
11: Πtmp ← Π ∪ {(A, i)}
12: K′ ← (apply(F, f ), ΣT , ΣC )
13: if Π-REP(K′, Π′tmp ) = false then
14: ϕ ← ϕ \ (A, i, t )
15: end if
16: end for

return ϕ
17: end function

Algorithm 3 Inquiry with a user

1: function INQUIRY(K, Π)
2: K′ ← K

3: Π′ ← Π
4: while allconflicts(K′) , ∅ do
5: Pick a conflict X ∈ allconflicts(K′)
6: ϕ ← SOUNDQUESTION(K, Π′, X)
7: f ← ASKUSER(ϕ)
8: K′ ← (apply(F, f ), ΣT , ΣC )
9: Π′ ← Π′ ∪ {(A, i) | f = (A, i, t )}

10: Recompute allconflicts(K′)
11: end while

return K′
12: end function

PROPOSITION 4.4 (SOUNDNESS AND TERMINATION). Given
an inconsistent knowledge base K and a set of positions Π. Then,
inquiry(K,Π) returns a consistent KB K in a finite time.

PROOF. Let K ′i , Π′i , ϕi , fi be the knowledge base K ′, the set
of positions Π′, the sound question ϕ and the chosen fix f at the
beginning of the while loop at round i.
Round 1: K ′1 = K is inconsistent and Π′1-repairable such that
Π′1 = Π.
Round i:K ′i is either consistent, therefore allconflicts(K ′) = ∅
and Algorithm 3 terminates, or inconsistent. However, we know
that it is Πi -repairable because F ′i = apply(F ′i−1, { fi }) such that
fi ∈ ϕi and ϕi is a sound question. Let this round be the one in
which |pos(F ′i )|−|Π

′
i | = 1. This means that at line 6 SOUNDQUES-

TION(K,Π,X) , ∅ and when the user chooses a fix in line 7, it is
clear that at line 11 K ′i is Π′i -repairable with Π′i = pos(F ′i ). It is
obvious that K ′i is consistent hence allconflicts(K ′) = ∅. �

In what follows, we investigate the complexity of Algorithm 2.

PROPOSITION 4.5. In the worst-case, Algorithm 2 runs in
O(d × (|pos(F )| + CΠ−r ep )) with d being the size of the largest
active domain in K and CΠ−r ep being the worst-case complexity
of Π-repairability algorithm.

PROOF. The worst-case corresponds to Π = ∅ and h(body(N ))
= F , i.e. the whole set of facts is a conflict. In this case, the loop at
line 5 will iterate over all positions, i.e. pos(F ). The loop at line 8
depends on d . The additional loop at line 10 performs d iterations.
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We assume that the instruction at line 12 runs in constant time.
Then, the function Π-REP(K ′,Π′tmp ) is called d times. �

The ultimate and most desirable goal of the inquiry is to ar-
rive at the user’s repair. A well-founded framework is the one
that meets such requirement. However, this depends on how the
user answers the questions, his background knowledge and so on.
Therefore, some assumptions have to be made. In the next section,
we consider a special case, i.e. when the user is an oracle.

4.1 The Oracle
In this section, we discuss the case in which interaction takes place
with an oracle O. The oracle corresponds to a u-repair FO with an
associated answering mechanism. The oracle draws its answers
from FO as follows: given a question ϕ, fi is an oracle answer if
and only if fi ∈ diff(F ,FO). In case of multiple answers from
the oracle, O non-deterministically chooses one of them. Note
that not all the sets of fixes in diff(F ,FO) are necessarily r-fixes.
There may exist finitely many set of fixes, even though we assume
that if a given r-fix PO is chosen by O, we name it an oracle r-fix.
Note that such r-fix always exists as shown hereafter.

PROPOSITION 4.6. Let F ′ be a u-repair of F . Then, there ex-
ists a one-to-one correspondence match(x) such that diff(F ,F ′)
is an r-fix.

The proof is straightforward as there may exist exponentially
manymatch(x) that make all possible one-to-one correspondences.
One of them must necessarily correspond to the real match because
|F | = |F ′ | and F ′ is homomorphic to F .

It turns out that when interacting with the oracle, the oracle is
capable of answering every question asked by Algorithm 3.

LEMMA 4.7. Given a consistent knowledge baseK , a possibly
empty set of positions Π, an oracle O and its chosen r-fix PO .
Every question ϕi generated in inquiry(K,Π) contains at least a
fix fi such that fi is in PO .

PROOF. If there exists a sound question ϕi generated by IN-
QUIRY(K,Π) at an iteration i such that ϕi ∩ PO = ∅ then there
exists f ∈ PO such that K = (apply(F , { f }), ΣT , ΣC ) is not
Π′i -repairable. Therefore, K has no u-repair. This contradicts the
fact that FO is a u-repair.

�

This lemma gives us the most important result, by stating that
when the inquiry ends, the resulting knowledge base is in fact the
oracle’s u-repair FO .

PROPOSITION 4.8 (SOUNDNESS W.R.T O). LetK ′ = (F ′, ΣT ,
ΣC ) be the knowledge base returned by inquiry(K,Π) with an or-
acle O as the user. Then, F ′ is the oracle’s repair FO .

PROOF. Since every question ϕi contains at least a fix f ∈ PO
then O will definitely choose a fix f ∈ PO . After answering by
f , every next question ϕi+1 will not contain f because once a fix
is applied it will never be proposed again. However, by Lemma
4.7, ϕi+1 will definitely contain a fix f ′ such that f ′ ∈ PO \ { f }.
Hence, O will choose it until choosing all fixes in PO . We can
see that in fact we are applying PO on F one fix at a time. We
know that PO is an r-fix, thus in other words we are constructing
a u-repair identical to FO . Therefore, F ′ = FO .

�

Let us give an example of an inquiry with an oracle.

Example 4.9 (Inquiry with oracle). Consider the knowledge
base of Figure 1 (b) and the oracle repair FO :

FO =


prescr ibed (Aspir in, John) hasAllerдy(Mike, Aspir in)
hasAllerдy(Mike, Penicil l in) hasPain(Mike, Miдraine)
isPainKiller For (Nsaids, Miдraine)
incompatible(Aspir in, Nsaids)

The inquiry is as follows:
(1) KB: which fix is true from the following set?
{(prescr ibed (Aspir in, John), 1, t ) | t ∈ {X1, Nsaids }}∪
{(prescr ibed(Aspir in, John), 2, t ) | t ∈ {X2, Mike }}∪
{(hasAllerдy(John, Aspir in), 1, t ) | t ∈ {X3, Mike }}∪
{(hasAllerдy(John, Aspir in), 2, t ) | t ∈ {X4, Penicil l in }}

(2) O: the fix (hasAllerдy(John, Aspir in), 1, Mike) is true.
(3) KB: which fix is true from the following set?
{(incompatible(Aspir in, Nsaids)), 1, X5)}∪
{(incompatible(Aspir in, Nsaids)), 2, X6)}∪
{(prescr ibed (Aspir in, John), 1, t ) | t ∈ {X7, Nsaids }}∪
{(prescr ibed(Aspir in, John), 2, X8)}∪
{(hasPain(John, Miдraine), 1, X9)}∪
{(hasPain(John, Miдraine), 2, X10)}∪
{(isPainKiller For (Nsaids, Miдraine), 1, X11)}∪
{(isPainKiller For (Nsaids, Miдraine), 2, X12)}

(4) O: the fix (hasPain(John, Miдraine), 1, Mike) is true.

The knowledge base asks a question on a possible set of fixes.
Then, the oracle chooses among them a fix that belongs to its
r-fix. As one can notice after applying the fixes provided by the
oracle in 2 and 4, the resulting knowledge base is indeed consis-
tent and its set of facts equals FO . Notice that for instance the
fix f = (incompatible(Aspirin,Nsaids)), 1,X5) has no proposed
value other than the existential variable because the active domain
is empty. An additional comment is in order. The size of the ques-
tions grows polynomially (and not exponentially) in the size of the
conflicts and in the size of the active domain. As a consequence,
presenting these questions to the user is an implementation con-
cern that can benefit from advanced HCI techniques [8] and is
beyond the scope of this paper.

When interacting with an oracle, Algorithm 1 performs as
many iterations as the number of conflicts in the knowledge base.
However, the number of iterations corresponds to the size of
the oracle’s r-fix, denoted as rnum

O
. This is the case because the

oracle at each step answers with a fix f ∈ PO until all fixes
in PO are used. Given a set of empty positions Π and a Π-
repairable inconsistent knowledge base K = (F , ΣT , ΣC ), then
rnum
O
≤ |pos(F )|. Therefore, the number of iterations is linear

in the size of F . However, the algorithm is dominated by the
complexity of SOUNDQUESTION(K,Π′,X) at line 6 and the com-
putation of all conflicts. In fact, a conflict is the result of evaluating
the body of a CDD, thus leading to a polynomial data complexity
of boolean conjunctive query (for weakly-acyclic TGDs).

PROPOSITION 4.10. Let Cquery be the data complexity of
evaluating a conjunctive query on a set of facts F , in presence of
a set of weakly-acyclic TGDs ΣT , Csoundq be the complexity of
soundquestion (Proposition 4.5) then the complexity of Algorithm
1 is O(|pos(F )| × (|ΣC | ×Cquery +Csoundq )).

The above result gives us a polynomial delay algorithm.

COROLLARY 4.11. Algorithm 3 takes a polynomial delay be-
tween questions.

A polynomial delay algorithm is an algorithm in which the time
between the output of the solutions is bounded by a polynomial
function of the input size in the worst case [23]. In between ques-
tions, we perform query evaluation which costs |ΣC | × Cquery
and the computation of a sound question which costs Csoundq .
Therefore, the user will not have to wait from one question to the
next more than an amount of time that is polynomially bounded.
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5 QUESTIONING STRATEGIES
The goal of a strategy is to minimize the number of questions to
be asked to the user in order to arrive at a consistent knowledge
base. In this section, we present four strategies improving one
on another. We introduce: the baseline strategy called random;
another strategy, called opti-join, that improves over random by
considering the so-called join positions; another variant of opti-
join called opti-prop that uses propagation, and finally a fourth
strategy, called opti-mcd that improves over opti-join.

First, let us define the lower and upper bounds of the number
of questions for each strategy. It is obvious that the maximum
number of questions is equal to |pos(F )|. This case corresponds
to a knowledge base in which every position needs to be changed
to recover consistency. The minimum number of questions is
clearly zero if the knowledge base is consistent.

The functions Π-REP(K,Π) of Π-repairability and CHECKCON-
SISTENCY(K ′) in Algorithm 1 and recompute allconflicts(K ′)
in Algorithm 3 shown in Section 4 are used in all the strategies.
In the following, we detail Algorithm 4 where we propose an
optimized version of these functions.

CHECKCONSISTENCY-OPT(K ′): the most naive approach for
consistency check is to compute the chase on F to get CℓΣT (F )
then to check whether there exists a CDD whose body evaluates to
true in CℓΣT (F ), as implemented in CHECKCONSISTENCY(K ′).
The optimized version CHECKCONSISTENCY-OPT(K ′) considers
CDDs and TGDs such that ⊥ is seen as unary predicate (i.e. a
constant). If, during the chase, the constant ⊥ is produced then the
knowledge base is inconsistent. This is quite fruitful as it helps to
stop consistency check as early as possible.

Π-REPOPT(K,Π): we can easily observe that if a knowledge base
K is Π-repairable and some positions have been fixed using a set
of values V then in the case in which a new fix f arrives with
value v (constant or fresh existential variable), the knowledge
base stays Π-repairable if v < V. This is quite intuitive because if
the fixed positions do not trigger any CDDs, the new value will
not trigger any CDDs since all atoms have different values. If the
value is already used, we proceed to the optimized consistency
check CHECKCONSISTENCY-OPT(K ′). This is the optimized Π-
repairability check of Π-REP(K,Π).
Let us now turn to the optimization of allconflicts(K ′). Let
allconflictsnaive(K

′) be defined as the set of all naive conflicts.
A naive conflict X = (N ,h) is defined as a conflict in the sense of
Definition 2.3 except that h is a homomorphism from body(N ) to
F such that h(body(N )) ⊆ F and CℓΣT (F ) |= ⊥. These conflicts
are computed on F without applying the chase. It is clear that if
allconflictsnaive(K

′) = ∅, K is not necessarily consistent as
there is the possibility of having conflicts that will appear after
applying the chase like the conflict X2 in Example 2.4. However,
we observed that resolving naive conflicts at first can eliminate
other conflicts that are discovered after applying the chase. For
instance in Example 2.4, if we resolve the conflict X2 by updating
the atom prescribed(Aspirin, John) on the first position, this will
resolve the conflict that can be detected using the second CDD
after applying the TGD. Therefore, our strategies are two-phases
strategies. In the first phase, naive conflicts are resolved, while
in the second phase, if the KB is still inconsistent, new conflicts
are discovered and resolved during the chase. In what follows, we
provide an optimization of conflicts computation.

UPDATECONFLICTS(K ′): we compute the initial set of naive
conflicts over K and keep them in a set Cnaive , then Cnaive is

updated as follows. If the user provides a fix f = (A, i, t) which
results in a new set of facts F ′, then we remove all conflicts that
are related to A from Cnaive . Next, we define a subset ΣAC ⊆ ΣC
that is related to A as follows: a CDD N ∈ ΣAC iff ∃A′ ∈ body(N )
and a homomorphism h such that h(A′) = A. Finally, Cnaive is
updated by evaluating the body of each CDD N ∈ ΣAC over the
new set of facts F ′. In this optimization, instead of recomputing
all conflicts, we are limiting the computation to the modified atom
which is more efficient than evaluating all CDDs on F ′.

Once we have defined the above optimizations, we turn our at-
tention to our proposed strategies, namely random, opti-join, opti-
prop and opti-mcd. Algorithms 4 & 5 are parametrized, thus we
can easily plug in the above optimizations. The main code of each
strategy is Algorithm 4 which calls the functions GENERATEQUES-
TION(K,Π′,X) and GENERATEQUESTION-CHASE(K,Π′,X).
These functions are implemented differently for each strategy. In
addition, these functions make use of SOUNDQUESTION(K,Π′,X)
for which the function RETRIEVE-POSITIONS(X,K) changes
from a strategy to another. For space reasons, in the following we
report a concise description of each strategy. Their implementation
and effectiveness are discussed in the next section.
Random. This strategy selects randomly a conflict from Cnaive
before asking a question about all positions. More precisely,
GENERATEQUESTION(K,Π′,X) randomly picks a conflict from
Cnaive and calls SOUNDQUESTION(K,Π′,X). Then, RETRIEVE-
POSITIONS(X,K) for each atom in h(body(N )), generates all posi-
tions (A, i) and proceed normally in SOUNDQUESTION(K,Π′,X).
While applying the chase if a violation of a CDD is detected,
GENERATEQUESTION-CHASE(K,Π′,X) gets all facts in F that
contribute to its violation, then generates all positions from this set
and returns it as a question using SOUNDQUESTION(K,Π′,X).
Opti-join. This strategy improves over random on RETRIEVE-
POSITIONS(X,K) where only join positions are generated. Given
a conflict X = (N ,h), a position (A, i) is a join position if and
only if the variable at the position i in A′ is a join variable in the
CDD N such that h(A′) = A. For instance, consider the example
of Figure 1(b) the position (prescribed(Aspirin, John), 1) is a join
position because the variable X in A′ = prescribed(X ,Y ) is a
join variable in the second CDD. Clearly, this strategy generates
smaller questions and most notably avoid asking unnecessary
questions. Consider the knowledge base K without TGDs:
F = {isUrдent(Mike,a, 145), isDe f erredTo(Mike, 12/10/2015)}.
ΣC = {isUrдent(X ,Y ,Z ), isDe f erredTo(X ,W ) → ⊥}.

Here the position (isDe f erredTo(Mike, “12/10/2015”), 2) is
not a join position. However, the position (isUrдent(Mike,a, 145),
1) is a join position. Join positions are pivotal in order to resolve
conflicts, since changing non-join positions does not affect the
homomorphisms and does not resolve conflicts.
Opti-prop. This strategy behaves the same as opti-join except
that a propagation technique is used. By definition if the user
chooses a fix f = (isUrдent(Mike,a, 145), 1,X1) from a question
ϕ produced from a conflict X, then every position generated from
X (except the chosen one in f ) is added to Π if and only if it is not
involved in any other conflict X′. This is quite intuitive because
when the user chooses a fix f from a question ϕ, he is implicitly
indicating that they are non-erroneous. However, if some of these
positions participate in other conflicts then it is possible that they
are erroneous, thus they will not be added to Π.
Opti-mcd. This strategy is an improvement over opti-join, it is
based on the so-called Conflict Hypergraph (CH) [13, 24] where
GENERATEQUESTION(K,Π′,X) and GENERATEQUESTION-CHA
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SE(K,Π′,X) compute the Maximally ContainD position in all
computed conflicts. Each position p is attributed a rank that in-
dicates the number of conflicts containing p. The question is
generated on the position that has the maximum rank. If more than
one position are attributed the same maximum rank, one is picked
randomly. Using CH, the maximally contained position p corre-
sponds to the vertex of maximum degree. Obviously, this strategy
can avoid asking unnecessary questions by looking ahead and
choosing the position that resolves as many conflicts as possible.

Algorithm 4 Inquiry strategy

1: function INQUIRY(K, Π)
2: K′ ← K

3: Π′ ← Π
4: Cnaive = allconflictsnaive(K

′)

5: /∗ Start phase one ∗ /
6: while Cnaive , ∅ do
7: ϕ ← GENERATEQUESTION(K, Π′, X)
8: f ← ASKUSER(ϕ)
9: K′ ← (apply(F, f ), ΣT , ΣC )

10: Π′ ← Π′ ∪ {(A, i) | f = (A, i, t )}
11: UPDATECONFLICTS(K′)

12: end while
13: /∗ Start phase two ∗ /
14: while CHECKCONSISTENCY-OPT(K′) = f alse do
15: ϕ ← GENERATEQUESTION-CHASE(K, Π′, X)
16: f ← ASKUSER(ϕ)
17: K′ ← (apply(F, f ), ΣT , ΣC )
18: Π′ ← Π′ ∪ {(A, i) | f = (A, i, t )}
19: end while

return K′
20: end function

Algorithm 5 Sound questions for a strategy

1: function SOUNDQUESTION(K, Π, X)
2: X = (N , h)
3: ϕ ← ∅
4: Π′ ← RETRIEVE-POSITIONS(X, K)

5: for each (A, j) ∈ Π′ \ Π do
6: val ← adom(A, i, F) \ {valueiA(F)}
7: val ← val ∪ {X i

A }

8: ϕ ← ϕ ∪ {(A, i, t ) | t ∈ val }
9: end for

10: for each fk = (A, i, t ) ∈ ϕ do
11: Πtmp ← Π ∪ {(A, i)}
12: K′ ← (apply(F, f ), ΣT , ΣC )
13: if Π-REPOPT(K′, Π′tmp ) = false then
14: ϕ ← ϕ \ (A, i, t )
15: end if
16: end for

return ϕ
17: end function

6 EXPERIMENTAL STUDY
Our experimental assessment is devoted to study two major fea-
tures of our user-guided repairing framework: (i) effectiveness:
investigates to what extent the framework is efficient in helping
the user repair the knowledge base with minimal effort, in terms
of average number of asked questions per strategy and average
number of conflicts per question, and (ii) delay time: the efficiency
of our framework when it comes to maintaining a reasonable delay
time between each asked question. By a reasonable delay time we
intend a delay less than 1 to 2 seconds as discussed in [26].
Experimental setup. We have implemented our framework using
Java 1.8 on a 2.40GHz 4-core, 16Gb laptop running Windows 7.

We have used GRAAL4 as a chase engine. Each experiment has
been repeated a number of times, as indicated in the individual
plots (after discarding the cold start). As there are no existing
datasets or benchmarks equipped with the rich set of constraints
we consider in this paper, we rely on synthetically generated
knowledges bases and corresponding constraints. We also employ
a real-world knowledge base on Durum Wheat from [2]. This
knowledge base has been constructed manually from documents
and reports, which led to have notable inconsistencies. Moreover,
the attached constraints (including TGDs and CDDs) have been
validated by experts. Such a KB turned to be suitable for our
experiments as it fits the assumption that the set of facts is dirty
and the set of constraints is reliable. 5

Synthetic KBs. The synthetic knowledges bases were generated
by tuning some input parameters. We first generate a vocabulary of
the knowledge base, i.e. predicate, variable, and constant spaces by
allowing also n-ary relations. Each predicate is assigned a random
arity from 2 to 10 following a uniform probability distribution. A
given number of CDDs are generated over the vocabulary by pa-
rameterizing the number of atoms s involved in the CDDs and the
percentage v% of atoms positions corresponding to join variables
such that s ∈ [5, 10] and v% ∈ [10%, 100%]. TGDs are generated
following the same procedure as CDDs. To make the knowledge
base meaningful, links between TGDs and CDDs are made so that
some TGDs may introduce facts that will violate the CDDs. A
depth dK for a given knowledge base K is defined as how many
TGDs applications are needed to violate a CDD. A conflict depth
dK = 2 means for each CDD we need the application of two
distinct TGDs so that the CDD is violated. Inconsistent KBs are
generated as follows, for a given facts size nF and an inconsis-
tency ratio rinc

6, we keep generating sets of atoms that violate
the CDDs until we reach rinc . Then, we pad the set of facts F
with atoms that are not involved in any conflicts. We add two
indicators of the structure of conflicts in the KB, namely “Avg
# atoms per overlap” and “Avg scope". The first embodies the
average number of atoms in each overlap, an overlap being the
intersection between at least two conflicts. The avg scope indicates
for each conflict how many conflicts are overlapping with it, this
number being averaged over the total number of conflicts.

The Durum Wheat KBs. The real-world Durum Wheat knowl-
edge base in our experiments has been augmented with new
domain-specific TGDs and CDDs. The table in Figure 2 presents
the different characteristic of the knowledge bases and an example
of facts, a TGD and a CDD. Please note that ChaseSize (#atoms)
refers to the size of the facts after applying the chase. We made
two versions of the knowledge base of increasing size of CDDs, i.e.
Durum Wheat v1 and Durum Wheat v2. Notice that the number of
conflicts increases from v1 to v2 while inconsistency ratio stays
the same. This is due to the fact that the conflicts newly discovered
by the added constraints in v2 involve the same number of atoms.

We have simulated the end-user via an algorithm that randomly
chooses a valid fix from the proposed fixes following a uniform
probability distribution. Considering other kinds of distributions
and, in particular, choosing the most appropriate probability dis-
tribution that can simulate all the user’s choices is not trivial and
falls under user modeling, which is beyond the scope of our paper.

4http://graphik-team.github.io/graal/.
5Notice that we could not use popular knowledge bases such as YAGO, DBPedia
and LUBM because of their limited expressiveness on the vocabulary (only binary
relations) and lack of TGDs and CDDs.
6Number of atoms involved in at least one conflict divided by nF .
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Analysis of Durum Wheat KBs. We measure the average num-
ber of asked questions for each strategy in order to gauge the
effectiveness of our approach on our real-world dataset. Figure 2
(a) and (b) show the results for all the considered strategies. We
can observe that opti-mcd is outperforming the other strategies
on Durum Wheat v1 with an average of 14.18 questions asked.
This difference is also observed on Durum Wheat v2 in Figure (a)
where opti-mcd outperforms other strategies with an average of
29.36 questions asked. The reason why opti-mcd is the winning
strategy is due to the fact that this strategy is actually capable of
exploiting the overlapping among conflicts which is given by the
indicator avg scope. In this case, the value of such indicator is 8
meaning that in the best case, roughly speaking, each question can
solve 8.1 (or 7.1 for V2) conflicts. This is under the assumption
that the conflicts are overlapping on the same atoms. Regarding
the difference with the other strategies, the results show that the
strategies (other than opti-mcd) tend to behave the same as they
do not exploit such a property. In addition, notice that opti-join
and opti-prop are very close to random strategy. This is due to the
fact that the percentage of join positions in conflicts is close to
90%. This makes the probability of choosing a join position with
random strategy very high. Moreover, the increase in the average
number of asked questions in all strategies in v2 is explained by
the fact that v2 has slightly more conflicts than v1.

Another perspective that gives a better illustration of the ef-
fectiveness of our interactive strategies is the average number of
resolved conflicts per question in Figures (c) and (d). The former
is computed as total nr. of conflicts/total nr. of questions (per strat-
egy). Again, we can observe that the opti-mcd strategy handles
more conflicts per question on average and proves to be the most
effective strategy compared to the others.
Analysis of Synthetic KBs. We now analyze the effectiveness
where the average number of asked questions is measured for each
strategy on synthetically generated KBs. For the first experiment
described in Figure 3, we generated a knowledge base with only
CDDs and no TGDs. Then, we increased the inconsistency ratio
by increments of 5% while keeping the size of the knowledge base
is fixed (see the table in Figure 3 for characteristics). The results
show a good performance of opti-mcd, while opti-join and opti-
prop behave similarly. The random strategy performs the worst
among them. This result in fact confirms the observation already
made on the Durum Wheat knowledge base about overlapping
conflicts. In this experiment, we notice a larger gap between opti-
join and opti-prop strategies on one side and random strategy on
the other side. Since the percentage of join positions in conflicts
is very low in the generated atoms (under to 30%), it is less likely
that the random strategy would randomly choose a join position.
The average number of resolved conflicts per question is shown in
Figure 3 (b) where one can see the performance of each strategy.

We should highlight that the baseline strategy (random) in
the two experiments is performing quite well as it still asks less
questions than the number of conflicts. This is quite natural as
the conflicts are in fact overlapping (as confirmed by the two
indicators, avg # atoms per overlap and avg scope) hence many
conflicts are resolved via the resolution of other conflicts. However,
there is a huge gap between the performance of the baseline
strategy and those of the more optimized strategies.

The second experiment aims at studying the convergence of
each strategy. Figure 4 (a) is done on an inconsistent knowledge
base with CDDs and no TGDs. We can observe that as the strate-
gies proceed with questioning, they exhibit different speeds in
getting toward a full resolution of the conflicts. While opti-mcd

is faster than all the other strategies, opti-join and opti-prop are
quite similar with a small difference on the number of asked ques-
tions. Figure 4 (b) is done on a fixed inconsistent knowledge base
with both CDDs and TGDs. We can observe that each strategy
hits the lowest number of conflicts at a point (close to 0) then it
starts slightly fluctuating until convergence. The rapid descending
phase corresponds to the process of handling only CDDs that
are directly violated by the initial set of facts without taking into
account the TGDs. Once the TGDs are triggered and the chase
starts, it interleaves TGDs with CDDs, leading to up and down
fluctuations corresponding to new conflicts introduced by TGDs
and resolution of conflicts with CDDs, respectively. Continuous
lines between fluctuations correspond to stagnation, in which nei-
ther the questions are resolving conflicts nor triggering TGDs and
CDDs brings new conflicts. The strategies opti-mcd, opti-join and
opti-prop behave quite similarly with a notable difference in the
convergence speed, bringing opti-mcd to be the fastest.

The next experiment is devoted to measure the delay time
between questions for synthetic KBs. Note that the delay time
for all previous experiments was very reasonable (less than 0.2
seconds) for both synthetic and Durum Wheat knowledge bases.

Figure 5 shows three different measures of the delay time using
opti-mcd in all experiments. The delay time for the other strategies
had a similar trend and is omitted for space reasons.

The goal of the experiment whose results are reported in Figure
5 (a) is to investigate whether increasing inconsistency (from 20%
to 80%) would affect the delay time. We can observe that the
inconsistency ratio is rather independent from the delay time. This
is quite interesting as regardless of the inconsistency degree of the
knowledge base, interactivity is guaranteed with the user in a very
reasonable time (average is less than 0.25 sec). Some outliers are
highlighted in the boxplot, however they stay within the limits of
reasonable delay time (less than 0.8 sec).

In the next experiment (Figure 5 (b)), we employed a KB of
increasing size (up to 20%, 40% and 60%), respectively while
keeping the inconsistency ratio fixed to 30%. The delay time
grows as the size of the knowledge base grows. Moreover, the
boxplot shows that the variance of delay time increases as the size
of the KB increases. This result shows that our method needs a
piecemeal application of interactive repairing and can always be
applied to small portions of the KB.

In the next experiment, we have chosen a worst-case scenario
in which we have a fully inconsistent KB, corresponding to incon-
sistency ratio of 100%, and we vary the depth (from d1 to d4) of
the dependencies involved (both TGDs and CDDs). For all depth
di we have #CDD(di ) = 150, and #TGDs(d1) = 50, #TGDs(d2) =
100, #TGDs(d3) = 150, #TGDs(d4) = 200. We have already shown
in the experiment of Figure 5 (a) that increasing the inconsistency
ratio does not affect the delay time. We observe that the delay time
increases with depth, in fact the larger the depth the more time
the chase takes while repairing. Notice that the chase is involved
in computing Π-repairability and consistency check. Overall, the
delay time is kept low for all depths and less than 2 seconds.

7 CONCLUSION AND FUTURE WORK
In this paper, we have presented a novel user-guided repairing
technique for knowledge bases, leveraging updates and interplay
of dependencies (TGDs and CDDs). Several extensions can be
thought of, such as formalization of user modeling to represent
several classes of users (from domain experts to non-experts), and
learning from provided user choices in the questioning strategies.
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KB Size (#atoms) ChaseSize (#atoms) Conflicts Avg # atoms per overlap Avg scope #Repetitions

DURUM WHEAT V1 567 1075 185 1.42 8.1 10

DURUM WHEAT V2 567 1075 212 1.41 7.8 10

KB #TGDs #CDDs Inconsistency ratio Avg # atoms per conflict

DURUM WHEAT V1 269 27 14% (79 atoms) 3

DURUM WHEAT V2 269 100 14% (79 atoms) 2

Durum Wheat KB Content

F
hasPrecedent (soil2, vacopar is), sorдhum(vacopar is), soil (soil2).

soil2 has a precedent vacoparis of type sorghum.

ΣT
isCult ivatedOn(X 1, X 2), durum_wheat (X 1), soil (X 2) → hasPrecedent (X 2, X 3), soybean(X 3)

if a durum wheat is cultivated on a soil then the precedent on this soil is soybean.

ΣC
isAtGrowinдStaдe(X , Z ), isPer f ormedOn(X 1, X ), t il ler inд_beдins(Z ), durum_wheat (X ), f er t il ization(X 1) → ⊥

it is forbidden (or impossible) to apply a fertilization on a durum wheat if it is in the beginning of the tillering growth stage.

Figure 2: Average number of questions per strategy on the Durum Wheat knowledge bases.
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(a) Fixed size KB (1005 atoms) with increasing
inconsistency ratio. CDDs and no TGDs.
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(b) Average conflicts per question of (a).

KB Size (#atoms) ChaseSize (#atoms) Conflicts Avg # atoms per overlap Avg scope #Repetitions

“05%” 1005 1005 56 1.45 9.8 6

“10%” 1005 1005 135 1.57 12.8 6

“16%” 1005 1005 304 1.68 33.9 6

“20%” 1005 1005 356 1.65 30.5 6

“25%” 1005 1005 304 1.67 34.5 6

“30%” 1005 1005 496 1.66 31.6 6

Figure 3: Average number of questions per strategy on synthetic knowledge bases. The percentage on the axes represent incon-
sistency ratio.
We also believe that more challenges may arise in extending this
work to full-fledged denial constraints and arbitrary (non weakly
acyclic) TGDs.
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ABSTRACT
Training deep learning models has received tremendous research
interest recently. In particular, there has been intensive research
on reducing the communication cost of training when using multi-
ple computational devices, through reducing the precision of the
underlying data representation. Naturally, such methods induce
system trade-offs—lowering communication precision could de-
crease communication overheads and improve scalability; but, on
the other hand, it can also reduce the accuracy of training. In this
paper, we study this trade-off space, and ask: Can low-precision
communication consistently improve the end-to-end performance
of training modern neural networks, with no accuracy loss?

From the performance point of view, the answer to this ques-
tion may appear deceptively easy: compressing communication
through low precision should help when the ratio between com-
munication and computation is high. However, this answer is less
straightforward when we try to generalize this principle across
various neural network architectures (e.g., AlexNet vs. ResNet),
number of GPUs (e.g., 2 vs. 8 GPUs), machine configurations
(e.g., EC2 instances vs. NVIDIA DGX-1), communication primi-
tives (e.g., MPI vs. NCCL), and even different GPU architectures
(e.g., Kepler vs. Pascal). Currently, it is not clear how a realistic
realization of all these factors maps to the speed up provided
by low-precision communication. In this paper, we conduct an
empirical study to answer this question and report the insights.

1 INTRODUCTION
The system tradeoffs induced by training deep neural networks
seem to be an endless discussion [9, 11, 15, 19, 24, 34, 46]. One
reason for this sophistication is the level of diversity involved. At
the algorithmic level, there are synchronous, asynchrhous, and
hybrid approaches. At the workload level, different neural net-
works have different computation and data movement patterns.
At the architecture level, different computation devices, such as
CPUs, GPUs, and FPGAs offer sharply different tradeoffs. Making
matters worse, these are not pure performance tradeoffs, which
one could tackle with performance modeling. Instead, different
point in the tradeoff space has different accuracy of the trained
model, a property that is very difficult to predict, and for which
has there currently exists little theoretical understanding [49].

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the 21st
International Conference on Extending Database Technology (EDBT), March 26-29,
2018, ISBN 978-3-89318-078-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

A Data Management Angle. From a datamanagement perspec-
tive, these trade-offs provide an opportunity to build a automatic
optimizers for deep learning tasks. Just as with previous optimiz-
ers that our community has been building [6, 8], the understand-
ing of the tradeoff is often the prerequisite. Given the limited
current theoretical understanding of deep learning, such model-
ing is inevitably empirical for the immediate future. Therefore,
we believe that there is timely necessity for a set of empirical,
fair, comparison to reveal the tradeoffs behind building and opti-
mizing deep learning systems.

In this paper, we present an in-depth empirical study which
focuses on a subspace of the whole tradeoff, that is, the tradeoff
introduced by the precision of communication when training deep
neural networks with a synchronous multi-GPUs system.

Low Precision Deep Learning. An emerging topic in deep
learning systems is lowering the precision of data representation
throughout the whole system [5, 14, 18, 20, 23, 33, 36, 50, 51].
There has been recent success in representing all data move-
ments involved in training a neural network with as little as 1-bit
per dimension while still getting the same accuracy for some,
but not all, networks [36]. However, none of these work depict
a full tradeoff space — they either focus on extreme cases (e.g.,
1-bit) with significant loss of accuracy and do not discuss the
impact of adding more bits, or only focus on algorithmic aspects,
without a well-implemented system. In this paper, we conduct an
empirical study to understand the impact of lower precision of
data representation both on the training accuracy and the speed.
System Artefact. A fair empirical study calls for a system that
achieves optimized performance for each configuration in the
above space. Surprisingly, such a system does not exist off-the-
shelf: if we just take CNTK or TensorFlow, the performance of
many configurations is not as optimized as they could be. Thus,
we decide to start from CNTK but conduct intensive performance
optimization to ensure the fairness of our study. We first devel-
oped a system prototype optimized for low-precision machine
learning. In this paper, we report an array of system optimiza-
tions that leads to up to 3.5× speed up over CNTK, which allows
us to understand the tradeoff as fair as possible.
Summary of Contribution 1: Experimental Study. We con-
sider the task of training deep neural networks on a single system
with multiple GPUs, in a setting where all these GPUs communi-
cate in a synchronous manner [24, 34]. In this setting, our first
contribution is a study of the impact of varying the number of
bits to communicate between these devices from 1bit to 32bits. Our
study contains the following axes in the tradeoff space:
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(1) Machine Learning Tasks/Datasets: {Image, Speech}
(2) NeuralNetworkArchitectures: {AlexNet [27], VGG [40],

ResNet [21], Inception [43], LSTM [22]}
(3) Quantization Strategy: {“1-bit SGD” [39], QSGD [5]}
(4) Number of GPUs: {1, 2, 4, 8, 16}
(5) Type of Machines: {Amazon EC2, NVIDIA DGX-1}
(6) Programming Models: {MPI, NCCL}
(7) GPU Architectures: {Kepler, Pascal}
The tradeoff space we studied contains a full cross products the

above axes (whenever possible); for each configuration, we vary
the precision of data communication and measure (1) end-to-end
performance (seconds), (2) convergence speed (#iterations), (3)
speed per iteration (seconds), and (4) accuracy (%).

To fully depict this tradeoff, our study used more than 1400 ma-
chine hours on Amazon EC2’s recently released 16-GPU instance
and more than 20 machine hours on NVIDIA DGX-1. These give
us an overview of how recent hardware and software have impact
on the importance of low precision communication. This is so
far the most comprehensive study of the impact of low-precision
communication to deep learning. The system insights we get go
significantly beyond those of previous work.
Summary of Contribution 2: Insights. Our study not only
reveals insights beyond those of previous work, but also provides
the first comparable quantitative evaluation of the results scat-
tered in previous work that was original evaluated on different
platforms and settings. We now briefly summarize these insights.

1. Does low-precision always hurt accuracy?
No. Across all datasets and models that we evaluated, we found
parameter settings under which low-precision variants are able
to achieve the same accuracy as full precision. Specifically, on all
networks we evaluated, when quantizing communication using
the 1bitSGD algorithm, a low-precision system is able to achieve
the same accuracy (within 0.2%) as a full precision run. Using
QSGD usually requires slightly higher precision: using 4-bit gra-
dients always preserves the same accuracy (within 0.1%), while
the 8-bit variant always matches or even improves final accuracy
(within 0.5%). We note a few caveats regarding this result:

(1) Different layers have different sensitivity to quantization:
for convolutional neural networks, the convolutional lay-
ers require more bits than the fully connected layers.

(2) Quantizing too aggressively can lead to significant accu-
racy loss: we identify scenarios where 2bit QSGD can no
longer train to state-of-the-art precision.

2. Does low-precision always help
performance?

Not always. The answer to this question depends on several
factors. We postpone a detailed discussion to Section 5.2.

(1) The most surprising result regarding performance regards
the impact of the communication primitives used. When
we replace MPI with the NCCL, a restricted set of com-
munication primitives optimized by NVIDIA for GPU-to-
GPU communication, 32bit full precision becomes much
faster than MPI. Consequently, the speedup we can obtain
with low-precision communication is also limited. In fact,
on most networks, the performance improvement we get
when using 8GPUs and NCLL is almost negligible; only
for one network (VGG), we only get up to 1.4× speedup.

(2) With slower MPI (which can be seen as as a proxy for a
slower interconnect), the tradeoff becomes more signif-
icant. One key factor is the ratio between computation

(time to calculate the gradient) and communication (time
to communicate the gradient). For networks with a large
number of parameters such as AlexNet, we observe up to
4× speedup using low-precision communication; For net-
works with small model, we observe almost no speedup.

(3) The number of GPUs also plays a role. Naturally, when
the number of GPUs increases, the necessity of using low-
precision communication increases.

3. Is using extremely low precision ever
helpful?

Rarely.We observe a trend of “diminishing returns” when lower-
ing the precision of gradient to extreme cases such as a single bit,
while such compression can lead to accuracy loss. Examining the
time cost of a dataset iteration, even with MPI, using 1-bit rarely
outperforms using 4-bit on our benchmarks. Through simulation,
we can project a communication-to-computation regime where
extreme low precision would have significant impact, but none
of the existing networks fall into that regime.

4. Have the current programming models
unleashed the full potential of low-precision

machine learning?
No. NCCL hardcodes the reduction semantics with 32-bit full pre-
cision, and only offers a limited set of binary operations. Hence,
there are currently no easy ways to use the NCCL primitives to
support low-precision reduction efficiently. We conduct a simu-
lation which implies that a version of NCCL with low-precision
support could lead to a low-precision system that is up to 1.4×
faster than our current prototype. MPI is also cumbersome to
use in the context of low precision, although its richer semantics
allow us to implement efficient variants of quantized methods.

5. Do we really need 16 GPUs on a single
instance?

Rarely when training a single model. Amazon EC2 provides
a single instance with 16 GPUs: p2.16xlarge, whose price price
is 2× higher than a p2.8xlarge 8-GPU instance, and currently
stands at $14/hour. We only find few scenarios where the speedup
achieved with 16 GPUs versus 8 would justify the cost doubling.
Limitations. Our study has the following limitations.

The first is that our study assumes that the user has zero error-
tolerance. That is, we focus on scenarios where the user wishes
to obtain a model with the same accuracy as one trained at full
precision, but wishes to save time (and money) on training by
using quantized methods. If the user could tolerate higher errors
(e.g., 10% accuracy loss), the results of our study might change, as
we should be able to use more aggressive low-precision schemes.

The second limitation is that our study only considers the
communication overhead when exchanging gradients across de-
vices. Other potential benefits of using low-precision data rep-
resentation is to speed up computation (each register can hold
more numbers). We do not consider these, as the current GPU
platform does not yet provide enough flexibility (e.g., 4-bit com-
putation). A related limitation is that we only focus on GPU
platforms. The current work is part of a larger ongoing study ex-
amining computation-to-communication trade-offs across CPU,
GPU, XEON PHI, and FPGA; however, these other platforms are
currently out of the scope of a single paper.

The third is that our study focuses on the speed of training,
which is currently the most computationally-intensive aspect
of neural networks. When the objective changes, e.g., energy
efficiency, or speed of inference, the results might also change.
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The fourth limitation is that we build our artefact starting
from a specific platform, Microsoft CNTK. However, we we ex-
pect similar observations to hold in the context of other deep
learning systems, such as TensorFlow. All these systems use the
same computational substrate (NVIDIA CUDA and cuDNN li-
braries [10]), and the semantics of the allreduce-based gradient
exchange are similar across all synchronous systems. However,
we do not wade into an in-depth quantitative analysis to support
this claim. In the future, we plan to extend our study to a variety
of systems, but this is out of the scope of this single paper.

The last limitation is that our study makes inherent assump-
tions of how different hyperparameters are tuned, e.g., learning
rate and batch size. Although we believe our protocol of hyper-
parameters is reasonable and fair, it is also true that we did not
fully explore all possible combinations of these hyperparameters,
as the cost would increase significantly: by a rough estimate, an
exhaustive search of the hyperparameter space would cost more
than $1M on EC2.
Reproducibility. All of our experiments can be reproduced us-
ing a virtual machine availabe on EC2: i-0a7a0521e93c329d9.
Our variant of CNTK is available under github.com/ZipML/CNTK.
Overview. The rest of this paper is organized as follows. We
introduce the background material in Section 2 and describe our
system prototype in Section 3. We describe our experiment setup
in Section 4 and analyze our results in Section 5. We provide more
discussion in Section 5.4 and survey related work in Section 7.

2 PRELIMINARIES
We present background for our study. We first describe the sto-
chastic gradient descent (SGD) algorithm and the synchronous
parallel version of it which is the focus of our study. We then
describe two low-precision SGD algorithms and discuss two dif-
ferent communication primitives based on MPI and NCCL.

2.1 Stochastic Gradient Descent
Stochastic gradient descent (SGD) is the workhorse algorithm
in training deep learning models. SGD is developed for a more
general class of optimization problems: Let f : Rn → R, it solves
minx f (x ). The assumption of SGD is that we have access to the
stochastic gradients of this function. We denote the stochastic
gradient by д̃which satisfies E[д̃(x )] = ∇f (x ). SGDwill converge
towards the minimum by iterating the following procedure

xt+1 = xt − ηt д̃(xt ),

where xt is the current state of the model, and ηt , also called the
step-size or learning rate is a hyperparameter.

In the machine learning setting, we are given i.i.d. data points
X1, . . . ,Xm generated from an unknown distribution D, and a
loss function ℓ(X ,θ ), which measures the loss of the model θ
at data point X . We wish to find a model θ∗ which minimizes
f (θ ) = EX∼D [ℓ(X ,θ )], the expected loss to the data. Since for
each i , the function ∇ℓ(Xi ,θ ) is a stochastic gradient for f , we
can use SGD to find θ∗. This captures neural network training.
Synchronous Parallel SGD. In this paper, we focus on synchro-
nous data-parallel SGD, modeling multi-GPU systems in which
each GPU has a complete copy of the model. GPUs proceed in
synchronous steps, and communicate using direct messages. Each
of the K processors maintains a local copy of the model x , of
dimension n. The algorithm is described in Algorithm 1.

Each processor aggregates the value of x , then obtains random
gradient updates for each component of x , then communicates

Data: Stochastic gradients
Data: Local copy of the parameter vector x

1 for each iteration t do
2 Let д̃it be an independent stochastic gradient ;

3 M i ← Encode(д̃i (x )) //encode gradients ;

4 broadcast M i to all peers;
5 for each peer ℓ do
6 receive M ℓ from peer ℓ;

7 д̂ℓ ← Decode(M ℓ ) //decode gradients ;

8 end
9 end
Algorithm 1: Synchronous Data-Parallel SGD Algorithm.

Data: Gradient vector v to be quantized
Data: Error ϵ from the previous round

1 v ← v + ϵ //add error from previous round ;
2 for each component i do
3 qi ← avд+ if vi ≥ 0, avд− otherwise;
4 ϵi ← vi − qi ;
5 end
6 return q

Algorithm 2: 1bitSGD procedure.

these updates to all other nodes, and finally aggregates the re-
ceived updates and applies them to its local model.We have added
encoding and decoding steps for the gradients before and after
send/receive in lines 1 and 7. In the following, we assume the
above pattern. Whenever describing a communication-efficient
variant of SGD, we only specify the encode/decode functions. Note
that these encoding process is often lossy that only recover an
approximate gradient.

When the encoding and decoding steps are trivial (i.e., no en-
coding/decoding), we refer to this algorithm as full-precision (par-
allel) SGD. In this case, at each processor, if xt was the value of x
that the processors held before iteration t , then the updated value
ofx by the end of this iteration isxt+1 = xt−(ηt /K )

∑K
ℓ=1 д̃

ℓ (xt ),
where each д̃ℓ is a stochastic gradient. The speedup comes from
the fact that all the updates are computed in parallel.

2.2 One-Bit Stochastic Gradient Descent
We describe the 1bitSGD quantization scheme, introduced by
Seide et al. [39]. We denote the quantization function by Q1b (v ),
mapping a vector v to its quantized version. The procedure first
splits the vector v into its positive and negative components, re-
spectively, and computes the average over positive values, which
we denote by avд+, and the average over negative values, which
we denote by avд−. Then,

Q1b
i (v ) =

{
avд+ if vi ≥ 0 ;
avд− otherwise.

Simply put, the procedure replaces each component with the
average corresponding to its respective sign. Critically, the pro-
cedure also maintains an error correction vector ϵ , associated to
the model. In each iteration, the error from the previous iteration
is added to the current value, before the value is quantized. This
error correction step is critical to preserve accuracy [39]. The re-
sulting algorithm works as Algorithm 2, which can be used as
the Encode function of standard SGD (Algorithm 1).
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2.3 SGD with Stochastic Quantization
We present the QSGD stochastic quantization scheme, following
the description from the original paper [5]. We denote the quan-
tization function by Qs (v ), where s ≥ 1 is a tuning parameter,
corresponding to the number of “quantization levels”. Intuitively,
s will define uniformly distributed levels between 0 and 1, to
which each real value is quantized such that: 1) the value is
preserved in expectation, and 2) minimal variance is introduced.

Given a non-zero vectorv ∈ Rn , Qs (v ) is defined as

Qs (vi ) = ∥v ∥2 · sgnvi · ξi (v, s ) , (1)

where ξi (v, s )’s are independent random variables defined as
follows. Let 0 ≤ ℓ < s be an integer such that |vi |/∥v ∥2 ∈
[ℓ/s, (ℓ+1)/s]. That is, [ℓ/s, (ℓ+1)/s] is the quantization interval
corresponding to |vi |/∥v ∥2. Then

ξi (v, s ) =


ℓ/s with probability 1 − p

(
|vi |
∥v ∥2
, s
)
;

(ℓ + 1)/s otherwise.

Here, p (a, s ) = as − ℓ for any a ∈ [0, 1]. If v = 0, then we
define Q (v, s ) = 0. The quantization distribution ξi (v, s ) is de-
fined to have minimal variance over distributions with support
{0, 1/s, . . . , 1}. Its expectation satisfies E[Qs (vi )] = vi . The quan-
tizer is an unbiased estimator of the original gradient, thus en-
sures convergence [5, 14].

The above algorithm assumes quantization levels are uni-
formly distributed. There are algorithms in which quantization
levels are distributed to further minimize variance, and they can,
in some cases, significantly improve accuracy for model compres-
sion [50]. We implemented this for gradient but does not observe
significant improvement.

2.4 Communication Primitives
The major communication bottleneck in the parallel SGD algo-
rithm is in line 4 of Algorithm 1, where the gradient is broadcast
to all other machines. Since the operation just needs to collec-
tively add all gradients and produce the output at each node, this
can be implemented using a standard instance of the allreduce
operator, the optimized version of which has been studied for
decades [32]. This operation can be implemented differently in
standard CNTK: via a reduce-and-broadcast pattern implemented
on top of MPI, which is the default in CNTK, and via NVIDIA’s
NCCL extensions, which provide an allreduce-sum operation
implementation.

2.4.1 MPI Reduce-and-Broadcast. The first aggregation al-
gorithm is an MPI implementation of the classic reduce-and-
broadcast pattern. More precisely, given a set of K nodes, the
model of dimension n is split into n/K consecutive ranges, where
the ith processor is logically assigned range i ⌊n/K⌋. At the end
of each processing batch, each processor has a full set of gradi-
ents, and the goal of the procedure is to aggregate (sum) all these
gradients so that each processor has the same global gradient
value at the end of the procedure.

The first step in the aggregation process is that a processor
sends each range in its current gradient to the corresponding pro-
cessor. Thus, each processor sums up the values for its assigned
range locally. In the final step, each processor broadcasts its ag-
gregated range to all other processors. Note that, in the actual
implementation, the gradients may be transmitted in quantized
form. (That is, we add quantization and un-quantization steps
before communication, and after the message is received.) This
does not affect the pattern.

2.4.2 NCCL Accumulation. NCCL [7] (pronounced “Nickel")
is an open-source communication library provided by NVIDIA,
that is designed to provide efficient multi-GPU collective opera-
tions in a topology-aware way. In particular, NCCL provides a
sum collective operation, which can be used to implement gradi-
ent aggregation. Internally, NCCL works by building a system-
aware communication efficient ring topology, on top of which
the collective operation is applied in a step-by-step manner. To
minimize the memory impact of storing multiple copies, NCCL
splits large data buffers into small slices (4-16KB), and uses effi-
cient peer-to-peer access to push data between GPUs. NCCL cur-
rently supports several collective types (e.g., all-gather, all-reduce,
broadcast) and a few binary operations (e.g., sum, product).

3 SYSTEM DESCRIPTION
We implemented our system on top of the Microsoft Cognitive
Toolkit (CNTK) [3], version 2.0 beta 9. Our code is released both
as open-source and as a docker instance at github.com/ZipML/
CNTK. We first provide a brief technical overview of CNTK, and
then focus on the additions brought by our artefact.

3.1 CNTK
The Microsoft Cognitive Toolkit (CNTK) is a computational plat-
form optimized for deep learning. One general principle behind
CNTK is that neural network operations are described by a di-
rected computation graph, in which leaf nodes represent input
values or network parameters, and internal nodes represent ma-
trix operations on their children. CNTK supports and imple-
ments several popular network architecture types, such as feed-
forward DNNs, convolutional nets (CNNs), and recurrent net-
works (RNNs/LSTMs). To train such networks, CNTK implements
stochastic gradient descent (SGD) with automatic differentiation.
CNTK supports parallelization across multiple GPUs and servers,
with efficient MPI-based communication.

CNTK provides MPI-based GPU-to-GPU communication, and
implements a CUDA-optimized version of the 1bit-SGD algo-
rithm [39], as presented in Section 2.2. CNTK is optimized for
usage with multi-server multi-GPU systems. CNTK exports APIs
for C++, Python and C#/.NET. Additionally, CNTK specifies and
implements a BrainScript scripting language, which can be used
to define models such as neural networks, as well as to train and
evaluate models without employing any lower-level program-
ming languages. CNTK comes with many preinstalled scripts for
training state-of-the art models for different tasks, of which one
of the most documented is image classification. Futhermore, it
offers a number of pre-trained state-of-the-art models.

3.2 Low-Precision Support
CNTK implements 1bitSGD, which is used by default in multi-
GPU environments with SGD. We now describe CNTK’s 1bitSGD
implementation. Low-precision commununication betweenGPUs
is implemented using MPI reduce-and-broadcast.

3.2.1 Data Representation and 1bitSGD. CNTK stores the
computation intensive data (model and minibatch samples) in
the GPU memory, to ensure fast access and to avoid expensive
data copying between host (main) and device (GPU) memory. In
synchronized SGD, after every GPU is finished with the computa-
tion of gradients using backpropagation for its batch of samples,
GPUs collectively aggregate gradients, so that each is left with a
coherent copy of the model.
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Gradients are stored using a matrix datatype in GPU memory.
Aggregation is performed using the MPI Reduce-and-Broadcast
technique described above. Sending gradient matrices is done
separately for each gradient. To reduce communication, each
GPU performs quantization and un-quantization on eachmessage
sent/received.

Quantization is done over columns. That is, the gradient is
divided into columns, and each column is quantized separately.
Thus, each quantized column is represented by two numbers
avд+ and avд−, as well as an array of bits of size equal to number
of elements in the column. That array of bits is represented as
an integer array, where 8 quantized values, each consisting of
1 bit, are packed into 1 byte of memory. For instance, if there
are n rows in a gradient matrix, then the quantized column is
represented by two floating-point numbers and ⌈n/8⌉ bytes of
memory.

In order for GPU memory to be aligned, if single-precision
float-point numbers are used for calculations in a network, then
avд+ and avд− are represented as a float data type, and n bits
are packed in ⌈n/32⌉ C++ unsigned integers. If double-precision
float-point numbers are used, avд+ and avд− are doubles and n
bits are packed inside ⌈n/64⌉ C++ unsigned long long integers.

The quantization of a column is divided into 2 phases. The first
phase launches GPU threads in order to calculate the numbers
avд+ and avд−, where the number of threads is tuned for per-
formance. The second phase uses calculated numbers avд+ and
avд− to quantize values and pack bits into integers. For each inte-
ger in the quantized array, a new GPU thread is launched, which
means that each thread in second phase quantizes exactly 32 or 64
elements of a column, depending on the precision employed. All
of a gradient’s columns are quantized in parallel on the GPU. To
optimize the performance, the double buffering techique is used,
by which, while some gradients are being quantized, gradients
that are finished with quantization are already being sent. That
way communication overlaps with computation and GPU and
CPU resources are maximally used. The current CNTK imple-
mentation uses MPI to exchange data between GPUs. Because of
that, an additional transfer of the gradient between GPU device
memory and host memory is required.

3.2.2 QSGD Implementation. In order to implement theQSGD
quantization technique, we started from the 1bitSGD implemen-
tation.We re-wrote the quantization function, such that it follows
the algorithm in Section 2.3. As in a case of 1bitSGD, we pack
quantizated values in integers, but we stored only one additional
floating point number (for scaling) instead of two. The algorithm
works such that the number of bits used for quantization is speci-
fied asдBits , and each gradient matrix values are quantize into an
integer range with a specified number of bits. We implemented
two different quantization methods, which differ in terms of the
distribution of quantization levels. The first method follows faith-
fully the described algorithm: we use one out ofдBits bits to store
the sign, and the rest of the bits is used for the quantized value.
A second approach was to divide the interval [−∥v ∥2, ∥v ∥2] into
2дBits − 1 intervals of equal size, where the quantization levels
are the endpoints of those intervals.

Since the dimensions of the gradient matrix could be large,
and the variance introduced by quantization depends on the di-
mension, we implemented a variant which splits the vector into
buckets of consecutive scalar values, where each bucket is quan-
tized independently. The bucket size will be tuned for accuracy.

Dataset # Training # Validation Size # classes Tasksamples samples
ImageNet 1.3M 50k 145GB 1000 Image
CIFAR-10 50k 10k 1GB 100 Image

AN4 948 130 64MB NA Speech

Figure 1: Statistics of datasets.

Instance # CPU GPU TFLOPS $/hourcores (single)

Amazon
p2.xlarge 4 1 × K80 1 × 8.73 $0.9
p2.8xlarge 32 8 × K80 8 × 8.73 $7.2
p2.16xlarge 64 16 × K80 16 × 8.73 $14.4

DGX1 2 × 16 8 × P100 8 × 10.6 $50 (Nimbix)

Figure 2: Statistics of machines

Importantly, the whole matrix is reshaped such that each col-
umn has a specified number of elements, where we always try
to place consequtive elements from the same column in original
matrix in the same bucket. Using this bucketing approach, we are
able to control quantization variance and get significant accuracy
improvements.

We also implemented possibility to specify how the scaling
factor for a vector is done. Currently, we support normalization
by 2-norm and maximal element of a vector (infinity norm). The
former is useful if we wish to obtain sparse quantized vectors,
while the latter introduces smaller variance. In our experiments,
normalizing by the maximal element gave better results in terms
of accuracy, since more information is preserved. We used the
NVIDIA cuRAND library with a different seed for each thread to
generate random numbers.

Additional improvement was not to quantize matrices with
small number of elements compared to total number of learning
parameters in the model, since for those matrices we lose time
by setting GPU threads and quantizing. We use full precision
pipeline to send those matrices. We choose a threshold for small
matrices in such way so we always quantize more than 99% of
all parameters.
Reshaped 1bitSGD.We noted that some of the design choices
made in the CNTK implementation of 1BitSGD can adversely
affect the performance of this algorithm. For objects without
dynamic dimensions, the first tensor dimension is the “row,” while
the other dimensions are flattened onto “columns.” The CNTK
implementation of 1BitSGD always quantizes per column.

Practically, on networks with many convolutional layers, this
can lead to the following performance artefact: quantization is
often applied to a column of very small dimension (1–3), which
is computationally expensive, and leads to practically no com-
munication reduction. (At the same time, this artefact leads to
practically no accuracy loss for this version of the algorithm,
since the gradients are almost unchanged.) Given this artefact,
the standard implementation of 1BitSGD can be slower than even
the full-precision version on heavily convolutional networks such
as ResNet and Inception.

We correct this issue by always reshaping tensors with a re-
shaping technique applied in QSGD.We observe up to 4× speedup
compared with the original CNTK implementation. In all experi-
ments we will denote this version of 1bitSGD with 1bitSGD*.

4 EXPERIMENTAL SETUP
4.1 DataSets
We test various quantization techniques on two types of tasks:
image classification, and automated speech recognition.

149



Task Network Dataset Params.
# epochs Initial

to run Learning
Rate

Image

AlexNet ImageNet 62M 112 0.07
BN-Inception ImageNet 11M 300 3.6
ResNet50 ImageNet 25M 120 1
ResNet110 CIFAR-10 1M 160 0.1
ResNet152 ImageNet 60M 120 1
VGG19 ImageNet 143M 80 0.1

Speech LSTM AN4 13M 20 0.5

Figure 3: Statistics of networks.

1 GPU 2 GPUs 4 GPUs 8 GPUs 16 GPUs
AlexNet 256 256 256 256 256

BN-Inception 64 128 256 256 256
VGG19 32 64 128 128 128
ResNet50 32 64 128 256 256
ResNet152 16 32 64 128 256
ResNet110 128 128 128 128 128
LSTM 16 16 NA NA NA

Figure 4: Batch sizes used for each network and # GPUs.
See Section 4.4 for the tuning protocol that results in these
choices.

ImageNet. The ILSRVC 2015 dataset [37] (ImageNet) consists
of 1.3 million images, each labelled into one of 1000 categories
(classes), which cover a wide variety of objects, animals, scenes,
or geometric concepts. To evaluate our models, we consider a
standard scenario where validation set that consists of 100K im-
ages is used. The classifier has to predict either a single label
(top-1) or five labels (top-5); an image is considered to be correct
if at least one of the outputs matches the ground truth.
CIFAR-10. We also consider the small-scale CIFAR-10 object
classification dataset [26]. The training set consists of 50,000
32×32 images. Images are labelled into 10 categories. The classi-
fier has to output a single label (top-1); an image is considered to
be correct if the prediction matches the ground truth.
AN4. For speech recognition, we use the CMU Alphanumeric
(AN4) dataset [2]. AN4 consists of recordings of subjects spelling
out their census data (name, address), as well as randomly gener-
ated sequences. It contains 948 training utterances, and 130 test
utterances, sampled at 16 kHz, with 16-bit linear sampling.

4.2 Networks
We conducted our experiments on state-of-the-art networks for
image classification and speech recognition.

For image classification we tested all the winning entries from
the ImageNet competition from 2012 to 2015: AlexNet, VGG, BN-
Inception, and ResNet. These architectures are state-of-the-art
for this task. For experiments with VGG we used an instance
with 19 layers, called VGG19. We performed experiments on
the ImageNet dataset using ResNet networks with 50 and 152
layers (called ResNet50 and ResNet152), and used an instance of
ResNet110 for the CIFAR10 dataset. All of these networks have
different properties and different types of layers. BN-Inception
is optimized for low number of parameters in network, whereas
ResNet is built entirely of convolutional layers. For automated
speech recognition we used a network that consists of 3 long
short-term memory (LSTM) components. In all experiments we
used architectures built and optimized by CNTK. More details
about each network are in Figure 3.

4.3 Machines
For experiments, we used Amazon AWS EC2 P2 instances, de-
signed for high-performance computing using GPUs. Instances
we used are p2.xlarge with 1 GPU, p2.x8large with 8 GPUs on
a single machine and p2.x16large with 16 GPUs on a single ma-
chine. The above instances have Nvidia Tesla K80 GPUs, based on
the Kepler architecture. These GPUs support GPUDirect, which
enables peer-to-peer GPU communication without using CPU.

Another machine we used is DGX1 that consists of 8×P100
GPUs. These GPUs are based on Pascal architecture and have
NVlink high-bandwidth interconnection between GPUs. This
results in highly-optimized GPU communication. The DGX ma-
chine also benefits from a customized interconnect, which pro-
vides high throughput and low latency.

4.4 Tuning and Experimental Protocol
We used nvidia-docker to conduct our experiments. One compli-
cating factor of benchmarking deep learning systems is a large set
of hyperparameters one needs to tune to conduct fair comparison.
In this paper, we use the following tuning protocol.
Batch Size. The principle behind our hyperparameters tuning
protocol is to always start from CNTK’s default hyperparameters,
which have already been optimized by the CNTK developers for
a specific network. For each configuration that we run, if CNTK
does not run with the default hyperparameter setting, we vary
the hyperparameter until it runs. For example, with the default
batch size and 1GPU, CNTK cannot run ResNet because thewhole
batch does not fit in memory. In this case, we decrease the batch
size until CNTK runs. Figure 4 shows the batch sizes we used.
Learning Rate. We always use the default learning rate, which
is fine tuned by CNTK for 32-bit full precision. We use an SGD
optimizer with default momentum (0.9 for most architectures).
Note that, because we focus on synchronous communication,
the number of GPUs has negligible impact on the convergence
rate and final quality given a fixed value of the learning rate and
momentum. This has been observed previously, in e.g. [24].
Bucket Size. QSGD and 1bitSGD with reshaped matrices intro-
duce new hyperparameters, such as bucket size and normaliza-
tion scaling factor. We picked these parameters that optimize for
accuracy on these networks. We used QSGD 2bit with bucket
size 128, QSGD 4bit and 8bit with bucket sizes 512, and QSGD
16bit with bucket size 8192. Also, for our version of 1bitSGD with
reshaped matrices we tried multiple bucket sizes and used bucket
size 64 for all performance and scalability numbers.
NCCL Simulation. CNTK uses NCCL only for full-precision
data parallel SGD. When trying to twist it for low-precision,
we find that its sum primitive only supports full precision and
therefore, cannot be used for low-precision communication (as
scaling factors cannot be taken into account). Thus, we imple-
ment a version where we simulated gradient aggregation with
NCCL calls—we send the same number of bits using NCCL as we
would if NCCL would have had support for low-precision. In the
NCCL experiments, we use this simulated version to compare
the performance of different low-precision setups.

5 ANALYSIS
We now analyze the experiment results and discuss the insights.

5.1 Accuracy
Does low-precision always hurt accuracy?
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Figure 5: Accuracy results for various networks and datasets. Cyan = 32bit.

In the first set of experiments, we study the impact of training
deep neural networks with low precision communication on the
training accuracy. For each network and data set, we vary the
precision and report the test accuracy1 for each epoch. Figure 5
illustrates the result for AlexNet, ResNet50 and ResNet152 on
ImageNet, ResNet110 on CIFAR, and an LSTM network on AN4.
Accuracy: Positives. There always exist settings of parame-
ters for which quantized variants converge to the same or bet-
ter final accuracy, compared to the full-precision version. For
ResNet50/ImageNet, the full precision variant converges to 59.90%
top-5 accuracy, whereas 1bitSGD converges to 60.31% accuracy.
Similarly, QSGD with 4bit and 8bit quantization converge to
60.37% and 60.05% final accuracy, respectively. The accuracy im-
provement, of up to 0.47% is statistically significant. The reason
for this small, but statistically significant, accuracy gain is not
clear. We suspect it is caused by similar reasons with recent work
observing that adding noise during the training process can im-
prove accuracy [35]. Additional experiments show that, for this
dataset, quantization also improves training loss (see Figure 5e),
which is perhaps surprising. It is not clear what is the definitive
reason of this behavior.
Accuracy: Negatives. It is also important to note that quantizing
too aggresively can lead to significant accuracy loss. For example,
QSGD where gradient values are quantized to two bits (levels
0, 1, and −1) has accuracy loss of at least 1 percentage point,
consistently across image classification datasets.We note that this
is not the case for non-convolutional networks (LSTMs), which
appear to be able to handle quantization to very low precision.
This finding is consistent with the theory [5, 50]: aggressive
quantization increases the variance of the convergence process,
and as such, the theory predicts that one would have to run for
more iterations in order to converge to the same quality results.
Convergence Rate. Another aspect of accuracy is the conver-
gence rate, i.e., howmany epoches do the system need to converge
to the same accuracy. We observe that 8bit bit QSGD with 512
bucket size is always enough, on all data sets considered, to guar-
antee effectively the same convergence rate. For 1bitSGD, we
note that the reshaped variant requires relatively small bucket
size (64) to converge to the same target accuracy. Even so, we
note that the convergence rate of 1bitSGD (i.e., training error
versus epoch) is lower per epoch compared to that of the full
precision variant, but the best accuracy achieved across at the
end of the training process is comparable for the two processes.

1We also conduct similar experiments for training accuracy. We leave the result to
the full version as it does not change any claims.

Impact of Layer Types. We also find convolutional layers are
more “sensitive" to the noise induced by quantization. This phe-
nomenon becomes apparent when we study the accuracy of two
variants: (1) only quantize convolutional layers, and (2) quantize
all layers. For example, on AlexNet, we can compare the accuracy
of 1bitSGD with reshaping, which quantizes all layers, with the
accuracy of standard 1bitSGD, which effectively does not quan-
tize convolutional layers, as previously discussed. We observe
that the reshaped variant has end accuracy that is lower; a closer
examination of the loss-per-epoch graph shows that the reshaped
version has consistently lower accuracy throughout the training
process, although it almost catches up in terms of final accuracy
across all epochs. The accuracy difference is starker (1 accuracy
point) if we examine reshaped 1bitSGD with 512 bucket size.
Impact of Bucket Size. Another factor that has impact on the
training accuracy is the bucket size of quantization, an additional
parameter which we implemented for reshaped 1bitSGD and
QSGD, and tuned for accuracy. For QSGD, this parameter can be
used to directly throttle the added variance of the quantization
process, at the cost of extra communication (sincewe need to send
an extra floating-point number per each bucket). We observed
that this can make a significant difference in terms of accuracy.
For instance, on AlexNet / ImageNet, 4bit QSGDwith 8192 bucket
size has end accuracy that is > 0.6% inferior to the full-precision
variant. Adjusting the bucket size to 512 allows it to improve
accuracy over the full precision variant.
Further Lowering Accuracy. We also experimented with vari-
ants of QSGD with even lower communication overhead (such as
1-bit per location, or two-norm nomalization). These variants are
theoretically justified, in that they will eventually converge to a
local optimum, at the cost of additional running time. However,
in our experiments, these variants did not provide good accu-
racy results when run for the same number of epochs as the full
precision version. These accuracy results are therefore omitted.
Discussion. One final observation we make is the impressive
accuracy of the 1bitSGD error-correction techniques. It is worth
emphasizing that this technique only sends the signs of the com-
ponents, plus two scaling factors. On large-scale image classifica-
tion datasets, it only loses relatively small amounts of accuracy
(< 0.3%). It is interesting future work to develop the theoretically
foundation of its convergence and correctness, which is still an
open question [39].

5.2 Performance
Does low-precision always help performance?

We now study the impact of low-precision training on end-
to-end training time. We measure the time per iteration for the

151



32bit Q16 Q8 Q4 Q2 1b* 1b
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

T
im

e
 p

e
r 

e
p
o
ch

 (
h
o
u
rs

) AlexNet - MPI
8 GPUs

32bit Q16 Q8 Q4 Q2 1b* 1b
0

2

4

6

8

10

T
im

e
 p

e
r 

e
p
o
ch

 (
h
o
u
rs

) VGG19 - MPI
8 GPUs

32bit Q16 Q8 Q4 Q2 1b* 1b
0

2

4

6

8

10

T
im

e
 p

e
r 

e
p
o
ch

 (
h
o
u
rs

) ResNet152 - MPI
8 GPUs

32bit Q16 Q8 Q4 Q2 1b* 1b
0.0

0.5

1.0

1.5

2.0

2.5

T
im

e
 p

e
r 

e
p
o
ch

 (
h
o
u
rs

) ResNet50 - MPI
8 GPUs

32bit Q16 Q8 Q4 Q2 1b* 1b
0.0

0.2

0.4

0.6

0.8

1.0

1.2

T
im

e
 p

e
r 

e
p
o
ch

 (
h
o
u
rs

) BN-Inception - MPI
8 GPUs

Figure 6: Performance: Amazon EC2 Instance with MPI. QN = QSGD with N bits. 1b = 1bitSGD, 1b* = 1bitSGD with reshap-
ing.
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Figure 7: Performance: Amazon EC2 Instance with NCCL. QN = QSGD with N bits. 1b = 1bitSGD, 1b* = 1bitSGD with
reshaping.
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Figure 8: Performance: NVIDIA DGX-1 with MPI.
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Figure 9: Performance: NVIDIA DGX-1 with NCCL.

full-precision version (32bit), the standard CNTK implementation
of 1bitSGD, our variant with reshaping and 64 bucket size (whose
parameters are chosen so as to guarantee no accuracy loss), and
QSGD with 2, 4 and 8-bit precision. (As observed, 512 bucket size
guarantees state-of-the-art accuracy across all networks for the
QSGD 4bit and 8bit variants. Even lowering the bucket size down
to 32 for 2bit QSGD does not recover the full precision accuracy.).
We break down the epoch time into communication time (bottom
of each bar), and computation time (top of each bar, which also
includes time spent compressing and uncompressing gradients).
Figure 6 and Figure 7 show the result on the 16GPU Amazon
instance, and Figure 8 and Figure 9 show the results on the 8GPU
NVIDIA DGX-1. (Recall that DGX-1 machine has newer Pascal
GPUs, as well as a faster, custom interconnect.)
Slow Inter-connections with Slow Primitives.We start with
a setting that favors low precision communication the most —
Amazon instances have 16 GPUs and all communications are
conducted over MPI/PCIe. Figure 6 illustrates the result of using
MPI as the communication primitives. We see that, in this setting,
using low-precision communication significantly improves the
performance — with 8GPUs on VGG network, the speedup of
using 2-bit / 4-bit precision is almost 3× compared with using
32-bit full precision. On 16GPUs, the speedup is of > 5×.

This speedup does not hold across all network types, as these
networks have different ratio between communication and com-
putation: there are communication-dominated networks (such as

AlexNet and VGG), and computation-dominated networks (such
as BN-Inception and ResNet50). ResNet152 balances these two.
Impact on Communication Overhead.We observe that on all
networks, lowering the precision of communication significantly
decreases the communication time. On AlexNet, the reduction
in communication time with 4-bit quantization is almost 5×. For
other networks, we observer similar speedups.
Impact onEnd-to-endPerformance.As the computation time
stays the same across different precision settings, the end-to-
end performance speedup is smaller that our amount of savings
we have in communication. For example, on AlexNet, the 5×
speedup on communication results in 2× speedup overall. For
computation-dominating network such as BN-Inception, we get
only 1.3× speedup when lowering the precision by 16×.
Extremely Low Precision. This “diminishing returns” phenom-
enon implies that, even on machines with slow connection and
slow communication, we rarely observe a case where using 1-2bit
precision resulting in significant performance benefit as using
8-bits and 4-bits. In practice, this suggests that it may be reason-
able to only lower the precision up to 8-bit gradients, since that
going even lower does not really provide significant performance
benefit on the model sizes we trained.
Precision versus Bucket Size.We observe that in many cases
1bitSGD is actually slower than 2bit QSGD. This is because, to
preserve accuracy, we have to significantly decrease bucket size
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AlexNet ImageNet
Setup Samples per second (MPI)

Precision Bucket size 1 GPU 2 GPUs 4 GPUs 8 GPUs 16 GPUs
32bit / 240.80 301.45 328.00 272.90 192.10

QSGD 16bit 8192 / 388.80 508.80 500.90 335.60
QSGD 8bit 512 / 424.90 544.60 739.10 535.00
QSGD 4bit 512 / 466.50 598.70 964.90 748.50
QSGD 2bit 128 / 449.20 609.15 1076.50 889.80
1bitSGD / / 424.05 564.30 971.10 849.40
1bitSGD* 64 / 370.80 476.50 761.20 712.70
1bitSGD* 512 / / / / /

ResNet50 ImageNet
Setup Samples per second (MPI)

Precision Bucket size 1 GPU 2 GPUs 4 GPUs 8 GPUs 16 GPUs
32bit / 47.20 80.80 142.40 247.90 272.30

QSGD 16bit 8192 / 90.20 156.30 275.80 348.70
QSGD 8bit 512 / 92.60 162.70 313.70 416.80
QSGD 4bit 512 / 93.90 165.70 326.10 461.20
QSGD 2bit 128 / 93.30 178.35 330.45 472.25
1bitSGD / / 45.10 81.70 160.15 155.20
1bitSGD* 64 / 88.10 156.50 296.70 442.40

ResNet110 CIFAR10
Setup Samples per second (MPI)

Precision Bucket size 1 GPU 2 GPUs 4 GPUs 8 GPUs 16 GPUs
32bit / 343.70 555.00 957.70 1229.10 831.60

QSGD 16bit 8192 / 551.00 942.70 1164.20 763.40
QSGD 8bit 512 / 550.20 960.10 1193.10 759.70
QSGD 4bit 512 / 571.10 957.40 1257.10 784.30
QSGD 2bit 128 / 557.20 973.10 1227.90 780.40
1bitSGD / / 465.60 643.30 610.90 406.90
1bitSGD* 64 / 550.40 884.80 1156.70 757.70

ResNet152 ImageNet
Setup Samples per second (MPI)

Precision Bucket size 1 GPU 2 GPUs 4 GPUs 8 GPUs 16 GPUs
32bit / 16.90 26.10 45.00 73.90 113.50

QSGD 16bit 8192 / 31.20 54.50 95.50 151.00
QSGD 8bit 512 / 32.80 62.70 109.20 182.50
QSGD 4bit 512 / 33.60 60.20 121.90 203.20
QSGD 2bit 128 / 33.50 64.35 123.55 208.50
1bitSGD / / 10.55 22.10 41.40 63.15
1bitSGD* 64 / 30.40 55.50 108.10 193.50

VGG19 ImageNet
Setup Samples per second (MPI)

Precision Bucket size 1 GPU 2 GPUs 4 GPUs 8 GPUs 16 GPUs
32bit / 12.40 20.40 36.30 53.95 40.60

QSGD 16bit 8192 / 24.80 46.40 35.80 67.80
QSGD 8bit 512 / 24.20 47.50 119.50 106.60
QSGD 4bit 512 / 27.00 52.30 151.65 143.80
QSGD 2bit 128 / 24.60 49.35 160.35 170.50
1bitSGD / / 22.20 43.15 117.35 120.60
1bitSGD* 64 / 22.90 44.80 99.15 134.30

BN-Inception ImageNet
Setup Samples per second (MPI)

Precision Bucket size 1 GPU 2 GPUs 4 GPUs 8 GPUs 16 GPUs
32bit / 88.30 164.80 316.75 473.75 500.40

QSGD 16bit 8192 / 171.80 337.10 482.70 592.30
QSGD 8bit 512 / 173.60 342.50 552.90 696.30
QSGD 4bit 512 / 174.80 346.90 593.40 743.30
QSGD 2bit 128 / 173.40 343.70 591.80 747.50
1bitSGD / / 127.60 236.25 336.15 321.30
1bitSGD* 64 / 170.30 335.10 480.50 700.40

Figure 10: Speed of using MPI on Amazon EC2 instance.

for the reshaped 1bitSGD algorithm. This renders it both more
expensive in terms of communication, and increases the compu-
tational complexity of the GPU encoding/decoding operations.
Slow Inter-connections with Fast Primitives. Another way
to implement the communication is to use NCCL instead of MPI.
In our experiment, for the primitives we used in training, NCCL
provides significantly faster communication. The reasons are
two-fold: NCCL provides faster messaging, but also less memory
overhead. Figure 7 shows the result of using NCCL on EC2.
Implementation Notes. We note the following caveats when
using NCCL. First, NCCL does not currently support more than
8 GPUs, and we therefore only report numbers on up to 8 GPUs.
Second, the current allreduce primitive in NCCL does not sup-
port low-precision and therefore all low-precision numbers of

AlexNet ImageNet
Setup Samples per second (NCCL)

Precision Bucket size 1 GPU 2 GPUs 4 GPUs 8 GPUs
32bit / 240.80 458.20 625.00 1138.30

QSGD 16bit 8192 / 462.80 632.10 1157.60
QSGD 8bit 512 / 458.40 641.80 1214.80
QSGD 4bit 512 / 471.90 659.40 1247.70
QSGD 2bit 128 / 471.00 661.60 1229.70

ResNet50 ImageNet
Setup Samples per second (NCCL)

Precision Bucket size 1 GPU 2 GPUs 4 GPUs 8 GPUs
32bit / 47.20 93.80 164.80 291.10

QSGD 16bit 8192 / 93.70 164.50 324.20
QSGD 8bit 512 / 94.00 165.80 297.40
QSGD 4bit 512 / 95.60 167.90 298.40
QSGD 2bit 128 / 95.50 168.20 304.10

ResNet152 ImageNet
Setup Samples per second (NCCL)

Precision Bucket size 1 GPU 2 GPUs 4 GPUs 8 GPUs
32bit / 16.90 33.60 60.10 112.10

QSGD 16bit 8192 / 33.40 59.80 112.20
QSGD 8bit 512 / 33.70 60.80 115.10
QSGD 4bit 512 / 34.20 62.10 118.70
QSGD 2bit 128 / 34.30 62.20 119.90

VGG19 ImageNet
Setup Samples per second (NCCL)

Precision Bucket size 1 GPU 2 GPUs 4 GPUs 8 GPUs
32bit / 12.40 24.90 48.70 163.10

QSGD 16bit 8192 / 24.90 49.10 168.00
QSGD 8bit 512 / 25.50 50.50 175.20
QSGD 4bit 512 / 25.60 51.00 179.50
QSGD 2bit 128 / 25.60 51.10 177.80

BN-Inception ImageNet
Setup Samples per second (NCCL)

Precision Bucket size 1 GPU 2 GPUs 4 GPUs 8 GPUs
32bit / 88.30 175.30 342.00 486.70

QSGD 16bit 8192 / 174.30 342.70 497.10
QSGD 8bit 512 / 174.50 345.30 510.10
QSGD 4bit 512 / 178.60 349.00 598.90
QSGD 2bit 128 / 177.20 349.00 608.20

Figure 11: Speed of using NCCL on Amazon EC2 instance.

Figure 7 are simulated by using the NCCL allreduce primitive
to send the same amount of data that would be sent in a low-
precision implementation using NCCL. (The rest of the algorithm
remains the same; in this case, the GPUs will converge at a lower
rate or could diverge, but this is irrelevant for the experiment.)
NCCL vs. MPI. We draw the reader’s attention to the perfor-
mance difference between MPI (Figure 6) and NCCL (Figure 7). It
is clear that the MPI implementation is slower than the NCCL —
the computation time stays the same but the communication time
differs significantly. One result we found especially surprising is
that NCCL with full precision can be faster than MPI with low
precision. Thus, on systems where NCCL is available, the fastest
approach may be simply to run full precision with NCCL.
Super-Linear Scaling. The attentive reader may have noticed
that, for the VGG19 network, the scaling is super-linear at 8GPUs.
This phenomenon appears to be an artefact due to the minibatch
size: at 8 GPUs, the batch for VGG19 consists of just 16 images,
which the K80 GPUs are able to process in less than half of the
time needed to process batches of 32 images. We were able to
reproduce this behaviour on a single GPU with the same batch
size, and we speculate that it may be due to better caching and
less data movement at smaller sample size.
End-to-end Performance. Since NCCL could be modified to
supports a low-precision allreduce in the future, we might be
able to take advantage of low-precision communication to get
even faster systems. As illustrated in Figure 7, on communication-
dominated networks such as VGG, we get up to 1.5× speedup
with 4-bit or 8-bit precision NCCL. This end-to-end speedup is
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Figure 12: Scalability: Amazon EC2 Instance with MPI.
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Figure 13: Scalability: Amazon EC2 Instance with NCCL.
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Figure 14: Scalability: NVIDIA DGX-1 with MPI.
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Figure 15: Scalability: NVIDIA DGX-1 with NCCL.

considerably lower than what we got in the MPI implementation,
due to the balanced communication-to-computation ratio.
Fast Interconnect with Slow/Fast Primitives. On NVIDIA
DGX-1, all GPUs are connected by a custom interconnect, which
is significantly faster than PCIe. Further, the GPU is about 40%
faster than in the Amazon instances. In this case, we observe simi-
lar results as the Amazon instances —when using slow primitives
such as MPI, we get significant speedup by lowering the precision
of communication, sometimes by up to 5× (VGG). However, with
NCCL, the achievable speedup is again limited significantly. In
fact, with NCCL, on VGG, we get up only 1.6× speedup when
using 4-bits precision and relatively minor speedups for other
networks and precision levels. It is interesting to note by exam-
ining the scalability graphs that the low precision brings the
implementations close to linear scalability.

5.3 Scalability
Do we really need 16 GPUs on a single

instance?
We now study scalability: how does the performance change

with respect to the number GPUs we use? We define scalability
as the number of samples per second in a certain configuration,
divided by the number of samples per second processed by a
single GPU for a training epoch. Figure 12-15 shows the result.

Scalability of Full Precision.We see that, using 32-bit full pre-
cision is able to scale, to some extent. For computation-dominated
networks, 32-bit full precision is able to scale up to 6× with MPI
and 7× with NCLL on 8 GPUs. However, for communication
dominated networks, 32-bit suffers. For example, for AlexNet,
32-bit full precision with MPI only achieves 2× scale up with 16
GPUs. Comparing NCCL with MPI, NCCL scales up better than
MPI for 32-bit full precision — This is not surprising, as NCCL is
more efficient in dealing with communications.
Impact of Low Precision Communication.We see that using
low-precision quantized communication consistently improves
the scalability over 32-bit for all experiments. When using MPI
on Amazon instances, the scalability for AlexNet is improved
from < 3× to 8× by using 1bitSGD. Networks such as ResNet152
scale almost linearly once quantization is applied even with MPI:
with quantization, scalability at 16GPUs is 2×, and 5× without.

When using NCCL, the difference between quantized commu-
nication and full precision decreases significantly. As shown in
Figure 13 and Figure 15, quantization only introduces at most
50% scale up compared with full precision. The only exception is
for VGG, which has the most number of parameters, in which
32-bit saturated the memory bandwidth. On the other hand, on
AlexNet, we note that 32bit NCCL is faster than the 4bit vari-
ant. This explanation for this perhaps surprising result is the
following: the computational overhead of AlexNet is relatively
low; 4bit quantization adds to it, since we need to compress and
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Figure 16: Left: Price and accuracy of training different
neural networks with different # epochs on Amazon EC2
with 8-bit and NCCL. Right: The performance improve-
ment of using low-precision communication w.r.t. the
communication and computation ratio.

de-compress the data. This overhead is not compensated by the
reduction in communication for this network.
Impact on Reshaping. One optimization we did to improve
OneBitSGD is reshaping. The scalability of the reshaped version
of 1bitSGD is initially lower than the original on e.g. AlexNet, due
to the higher computational cost of quantizing into buckets, but
this cost is amortized at higher thread counts. We note however
that overall the less computationally expensive QSGD variant
may perform better, although it sends more data per iteration.

5.4 Discussion
Accuracy vs. Cost. The experimental results we get in this pa-
per also allow us to understand a tradeoff between the model
accuracy and the dollar cost of training. Such tradeoff could be
useful for scenarios like the following: assume a user with a large
dataset (e.g., ImageNet), wishing to train a large-scale neural net-
work to full precision, but on a limited budget. What is the most
cost-effective way to do so, assuming current Amazon pricing?

Figure 16 illustrates the results of the price and accuracy for
training different networks to full accuracy, according to its pub-
lished recipe (accuracy and # of epochs to convergence). We use
the cheapest EC2 solution for each network, which we derive
from the scalability graphs. We see that there is an almost mono-
tonic correlation between $ cost and accuracy — the more $ the
user spent, the higher the quality s/he can expect. On the other
hand, it is also clear that there exists a diminishing return phe-
nomenon — spending $600 to switch from AlexNet to ResNet-50
bumps the accuracy by 15 percentage points, but another $1500
to switch to ResNet-152 only gets 2 percentage points improve-
ment. It would be interesting to study an automatic management
system that is both budget-aware and error tolerance-aware.
MPI vs. NCCL. The answer to this question may be now ob-
vious to the reader. While low-precision techniques can render
the MPI implementation competitive, the gap in performance
is clear, since the NCCL implementation is heavily optimized.
One issue is that NCCL is currently not fully supported for large
GPU deployments, such as multi-node or supercomputer setups.
In these cases, an MPI-based implementation is necessary. An
interesting topic for future work would be to add or improve
MPI support for such reduction operations, as well as support
for low-precision data representations.
1bitSGD vs QSGD. Given our experiments, there is no clear
winner between the two quantized methods. However, it is worth
noting that the 8bit QSGD variant provides stable accuracy and

performance for all the architectures we consider, and therefore
may be a good entry-level compressor. Further, we note that
QSGD wins in most of the head-to-head comparisons, albeit by
small margins. The 1bitSGD algorithm communicates the least
data of all the methods we tried, and can provide impressive
accuracy results. Thus, in a setting where tuning is possible or
minimal communication is necessary, 1bitSGD may be a good
alternative. Unfortunately, there is no easy way of predicting
whether a quantized method will achieve the target accuracy for
a network without actually running it.

6 OUTLOOK
One general way to interpret our results is that the neural
network training workloads we considered are currently not
communication-bottlenecked. More precisely, either by using com-
pressed communication, NCCL, or both, all the networks we
considered can achieve significant speedup on multiple GPUs.

What would happen to scalability if we extrapolate the trend
of increasing the model size? In particular, in what model-size-to-
GFLOPS regime would the scalability impact of quantization be sig-
nificant? These are the questions we address in Figure 16, where
we examine the performance improvement (in terms of speedup)
of the 8-bit quantized variant over the full-precision one, as we
(artificially) increase model size for the AlexNet architecture, for
the 8GPU NCCL version, on which we only noted minimal im-
provements using quantization. The experiment shows that, the
performance improvement due to low-precision communication
depends on a key factor, i.e., the ratio between communication
and computation (MB/GFLOPS). As the MB/GFLOPS ratio in-
creases, running time becomes driven by the cost of communi-
cation, and hence the speedup because of quantization is more
apparent. Notice that the overall speedup will always be upper
bounded by the difference in bandwidth usage, which is 4×.

Another trend is the increased computational power of GPUs,
and the presence of increasingly many GPUs on a single machine.
The first factor decreases the computational cost of networks,
while the second increases the overall communication bandwidth
of the workload. We can therefore speculate that these factors
will bring quantizedmethods closer to the fore in terms of ways to
reduce total running time, although it is also likely that the speed
of communication between GPUs will improve in the future.

7 RELATEDWORK
Changing the precision of data representation is machine learn-
ing systems has received tremendous interest recently [5, 13, 14,
16–18, 20, 23, 28, 29, 33, 36, 39, 45, 50, 51]. These works cover
a whole spectrum of machine learning tasks, from training to
inference, as well as models, from deep learning to linear models.
This paper builds upon this prior art, but focuses on the system
perspective, to understand to what extent these approaches help.
Low-Precision Deep Learning Training The research area
closest to our work is training deep learning models with low pre-
cision [3, 5, 18, 23, 39]. Most algorithms use quantizing different
data channels to lower the precision of the data representation.

One of the first references to recognize the performance impact
of gradient communication when training large speech models
was 1BitSGD [39]. This algorithm is inspired by delta-sigma mod-
ulation [38] for analog-to-digital conversion. In further work,
variants of the same algorithm are benchmarked and refined
on large-scale Amazon proprietary datasets by Strom [42]. The
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1BitSGD algorithm is available by default in the Microsoft Cog-
nitive Toolkit (CNTK) [3]. Another algorithm we consider is
QSGD [5], based on the idea of stochastically rounding floating-
point values to a small set of integer levels. For both algorithms,
it is not clear how well they generalize to other deep learning
models and what are their system tradeoffs; if fact, 1BitSGD is
even observed to diverge in some large-scale experiments by the
original authors. The goal of this paper is to provide such a fair
and well-optimized system benchmark.

Recent work considered alternative quantization strategies.
Aji and Heafield [4] proposed to truncate the gradients to only
the top few percentage of components–sorted by magnitude–and
to store the remaining components locally, in an accumulation
vector. This enables sparse communication to be employed, and
the authors show that extremely small densities (<0.5%) are suffi-
cient for convergence for neural machine translation tasks. This
scheme is promising, and can be theoretically justified by re-
lating it to asynchronous SGD. However, we believe that this
method requires further research to be widely applicable, for
the following two reasons. First, in ImageNet experiments on
the Inception architecture, we noticed that the density levels
required for convergence to the same accuracy level as the full
communication variant were large (>10%); due to the extra cost of
transmitting indices, it is not clear that the reduction in commu-
nication is sufficient to ensure scalability on such tasks. Second,
sparse communication is not efficiently supported by communi-
cation primitives such as NCCL or MPI.

Another approach to reduced communication is to factorize
large network layers, and communicate the factors instead of
large matrices [11, 47]. These methods are effective at reducing
communication for fully-connected layers, but are less useful for
conv layers, where weights are typically smaller than activations.
As many modern architectures, e.g. ResNet, are almost entirely
convolutional, this could limit the usefulness of this approach.
Distributed Machine Learning There is certainly no shortage
of distributed systems for machine learning, and deep learning
in particualar, such as TensorFlow [1], CNTK [3], Theano [44],
Torch [12], Caffe [25], and MXNet [9]. The database community
has also been contributing to this list intensively, and examples
include MLlib [31] built upon Spark [48], KeystoneML [41], Sys-
temML [8], and GraphLab [30]. However, only a few of these
systems support low precision training. We hope our study helps
clarify the system tradeoff introduced by low precision commu-
nication and that the insights can help to improve these systems.
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ABSTRACT
Large scale distributed databases are designed to support com-

mercial and cloud based applications. The minimal expectation

from such systems is that they ensure consistency and reliability

in case of node failures. The distributed database guarantees reli-

ability through the use of atomic commitment protocols. Atomic

commitment protocols help in ensuring that either all the changes

of a transaction are applied or none of them exist. To ensure effi-

cient commitment process, the database community has mainly

used the two-phase commit (2PC) protocol. However, the 2PC

protocol is blocking under multiple failures. This necessitated

the development of the non-blocking, three-phase commit (3PC)

protocol. However, the database community is still reluctant to

use the 3PC protocol, as it acts as a scalability bottleneck in the

design of efficient transaction processing systems. In this work,

we present Easy Commit which leverages the best of both the

worlds (2PC and 3PC), that is, non-blocking (like 3PC) and re-

quires two phases (like 2PC). Easy Commit achieves these goals

by ensuring two key observations: (i) first transmit and then com-

mit, and (ii) message redundancy. We present the design of the

Easy Commit protocol and prove that it guarantees both safety

and liveness. We also present a detailed evaluation of EC protocol,

and show that it is nearly as efficient as the 2PC protocol.

1 INTRODUCTION
Large scale distributed databases have been designed and de-

ployed for handling commercial and cloud-based applications [11,

14–18, 35, 37, 46–48, 56, 57]. The common denominator across

all these databases is the use of transactions. A transaction is a

sequence of operations that either reads or modifies the data. In

case of geo-scale distributed applications, the transactions are

expected to act on data stored in distributed machines spanning

vast geographical locations. These geo-scale applications require

the transactions to adhere to ACID [22] transactional semantics,

and ensure that the database state remains consistent. The data-

base is also expected to respect the atomicity boundaries that is

either all the changes persist or none of the changes take place.

In fact atomicity acts as a contract and establishes trust among

multiple communicating parties. However, it is a common knowl-

edge [39] that the distributed systems undergo node failures.

Recent failures [19, 38, 55] have shown that the distributed sys-

tems are still miles away from achieving undeterred availability.

In fact there is a constant struggle in the community to decide

the appropriate level of database consistency and availability,

necessary for achieving maximum system performance. The use

of strong consistency semantics such as serializability [6] and

linearizability [30] ensures system correctness. However, these

properties have a causal effect on the underlying parameters such
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Figure 1: Two-Phase Commit Protocol

as latency and availability. Hence, a requirement for stronger

consistency leads to a reduction in system availability.

There have been works that try to increase the database avail-

ability [2, 3]. But, more recently the distributed systems commu-

nity has observed a shift in paradigm towards ensuring consis-

tency. A large number of systems are moving towards providing

strong consistency guarantees [15, 16, 18, 34, 41, 56]. Such a prag-

matic shift has necessitated the use of agreement protocols such

as Two-Phase Commit [21]. Commit protocols help in achieving

the twin requirements of consistency and reliability in case of

partitioned distributed databases. Prior research [9, 18, 42, 54, 56]

has shown that data partitioning is an efficient approach to re-

duce contention and achieve high system throughput. However,

a key point in hindsight is that the use of commit protocol should

not be a cause for an increase in WAN communication latency

in geo-scale distributed applications.

Transaction commit protocols help in reaching an agreement

among the participating nodes when a transaction has to be com-

mitted or aborted. To initiate an agreement each participating

node is asked to vote its decision on the operations on its trans-

actional fragment. The participating nodes can decide to either

commit or abort an ongoing transaction. In case of a node failure,

the active participants take essential steps (run the termination

protocol) to preserve database correctness.

One of the earliest and popular commitment protocol is the

two-phase commit [21] (henceforth referred as 2PC) protocol.

Figure 1 presents the state diagram [39, 52] representation of

the 2PC protocol. This figure shows the set of possible states

(and transitions) that a coordinating node
1
and the participating

nodes follow, in response to a transaction commit request. We

use solid lines to represent the state transitions and dotted lines

to represent the inputs/outputs to the system. For instance, the

coordinator starts the commit protocol on transaction comple-

tion, and requests all the participants to commence the same

by transmitting Prepare messages. In case of multiple failures

the two-phase commit protocol has been proved to be block-

ing [39, 51]. For example, if the coordinator and a participant

fail, and if the remaining participants are in the READY state, then
they cannot make progress (blocked!), as they are unaware about

the state of the failed participant. This blocking characteristics

1
The coordinating node is the one which initiates the commit protocol, and in this

work it is also the node which received the client request to execute the transaction.
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of the 2PC protocol endangers database availability, and makes

it unsuitable for use with the partitioned databases
2
. The inher-

ent shortcomings of the 2PC protocol led towards the design of

resilient three-phase commit [50, 52] (henceforth referred as 3PC)

protocol. The 3PC protocol introduces an additional PRE-COMMIT
state between the READY and COMMIT states, which ensures that

there is no direct transition between the non-committable and

committable states. This simple modification makes the 3PC pro-

tocol non-blocking under node failures.

However, the 3PC protocol acts as the major performance sup-

pressant in the design of efficient distributed databases. It can be

easily observed that the addition of the PRE-COMMIT state leads to
an extra phase of communication among the nodes. This violates

the need of an efficient commit protocol for geo-scale systems.

Hence, the design of a hybrid commit protocol, which leverages

the best of both worlds (2PC and 3PC), is in order. We present

the Easy Commit (a.k.a EC) protocol, which requires two phases

of communication, and is non-blocking under node failures. We

associate two key insights with the design of Easy Commit pro-

tocol that allow us to achieve the non-blocking characteristic

in two phases. The first insight is to delay the commitment of

updates to the database until the transmission of global decision

to all the participating nodes, and the second insight is to induce

message redundancy in the network. Easy Commit protocol in-

troduces message redundancy by ensuring that each participating

node forwards the global decision to all the other participants

(including the coordinator). We now list down our contributions.

• Wepresent the design of a new two-phase commit protocol

and show it is non-blocking under node-failures.

• We also present an associated termination protocol, to be

initiated by the active nodes, on failure of the coordinating

node and/or participating nodes.

• We extend ExpoDB [45] framework to implement the EC

protocol. Our implementation can be used seamlessly with

various concurrency control algorithms by replacing 2PC

protocol with EC protocol.

• Wepresent a detailed evaluation of the EC protocol against

the 2PC and 3PC protocol over two different OLTP bench-

mark suites: YCSB [10] and TPC-C [12], and scale the

system upto 64 nodes, on the Microsoft Azure cloud.

The outline for rest of the paper is as follows: in Section 2,

we motivate the need for EC protocol. In Section 3, we present

design of the EC protocol. In Section 4, we present a discussion

on assumptions associated with the design of commit protocols.

In Section 5, we present the implementations of various commit

protocols. In Section 6, we evaluate the performance of EC proto-

col against the 2PC and 3PC protocols. In Section 8, we present

the related work, and conclude this work in Section 9.

2 MOTIVATION AND BACKGROUND
The state diagram representation for the two-phase commit pro-

tocol is presented in Figure 1. In 2PC protocol, the coordinator

and participating nodes require at most two transitions to tra-

verse from INITIAL state to the COMMIT or ABORT state. We use

figure 3a to present the interaction between the coordinator and

the participants, on a linear time scale. The 2PC commit protocol

starts with the coordinator node transmitting a Prepare message

2
Partitioned database is the terminology used by the database community to refer

to the shared-nothing distributed databases, and should not be intermixed with the

term network partitioning.

Figure 2: Three-Phase Commit Protocol

(a) Time span of 2PC Protocol

(b) Time span of 3PC Protocol

(c) Time span of EC Protocol

Figure 3: Commit Protocols Linearly Spanned

to each of the cohorts
3
and adding a begin_commit entry in its

log. When a cohort receives the Prepare message, it adds a ready
entry in its log, sends its decision (Vote-commit or Vote-abort) to
the coordinator. If a cohort decides to abort the transaction then

it independently moves to the ABORT state, else it transits to the

READY state. The coordinator waits for the decision from all the

cohorts. On receiving all the responses, it analyzes all the votes. If

there is a Vote-abort decision, then the coordinator adds an abort
entry in the log, transmits the Global-Abort message to all the co-

horts and moves to the ABORT state. If all the votes are to commit,

then the coordinator transmits the Global-Commit message to all

the cohorts, and moves to COMMIT state, after adding a commit
entry to log. The cohorts on receiving the coordinator decision

move to the ABORT or COMMIT state, and add the abort or commit
entry to the log, respectively. Finally, the cohorts acknowledge

the global decision, which allows the coordinator to mark the

completion of commit protocol.

3
The term cohort refers to a participating node in the transaction commit process.

We use these terms interchangeably.
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The 2PC protocol has been proved to be blocking [39, 51] under

multiple node failures. To illustrate this behavior let us consider a

simple distributed database systemwith a coordinatorC and three

participants X , Y and Z . Now assume a snapshot of the system

whenC received Vote-commit from all the participants, and hence,

it decides to send Global-Commit message to all the participants.

However, sayC fails after transmittingGlobal-Commitmessage to

X , but before sending messages to Y and Z . The participant X on

receiving the Global-Commit message, commits the transaction.

Now, assume X fails after committing the transaction. On the

other hand, nodesY andZ would timeout due to no response from
the coordinator, andwould be blocked indefinitely, as they require

node X to reach an agreement. They cannot make progress, as

neither they have knowledge of the global decision nor they know

the state of nodeX before failure. This situation can be prevented

with the help of the three-phase commit protocol [50, 52].

Figure 2 presents the state transition diagram for the coor-

dinator and cohort executing the three-phase commit protocol,

while figure 3b expands the 3PC protocol on the linear time scale.

In the first phase, the coordinator and the cohorts, perform the

same set of actions as in the 2PC protocol. Once the coordinator

checks all the votes, it decides whether to abort or commit the

transaction. If the decision is to abort, the remaining set of actions

performed by the coordinator (and the cohorts) are similar to the

2PC protocol. However, if the coordinator decides to commit the

transaction, then it first transmits a Prepare-to-Commit message,

and adds a pre-commit entry to the log. The cohorts on receiving

the Prepare-to-Commit message, move to the PRE-COMMIT state,
add a corresponding pre-commit entry to the log, and acknowl-

edge the message reception to the coordinator. The coordinator

then sends a Global-Commit message to all the cohorts, and the

remaining set of actions are similar to the 2PC protocol.

The key difference between the 2PC and 3PC protocol is the

PRE-COMMIT state, which makes the latter non-blocking. The

design of 3PC protocol is based on the Skeen’s [50] design of

a non-blocking commit. In his work Skeen laid down two fun-

damental properties for the design of a non-blocking commit

protocol: (i) no state should be adjacent to both the ABORT and
COMMIT states, and (ii) no non-committable

4
state should be adja-

cent to the COMMIT state. These requirements motivated Skeen to

introduce the notion of a new committable state (PRE-COMMIT)
to the 2PC state transition diagram.

The existence of PRE-COMMIT state makes the 3PC protocol

non-blocking. The aforementioned multi-node failure case does

not indefinitely block the nodes Y and Z which are waiting in

the READY state. The nodes Y and Z can make safe progress (by

aborting the transaction) as they are assured that the node X
could not have committed the transaction. Such a behavior is

implied by the principle that no two nodes could be more than

one state transition apart. The node X is guaranteed to be in one

of the following states: INITAL, READY, PRE-COMMIT and ABORT,
at the time of failure. This indicates that node X could not have

committed the transaction, as nodesY andZ are still in the READY
state (It is important note that in the 3PC protocol the coordinator

sends the Global-Commit message after it transmits the Prepare-
to-commit message to all the nodes.). Interestingly, if either of

nodes Y or Z are in the PRE-COMMIT state then they can actually

commit the transaction. However, it can be easily observed that

the non-blocking characteristic of the 3PC protocol comes at an

additional cost, an extra round of handshaking.

4INITAL, READY and WAIT states are considered as non-committable states.

Figure 4: Easy Commit Protocol

3 EASY COMMIT
We now present the Easy Commit (EC) protocol. EC is a two-

phase protocol, but unlike 2PC it exhibits non-blocking behavior.

The EC protocol achieves these goals through two key insights: (i)

first transmit and then commit, and (ii) message redundancy. In

the second phase, Easy Commit ensures that each participating

node forwards the coordinating node’s decision to all the other

participants. To ensure non-blocking behavior, EC protocol also

requires each node (coordinator and participants) to transmit the

global decision to all the other nodes, before they commit. Hence,

the commit step subsumes message transmission to all the nodes.

3.1 Commitment Protocol
We present the EC protocol state transition diagram, and the

coordinator and participant algorithms in Figure 4 and Figure 5,

respectively. The EC protocol is initiated by the coordinator node.

It sends the Prepare message to each of the cohorts and moves

to the READY state. When a cohort receives the Prepare message,

it sends its decision to the coordinator, and moves to the READY
state. On receiving the responses from each of the cohorts, the co-

ordinator first transmits the global decision to all the participants,

and then commits (or aborts) the transaction. Each of the cohorts,

on receiving a response from the coordinator, first forward the

global decision to all the participants (and the coordinator), and

then commit (or abort) the transaction locally.

We introduce multiple entries to the log to facilitate recovery

during node failures. Note: the EC protocol allows the coordinator

to commit as soon as it has communicated the global decision to

all the other nodes. This implies that the coordinator need not

wait for the acknowledgments. When a node timeouts, while
waiting for a message, it executes the termination protocol. Some

of the noteworthy observations are:

I. A participant node cannot make a direct transition from the

INITIAL state to the ABORT state.

II. The cohorts, irrespective of the global decision, always for-

ward it to every participant.

III. The cohorts need not wait for message from the coordinator,

if they receive global decision from other participants.

IV. There exists some hidden states (a.k.a TRANSMIT-A and TRAN-
SMIT-C), only after which a node aborts or commits the

transaction (cf. discussed in Section 3.2).

In Figure 3c, we also present the linear time scale model for the

Easy Commit protocol. Here, in the second phase, we use solid

lines to represent the global decision from the coordinator to the

cohorts, and the dotted lines to represent message forwarding.
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Send Prepare to all participants;

Add begin_commit to log;

Wait for (Vote-commit or Vote-abort) from all participants;

if timeout then
Run Termination Protocol;

end if
if All messages are Vote-commit then
Add global-commit-decision-reached in log;

Send Global-commit to all participants;

Commit the transaction;

Add transaction-commit to log;

else
Add global-abort-decision-reached in log;

Send Global-abort to all participants;

Abort the transaction;

Add transaction-abort to log;

end if

(a) Coordinator’s algorithm

Wait for Prepare from the coordinator;

if timeout then
Run Termination Protocol;

end if
Send decision (Vote-commit or Vote-abort) to coordinator;

Add ready to log;

Wait for message from coordinator;

if timeout then
Run Termination Protocol;

end if
if Coordinator decision is Global-commit then

Add global-commit-received in log;

Forward Global-commit to all nodes;

Commit the transaction;

Add transaction-commit to log;

else
Add global-abort-received in log;

Forward Global-abort to all nodes;

Abort the transaction;

Add transaction-abort to log;

end if

(b) Participant’s algorithm

Figure 5: Easy Commit Algorithm.

3.2 Termination Protocol
We now consider the correctness of the EC algorithm under node-
failures. We want to ensure that the EC protocol exhibits both

liveness and safety properties. A commit protocol is said to be

safe if there isn’t any instant during the execution of the system

under consideration when two or more nodes are in conflicting

states (that is one node is in COMMIT state while other is in ABORT).
A protocol is said to respect liveness if its execution causes none

of the nodes to block.

During the execution of a commit protocol, each node waits

for a message for a specific amount of time before it timeouts.
When a node timeouts then it concludes loss of communication

with the sender node, which in our case corresponds to failure of

the sender node. A node is assumed to be blocked if it is unable

to make progress on timeout. In case of such node failures, the

active nodes execute the termination protocol to ensure system

Figure 6: Logical expansion of Easy Commit Protocol.

makes progress. We illustrate the termination protocol by stating

the actions taken by the coordinator and the participating nodes

on timeout. The coordinator can timeout only in the WAIT state,

while the cohorts can timeout in INITIAL and READY states.

A. Coordinator Timeout in WAIT state – If the coordinator

timeouts in this state, then it implies that the coordinator

didn’t receive the vote from one of the cohorts. Hence, the

coordinator first adds a log entry for the global-abort-decision-
reached, then transmits the Global-abort message to all the

active participants, and finally aborts the transaction.

B. Cohort Timeout in INITIAL State – If the cohort timeouts

in this state, then it implies that it didn’t receive the Prepare
message from the coordinator. Hence, this cohort communi-

cates with other active cohorts to reach a common decision.

C. Cohort Timeout in READY State – If the cohort timeouts in

this state, it implies that it didn’t receive a Global-Commit
(or Global-Abort) message from any node. Hence, it would

consult the active participants to reach a decision common to

all the participants.

Leader Election: In last two cases we force the cohorts to

perform transactional commit or abort based on an agreement.

This agreement requires selection of a new leader (or coordinator).

The target of this leader is to ensure that all the active participants,

follow the same decision that is commit (or abort) the transaction.

The selected leader can be in the INITIAL or the WAIT state. It

consults all the nodes if any of them has received a copy of the

global decision. If none of the nodes know the global decision,

then the leader first adds a log entry for the global-abort-decision-
reached, then transmits the Global-abort message to all the active

participants, and finally aborts the transaction.

To prove correctness of EC protocol, Figure 6 expands the

state transition diagram. We introduces two intermediate hidden

states (a.k.a TRANSMIT-A and TRANSMIT-C). All the nodes are

oblivious to these states, and the purpose of these states is to

ensure message redundancy in the network. As a consequence,

we can categorize the states of the EC protocol under five heads:

• UNDECIDED – The state before reception of global decision

(that is INITIAL, READY and WAIT states).
• TRANSMIT-A – The state on receiving the global abort.

• TRANSMIT-C – The state on receiving the global commit.

• ABORT – The state after transmitting Global-Abort.
• COMMIT – The state after transmitting Global-Commit.

Figure 7 illustrate whether two states can co-exist (Y) or they

conflict (N). We derive this table on the basis of our observations:

I - IV and cases A - C. We now have sufficient tools to prove the

liveness and safety property of EC protocol.
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UNDECIDED T-A T-C ABORT COMMIT

UNDECIDED Y Y Y N N

T-A Y Y N Y N

T-C Y N Y N Y

ABORT N Y N Y N

COMMIT N N Y N Y

Figure 7: Coexistent states in EC protocol (T-A refers to
TRANSMIT-A and T-C refers to TRANSMIT-C).

Theorem 3.1. Easy Commit protocol is safe, that is in the pres-
ence of only node failures, for a specific transaction, two nodes
cannot be in both Aborted and Committed states, at any instant.

Proof. Let us assume the case that two nodes p and q are in
the conflicting states (say p voted to abort the transaction and q
voted to commit). This would imply that one of them received

Global-Commit message while the other received Global-Abort.
From (II) and (III) we can deduce that p and q should transmit the

global decision to each other, but as they are in different states, it

implies a contradiction. Also, from (I) we have the guarantee that

p could not have directly transited to the ABORT state. This implies

p and q would have received message from some other node. But,

then they should have received the same global decision.

Hence, we assume that either of the nodes p or q moved to

a conflicting state and then failed. But, this violates property

(IV) which states that a node needs to transmit its decision to all

the other nodes before it can commit or abort the transaction.

Also, once either of p or q fails, the rest of the system follows

termination protocol (cases (A) to (C)), and reaches a safe state. It

is important to see that the termination protocol is re-entrant. □

Theorem 3.2. Easy Commit protocol is live that is in the pres-
ence of only node failures, it does not block.

Proof. The proof for this theorem is a corollary of Theorem

3.1. The termination protocol cases (A) to (C) provide the guar-

antee that the nodes do not block and can make progress, in case

of a node failure. □

3.3 Comparison with 2PC Protocol
We now draw out comparisons between the the 2PC and EC

protocols. Although, EC protocol is non-blocking, but still 2PC

protocol has a lower message complexity. EC protocol’s message

complexity isO(n2), while the message complexity for 2PCO(n).
To illustrate the non-blocking property of EC protocol, we

now tackle the motivational example of multiple failures. For the

sake of completeness we restate the example here. Let us assume

a distributed system with coordinator C and participants X , Y
and Z . We also assume thatC decides to transmit Global-Commit
message to all the nodes, and fails just after transmitting message

to the participant X . Say, the node X also fails after receiving the

message fromC . Thus, nodes Y and Z neither received messages

fromC nor from nodeX . In this setting, the nodes Y and Z would

eventually timeout, and run the termination protocol. From case

(C) of termination protocol, it is evident that the nodes Y and Z
would select a new leader among themselves, and would safely

transit to the ABORT state.

3.4 Comparison with 3PC protocol
Although, EC protocol looks similar to 3PC protocol, but it is

a stricter and an efficient variant to 3PC protocol. It introduces

the notion of a set of intermediate hidden states: TRANSMIT-A
and TRANSMIT-C, which can be superimposed on the ABORT and

COMMIT states, respectively. Also, in the EC protocol, the nodes

do not expect any acknowledgements. So unlike the 3PC proto-

col, there are no inputs to the TRANSMIT-A, TRANSMIT-C, ABORT
and COMMIT states. However, EC protocol has a higher message

complexity than 3PC, which has a message complexity of O(n).

4 DISCUSSION
Until now, all our discussion assumed existence of only node

failures. In Section 3 we prove that EC protocol is non-blocking

under node failures. We now discuss the behavior of the 2PC, 3PC

and EC protocols under communication failures that is message

delay and message loss. Later in this section we also study the

degree to which these protocols support independent recovery.

4.1 Message Delay and Loss
We now analyze the characteristics of 2PC, 3PC and EC proto-

col, under unexpected delays in message transmission. Message

delays represent an unprecedented lag in the communication

network. The presence of message delays can cause a node to

timeout and act as if a node failure has occurred. This node may

receive a message pertaining transaction commitment or abort,

after the decision has been made. It is interesting to note that

2PC and 3PC protocols are not safe under message delays [7, 39].

Prior works [26, 39] have shown that it is impossible to design

a non-blocking commitment protocol for unbounded asynchro-

nous networks with even a single failure.

We illustrate the nature of 3PC protocol under message delay,

as it is trivial to show that 2PC protocol is unsafe under message

delays. The 3PC protocol state diagram does not provide any

intuition about the transitions that two nodes should perform

when both of them are active but unable to communicate. In fact,

partial communication or unprecedented delay in communication

can easily hamper the database consistency.

Let us consider a simple configuration with a coordinator C
and the participants X , Y and Z . Now assume that C receives

Vote-commitmessage from all the cohorts, and, hence it decides to

send the Prepare-to-Commit message to all the cohorts. However,

it is possible that the system starts facing unanticipated delays

on all the communication links with C at one end. We can also

assume that the paths to node X are also facing severe delays.

In such a situation, the coordinator would proceed to globally
commit the transaction (as it has moved to the PRE-COMMIT state),
while the nodes X , Y and Z would abort the transaction (as from

their perspective the system has undergone multiple failures).

This implies that the 3PC termination protocol is not sound under

message delays, and similarly we can show that EC protocol is

unsafe under message delays.

This situation can aggravate if the network undergoes mes-

sage loss. Interestingly, message loss has been deemed to be true

representation of the network partitioning [39]. Hence, no com-

mit protocol is safe (or non-blocking) under message loss [7]. If

the system is suffering from message loss then the participating

nodes (and coordinator) would timeout, and would run the as-

sociated terminating protocol that could make nodes transit to

conflicting states. Thus, we also conclude that 2PC, 3PC and EC

protocols are unsafe under message loss.
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Figure 8: ExpoDB Framework - executed at each server
process, hosted on a cloud node. Each server process re-
ceives a set of messages (from clients and other servers),
and uses multiple threads to interact with various dis-
tributed database components.

4.2 Independent Recovery
Independent recovery is one of the desired properties from the

nodes in a distributed system. An independent recovery protocol

lays down a set of rules that help a failed node to terminate

(commit or abort) the transaction which was executing at the

time of its failure, without any help from other active participants.

It is interesting to note that 2PC and 3PC protocols only support

partial independent recovery [7, 39].

It is easy to present a case where the 3PC protocol lacks in-

dependent recovery. Consider a cohort in the READY state that

votes to commit the transaction, and fails. On recovery this node

needs to consult with the other nodes about the fate of the last

transaction. This node cannot independently commit (or abort)

the transaction, as it does not know the global decision, which

could have been either commit or abort.

EC protocol supports independent recovery in following cases:

(i) If a cohort fails before transmitting its vote, then on recovery

it can simply abort the transaction.

(ii) If the coordinator fails before transmitting the global deci-

sion then it aborts the transaction on recovery.

(iii) If either coordinator or participant fail after transmitting

the global decision and writing the log, then on recovery

they can use this entry to reach the consistent state.

5 EASY COMMIT IMPLEMENTATION
We now present a discussion on our implementation of the

Easy Commit (EC) protocol. We have implemented EC proto-

col in the ExpoDB platform [45]. ExpoDB is an in-memory, dis-

tributed transactional platform that incorporates and extends

the Deneva [28] testbed. ExpoDB also offers secure transactional

capability, and presents a flexible framework to study distributed

ledger—blockchain [8, 43].

5.1 Architectural Overview
ExpoDB includes a lightweight layer for testing distributed pro-

tocols and design strategy. Figure 8 presents the block diagram

representation of the ExpoDB framework. It supports a client-

server architecture, where each client or server process is hosted

on one of the cloud nodes. To maintain inherent characteristics

of a distributed system, we opt for a shared nothing architecture.

Each partition is mapped to one server node.

A transaction is expressed as a stored procedure that contains

both program logic and database queries, which read or modify

the records. The clients and server processes communicate with

each other using TCP/IP sockets. In practice, the client and server

processes are hosted on different cloud nodes, and we maintain

an equal number of client and server cloud instances.

Each client creates one or more transactions, and sends the

transaction execution request to the server process. The server

process in turn executes the transaction by accessing the local

data and runs the transaction until further execution requires ac-

cess to remote data. The server process then communicates with

other server processes that have access to remote data (remote

partitions), to continue the execution. Once, these processes re-

turn the result, the server process continues execution till comple-

tion. Next, it takes a decision to commit or abort the transaction

(that is, executes the associated commit protocol).
In case a transaction has to be aborted then the coordinat-

ing server sends messages to the remote servers to rollback the

changes. Such a transaction is resumed after an exponential back-

off time. On successful completion of a transaction, the coordi-

nating server process sends an acknowledgment to the client

process, and performs necessary garbage collection.

5.2 Design of 2PC and 3PC
2PC: The 2PC protocol starts after the completion of the trans-

action execution. The read-only transactions and single partition

transactions do not make use of the commit protocol. Hence,

the commit protocol comes into play when the transaction is

multi-partition and performs updates to the data-storage. The co-

ordinating server sends a Preparemessage to all the participating

servers, and waits for their response. The participating servers

respond with the Vote-commit message
5
. On receiving the Vote-

commit message the coordinating server starts the final phase,

and transmits the Global-Commit message to all the participants.

Each participant on receiving the Global-Commit message com-

mits the transaction, releases the local transactional resources,

and responds with an acknowledgment for the coordinator. The

coordinator waits on a counter for response from each participant

and then commits the transaction, sends a response to the client

node, and releases the associated transactional data-structures.

3PC: To gauge the performance of the EC protocol, we also

implemented the three-phase commit protocol. The 3PC protocol

implementation is a straightforward extension to the 2PC proto-

col. We add an extra PRE-COMMIT phase before the final phase. On
receiving, all the Vote-commit messages, the coordinator sends

the Precommit message to each participant. The participating

nodes acknowledge the reception of the Precommitmessage from

the coordinator. The coordinating server on receiving these ac-

knowledgments, starts the finish phase.

5.3 Easy Commit Design
We now explain the design of Easy Commit protocol in the Ex-
poDB framework. The first phase (that is the INITIAL phase) is
same for both the 2PC and the EC protocol. In the EC protocol,

5
Without node failures, any transaction that reaches the prepare phase is assumed

to successfully commit.
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once the coordinator receives the Vote-commit message from all

the nodes, it first sends the Global-commitmessage to each of the

participating processes, and then commits the transaction. Next

it, responds to the client with the transaction completion notifi-

cation. When the participating nodes receive the Global-Commit
message from the coordinator, they forward the Global-Commit
message to all the other nodes (including the coordinator), and

then commit the transaction.

Although, in the EC protocol the coordinator has a faster re-

sponse rate to the client, but its throughput takes a slight dip

due to additional, implementation enforced wait. It can be noted

that we have not performed any cleanup tasks (such as releasing

the transactional resources) yet. The cleanup of the transactional

resources is performed once it is ensured that neither of those

resources would be ever used, nor any messages associated with

the transaction would be further received. Hence, we have to

force all the nodes (both the coordinator and the participants) to

poll the message queue, and wait till they have received the mes-

sages from each other node. Once all the messages are received,

each node performs the cleanup.

To implement EC protocol we had to extend the message being

transmitted with a new field which identifies all the participants

of the transaction. This array contains the Id for each participant,
and is updated by the coordinator (as only the coordinator has

information about all the partitions) and transmitted as part of

the Global-Commit message.

6 EVAUATION
In this section, we present a comprehensive evaluation of our

novel Easy Commit protocol against 2PC and 3PC. As discussed

in Section 5, we use the ExpoDB framework for implementing the

EC protocol. For our experimentation, we adopt the evaluation

scheme of Harding et al. [28].

To evaluate various commit protocols, we deploy the ExpoDB
framework on the Microsoft Azure cloud. For running the client

and server processes, we use upto 64 Standard_D8S_V3 instances,
deployed in the US East region. Each Standard_D8S_V3 instance
consists of 8 virtual CPU cores and 32GB of memory. For our ex-

periments, we ensure a one-to-one mapping between the server

(or client) process and the hosting Standard_D8S_V3 instance.

On each server process, we allowed creation of 4 worker threads,

each of which were attached to a dedicated core, and 8 I/O threads.

At each server node, a load of 10000 open client connections is

applied. For each experiment, we first initiated a warmup phase

for 60 seconds, followed by 60 seconds of execution. The mea-

sured throughput does not include the transactions completed

during warmup phase. If a transaction gets aborted then it is

restarted again, only after a fixed time. To attenuate the noise in

our readings, we average our results over three runs.

To evaluate the commit protocols, we use the NO_WAIT con-

currency control algorithm. We use the NO_WAIT algorithm as: (i)

it is the simplest algorithm, amongst all the concurrency control

algorithms present in the ExpoDB framework, and (ii) has been

proved to achieve high system throughput. It has to be noted that

the use of underlying concurrency control algorithm is orthog-

onal to our approach. We present the design of a new commit

protocol, and hence other concurrency control algorithms (except

Calvin) available in the ExpoDB framework, can also employ EC

protocol during the commit phase. We present a discussion on

the different concurrency control algorithms, later in this section.

0

50

100

150

200

250

300

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Sy
st

em
 T

hr
ou

gh
pu

t 
(T

ho
us

an
d 

tx
n 

pe
r 

se
co

nd
)

Varying Skew Factor (theta)

2PC 3PC EC

Figure 9: System throughput (transactions per second) on vary-
ing the skew factor (theta) for the 2PC, 3PC and EC protocols.
These experiments run the YCSB benchmark. Number of server
nodes are set to 16 and partitions per transaction are set to 2.

In NO_WAIT protocol, a transaction requesting access to a

locked record is aborted. On aborting the transaction, all the locks

held with this transaction are released, which allows other trans-

actions waiting on these locks to progress. NO_WAIT algorithm

prevents deadlock by aborting transactions in case of conflicts,

and hence, has high abort rate. The simple design of NO_WAIT
algorithm, and its ability to achieve high system throughput [28]

motivated us to use it for concurrency control.

6.1 Benchmark Workloads
We test our experiments on two different benchmark suites:

YCSB [10] and TPC-C [12]. We use YCSB benchmark to evaluate

EC protocol on characteristics interesting to the OLTP database

designers (Section 6.2 to Section 6.5), and use TPC-C to gauge

the performance of EC protocol from the perspective of a real

world application (Section 6.6 and Section 6.7).

YCSB – The Yahoo! Cloud Serving Benchmark consists of 11

columns (including a primary key) and 100B random characters.

In our experiments we used a YCSB table of size 16million records

per partition. Hence, the size of our database was 16 GB per node.

For all our experiments we ensured that each YCSB transaction

accessed 10 records (we mention changes to this scheme explic-

itly). Each access to YCSB data followed the Zipfian distribution.

Zipfian distribution tunes the access to hot records through the

skew factor (theta). When theta is set to 0.1, the resulting dis-

tribution is uniform, while the theta value 0.9 corresponds to

extremely skewed distribution. In our evaluation using YCSB

data, we only executed multi-partition transactions, as single

partition transactions do not require use of commit algorithms.

TPC-C – The TPC-C benchmark helps to evaluate system

performance by modeling an application for warehouse order

processing. It consists of a read-only, item table that is replicated

at each server node while rest of the tables are partitioned using

the warehouse ID. ExpoDB supports Payment and NewOrder trans-
actions, which constitute 88% of the workload. Each transaction

of Payment type accesses at most 2 partitions. These transaction

first update the payment amounts for the local warehouse and

district, and then update the customer data. The probability that

a customer belongs to a remote warehouse is 0.15. In case of

transactions of type NewOrder, first the transaction reads the lo-

cal warehouse and district records and then modifies the district

record. Next, it modifies item entries in the stock table. Only,

10% NewOrder transactions are multi-partition , as only 1% of the

updates require remote access.

163



0

20

40

60

80

100

120

2 3 4 5 6

Sy
st

em
 T

hr
ou

gh
pu

t 
(T

ho
us

an
d 

tx
ns

 p
er

 se
co

nd
s)

 

Varying Partitions per Transaction 

2PC 3PC EC

Figure 10: System throughput (transactions per second) on vary-
ing the number of partitions per transactions for the commit pro-
tocols. These experiments use YCSB benchmark. The number of
server nodes are set to 16 and theta is set to 0.6.

6.2 Varying Skew factor (Theta)
We evaluate the system throughput by tuning the skew factor

(theta), available in YCSB benchmarks, from 0.1 to 0.9. Figure 9

presents the statistics when the number of partitions per trans-

action are set to 2. In this experiment, we use 16 server nodes to

analyze the effects induced by the three commit protocols.

A key takeaway from this plot is that, for theta ≤ 0.7 the

system throughputs for EC and 2PC protocols are better than the

system throughput for the 3PC protocol. On increasing the theta

further the transactional access becomes highly skewed. This

results in an increased contention between the transactions as

they try to access (read or write) the same record. Hence, there is

a significant reduction in the system throughput across various

commit protocols. Thus, it can be observed that the magnitude

of difference in the system throughputs for 2PC, 3PC and EC

protocol is relatively insignificant. It is important to note that on

highly skewed data, the gains due to the choice of underlying

commit protocols are overshadowed by other system overheads

(such as cleanup, transaction management and so on).

In the YCSB benchmark, for theta ≤ 0.5 the data access is

uniform across the nodes, which implies that the client transac-

tions access data on various partitions – low contention. Hence,

each server node achieves nearly the same throughput. It can be

observed that for all the three commit protocols the throughput

is nearly constant (not same). We attribute the delta difference

in the throughputs of the EC and 2PC protocols to the system in-

duced overheads, network communication latency, and resource

contention between the threads (for access to cpu and cache).

6.3 Varying Partitions per Transaction
We now measure the system throughput achieved by the three

commit protocols on varying the number of partitions per trans-

actions from 2 to 6. Figure 10 presents the throughput achieved

on the YCSB benchmark, when theta is fixed to 0.6, and number

of server nodes are set to 16. The number of operations accessed

by each transaction are set to 16, and the transaction read-write

ratio is maintained at 1 : 1.

It can be observed that on increasing the number of partitions

per transaction there is a dip in the system throughput, across all

of the commit protocols. On moving from 2 to 4 partitions there

is an approximate decrease of 55%, while the reduction is system

performance is around 25% from 4 partitions to 6 partitions,

for the three commit protocol. As the number of partitions per

transaction increase, the number of messages being exchanged in

each round increases linearly for 2PC and 3PC, and quadratically

for EC. Also, an increase in partitions imply the transactional

resources are held longer across multiple sites, which leads to

throughput degradation for all the protocols. Note: in practice, the

number of partitions per transaction are not more than four [12].

6.4 Varying Server Nodes
We study the effect of varying the number of server nodes (from

2 nodes to 32 nodes) on the system throughput and latency, for

the 2PC, 3PC and EC protocols. In Figure 11 we set the number

of partitions per transaction to 2 and plot graphs for the low

contention (theta = 0.1), medium contention (theta = 0.6) and

high contention (theta = 0.7). In these experiments, we increase

size of YCSB table in accordance to the the increase in number

of server nodes.

In Figure 11, we use the plots on the left to study the system

throughput on varying the number of server nodes. It can be

observed that as the contention (or skew factor) increases the

system throughput decreases, and such a reduction is sharply

evident on moving from theta = 0.6 to theta = 0.7. Another

interesting observation is that the system throughput attained

by the EC protocol is significantly greater than the throughput

attained under 3PC protocol. The gains in system throughput are

due to reduction of an extra phase which compensates for the

extra messages communicated during the EC protocol.

In comparison to the 2PC protocol the system throughput

under EC protocol is marginally lower at low contention and

medium contention, and relatively same at high contention. These

gains are the result of zero acknowledgment messages required

by the coordinating node, in the commit phase, which helps EC

protocol perform nearly as efficient as the 2PC protocol. This

helps us to conclude that a database system using EC is as scalable

as its counterpart employing 2PC.

6.4.1 Latency. In Figure 11, we use the plots on the right, to

shows the 99 percentile system latency when one of the three

commit protocols are employed by the system. We again vary

the number of server nodes from 2 to 32. The 99 percentile la-

tency is measured from the first commit to the final commit of a

transaction. On increasing the number of server nodes there is

a steep increase in latency for each commit protocol. The high

latency values for 3PC protocol can be easily cited to the extra

phase of communication.

6.4.2 Proportion of time consumed by various components:
Figure 12 presents the time spent on various components of the

distributed database system. We show the time distribution for

the different degree of contention (theta). We categorize these

measures under seven different heads.

Useful Work is the time spent by worker threads doing com-

putation for read and write operations. Txn Manager is the

time spent in maintaining transaction associated resources. In-
dex is the time spent in transaction indexing. Abort is the time

spent in cleaning up aborted transactions. Idle is the time worker

thread spends when not performing any task. Commit is the
time spent in executing the commit protocol. Overhead repre-

sents the time to fetch transaction table, transaction cleanup and

releasing transaction table.

The key intuition from these plots is that as the contention

(theta) increases there is an increase in time spent in abort.

At low contention as most of the transactions are read-only,

so the time spent in commit phase is least, and as contention

increase, commit phase plays an important role in achieving high

throughput from databases. Also, it can be observed at medium

and high contention, worker threads executing 3PC protocol
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(a) Low contention – (theta = 0.1).
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(b) Medium contention – (theta = 0.6).
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(c) High contention – (theta = 0.7).
Figure 11: System Throughput (transactions per second) and System Latency (in seconds), on varying the number of server nodes for
the 2PC, 3PC and EC protocols. The measured latency is the 99-percentile latency, that is, latency from the first start to final commit of
a transaction. For these experiments we use the YCSB benchmarks and set the number of partitions per transaction to 2.

are idle for the maximum time and perform the least amount of

useful work, which indicates a decrease in system throughput

under 3PC protocol due to an extra phase of communication.

6.5 Varying Transaction Write Percentage
We now vary the transactional write percentage, and draw out

comparisons between the system throughput achieved by the Ex-
poDB when employing one of the three commit protocols. These

experiments are based on YCSB benchmark, and vary the per-

centage of write operations accessed by each transaction from

10 to 90. We set the skew factor to 0.6, number of server nodes

to 16 and partitions per transaction to 2.

It can be seen that when only 10% of the operations are write

then all the protocols achieve nearly the same system throughput.

This is because most of the requests sent by the client consists

of read-only transactions, and under read only transactions, the

commit protocols are not executed. However, as the write percent-

age increases the gap between the system throughput achieved by

3PC protocol and the other two commit protocols increases. This

indicates that 3PC protocol performs poorly when the underlying

application consists of write intensive transactions.

In comparison to the 2PC protocol, EC protocol undergoes

marginal reduction in throughput. As the number of write op-

erations increase, the number of transactions undergoing the

commit protocol also increase. We have already seen that under

EC protocol (i) the amount of message communication is higher

than the 2PC protocol, and (ii) each node needs to wait for ad-

ditional wait-time before releasing the transactional resources.

Some of these held resources include locks on data items, and it is

easy to surmise that under EC protocol locks are held longer than

the 2PC protocol. The increase in duration of locks being held

also leads to an increased abort rate, which is another important

factor for reduced system throughput.

6.6 Scalability of TPC-C Benchmarks
We now gauge the performance of the EC protocol with respect

to a real-world application, that is using TPC-C benchmark. Fig-

ure 14 presents the characteristics of the 2PC, 3PC and EC proto-

cols, under TPC-C benchmark, on varying the number of server

nodes. It has to be noted that a major chunk of TPC-C trans-

actions are single-partition, while most of the multi-partition

transactions access only two partitions. Our evaluation scheme
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Figure 12: Percentage of time spent by various database compo-
nents, on executing the YCSB benchmark. We set the number of
server nodes to 16 and partitions per transaction to 2.
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Figure 13: System throughput (transactions per second) on vary-
ing the transaction write percentage for the 2PC, 3PC and EC pro-
tocols. These experiments use YCSB benchmark, and set the num-
ber of server nodes to 16 and partitions per transactions to 2.

sets 128 warehouses per server, and, hence a multi-partition can

access two co-located partitions (that is on a single server).

Figure 14a represents the scalability of the Payment trans-
actions for the three commit protocols. It is evident from this

plot that as the number of server nodes increase, the system

throughput increases for each commit protocol. However, there
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(b) NewOrder Transaction

Figure 14: System throughput on varying the number of server
nodes, on the TPC-C benchmark. The number of warehouses per
server are set to 128.
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Figure 15: System throughput achieved by three different con-
currency control algorithms. For experimentation, we use the
TPC-C Payment transaction, and vary the number of server nodes
to 16. The number of warehouses per server are set to 128. Here
WDIE and TST refer to WAIT-DIE and TIMESTAMP, respectively.

is a performance bottleneck in case of 3PC protocol. In case of

payment transactions as updates are performed at the homeware-

house, which requires exclusive access, so there is an increase in

abort rate for the underlying concurrency control algorithm (in

our case NO_WAIT). Now, as 3PC protocol requires an additional

phase to commit the transaction, hence there is an increase in

the abort rate. Interestingly, the throughput achieved by the EC

protocol is approximately equal to the system throughput under

2PC protocol.

Figure 14b depicts the system throughput on executing TPC-C

NewOrder transactions. The performance bottleneck is reduced

for these transactions as there only 10 districts per warehouse,

and hence, the commit protocols achieve comparatively higher

throughput. Also, as there are only 10% multi-partition transac-

tions, so all the protocols achieve nearly the same performance.
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Figure 16:Comparison of throughput achieved by the system ex-
ecuting Calvin versus the system implementing the combination
of No-Wait+EC protocol. In this experiment we use the TPC-C
Neworder transaction, and vary the number of server nodes to 16.
The number of warehouses per server are set to 128.

6.7 Concurrency Control
The presence of read/write data conflicts between transactional

accesses necessitates the use of concurrency control algorithms

by the database management system. The ExpoDB framework

implements multiple state-of-the-art concurrency control algo-

rithms. Although, in this work, we use NO_WAIT concurrency

control algorithm, but EC protocol can be easily integrated to

work alongside other concurrency control algorithms.

Figure 15 measures the system throughput for three different

concurrency control algorithms. We use TPC-C Payment trans-
actions for these experiments, and increase the number of server

nodes upto 16. We also set the number of warehouses per server

to 128. We compare the performance of EC protocol against the

2PC protocol, when the underlying concurrency control algo-

rithm is WAIT-DIE [4], TIMESTAMP [4] and MVCC [5]. It is evident

from these experiments that the EC protocol is able to achieve as

high efficiency as the 2PC protocol, irrespective of themechanism

used for ensuring concurrency control.

We also analyze our commit protocol against an interesting

deterministic concurrency control algorithm –Calvin [56].Calvin
is a deterministic algorithm that requires the prior knowledge of

the read/write sets of the transaction before its execution. When

the transaction’s read/write sets are not known, at prior, then

Calvin causes some transactions to execute twice. Interestingly,

in the second pass, if some records modify then the transaction is

aborted and restarted again. Hence, prior works [28] have shown

Calvin to perform poorly in such settings. Another strong critic

against Calvin is that in case of failures, it requires a replica node

that executes the same set of operations as the node responding

to client query. This implies that Calvin is not suitable under

failures for use with partitioned databases. Also, the requirement

for replica node, reduces the system throughput.

Figure 16 presents a comparison of NO_WAIT algorithm (em-

ploying EC protocol) and Calvin. For this experiment we use the

TPC-C Neworder transactions, and vary the number of server

nodes from 2 to 16. These transactions are required to update the

order number in their districts. Hence, the deterministic protocols

such as Calvin suffer performance degradation.

7 OPTIMIZATIONS
In earlier sections, we presented a theoretical proof and an eval-

uation of Easy Commit protocol, which proved its relevance in

the space of existing commit protocols. We now discuss some

optimizations for the EC protocol.

An optimized version of the EC protocol would allow achiev-

ing further gains in comparison to both the 2PC and 3PC pro-

tocols. A simple approach is to reduce the number of messages

transmitted in the second phase. In the optimized protocol, each

node only forwards messages to those nodes from which it has

not received a Global-Commit or Global-Abort message. Another

simple optimization is to ensure early cleanup, that is reduction

of implementation enforced wait (refer Section 5.3). To achieve

this, each node would maintain a lookup table, where an entry for

each transaction is added, on receiving the first Global-Commit
or Global-Abort message. The remaining messages, addressed to

the same transaction, would be matched in the table and deleted.

We would also need to periodically, flush some of the entries of

the table, to reclaim memory. Interestingly, such an optimiza-

tion would allow implementing a variant of EC protocol that

does not require any “implicit” acknowledgments. Note a similar

limited variant for 3PC protocol can be constructed where the

coordinator does not wait for acknowledgments after sending

the Prepare-to-Commit messages, and directly transmits Global-
Commit message to all the cohorts. Our proposed optimized

version is comparable to this 3PC variant.

8 RELATEDWORK
The literature presents several interesting works [1, 23, 53] that

suggest the use of one phase commit protocol. These works are
strictly targeted at achieving performance, rather than consis-

tency. Clearly, none of these works satisfy the non-blocking

requirement, expected of a commit protocol.

Several variants to the 2PC protocol [20, 25, 29, 31, 33, 36, 40,

44, 49] have been proposed that aim at improving its performance.

Presumed-commit and presumed-abort [36] work by reducing a

single round of message transmission between the coordinator

and the participants, when the transaction is to be committed or

aborted, respectively. Gray and Reuter [25] present a series of op-

timizations for enhancing the 2PC protocol such as lazy commit,

read-only commit and balancing the load by coordinator transfer.

Group commit [20, 40] helps to reduce the commit overhead by

committing a batch of transactions together. Samaras et al. [49]

design several interesting optimizations to improve the perfor-

mance of 2PC protocol. They present heuristics to reduce the

overhead of logging, network contention and resource conflicts.

Compared to all of these works, we present EC protocol, which

is not only efficient, but also satisfies the non-blocking property.

Levy et al. [33] present an optimistic 2PC protocol that releases

the locks held by a transaction once all the nodes agree to commit.

In case a node decides to abort the transaction then to prevent

violation of database atomicity, compensating transactions are

issued to rollback the changes. Although their approach does

not guarantee non-blocking behavior, but we believe the idea of

optimistic resource release can be integrated with Easy Commit

protocol to achieve further performance.

Boutros andDesai [44] present another variant to 2PC protocol

which forces each node to send an additional message in case

of a communication failure between the coordinator and the

participant. Their approach is only susceptible to the cases where

there is a message loss. However, their work does not resolve

blocking under site failures and can be integrated with our work

to achieve further resilience during message loss.

Haritsa [29] et al. improve the performance of the 2PC protocol,

in the context of real-time distributed systems. Their protocol

permits a conflicting transaction to access the non-committed

data. This can lead to cascading aborts, and is not suitable for

use with the traditional distributed databases. Our technique, on

the other hand, is independent of the underlying concurrency

control mechanism, and does not cause any special aborts.
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Jiménez-Peris et al. [31] also allow their system to optimisti-

cally fetch the uncommitted data, thereby rendering the 2PC

performance. However, their protocol is tailored for usage along-

side strict two-phase locking, and assumes existence of an addi-

tional replica of each process. Our technique is not tailored to any

specific concurrency control mechanism, and neither assumes

existence of any extra process. Also, we believe these heuristics

can be used alongside EC protocol, to render further benefits.

Reddy and Kitsuregawa [58] modify the 3PC protocol by in-

troducing the notion of backup sites. With the help of backup

sites they are able to achieve better performance than 3PC, but

their approach blocks in case of multiple failures. Easy Commit

is non-blocking and does not require any backup sites.

There also have been works [13, 27] that provide better per-

formance bounds than the 3PC protocol if the number of failures

are sufficiently less than the participants. Easy Commit does not

bound the number of failures, and is nearly as efficient as 2PC.

Gray and Lamport [24] developed an interesting non-blocking

version of 2PC protocol using Paxos [32]. Their approach shows

that 2PC protocol is a variant of general consensus protocol.

However, to ensure non-blocking property they require use of an

extra set of acceptor nodes and in the worst case it can be shown

that the number of messages transmitted in their approach is

O(n2). Easy Commit is a hybrid between 2PC and 3PC protocol,

which is nearly as efficient as former and non-blocking as latter.

It also does not require the paxos consensus algorithm, and hence,

no additional requirement of acceptor nodes.

9 CONCLUSIONS
We present a novel commit protocol – Easy Commit. Our design

of Easy Commit, leverages the best of twin worlds (2PC and

3PC), it is non-blocking (like 3PC) and requires two phases (like

2PC). Easy Commit achieves these goals by ensuring two key

observations: (i) first transmit and then commit, and (ii) message

redundancy. We present the design of the Easy Commit protocol

and prove that it guarantees both safety and liveness. We also

present the associated termination protocol and state cases where

Easy Commit can perform independent recovery. We perform a

detailed evaluation of EC protocol on a 64 node cloud, and show

that it is nearly as efficient as the 2PC protocol.
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ABSTRACT
Graph pattern mining aims at identifying structures that appear
frequently in large graphs, under the assumption that frequency
signi�es importance. Several measures of frequency have been
proposed that respect the apriori property, essential for an e�-
cient search of the patterns. This property states that the number
of appearances of a pattern in a graph cannot be larger than the
frequency of any of its sub-patterns. In real life, there are many
graphs with weights on nodes and/or edges. For these graphs, it
is fair that the importance (score) of a pattern is determined not
only by the number of its appearances, but also by the weights on
the nodes/edges of those appearances. Scoring functions based
on the weights do not generally satisfy the apriori property, thus
forcing many approaches to employ other, less e�cient, pruning
strategies to speed up the computation. The problem becomes
even more challenging in the case of multiple weighting func-
tions that assign di�erent weights to the same nodes/edges. In
this work, we provide e�cient and e�ective techniques for min-
ing patterns in multi-weight graphs. We devise both an exact and
an approximate solution. The �rst is characterized by intelligent
storage and computation of the pattern scores, while the second
is based on the aggregation of similar weighting functions to
allow scalability and avoid redundant computations. Both meth-
ods adopt a scoring function that respects the apriori property,
and thus they can rely on e�ective pruning strategies. Exten-
sive experiments under di�erent parameter settings prove that
the presence of edge weights and the choice of scoring function
a�ect the patterns mined, and hence the quality of the results
returned to the user. Finally, experiments on datasets of di�erent
sizes and increasing numbers of weighting functions show that,
even when the performance of the exact algorithm degrades,
the approximate algorithm performs well and with quite good
quality.

1 INTRODUCTION
Pattern mining in large graphs has attracted considerable atten-
tion, since it �nds applications in many real world scenarios like
fraud detection [31], biological structures identi�cation [16], an-
ticipation of user intention [33], graph similarity search [20], traf-
�c control [21], and query optimization [42]. It has been studied
for graph collections [41], for attributed [35], probabilistic [26],
or even generic large graphs [10]. The goal is to identify patterns
that occur frequently, given that frequency indicates importance.
An interesting property regarding frequency is that a pattern

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the 21st
International Conference on Extending Database Technology (EDBT), March 26-29,
2018, ISBN 978-3-89318-078-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

cannot be more frequent that any of its sub-patterns, known as
the apriori property. This property enables e�cient implementa-
tions [43], as it ensures that the frequency of a pattern decreases
monotonically as the pattern grows in size, thus allowing the
mining process to start from small patterns and extend to larger
ones only when the frequency of the pattern is above a certain
frequency threshold.

In graph databases the frequency of a pattern has been e�ec-
tively computed as the number of distinct graphs containing an
appearance of the pattern. However, the same implementation
cannot be used in single large graphs, as each pattern would have
frequency either equal to 0 or to 1. Furthermore, if we simply
de�ne the frequency as the number of distinct occurrences of
the pattern, we may break the apriori property [38]. In fact, this
implementation counts every overlap that may occur among the
occurrences, hence assigning larger frequencies to larger pat-
terns, causing an unwanted (and unjusti�ed) skew in the value
of importance for some patterns. For this reason, alternative met-
rics have been considered in the literature [6, 11, 38], with the
more prevalent one being the MNI support, as it enjoys high
e�ectiveness [10].

Many real world scenarios are naturally modeled through
weighted graphs, and in these cases, the importance of a pattern
should be determined not only by the frequency, but also by the
weights of its appearances. Examples include the discovery of
metabolic pathways in genomic networks [23], where weights
indicate strength between genomes [8], the identi�cation of top-
ics of interest in large knowledge graphs [29], where weights
quantify the degree a piece of data is quali�ed as an answer to
a user [39], or the detection of common problematic cases in
computer networks, where weights indicate congestion [5]. Un-
fortunately, weighted graphs do not possess the apriori property,
since the weights of the extra edges/nodes of a larger pattern
may o�set its lower frequency. As a consequence, some works
that considered weighted graphs for pattern mining proposed
solutions that are less e�cient than those based on the apriori
property [43].

A requirement in modern applications is to o�er personalized
products and services rather than generic preferences [34]. Such
generic preferences suit the user on average but fail to deliver the
right answer for each speci�c user. The same argument holds for
graph patterns. For instance, social network systems record user
interactions [22] and activities [4] and build graphs by modeling
the relationships among users and web content to �nd frequent
patterns of interactions [30]. Advertisers subsequently exploit
such patterns to target the right customer for a certain product.
Some patterns of interactions may be more important than others
to an advertiser depending on the product or the speci�c busi-
ness model; in such case, multiple weights are valuable. Other
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examples include online retailers like Amazon, which build large
graphs on product co-purchases and then exploit the discovered
patterns to recommend future o�ers [36]. Frequency, number of
items, recency of the purchase, as well as the company’s busi-
ness intentions a�ect the importance of some co-purchases with
respect to others [34]. Such examples highlight the need for a
solution that accounts for the individual preferences expressed
as a multi-weighted graph, as opposed to “one size �ts all” solu-
tions. However, the straightforward approach to multi-weighted
pattern mining that runs the mining algorithm on each weighted
graph separately, is clearly impractical due to the graph size and
the large number of users.

In this paper, we propose a novel approach to mine patterns
in weighted graphs that goes beyond frequencies, yet has per-
formance not signi�cantly di�erent from the pattern mining
in unweighted graphs. We achieve this by de�ning a family of
scoring functions that are based on the MNI score [6], a metric
that is widely used in graph mining due to its characteristic of
respecting the apriori property, while being e�cient to compute.
The solution we have devised is modeled as a constraint satis-
faction problem (CSP), as proposed also for unweighted pattern
mining [10], and implements the pattern growth approach, as
introduced by gSpan [41]. Furthermore, we extend the idea above
for the case of graphs with multiple weights on their edges/nodes.
To avoid running the algorithm one time for each di�erentweight-
ing function, we compute all the scores of each pattern at the
moment we are visiting it, and keep the patterns that return a
high score with respect to at least one weighting function.

In particular we make the following contributions:

(a) We extend the task of pattern mining in weighted large
graphs for a novel family of scoring functions based on the MNI
support [6] (Section 2).
(b) We introduce and formally de�ne the problem of pattern
mining in multi-weight graphs with di�erent weighting func-
tions.
(c) We devise two e�cient and e�ective techniques for solving
the pattern mining problem on weighted graphs (Section 3). The
�rst one is an exact solution, called R�S�M, that is less time
and space consuming than the (naive) brute force method. It
avoids redundant revisits of the graph, by aggregating and per-
forming once multiple computations on the same parts of the
graph, and storing the relevant patterns in a compact way. The
second one is a conservative approximate solution, called R�S�M
approximate, that reduces the number of weighting functions
to consider, by aggregating those having a high probability to
generate similar results (Section 4) into a single representative
function. In addition, we show that this method introduces only
few false positives, while running considerably faster than the
exact approach.
(d) We study four di�erent scoring functions (all based on the
MNI support) for devising the score of a pattern in an e�cient
way (Section 5).
(e) We evaluate our approach with an extensive set of experi-
ments and discuss our �ndings (Section 7).

2 PROBLEM DEFINITION
We assume the existence of a countable set of labels � that in-
cludes the special symbol?, and a setI1

0 = [0, 1][{?} of weights.
The symbol? in � andI1

0 is used to denote no label and no weight,
respectively. A weighted graph is a structure that consists of a set
of nodes, a set of edges between them, an assignment of labels
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Figure 1: Example of a edge-labeled, weighted graph.

to all the nodes and edges, and an assignment of weights to all
the edges.

De�nition 2.1. Aweighted labeled graph, or simply a graph,
is a tuple hV ,E, `,�i where V is a set of vertices, E ✓ V ⇥V is a
set of edges, ` : E[V ! � is a labeling function, and� : E ! I

1
0

is a weighting function. The symbol G is used to denote the set
of all the possible graphs.

Note that we assume weights on edges only, mainly for presenta-
tion purposes. Weights on nodes can also be considered with no
need for any major modi�cation. A graph S :hVS , ES , `, �i is said
to be a subgraph of another graphG:hVG , EG , `, �i, denoted as
SvG, if VS✓VG and ES✓EG . Note that the two graphs have the
same labeling and weighting function.

To express the fact that two graphs have the same topological
structure, we use the notion of isomorphism, which is a bijective
mapping between the nodes of the two graphs such that the
edges between the nodes, alongside their labels, are preserved
through the mapping.

De�nition 2.2. AgraphG:hV , E, `,�i is isomorphic to a graph
G 0:hV 0,E 0, `0, � 0i, denoted as G'G 0, if there exists a bijective
function �:V!V 0 such that: 8hu, �i2E : h�(u), �(�)i2E 0 and
`(hu,�i) = `0(h�(u),�(�)i).

A graph G may have multiple isomorphic graphs. To collec-
tively represent those graphs, we introduce the concept of pattern.
Intuitively, a pattern is a graph with no weights, serving as a
representative of a set of isomorphic graphs and describing their
common structure.

De�nition 2.3. A pattern is a graph hV ,E, `,�i, such that 8e 2
E : �(e) = ?. The symbol P denotes the set of all possible
patterns. Given a graphG , and a pattern P , the support set of the
pattern P is the set SG (P) = {� |� v G ^ � ' P ^ P 2 P}. Each
element in SG (P) is referred to as an appearance (or matching)
of P in G.

By de�nition, the support set of P is the set of all the subgraphs
of G that are isomorphic to P . By abuse of notation we write
P v G and call the pattern P a subgraph of G if its support set is
non-empty. Then, We denote by �P� the bijection that maps an
isomorphic subgraph � of G to the pattern P .

Given a scoring function f : P⇥G!R, we will refer to the
value f (P ,G) as the score of P inG . Graph pattern mining is the
task that aims at identifying those patterns that have score higher
than a threshold � , or the k patterns with the highest score [10].
A natural scoring function is the one that returns the cardinality
of SG (P), i.e., the number of appearances of the pattern P in the
graph G, and the patterns identi�ed by this function are called
frequent patterns. Nevertheless, it has been shown that this simple
function violates the a-priory property, due to the presence of
overlapping isomorphisms inG [6]. As an example, the frequency
of the pattern P1 : [�1]�B�[�2]�A�[�3] in the graph in Figure 1
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Figure 2: Graph with two weights < �1,�2 > on each edge.

is 3, while the frequency of its sub-pattern P2 : [�1]�B� [�2] is 1.
For this reason a number of works have investigated alternative
scoring functions [11, 15, 25, 38]. Among them, the MNI support
is highly e�ective and e�cient to compute [6].

De�nition 2.4. Given a graph G : hV , E, `, �i, the MNI sup-
port of a pattern P :hVP , EP , `P ,�P i inG is the numberMNI (P ,G)
= min
� 0 2VP

|N(G,� 0)| where N(G,� 0) = {� | �2V ^ 9�2SG (P) such

that �P� (�)=� 0}.

Intuitively, the set N(G,� 0) contains all the nodes of G that
are mapped to the pattern node � 0 by some isomorphism �P�
from � to P . Then, the MNI support is the minimum cardinality
of this set across all the nodes of the pattern P . We can de�ne
similar sets also for the pattern edges, i.e., for each e 0 2 EP , the
set E(G, e 0) = {e |e 2 E ^ 9� 2 SG (P) such that �P� (e) = e 0}
contains all the edges of G that are mapped to the pattern edge
e 0 by some isomorphism �P� (e). Consider, for instance, the graph
G in Figure 1 and the pattern P : [�1] � B � [�2] �A� [�3]. Since
N(G,�1) = {1, 3}, N(G,�2) = {1, 3}, and N(G,�3) = {2, 4, 5},
the MNI support of P is 2. On the other hand, the number of
appearances of P in G is 3: SG (P) = {[3] � B � [1] � A � [2],
[1] � B � [3] �A � [4], [1] � B � [3] �A � [5]}.

In the presence of weights on edges, the score of a pattern
cannot be based only on the frequency, but should strike a bal-
ance between frequency and weights, allowing also the weights
to play a role in assessing the relevance of the pattern. Thus,
there is a need for a di�erent scoring function that looks beyond
the structure of the subgraphs, by considering the importance of
their edges as well. In this case, we talk about weighted frequent
patterns, or relevant patterns. This alternative scoring function,
however, has to be carefully selected to satisfy the apriori prop-
erty [43].

Furthermore, if there are multiple weighting functions, i.e.,
several functions that assign weights on the graph edges/nodes,
then the pattern mining task must be carried out for each indi-
vidual function. An example of graph with multiple weights on
the edges is illustrated in Figure 2. Such situation leads to the
following speci�cation of the mining task.
Pattern Mining in Multi-Weighted Graphs. Given a thresh-
old � , a scoring function f and a graphG : hV , E, `,W i, whereW
is a �nite set of weighting functions, we must discover, 8�i 2W ,
the set of patterns Ri = {P |G 0 = hV ,E, `,�i ^ f (P ,G 0) � � }.

3 SCORE-BASED PATTERN MINING
Our solution to the pattern mining on weighted graphs problem
consists of two steps. The �rst step is the identi�cation of the
frequent patterns and the elimination of the appearances that
do not satisfy the constraints on the weights imposed by the
scoring function used. In the second step, a score is computed
for each pattern (and for each weighting function in the case of
multi-weighted graphs) in terms of the appearances in its support
set that were selected in the �rst step.

Algorithm 1 ��������P������M�����

Input: Graph G : hV ,E, `,�i, min score �
Output: Set of relevant patterns R
1: R  R�������E����(G)
2: fE F������E����(G)
3: while fE , ; do
4: e  fE.pop
5: R  R [ �������E��������(G, e,� , fE [ {e})

6: return R

7: function �������E��������(G,�,� , fE)
8: Cand  ;;S ;
9: for each e 2 fE do
10: Cand  Cand [ {� ⇧ e}

11: for each c 2 Cand do
12: (score, sup) �������P������(G, c)
13: if sup � � then
14: S S [ �������E��������(G, c,� , fE)
15: if score � � then
16: S S [ {c}

17: returnS

3.1 Assessing the relevance of a pattern
A scoring function can have many di�erent properties, which
may be desirable for certain applications but not for others. As a
consequence there may be no scoring function that is consistently
better than others in all the applications. Therefore, in this work
we do not advocate a single one-size-�ts-all scoring function, but
we propose a framework that can accommodate a wide range of
functions.

Assuming w.l.o.g. that larger weights signify higher impor-
tance, the function f must satisfy the following key properties:
P1: the score f (P ,G) monotonically increases with the weights
of its appearances.
P2: the score f (P ,G) monotonically increases with the number
of appearances with large weights.
P3: f is MNI-compatible, i.e., f (P ,G)�� =) MNI (P ,G)�� .

Properties P1 and P2 are a natural consequence of our as-
sumption on the importance of the weights, while P3 ensures
the time practicality of the solution.

3.2 Mining weighted graphs
Finding the frequent patterns on weighted graphs requires the
computation of the frequency and the score of each pattern. To
this end, we propose R�S�M, an e�cient and e�ective general
algorithm for anyMNI-compatible score that exploits the pruning
power of the anti-monotonicity property of the MNI support.

We model the frequent subgraph mining as a constraint satis-
faction problem (CSP) [9]. An instance of the CSP problem is a
tuple (X ,D,C) where X is a set of variables, D is a set of domains
corresponding to the variables in X , and C is a set of constraints
between the variables in X . A solution for an instance of CSP
is an assignment from the candidates in D to the variables in X
that satis�es all the constraints in C . The matching problem for
a pattern P v G is then translated into CSP(P) = (XP ,DP ,CP ),
so that any solution for CSP(P) corresponds to a subgraph �
isomorphic to P .

Speci�cally, each node� 2 VP is mapped to a variable x� 2 XP ,
each domain D� 2 DP is a subset of V containing all the graph
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Algorithm 2 �������P������

Input: Graph G:hV ,E, `,�i, pattern P , score threshold �
Output: Score and MNI support of P
1: for each � 2 VP do
2: supv  ;
3: D�  {� 02V |`(� 0) = `(�)}

4: A  automorphisms of P
5: ����������C����������({D� |� 2 VP }, P )
6: for each � 2 VP do
7: if 9w = A(�) s .t .Dw already computed then
8: D�  Dw
9: continue
10: ����������C����������({D� |� 2 VP }, P )
11: if 9Du s .t . |Du | < � then return (�1,�1)
12: for each n 2 D� do
13: search for � s.t. � ' P ^ n 2 V� ^ n 7! �
14: if � , Nil then
15: Valid ��V����(�,�)
16: for each n0 2 V� , � 0 2 VP s.t. n0 7! � 0 do
17: mark n0 in D� 0

18: if Valid then
19: sup� 0  sup� 0 [ {n0}

20: else
21: remove n from D�
22: score ���������S����({sup� |� 2 VP })
23: mni min� 2VP |D� |
24: return (score,mni)

nodes isomorphic to � , and C includes consistency constraints
that enforce a topology isomorphic to that of P [28]. Then, for
each candidate node n 2 D� we search for a valid assignment
that maps n to� . If no assignment is found, n is removed from the
domain D� and the topology constraints are checked again until
no invalid candidate is found in the other domains. At the end
of the process, the number of elements in the smallest domain,
i.e., argminD� 2DP

|D� |, corresponds to the MNI support of P , as
de�ned in De�nition 2.4. Therefore, given a score threshold � ,
P is frequent if each variable in XP has at least � distinct valid
assignments. This means that if the size of some domain Du is
lower than � , P cannot be frequent. Notice that in general not all
the matching subgraphs of a pattern satisfy the constraints on the
weights forced by the scoring function used, and thus we must
additionally check each of them to determine if it contributes to
the score of the pattern. The aggregated score is then computed
considering only the matches not discarded.

Algorithm 1 outlines the R�S�M framework. First, the rele-
vant and the frequent edges are found (Lines 1-2). Then, each
subgraph is recursively extended following the pattern-growth
approach introduced by gSpan [41] (Line 5), until no other exten-
sion is possible. Each extension is a candidate relevant pattern,
whose MNI support is computed alongside its score by the ���
�����P������ procedure (Algorithm 2). This procedure �rst
initializes the candidate domain D� of each pattern node � 2 VP
with all the nodes in G with the same label as � (Lines 1-3), and
the support set sup� of each node � 2 VP with the empty set.
Then, the algorithm computes the automorphisms of the pat-
tern (Line 4). Automorphisms are isomorphisms of a graph to
itself and can be used to compute the valid assignments more
e�ciently (Lines 7-8), since each assignment valid for a pattern
node � is valid for each automorphic node w too. Finally the

algorithm iterates over each candidate node n 2 D� to determine
if it belongs to some subgraph � isomorphic to P (Lines 12-13).
As soon as such subgraph is found, all the domains are updated
(Lines 16-17) and the subgraph is checked for validity (Line 15).
In particular, the ��V���� procedure compares the edge weights
in � against the constraints speci�ed by the scoring function f ,
and if � satis�es the condition, the nodes of the subgraph are
stored in the corresponding support sets (Line 19). These nodes
will contribute to the relevance score of P .

On the other hand, if n does not participate in any isomor-
phism, it is removed from D� . As a consequence, in the subse-
quent iteration, structural constraints like the minimum degree
of a node mapped to a � 2 VP are enforced, to remove candi-
dates that can no longer participate to any isomorphism of P
(Line 10). The algorithm terminates either when all the pattern
nodes have been examined, or when the size of some domain
becomes lower than � , as in this case P can be neither relevant
nor frequent (Line 11). In the �rst case, instead, the MNI support
and the relevance score of P are calculated and returned. We refer
to Section 5 for a discussion about suitable scoring functions that
can be implemented in Procedure ��V����.

Finally in Lines 13-17 of Algorithm 1, all the frequent patterns
are further extended, while all the relevant patterns are included
in the �nal set of relevant patterns R. Since we enforce the use
of MNI-compatible scoring functions, the MNI support of P is an
upper-bound of its score, and thus the pruning strategy ensures
that all the relevant patterns are returned.

Complexity. Even though the computation of the automor-
phisms (O(|VP |

|VP | )) and the pruning strategy improve the ex-
pected performance of the algorithm, in the worst case it takes
C = O(2 |V |

2
|V |

|VP | ) time, which is exponential in the number of
nodes and the size of the patterns. In particular, O(2 |V |

2
) is the

time required to compute all the patterns in G , and O(|V |
|VP | ) is

that needed to �nd all the isomorphisms of a pattern P .

3.3 Mining in multi-weighted graphs
In the case of multiple edge weights assigned bym weighting
functionsW = {�1, . . . ,�m }, the naïve approach for solving
the Pattern Mining in Multi-Weighted Graphs problem runs Al-
gorithm 1 |W | times, once for each function. Evidently, this ap-
proach becomes impractical for largem, as the process of mining
the patterns is computationally intense. In fact, this processwould
take O(Cm ) to terminate.

The naïve approach recomputes the same patterns multiple
times, incurring in a signi�cant time overhead that can be avoided
by running the algorithm only once and keeping track of the rele-
vant patterns for each weighting function. This strategy replaces
Line 12 in Algorithm 1 with Algorithm 3, which searches for
the isomorphisms of the pattern P , while checking their validity
with respect to each �i 2W , at the same time. Similarly to the
single weight case, we initialize each candidate domain and all
the support sets for each weighting function (Lines 1-4). When
an isomorphic subgraph is found, procedure ��V���� checks in
parallel each set of edge weights against the constraints set by
the scoring function and stores the results in the auxiliary ar-
ray VAL. If the weights assigned by �i satisfy the constraints,
the nodes of the subgraph are stored in the corresponding sets
SUP� [i] (Line 21).

Finally, all the scores of the candidate pattern c are evaluated
in Line 16 of Algorithm 1, and c is added to the �nal set R only if
at least one of its scores is larger than � . As a further optimization,
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Algorithm 3 �������S�������M����

Input: Graph G:hV ,E, `,W i, pattern P , score threshold �
Output: Scores and MNI support of P
1: for each � 2 VP do
2: D�  {� 02V |`(� 0) = `(�)}
3: for each i 2 1, . . . , |W | do
4: SUP� [i] ;
5: A  automorphisms of P
6: ����������C����������({D� |� 2 VP }, P )
7: for each � 2 VP do
8: if 9w = A(�) s .t .Dw already computed then
9: D�  Dw
10: continue
11: ����������C����������({D� |� 2 VP }, P )
12: if 9Du s .t . |Du | < � then return ({�1, . . . ,�1},�1)
13: for each n 2 D� do
14: search for � s.t. � ' P ^ n 2 V� ^ n 7! �
15: if � , Nil then
16: VAL ��V����(�,W )

17: for each n0 2 V� , � 0 2 VP s.t. n0 7! � 0 do
18: mark n0 in D� 0

19: for each i 2 1, . . . , |W | do
20: if VAL[i] then
21: SUP� 0[i] SUP� 0[i] [ {n0}

22: else
23: remove n from D�
24: S  ���������S�����({SUP� |� 2 VP })
25: mni min� 2VP |D� |
26: return (S,mni)

instead of storing in memory the sets of relevant patterns for
each function �i , we maintain a binary vector of sizem for each
relevant pattern P , where position i is set to 1 if P is relevant for
�i .

4 APPROXIMATE ALGORITHM
The exact algorithm introduced in Section 3 incurs a signi�cant
memory overhead when the number of weighting functions is
in the order of thousands, which, for example, is the case for
recommender systems for big retailers (e.g., Amazon). For such
applications, we devise amore conservative approximate solution,
called R�S�M approximate, that signi�cantly reduces the memory
consumption by taking advantage of the similarities between the
weighting functions �1, . . . ,�m 2W .

The R�S�M approximate algorithm �rst generates k ⌧ m
representative functions �⇤j , by clustering and aggregating the
original functions �i . Then, it runs Algorithm 3 to compute k
sets of relevant patterns R⇤1, . . . ,R

⇤

k , which are used to buildm
approximate sets of relevant patterns A1, . . . ,Am , returned in
place of the exact sets R1, . . . ,Rm . Clearly, the quality of the ap-
proximate result depends on the way the representative functions
are generated. With our implementation, we aim at returning
a set Aj for each �i that resembles the exact set Ri as much as
possible.

4.1 Generation of the representative
functions

The generation of the representative functions is shown in Algo-
rithm 4 and consists of three steps. First, each weighting function

Algorithm 4 ��������R�������������F��������

Input: Graph G : hV ,E, `,W i, number of buckets b, number of
clusters k

Output: Set of representative functionsW ⇤
1: F  ������F������V������(E,W ,b)
2: C  �������C���������(F ,k)
3: W ⇤  ��������M��W�����V������(C,W )

4: returnW ⇤

Algorithm 5 ������B�����F������V������

1: function ������B�����F������V������(E,W ,b)
2: for each l 2 �E do
3: BucketListl  �������B�����L�����(El ,W ,b)
4: for each �i 2W do
5: rli  ����B������(El ,�i ,BucketListl )
6: for each �i 2W do
7: ri  �������({rli |l 2 �E })
8: return

�
r1, . . . , r |W |

 

�i 2W is transformed into a feature vector (Line 1). Secondly,
the weighting functions are clustered into k groups of similar
functions (Line 2). Thirdly, the set of k representative functions
W ⇤ = {�⇤1 , . . . ,�

⇤

k } is returned (Lines 3-4).

Creation of the feature vectors.
In the �rst step, we construct a feature vector ri for each �i ,

which is used in the second step to determine the similarities
between the functions. Since our �nal goal is to assign a set of
patterns Ai to each �i that is as close as possible to the exact
set Ri , a straightforward choice is to use the edge weights as
features. We call this approach full-vector strategy. According to
this strategy, Procedure 1 decides an ordering of the graph edges
and createsm vectors r1, . . . , rm of size |E |, where ri [x] is the
weight assigned by �i to the edge in the xth position.

Although similar edge weights lead, with high probability,
to similar sets of relevant patterns, the e�ectiveness and the
e�cacy of the full-vector strategy decrease as the size of the
graph increases. In fact, the high dimensionality of the vectors
complicates the detection of functions with similar properties, as
a consequence of the curse of dimensionality phenomenon [37].

Thus, we propose also a more e�cient approach called bucket-
based strategy, which overcomes the problem of high dimen-
sionality by considering the edge labels in place of the graph
edges, as features to build the vectors. The underlying idea is
that, in real scenarios, a preference for an edge is highly corre-
lated with the preference for the label of that edge. This strategy
is implemented in Procedure ������B�����F������V������
(Algorithm 5), which takes the set of weighting functionsW and
the number of buckets b, and generates a set of feature vectors
r1, . . . , rm each of size |�E | · b, where �E indicates the set of dis-
tinct edge labels. In particular, each vector ri is the concatenation
of |�E | summaries of the edge-weights of �i , one for each edge
label, and b is the resolution of each summary.

The summary for a label l is obtained by splitting the range of
admissible weights [0, 1] into b of sub-ranges (buckets) (Line 3),
e.g., [0,x1), [x1,x2), and [x2, 1.0] for b = 3. Then Procedure �����
B������ (Line 5) counts, for each sub-range, how many times
the function�i assigns a weight within that sub-range to an edge
with label l . Note that, in the degenerate case of b = 1, the vector
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ri simply keeps, for each label, the number of edges with that
label and whose weight is greater than 0.

The bucketization of a label l is performed by Procedure ����
����B�����L����� (Line 3) following the equi-depth paradigm
[13], which assigns the input values to buckets, while trying to
balance the number of elements in each bucket. Thus, we con-
sider all the weights assigned by all the weighting functions to
edges with label l , and split the range [0, 1] into b depth-balanced
intervals.

For example, given b = 2, the label ordering A |C , and the two
weighting functions �1 and �2 in Figure 1, we obtain the vectors
r1 = [1, 3, 2, 0] and r2 = [3, 1, 0, 2]. As such, the buckets of A are
the ranges of values [0, 0.3] and [0.3, 1], and those ofC the ranges
[0, 0.5] and [0.5, 1].

Note that the bucket-based strategy allows us to decide the
size of the feature vectors apriori and tune the parameter b to
improve the accuracy of the clustering.

Identi�cation of similar functions. Procedure �������C����
������ (Algorithm 4, Line 2) implements the Lloyd’s clustering
algorithm [27], which identi�es groups of similar �i by compar-
ing the feature vectors r1, . . . , rm 2 F using the cosine similarity.

The algorithm can be initialized either providing k random
seeds among all the vectors in F , or by selecting the k most
diverse feature vectors. Note that �nding the most diverse vectors
may increase the running time of the algorithm, but this strategy
allows the discovery of better separated clusters. Moreover, the
algorithm can either be executed until convergence or can be
run in iterative steps. In the �rst case it �nds k clusters, while
in the second case it runs multiple times with k ranging from 2
to some maximum value kmax , and then returns the clustering
with largest silhouette coe�cient.

Generation of the representative functions. Given the set
of clusters C, Procedure ��������M��W�����V������ (Algo-
rithm 4, Line 3) generates a representative function �⇤j for each
cluster Cj . Di�erent choices of �⇤j can lead to di�erent sets of
patterns R⇤j , which can contain patterns not relevant for some
�i 2 Cj , as well as missing out patterns relevant for some other
�l 2 Cj . However, as stated in the following theorem, we resort
to take the maximum among the weights to prevent missing any
relevant pattern:

T������ 4.1. Given a clusterCi , and a MNI-compatible scoring
function f , a complete set of relevant patterns forCi can be mined
using the representative function �⇤i de�ned as 8e 2 E , �⇤i (e) =
max�j 2Ci�j (e).

P����. By de�nition, only the subgraphs that satisfy the con-
straints on the weights through the scoring function f can con-
tribute to the score of a pattern. Moreover, the larger the weights
of a subgraph, the higher the chances that such subgraph ful�ll
those constraints. Since the function �⇤i assigns to each edge
e 2 E the largest weight among those of the weighting functions
in the clusterCi , i.e., 8�j 2 Ci ,�⇤i (e) � �j (e), the chances that a
matching subgraph contributes to the score of a pattern is higher
for �⇤i than for any �j 2 Ci . It follows that 8�j 2 Ci f (P ,�⇤i ) �
f (P ,�j ), so if a pattern is relevant for some �j 2 Ci , it is also
relevant for �⇤i . Thus, the set of mined patterns is complete. ⇤

Given the sets of relevant patterns R⇤1, . . . ,R
⇤

k discovered by
Algorithm 1 using the representative functions �⇤1 , . . . ,�

⇤

k , we
create a pattern set Ai for each function �i using the patterns in

the set R⇤j for j  k .�i 2 Cj , i.e., each function �i receives the
set of relevant patterns of the cluster to which it belongs.

4.2 Quality of R�S�M approximate
The R�S�M approximate algorithm reduces the problem of min-
ing patterns in graphs withm weights on each edge to �nding
k sets of relevant patterns R⇤j , with k⌧m. The quality Q of the
solution can be measured in di�erent ways, according to the
requirements of the user or the application. The most common
quality measure used in the literature is the accuracy, which is
de�ned in terms of precision and recall. In our case, since Theo-
rem 4.1 ensures a total recall, we consider the average precision
of the sets Ai with respect to the exact sets Ri :

Q =
1
m

m’
i=1

|Ri \Ai |/|Ri | (1)

The quality Q can be measured also in terms of the average
distance between the patterns in the sets Ri and those in the sets
Ai . As shown in Section 7, the distance between two patterns
can be calculated using the normalized Levenshtein distance, and
the distance between two pattern sets as the average normalized
Levenshtein distance among the pairs of closest patterns in the
two sets. According to this measure, Ai is a good solution for
�i if the patterns in Ai have structure and labels similar to the
patterns in Ri .

5 PATTERN EVALUATION
Anumber of scoring function satisfying propertiesP1,P2, andP3
can be proposed and implemented in Procedure ��V���� and ����
������S���� in Algorithm 2 and 3. Nevertheless, to demonstrate
the �exibility of our framework, we propose here four di�erent
scoring functions that can be used to assess the relevance of a
pattern in a weighted graph. They are called ALL, ANY , SUM
and AVG. We chose these functions because of their intuitive
semantics and their suitability for various scenarios that may
pose di�erent requirements or provide a di�erent interpretation
of the edge weights. Moreover, as they are de�ned by the MNI
support of the pattern over a speci�c restriction of its support set,
they are MNI-compatible by de�nition, and thus they preserve
the apriori property.

ALL, ANY , SUM and AVG di�er in the choice of which sub-
graphs they include in the support sets of the patterns P and
in how they aggregate the edge weights of such subgraphs. In
particular, ALL, ANY , and SUM rely on an additional system-
dependent parameter, called relevance threshold � , that is used
to select the subgraphs that contribute to the score, while AVG is
parameter-free.

In the following we provide a formal de�nition of the four
scoring functions.

ALL. The ALL score considers only the subgraphs whose edge
weights are larger than the threshold � as valid appearances of
a pattern P . Speci�cally, the ALL score of P is its MNI support
computed over the restricted set of appearances S 0G (P) = {� | � =
hV� ,E� , `,�i^� 2 SG (P)^8e 2 E� , �(e) > � }, i.e., fALL(P ,G) =
min�P 2VP

��N(G,�P ) �S 0G (P )
��, where N(G,�P ) �S 0G (P )= {� |� 2

V ^ 9� 2 S 0G (P) .�
P
� (�) = �P } is the restriction of N(G,�P ) to

the subset S 0G (P) ✓ SG (P).
In graphs like protein-to-protein interaction networks, this

score retrieves patterns characterized by an overall con�dence
greater than a certain value.
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ANY. TheANY score takes into account only the appearances of a
pattern having at least one edge with weight above the threshold
� . Hence, the ANY score of P is the MNI support of P over the set
of appearances S 0G (P) = {� | � = hV� ,E� , `,�i ^� 2 SG (P)^9e 2
E� .�(e) > � }, i.e., fANY (P ,G) =min�P 2VP

��N(G,�P ) �S 0G (P )
��.

This score is suitable especially for the cases in which only
partial weights are available (e.g., product reviews for some prod-
uct), to �nd patterns that are overall interesting (e.g., the entire
transaction comprising the product), as well as super-patterns
around relevant core structures.

By de�nition, the ANY score of P is always equal or larger
than its ALL score, as any appearance of P considered by fALL
is considered also by fANY , while in general, the opposite is
not true. For example, given the graph in Figure 2 and the rele-
vance threshold � = 0.4, the subgraph � : [1]–A–[2]–C–[4] does
not contribute to the ALL score of P : [�1]–A–[�2]–C–[�3], but
contributes to its ANY score.

SUM. For the SUM score of P , a subgraph � contributes if the sum
of its weights is larger than the threshold � . The restricted sup-
port set obtained in this way is S 0G (P) = {� | � = hV� ,E� , `,�i ^
� 2 SG (P) ^

Õ
e 2E� �(e) > � }. The MNI support over this set is

the SUM score of P : fSUM (P ,G) =min�P 2VP
��N(G,�P ) �S 0G (P )

��.
This score accounts for the overall pattern weight in scenarios

like money transactions, where it is bene�cial to sum each single
contribution in order to judge the complete value of a structure.

Note that if an appearance of P has some weight greater than
� , then the sum of all its weights is at least � , and therefore
fSUM (P ,G)� fANY (P ,G). For example, all the appearances con-
sidered by ANY in computing the score of P : [�1]–A–[�2]–A–
[�3] for �=0.4 in Figure 2 are considered also by SUM, whereas
the subgraph � : [3]–A–[4]–A–[8] contributes to the SUM score
only.

AVG. In contrast to the previous scoring functions, the AVG score
is not de�ned in terms of the minimum cardinality among some
node sets of the pattern, but in terms of the relative weights of
its appearances. In general, the score of a pattern P can be a
function of the sum of the weights of the subgraphs in its support
set, and this is called the weighted support (WSUP) of P . In partic-
ular, WIGM [43] proposes a measure called normalized weighted
support (NWSUP), which is the weighted support of P divided
by its size |EP |, i.e., NWSUP(G, P) = WSUP(G, P)/|EP |. Never-
theless, this scoring function is not MNI-compatible. In order to
guarantee the apriori property and be consistent with the other
MNI-compatible scoring functions, we computeWSUP(G, P) by
�rst retaining, for each edge set E(G, eP ) with eP 2 EP , the set
E(G, eP ) �µ of µ edges with largest weight, and then summing up
all those weights, i.e.,WSUP(G, P) =

Õ
eP 2EP

Õ
e 2E(G,eP )�µ �(e).

Setting µ to be the MNI support of P we guarantee that the AVG
score is bounded by the MNI support, as stated in the following
theorem:

T������ 5.1. Given a graphG :hV ,E, `,�i, a pattern P , and an
edge e 2 E, it holds that fAVG (P ⇧ e,G)  MNI (P ,G), where P ⇧ e
is an extension of P with EP⇧e = EP [ {e}.

P����. Since the MNI support has the apriori property [6],
MNI (P⇧e,G)  MNI (P ,G). By de�nition, the pattern P⇧e has the
maximum normalized weight f ⇤AVG (P⇧e,G)when all the edges in
E(G, e) �µ have weight 1, and hence each subgraph contributes
with a total weight of (|EP | + 1). In this case, f ⇤AVG (P ⇧ e,G) =

MNI (P ⇧ e,G) · (|EP | + 1)/(|EP | + 1), and thus fAVG (P ⇧ e,G) 
f ⇤AVG (P ⇧ e,G) = MNI (P ⇧ e,G)  MNI (P ,G). ⇤

According to this theorem, although AVG does not have the
apriori property, the AVG score of a pattern is at least bounded by
the frequency of its sub-patterns, making it MNI-compatible and
allowing early pruning during the pattern search. In fact, if the
MNI support of P is lower than � , then all its super-patterns can
be discarded. On the other hand, fAVG (P⇧e,G) can be higher than
fAVG (P ,G) even though the frequency of P ⇧ e is lower, because
the weights of the edges in E(G, e) �µ can be so large that they
compensate for the lower frequency. For example, the AVG score
of P : [�1]–C–[�2] in the graph G in Figure 2 is 0.6, because
MNI (P ,G) = 1 and E(G,C) �1= {(1, 4)}. Instead, the AVG score
of P : [�1]–C–[�2]–B–[�3]–A–[�4] is 0.8, because E(G,C) �1=
{(1, 4)}, E(G,B) �1= {(1, 3)}, and E(G,A) �1= {(3, 5)}.

Implementation. To implement ALL, ANY , and SUM in our
framework, function ��V���� checks every match � of P in its
support set, by comparing its edge weights against the relevance
threshold � , according to the corresponding de�nition of S 0G (P).
Then, Procedure ���������S���� computes the MNI support
over the support set S 0G (P). On the other hand, for the AVG score,
Procedure ��V���� returns always True , while Procedure ����
������S���� calculates the normalized sum of the top-k edge
weights of every pattern edge, where k =min� 2V� |D� |.

6 RELATEDWORK
We survey the main solutions for pattern mining in graph datab-
ases, single graphs, and probabilistic graphs. While previous work
has tackled the problem of pattern mining in weighted graphs
to a certain extent, no solution has been proposed for pattern
mining in multi-weighted graphs.

Graph databases. Graph databases are collections of graphs
such as chemical compounds, transactions, and work�ows. Two
main approaches have been proposed for pattern mining in
unweighted collections of graphs: apriori-based methods, and
pattern-growth methods. The apriori-based approaches generate
frequent structures incrementally, by merging smaller frequent
patterns [24]. Pattern-growth methods, on the other hand, gener-
ate one structure at a time, expanding each pattern in a depth-�rst
fashion [17, 41].

In weighted graphs, a few pattern-growth methods have been
recently introduced [19] to embody weights into the support
measure. Additionally, WFSM-MR [3] further extends such ap-
proaches in a distributed manner on top of the MapReduce frame-
work.

Nevertheless, frequent pattern mining in graph databases em-
ploys a support measure, i.e., the number of graphs containing
a speci�c pattern, that cannot be used to mine patterns in large
graphs, as each pattern would have a support equal to 1 or 0.

Single Large Graphs. Pattern mining in large graphs requires
the support measure to be adjusted to account for edges shared by
multiple subgraphs [6]. To this end, alternative support measures
satisfying the apriori property have been proposed, alongside ef-
�cient algorithms using such measures. SUBDUE [15] is the �rst
pattern mining algorithm in single graphs and adopts an approxi-
mate greedy strategy based on the Minimum Description Length
(MDL). Other support measures include the maximum number
of edge-disjoint matchings [38], the Maximum Independent Set
(MIS) support [25], and the Harmful Overlap (HO) [11] support.
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Nonetheless, the latter two measures require NP-complete prob-
lems to be solved, rendering them unsuitable in many practical
scenarios. In contrast, the Minimum Image-based (MNI) sup-
port can be computed e�ciently [11]. This measure is used by
GraMi [10] and its parallel extension ScaleMine[1], which opti-
mize the computation of the frequent patterns via a constraint
satisfaction problem approach. Yet, as opposed to the problem we
tackle in this work, GraMi and all the support-based approaches
disregard weights on the edges of the graph and do not generalize
to the case of multi-weights.

The �rst work on weighted large graphs is WTMaxMiner [12].
However, WTMaxMiner restricts the problem to mining path
patterns, which can be e�ciently discovered as opposed to sub-
graphs. To the best of our knowledge, WIGM [43] is the only
work that deals with weighted pattern mining in large graphs,
de�ning the importance of a pattern as the average weight over
its appearances. Although weighted patterns do not naturally
possess the apriori property, WIGM adopts a weaker pruning
strategy based on the so-called 1-extension property. Di�erently
from WIGM, our solution, R�S�M is scalable and e�cient since
it uses measures (a.k.a. scoring functions) that satisfy the apriori
property and are based on the MNI support. Additionally, R��
S�M is a more general framework that supports multi-weighted
graphs, as well as a broad family of scoring functions, showcasing
the WIGM support measure as one example (see Section 5).

Uncertain graphs. Uncertain graphs include existence probabil-
ities for edges or nodes of the graph. To some extent, uncertain
graphs can be seen as a special case of weighted graphs in which
probabilities arises, for instance, from random walk approaches,
and represent the likelihood that an edge exists between two
nodes. Few works have been proposed to mine frequent patterns
in uncertain graphs [7, 18, 26, 32, 40, 44]. As opposed to weighted
graphs, support measures for uncertain graphs must consider the
uncertainty in the edges and compute the support as an expected
value. Moreover, the time complexity of mining in such graphs is
exponential in the worst case, since any edge can either exists or
not, and hence all the possible combinations must be considered.

7 EXPERIMENTS
We experimentally show how the patterns found with R�S�M
di�er from those returned by frequency-based methods, thus
proving the importance of our approach in pruning irrelevant
patterns that are merely frequent. We also compare the scalability
of our exact algorithm with the performance of our approximate
algorithm. The results demonstrate that R�S�M approximate
allows faster response time, yet retaining good accuracy in terms
of the patterns returned.

Datasets. The experiments were performed on four real datasets
of di�erent sizes. Table 1 shows their characteristics, reporting
the number of vertices |V |, edges |E |, and labels |L|; theminimum,
average, and maximum node degree; and the minimum, median,
average, and maximum edge label frequency. For the A�����
dataset we report statistics for both edge (top) and node labels
(bottom). We also report the default frequency (� ) and relevance
(� ) values used in the experiments (unless otherwise stated).
• C���S��� [10], is a graph representing Computer Science pub-
lications and citations between them. The labels on the edges
indicate the area in which the two papers were published (e.g., a
database conference).

degree label frequency
dataset |V | |E | |� | min/avg/max min/med/avg/max � �
C���S��� 2.1k 3.6k 21 1/3.5/99 15/55/174.7/988 95 .05
F��������T 7.2k 10k 40 1/2.8/504 3/70/251.3/2886 90 .05
F��������C 16.7k 26k 77 1/3.2/1082 1/66/348.5/4861 155 .05

A����� 163k 296k 4 1/3.6/1072 2k/12k/30k/113k 130 .051710 1/1/95/142k

Table 1: Datasets and default � ,� parameters.

• F��������T and F��������C are directed subgraphs extracted
from the knowledge graph FreeBase 1, which is a database collect-
ing structured information about real-world entities like people,
places and things for various topics. We obtained the two samples
by restricting the graph to the topic travel and computer respec-
tively, and then taking the largest weakly connected component
in the restriction.
•A�����2 [14] is a directed graph representing items, purchases,
and user ratings. We considered the subgraph of electronic prod-
ucts, in which every node represents a product, a category, or
a brand, and a link represents items bought together, bought in
subsequent transactions, or viewed on the website one after the
other. Weights represent individual user review scores (from 1
to 5), and we considered only users with more than 100 reviews.
Given the sparsity of the weights, we used Personalized PageR-
ank to spread the user preferences to products other than those
they rated, as it is a standard technique for recommendations [2].
In this way we obtained weights not only for the items reviewed,
but also for the most related items. Each edge weight is actu-
ally computed as the average between the PageRank value of its
endpoint nodes.
Experimental setup. R�S�M is implemented in Java 1.8 on top
of the constraint satisfaction problem presented in G��M� [10]
whose code was kindly provided by the authors3. The code of our
implementation and all the datasets we used are publicly avail-
able4. We also compare with a frequent pattern mining approach
(F���) based on G��M�, which is also implemented in Java 1.8.
All experiments were run on a 24 Cores (2.40GHz) Intel Xeon
E5 � 2440 with 188Gb RAM with Linux 3.13.
Generating the weights. Since we had real weights only for
the A����� graph, to test the scalability of our method with a
larger number of weighting functions, for the other datasets we
created synthetic weights based on the results of a user study we
conducted on the Crowd�ower5 platform. We extracted a sample
from the FreeBase knowledge base, restricting the domain of
the edge labels to �ve topics (Music, Books, Celebrities, Movies,
and Sport). Then we asked the users to rate each graph edge
(i.e., fact) according to their preferences, using a relevance value
between 1 and 5. Once collected the relevance values from 123
users, we modeled the distribution of the edge weights with
respect to the number of facts. We found that the edge weights,
after normalization, are distributed as a Gaussian with mean
0.452 and variance 0.02. In addition, we noted that, on average, a
user rated above 0 between 10% and 20% of the labels, and thus
we concluded that real graph weights are usually quite sparse.
Therefore, we uniformly subset edge labels according to our
�ndings and generated weights normally distributed in [0, 1].

Furthermore, in order to evaluate the performance of R�S�M
and R�S�M approximate with di�erent weight distributions, we

1developers.google.com/Freebase/data
2jmcauley.ucsd.edu/data/amazon/
3github.com/ehab-abdelhamid/GraMi
4https://github.com/lady-bluecopper/ReSuM
5www.crowd�ower.com
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F��������C F��������T
top-k ALL ANY SUM AVG ALL ANY SUM AVG
1 0.6 0.6 0.6 0.86 0.5 0.5 0.5 1
3 0.43 0.43 0.43 1 0.45 0.33 0.33 1
10 0.44 0.49 0.49 1 0.8 0.66 0.66 1

Table 2: Quality of F��� vs R�S�M on the top-k patterns.

generated sets of synthetic edge weights, varying a focus pa-
rameter representing the ratio of weighted edges for each edge
label. The edge weights were sampled from a normal distribution
N(µ,� 2

) and aBeta(� , �) distribution, hence allowing us to prove
the e�ectiveness of our algorithms under normally distributed
weights and exponentially distributed weights. We set µ = 0.5
and � = 0.25 for the normal distribution and � = 0.7, � = 5 and
� = 0.7,� = 5, for the Beta distribution. The two choices of the
parameters for the Beta distribution represent two extreme of
an exponential behavior: the former concentrates the probability
mass on low weights, the latter on large weights. The focus pa-
rameter takes values in {0.5, 0.8} for the normal distribution and
in {0.25, 0.5, 0.75, 1} for the Beta distribution.

7.1 Frequent vs Weighted Pattern Mining
We compared the patterns returned by a frequent pattern min-
ing algorithm (F���) and our algorithm R�S�M to validate our
claim that frequent pattern mining returns a large number of
low-weight patterns, which, instead, are correctly discarded in
relevant pattern mining. Unless otherwise stated, we report the
average of 10 di�erent randomly sampled weighting functions.
In particular, these weights were sampled from a normal distri-
bution using focus 0.5, as previously described.

Figure 5 reports the average number of patterns found using
di�erent scoring functions on the four datasets, with default
parameters, as shown in Table 1. We observe that F��� returns
patterns, at least half of which are irrelevant with respect to any
of the four scoring functions. As expected, in all the datasets,
ANY and SUM return more patterns than ALL and AVG, due to
the less restrictive conditions on the weights. On the other hand,
AVG returns a low number of patterns, mainly because more
than 50% of the edges have low or zero weight. Therefore, AVG
is particularly suited in biological or chemical datasets, where
weights are uniformly distributed in the entire graph.

We now discuss quality (Table 2), number of patterns, and
running time of R�S�M compared to F���, when varying rel-
evance (� ) and frequency (� ) threshold (Figure 3 and 4). Due
to space limits, we report results for two datasets (F��������C
and F��������T); however, we observe similar results also on
the other datasets. In particular, as an example, within the top-5
frequent patterns in the A����� graph, we found that the most
frequently bought products are Sony appliances, but some rele-
vant patterns actually involve Nikon products. This result shows
that Sony products are popular but not interesting for all the
users.
Quality of F��� vs R�S�M. Table 2 shows the quality of the
patterns discovered by F���, measured on the k most frequent
patterns. We selected 10 random weighting functions and mined
the relevant patterns for each of them. The quality of F��� is
measured as the average Jaccard similarity between the top-k
frequent patterns and the top-k relevant patterns. As expected,
frequency is a bad predictor of relevance, since most of the rel-
evant patterns are not in top-k frequent patterns. Notably, for
AVG the quality is higher mostly due to the small or null number
of patterns returned, as reported in Figure 5.

Relevance threshold (� ). Recall that the relevance threshold
� is a system-dependent parameter set only for ALL, ANY , and
SUM . It can be easily tuned on demand and strongly a�ects the
number of patterns (Figure 3(a) and Figure 3(b)), because the
larger the value of � , the smaller is the number of appearances
that are considered valid, and thus the smaller is the total number
of relevant patterns mined.We observe that with �>0 the number
of relevant patterns is less than half of the number of the frequent
ones. This behavior re�ects the characteristics of the weights in
the datasets, as half of the edges have zero weight. Moreover,
for F��������T SUM , being the most lenient scoring function,
returns patterns even in the restrictive cases when � > 0.5 (Fig-
ure 3(b)). Finally, since AVG does not depend on � , it always
returns the same patterns.

Figure 3(c) and Figure 3(d) show that the threshold � a�ects
the running time of R�S�M mostly when ALL is used, as this
function can prune the irrelevant patterns earlier in the process.
In fact, an occurrence of a pattern is discarded and not included
in the support set of any extension of the pattern, as soon as one
edge weight is found to be below � . On the other hand, for all the
other scoring functions, the extension of an invalid occurrence
of a pattern can be valid for some super-pattern, and therefore
cannot be discarded until all its edge weights have been examined.
As a consequence, the running time of the algorithm is almost
una�ected by � .
Frequency threshold (� ). Figure 4 reports the behavior of R��
S�M and F��� when varying the frequency threshold � . We
performed preliminary tests to decide a reasonable range of val-
ues [�min ,�max ] for each dataset. In particular, the �min corre-
sponds to the smallest value that allowed F��� to terminate the
computation within 48 hours, and �max is the maximum value
returning a non-empty set of frequent patterns. The choice of
di�erent ranges for each dataset is consistent with previous re-
searches [10] and re�ects the observation that pattern frequency
is dataset-dependent, while relevance is user-dependent.

As we can see in Figure 4(a) and Figure 4(b), the number of
frequent patterns decreases almost linearly with � , and conse-
quently the number of relevant patterns decreases as well. Regard-
ing the performance, as opposed to the relevance threshold, the
frequency threshold always alters the computation time, since
higher values lead to an early pruning of many patterns, and
thus the algorithm terminates earlier. Moreover, Figure 4(c) and
Figure 4(d) show that when � takes low values (i.e. between 150
and 180), R�S�M runs up to two orders of magnitude faster in
both the datasets. Finally, as previously noted, ALL performs
signi�cantly better than the other scoring functions.

7.2 Multiple Weighting Functions
We tested the scalability of R�S�M in the case of multiple weight-
ing functions, varying their number between 50 and 50.000. Sim-
ilarly, we also measured time and quality of R�S�M approximate.
Nevertheless, in the following we do not further discuss and re-
port the number of patterns retrieved for each weighting function
and each scoring function, since these results are consistent with
what reported in the single edge weight case.
Time. Figure 6 shows how the number of weighting functions af-
fects the running time. Here we report the performance obtained
when the weights were generated following a normal distribution
with focus 0.5. In Figure 6(a) we present the comparison between
R�S�M and the brute-force (BF) approach, which computes the
patterns for each weighting function separately. While BF scales
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Figure 3: Varying � : number of patterns (left) and running time (right) in F��������C (a,c) and F��������T (b,d).
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Figure 5: Number of patterns found in each dataset, using
di�erent scores and default parameters.

average pattern edit distance
|W | ALL ANY SUM AVG
50 0.195 0.069 0.069 0.627
500 0.192 0.062 0.062 0.618
5000 0.203 0.053 0.053 0.609
50000 0.204 0.052 0.051 �

Table 3: Quality of R�S�M approximate in F��������T.

average pattern edit distance
F��������C F��������T

clustering ALL ANY SUM AVG ALL ANY SUM AVG
A�P��� 0.28 0.07 0.07 0.45 0.2 0.07 0.07 0.7
B��� 0.27 0.07 0.07 0.39 0.2 0.06 0.06 0.62

Table 4: Quality of R�S�M approximate using B��� and
A�P��� clustering in F��������T and F��������C.

linearly with the number of weighting functions, the running
time of R�S�M is nearly constant with 5000 functions, and slowly
increases as the number of edge weights approaches 50000. As
a drawback, the memory requirement grows linearly with the
number of weights for both algorithms.

In Figure 6(b) and Figure 6(c) instead, we compare R�S�M and
R�S�M approximate. For these set of experiments, we generated
the representative functions by �rst clustering the weighting
functions using the bucket-based strategy. The clustering phase
is performed as a preprocessing and not reported, since it is

agnostic to the choice of the various thresholds and depends
solely on the clustering algorithm (e.g., k-means, hierarchical, or
spectral). In particular, we tried numbers of buckets b of di�erent
orders of magnitude and proportional to the frequency of the
edge labels in the graph. Then, we run k-means using di�erent
k to study the impact of the number of clusters on the quality
and the running time of R�S�M approximate. Finally, we set the
default value of b of each dataset to the number of buckets that
allowed the algorithm to use at least one order of magnitude
less memory than those consumed using the full-vector strategy,
i.e., 12 buckets for F��������T, 16 for F��������C, and 10 for
C���S���.

We observe that R�S�M becomes impractical as the number
of weighting functions increases. As a matter of fact, when AVG
is used, R�S�M exhausts the available memory, hence returning
no patterns. This behavior re�ects the characteristics of AVG,
which requires the algorithm to exhaustively search for all the
occurrences of a pattern before computing its score. In contrast,
R�S�M approximate terminates the computation. On the other
hand, when ANY is used, R�S�M is able to return the relevant
patterns; however, R�S�M approximate outperforms the exact
algorithm again, taking nearly constant time to terminate. In con-
clusion, in all the cases of large numbers of weighting functions,
R�S�M approximate performs better than R�S�M by at least one
order of magnitude.

Quality of R�S�M approximate. As mentioned in Section 4,
we measure the quality of R�S�M approximate in terms of the
average distance between the patterns it returns (sets Ai ) and
those returned by R�S�M (sets Ri ). We de�ne the distance be-
tween two patterns as the minimum number of edges that should
be added or removed from the �rst to transform it into the sec-
ond. Thus, the average distance between the two sets of patterns
{A1, . . . ,Am } and {R1, . . . ,Rm } measures the average number
of operations required to transform a pattern in Ai to a pattern
in Ri . We recall that our method is complete, and therefore no
relevant pattern is missing. However, R�S�M approximate may
return spurious patterns, which are patterns not relevant for
any function in the cluster. Computing the distance between the
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average precision
Beta(0.7, 5) Beta(5, 0.7) N(0.5, 0.25)

ALL SUM ALL SUM ALL SUM
|W | 0.25 0.5 0.75 1 0.25 0.5 0.75 1 0.25 0.5 0.75 1 0.25 0.5 0.75 1 0.5 0.8 0.5 0.8
50 0.22 0.20 0.21 0.26 0.17 0.53 0.74 0.91 0.19 0.23 0.42 1 0.34 0.73 0.94 1 0.15 0.18 0.36 0.54
500 0.21 0.21 0.24 0.27 0.18 0.53 0.74 0.91 0.21 0.24 0.42 1 0.36 0.73 0.94 1 0.18 0.20 0.44 0.57
5000 0.21 0.22 0.24 0.28 0.19 0.54 0.75 0.91 0.21 0.25 0.43 1 0.36 0.74 0.95 1 0.22 0.20 0.49 0.59
50000 0.21 0.22 0.25 0.28 0.19 0.54 0.75 0.91 0.21 0.25 0.44 0.99 0.36 0.74 0.95 1 0.22 0.21 0.51 0.59

Table 5: Quality of R�S�M approximate with ALL and SUM on F��������C, with Beta(� , �) and normal N(µ,� 2
) weights

generated using focus values in {0.25, 0.5, 0.75, 1} and {0.5, 0.8} respectively.

two pattern sets allows us to understand how much a spurious
pattern, on average, di�ers from the patterns that are actually
relevant for some weighting function in the cluster. Table 3 re-
ports the distances obtained using the four scoring functions in
F��������T. Here, ANY and SUM exhibit the best quality; ALL
performs reasonably good, despite being more restrictive and
therefore more sensitive to the approximation based on the max-
imum edge weights. On the other hand, when AVG is used, the
quality of the answer is quite poor. Nevertheless, this behavior is
due to the extremely low number of patterns this scoring func-
tion considers interesting, which skews the computation of the
pattern set distance. Note that, we do no report any value for the
case of 50000 weighting functions with AVG, since the algorithm
exhausted all the available memory and did not terminate. We
conclude that, the additional patterns returned by R�S�M ap-
proximate are indeed closely related to the relevant patterns of
each individual weighting function.

Finally, we tested the capability of our bucket-based clustering
(B��� in short) to correctly identify groups of similar weighting
functions. To this end, we compared the quality of the results
mined using B��� in the creation of the feature vectors of the
weighting functions, with the quality measured using a ground-
truth clustering (A�P��� in short). The A�P��� clustering was
created using the sets of relevant patterns R1, . . . ,Rm as feature
vectors of �1, . . . ,�m , and then running a k-medoid algorithm.

We regard it as a ground-truth clustering, because it is obtained
knowing what makes two weighting functions really similar, i.e.
their relevant patterns, and maximizing the intra-cluster similar-
ity. Table 4 reports the comparison between A�P��� and B��� on
F��������C and F��������T. We recall that lower values mean
higher quality, as they indicate distances. We can see that we ex-
perience a quality comparable with that obtained using A�P���,
and thus we can conclude that our clustering technique is indeed
e�ective.

Impact of the weights. For the experiments presented above,
we weighted the Amazon graph using real weights, and the
F��������T, F��������C, and C���S��� graphs with synthetic
weights generated according to the results of our user study. The
common feature of these two kinds of weights is that they are
highly sparse. It is worth studying whether weights following
other distributions or that are denser, a�ect the performance of
our algorithms. To this end, we performed an additional set of
experiments using weighting functions generated following a
Beta(5, 0.7), a Beta(0.7, 5) and a normal distribution with di�er-
ent densities (focus), as described at the beginning of Section7.

One would expect that, with higher densities, the cost of the
computation would be higher too. Although these expectations
are reasonable, in the following we show that the behavior of
R�S�M and R�S�M approximate is consistent with what observed
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in the case of sparse weights. Figure 7(a) and Figure 7(b) report
the average number of patterns found using SUM and ALL, with
weights generated using a Beta(0.7, 5) distribution with focus
varying between 0.25 and 1 (i.e., all edges have weight > 0).
Comparing these results with those in Figure 5 when SUM is
used, we can see that the number of relevant patterns is largely
a�ected by the presence of more (or all) edges with non-null
weight, meaning that the patterns mined are actually many more.
On the other hand, when ALL is used, R�S�M still �nds a larger
number of relevant patterns, but the increment is not as large as
in the SUM case.

Regarding the running time, Figure 7(c) and Figure 7(d) show
that the two algorithms behave accordingly to what already seen
in the previous experiments, meaning that the fact there more
patterns are mined do not downgrade the performance heavily.

Finally, Table 5 displays the quality of R�S�M in terms of
average precision, as de�ned in Equation 1. As we can see, our
approximate algorithm achieves similar quality values no matter
which weight distribution is chosen. In addition, the denser the
weights in the graph, the higher is the average precision of the
pattern sets mined. Intuitively, this is due to the fact knowing a
larger number of positive weights allows the clustering algorithm
to better detect which weighting functions are similar.

8 CONCLUSIONS
In this paper we considered the problem of mining relevant pat-
terns in weighted graphs. As opposed to the previous graph
pattern mining approaches, which are solely based on the fre-
quency of the patterns, our solution assesses the importance of
a pattern also in terms of the weights on the edges of its ap-
pearances. Then, we proposed four di�erent scoring functions
that balance between frequency and weights, while retaining the
apriori property, which is a powerful mean to an e�ective and
early pruning of the search space. As a natural extension, we
considered the complementary problem of mining patterns in
graphs with multiple weights associated to the edges. We devised
exact and approximate solutions and proved the e�ectiveness and
e�ciency of the algorithms on real datasets. As a future work,
we plan to study the theoretical bounds on the clustering quality,
and automatic approaches for parameter selection.
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ABSTRACT
Large graphs are prevalent in social networks, traffic networks,

and biology. These graphs are often inexact. For example, in a

friendship network, an edge between two nodes u and v indi-

cates that users u and v have a close relationship. This edge may

only exist with a probability. To model such information, the

uncertain graph model has been proposed, in which each edge e
is augmented with a probability that indicates the chance e exists.
Given a node q in an uncertain graph G, we study the k-NN
query of q, which looks for k nodes in G whose distances from q
are the shortest. The k-NN query can be used in friend-search,

data mining, and pattern-recognition. Despite the importance of

this query, it has not been well studied. In this paper, we develop

a tree-based structure called the U-tree. Given a k-NN query, the

U-tree produces a compact representation of G, based on which

the query can be executed efficiently. Our results on real and

synthetic datasets show that our algorithm can scale to large

graphs, and is 75% faster than state-of-the-art solutions.

1 INTRODUCTION
Graphs are prevalent in social networks [10, 12], traffic network-

s [11], biological networks [32], and mobile ad-hoc networks [13].

Due to noisy measurements [1], hardware limitation [2], infer-

ence models [9], and privacy-preserving perturbation [4, 23],

these graphs are inherently uncertain. To model this error, un-
certain graphs have been studied [1, 6, 15, 19]. In these graphs,

each edge is associated with a probability distribution. Figure 1(a)

shows the protein-protein interaction (PPI) network as an uncer-

tain graph, where each node denotes a protein, and each edge

is an interaction between a pair of proteins. The value on each

edge denotes the probability that the interaction exists (called

existential probability). For instance, the existential probability
between nodes A and B is 0.7.

k-NN query. In this paper, we study the efficient evaluation

of k-nearest neighbor (k-NN) queries on uncertain graphs [1].

Given a node q, the k-NN query returns k nodes with the shortest

“distances” from q, based on a distance function (Table 1). The

k-NN query can help biologists to perform tasks such as protein

complex detection [2, 21], link discovery [17, 32], and protein

function prediction [24]. Security experts can also use k-NN
queries to design privacy-preserving algorithms to protect nodes

in a graph from being identified [4].

Although k-NN queries are useful, the issues of evaluating

them efficiently have only been briefly touched, e.g., [19]. Our

experiments found that they are also not very efficient on large

uncertain graphs. The major reason is that for correct query ex-

ecution, queries running on the uncertain graph should follow

the Possible World Semantics (PWS in short). Figure 1(b) shows

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the 21st
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(a) (b)

Figure 1: (a) an uncertain graph G and (b) a possible world
fromGwith existence probability 0.3×0.9×0.6×0.8 = 0.1296.

Table 1: Distance functions for uncertain graphs.

Function Formula
Most-probable [32] dmp (s, t ) = argmax

∏
e∈PATH (s,t ) p (e )

Reliability [35] dr e (s, t ) =
∑
d |d<∞ Ps,t (d )

Median [30] dme (s, t ) = argmax{
∑D
d=0 Ps,t (d ) ≤

1

2
}

Majority [30] dma (s, t ) = argmaxd {Ps,t (d ) }
Expected [32] dex (s, t ) =

∑∞
d=0 Ps,t (d )d

Expected-reliable [35] der (s, t ) =
∑
d |d<∞ d

Ps,t (d )
1−Ps,t (∞)

a possible world instance sampled from G in Figure 1(a). A sim-

ple way to evaluate the query is to get the answer from each

possible world and then collect all these answers to form the

final answer. For example, given a k-NN query of computing the

k nearest neighbors from node A in Figure 1(a), we obtain 2
4

possible worlds, then for each of them, we compute the k nearest

neighbors, and finally obtain the k nodes which are the closest to

A considering all the possible worlds (according to a function in

Table 1). Because an uncertain graph has an exponential number

of possible worlds, a naïve solution can be extremely inefficien-

t. Although existing solutions try to avoid enumerating all the

possible worlds, they are still expensive.

The U-tree framework. In this paper, we develop a new

indexing framework for k-NN requests, which (i) allows efficient

and scalable k-NN query evaluation under the PWS; and (ii) can

be easily adapted to different distance functions (e.g., Table 1).

As shown in Figure 2, our framework consists of two stages:

• offline index construction (Figure 2(a)). Given an uncertain graph
G and a distance function d , we first employ decomposition tech-
niques (Step A), which converts G into a succinct index structure,

whose edges are encoded with the probability information of

G [5, 14, 16, 22, 31, 33]. These techniques were not designed

for k-NN queries. Hence, we perform customization of the index

(Step B), which adjusts the information and structure of the index,

in order to enhance the performance of k-NN queries.

• online query evaluation (Figure 2(b)). This stage is used to evalu-
ate a k-NN request for a node q online. Particularly, we design an

efficient query algorithm (Step C) that uses the U-tree developed
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Figure 2: Answering k-NN query with the U-tree.

in the offline stage, which then yields the k nodes that are the

closest to q according to distance function d .
Cost model. Upon receiving a k-NN request, the U-tree will

generate another uncertain graph д (Step C above), which is a

proper subgraph of G, but contains the probability information

essential to answering the k-NN query. Because д is often much

smaller than G, the query execution time can be significantly

reduced. To achieve this goal, more information needs to be incor-

porated to the index during customization, which also renders

a larger U-tree (Step B). As we will point out later, there is a

trade-off between the U-tree’s size and the query cost. We will

discuss a cost model that allows us to balance between these two

factors, in order to improve query efficiency without significantly

increasing the U-tree size.

Experiments. To evaluate the performance of the proposed

methods, we conduct experiments on both real and synthetic

datasets. We have also tested different decomposition methods

and distance functions in the U-tree framework. The results show

that U-tree is superior to the state-of-the-art algorithms, and the

query time is significantly reduced by 75%; the overhead of U-

tree is only 23% more than the index generated in Step A. Our

solution is also scalable to large uncertain graphs with over one

million nodes.

Organization. The rest of paper is organized as follows. We

review the related works in Section 2. In Section 3, we present

the formal definition of the problems, and discuss some basic

techniques. We present the U-tree framework in Section 4. In

Section 5, we present our experiment results. Section 6 concludes.

2 RELATEDWORK
We review the existing queries for uncertain graphs, and then

discuss the probabilistic distance functions.

2.1 Queries for Uncertain Graphs
In recent years, the k-NN query for uncertain graphs has received

plenty of attention [19, 29, 30]. As mentioned before, to answer

queries on uncertain graphs, the Possible World Semantics (PWS)

are often used, which assumes that an uncertain graph can be

expressed as a number of graph instances. Because there is an

exponential no. of possible world instances, three methods are

proposed in the literature: (1) The first one finds some represen-

tative deterministic graphs from the uncertain graph and answer

the queries based on them [28]. (2) The second one is to reduce

the size of the uncertain graph by removing some weak nodes

and edges, or only sample part of the uncertain graph [30]. This,

however, will lead to information loss. (3) The last method is

to build some elegant index structures, which can significantly

speed up the query process without information loss, and thus

has received plenty of attention recently [19, 22]. Thus, in this

paper we adopt the third method for the k-NN query.

In [30], Potamias et al. studied the k-NN query on uncertain

graphs by using incremental Dijkstra [29] withMonte Carlo (MC)

sampling. In [19], Khan et al. proposed a novel index for the

probabilistic reliability search problem (reliable set query), which

aims to find all the nodes reachable from a given source node

with probability over a user-defined threshold. Moreover, it can

be adapted for answering the top-k reliability query. However,

it only focuses on reliability search, and it is not clear how to

support other distance functions. Recently, Maniu et al. [22]

proposed a novel tree index, called ProbTree, and studied how to

perform source-to-target query (STQ) using ProbTree. However,

as it is mainly designed for STQ, it works poorly for k-NN queries.

In summary, none of these works can answer the k-NN queries

with arbitrary probabilistic distance functions, and thus they are

not general enough. Therefore, it is desirable to develop a generic

k-NN query framework for any probabilistic distance functions

and graphs with different probability distributions.

2.2 Probabilistic Distance Functions
All the distance functions that can be used for k-NN queries are

summarized in Table 1, where Ps,t (a)=
∑
G |dG (s,t )=a Pr (G ) is the

probability that the shortest path distance (SPD) between two

nodes s and t equals to a [30]. Given a query node s , a k-NN
query can return the top-k nodes with the smallest values of dme ,

dma , dex , and der from s , or the top-k nodes with the biggest

values of dmp or dr e from s .
The function dmp measures the length of the most-probable-

path (i.e., a path with the highest probability) between nodes s
and t . The function dr e measures the probability that there exists

a path between nodes s and t , which is meaningful in situations

such as delivering packages in a sensor network, but it cannot

deal with the cases that prefer distance rather than reliability. The

function dme measures the median SPD among all the possible

worlds, and it can be used when the user wants to get any k-th
order statistic, but its value may be infinite. The function dma
computes the SPD that is the most likely to be observed when

sampling a graph from G. It is useful in uncertain graphs with

irregular distance distributions on edges, where the value has a

limited discrete domain, but it cannot deal with infinity, e.g., most

values of dma will become infinite when searching in the uncer-

tain graphs with small probability on each edge. The functions

dex and der are often used to compute the expected distances,

and der is better when there are infinite distances in uncertain

graphs. It is worth mentioning that, there is no consensus on

which distance function is the best, because different functions

can be used in different applications.

Consider the example graph in Figure 3(a), where the number

on an edge represents the probability that it exits and ϵ is an

infinitely small number. Suppose that our goal is to compute the

SPD from S to T. Then, dme will return the length of the path

on the top, while dmp will return the length of the path on the

bottom as the SPD although it may contain infinite edges in the

path.

Because of space limitations, we mainly focus on reliability
and expected-reliable distances in this paper, as they are the most

well studied ones in recent years [19, 22, 30], but other distance

functions can also be easily incorporated into our indexing frame-

work.
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(a) (b)

Figure 3: Examples for (a) distance functions and (b)PCD
results.

3 PRELIMINARIES
In this section, we first introduce the problem we studied in

Section 3.1, then discuss the MC sampling in Section 3.2, and

finally present the uncertain graph decomposition (UGD) and

UGD-based index in Sections 3.3 and 3.4.

3.1 Problem Definition
In line with previous studies [19, 30], we consider an uncertain

graph as follows. Note that all the notations frequently used in

the paper are summarized in Table 2.

Definition 1 (Uncertain Graph). An uncertain graph G is a
triple (V , E, p), whereV is the set of nodes, E is the set of edges, and
p is the function of assigning probabilities, i.e., for any edge e ∈ E,
the probability that it has a valuew is p (w |e ), and

∑
w ∈W

p (w |e )=1,

whereW contains all the possible values on the edges.

Let us take the graph in Figure 1(a) as an example, where

each edge follows a Bernoulli distribution (e.g., for e=(A, C) we
have p (0|e )=0.1 and p (1|e )=0.9). For each edge, if its valuew=0,

it means that the edge does not exist; otherwise, it exists. Notice

that the function p allows any kind of probability distributions

(e.g., multi-valued or normal distributions) to be assigned for an

edge.

According to the possible world semantics [19, 22, 30], an un-

certain graph G can be thought of as a probabilistic distribution,

containing an exponential number of possible worlds, each hav-

ing different probabilities. The probability of a possible world is

defined as follows:

Definition 2. Given an uncertain graph G=(V , E, p), the prob-
ability of observing a possible world G=(V , EG ) is

Pr (G ) =
∏

e ∈EG&i ∈W \{0}

p (i |e )
∏

e ∈E\EG

p (0|e ). (1)

For simplicity, if the edges follow Bernoulli distributions (see

Figure 1(a)), the probability of observing a possible world is:

Pr (G ) =
∏
e ∈EG

p (e )
∏

e ∈E\EG

(1 − p (e )). (2)

Next, we formally define STQ and k-NN query as follows
1
. We

illustrate them via Example 1.

Definition 3. Given an uncertain graph G(V , E, p), a distance
function d , and two nodes s and t (s , t ∈ V ), the source-to-target
query (STQ) qd (s, t ) aims to compute the distance between s and t
based on the distance function d .

Definition 4. Given an uncertain graph G(V , E, p), a function
d , a node s (s ∈ V ), and an integer k >0, the k-nearest neighbors
1
For convenience, the subscript d can be omitted when the type of distance function

is not required.

Table 2: Notations used in this paper.

Notation Meaning
G(V , E , p) An uncertain graph

n,m The sizes of V and E respectively

G (V , EG ) A possible world from G

STQ The source-to-target query

SPD The shortest path distance

q (s, t ) An STQ between two nodes s and t
qk (s ) An k-NN query for a node s
ϕ (G ) The diameter of the uncertain graph G

(B, T )
The tree index of an uncertain graph with

the bag set B and tree structure T

д (G, ϵ, δ )
The sampling times for G with error rate ϵ
and failure rate δ

f (G) The cost function of the uncertain graph G

query (k-NN) qk (s ) aims to find a set of nodes C such that for any
r ∈ C , the value of d (s, r ) is in the top-k list w.r.t. the function d .

In this paper, we will focus on the k-NN query. One naïve way

to answer k-NN query is to run (n−1) times of STQs like the way

to answer q1 (A) in Example 1. These STQs are called sub-queries

of qk (s ).

Example 1. Consider the uncertain graph in Figure 1(a). (1)
Let s=A, t=B and d = der . There are 3 kinds of possible SPD values
betweenA and B on G, that is, Pr (SPD = 1) = 0.7, Pr (SPD = 3) =
0.3× 0.9× 0.6× 0.8 = 0.1296 (see Figure 1(b)) and Pr (SPD = 0) =
0.3 × (1 − 0.9 × 0.6 × 0.8) = 0.1704. Therefore, q(A,B) = (0.7 +
0.1296 × 3)/(1 − 0.1704) = 1.31. (2) Let s=A, k=1 and d = der . We
first calculate the three SPD values der (A,B) = 1.31,der (A,C ) =
1.07 and der (A,D) = 2. Therefore, q1 (A) = {C}.

Since the number of possible worlds is exponentially large, it

is impractical to enumerate all the possible worlds. To alleviate

this issue, people often sample a small number of possible worlds,

then perform queries on these sampled graphs, and obtain the

final answer by accumulating the results in a particular manner.

Next, we will introduce Monte Carlo Sampling, which is the

popular way for approximate query processing in an efficient

way.

3.2 Monte Carlo Sampling
To address the curse of exponentiation, the Monte Carlo (MC)
sampling is used to sample a small number of graph instances [22,

30], and estimate the query results by performing queries on

these sampled graph instances. To sample an instance graph G,
we can sequentially consider each edge of G and sample it as a

deterministic edge in G following the probability distribution on

the edge. Intuitively, if a possible world is repeatedly sampled

multiple times, it should have a high probability to exist.

To achieve a theoretical estimation accuracy, the Chernoff
bound [30] can be applied to determine the number of possible

worlds needed for a k-NN query. Given an uncertain graph G,

a distance function d , and a pair of nodes s and t , the accuracy
of estimating the value of d (s, t ) by MC sampling can be well

guaranteed by Lemma 1:

Lemma 1. [30] To achieve an error rate of ϵ >0 with a failure
probability of δ >0, i.e., Pr( |d (s, t ) − d ′(s, t ) | ≥ ϵd (s, t )) ≤ δ , the
number of samples needed is

д(G, s, t , ϵ,δ ) = max

{
3

ϵ2d (s, t )
,
ϕ (G)2

2ϵ2

}
· ln
(
2

δ

)
, (3)
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Table 3: UGD methods.

Method Lossless Time Pros&cons

JSD [33] Yes Cubic

Smaller decomposition result,

accurate but slow.

SPQR [14] No Linear

Smaller decomposition result

but not lossless.

FWD [31] Yes Linear

Information lossless whenW = 2

with more redundancy.

LIN [22] Yes Linear

Compromise between SPQR

and FWD.

PCD [5] Yes #P -hard Layered decomposition

without information loss.

PTD [16] Yes #P -hard Layered decomposition

without information loss.

where d ′(s, t ) is the estimated value of d (s, t ), and the function
ϕ (G)= max

(s,t )∈V×V
d (s, t ) is the diameter of G.

In practice, one usually focuses on finding the pairs with a

given threshold ρ. Note that in general ρ is not too small [30],

and thus we have
ϕ (G)2

2ϵ 2 ≥
3

ϵ 2ρ . Therefore, the number of needed

samples is:

д(G, ϵ,δ ) =
ϕ (G)2

2ϵ2
ln
(
2

δ

)
. (4)

3.3 Uncertain Graph Decomposition
To enable efficientk-NN queries, offline index are usually used [34,

36–38], often based on graph decomposition methods. In Table 2,

we list all the uncertain graph decomposition (UGD) methods,

including junction scan decomposition (JSD), SPQR decomposi-

tion [14], lineage tree decomposition (LIN) [22], probabilistic core
decomposition (PCD) [5], and probabilistic truss decomposition

(PTD) [16].

In [33], Na et al. proposed JSD
2
for dividing a deterministic

graph into several partitions by finding the junction nodes. This

method can also be adapted for UGD by simply regarding the

probabilities of edges as their weights.SPQR [14] is named from

the optimal tree obtained by decomposing the graph into a tree of

tri-connected components. FWD [31] also decomposes the tree,

but limits itself at bags which have at most a limited number of

nodes, which is called their treewidthW . LIN [22] behaves the

same as FWD, but keeps more information in the bags for better

query processing. SPQR can decompose the uncertain graph

optimally, but during the process it will lose some information.

FWD computes probabilities exactly in the bags, but can lead

to decompositions that do not reduce much the graphs. LIN can

both reduce the graph drastically and allow exact computation

of probabilities, but comes at a high cost in space.

PCD [5] and PTD [16] are recently proposed layered uncer-

tain graph decomposition methods. They can extract a dense

part of the uncertain graph called (k,η)-core and (k,η)-truss
respectively, which has higher probability to exist. This extrac-

tion can be executed iteratively. Note that even though the exact

algorithm for finding (k,η)-core or (k,η)-truss is #P-hard, approx-
imation algorithms are provided so that they can be completed

in linear time [5, 16]. For example, there are three (k,η)-cores in
Figure 3(b), and the smaller ones are more dense and reliable in

the uncertain graph.

2
Also called partition-based road network index in [33]. We call it JSD because it

scans the junction nodes.

3.4 UGD-based Tree Index
A naïve index is to pre-compute all the pairwise distances and

store them in a matrix, and then answer a query by simply look-

ing up the matrix. This index, however, has a space complexity

of O (n2), and it is not affordable if G is large. Thus, it is desir-

able to develop more effective indexes. Recently, people often

build an index based on UGD. The rationality behind is that, by

decomposing G into several sub-graphs, the k-NN query can be

performed on a few sub-graphs, rather than the entire graph,

resulting in high query efficiency.

To build an index for G, a specific UGD method from Table 3

is used to decompose it into several bags, each of which contains

a set of nodes of G. The bags are then organized into a tree

structure. Below, we present a formal definition of the tree index.

Definition 5. Given an uncertain graph G (V ,E,p), the index
of G is a tuple (B, T ), where B={Bi |i = 1, 2, · · · , l } is a set of l
bags from the decomposition of G and T is a tree, such that:

(1) ∪Bi ∈BBi = V ;
(2) For each (u,v ) ∈ E, there is Bi ∈ B, s .t . u,v ∈ Bi ;
(3) There is a link between Bi and Bj in T if Bi ∩ Bj , ∅.

We illustrate the index by taking FWD decomposition as an

example. We first adopt FWD to compute all the bags limited by

the tree widthW = 2. After that, for each pair of bags, if they

share some nodes, we link them with an edge. Since only one bag

serves as the root, this index is a tree structure. For example, the

tree index in Figure 5 is an example from the FWD decomposition

of Figure 4(a). Especially, for PCD and PTD, we only link the two

bags when a bag is directly a subset of another bag, to keep the

tree structure of the index. For example, if (k1,η1)-core⊂ (k2,η2)-
core and (k2,η2)-core ⊂ (k3,η3)-core, we only link (k1,η1)-core
with (k2,η2)-core and (k2,η2)-core with (k3,η3)-core.

Recall that we have discussed six UGD methods in Section 3.3.

Generally, all these methods can be adopted in the index. Due to

the space limitation, in this paper we mainly focus on FWD and

PCD, since most of existing k-NN queries on uncertain graphs

are based on expected distance search [30] or density search [35].

For the expected distance based k-NN queries (e.g., the k-NN
queries based on Expected-reliable distance [30]), FWD can be

used; for the density based k-NN queries (e.g., top-k reliability

query [35]), PCD can be used, since it is useful for extracting

the dense components (e.g., (k,η)-core in Figure 3(b)) with high

existence probabilities.

4 THE U-TREE INDEXING FRAMEWORK
Even with the sampling methods or indexes proposed in Section

3.3, it is challenging to answer k-NN queries in a large uncertain

graphs. However, with an advanced index, we can speed up the

searching process by generating an uncertain subgraph in much

smaller size, with enough information to answer the k-NN query.

Since the uncertain subgraph is smaller, query answering will be

more efficient.

For example, the subgraph with essential information (Fig-

ure 4(b)) to answer the query der (B,E) is much smaller compared

to the whole graph in Figure 4(a). Since the reduction on nodes

will lead to an exponential decrease in the sampling times based

on Definition 3.2, the tree index will speed up the probabilistic

searching in a dramatic way. In another aspect, a tree index has

a reasonable cost compared to other indexes. It can decrease the

number of distances to be computed compared to the matrix

index. For example, we only need to compute 3 der values in
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(a) (b)

Figure 4: Tree index demonstration (a) Anuncertain graph
G (b) G (q) for q = der (B,E).

Figure 4(a) rather than the 21 der values for each pair of nodes

in G.

We will answer two questions in this section: how to build an

index to efficiently answer the k-NN queries on uncertain graphs

(Step A, B in Figure 2), and how to query the index when faced

with a k-NN query (Step C in Figure 2). To answer the second

question, we propose a novel structure and a cost evaluation

model.

4.1 U-tree Index
In this section, we proposeU-tree fork-NN search on an uncertain

graph. After decomposing the uncertain graph into several bags

by Definition 5, we want to dig more on the index structure.

There are two steps to build the U-tree: the basic index con-

struction step, directly after the decomposition (Step A), and the

index customization step (Step B), which will refine the index for

efficient k-NN search.

Algorithm 1: Basic index construction
Input :Uncertain graph G

Output : (B,T )

1 B ← ∅,T ← ∅;

2 G ←undirected, unweighted graph of G;

3 for d ← 1 to 2 do
4 while deдree (v ) = d & v ∈ G do
5 create bag B;

6 V (B) ← v and all its neighbors;

7 for all unmarked e ∈ V (B) ×V (B) ∩ E (G ) do
8 E (B) ← E (B) ∪ {e};

9 mark e;

10 end
11 Delete v and link v’s neighbors in G;

12 B ← B ∪ {B};

13 end
14 end
15 Create the root bag R with all unmarked edges;

16 B ← B ∪ {R};

17 Organize the bags in B into T by their generating orders;

18 Add an edge between two bags in T if they share nodes;

19 Calculate distance distributions between nodes v ∈ G;

20 return (B,T );

Step A. First we adapt the STQ index from [22] into a k-NN
index, representing the basic index construction method (see

Algorithm 1). After the initialization (line 1 to 2), we iteratively

Figure 5: The basic tree index for the uncertain graph in
Figure 4(a).

add the node in degree 0 or 1 into a bag with its neighbors
3
, as

well as the edges among them to form a bag (line 3 to 14). Every

time we add the node into one bag, it will be deleted from the

original graph G. Then we create the root bag with the nodes

left (line 15 to 16). Next, we link the bags and form a tree (line 17

to 18). This basic index is evaluated in the indexing framework

named PTI in Section 5.

The index is a bottom-up structure, the root of the tree is where

the query will be answered, so computations will be launched

in a bottom-up way up to the root. Normally, we need several

bags to answer a single sub-query; in the following, we study

whether it is possible to use fewer bags to answer it after adding

extra information into the index.

Note that a bag in higher level of U-tree will contain more

information, because we aggregate all the information into a root

bag in a bottom-up way in Algorithm 1. Consequently, only the

root bag contains the complete distance distribution from the

uncertain graph G with respect to the nodes and edges in this

bag. Then we can use the root bag itself to reduce an uncertain

graph; this is not true for any other bag B in the graph.

For example, node B in bag β of Figure 5 can only see the

information from its child bag γ . Assume now we need to query

qer (B,C ). Even though we have known the distance distribution

on the edge (B,C ) in bag β , before we search the root bag α , we
do not know if there exists another path in another part of the

uncertain graph G, that is, the subgraph of nodes {C,D,E, F ,G}
in G. So if the starting bag is far from the root, then we must

search several bags before reaching the root bag, thus making

the reduced sub-graph relatively large in size.

Step B. To reduce the bags to be scanned, we propose a novel

method to customize the basic index from Step A. After generat-

ing the root bag, we make each edge contain distance information

for both sides. Here both-side information means the bag can

see the information of its child bags as well as the parent bags.

3
We use here FWD (W = 2) to decompose the uncertain graph into several bags.

Other decomposition methods can be used with minor changes.
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Then each bag will obtain a global view on G. Therefore, if the

sub-query q(s, t ) only concerns the nodes in one bag, we can use

this single bag to answer q(s, t ), and thus the size of the uncertain
subgraph will be significantly reduced.

We summarize U-tree in Algorithm 2. First we obtain the set

of bags B and the tree structure T from the basic index (line 1).

Then we initialize a queue Q and add the root bag R of T into Q
(line 2 to 3). Next, we iteratively pop out the head P of Q until it

is not a leaf node of T (line 4 to 7). For every edge that is shared

by P and its child bags, we calculate the distance distribution in

the corresponding child bags, with the help of the information

provided by P (line 8 to 14).

Different from the basic index (B,T ) from Algorithm 1, two

points are developed in the index from Algorithm 2. First, each

bag is embedded with more information. Second, we actually

change the structure of T . Since every bag now can see the

whole uncertain graph and thus can serve as the root, we can

terminate the index searching earlier. Because fewer bags are

searched and a smaller sub-graph is generated, query time is

saved when running the query on this smaller sub-graph.

Algorithm 2: U-tree construction
Input :Uncertain graph G

Output : (B,T )

1 (B,T )=Basic index construction(G);

2 Q ← ∅, P ← null ;

3 Q .add (R);

4 while Q is not empty do
5 while P is null or P is the leafnode of T do
6 P ← Q .pop ();

7 end
8 for each child S of P do
9 if edge e is shared by P and S then

10 Compute the distance distribution of e in S ;

11 Q .add (S );

12 end
13 end
14 end
15 return (B,T );

For example, when answering q3 (S ), we need to answer the

sub-query qer (A,D). So we start searching the U-tree in Figure 6

from bag γ and stop searching when reaching bag β . However, if
we answer it by the index in Figure 5, we can only terminate the

searching when reaching the root bag α . Thus, instead of gener-

ating the uncertain subgraph from {α , β,γ }, a smaller uncertain

subgraph is generated from {β ,γ }.
Compared to the basic index, U-tree may help us utilize graph

locality [27]. This is because the nodes, which may be queried

by the users, are usually localized in some area of G rather than

uniformly distributed. For example, if s and t is within the same

bag, a single bag is enough to answer the sub-query q(s, t ). From
graph locality, only few bags are searched when answering each

sub-query and thus the query time is significantly reduced.

The resulting extra cost is reasonable: the space complexity is

still linear, and the index updating cost is only increased linearly.

Using this efficient index, we can design the query algorithm for

k-NN queries now.

Figure 6: U-tree for the uncertain graph in Figure 4(a).

Algorithm 3: U-tree query algorithm

Input :U-tree (B,T ), source node s ∈ V , integer k
Output : the k-NN set C

1 C ← ∅;

2 From s to get r on G;

3 Generate E-table and update the bags information;

4 Re-order E-table;

5 Initiate a queue Q and load the tuples into Q ;

6 Perform r -pruning;

7 if Q = ∅ then
8 return NULL

9 end
10 p ← Q .pop ();

11 while Q , ∅ do
12 q ← Q .pop ();

13 if Cost (p ∪ q) > Cost (p) +Cost (q) then
14 p ←merдe (p,q);

15 else
16 Generate Gp and answer tuple p by sampling Gp ;

17 p ← q;

18 end
19 Perform r -pruning in Q ;

20 end
21 Add the nodes with top-k smallest der values into C;

22 return C;

4.2 Query processing by E-table
To analyze the search process on U-tree, and then develop an

efficient query algorithm, we propose a novel data structure

called E-table (from execution table) to keep track of the indexing

querying process.

Definition 6. Given a k-NN query qk (s ), an Execution-table
(E-table) is a collection of tuples u = {id , t , r , B} that:
1. u .id is the identifier for u.
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2. u .t is the target node in the sub-query q(s, t ) mapped to u.
3. u .r is the lower bound for d (s, t ).
4. u .B is the set of minimum bags to answer q(s, t ).

Note that each tuple u in the E-table corresponds to a sub-

query q(s, t ) for the given k-NN query qk (s ). A k-NN query

qk (s ) can be divided into (n−1) sub-queries q(s, ti ) where ti ∈ V
and ti , s , which are actually STQs. For example, the der based
NN query

4
can be divided into (n − 1) STQs and then return the

node with the minimum der value. We demonstrate the use of

E-table in Example 2.

Example 2. To find the nearest neighbors for node B in Fig-
ure 4(a), we can build a E-table like Table 4, in which each row
is a sub-query and each column is an attribute of the sub-query,
including the id, the target node, the lower bound for der , and the
bags needed to answer this sub-query. Note that for der (s, t ), r can
be calculated from SPD (s, t ) since SPD (s, t ) can serve as the lower
bound of der (s, t ).

Table 4: E-table for NN(B).

id t r B Sub-query

1 A 1 {α , β,γ } d (B,A)

2 C 1 {α , β } d (B,C )

3 D 1 {α , β } d (B,D)

4 E 2 {α , β } d (B,E)

5 F 2 {α , β ,δ , ϵ } d (B, F )

6 G 2 {α , β,δ } d (B,G )

Obviously, it will be very time-consuming if we run every STQ

in the E-table. Alternatively, we find that a tuple in the E-table

can actually answer several sub-queries. For example, in Table 4,

we can find that bag α and β contain enough information to

answer three sub-queries, that is, the der (B,C ), der (B,D) and
der (B,E).

For a k-NN query to find the nodes t with top-k smallest

d (s, t ), we can filter the tuples ui whose ri is bigger than the

current maximum d (s, tk ) named as dmax . Here tk is the node

that has been searched and added in the k-NN set to be returned.

We name the k-NN set to be returned as C . It is actually the

candidate set before it is returned. Note that if C is not full, the

current maximum d (s, tk ) is set to be +∞. The filtering theory

can be formalized by Lemma 2.

Lemma 2. All the tuples ti whose ri > d (s,C ) can be safely
pruned if |C | > k is satisfied. Here d (s,C ) = max

i ∈C
d (s, i ).

The lemma can be easily proved by the fact that the k-NN
solution can only be found in the subset whose r value is not

bigger than the current dmax = der (s,C ). We call this pruning

technique r -pruning.
Thus, our goal is to find the proper C and use it to prune the

tuples in the E-table as more as possible, especially the tuple with

huge amount of bags. For example, it will be nice if tuple 5 and 6

in Table 4 are all pruned at the very first stage because these two

tuples will generate uncertain graphs of bigger size.

We follow two steps to generate the candidate set C . First,
we rank the E-table according to r . Then, we rank the tuples

according to the number of bags, that is, the tuple with fewer

4
NN query is the k -NN query when k = 1.

Table 5: Executed tuples in Table 4.

id t r B sub-query der (s, t )

1 A 1 {α , β,γ } d (B,A) 1.3 340

2 C 1 {α , β } d (B,C ) 1.1631

3 D 1 {α , β } d (B,D) 1.4708

bags will be searched first even they have the same r value. It is
from the instinct that the tupleui with fewer bags will generate a

smaller uncertain sub-graph and thus may terminate in an earlier

stage. We demonstrate the process in Example 3.

Example 3. For a NN query q1s , we load the first tuple u1 and
generate the corresponding reduced uncertain graph G1 from B1.
Then, we sample the reduced uncertain graph G1 and get the result
of der (s, t1). We add t1 intoC and update dmax = der (s, t1). Next,
we prune the tuples whose r value is even bigger than der (s, t1). So
on so forth, we load the tuple ui which is not filtered, and generate
Gi from Bi to answer der (s, ti ) and then launch tuple filtering and
if a smallerder (s, ti ) is found, updateC = ti anddmax = der (s, ti ).
After searching all the tuples that are not filtered, we can return C .

4.3 Query scheduling by cost evaluation
In the steps above, we notice that the set of bags of one sub-

query maybe the upper set of another sub-query, that is Bi ⊂ Bj
happens time to time. At this time, we can safely use the upper

set Bj to answer ui and uj . For example, the uncertain graph

generated from u1 contains all the information needed to answer

u2,u3 and u4. However, some sub-queries’ bag sets have overlap

but not belong to each other, e.g., B1 and B6. Faced with this

condition, we have two choices. The first choice is to combine

these two tuples and generate an uncertain graph of big size to

answer these two sub-queries. The second choice is to generate

two small uncertain graphs and answer the two sub-queries

respectively. Thus, we can choose the one with smaller cost. The

cost evaluation is summarized by the function below.

Definition 7. Cost Evaluation is a function f to compare the
cost of combing two tuples with the cost of answering them respec-
tively. Here each uncertain graph Gi is generated by the correspond-
ing tuple ti , and Gi∪j is generated by Bi ∪ Bj . If f (Bi ∪ Bj ) <
f (Bi ) + f (Bj ) then we will use Bi and Bj to generate a single
uncertain subgraph. Otherwise, we will generate two uncertain
subgraphs respectively.

f (Bi ∪ Bj ) = д(Gi∪j , ϵ,δ ) · |E (Gi∪j ) | (5)

f (Bi ) + f (Bj ) =
∑
p=i, j

д(Gp , ϵ,δ ) · |E (Gp ) | (6)

If we combine all the possible tuples to generate a single un-

certain graph which contains all the information to answer the

k-NN query, then this reduced uncertain graph is called Equiv-
alent Uncertain Graph (EUG) of G for the given query. Figure 7

is the EUG for q1 (B) = NN (B) on the uncertain graph in Fig-

ure 4(a). When the candidate set is big in size or the k-NN query

has a large k value, the EUG cannot be reduced much. This shows

another reason why we need a cost evaluation.

According to section 3.2,ϕ (G) can be roughly approximated by

(n−1), then the cost function can be written as f (G) = (n−1)2 ·m.

Example 4. If there comes three tuples in the E-table, and they
need the bags {α , β ,γ }, {α ,δ , ϵ } and {α , β,δ } respectively (see Fig-
ure 8). Thus we get three reduced uncertain graph G1, G2 and G3.
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Figure 7: The EUG for Figure 4(a) considering NN(B).

(a) (b) (c)

Figure 8: The uncertain graph generated from bags (a)
{α , β ,γ }, (b) {α ,δ , ϵ } and (c) {α , β,δ }.

We can merge these reduced graphs to answer multiple tuples or
answer them one by one. There are 5 ways to answer these tuples
and the costs are listed below.

f (G1,G2,G3) = f (G1) + f (G2) + f (G3) = 4
2 × (7+ 6+ 7) = 320

f (G1 ∪ G2,G3) = f (G1 ∪ G2) + f (G3) = 6
2 × 10 + 42 × 7 = 472

f (G1,G2 ∪ G3) = f (G1) + f (G2 ∪ G3) = 4
2 × 7 + 52 × 8 = 312

f (G2,G1 ∪ G3) = f (G2) + f (G1 ∪ G3) = 4
2 × 6 + 52 × 9 = 321

f (G1 ∪ G2 ∪ G3) = f (G1 ∪ G2 ∪ G3) = 6
2 × 10 = 360

Here we see the optimal solution for this E-table is not to

answer each tuple respectively or to generate an EUG, but only

to merge G2 and G3. Therefore, we form Algorithm 3 to find the

local optimal solution of the minimum cost. We find that the

local optimal solution works well; on the other hand, finding the

global optimal solution is relatively cumbersome.

Given the initial uncertain graph G0 = (V0,E0,p) and two

reduced uncertain graph G1 = (V1,E1,p), G2 = (V2,E2,p), the
function merдe (G1,G2) generates an uncertain graph G1,2 =

(V 1 ∪V2,E,p) where E = (V 1 ∪V2)
2 ∩ E0. The function pop will

pop up the queue’s head and delete it from the queue.

Discussion. We notice that the basic index has a fixed root,

that is, every time when the index is queried, we need to reach the

root. But every bag in the U-tree can serve as the root, meaning

the index retrieval can be done in any part of the tree. So when

the query node is far away from the root, the query time from

the basic index will become too high, because many bags are

required and the reduced subgraph will not decrease much in

size. U-tree overcomes this drawback but the index construction

time is increased. Therefore, we study whether there is any trade-

off and balance between the two indexes, and then we can enjoy

both the quick indexing and efficient querying. We answer this

question by graph locality. With the help of the history queries,

we can obtain the popular nodes whichmay be frequently queried

[18]. And with the help of graph locality, most k-NN queries will

be around these nodes. Then we can build multiple basic indexes

rooted on each popular node. Every time a query comes, it can

be assigned to an index with the smallest cost. In this way, the

cost of index updating is reduced and the query is accelerated.

5 EXPERIMENTAL EVALUATION
We now present the experimental results. We first describe the

datasets in Section 5.1, then introduce the competitors in Sec-

tion 5.2, and finally report the experimental results on indexing

cost, query time, time proportion, accuracy and generality in

Sections 5.3, 5.4, 5.5, 5.6, and 5.7 respectively.

5.1 Datasets
5.1.1 Real-world Graphs. We use six real-world datasets. Ta-

ble 6 reports their statistics. All datasets are transformed into

undirected uncertain graphs with meaningful probability distri-

bution on each edge. Note that PPI, DBLP and FBN have Bernoulli

distributions on each edge, whereas BJT has no limitation on the

type of the distribution on each edge, and they do not follow any

standard distributions [8].

For each uncertain graph, we calculate the diameter to better

show the size and density of the dataset. To calculate the diameter,

we ignore the probabilities and treat each uncertain graph as an

unweighted graph, and then find the largest SPD. For the dataset

with multiple connected components, we report the one with

the biggest diameter. We evaluate scalability of the indexing

framework by testing its performance when faced with datasets

with different size (see Table 6) and different density (See Table 7).

PPI5 We have two protein-protein interaction (PPI) networks

(PPIC, PPIK) [25]. We use these networks in which a node denotes

a protein and an edge denotes a possible interaction encoded with

a specific probability calculated from biology experiments, mean-

ing the existence confidence of this edge. Collins’s network PPIC

is the core dataset which is believed to have strong interactions

among the nodes [7]. Krogan’s network PPIK, however, contains

less reliable interactions and thus is bigger in size [20].

DBLP6 It is a subset of the co-authorship network. The nodes

denote the authors and if two authors have coauthored a paper,

there will be an edge between them.We follow the popular way of

generating co-authorship probability between two authors [19]. If

two authors coauthored c times, the probability is 1−e−c/µ on the
corresponding edge where smaller µ means smaller probabilities

in general. Following the trend [19], we adopt µ = 5which makes

the most edges with an existing probability around 0.05.

FBN7
The dataset called Facebook-like Social Network is from

an online community for students at University of California,

Irvine [26]. It includes the users who sent or received at least

one message. Each node denotes a user and if there are messages

between two users, there will be an edge. The probability on an

edge means the probability of the corresponding users having

an interaction. The method to generate the probability is same

as the method in DBLP but we set µ = 2 to make the most edges

with a probability around 0.4.

BJT8
The dataset is generated frommapping 15million Beijing

Taxi trajectories [39, 40] on a Beijing map with about 3 million

road segments (BJT) and 1 million road segments (BJTA, only

the arterial roads) respectively [33]. The probability distribution

on an edge means the speed distribution of the vehicles on the

corresponding road segment. It can be generated by analyzing

the trajectories [8]. Note that the diameters of BJT and BJTA is

obviously bigger than the other datasets, since long roads (tens

5
http://www.nature.com.eproxy1.lib.hku.hk/nmeth/journal/v9/n5/full/nmeth.

1938.html

6
http://www.informatik.uni-trier.de/~ley/db/

7
https://toreopsahl.com/datasets/

8
https://www.microsoft.com/en-us/research/publication/

t-drive-trajectory-data-sample/

188



Table 6: Statistics of Real-world Datasets.

Graph #Nodes #Edges Diameter Degree

PPIC 1,622 9,074 15 11.2

PPIK 3,672 14,317 10 7.8

FBN 22,016 58,595 10 5.3

DBLP 317,080 1,033,668 23 6.6

BJTA 426,196 946,434 3,851 4.4

BJT 1,285,215 2,690,296 10,529 4.2

Table 7: Statistics of Synthetic Datasets.

Graph #Nodes #Edges Diameter

S1 1,000,000 1,115,373 15

S2 1,000,000 1,672,561 15

S3 1,000,000 2,433,185 15

S4 1,000,000 3,128,529 15

S5 1,000,000 3,728,130 15

S6 1,000,000 4,213,833 15

of kilometers) will be separated into many road segments (ten

meters).

5.1.2 Synthetic Graphs. Given an unweighted graph, algo-

rithms from [4] can generate a graph with disturbances on the

edges and calculate a probability of existence for each edge. The

algorithm from [23] can encrypt a given weighted graph into an

uncertain graph encoded with a probability on each edge.

Herewe encrypt a synthetic graph generated from the Barabási-
Albert model [3], which is a widely used model to simulate real

graphs. To vary the density of the graph, we set the diameter as

15 but vary the number of the edges for each synthetic graph.

Then the unweighted graphs with different size are encrypted

by (20, 10−3)-obfuscation [4]. We use these graphs to test the

scalability of the indexes.

5.2 Competitors
In our experiments, we try to find the k-nearest neighbors for
100 randomly generated query nodes. We use three competitors:

Incremental k-NN (IKNN) from [30], RQ-tree reliability search

(RQRS) from [19], and the basic index (see Algorithm 1) adapted

from ProbTree indexing framework (PTI) [22].

We adapt PTI into a single-source version to deal with k-NN
queries. They have been discussed in the related works. IKNN is

popular in finding k-NN in the uncertain graphs, and RQRS is

the state-of-the-art probabilistic k-NN index based on reliability

search. PTI is the current indexing framework which can adopt

different decomposition methods and distance functions.

We implement the whole U-tree indexing framework in Java,

and run experiments on a machine having a 4-core Intel i5-3570

3.40GHz processor and 16GB of memory, with Ubuntu installed.

5.3 Evaluation on Indexing Cost
Here we evaluate the space cost and the index construction time

of U-tree, PTI and RQRS.

The space cost is composed by the tree structure and the dis-

tance distribution stored in the bags. From Figure 9, we see that

the U-tree index needs more memory since it stores more dis-

tance distributions into each bag, and RQRS needs more memory

because it stores the whole node set at each level of the tree index.

Compared with the query efficiency improvement in Figure 13,

Figure 9: Scalability Evaluation on index size and index
construction Time on real-world datasets (top) and syn-
thetic datasets (bottom).

we find that the extra memory cost in U-tree index is reasonable,

because the space cost rises 23% but the query time is 75% faster

on average.

We compare the time cost to construct each index in Figure 9.

To avoid affecting the comparison, here we only evaluate the

time to construct the tree index and the uncertain graphs are

assumed to be decomposed beforehand. Note that RQRS needs

to recursively perform balanced bi-partition clustering, which

can also be seen as a decomposition method.

To test the scalability of U-tree, we use the synthetic graph

with the graph anonymization technique. We vary the size of the

synthetic graph (see Table 7) and compare the index construction

time and index storage in Figure 9. Semilog is used on the y-axis
because of the big difference of the index size and construction

time when the number of nodes sharply changes. From the fig-

ure, we find the index construction cost of U-tree is linear to

the number of nodes in the uncertain graph. This shows good

scalability over uncertain graphs of different size.

5.4 Evaluation on Query Time
Here we evaluate the query time on six real-world networks and

six synthetic datasets. We use the popular probabilistic k-NN
algorithm IKNN [30] to show the efficiency of the query time

without index acceleration, and the ability of U-tree, PTI and

RQRS to speed up the searching. This comparison makes sense

because they all need to find the probability distribution among

nodes, which is the most expensive part in the algorithms.

In Figure 13, we vary the k value to see the changes of each

curve. For eachk value, we randomly pick 100 nodes as the source

nodes to initiate 100 probabilistic k-NN queries, and calculate

the average query time as the value on y-axis. We use semiloд
on the query time because of the wide range between different

methods.

From Figure 13, U-tree is superior to the other methods, and

the index based methods have a much smaller query time than

IKNN (about two magnitudes). However, the curve of RQRS and

that of PTI index twist together. This might be because both RQRS
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Figure 10: Proportion of (a) probability computation time
out of index construction time (b) index retrieval time out
of query time.

Figure 11: Comparison of (a) k-NN query in dr e and (b) k-
NN query in der on the U-tree from JSD, PCD and FWD.

and PTI construct a tree whose height h ∈ [10, 20] and they all

have to search on the tree from the leaves until reaching the

big root. These similarities make their retrieval time in the same

level. Also, the figures show good scalability of U-tree despite of

the dataset size and density.

5.5 Evaluation on Time Proportion
From Figure 10 we see that the Probability Computation Time

(PCT) takes the most part of the index construction time and

the Sampling Time (ST) takes the most part of the query time.

Note that the query time minus ST is the Index Query Time (IQT)

and the index construction time minus PCT is the Tree Structure

Construction Time (TSCT).

It makes sense because in the index construction period, to

calculate the distance distributions is required in both phase

one and phase two which asks for sampling the corresponding

subgraphs. Also, when we run the queries on the index, the bags

containing essential information are collected and then sample

the reduced uncertain subgraph.

Since bigger proportion of TSCT means more complex index

structure, e.g., a bigger tree height, and thus requires more time

to answer a k-NN query. Also, IQT is the time to be spent on

searching the index. The bigger proportion of an IQT, the bigger

probability that more bags are required to generate the uncer-

tain subgraph, thus making the query time unbearable. From

Figure 10, U-tree performs good when searching the index and

answering the k-NN queries.

Figure 12: Indexing framework accuracy evaluation.

5.6 Evaluation on Accuracy
In U-tree indexing framework, there are two parts that may cause

precision loss. The first part is the choice of decomposition meth-

ods. If a decomposition method which may lose information is

used, e.g., FWD withW > 2, the uncertain subgraph to be gen-

erated from searching the index will become not accurate, thus

making error in k-NN results. The second part is the sampling

method. Since sampling is a technique for approximate query

processing, it will lose information while accelerating the query-

ing process. In general, less sampling times will lead to bigger

error in the k-NN results.

Here we vary the FWD tree widthW and construct the corre-

sponding U-tree respectively. Then, we run k-NN query on these

U-trees with different pair of parameters (ϵ,δ ) in the sampling.

We set (ϵ,δ ) = (x ,x ) and vary x from 0.1 to 0.9.

The k-NN results are collected and compared with the k-NN
result from a baseline which simply runs big number of samplings

times to find the k-nearest neighbors on uncertain graphs. We

run the experiment on PPIC and PPIK and der is used. Here k is

set to 100 and the Mean Squared Error is reported.

From Figure 12, we see that the Mean Squared Error is general-

ly small even when the sampling parameters are setting in a bad

way, e.g., ϵ and δ are very near to 1. Especially, with parameters

below 0.25, we can achieve high accurate k-NN results even with

decomposition methods that may lose information.

5.7 Evaluation on Framework Generality
To show the generality of the indexing framework, we will use

another distance function and another decomposition method

to construct U-tree. We run two different k-NN queries on each

U-tree, i.e., the k-NN query which asks for the set of nodes with

top-k biggest reliabilities dr e from the query node, and the k-NN
query which asks for the k-nearest neighbors in Expected-reliable

distance der .
We use three different decomposition methods to construct

U-tree, i.e., JSD which can find the nodes and edges to divide

the graph into several partitions [33], PCD (see Figure 3(b)), and

FWD where we set the tree widthW = 2 [22].

We run this evaluation on DBLP. The results are collected

in Figure 11. We can see that the U-tree with PCD and the U-

tree with FWD are similar in performance,and PCD has a little

advantage over FWD for k-NN in dr e while FWD is better for

k-NN in der . The above two U-trees have significant advantage

over the U-tree with JSD, since JSD performs poor in capturing

hierarchical structure of an uncertain graph.
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Figure 13: Query efficiency comparison.

6 CONCLUSION
In this paper, we examine the k-NN query on uncertain graphs.

We first propose a generic index which can be built with several

uncertain graph decomposition methods. Then, based on this

index, we develop an efficient k-NN query algorithm, which

supports various probabilistic distance functions. Finally, we

evaluate the proposed indexing frameworks on both real and

synthetic large uncertain graphs. The experimental results show

that our index is effective and scalable to large graphs, and our

query algorithm is very efficient.

In the future, we will study how to efficiently maintain the

index for dynamic graphs, in which the nodes and edges are

inserted and deleted frequently. Another interesting direction is

to study how to extend the indexing framework for answering

k-NN queries on a distributed platform. The research on the

insight of the uncertain graph decomposition will be valuable,

since a better decomposition method will largely benefit the

index performance. We will also perform more experimental

evaluations on other real uncertain graphs.

A APPENDIX
In this appendix, we present the algorithm listing of the competi-

tors from the research literature.

Algorithm 4: Incremental k-NN (IKNN)

Input :uncertain graph G = (V ,E, P ,W ), query node

s ∈ V , sampling times r , distance increment γ , k
Output :k-NN result Tk

1 Tk ← ∅,D ← 0;

2 Initiate r executions of Dijkstra from s;

3 while |Tk | < k do
4 D ← D + γ ;

5 for i ← 1 to r do
6 Continue visiting nodes until reaching D by

Dijkstra;

7 for each node t ∈ V visited do
8 Update the distance distribution and get der ;

9 end
10 end
11 for node t < Tk do
12 if der (s, t ) < D then
13 Tk ← Tk ∪ {t }

14 end
15 end
16 end
17 return Tk ;
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Algorithm 5: RQ-tree reliability search (RQRS)

Input :uncertain graph G = (V ,E, P ), query node s ∈ V ,

sampling times r , k
Output :k-NN result Tk

1 Tk ← ∅;

2 Initiate RQ-tree based on binary clustering;

3 Compute the upper boundUout for each cluster C;

4 Generate the candidate set C∗;

5 Travel the clusters in RQ-tree in bottom-up until

C∗ ({s},η) = arg max

{S }⊆C,Uout ( {s },C )<η
Uout ({s},C );

6 Get the reduced graph G ′ by C∗;

7 Initiate r executions of DFS on G ′ from s;

8 Calculate the reliability and select the biggest top-k as Tk ;

9 return Tk ;

Algorithm 6: ProbTree indexing (PTI) (G)

Input :uncertain graph G = (V ,E, P ), query node s ∈ V ,

sampling times r , k
Output :k-NN result Tk

1 # Index construction:
2 Run Algorithm 1 to build the FWD tree withW = 2;

3 # Information Retrieval:
4 Tk ← ∅;

5 for v ∈ V do
6 Calculate der (s,v ) with the help of the FWD tree;

7 end
8 Put the k nodes with the top-k smallest der (s,v ) in Tk ;

9 return Tk ;
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ABSTRACT
Blocking is a fundamental step in entity matching (EM). Much
work has examined the design and runtime of blockers. However,
very little if any work has examined the problem of debugging
blocking accuracy. In practice, blockers’ accuracy can vary dras-
tically, and using an accurate blocker is critical for many EM
applications. To address this problem, we describe the Match-
Catcher solution. Given two tables to be matched and a blocker,
MatchCatcher �nds matches killed o� by the blocker, so that
the user can examine these matches to understand how well the
blocker does accuracy-wise and what can be done to improve
its accuracy. We show how to quickly �nd such matches using
string similarity joins, iterative user engagement, rank aggre-
gation, and active/online learning. Extensive experiments show
thatMatchCatcher is highly e�ective in helping users develop
blockers, can help improve accuracy of even the best blockers
manually created or automatically learned. MatchCatcher has
been open sourced and used by 300+ students in data science
class projects and 7 teams at 6 organizations.

1 INTRODUCTION
Entity matching (EM) �nds data instances referring to the same
real-world entity [6, 14], such as tuples (Dave Smith, San Fran-
cisco, CA) and (David Smith, S.F., CA). This problem is critical
for many Big Data and data science applications.

When doing EM, we often must perform blocking. Consider
for example matching two tables A and B. Real-world tables of-
ten have hundreds of thousands, or millions, of tuples. Trying
to match all tuple pairs in A ⇥ B is practically infeasible. So we
often perform a step called blocking which uses domain heuris-
tics to quickly drop many pairs judged obviously non-matched
(e.g., person tuples that do not have the same state). The next
step, called matching, matches the remaining pairs, using rule-
or learning-based techniques. Blocking can greatly reduce the
number of pairs considered in the matching step, drastically re-
ducing the total EM time. As a result, virtually all real-world EM
applications use blocking.

Numerous blocking methods have been developed [6]. For
example, hash blocking drops all tuple pairs that do not have the
same hash value, using a prede�ned hash function. This method is
popular because it is easy to understand and fast. Other methods
include sorted neighborhood, overlap, phonetic, rule-based, etc.
(see Section 2).

Given two tables A and B to match, we often want a blocker
Q that is fast, selective, and accurate. “Fastness” is measured by
the time to apply Q to A and B to produce a set of tuple pairs
C . “Selectivity” is typically measured as the ratio |C |/|A ⇥ B |.
“Accuracy” is typically measured as the fraction of true matches
surviving blocker Q , i.e., |M \ C |/|M |, where M is the set of
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(unknown) true matches in A ⇥ B. As such, it is also referred to
as recall.

In practice, blockers can vary drastically in recall, and using
a blocker with high recall is critical for many EM applications
(see Section 2). Yet today there is still no good way to develop
such blockers. For example, given the popularity of hash block-
ers, suppose we have decided to use a hash blocker Q on two
tables. While fast, Q may have low recall if the attribute values
to be hashed are dirty, misspelt, missing, or have many natural
variations (e.g., “New York”, “NY”, “NYC”). A common way to
address this problem is to use multiple hash blockers and take
the union of their outputs, to maximize recall. However, even in
this case, the recall can still be quite low. For instance, a recent
work [8] describes two real-world datasets where extensive ef-
fort at combining hash blockers achieves only 38.8% and 72.6%
recall. Such low recalls are simply unacceptable for many EM
applications. To improve recall, we can revise the current hash
blockers, replace some of them, or adding more blockers (of the
non-hash types). To do any of these, however, we need a way to
understand whether the current blocker has low recall, and if so,
then what the possible problems are, so that we can improve it.

The MatchCatcher Solution: In this paper we take the �rst
step toward solving the above problems. We describe Match-
Catcher, a solution to debug blocker accuracy. Given two tables
A and B to be matched and a blocker Q , MatchCatcher attempts
to �nd matches that are “killed o�” by Q , i.e., those that do not
survive the blocking step. We can examine these matches to see
if they are indeed true matches, and if so, then why they get
killed o� by Q . This tells us whether Q has low recall, and if so,
then how to improve it. The following example illustrates our
solution:

Example 1.1. Consider matching tables A and B in Figure 1.a.
Suppose a userU begins by creating a blocker Q1 that keeps only
tuple pairs sharing the same value for “City”. Figure 1.b shows
this blocker as Q1: a.Cit� = b .Cit�. (This is attribute-equivalence
blocking, a special type of hash blocking.) Applying Q1 to A and B
produces a set of tuple pairs C1 (see Figure 1.b).

User U wants to know if blocker Q1 kills o� too many true
matches. To answer this,U applies MatchCatcher, which operates
in iterations. In the �rst iteration, MatchCatcher shows the user n
tuple pairs judged most likely to be matches killed o� by Q1. These
pairs are listed on Figure 1.b, under “Debugger Output, Iter 1” (here
n = 3).

User U �nds that the �rst two pairs, (a1,b1) and (a3,b2), are
indeed true matches (shown in red color on the �gure). A closer
examination reveals that they do not survive blocking because their
“City” values do not match due to misspellings and abbreviation,
e.g., “Altanta” vs. “Atlanta”, “New York” vs. “NY”.

Next, U wants to know if there are any more true matches.
Toward this goal,U �ags the true matches in the �rst iteration (i.e.,
the above two pairs). MatchCatcher uses this feedback to �nd the
next n pairs judged most likely to be killed-o� matches, then shows
those pairs in the second iteration (see Figure 1.b, under “Iter 2”).
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Name City Age 
Dave Smith Altanta 18 

Daniel Smith LA 18 
Joe Welson New York 25 

Charles Williams Chicago 45 
Charlie William Atlanta 28 

Table A 

Name City Age 
David Smith Atlanta 18 
Joe Wilson NY 25 

Daniel W. Smith LA 30 
Charles Williams Chicago 45 

Table B 

a1 
a2 

a3 

a4 
a5 

b1 
b2 

b3 

b4 

First Blocker 
Q1: a.City = b.City 
C1 
(a2, b3) 
(a4, b4) 
(a5, b1) 

Debugger Output 
Iter. 1 Iter. 2 Iter. 3 
(a1, b1) (a5, b4) (a1, b4) 
(a3, b2) (a1, b3) (a2, b2) 
(a2, b1) (a1, b2) (a2, b4) 

Second Blocker 
Q2: a.City = b.City OR  
      lastword(a.Name) = lastword(b.Name) 
C2 
(a1, b1) (a4, b4) 
(a1, b3) (a5, b1) 
(a2, b1) 
(a2, b3) 

Debugger Output 
Iter. 1 
(a3, b2) … 
(a1, b2) 
(a1, b4) 

Third Blocker 
Q3: a.City = b.City OR 
      ed(lastword(a.Name), lastword(b.Name)) ≤ 2 

C3 
(a1, b1) (a3, b2) 
(a1, b3) (a5, b4) 
(a2, b1) (a5, b1) 
(a2, b3) (a5, b4) 

Debugger Output 
Iter. 1 
(a1, b2) … 
(a1, b4) 
(a2, b2) 

(a) 

(b) 

(c) 

(d) 

Figure 1: An example to illustrate MatchCatcher

U �nds no true matches in this iteration, as well as in the third
iteration.

At this point,U decides to stop looking formore killed-o�matches,
to focus on revising blocker Q1 to improve its recall. U observes
that the problem with pair (a1,b1), which disagree on “City”, can
be �xed by adding a new hash blocker that blocks on the last word
of “Name”, i.e., keeps a tuple pair if they agree on this word (which
is typically the last name). Figure 1.c shows Q2, the revised blocker,
which is the union of two hash blockers.

InvokingMatchCatcher for Q2 produces the list shown under
“Debugger Output, Iter 1” in Figure 1.c. This list shows that while the
new blocker Q2 successfully keeps (a1,b1), it still kills o� (a3,b2),
a true match. A closer examination reveals that this is due to a
mispelt last word: “Welson” vs. “Wilson”.

To �x such misspelling problems, U decides to keep a tuple
pair if the last words of “Name” are very similar, e.g., within an
edit distance of 2. This produces blocker Q3 in Figure 1.d. Here,
the hash blocker lastword (a.Name ) = lastword (b .Name ) has
been replaced by ed (lastword (a.Name ), lastword (b .Name )  2,
a more general blocker where 00ed 00 computes the edit distance.
Invoking MatchCatcher for Q3 brings back no true matches, even
after several iterations. Thus, user U stops, deciding to use Q3 as
the �nal blocker for A and B.

It is important to emphasize thatMatchCatcher works with
any of the current blocker types. Indeed, it requires as input only
the two tables A and B and the set C resulting from applying
the target blocker to the tables. MatchCatcher thus is blocker
independent. We intentionally designedMatchCatcher this way
to maximize its real-world applicability, i.e, to make sure that
no matter which blocker a user has created, he or she can use
MatchCatcher. Subsequent work will examine extendingMatch-
Catcher to exploit the particularities of a speci�c blocker type.

Further, MatchCatcher does not estimate the actual recall,
i.e., the fraction of matches surviving blocking. Doing so would
require it to know the set of true matches in A ⇥ B, which would
be solving the EM problem itself! Indeed, MatchCatcher does
not attempt to match A and B. Instead, its goal is to quickly �nd a
large set of plausible matches killed o� by the blocker and bring
them to the user’s attention, so that the user can examine them to
�nd true matches, get a sense about whether the blocker kills o�
too many such matches, and if so, what the problems are, so that

he/she can �x them. Section 6 shows that real-world users indeed
�ndMatchCatcher very helpful in answering these questions.

Challenges: While promising, developingMatchCatcher raises
di�cult challenges. First, we must quickly search the vast space
D = A ⇥ B �C (whereC is the blocker’s output) to �nd plausible
matches killed o� by the blocker, and we must do so without
materializingD. This search is further complicated by the fact that
at this pointMatchCatcher does not even know what it means
to be a match (only the user knows). To address these problems,
we observe that matching tuples tend to have similar values for
certain attributes (e.g., Name, City). So we convert each tuple into
a string that concatenates these attributes, e.g., converting tuple
a1 of Table A in Figure 1.a into “Dave Smith Altanta”. We then
perform a top-k string similarity join (SSJ) to �nd the k tuple pairs
with the highest score with respect to these strings, and output
these pairs as plausible matches. The state-of-the-art solution for
top-k SSJs [34] proves too slow for our interactive setting. So we
develop a new solution that is signi�cantly faster.

Second, to �nd as many plausible matches as possible, we need
to repeat the above procedure, but for di�erent sets of attributes
(e.g., �nd tuple pairs that are similar with respect to Name only,
City only, both Name and City, etc.). We cannot consider all
such sets, called con�gs, as there are too many. So we develop a
solution to �nd a good set of con�gs.

Third, we must perform multiple related top-k SSJs, one for
each con�g. This raises the challenge of how to perform them
jointly across the con�gs. We develop an e�cient solution that
perform them in parallel on multiple cores yet reuse computa-
tions across the joins.

Finally, top-k SSJs over the con�gs produce a large set E of
plausible matches (e.g., in the thousands). We cannot realistically
expect the user to examine all of these matches. So we develop a
solution that uses rank aggregation and active/online learning to
rank the pairs in E, show the top n pairs to the user, ask him/her
to identify the true matches, use this feedback to rerank the pairs,
and so on, until the user has been satis�ed or a stopping condition
is reached. In summary, we make the following contributions:

• We show that debugging blocker accuracy is critical for
EM.
• We describe MatchCatcher. As far as we know, this is
the �rst in-depth solution to address the above problem.
Our solution advances the state of the art in top-k string
similarity joins, and exploits active/online learning to ef-
fectively engage with the user.
• Over the past two years, MatchCatcher has been suc-
cessfully used by 300+ students in data science projects
and by 7 teams at 6 organizations. We brie�y report on
this experience. We also describe extensive experiments
showing that MatchCatcher is highly e�ective in helping
users develop blockers, and that it can help improve the
accuracy of even the best blockers manually created or
automatically learned.

2 DEBUGGING BLOCKER ACCURACY
In this sectionwe show that debugging blocker accuracy is critical
for EM, discuss the limitations of current solutions, then provide
an overview of theMatchCatcher solution.

Entity Matching (EM): This problem has received signi�cant
attention (see [6, 14, 30] for recent books and surveys). Many EM
scenarios exist, e.g., matching two tables, matching within a table,
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matching a table with a knowledge base, etc. [6]. In this paper,
as a �rst step, we will consider the common EM scenario that
matches two tablesA andB, i.e., �nds all tuple pairs (a 2 A,b 2 B)
that refer to the same real-world entity.

Types of Blockers: As discussed in the introduction, for large
tables A and B we typically perform EM by creating a blocker Q ,
applyQ toA and B to produce a relatively small set of tuple pairs
C , then apply a matcher to pairs in C . Over the past few decades
blocking has received much attention. The focus has been on
developing di�erent blocker types and scaling up blockers, e.g.,
[18, 22, 33] (see [7, 13] for surveys).

Many blocker types have been developed.MatchCatcherworks
with all of them. In what follows we brie�y discuss the most im-
portant types, as Section 6 experiments with many of them.

Well-known blocker types are attribute equivalence, hash, and
sorted neighborhood. Attribute equivalence (AE) outputs a pair
of tuples if they share the same values of a set of attributes
(e.g., blocker Q1: a.Cit� = b .Cit� in Figure 1.b). Hash block-
ing (also called key-based blocking) is a generalization of AE,
which outputs a pair of tuples if they share the same hash value,
using a pre-speci�ed hash function. For example, blocker Q2
in Figure 1.c combines the hash blocker lastword (a.Name ) =
lastword (b .Name ) and the AE blocker Q1. Sorted neighborhood
outputs a pair of tuples if their hash values (also called key values)
are within a pre-de�ned distance.

More complex types of blockers include similarity- and rule-
based [6, 8, 18]. Similarity-based blocking (SIM) is similar to AE, ex-
cept that it accounts for dirty values, misspellings, abbreviations,
and natural variations by using a predicate involving string simi-
larity measures, such as edit distance, Jaccard, overlap, etc. [36].
Examples include ed (lastword (a.Name ), lastword (b .Name ) 
2, a blocker which outputs tuple pairs where the last words of
their names have an edit distance of at most 2, and blocker
jaccard (a.title,b .title ) � 0.4, which outputs pairs of books
whose titles have a Jaccard similarity score of at least 0.4. Rule-
based blocking is perhaps most general. It outputs a tuple pair
satisfying a rule or a set of rules encoding domain heuristics, e.g.,
blocker Q3 in Figure 1.d consists of two rules. Such blockers can
be viewed as the union of multiple blockers, one per rule.

Other types of blockers include phonetic (e.g., soundex), su�x-
array, canopy, etc. (see [6, 14] for an extensive discussion).

E�cient Execution of Blockers: E�cient techniques have
been developed to execute the above blocker types, both on a
single machine and a cluster of machines (e.g., [8, 18, 22]). To
execute hash/AE blocking, we partition the tuples in A and B
into blocks, such that all tuples in each block share the same hash
value, then output only pairs of tuples that are in the same block.

To execute a SIM blocker, e.g., ed (lastword (a.Name ), lastword
(b .Name )  2, we build an index I (e.g., pre�x �ltering index
[36]) on the tuples inA, say. Next, for each tupleb 2 B, we consult
I to identify all tuples a 2 A such that the pair (a,b) can possibly
satisfy ed (lastword (a.Name ), lastword (b .Name )  2. We check
if (a,b) indeed satis�es this predicate, and if yes, then output
the pair. Many e�cient string indexing techniques [36] can be
used to implement SIM blockers. Recent work [8] has also dis-
cussed e�cient techniques (e.g., using indexing and MapReduce)
to execute rule-based blockers.

Accuracy of Blockers: Blocker accuracy is typically measured
using recall, de�ned as follows:

De�nition 2.1. [Blocker recall] Suppose applying blocker Q to
two tables A and B produces the output C . Let M ✓ A ⇥ B be the
(unknown) set of true matches between A and B, then recall (Q ) =
|M \C |/|M |.

Due to dirty data, misspellings, natural variations, synonyms,
missing values, etc., no single blocker type produces the highest
recall on all datasets. In fact, on any particular dataset, blockers
can vary drastically in recalls (e.g., 2.5-98.2% in our experiments).

Finding a blocker with high recall, however, is critical for
many EM applications. Counter-terrorism EM applications often
need very high coverage., i.e., �nding all person descriptions that
match, and thus want 100% blocking recall. Similar high-coverage
examples arise in fraud detection, e-commerce, law, medicine,
insurance, and pharmaceutical industry, among others. EM ap-
plications with inherently small numbers of matches naturally
do not want the blocker to kill o� many of these. Finally, EM
applications often compute statistics over the matches (e.g., the
percentage of patients attending both hospitals), which can be
seriously distorted by blockers with low recall.

Limitations of State of the Art: As a result, the topic of
blocker accuracy has received growing attention. Proposed so-
lutions include combining multiple blockers to maximize recall
(e.g., [12, 20, 22]), and using a sample of tuple pairs labeled as
match/no-match to learn blockers with high recall [2, 8, 18, 25].

While promising, these solutions can still produce blockers
with varying recalls, oftentimes falling short of 100%. For ex-
ample, a recent work [8] shows that extensive manual e�ort to
combine hash blockers achieves only 38.8% and 72.6% recall on
two datasets. (Obviously we cannot combine all possible blockers
as there are too many of them.) Another recent work [18] learns
blockers using samples labeled by crowdsourcing, but achieves
only 92% recall on a data set. In general, due to the di�culties
in obtaining a good sample, sampling �ukes, etc., today there is
still no guarantee that a blocker learned on a sample provably
achieves high recall when applied to the original tables.

Since there is still no “fool-proof” method to develop a blocker
with high recall, it follows that given a blocker Q (either created
manually or learned), it is still highly desirable to know how well
Q does recall-wise, and what the possible problems are, so that we
can improve it.MatchCatcher helps answer these questions, and
thus can be considered complementary to the above solutions. For
example, Section 6 describes a scenario where after the solution
in [8] had been used to learn a blocker, we appliedMatchCatcher
to this blocker and uncovered multiple problems, which can be
addressed to further improve the blocker recall.

Overview of MatchCatcher: As discussed, MatchCatcher
addresses the following problem:

De�nition 2.2. [Finding killed-o� matches] Let C be the output
of applying blocker Q to tables A and B. Then D = A ⇥ B � C
is the set of all pairs killed o� by Q . Help the user quickly �nd
as many true matches as possible in D (without materializing it).
Examining these matches helps the user understand how well Q
does recall-wise, and what can be done to improve its recall.

Figure 2 shows the architecture of MatchCatcher. Given two
tables A and B, the Con�g Generator examines the two tables
to generate a set of con�gs, each of which is a set of attributes
(e.g., {Name,Cit�}). For each con�g �, the Top-k SSJs module
performs a top-k string similarity join to �nd the k tuple pairs
that (a) have the highest score with respect to the attributes in �,
and (b) are killed o� by blocker Q . Note that to check Condition
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Top-k SSJs 

Match Verifier Matches in E 
Explanations 

User feedback 

Top-n pairs 

Config Generator Tables A, B 
Set of  
configs 

Set E of match 
candidates 

Output C of blocker Q 

Active/online learning 

Figure 2: The MatchCatcher architecture

(b), this module does not need to know Q . It only needs to know
C , the output of applying Q to A and B. Hence MatchCatcher
works independently of the blocker type.

The Top-k SSJs module sends all top-k lists (one per con�g)
to the Match Veri�er. This module uses a rank aggregator to
combine the lists into a single global list, shows the top n pairs
to user U , asks U to identify true matches, uses this feedback
together with active and online learning to rerank the pairs, and
so on, until U is satis�ed or a stopping condition is met. U can
examine the true matches to understand how well blockerQ does
recall-wise, and to obtain explanations for why these matches
are killed o�. This helpsU decide if Q should be revised, and if
so, then how. The next few sections describeMatchCatcher in
detail.

3 GENERATION OF CONFIGURATIONS
We now describe the Con�g Generator, which outputs a set of
con�gs, each being a set of attributes. We cannot consider all
possible con�gs, so the key challenge is to select a good subset of
con�gs. We show how to do so, by carefully managing attributes
with many missing values, few unique values, or long string
values.

3.1 How Con�gurations Are Used
We �rst motivate the notion of con�gurations (or “con�gs” for
short) and explain how they are being used. Later we build on
this to discuss how to select a good set of con�gs.

Recall that we want to quickly search D = A ⇥ B �C , the set
of tuple pairs killed o� by blocker Q , to �nd pairs that can be
matches. This raises three problems. First, D is not materialized,
we only have A, B, and C . Second, even if D is materialized, it
would be too large to search quickly. Finally, we do not even
know what to search for, since at this point MatchCatcher does
not know what a match is (only the user knows).

To address these problems, we begin by assuming that tables
A and B share the same schema S (extendingMatchCatcher to
the case of di�erent schemas is future work). We observe that
matching tuples tend to share similar values in a set of attributes,
say � (e.g., {Name,Cit�}). So we want to quickly �nd tuple pairs
in D that share similar values for � and return those as possible
matches.

To do so, we convert each tuple a inA into a string str� (a) that
concatenates the values of all attributes in �. For example, if a is
(David Smith, Atlanta, 43) and � = {Name,Cit�}, then str� (a) is
“David Smith Atlanta”. This converts TableA into a setA� of such
strings. We convert Table B into a set B� of strings similarly.

Let h(x ,�) be a string similarity measure which computes a
score in [0, 1] between two strings x and �. Examples of such
measures are Jaccard, cosine, overlap, edit distance, etc. [36]. Then
next we perform a top-k string similarity join (SSJ) between A�
and B� to �nd the k tuple pairs in A ⇥ B with the highest h(x ,�)
score. Techniques have been developed to quickly perform top-k

SSJs [34, 37]. Of course, our goal is not to �nd pairs in A ⇥ B, but
rather in D = A ⇥ B �C . We can modify the above techniques
slightly to ensure this, by dropping a found pair if it is in C . We
then return the k pairs in D with the highest h(x ,�) score as
possible matches.

The above procedure does not require a materialized D, only
tablesA,B, andC (the output of blockerQ). It can quickly searchD
using a modi�ed version of top-k SSJs to return possible matches.
Of course, at this point we still do not know if these are indeed
matches. But later we can work with the Match Veri�er to quickly
shift through them to �nd true matches, if any. We now discuss
several important aspects of the above procedure.

Why Concatenating the Attributes? We can use a variety of
methods to �nd tuples that share similar values for attributes in �,
e.g., �nding pairs that share similar values for each attribute in �,
then taking their intersection, say. However, given the interactive
nature of debugging, we want this step to be as fast as possible.
Hence we decide not to treat the attributes in � separately, but
concatenate all of them into a single string, then compare them
using SSJs. Section 4 shows that this method can quickly search
a very large set D. But a drawback is that we can return false
positives such as tuple pair (Jim Madison, Smithville, 32) and (Jim
Smith, Madison, 32), because their concatenated strings are very
similar given certain similarity measures. Such false positives,
however, can be “weeded out” in the Match Veri�er, using user
feedback and active/online learning (see Section 5).

Which String SimilarityMeasure to Use? Given that similar
attribute values can still vary signi�cantly (e.g., “Dave Smith” vs
“David Frederic Smith”), measures that treat strings as sets (e.g.,
Jaccard, cosine, etc.) typically work better than those that treat
strings as sequences of characters (e.g., edit distance) [9]. So for
MatchCatcher, we use the well-known Jaccard measure that
tokenizes two strings x and � into two sets of words Px and
P� , then returns |Px \ P� |/|Px [ P� | [34]. However, Theorem
4.2 shows that our solution can also work with other set-based
similarity measures, namely overlap, cosine, and Dice [34].

WhyMultiple Con�gurations? So far we have used just one
con�g � to �nd match candidates. Using multiple con�gs, how-
ever, can producemorematches. For example, con�g {Name,Cit�}
may not return the pair (David Smith, Seattle) and (Dave Smith,
Redmond) because the cities are di�erent. Con�g {Name} how-
ever can. Conversely, con�g {Name} may not return the pair
(Chuck Smith, San Francisco) and (Charles F. Smith, San Fran-
cisco) because the names are too di�erent, but con�g {Name,Cit�}
can. Together, these two con�gs can return more matches than
either of them in isolation. Generating a good set of con�gs
however is a major challenge, which we address next.

3.2 Generating Multiple Con�gurations
As a baseline, we can use all subsets of attributes in S (the schema
of A and B) as con�gs. But this generates too many con�gs even
for a moderate size (e.g., |S | = 8 produces 2 |S | � 1 = 255 con�gs).
We cannot use all of them because the total SSJ time would be
too high. So we must select a smaller set of con�gs.

To do so, we select a set of promising attributes in S , then use
them to generate con�gs, in a top-down fashion. In each step of
the process, we select which con�gs to generate next by carefully
considering the impact of attributes with many missing values,
few unique values, or long string values. The end result is a con�g
tree consisting of multiple con�gs. Later the Top-k SSJs module
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Figure 3: An example of generating con�g trees.

will traverse this tree to perform top-k SSJs on the con�gs in a
joint fashion. We now elaborate on these steps.

Selecting the Most Promising Attributes: We �rst classify
attributes in S as string, numeric, categorical, and boolean, using
a rule-based classi�er. Next, we drop numeric attributes (e.g.,
Salary, Price) because matching tuples still often di�er in their
values (e.g., the same product having di�erent prices). Finally,
we drop categorical and boolean attributes whose appearances
in tables A and B are di�erent. For example, if Gender has val-
ues {Male, Female} in A but {M, F ,U } in B, then we drop it as
these two sets share no value (in general if the Jaccard score of
these two sets is less than a pre-speci�ed threshold then we drop
the attribute). The remaining attributes are string, or categori-
cal/boolean but with similar sets of values. We return these as
T , the set of the most promising attributes to be used for con�g
generation. (Of course, the user can also manually curate schema
S to generate T . The experiments in Section 6 however do not
involve any manual curation.)

Generating a Con�g Tree: Given the set T of promising at-
tributes, we generate a con�g tree in a top-down fashion, then
return all con�gs in the tree. Speci�cally, we start with T as
the con�g at the root of the tree. Next, we “expand” this node
by removing each attribute from T to obtain a smaller con�g
of size |T | � 1. This produces |T | new con�gs, which form the
nodes at the next level of the tree. We then select just one node
at this level to “expand” further, and so on (we will discuss how
to select shortly). This continues until we have reached con�gs
of just one node. Figure 3.a shows an example con�g tree, as-
suming T = {n, c, s,d } (which stand for Name, City, State, and
Description, respectively).

Intuitively, this strategy ensures that we generate a diverse
set of |T |( |T | + 1)/2 con�gs of varying size |T |, |T | � 1, . . . , 1. The
con�g tree will also be used to guide the joint execution of top-k
SSJs on the con�gs (see Section 4.2). We now turn to the challenge
of how to select a node to expand in the con�g tree.

Managing Many Missing Values and Few Unique Values:
Consider again the con�g tree in Figure 3.a. Suppose we are
currently at the second level of the tree, and need to select one
node among the four nodes csd , nsd , ncd , and ncs , to expand.
This selection is equivalent to selecting an attribute to exclude
from subsequent con�g generation. Indeed, if we exclude attribute
s , then we select node ncd to expand (as shown in the �gure).
Otherwise if we exclude d , then we select the rightmost node ncs
to expand, and so on.

So which attribute should we exclude? We observe that if an
attribute has manymissing values, then keeping it for subsequent
con�g generation is not desirable, because we will end up with
con�gs that produce similar top-k lists. For example, suppose
we have selected con�g ncd to expand (as shown in Figure 3.a),
and suppose that d has many missing values, then many strings
for con�g ncd and con�g nc will be identical, potentially leading
to similar top-k lists. In the extreme case, if all values for d are

Name: Bryan Lee,  City: Austin,  State: TX, 
Desc: Joined in 8/2003, promoted to team lead 5/2005,  promoted to 
director of sales 4/2009. Currently on unpaid leave until 1/2013. 

Name: Bryan M. Lee,  City: Austin,  State: TX, 
Desc: Outstanding customer service record 03-05. Achieved sales of 
$2M/year 05-09. Shortlisted for VP of sales 2011. Shortlisted for VP 
of marketing 2012. 

Figure 4: Examples of tuples with long string attributes.

missing, then these two top-k lists are identical. Clearly, we want
di�erent con�gs to produce substantially di�erent top-k lists, to
avoid redundant work and to maximize the number of matches
we can retrieve.

Another observation is that if an attribute has more unique
values than another, e.g., c vs s (which stand for City and State,
respectively), then it is better to exclude s , the one with fewer
unique values, because intuitively, if two tuples agree on c , they
are more likely to match than if they agree on s , all else being
equal. Thus, to maximize the number of matches we can retrieve,
we should strive to keep the “more speci�c” attributes, i.e., the
ones with more unique values.

Combining the above two observations, we de�ne the e-score
(shorthand for “expected bene�t”) of an attribute as follows:

De�nition 3.1. [E-score of an attribute] Let nA ( f ) be the ra-
tio of the number of non-missing values of attribute f in A over
the number of tuples in A, and uA ( f ) be the ratio of number of
unique values of f in A over the number of non-missing values
of f in A. We de�ne nB ( f ) and uB ( f ) similarly. De�ne eA ( f ) =
2nA ( f )uA ( f )/[nA ( f ) + uA ( f )] and de�ne eB ( f ) similarly. Then
we de�ne the e-score of attribute f as e ( f ) = eA ( f )eB ( f ).

We then select the attribute with the lowest e-score to exclude
at each level of the con�g tree. For example, suppose e (n) >
e (d ) > e (c ) > e (s ). Then at the second level of the tree in Figure
3.a, we exclude attribute s , which means selecting node ncd to
expand. At the third level of the tree, we exclude c , which means
selecting node nd to expand.
Managing Long String Attributes: Many datasets contain
attributes with long string values, e.g., Comment, Desc, etc. Figure
4 shows two tuples where attribute Desc has such long values.
Such long attributes can cause two problems. First, they can cause
multiple con�gs to generate very similar top-k lists.

Example 3.2. Consider again the con�g tree in Figure 3.a. Sup-
pose attribute d has long string values (such as those shown in
Figure 4). Then all seven con�gs involving d can generate similar
top-k lists because the long values of d “overwhelm” the short values
of the remaining attributes. So when moving from a con�g involv-
ing d to another (e.g., from ncd to nd), the strings do not change
much, and therefore their similarity scores also do not change much
(we formalize this notion below), leading to similar top-k lists.

The second problem is that if the long string values are di�er-
ent for matching tuples, then a con�g involving this long attribute
will fail to return the match. For example, the two tuples in Figure
4 match, but any con�g involving attribute Desc will not return
this match, because the values for Desc here are very di�erent,
and so the score between the two tuples will be low.

To address this, we modify our con�g-tree generation proce-
dure as follows. Suppose we need to select a con�g node in the
tree to expand. Before, we select �def ault , the one without the
attribute with the smallest e-score. Now, we �rst run a procedure
FindLongA�r to see if there is any attribute that is “too long”
(i.e., likely to adversely a�ect selecting good con�gs). If such an
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Figure 5: Finding attributes judged too long.

attribute flon� exists, then we select the con�g without flon� to
expand. Otherwise we select �def ault , as usual.

Example 3.3. Consider again Figure 3.a, which shows the “de-
fault” con�g tree with root ncsd . To handle long attributes, once
we are at the second level, we do not automatically select ncd (the
con�g without s , the attribute with the smallest e-score) for expan-
sion. Instead, we run FindLongA�r at this level. Suppose it returns
d (thus judging d to be too long). Then we select ncs , the con�g
without d , for expansion. This produces new con�gs cs , ns , and
nc (see Figure 3.b). Suppose running FindLongA�r at the level of
these new con�gs returns no attribute. Then we select con�g nc
(the con�g without s , the attribute with the smallest e-score) for
expansion (see Figure 3.b).

We now explain procedure FindLongA�r. The key challenge is
to formalize what it means to be “too long”. Let p be a node in the
con�g tree. Suppose that when running the default con�g gener-
ation procedure (the one that does not consider long attributes),
we end up selecting q, a child node of p, for expansion, and that
we eventually generate a subtree Tq rooted at q (see Figure 5.a).

We say that an attribute f is too long if it “overwhelms” many
con�g nodes in subtree Tq , speci�cally if it overwhelms at least
half of the con�gs in F (Tq ), the set of con�gs inTq that contain f .
In turn, we say that f overwhelms a con�g r 2 F (Tq ) (see Figure
5.a) if the top-k list obtained from con�g r is “roughly the same”
as the top-k list obtained from con�g q (we formalize this below).
Intuitively, we want to avoid such cases, because we want each
con�g to return a di�erent top-k list, to maximize the number of
true matches that we will �nd. So if we �nd that f overwhelms
at least half of the con�gs in F (Tq ), then we judge f to be too
long and should be removed. That is, instead of selecting q for
expansion, we will select the con�g (in the same tree level as q)
that does not contain f .

Of course, we do not have access to the top-k lists of r and
q. So we develop a condition which if true would suggest that
the two lists are “roughly the same”. Speci�cally, let sim� (a,b) =
h(str� (a), str� (b)) be the string similarity function between the
string values of two tuples a and b, for con�g �. Suppose that for
all tuple pairs (a,b) in D = A ⇥ B �C we have

Condition 1 : |simq (a,b) � simr (a,b) |/simq (a,b)  � ,

for a small pre-speci�ed � value, say 0.2. Then we can say that
when we switch con�g from q to r , the score of each tuple pair
does not change much, so the top-k list for r will stay roughly
the same as that of q.

Checking Condition 1 for all pairs (a,b) in D is not feasible.
Hence we perform a theoretical analysis for an idealized scenario
(described below). Of course, this idealized scenario rarely hap-
pens in practice. But understanding it helps us come up with an
e�cient heuristic to check Condition 1.

Let Lf (a) be the length (i.e., the total number of words) of
attribute f in tuple a, Lq (a) be the sum of the lengths of all
attributes in q, for tuple a, and so on. The idealized scenario

assumes that (a) attribute f takes the same proportion of the total
length of q in both a and b, i.e., Lf (a)/Lq (a) = Lf (b)/Lq (b) = � ,
and (b) the remaining length of q is equally distributed among
the remaining attributes of q, i.e., Lk (a) = [(1�� )Lq (a)]/( |q |�1)
for all attribute k in q � { f }, and the same condition applies to
tuple b.

Example 3.4. Consider the two tuples a andb in Figure 5.b, where
q = {u,�,w, f } and r = {w, f }. We assume that Lf (a)/Lq (a) =
Lf (b)/Lq (b) = � , andLu (a)/Lq (a) = L� (a)/Lq (a) andLu (b)/Lq (b)
= L� (b)/Lq (b).

Then we can show that (see [24] for a proof sketch):

T������ 3.5. Let a 2 A and b 2 B be two tuples that satisfy
the above assumptions. If

• (R1) simq (a,b) � [
p
(1 + � )2 + 8 � (1 + � )]/4, and

• (R2) � � 1 � ( |q |�1)
|q\r | ·

�
(1+� ) ·

max {Lq (a),Lq (b ) }
Lq (a)+Lq (b )

,

then pair (a,b) satis�es Condition 1.

Intuitively, this theorem says that if simq (a,b) is su�ciently
high (Requirement R1), and attribute f is su�ciently long (Re-
quirement R2), then simr (a,b) will be close to simq (a,b). It is
not di�cult to show that the quantity on the right-hand side of
R1 is upper bounded by 0.5. In practice, we observe that users
typically examine only the top few tens of pairs in each top-k
list (see Section 5), and that if these pairs are true matches, their
scores often exceed 0.5, making R1 true. As a result, if R2 is also
true, then attribute f is long enough to “overwhelm” these pairs.
That is, these pairs will change little score-wise when switching
from con�g q to r , thus typically will still show up in the top few
tens of pairs of the top-k list for r , an undesirable situation.

To avoid such situations, we will focus on checking R2. Check-
ing R2 for many pairs (a,b) is not practical. So we approximate
this checking using average lengths, i.e., we (a) replace � in the
left-hand side of R2 withmin{ALf (A)/ALq (A),ALf (B)/ALq (B)},
where ALf (A) for example is the average length of attribute f in
Table A, and (b) replace Lq (a) and Lq (b) in the right-hand side
of R2 with ALq (A) and ALq (B), respectively.

Procedure FindLongA�r then works as follows. Suppose we
have selected con�g q for expansion (because it does not contain
s , the attribute with the least e-score). Then for each attribute
f (other than s), we (a) identify F (Tq ), the set of con�gs in Tq
that contain f , (b) declare f “too long” if the above approximate
checking is true for at least half of the con�gs r 2 F (Tq ). It is not
di�cult to prove that at most one attribute f will be found too
long. If so, we do not select q, but select instead the con�g that
does not contain f for expansion. Otherwise, we select q, as usual.
This procedure takes less than a second in our experiments.

Discussion: Note that we do not completely remove attributes
with many missing values, few unique values, or long values
from con�g generation. Instead, each such attribute f may be re-
moved only at some point during the generation process. Con�gs
generated earlier still contain f .

Further, our work here is related to, but very di�erent from
work such as [3, 10]. Those works �nd attributes that are discrim-
inative for classi�cation, often using a labeled sample (as many
works in learning do). Here we do not look for discriminative
attributes. Instead, we look for attributes such that if two tuples
agree on their values, then they are likely to match. For exam-
ple, suppose all tuples in table A have the same value “US” for
“Country”, and all tuples in table B have the same value “Canada”.
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Then “Country” is a discriminative attribute because if two tu-
ples disagree on it, they de�nitely do not match. For our purpose,
however, “Country” has little expected bene�ts, because if two
tuples agree on it, it is still not likely that they match (not as
much as if they agree on “State” and “City” say).

In fact, the work [29] also treats attributes with missing values
and few unique values in a way similar to ours (for blocking
and matching). However, it does not handle long attributes, and
uses only one con�g, and thus is signi�cantly outperformed by
MatchCatcher (see Section 6).

4 TOP-K STRING SIMILARITY JOINS
So far we have discussed generating a set of con�gs. We now
discuss performing top-k SSJs over these con�gs (one per con�g).
Previous work has discussed top-k SSJs for a single con�g [34].
Here we signi�cantly improve that work (and our solution can
be applied to top-k SSJ situations beyond this paper). We then
discuss executing multiple top-k SSJs jointly, by reusing results
across the con�gs, in a parallel fashion.

MatchCatcher currently works with the Jaccard string similar-
ity measure, and we will explain it using that measure. However,
it is important to note that all algorithms discussed below also
work with the set-based similarity measures cosine, overlap, and
Dice.

4.1 Improving Top-k Join for a Single Con�g
As far as we can tell, the state of the art in top-k SSJs is TopKJoin
[34]. Given a set � of strings, TopKJoin �nds the k string pairs
with the highest similarity scores, for a pre-speci�ed k , in a
branch-and-bound fashion. Speci�cally, it maintains a pre�x for
each string in � , incrementally extends these pre�xes, �nds string
pairs whose pre�xes overlap, computes their similarity scores,
use these scores to maintain a top-k list, then extends the pre�xes
again, and so on.

Example 4.1. Suppose � consists of the four stringsw,x ,�, z in
Figure 6.a. We begin by creating a pre�x p (w ) = “a” forw , then a
pre�x p (x ) = “a” for x . At this point the pre�xes of the pair (x ,w )
overlap. Hence we compute the Jaccard score 0.8 for this pair, then
initializes the top-k list K to be containing just this pair. (Here we
assume k = 2.)

Next, we create pre�x p (�) = “b”. This does not produce any
new pair whose pre�xes overlap. So we continue by creating pre�x
p (z) = “b”. This produces a new pair whose pre�xes overlap: (z,�)
with score 0.43. Figure 6.b shows the updated top-k list K .

Next, we select one pre�x to extend (we will discuss shortly how).
Suppose we select p (x ) and extend it by one token. Then p (x ) = “ab”
(see Figure 6.a). This produces two new pairs whose pre�xes overlap:
(x ,�) with score 0.67 and (x , z) with score 0.43. Figure 6.c shows
the updated top-k list K . We then select another pre�x to extend,
and so on. Finding new pairs with overlapping pre�x can be done
e�ciently using an inverted index from token to the pre�xes of the
strings [34].

We now discuss how to select a pre�x to extend. Suppose
we have imposed a global ordering on all tokens, and sorted
the tokens in each stringw,x ,�, z in that order (see Figure 6.a).
Suppose also that we have created pre�xes of size 1, namely
p (w ) = “a”,p (x ) = “a”,p (�) = “b”,p (z) = “b”, and are now
deciding which pre�x to extend. Suppose we select p (w ) and
extend it by one token, to be “ab”. Then it is easy to show that
the scores of all new pairs generated by this extension are capped
by 0.75. Indeed, any new pair must involve w . Let such a pair

a b c e a b c e b c d e b c f gf f hw x y z 
0.75 0.8 0.6 0.8 0.8 

s(x,w) = 0.8 
s(z, y) = 0.43 

s(x,w) = 0.8 
s(x, y) = 0.67 

(a) 

(b) (c) 

Figure 6: An illustration of top-k computation.

be (w,� ). Then the �rst common token that they share should
be “b” (the token just being added to p (w )). So they can share at
most this token b and the remaining “unseen” tokens ofw . Thus
|w \� |  3. Since |w [� |  |w | = 4, it follows that the Jaccard
score of (w,� ) is capped by 3/4=0.75. We write 0.75 on top of
token “b” inw to indicate that when we extend p (w ) to include
this token, the score of any new pair generated by TopKJoin will
be capped by 0.75. Similarly, we can write 0.8 for the second
tokens of x , �, z (see Figure 6.a).

We then select the pre�x that when extended will include the
token with the highest “cap” number (in the hope that it will
generate new pairs with the highest possible scores). In this case,
we select p (x ) (but p (�) and p (z) also work).

We now discuss how to stop. Observe that the “cap” number for
“c” in x is 0.6. By the time we have to consider whether to extend
p (x ) to include “c”, the top-k list already has a lower-bound score
of 0.67 (see Figure 6.c), greater than 0.6. As a result, we do not
have to extend p (x ) to include “c”, and in fact, pre�x extension
on x can be stopped at this point. TopKJoin terminates when all
pre�x extensions have stopped, either early (as described above)
or because the pre�x has covered the entire string. The paper [34]
describes TopKJoin in detail, including optimizations to avoid
redundant computations.

The QJoin Algorithm: TopKJoin has a major limitation. Every
time it generates a new pair (u,� ), it immediately computes the
similarity score of (u,� ) (then updates the top-k list). Computing
this score turns out to be very expensive, especially if u and �
are long strings. In a sense, it is also “premature”, because it can
be shown that when we generate (u,� ) (as a new pair), we only
know that they share a single token. There is no evidence yet
that they share more tokens and thus are likely to have high
similarity score. If they indeed share only one or few tokens, and
yet we still compute their score, then that score is likely to be
low. So the pair will not make it into the top-k list, yet we have
wasted time computing it score.

To address this problem, when generating new pairs, we do
not immediately compute their scores. Instead, we keep track of
the number of common tokens each pair has, and update this
number whenever a pre�x is extended. We then compute the
score of a pair only if it has q common tokens, and thus is likely
to have a high score. It is di�cult to select q analytically, so we
select it empirically as follows. Assuming at least four CPU cores,
we begin by running the modi�ed TopKJoin for q = 1, q = 2, etc.,
on all cores, one q value for each core, for k = 50. (Note that
TopKJoin always does q = 1.) Then whichever core �nishes �rst,
we keep the process on that core running to produce the rest of
the top-k list (e�ectively selecting the q value associated with
that core), and kill the processes on the other cores.

It is straightforward to adapt the above algorithm to work
with two tables (instead of just one), and to remove a pair from
the top-k list (during the top-k computation) if it happens to be
in the candidate setC . Henceforth we refer to this new algorithm
as QJoin.
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Figure 7: Reusing across top-k computations.

4.2 Joint Top-k Joins Across All Con�gs
TopKJoin can only be applied to a single con�g [34]. Our setting
however involves multiple related con�gs. We now describe a
solution to �nd top-k lists jointly across the con�gs. To do so, we
use QJoin, but modify it to reuse similarity score computations
and top-k lists across the con�gs, and process the con�gs in
parallel.
Reusing Similarity Score Computations: As discussed in
Section 4.1, computing the similarity score of a pair (a,b) is very
expensive, especially for long strings. Hence, we want to reuse
such computations across the con�gs. To do so, we process the
con�gs in the con�g tree in a breadth-�rst order, e.g., processing
the root con�g f1 f2 f3 of the con�g tree in Figure 7 (where the
fi -s are attributes), then the next-level con�gs, f2 f3, f1 f3, f1 f2,
and so on.

When processing a con�g � (i.e., �nding its top-k list), we
keep track of certain information, then reuse it when process-
ing con�gs in the subtree of �. For example, consider again the
con�g tree in Figure 7. We start by tokenizing the strings wrt
the root con�g f1 f2 f3 into multisets of word-level tokens. Next,
we process the con�g f1 f2 f3. This process computes the Jaccard
score of multiple tuple pairs. When computing the score of such
a pair, say (a,b), we compute and store the number of overlap-
ping tokens between any two attributes fi of a and fj of b in
an in-memory database H . Figure 7 illustrates this step. Here,
o( f1, f1) = 2means attributes f1 of a and f1 ofb share two tokens.
(We only store in H attribute pairs that share tokens.)

Thenwe can reuseH to drastically speed up processing con�gs
in the subtree rooted at f1 f2 f3. For example, consider processing
con�g f1 f2. If during this process we need to re-compute the
score of (a,b) (now with respect to only f1 and f2), then we
can use H to compute O�erlapf1f2 (a,b) = o( f1, f1) + o( f1, f2) +
o( f2, f1) + o( f2, f2), then compute the above score as

O�erlapf1f2 (a,b)/(Lf1f2 (a) + Lf1f2 (b) �O�erlapf1f2 (a,b)),
where Lf1f2 (a) for instance is the length in tokens of the concate-
nation of f1 and f2 for a. Computing the score of (a,b) this way
is far faster than computing from scratch.

Note that while processing con�g f1 f2, if we have to compute
the score of a new pair (c,d ) not yet in H , then we will store
similar overlap information for (c,d ) in H , to enable reuse when
processing con�gs in the subtree rooted at f1 f2, and so on.
Reusing Top-k Lists: When applying to a con�g �, algorithm
QJoin starts with an empty top-k list K , then gradually grows
K as it iteratively expands the pre�xes. In our setting, however,
since we process multiple con�gs, a promising idea is to use the
top-k list of a previous con�g to initialize the top-k list of the
current con�g.

For example, after processing con�g � = f1 f2 f3 (Figure 7), we
store its top-k list K� . Then when processing con�g h = f1 f2,
we use the database H described earlier (which stores overlap
information) to re-adjust all scores in K� . This is necessary be-
cause these scores are computed wrt f1 f2 f3, but now we want

them to be adjusted to consider only f1 f2. This re-adjustment
is fairly straightforward (and inexpensive) because the overlap
information for all pairs in K� should already be in H . Next, we
run the algorithm QJoin as usual to process con�g h = f1 f2, but
using the K� list with the adjusted scores as the initial top-k list
Kh (instead of using an empty list).

Observe that the above procedure enables reusing top-k lists
from a parent to a direct child (e.g., from f1 f2 f3 to f1 f2). Reusing
across the “siblings” appears much more di�cult. For example,
given the top-k list for f1 f3, there is no obvious way to quickly
adjust its scores for f1 f2, using database H . Hence, currently we
do not yet consider such sibling reuse.

Finally, reuse does not come for free. It helps avoid computing
certain similarity scores from scratch, but incurs an overhead of
storing and looking up the overlap information. If the tuples are
short, then the overhead can easily overwhelm the savings. As a
result, we trigger reuse only if the average tuple length is at least
t tokens (currently set to 20).
Parallel Processing of the Con�gs: Finally we explore par-
allel processing on multiple cores. (We consider multicore single
machines for now because it is a common setting for many do-
main science users [19].) An obvious idea is to process each con�g
across multiple cores. For example, we can split Table A into two
halves A1 and A2 and Table B into B1 and B2, �nd the top-k list
for A1 and B1 on the �rst core, the top-k list for A1 and B2 on
the second core, etc., then merge the top-k lists. In practice, this
approach su�ers from severe skew: one core �nishes quickly
while another runs forever. While it is possible to split the tables
intelligently to mitigate skew, this adds considerable overhead
and implementation complexity.

As a result, we opted for processing one con�g per core. Specif-
ically, we traverse the con�g tree breadth-�rst, and assign con-
�gs to cores in that order (when a core �nishes, it gets the next
con�g “in queue”). This solution continuously utilizes all cores.
But it raises two problems. First, two con�gs (e.g., f1 f2 f3 and
f1 f2) may concurrently write, or one reads and the other writes,
into database H , causing concurrency control issues. To address
concurrent writes, observe that only con�gs with non-empty
subtrees (e.g., f1 f2 f3 and f1 f2 in Figure 7) will write. For each
such con�g �, we require it to write into a separate in-memory
database H� .

To address dirty reads (e.g., f1 f2 f3 writes into a database while
f2 f3 reads from it), we note that here each “write” just inserts
a value; it never modi�es or deletes. For such cases there are
atomic hashmaps that perform atomic inserts, thus avoiding dirty
reads. So we implement each database H� as one such hashmap
(using the Atomic Unordered Hashmap in Facebook’s C++ Folly
package).

Finally, if a parent con�g, e.g., � = f1 f2 f3, has not yet �nished,
then a direct-child con�g, h = f1 f2, cannot reuse �’s top-k list. In
such situations, we start con�g h with an initial empty top-k list.
When con�g� �nishes, it sends its top-k list toh. Con�ghmerges
its current top-k list with the new top-k list from �, to obtain a
potentially better top-k list, then continues. The technical report
[24] shows the pseudo code of the complete algorithm, and the
following theorem shows its correctness (see [24] for a proof
sketch):

T������ 4.2. Given two tables A and B, the output C of a
blocker on A and B, a set of con�gs G, a string similarity measure
which is Jaccard, consine, overlap, or Dice, and a value k , the above
algorithm returns a set of top-k lists, where each top-k list is the
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output of applying Algorithm QJoin to A,B, and C , using a con�g
� 2 G and the given similarity measure and k value.

5 INTERACTIVE VERIFICATION
So far we have discussed processing con�gs to obtain a set of
tuple pairs. We now discuss identifying true matches in this
set, via user engagement, rank aggregation, and active/online
learning.
Engaging the User: Let E be the union of the top-k lists ob-
tained from processing all con�gs. Typically E is large (e.g., 3,011-
7,089 in our experiments) and the true matches make up just a
small portion of E. Thus expecting a userU to be able to examine
the entire set E to �nd true matches is unrealistic.

A reasonable solution is to rank the pairs in E such that the
true matches “bubble” to the top, then present the ranked list to
U . However, our experiments with a variety of ranking methods
(see below) suggest it is very di�cult to do so. Typically, the top
of the ranked list indeed contains multiple matches. But then the
remaining matches tend to be scattered far and wide in the list.

As a result, we decided to engage user U : we rank the pairs
in E, present the top-n pairs to U (currently n = 20), ask U to
identify the true matches, use this feedback to rerank the list,
then present the next top-n pairs toU , and so on. As such, we help
U iteratively identify true matches, but use this identi�cation to
help “bubble” the remaining matches to the top of the ranking.
Using Rank Aggregation: Let m be the number of con�gs
and L1, . . . ,Lm be the top-k lists obtained from these con�gs. To
engage userU , we �rst need to aggregate these lists into a single
list. Many aggregation methods exist, e.g., [4, 15]. Here we use
MedRank [15], a popular method. To use MedRank, we �rst sort
each list Li in decreasing order of score, then associate each item
in the list with a rank, i.e., an integer, such that the higher the
score, the lower the rank and items with the same score receive
the same rank. Next, we compute for each item a global rank
which is the median of its ranks in the lists. Finally, we sort the
items in increasing order of global rank, breaking ties randomly,
to obtain a list L⇤ which is the aggregation of all top-k lists Li -s.

Example 5.1. Figure 8 shows three top-k lists L1,L2,L3 and the
global list L⇤. A line such as “a: 1.0 (1)” under L1 means that item
“a” in list L1 has score 1.0 and has been assigned rank 1. The ranks
for “a” is 1, 1, 2 (see Figure 8). So its global rank is 1. The ranks for
“b” is 2, 4, 1 (here “b” is missing from L2, which has ranks 1-3; so we
assign to it rank 4). Thus “b”’s global rank is 2. And so on.

Once we have obtained the global list L⇤, we can present the
top-n items of L⇤ to user U . But how do we incorporate the user
feedback for the next iteration? A reasonable solution is to use
weighted median ranking (WMR): we �rst assign an equal weight
wi = 1/m to each top-k list Li (i 2 [1,m]). At the end of the �rst
iteration, we adjust wi = wi · [1 + lo�(1 + ri )], where ri is the
number of true matches user U has identi�ed that appear in Li ,
then normalize all weightswi . At the start of the next iteration,
we merge the lists L1, . . . ,Lm again, using WMR to compute the
global rank of each item. Next, we present the top-n pairs in this
merged list to the user, and so on. Intuitively, the top-k lists in
which more true matches appear will become more important,
and the weighted global ranking will be “leaning toward” those
lists.
Using Learning: WMR does not perform well in our experi-
ments (see Section 6). It uses a very limited combination model

a: 1.0 (1) 
b: 0.8 (2) 
c: 0.8 (2) 
d: 0.6 (4) 

a: 0.9 (1) 
c: 0.7 (2) 
d: 0.6 (3) 

b: 0.8 (1) 
a: 0.5 (2) 
c: 0.3 (3) 
d: 0.2 (4) 

L1 L2 L3 
    a (1) 
    b (2) 
    c (2) 
    d (4) 

L * 

Figure 8: Combining top-k lists using MedRank.

which fails to fully utilize user feedback. To address this, we ex-
plored active learning. Speci�cally, we iteratively show the next
n items of L⇤ to userU , until we have obtained at least one match
and one non-match. Suppose we have carried out t iterations,
then this produces a setT of nt labeled items. We useT to train a
random forest classi�er F , use F to �nd n most informative items
in L⇤, show them to the user to label, add the newly labeled items
to T , then retrain F , and so on.

Active learning alone however is not quite suited for our pur-
pose. Its goal is to learn a good classi�er as soon as possible.
Hence it typically shows user U controversial items that it �nds
di�cult to classify. But many or most of these items can be non-
match. UserU , however, wants to �nd many true matches as soon
as possible (so thatU can examine them to quickly understand
the problems with the blocker).

The above two goals con�ict. To address this problem, we
adopt a hybrid solution. After we have obtained the training setT
and trained a classi�er F , as described above, for the next iteration,
we show userU n items where n/4 items are the top controversial
items chosen by F , as described above. The remaining 3n/4 items
however are those with the highest positive prediction con�dence,
where the con�dence is computed as the fraction of decision
trees in F that predict the item as a match. Intuitively, the �rst
n/4 items are intended to help the active learner, whereas the
remaining 3n/4 items can contain many true matches, and are
intended to help the user quickly �nd many true matches in the
�rst few iterations.

After three such iterations, we stop active learning completely
(judging that classi�er F has received enough labeled contro-
versial examples in order to do well), but continue the online-
learning process with F . Speci�cally, in each subsequent iteration,
we show user U the top n items with the highest positive pre-
diction con�dence, produced by F . Once these items have been
labeled byU , we add them to the existing training set, retrain F ,
and so on.
When to Stop? A natural stopping point is when userU �nds
no newmatches in 2 consecutive iterations. Of course,U can stop
earlier or continue. If the required blocker recall is very high,U
can continue for many iterations. Otherwise, U can stops after
the �rst few iterations (because if these iterations contain many
matches, then examining them often already reveals problems
with the blocker, whichU can then �x).

6 EMPIRICAL EVALUATION
We evaluated MatchCatcher in three ways. First, we experi-
mented with a broad range of blockers that vary in recall, types,
and complexity, representing blockers that users may write at
various points during the blocker development process. We show
that MatchCatcher works well with these blockers, thus can
e�ectively support the users in the development process.

Second, we experimented with blockers that are either the
best hash blockers manually developed or the best blockers auto-
matically learned using a state-of-the-art solution. We show that
even in these cases MatchCatcher can help uncover problems
and improve the blockers.
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Dataset Tuple type Table A Table B # of 
matches

# of 
attrs

Average 
length

Amazon-Google software product 1363 3226 1300 5 205, 38
Walmart-Amazon electronic product 2554 22074 1154 7 76, 179

ACM-DBLP paper 2294 2616 2224 5 16, 19
Fodors-Zagats restaurant 533 331 112 7 11, 10

Music1 song 100000 100000 2978 8 9, 9
Music2 song 500000 500000 73646 8 9, 9
Papers paper 455996 628231 unknown 7 17, 18

Table 1: Datasets for our experiments.

Dataset Blocker Q 

A-G (OL) title_overlap_word<3  (HASH) attr_equal_manuf  (SIM) title_cos_word<0.4 
(R) title_jac_word<0.2 AND manuf_jac_3gram<0.4 

W-A (OL) title_overlap_word<3  (HASH) attr_equal_brand   (SIM) title_cos_word<0.4 
(R) price_absdiff>20 OR title_jac_word<0.5 

A-D 
(OL) authors_overlap_word<2 (SIM) title_jac_3gram<0.7 
(R1) title_cos_word<0.8 AND authors_jac_3gram<0.8 
(R2) year_abs_diff>0.5 OR title_jac_word<0.7 

F-Z (OL) name_overlap_word<2  (HASH) attr_equal_city  (SIM) addr_jac_3gram<0.3 
(R) (name_cos_word<0.5 AND type_jac_3gram<0.7) OR addr_jac_3gram<0.3 

M1 
(OL) artist_name_overlap_word<2  (HASH) attr_equal_artist_name 
(SIM) title_cos_word<0.5  (R) year_absdiff>0.5 OR title_cos_word<0.7 

M2 
(HASH1) attr_equal_artist_name (HASH2) attr_equal_release_OR_attr_equal_artist_name 
(SIM1) title_cos_word<0.6 (SIM2) title_cos_word<0.7 (SIM3) title_cos_word<0.8 

Table 2: Blockers for the �rst set of experiments.

Finally, we asked real-world users in several data science
classes, domain science projects, and at several organizations
to useMatchCatcher. We show thatMatchCatcher has proven
highly e�ective in helping these users develop blockers.

6.1 Supporting Users in Developing Blockers
For this experiment we need “gold” matches, so we use the six
datasets shown in the �rst six rows of Table 1. As far as we can
tell, these datasets are the largest ones used in previous EM work
for which “gold” matches are available. Here we created two
versions of the Music dataset, Music1 and Music2, to ensure a
diversity of size (from 331 to 100K to 500K of tuples per table).
The technical report [24] describes these datasets in details.

For each dataset we asked volunteers to create multiple block-
ers (see Table 2). They are of the types described in Section 2: over-
lap (OL), hash (HASH), similarity-based (SIM), and rule-based
(R). For example, the �rst row of Table 2 describes 4 blockers for
dataset A-G. These include a hash blocker on attribute “manufac-
turer” and a rule-based blocker that combines two SIM blockers.
See [24] for more details on these blockers. (The next subsec-
tion describes experiments with the best hash blockers manually
created for these datasets.)

Developing a blocker is typically a long process in which users
often start with a simple blocker, then revise it into more com-
plex ones with higher recall. The above blockers di�er in type,
recall, and complexity, representing blockers that users maywrite
at various points during the above process. We now show that
MatchCatcher can help debug these blockers, suggesting that it
can support the user during the entire development process.
Overall Accuracy: First we examine the top-k SSJs module. The
�rst two columns of Table 3 list datasets and blockers. ColumnC
lists the size of C , the output of the blocker on Tables A and B.
ColumnMD lists the number of true matches in D = A ⇥ B �C .
This number varies drastically, e.g., 137-1,267 for A-G, 87-566 for
W-A, etc., suggesting that blocker recall often varies widely and
that it is important to debug to improve recall.

Column E lists the size of E, the union of all top-k lists over
the con�gs (for k = 1000). ColumnME lists the number of true
matches in E (the numbers outside parentheses), and shows that
set E contains a substantial fraction of true matches in D, e.g.,
54-65% for A-G, 41-83% for W-A, 96-100% for A-D, etc. (see the

Q C MD E ME F I

A-G

OL 8,388 291 4,063 190 (65.3) 166 (87.4) 40
HASH 1,835 1,267 3,337 820 (64.7) 803 (97.9) 97
SIM 7,406 192 4,341 104 (54.2) 73 (70.2) 29
R 27,650 137 4,362 76 (55.5) 65 (85.5) 24

W-A

OL 210,782 87 6,570 48 (55.2) 37 (77.1 ) 7
HASH 256,341 201 5,089 168 (83.6) 147 (87.5) 26
SIM 46,900 135 7,089 56 (41.5) 46 (82.1) 7
R 4,265 566 5,027 256 (45.2) 233 (91.0) 33

A-D

OL 56,869 41 4,270 41 (100.0) 37 (90.2 ) 8
SIM 2,487 61 3,335 59 (96.7) 56 (94.9) 11
R1 3,764 41 3,843 41 (100.0) 38 (92.7) 10
R2 2,173 107 3,011 104 (97.2) 101 (97.1) 16

F-Z

OL 115 47 5,079 46 (97.9) 46 (100.0) 5
HASH 10,165 52 4,653 51 (98.1) 51 (100.0) 5
SIM 2,146 13 5,908 12 (92.3) 12 (100.0) 5
R 124 33 5,239 32 (97.0) 32 (100.0) 5

M1

OL 253,286 778 5,045 673 (86.5) 671 (99.7) 38
HASH 212,296 188 4,948 100 (53.2) 100 (100.0) 13
SIM 2,601,349 78 5,050 38 (48.7) 36 (94.7) 7
R 89,344 202 5,213 113 (55.9) 109 (96.5) 11

M2

HASH1 11,115,136 4,530 5,428 661 (14.6) 648 (98.0) 47
HASH2 14,632,318 3,844 5,735 450 (11.7) 432 (96.0) 35
SIM1 27,461,378 2,220 5,420 1,012 (45.6) 1,012 (100.0) 54
SIM2 14,924,148 3,238 5,533 1,087 (33.6) 1,087 (100.0) 58
SIM3 8,512,446 4,228 5,587 1,151 (27.2) 1,151 (100.0) 61

Table 3: Accuracy in retrieving the killed-o�matches.

numbers in parentheses). This suggests that the top-k module
can e�ectively �nd the true matches in D.

Next we examine the Match Veri�er. We want to know its
accuracy if run until its natural stopping point (see Section 5).
It is di�cult to recruit enough real users for this large-scale
experiment involving 25 blockers. So we use synthetic users,
whom we assume can identify the true matches accurately (we
describe multiple experiments with real users below).

Column F of Table 3 show that this module can retrieve a large
number of matches in E, e.g., 65-803 for A-G (see the numbers
outside parentheses), and that the retrieval rate is very high, e.g.,
70-98% for A-G, 77-91% for W-A, etc. (see the numbers inside
parentheses). Finally, Column I shows that the total number of
iterations is 5-13 in 12 cases, 16-40 in 8 cases, 47-61 in 4 cases,
and 97 in 1 case. The higher number of iterations is often due
to the larger number of matches that have to be retrieved from
E, e.g., for blocker HASH of dataset A-G, the module needed
97 iterations to retrieve 803 matches, a reasonable number of
iterations given that each iteration shows only 20 tuple pairs to
the user.

Thus, if the user runs the Match Veri�er until its natural stop-
ping point, he/she can retrieve a large number of matches. This
is good news for applications in which blocker recall is critical,
thus the user may want to examine all matches that the module
can retrieve.

Accuracy & Explanations for the First Few Iterations: To
examine if users can quickly �ndmanymatches and explanations,
we asked volunteers to manually work with the Match Veri�er
for the �rst three iterations. Table 4 shows the results (for space
reasons we only list �ve blockers for �ve datasets, the results for
other blockers are similar). The table shows that the user needed
only 7-10 mins to examine the �rst three iterations, was able
to identify a large number of matches (28-43), and was able to
identify multiple reasons for why they are killed o� (a reason
such as “large threshold (18)” means that tuple pair #18 was killed
o� due to the blocker using a large threshold, and this was the
�rst pair where the user observed this problem). Overall, the
results suggest that after examining the �rst few iterations, the
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Blocker # iteration Label time Blocker problems

OL (A-G) 3 iterations
31 matches

8 mins large threshold (18); attribute “manuf" is sprinkled
in the attribute “title" (18)

HASH (W-A) 3 iterations
43 matches

10 mins di�erent words for the same brand (6); missing val-
ues in attribute “brand" (13)

SIM (A-D) 3 iterations
28 matches

7 mins large threshold (16); attribute “title" contains subti-
tle in one table (22)

R (F-Z) 3 iterations
32 matches

7 mins
di�erent descriptions for attribute “type" (11); un-
normalized attribute “address" (33); attribute “city"
is sprinkled in “name" (47)

R (M1)
3 iterations
41 matches

10 mins input tables are not lower-cased (5); missing values
in attribute “year" (12)

Table 4: Accuracy in the�rst 3 iterations and explanations.
user can already identify multiple problems with the blocker
(which he/she can then �x).

6.2 Debugging State-of-the-Art Blockers
Suppose a user has manually developed a good standard blocker,
or has used state-of-the-art techniques to learn a blocker, wewant
to know if MatchCatcher can still help improve the blocker’s
accuracy. Toward this goal, we performed two experiments.

Hash Blockers: First, we asked a user well-trained in EM to
develop the best possible hash blockers for �ve datasets (the �rst
�ve in Table 1). For example, for dataset A-G, this user created
the blocker Q1 which keeps a pair of tuples if they agree on
“manufacturer” or on a hash of “price” or on a hash of “title”.
Thus, Q1 combines three hash blockers. ([24] describes all �ve
blockers in details.) We selected hash blocking because it is well-
known, easy to understand, and fast. Hence it is considered a
standard blockingmethod commonly used in practice. On the �ve
datasets A-G, W-A, A-D, F-Z, and Music1, the best hash blockers
achieve 75.6, 95.1, 100, 97.3, and 100% recall, respectively.

We then asked the same user to useMatchCatcher to try im-
proving the above hash blockers. For A-D and Music1, which
already have 100% recall, usingMatchCatcher the user did not
�nd any killed-o� matches (as expected), so debugging termi-
nated early. For A-G, W-A, and F-Z, however, debugging signi�-
cantly improved recall from 75.6 to 99.7, 95.1 to 99.6, and 97.3 to
100%, respectively. [24] describes one such debugging scenario
in details.

Learned Blockers: From a group of researchers we obtained
Papers, the dataset described in the last row of Table 1. For this
dataset, they have applied the method in [8] to learn blockers
using a sample labeled by crowdsourcing, and we were able to
obtain three such blockers (learned on three separate samples).
The technical report [24] describes these blockers, which are the
best blockers that the learning method has found in a very large
space of blockers, including hash ones. Unfortunately, we do not
have the entire set of “gold” matches for Papers (we do have
some “gold” matches, but not all of them). Hence, we are unable
to report recalls for these blockers.

We then asked a user to applyMatchCatcher to these blockers.
After 5 iterations, the user found 76, 61, and 65 matches for the
three blockers, respectively. More importantly, the user was able
to identify a set of reasons for why these matches were killed o�
and suggestions for improving the blockers (see [24]). Given the
lack of “gold” matches, we were not able to improve the blockers
then compare their recalls. Nevertheless, the above experiments
suggest that blockers learned using state-of-the-art solutions can
still have many problems andMatchCatcher can help pinpoint
these, to help the user improve recall.

6.3 MatchCatcher “in the Wild”
Over the past two years variations ofMatchCatcher have been
used by 300+ students in 4 data science classes and 7 EM teams at

6 organizations. The feedback has been overwhelmingly positive.
For example, 18 teams used MatchCatcher in a class project,
and reported that it helped (a) discovering data that should be
cleaned, (b) �nding the correct blocker types and attributes, (c)
tuning blocker parameters, and (d) knowing when to stop. We
have reported on some of this experience in [23]. Overall, we
found that many real-world users have usedMatchCatcher as an
integral part of an end-to-end blocker development process: start
with a simple blocker, useMatchCatcher to identify problems,
improve the blocker, and so on, until MatchCatcher no longer
reports substantial problems with the blocker.

6.4 Runtime & Scalability
MatchCatcher was implemented in Cython, and all experiments
used a RedHat 7.2 Linux machine with Intel E5-1650 CPU. The
top-k module took 6.6-9.4 secs (for dataset A-G), 97-310 (W-A),
2.8-3.2 (A-D), 0.2 (F-Z), 12.1-24.4 (M1), 57-230 (M2), and 65-344
(Papers), respectively. For the �rst �ve datasets, these times are
quite small except 97-310 secs for W-A. On W-A, the k-th pair
on the top-k list (recall that k = 1000) often has a very low score,
e.g., 0.21-0.225. Thus the top-k module took more time. The last
two datasets (M2 and Papers) are much larger (500K tuples per
table), and so took longer to run. In all cases, however, the total
time is still under 5.8 minutes.

To examine how the top-k module scales, we measure its time
as we vary the size of the two largest datasets, M2 and Papers,
at various percentages of the original datasets (which have 500-
600K tuples per table). Figure 9 shows the results for the �rst
three blockers in Table 3 for M2 and all three blockers for Papers,
for k = 100 (the left two plots) and k = 1000. The results show
that the top-k module scales linearly or sublinearly as the table
size grows. Finally, on all datasets the Match Veri�er took under
0.1 sec to aggregate the top-k lists, and 0.14-0.18 secs to process
user feedback in each iteration.

6.5 Additional Experiments
The technical report [24] describe extensive experiments on the
performance of theMatchCatcher components, sensitivity analy-
sis, and comparison with a recent related work. For space reasons
we only brie�y summarize those experiments here.

Performance of the Components: We show that using mul-
tiple con�gs instead of just one con�g signi�cantly increases
the number of retrieved matches, by 10-74%. Handling long at-
tributes increases the recall of E (the fraction of matches in D
that are in E) by up to 11%, compared to not handling them in
con�g generation. Our experiments also show that the joint top-k
processing strategy over multiple con�gs signi�cantly outper-
forms the baseline of executing each con�g individually, by as
much as 3.5 times. Finally, we found that active/online learning
signi�cantly outperforms weighted median ranking in the Match
Veri�er.

Sensitivity Analysis: We found that increasing k (the number
of pairs retrieved per con�g) does increase the number of true
matches retrieved, but only up to a certain k , and comes at the
cost of higher runtime, and that using 3 active learning iterations
(as we currently do) provides a good balance between increasing
the classi�er accuracy and increasing recall in the Match Veri�er.

Comparison with Recent Work: We found MatchCatcher
signi�cantly outperforms the work in [29], which uses a single
con�g, e.g., improving the recall of E by 26-47% on the A-G
dataset.
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Figure 9: Runtime of top-kmodule for varying table sizes.

7 ADDITIONAL RELATEDWORK
We have discussed related work throughout the paper. We now
discuss additional related work. As far as we can tell, our recent
work [23] is the �rst to raise the need for debugging for blocking.
But that work focuses on developing end-to-end EM systems.
It does not discuss any debugging solution in depth, as we do
here. Other related works include debugging for data cleaning
[17], schema mapping [5], and data errors in spreadsheets [1].
They do not address EM and their solutions do not apply to our
context. But they do underscore the importance of debugging for
data integration and cleaning.

SSJs have received much attention, e.g., [21, 35] (see [36] for
a survey). Top-k SSJs are studied in [34, 37]. [37] proposes a B+
tree based index to scale top-K SSJs on edit distance. It does not
work well for datasets with large textual di�erence [36], however,
a common occurrence in our case. The work [34], which uses
pre�x �ltering to �nd the top-k pairs, is better suited to our
case. But it does not handle long strings well [36]. Here we have
signi�cantly improved this work and extended it to work over
multiple con�gs.

The idea of computing the similarity score of a string pair only
if their pre�xes share at least q tokens (see Algorithm QJoin in
Section 4.1) is also discussed in [32]. That work however focuses
on SSJs with thresholding, e.g., matching two strings x and �
if jaccard (3�(x ), 3�(�)) � � . Its solution uses threshold � to
�nd the optimal q, and is not applicable to the top-k context
considered in this paper (which has no threshold � ).

The work [27] describes a blocking method that performs a
variation of weighted overlap blocking to �nd tuples that are
highly similar string-wise. MatchCatcher however does not use
this method in top-k SSJs because it is not clear how to modify
it to enable reuse (among the di�erent con�gs). The work [16]
is related to our work on con�g generation in that it de�nes the
notion of matching dependencies, using which we can deduce
a set of attributes for comparing tuple pairs. However, it is not
applicable to our context because it requires the user to manually
specify matching dependencies, using domain knowledge, in a
potentially time consuming process.

Rank aggregation has been studied extensively in the data-
base/IR communities, e.g., [4, 11, 15]. Active learning (AL) for EM
has been studied in [18, 26, 28]. But they perform extensive AL
to learn an accurate matcher. In contrast, we use only a few AL
iterations to learn a classi�er with reasonable accuracy, then use
it to surface matches for debugging purposes. The above work
also does not combine AL with online learning as we do. Finally,
the work [31] uses a learning-based UI model similar to ours, but
for IR tasks.

8 CONCLUSIONS & FUTUREWORK
We have shown that debugging blocker accuracy is critical for
EM, and have describedMatchCatcher, a solution to this problem.

As for future work, in certain cases the user may �nd a large
number of killed-o� matches. So we plan to develop a method to
automatically explain why each match is killed o� by the blocker,
summarize these explanations, then present the summary to the
user. When �xing a problem a�ecting a killed-o�match, the user
may want to know how pervasive this problem is (and focus on
�xing the most pervasive ones �rst). For this purpose, given a
killed-o� match, we plan to develop a method to �nd all tuple
pairs that are similar to that match (from a blocking point of
view).
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ABSTRACT
This paper presents a multiscale visibility graph representation

for time series as well as feature extraction methods for time se-

ries classification (TSC). Unlike traditional TSC approaches that

seek to find global similarities in time series databases (e.g., Near-
est Neighbor with Dynamic Time Warping distance) or meth-

ods specializing in locating local patterns/subsequences (e.g.,
shapelets), we extract solely statistical features from graphs that

are generated from time series. Specifically, we augment time

series by means of their multiscale approximations, which are fur-

ther transformed into a set of visibility graphs. After extracting

probability distributions of small motifs, density, assortativity,

etc., these features are used for building highly accurate clas-

sification models using generic classifiers (e.g., Support Vector
Machine and eXtreme Gradient Boosting). Thanks to the way

how we transform time series into graphs and extract features

from them, we are able to capture both global and local features

from time series. Based on extensive experiments on a large num-

ber of open datasets and comparison with five state-of-the-art

TSC algorithms, our approach is shown to be both accurate and

efficient: it is more accurate than Learning Shapelets and at the

same time faster than Fast Shapelets.

1 INTRODUCTION
Time series data refer to sequences of data that are ordered either

temporally, spatially or in another defined order. They can be

frequently found in a variety of domains, including financial data

analysis, medical and health monitoring and industrial automa-

tion applications. Recently, it turns out to be feasible to model

software systems as time series in order to conduct malware

detection and classification [40]. Due to their wide application

scenarios and abundance, there has been an increasing need for

efficient knowledge discovery methods to extract useful informa-

tion from time series databases. One of the major tasks in time

series mining is time series classification (TSC), which consists

of applying a learning algorithm on labeled data to train a model

that will then be used to predict the classes of samples from an

unlabeled data set. Due to the sequential characteristic of time se-

ries data, state-of-the-art classification algorithms (such as SVM

and Random Forest [13]) that perform well for generic data are

generally not suitable for TSC. It is thus important and beneficial

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the 21st
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to have a feature extraction mechanism that transforms the se-

quential characteristics of time series data into unordered feature

vectors, so that any modern classification algorithm can be taken

advantage of. After all, one of the most challenging aspects of

TSC lies in the sequentiality property.

Traditionally, researchers often rely on one of the simplest

classifiers for TSC: the k Nearest Neighbor (kNN) algorithm. As

stated in [6], “all of the current empirical evidence suggests that

simple nearest neighbor classification is very difficult to beat”.

To perform well, kNN classifiers leverage the Dynamic Time

Warping (DTW) [7] distance which mitigates problems caused

by distortion in the time axis. One intrinsic issue with DTW,

however, is that it focuses on finding global similarities, i.e., the
overall curve shape of time series. It also requires applications

to specify a proper warping window size or to properly align

data samples. As a result, DTW can be sensitive to data align-

ment/segmentation and it performs better when data are properly

curated. In practice, however, well-aligned time series data are

difficult or expensive to come by [17].

To address the phase issue of DTW- and other distance-

based 1NN approaches, the research community has pro-

posed approaches that focuses on finding defining local fea-
tures/subsequences in order to be invariant to data alignment

and rotation. Popular methods that fall into this category in-

clude Bag-of-Patterns [27], SAX-VSM [36] and shapelets-based

algorithms [44], such as Fast Shapelets (FS) [31] and Learning

Shapelets (LS) [15]. The majority of these techniques have taken

advantage of text feature extraction approaches – e.g., TF-IDF –
after converting time series into alphabetical strings. Such con-

version is often done via Symbolic Aggregate approXimation

(SAX) [26], which requires two parameters (i.e., cardinality and

PAA window size) to be set and it may not always be trivial

to find the best pair. Besides, many approaches attempt to find

time series subsequences that are representative of each class,

e.g., shapelets by definition are defining time series subsequences

that are calculated by exhaustive or optimized search. Overall,

many of these methods have suffered from high computation

complexity or suboptimal classification accuracy [39].

Graph representations for TSC, on the other hand, have not

been investigated extensively by the time series mining research

community possibly due to their high computation complexity.

Nevertheless, thanks to recent development of graph mining al-

gorithms [5, 29], some of the formerly complex problems can be

solved extremely efficiently with optimization and paralleliza-

tion techniques [2]. Such advances give us the opportunity to
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re-evaluate the possibility of taking advantage of graph repre-

sentations and extracting graph features for building an efficient

and accurate TSC algorithm.

This paper proposes a novel approach for TSC that considers

time series as complex graphs/networks and extracts from these

networks important statistical features, which are fed to modern

generic classifiers to learn structural knowledge from the original

time series. After evaluating the classification performance with

a large open dataset, we find out that our approach is capable

of making efficient and accurate classification predictions. The

main contributions of this paper are listed as follows:

• We present a multiscale graph representation for time

series, so that both global and local features from time

series can be captured, making this approach agnostic

to time series alignment and outperform major distance-

based TSC algorithms.

• Since we transform time series that are intrinsically se-

quential into unordered feature vectors, it is then suitable

for taking advantage of modern generic classifiers (e.g., RF,
SVM and XGBoost) for efficient feature selection and clas-

sification. This clear separation of feature extraction and

actual classification can help researcher focus on finding

insightful characteristics in time series data without the

need for reinventing the wheel and designing a classifier

from scratch specifically for time series.

• We propose a novel feature extraction and classification

method for time series based on calculating probability

distributions of small motifs (i.e., repeated patterns) in vis-

ibility graphs and other statistical features such as density,

degree statistics, assortativity and coreness. This feature

extraction mechanism is parameter-free, so that it can be

easy to use and help yield reproducible results.

• We have intentionally chosen a collection of statistical

features that are computationally efficient to extract from

graphs and validated their effectiveness in controlled ex-

periments. Moreover, since our feature extraction and clas-

sification process is inherently parallel, it is suitable for

and capable of large scale data explorations.

• After extensively evaluating our approach with a large

number of open datasets and comparing with related re-

search efforts, experiment results indeed suggest that accu-

rate and efficient classification can be obtained following

this paradigm.

The remainder of this paper is structured as follows. Section 2

lays down the necessary background. Next, we present our ap-

proach in section 3 and detail TSC accuracy and efficiency evalu-

ation results along with a case study in section 4. For interested

readers, section 5 introduces research work related to ours. Fi-

nally, we conclude the paper with future research directions in

section 6.

2 BACKGROUND
Traditionally, time series refer to a sequence of numbers that are

chronologically ordered. However, in the research community

time series have a much broader scope and do not associate

strictly with timestamps:

Definition 2.1 (Time series). A time series instance T is

an ordered sequence of n real-valued variables, i.e., T =

(v1, ...,vn ),vi ∈ R.

If we consider each point in a time series as a single feature

in a vector, then time series data usually have a huge number

of features. When considering these features as a vector in an

n-dimensional space, time series data are often high dimensional.

Due to difficulties to conduct knowledge discovery tasks on high

dimensional data, it is frequently required to reduce the dimen-

sionality of time series in order to improve computation effi-

ciency:

Definition 2.2 (Dimensionality reduction). The dimensionality

of a time series sample T is the length of T , denoted by |T |. If T ′

is an approximated representation of T and |T ′ | ≪ |T |, then T ′

is a dimension-reduced representation of T .

The research community has proposed a number of dimen-

sionality reduction techniques for time series, including sam-

pling [32], Piecewise Linear Representation (PLR) [19], Piecewise

Aggregate Approximation (PAA) [20], etc.. Among them PAA is

perhaps one of the simplest and most widely applied approaches.

PAA reduces time series T = (v1, ...,vn ) from n dimensions to s
dimensions by firstly dividing the data into s segments of equal

size, then the approximation is a vector of the mean values of

the data readings per segment [20, 26]. Let T ′ = (v ′
1
, ...,v ′s ) be

this vector where v ′i is computed by equation 1. For the sake of

simplicity,
n
s is often chosen to be an integer or rounded to the

nearest one.

v ′i =
s

n

n
s i∑

k= ns (i−1)+1

vk (1)

One of the core routines in distance-based classification al-

gorithms involves evaluating the dissimilarity (or similarity) of

two time series. There are a number of dissimilarity measures

for time series, two of the most frequently used measures in the

research community are Euclidean distance and DTW distance.

The Euclidean distance maintains a one-to-one mapping of all

the points in two series. On the other hand, the DTW distance

tries to find the best mapping of points in two series using the

dynamic programming paradigm, so that the minimum distance

between these two series is achieved. The paradigm is called

“time warping” since the time axis of series can be expanded or

compressed in order to ensure the minimum distance, i.e., an ith

point in X can be mapped to a jth point (it is possible that i , j),
or one point in X may even be mapped to multiple points in Y .

2.1 Visibility Graph
Aiming for taking advantage of graph theories as a way of

characterizing time series, an algorithm named visibility graph

(VG) [23, 24] is proposed to transforms time series into a network

structure. The creation of VGs relies on an extremely simple idea:

each point in a time series is treated as a vertical bar, whose

height is the corresponding numerical value. When considering

these bars on a landscape, it is then straightforward that the

top of a bar may be visible from the top of other bars. Assume

each time-step as a vertex in a graph, then two vertices are con-

nected if the top of the vertical bars are visible to each other, i.e.,
there exists a straight line from the top of the two bars without

intersecting with other bars. More formally,

Definition 2.3 (Visibility graph). Given a time series T =

(v1, ...,vn ), its VG representation G = (V ,E) has n vertices:

V = (1, ...,n). An edge e = (i, j) ∈ E iff ∀k such that i < k <

j (1 ≤ i, j ≤ n) inequality vk < vj + (vi −vj )
j−k
j−i is satisfied.
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Figure 1: An example of converting time series to visibility graph
and horizontal visibility graph.

It is obvious that VGs are undirected, although it is possible

to create a directed version by limiting the direction of view-

points from the vertical bars. Besides, VGs are always connected

since each node will always be visible to its neighbors. Finally,

VGs are invariant when time series undergo affine transforma-

tions, i.e., the visibility criterion remains fulfilled when rescaling

the time series either horizontally or vertically. However, VGs

are not suitable for non-stationary time series, i.e., those hav-

ing monotonically increasing/decreasing trends in time. Such

trends should be removed before applying VG generation. The

goal of VGs is to characterize structural properties [24] of time

series, such as periodicity, fractality, etc., although it is shown

that it can be extended to weighted VGs in order to quantitatively

distinguish generic time series [38].

Creation of VGs from time series without optimization gener-

ally hasO(n2) computation complexity, where n is the dimension-

ality of time series data. However, a more efficient VG generation

algorithm [1] can have a sub-quadratic computation complexity.

Specifically, this algorithm can reduce the complexity of time

series VG generation down to O(n log
2(n)). When further taking

advantage of parallelization,O(n log
2(n)) work can be effectively

solved within O(log
2(n)) time. Another simplified variant of VG,

horizontal visibility graph (HVG) [28], only connects nodes i and
j if a horizontal line can be drawn between these nodes. Creation

of HVGs without any optimization generally has a computation

complexity of O(n).

Definition 2.4 (Horizontal visibility graph). Given a time series

T = (v1, ...,vn ), its HVG representation Ḡ = (V ,E) has n vertices:

V = (1, ...,n). An edge e = (i, j) ∈ E iff ∀k such that i < k <
j (1 ≤ i, j ≤ n) inequality vi ,vj > vk is satisfied.

VG and its variants have been shown to be able to differentiate

certain time series. For instance, [18] have extracted motifs from

HVGs and claimed the motif statistics can be used for differenti-

ating various types of time series data, including white Gaussian

noises, fully chaotic logistic maps and noisy fully chaotic logistic

maps. The authors further claimed that HVG motif profiles from

heart rate time series can be used to cluster different types of

meditative activities.

Intuitively, VGs and HVGs are very similar concepts and HVG

is a subgraph of VG. However, when extracting statistics from

them, VGs can be more capable of capturing global features,

while HVGs are often more sensitive to local variations. As a

result, VGs and HVGs can be joined to provide more accurate

representations of time series data. We will discuss more about

such heuristics in section 4.2. For simplicity, in the remainder

of this paper the term VG indicates the combination of VG and

HVG if HVG is not explicitly specified.

2.2 Graph Features
Extracting features from graphs has become a popular research

topic thanks to the recent applications in social network anal-

ysis, physics as well as bio-informatics. There are a number of

research avenues in graph mining, the most popular ones are

about finding communities or clusters within large graphs and

characterizing graphs by means of finding and counting recur-

rent patterns. Since time series VGs are always connected, it is

thus not immediately helpful to extract clusters, since clusters in

these graphs will always correspond to subsequences of original

time series. Graph motifs or graphlets, however, are especially

interesting since they are sub-graph structures or patterns in a

larger graph that are recurrent and statistically significant. Find-

ing motifs in graphs is generally a complex problem, but there

have been a number of research work for efficiently extracting

motifs from graph data, such as GTrieScanner [34] and Parallel

Parameterized Graphlet Decomposition (PGD) [2]. Due to the

fact that the number of motifs increases exponentially with mo-

tif size, the complexity of finding motifs is also exponentially

correlated with motif size. Researchers thus generally focus on

optimizing computation efficiency of locating small motifs (of

size up to four). PGD is the state-of-the-art approach for effi-

ciently finding and counting small motifs in graphs and can be

several magnitudes faster than other approaches. Table 1 shows

all possible small graph motifs up to size four. Note that PGD

works only for undirected graphs, while GTrieScanner works on

both directed and undirected graphs. However, motifs extracted

by GTrieScanner are only connected motifs and the running time

is significantly slower than PGD. As a result, in this paper we

take advantage of PGD for small motif counting.

Table 1: All graphmotifs up to size 4. Note that connected graphs
may contain disconnected motifs.

# Motif Name # Motif Name

M21 2-edge M22 2-node-independent

M31 3-triangle M33 3-node-1-edge

C
o
n
n
e
c
t
e
d

M32 3-path

D
i
s
c
o
n
n
e
c
t
e
d M34 3-node-independent

M41 4-clique M47 4-node-triangle

M42 4-chordal-cycle M48 4-node-star

M43 4-tailed-triangle M49 4-node-2-edges

M44 4-cycle M410 4-node-1-edge

M45 4-star M411 4-node-independent

M46 4-path

Researchers argue that motif distribution extracted from VGs

can be extremely helpful for identifying different types of artifi-

cially generated time series. However, in practice motif distribu-

tions may not be as distinguishable as those from artificial data.

For example, Figure 2 illustrates the motif distributions of three

different classes of time series from the ArrowHead dataset. As
shown, it can be very difficult to tell one class apart from another

given only these distributions since the probability distributions

of different classes tend to overlap, especially in this case for

instances from class 2 and 3. Besides small motifs, other graph

features are also easy to obtain, e.g., vertex and edge statistics

as well as structural metrics. In this paper we consider some

additional graph features listed as follows:

• Density: the ratio of the number of edges to the number

of all possible edges. Graph density is computed following

equation 2 and has a computation complexity of O(1).

p =
2|E |

|V |(|V | − 1)
(2)
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Figure 2: Boxplots of motif probability distribution of different
classes from the ArrowHead Dataset’s training set.

• K-core: the K-core of a graph G = (V ,E) is a maximal

subgraph H = (V ′,E ′) in which each vertex has a degree

of at least K , i.e., ∀v ∈ V ′ : degH (v) ≥ K . Consequently,
it is a cohesiveness measurement of interlinked subgraphs

within a network and K is computed by equation 3. Com-

puting K has an O(|E |) time complexity [5].

K = argmax

H ∈G
CoreH ≥ K (3)

• Assortativity coefficient: a metric to measure the correla-

tion of vertices in a graph through calculating the Pearson

correlation coefficient of degree between pairs of con-

nected vertices. Equation 4 shows how assortativity coef-

ficient is computed,

r =

∑
xy xy(exy − axby )

σaσb
(4)

where ax and by represents respectively the fraction of

edges that start and end at vertices with values x andy, and
exy is the measure of assortativity, such that

∑
xy exy = 1,∑

y exy = ax and

∑
x exy = by . Finally, σa and σb are

the standard deviations of the distributions ax and by .
Computing r has an O(|E |) time complexity [29].

• Degree statistics including max, min and mean degree per

vertex. Naturally, computing such statistics has an O(|V |)
time complexity.

Note that there are a plethora of features that can be extracted

from graphs [11], and such features are not necessarily equally

easy to obtain. For instance, the diameter of a graph – which is

the shortest distance between the two most distant vertices in the

graph – can be computationally expensive to calculate since it

demands O(|V |(|V | + |E |)) computation. Nonetheless, this paper

does not intend to find the exclusive set of features that are both

efficient and descriptive for time series VGs. Rather, we try to

investigate if these aforementioned statistical features are indeed

helpful for TSC.

3 MULTISCALE VISIBILITY GRAPH
Time series data differ greatly in characteristics depending on

how they are captured, sampled and their underlying applica-

tions: in one domain global features may be helpful, while in

another domain local features (i.e., defining subsequences) can
become more important for classification. After transforming

real-valued time series into VGs, specific features from such VGs

– such as probability distributions of small motifs – are more re-

flective of local features than global ones. We refer to this type of

representation as Uniscale Visibility Graph (UVG) in the remain-

der of this paper. In this case, extracting more global features

(i.e., probability distributions of large motifs) becomes exponen-

tially expensive for computation. To mitigate this problem, we

propose the Multiscale Visibility Graph (MVG) representation

such that each time series sequence is transformed into a set of

dimensionality-reduced approximations: these downscaled ap-

proximations are then converted into a set of VGs. Consequently,

features are extracted from each graph in MVGs, thus approxi-

mating the process of extracting features of different scales. This

approach is inspired by computationally efficient wavelet trans-

form [10], with the exception that time series in each scale are

represented with graph structures instead of numerical values.

We first define the multiscale representation of time series as

follows:

Definition 3.1 (Multiscale Approximation). Given a time series

T0 = (v1, ...,vn ), its approximated multiscale representation is a

set of time series
ˆT = (T1,T2, , ...,Tm ), where Ti (1 ≤ i ≤ m) is a

downscaled approximation of T0, such that |Ti | = |T0 |/2
i = n/2i .

In addition, to avoid tiny and meaningless representations we en-

force a constant threshold τ for the downscaled approximations,

i.e., |Tm | > τ .

The downscaling of T0 can be achieved with widely used di-

mensionality reduction techniques such as PAA (cf. equation 1).

Since the size of downscaled time series representations follows

an exponential decay, time series multiscale representations
ˆT

often consists of a small number downscaled series. Besides, con-

sidering

∑∞
i=1

n ∗ 2
−i = n, theoretically the maximal dimension

of
ˆT when fully expanded is n.

Definition 3.2 (Multiscale representation). Given a time se-

ries T0 and its approximated multiscale representation
ˆT =

(T1,T2, , ...,Tm ), its multiscale representation is the union of
ˆT

and T0, i.e., T = (T0,T1,T2, , ...,Tm ).

Approximated multiscale representations can help smoothing

time series and reducing noises, while full multiscale represen-

tations consist of both the original time series and augmented

versions. Each series in multiscale representations can be trans-

formed into VGs, thus we have a natural definition for multiscale

visibility graphs, which are supersets of approximated multiscale

visibility graphs (AMVGs):

Definition 3.3 (Multiscale visibility graph). Given a time se-

ries T and its multiscale representation T = (T0,T1,T2, , ...,Tm ),
its multiscale visibility graph is a set of graphs G =

(G0,G1,G2, , ...,Gm ), where Gi (1 ≤ i ≤ m) is the corresponding

visibility graph created from Ti .

Since the number of vertices in Gi equals the dimensionality

of Ti , to avoid meaningless trivial graphs it is natural to set τ
to a small integer (e.g., τ = 15), such that the smallest graph

in G contains more than τ vertices. Note that τ should not be

considered as a parameter for the feature extraction process.

Rather, it is more an optimization trick and bearing a default

value of 0 will not cause any issues, since feature selection is

done during classification.

3.1 Feature Extraction
As shown in Algorithm 1, feature extraction in MVGs follow

the same paradigm as extracting features from individual graphs

in an MVG and concatenating all features together, since graph

features extracted in this paper are solely statistical and do not
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pertain orders. Consequently, these features can be fed into any

generic classification algorithms [13] well studied in the machine

learning and data mining community. It is utterly important that

this feature extraction transforms the sequential characteristics

of time series data into unordered feature vectors, so that any

modern classification algorithm can be taken advantage of.

Algorithm 1 Building time series MVGs and extracting features

from them.

1: procedure ExtractFeatures(T )

2: F← � ▷ Feature set

3: G← � ▷ MVGs

4: T ′ ← T
5: while |T ′ | > τ do ▷ Ignore trivial graphs

6: G← G ∪ BuildVGAndHVG(T ′)
7: T ′ ← DimensionalityReduction(T ) ▷ |T ′ | ≤ |T |

2

8: for G ∈ G do
9: M← Motif Probabil ityDistr ibution(G)
10: M← Normalize(M)
11: F← F ∪ {M, OtherStatist ics(G)}
12: return F

Although features have become unordered, it is nevertheless

important to carefully curate them in order to achieve better

classification results. Note that PGD is very efficient in counting

motifs in graphs, and the dominant features from time series

MVGs will be the probability distribution of motifs of different

sizes:

Definition 3.4 (Motif probability distribution). Given a time

series visibility graphG and the set of motifsM, the motif proba-

bility distribution PG is the set of probabilities corresponding to

each motif inM.

Empirically, the distribution of connected and disconnected

motifs vary greatly in graphs. It is thus desirable to calculate

separately motif probability distributions depending upon motif

connectivity. To that end, the motif probability distributions

(MPDs) are calculated per motif size and connectivity. This es-

sentially normalizes extracted motif features. Specifically, MPDs

are normalized according to the following five groups (cf. Table 1):
{{M21,M22}, {M31,M32}, {M33,M34}, {M41, ...,M46}, {M47, ...,

M411}}. Finally, it is obvious that other graph features – e.g.,
graph density and assortativity coefficient – are independent

of MPDs. As a result, no further curation for such features is

needed.

3.2 Classification
When features are extracted, we can feed them into a generic

classifier to learn from labeled samples and predict the class of

unlabeled ones. We are in favor of most well-known and widely

accepted and well optimized algorithms such as SVM, Random

Forest and eXtreme Gradient Boosting (XGBoost) [8] for this

task. Especially, as a highly optimized distributed gradient boost-

ing library, XGBoost runs on major distributed environment. It

has gained remarkable adoption since its inception and is well

known for its performance in machine learning and data mining

competitions.

Typical classification tasks involve learning models and se-

lecting a performant estimator through the process of valida-

tion. Although in this study we have proposed a parameter-free

method for feature extraction, it is still required to tune the hyper-

parameters for generic classifiers. Note that hyper-parameters

in machine learning refers to parameters that are external to the

model and such values cannot be estimated from the training

data. As a result, they are often set using heuristics. For instance,

the k in kNN classifier can be considered as a hyper-parameter,

since “there is no analytical formula available to calculate an

appropriate value” [22]. In order to tune hyper-parameters in

our classifiers, we conduct cross-validation to evaluate the per-

formance of estimators and apply grid search to find the most

satisfactory estimator based on the cross entropy scores:

− log P(ŷ |y) = −(y log(ŷ) + (1 − y) log(1 − ŷ)) (5)

where y is the ground truth, and ŷ is the probabilistic predic-

tions by an estimator. Since datasets may be highly imbalanced,

which will lead to degraded classification results, we can apply

random oversampling techniques over the minority class and

use stratified cross validation to preserve class balance when

validating models.

4 EVALUATION
To evaluate our approach, we conduct experiments using a large

number of publicly accessible datasets. We first introduce the

datasets. Then we list and validate our heuristics, followed by

creating an accurate classifier with stacked generalization. Next,

we compare the accuracy and efficiency of our method with state-

of-the-art approaches. Finally, we close this section with a case

study and discussions.

4.1 Datasets
When validating our heuristics, we consider the most popular

and largest open dataset for TSC: the UCR Time Series Classifi-

cation Archive [9]. Specifically, we use a subset from the UCR

archive that are more recent (added after the summer of 2015),

which include datasets from various fields ranging from elec-

trocardiograms (ECG) to intra-species image recognition data.

These datasets have a uniform file format and consistent internal

data structures, making it possible to conduct batch processing in

a content-agnostic manner. Furthermore, datasets in this subset

are generally larger in size, making it more reliable to evaluate

the scalability of TSC algorithms.

When comparing our approach with state-of-the-art ap-

proaches, we take advantage of the UEA & UCR Time Series

Classification Repository since it contains all datasets from the

UCR archive. In addition, this repository also provides open

source implementation for more than 18 TSC algorithms [3]

and benchmarking results are publicly available from the reposi-

tory website
1
. We compare our results with relevant algorithms

using the default train and test split from this repository.

4.2 Validating Heuristics
Before diving directly into MVG representations, it would be a

prerequisite to validate our heuristics step by step. We summarize

these heuristics below:

(1) Motif statistics from VGs and HVGs can serve better dur-

ing classification when combined with other graph fea-

tures such as degree statistics.

(2) Features from HVGs are more capable of capturing local
characteristics while those from VGs are capable of captur-

ing global characteristics. Combining features from both

HVGs and VGs can help yield more accurate classification

results.

1
http://timeseriesclassification.com/
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(3) Multiscale representations are able to reveal time series

features at different scales, and a generic classifier is able

to conduct feature selection and find important features to

perform more accurate classification than using features

without multiscale augmentation.

When validating these heuristics, we feed the features corre-

sponding to each heuristic to an XGBoost classifier for 3-fold

cross-validation and model selection. A set of hyper-parameters

have been set for grid search, including the learning rate (three

choices from 0.01 to 0.3), number of estimators (10 choices from

10 to 100), max tree depth (10 or 20). In order to prevent overfit-

ting, the subsampling and column sampling hyper-parameters

are both set to 0.5 to randomly collect half of the data instances

and features to grow trees. To reduce the impact of random over

sampling on minority classes and floating-point summation is-

sues in parallel processing, all experiments have been repeated

five times and average accuracy scores are calculated. Finally,

all experiments are conducted on a Linux server with two Intel

Xeon E5-2430 CPUs with a clock rate of 2.20GHz. With this setup,

we illustrate step by step how experiments are setup and present

the final classification results in Table 2.

4.2.1 Choosing Graph Features. We first investigate which

graph features are helpful for extracting distinguishable informa-

tion from time series. Specifically, we transform time series into

UVGs consisting of both VG and HVG representations and try

to extract MPDs as well as other features (density, assortativity

and degree statistics) from these graphs. We are interested in

finding out whether MPDs are sufficient for TSC and if extract-

ing other statistic features from graphs are necessary. Next, we

take advantage of XGBoost classifier to train on different feature

sets and classify the test datasets. Columns A, B, C and D in

Table 2 presents the classification error rates using HVG with

only MPDs, HVG with MPDs and other graph features, VG with

only MPDs and VG with all features. Comparison on the bottom

of the table shows that including features such as density and

assortativity coefficient indeed helps improving classification ac-

curacy. For HVGs, including features other than MPDs increases

classification accuracy in 32 datasets, while for VGs 29 datasets

saw accuracy improvements. A Wilcoxon signed rank test with

p-values 9.48e-7 and 9.56e-5 suggests that such improvement is

indeed significant (both p-values < 0.05). Figure 3 shows the clas-

sification results in the form of scatter plots, where each point

represent a dataset. Such results along with the Wilcoxon test

indeed suggest that our Heuristic (1) is valid.
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Figure 3: Comparison of classification error rates: using MPDs
with or without other graph features.

4.2.2 VG and HVG. Next, it is necessary to show that graph

features extracted from both VGs and HVGs are important. Recall

that, intuitively, VGs are helpful for capturing global features

while HVG can help locating local features. We separately test the

distinguishing power of VGs and HVGs for time series in order to

make sure that both can lead to satisfactory classification results.

Furthermore, we conduct experiments to investigate if combining

VGs and HVGs can better capture both global and local features

for time series and thus lead to more accurate classification.

0.0 0.2 0.4 0.6 0.8

0.0

0.2

0.4

0.6

0.8

H
VG

A
ll

w
in

s

VG
A

ll
w

in
s

HVG All vs. VG All

0.0 0.2 0.4 0.6 0.8

0.0

0.2

0.4

0.6

0.8

H
VG

A
ll

w
in

s

U
VG

w
in

s

HVG All vs. UVG

0.0 0.2 0.4 0.6 0.8

0.0

0.2

0.4

0.6

0.8

VG
A

ll
w

in
s

U
VG

w
in

s

VG All vs. UVG

Figure 4: Comparison of classification error rates: using HVGs,
VGs or combining two together (denoted as UVG here).

Figure 4 illustrates the comparison of classification accuracy

with VG and HVG features as well as combining both VG and

HVG. The first scatter plot shows that for majority datasets,

VG features can yield more accurate classification performance.

However, it is still worth mentioning that HVG features can also

outperform VG features in some specific datasets, possibly due

to the reason that local features are more influential in such

datasets. Moreover, it is obvious from the other two scatter plots

in Figure 4 that combining both VG features and HVG features

can greatly boost the classification accuracy. This is probably

due to the excellent feature selection capability of XGBoost, so

that the classifier is able to find out which features are more

important during the training process. In addition, as shown in

Table 2, using VGs outperforms HVGs in 30 datasets with a p-
value of 3.09e-3, suggesting VGs are capable of capturing more

characteristics in time series. Finally, combining features from

both VGs and HVGs yields more accurate results in 27 datasets

with a p-value of 5.01e-3, indicating significant improvement

when combining two different types of graphs. As a result, the

validity of our Heuristic (2) can be confirmed.

4.2.3 UVG, AMVG and MVG. Since we have demonstrated

that taking advantage of both VG and HVG features can improve

classification accuracy for UVG representations, now we can

investigate whether Heuristic (3) holds, i.e., if multiscale repre-

sentations can help achieving even more accurate results. To

visually inspect which representation suites best for TSC, we

further draw scatter plots of the accuracy results in Figure 5. It is

then obvious that AMVG and UVG (scatter plot on top) lead to

similar classification accuracy, which suggests that AMVG can be

good approximations for original time series data. Furthermore,

the two scatter plots in the bottom of Figure 5 indeed confirm that

MVG representations result in better classification performance,

since almost all dots representing results from different datasets

fall on the side of MVG.
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Figure 5: Comparison of UVG, AMVG and MVG’s error rates.

From Table 2, we can see that multiscale approximations out-

performs uniscale time series in 19 datasets, with a Wilcoxon

p-value of 0.8623 > 0.05. As a result, AMVG representations are

not statistically significantly different than UVGs. On the other
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Table 2: Error rates of classifying 39 UCR datasets compared with 1NN-Euclidean and 1NN-DTW. Different heuristic combinations are
taken into account. Bold-faced values indicate lowest error rates (including ties) for specific datasets in all experiments.

Scales→ UVG AMVG MVG

Type of Graphs→ HVG VG VG+HVG

Features→ MPDs All MPDs All All

Dataset #Cls. #Train #Test Dim. 1NN-ED 1NN-DTW A B C D E F G

ArrowHead 3 36 175 251 0.200 0.200 0.482 0.449 0.406 0.407 0.385 0.405 0.398

BeetleFly 2 20 20 512 0.250 0.300 0.440 0.410 0.250 0.170 0.250 0.150 0.180

BirdChicken 2 20 20 512 0.450 0.300 0.260 0.150 0.000 0.000 0.000 0.050 0.050

Computers 2 250 250 720 0.424 0.380 0.294 0.284 0.367 0.338 0.281 0.292 0.266
DistalPhalanxOutlineAgeGroup 3 139 400 80 0.218 0.228 0.204 0.202 0.214 0.196 0.202 0.196 0.188
DistalPhalanxOutlineCorrect 2 276 600 80 0.248 0.232 0.409 0.389 0.251 0.263 0.251 0.264 0.231
DistalPhalanxTW 6 139 400 80 0.273 0.272 0.342 0.348 0.298 0.300 0.315 0.275 0.279

ECG5000 5 500 4500 140 0.075 0.075 0.289 0.182 0.137 0.112 0.116 0.076 0.075
Earthquakes 2 139 322 512 0.326 0.258 0.262 0.255 0.286 0.265 0.245 0.276 0.283

ElectricDevices 7 8926 7711 96 0.450 0.376 0.503 0.493 0.392 0.357 0.366 0.368 0.338
FordA 2 1320 3601 500 0.341 0.341 0.009 0.009 0.254 0.220 0.007 0.167 0.006
FordB 2 810 3636 500 0.442 0.414 0.328 0.318 0.313 0.290 0.271 0.257 0.230
Ham 2 109 105 431 0.400 0.400 0.463 0.463 0.347 0.345 0.389 0.389 0.343
HandOutlines 2 370 1000 2709 0.199 0.197 0.293 0.288 0.275 0.225 0.221 0.215 0.206

Herring 2 64 64 512 0.484 0.469 0.425 0.419 0.450 0.484 0.381 0.431 0.288
InsectWingbeatSound 11 220 1980 256 0.438 0.422 0.808 0.763 0.586 0.577 0.557 0.484 0.488

LargeKitchenAppliances 3 375 375 720 0.507 0.205 0.461 0.414 0.490 0.478 0.380 0.346 0.325

Meat 3 60 60 448 0.067 0.067 0.497 0.490 0.160 0.097 0.117 0.050 0.080

MiddlePhalanxOutlineAgeGroup 3 154 400 80 0.260 0.253 0.274 0.279 0.246 0.238 0.267 0.266 0.247

MiddlePhalanxOutlineCorrect 2 291 600 80 0.247 0.318 0.534 0.531 0.305 0.294 0.337 0.426 0.314

MiddlePhalanxTW 6 154 399 80 0.439 0.419 0.471 0.443 0.419 0.426 0.401 0.434 0.410

PhalangesOutlinesCorrect 2 1800 858 80 0.239 0.239 0.397 0.391 0.302 0.291 0.288 0.272 0.264

Phoneme 39 214 1896 1024 0.891 0.773 0.798 0.786 0.812 0.797 0.759 0.772 0.730
ProximalPhalanxOutlineAgeGroup 3 400 205 80 0.215 0.215 0.207 0.194 0.185 0.192 0.178 0.152 0.170

ProximalPhalanxOutlineCorrect 2 600 291 80 0.192 0.210 0.280 0.267 0.167 0.165 0.174 0.181 0.144
ProximalPhalanxTW 6 205 400 80 0.292 0.263 0.303 0.307 0.257 0.259 0.257 0.300 0.233
RefrigerationDevices 3 375 375 720 0.605 0.560 0.533 0.523 0.526 0.494 0.478 0.415 0.417

ScreenType 3 375 375 720 0.640 0.589 0.506 0.486 0.678 0.669 0.572 0.506 0.499

ShapeletSim 2 20 180 500 0.461 0.300 0.189 0.194 0.067 0.051 0.017 0.161 0.047

ShapesAll 60 600 600 512 0.248 0.198 0.715 0.595 0.585 0.485 0.448 0.332 0.313

SmallKitchenAppliances 3 375 375 720 0.659 0.328 0.239 0.212 0.282 0.261 0.205 0.205 0.206

Strawberry 2 370 613 235 0.062 0.062 0.217 0.205 0.117 0.113 0.097 0.099 0.094

ToeSegmentation1 2 40 228 277 0.320 0.250 0.354 0.339 0.289 0.301 0.296 0.261 0.259

ToeSegmentation2 2 36 130 343 0.192 0.092 0.185 0.185 0.205 0.182 0.185 0.218 0.185

UWaveGestureLibraryAll 8 896 3582 945 0.052 0.034 0.551 0.498 0.516 0.482 0.386 0.278 0.265

Wine 2 57 54 234 0.389 0.389 0.493 0.404 0.530 0.519 0.448 0.556 0.548

WordSynonyms 25 267 638 270 0.382 0.252 0.794 0.770 0.662 0.610 0.578 0.559 0.571

Worms 5 77 181 900 0.635 0.586 0.492 0.470 0.414 0.409 0.387 0.448 0.409

WormsTwoClass 2 77 181 900 0.414 0.414 0.328 0.306 0.242 0.248 0.243 0.239 0.233

Comparison versus G G B D D E F G E

Number of more accurate datasets 26 23 32 30 29 27 19 29 30

Wilcoxon test p-value 0.01 0.1638 9.48e-7 3.09e-3 9.56e-5 5.01e-3 0.8623 1.72e-4 8.74e-4

hand, MVGs outperform AMVG in 29 datasets with a p-value of
1.72e-4 and MVGs are more accurate than UVGs in 30 datasets

with a p-value of 8.74e-4, suggesting that MVG representations

indeed contribute significantly towards a more accurate feature

extraction and TSC process. As a result, our Heuristic (3) is valid.

4.2.4 Summary of Heuristic Validation. Overall, all our heuris-
tics are supported by experiment results and each heuristic con-

tributes significantly to a more accurate TSC process. Table 2

also shows the comparison between our approach and Euclidean

distance- as well as DTW-based nearest neighbor classification.

Our approach outperforms 1NN-Euclidean in 26 datasets with a

Wilcoxonp-value of 0.01, suggesting MVG features with XGBoost

is significantly more accurate than 1NN-Euclidean. Moreover,

MVG appears to be in par with 1NN-DTW in terms of classifi-

cation accuracy since 23 datasets are in favor of MVG with a

p-value of 0.1638. Next, we will try to build a more robust and

accurate classifier using stacked generalization.

4.3 Stacked Generalization
Previously we have solely taken advantage of XGBoost for classi-

fying time series with features extracted from graphs. However,

it can also be interesting to investigate if other classifiers can

achieve similar results. Besides, although modern classifiers such

as XGBoost and RF are capable of efficiently conducting feature

selection during training, we can still conduct feature selection

processes and feed such a priori information to classifiers in order

to achieve better classification accuracy. To that end, we propose

feeding different sets of features to a collection of classifiers and

then create a meta-classifier using stacked generalization (a.k.a
stacking or blending) [41]. This meta-classifier will then hope-

fully generate better final predictions. In fact, a variant of this

technique has led to winning the Netflix Prize with a reward of

one million dollars [37].

Before building a meta-classifier with stacked generalization,

we first make sure that features we previously extracted are suit-

able inputs for different classifiers such as RF and SVM. Generally,

tree-based classifiers are not so sensitive to monotonic transfor-

mations of individual features. As a result, it is often not required
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to have features scaled to similar magnitudes for RF and XGBoost.

However, since SVM’s kernel functions (in an Euclidean space)

are usually sensitive to different feature magnitudes, we use Min-

Max scaling to transform each feature into range of zero and one.

After that, we compare the classification performance of these

three classifiers.

In order to evaluate the significance of the differences a generic

classifier can incur, we take advantage of the Nemenyi test [12],

which is a post-hoc test aiming for finding whether groups of

data differ after a statistical test of multiple comparisons. This

test can be illustrated by means of a critical difference diagram,

where average ranks of all approaches are presented. Specifically,

the location of vertical lines indicate the average ranking of an

approach and bold lines (insignificance lines) indicate groups of

approaches that are not significantly different. In this case, for one

approach to be considered significantly better than another, its

overall ranking has to be at least 0.5307 higher than its competitor.

As shown in Figure 6, XGBoost performs slightly better than

RF in general, and both are significantly more accurate than

SVM. Such results are not surprising, since [13] have empirically

tested hundreds of classifiers and concluded that RF produces the

most accurate classification results. This study was conducted

before the initial release of XGBoost, and the recent adoption

momentum of XGBoost indeed suggests that XGBoost is great

for yielding accurate classification results.
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Figure 6: Critical difference diagram comparison of RF, SVM and
XGBoost.

Now that generic classifiers can be used for graph features

extracted from time series, we then set to investigate whether

stacking can help further increase classification accuracy.We first

stack top performing classifiers in each family before blending

classifiers from different families. Specifically, we first select the

top five most accurate classifiers from RF, SVM and XGBoost

through cross validation. Then these five classifiers are stacked

to produce a meta-classifier, which is used for producing final

predictions. Finally, when stacking classifiers of different families,

five classifiers from each family have been selected, thus the meta-

classifier has been trained with 15 classifiers. Our algorithm is

described in Algorithm 2.

Algorithm 2 Algorithm for creating an ensemble classifiers us-

ing stacked generalization.

Input: Training dataset D = {Xi , yi }mi=1
(Xi ∈ R

n, yi ∈ Z)
Base classifiers H (with different hyper-parameters)

Output: An stacked ensemble E
1: procedure BuildStackingEnsemble(D, H)
2: S← CreateStratifiedKFolds(D, cv=3) ▷ 3-fold CV

3: E← � ▷ Best performing base estimators

4: for all h ∈ H do
5: H ← �
6: for all S = {Dtrain, Dvalidation } ∈ S do
7: TrainClassifier(h, Dtrain )
8: ŷ ←Predict(h, Xvalidation )
9: score← − log P (ŷ |yvalidation )
10: H ← H ∪ {h, score }
11: H ← arg sort(H ) ▷ Sort estimators by score

12: E← E ∪ slice(H, k ) ▷ Select top-k estimators

13: W ← ComputeEstimatorWeights(E) ▷ with logistic regression

14: E ←
∑|E|
i=1

WiEi
15: return E

Our experiments show that, for RF and SVM, stacking their top

performing classifiers indeed increases final classification. In the

case of XGBoost, however, stacking its most accurate classifiers

does not seem to significantly increase classification accuracy,

since the classification results of stacked generalization is on par

with those with a single most accurate classification during cross

validation. It possibly indicates that XGBoost has already very

good generalization capabilities. Finally, stacking most accurate

classifiers from three different families can help achieving better

classification accuracy than single best XGBoost classifier in most

datasets. As a result, stacked generalization can indeed be helpful

for further improving the performance of MVG.

Figure 7 demonstrates how stacked generalization can help

boosting classification accuracy. It is straightforward that stack-

ing XGBoost and SVM produces similar classification accuracy,

while stacking top performers from all three families can be sig-

nificantly more accurate than using a single family. As a result,

we are confident that staked generalization is favorable for more

accurate TSC.
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Figure 7: Critical difference diagram comparison of stacking sin-
gle family of classifiers versus all families of classifiers.

4.4 Accuracy Benchmarking
Finally, we compare our results with the state-of-the-art and

relevant approaches. Table 3 presents the classification error rates

as well as the running time statistics. Specifically, datasets in this

experiment are from the UEA & UCR Time Series Classification

Repository thanks to the many benchmarking results that are

publicly available. Note that although names of the datasets used

in this repository are exactly the same compared to our previous

experiments, the similarity of their contents is not guaranteed. In

fact, the training and testing datasets may have been swapped for

a number of datasets. An obvious example is the FordA dataset,
where in this experiment the training dataset and testing set

are of size 1320 and 3601 respectively, while in our previous

experiments the training set has 3601 samples and the testing

test has 1320.

We compare our method MVG with five state-of-the-art ap-

proaches: two distance-based global similarity matching algo-

rithms including Euclidean- and DTW-based nearest neighbor

classification (1NN-ED and 1NN-DTW), and three local pattern

matching algorithms including Learning Shapelets (LS) [15], Fast

Shapelets (FS) [31] and SAX-VSM [36]. Among all five approaches,

LS is recognized as the most accurate classifier [39] by the re-

search community. However, LS is also known for its high compu-

tation complexity. We first compare the classification accuracy of

different approaches in this section and then investigate MVG’s

efficiency later in section 4.5.

Viewing the error rate comparison columns in Table 3, it is

obvious that MVG is the most accurate classifier with 16 win-

ning datasets. LS then follows MVG with 12 winning datasets. A

Wilcoxon test between MVG and LS yields a p-value of 0.3421 >
0.05, suggesting that MVG should not be considered significantly

better than LS. SAX-VSM is ranked third with 10 winning cases.

The Wilcoxon test again suggest that such difference is not sta-

tistically significant. However, MVG is indeed significantly more
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Table 3: Classification error rates compared with five benchmark approaches and running time statistics (in seconds).

Classification Error Rate MVG Runtime FS

Runtime

Dataset # Cls. #Train #Test Dim.

1NN-

ED

1NN-

DTW

LS FS

SAX-

VSM

MVG FE Clf.

∑
ArrowHead 3 36 175 251 0.200 0.297 0.154 0.406 0.211 0.371 8 29 37 30
BeetleFly 2 20 20 512 0.250 0.300 0.200 0.300 0.100 0.050 2 21 23 54

BirdChicken 2 20 20 512 0.450 0.250 0.200 0.250 0.000 0.000 4 22 26 38

Computers 2 250 250 720 0.424 0.300 0.416 0.500 0.380 0.252 22 51 73 1293

DistalPhalanxOutlineAgeGroup 3 400 139 80 0.374 0.230 0.281 0.345 0.158 0.254 11 86 97 45
DistalPhalanxOutlineCorrect 2 600 276 80 0.283 0.283 0.221 0.250 0.272 0.281 19 93 112 101
DistalPhalanxTW 6 400 139 80 0.367 0.410 0.374 0.374 0.396 0.381 12 204 216 59
ECG5000 5 500 4500 140 0.075 0.076 0.068 0.077 0.090 0.069 162 190 352 170
Earthquakes 2 322 139 512 0.288 0.281 0.259 0.295 0.252 0.252 22 78 100 3689

ElectricDevices 7 8926 7711 96 0.448 0.398 0.413 0.421 0.295 0.332 406 6344 6750 3558
FordA 2 3601 1320 500 0.335 0.445 0.043 0.213 0.173 0.014 207 410 617 44832

FordB 2 3636 810 500 0.394 0.380 0.083 0.272 0.249 0.333 183 534 717 45874

Ham 2 109 105 431 0.400 0.533 0.333 0.352 0.190 0.343 8 32 40 670

HandOutlines 2 1000 370 2709 0.138 0.119 0.519 0.189 0.092 0.200 4431 182 4613 179745

Herring 2 64 64 512 0.484 0.469 0.375 0.469 0.375 0.344 19 30 49 286

InsectWingbeatSound 11 220 1980 256 0.438 0.645 0.394 0.511 0.453 0.459 85 130 215 705

LargeKitchenAppliances 3 375 375 720 0.507 0.205 0.299 0.440 0.123 0.288 32 89 121 7301

Meat 3 60 60 448 0.150 0.067 0.100 0.067 0.067 0.050 10 31 41 120

MiddlePhalanxOutlineAgeGroup 3 400 154 80 0.481 0.500 0.429 0.455 0.455 0.435 9 88 97 50
MiddlePhalanxOutlineCorrect 2 600 291 80 0.234 0.302 0.220 0.271 0.323 0.289 15 87 102 80
MiddlePhalanxTW 6 399 154 80 0.487 0.494 0.494 0.468 0.513 0.481 9 177 186 62
PhalangesOutlinesCorrect 2 1800 858 80 0.239 0.272 0.235 0.256 0.290 0.248 48 209 257 332

Phoneme 39 214 1896 1024 0.891 0.772 0.782 0.826 0.895 0.692 134 1419 1553 25604

ProximalPhalanxOutlineAgeGroup 3 400 205 80 0.215 0.195 0.166 0.220 0.176 0.166 11 70 81 41
ProximalPhalanxOutlineCorrect 2 600 291 80 0.192 0.216 0.151 0.196 0.172 0.144 18 80 98 80
ProximalPhalanxTW 6 400 205 80 0.293 0.239 0.224 0.298 0.390 0.220 12 160 172 49
RefrigerationDevices 3 375 375 720 0.605 0.536 0.485 0.667 0.347 0.421 37 77 114 12798

ScreenType 3 375 375 720 0.640 0.603 0.571 0.587 0.488 0.480 35 89 124 8473

ShapeletSim 2 20 180 500 0.461 0.350 0.050 0.000 0.283 0.000 6 22 28 76

ShapesAll 60 600 600 512 0.248 0.232 0.232 0.420 0.302 0.255 168 1833 2001 7939

SmallKitchenAppliances 3 375 375 720 0.656 0.357 0.336 0.667 0.421 0.208 30 75 105 5667

Strawberry 2 613 370 235 0.054 0.059 0.089 0.097 0.043 0.076 29 75 104 314

ToeSegmentation1 2 40 228 277 0.320 0.228 0.066 0.044 0.070 0.197 8 26 34 30
ToeSegmentation2 2 36 130 343 0.192 0.162 0.085 0.308 0.138 0.185 6 22 28 38

UWaveGestureLibraryAll 8 896 3582 945 0.052 0.108 0.047 0.211 0.201 0.258 470 343 813 32047

Wine 2 57 54 234 0.389 0.426 0.500 0.241 0.037 0.519 4 27 31 22
WordSynonyms 25 267 638 270 0.382 0.351 0.393 0.569 0.509 0.522 39 1017 1056 907
Worms 5 181 77 900 0.545 0.416 0.390 0.351 0.442 0.182 26 98 124 6852

WormsTwoClass 2 181 77 900 0.390 0.377 0.273 0.273 0.286 0.130 27 45 72 5044

Number of best (including ties) 1 2 12 3 10 16 24 15

Wilcoxon test p-value 0.0023 0.0044 0.3421 0.0005 0.5767 – Total time→ 21379 395075

accurate than FS, 1NN-DTW and 1NN-ED. Moreover, scatter

plots in Figure 8 shows that most of the points in each compar-

ison are located away from the diagonal line, suggesting that

MVG is indeed a very different approach when compared to the

state-of-the-art. Having confirmed MVG’s excellent accuracy, we

continue to investigate its runtime efficiency.

4.5 Efficiency
The pipeline of MVG consists of a feature extraction phase and a

train-validate-test process. During the feature extraction process,

time series are firstly transformed in to VGs and then features are

extracted from such graphs. With optimization from [1], trans-

forming time series of length n into VGs has a computation

complexity ofO(n log
2(n)) and it can be effectively solved within

O(log
2(n)) time when taking full advantage of parallelization.

Extracting motif features from VGs may be potentially expen-

sive, fortunately PGD provides a fully parallel way of counting

small motifs. For instance, counting graph cliques of size 4 – one

of the most time consuming tasks in PGD – has a computation

complexity ofO(m ·∆ ·Tmax ), wherem is the number of 4-motifs

(i.e., 11), ∆ is the maximum degree and Tmax is the maximum

number of triangles incident to an edge and Tmax ≪ ∆. PGD is

hundreds of times faster than other motif counting algorithms:

counting motifs from a graph with more than 26,000 vertices

can take only 0.01 seconds on a twelve-core commodity CPU [2].

Since other statistic features such as density, k-core, assortativity
and degree statistics extracted from time series VGs are inten-

tionally chosen to be simple metrics, collecting these features has

a time complexity of O(max(|V |, |E |)). Since we use a multiscale

graph representation, ultimately graph generation has a mono-

thread complexity of O(n log
3(n)) and in parallel an O(log

3(n))
time complexity. As a result, feature extraction per graph has a

computation complexity of O(max(|V |, |E |) +m · ∆ ·Tmax ). The

classification process leverages state-of-the-art classifiers that are

widely used and well-optimized. Overall, the efficiency of MVG

may be best illustrated when we compare our method against

our benchmarking approaches.

Previous research [39] has shown that LS is extremely time

consuming, and FS as an approximated approach can be 100X

faster than LS. As a result, FS will be a good and strong baseline

to which the running time of our approach can be compared.

Thus we record the running time of FS and MVG and compare

their efficiency. These experiments are conducted on a computer

with Intel i7-4980HQ quad-core CPU clocked at 2.80GHz, 16GB

memory and solid-state drive suitable for fast I/O. We use the
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Figure 8: Comparison of classification accuracy with five state-of-the-art approaches in the form of scatter plots.

FS implementation by its original authors [31] with default pa-

rameters. Columns located on the right side of Table 3 shows

the running time per dataset for MVG and FS. For MVG, running

time for feature extraction and training are recorded separately

and then summed. Overall, MVG completes faster than FS for 24

datasets. The total running time of FS for all 39 datasets amounts

to 395075 seconds, which is more than 18 times that of MVG.

A scatter plot of the running time is provided in Figure 9, obvi-

ously MVG can be up to 100X faster than FS, suggesting that it

is indeed an efficient TSC approach. In addition, we note that

FS appears to be time consuming with large datasets with time

series of high dimensionality, while the running time of MVG

remains reasonable as datasets grow larger. Furthermore, since

we have experimented only on a quad-core commodity computer

that is not really powerful in terms of parallel processing, the

efficiency of MVG can be easily boosted by adding more comput-

ing cores. Overall, MVG can indeed be considered an efficient

TSC approach.
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Figure 9: Runtime comparison between FS and MVG.

4.6 Case Study
Although accuracy and efficiency are very important measure-

ments for TSC approaches, it is also desirable for TSC methods

to have comprehensible classification processes, so that users

may gain extra insights into his/her time series data. Popular

approaches based on shapelets and subsequences may have a

natural advantage in classification comprehensibility. However,

since features extracted in MVG are solely statistical, it can be

difficult to locate exactly where a distinguishing subsequence lies

in the original time series. However, for MVG it is still possible

to understand which features have contributed most to correct

classification. For instance, when feeding features to train an

XGBoost classifier, it will assign weights to all the features. Af-

ter ranking these features, we can also gain insights into the

data. For instance, Figure 10 illustrates a scatter matrix plot for

the test dataset of FordA showing ten most important features

learned by the classifier
2
. Out of ten features, six are features

from HVGs, which are created from the original series (T0). VGs

features from dimensionality-reduced approximations (T2 and

T3) are also present. Moreover, it appears that most highly ranked

graph features for this dataset are MPDs and assortativity, sug-

gesting that statistics other than MPDs are indeed helpful. Finally,

visually from the kernel density estimation it is obvious that some

features alone – e.g.,T0 HVG P(M44) – can already provide good

classification guidelines, suggesting that it is feasible for MVG to

present visually comprehensible cues regarding its classification

decisions.

4.7 Discussions
Due to specific characteristics of VGs, obviously MVGmay not be

suitable for every TSC scenarios. For instance, VGs are agnostic

of affine transformations in time series. That is, in applications

where the absolute oscillation is more important, MVG is less

likely to detect such characteristics. Furthermore, when dealing

with non-stationary time series data where trends are very fre-

quently found, MVGworks best when trends are not the deciding

factor since VGs may not be able to capture long-term monolithic

trends. Since many graph features have been taken into account

in MVG, we believe it can be robust in practical applications.

In addition to limitations inherited from VGs, our approach is

more suitable for applications where the size of training datasets

is larger, so that classification models can generalize better. In

fact, when we review the classification accuracy of MVG, it seems

that a majority of its winning datasets have either long time series

or large training datasets. This is perhaps innate to the nature of

statistics: sample size has to be sufficiently large to make accurate

estimations. Based on running time comparison, MVG also scales

well with large datasets, which can be an important advantage

in the era of big data.

5 RELATEDWORK
TSC is a major task in time series mining thanks to its wide

application scenarios. As a consequence, there are a plethora

of classification algorithms for TSC. Classical TSC approaches

involve utilizing 1NN classification together with similarity mea-

sures specific to time series data, e.g., DTW [7] and its variants

with lower bounding [33] and early abandoning techniques [30].

Another line of research transforms time series into texts and

resort to text classification algorithms. For example, inspired by

the well known bag-of-words approach, [27] proposes the Bag-of-
Patterns approach for TSC. SAX-VSM [36] also takes advantage

of bag-of-words approach and builds term frequency-inverse

document frequency (TF-IDF) vectors in its training phase. It

defines a similarity measure of two vectors (that are constructed

2
To save space, we show more illustrations comparing original time series and

important MVG features on project website. URL: http://daoyuan.li/mvg/
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Figure 10: Scatter matrix of ten most important features for FordA’s test dataset. Different point colors indicate different classes and the
diagonal shows the Gaussian kernel density estimation for each feature.

from original series) based on their inner product. Both Bag-of-

Patterns and SAX-VSM rely on SAX [26] for transforming time

series into texts. A more recent work, Representative Pattern

Mining (RPM) [39], also tries to classify time series by means of

finding the most representative SAX-symbolized subsequences.

Our previous work Domain Series Corpus (DSCo) [25] also trans-

forms time series into texts and approximates TSC to a pseudo

language detection problem. [35] invents another symbolic rep-

resentation based on Fourier transform and proposes a bag-of-

patterns approach named BOSS ensemble based on this symbolic

representation method.

Recently, shapelet-based approaches are gaining popularity

among the research community. A shapelet [44] is a single subse-

quence in time series that is representative of its class. However,

these approaches [15, 16] are known for their high computation

complexity. As we have demonstrated in this paper, FS [31] as

an approximated approach can also take long time to run. High

computation complexity is also present for TSC approaches using

deep neural networks [43]. Finally, [4] introduce an ensemble

algorithm named Collective of Transformation-based Ensembles

(COTE) – an ensemble of 35 different classifiers – that has shown

to be very accurate but has a time complexity ofO(m4n2), where

m is the dimensionality of time series and n is the size of training

dataset.

Although the concept of time series VGs has appeared for

almost a decade, using it for TSC has just started picking up.

Machine learning approaches taking advantage of VG and its

variants are generally using artificially generated data [42] or

EEG signals. Finally, graph kernel methods [21] can be used

for evaluating graph similarity, which may potentially be used

for TSC as well. Our approach transforms TSC into a graph

classification [14] problem. Since we convert time series into
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a set of graphs at different scales, we have not experimented

generic graph classification algorithms. However, they are indeed

interesting for future experiments.

6 CONCLUSIONS AND FUTUREWORK
This paper proposes a graph-based multiscale time series rep-

resentation named MVG and a feature extraction method for

TSC. MVG transforms time series into a collection of visibility

graphs of various scales and feature extraction are conducted by

investigating statistical graph features such as probability distri-

butions of small motifs, assortativity as well as degree statistics.

After a large scale evaluation with open datasets and comparison

with a number of state-of-the-art TSC algorithms, our proposed

approach appears to be both accurate and efficient: it can be more

accurate than LS and up to ∼100X faster than FS.

In the future, we plan to further investigate other useful and

efficient graph features – such as degree distribution entropy,

centrality, bipartivity, etc. [11] – for MVG in order to further

improve its accuracy. Currently we have only evaluated MVG

with univariate time series data, we are also excited to investigate

the possibility of adopting MVG for multivariate TSC.
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ABSTRACT
Online social networks (OSNs) embed a rich set of information

that could be used in a few fields. Extensive research has been

done on estimating graph properties such as counts of wedges

and triangles in OSNs. While these graph properties which are

defined based on the structural information only are useful at a

coarse level, they are not sufficient in applications where fine-

grained information is desired. In this paper, we study a problem

of estimating a type of graph property, namely the count of edges,

refined by the labels of the users, which are usually available in

users’ profiles, and serves as finer-grained information. Existing

solutions for estimating graph properties pay no attention on

users’ labels and thus they are not suitable for many real world

applications. We develop two algorithms for the problem, each

of which samples a set of edges or nodes via a random walk

process and construct estimators based on the sampled edges

or nodes. Theoretical analysis on the accuracy guarantees of

our algorithms and extensive experiments based on real datasets

verify that our algorithms are superior over baseline algorithms.

1 INTRODUCTION
Online social networks (OSN) is very commonly used in real

life and it embeds a rich set of information that would be useful

in applications from different fields such as social community,

marketing business, political campaigns, etc. People are inter-

ested in knowing some information of graph properties such as

counts of wedges, triangles, cliques, and k-node structures etc.
embedded in OSNs. In the literature, researchers have studied

problems of estimating degree distribution[7, 14, 16], clustering

coefficient[11], graph size[11, 13] and graphlet statistics[5, 21].

These graph properties are usually defined based on the struc-

tural information, e.g., a triangle is a triplet of three nodes which

are connected with one another via links.

We notice that graph properties based on the structure infor-

mation correspond to information at a coarse level only, which

may not be sufficient in some applications. For example, if an ed-

ucation institution considers to introduce a new Spanish course

in Hong Kong, the most important step is to determine whether

there are enough potential users who are likely to take this course

in Hong Kong. One simple but efficient way is to estimate the

number of links/friendships between a user living in Hong Kong

and another user living in Spain in OSNs. The reason is that if a
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user has Spanish friends, then it is likely that he/she will be in-

terested in learning Spanish. Another example is that estimating

the number of links/friendships between a user living in China

and another user living in Austria in an OSN is an indicator of

how many people from Austria and those from China interact

with each other. Such information is very useful for airlines in

web marketing and advertising, e.g., it could be used for decision

making about whether or not to launch a new flight route be-

tween China and Austria. Thus, graph properties refined by some

feature/label information of users (which are available in user’s

profiles in many cases) correspond to finer-grained information

and could be highly valuable in real world application.

Motivated by this, we propose to estimate graph properties

refined by users’ labels. In this paper, we focus on one type of

graph properties, namely the number of edges with some target

labels. Specifically, given two target labels, we say that an edge is

a target edge if one node of the edge has one target label and the

other node has the other target label. For example, in the example

of estimating the number of links between users living in Spain

and those living in Hong Kong, “Spain” and “Hong Kong” could

be used as two target labels and an edge between a user living

in Spain and another user living in Hong Kong corresponds to a

target edge. Then, the problem studied in this paper is to estimate

the number of target edges for two given target labels.

Existing solutions of estimating graph properties (based on

the structural information only) do not pay any attention to

users’ labels and thus, they could not be used for our problem

of estimating graph properties (based on both the structural

information and the information of users’ labels). Another branch

of studies that is related to ours is labeled graph mining, such

as graph classification [20], subgraph mining [3, 4, 9] and label

prediction [24]. However, these solutions all assume full access

to the graph, which is not true when dealing with OSNs as we

do in this paper since OSNs are only accessible via provided

APIs[11, 13].

To solve the problem of estimating the number of target edges,

we develop two algorithms, namely, NeighborSample and Neigh-

borExploration, both of which are based on a randomwalk on the

graph and sample a set of edges or nodes. NeighborSample sam-

ples a set of k edges with k iterations, at each iteration it samples

one edge by sampling a user via a random walk process and then

sampling a neighbor of this user. NeighborExploration samples

a set of nodes with k iterations via a random walk process and

also explores all neighbors of each sampled node and records

the number of target edges incident to the sampled node, if the

sampled node involves a target label (with the purpose of sam-

pling target edges with higher probabilities). Then, based on the
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sample set, we construct unbiased estimators using some statisti-

cal techniques. For each estimator, we conduct some theoretical

analysis on the relationship between the number of samples and

the corresponding accuracy guarantees.

In summary, our main contributions are as follows. First, we

propose to estimate graph properties refined by users’ labels in

OSNs, which, to the best of our knowledge, is the first attempt

to do so. Second, we develop two algorithms for estimating the

number of edges with target labels and provide theoretical anal-

ysis on the accuracy guarantees. Third, we conducted extensive

experiments which verified that the algorithms developed in this

paper are superior over baseline algorithms.

This paper is organized as follows. Section 2 reviews the re-

lated work. Section 3 provides some preliminaries and the prob-

lem definition. Section 4 introduces our proposed algorithms

for estimating the number of edges with target labels. Section 5

presents the experiments and Section 6 concludes the paper and

gives a few directions for future study.

2 RELATEDWORK
In the literature, OSNs with restricted access and labeled graphs

with full access are both popular topics, but to our knowledge,

there has been no study about labeled graphs with restricted

access, which we study in this paper.

A lot of work has been done on online social networks with

restricted access and most existing work is based on randomwalk

methods, which have been used for estimating degree distribu-

tion [7, 14, 16], clustering coefficients [11] and graph size [11, 13].

In [14], the authors introduced a non-backtracking random walk

method, which is more efficient than traditional random walk

for estimating degree distribution. In [11], the authors proposed

simple but efficient sampling algorithms for estimating the clus-

tering coefficient and the graph size via simple random walk.

In addition, node pairs sampling in OSNs has also been studied

in [22]. Recently, Chen et al. [5] proposed the state-of-the-art

random walk based algorithms for graphlets statistics using the

concepts of subgraph relationship graphs and expanded Markov

Chain.

Labels in graph are widely used in many applications, which

has attracted much attention from researchers and a considerable

amount of work has been done on labeled graphs. Particularly, it

has been studies in the area of subgraph mining a lot. In [9], the

authors studied the problem of mining frequent neighbourhood

pattern in labeled graphs and in [4], a method for mining signifi-

cant connected subgraph in labeled graphs is proposed. Anchuri

et al. consider the difference between labels as a cost and intro-

duce an algorithm for mining approximate subgraph patterns

with label cost [3]. Labels are also used in graph classification. In

[20], the authors proposed an algorithm for classifying labeled

nodes based on structural neighbourhood. Recently, Ye et al. [24]

considered a new scenario where only very few vertices have

labels compared to large amounts of unlabeled vertices, and pro-

posed an algorithm which leverages the limited user information

and friendship network wisely to infer the labels of unlabeled

users in OSNs.

3 PRELIMINARIES AND PROBLEM
DEFINITION

In this section, we first introduce some basic notations, and then

give a formal definition of the problem.

An OSN is represented as an undirected graphG(V ,E), where
a user corresponds to a node in V and a friendship between two

users corresponds to an edge in E. For each useru inG , we denote
u’s degree by d(u), i.e., d(u) corresponds to the number of u’s
friends. Each user/node inV has a set of labels such as this user’s

gender, profession, living country etc. which could be found out

in most cases by checking users’ profile. For an edge (u,v), we
define its label as a pair of two labels, one is a label of u and the

other is a label of v .
Let t1 and t2 be two target labels. We say that an edge (u,v)

is a target edge if the edge has the pair of t1 and t2 as one of its
labels, i.e., either u has t1 and v has t2, or v has t1 and u has t2.
We say that (t1, t2) is the target edge label. Let F be the number

of target edges. In this paper, we study the problem of estimating

F with the following assumptions: (1) we have no full access to

the graph G(V ,E) but only some limited access via APIs each of

which can be used to retrieve the list of friends/neighbors of a

given user; (2) the information of |V | and |E | is available as prior
knowledge (this is reasonable since this information can be often

obtained from the OSN owner’s reports or Internet, and in case

that such information is not publicly available, some existing

methods such as [11] and [23] could be used to estimate |V | and
|E |, respectively).

We also derive the bound on the sample size which can achieve

an (ϵ,δ )-approximation estimation of F . The F̂ which satisfies

the following equation is an (ϵ,δ )-approximation estimation of

F .

P[(1 − ϵ)F < F̂ < (1 + ϵ)F ] ≥ 1 − δ (1)

4 ESTIMATORS OF NUMBER OF EDGES
WITH TARGET LABEL

We propose to estimate the number of edges with target labels by

first sampling a set of edges or nodes and then constructing an

(un-biased) estimator based on the set of sampled edges or nodes.

In the following, we introduce two algorithms, one for sampling

edges and the other for sampling nodes, both of which are based

on a random walk on the graph. The first one, as presented in

Section 4.1, is called NeighborSample and samples a set of k edges

withk iterations at each of which it samples one edge by sampling

a user via a random walk process and then sampling a neighbor

of this user. The second one, as presented in Section 4.2, is called

NeighborExploration and samples a set of nodes with k iterations

via a randomwalk process and also explores all neighbors of each

sampled node and records the number of target edges incident to

the sampled node, if the sampled node involves a target label (with

the purpose of sampling target edges with higher probabilities).

For each sampling algorithm, we use Hansen-Hurwitz esti-

mator [10], Horvitz-Thompson estimator [12] and Re-weighted

estimator [17] to estimate the number of target edges. Hansen-

Hurwitz estimator and Horvitz-Thompson estimator are two

simple and widely used estimator when samples are sampled

with unequal probabilities, and Re-weighted estimator is an esti-

mator based on the Hansen-Hurwitz estimator.

4.1 Estimation Based on NeighborSample
4.1.1 Sampling Process. NeighborSample samples a set S of

k edges with k iterations. At each iteration, it samples an edge

by sampling a user u via simple random walk first and then

randomly picking one of u’s neighbors, says v (i.e., (u,v) corre-
sponds to the edge sampled at this iteration). The pseudo-code

of NeighborSample is presented in Algorithm 1.
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Algorithm 1 NeighborSample

Require: an online social network G(V ,E) accessible via APIs
1: S ← ∅
2: for i: 1← k do
3: Sample a user ui via simple random walk

4: Sample a neighbor vi of ui randomly

5: S ← S ∪ (ui ,vi )
6: end for
7: Return S

Based on the sampling process, we construct two different

estimators, one is based on the Hansen-Hurwitz Estimator and
the other is based on the Horvitz-Thompson Estimator.

4.1.2 Hansen-Hurwitz Estimator. We define Xi (1 ≤ i ≤ k)
to be the edge sampled at the ith iteration of the sampling pro-

cess. Consider the distribution of Xi . First, Xi could be any edge

(u,v) ∈ E. Second, an edge (u,v) is sampled if and only if the

following two events happen: (E1) u is sampled by the random

walk (line 3 in Algorithm 1) and then v , as one of u’s neighbors,
is picked (line 4 in Algorithm 1) and (E2) v is sampled by the

random walk (line 3 in Algorithm 1) and then u, as one of u’s
neighbors, is picked (line 4 in Algorithm 1). Third, the proba-

bility of event E1 is equal to
d (u)
2 |E | ·

1

d (u) =
1

2 |E | (the probability

that u is sampled by the random walk is equal to
d (u)
2 |E | according

to the stationary distribution of a random walk [8, 18] and the

probability that one specific neighbor of u is sampled is equal to

1

d (u) ) and so is that of event E2. Therefore, the probability that

Xi corresponds to any edge (u,v), denoted by π (Xi = (u,v)),
is equal to

1

2 |E | +
1

2 |E | =
2

2 |E | =
1

|E | , i.e., Xi corresponds to a

uniform sample from the set of edges.

Now, consider
I (Xi )
π (Xi )

which is also a random variable, where

I (Xi ) is an indicator function and I (Xi ) = 1 if Xi is one target

edge, and 0 otherwise.We deduce that E[ I (Xi )
π (Xi )

] =
∑
Xi ∈E I (Xi ) =

F . Based upon on this, we construct an estimator of F as
I ((ui ,vi ))

π (Xi=(ui ,vi ))
= |E | · I ((ui ,vi )), which could be verified to be unbiased. Since

in each iteration, we can construct such an estimator, we use

the average of these estimators as the final estimator, which is

presented as follows.

F̂ = 1

k
∑
1≤i≤k |E | · I (Xi ) =

1

k
∑
1≤i≤k |E | · I ((ui ,vi )) (2)

This estimator corresponds to a Hansen-Hurwitz estimator [10].

Implementation.A straightforward implementation of theNeigh-

borSample sampling process as shown in Algorithm 1 would

perform k random walk processes. We note that performing a

random walk process is costly since it needs to walk for some

enough steps (which corresponds to the mixing time [6] of the
random walk) in order to achieve the stationary distribution,

where each walk from one user to one of her neighbors requires

to issue an API call. Fortunately, we observe that the above es-

timator does not require to sample edges (ui ,vi ) (1 ≤ i ≤ k)
independently, and thus we propose to sample all these edges

using a single random walk process. Specifically, it performs a

enough number of simple random walk steps first (i.e., the mix-

ing time is achieved) and then continues to walk for k steps

further, each via an edge. At the end, it picks those edges it walks

through at the last k steps as the sampled edges. In this way, k
edges are sampled via only a single random process and as could

be verified, the probability that one sampled edge corresponds

to a specific edge in the graph is still equal to
1

|E | and thus the

estimator constructed above is still valid.

Analysis. In this part, we derive theoretical results on the num-

ber of edges to sample in order to achieve some pre-set accuracy

guarantee.

Theorem 4.1. Let 1 > δ > 0, ϵ ≤ 1 and k ≥ 1. Sampling
k edges in NeighborSample will return an (ϵ,δ )-approximation
estimation of F by the Hansen-Hurwitz estimator, if

k ≥
∑
X ∈E |E | ·I (X )−F 2

ϵ 2 ·F 2 ·δ

Proof. Since F = E[ I (Xi )
π (Xi )

], if 1

k
∑k
i=1

I (Xi )
π (Xi )

is an (ϵ,δ )-approximation

estimation of E[ I (Xi )
π (Xi )

], then F̂ is also an (ϵ,δ )-approximation es-

timation of F .

LetY = 1

k
∑k
i=1

I (Xi )
π (Xi )

, thenE[Y ] = F andVar [Y ] = 1

k (E[
I (Xi )

2

π (Xi )2
]−

E[ I (Xi )
π (Xi )

]2) = 1

k ·
∑
X ∈E

I (X )
π (X ) −F

2
and E[Y ] = F . By Chebyshev’s

inequality (see Appendix A), we obtain the bound of k for achiev-

ing (ϵ,δ )-approximation.

k ≥
∑
X ∈E |E | ·I (X )−F 2

ϵ 2 ·F 2 ·δ □

4.1.3 Horvitz-Thompson Estimator. For each edge e = (u,v) ∈
E, we define a new indicator functionH (e ∈ S) such thatH (e ∈ S)
is equal to 1 if e is sampled by the NeighborSample sampling

process once or multiple times, and 0 otherwise. We define Pr (e)
as the probability that an edge e is sampled in at least one iteration

of the NeighborSample sampling process, i.e., e ∈ S . Consider
Pr (e) for a specific edge e , we observe that the event that e is not
sampled happens if and only if all following k events happen: e

is not sampled in the ith iteration for 1 ≤ i ≤ k . Considering
that the probability that each of these events happens is equal

to (1 − 1

|E | ) and these events are independent, we know that the

probability that e is not sampled in any of iterations is equal to

(1 − 1

|E | )
k
, which further implies that the probability that e is

sampled in at least one of the iterations, i.e., Pr (e), is equal to

(1 − (1 − 1

|E | )
k ).

Then, we construct an estimator of F as follows.

F̂ =
∑
e ∈E

I (e)
Pr (e)H (e ∈ S) =

∑
e ∈E

I (e)
1−(1− 1

|E | )
k H (e ∈ S) (3)

Next we show how this estimator is derived and that it is unbiased.

Define {S1, S2, ..., Sm } as the collection of all possible sample sets

each of which contains k edges from the edge set E. Let P(Si ) be
the probability that we get set Si as the sample set in Neighbor-

Sample process. Let S be a random set from {S1, S2, ..., Sm }, we
have

E[
∑
e ∈E

I (e)
Pr (e)H (e ∈ S)] =

∑m
j=1 P(Sj )

∑
e ∈E

I (e)
Pr (e)H (e ∈ Sj )

=
∑
e ∈E

I (e)
Pr (e)

∑m
j=1 P(Sj )H (e ∈ Sj )

=
∑
e ∈E

I (e)
Pr (e)Pr (e) =

∑
e ∈E I (e) = F

(4)

So the estimator F̂ =
∑
e ∈E

I (e)
Pr (e)H (e ∈ S) is an unbiased estima-

tor.

Implementation.Different from the case of theHansen-Hurwitz

estimator in Section 4.1.2, the Horvits-Thompson estimator re-

quires that the edges sampled in different iterations are inde-

pendent. With the implementation in Section 4.1.2, the edges

sampled are not independent since the edge sampled at the cur-

rent iteration is adjacent to the one sampled at the last iteration.

To meet the independence requirement, we adopt an existing

strategy [11], which is to use those vertices (and edges) which are
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sampled far away from each other by a certain number r of steps
in the random walk process, (in this way, every two sampled

edges could be regarded as approximately independent sampled

edges, and following [11], we set r as 2.5%k) in our experiments.

Analysis. In this part, we derive some theoretical results on

the number of edges to sample in order to achieve some pre-set

accuracy guarantee.

Theorem 4.2. Let 1 > δ > 0, ϵ ≤ 1 and k ≥ 1. Sampling
k edges in NeighborSample will return an (ϵ,δ )-approximation
estimation of F by the Horvitz-Thompson estimator, if

k ≥ maxe ∈E log
I (e)2+B

B /log 1

A(e)
where A(e) = 1 − 1

|E | and B = δϵ2 · F 2/|E |.

Proof. Let πe =
1

|E | be the probability of sampling edge e in

one NeighborSample process. In [12], it has been proved that the

variance of the Horvitz-Thompson estimator is

Var [F̂ ] = E[F̂ 2] − E[F̂ ]2

=
∑
e1∈E

∑
e2∈E

I (e1)I (e2)
Pr (e1)Pr (e2)

E[H (e1 ∈ S)H (e2 ∈ S)]

−
∑
e1inE

∑
e2inE

I (e1)I (e2)
Pr (e1)Pr (e2)

E[H (e1 ∈ S)]E[H (e2 ∈ S)]

=
∑
e1inE

∑
e2inE

I (e1)I (e2)
Pr (e1)Pr (e2)

Cov(H (e1 ∈ S),H (e2 ∈ S))

(5)

Since Cov(H (e1 ∈ S),H (e2 ∈ S)) = Pr (e1, e2) − Pr (e1)Pr (e2),
where Pr (e1, e2) = Pr (e1) + Pr (e2) − (1 − (1 − πe1 − πe2 )

k ) for

e1 , e2 and Cov(H (e1 ∈ S),H (e2 ∈ S)) = Pr (e1)(1 − Pr (e1)) for
e1 = e2, so we have

Var [F̂ ] =
∑
e1∈E (

1−Pr (e1)
Pr (e1)

)I (e1)
2+∑

e1∈E
∑
e2∈E,e2,e1 (

Pr (e1)+Pr (e2)
Pr (e1)Pr (e2)

+

−{1−(1−πe
1
−πe

2
)k }−Pr (e1)Pr (e2)

Pr (e1)Pr (e2)
)I (e1)I (e2)

(6)

The second term in the right hand side of Equation ( 6) can be

simplified as ∑
e1∈E

∑
e2∈E,e2,e1 (

(1−πe
1
−πe

2
)k

Pr (e1)Pr (e2)

−
(1−πe

1
−πe

2
+πe

1
πe

2
)k

Pr (e1)Pr (e2)
)I (e1)I (e2)

(7)

since πe1 = πe2 = 1/|E | ≥ 0, it is obvious that 1 − πe1 − πe2 ≤
1−πe1−πe2+πe1πe2 . As a result, the term 7 is also negative, so we

can ignore this term. By Chebyshev’s inequality (see Appendix

A), we have ∑
e ∈E (

(1−πe )k

1−(1−πe )k
)I (e)2 ≤ δϵ2 · F 2 (8)

so if

(
(1−πe )k

1−(1−πe )k
)I (e)2 ≤ δϵ2 · F 2/|E | (9)

holds for each e ∈ E, then Equation ( 8) also holds.

Define A(e) = 1 − πe and B = δϵ2 · F 2/|E |, then we obtain the

bound of k for achieving (ϵ,δ )-approximation.

k ≥ maxe ∈E log
I (e)2+B

B /log 1

A(e) (10)

□

4.2 Estimation Based on
NeighborExploration

4.2.1 Sampling Process. NeighborExploration samples a set

S of nodes with k iterations for a given integer k . At each itera-

tion, it first samples a node by a random walk process and then

explores all edges incident to u if u involves a target label. The

Algorithm 2 NeighborExploration

Require: an online social network G(V ,E) accessible via APIs
Require: a pair of two target labels t1 and t2
1: S ← ∅
2: for i: 1← k do
3: Sample a user ui via simple random walk

4: if ui has label t1 or label t2 then
5: Explore all the neighbors ofui and compute the number

of target edges incident to ui and we use function T
to record the mapping from ui to the number of target

edges incident to ui .
6: end if
7: S ← S ∪ ui
8: end for
9: Return S and function T

rationale of exploring all neighbors of the user u is that once we

know that u has a target label, the probability that we can find a

target edge incident to u would be relatively high since one of

the two target labels has been covered already. The pseudo-code

of NeighborExploration is presented in Algorithm 2.

4.2.2 Hansen-Hurwitz Estimator. Wedefine a random variable

Yi to be the node sampled at ith iteration of NeighborExploration

sampling process. Yi could be any user u ∈ V and the probability

that Yi corresponds to a specific user u, denoted by π (Yi = u),

is equal to
d (u)
2 |E | which is based on the stationary distribution of

a simple random walk. We define T (Yi ) as the number of target

edges incident toYi , which also corresponds to a random variable

and could be computed when all neighbors of Yi are explored
after we sample Yi in the random walk process.

Now, consider
T (Yi )
π (Yi )

which is also a random variable. We de-

duce that E[T (Yi )π (Yi )
] =

∑
u ∈V T (u) = 2 · F . Based upon on this,

we construct an estimator of F as
T (Yi )
2·π (Yi )

which could be easily

verified to be unbiased. Since in each iteration, we can construct

such an estimator, we use the average of these estimators as the

final estimator, which is presented as follows.

F̂ = 1

k
∑
1≤i≤k

T (Yi )
2·π (Yi )

= 1

k
∑
1≤i≤k

|E | ·T (ui )
d (ui )

(11)

This estimator corresponds to a Hansen-Hurwitz estimator [10].

Implementation. Same as the case in Section 4.1.2, the estimator

here does not require that the sampled nodes are independent.

As a result, it can sample all nodes via a single random process by

performing an enough number of simple random walk steps first

(i.e., the mixing time is achieved) and then continuing to walk for

k steps further. At each of the last k steps, it checks whether the

current user u involves a target label. If so, it explores all edges

incident to this user, and records T (u).

Analysis. In this part, we derive some theoretical results on the

number of nodes to sample in order to achieve some pre-set

accuracy guarantee.

Theorem 4.3. Let 1 > δ > 0, ϵ ≤ 1 and k ≥ 1. Sampling k
nodes in NeighborExploration will return an (ϵ,δ )-approximation
estimation of F by the Hansen-Hurwitz estimator, if

k ≥

∑
u∈V

2|E |·T (u)2
du

−4F 2

4ϵ 2 ·F 2 ·δ
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Proof. Since F = 1

2
E[T (Yi )π (Yi )

], if 1

k
∑k
i=1

T (Yi )
π (Yi )

is an (ϵ,δ ) -

approximation estimation of E[T (Yi )π (Yi )
], then F̂ is also an (ϵ,δ )-

approximation estimation of F .

LetX = 1

k
∑k
i=1

T (Yi )
π (Yi )

, thenE[X ] = 2F andVar [X ] = 1

k (E[
T (Y )2

π 2

Y
]

- E[T (Y )πY ]
2) = 1

k ·
∑
u ∈N

T (u)2
πu − 4F 2. By Chebyshev’s inequal-

ity (see Appendix A), we obtain the bound of k for achieving

(ϵ,δ )-approximation.

k ≥

∑
u∈V

2|E |·T (u)2
du

−4F 2

4ϵ 2 ·F 2 ·δ
(12)

□

4.2.3 Horvitz-Thompson Estimator. We define an indicator

function H (u ∈ S) such that H (u ∈ S) is equal to 1 if u is sampled

by the NeighborExploration sampling process once or multiple

times, and 0 otherwise. S is the sample set obtained from the

NeighborExploration sampling process. Then, we define Pr (u) as
the probability that a nodeu is sampled in at least one iteration of

the NeighborExploration sampling process, i.e., u ∈ S . Consider
Pr (u) for a specific node u. We observe that the event that u is

not sampled happens if and only if all following k events happen:

u is not sampled in the ith iteration for 1 ≤ i ≤ k . Considering
that the probability that one of these events happens is equal

to (1 −
d (u)
2 |E | ), and these events are independent, we know that

the probability that u is not sampled in any of iterations is equal

to (1 −
d (u)
2 |E | )

k
, which further implies that the probability that u

is sampled in at least one of the iteration, i.e., Pr (u) is equal to

(1 − (1 −
d (u)
2 |E | )

k ).

Then, we construct a Horvits-Thompson estimator of the num-

ber of target edges as follows.

F̂ = 1

2

∑
u ∈V

T (u)
Pr (u)H (u ∈ S) =

1

2

∑
u ∈V

T (u)
1−(1−

d (u)
2|E | )

k
H (u ∈ S)

(13)

This estimator could be verified to be unbiased similarly as it is

done for the Horvits-Thompson estimator based on Neighbor-

Sample in Section 4.1.3.

Implementation. Also, the Horvits-Thompson estimator re-

quires that the nodes sampled in different iterations are inde-

pendent. With the implementation in Section 4.2.2, the nodes

sampled are not independent since the node sampled at the cur-

rent iteration is adjacent to the one sampled at the last iteration.

To meet the independence requirement, we use the same strat-

egy introduced in 4.1.3, which is to use those nodes which are

sampled far away from each other by a certain number r of steps
in the random walk process, and we set r as 2.5%k .

Analysis. In this part, we derive theoretical results on the num-

ber of nodes to sample in order to achieve some pre-set accuracy

guarantee.

Theorem 4.4. Let 1 > δ > 0, ϵ ≤ 1, and k ≥ 1. Sampling k
nodes in NeighborExploration will return an (ϵ,δ )-approximation
estimation by the Horvitz-Thompson estimator, if

k ≥ maxy∈V log
T (y)2+B

B /log 1

A(y)
where A(y) = 1 − πy and B = 4δϵ2 · F 2/|V |.

Proof. Let πy =
dy
2 |E | be the probability of sampling node y

in the random walk process. In [12], it has been proved that the

variance of the Horvitz-Thompson estimator is

Var [F̂ ] = 1

4
{
∑
y∈V (

1−Pr (y)
Pr (y) )T (y)

2+∑
y∈V

∑
z∈V ,z,y (

Pr (y)+Pr (z)
Pr (y)Pr (z) +

−{1−(1−πy−πz )k }−Pr (y)Pr (z)
Pr (y)Pr (z) )T (y)T (z)}

(14)

The second term in the right hand side of Equation ( 14) can

be simplified as ∑
y∈V

∑
z∈V ,z,y (

(1−πy−πz )k

Pr (y)Pr (z)

−
(1−πy−πz+πyπz )k

Pr (y)Pr (z) )T (y)T (z)

(15)

since πy = dy/(2|E |) ≥ 0, it is obvious that 1 − πy − πz ≤
1 − πy − πz + πyπz . As a result, term ( 15) is negative, so we can

ignore this term. Then By Chebyshev’s inequality (see Appendix

A), we have ∑
y∈V (

(1−πy )k

1−(1−πy )k
)T (y)2 ≤ 4δϵ2 · F 2 (16)

so if

(
(1−πy )k

1−(1−πy )k
)T (y)2 ≤ 4δϵ2 · F 2/|V | (17)

holds for each y ∈ V , then Equation ( 16) also holds.

Define A(y) = 1 − πy and B = 4δϵ2 · F 2/|V |, we can get the

bound of k ,

k ≥ maxy∈V log
T (y)2+B

B /log 1

A(y) (18)

□

4.2.4 Re-Weighted Estimator. Based on the NeighborExplo-

ration sampling process, the nodes are sampled with non-uniform

probabilities, which is different from the case based on the Neigh-

borExploration sampling process. This makes it possible to con-

struct a Re-weighted estimator [17] as follows.

F̂ =
∑k
i=1 T (ui )/d (ui )
2

∑k
i=1 1/d (ui )

· |V | (19)

Here, ui corresponds to the user sampled via the random walk

process in ith iteration. It was known that the Re-weighted es-

timator can be interpreted using the importance sampling (IS)

framework [17]. Specifically, instead of sampling nodes from the

target distribution (i.e., the uniform distribution), the IS frame-

work samples edges from a different and easily implemented trial

distribution (i.e., the stationary distribution of a random walk

process). According to the IS framework, the importance weight

of a useru is given by
1/ |V |

d (u)/2 |E | ∝ 1/d(u), which meets the defini-

tion in Equation (19), where 1/|V | corresponds to the probability

based on the target distribution and d(u)/2|E | corresponds the
probability based on trial distribution.

Implementation. Same as the Hansen-Hurwitz estimator in

Section 4.2.2, the Re-weighted estimator constructed here does

not require that the nodes sampled are independent, and thus

the implementation described in Section 4.2.2, which samples all

nodes with one single random walk process, could be applied.

Analysis. In this part, we derive theoretical results on the num-

ber of nodes to sample in order to achieve some pre-set accuracy

guarantee.

Theorem 4.5. Let 1 > δ > 0, ϵ ≤ 1 and k ≥ 1. Sampling k
nodes in NeighborExploration will return an (ϵ,δ )-approximation
estimation of F the by the Re-Weighted estimator, if

k ≥ max{18

∑
y∈V

T (y)2

πy
−4F 2

ϵ 2 ·4F 2 ·δ , 18

∑
y∈V

1

πy
−|V |2

ϵ 2 · |V |2 ·δ }
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Proof. Let Y be an random node sampled from one random

walk step and πY =
d (Y )
2 |E | be the probability of sampling node Y

in the random walk process. Since F = E[T (Y )πY ]/E[
1

πY ] ·
|V |
2

and F̂ =
�
E[T (Y )πY ]/

�E[ 1

πY ] ·
|V |
2
, if

�
E[T (Y )πY ]/

�E[ 1

πY ] is an (ϵ,δ )-

approximation estimation of E[T (Y )πY ]/E[
1

πY ], then F̂ is also an

(ϵ,δ )-approximation estimation of F .

Assume that

�
E[T (Y )πY ] and

�E[ 1

πY ] are (ϵ/3,δ/2)-approximation

estimations ofE[T (Y )πY ] andE[
1

πY ] respectively. LetA=

�
E[T (Y )πY ]/

�E[ 1

πY ]

and B = E[T (Y )πY ]/E[
1

πY ], then we have P[A/B > 1−ϵ/3
1+ϵ/3 > 1 −

ϵ,A/B < 1+ϵ/3
1−ϵ/3 > 1+ ϵ] ≥ (1−δ/2)2 > 1−δ . So

�
E[T (Y )πY ]/

�E[ 1

πY ]

is an (ϵ,δ )-approximation estimation of E[T (Y )πY ]/E[
1

πY ].

Let X = 1

k
∑k
i=1

T (yi )
πyi

and Z = 1

k
∑k
i=1

1

πyi
. By Chebyshev’s

inequality in Appendix A, we have

Pr [|X − E[X ]| > ϵ/3 · E[X ]] ≤ Var [X ]
(ϵ/3·E[X ])2 ≤ δ/2 (20)

Pr [|Z − E[Z ]| > ϵ/3 · E[Z ]] ≤ Var [Z ]
(ϵ/3·E[Z ])2 ≤ δ/2 (21)

SinceE[X ] = 2F ,Var [X ] = 1

k (E[
T (Y )2

π 2

Y
]−E2[T (Y )πY ]) =

1

k (
∑
y∈V

T (y)2
πy −

4F 2),E[Z ] = |V | andVar [Z ] = 1

k (E[
1

π 2

Y
]−E2[ 1

πY ]) =
1

k (
∑
y∈V

1

πy −

|V |2), we have

k ≥ max{18

∑
y∈V

T (y)2

πy
−4F 2

ϵ 2 ·4F 2 ·δ , 18

∑
y∈V

1

πy
−|V |2

ϵ 2 · |V |2 ·δ } (22)

□

5 EXPERIMENTAL RESULTS
5.1 Experimental Set-up
Datasets.We used 5 real datasets which are publicly available

and widely used in previous work [5, 11, 13] as shown in Table 1.

In the experiment, we simulate the scenario where we only have

accesses to the graphs via APIs. In each network, we remove

the directions of edges, self-loops and multi-edges. We use the

largest connected component for each network (since the method

could be similarly run on other connected components) and the

statistics of the largest connected components of networks are

shown in Table 1.

In order to show the efficiency and effectiveness of our algo-

rithms comprehensively, we use several types of labels to evaluate

our algorithms. In Facebook and Google+, we use users’ genders

as node labels. In Pokec, we use users’ locations as node labels.

Such information can be obtained in the users’ profiles in these

networks. While in Orkut and Livejournal, the node degree is

considered as the node label since we do not have the users’

profiles in these two networks. Node degree contains structural

information about the graph and in OSNs, it shows the number

of friends that the user has. In order to simplify the discussion,

all the labels are denoted by integers in the experiments.

Mixing Time. The mixing time of the Markov Chain is defined as

the minimal length of the random walk in order to reach the sta-

tionary distribution. Following [2, 19], we define the mixing time

of a Markov chain on G parameterized by a variation distance

parameter ϵ as follows,

Definition 5.1. The mixing time parameterized by ϵ of a Markov
Chain is defined as

T (ϵ) = maxi min{t : |π − π (i) |1 < ϵ}

= maxi min{t : 1

2

∑
u ∈V |π (u) − [π

(i)P t ](u)| < ϵ}
(23)

where vector π is the stationary distribution and P is the transi-
tion matrix. Vector π (i) is the initial distribution concentrated at
node i , i.e. the i-th element is 1 and all the other elements are 0.
[π (i)P t ](u) is the u-th element in π (i)P t . |π − π(i) |1 is the total
variation distance which is a distance measure of two probability
distributions.

After testing, we find that when ϵ = 10
−3

which is small

enough, the mixing time of Facebook, Google+, Pokec, Orkut

and Livejournal is 3200, 200, 100, 800 and 900 respectively which

are not very large. So it is easy to achieve the stationary distri-

bution quickly in our experiments. Note that the nodes or edges

encountered in the random walk before the mixing time are not

included in the sample set.

Table 1: Statistics of Datasets
Network |V | |E |

Facebook [15] 4.0 × 103 8.82 × 104

Google+ [15] 1.08 × 105 1.22 × 107

Pokec [15] 1.6 × 106 2.23 × 107

Orkut[1] 3.08 × 106 1.17 × 108

Livejournal[1] 4.8 × 106 4.28 × 107

Table 2: Abbreviations of Algorithms

Algorithm Name Abbreviation

NeighborSample with the NeighborSample-HH

Hansen-Hurwitz estimator

NeighborSample with the NeighborSample-HT

Horvitz-Thompson estimator

NeighborExploration with the NeighborExploration-HH

Hansen-Hurwitz estimator

NeighborExploration with the NeighborExploration-HT

Horvitz-Thompson estimator

NeighborExploration with the with NeighborExploration-RW

Re-weighted method

Existing algorithm using EX-RW

re-weighted method

Existing algorithm using EX-MHRW

Metropolis-Hastings random walk

Existing algorithm using EX-MD

maximum degree random walk

Existing algorithm using EX-RCMH

Rejection-controlled Metropolis-Hastings

Random Walk Algorithm on Edges

Existing algorithm using General Maximum EX-GMD

Degree Random Walk Algorithm on Edges

Adaptations of Existing Algorithms. In addition to the two

algorithms and their five corresponding estimators developed in

this paper, we consider a few baseline methods adapted from an

existing study [16]. In [16], the authors have summarized several

common used algorithms which perform random walk on nodes

to get unbiased estimation of the relative count of target nodes

which has a particular degree. If we multiply this estimation by

the total number of nodes, then we can obtain the estimation

of the count of target nodes. Those existing methods cannot be

applied directly to our problem, since our problem is to estimate

the number of target edges instead of target nodes. However, we

find that if we transform the original graph G into a new graph

G ′, then we can apply those existing algorithms in [16] on graph

G ′ to get the estimation of the count of target edges in G. We

first describe how to construct G ′ base on G.
Let G = (V ,E) be the given graph, we construct a new graph

G ′ = (H ,R) based on G with the following properties,
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• Each edge in G corresponds to a node in G ′ and all these

nodes constitute the node set H in G ′. Thus, we have

|H | = |E |.
• Two nodes in H are connected by an edge in G ′ if and
only if they share one common vertex of G and all these

edges constitute R.

where V and E are node set and edge set in G, and H and R are

node set and edge set in G ′.
It is obvious that if we apply the existing algorithms in [16] on

graph G ′, then we can get the estimation of the count of target

nodes inG ′. Since each node in G ′ corresponds to an edge in G,
counting the number of target edges inG is the same as counting

the number of target nodes in G ′.
In [16], three existing algorithms, Re-weightedmethod,Metropolis-

Hastings Random Walk algorithm (MHRW), and Maximum De-

gree Random Walk algorithm (MDRW), are reviewed by the au-

thors. Also, two new algorithms, Rejection-controlled Metropolis-

Hastings Random Walk algorithm (RCMH) and General Maxi-

mum Degree Random Walk algorithm (GMD), are proposed by

the authors. Two parameters, α and δ , are used to control the

performance of RCMH and GMD, respectively. The authors sug-

gested to set α ∈ [0,0.3] and δ ∈ [0.3,0.7], and in this paper, we

adopt settings which give the best results.

The abbreviation of each tested algorithm is shown in Table 2,

and all algorithms are implemented in C++, and we conducted

experiments on a Linux machine with Intel 3.40GHz CPU.

Measurements.We adopt the normalized root mean square error
(NRMSE) measure as our error measurement, which is defined

as follows.

NRMSE(F̂ ) =

√
E[(F̂−F )2]

F =

√
Var [F̂ ]+(F−E[F̂ ])2

F , (24)

Note that NRMSE captures both the variance and the bias of the

estimator.

Objectives. The objectives of the experiments can be summa-

rized as follows:

(1) The diversity of the network types and corresponding label

types serve to show that our methods sustain satisfactory

performance across different domains.

(2) The different types of labels in different networks have

very different frequencies. This helps us to investigate

the effect of target edge frequency on the accuracy of the

estimation.

(3) Another factor which can affect the accuracy is the sample

size, we expect the accuracy to improve withmore samples

taken. Hence in our experiments, we vary the sample sizes

and examine the impact.

(4) A major objective is to compare our proposed methods

with the baseline methods, which are outlined in Sec-

tion 5.1. We aim to show that our proposed algorithms

outperform these baseline methods.

(5) Since we propose two algorithms, NeighborSample and

NeighborExploration, it is of interest to compare the two

and find out how they differ and how to choose between

these algorithms depending on the given problem charac-

teristics.

5.2 Comparison among algorithms with
varying sample size

Firstly, we compare the estimation accuracies of different algo-

rithms. We examine the NRMSE results of different algorithms

Table 3: The labels and their corresponding locations in
Pokec

Label Location

2 zilinsky kraj, kysucke nove mesto

13 zahranicie, zahranicie - australia

20 kosicky kraj, michalovce

24 trnavsky kraj, trnava

51 trnavsky kraj, skalica

86 bratislavsky kraj, bratislava - nove mesto

122 kosicky kraj, kosice - ostatne

135 banskobystricky kraj, dudince

while varying the sample size from 0.5%|V | to 5%|V |. Each target

edge label is represented in the form of (A,B) where A and B are

two integers representing two node labels.

In Facebook and Google+, we use one target edge label (1, 2)

(1 and 2 represent female and male respectively), while in Pokec,

Orkut and Livejournal, we pick 4 different target edge labels to

evaluate all algorithms. The results on Facebook are shown in

Table 4. The results on Google+ are shown in Table 5. The results

on Pokec are shown in Tables 6 - 9 (We use 4 target edge labels,

(86,135), (2,51), (13,20), and (24,122). All these numbers represent

locations using Slovak language, which are shown in Table 3).

The results on Orkut are shown in Tables 10 - 13. The results on

Livejournal are shown in Tables 14 - 17.

In these tables, each row shows the NRMSE of an algorithm

with increasing sample size and each column shows the NRMSE

of each algorithm for a fixed sample size. The target edge label,

the count and the percentage count of the target edges are shown

in the caption of each table. Each NRMSE value is calculated by

averaging over 200 independent simulations.

In Pokec, Orkut and Livejournal, there are thousands of edge

labels we can choose.We first order those edge labels in ascending

order of the count of target edges and divide them into 4 parts

with equal size, then we pick one target edge label from each

part randomly. With this method, we can test our algorithms on

both high frequency edge labels and low frequency edge labels.

Tables 18 - 22 show the bounds of number of samples needed

to achieve an (0.1, 0.1)-approximation based Theorem 4.1 - 4.5.

However, from the experimental results in Tables 4 - 17, we find

that the number of samples needed to achieve a good estimation

is much less than the bound.

The best NRMSE results for each sample size are underlined

and marked with bold font. The best NRMSE results and the

corresponding algorithms are also summarized in Tables 23 - 26

when 5%|V | API calls are used.
We summarize our findings as follows.

(1) The best algorithm in each table is always one of our

newly proposed algorithms (NeighborSample and Neigh-

borExploration), demonstrating that our new algorithms

outperform adaptations of existing algorithms.

(2) Our algorithms give good estimation with low API cost.

Tables 23 - 26 summarize the best algorithms and the

corresponding NRMSE values of each tested label when

only 5%|V | API calls are used. The largest NRMSE is 0.209

and most of the NRMSE values are smaller than 0.1. Note

that for some tested target labels, the number of target

edges is relatively small compared with the total number

of edges, while our algorithms can still obtain accurate

estimations. This shows that our proposed algorithms are

highly effective.

(3) The NRMSE results of all algorithms decrease as the num-

ber of API calls increases, whichmeans that our estimation
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Table 4: Facebook, target label=(1,2), number of target edges=37400, precentage=42.4%
0.5% |V | 1.0% |V | 1.5% |V | 2.0% |V | 2.5% |V | 3.0% |V | 3.5% |V | 4.0% |V | 4.5% |V | 5.0% |V |

NeighborSample-HH 0.341 0.227 0.187 0.182 0.171 0.164 0.153 0.142 0.129 0.127

NeighborSample-HT 0.222 0.162 0.159 0.153 0.134 0.118 0.125 0.105 0.102 0.104
NeighborExploration-HH 0.284 0.334 0.247 0.29 0.272 0.164 0.21 0.234 0.178 0.186

NeighborExploration-HT 0.465 0.509 0.52 0.371 0.332 0.296 0.338 0.234 0.324 0.271

NeighborExploration-RW 3.881 2.919 3.857 2.781 2.482 2.891 1.584 2.279 2.363 2.339

EX-MDRW 0.875 0.741 0.676 0.692 0.575 0.554 0.559 0.531 0.485 0.456

EX-MHRW 0.377 0.299 0.246 0.245 0.241 0.182 0.183 0.19 0.164 0.157

EX-RW 0.338 0.244 0.219 0.215 0.177 0.17 0.193 0.148 0.157 0.172

EX-RCMH 0.645 0.513 0.437 0.387 0.421 0.386 0.298 0.30 0.321 0.318

EX-GMD 0.277 0.240 0.181 0.188 0.162 0.179 0.171 0.156 0.156 0.145

Table 5: Google+, target label=(1,2), number of target edges=3280000, precentage=26.89%
0.5% |V | 1.0% |V | 1.5% |V | 2.0% |V | 2.5% |V | 3.0% |V | 3.5% |V | 4.0% |V | 4.5% |V | 5.0% |V |

NeighborSample-HH 0.089 0.061 0.053 0.046 0.043 0.037 0.032 0.031 0.031 0.029
NeighborSample-HT 0.092 0.073 0.059 0.048 0.04 0.036 0.033 0.034 0.029 0.03

NeighborExploration-HH 0.7 0.689 0.642 0.627 0.647 0.58 0.558 0.582 0.49 0.491

NeighborExploration-HT 0.611 0.676 0.607 0.713 0.536 0.578 0.547 0.477 0.436 0.499

NeighborExploration-RW 13.506 11.856 16.765 21.985 19.323 16.279 15.079 11.97 6.65 16.06

EX-MDRW 0.478 0.451 0.443 0.379 0.24 0.269 0.259 0.225 0.261 0.207

EX-MHRW 0.169 0.118 0.089 0.078 0.075 0.06 0.066 0.053 0.057 0.055

EX-RW 0.162 0.117 0.113 0.08 0.078 0.07 0.066 0.067 0.058 0.051

EX-RCMH 0.161 0.108 0.09 0.074 0.066 0.051 0.062 0.063 0.052 0.043

EX-GMD 0.388 0.302 0.228 0.252 0.211 0.187 0.163 0.178 0.169 0.161

Table 6: Pokec, target label=(86,135), number of target edges=295, precentage=0.001%
0.5% |V | 1.0% |V | 1.5% |V | 2.0% |V | 2.5% |V | 3.0% |V | 3.5% |V | 4.0% |V | 4.5% |V | 5.0% |V |

NeighborSample-HH 2.526 1.935 1.413 1.608 1.273 1.38 1.381 1.074 1.007 1.016

NeighborSample-HT 2.802 1.862 1.478 1.378 0.965 1.124 1.174 0.826 1.323 0.853

NeighborExploration-HH 0.761 0.606 0.445 0.339 0.386 0.426 0.302 0.36 0.238 0.209
NeighborExploration-HT 2.023 0.778 0.541 0.659 0.512 0.307 0.364 0.233 0.3 0.241

NeighborExploration-RW 1.861 0.685 0.542 0.466 0.325 0.362 0.457 0.317 0.355 0.307

EX-MDRW 1.0 1.0 1.0 1.0 104.73 1.0 16.607 2.222 13.005 1.0

EX-MHRW 3.492 2.597 1.935 1.783 1.184 1.521 1.527 2.105 1.136 1.47

EX-RW 3.52 2.22 2.656 2.555 1.472 1.533 1.292 1.532 1.237 1.921

EX-RCMH 0.949 0.607 0.450 0.477 0.430 0.405 0.303 0.352 0.314 0.226

EX-GMD 1.0 1.0 1.23 1.35 0.98 2.45 1.23 0.88 0.93 1.06

Table 7: Pokec, target label=(2,51),number of target edges=1163, precentage=0.005%
0.5% |V | 1.0% |V | 1.5% |V | 2.0% |V | 2.5% |V | 3.0% |V | 3.5% |V | 4.0% |V | 4.5% |V | 5.0% |V |

NeighborSample-HH 1.262 1.036 0.748 0.73 0.701 0.649 0.551 0.478 0.503 0.444

NeighborSample-HT 1.62 1.17 0.768 0.742 0.739 0.578 0.759 0.559 0.599 0.461

NeighborExploration-HH 0.448 0.301 0.319 0.203 0.177 0.169 0.139 0.129 0.16 0.124
NeighborExploration-HT 0.424 0.401 0.235 0.203 0.196 0.159 0.188 0.139 0.149 0.149

NeighborExploration-RW 0.941 0.407 0.257 0.231 0.22 0.175 0.188 0.156 0.172 0.155

EX-MDRW 1.0 3.104 13.812 1.0 27.873 2.122 1.649 4.274 2.599 2.392

EX-MHRW 1.494 1.248 1.132 0.886 0.987 0.759 0.611 0.628 0.506 0.624

EX-RW 1.905 1.604 1.4 0.996 0.921 0.665 0.719 0.751 0.655 0.528

EX-RCMH 1.65 1.00 0.971 0.759 0.648 0.709 0.628 0.511 0.613 0.497

EX-GMD 1.0 5.79 1.0 1.07 1.57 6.08 1.34 3.36 1.68 1.25

Table 8: Pokec, target label=(13,20), number of target edges=2134, precentage=0.01%
0.5% |V | 1.0% |V | 1.5% |V | 2.0% |V | 2.5% |V | 3.0% |V | 3.5% |V | 4.0% |V | 4.5% |V | 5.0% |V |

NeighborSample-HH 1.108 0.85 0.635 0.696 0.522 0.531 0.448 0.374 0.404 0.36

NeighborSample-HT 1.555 0.877 0.72 0.552 0.565 0.607 0.458 0.381 0.406 0.382

NeighborExploration-HH 0.396 0.264 0.228 0.192 0.164 0.176 0.139 0.137 0.136 0.12
NeighborExploration-HT 0.445 0.28 0.205 0.211 0.173 0.156 0.15 0.128 0.138 0.104

NeighborExploration-RW 0.344 0.275 0.214 0.194 0.149 0.163 0.144 0.135 0.127 0.146

EX-MDRW 7.56 1.0 9.953 11.815 25.159 3.314 8.077 8.987 3.582 2.476

EX-MHRW 1.373 1.291 0.935 0.706 0.695 0.552 0.545 0.546 0.539 0.415

EX-RW 1.803 1.885 0.864 0.679 0.678 0.58 0.616 0.639 0.451 0.548

EX-RCMH 1.21 0.811 0.625 0.877 0.541 0.461 0.496 0.442 0.527 0.419

EX-GMD 1.27 1.0 1.0 1.28 1.00 1.77 3.05 2.30 2.67 1.24

Table 9: Pokec, target label=(24,122), number of target edges=5784, precentage=0.03%
0.5% |V | 1.0% |V | 1.5% |V | 2.0% |V | 2.5% |V | 3.0% |V | 3.5% |V | 4.0% |V | 4.5% |V | 5.0% |V |

NeighborSample-HH 0.727 0.532 0.41 0.358 0.291 0.314 0.282 0.25 0.229 0.213

NeighborSample-HT 0.839 0.46 0.409 0.292 0.226 0.34 0.25 0.292 0.267 0.189

NeighborExploration-HH 0.349 0.247 0.196 0.192 0.154 0.124 0.141 0.115 0.096 0.101

NeighborExploration-HT 0.382 0.29 0.214 0.156 0.178 0.143 0.117 0.118 0.107 0.093
NeighborExploration-RW 0.342 0.251 0.204 0.214 0.165 0.147 0.122 0.115 0.121 0.095

EX-MDRW 1.163 20.821 6.422 2.987 2.546 4.971 2.431 6.339 2.183 5.172

EX-MHRW 1.063 0.592 0.516 0.57 0.452 0.354 0.387 0.324 0.393 0.294

EX-RW 0.996 0.84 0.643 0.455 0.482 0.467 0.501 0.39 0.328 0.334

EX-RCMH 0.949 0.607 0.450 0.477 0.430 0.405 0.303 0.352 0.314 0.226

EX-GMD 1.67 1.12 3.03 2.58 2.30 1.81 1.41 1.09 1.25 1.90
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Table 10: Orkut, target label=(48,45), number of target edges=5627, precentage=0.001%
0.5% |V | 1.0% |V | 1.5% |V | 2.0% |V | 2.5% |V | 3.0% |V | 3.5% |V | 4.0% |V | 4.5% |V | 5.0% |V |

NeighborSample-HH 1.08 0.884 0.688 0.705 0.578 0.473 0.402 0.379 0.436 0.332

NeighborSample-HT 0.917 0.812 0.487 0.687 0.689 0.343 0.485 0.533 0.341 0.332

NeighborExploration-HH 0.315 0.265 0.195 0.172 0.146 0.141 0.099 0.116 0.096 0.089
NeighborExploration-HT 0.395 0.237 0.154 0.185 0.14 0.117 0.123 0.105 0.109 0.114

NeighborExploration-RW 0.479 0.304 0.215 0.185 0.161 0.156 0.124 0.118 0.116 0.099

EX-MDRW 1.407 9.96 12.876 13.999 10.188 4.846 4.834 3.759 2.085 3.039

EX-MHRW 1.51 0.852 0.843 0.673 0.601 0.613 0.505 0.471 0.429 0.41

EX-RW 1.181 0.693 0.599 0.558 0.542 0.512 0.378 0.41 0.366 0.373

EX-RCMH 0.944 0.670 0.649 0.524 0.425 0.362 0.37 0.379 0.35 0.32

EX-GMD 1.0 1.34 3.41 1.48 1.28 1.40 1.50 1.70 1.35 1.44

Table 11: Orkut, target label=(11,0),number of target edges=49879, precentage=0.043%
0.5% |V | 1.0% |V | 1.5% |V | 2.0% |V | 2.5% |V | 3.0% |V | 3.5% |V | 4.0% |V | 4.5% |V | 5.0% |V |

NeighborSample-HH 0.386 0.357 0.231 0.237 0.168 0.186 0.163 0.148 0.147 0.142

NeighborSample-HT 0.284 0.278 0.249 0.268 0.216 0.197 0.149 0.136 0.167 0.152

NeighborExploration-HH 0.491 0.331 0.278 0.228 0.207 0.193 0.168 0.143 0.147 0.147

NeighborExploration-HT 0.425 0.286 0.274 0.21 0.198 0.185 0.156 0.143 0.152 0.122

NeighborExploration-RW 0.31 0.268 0.202 0.188 0.151 0.166 0.149 0.122 0.111 0.124
EX-MDRW 8.977 6.288 2.317 6.809 8.318 7.408 8.366 3.708 2.174 2.973

EX-MHRW 0.662 0.49 0.381 0.368 0.345 0.261 0.291 0.243 0.238 0.212

EX-RW 1.005 0.788 0.678 0.544 0.503 0.424 0.37 0.379 0.355 0.373

EX-RCMH 0.997 0.651 0.491 0.453 0.384 0.312 0.268 0.281 0.271 0.261

EX-GMD 0.995 3.51 1.78 3.11 1.66 1.76 1.39 2.35 1.71 1.47

Table 12: Orkut, target label=(1,0),number of target edges=128501, precentage=0.11%
0.5% |V | 1.0% |V | 1.5% |V | 2.0% |V | 2.5% |V | 3.0% |V | 3.5% |V | 4.0% |V | 4.5% |V | 5.0% |V |

NeighborSample-HH 0.198 0.162 0.124 0.112 0.113 0.1 0.086 0.081 0.075 0.068

NeighborSample-HT 0.182 0.125 0.106 0.084 0.088 0.085 0.067 0.064 0.065 0.063
NeighborExploration-HH 0.491 0.331 0.278 0.228 0.207 0.193 0.168 0.143 0.147 0.147

NeighborExploration-HT 0.212 0.156 0.136 0.113 0.11 0.087 0.089 0.077 0.063 0.071

NeighborExploration-RW 0.523 0.35 0.253 0.215 0.189 0.187 0.17 0.136 0.154 0.15

EX-MDRW 8.977 6.288 2.317 6.809 8.318 7.408 8.366 3.708 2.174 2.973

EX-MHRW 11.117 27.794 11.387 8.223 3.273 4.57 1.0 1.619 4.748 5.788

EX-RW 0.662 0.49 0.381 0.368 0.345 0.261 0.291 0.243 0.238 0.212

EX-RCMH 1.18 0.985 0.75 0.688 0.511 0.553 0.473 0.436 0.427 0.468

EX-GMD 1.0 5.72 5.74 1.22 3.26 1.97 1.45 2.05 1.69 2.92

Table 13: Orkut, target label=(6,5),number of target edges=769188, precentage=0.657%
0.5% |V | 1.0% |V | 1.5% |V | 2.0% |V | 2.5% |V | 3.0% |V | 3.5% |V | 4.0% |V | 4.5% |V | 5.0% |V |

NeighborSample-HH 0.124 0.079 0.067 0.066 0.056 0.054 0.043 0.045 0.042 0.038

NeighborSample-HT 0.107 0.072 0.071 0.057 0.04 0.04 0.049 0.043 0.032 0.039

NeighborExploration-HH 0.159 0.105 0.096 0.077 0.075 0.067 0.07 0.053 0.053 0.05

NeighborExploration-HT 0.136 0.105 0.1 0.085 0.07 0.063 0.056 0.06 0.054 0.046

NeighborExploration-RW 0.084 0.063 0.057 0.043 0.045 0.04 0.037 0.029 0.028 0.029
EX-MDRW 3.514 2.366 2.551 2.373 1.451 1.403 1.6 1.29 1.297 1.026

EX-MHRW 0.186 0.128 0.105 0.099 0.091 0.082 0.074 0.062 0.068 0.055

EX-RW 0.352 0.231 0.214 0.156 0.153 0.133 0.115 0.116 0.102 0.096

EX-RCMH 0.238 0.178 0.159 0.116 0.116 0.091 0.101 0.087 0.082 0.078

EX-GMD 1.84 0.914 0.904 0.712 0.77 0.705 0.646 0.683 0.693 0.64

Table 14: Livejournal, target label=(34,12),number of target edges=5168, precentage=0.001%
0.5% |V | 1.0% |V | 1.5% |V | 2.0% |V | 2.5% |V | 3.0% |V | 3.5% |V | 4.0% |V | 4.5% |V | 5.0% |V |

NeighborSample-HH 0.62 0.445 0.338 0.308 0.25 0.232 0.272 0.254 0.179 0.198

NeighborSample-HT 0.6 0.45 0.259 0.252 0.326 0.243 0.175 0.24 0.209 0.218

NeighborExploration-HH 0.264 0.164 0.158 0.14 0.138 0.094 0.085 0.098 0.089 0.088

NeighborExploration-HT 0.231 0.168 0.173 0.114 0.2 0.117 0.144 0.083 0.086 0.074
NeighborExploration-RW 1.089 0.205 0.244 0.167 0.121 0.108 0.112 0.113 0.099 0.091

EX-MDRW 3.482 1.666 3.297 3.952 2.436 4.498 2.553 2.273 1.647 3.465

EX-MHRW 0.669 0.589 0.422 0.373 0.318 0.303 0.278 0.28 0.247 0.245

EX-RW 0.587 0.451 0.324 0.382 0.267 0.253 0.19 0.161 0.213 0.179

EX-RCMH 0.564 0.343 0.303 0.263 0.248 0.216 0.199 0.186 0.171 0.159

EX-GMD 1.86 1.72 1.70 0.991 1.60 1.30 1.00 0.850 1.11 0.987

Table 15: Livejournal, target label=(19,16), number of target edges=15442, precentage=0.04%
0.5% |V | 1.0% |V | 1.5% |V | 2.0% |V | 2.5% |V | 3.0% |V | 3.5% |V | 4.0% |V | 4.5% |V | 5.0% |V |

NeighborSample-HH 0.442 0.291 0.196 0.198 0.193 0.174 0.139 0.144 0.116 0.119

NeighborSample-HT 0.557 0.172 0.257 0.182 0.16 0.146 0.157 0.166 0.129 0.117

NeighborExploration-HH 0.393 0.277 0.265 0.204 0.15 0.136 0.125 0.136 0.118 0.105
NeighborExploration-HT 0.466 0.293 0.236 0.204 0.156 0.164 0.157 0.132 0.133 0.115

NeighborExploration-RW 0.543 0.327 0.278 0.263 0.167 0.159 0.173 0.154 0.13 0.129

EX-MDRW 3.447 4.478 2.861 1.834 2.201 1.527 4.163 1.615 1.89 2.148

EX-MHRW 0.637 0.356 0.303 0.32 0.242 0.233 0.233 0.221 0.187 0.187

EX-RW 0.742 0.359 0.337 0.275 0.333 0.241 0.198 0.194 0.172 0.167

EX-RCMH 0.476 0.282 0.239 0.257 0.224 0.195 0.157 0.151 0.128 0.138

EX-GMD 2.52 1.30 1.26 1.23 1.16 1.33 0.853 0.980 0.735 0.822
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Table 16: Livejournal, target label=(8,4), number of target edges=203945 precentage=0.48%

0.5% |V | 1.0% |V | 1.5% |V | 2.0% |V | 2.5% |V | 3.0% |V | 3.5% |V | 4.0% |V | 4.5% |V | 5.0% |V |
NeighborSample-HH 0.104 0.092 0.082 0.06 0.051 0.048 0.038 0.04 0.039 0.04

NeighborSample-HT 0.105 0.101 0.08 0.053 0.06 0.042 0.048 0.046 0.04 0.04

NeighborExploration-HH 0.138 0.107 0.09 0.078 0.057 0.055 0.067 0.06 0.043 0.048

NeighborExploration-HT 0.135 0.117 0.101 0.103 0.082 0.095 0.105 0.084 0.094 0.087

NeighborExploration-RW 0.152 0.1 0.068 0.061 0.084 0.056 0.055 0.054 0.061 0.039
EX-MDRW 1.761 1.535 1.613 1.191 1.191 1.066 1.442 0.942 1.03 0.781

EX-MHRW 0.19 0.127 0.112 0.094 0.071 0.073 0.064 0.064 0.047 0.051

EX-RW 0.201 0.167 0.134 0.096 0.104 0.084 0.08 0.083 0.074 0.082

EX-RCMH 0.172 0.128 0.105 0.093 0.073 0.0745635 0.07 0.08 0.056 0.053

EX-GMD 1.32 0.835 0.717 0.666 0.642 0.613 0.591 0.592 0.546 0.541

Table 17: Livejournal, target label=(1,0), number of target label=1753000, precentage=4.1%
0.5% |V | 1.0% |V | 1.5% |V | 2.0% |V | 2.5% |V | 3.0% |V | 3.5% |V | 4.0% |V | 4.5% |V | 5.0% |V |

NeighborSample-HH 0.094 0.054 0.053 0.041 0.04 0.041 0.031 0.029 0.026 0.028

NeighborSample-HT 0.07 0.057 0.048 0.04 0.037 0.031 0.035 0.027 0.027 0.025

NeighborExploration-HH 0.152 0.083 0.072 0.051 0.052 0.049 0.042 0.037 0.035 0.033

NeighborExploration-HT 0.119 0.089 0.076 0.067 0.056 0.05 0.049 0.044 0.042 0.044

NeighborExploration-RW 0.053 0.048 0.043 0.033 0.031 0.026 0.027 0.024 0.023 0.02
EX-MDRW 3.332 1.757 1.825 0.978 1.14 1.213 1.101 0.95 0.884 0.935

EX-MHRW 0.196 0.131 0.09 0.096 0.079 0.07 0.079 0.068 0.057 0.064

EX-RW 0.252 0.211 0.186 0.145 0.122 0.107 0.11 0.128 0.103 0.08

EX-RCMH 0.155 0.175 0.133 0.111 0.0786 0.092 0.08 0.09 0.067 0.073

EX-GMD 1.16 0.958 0.867 0.726 0.705 0.654 0.642 0.647 0.686 0.59

Table 18: Bound on the number of samples in Facebook
NeighborSample-HH NeighborSample-HT NeighborExploration-HH NeighborExploration-HT NeighborExploration-RW

(1,2) 1359 5398 921 3151 53427

Table 19: Bound on the number of samples in Google+
NeighborSample-HH NeighborSample-HT NeighborExploration-HH NeighborExploration-HT NeighborExploration-RW

(1,2) 2726 13879 1714 25400 445515

converges to the ground truth when more samples or API

calls are used. This behavior is as expected.

(4) In most of the cases, NeighborExploration returns the

best estimations. However, NeighborSample outperforms

NeighborExploration in the cases where the target edges

constitute a larger proportion in the whole edge set. This

is the case for the results of facebook and google+. This

indicates that when the target edges are abundant, neigh-

borhood exploration is not needed to boost the sampling

probability for the target edges.

(5) For the datasets of Orkut and Livejournal, we have multi-

ple sets of results for edge labels with different frequencies.

It is found that the NRMSE values for more frequent labels

are generally smaller than those with less frequent labels.

We have therefore conducted a more systematic study

about the impact of the label frequency, to be reported in

the next subsection.

5.3 Comparison among algorithms with
varying relative count of target edges

We notice that in the same graph, for different target labels the

best algorithms can be different. It turns out that the relative

count of target edges (F/|E |) may also affect the performance of

different algorithms. In order to study the relationship between

the performance of different algorithms and the relative count

of target edges, we measure the values of NRMSE for a range

of F/|E |. The results for Orkut and Livejournal are plotted in

Figure 1 and Figure 2. Each node in these figures corresponds

a target edge label and the x-coordinate is the relative count

of edges with this label and the y-coordinate is the NRMSE of

the target edge count estimation when 5%|V | API calls are used.
Here, we only run experiments on two networks, Orkut and

Livejournal, since the range of the relative count of target edges

in Orkut and Livejournal is much larger than the ranges in other

networks, so the change of NRMSE is more obvious in these

two networks when the relative count of target edges varies.

The results of existing algorithms are not shown, since we have

demonstrated that those algorithms are much less competitive

in the previous experiments. Each NRMSE value is calculated by

averaging over 200 independent simulations.

We summarize our results as follows.

(1) In the same network, as the relative count of target edges

increases, the NRMSE results of all algorithms decrease,

which means that the estimation is more accurate. This is

reasonable, since the probability of sampling target edges

in random walk will be higher if there are more target

edges in the networks, which will result in better estima-

tions.

(2) When the relative count of target edges changes the best

algorithm may also be different. When the relative count

of target edges is small, NeighborExploration algorithms

outperforms NeighborSample algorithms and the differ-

ence is quite significant, but when the relative count of

target edges is large enough, the results of NeighborEx-

ploration algorithms and NeighborSample algorithms are

very close and the best algorithm will change from case

to case.

We explain why our new algorithm NeighborExploration out-

performsNeighborSamplewhen the relative count of target edges

is small as follows. In NeighborSample algorithms, the proba-

bility of sampling a target edge is
F
|E | , since NeighborSample

samples edges uniformly. However, our new algorithm, Neigh-

borExploration, can find a target edge with probability

∑
u∈Q du
2 |E | ,

where node set Q contains all nodes which is included in at least

one target edges, since once we sample a node all target edges

which contains this node will also be found. As a result, our new

algorithm NeighborExploration can obtain target edges with a
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Table 20: Bounds on the number of samples in Pokec
NeighborSample-HH NeighborSample-HT NeighborExploration-HH NeighborExploration-HT NeighborExploration-RW

(86,135) 7.56 × 107 2.77 × 108 4.08 × 106 3.77 × 108 7.35 × 107

(2,51) 1.91 × 107 2.16 × 108 6.9 × 105 2.54 × 108 1.25 × 107

(13,20) 1.04 × 107 1.89 × 108 4.6 × 105 2.01 × 108 8.27 × 106

(24,122) 3.85 × 106 1.45 × 108 2.3 × 105 1.15 × 108 4.16 × 106

Table 21: Bounds on the number of samples in Orkut
NeighborSample-HH NeighborSample-HT NeighborExploration-HH NeighborExploration-HT NeighborExploration-RW

(48,45) 2.08 × 107 9.62 × 108 2.46 × 105 4.8 × 106 4.44 × 106

(11,0) 2.34 × 106 4.5 × 108 3.3 × 105 1.03 × 108 6.03 × 106

(1,0) 9.1 × 105 2.45 × 108 1.8 × 105 3.97 × 107 3.34 × 106

(6,5) 1.5 × 105 2.11 × 107 1.3 × 104 1.38 × 106 2.49 × 105

Table 22: Bounds on the number of samples in Livejournal
NeighborSample-HH NeighborSample-HT NeighborExploration-HH NeighborExploration-HT NeighborExploration-RW

(34,12) 8.28 × 106 3.16 × 108 1.8 × 105 5.86 × 106 3.23 × 106

(19,16) 2.77 × 106 2.22 × 108 9.6 × 104 4.45 × 106 1.74 × 106

(8,4) 2.09 × 105 3.0 × 107 1.7 × 104 7.10 × 106 3.09 × 105

(6,5) 2.34 × 104 5.93 × 105 9.8 × 103 6.0 × 105 1.76 × 105

higher probability than NeighborSample, especially when F/|E |
is small, so NeighborExploration performs better.

Table 23: Best algorithm for Facebook and Google+ using 5% |V |
API calls

Social Network Label Best algorithm NRMSE

Facebook (1,2) NeighborSample-HT 0.104

Google+ (1,2) NeighborSample-HH 0.029

Table 24: Best algorithm for Pokec using 5% |V | API calls

Label Best algorithm NRMSE

(135,86) NeighborExploration-HH 0.209

(2,51) NeighborExploration-HH 0.124

(13,20) NeighborExploration-HH 0.12

(24,122) NeighborExploration-HT 0.093

Table 25: Best algorithm for Orkut using 5% |V | API calls

Label Best algorithm NRMSE

(48,45) NeighborExploration-HH 0.089

(11,0) NeighborExploration-RW 0.124

(1,0) NeighborSample-HT 0.063

(6,5) NeighborSample-RW 0.029

Table 26: Best algorithm for Livejournal using 5% |V | API calls

Label Best algorithm NRMSE

(34,12) NeighborExploration-HT 0.074

(19,16) NeighborExploration-HH 0.105

(8,4) NeighborExploration-RW 0.039

(1,0) NeighborExploration-RW 0.02

6 CONCLUSION
In this paper, we propose to estimate the number of edges with

target labels, which to the best of our knowledge corresponds to

the first attempt to estimate graph properties refined by users’ la-

bels. To solve the problem, we developed two algorithms, namely

NeighborSample and NeighborExploration, which samples a set

of edges/nodes first and then constructs estimators based on

the sampled edges/nodes. These two algorithms are suitable in

different cases, e.g., NeighborExploration is better than Neighbor-

Sample when the fraction of edges with target labels is low. We

also provide some theoretical results on the accuracy guarantees

of the algorithms. We conducted extensive experiments which

Figure 1: NRMSE vs. number of target edges in Orkut when 5% |V | API calls are
used

Figure 2: NRMSE vs. number of target edges in Livejournal when 5% |V | API calls
are used

verified that the algorithms developed in this paper are superior

over baseline methods.

There are a few directions for future study. For example, it

would be interesting to estimate some other types of graph prop-

erties such as numbers of wedges and triangles refined by users’

labels in OSNs.

REFERENCES
[1] 2016. KONECT Datasets: The koblenz network collection. http://konect.

uni-koblenz.de. (2016).

[2] Louigi Addario-Berry and Tao Lei. 2015. The Mixing Time of the Newman-

Watts Small-World Model. Advances in Applied Probability 47, 1 (2015), 37–56.

[3] P. Anchuri, M.J. Zaki, O. Barkol, S. Golan, and M. Shamy. 2013. Approximate

Graph Mining with Label Costs. In KDD (2013), 518–526.

[4] A. Arora, M. Sachan, and A. Bhattacharya. 2014. Mining Statistically Signif-

icant Connected Subgraphs in Vertex Labeled Graphs. In SIGMOD (2014),

1003–1014.

[5] X. Chen, Y. Li, G. P. Wang, and J. C. S. Lui. 2016. A general framework for

estimating graphlet statistics via random walk. Proc. VLDB Endow. 10, 3 (2016),
253–264.

[6] Y. Press D. A. Levin and E. L. Wilmer. 2008. Markov Chains and Mixing Times.
American Mathematical Society.

227



[7] M. Gjoka, M. Kurant, and C. T. Butts. 2010. Walking in Facebook: A Case

Study of Unbiased Sampling of OSNs. In INFOCOM (2010), 1–9.

[8] Olle Häggström. 2002. Finite Markov chains and algorithmic applications.
Vol. 52. Cambridge University Press.

[9] J. Han and J-R. Wen. 2013. Mining Frequent Neighborhood Patterns in a Large

Labeled Graph. In CIKM (2013), 259–268.

[10] M. Hansen and W. Hurwitz. 1943. On the Theory of Sampling from Finite

Populations. In Annals of Mathematical Statistics 14, 4 (1943), 333–362.
[11] S. J. Hardiman and L. Katzir. 2013. Estimating clustering coefficients and size

of social networks via random walk. In WWW (2013), 539–550.

[12] D. G. Horvitz and D. J. Thompson. 1952. A Generalization of SamplingWithout

Replacement from a Finite Universe. J. Amer. Statist. Assoc. 47, 260 (1952),

663–685.

[13] L. Katzir, E. Liberty, and O. Somekh. 2011. Estimating sizes of social networks

via biased sampling. In WWW (2011), 597–606.

[14] C.-H. Lee, X. Xu, and D. Y. Eun. 2012. Beyond random walk and metropolis-

hastings samplers: why you should not backtrack for unbiased graph sampling.

In SIGMETRICS (2012), 319–330.
[15] J. Leskovec and A. Krevl. 2016. SNAP Datasets: Standford large network

dataset collection. http://snap.standford.edu/data. (2016).

[16] R.-H. Li, J. Yu, L. Qin, R. Mao, and T. Jin. 2015. On random walk based graph

sampling. In ICDE (2015), 927–938.

[17] J. S. Liu. 2001. Monte Carlo Strategies in Scientific Computing. Springer
(2001).

[18] LÃąszlÃş LovÃąsz. 1993. Random Walks on Graphs: A Survey. In Combina-
torics, Paul Erdos is Eighty 2 (1993).

[19] Abedelaziz Mohaisen, Aaram Yun, and Yongdae Kim. 2010. Measuring the mix-

ing time of social graphs. In Proceedings of the 10th ACM SIGCOMM conference
on Internet measurement. ACM, 383–389.

[20] S. Nandanwar and M.N. Murty. 2016. Structural Neighborhood Based Classifi-

cation of Nodes in a Network. In KDD (2016), 518–526.

[21] P. Wang, J. C. S. Lui, B. Ribeiro, D. Towsley, J. Zhao, and X. Guan. 2014.

Efficiently estimating motif statistics of large networks. In ICDE (2014), 8:1–

8:27.

[22] P. Wang, J. Zhao, J. C. Lui, D. Towsley, and X. Guan. 2015. Unbiasedcharacter-

ization of node pairs over large graphs. In TKDD 9, 3 (2015).

[23] Y. Wu, C. Long, A. W. Fu, and Z. Chen. 2017. Counting Edges and Triangles in

Online Social Networks via Random Walk. In APWeb-WAIM (2017), 346–361.

[24] W. Ye, L. Zhou, D. Mautz, C. Plant, and C. Böhm. 2017. Learning from Labeled

and Unlabeled Vertices in Networks. In KDD (2017), 1265–1274.

A CHEBYSHEV’S INEQUALITY
Let X be a random variable with expectation E[X ] and variance

var (X ). Then the Chebyshev’s inequality states that for any t > 0,

P(|X − E[X ]| > t) ≤ var (X )
t 2

(25)

Let X̂ be an estimator of E[X ], t = ϵE[X ] where 0 < ϵ < 1 and

0 < δ < 1, then we call X̂ an (ϵ,δ )-approximation of E[X ], if the
following Chebyshev’s inequality holds.

P(|X̂ − E[X ]| > ϵE[X ]) ≤ var (X )
(ϵE[X ])2 ≤ δ (26)

which shows that the probability of that X̂ is in the range [(1 −

ϵ)E[X ], (1 + ϵ)E[X ]] is larger than 1 − δ .
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ABSTRACT
With the unprecedented growth of user-generated content pro-
duced on microblogging platforms, finding interesting content
for a given user has become a major issue. However due to the
intrinsic properties of microblogging systems, such as the vol-
umetry, the short lifetime of posts and the sparsity of interactions
between users and content, recommender systems cannot rely
on traditional methods, such as collaborative filtering matrix
factorization. After a thorough study of a large Twitter dataset,
we present a propagation model which relies on homophily to
propose post recommendations. Our approach relies on the con-
struction of a similarity graph based on retweet behaviors on top
of the Twitter graph. Finally we conduct experiments on our real
dataset to demonstrate the quality and scalability of our method.
Keywords: Recommender System; Collaborative Filtering; Mi-
croblogging Systems

1 INTRODUCTION
During the last decade, several microblogging platforms have
emerged such as Twitter, Pinterest, Instagram, Weibo or
Tumblr. These platforms rely on the same paradigm: users fol-
low each other’s and share content. They have their specific
audience and features but all have encountered unprecedented
growth. This growth tends to make microblogging platforms
overcrowded and users to encounter difficulties to keep up with
all the available content. For instance, in 2017, 500 million mes-
sages were published every day on Twitter. Finding relevant
messages to recommend in real time is a real challenge of prime
interest for these platforms. Indeed, effectively recommending
fresh publications leads to higher engagement from users which
is crucial for a social media service [12].

Many recommendations methods have been proposed in the
literature. Some works propose to extract features from items
to recommend them to suitable users like [23]. However this ap-
proach provides poor results on microblogging platforms due to
the short length of themessages (140 characters for a tweet), and a
broad variety of content: video, picture, sound etc. Other methods
based on collaborative filtering try to capture similarity between
users based on "co-liked" items and to use this similarity to de-
termine recommendations [30]. Among collaborative filtering
methods, matrix factorization [20] and social trust models [25]

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the 21st
International Conference on Extending Database Technology (EDBT), March 26-29,
2018, ISBN 978-3-89318-078-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

are very popular. If these methods provide relevant recommenda-
tions to end-users, they can not scale up with the huge amount
of items produced by a platform like Twitter despite existing
optimization techniques [26]. For instance the similarity matrix
size will be of 1 000 billion of messages with millions of users,
and will permanently grow up, so in addition to storage issues
(even if this is a sparse matrix), it requires constant and costly
computations.

To face this issue, Twitter has developed its own recom-
mender system named GraphJet [32]. This method relies on a
bipartite graph built on users interactions with messages and
computes random walks. By starting these walks from a query
user, it is possible to compute a list of personalized recommen-
dation at low cost [32]. However, due to its random walk-based
computations, GraphJet tends towards recommending mostly
popular messages. Even if many users tends to focus on popu-
lar tweets, this approach reduces chances to recommend more
specific content with similar interests in the neighborhood.

Based on a thorough analysis of a real Twitter dataset of
2.2M users extracted in 2015, with a special focus on the ho-
mophily concept, we propose in this article an original approach
which achieves a good trade-off between relevance, scalabity
and freshness of recommendations. Our intuition is that recom-
mendation relevance can be enhanced by understanding how
people with similar profiles are interconnected. Our proposal
relies on SimGraph, a similarity graph which links users with
relevant-based edges based on common retweets, along with a
scalable propagation model.

In a nutshell, the main contributions of this work are:

(1) a micro-blogging analysis which focuses on retweets and
homophily characterization;

(2) a novel method to drastically reduce the cost of collab-
orative filtering methods relying on homophily and the
construction of a similarity graph SimGraph

(3) a convergent and scalable propagation algorithm enhanc-
ing recommendations with transitivity along with opti-
mization technics;

(4) a thorough experimental comparison between Collabora-
tive Filtering, GraphJet, a Bayes Inference Model and Sim-
Graph, focusing on recommendation quality, processing
time and robustness over time.

The rest of the paper is organized as follows. Section 2 is
a review of the related works. Section 3 provides a thorough
analysis of a Twitter dataset with a focus on homophily, which
leads to our similarity graph and propagation model in Section 4.
Our optimized propagation algorithm is presented in Section 5
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and compared to other solutions in experiments in Section 6.
Finally, Section 7 concludes the paper.

2 RELATEDWORK
Since their appearance in the beginning of the 1990s at Xe-
rox [11], recommender systems have been extremely popular
and are used to recommend a large variety of objects such as :
music [29], movies [27], news [9], recipes [8], etc. Different types
of recommendingmethods emerged: content-based, collaborative
filtering, graph-based, bipartite networks or deep learning.

Content-based methods aim at describing both profiles and
items in order to provide recommendation [23]. The strength of
content-based methods lies in the capacity to provide recommen-
dations without requiring any feedback from users by extracting
tendencies of collected data. In the context of microblogging, the
content itself is poor with small-size tweets, links or multimedia,
even if some works on Twitter targeted this approach [18]. How-
ever, content-based models generally suffer from overspecialized
recommendations [1].

Collaborative Filtering (CF ), on the opposite, combines both
content and user interactions in order to produce recommenda-
tions. CF is generally represented as a matrix resolution problem
and provides relevant recommendation. Lot of works focus on
sparseness [19], on scalability [26] and on cold-start problems [2].
Matrix factorization methods transform both user and item vec-
tors to a latent factor space, where similarities between items and
users are generated by lower-dimensional hidden factors. How-
ever in the Twitter context, matrix factorization is not scalable
due to the matrix size and continuous growth, but also it does
not allow to consider the freshness of the recommended items.

Some other proposals exploit the social network and weight
edges to quantify correlations between users. Jiang et al. [17] mix
the social network with individual preferences into a matrix fac-
torization model and improve recommendations. A broad range
of social recommender systems have a similar approach like [33].
In Jamali et al. [16], authors present SocialMF to also enrich ma-
trix factorization with the network of users. However the size of
the Twitter matrix (more than 100 billions values) and its high
growth (500 millions of messages/day) make these methods hard
to exploit. Many works on trust networks have been done with
explicit information, like in SoRec [24] on Epinion1 producing
and factorizing probabilistic matrices. However, the relationships
between users on microblogging platforms is very heterogeneous
and can carry many different meanings. Consequently it can not
be really considered as a trust relationship.

The bipartite network model is another popular approach in
recommendation systems. For instance Twitter proposes in [32]
GraphJet, a random walk approach on user and post graph. Even
though this method is particularly efficient, it only focuses, for
scalability purposes, on the freshness of interactions. In our point
of view,GraphJet by missing to exploit older interactions reduce
the complexity of users profiles. Moreover, we will see in the
experiments that this solution mainly addresses the hot-topic
recommendations.

There exist also other works on Twitter for recommending
hashtags [10] or users [6], or for filtering messages in the time-
line [34]. But very few address the post recommendation problem.

Finally, deep learning methods on huge datasets such as Twit-
ter [28] or Youtube [7] process neural networks to connect
many dimensions such as similarity matrix, content features,

1http://www.epinions.com/

# nodes 2.2M
# edges 325.5M
# tweets 3,002M
avg. out-deg. 57.8
avg. in-deg. 69.4
max out-deg. 349K
max in-deg. 185K
diameter 15
avg. path length 3.7

Table 1: Main features of the Twitter dataset
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Figure 1: Twitter smallest paths distribution

user feedback. Even if the efficiency of such systems is promising,
it faces scalability and dynamicity challenges for microblogging
platforms. As a matter of facts, it currently uses past content to
extract interesting items from user timelines but does not support
real-time recommendation of posts from the whole network.

3 MICROBLOGGING ANALYSIS
We introduce here the main characteristics of our Twitter
dataset and the different experiments we performed to char-
acterize user behaviors. We discuss the main results of our data
analysis and their implication for our recommendation model.

To build our dataset we first extracted a connected component
from the graph from Kwak et al. [21]. Then for each node of this
subgraph we updated every information in 2015 thanks to the
Twitter API 2. More precisely, for each account we collected the
incoming edges (followers), outcoming edges (followees) and all
the tweets published by the associated account. Observe that due
to the API limit we only retrieved the last 3,200 messages (maxi-
mum) for each account. Table 1 summarizes the main features of
the dataset.Withmore than 2million users and 3 billionmessages
we have a mean number of 1,375 published tweets per user. The
original Kwak connected component contained 125M of edges,
so its connectivity has almost doubled in 6 years. The average
path length for our graph is 3.7 which is very close to the 4.1
found by Kwak et al. (Figure 1). Likewise, the diameter (longest
shortest path between two nodes) for their graph is 18 which is
very close to the one we obtained (15). We also observed that our
2https://dev.twitter.com/rest/public
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Figure 2: Distribution of the number of retweets per tweet

in/out-degree distributions (i.e. number of followers/followees
per user) are close to the ones found in previous Twitter graph
characterizations like [22, 35]. We conclude that we succeed in
building a representative subgraph of Twitter along with the
associated tweets published by the different accounts.

Based on our representative dataset we perform a set of ex-
periments to analyze the retweet activity.

3.1 Retweet characterization
Our objective is to recommend relevant tweets to users. Retweet
is the mean to express interest for a piece of information, which
can indifferently be positively or negatively perceived. The study
of tweet propagation through retweets is consequently of primary
interest.

3.1.1 Retweet behavior. First, we analyzed the popularity of
the retweet behavior. Figure 2 shows the number of retweets for a
given message. A large majority of messages are never retweeted
(≈90% of the tweets), or only a few times, with barely 2-3 retweets
(≈2%). Very popular messages are extremely rare: messages with
more than 50 retweets represent less than 0.005%. These results
are consistent with the study of Kwak [21] which underlines
that a very large majority of the messages are never retweeted
or retweeted only once. From a recommender system point of
view, tweets which are retweeted more than 4-5 times must get
a significant weight since they are popular. Observe that the
network itself promotes the propagation of this type of messages
(social network effect). However being able to recommend a
recent tweet with a small number of retweets (less than 5) is a
real challenge. This is one of the objective of our proposal.

When analyzing whether retweeting is a common behavior,
we observe that only a small number of users produce many
retweets (see Figure 3). The majority of users perform between
10 and 100 retweets. The average number of retweets per user is
156while the median is 37.5 and we observe the traditional power
law distribution where few people gather all the retweets. From
the point of view of recommender systems, the main difficulty
lies in users with very few retweets (or even none) who represent
a large part of the users (a quarter of users have never retweeted).
For these users, methods which rely on collaborative filtering
would be unable to provide recommendations.
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Figure 3: Number of retweets per user
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Figure 4: Lifetime of a tweet

3.1.2 Lifetime of a tweet. Recommender systems must avoid
recommending a tweet which is “outdated”, i.e. which won’t be
propagated anymore because it no longer interests anyone. We
study here the lifetime of a tweet that we measured as the time
span between the publication of the initial message and the last
time it was retweeted. Only messages which were retweeted
at least once are considered in this experiment. The results are
shown in Figure 4. We observe that a large part of the messages
"die" (so are no longer retweeted) before reaching one hour (40%).
90% of the messages die before 72h (three days). It’s very uncom-
mon for a message to be retweeted beyond that point. Therefore
our results differ from the ones reported by Kwak et al. [21] which
notice that 10% of the retweet activity takes place one month
after the publication of the message. Indeed, Twitter still was,
in 2009, a recent system and less content was created, thus it
was more easy to retweet messages older than a few weeks. In
2017, with more than 500 million new tweets published every
day, freshness of the tweets has become a central criterion of
propagation.
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We conclude from this analysis that users mainly share fresh
information and the tweets to consider in our recommender sys-
tem are the messages that reach at least 2 retweets. Moreover,
even for these messages, we do not need to compute their score
after 72h because after this limit they become irrelevant for rec-
ommendation.

3.2 Homophily study
Collaborative filtering methods rely on a list of similar users to
determine recommendations. We study in this section the evo-
lution of similarity scores between users with respect to their
distance in the Twitter network. We adopt a Jaccard similarity
measure with a slight adjustment to take into account the pop-
ularity of the tweet as advised by Breese et al. in [4]: the less
popular a retweeted post by two users is, the closer these users
are. The rationale for relying on retweets to measure the similar-
ity between users, as explained before, is that retweets are the
only way a user expresses explicitly an interest about a piece of
information published.

Definition 3.1 (User similarity measure). The similarity of two
users is defined as:

sim(u,v) =

∑
i ∈Lu∩Lv

1
loд(1+m(i))

|Lu ∪ Lv |
(1)

where sim(u,v) stands for the similarity score between a user u
and a user v . Lu is the profile of user u estimated through the set
of all the tweets he retweeted.m(i) is the popularity of the tweet,
measured here as the number of times it has been retweeted.

Based on this measure we study the homophily between users.
Homophily corresponds in social media to the tendency for peo-
ple to be connected with people sharing the same interest. This
effect has been studied on demographic dimensions (age, gender,
political orientation) for example by Colleoni [5] or Zamal [37].
They show how one could predict a user demographic based
on his neighborhood. Topical homophily also has been studied
by Lerman [15], that shows how people who are topically more
similar are also more likely to be connected. Bhattacharya et
al. [3] present similar results. With our analysis we study the
homophily phenomenon in a different perspective.

Because of computation costs, we limited our study to 2,000
users randomly selected from our dataset, checking that they
retweeted at least a defined number of posts. For each of these
users, we computed the length of the shortest path connecting
them to all other users. The results are shown in Table 2. We
see that only 5.96% of user pairs display a similarity score over 0
and are directly connected through the network. However this
small number of users pair presents the highest mean similarity
score with 0.0056. When exploring at distance 2, to reach the
followees of the followees, we note that the mean similarity
score of 0.0021 is still higher than the average value (0.0019),
and they represent almost 38% of the user pairs. Most of the
users (51%) with a similarity score not null are at distance 3
from each other. However their similarity score is lower, 0.0017.
Moreover, we observe that, according to the topology of the
Twitter network (Figure 1), a distance of 3 corresponds almost
to the entire network.

Table 3 completes this experiment by studying the link be-
tween position in the Top-N of most similar users and their
distance to the user. For each of the 2,000 users from the previous
experiment, we collect the 5 users with the highest similar scores.
We then compute the average shortest distance between a user

Distance Nb of users Perc. Average similarity
1 19,163 05.96% 0.0056
2 121,857 37.91% 0.0021
3 166,633 51.84% 0.0017
4 12,070 03.76% 0.0018
5 297 00.09% 0.0016
6 6 00.01% 0.0019

Impossible 1,396 00.43% 0.0023
Table 2: Evolution of the similarity score through distance
in the network

Distances distribution (%)
Rank Average Distance 1 2 3 4
1 1.65 53.30 28.20 16.65 1.45
2 1.78 43.70 34.50 20.50 1.05
3 1.88 37.99 36.04 24.37 1.35
4 1.97 33.18 36.99 27.68 1.70
5 1.99 32.01 37.93 28.20 1.56

Table 3: Link between distance in the network and posi-
tion in the Top-N ranking

and each user from his Top-5. We observe that the user at first
rank, i.e., the most similar user, is directly connected to the user
in 53% of the cases. The average score decreases when going
down in the user rank. For instance the user ranked at the fifth
position is directly connected to the user in only 32% of the cases.
This study of the top-5 reveals that when considering users at a
distance 1 added with users at distance 2 we capture 70-80% of
the most similar users.

From this experiment we conclude that relying on the "strong"
homophily, i.e. direct connection between users, is not enough
because they represent a very small subset of the set of similar
users. On the other hand we observe a "soft" homophily corre-
sponding to users having a good similarity score but located at
distance 2. These users which represent around 37% of users with
a not null similarity scores, must consequently be considered by
recommender systems to determine meaningful recommenda-
tions.

4 OUR MODEL
Based on our previous analysis we propose a propagation model
relying on homophily to build post recommendation. Our ap-
proach relies on the construction of a similarity graph on top
of the Twitter graph. The basic idea is to exploit the fact that
highest similar users are at a distance lower or equal to 2. Thus
we can use an exploration of the network to drastically reduce
the amount of computed similarities.

4.1 Similarity graph
Our experiments about the homophily enlighten that the natural
homophily in Twitter, which is translated by a "follow" link, is
not sufficient to detect users of interest while considering all
nodes at a distance up to 2 allows to capture most similar users.
So, we decide to perform a 2-hop exploration from each node
(user) in the Twitter graph. The set of reachable nodes for a node
u is named the 2-hop neighborhood, denoted N2(u). Then we
compute for each nodev inN2(u) the similarity score ofv with all
the nodes from N2(u). For each nodew with a similarity greater
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SimGraph
Nb of nodes 1,149,374
Nb of edges 4,950,417

Mean Similarity Score 0.0078
Mean out-degree 5.9

Diameter 21
Mean smallest path 7.5

Table 4: SimGraph characteristics

than a chosen threshold τ , we create an oriented edge e(u,w) in
our similarity graph.

So formally the definition of the similarity graph is:

Definition 4.1 (Similarity graph). Consider the Twitter graph
G(V ,E) where V denotes the set of vertices and E the set of
edges, and a given similarity threshold τ . The similarity graph
SimGraph(V ′,E ′) is defined as:{

V ′ ⊆ V
e(u,v) ∈ E ′ ⇒ u ∈ V ∧v ∈ N2(u) ∧ sim(u,v) ≥ τ

We report in Table 4 the main characteristics of the similarity
graph for our Twitter dataset. First, we observe that around half
of the users from the original Twitter dataset are not present in
the similarity graph. The reason is that many users either don’t
retweet any message or nobody has retweeted the same messages
as this user. This issue is very close to cold-start problems and
we won’t address in this paper the issue of recommending tweets
for users who are not present in the similarity graph.

However, we could consider an approach similar to the one
used in GraphJet [32] using the neighborhood’s computed rec-
ommendation of cold start nodes to partially solve this issue.
Therefore it seems possible without too much effort to recom-
mend items also for cold-start users.

Another characteristic of the similarity graph is a more uni-
form in-degree distribution than the original graph, with few
nodes having a large number of incoming edges. This property
is particularly interesting since in the opposite situation it would
have led to some users gathering all the influence in the similar-
ity network. Paths between two nodes in our similarity network
are now much longer than the original Twitter network since
the diameter of the similarity graph is now 21 and the average
smallest path was doubled from 3.7 to 7.5. We observe that we
are still in a small world network context according to the defi-
nitions expressed in the work of Schnetrler [31]. Basically, this
construction of a similarity graph, relying on 2-hop exploration
in the Twitter graph could be seen as a dimension reduction
process.

4.2 Propagation Model
The sparsity of user interactions on data is generally consid-
ered a major bottleneck for a successful execution of a collabo-
rative filtering recommender system. As we’ve seen before, in
microblogging context, this sparsity issue is important. In their
work, Huand et al. [14] use transitivity in a collaborative filtering
model to fight the sparsity problem. Considering a similar ap-
proach, we propose a propagation model on top of our similarity
graph. Propagation is an efficient way to face the sparsity since it
allows to transmit content from a user u to a user v while there
exists no link (i.e., edge in the underlying graph) between them.
Intuitively we consider that if a userw has interests similar to u
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Figure 5: SimGraph smallest path

leading to several retweets, the content from u that we recom-
mend to w should also be recommended to v if v is similar to
w .

The only action we can collect to capture interests from a user
for a tweet is the retweet action to share a piece of information.
Consequently we assume here that liking a tweet is similar to
sharing it (retweet). Therefore the words "like" and "retweet"
are interchangeable. We estimate the sharing probability, i.e. the
probability that a user u likes a tweet t as:

Definition 4.2. Sharing probability The probability that a user
u likes (and shares) a tweet t is:

p(u, t) =

∑
v ∈Fu

p(u ← v, t)

|Fu |

where Fu denotes the set of influential (similar) users for u (i.e.,
those connected by outcoming edges in the similarity graph) and
p(u ← v, t) is the probability that u likes t determined consis-
tently by the behavior of his influential user v . This probability
is estimated as:

p(u ← v, t) = p(v, t) × sim(u,v)

Example 4.3. Consider the similarity graph of Figure 6 with 5
nodes (u,v,w,x ,y). An edge u → v expresses the fact that v is
an influential user of u. Edges values correspond to the similarity
score sim(u,v). Assume that user x liked/shared the tweet t1, so
the probability that x like t1 is p(x , t1) = 1. Consequently the
score of p(w, t) is:

p(w, t1) =

∑
v∈Fw

p(w ← v, t )

|Fw |
=

0 × sim(w, y) + 1 × sim(w, x )
2

= 0.25

However since p(w, t1) changes, all probabilities which depend
on the value of p(w, t1) must be updated in turn.

5 PROPAGATION ALGORITHM
We introduce in this section our propagation algorithm which al-
lows to recommend new content to users based on their similarity.
We also present its convergence property and optimizations.
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5.1 Iterative algorithm
Weperform our iterative propagation algorithm each time a tweet
t is retweeted. We discuss different optimizations in Section ??
which exploit our observations regarding the popularity and the
lifespan to avoid performing the propagation for each retweet.

So assume that we have a similarity graph SimGraph = (V ,E)
withV the set of vertices and E the set of edges, and that a tweet
t is retweeted by a user. Algorithm 1 presents our propagation
algorithm. We denote by D the set of users that have already
retweeted t . For each v ∈ D, the probability p(v, t) is conse-
quently 1 (line 3). For all other users u ∈ V \ D we consider that
the initial probability to retweet this tweet is p(u, t) = 0 (line 4).
During an iteration, we compute for all the users u in V \ D the
probability p(u, t) based on the probabilities from his followees,
i.e. p(v, t) for all v ∈ Fu (line 10). So for iteration k we compute
our probabilities based on the those which were computed at
iteration k − 1. Observe that users v ∈ D have a probability of
1 which is not re-computed during the iterative algorithm. The
algorithm stops when no probabilities change during an iteration
(line 7).

Algorithm 1: Propagation algorithm
input :Similarity graph SimGraph = (V,E), a tweet t and a

set of users D who retweet it
output : the set of vertices with their retweet probability

1 Initialization;
2 foreach u in V do
3 if u ∈ D then p(u, t) = 1 ;
4 else p(u, t) = 0;
5 end
6 convergence = false ;

7 while convergence = false do
8 convergence = true ;

9 foreach u in V \ D do
10 p′(u, t) = (

∑
v ∈Fu

p(v, t) × sim(u,v))/|Fu |

11 if p(u, t) , p′(u, t) then convergence = false;
12 p(u, t) = p′(u, t) ;
13 end
14 end
15 Return ∀u ∈ V ,p(u, t) ;

Example 5.1. Consider our previous example in Figure 6. After
that user x liked/shared the tweet t1, we propagate this action on
the similarity graph and we first update the score of p(w, t) since
x is an influential user ofw . Since the value ofp(w, t) changed and
is now 0.25 we must update in a second iteration the probability

of the users influenced byw , so here only u.

p(u, t1) =

∑
v ∈Fu

p(u ← v, t))

|Fw |
=

0 × sim(u,v) + 0.25 × 0.5
2

= 0.0625

Since there is no users influenced by u the algorithm stops.

Therefor this algorithm produces for an incoming tweet a
probability score for every users in the propagated sub-graph.
Then, the recommendations of a user is based on the top-k tweets
sorted on probability. We will study in Section 6.2 the impact of
the size (k) on the quality of the recommendations compared to
competitors.

5.2 Linear system formulation
Consider we have n users (u1,u2, ...,un ) in the similarity graph,
our propagation model consists in resolving the following linear
system with n equations:

a11pu1 + a12pu2 + .... + a1npun = b1
a21pu1 + a22pu2 + .... + a2npun = b2

... = ...

an1pu1 + an2pu2 + .... + annpun = bn

which can be written under a matrix product Ap = b with:
• vector b which is the initial state vector, with bi = 1 if ui
has retweeted (shared) the message and 0 otherwise;
• vector p is the solution vector, containing the probabilities
after propagation of any user to like the tweet;
• the similarity matrix A which is defined as:
∀i ≤ n,∀j ≤ n,

ai, j =


1 i f i = j
−sim(ui ,uj )
|Fui |

i f (ui ,uj ) is an edдe in the SimGraph

0 otherwise

5.3 Convergence property
Incremental resolution methods such as Jacobi, Gauss-Seidel or
successive over-relaxation (SOR) can be used to solve such a
linear system Ap = b. A necessary and sufficient condition to
ensure convergence for this incremental resolutionmethod is that
the matrix A is diagonally dominant. This condition is fulfilled
here because ∀u,v sim(u,v) ≤ 1, so

∑
j,i
|ai j | <

1
Fu ×

∑
j,i

1 = 1.

Since |aj j | = 1, we conclude that |aj j | ≥
∑
j,i
|ai j | for all i , so A is

diagonally dominant.
Considering the Jacobi method of resolution, the convergence

speed is bound by the matrix norm | |A| |. However, this value
is dependent of the matrix’s values, and therefore cannot be
known theoretically. We conducted an experimental study on
our dataset and show that the convergence of our model is bound
to | |A| | = 0.91 - the worst case scenario. The unpredictable or
bad convergence speed of our model led us to apply several
optimizations to guarantee a fast convergence and therefore a
fast computation.

5.4 Propagation algorithm optimizations
We propose and test several optimizations for the propagation
algorithm which significantly improve its performance.

Propagation thresholds. A first optimization consists in setting
a static threshold β to decide whether a score updated at an
iteration k should be transmitted to the followees at the iteration
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k + 1. So when p(u, t)n − p(u, t)n−1 < β the user u does not
propagate its score to his followees for any following iteration.

We extend this traditional approach by proposing a dynamic
threshold based on our analysis about the evolution of the tweet
popularity and its lifespan. Indeed the probabilities computation
for a popular message requires a long time in order to reach
convergence. Moreover, this tweet is likely to be sent to a large
part of our similarity network. Oppositely, a tweet which has
not been retweeted many times because it has just appeared
in the system leads to faster computations. Most recommender
systems focus on already-popular tweets. So, by setting a dynamic
threshold which favors tweets less popular because they have
just appeared, we could recommend them earlier than other
recommender systems, and at lower computing costs. Precisely
we define our dynamic threshold γ (t) for a tweet t as:

γ (t) =
(m(t))p

kp + (m(t))p

wherem(t) denotes the popularity of the message t which can
be measured as the number of retweets, for instance. k and p
are fixed parameters and are superior to 0, they are used to
fit properly the distribution of popular items. Basically γ (t) is
bounded between [0, 1] and close to 0 when few people have
shared t , and close to 1 when the message is considered popular.
However other dynamic thresholds could be considered.

Postponed computation. We propose another optimization
based on the time frame update. It consists in starting the propaga-
tion process not at each time a new retweet happens on amessage
but after time interval δ depending on the account activity. For
instance, assume that a message is very popular with dozens of
retweets per minute. We could decide to wait 10 minutes before
executing the propagation computation. On the opposite a very
unpopular message can wait few hours before launching the
propagation process.

6 EXPERIMENTS
We evaluate the SimGraph model along with our propagation
algorithm. We first detail the experiment protocol used with our
Twitter dataset to measure the quality of generated recommen-
dations. Then we present our different results and compare them
with other recommendation methods.

6.1 Experimental Setup
Our experiments are performed on a Linux machine with 512GB
of RAM memory and 80 Intel(R) Xeon(R) CPU E7-4830 v2 @
2.20GHz. We use Java Openjdk 1.8 for all our implementations.
To compare our method with several baseline solutions, we im-
plement a Bayes Inference Model used for recommendation [36],
a standard collaborative filtering method (CF ) [13] and GraphJet
algorithm [32] which is currently used by Twitter. The rationale
for the choice of these different competitors is that our method
could be seen as a combination of probabilistic and collaborative
filtering approaches. Regarding the Bayesian inference model we
tweak it slightly to consider only the binary feedback of Twitter
(liking or doing nothing) instead of ratings from 1 to 5. Moreover
due to computational issues it is necessary to define a thresh-
old in the Bayesian probabilities computation to stop the costly
process. The implementation of the GraphJet method is based
on Twitter source code3. All experiments are performed on the
real Twitter dataset introduced in Section 3.
3https://github.com/twitter/GraphJet
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Figure 7: Recall Capacity for 1500 users

Tomeasure the quality of the recommendations on our dataset,
we compare the recommendations of the different methods with
real observations. To achieve this, we consider retweets of mes-
sages which were retweeted at least twice. They constitute a
set of 132, 389, 409 sharing actions for these messages that we
ordered on time. We split the set in two: the first 90% of actions
(the oldest retweets) compose the training set and the last 10% the
test set. While the former set is used to train the four methods,
the latter one allows to check the recommendations with real
retweets. Note that the test set captures 66 days of retweets from
the users in our dataset. Then we randomly select 500 users with
less than 100 retweets (low-active users), 500 users with more
than 100 retweets but less than 1,000 (moderate-active users) and
finally 500 users with more than 1,000 retweets (intensive users).
Combined, they constitute a set of 1,500 users used to compare
the results of the different methods. We consider that a message
is a hit if it is recommended to a user before he actually interact
with the message (retweet/like). This prediction task can be seen
as a quality measure.

6.2 Quality of the recommendations
Number of recommendations. Figure 7 displays the average

number of recommendations proposed by the different recom-
mender systems with respect to the maximum number of daily
recommendations for each user (i.e. the size of the top-k rec-
ommendations). We observe that Bayes, GraphJet and SimGraph
present similar behavior, capped between 50 and 70 recommenda-
tions per day and user. Only CF, with a linear growth, is capable
of providing a high number of recommendations for any user
with this maximum of 140 recommendations. There are several
possible explanations for this. First, CF by relying on every simi-
larity scores possible between pair of users is independent of the
network. Therefore the scope of candidate items to be proposed
is very large. Second, Bayes and SimGraph which rely on propa-
gation methods could theoretically compute a prediction score
for any message to almost any user. The fact that their curve is
not linear seems to be a direct consequence of using thresholds
during the propagation. We could argue that our threshold val-
ues are well chosen since 50 recommendations a day per user
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Figure 8: Number of hits for 1500 users
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Figure 9: Number of hits for 500 small users

remains sufficient. Finally, GraphJet is limited by the low con-
nectivity and the slow activity of small users. In fact, the total
number of possibilities offered to small users is limited to their
neighborhood.

Retweet prediction. A prediction corresponds to a hit in the
test dataset when the recommendation of a message happens
before it is effectively retweeted/shared in the dataset. Figure 8
plots the total number of hits for the combined set of 1,500 users
with respect to the number of recommendations proposed to a
user per day. This experiment is refined by different sets of users
on Figure 9 (low-active users), Figure 10 (moderate-active users)
and Figure 11 (big users). We observe that the results are globally
stable among the different sets of considered users.

The main difference between types of users (small, medium,
big) comes from the bounds of the number of hits. In fact, the total
number of retweets/share is higher for big users and therefore
the probability to have a hit. But interestingly, users’ behavior
is identical for medium and big users. According to small users,
since the total number of retweets is low, the probability to find a
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Figure 10: Number of hits for 500medium users
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Figure 11: Number of hits for 500 big users

hit grows up quickly for all approaches but a threshold is reached
faster.

We note that the CF model has a linear evolution in the com-
bined set of 1500 users, so it is better suited for applications
proposing a high number of recommendations. But as we saw
in Figure 7 this model also proposes the largest number of rec-
ommendations which leads to a constant but low precision score
of 0.0001% (i.e., it proposes a lot of noise). For instance, when
limiting to a top-30 for recommendations, CF gets 5,685 hits
while Bayes and GraphJet get respectively 3,564 and 2,541 hits.
SimGraph outperforms them with a total number of 8,509 hits at
top-30. However, this number of hits is limited for small users
with a stabilization of 700 hits for k > 80. It is due to the fact that
those users do not retweet much and cannot statistically lead to
much more hits.

SimGraph outperforms other approaches, e.g. GraphJet by a
factor of 3.5, for any k < 200. For very large values of k , CF
slightly outperform our method Simgraph. Similarly to CF, Sim-
Graph does not rely directly on the underlying network and
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Figure 12: Popularity of hits

focuses on similarities which quickly provides good results based
on users interests. But, thanks to the similarity graph and transi-
tivity, our solution succeeds in providing new recommendations
coming from other kinds of interests, different from the ones
observed in the user profile, based on proximity where CF fails.

Popularity of the hits. We now focus on how popular the rec-
ommendations are in each solution which led to some hits. It
helps to identify their scope of accuracy. Figure 12 shows that
GraphJet’s random walks mainly generate hits on popular mes-
sages with an average number of retweets equals to 113 for each
hit. Indeed, the most popular a message is, the more often the
random walk will reach it. Therefore, GraphJet naturally is more
inclined to recommend popular items.

On the contrary, the Bayesian model recommends less popular
messages: for the hits it produced there were only 6 retweets on
average. Thus, it produces more "local" recommendations, due to
the probability computation on top of the underlying network.
Observe however that the messages popularity decreases with
the size of the top-k , in order to provide more recommendations
Bayes will find items that are even less popular.

Collaborative filtering approaches, CF and SimGraph, present
a more balanced result with respectively 35 and 23 retweets for a
recommended tweet. These systems recommend both popular
and more dedicated messages. Observe that at first CF will pro-
pose less popular items due to relying on strong similarities far
in the network while SimGraph will propose more popular items.
The curve will then intersect around top-70.

Hits comparison. Figure 13 displays the amount of hits in com-
mon between SimGraph and other methods. It shows the ratio σ
of common hits, ı.e. :

σ (competitor ) =
hits(SimGraph) ∩ hits(competitor )

hits(competitor )
(2)

We notice first that the ratio of common hits does not evolve
more than 10% for each method. Except for CF that proposes less
popular retweet at the beginning (see Figure 8) and more popular
ones then, which levels up the number of common hits.

On the contrary, GraphJet focuses mainly on popularity at
the beginning and shares less similarity between users, but then
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Figure 13: Parts of hits that are included in SimGraph
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Figure 14: F1 Scores over number of recommandations

after 40 recommendations this intersection reaches a bound due
to a more diversified set of recommendations in SimGraph.

The Bayesian method shares more similarities between hits
with more than 50% which means that our method predicts
retweets of tweets with various popularity: popular tweets like
GraphJet, but also less popular tweets like CF and not-popular
like Bayes based on the network.

F1 Measure. Figure 14 plots the F1 score for each method,
according to the hits obtained over the number of daily recom-
mendations per user. Except Bayes, methods peak around the
same size of k = 15, which seems to be a good number of recom-
mendation per day. GraphJet by doing less hits for same amount
of recommendation leads to a lower score when combining pre-
cision and recall. CF proposes too many recommendations even
with better precision obtains a similar F1 score as Bayes that
proposed less recommendations but with more hits. Finally, Sim-
Graph gives a really good compromise, with both popular and
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similar in the neighborhood, of recommendations of tweets. Over-
all on this task, SimGraph performs 4 times better than GraphJet
and 2 times better than Bayes and CF.

6.3 Performances
Processing time. We compare now processing time for the

different methods. Results are presented in Table 5. We observe
that CF has the highest initialization time with almost 9s per user,
since it requires to compute the similarities between all pairs of
users, so theoretically |V |2 ≈ 1.3×1012 computations. Oppositely
Bayes has the lowest initialization time with 10ms per user to
initialize all probabilities. For SimGraph, the initialization consists
in exploring for each user his neighborhood up to distance 2 (BFS
exploration) and to compute similarities for each user found
during the exploration to build the similarity graph. For each
user, using this method requires 311ms to determine its most
similar users. GraphJet only relies on the Twitter and retweets
graph and does not need any initialization.

According to the message processing time, all the methods
were implemented in a multi-thread way on a 70 cores paral-
lelization process. We can observe that Bayes takes around 1
second to compute the recommendation scores for a given mes-
sage due to graph exploration. Oppositely CF is able to compute
very quickly the different recommendations (0.5ms per message)
based on the pre-computed similarities. SimGraph requires 38ms
to compute the recommendation score of a message to users
based on our iterative propagation algorithm. GraphJet is user-
centric and computes top-k recommendations for a given user,
and not a set of users to recommend a given message. Computing
k recommendations for a given user requires 14ms .

To compare performances of the different algorithms we mea-
sure the total time for processing both the initialization and the
recommendations, for each user for GraphJet or for each of the
13.2 million incoming messages during the test dataset for other
methods. For GraphJet we perform the computation periodically,
here we chose every 5 hours. Note that the test period extends
over 66 days. It results that Bayes is the most expensive method
with 51.22h of total computation.CF is also expensive with 41.01h
of computation mainly for the pre-processing. GraphJet provides
much faster recommendations (4.2h). SimGraph is a good trade-
off with an initializing time by node of 311ms and an average
time per message of 38ms leading to a total computation time of
3.41h. We see that both the Bayes and CF methods suffer of very
long computation time, making them hard to use in a real life
scenario.

Notification time. This experiment illustrates the benefit of the
different methods regarding the notification time. In other words,
we want to study how much time in advance a recommended
tweet will be presented to the user before the actual interaction.
Remember that according to our study in Section 3, a tweet has
a short lifespan. We compute for each hit the difference between
the time when the recommendation was performed and the time
when the user perform the retweet in the test dataset. In Fig-
ure 15, we see that GraphJet is very stable and permits to predict
a hit 80,000s (around 22 hours) in advance on average. GraphJet’s
tendency to recommend popular items makes it more efficient
on this task, having more opportunities to predict such messages
before. Interestingly theCF curve is correlated with the average
popularity of the item predicted in Figure 12. Recommending
dedicated items long time in advance is a difficult task therefore,
and naturally the average advance time increases for CF and
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Figure 15: Average advance time before real retweets (in s)
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can predict recommendations before GraphJet for very large k
values. Indeed CF benefits from not having to wait for a message
to propagate through the network to compute a recommendation
score, therefore can predict popular items long time in advance.
Following the same conclusion that predicting dedicated mes-
sages long time in advance is a difficult task, it fully explain why
Bayes and SimGraph can only predict iterations 17h in advance
on average since they have to wait for more signals.

Graph update. Microblogging platforms such as Twitter are
permanently in motion. Each retweet/like performed impacts
some changes of similarity scores and consequently impacting
recommendations computation and quality. Keeping structures
up to date to fit the shift of users’ interest is a very difficult task.
Therefore an efficient updating strategy is crucial to make our
recommendation model robust to network and retweet evolu-
tions. GraphJet is a very suitable solution in real life because, by
avoiding any initialization step, it continuously stays updated no
matter the amount of new information published. However, as
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init. (per user) init total time time (per message) total time (70 cores //) total time
1,149,374 users 13,238,941 Tweets (Trial period) init + recos

Bayes 10ms 0.04h 975ms 51.22h 51.26h
CF 8,583ms 39.40h 0.5ms 0.02h 41.01h

SimGraph 311ms 1.41h 38ms 2.00h 3.41h
init. (per user) init total time time (per user) total time (70 cores //) total time

1,149,374 users 1,149,374 users * 66 days (Trial period) init + recos
GraphJet 0ms 0h 14ms 4.2h 4.2h

Table 5: Initialization and recommendation time (in ms)

we saw in Figure 8 the gain in hits prediction with our method
SimGraph is substantial enough to inquire how we can keep this
increase of accuracy while dealing with incremental updates. We
study the impact of computing our recommendations based on
an outdated similarity graph and the outcome of using different
updating strategies. For this experiment we assume that Sim-
Graph was built at the beginning of the test dataset (after 90% of
the retweets). We plot in Figure 16 the number of hits obtained
for the last 5% of the retweets (half of the 10% trial). We compare
four approaches:

• from scratch, where the graph is totally rebuilt after 95%
of the retweets, from the original graph,
• old simgraph, where we keep the exact same SimGraph
that the one computed at 90%,
• crossfold, where we apply our similarity graph construc-
tion on the previous old simgraph instead of the twitter
graph,
• SimGraph update, where we update similarity scores on
the similarity graph built at 90%

As expected re-building from scratch the similarity graph
at 95% allows to get the best predictions. This strategy is also the
most expensive one with similar computation cost as the ones
expressed in Table 5. Surprisingly old SimGraph and SimGraph
update have almost the exact same results, indicating that the
topology of the computed network has a more important impact
than the weight computed on the edges. The crossfold strategy
is very promising because it fits almost perfectly with the from
scratch strategy while cutting drastically computation cost. In-
deed, the crossfold strategy perform a BFS at distance 2 on the
already computed similarity graph to search for new influential
users that weren’t considered during the first SimGraph compu-
tation. This method both increases the density of the graph while
updating the weight edges. These results enlighten the possibility
to follow the evolution of users by incrementally computing a
SimGraph on top of the previous iteration and avoid computing
things from scratch.

7 CONCLUSION
We propose in this paper SimGraph, a scalable recommendation
model based on a similarity graph which exploits homophily for
propagation of probabilities. We study the homophily impact
between users on the network. This indicate that homophily is a
good property to find quickly users of high similarities and there-
fore drastically reduce the computation cost of such operation.
We find that applying transitivity on those similarities reduces
the sparsity efficiently with a fast convergent model thanks to op-
timization technics. We propose a propagation model in order to
compute on-demand relevant recommendations for an incoming
post. Our experiments enlighten that our method outperforms

other approaches for recommendation computations, but also
provides more hits than the competitors for a lower number of
recommendations blending popular and more confidential items.
We also demonstrate how SimGraph can be updated at low cost,
showing its usability in real world scenarios.

As future works, we intend to enhance our similarity graph by
analyzing content of the tweets with entity recognition. In fact,
our similarity is based on common retweets between users and
can be improved by creating "topic tweets" by merging similar
tweets. This will make users likely to be similar in the similarity
graph and therefore enhance results for small users. We also plan
to break "information bubbles", since recommended information
is generally originated from the same sub-part of the graph. We
are currently working on the identification of bubbles in our
twitter graph based on both the network topology and tweet
topics. Then we will propose a complementary score for recom-
mendations by escaping from information locality from a bubble
to another.
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ABSTRACT
Selection algorithms usually score individual items in isolation,

and then select the top scoring items. However, often there is an

additional diversity objective. Since diversity is a group property,

it does not easily jibe with individual item scoring. In this paper,

we study set selection queries subject to diversity and group

fairness constraints. We develop algorithms for several problem

settings with streaming data, where an online decision must be

made on each item as it is presented. We show through exper-

iments with real and synthetic data that fairness and diversity

can be achieved, usually with modest costs in terms of quality.

Our experimental evaluation leads to several important in-

sights in online set selection. We demonstrate that theoretical

guarantees on solution quality are conservative in real datasets,

and that tuning the length of the score estimation phase leads

to an interesting accuracy-efficiency trade-off. Further, we show

that if a difference in scores is expected between groups, then

these groups must be treated separately during processing. Other-

wise, a solution may be derived that meets diversity constraints,

but that selects lower-scoring members of disadvantaged groups.

1 INTRODUCTION
Diversity is desired in many contexts, ranging from results of

a Web search to admissions at a university. As algorithms are

increasingly used to make decisions, there is growing interest in

algorithms that can produce diverse results. Indeed, fairness and

diversity are central to responsible data science practice [7, 17].

Diversity is a set concept: it makes no sense to talk about

an individual item as being diverse. Fairness is less clearly a

set concept; nevertheless, fairness is often stated with respect

to some comparison standard, usually a group [5, 12, 19]. For

example, in the context of racial discrimination, we frequently

refer to under-represented minorities, which is a set construct,

with fairness requiring proportional representation.

Most algorithmic decision-making is based on the individual:

typically, a score is assigned to an individual item based on its

attributes. However, since fairness and diversity are set concepts,

they can only be guaranteed as part of a set selection procedure.

In this paper, we show how we can guarantee fairness and

diversity in set selection.We begin by developing a simple general

problem statement in Section 2, to maximize utility subject to a

set of diversity constraints. We show that our problem formulation

covers a wide range of fairness and diversity requirements. We

then solve this problem in two settings. In Section 3, we present

a baseline algorithm that make the assumption that all items are

available before any selections have to bemade. Then, in Section 4
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we develop algorithms that decide whether to accept, reject or

defer an item in an online manner, as the items are presented. We

refer to this variant as the Diverse K-choice Secretary Problem.

Algorithms of Section 4 constitute the main technical contri-

bution of this paper. These algorithms build upon a rich body of

work on the Secretary Problem [8, 11, 14] — selecting the max-

imum element in a randomly-ordered sequence of N elements,

and on its K-choice variant — selecting K elements out of N [4].

In Section 5, we show experimentally that the online algo-

rithms of Section 4 produce solutions that both meet the diversity

requirements and are very close to the baseline algorithm of Sec-

tion 3 in terms of utility. Further, we demonstrate that theoretical

guarantees on solution quality of online algorithms are conser-

vative on real datasets. These algorithms start by observing the

scores of the items in the stream without accepting any items, to

develop a quality estimate; this is known as the warm-up period.

We show that an interesting quality-efficiency trade-off can be

achieved by tuning the length of the warm-up period. Finally, we

show that if a difference in scores is expected between groups,

then these groups must be treated separately during processing.

Otherwise, a solution may be derived that meets diversity con-

straints, but that results in selecting lower-scoring members of

historically disadvantaged groups.

We discuss related work in Section 6 and conclude in Section 7.

2 PROBLEM DEFINITION
The basic problem setting is that we have a set of items, each with

associated attributes. From this set, we wish to select K items to

maximize a utility score (to be defined below) subject to diversity

constraints (also to be defined below). The items in the set may

be presented to us together or one at a time.

We obtain the utility score for a set of K selected items as the

sum of scores of each individual selected item. The score of an
item may be pre-computed and stored as a physical attribute, or

it may be computed on the fly, and possibly even be obtained

as the result of an expensive scoring algorithm. In all cases, all

we require is that we eventually have a single scalar score value

for each item. The score is sometimes called the utility score or
utility value in the literature.

The basic top-k problem is to choose K items with the highest

score. That is, for any item j in the top-k , and any other item

q not in the top-k , we have sj ≥ sq , where sq is the score of

item q. This is equivalent to saying we choose K ≥ 0 items such

that ∀k ∈ [0,K][arдminj ∈[0,K ](sj )] is maximized. This is further

equivalent to saying

∑
j ∈[0,K ] sj is maximized. We will use this

last definition, since with added diversity constraints these three

definitions are no longer equivalent, and the first two may not

be appropriate.

Having described the utility maximization problem above, let

us now turn to fairness and diversity constraints. Among the

attributes associated with items, we assume that one discrete-

valued attribute is of particular concern. We call this the sensitive
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attribute. Our notions of fairness and diversity are defined with

respect to the value of this sensitive attribute.

In practice, there may be multiple sensitive attributes, rather

than just one. In this case, we could consider each independently,

by making minor appropriate modifications to all statements

below. If combinations of multiple attributes are of concern, or

if dependencies between the sensitive attributes need to be cap-

tured explicitly, we could represent such combinations as a single

(Cartesian product) attribute of concern. For example, if both

race ∈ {W ,B,H } and gender ∈ {M, F } are sensitive attributes,
we could combine these into a single attribute of cardinality 6.

If a sensitive attribute is not discrete-valued, or takes on too

many discrete values, then we can bucketize the attribute value

into a finite number of discrete buckets. Attributes such as age
and salary are often treated this way in practice for many ap-

plications. In fact, sensitive attributes may also have associated

privacy concerns, and so may need to be converted to noisy

histograms, e.g., to enforce differential privacy.

We further assume that the dataset is partitioned on the value

of the sensitive attribute. That is, each item is associated with

exactly one value of the sensitive attribute. For example, a person

of mixed race should not be listed as having both White and

Black as values for the race attribute: rather this value should be

set to an appropriate single value, such as "White-Black-Mixed".

Let there be d distinct values of the sensitive attribute. Our

requirement is to choose ki elements for each distinct value

i ∈ [1...d], with each ki ∈ [0,K], and
∑
i ki = K . Of course,

this begs the question of what the ki values should be. We next

consider several notions of fairness and diversity and show how

to capture these within this framework.

Fairness by proportional representation (of values of the sensitive
attribute). Suppose that the number of items N is known, as is

the number of items ni in each sensitive category i ∈ [1...d].
Then, proportional representation requires that the desired size

K of the selected set be prorated among the d categories. That

is ki = K ∗ ni/N . We call the right hand side of this equation

proportioni , for convenience.
A difficulty we run into is that ki must be an integer: an item

in some category is either selected or it is not. Thus, fractional

values do not make sense, yetproportioni is not always an integer.
We can round proportioni to the nearest integer to determine

eachki , hoping to returnK items in total. But wemay end upwith

rounding errors resulting in violation of

∑
i ki = K . To avoid this,

it is reasonable to provide some flexibility in choosing the value of

each ki , using the formula ⌊proportioni ⌋ ≤ ki ≤ ⌈proportioni ⌉,
where ⌊.⌋ is the floor function and ⌈.⌉ is the ceiling function.

Even weaker constraints are often acceptable in practice. For

example, in a class of 821 students, and with a binary assignment

of the gender attribute, we may desire to see 410 students of one

gender and 411 of the other. However, it is unlikely that an insti-

tution would be accused of discrimination if they admitted 407

women and 414 men. Generally, it is acceptable to set thresholds

on the relative representation of different categories. This idea is

a generalization of the 80% rule of disparate impact [10].

Another potentially appropriate fairness metric is the normal-

ized difference: the mean difference normalized by the rate of pos-

itive outcomes, which in our case corresponds to being selected

among the top-k . Another is the elift ratio: the ratio of positive

outcomes for the historically disadvantaged demographic group

over the general group. A ratio of 1 indicates no discrimination,

while a ratio below 0.8 has been construed as discrimination by

US courts. These and other proportional representation metrics

can be found in a recent survey by Zliobaite [19].

Coverage-based diversity. A popular measure of diversity is

coverage [7]: is there representation for every category in the

selected set? Whether this is possible depends on how K , the
number of items selected in total, compares to d , the number

of categories of items. If d ≥ K , then each ki ≤ 1. We cannot

get full coverage, but by not choosing 2 from any category, we

make sure to include a representative from as many categories as

possible. If d ≤ K , then each ki ≥ 1. Since K is large enough in

this case, we can have multiple items from each category as long

as we make sure that we have at least one from each category.

To avoid “tokenism” — selecting a single representative of

each category, we may want to specify coverage diversity in

terms of a larger minimum number per category. For example,

we may require that there be at least 5 members of each race in

the selected set. Such a choice would typically be made only if

5d ≤ K , and our requirement becomes that each ki ≥ 5.

Summarizing the scenarios considered above, we can state

the specific diversity or proportionality constraint of interest

as f loori ≤ ki ≤ ceili , where f loori and ceili are integers that
are determined, for each i , based on the particular constraint

of interest. This formulation allows us to treat combinations of

sensitive attributes (represented by a single Cartesian product

attribute) in a way that captures attribute dependencies. For

example, we can derive the constraint for the number of female

candidates of a minority race to be higher or a lower than what

would result from proportionf emale × proportionminor ity .

The general statement of our problem is as follows:

Diverse Set Selection Problem Statement: Given N items,

each with an associated utility score and an identified sensitive

attribute, for each value i of the sensitive attribute, choose ki
items such that the summation utility of the selected set is max-

imized, subject to f loori ≤ ki ≤ ceili and subject to Σiki = K .
The f loori and ceili values depend on the specific constraint to

be applied. These values are computed prior to the optimization

problem, and are assumed to be given.

All N items may be given together; we call this the static case

and study it in Section 3. Alternatively, the items may arrive one

at a time; we call this the online case and study it in Section 4.

The standard cost-metric in the top-k problem is the number

of items examined: ideally, this should be much less than N . We

carry over this metric to our problem domain as well. This metric,

which we call walking distance (it is sometimes called depth in

the top-k literature), is a simple surrogate for the incurred CPU

cost, and has the advantage of being independent of the imple-

mentation and of the execution environment. We will discuss in

Section 4 that walking distance relates to solution utility in the

online case, and so is more informative than wall-clock time.

Another standard top-k costmetric is buffer size: the in-memory

storage cost for running the algorithm. We do not present ex-

perimental results on buffer size, but note that all algorithms

proposed here use buffers of constant size, under the assumption

that K and

∑
i ceili are constants.

Finally, as we shall see when we get to the online algorithms,

we cannot always get the best answer if we are required to decide

for each item on the spot. An accuracy metric we develop will

reflect how close the online solution comes to the true optimum.

We note that this optimum is the best we can do subject to the
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Figure 1: An illustration of the static scenario. N = 12

items, labeled a through l, belong to one of two classes,
blue and red. The goal is to select K = 3 items subject to
1 ≤ kblue ≤ 2 and 1 ≤ kr ed ≤ 2. Items arrive in score-sorted
order, with scores ranging from 9 down to 1.

diversity or fairness constraints: a higher score may be possible

without these constraints. We describe all metrics in Section 5.3.

3 THE STATIC PROBLEM
In this section, we solve the problem for the case when we have

access to all items. We call this the static case. In the next section,

we will turn to the online (streaming) case.

In the traditional set up for the top-k problem with multi-

attribute criteria, the problem setting assumes that we have items

sorted by attributes of interest, with our ranking criterion being

some monotone aggregation function of these attribute values

(e.g., weighted sum). We proceed down the sorted list(s), stopping

when we can predict that an unseen item cannot possibly be

included in the selected set [9].

In our problem setting, item scores are precomputed, and so

we consume a single list of items, sorted by decreasing score. But

we have a more complex selection criterion: Diversity constrains

each ki , the number of items with a value i for the sensitive

attribute, to f loori ≤ ki ≤ ceili .
Recall that d is the number of distinct values of the sensitive at-

tribute. Let us define required = Σdi=1 f loori . For our set of floor
and ceiling constraints to be feasible, we must have required ≤ K .
The difference K − required = slack , represents the total slack
that we have to choose items after all floor constraints are satis-

fied. To return a set of items with the highest utility (total score),

we are best off filling the slack with items of highest utility, un-

constrained by sensitive attribute value, as long as the number

of items per category does not exceed the respective ceiling con-

straint. We use this observation in Algorithm 1. We illustrate the

algorithm with an example.

Example 3.1. Consider the score-sorted list of items in Figure 1.

N = 12 items are partitioned into d = 2 categories (blue and

red), with 6 items per category. The goal is to select K = 3 items,

with between 1 and 2 items per category. That is, f loorr ed =
f loorblue = 1 and ceilr ed = ceilblue = 2.

We process items in order, left-to-right. At step 1, blue item a
is accepted to meet the f loorblue constraint. Among the remain-

ing 2 items that will be accepted, one must be red, to meet the

f loorr ed constraint, and the other can be of either color. At step

2, blue item b is encountered and accepted. At this point, only one
item remains to be accepted, and it must be red. At step 3, blue

item c is skipped. Finally, at step 4, red item d is accepted, meeting

the f loorr ed constraint, and selecting the required K = 3 items.

The algorithm terminates after consuming 4 items.

Let us now consider the pseudocode of Algorithm 1. As il-

lustrated in Example 3.1, the algorithm accepts an item if the

floor constraint of its category has not been met (line 7), or if

the ceiling constraint of its category has not been met and some

Algorithm 1 Diverse top-k selection from a sorted list.

Require: List of items I sorted by score,

number of items to select K , number of categories d ,
constraints f loori ≤ ki ≤ ceili for each i ∈ [1 . . .d].
{Initialize the output list L.}

1: L = ∅
{Initialize the counts of per-category selected items C .}

2: C = [k1 = 0, . . . ,kd = 0]
{Compute the slack value s .}

3: slack = K −∑d
i=1 f loori

4: while |L| < K do
5: x = дetNextItem(I )
6: i = cateдory(x)
7: if ki < f loori then
8: L← x
9: ki = ki + 1
10: else if (ki < ceili ) ∧ (slack > 0) then
11: L← x
12: ki = ki + 1
13: slack = slack − 1
14: end if
15: end while
16: return L

slack remains (line 10). Algorithm 1 terminates once K items are

selected.

In general, we only have inequality constraints on each of the

ki values. However, note that in the special case that for each i ,
f loori = ceili , we have the value of eachki determined exactly. In

this case, once the floor constraints are met for each category, we

will have selected K items in total, since K =
∑
i ki =

∑
i f loori .

Algorithm 1 never examines any item with score lower than

the smallest score included in the selected set. In this sense, the

number of items examined is optimal — there is no way to ex-

amine fewer items if we proceed strictly in score order. This

optimality result holds even though the worst case number of

items examined is still N .

Besides the computational cost, we have one additional im-

portant notion of goodness to consider: that of the utility score.

It is straightforward to establish the following Theorem.

Theorem 3.2. Algorithm 1 produces a solution that has the
highest possible utility score, subject to the given constraints.

Even though Algorithm 1 is optimal, subject to the diversity

constraints, in general it will return K items with the combined

utility score that is lower than would be possible in the absence

of these constraints. This cost of diversity was illustrated in

Example 3.1: we skipped item c although accepting it would

maximize utility, but would result in selecting all items from

the same category, blue. We will quantify the cost of diversity

experimentally in Section 5 (Figure 7).

4 THE ONLINE PROBLEM
In practice, even though a set has to be selected, not all items in

the set may be available for evaluation at once. Rather, they may

appear one at a time, with a decision to be made on the specific

item instantaneously. For example, we may wish to hire a diverse

set of employees. However, each hiring decision may have to be

made individually on each job applicant when the job application

arrives. The order of arrival of applications is not, in general,

determined by the quality of the applicants. More generally, we
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have to classify each individual item, as presented, into one of

two buckets: “selected” or “not selected,” subject to the utility

and diversity criteria in our problem statement, for the selected

set. Such situations motivate us to consider an online scenario,

which is sometimes referred to as streaming.

Returning to the hiring example, we note that, while the qual-

ity of an applicant may be unknown ahead of the job interview,

it is reasonable to assume that the number of applicants, both

over-all and in each demographic category (e.g., by race, gender

or some other sensitive attribute) can be known ahead of time,

because these properties are declared by the applicants. The clas-

sic Secretary Problem and its variants, described next, and our

proposed solution presented in the remainder of this section, rely

on this information.

4.1 Background and Problem Statement
The problem of designing an online algorithm to optimize the

probability of selecting the maximum element in a randomly-

ordered sequence has been studied extensively [8, 11, 14], and is

traditionally known as the Secretary Problem. In this problem,

the goal is to hire one secretary from a pool of N candidates,

where N is known, and candidates arrive in random order. When

a candidate is interviewed, the decision must be made to hire

or reject the candidate, and this decision is irreversible. It was

shown by Lindley [14] and by Dynkin [8] that the optimal hiring

strategy is to interview m = ⌊ Ne ⌋ candidates without making

any offers (this is called the warm-up period), and make an offer

to the first candidate who is better than the best of the firstm
candidates (or accept the last candidate if no better candidate is

seen). This strategy yields the best candidate with probability
1

e ,

and is said to have competitive ratio e . Further, this is the best
such strategy for the Secretary Problem, i.e., with the highest

competitive ratio [11].

A generalization of the Secretary Problem called the K-choice
Secretary Problem is stated as follows: design an online algo-

rithm for picking K out of N non-negative numbers presented in

random order, to maximize their expected sum. While a straight-

forward extension of the Secretary Problem is natural here (with

the same length of warm-up, ⌊ Ne ⌋, remembering the scores of

the K highest-scoring candidates), the exact optimal competitive

ratio for this problem is not known for K > 1. This quantity

is known to lie between 1 + c
√
k and 1 +C

√
k for some pair of

constants c < C [3].

Another interesting variant is the Poset Secretary Problem: If

the elements of the permutation (candidates) are only partially

ordered, how to maximize the probability of returning a maximal

element in the poset? The incomparable elements present the

main challenge: many simple modifications of the total order

algorithm to handle incomparable elements were shown to have

vanishing success probabilities [13].

In this section, we state, and then present a solution to, the

online variant of the Diverse Set Selection Problem of Section 2:

Diverse K-choice Secretary Problem Statement: Design
an online algorithm for picking K out of N items, each with an

associated non-negative utility score and an identified sensitive

attribute, presented in random order. Select items to maximize

their expected sum, subject to diversity constraints of the form

f loori ≤ ki ≤ ceili for each value i of the sensitive attribute, and
subject to Σiki = K .

a b c d e f

6 1 3 2 9 7
g h i j k l

4 8 2 1 5 5

Figure 2: An illustration of the online scenario. N = 12

items belong to one of two classes: blue and red, with
nblue = nr ed = 6. The goal is to select K = 3 items subject
to 1 ≤ kblue ≤ 2 and 1 ≤ kr ed ≤ 2.

4.2 Online Algorithm
We now present Algorithm 2 that solves the Diverse K-choice
Secretary Problem. The basic idea of this algorithm is to solve d
K-choice Secretary Problems [4] in parallel, one for each category,
to satisfy the per-category f loor constraints. But that in itself is

not enough: we also have to run a category-insensitive K-choice
Secretary algorithm to select the remaining items, subject to

ceilinд constraints.

Algorithm 2 relies on the estimates of the number of items

per category in the stream (ni represents the estimate of the

number of items from category i), and guarantees that diver-

sity constraints are met if these estimates are accurate. We now

illustrate Algorithm 2 with an example.

Example 4.1. Consider the stream of items in Figure 2. N = 12

items are partitioned into d = 2 categories, with 6 items per

category: nr ed = nblue = 6. Like in Example 3.1, the goal is to

select K = 3 items subject to 1 ≤ kblue ≤ 2 and 1 ≤ kr ed ≤ 2. In

contrast to Example 3.1, items arrive in random order.

To start, we compute the lengths of the per-category warm-up

periods: rblue = ⌊
nblue
e ⌋ = 2 and rr ed = ⌊

nr ed
e ⌋ = 2. There-

fore, we will consider, and discard, 2 items in each category

before accepting any items in that category. As we consider the

warm-up items, we record f loorblue = 1 highest blue item score,

and f loorr ed = 1 highest red item score in the respective per-

category threshold heaps Tr ed and Tblue .
Similarly, we compute the length of the category-independent

warm-up period r = ⌊ Ne ⌋ = 4. The number of items we will

accept irrespective of their category membership corresponds to

the difference betweenK and the sum of the floor constraints, and

is 1 in our example. (We called this quantity slack in Algorithm 1.)

Therefore, we will record the score of the highest-scoring item

(of any category) among the first r = 4 items in the threshold

heap T , setting T = {8} (the score of item d).
The warm-up period for the blue category will terminate at

step 3, after items a and c are considered, with Tblue = {6}. At
step 4, a blue item d is encountered, with score 8, higher than

дetMinElement(Tblue ) = 6, and this item is accepted.

The warm-up period for the red category will terminate at

step 5, after items b and e are considered, with Tr ed = {4} (score
of b). We will reject the next red item, g, because its score is

lower than дetMinElement(Tr ed ), and will accept the following

red item i at step 9 to satisfy f loorr ed .
We are also looking to accept an item with a score higher than

дetMinElement(T ) = 8 from any category, as long as its ceiling

constraint is not exceeded. However, because i (score 9) was

used to satisfy f loorr ed , which takes precedence, no such item

is encountered. To return K items, we must accept the last item

in the stream, l with score 5.

We terminate with the output {d, i, l}, with utility 8+9+5 = 22.

This is only slightly lower than the best possible utility of 24.
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Algorithm 2 Diverse K-choice Secretary Algorithm

Require: Stream of items I , total number of items to select K ,
input size N , number of categories d , constraints f loori ≤
ki ≤ ceili and number of items per category ni for i ∈
[1 . . .d].
{Initialize the output list L.}

1: L = ∅
{Initialize the array of counts of per-category selected items

C .}
2: C = [k1 = 0, . . . ,kd = 0]
{Initialize counts of per-category seen itemsM .}

3: M = [m1 = 0, . . . .,md = 0]
{Compute the length of per-category warm-up.}

4: R = [r1 = ⌊ n1

e ⌋, . . . , rd = ⌊
nd
e ⌋]

{Initialize d MinHeaps, one per category, T1 . . .Td .}
5: for i=1. . . d do
6: Ti = MinHeap(f loori )
7: end for
8: slack = K −∑d

i=1 f loori
{Compute the length of category-independent warm-up.}

9: r = ⌊ Ne ⌋
{Initialize a category-independent heap T .}

10: T = MinHeap(slack)
11: while |L| < K do
12: x = дetNextItem(I )
13: i = cateдory(x)
14: if

∑
imi < r then

15: T
offer←−−−− x

16: end if
17: if mi < ri then

18: Ti
offer←−−−− x

19: else if ((ki < f loori )∧(score(x) > дetMinElement(Ti ))∨
(ni −mi == f loori − ki ) then

20: deleteMinElement(Ti )
21: L← x
22: ki = ki + 1
23: else if (∑imi ≥ r ) ∧ (score(x) > дetMinElement(T ) ∧

(ki < ceili ) ∧ (slack > 0)) then
24: deleteMinElement(T )
25: L← x
26: ki = ki + 1
27: slack = slack − 1
28: else if (ki < ceili ) ∧ (numFeasibleItems() == K − |L|)

then
29: L← x
30: ki = ki + 1
31: slack = slack − 1
32: end if
33: mi =mi + 1

34: end while
35: return L

In Example 4.1, we happen to satisfy both floor constraints (at

steps 4 and 9) before accepting a category-independent item at

the end of the stream. Note, however, that this may not be the

case in general. For example, we could have accepted a blue item

with a score higher than 8, had one been encountered at steps 5,

6, 7, or 8 — any time after f loorblue is met.

Processing of item d in Example 4.1 illustrates that different

streams (per-category and category-independent) are consumed

in parallel: d is part of the category independent warm-up (where

it is discarded but its score is recorded in T ), and it is also part

of the post-warm-up stream for the blue category, where it is

accepted, since its score exceeds дetMinElement(Tblue ).
Let us now consider the pseudocode for Algorithm 2. The

algorithm uses a MinHeap data structure to keep track of the

top-K elements seen thus far. We need one for each category

(denotedTi and initialized on line 6 with capacity f loori ), and an
additional one for the extra elements after the floor constraints

have been met (denotedT and initialized on line 10 with capacity

slack). Each per-category heap Ti stores the best f loori scores
seen among the first ri items of category i . If f loori > ri , then
Ti will store the first f loori elements observed, together with

f loori − ri elements of value −1. Heap T is initialized similarly,

storing the best slack scores seen among the first r = ⌊ Ne ⌋ items,

irrespective of category.

During the warm-up period, an item x is not accepted (not

added to L) irrespective of its score, but rather is offered to

the relevant per-category heap (on line 18) or to the category-

independent heap (on line 15). Note that the same item x may be

offered to its per-category heap and to the category-independent

heap during warm-up.

An item of category i is added to the output after the warm-up

period if f loori is not yet satisfied and either (a) the item has a

sufficiently high score or (b) we are at the end of the stream for

category i (line 19). The latter condition is evaluated by compar-

ing the number of items remaining in the stream (ni −mi ) to the

number of items still required for i (f loori − ki ).
An item is also added to the output if its score is sufficiently

high according to the category-independent estimate and there

is sufficient slack to meet all outstanding floor constraints (line

24). Note that Algorithm 2 uses the slack mechanism in a similar

way as Algorithm 1.

Finally, an item is added to the output if it is feasible: accepting
it would not violate the ceiling constraint for its category, and if

exactly K − |L| feasible items remain in the input. We compute

the number of feasible items (line 28) as a sum of nj −mj (the

number of items that remain on the stream in category j) over
all feasible categories (those in which ceilj − kj > 0).

This final set of conditions (line 28) is required to ensure that

exactly K items are returned by Algorithm 2. Asserting that

exactly K − |L| feasible items remain in I relies on the estimates

of the number of items in each category.

Optimality. Algorithm 2 specifies per-category lengths of the

warm-up period on line 4. What is the competitive ratio of this

algorithm? To reason about this, let us first consider theK-choice
Secretary Problem, a generalization of the Secretary Problem

where K ≥ 1 rather than 1 item is to be chosen in an online

manner. Recall from Section 4.1 that, when K = 1, the optimal

competitive ratio is e , and it is achieved with a warm-up period of

length ⌊ Ne ⌋ [8, 14]. For K > 1, it is known that competitive ratio

is no worse than e under the same warm-up period length [4],

but the optimal competitive ratio is not known [3].

Our problem setting, and its solution presented in Algorithm 2,

differ from the generalized K-choice Secretary Problem in that

we are receiving items from multiple distinct categories. Algo-

rithm 2 treats items that belong to different categories as different

sub-streams of a common stream, and is guaranteed to have a

competitive ratio no less than e for selecting f loori items in each

category, by an immediate application of the result of Babaioff et

al. [4]. The remaining slack items are selected from the common
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stream (subject to floor and ceiling constraints), and will have a

competitive ratio no less than e (subject to the same constraints).

We will empirically compare the quality of the result returned

by Algorithm 2 to that of the static algorithms of Section 3 in

Section 5.4. We will also consider the impact of warm-up period

length on accuracy in that section.

Impact of per-category warm-up on utility. An important point

to note is that, by estimating scores on a per-category basis

rather than for the entire set of items at once, Algorithm 2 ac-

commodates the case when score is not independent of category

membership. Consider an example in which there are two cat-

egories A and B, and where, for all pairs of items a ∈ A,b ∈
B, score(a) < score(b). Suppose further that a and b occur in

the input in approximately equal proportion. Then, if a com-

mon heap T of size K is maintained for both categories during

warm-up (with K < ⌊ Ne ⌋),T will contain scores of some K items

from B, and so it will be the case that, at any point in time,

∀a ∈ A,дetMinElement(T ) > score(a). As a result, an online al-

gorithm will accept a subset of B with a high combined score, and

it will accept f loorA items from A that appear at the end of the

stream. This represents the worst case for category A in terms of

utility. We validate this claim experimentally in Section 5.4.

4.3 Online Algorithm with a Deferred List
In a true on-line setting, a decision must be made whether to

accept or to reject an item once it is seen. In practice, it may be

acceptable to keep a waiting list of modest size. For example,

college admissions work this way.

We now introduce Algorithm 3, an optimized version of Algo-

rithm 2 that will often return a set of K items of higher utility,

subject to diversity constraints. This is accomplished by intro-

ducing per-category deferred lists Di of bounded size. We now

give an intuition behind this algorithm using an example.

Example 4.2. Consider again the stream of items in Figure 2.

N = 12 items are partitioned into d = 2 categories, with 6 items

per category: nr ed = nblue = 6, and arrive in random order.

The goal is to select K = 3 items subject to 1 ≤ kblue ≤ 2 and

1 ≤ kr ed ≤ 2. We now highlight the differences in the processing

of this input when a deferred list is allowed, as compared to that

of Example 4.1 (Algorithm 2).

We conduct a warm-up period of length 2 for each category,

storing f loorblue = f loorr ed = 1 highest score in each Tblue =
{6} andTr ed = {4}. In contrast to Example 4.1, we do not conduct

a category-independent warm-up period (there is no T ).
Also in contrast to Example 4.1, items encountered during the

warm-up period are not immediately discarded, but rather are

placed into per-category deferred lists Dblue and Dr ed , which

maintain up to ceilblue = 2 and ceilr ed = 2 items, respectively.

Even beyond the warm-up period, we consider the scores of all

encountered items, and always keep 2 best items of the appro-

priate category seen so far in each Dblue and Dr ed . Note that

Dblue and Dr ed are MinHeaps, which we denote by sorting the

elements in the order of increasing score.

In our example, Dblue = {c, a} at step 3 (end of warm-up

for blue), Dblue = {a, d} at step 4 (d has a higher score than c
and replaces c), and Dr ed = {e, b} at step 5 (end of warm-up

for red). We continue processing until a sufficient number of

items post the warm-up period is seen (1 post-warm up item

in each category in our example) and once there are at least K
items in the union of deferred lists. We continuously update the

Algorithm 3 Diverse K-choice Secretary Algorithm with a de-

ferred list

Require: Stream of items I , total number of items to select K ,
input size N , number of categories d , constraints f loori ≤
ki ≤ ceili and number of items per category ni for i ∈
[1 . . .d].
{Initialize the output list L.}

1: L = ∅
{Initialize i deferred lists Di of capacity ceili for each cate-

gory.}

2: for i=1. . . d do
3: Di = MinHeap(ceili )
4: end for
{Initialize the list of counts of per-category selected items C .}

5: C = [k1 = 0, . . . ,kd = 0]
{Initialize the list of counts of per-category seen itemsM .}

6: M = [m1 = 0, . . . .,md = 0]
{Compute the length of per-category warm-up.}

7: R = [r1 = ⌊ n1

e ⌋, . . . , rd = ⌊
nd
e ⌋]

{Initialize d MinHeaps, one per category, T1 . . .Td .}
8: for i=1. . . d do
9: Ti = MinHeap(f loori )
10: end for

{Initialize the number of unsatisfied categories u.}

11: u = d −∑d
i=1 1[f loori == 0]

{Initialize the total number of deferred items w (for “wait-

ing”).}

12: w = 0

13: while (u > 0) ∨ (w < K) do
14: x = дetNextItem(I )
15: i = cateдory(x)
16: if mi < ri then

17: Ti
offer←−−−− x

18: else if (ki < ceili )∧(score(x) > дetMinElement(Ti ) then
19: ki = ki + 1
20: deleteMinElement(Ti )
21: if (f loori > 0) ∧ (ki == f loori ) then
22: u = u − 1
23: end if
24: end if
25: Di

offer←−−−− x
26: mi =mi + 1

27: w =
∑
i |Di |

28: end while
29: W = MaxHeap(w)
30: W ← ⋃

i Di
31: Invoke Algorithm 1 onW (sorted by score), compute L.
32: return L

per-category deferred lists as we process, evicting lower-scoring

items and keeping 2 highest-scoring items in each category.

In our example, the algorithm terminates after step 9 (item

i), with Dblue = {a,d} and Dr ed = {b, i}. The union of these

lists is then passed to Algorithm 1, which returns {a,d, i}, with
combined utility 23. Per Example 4.1, this utility is 1 point higher

than of executing Algorithm 2 on this input.

We will illustrate experimentally in Section 5.4 that Algo-

rithm 3 usually returns a set of K items of higher utility than

Algorithm 2. Note, however, that Algorithm 3 may sometimes
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return items of lower combined utility, because it may terminate

sooner than Algorithm 2.

We now describe Algorithm 3 in detail. To start, set u (unsat-

isfied) to the number of categories with f loori > 0. Add the first

ceili items to Di irrespective of their score, then maintain no

more than ceili items in Di , replacing the lowest-scoring item

y ∈ Di with item x if score(y) < score(x).
A category becomes satisfied once f loori items in Di have a

sufficiently high score (post warm-up). If a sufficient number of

high-scoring items cannot be found, we satisfy f loori by adding

the required number of items of category i from the end of its

stream.

The algorithm stops consuming its input once all unsatisfied

categories become satisfied (i.e., once u == 0) and the total size

of allDi is at leastK . Note that, even after a category i is satisfied,
we can still add item x to Di (while waiting for the remaining

categories to be satisfied), if x happens to have a higher score

than the lowest-scoring item currently in Di .

Having filled the deferred lists, the algorithm will first add

f loori items from each Di to the output list L, and will then fill

the remaining slack positions with the highest-scoring items

from the remaining deferred lists, irrespective of their scores.

Algorithm 1 can be invoked for this purpose, with I =
⋃
i Di .

Note that when Algorithm 1 is invoked on line 31, it is invoked

on inputW , a sorted list whose size is bounded by

∑
i ceili . We

assume that ceili << |I |. In fact, setting any ceili higher than
K is not meaningful. Further, since K is commonly treated as a

constant, then

∑
i ceili can also be treated as such.

5 EXPERIMENTAL EVALUATION
In this paper, we have introduced diversity and fairness con-

straints into set selection queries under several different settings.

Most importantly, we have introduced two streaming algorithms.

For all our agorithms we are interested in evaluating the cost

of introducing a diversity or fairness constraint in terms of the

lower utility achieved. For streaming algorithms, we are further

interested in how well we manage to satisfy a group constraint

and make a group selection, while being forced to make decisions

regarding individual items as they are presented.

5.1 Experimental Datasets
Our experimental evaluation is conducted on both real and syn-

thetic datasets. The real data gives us a sense for what would

happen in a real scenario, while the synthetic data let us vary

parameters to dive deeper into understanding "what if" questions.

Forbes Richest. We selected two Forbes Richest People lists

from 2016: US Richest with 400 individuals (https://www.forbes.

com/forbes-400/list/) and World’s Richest with 526 individuals

(https://www.forbes.com/billionaires/list/). Both lists are natu-

rally ranked by net worth. We used gender as the sensitive at-

tribute in the US list, with a break-down of 27 female vs. 373

male individuals (d = 2 categories). We used country as the sen-

sitive attribute in the World list, creating separate categories for

US (197 individuals), Germany (44), China (43), Russia (25), and

assigning the remaining 217 individuals to the category “other”,

resulting in d = 5 categories.

NASA Astronauts. This dataset is available at https://www.

kaggle.com/nasa/astronaut-yearbook/data and consists of 357

astronauts, with their demographic information. We ranked this

dataset by the number of space flight hours, and assigned indi-

viduals to categories based on their undergraduate major. A total

of 83 majors are represented in the dataset, we assigned 9 most

frequent - Physics (35), Aerospace Engineering (33), Mechanical

Engineering (30) etc, to their individual categories, and combined

the remaining 141 individuals into the category “other”, resulting

in d = 10 categories.

Pantheon. This dataset is a ranking of 11,341 individuals based
on the popularity of their biographical page in Wikipedia, and is

available at http://pantheon.media.mit.edu/rankings/people/all/

all/-4000/2010/H15. Individuals in the dataset include historical

and present-day figures, and are described with name, gender,

birth year, place of birth, and occupation. Occupation is aggre-

gated into a set of d = 8 cultural domains (http://pantheon.media.

mit.edu/methods), which we use as the sensitive attribute to state

diversity constraints.

Synthetic data. We also used synthetic data in our experiments,

in cases where it was important to control dataset composition

and assignments of scores to items in particular categories. Syn-

thetic datasets consisted of three attributes: identifier of a tuple,

value of the sensitive attribute and score. Additional details about

specific datasets will be given as appropriate.

In our discussion, we will find it convenient to use the term

balanced to describe datasets in which different categories are

represented in the same proportion. For example, a dataset in

which diversity is stated with respect to gender is balanced if

about 50% of the individuals in the input are male and about 50%

are female.

5.2 Diversity Constraints
Recall that our algorithms are designed for diversity constraints

stated in terms of size limits on each category. The specific con-

straints chosen can implement different notions of diversity or

fairness as discussed in Section 2. We explore several families

of constraints, generated using the procedure described below,

after a brief discussion of requirements on the constraints.

A single per-category constraint of the form f loori ≤ ki ≤
ceili is satisfiable if f loori ≤ ni , where ni is the number of items

in category i in the input.While it is not incorrect to set ceili > ni ,
this will not lead to sensible subset selection in practice, and will

make satisfiability of a set of constraints more cumbersome to

state. For these reasons, we also require that ceili ≤ ni .
A set of per-category constraints is satisfiable if two conditions

hold:

∑d
i=1 f loori ≤ K and

∑d
i=1 ceili ≥ K .

We use several measures of diversity, listed below, to generate

a set of per-category constraints of the form f loori ≤ ki ≤ ceili
for a given selected set size K and number of categories d . We

generate constraints that are satisfiable individually and as a

set, as discussed above. In what follows, we assume that each

category i is represented in the input dataset, that is, that ni ≥ 1.

Minimum: (Cover as many categories as possible.)

If K ≥ d , set f loori = ceili = 1 for all d categories. Next,

compute r = k − d . If r > 0, assign the remaining r positions

in the top-K to a random category j by setting ceilj = ceilj + r .
Select category j from among categories in which nj ≥ ceilj + r .

If K < d , assign f loori = ceili = 1 to a random set of K out

of d categories, and f loori = ceili = 0 to the remaining d − K
categories.
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(b) 1/4 warm-up
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(c) 1/16 warm-up

Figure 3: Accuracy ofAlgorithm2 as function ofwalking distance, for differentwarm-upperiod lengths. ForbesUSRichest,
K = 4, N = 400 items, diversity on gender (d = 2), with average constraints f loori = ceili = K/d .
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(b) 1/4 warm-up
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(c) 1/16 warm-up

Figure 4: Accuracy ofAlgorithm3 as function ofwalking distance, for differentwarm-upperiod lengths. ForbesUSRichest,
K = 4, N = 400 items, diversity on gender (d = 2), with average constraints f loori = ceili = K/d .

Average: (Select equal numbers from each category.)

IfK ≥ d , set f loori = MIN (⌊K/d⌋,ni ) and ceili = MIN (⌈K/d⌉,ni )
for all d categories. Next, compute r =

∑d
i=1 ceili . If r < K , assign

the remaining r positions in the top-K to a random category j by
setting ceilj = ceilj + r . Select category j from among categories

in which nj ≥ ceilj + r .
If K < d , set constraints as in minimum above.

Proportion: (Select equal proportions from each category.)

Recall that N denotes the size of the input.

If K ≥ d , set f loori = ⌊K ∗ ni/N ⌋ and ceili = ⌈K ∗ ni/N ⌉.
If K < d , set constraints as in minimum above.

Relaxed average: Let integer t denote the tightness threshold.
IfK ≥ d , set constraints as in average above. Next, set f loori =

MAX (f loori − t , 0) and ceili = MIN (ceili + t ,ni ).
If K < d , set constraints as in minimum above.

Relaxed proportion: Let integer t denote the tightness thresh-
old.

If K ≥ d , set constraints as in proportion above. Next, set

f loori = MAX (f loori − t , 0) and ceili = MIN (ceili + t ,ni ).
If K < d , set constraints as in minimum above.

Note that in balanced datasets, average and proportion con-

straints are equivalent, as are relaxed average and relaxed pro-

portion (for the same tightness threshold t ).

5.3 Metrics
Recall that Algorithms 2 and 3 both consume the input one item

at a time, and decide whether to accept or reject an item when

it is encountered. Algorithm 3 differs from Algorithm 2 in that

it can place an item on the deferred list, and decide after it has

considered all feasible items which of these to accept. For a given

input (a fixed set of items received in some fixed order), Algo-

rithms 2 and 3 will stop consuming the input at some point. We

refer to this point — the number of items considered from the

input stream, as the walking distance, and use it as our primary

measure of efficiency. This measure is sometimes called depth in

the top-k literature.

In several experiments with online algorithms, we quantify

the relationship between algorithm efficiency and accuracy. To

quantify accuracy, we use an intuitive normalized measure that

compares the scores of the K retrieved items with the best pos-

sible K scores, subject to diversity constraints. Based on our

statement of optimality in Theorem 3.2, we use scores returned

by Algorithm 1 as the gold standard.

To make accuracy insensitive to shifts in the score distribution,

we subtract the minimum observed score from each value. For

example, suppose that the lowest net worth of any individual
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(a) Common warm-up.
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(b) Per-category warm-up.

Figure 5: Per-category accuracy of Algorithm 2 as a function of K , on a balanced synthetic dataset of size N = 10, 000 with
average constraints. Category A items in the input have strictly lower scores than category B items. A common warm-up
period leads to lower accuracy for both categories compared to per-categorywarm-up periods, and places items in category
A at a particular disadvantage.

was 100, that K = 2 individuals were selected, with scores 225

and 200, and that the two highest-scoring individuals in the

dataset, subject to diversity constraints, have scores 300 and 250,

respectively. Then accuracy is computed as
(225−100)+(200−100)
(300−100)+(250−100) .

5.4 Experimental Results: Online Algorithms
The most important question we are interested in is how well

our streaming algorithms do despite being forced to meet set-

oriented constraints while making decisions on individual items

one at a time. The way the streaming algorithms are stated, they

guarantee that the diversity constraints will be met, but do not

guarantee optimality of utility score. We measure this in terms

of accuracy, as described above.

The one parameter we can control in the streaming algorithms

is the length of the warm-up period. Therefore, we start by pre-

senting the relationship between warm-up period length and

accuracy of the online algorithms of Section 4. To show this

relationship, we will consider Figures 3 and 4, where 400 US

Richest individuals (see Section 5.1 for dataset description) were

randomly permuted, and where a diversity constraint was spec-

ified over the binary gender attribute, with 2 ≤ kF ≤ 2 and

2 ≤ kM ≤ 2 (a tight average constraint) and with K = 4. Each

point in these figures corresponds to an execution of the relevant

algorithm on a random permutation, with 100 executions per

experiment (note that points may coincide). Other datasets in

our experiments exhibited a similar trend.

We see that Algorithm 3 gets very high accuracy, often equal-

ing the gold standard, if given enough warm up. Algorithm 2 also

does not do too badly in terms of accuracy, though Algorithm 3

does substantially better.

Walking distance takes on values between K (output size) and

N (input size). Walking distance is made up of two parts: length of

the warm-up period during which an on-line algorithm is estimat-

ing item scores, and post-warm-up, during which an algorithm is

able to accept items. In both Algorithms 2 and 3, the per-category

warm-up period has length ⌊ nie ⌋ for category i , while the total

warm-up period length is the sum of per-category warm-up pe-

riod lengths, and of ⌊ Ne ⌋ for the category-independent warm-up.

Consider Figures 3a and 4a, which show the overall accuracy

as a function of walking distance for Algorithms 2 and 3, respec-

tively. Note that accuracy of Algorithm 2 varies significantly at

walking distance 400 — the case when allN items were consumed

from the stream. This effect is so pronounced that in Figure 3a

the over-all trend in accuracy is decreasing, due exclusively to

this end-of-stream effect. In contrast, Algorithm 3 is not forced

to accept items from the end of the stream, and so its accuracy

strictly increases as a function of walking distance.

We do not have explicit control of the post-warm-up walking

distance (because we must return a valid set of results —K results

that meet the diversity constraints). However, we can impact

walking distance by changing the length of the per-category

warm-up periods, set to ⌊ nie ⌋ by default. These settings provide a
strong theoretical guarantee, but can be conservative in practice,

particularly for Algorithm 3 (the deferred list variant). Figures 3b

and 3c show accuracy when warm-up is abbreviated to a quarter

and a sixteenth of the optimal for Algorithm 2, and Figures 4b

and 4c correspond to Algorithm 3. Observe that reducing warm-

up period length introduces a trade-off between walking distance

(efficiency) and accuracy, and that accuracy is often comparable

to that which results from the full warm-up period, but at a lower

efficiency cost.

In the next experiment we demonstrate the importance of

having per-category warm-up periods. Recall that Algorithm 2

considers, and rejects, ⌊ nie ⌋ items in each category before ac-

cepting any items. This warm-up period allows the algorithm

to form an expectation on the score of an item. Suppose now

that K = 2, that there are two categories A and B in the input,

and that diversity constraints are such that exactly one item

per category is to be selected. Further, suppose that scores of

A-items are strictly lower than scores of B-items. If a common

(rather than a per-category) warm-up period were used by the

algorithm, with a common MinHeap of score thresholds T , then
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(a) NASA Astronauts, N = 357, K = 30, d = 10.

100 200 300 400 500
Walking distance

0.0

0.2

0.4

0.6

0.8

1.0

O
ve

ra
ll 

ac
cu

ra
cy

minimum
average tight
proportion tight
average relaxed

(b) Forbes World Richest, N = 526, K = 20, d = 5.

Figure 6: Accuracy of Algorithm 3 under different diversity constraints, at 1/8 warm-up.
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Figure 7: The cost of diversity: quality of the selected
set is lower, in absolute terms, when items of a lower
score must be included to satisfy diversity constraints.
Synthetic datasets with N = 10, 000, d = 2, under aver-
age constraints. Item scores are drawn from Gaussian dis-
tributions with the same standard deviation but different
means (µA and µB ).

T would contain the highes-scoring B-items that were encoun-

tered during warm-up. Since A-item scores are lower than B-item

scores, no post-warm-up A-item will have a score that exceeds

дetMinElement(T ). This would force the algorithm to walk down

the end of the stream in all cases (impacting performance), and to

accept the very last A-item from the stream (impacting accuracy

for category A).

To illustrate this point, we generate a synthetic dataset of N =
10, 000 items in two categories, A and B, with a balanced break-

down — 5,000 A-items and 5,000 B-items, and with category-

dependent scores. Scores of A-items are drawn uniformly at

random from the [0, 0.5) range, while scores of B-items are drawn

uniformly at random from [0.5, 1). We vary K between 2 and

100, and impose a (tight) average diversity constraint, setting

⌊ K
2
⌋ ≤ kF ≤ ⌊ K2 ⌋ and ⌊

K
2
⌋ ≤ kM ≤ ⌊ K2 ⌋.

Figure 5 shows box-and-whiskers plots in which accuracy is

presented as a function of K (see Section 5.3 for a description

of how accuracy is computed). Observe that that accuracy for

category A is lower than accuracy for category B in all cases

when a common threshold is used (see Figure 5a). This is in

contrast to the per-category threshold case in Figure 5b, where

accuracy is comparable across the two categories.

Let us now compare performance of Algorithm 3 under differ-

ent diversity constraints. Figure 6 presents accuracy as a function

of walking distance, with warm-up period of length
1

8
of the the-

oretically optimal (so, ⌊ ni
8∗e ⌋ per category), for two real datasets:

NASA Astronauts (N = 327, d = 10 and K = 30) and the World’s

Richest (N = 526, d = 5, K = 20). We also experimented with

other real datasets, and with different values of K and warm-up

period lengths, and present here results that are representative.

The average relaxed constraint (purple line in Figure 6) uses

t = ⌊0.3 ∗ k⌋ as the threshold (see Section 5.3 for a description of

this and other constraints) and is easier to satisfy than the tight

constraints, leading to somewhat lower walking distance. This

difference was somewhat less pronounced in Figure 6a than in

Figure 6b, and is sensitive to the variation in dataset composition

(how balanced the categories are) and to the value of K .
In our final experiment with online algorithms, we quantified

the impact of warm-up period length on the variance in accuracy.

We generated a synthetic dataset withN = 10, 000 items and with

d = 2 categories. We requested that K = 10 items be returned by

Algorithms 2 and 3, subject to proportion constraints.

Scores of A-items were drawn uniformly at random from

[0, 0.5), while scores of B-items were drawn from [0.5, 1). (Note
that we executed per-category warm-up in both algorithms, and

so differences in scores between A and B do not impact accu-

racy, as we saw in Figure 5.) We generated three such datasets,

with A constituting 10%, 25% and 50% of the over-all dataset. For

Algorithm 2, we observed, as expected, that higher variance in ac-

curacy occurs when A appears in the dataset in lower proportion:

variance was 0.080 for 10% proportion, 0.075 for 25% proportion

and 0.019 for 50% proportion. Variance did not differ significantly

for Algorithm 3.
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(a) NASA Astronauts, N = 357, d = 10.
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(b) Pantheon, N = 11, 341, d = 8.
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(c) Forbes World’s Richest, N = 526, d = 5.
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(d) Forbes US Richest, N = 400, d = 2.

Figure 8: Walking distance of Algorithm 1 in proportion to N , as a function of K , for different diversity constraints.

5.5 Experimental Results: Static Algorithm
In this experiment we quantify the cost of imposing diversity

constraints, in terms of a normalized measure we call quality: the
sum of score of the diverse top-K divided by the sum of scores

of the “vanilla” (category-agnostic) top-K . Figure 7 presents

box-and-whiskers plots that quantify this cost of diversity as

a function of K for two synthetic datasets, each of size N , with

d = 2 categories represented in equal proportion, and with aver-

age diversity constraint. In the both datasets, item scores were

drawn from per-category Gaussian distributions, with different

means but the same standard deviations. The dataset presented in

green had means of A-scores and of B-scores close to each other

(µA − µB = 0.1), while in the dataset presented in blue, these

distributions were further apart (µA − µB = 0.5). As expected,

the cost of diversity is higher in the latter case, since items of

lower scores (in absolute terms) must be included into the result

to satisfy diversity constraints.

In our final experiment we use real datasets to support the

claim that, while Algorithm 1 may walk to the end of the input in

the worst case, this rarely happens in practice. Figure 8 presents

walking distance of Algorithm 1 as a function of K for different

diversity constraints, for the NASA Astronauts, Pantheon, Forbes

World’s Richest, and Forbes US Richest datasets. A value of 1 on

the y-axis denotes that the algorithm walked to the end of the list

(that is, walking distance equals N ). We observe that this does

not occur often, particularly for lower values of K .

6 RELATEDWORK
There is considerable work on diverse top-k , starting with [2, 16],

see also [18] (Sections 5.1, 5.6 and 6) for a survey. The work pro-

posed here differs from prior work in that we consider a family of

diversity constraints that can express coverage-based (rather than

distance-based) diversity [7], and can also be used to compute
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several fairness metrics — those based on proportional represen-

tation. To the best of our knowledge, diversity in combination

with utility has not been considered in a fully online setting.

In [16] a generic method is proposed to extend top-k algo-

rithms with a diversity criterion that is based on pair-wise simi-

larity. The problem is formulated as: given a user-defined pair-

wise similarity function sim(si , sj ), and a user-defined similarity

threshold τ , return the highest-scoring set of k items such that

sim(si , sj ) ≤ τ . When describing top-k methods, they refer to

incremental methods (generate results in decreasing order of

scores, stop once k results were generated) vs. bounding methods

(generate results in some order, stop once the top-k are among

the results, Fagin’s TA is in this category).

More recently, diversity-aware top-k for pub/sub queries over

text streams was considered in [6]. There, diversity is a pair-wise

measure based on document similarity in the top-k (max-sum),

quality is measured as the relevance of a document to a user’s

query, and there is additionally a per-document recency score

that is appropriate for a stream of Twitter messages or Facebook

status updates, and is based on an exponential decay function.

Another related line of work is [1], where max-sum diversity is

maximized subject to a constraint on a variant of coverage-based

diversity. The problem is posed as a partition matroid, a local

search algorithm is proposed, and it is shown that it achieves a

0.5 approximation of the optimal solution.

Selection of diverse set results in an online setting is studied

in [15]. The authors consider selection of subsets of items that

are simultaneously diverse along multiple dimensions. For exam-

ple, for program committee selection it is desirable to achieve

coverage of topics, geographic diversity and gender diversity.

The paper proposes and analyzes several diversity objectives

and proposes heuristic and dynamic programming methods. The

most important difference between our method and that of [15]

is that they do not explicitly handle utility.

In [16] a set of diverse top-k items is determined that maxi-

mizes the total score of theK selected items, subject to a pair-wise

diversity constraint. The problem is modeled by representing the

items as vertices in a graph, and by including an edge between

vertices si and sj if their similarity is above a user-specified

threshold τ . A diverse set K is the independent set of a graph —

a set of vertices in which no two vertices are adjacent. This for-

mulation can accommodate the coverage diversity version of our

problem: Include an edge between two vertices if they belong to

the same category, then identify an independent subset of size d
that maximizes the total score. If d < k , we add k −d vertices that

maximize the total score. The algorithmic contributions of [16]

are in (1) determining when the set of k ′ > k items is sufficient to

compute the true diverse top-k , and (2) efficiently identifying the

independent set of a graph for a fixed k (finding an independent

set of a graph is NP-hard).

7 CONCLUSIONS
Diversity and group fairness are important objectives in algo-

rithmic decision-making. Since most algorithms are designed to

score or classify items individually, it is not easy to support these

objectives. In this paper, we showed how we can continue to

select items individually and meet desired diversity and group

fairness constraints, while paying a very small utility cost.

We demonstrated experimentally that the theoretically-motivated

setting for warm-up period length can be conservative in practice.

In our future work, wewill investigate the interaction between ex-

pected (or observed) score variance and warm-up period length.

Further, we demonstrated that different categories must be

treated separately in score estimation, to achieve comparable

accuracy irrespective of expected score, and ultimately afford

comparable opportunity to members of different groups.
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ABSTRACT
The performance of modern geo-distributed database applications
is increasingly dependent on remote access latencies. Systems
that cache query results to bring data closer to clients are gaining
popularity but they do not dynamically learn and exploit access
patterns in client workloads. We present a novel prediction frame-
work that identifies and makes use of workload characteristics
obtained from data access patterns to exploit query relationships
within an application’s database workload. We have designed and
implemented this framework as Apollo, a system that learns query
patterns and adaptively uses them to predict future queries and
cache their results. Through extensive experimentation with two
different benchmarks, we show that Apollo provides significant
performance gains over popular caching solutions through reduced
query response time. Our experiments demonstrate Apollo’s ro-
bustness to workload changes and its scalability as a predictive
cache for geo-distributed database applications.

1 INTRODUCTION
Modern distributed database systems and applications frequently
have to handle large query processing latencies resulting from the
geo-distribution of data [11, 13, 41]. Industry reports indicate that
even small increases in client latency can result in significant drops
in both web traffic [20] and sales [3, 30]. A common solution to
this latency problem is to place data closer to clients [38, 39] using
caches, thereby avoiding costly remote round-trips to datacenters
[27]. Static data, such as images and video content, is often cached
on servers geographically close to clients. These caching servers,
called edge nodes, are a crucial component in industry architec-
tures. To illustrate this, consider Google’s datacenter and edge
node locations in Figure 1. Google has comparatively few datacen-
ter locations relative to edge nodes, and the latency between the
edge nodes and datacenters can be quite large. Efficiently caching
data on these edge nodes substantially reduces request latency for
clients.

Existing caching solutions for edge nodes and content deliv-
ery networks (CDN) focus largely on static data, necessitating
costly round trips to remote data centers for requests relying on
dynamic data [21]. Since a majority of webpages today are gener-
ated dynamically [5], a large number of requests are not satisfied
by cached data, thereby incurring significant latency penalties. We
address this concern in Apollo, a system that exploits client access
patterns to intelligently prefetch and cache dynamic data on edge
nodes.

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the 21st
International Conference on Extending Database Technology (EDBT), March 26-29,
2018, ISBN 978-3-89318-078-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

(a) Datacenter Locations (b) Edge Node Locations

Figure 1: Google’s datacenter and edge node locations [21].

1. SELECT C_ID FROM CUSTOMER WHERE

C_UNAME = @C_UN and C_PASSWD = @C_PAS

2. SELECT MAX(O_ID) FROM ORDERS WHERE

O_C_ID = @C_ID

3. SELECT ... FROM ORDER_LINE, ITEM

WHERE OL_I_ID = I_ID and OL_O_ID = @O_ID

Figure 2: A set of motivating queries in TPC-W’s Order
Display web interaction. Boxes of the same colour indicate
shared values across queries.

Database client workloads often exhibit query patterns, cor-
responding to application usage patterns. In many workloads [1,
10, 42], queries are highly correlated. That is, the execution of
one query determines which query executes next and with what
parameters. These dependencies provide opportunities for opti-
mization through predictively caching queries. In this paper, we
focus on discovering relationships among queries in a workload.
We exploit the discovered relationships to predictively execute
future dependent queries. Our focus is to reduce the response time
of consequent queries by predicting and executing them, caching
query results ahead of time. In doing so, clients can avoid contact-
ing a database located at a distant datacenter, satisfying queries
instead from the cache on a closer edge node.

As examples of query patterns, we consider a set of queries
from the TPC-W benchmark [42]. In this benchmark’s Order
Display web interaction, shown in Figure 2, we observe that the
second query is dependent upon the result set of the first query.
Therefore, given the result set of the first query, we can determine
the input set of the second query, predictively execute it, and
cache its results. After the second query has executed, we can
use its result set as input to the third query, again presenting an
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Figure 3: Query flow through components of the predictive
framework.

opportunity for predictive caching. Similar scenarios abound in
the TPC-W and TPC-C benchmarks, such as in the TPC-W Best-
Seller web interaction and in the TPC-C Stock level transaction.
Examples that benefit from such optimization, including real-
world applications, have been previously described [10].

In this paper, we propose a novel prediction framework that uses
a query-pattern aware technique to improve performance in geo-
distributed database systems through caching. We implement this
framework in Apollo, which uses a query transition graph to learn
correlations between queries and to predict future queries. In doing
so, Apollo determines query results that should be cached ahead of
time so that future queries can be satisfied from a cache deployed
close to clients. Apollo prioritizes common and expensive queries
for caching, eliminating or reducing costly round-trips to remote
data without requiring modifications to the underlying database
architecture. Apollo’s ability to learn allows it to rapidly adapt to
workloads in an online fashion. Apollo is designed to enhance an
existing caching layer, providing predictive caching capabilities
for improved performance.

The contributions of this paper are threefold:

(1) We propose a novel predictive framework to identify re-
lationships among queries and predict consequent ones.
Our framework uses online learning to adapt to changing
workloads and reduce query response times (Section 2).

(2) We design and implement our framework in a system called
Apollo, which predictively executes and caches query re-
sults on edge nodes close to the client (Section 3).

(3) We deploy and extensively test Apollo on Amazon EC2
using the TPC-W and TPC-C benchmark workloads to
show that significant performance gains can be achieved
for different query workloads (Section 4).

2 PREDICTING QUERIES
A client’s database workload is comprised of a stream of queries
and the transitions between them. These queries are synthesized
into the query transition graph, which is at the core of our pre-
dictive framework. From this query transition graph, we discover

query relationships, dependencies and workload characteristics
for use in our predictive framework. The predictive framework
stores query result sets in a shared local cache, querying the re-
mote database if a client submits a query for which the cache does
not have the results.

Figure 3 gives a high level overview of how incoming queries
are executed, synthesized into the query transition graph, and used
for future query predictions. Incoming queries are routed to the
query processor, which retrieves query results from a shared local
query result cache, falling back to a remote database on a cache
miss. Query results are immediately returned to the client and,
together with their source queries, are mapped to more general-
ized query template representations (Section 2.1). These query
templates are placed into per-client queues of queries called query
streams, which are continuously scanned for relationships among
executed queries. Query relationships are synthesized into the
query transition graph and then used to detect query correlations,
discovering dependencies among executed queries and storing
them in a dependency graph. This dependency graph is used by
the prediction engine to predict consequent queries given client
queries that have executed.

Although we focus on geographically distributed edge nodes
with remote datacenters, Apollo can also be deployed locally
as a middleware cache. Our experiments in Section 4 show that
both deployment environments benefit significantly from Apollo’s
predictive caching.

Next, we discuss the abstractions and algorithms of our pre-
dictive framework, describing how queries flowing through the
system are merged into the underlying models and used to predict
future queries.

2.1 Query Templates
Using a transition graph to reason about query relationships re-
quires a mapping from database workloads (queries and query
relationships) to transition structures (query templates and tem-
plate transitions). We propose a formalization of this mapping
through precise definitions, and then show how our model can be
used to predict future queries.

Queries within a workload are often correlated directly through
parameter sharing. Motivated by the Stock Level transaction in
the TPC-C benchmark, consider an example of parameter sharing
in which an application executes query Q1 to look up a product ID
followed by query Q2 to check the stock level of a given product
ID. A common usage pattern is to execute Q1, and then use the
returned product ID as an input to Q2 to check that product’s stock
level. In this case, Q2 is directly related to Q1 via a dependency
relationship. Specifically, Q2 relies on the output of Q1 to execute.

We generalize our model by tracking relationships among query
templates rather than among parameterized queries. Two queries
Q1 and Q2 have the same query template if they share the same
statement text barring constants that could logically be replaced
by placeholders for parameters values (‘?’). Each query template
is represented by a node in the query transition graph.

Below is an example of two queries (Q1,Q ′1) and their corre-
sponding templates (Qt1,Qt

′
1):

Q1: SELECT C_ID FROM CUSTOMER WHERE C_UNAME
= ’Bob’ and C_PASSWD = ’pwd’
Qt1: SELECT C_ID FROM CUSTOMER WHERE C_UNAME =
? and C_PASSWD = ?
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Q ′1: SELECT C_ID FROM CUSTOMER WHERE C_UNAME =
’Alice’ and C_PASSWD = ’pwd2’
Qt ′1: SELECT C_ID FROM CUSTOMER WHERE C_UNAME =
? and C_PASSWD = ?

Note that although the above two original queries differ, their
query templates are the same. Therefore, a node’s transitions in
the transition graph are based on query relationships from both
Q1 and Q ′1.

2.2 Query Template Relationships
To find query template relationships, we implement the transition
graph as a frequency-based Markov graph, constructing it in an
online fashion. We exploit the memory-less property of Markov
models to simplify transition probability computations — transi-
tion probabilities are based solely on the previous query the client
executed.

We monitor incoming queries, map them to query templates and
calculate template transition probabilities. In particular, for any
two templates Qti ,Qt j , we create an edge from Qti to Qt j if Qt j is
executed after Qti . We store the probability of Qt j executing after
Qti on this edge, and refer to it as P(Qt j |Qti ). If this probability
is larger than some configurable threshold τ , we say Qt j is related
to Qti .

The τ parameter serves as a configurable confidence threshold
for query template relationships. More concretely, the τ parameter
provides the minimum required probability for Qt j executing after
Qti to infer that they are related. By choosing τ appropriately,
we can limit the predictive queries executed after seeing Qti to
only those that are highly correlated to it. In doing so, we ensure
that our predictions have a high degree of accuracy and avoid
inundating the database with predictive executions of unpopular
queries.

P(Qtj |Qti ) is too broad to capture fine-grained query template
relationships. Given enough time, almost all of the query tem-
plates in a workload could be considered related under the above
definition. Two templates should not be considered related if there
is a significant time gap between them, thus motivating a tem-
poral constraint. Furthermore, by placing a temporal restriction
on the relationship property, we reduce the time needed to look
for incoming related templates. Consequently, we define a config-
urable duration, ∆t , which specifies the maximum allowable time
separation between related query templates.

Definition 2.1. For any two query templates Qti ,Qt j , in which
Qt j is executed T time units apart from Qti , if P(Qtj |Qti ;T ≤
∆t) > τ for some threshold parameter τ ∈ [0, 1], we consider Qtj
to be a related query template of Qti .

To learn a transition graph representing P(Qtj |Qti ; T ≤ ∆t),
we map executed queries to query templates and place them at the
tail of per-client queues called query streams. Since each client
has its own stream and transition graph, we avoid expensive lock
contention when updating the graphs and computing transition
probabilities.

Algorithm 1 runs continuously over client query streams, updat-
ing their corresponding transition graphs. Intuitively, the algorithm
scans the query stream, looking for other query templates that exe-
cuted within ∆t of the first query template, adding counts to their
corresponding edges and afterwards incrementing the vertex count
indicating number of times the template has been seen. To calcu-
late the probability of P(Qtj |Qti ;T ≤ ∆t), we take the edge count
from Qti to Qtj and divide by the vertex count for Qti . To use

Algorithm 1 Query Transition Graph Construction

Input: (Qt1, t1), (Qt2, t2), . . ., an infinite stream of incoming
query template identifiers and their execution timestamps,
∆t , a fixed time duration,
G = (V ,E), a directed graph, initially empty,
wv : V → N, vertex counters indicating the number of times
we have seen the vertex, initially all zero,
we : V ×V → N, edge counters indicating the number of times
we’ve seen the outgoing vertex followed by the incoming vertex
within ∆t , initially all zero.

i ← 1
loop

if ti + ∆t >now() then
wait until now()> ti + ∆t

end if
V ← V ∪ {Qti }
wv (Qti ) ← wv (Qti ) + 1
j ← i + 1
loop

if tj > ti + ∆t then
// too far apart in time
break

else
E ← E ∪ {(Qti ,Qt j )}
we (Qti ,Qt j ) ← we (Qti ,Qt j ) + 1

end if
j ← j + 1

end loop
// advance forward in stream
i ← i + 1

end loop

the variables directly from Algorithm 1, the probability that query
template Qt j executes within ∆t of a query template Qti is given

by
we (Qti ,Qt j )
wv (Qti )

. Per Definition 2.1, if this probability exceeds τ
then Qt j is considered related to Qti .

The choice of the ∆t parameter can impact prediction efficacy.
If ∆t is too high, it is possible that relationships will be predicted
where there are none; if ∆t is too low, we may not discover re-
lationships where they are present. Although the choice of ∆t is
workload dependent, some indicators aid us in choosing an appro-
priate value, such as query arrival rate. If P(Qtj |Qti ;T ≤ ∆t) is
high for a fixed Qti and many different Qtj , then either Qti is a
common query template with many quick-executing related query
templates, or ∆t is set too high. If this holds for many differentQti ,
then ∆t can be decreased. A similar argument holds for increasing
∆t . We discuss selection of ∆t and τ values for various workloads
in Section 4.7.

A key property of our model is that it uses online learning to
adapt to changing workloads. As new query templates are ob-
served, query template execution frequencies change, or query re-
lationships adjust, the transition graph adapts to learn the changed
workload. Moreover, online learning precludes the need to un-
dergo expensive offline training before deployment. Instead, our
model rapidly learns client workloads and takes action immedi-
ately.
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2.3 Parameter Mappings
Predictive query execution requires a stronger relationship be-
tween queries than the transition graph provides. In addition to
queries being related, they must also exhibit a dependency rela-
tionship.

To provide predictive execution capabilities, we record the
output sets of query templates and match them with the input sets
of templates that we have determined are related based on the
transition graph. We then confirm each output column to input
variable mapping over a verification period, after which only the
mappings present in every execution are returned.

As a concrete example, consider the TPC-W queries from Fig-
ure 2. We will refer to the query template for the first query as Qt1
and the template for the second query as Qt2. In the first stage of
tracking, we observe which query templates have executed within
∆t of Qt1. Once Qt1 has executed enough times (according to the
verification period), we begin to construct mappings among the
query templates. After Qt1 finishes an execution, we record its
output set. When any of Qt1’s related query templates (in this case
assume only Qt2) are executed, we record their input sets. We
then check if any column’s result in Qt1’s output set maps to the
input parameters of Qt2. If they do, we record the matching output
columns with their corresponding input argument position. If the
same mappings are observed across the verification period, we
infer that these mappings always hold.1 If a query template has
mappings for every one of its input arguments from a set of prior
templates, we can predict a query by forwarding parameters from
its prior template’s result sets as soon as they are available. In
this case, we say the query template is a candidate for predictive
execution given its prior query templates’ result sets. Similarly, we
discover mappings between Qt2 and Qt3 and use them to execute
Qt3 given Qt2’s result set.

2.4 Pipelining Query Predictions
Parameter mappings among query templates enable predictive
execution of queries as soon as their input sets are available via
prior template execution. It may be the case that the prior query
templates are also predictable, forming a hierarchical tree of de-
pendencies among templates. We exploit these relationships by
pipelining query predictions. Pipelining uses result sets from pre-
dictively executed queries as input parameters for future predic-
tions, thereby enabling predictions several steps in advance.

Figure 4: An example of pipelining within a dependency hi-
erarchy. The arrows represent a mapping from a prior query
template’s output set to the consequent query template’s in-
put set.

Figure 4 illustrates how pipelining can be used to form extended
chains of predictive executions using the TPC-W example from
Figure 2. Qt1 has a mapping to Qt2, which in turn has a mapping

1If future executions disprove a mapping, we will mark that mapping invalid and
preclude the template from predictive execution if its dependencies are no longer
met.

to Qt3. If Qt1 is executed, we can forward its result set as input
with which to predictively execute Qt2. Once Qt2 has also been
executed, we can predictively execute Qt3. As such, Qt2 is fully
defined given the result set of Qt1, and Qt3 is fully defined given
the result set of Qt2. We formalize the notion of fully defined
queries:

Definition 2.2. A fully defined query template (FDQ) Qt j has
all of its inputs provided by some set, possibly empty, of prior
query templates Qti1 ,Qti2 , . . . ,Qtik where each Qtim (∀m ∈

[1,k]) is either:
(1) a fully defined query template, or
(2) a dependency query template, required to execute Qt j .

Per Definition 2.2, both Qt2 and Qt3 are FDQs, but Qt1 is sim-
ply a dependency query. This definition captures the dependency-
graph nature of FDQs — each node in this graph corresponds to a
query template, with inbound and outbound edges corresponding
to inbound and outbound parameter mappings, respectively. The
transition graph induces the dependency graph but is stored and
tracked separately. By keeping the dependency graph separate,
we reduce contention on it. Once the dependency graph matches
the current workload, it will not need to be modified until the
workload changes.

Algorithm 2 Core Prediction Algorithm

Input: executed query template Qt
record_query_template(Qt)
new_fdqs = find_new_fdqs(Qt)
rdy_fdqs = mark_ready_dependency(Qt)
rdy_fdqs = rdy_fdqs ∪ new_fdqs
ordered_fdqs = find_all_runnable_fdqs(rdy_fdqs)
for all rdy_fdq ∈ ordered_fdqs do

execute_fdq(rdy_fdq)
end for

Discovering new FDQs, managing FDQ dependencies, and
pipelining predictions comprise the main routine of the predictive
framework. The engine executes Algorithm 2 after the execution
of a client-provided instance of query template Qt. The engine
records Qt’s result set and input parameters in the query transition
graph (Section 2.3), looks for parameter mappings, and records
discovered dependencies in the dependency graph. This query
template is then marked as executed so that FDQ pipelines that de-
pend on its result set can proceed. Any queries that are determined
ready for execution given the result of this query (and previously
executed queries) are then executed, forwarding parameters from
their dependent queries’ result sets. The dependencies are then
reset, waiting for future invocations with which to predict queries.
The dependency graph is stored as a hash map with edges between
dependent queries, allowing Apollo to quickly determine which
FDQs are ready for execution given an executed query.

Always defined query templates (ADQs) are a subset of FDQs,
requiring that all of their prior query templates (recursively) are
FDQs. They comprise an important subclass of fully defined
queries since their dependencies are always satisfied; they can
be executed and cached at any time. As a concrete example,
“SELECT COUNT(*) FROM shopping_cart” is an ADQ
because all of its input parameters (the empty set) are always
satisfied.

It follows from Definition 2.2 that an FDQ is an ADQ if and
only if all of its inputs are provided by ADQs. Consequently, ADQ
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hierarchies are discovered by recursively checking the dependency
structure of the FDQ.

3 APOLLO
In this section, we present Apollo, our system that implements the
predictive framework described in Section 2. Apollo is a system
layer placed between a client application and the database server.
Application clients submit queries to the Apollo system, which
then interacts with the database system and cache to return query
results.

Apollo uses Memcached [19], a popular industrial-strength dis-
tributed caching system, as the query result cache. Each executed
read-only query has its result set placed in Memcached, which
employs the popular Least Recently Used (LRU) eviction policy.
With predictive caching enabled, Apollo also places predictively
executed query results into the cache, increasing the number of
cache hits and thereby overall system performance. Apollo’s pre-
dictive engine operates in a complementary manner where queries
are passed unchanged through to the cache and database, preserv-
ing the effective workload behaviour. Apollo executes predicted
queries and caches them ahead of time, reducing response times
through correlated query result caching.

Since Apollo is implemented in the Java programming lan-
guage, we use the JDBC API to submit queries to the remote
MySQL [33] database. The JDBC API [32] makes Apollo data-
base agnostic and therefore portable, allowing MySQL to be easily
swapped for any other JDBC compliant relational database sys-
tem.

To efficiently track query templates within Apollo, we identify
queries based on a hash of their constant independent parse tree.
A background thread processes the SQL query strings placed into
the query stream, parsing and then hashing them into a 64-bit
identifier. All parameterizable constants are replaced by a fixed
string, and therefore share the same hash code. Thus, queries with
the same text modulo parameterizable constants have the same
hash.

Hashes can be computed efficiently and are used internally to
refer to query templates. Apollo uses them to look up nodes in
the transition graph, and to find statistics and parameters we have
stored for each query template. Hash collisions are very rare due to
the length of the hash and common structures that SQL statements
share. Due to the complementary nature of Apollo, query template
hash collisions are guaranteed not to introduce incorrect system
behaviour.

3.1 Prediction Engine
When a client submits a query, it has its results retrieved from
the local cache or executed against the remote database, then
placed into Apollo’s query stream and evaluated by the prediction
engine. Background threads use the query stream to construct
the transition graph described in Section 2, processing executed
queries into query templates. The core prediction routine from
Section 2.4 is then invoked: new FDQs are discovered from the
underlying transition graph, the dependency graph is updated, and
future queries are predicted using pipelining. We now detail each
of these subroutines, showing how these operations are carried
out efficiently.

Algorithm 3 shows how new FDQs are discovered. First, the
transition graph is consulted for all related query templates (tem-
plates with inbound edges from Qti ) since these are the templates
that may have new mappings from Qti ’s result set. Qti itself is also

checked since it may be an ADQ (if it has no input parameters).
For each query template Qt j that has no recorded dependency in-
formation in the dependency graph, the transition graph is checked
to see which templates have mappings to them. If each of Qt j ’s
input parameters are satisfied by its prior query templates then
by Definition 2.2 we know that it is an FDQ. An FDQ struc-
ture is constructed for Qt j and its dependencies are recorded in
the dependency graph. For efficiency, we represent the depen-
dency graph as a hash map from dependency query templates
to dependent templates and their full dependency list. Therefore,
determining newly satisfied FDQs can be performed quickly with
simple lookup operations.

Algorithm 3 find_new_fdqs

Input: a query template Qti
Output: a set of newly discovered FDQs

queries_to_check = get_related_queries(Qti )
queries_to_check = queries_to_check ∪ {Qti}
new_fdqs = {}
for all Qt j ∈ queries_to_check do

if !already_seen_deps(Qt j ) then
p_mappings = get_prior_query_mappings(Qt j )
if have_enough_mappings(Qt j ) then

fdq = construct_fdq(Qt j ,p_mappings)
unresolved_deps = get_dependencies(fdq)
add_to_dep_graph(unresolved_deps, fdq)
mark_seen_deps(fdq)
new_fdqs = new_fdqs ∪ {fdq}

end if
end if

end for
return new_fdqs

Apollo ensures that there exists only one instance of an FDQ
hierarchy throughout the system so that mapping updates affect
both the FDQ and any FDQ structures that contain it. To do
so, we track the FDQs that the system has constructed before,
returning a previously constructed FDQ if applicable. During
FDQ construction, dependency loops are detected and returned
as dependency queries in an FDQ hierarchy. If all children of an
FDQ are tagged as ADQs, or if an FDQ has no parameters and no
children, then it is tagged as an ADQ and stored for use during
cache reload (Section 3.4.2). Dependency queries are marked
as unresolved dependencies on the FDQ and used to determine
when an FDQ is ready for execution. Algorithm 4 shows how
dependencies for known FDQs are tracked and used for predictive
execution. After the execution of a given query template Qti , each
dependent FDQ marks that dependency as satisfied. If all of an
FDQ’s dependencies are now satisfied, we add it to a list of “ready
FDQs”, resetting its dependencies so that they must be satisfied
again before we determine the FDQ as being ready for future
execution.

Algorithm 4 is used as part of a breadth-first approach to de-
termine all runnable FDQs given the current query state. Apollo
determines which FDQs are executable given the current system
state and a newly executed query, adding them to the list of ready
FDQs. Apollo then determines which other FDQs are executable
given this FDQ list, repeating the process as necessary. This fi-
nal list of FDQs is then executed in order, feeding result sets as
parameters to dependent FDQs.
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Algorithm 4 mark_ready_dependency

Input: an executed query Qti whose result set is now available
Output: a set ready_fdqs of FDQs ready for execution

ready_fdqs = {}
dependency_lists = get_dep_query_dlists(Qti )
for all d_list ∈ dependency_lists do
mark_dependency_satisfied(d_list, Qti )
if all_deps_satisfied(d_list) then

ready_fdqs=ready_fdqs ∪ get_fdq(d_list)
reset_dependencies(d_list)

end if
end for
return ready_fdqs

3.2 Client Sessions
Apollo uses a client session consistency scheme [15], enabling
its predictive cache to share cached results among clients and
scale in the presence of write queries. In brief, each client has an
independent session that guarantees that it accesses data at least
as fresh as data it last read or wrote and that it efficiently shares
cached entries with other clients.

Each client maintains a version vector (v1,v2, . . . ,vn ) indi-
cating its most recently accessed version vi for each table Ri .
Query results are stored in the cache and timestamped with a
version vector (c1, c2, . . . , cn ) matching the version vector of the
client that wrote it. When a client wants to execute a read query
on a set of tables (R1,R2, . . . ,Rn ), it checks if there exists an
entry in the cache for that query with a version vector with
(c1 ≥ v1, c2 ≥ v2, . . . cn ≥ vn). If so, the client will retrieve
and return the cached result, updating its client state for each of
the tables to match that of the cached entry. If there is no such
entry, the client will execute the query against the database, updat-
ing its version vector for each of the affected tables to match their
versions in the database and storing the result in the cache. Write
queries are never predictively executed (to prevent unnecessary
rollbacks) and always execute against the database. After a client
executes a write query, its version vector is updated to match the
state of the database.

Since cache misses and write queries update a client’s version
vector, old cache entries may be stale under the client’s new ver-
sion vector. Therefore, if it is important to update a client’s version
vector only when strictly necessary, and by the minimum amount.
As such, when a client could read two different versions of a
cached key, Apollo will return the value for the cached key with a
version vector that minimizes the distance from the client’s version
vector. Apollo uses a variety of optimizations to reduce the impact
of write queries on predictive caching and system performance,
discussed in Section 3.4.

Since a client’s session is independent of the sessions of other
clients, Apollo can easily scale horizontally. An individual client
must route all of its requests to the same Apollo instance to main-
tain its session, but other clients and processes do not affect its
session guarantees. Thus, extract, transform, load (ETL) processes,
database triggers, and client write requests do not result in mass
invalidations of cached data. Furthermore, Apollo instances do
not need to communicate with each other to maintain sessions
because a client’s session is tracked by a single Apollo instance.

3.3 Publish–Subscribe Model
Since Apollo handles many concurrent clients, multiple clients
may simultaneously try to execute the same read query. In these
cases, it is beneficial to execute the query only once and return
its result set to the waiting clients. Optimizing these queries is
particularly important for predictive execution since a predicted
query may not have finished execution before a client requests its
result set.

Before executing a read query, Apollo consults a hash map to
determine if a copy of the query is already executing. If so, Apollo
blocks the query until the other query returns, passing along its
result set. Otherwise, it will record an entry in the hash map with
a semaphore for other clients and predictive pipelines to wait on.
In this way, only one copy of a read query is executing at any time,
including shared predictive query pipelines for multiple clients.

When Apollo determines that a client’s query has multiple us-
able versions of its results cached, Apollo will use the earliest
version regardless of whether another usable version is already be-
ing retrieved for a different client. Experimentally, we determined
that it is better to retrieve results for earlier versions since reading
later versions will result in large version vector updates for the
client and may therefore cause misses for other cached results.
Similarly, if Apollo must retrieve the result set from the database,
Apollo will subscribe to any ongoing database retrievals of the
same query.

3.4 Session-Aware Caching
Since write queries increment client version vectors, they preclude
the client from reading any previously cached values. Therefore,
if a client executes a write query after a predictive query is issued
on that client’s behalf, the predicted query results may be stale and
unusable. If so, the system will have performed unnecessary work
to execute and cache the query. To minimize the effects of writes
on system performance, we avoid predictively executing queries
whose results are likely to become stale before client queries can
use their results (Section 3.4.1). Since ADQs can be executed
at any time, we strive to keep valuable ADQs in the cache by
reloading them if their results become outdated (Section 3.4.2).

3.4.1 Preventing Unusable Predictions. Apollo determines
the likelihood of a write query or cache miss occurring using the
query transition graph. Recall from Section 2.2 that each client has
a single transition graph. However, by maintaining multiple inde-
pendent transition graphs with different ∆t intervals, we are able
to determine the likelihood of a given query being executed by the
client in each of these windows. Using this technique, we predict
if a client will retrieve the results for a predictively executable
query before its results become stale. Apollo will predictively
execute and cache only query results that it deems are likely to be
used.

To determine if predictively executing and caching a query’s
results will be helpful, Apollo first estimates the time it will take
for the query to be executed and cached. Since all predictable
queries are by definition FDQs, we use a simple estimate: the
time to predictively execute an FDQ is given by the time it will
take to execute its dependencies and the time to execute the FDQ
itself. We calculate this estimate recursively: for a target FDQ, we
return the maximum time to execute its dependency queries and
add the time needed to execute the FDQ. In essence, this process
returns the longest expected path from the child weighted by
mean query runtimes. To provide an approximation of individual
query runtimes, we use the mean execution time for each query
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template. Although more sophisticated methods can be used [4,
45] to estimate query runtimes, we found that this method yields
enough accuracy to determine the runtime of predicted query
while still being performant.

Once the runtime for a given FDQ f has been determined (say
t), Apollo looks up the client’s transition graph with smallest in-
terval ∆t where ∆t > t . It then uses this graph to determine the
likelihood of the client executing a query that would cause f ’s re-
sults — or the results of its dependencies — to become stale while
f is executing. If this likelihood is sufficiently high (given the τ
threshold), we avoid executing f to save on database execution
costs. Therefore, only queries that are likely to be executed and
useful to clients are predictively cached.

Although increasing the number of transition graphs per client
necessitates additional processing of the query stream, we find that
the simplicity of the query transition graph construction algorithm
(Algorithm 1) combined with a configurable (but small) number
of models per client results in low computational overhead for
the system. Furthermore, since workloads [1, 42] tend to have a
small number of unique query templates, the storage overhead is
minimal.

3.4.2 Informed ADQ Reload. Write queries update a client’s
version vector, and therefore provide an opportunity for opti-
mization through informed query result reload. As ADQ depen-
dencies are always satisfied and can be executed at any time,
we immediately reload valuable ADQ hierarchies after a client
executes a write query. Since there can be many ADQs and
reloading a hierarchy may be expensive for the database to exe-
cute, we limit ADQ reload to only those predictions for query
templates considered valuable according to the cost function
cost(Qt) = P(Qt) ·mean_rt(Qt).2 Specifically, the estimated cost
of an ADQ on the system is given by the probability of the ADQ
executing and the estimated ADQ runtime. If the cost of the ADQ
exceeds a predefined threshold α , we reload it into the cache. We
discuss α and its effects further in Section 4.7.

4 PERFORMANCE EVALUATION
In this section, we present the system setup used to conduct ex-
periments followed by performance results. Apollo is compared
against Memcached [19], a popular mid-tier cache used in data-
base and storage systems, as well as the Fido predictive cache [34].
We compare these systems using average query response time and
tail latencies, which have been observed to contribute significantly
to user experience and indicate concurrent interaction responsive-
ness [28].

The Fido engine serves as a drop-in replacement for Apollo’s
prediction engine, and uses Palmer et al.’s associative-memory
technique [34] for query prediction, scanning client query streams
to predict upcoming queries. Fido-like approaches have been em-
ployed to prefetch objects in databases [8]. Fido’s implementation-
independent middleware prediction engine makes it particularly
well-suited as a comparison point against Apollo.

The remainder of this section is organized as follows. Sec-
tion 4.1 describes our experiments’ setup and Section 4.2 pro-
vides performance experiments for TPC-W. In Section 4.3, we
use TPC-C to assess Apollo’s scalability under increasing client
load. Section 4.4 showcases Apollo’s ability to adapt to changing
workloads using online learning. Geographic latency experiments
and multi-Apollo instance experiments are shown in Sections 4.5

2Note that the techniques in Section 3.3 apply; shared query dependencies and
overlapping client query submissions will not result in multiple executions of ADQs.

and 4.6 respectively, and Section 4.7 presents a sensitivity analysis
of Apollo’s configurable parameters.

4.1 Experimental Setup
Our experiments use a geo-distributed setup in which Amazon
EC2 nodes are located in the US-East (N. Virginia) region for:
(i) Apollo with 16 virtual CPUs, 64 GB of RAM and a 50 GB
SSD (ii) Memcached on a machine with 2 virtual CPUs, 4 GB
of RAM, and a 50 GB SSD (iii) a node with concurrent clients
running our benchmarks with 16 virtual CPUs, 64 GB of RAM,
and a 50 GB SSD. We deploy a database machine in the US-West
(Oregon) region for our experiments, which has 16 virtual CPUs,
64 GB of RAM, a 250 GB SSD, and uses MySQL v5.6 as the
database. For each experiment, Memcached uses a cache size 5%
of the size of the remote database to demonstrate that Apollo is
effective with limited cache space. All results presented are the
average over at least five independent runs, with bars around the
means representing 95% confidence intervals.

Our experiments have three primary configurations: the Mem-
cached configuration (in which the cache has been warmed for 20
minutes prior to benchmarking), the Apollo caching configuration,
and the Fido prediction engine configuration [34]. In the Mem-
cached configuration, we check for query results in the cache and
forward queries on cache misses to the remote database, caching
the retrieved query results. The Apollo and Fido configurations
also load query results into the cache after they execute a read-
only query on the remote database, but Apollo uses the predictive
framework from Section 2 and Fido uses its own predictive engine,
which is detailed below.

Unlike Apollo, Fido functions on an individual query level
rather than on query templates. More concretely, if queriesQ1,Q2,
. . . ,Qn are present in a client’s query stream, Fido looks for
a stored pattern that is prefixed by them, say Q1,Q2, . . . ,Qn ,

P1, P2, . . . , Pm , proceeding to predictively execute P1, P2, . . . , Pm
and cache their results. In contrast to Apollo’s online learning
capabilities, Fido requires offline training to make predictions. We
provide Fido with client workload traces twice the length of the
experiment interval to serve as its training set for comparison
against a cold start Apollo. Additionally, we let Fido make up to
10 predictions for each matched prefix.

In all configurations, clients use session guarantees (Section 3.2)
and queries executed at the remote database have their result
sets immediately cached in Memcached. Thus, the difference in
caching performance between the configurations is due to caching
benefits provided by the query prediction engines.

Our experiments aim to answer three key questions. First, can
Apollo analyze incoming queries and learn patterns within a work-
load? Second, are Apollo’s predictive caching capabilities effec-
tive in reducing query round-trip time by avoiding costly database
query executions? Third, can Apollo’s predictive framework scale
with an increasing number of clients? We present performance
results in the next sections that include answers to these questions.

4.2 TPC-W Benchmark
The TPC-W Benchmark [42] generates a web commerce workload
by having emulated browsers interact with servlets that serve
webpages. The webpages require persistent data from storage so
servlets execute database queries against the remote database to
generate webpage content. The TPC-W benchmark includes 14
different web interactions for clients (e.g., Best Sellers, Order
Inquiry) each with their own distinct set of queries. For a given
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Figure 5: Experiment results for 20 minute TPC-W runs using Apollo, Fido, and Memcached (no prediction engine).

client, the next web interaction is chosen probabilistically based
on the previous interaction. We use a popular implementation [35]
of the TPC-W Benchmark specification.

The TPC-W benchmark represents an important use case for
Apollo since even small changes in latency can significantly im-
pact web traffic [20] and sales [30]. Further, it serves as a chal-
lenging workload for Apollo due to its inherent randomness and
large number of different queries. This randomness serves to test
the viability of Apollo’s predictive framework under a variable
workload.

We generated a 33 GB TPC-W database with 1,000,000 items.
We measured Apollo’s performance using the TPC-W benchmark
browsing mix executed for 20 minute measurement intervals while
scaling-up the number of clients using our default TPC-W param-
eters discussed in Section 4.7.

4.2.1 Performance Results. Figure 5(a) shows Apollo’s
performance for an increasing number of clients compared to
Memcached and Fido. Apollo significantly outperforms both Fido
and Memcached, enjoying a large response time reduction of up
to 33% over Memcached and 25% over Fido. Fido has slightly
lower response time than Memcached due to query-instance level
predictive caching but is unable to recognize query template pat-
terns and generalize to unseen queries, precluding it from being
competitive with Apollo. In the case of Memcached, we see its
warmed cache offers little advantage over Apollo’s and Fido’s
cold starts — invalidation and randomness limit the effects of
cache warming.

Each configuration shows a reduction in response time as the
number of clients increase, a consequence of the shared cache
between clients. However, shared caching is unable to compete
with our predictive caching scheme as in a shared cache, a client
must incur a cache miss, execute, and then store query results
before others can use it. Consequently, Apollo’s techniques of
query prediction and informed ADQ reload prove superior, even
as the client load is scaled up.

Figure 5(b) shows the distribution of tail response times for
each of the experimental configurations for 50 client TPC-W runs.
Apollo’s response times are significantly lower than any of the
other methods, particularly for the higher percentiles, due to an
improvement in cache hits. At the 97th percentile, Apollo reduces
tail latencies by 1.8x over Memcached and Fido. Again, Fido tends
to perform about as well as Memcached, despite its large training
set size, as it cannot generalize its patterns to query templates for
FDQ prediction and query reload.

Figure 5(c) shows average query response times in 4 minute in-
tervals. We see that Apollo exhibits a downward trend in response
time from the start of the measurement interval as it effectively

learns query correlations and parameter mappings, resulting in an
improvement of 30% over its average response time during the first
four minutes. Although the other systems’ performance oscillates
according to workload patterns, they do not learn query patterns
— their final average query response times are comparable to that
incurred in their first few minutes.

To ensure that Apollo can provide these response time reduc-
tions without undue resource overhead, we added instrumentation
to determine the time and memory needed to find and construct
new FDQs. On average, it takes less than 1% of response time
to discover new FDQs given a newly executed query, and less
than 2% of response time to construct an FDQ. We have observed
that Apollo uses scant system resources, requiring only 1.5% the
amount of memory used by the database for tracking the transi-
tion graph and query parameter mappings. Apollo’s predictive
techniques submit an additional 25% more queries to the remote
database compared to the Memcached configuration. Apollo’s
intelligent query caching techniques place little additional load on
the remote database and use meager resources, while still provid-
ing substantially lower average query response times than both
Fido and Memcached.

To answer the performance questions we had posed earlier in
Section 4.1, Apollo is indeed able to make accurate and useful
predictions for what to cache, predicting and retaining important
result sets in the cache for longer without significant computation
or memory overhead.

4.3 TPC-C Benchmark
The TPC-C Benchmark emulates an order-entry environment in
which multiple clients execute a mix of transactions against a
database system [1]. Each of these clients functions as a store-front
terminal, which submits orders for customers, confirms payments,
and updates stock levels. In contrast to TPC-W’s workload, TPC-
C’s OLTP workload features many short-running queries which
avoid contention by reduced locking of significant parts of the
database. As such, the TPC-C benchmark serves to directly test
the scalability of Apollo.

The TPC-C specification has two read-only transactions, Stock
Level and Order Status, both of which present opportunities for
predictive execution. Since the goal of our experimentation with
TPC-C is to show the scalability of predictive execution under high
numbers of clients, we scale up the mix of read-only transactions
to 95% with updates making up the remaining 5%. In doing so,
Apollo must track, construct, and execute far more opportunities
for predictive queries than in the TPC-W experiments. Thus, this
experiment’s purpose is to show how well Apollo can handle
hundreds of clients executing predictive queries simultaneously.
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Figure 6: Experiment results for 20 minute TPC-C runs using
Apollo, Fido, and Memcached (no prediction engine).

Figure 7: Experiment results for changing the workload from
TPC-C to TPC-W using Apollo, Fido, and Memcached (no
prediction engine).

In our experiments, we use the OLTPBench TPC-C implemen-
tation from Difallah et al [18]. To properly assess scalability, we
modified the read/write mix, with a final percentage of 5% Pay-
ments, 47.5% Order Status, and 47.5% Stock Level Transactions.
This mix forces the prediction engines to construct and execute
significantly more predictive queries.

A TPC-C database of size 100 GB with 1000 warehouses was
generated and loaded into a US-West MySQL instance using the
data generation mechanism of OLTPBench. For the following
experiments, we used our default TPC-C parameters (discussed in
Section 4.7) with a 5% write mix. We choose the warehouse pa-
rameter in our queries according to a uniform distribution, which
results in more predictive executions than a skewed Zipf distribu-
tion — recall that Apollo will not predictively execute queries that
are already cached (Section 3.3).

4.3.1 Performance Results. Figure 6 shows the scalabil-
ity of Apollo, Fido, and Memcached for increasing numbers of
clients. Apollo exhibits a significantly lower average response
time than Memcached and Fido, even as the number of clients,
and therefore the number of predictive query executions, increases.
Apollo’s efficient data structures and algorithms for tracking and
prediction allow scaling even with a large number of clients. Fido
and Memcached perform about the same, even as we increase the
number of clients. With a large database, query parameters are
highly variable and rarely repeated, causing Fido’s non-template
approach to see few queries from its training set and in turn re-
ducing prediction accuracy. As the number of clients increase, the
positive effects of shared caching dwarf that of Fido’s predictions,
resulting in similar performance characteristics between Fido and
Memcached.

These results show that Apollo can deliver significant perfor-
mance gains while scaling effectively to hundreds of concurrent
clients continuously executing predictive queries.

4.4 Adapting to Changing Workloads
To assess Apollo’s ability to adapt to changing workloads, we
conducted an experiment in which the workload was changed
from our TPC-C workload described in Section 4.3 to TPC-W
partway through the experiment (Figure 7). We see that Apollo
quickly learns predictions for the TPC-C workload, resulting in
the performance gains shown in Figure 6. By contrast. Fido and
Memcached have relatively constant performance during the TPC-
C run since they are unable to generalize and make effective
predictions for upcoming queries (Section 4.3).

Once the workload switches, shown by a dashed vertical line
in Figure 7, each configuration experiences a brief penalty in
performance because the predictive engines cannot make any pre-
dictions for queries in the new workload, and no TPC-W queries
are cached. However, Apollo quickly returns to its typical perfor-
mance on TPC-W (Figure 5(a)) since it uses online learning to
discover query patterns. Fido and Memcached perform similarly
after the switch since Fido is unable to make predictions for an
untrained workload. Although Fido was trained for TPC-C in
this experiment, we note that its performance is comparable to
an appropriately trained Fido on the TPC-W portion. This obser-
vation further highlights the ineffectiveness of Fido’s prediction
scheme for the correlated query patterns, which Apollo excels at
predicting.

4.5 Geographic Latency Testing
To assess the effects of different geographic latencies between
Apollo and the database, we deployed TPC-W databases in the
US-East and Canada regions. Because Apollo, the cache and the
benchmark machine are all located in the US-East region, the
first configuration tests a “local” deployment, in which latency
among the machines is minimal (a few milliseconds). The second
configuration tests moderate latencies of 20 ms.

In both configurations (Figures 8(a) and 8(b)), we see that
Apollo preserves its lead over the other systems despite limited
geographic latency. Apollo reduces query response time by up
to 50% in the US East region and by up to 40% in the Canada
region. This improvement in the performance gap compared to the
higher latency experiments is because cache misses in low latency
environments have a larger effect on average performance than
when latency is high. The reason for this effect is that Apollo’s
advantage when caching expensive queries becomes even more
significant with reduced latency; prioritizing expensive and fre-
quently executed queries results in a substantial improvement and
failure to predictively cache them (as in Memcached’s and Fido’s
case) results in a relatively larger performance degradation.

These results are not to be interpreted as Apollo is “best” in
a local setting with near zero latency — the total response time
savings for the remote settings are larger than that of the local
setting. Apollo provides substantial reductions in average and
total response time in both settings, resulting in an enhanced user
experience.

4.6 Multiple Apollo Instances
Apollo can scale to high loads by partitioning clients among multi-
ple Apollo engine instances and cache stores. Each Apollo engine
maintains a consistent session for each client connected to it, with-
out interacting with the other instances or a centralized session
manager.

To determine Apollo’s scaling characteristics, we deployed
Apollo on less powerful m4.xlarge EC2 instances with 4 vCPUs
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(a) TPC-W DB in US East Region (local to client)
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Figure 8: Experiment results for 20 minute TPC-W runs in different geographic regions and when using multiple Apollo in-
stances.

and 16 GB of RAM. We use these less powerful machines as
they are individually unable to handle large numbers of clients,
necessitating a horizontal scale-out for Apollo instances. We test
three different Apollo configurations: one with a single Apollo
instance, another with two Apollo instances, and a third with three
Apollo instances. Each Apollo instance is given its own dedicated
cache, thereby avoiding the need to synchronize version vectors
across instances to maintain client sessions. Clients are evenly
distributed and pinned to Apollo instances.

The results of the experiment are shown in Figure 8(c). As
the client load increases, we see that it quickly overwhelms the
1-instance Apollo configuration, resulting in a large increase in
query response time. The 2-instance and 3-instance Apollo config-
urations show significantly improved scalability, though eventually
the 2-instance configuration begins to show a similar upward trend
in response time.

We observed that the 2-instance query response time at 20
clients is slightly lower than that of the 3-instance configuration.
This effect is primarily due to splitting the clients across three
machines rather than two, resulting in the 3-instance configu-
ration receiving fewer queries to learn from. ADQs are shared
among clients, which results in longer learning times to reach a
steady state with fewer clients. With a larger number of clients,
the increase in the amount of data to learn from and the com-
puting power available result in improved performance over the
2-instance configuration.

Although having multiple Apollo instances share models and
training data would reduce the effects of training data splitting, the
trade-off is increased synchronization between otherwise indepen-
dent nodes. We eschew this approach for two reasons. First, clients
should be split across Apollo instances only when a single instance
cannot handle the load. As seen in Figure 8(c), Apollo receives
enough training data from clients well before it reaches its load
capabilities, even on a less powerful machine. Second, slightly
increased training times are a small price to pay for horizontal
scalability. Addressing scalability issues in production systems is
challenging — learning for a few more minutes is a simple and
inexpensive solution to the insufficient data problem.

These multi-instance experiments demonstrate Apollo’s ability
to scale to large numbers of clients through horizontal scaling
and client-session consistency semantics. Since separate Apollo
instances do not need to communicate, Apollo demonstrates ex-
cellent scaling characteristics.

4.7 Sensitivity Analysis
A key feature of Apollo is its ability to be configured to operate
under different workloads and system deployments. This config-
urability is enabled by the provision of parameters that can be
set according to a particular workload and deployment. In this
section, we discuss the effects of these parameters on the overall
performance of the system as well as our choice of their default
settings.

For TPC-W, our default parameter choices were: ∆t = 15s,
τ = 0.01, and a reload cost threshold of α = 0. Per the specifica-
tion [42], TPC-W uses randomized think times with a mean of
7s. Each client has its own application state, which is determined
through a probabilistic transition matrix. Therefore, a client’s web
interactions do not generate a pre-determined chain of queries.

The maximal time separation ∆t and minimum probability
threshold τ are correlated. As ∆t decreases, the probability of
correlated query templates executing within this interval also
decreases, thereby requiring a lower τ value to capture the re-
lationship between query templates. Similarly, as ∆t increases,
the probability of two correlated query templates executing within
this interval also increases, so higher τ values are sufficient. If ∆t
is large and τ is small then it is likely that spurious relationships
between query templates will be discovered, but such spurious
relationships are filtered out by Apollo’s parameter mapping ver-
ification period, and are therefore seldom predictively executed.
Since TPC-W’s workload bottlenecks on the database, Apollo
filters out the spurious correlations in exchange for discovering
as many relationships as possible. To do so, we set a high value
of ∆t = 15s and a low threshold of τ = 0.01. These values were
empirically confirmed to yield the best results.

In Section 3.4.2, we defined α to be the minimum cost that an
ADQ must have to be reloaded. Note that the cost of an ADQ
is the mean response time multiplied by the probability of the
query executing. Hence as α is increased, only ADQs that are
both popular and expensive are reloaded. We experimented with
different values of α and found that for small values of α (less than
5% of the mean query response time), there was little change in
query response time. However, as α continued to be increased past
this threshold, the mean query response time grew by over 10%,
as valuable ADQs were not reloaded. To ensure that all ADQs
were reloaded, α was set to 0 in our experiments.

We observed similar trends with ∆t and τ in TPC-C as in TPC-
W; therefore, our default parameter choices for TPC-C were the
same. We left ∆t large and τ small to place additional pressure on
Apollo’s parameter mapping filtering functionality. These values
were empirically confirmed to yield the best results.
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In our experiments, we used a cache 5% the size of the data-
base. We observed that increasing the cache beyond this size did
not affect the relative performance differences between Apollo,
Memcached, and Fido.

5 RELATED WORK
Fido [34], detailed in Section 4.1, uses an associative memory
model for predictive prefetching in a traditional client/server data-
base system. Query patterns in Apollo are tracked at the query
template level so a single relationship in Apollo can map to many
in Fido. Tracking individual data object accesses, or parameterized
queries, means that if Fido has not previously seen a particular
parameterized query it will not be able to make a prediction. In
contrast, if Apollo has seen the query template (regardless of
parameters), it can infer correlation between queries and predic-
tively execute. As Fido requires offline training, it cannot adapt to
changes in object access patterns. As we have shown, the online
nature of Apollo’s Markov model allows it to dynamically change
over time and thus adapt to new query patterns.

Keller et al. [24] describe a distributed caching system for
databases, which uses approximate cache descriptions to distribute
update notifications to relevant sites and execute queries locally on
caches. Each site’s cached data is tracked using query predicates.
Apollo differs from this work in that we focus on the predictive ex-
ecution of consequent queries derived from query patterns, which
Keller et al. do not consider.

Scalpel [10] tracks queries at a database cursor level, inter-
cepting open, fetch and close cursor operations within the JDBC
protocol. Since the JDBC API is translated to database specific
protocols, Scalpel functions as a client-side cache rather than a
mid-tier shared cache like Apollo. Unlike Apollo’s online learn-
ing model, Scalpel requires offline training to find the patterns
that it uses for query rewriting and prefetching. Scalpel employs
aggressive cache invalidation on writes and at the start of new
transactions, which differs from Apollo’s client-centric consis-
tency model. Given that Apollo supports mid-tier shared caching
across multiple clients, this makes Scalpel unsuitable for compari-
son against Apollo.

Pavlo et al. [7] implement Markov models in H-Store and use
them to optimize transaction execution for distributed database
physical design. The system constructs a series of Markov models
for stored procedures and monitors the execution paths under a set
of input parameters. Their model can be leveraged to determine a
base partition for stored procedures and to lock only partitions that
are predicted to be accessed during procedure execution. Apollo
operates beyond this stored procedure context, and provides bene-
fits through caching future queries rather than by analyzing query
execution paths.

DBProxy [5] is a caching system developed by IBM to cache
query results on edge nodes. DBProxy uses multi-layered in-
dexes and query containment to match queries to results, evicting
stale and unused results. Its single session guarantees differ from
Apollo’s per-client sessions and limit scalability, in addition to
not using online learning or predictive caching to improve perfor-
mance.

Ramachandra et al. [36] propose a method for semantic prefetch-
ing by analyzing the control flow and call graph of program binary
files. Given the source code for a database application, the system
analyzes and modifies it, adding prefetch requests into the code as
soon as the parameters are known and query execution guaranteed.
Since this work is limited to requiring access to the source code of

application binaries, it only works for fixed workloads. Because
Apollo analyzes query streams, it is able to adapt to changing
query patterns over time.

Although proprietary middleware caching solutions have been
developed [9, 16, 26], they do not use predictive analytics to
identify future queries and preload them in the cache.

Scheuermann et al. [40] propose the Watchman cache manage-
ment system, which uses query characteristics to improve cache
admission and replacement algorithms. Unlike Apollo, Watchman
does not discover query patterns for use in predictive execution
and instead focuses solely on cache management.

Holze et al. [23] have broached the idea of modeling workloads
using Markov models, but such work focuses only on determin-
ing when an application’s workload has been altered rather than
relying on statistical models for caching purposes, like Apollo.
They suggest a Markov model as a means to achieve an auto-
nomic database, enabling features such as self-configuration, self-
optimization, self-healing, and self-protection. In contrast, Apollo
uses Markov models of user workloads to predict future queries
and enables predictive query caching.

Promise [37] is a theoretical framework for predicting query be-
haviour within an OLAP database. Promise uses Markov models
to predict user query behaviour by developing state machines for
parameter value changes and transitions between OLAP queries,
but does not consider direct parameter mappings, FDQ hierar-
chies, or pipelining predictions. Unlike Apollo, Promise does not
validate its techniques through a system implementation.

Recent research in approximate query processing [6, 44] has
proposed using previous query results as a means for approximat-
ing the answer to future queries. These works develop statisti-
cal methods to provide accurate, approximate answers and error
bounds for upcoming queries, which differs from Apollo’s focus
on learning parameter mappings for predictive caching.

In the view selection problem [12], one must decide on a set of
views to materialize so that execution of the workload minimizes
some cost function and uses fixed amount of space. Most work in
this area requires knowledge of the workload ahead of time [2, 22],
with the remainder not considering machine learning techniques
for uncovering patterns for use in view selection [17, 25].

XML XPath templates have some similarities to query tem-
plates [31], but are not used for online learning in predictive
execution and caching. Instead, XPath views are selected using
offline training in a warm-up period [29, 43], similar to that of
Fido [34]. Similar ideas have been explored to cache dynamic
HTML fragments [14].

6 CONCLUSION
In this paper, we propose a novel method to determine and lever-
age hidden relationships within a database workload via a pre-
dictive learning model. We present the Apollo system, which
exploits query patterns to predictively execute and cache query
results. Apollo’s online learning method makes it suitable for
different workloads and deployments. Experimental evaluation
demonstrates that Apollo is a scalable solution that efficiently uses
a cache and outperforms both Memcached, an industrial caching
solution for different workloads and the popular Fido predictive
cache.
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ABSTRACT
Credit card frauds are unauthorized transactions that are made or
attempted by a person or an organization that is not authorized by
the card holders. Fraud with general-purpose cards (credit, debit
cards etc.) is a billion dollar industry and companies are therefore
investing significant efforts in identifying and preventing them.

It is typical to deploy mining and machine learning-based tech-
niques to derive rules. However, such rules may not always capture
the semantic reasons underlying the frauds that occur. For this
reason, credit card companies often employ domain experts to
manually specify rules that exploit general or domain knowledge
for improving the detection process. Over time, however, as new
(fraudulent and legitimate) transactions arrive, these rules need to
be updated and refined to capture the evolving (fraud and legiti-
mate) activity patterns. The goal of the RUDOLF system described
in this paper is to guide and assist domain experts in this challeng-
ing task. RUDOLF automatically determines the “best” adaptation
to existing rules to capture all fraudulent transactions and, respec-
tively, omit all legitimate transactions. The proposed modifications
can then be further refined by users and the process can be re-
peated until they are satisfied with the resulting rules. We show
that the problem of identifying the best candidate adaptation is
NP-hard in general and present PTIME heuristic algorithms for
determining the set of rules to adapt. We have implemented our
algorithms in RUDOLF and show, through experiments on real-life
datasets, the effectiveness and efficiency of our solution.

1 INTRODUCTION
A credit card fraud is an unauthorized transaction made or at-
tempted by an individual or organization who is not authorized by
the card holder to use a credit card to perform the electronic pay-
ment. Fraud with general-purpose cards (credit, debit cards etc.) is
a billion dollar industry. In fact, several independent news articles
and studies that were carried out (e.g., [1, 2]) corroborate that
there is a consistent, fast-growing, and upward trend on the total
global payment-card frauds. Detecting and deterring credit card
frauds are therefore of extreme importance to credit card compa-
nies. A core part of operations behind every credit card company
is to (automatically) detect fraudulent transactions among the new
transactions (e.g., [3]) that are received everyday.

To this end, models based on data mining and machine-learning
techniques (e.g. [4–6]) have been used. A typical approach is to
score each transaction where transactions whose scores are above
a threshold are classified as fraudulent. However, the models
and scoring system do not always have high precision and re-
call. Fraudulent transactions may be missed by the models and,
likewise, legitimate transactions may be wrongly identified as
fraudulent. The derived threshold also do not provide a semantic
explanation of the underlying causes of the frauds. It is for this
reason that credit card companies typically rely on rules that are
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carefully specified by domain experts in addition to models for
automatically determining fraudulent transactions.

Intuitively, a rule describes a set of transactions in the database
and the goal is to arrive at a set of rules that, together with the
automatically derived scores, captures precisely the fraudulent
transactions. The use of rules written by users has the advantage
that it allows employing general or domain knowledge to handle
rare special cases.

Writing rules to capture precisely fraudulent transactions is
a challenging task that is exacerbated over time as the types of
fraudulent transactions evolve or as new knowledge is learnt. Typ-
ically, a set of rules that were curated by users already exists
and the rules work well for capturing fraudulent transactions up
to a certain day. However, these rules need to be adapted over
time to capture new types of frauds that may occur. For example,
there may be new reported fraudulent transactions coming from
a certain type of store at a certain time that did not occur before
and hence, not caught by existing rules. Analogously, there may
be some transactions that were identified by the existing rules as
fraudulent but later verified by the card holders to be legitimate.
Hence, the rules have to be adapted or augmented over time to
capture all (but only) fraudulent transactions. In this paper, we
present RUDOLF, a system whose goal is to assist users to define
and refine rules for fraud detection.

Note that our goal resembles in part that of previous works
on query/rule refinement, which attempt to automatically identify
minimal changes to the query/rule in order to insert or remove
certain items from the query result (e.g., [7]). However, a key
difference here is that such minimal modifications often do not
capture the actual “ground truth”, namely the nature of ongoing
attack, which may not yet be fully reflected in the data. By inter-
acting with users to fine-tune rules, important domain knowledge
can be effectively imported into the rules to detect the pattern of
frauds often even before they are manifested in the transactions
themselves.

Our goal also resembles previous work on discovering or learn-
ing decision rules from streams with concept drifts (e.g. [8, 9]).
Like them, RUDOLF strives to discover or adapt rules as new
transactions arrive. However, all previous work considered only
domains over numerical values and hence do not immediately ap-
ply to our setting, which involves both categorical and numerical
values. Furthermore, RUDOLF makes crucial use of a hierarchy of
higher-level concepts over the domains (numerical or categorical)
in the specification of rules. In addition, RUDOLF collaborates
with the domain expert to improve upon the quality of the rules
used for capturing only fraudulent transactions. The interplay be-
tween the domain experts and the use of higher-level concepts,
whenever possible, enables the derivation of rules which can be
used to explain the true nature ongoing frauds. Our experiments
indicate that such interactions can be effective in deriving rules
with good prediction quality.
An overview example The top of Figure 1 shows a simplified set
of rules that is currently used to capture fraudulent transactions
up to yesterday. Intuitively, the first two rules capture a suspicion
of two attacks on an online store taking place at the first and
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last few minutes of 6pm, charging amounts over $110. The last
rule captures a fraud pattern at Gas station A where false charges
of amounts over $40 are made soon after the closing time at
9pm. In practice each rule also includes some threshold condition
(not shown) on the score (i.e., the degree of confidence that the
transaction is fraudulent) for each transaction, as well as additional
conditions on the user/settings/etc. The scores and the additional
conditions are omitted so that we can focus our discussions on the
semantic aspect of the rules shown in Figure 1.

Figure 2 shows an example of a relation which contains a num-
ber of transactions made today. The transaction tuples are ordered
by the time of the transaction. In the figure, some transactions that
were reported as fraudulent are labeled as “FRAUD”. Similarly,
transactions that are reported to be legitimate may be correspond-
ingly labeled “LEGITIMATE” (not shown in the figure). Transac-
tions may also be unlabeled. The current set of rules captures only
the shaded tuples shown in the transaction relation. Clearly, none
of the new fraudulent transactions are captured by the existing
rules whereas some unlabeled transactions are captured.

RUDOLF first attempts to capture the fraudulent transactions by
generalizing the rules, semantically according to a given ontology
whenever possible, before it specializes the rules to avoid unnec-
essarily capturing legitimate transactions. However, the changes
proposed by RUDOLF may not correspond to the best or correct
changes. The domain experts can view/accept/reject/modify the
suggestions provided by RUDOLF, arriving for instance at the
1) Time ∈ [18:05,18:05] ∧ Amt ≥ 100 ∧ Type = Onl., no CCV.
2) Time ∈ [18:55,19:15] ∧ Amt ≥ 100 ∧ Type = Onl., no CCV.
3) Time ∈ [20:45,21:15] ∧ Amt ≥ 40 ∧ Location ≤ Gas Station
∧ Type ≤ Offline.

Intuitively, the first two rules above flag online transactions
without CCV, charging amounts over $100 in the respective time
intervals as fraudulent transactions. The third rule flags offline
transactions at the gas stations around closing time of amounts
over $40 as fraudulent transactions. Observe that the condition
“Location ≤ ‘Gas Station’ is a semantic generalization of Gas
Stations A and B, which are defined in an ontology to be contained
within the category “Gas Station”. Similarly, “Type ≤ Offline”
reflects the semantic category (shown at the bottom of Figure 1)
which contains offline transactions with and without PIN.
Contributions This paper makes the following contributions.

(1) We formulate and present a novel interactive framework for
determining the “best” way to adapt and augment rules so
that fraudulent transactions are captured and, at the same
time, legitimate transactions are avoided.

(2) We establish that the rule refinement problem is NP-hard
even under special circumstances: (1) determine the best
way to generalize rules to capture new fraudulent transac-
tions when there are no new legitimate transactions, and
(2) determine the best way to specialize existing rules to
avoid capturing new legitimate transactions when there are
no new fraudulent transactions.

(3) In light of these hardness results, we develop a heuristic
algorithm which is able to interactively adapt rules with do-
main experts until a desired set of rules is obtained. At each
step, the algorithm makes a proposal of the best changes
to a rule, and the domain expert can further refine the
proposed changes or seek suggestions for other possible
changes. Our algorithm represents a departure from prior
algorithms on discovering or learning decision rules from
streams with concept drifts in that it handles categorical

values in addition to numerical values, adapt rules with
semantic concepts from available ontologies, and interacts
with domain experts.

(4) We have implemented our solution in the RUDOLF proto-
type system and applied it on real data, demonstrating the
effectiveness and efficiency of our approach. We performed
experimental evaluations on a real-life dataset of credit card
transactions. We show that by interacting with users (even
ones with only little knowledge specific to the domain of
the datasets), our algorithms consistently outperform alter-
native baseline algorithms, yielding more effective rules in
shorter time.

While most of our exposition on the features of RUDOLF is
based on credit card frauds, we emphasize that RUDOLF is a
general-purpose system that can be used to interact with users
to refine rules. For example, for preventing network attacks, for
refining rules for spam detection or for intrusion detection [10].

A first prototype of the system was demonstrated at VLDB’16
[11]. The short paper accompanying the demonstration gives only
a brief overview of the system architecture whereas the present
work provides a comprehensive description of the underlying
model and algorithms.

The paper is organized as follows. The next two sections define
the model and problem statement behind RUDOLF (Section 2
and, respectively, Section 3). The algorithm behind RUDOLF is
described in Section 4. We then present our experimental results
(Section 5) and related work (Section 6), before we present our
conclusions (Section 7).

2 PRELIMINARIES
Transaction relation A transaction relation is a set of tuples
(or transactions). The transaction relation is appended with more
transactions over time. We assume that the domain of every at-
tribute A has a partial order, which is reflexive, antisymmetric,
and transitive, with a greatest element ⊤A and least element ⊥A.
W.l.o.g. we also assume that ⊥A does not appear in any of the tu-
ples1. For brevity, when an attribute name is clear from the context
we will omit it and simply use the notations ⊤ and ⊥. Attributes
that are associated with a partial order but not a total order are
called categorical attributes. The elements in such partial order
are sometimes referred to as concepts.

A transaction may be flagged as fraudulent which means that
the transaction was carried out illegally or conversely, a transaction
may be flagged as legitimate. Unmarked transactions are called
unlabeled transactions. The labeling is assumed to correspond to
the (known part of the) ground truth. In addition, each transaction
has a score between 0 and 1, that is computed automatically
using machine learning techniques, and depicts the estimated
probability of each transaction to be fraud. The score may or may
not agree with the ground truth and this discrepancy is precisely
the reason why rules are employed to refine the fraud detection.

Example 2.1. Part of a transaction relation I with schema
T(time,amount,type,location,...) is shown in Fig-
ure 2. Each tuple records, among others, the time, amount, type of
transaction, and location where the purchase was made through
some credit card. The scores of the transactions, as computed by
a machine learning module, are omitted from the figure. The last
column annotates the type of transactions. The part of instance I
that is shown contains only fraudulent and unlabeled transactions.
1If this is not the case, add a new special element to the domain and set it smaller, in
the partial order, than all other elements.

266



Existing fraud rules Φ from the previous day:
1) Time ∈ [18:00, 18:05] ∧ Amt ≥ 110
2) Time ∈ [18:55, 19:00] ∧ Amt ≥ 110
3) Time ∈ [21:00, 21:15] ∧ Amt ≥ 40 ∧

Location≤‘Gas Station A’

All	=	�type	

Online	 Offline	 With	code	 No	code	

Online,	
with	CCV	

Online,	
without	CCV	

Offline,	
with	PIN	

Offline,	
without	PIN	

None	=	�type	

Figure 1: Top: An existing set of rules.
Bottom: Partial Order for type values.

Time Amount Transaction Type Location
18:02 107 Online, no CCV Online Store FRAUD
18:03 106 Online, no CCV Online Store FRAUD
18:04 112 Online, with CCV Online Store
19:08 114 Online, no CCV Online Store FRAUD
19:10 117 Online, with CCV Online Store
20:53 46 Offline, without PIN GAS Station B FRAUD
20:54 48 Offline, without PIN GAS Station B FRAUD
20:55 44 Offline, without PIN GAS Station B FRAUD
20:58 47 Offline, with PIN Supermarket
21:01 49 Offline, with PIN GAS Station A

: : : : :

Figure 2: A transaction relation containing new
transactions.

The type time is discretized to minutes and is associated with
a date (not shown). It thus has a partial order (in fact, a total
order), given by the ≤ relation. The type amount also has a total
order with least element 0 and greatest element ∞. The attribute
type is a categorical attribute and its partial order is given by
the hierarchy shown at the bottom of Figure 1. Some examples of
concepts in the hierarchy are “Online” or “Offline, without PIN”.
The type location is also a categorical attribute and its partial
order (not shown) is given by, say, the geographical containment
relationship. In particular, “Gas Station A” and “Gas Station B”
are both concepts that are children of the concept “Gas Station”.

Rules For simplicity and efficiency of execution, we assume rules
are typically written over a single relation, which is a universal
transaction relation that includes all the necessary attributes (pos-
sibly aggregated or derived from many other database relations)
for fraud detection. Hence, it is not necessary to consider explicit
joins over different relations in the rule language.

To highlight the key principles of our approach we consider
here a fairly simple rule language that captures a disjunction of
conjunctions. For simplicity, our rule language allows only one
condition over each attribute. Multiple disjunctive conditions over
the same attribute can be expressed in multiple rules. Other exten-
sions to the rule language are possible but will not be considered
here. Note that the rule language that we consider, albeit simple,
forms the core of common rule languages used by actual systems.

A rule is a conjunction of one or more conditions over the
attributes of the transaction relation. More precisely, a rule is of
the form α1∧ ...∧αn where n is the arity of the transaction relation,
αi is a condition is of the form ‘Ai op s’ or ‘Ai ∈ [s, e]’, Ai is the
ith attribute of the transaction relation, op ∈ {=, <, >, ≤, ≥}, and s
and e are constants.

More formally, if φ is a rule that is specified over a transaction
relation I , then φ(I ) denotes the set of all tuples in I that satisfy
φ. We say that φ(I ) are the transactions in I that are captured by
φ. If Φ denotes a set of rules over I , then Φ(I ) =

⋃
φ ∈Φ φ(I ). In

other words, Φ(I ) denotes the union of results of evaluating every
rules in Φ over I . Observe that Φ(I ) ⊆ I since every rule selects a
subset of transactions from I . For readability, in our examples we
show only the non trivial conditions on attributes, namely omit
conditions of the form Ai ≤ ⊤.

Note that, for simplicity, each rule includes only one condition
over each attribute, but multiple disjunctive conditions over the
same attribute can be expressed using multiple rules.

Example 2.2. The top of Figure 1 illustrates a set Φ of three
simplified rules currently used by the example credit card com-
pany to detect fraudulent transactions. The first rule captures all
transactions made between 6pm to 6:05pm where the amount in-
volved is at least $110. As previously mentioned, in practice each
rule also includes some threshold conditions (not shown here) on
the score for each transaction, as well as additional conditions
on the user/settings/etc. For simplicity we omit the score thresh-
olds and the additional conditions and focus in the sequel on the
simplified rules in this example.

For the new transaction relation shown in Figure 2, this rule
captures the 3rd tuple (which is an unlabeled transaction). The
2nd rule captures no tuples, and the 3rd rule captures the 10th
unlabeled tuple. Hence, the existing rules Φ do not capture any of
the fraudulent transactions on the current day.

As we shall demonstrate, the rule language that we consider
here, even though simple, is able to succinctly capture the fraudu-
lent transactions (and avoid legitimate tuples) in our experiments
with a real dataset. Other domains rules, e.g. access control for
network traffic or spam detection rules can also be expressed in
our language.
Cost and Benefit of modifications A modification to a rule is a
change in a condition of an attribute in the rule. One may also copy
an existing rule before modifying the copy, add rule or remove
an existing rule. As we will elaborate in subsequent sections,
our cost model assumes there is a cost associated with every
operation/modification made to a condition in the rule.

To compare between possible modifications to rules and deter-
mine which modifications are better, we need to know not only
the cost of each modification but also the “benefit” it entails. Intu-
itively, the gain from the modifications can be measured in three
ways: (1) the increase in the number of fraudulent transactions that
are captured by the modified rule, (2) the the decrease in the num-
bers of legitimate transactions that are captured by the modified
rule, and (3) the decrease in the numbers of captured unlabeled
transactions. The assumption underlying (3) is that unlabeled
transactions are typically assumed to be correct until explicitly
reported/tagged otherwise and the more specific the rules are to
fraudulent (and only) fraudulent transactions, the more precise
they are in embodying possible domain-specific knowledge about
the fraudulent transactions.

Observe that if our modifications are ideal, then after the modi-
fications, there are more fraudulent transactions captured, and less
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legitimate and unlabeled transactions caught. Subsequently, the
overall update cost is defined as the cost of modifications minus
their benefit. We give the formal definition in the next section.

3 PROBLEM STATEMENT
As described, the goal of RUDOLF is to identify minimal modifi-
cations to existing rules that would ideally capture all fraudulent
transactions, omit all legitimate transactions, and at the same time,
minimize the inclusion of unlabeled transactions. The modifi-
cations suggested by RUDOLF serve as a starting point for the
domain expert who can either accept the proposed modifications
or interactively refine them with the help of RUDOLF . Formally,
the problem is stated below.

Definition 3.1 (General Rule Modification Problem). Let Φ be
a set of rules on an existing transaction relation I . Let I ′ denote
a new set of transactions over the same schema. Let F ,L ⊆ I
(resp. F ′,L′ ⊆ I ′) be two disjoint sets of fraudulent and legitimate
transactions in I (resp. I ′). Let R = I − (F ∪ L) (resp. R′ = I ′ −
(F ′ ∪ L′)) be the remaining unlabeled transactions in I (resp. I ′).

The GENERAL RULE MODIFICATION PROBLEM is to compute
a set M of modifications to Φ to obtain Φ′ so that cost(M) − (α ∗

∆F + β ∗ ∆L + γ ∗ ∆R) is minimized, where α , β ,γ ≥ 0, and
• ∆F = |(F ∪ F ′) ∩ Φ′(I ∪ I ′)| − |(F ∪ F ′) ∩ Φ(I ∪ I ′)|,
• ∆L = |(L ∪ L′) ∩ Φ(I ∪ I ′)| − |(L ∪ L′) ∩ Φ(I ∪ I ′)|, and
• ∆R = |(R ∪ R′) ∩ Φ(I ∪ I ′)| − |(R ∪ R′) ∩ Φ(I ∪ I ′)|.

The term (α ∗ ∆F + β ∗ ∆L + γ ∗ ∆R) represents the benefit of
applying the given modifications to the rules. In our rule language,
if a fraudulent transaction is not captured by a set of rules, then
at least some condition of a rule needs to be generalized to select
that fraudulent transaction. At the same time, making a condition
more general may capture also legitimate or unlabeled transac-
tions. Conversely, if a legitimate transaction is captured by a set of
rules, then at least some condition of a rule needs to be made more
restrictive so that the legitimate transaction is excluded. Such
modifications carry the risk of omitting some fraudulent trans-
actions that should be captured. The coefficients α , β and γ are
non-negative and are typically provided by the user to tune the
relative importance of each category (resp. correctly capturing the
fraudulent transactions, avoiding misclassifying legitimate trans-
actions, and excluding unlabeled transactions) in the calculation
of benefit. The overall goal is to identify the modifications having
the best cost-benefit balance.

Observe that if α , β and γ are set to large numbers (e.g. greater
than the maximal update cost) then the most beneficial modifi-
cations are those leading to a “perfect" set of rules, namely one
that will (1) capture all fraudulent transactions, (2) exclude all
legitimate transactions, and at the same time, (3) does not capture
any unlabeled transactions.

4 THE GENERAL RULE MODIFICATION
ALGORITHM

The rule modification algorithm (outlined below) first interactively
refines the rules to capture fraudulent transactions. The expert can
stop the refinement whenever she is satisfied with the rules and
believes that the omission of the remaining fraudulent transactions
is tolerable. The resulting set of rules may capture some (exist-
ing) legitimate tuples. Hence, in the second step, the algorithm
continues to interactively refine the rules to avoid the legitimate
transactions. Here again the user may stop the algorithm when she
believes that the inclusion of the remaining legitimate transactions

is acceptable. However, the rules that result after this step may
no longer capture some fraudulent transactions that were previ-
ously captured. The domain expert can either repeat the process
described above to remedy this, or choose to end the rule refine-
ment process at this point. In the latter case, the domain expert
has a choice to leave the result as-is or allow the algorithm to
create transaction-specific rules to capture each of the remaining
transactions.

(1) Generalize rules to capture fraudulent transactions. See
Algo. 1, section 4.1.

(2) Specialize rules to avoid legitimate transactions. See Algo. 2,
section 4.2.

(3) Exit if the domain expert is satisfied. Otherwise, repeat the
steps above.

Observe that it is essential for the generalization algorithm
(Algo. 1) to be applied before the specialization algorithm (Algo. 2)
as one can always add rules to capture specific fraudulent transac-
tions without accidentally capturing legitimate transactions. On
the other hand, one cannot always add/modify rules to avoid
specific legitimate transactions without accidentally excluding
fraudulent transactions with our current rule language.

As we shall show in the next sections, finding an optimal set
of changes to the rules is computationally expensive in either
case. For this reason, instead of computing an optimal set of
modifications to the rules to generalize or special rules to capture
fraudulent and, respectively, avoid legitimate tuples, we develop
heuristic algorithms to identify the best update candidates in each
of the cases.

4.1 Rule Generalization Algorithm
We first consider how rules can be generalized to capture fraud-
ulent transactions when the set I ′ of new transactions contains
only fraudulent transactions. The goal here is to adapt the existing
set of rules Φ to capture all fraudulent transactions. We call this
problem the RULE GENERALIZATION PROBLEM

THEOREM 4.1. The RULE GENERALIZATION PROBLEM is
NP-hard even if Φ is perfect for I , (namely, F ⊆ Φ(I ) and L∩Φ(I ) =
R ∩ Φ(I ) = ∅). The problem is NP-hard even when I contains
only unlabeled transactions and I ′ consist of only one fraudulent
transaction.

PROOF. We prove the two claim simultaneously by reduction
from the minimum hitting set problem which is known to be
NP-hard. We recall of the Minimum Hitting Set Problem below.

Definition 4.2 (Minimum Hitting Set). Consider the pair (U , S)
where U is a universe of elements and S is a set of subsets of U .
A set H ⊆ U is a hitting set of S if H hits every set in S . In other
words, H ∩ S ′ , ∅ for every S ′ ∈ S . A minimum hitting set H is a
minimum cardinality hitting set s.t. ∀e ∈ H , we have H \ {e} is
not a hitting set of S .

We assume that each rule modification is associated with a unit
cost. Given an instance of the hitting set problem, we construct an
instance of the RULE GENERALIZATION PROBLEM were there
no fraudulent or legitimate transactions in I and I ′ consist of only
one fraudulent transaction, as follows.

The transaction relation has |U | columns, one for each element
in U . The transaction relation I has a characteristic (unlabeled)
tuple for every set s ∈ S . That is, for every set s in S , we construct
a characteristic tuple of s in I by placing a 0 in position i if xi ∈ s
and 1 otherwise. Hence there are |S | tuples in the transaction
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relation I and these are unlabeled tuples that we would like to
minimize capturing with the rules. There are no existing fraudulent
or legitimate tuples in I . The set Φ is initially empty. Hence,
Φ(I ) does not capture any transaction (and thus, by definition, is
“perfect” for I ). The instance I ′ consists of a single transaction
(1,1,1,...,1), which is the new fraudulent transaction that we wish
to capture.

As an example, consider the following hitting set where U =
{A1,A2,A3,A4,A5} and S = {s1, s2, s3}, where s1 = {A1,A2,A3},
s2 = {A2,A3,A4,A5}, and s3 = {A4,A5}. The transaction rela-
tion I ∪ I ′ (where I ′ is highlighted in gray) is shown below. The
last column annotates the type of tuple (e.g., the last tuple is a
fraudulent transaction).

A1 A2 A3 A4 A5

0 0 0 1 1
1 0 0 0 0
1 1 1 0 0
1 1 1 1 1 F’

It is straightforward to verify that the construction of the in-
stance of the Rule Modification Problem can be achieved in poly-
nomial time in the size of the input of the Hitting Set Problem. We
now show that a solution for the Minimum Hitting Set Problem
implies a solution for the Rule Modification Problem and vice
versa.

Let H be the minimum hitting set. For every element xi in H ,
we add a condition ai = 1 to the same rule. (The condition can
also be ai ≥ 1 or ai > 0 but wlog we assume ai = 1 is used.)
The cost of changing ai = 1 is 1. Clearly, we have that Φ′(I ∪ I ′)
contains the fraudulent transaction and since H hits every set
s ∈ S , for every s ∈ S , there must be at least an attribute ai in the
corresponding tuple of s whose value 0 when the condition ai = 1
according to the new rule Φ′. Hence, it follows that Φ′(I ∪ I ′) does
not contain any tuples in I ∪ I ′ other than the fraudulent tuple.

We show next that the expression cost(M) − (α ∗∆F+ β ∗∆L+
γ ∗ ∆R) is the minimum possible, assuming that α = β = γ > 1
(β is actually irrelevant here) and the cost of each modification
is 1. Suppose there is another set of modifications whose cost
is lower than the above. It must be that none of the unlabeled
tuples are selected by the modified rules since one can always
avoid capturing an unlabeled tuple and lower the cost even further
by adding an appropriate condition ai = 1. Furthermore, by the
same reason, the fraudulent tuple must be selected by the modified
rules. Thus, the expression cost(M) − (α ∗ ∆F + β ∗ ∆L + γ ∗ ∆R)
is the minimum possible when the number of ai = 1 conditions
correspond to the size of a the minimum hitting set. Any smaller
value will mean we have a smaller cardinality hitting set which is
a contradiction to our assumption that H is a minimum hitting set.

For the converse, let M be the set of modifications made to Φ
such that cost(M)− (α ∗∆F+ β ∗∆L+γ ∗∆R) is minimum. Again,
wlog, we may assume that the modifications must be of the form
ai = 1.

Let H = {xi | ai = 1 in the modified rule}. We show next that
H is a minimum hitting set. First, we show that H is a hitting set.
Suppose not, then there is a set s ∈ S such that H ∩ s = ∅. Let t be
the tuple that corresponds to s in the transaction table. This means
that Φ′(I ∪ I ′) contains t , since t contains the value 1 in every
attribute ai where ai = 1 in the modified rule. Pick an element,
say x j ∈ s such that x j < H . Now if we add the modification
aj = 1, the change in cost is +1-γ . Since γ > 1, we have that the
new total cost is lower than the original cost which contradicts the
assumption that M is a set of modifications that would give the
minimum total cost.

Next, we show that H is a minimum hitting set. Suppose not,
then there is another hitting set H ′ where |H ′ | < |H |. With H ′, it
is straightforward to construct a set of modifications whose cost is
lower than cost(M) − (α ∗ ∆F + β ∗ ∆L + γ ∗ ∆R).

In our running example, a modified rule is
A1 ≤ ⊤ ∧ A2 = 1 ∧ A3 ≤ ⊤ ∧ A4 = 1 ∧ A5 ≤ ⊤

since a minimum hitting set is {A2,A4}. �

The reduction of the above proof shows that the NP-hardness
result may arise because we allow the size of the schema of the
transaction relation to vary. We show next that, even if we fix the
size of the schema, the NP-hardness result continues to hold.

THEOREM 4.3. The RULE GENERALIZATION PROBLEM is
NP-hard even if Φ is perfect for I and the size of the schema of the
transaction relation is fixed.

SKETCH. The proof makes use of a reduction from the set
cover problem and in the reduction, a single unary transaction
relation is used. We build a taxonomy of the elements of a set
cover instance according to which element belongs to which set.
The relation is initially empty and assume Φ is initially empty as
well. The cost of adding rule with a condition is 1 and we assume
that the cost of adding the condition A ≤ ⊤ is very high (i.e., it
is prohibited). The new transaction relation I ′ consists of n new
fraudulent transactions, one for each element of the universe in
the set cover instance. One can then establish that a set of rules
of minimum cost can be derived from a minimum set cover and
vice versa. Intuitively, each rule has the form A ≤ Si where each
Si is part of the solution to the instance of the minimum set cover
problem. �

The Algorithm In view of the hardness result, we develop a
heuristic algorithm (Algo. 1) for determining a best set of general-
izations to capture a given set of fraudulent transactions.

In the algorithm, we use I to denote both old and new trans-
actions. Observe that one reason for the hardness of the rule
generalization problem comes from the desire to identify a set
of modifications that captures all fraudulent transactions and is
globally optimal. Instead, our heuristic works in a greedy manner,
gradually covering more and more uncaptured transactions. Rather
than treating each transaction individually, we split the fraudulent
transactions into smaller groups (clusters) of transactions that are
similar to each other, based on a distance function, and treat each
cluster individually. We denote the set of clusters by C. Each
cluster in C is represented by a representative tuple. Intuitively,
a representative tuple of a cluster is a tuple that “contains” every
tuple in that cluster. Hence, if a rule is generalized to capture the
representative tuple, then it must also capture every tuple in the
associated cluster. The algorithm then identifies for each repre-
sentative tuple the (top-k) best rule modifications to capture it.
The proposed modifications are verified with the domain expert,
who may interactively further adapt them or ask for additional
suggestions. Note that the modifications made to the rules by the
algorithm may result in capturing some legitimate tuples. We will
see how this too may be avoided later.

We next describe our algorithm more formally. We first define
each of the components, then provide a comprehensive example
that illustrates all.
Representative tuple of a cluster The representative tuple f of
a clusterC is a tuple with the same schema as tuples inC such that
for every attribute A, f .A contains t .A for every t ∈ C. If A is an
attribute with a total order, then f .A is an interval that contains t .A.
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Algorithm 1: Generalize rules to capture new fraudulent
tuples

Input: A set Φ of rules for a transaction relation I (contains old
and new transactions), with F ⊆ I and F ′ ⊆ I .

Output: A new set Φ′ of rules that captures F ∪ F ′.
1 Let C denote the result of clustering tuples in F ∪ F ′.
2 foreach C ∈ C do
3 Let f (C) be the representative tuple of C .
4 Let Top-k (f (C)) denote the top-k rules for f (C) based on

Equation 2.

5 foreach C ∈ C do
6 while there does not exist a rule r such that f (C) ∈ r (I ) do
7 if Top-k (f (C)) is non-empty then
8 Remove the next top rule r from Top-k (f (C)).
9 Construct the smallest generalization of r to r ′ so

that f (C) ∈ r ′(I ).
10 Ask whether the rule r ′ is correct.
11 if the domain expert agrees with the modified r ′ then
12 Replace r with r ′ in Φ.
13 else
14 Ask the domain expert which modifications in r ′

are undesired.
15 Revert the modifications to the original

conditions of r as indicated by the domain
expert.

16 Allow the domain expert to make further
generalizations to the proposed rule.

17 else
18 Create a rule that will select exactly f (C) and add it

to Φ.

19 return Φ as Φ′.

If A is a categorical attribute, then f .A is a concept that contains
t .A for every t ∈ C. Furthermore, f .A is the smallest interval (resp.
concept) that has the above property.2 In other words, f is the
“smallest” such tuple that contains every tuple in C. Intuitively, the
clustering step, which generates representative tuples, provides a
higher-level semantic abstraction to the fraudulent tuples that are
to be captured.
Distance of a rule from a representative tuple The notation
| f − r | denotes the distance of a rule r from a representative tuple
f . Intuitively it reflects how much the conditions in the rule need
to be generalized for the rule to capture the representative tuple. It
is formally defined as:

Σni (f .Ai − r .Ai ), (1)

where r .Ai denotes the interval or concept associated with the
condition of attribute Ai in the rule r , and n is the arity of the
transaction relation.

The distance between two attribute intervals is defined as fol-
lows. If f .A is the interval [s1, e1] and r .A is the interval [s2, e2],
then |[s1, e1] − [s2, e2]| is the sum of sizes of the smallest inter-
val(s) needed to extend [s2, e2] so that it contains [s1, e1]. For
example, the distance of |[1, 5] − [5, 100]| is 4, while the distance
of |[1, 100] − [1, 5]| is 95. The distance of |[5, 10] − [1, 100]| is 0,
since [1,100] already covers [5,10]. If an attribute A is categorical,
then | f .A−r .A| is the length of the smallest “ontological distance”
that need to be added to r .A so that it contains f .A. For example,
|Offline with PIN - Online with CCV| is 1, and |Offline without

2If there are multiple such concepts, e.g. in non tree-shaped concept hierarchies, we
pick one.

PIN - Online with CCV| is 2. By leveraging concepts in the ontol-
ogy when available, the resulting rules have a more meaningful
interpretation.
The overall cost function The overall cost of modifying a rule
r to capture a representative tuple f then reflects the amount
of modifications that need to be carried (Equation 1) minus the
benefit derived from those modifications:

Σni (f .Ai − r .Ai ) − (α ∗ ∆F + β ∗ ∆L + γ ∗ ∆R) (2)

Putting things together We now have all the ingredients for
describing our algorithms. The algorithm proceeds by clustering
the transactions into groups and then computes a representative
tuple for each cluster. 3 For every cluster C, we compute its
representative tuple f (C) as well the cost (according to Equation 2)
of modifying each of the rules to capture it, and select the k rules
with minimal cost. We refer to them as the top-k rules (see Line
4 of Algo. 1). In Line 8, we pick the top rule in top-k(f (C)). If
the rule r (I ) does not already contain f (C), we will attempt to
make the smallest generalization on r to r ′ so that r ′(I ) contains
f (C). Whenever the interval or concept of an attribute r .A does
not contain f .A, we will attempt to modify r .A by computing the
smallest extension needed on r .A based on its distance from f .A.
We perform this extension on every attributeA of r where r .A does
not contain f .A. This is what we mean by “generalize r minimally
to r ′ so that f (C) ∈ r ′(I )” in line 9.

Next, we proceed to verify the new rule r ′ with our potential
modifications with the domain expert. If the domain expert agrees
with the proposed modifications (lines 11,12), we will replace r
with the new rule r ′ in Φ. Otherwise, we will refine our question
to probe the domain expert further on whether or not there are
parts of the modifications that are desired even though the entire
rule r ′ is not what the domain expert desires (lines 14,15). We
then modify only the desired modifications, if any. The next step
allows the domain expert to make further generalizations to the
rules. After this, the algorithm proceeds to pick another closest
rule to f (C) to attempt to capture f (C). Line 18 captures the
case when we ran out of rules to modify. If this happens, we will
construct a new rule to cover f by stating the exact conditions that
are required.

We conclude with a remark regarding the computational com-
plexity of the algorithm. All components of the algorithm (i.e.,
clustering, computation of representative tuples for each cluster
and the top-k rules) execute in PTIME in the size of its input.
Hence each iteration executes in PTIME in the size of the input.
The number of iterations per cluster is dependent on the amount
of refinements that the expert makes to the suggested rule modifi-
cations (shown in our experiments to be fairly small).

Example 4.4. The relation below depicts the representative
tuples of the clusters formed from the six fraudulent transactions
from Figure 2. The first tuple is the representative tuple of the
cluster that consists of the first two tuples in Figure 2. The second
(resp. third) tuple below is the representative of the cluster that
consists of only the 4th tuple in Figure 2 (resp., 6th, 7th, and 8th
tuples).

3In our implementation, we use the clustering algorithms of [12], but other clustering
algorithms can be similarly be used.
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Representatives of fraudulent transactions in Figure 2:
Time Amount Transaction Type Location

[18:02,18:03] [106,107] Online, no CCV Online Store
[19:08,19:08] [114,114] Online, no CCV Online Store
[20:53,20:58] [44,48] Offline, without PIN GAS Station B

: : : :

Consider a domain expert, Elena, that is working with the
system. The first rule in Figure 1 is the closest to the first rep-
resentative tuple above. This is because Equation 2 evaluates to
(0+4+0+0)-(2+0+0)=2 for the first rule and the first representa-
tive tuple, whereas the second and third rule of Figure 1 and
the first representative tuple have scores (53+4+0+0)-(2+0-1)=56
and (178+0+0+1)-(6+0-3)=168, respectively, and are thus ranked
lower than the first rule. The number ’1’ in the last calculation de-
notes the ontological distance between “Gas Station A” and “Gas
Station B”. Since they are both contained under “Gas Station”, the
distance is 1.

Algo. 1 will thus propose to modify the condition of the first
rule from “Amt ≥ 110” to “Amt ≥ 106” to capture the representa-
tive tuple. It then proceeds to verify the modification with Elena.
Suppose Elena accepts the proposed modification but further gen-
eralizes the condition rounding it down to “Amt ≥ 100” instead.
So the new rule 1 is

1) Time ∈ [18:00,18:05] ∧ Amt ≥ 100.
Besides the fact that rounded values may be preferred by do-

main experts over more specific values, such rounding may em-
body domain-specific knowledge that may possibly lead to the
discovery of more fraudulent transactions, particularly from trans-
actions that are unlabeled, or the discovery of legitimate transac-
tions that should not have been labeled as legitimate.

For the second and third cluster, similar interactions occur
between RUDOLF and Elena. The new rules that result are:

2) Time ∈ [18:55,19:15] ∧ Amt ≥ 110.
3) Time ∈ [20:45, 21:15] ∧ Amt ≥ 40 ∧ Location≤Gas station’.

To conclude, observe that Algo. 1 allows Elena to make further
generalizations to the rules. Elena rounded the value down from
106 to 100 because her experience tells her that if frauds occur
with amount greater than $106, then it is likely to occur a few
dollars below $106 as well. Hence, she generalized (i.e., rounded
down) the value to $100. In making such generalizations, the
fraudulent transactions will continue to be captured. However, the
modified rules may now capture (more) non-fraudulent transac-
tions. Nonetheless, we still allow such generalizations since these
are deliberate changes made by Elena, the domain expert. More
typically, however, such “rounding generalizations” tend to be
meaningful generalizations that may lead to the discovery of more
fraudulent transactions (i.e., unlabeled transactions that should be
classified as fraudulent or legitimate transactions that are mistak-
enly labeled as legitimate)4. As we shall show in Example 4.7,
Elena can also leverage her experience or domain knowledge to
pinpoint the right conditions for avoiding legitimate transactions.

We describe next how over-generalization may be treated.

4.2 Rule Specialization Algorithm
In the previous subsection, we have seen how one generalizes rules
to capture fraudulent transactions. We now discuss the opposite
case, where we wish to specialize rules instead, in order to exclude
legitimate transactions when there no new fraudulent transactions
or unlabeled transactions but there are new legitimate transactions.

4This is from our conversations with domain experts on credit card fraud detection.

We call this special case the RULE SPECIALIZATION PROBLEM.
Here again we can show hardness results analogous to Theorem
4.1 and 4.3.

THEOREM 4.5. The RULE SPECIALIZATION PROBLEM is
NP-hard even if Φ is perfect for I . The problem is NP-hard even
when I contains only unlabeled transactions and I ′ consists of
only one legitimate transaction.

PROOF. Given an instance of the hitting set problem, we con-
struct an instance of the RULE SPECIALIZATION PROBLEM as
follows.

The transaction relation has |U | columns, one for each element
in U . For every set s in S , we construct a characteristic tuple of s
by placing a 0 in position i if xi ∈ s and 1 otherwise. Hence there
are |S | tuples in the transaction relation I so far and the fraudulent
transactions F = I . The set Φ consists of a single rule

A1 ≤ ⊤ ∧ ... ∧A |U | ≤ ⊤,
where ⊤ denotes the top element, and hence, Φ(I ) currently cap-
tures all fraudulent transactions F . The new transaction relation
I ′ consists of a single tuple (1,1,1,...,1). This set L′ of legitimate
transactions is a singleton set consisting of only (1,1,1,...,1). That
is, L′ = I ′. This is the legitimate transaction that we wish to
exclude.

With F ′ = L = ∅, our goal is to specialize the rule in Φ to
capture exactly the fraudulent tuples F only. Like in the proof of
Theorem 4.1, we assume that each modification is associated with
a unit cost and α = β = γ > 1.

As an example, consider the same hitting set as in the proof of
Theorem 4.1, where U = {A1,A2,A3,A4,A5} and S = {s1, s2, s3},
where s1 = {A1,A2,A3}, s2 = {A2,A3,A4,A5}, and s3 = {A4,A5}.
The transaction relation I ∪ I ′ is shown below (where I ′ is shown
in gray). The last column annotates the type of tuple (i.e., F for
tuples in F and L’ for tuples in L′).

A1 A2 A3 A4 A5

0 0 0 1 1 F
1 0 0 0 0 F
1 1 1 0 0 F
1 1 1 1 1 L’

It is straightforward to verify that the reduction to an instance
of the RULE SPECIALIZATION PROBLEM can be achieved in
polynomial time in the size of the input of the Hitting Set Problem.
We now show that a solution for the Minimum Hitting Set Problem
implies a solution for the RULE SPECIALIZATION PROBLEM and
vice versa.

Let H be a minimum hitting set. For every element xi in H ,
we duplicate the original rule (except if this is the last element
in H ) and modify the corresponding condition to ai = 0 in the
copy of the rule. (The condition can also be ai ≤ 0 or ai < 1 but
wlog we assume ai = 0 is used.) Recall that the cost of changing
ai = 0 is 1, and the cost of duplicating a rule is 1. Clearly, we have
that Φ′(I ∪ I ′) contains F . Indeed, since H hits every set s ∈ S ,
there must be an element in s whose corresponding value under an
attribute ai is 0 when the condition ai = 0 according to a new rule
in Φ′. Hence, it follows that Φ′(I ∪ I ′) contains F and since each
rule in Φ′ contains a condition of the form ai = 0, the legitimate
transaction (1,1,1,...1) will not be among Φ′(I ∪ I ′).

We show next that the expression cost(M)−(α ∗∆F+β ∗∆L+γ ∗
∆R) is the minimum possible. Suppose there is another set M ′ of
modifications to Φ′′ such that cost(M ′)−(α ∗∆F+β ∗∆L+γ ∗∆R)
is less than the previous expression. Observe that every rule in
Φ′′ must contain at least a condition that is specific to selecting
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a fraudulent transaction. That is, for every rule, ai = 0 for some
i since otherwise, the rule is either redundant or the legitimate
transaction will be selected. Also, we can assume that every other
condition in the rule in Φ′′ cannot contain a condition that selects
1s (e.g., of the form ai = 1). If a rule r contains a condition ai = 1,
then we can omit this condition and assume it is ai ≤ ⊤ instead.
The rule with ai ≤ ⊤ captures all tuples that are captured by r
(and possibly more) and hence, we will continue to capture all
fraudulent tuples and continue to exclude the legitimate tuple
under this assumption. Similarly, if a rule r contains multiple
conditions ai = 0s, then we can omit all but one of the ai = 0s
and assume the rest are ai ≤ ⊤. We can now construct a hitting
set from M ′ that is smaller than H , which is a contradiction.

For the converse, let M be the set of modifications made to
Φ such that F ⊆ Φ′(I ∪ I ′), the legitimate transaction l is such
that l < Φ′(I ∪ I ′), and cost(M) − (α ∗ ∆F + β ∗ ∆L + γ ∗ ∆R) is
minimum. As before, observe that each rule must contain at least
one modification of the form ai = 0 for some i so that l is not
selected. Furthermore, it is easy to see that each rule must contain
exactly one such condition ai = 0 only as additional conditions
such as aj = 1 or aj = 0 are redundant and can only increase the
cost.

Let H = {xi | ai = 0 in any of the modified rules}. We show
next that H is a minimum hitting set. First, we show that H is
a hitting set. Suppose not, then there is a set s ∈ S such that
H ∩ s = ∅. In other words, for every element xi ∈ s, there does not
exist a rule in Φ′ where ai = 0. Let f be the tuple that corresponds
to s in the transaction table. This means that f < Φ′(I ∪ I ′), which
contradicts our assumption that F ⊆ Φ′(I ∪ I ′).

Next, we show that H is a minimum hitting set. Suppose not,
then there is another hitting set H ′ where |H ′ | < |H |. With H ′, it
is straightforward to construct a set of modifications whose cost is
lower than M’s cost.

In our running example, Φ′ contains two rules:

A1 ≤ ⊤ ∧ A2 = 0 ∧ A3 ≤ ⊤ ∧ A4 ≤ ⊤ ∧ A5 ≤ ⊤

A1 ≤ ⊤ ∧ A2 ≤ ⊤ ∧ A3 ≤ ⊤ ∧ A4 = 0 ∧ A5 ≤ ⊤

since a minimum hitting set is {A2,A4}. �

Similarly, we can show that the NP-hardness continues to hold
even if we fix the size of the schema.

THEOREM 4.6. The RULE SPECIALIZATION PROBLEM is
also NP-hard even if Φ is perfect for I and the size of the schema
of the transaction relation is fixed.

SKETCH. The proof of the above result is similar to that of
Theorem 4.3. It makes use of a reduction from the set cover
problem and in the reduction, a single unary transaction relation
is used. We build a taxonomy of the elements of a set cover
instance according to which element belongs to which set. The
relation initially contains all elements of the universe of the set
cover instance and these transactions are all fraudulent. The set
Φ consists of a single rule A ≤ ⊤ which captures all fraudulent
transactions. The cost of adding a rule and modifying a condition
cost 1 each. The new transaction relation I ′ consists of a single
legitimate tuple whose value does not occur among the existing
values. One can then establish that a set of rules of minimum
cost can be derived from a minimum set cover and vice versa.
Intuitively, each rule has the form A ≤ Si where each Si is part of
the solution to the instance of the minimum set cover problem. �

Algorithm 2: Adapt rules to exclude legitimate tuples
Input: A set Φ of rules for a transaction relation I (contains old

and new transactions) with L ⊆ I and L′ ⊆ I .
Output: A new set Φ′ of rules that excludes L ∪ L′.

1 foreach l ∈ (L ∪ L′) do
2 Let Ωl = {r ∈ Φ | l ∈ r (I )}.
3 foreach r ∈ Ωl do
4 repeat
5 Let A be an attribute that has not been considered

before and where splitting on A to exclude l .A will
minimize the cost associated with splitting on A.

6 Suppose the existing condition on A is A ∈ [b, e].
7 Split r into r1 and r2 on A as follows:
8 Let r1 be a copy of r except that the condition on A

is A ∈ [b, prev(r .A)].
9 Let r2 be a copy of r except that the condition on A

is A ∈ [succ(r .A), e].
10 Ask the domain expert whether the split into r1 and

r2 is correct.
11 if the domain expert agrees with the modification

then
12 Add r1 and r2 to Φ.
13 Allow the domain expert to make further

modifications to the proposed rules.
14 Break out of repeat loop.
15 until all attributes have been considered;
16 Remove r from Φ.

17 return Φ as Φ′.

The Algorithm In view of the hardness results, we develop a
heuristic algorithm (Algo. 2) that greedily determines the best
attribute to “split” to avoid capturing each legitimate tuple.

In Algo. 2, we use I to denote both old and new transactions.
For each legitimate transaction l in (L ∪ L′), we determine the
set Ωl of rules that will capture l and modify every rule in Ωl to
ensure that the modified rules will no longer capture l . For a rule
r in Ωl , the algorithm proceeds to pick an attribute A where we
can split the condition of the attribute to exclude the value l .A.
The attribute A that we pick is the one that maximizes the benefit
according to the benefit α ∗ ∆F + β ∗ ∆L + γ ∗ ∆R, assuming a
fixed cost of modification where we copy the rule and split on the
attribute. If there are multiple attributes with the same maximum
benefit, we randomly pick one of them. Observe that the heuristic
of greedily selecting an attribute that will maximize benefit may
not be globally optimal in the end. In the proof of Theorem 4.5,
this greedy heuristic is analogous to the strategy of repeatedly
picking the attribute (and splitting on the attribute) that will “hit”
the most sets until all sets are hit.
Splitting on attributes Once an attribute is selected, the rule is
duplicated into r1 and r2 and the condition on A in both rules is
modified to exclude l .A. Observe that since r (I ) captures l , we
must have that l .A satisfies the rule r ’s condition on A. In the split,
r1’s condition on A accept values from b to the element that is the
predecessor of l .A, where b denotes the smallest value accepted by
the existing condition of r on A. The rule r2 selects only elements
from the successor element of l .A to the largest value (i.e., e)
accepted by the existing condition of r on A.

For domains that are discrete and has a total order, the above
procedure, prev(r .A) and succ(r .A) are well-defined. However,
when domains are categorical and has only a partial order, the
rules will be split according to the partial order. Let O denote the
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set of all concepts (excluding l .A) that are parents of ⊥ in the
partial order (i.e., the leaf nodes of the partial order excluding ⊥).
To exclude l .A, the algorithm considers how to select a minimum
set of concepts to “cover” all concepts inO that excludes l .A at the
same time. It can be shown that the problem of computing such a
minimum set is analogous to computing a minimum set cover for
O . Our procedure adopts the greedy heuristic where we greedily
pick a concept in the partial hierarchy that covers the most number
of uncovered concepts in O until all nodes in O are covered. For
categorical attributes, it may be necessary to duplicate r more than
twice, where there is a rule to select each concept in the cover. For
example, referring to Figure 1, to exclude “Online, with CCV”,
we may pick “Offline” and “Online, without CCV” to cover the
remaining concepts that are parents of “None”. Observe that simi-
lar to our algorithm on rule generalization, our rule specialization
algorithm also makes use of the ontology whenever available to
split the attributes meaningfully. In this case, attributes are split
into meaningful concepts in the “lower-level” according to the
ontology.

After this, we ask whether the domain expert agrees with the
split. If the domain expert agrees, we add both rules r1 and r2 to Φ.
The domain expert can also add further modifications to the rules
(line 13), such as excluding more values than what is suggested
by the algorithm, and we break out of the repeat loop. Otherwise,
we repeat the loop to attempt to split r on another attribute to
avoid capturing l . Note that since l has to be excluded, one of the
splits must be deemed correct by the domain expert. After this,
we remove r from Φ and repeat the same procedure to modify Φ
to exclude the selection of another legitimate transactions.

Example 4.7. We will now illustrate Algo. 2. The legitimate
transactions from Figure 2 that are captured by the modified rules
of Example 4.4 are shown below for convenience.

Time Amount Transaction Type Location
l1 18:04 112 Online, with CCV Online Store
l2 19:10 117 Online, with CCV Online Store
l3 21:01 49 Offline, with PIN GAS Station A

: : : :

Modified rules Φ from Example 4.4:
1) Time ∈ [18:00,18:05] ∧ Amt ≥ 100.
2) Time ∈ [18:55,19:15] ∧ Amt ≥ 110.
3) Time ∈ [20:45, 21:30] ∧ Amt ≥ 40 ∧ Location≤Gas station’.
We would like to adapt the rules to exclude these legitimate

transactions (and still continue capture fraudulent transactions).
For this example, assume that α = β = γ = 1.

The algorithm considers every legitimate transaction. Since l1
is caught by rule (1) above, Algo. 2 proceeds to determine which
attribute of the rule to split in order to exclude l1. Splitting on
time or amount or type will result in the same maximum
benefit: (1*0 (zero unlabeled transactions on either day) + 1*0
(the number of fraudulent transactions that are caught remains
unchanged) + 1*1 (one less legitimate transaction that is caught)).
Splitting on the attribute location, however, will cause addi-
tional fraudulent transactions (i.e., the first two transactions in
Figure 2) to be missed and hence has a lower benefit than the rest
of the attributes.

Suppose the algorithm proposes to split on time (an arbitrary
choice among time, amount or type). This will result in two
rules that will capture all fraudulent transactions that were previ-
ously caught by the rule and exclude l1 at the same time.

r11: Time ∈ [18:00,18:03] ∧ Amt ≥ 100.
r12: Time ∈ [18:05,18:05] ∧ Amt ≥ 100.

At this point, Elena can accept this proposal or ask for alterna-
tives. For the purpose of illustrating our algorithm, suppose Elena
asked for an alternative proposed modification. Our algorithm may
now propose to split on type instead. Since there is currently
no condition on type in the first rule, the condition is implicitly
“type ≤ ⊤”. And because the concepts “Offline” and “Online, with-
out CCV” cover all possible type values (i.e., values immediately
above the “None” node in Figure 1) except “Online,with CCV”
which we wish to exclude, we have the following two rules:
r11: Time ∈ [18:00,18:05] ∧ Amt ≥ 100 ∧ Type ≤ Offline.
r12: Time ∈ [18:00,18:05] ∧ Amt ≥ 100 ∧ Type ≤ Onl.,no CCV.

Using domain knowledge that only online purchases, especially
those without CCVs are of concern, Elena eliminates the rule r11.

After this, our algorithm proceeds in a manner that is similar to
what was described before to split the second rule of Φ to omit l2
(and similarly, the third rule of Φ for l3). We omit the details here
but show the final rules that are obtained.
r22: Time ∈ [18:55,19:15] ∧ Amt ≥ 100 ∧ Type ≤ Onl., no CCV.
r31: Time ∈ [20:45,21:15] ∧ Amt ≥ 40 ∧ Location ≤ Gas Station ∧

Type ≤ Online.
r32: Time ∈ [20:45,21:15] ∧ Amt ≥ 40 ∧ Location ≤ Gas Station ∧

Type ≤ No code.

Observe that whenever a condition is generalized (in Algo. 1),
more legitimate or unlabeled tuples may be inadvertently captured
by the rule. Hence, further refinements may be needed to tune the
rules to a desired state. Conversely, if a condition is specialized,
some fraudulent tuples may be inadvertently omitted. Hence, fur-
ther refinements may be needed to tune the rules to a desired state.
As we shall describe next, the rules are interactively refined based
on the input of a domain expert such as Elena. In particular, there
may be several rounds of refinements through generalizations and
specializations before a desired set of rules is obtained.

5 IMPLEMENTATION AND EXPERIMENTS
RUDOLF is implemented in PHP/JavaScript and uses MySQL as
the DB engine. Detailed system architecture described in [11].
Datasets We have access to a real-world datasets of credit card
transactions by a financial company XYZ5. Due to the sensitivity
of credit card-related information, we used anonymized version of
the dataset. The dataset consists of transaction sets of various sizes
from 15 financial institutes (FIs) for the first quarter of 2016. Each
transaction set varies from 100K to 10M transactions and most of
them consists of about 500K transactions. The percentage of fraud-
ulent transactions varies between 0.5% to 2.5% between different
FIs. The number of missclassified transactions (i.e., fraudulent
transactions that are marked as legitimate and vice-versa) varies
between 35% and 50%. The transactions contain both numerical
(time, amount, number of previous actions, etc.) and also categori-
cal (location, client type, etc) data. Along with the transactions,
we obtained 15 rules-sets, one for each of the 15 FIs for the same
time period from company XYZ. We also obtained the change
history and versions of those rules. A small FI typically has about
10 rules while a big FI typically has about 130 rules. Most FIs have
about 55 rules on average. Each time the rules are modified, the
rules undergo about 10 rounds of modifications on average. The
transactions in the data sets are annotated as fraudulent/legitimate,
and we take these annotations as the ground truth. Each transac-
tion also has a risk score, which is a value between 0 and 1000,
that is generated by the company’s machine learning algorithm
to determine the chance that the transaction is fraudulent. The

5Name omitted per company request
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fraudulent transactions can be captured by the set of rules given
by the company and allowing the users to refine the rules over
time. Another option is to apply a rule that classify all transactions
with risk score above a certain threshold as fradulent.

Ontology In the experiments for the location attributes we used
a geographical ontology (containing different relations, e.g., cap-
ital city, located in, region, continent, etc) that was built semi-
automatically (using DBPedia [13]) and manually verified by the
domain experts.

Experiment scenarios The different sizes of transaction sets
allowed us to vary our experiments with different dataset sizes
(from 100K to 10M, with the average value being 500K).

We run each experiment with 8 users (fraud detection experts
from company XYZ) and as the variance was less that 2% we
present here the average. We also ran our experiments with 10
student volunteers to determine whether the level of expertise
affects the results. To simulate the work of a domain expert, we
we spilt each dataset into two parts of approximately the same
size, before and after a certain point in time. We advanced in time
from this point and examined, at different points in time, how the
expert adapts the rules in response to transactions arriving up to
that point.

We compared the performance of RUDOLF to three alternative
solutions, to be detailed below. For each of the algorithms and each
of the datasets, we varied the number of new transactions arriving
between consecutive rounds of rule refinement. The number of
new transactions varies from 10% to 20% of the dataset, with the
default being 10%, and this corresponds closely to what happens
in real-life between rounds of rule refinement.

Baseline algorithms We consider the two extreme baselines: A
fully-manual setting, where rules are manually refined by experts
without the help of the system (the current setting that is used by
company XYZ experts in their daily work), and a fully-automatic
setting that uses the risk score produced by the ML algorithm and
a single rule that selects fraudulent transactions based on their risk
scores. Observe that this algorithm essentially generates a single
new rule of the form score greater than threshold (rather than
refining an existing set of rules). We also compared to the baseline
algorithm No Change, which denotes the given rules without any
changes.

Observe that the fully manual setting is arguably our “toughest”
competitor since the rules are modified by experts and the experts
are not limited by any time constraint to refine the rules.

In addition to the above, we also consider a variant of RUDOLF,
denoted RUDOLF−, that automatically refines the existing set
of rules by accepting the modifications proposed by the system
without consulting an expert. We also considered RUDOLF -s,
which is the system RUDOLF that does not refine categorical
attributes (and hence does not use ontologies) of rules. To the
best of our knowledge, all existing systems refine only numerical
attributes of rules. Hence the performance of RUDOLF -s will
allow us to understand how RUDOLF compares with systems
that are only restricted to refine numerical attributes. In fact, we
discovered that RUDOLF -s gives almost same results as the fully-
manual system and also RUDOLF−. Hence, we omit the results of
RUDOLF -s completely.

Measurements In our experiments, we measured the efficiency
of the algorithms in terms of the effectiveness of the derived
rules and the amount of time that the domain experts saved as a
consequence of using our system. We also measured the running
time required by RUDOLF to select the proposed modifications.

For our datasets this was always at most one second, and we thus
omit the exact measures.

To measure the effectiveness of a set of rules derived by any
of the methods, we consider its prediction quality, namely how
correctly it identifies future frauds. For that, we examine the set
of transactions from the given point in time where the rules were
derived and until the end of the dataset. For these future trans-
actions we count, for each set of rules, the percentage out of all
fraudulent (resp. legitimate) transactions that it identifies (resp.
wrongly classifies as fraudulent).

To understand of how many modifications each method en-
tailed, we also computed the cumulative number of rule updates
that each method required. We measure this only for RUDOLF,
RUDOLF−, and the fully-manual methods, which directly change
existing rules.

Finally, we measured the time the experts took to refine the
rules.

Results We first report on our experiments with the domain ex-
perts. Our first experiment examines the performance of the algo-
rithms as time advances, with all parameters set to their default
value. As explained above, at each point in time, (i.e. after a certain
percentage of the transactions has been observed), the algorithms
are invoked to derive a corresponding updated set of rules. Fig-
ure 3(a) shows the (cumulative) number of modifications that
RUDOLF, fully-manual and RUDOLF− method performed to the
rules. We see that RUDOLF performs less modifications than its
competitors.

We can see this more clearly in Figure 3(b), which illustrates
the prediction quality of the derived sets of rules, in terms of the
percentage of misclassified future transactions (lower percentage
of error implies better prediction quality). RUDOLF performs
the best, providing the best prediction. The fully manual rule
derivation provides less accurate predictions, though still better
than the two automatic competitors. Among the two, RUDOLF−,
that incrementally refines the rules, still performs better than the
threshold-based ML approach.

We note that the difference in performance between RUDOLF−

and RUDOLF demonstrates the importance of incorporating ex-
perts and their domain knowledge in the loop.

For the experiments above, the rules were periodically refined
in hops of 10% of the transactions. For different hops sizes, the
results are also similar, except that convergence naturally arrives
after fewer (proportionally) iterations for larger hops.

Our next experiment examines the performance of the algo-
rithms for varying dataset, with almost the same percentage of
fraud, but different sizes. The size had no significant effect on the
number of rule modifications performed by the algorithms, but
the prediction quality slightly improved as more data was avail-
able. Figure 3(c) illustrate, for varying dataset sizes, the prediction
quality of the rules after the first refinement round, in terms of the
percentage of misclassified transaction. Here again, lower percent-
age means better quality. As before, RUDOLF yields best results.
We can see that the error of all algorithms slightly decreases as
the size of the data set grows. The improvement is only small
as fraudulent transactions of the existing fraud patterns are dis-
tributed throughout the datasets, so the additional data reveals
some, but not huge, amount of new information. Similar results
were obtained for the following refinements rounds and we thus
omit the graphs.

Next, we examine the performance of the algorithms for vary-
ing percentages of fraudulent transactions. We took 4 different
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Figure 3: Experimental results

customers databases of roughly the same size, but different fraud
percentages (0.5% to 2.5%). All other parameters are set to their
default values. Figures 3(d) 3(e) show, respectively, the number
of rule updates and percentage of error after the first refinement
round. We can see that an increased number of fraudulent transac-
tion entails more rule modifications to capture them. The classifi-
cation error slightly increases with more fraudulent transactions,
but here again RUDOLF achieves the lowest error.

Finally we note that rule refinement with RUDOLF not only
consistently yielded superior fraud prediction, but also reduced the
time required from the experts by a factor between 4 to 5. (Around
50 seconds per round for RUDOLF compared to 4-5 minutes with-
out). We measured time of our experts performance, depicted in
figure 3(f). We asked them to fix up to 50 problematic transactions
in both manual and automatic way. Interestingly, no expert fin-
ished all 50 fixes in the manual mode (a well-trained expert from
company XYZ usually can fix 30-40 transactions per work-day).
The fact that RUDOLF leads in performance across all parameters
is interesting as the rules derived manually by experts are typically
considered as ground truth and yet, RUDOLF is able to do better
(i.e., with less changes, and with lower percentage of error) with
less data. This was consistent in all the experiments. Furthermore,
all users reported that working with RUDOLF was convenient and
effective in the sense that the rules/modifications proposed by the
system helped them identify and focus on the problematic rules
and the needed treatment. To conclude we observed that around
75% of the modifications were condition refinements, 20% rule
splits, and 5% rule addition.

Interestingly, our experiments with novice users (student vol-
unteers) show similar trends. In particular, also for novice users,
the rules generated with the assistance of RUDOLF were of best
quality and produced much faster than in all alternatives. We omit
the graphs for space constraints and only note that as expected,
compared to the domain experts, the overall perdition quality,
even with RUDOLF , was lower (by about 5%) than for the experts,
but still significantly better (by 25%) than what the novice users
would have achieved alone.

6 RELATED WORK
The identification of fraudulent transactions is essentially a classifi-
cation problem. Classification has been a fundamental problem in
machine learning and data management [14, 15], and crowdsourc-
ing has recently emerged as a major problem solving paradigm
[16]. Many classification works have used crowdsourcing to ob-
tain training data for learning [17–20]. This is complimentary
to our work: In RUDOLF the crowd (of experts) is employed to
maintain classifications rules, which might have been initially
learnt through such training. Besides learning-based models, rules
are also used for classification. Most of the previous research in
rule-based classifiers focus on how to learn rules from the training
data. In contrast, [21] employs both learning and analyst experts
that manually create classification rules using regular expressions.
In [22] that describes LinkedIn’s job title classification system,
experts and crowdsourcing are also heavily used. In both cases
however the ongoing refinement of rules in a changing environ-
ment, which is the focus of RUDOLF, is not considered.

In addition to machine learning-based methods, there are mul-
tiple fraud-detection techniques that have been considered. For
example [4] uses a decision tree, defined recursively for nodes and
edges of the tree and using the ratio between number of transac-
tions that satisfy some condition to label them accordingly. Other
methods, e.g. [5], are based on genetic programming, used to clas-
sify transactions into suspicious and non-suspicious ones. Another
class of the algorithms for fraud detection is based on clustering
techniques. An example is [6] that clusters users based on com-
mon behavior and then considers as suspicious the transactions
that take the user outside its cluster. Bayesian networks are used
both to detect fraud in telecommunications (e.g. [23]) and in the
credit card industry (e.g. [24]). Neural networks are also used
for fraud detection. For instance [25] presents an online fraud
detection system, based on a neural classifier. All these techniques
are complimentary to ours and can be used to deriving the initial
base-set of rules.

Another class of work similar RUDOLF is that of Concept
Drifts, which are changes that occur on the distribution of the
input that affects the learning system and thus the output. [8]
deals with concept drifts by using sliding window that adaptively
remembers more or less items from the training set (the closest
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past) according to whether it recognized a concept drift or not.
Other system ([9]) is classification system based on decision rules.
Even though these systems can compute the nearest neighbors
for the closest rules and generalization for numerical values, they
do not support generalization and specification on categorical
attributes, do not involve a human expert in the loop, and do not
allow configuration of weight for different kind of errors (false
positives and false negatives).

Finally, if we view our transaction relation as the source data-
base and the set of fraudulent transactions as our target database,
then the work on deriving queries or schema mappings based
on source-target databases (e.g., [26–28]) is also relevant. Simi-
larly, techniques for rule mining and, in particular, inductive logic
programming (e.g., [29]) can also be used for fraud detection,
where the fraudulent transactions can be seen as positive examples
and the legitimate transactions can be seen as negative examples.
However, the language of schema mappings and inductive logic
programming are different from our rule language and more im-
portantly, the rules derived cannot be interactively adapted.

7 CONCLUSION AND FUTURE WORK
We present RUDOLF, a novel system that assists domain experts
in defining and adapting rules in dynamic environments. We show
that the problem of identifying the best candidate adaptation for a
core language is NP-hard and present PTIME heuristic algorithms
for determining the set of rules to adapt and working interactively
with the domain experts until they are satisfied with the resulting
rules. Our experiments with real-world data sets demonstrate the
promise that RUDOLF is an effective and efficient tool for rule
refinement.

One direcvtion for future work is the use of more sophisticated
cost model. Instead of associating a cost with every modifica-
tion made to a condition in the rule, one can varying the cost
depending on the attribute or even rule that is modified and these
costs/weights can be learned or adjusted based on user feedback,
satisfaction of the suggested modification etc. Similarly, the param-
eters α , β and γ used in our cost formula to weight the importance
of misclassifying of fraudulent/legitimate/unlabeled transactions
may also be dynamically adapted based on such user feedback.
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ABSTRACT
Group k-nearest neighbor (kGNN) search allows a group of n mo-

bile users to jointly retrievek points from a location-based service

provider (LSP) that minimizes the aggregate distance to them.

We identify four protection objectives in the privacy preserv-

ing kGNN search: (i) every user’s location should be protected

from LSP; (ii) the group’s query and the query answer should

be protected from LSP; (iii) LSP’s private database information

should be protected from users, i.e., the users cannot learn more

information beyond the answer they requested; (iv) every user’s

location should be protected from the other users in the group.

We propose the first approach to meet the four privacy goals

in the kGNN query. Our approach provides an accurate query

answer and does not rely on heavy pre-computation on LSP like

previous works. Our approach considers the most hostile envi-

ronment that any n − 1 users in the query group may collude

to infer the location of the remaining user. Though we consider

kGNN, the proposed privacy preserving approach can be easily

adopted to any group query because it treats the query answering

(i.e., kGNN) as a black box. Theoretical and experimental analysis

suggest that our approach is highly efficient in both user com-

putation and communication while incurring some reasonable

overhead on LSP.

1 INTRODUCTION
The embedding of positioning capabilities (e.g., GPS) in mobile

devices facilitates the emergence of location-based services (LBS),

which allows the users to publish their location data for retrieving

desired information from a database maintained by a location-

based service provider (LSP). One typical application is the group
k-nearest neighbor query (kGNN) proposed in [24], also known

as aggregate nearest neighbor query [25] or aggregate similarity

search [18, 19, 28]. The kGNN query allows a group of n users

to retrieve top-k locations from the LSP’s database to minimize

some aggregate cost function F over all n users. Figure 1 shows

that users u1,u2,u3 (n = 3) jointly retrieve the top-2 meeting

places {p1,p2} (k = 2), where p1 has the shortest total distance

to the users, and p2 has the second shortest total distance to the

users. By generalizing the classic k-nearest neighbor (kNN) query
from a single user in a query to multiple users in a query, the
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Figure 1: A kGNN query (k = 2): {u1,u2,u3} retrieves p1,p2

as top-2 locations

kGNN query offers richer semantics with broader applications

in spatial databases [18, 19, 24, 25, 28].

We consider four privacy concerns that arise in the kGNN
query scenario. Privacy I: every user’s location privacy against
LSP since location can reveal the private information of users.

Privacy II: query privacy and answer privacy against LSP be-

cause the query discloses the combination of users’ locations and

the relationship between users, and the query answer such as a

meeting place may disclose the nature of the meeting or event.

Privacy III: LSP’s data privacy against users. LSP’s database is
the valuable and protected business asset [8, 12, 33] and the prin-

ciple of least privilege [29] applies where no more information

than the requested query answer should be returned to the users.

Another reason for this privacy is the pay-per-result model [8, 33]

where the users who pay for k results should not receive more

than k results. Privacy IV: every user’s location privacy against
other users because users might not trust other users. For exam-

ple, two business competitors like to query some meeting places

but want to hide their own locations from each other. The most

hostile environment is the full user collusion where n − 1 users in

the query collude to infer the location of the remaining user. In

Figure 1, for example, colluding u2,u3 can infer that u1 is located

in the shaded area based on their own locations and the query

answer {p1,p2} received. If the shaded area is too small, u1’s

location privacy may be compromised. Privacy IV is required

only in the case of n > 1.

Although many solutions, such as [1, 3, 12, 13, 17, 21, 26, 27,

30, 34, 36, 37], are proposed for the single user query (i.e., n =
1), only a few works addressed the group query (i.e., n > 1)

[2, 14] but none of them achieves all four privacy concerns. Most

existing work achieved Privacy I through returning candidate

answers (e.g., [3, 13, 14, 17, 21, 26, 30]) or approximate answers

(e.g., [1, 2, 34, 37]). However, returning candidate answers not

only increases the communication cost but also violates Privacy
III, while returning approximate answers degrades the answer

utility as well as violates Privacy II since LSP knows the query

answer that users obtained. [12, 27, 36] achieve Privacy I-III in
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the single user query case by heavily relying on pre-computing

the query answers for all queries. These approaches are not

applicable to the group query where the number of possible

queries is large. A more detailed discussion of related work is

presented in Section 9.

In this paper, we design a privacy preserving approach to

the kGNN query for the general case of n ≥ 1 while protecting

Privacy I-IV. Our approach has the following novelties. First, it
eliminates the need for pre-computing all query answers in order

to address the privacy issues, while producing the exact answer.

Hence, our approach can easily handle a dynamic database on

LSP. Second, for Privacy IVwe consider the most hostile environ-

ment, called full user collusion, where n − 1 users may collude to

infer the location of the remaining user. Third, we aim to reduce

user computational cost and communication cost at a reasonable

overhead on LSP, which particularly makes sense in the mobile

user scenario. Fourth, though we consider kGNN, the proposed
privacy preserving approach can be easily adopted to any group

query because it treats the query answering (i.e., kGNN) as a
black box. For example, our approach works with any choice of

aggregate cost function F and other location based group queries;

to solve the privacy preserving meeting location determination

(PPMLD) [5, 16, 31], we can replace the black box for kGNN in

our approach with any existing (non-privacy preserving) meeting

location determination algorithm.

The rest of the paper is structured as follows.

• Section 2 formulates the privacy preserving kGNN query

problem, called PPGNN, where n users jointly retrieve

k-nearest neighbors from LSP while meeting the require-

ments of Privacy I-IV.
• Section 3 proposes a solution to PPGNN with n = 1. To

our knowledge, this is the first work that eliminates the

need for pre-computing all the query answers to achieve

Privacy I-III.
• Section 4 proposes a solution to PPGNN with n ≥ 1 while

achieving Privacy I-III.
• Section 5 extends the solution to PPGNN with n ≥ 1

to achieve Privacy I-IV under the full user collusion as-

sumption. As far as we know, this is the first solution that

achieves Privacy I-IV.
• Section 6 presents an optimization of the PPGNN solution,

denoted PPGNN-OPT, to further reduce the communica-

tion cost and user computational cost.

• Section 7 theoretically analyzes the performance of the

PPGNN solution and PPGNN-OPT solution.

• Section 8 presents empirical results on a real-world dataset,

showing that the proposed approaches are highly commu-

nication efficient for the privacy guarantees achieved.

• Section 9 reviews the related work.

2 PROBLEM STATEMENT
We formally define the problem studied in this paper. Table 1

summarizes the frequently used notations. We assume that LSP

owns a database of Points of Interest (POIs) where each POI has

a location (e.g., latitude and longitude) and other associated in-

formation, and each user has a location. Both users and LSP are

semi-honest: they follow the protocol exactly as specified, but

may try to infer others’ private information. Users can acquire

their locations from satellites anonymously. A base station is re-

sponsible for the communication within users and between users

and LSP (e.g., mobile communication provider). The base station

Table 1: Summary of notations

Notation Description

n the number of users in the group

d anonymity parameter for Privacy I
δ anonymity parameter for Privacy II
θ0 privacy parameter for Privacy IV
li,∗ real location of ui
C∗ real query {l1,∗, · · · , ln,∗} of the group
Li ui ’s location set

li, j j-th location in Li
n̄, ¯d partition parameters

[v] encrypted indicator vector for C∗
A answer matrix for all candidate queries

N the product of two large primes determined by pk

will not collude with LSP, and there is a secure communication

channel (e.g., Tor
1
) so that LSP cannot infer users’ locations by IP

addresses. We also assume that LSP does not collude with users.

This assumption is reasonable because the penalty of collusion

involving LSP is very high, including losing the trust of users

and being prosecuted.

2.1 kGNN Query
Let D = {p1, · · · ,pD } be a database (owned by LSP) of D POIs,

and C∗ = {l1,∗, · · · , ln,∗} be the locations of n users. Both D and

C∗ are in a metric space where a spatial distance function dis is
defined for any two locations, e.g., Euclidean distance [24, 25],

road-network distance [38]. Let F be a monotonically increasing

aggregate function,

F (p,C∗) = F (dis(p, l1,∗), · · · ,dis(p, ln,∗)) (1)

where p can be any POI in D. Commonly used F includes sum,

max andmin. For example, with sum the query retrieves a meet-

ing place with the minimum total distance to the users, and with

max the query retrieves a collection place for the troops that

leads to the earliest meet time (by minimizing the maximum dis-

tance for every troop to reach that place [25]), and withmin the

query retrieves a place that leads to the earliest time for any user

to reach that place. In general, the query finds the k best POIs p
from D in an ascending order of F (p,C∗), as defined below.

Definition 2.1 (kGNN query [28]). Given a spatial databaseD, n
query locations C∗, distance function dis , and aggregate function
F , a kGNN query (k ≤ D) retrieves a subset P = {p1, · · · ,pk }
from D, such that ∀pi ∈ P and ∀p ∈ D − P, F (pi ,C∗) ≤ F (p,C∗),
and for 1 ≤ i < j ≤ k , F (pi ,C∗) ≤ F (pj ,C∗).□

2.2 Privacy Preserving kGNN Query
Definition 2.2 (Privacy preserving kGNN query, or PPGNN). Let

D and C∗ be those in Definition 2.1. A kGNN query is privacy

preserving if the following conditions are satisfied:

(1) Privacy I: ∀i ∈ [1,n], each user ui ’s location li,∗ is indis-
tinguishable from d equally likely locations by LSP, d > 1;

(2) Privacy II: the query location C∗ and its answer are indis-

tinguishable from δ equally likely candidates by LSP, δ ≥ d ;
(3) Privacy III: the users can learn nothing more than the

requested answer to the query C∗.
(4) Privacy IV: ∀i ∈ [1,n], ui ’s location li,∗ is hidden in a

region from other users, where the size of the region is no less

1
https://www.torproject.org/
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than θ0 fraction of the size of the whole location space, θ0 ∈ (0, 1].

Under the full user collusion assumption, this property should hold
even if any n− 1 users collude, by sharing their locations, to infer

the remaining user’s location with the help of the query answer

received. □

Condition (1) guarantees that the probability for LSP to infer a

user’s location is
1

d . Condition (2) guarantees that the probability

for LSP to infer the group’s query, i.e., all users’ locations, as well

as the query answer, is
1

δ , where δ ≥ d . Condition (3) guarantees

that the users learn only the query answer as defined by the

query, in order to protect the LSP’s private database. Condition

(4) guarantees that any user’s location can not be inferred by

other users. The strength of these privacy guarantees depends

on the setting of the privacy parameters (d,δ ,θ0), which are

specified by the users.

3 SINGLE USER QUERY
In this section, we consider PPGNN with single user, i.e., n = 1.

In this case, there is no Privacy IV, and δ = d . Section 3.1

gives some background knowledge about the generalized Paillier

cryptosystem [10]. Section 3.2 presents our solution.

3.1 Generalized Paillier Cryptosystem
Generalized Paillier cryptosystem εs (s ≥ 1) [10] is a probabilistic

asymmetric encryption scheme that provides semantic security.

Let ZN s and Z∗N s be the residue class ring module N s
and the

prime residue class group module N s
, respectively.

Generalized Paillier cryptosystem is composed of three algo-

rithms (Gen, Enc, Dec): (1) given a security parameter keysize,
the key generation algorithm (sk,pk) = Gen(keysize) returns se-
cret key sk and public keypk .N is the product of two large primes

determined by pk . (2) The encryption algorithm c = Enc(x ,pk)
maps a plaintext x ∈ ZN s to a ciphertext c ∈ Z∗N s+1

using pk .

(3) The decryption algorithm x = Dec(c, sk) executes reverse
operation of encryption by sk , obtaining plaintext x . The exact
construction of Enc and Dec, which can be found in [10], is

not important for this work, but the following homomorphism

properties of the generalized Paillier cryptosystem are used by

our solutions. For simplicity, we omit the public key pk in the

Enc algorithm. Let x1,x2 denote the plaintexts in ZN s .

Homomorphic addition ⊕: given two ciphertexts Enc(x1),

Enc(x2), the ciphertext of the sum x1 + x2 can be obtained by

multiplying the ciphertexts, i.e.,

Enc(x1) ⊕ Enc(x2) : Enc(x1) · Enc(x2) = Enc(x1 + x2) (2)

Homomorphic multiplication ⊗: given a plaintext x1 and

a ciphertext Enc(x2), the ciphertext of the product x1x2 can be

obtained by raising Enc(x2) to the power x1:

x1 ⊗ Enc(x2) : Enc(x2)
x1 = Enc(x1x2) (3)

Homomorphic dot product ⊙: given a ciphertext vector

Enc(v) = (Enc(v1), · · · ,Enc(vm ))T and a plaintext vector x =
(x1, · · · ,xm ), the ciphertext of the dot product v · x can be ob-

tained by:

x ⊙ Enc(v) : (x1 ⊗ Enc(v1)) ⊕ · · · ⊕ (xm ⊗ Enc(vm ))
= Enc(x1v1 + · · · + xmvm ) (4)

= Enc(x ·v)

For simplicity, we write Enc(x) with ε1 as [x]. One applica-
tion of Eqn (4) is privately selecting the i-th element in a vec-

tor x without disclosing the value of i . Specifically, let [v] =

! = ($%, $'� $(, $))

�+(�

execute queries:

User LSP

private selection:

, = 0 , 0 , 1 , 0 / 0 $% 0($') 0 $( 0($))

+% +' +( +)

(+%, +', +(, +)) , = [+(]⨀

Figure 2: Single user query example (l3 is real)

([v1], · · · , [vm ])
T
where vi = 1 and vj = 0 for all j , i . Eqn (4)

becomes x ⊙ [v] = [x ·v] = [xi ], which returns xi in ciphertext.

We will use this private selection to design our solution.

3.2 Proposed Solution
Figure 2 shows the idea of our solution through a running ex-

ample. The user sends a location set {l1, l2, l3, l4} to LSP, where

d = 4, as well as an encrypted indicator vector ([0], [0], [1], [0])

that implicitly specifies that l3 is the real user location. LSP calcu-

lates the query for every location in the location set, producing

the answers a1,a2,a3,a4, and privately selects a3 through the

result [a3] according to the homomorphism properties. This so-

lution has three stages: query generation, query processing, and

answer decryption. We discuss each stage in details. We denote

the user’s real location by l∗.
Query Generation. At first, the user randomly selects d −

1 dummy locations from the location space and constructs a

location set L = {l1, · · · , ld } containing the real location l∗. Then
the user creates an indicator vectorv = (v1, · · · ,vd )

T
:

vi =

{
1, li = l∗

0, otherwise
(5)

After that, the user generates (sk,pk) by calling the key gener-

ation algorithm with the security parameter keysize (e.g., the

most commonly used is 1024 bits [23]), and executes element-

wise encryption algorithm on v , obtaining an encrypted [v] =

([v1], · · · , [vd ]). Finally, the user sends {k,L,pk, [v]} to LSP,

where k is the number of POIs to retrieve.

Query Processing.After receiving the user’s query, LSP com-

putes the kNN query for each location in the location set, result-

ing in d query answers, a1, · · · ,ad , where each query answer is

a list of k POIs. The kNN query is computed on plaintext, so any

plaintext solution for kNN query, such as [24], can be applied. We

assume that each query answer ai is represented by a vector of

integers, ai = (ai,1, · · · ,ai,m )T , such that every element is less

than N , wherem is the maximum number of integers required

for any of the d answers. If the number of integers encoded for a

query answer is less thanm, 0’s are padded as placeholders.

Let Am×d = (a1, · · · ,ad ) be the query answer matrix. The

next theorem suggests that LSP can obtain the encrypted query

answer for the real location l∗ by a private selection using A and

[v]. The encrypted query answer is returned to the user.

Theorem 3.1 (Private Selection). Given an encrypted indica-
tor vector [v] = ([v1], · · · , [vd ])

T such that [vi ] = [1] and [vj ] =
[0] for all j , i , and the answer matrixAm×d = (a1, · · · ,ad ), then

279



[ai ] is computed by A
⊗
[v] defined as follows:

A
⊗
[v] =

©«
a1,1 · · · ad,1
...

. . .
...

a1,m · · · ad,m

ª®®¬
⊗©«
[v1]

...

[vd ]

ª®®¬
=
©«
[a1,1v1 + · · · + ad,1vd ]

...

[a1,mv1 + · · · + ad,mvd ]

ª®®¬
=
©«
[0 + · · · + ai,1 + · · · + 0]

...

[0 + · · · + ai,m + · · · + 0]

ª®®¬ =
©«
[ai,1]
...

[ai,m ]

ª®®¬ = [ai ].□
The notation

⊗
represents the homomorphic matrix multi-

plication, which executes homomorphic dot product operations

in Eqn (4) between each row in A and [v].

Answer Decryption. After receiving [ai ], the user can exe-

cute the decryption algorithm on the ciphertext to get the exact

query answer ai for l∗.

In this solution, Privacy I is satisfied by anonymizing the

user’s real location among d locations. Privacy II is satisfied
because the real query answer is anonymized in d query answers

(note δ = d when n = 1) and the selection process is private.

Also, LSP returns only the query answer for l∗, so Privacy III is
satisfied.

4 GROUP QUERY
We now present the PPGNN solution for the group query where

n ≥ 1, which subsumes the solution in Section 3 as a special

case. Section 4.1 presents a candidate query generation method

that helps satisfy Privacy II. Section 4.2 describes the PPGNN

solution. Section 4.3 proves the protection of Privacy I-III. The
protection of Privacy IV is addressed in Section 5.

Recall that the real location of each user ui is denoted as

li,∗, 1 ≤ i ≤ n, and li,∗ is hidden in the location set Li =
{li,1, · · · , li,d }. From Li , 1 ≤ i ≤ n, LSP can obtain a set of can-
didate queries, where each candidate query is a set of n locations

that contains exactly one location from every Li . One candidate
query is the real query, denoted by C∗ = {l1,∗, · · · , ln,∗}.

Naive Solution. With δ ≥ d , one straightforward method

to satisfy both Privacy I and Privacy II is that every user ui
generates a length δ , instead of length d , location set Li , and
all users arrange their real locations on the same position in

Li , 1 ≤ i ≤ n. Then LSP can extract one candidate query from

the same position in the n location sets, resulting in δ candidate

queries. One of these candidate queries is the real query. How-

ever, this solution incurs the additional computational cost to

generate δ − d extra dummy locations (e.g., using the dummy

generation algorithm [20, 22]) for every user, and the additional

communication cost to send the extra dummy locations to LSP.

With users’ computational power being limited (e.g., mobile de-

vices) and the communication bandwidth being precious, this

approach is not practical. To address this special requirement

in the mobile user scenario, we propose a solution that aims to

reduce the user computational cost and the communication cost

at some overhead of the LSP computational cost.

4.1 Candidate Query Generation
Our solution keeps the location set Li at the size d but defines a

novel protocol for LSP to generate at least δ candidate queries

from the location sets Li , 1 ≤ i ≤ n. With each Li having d
elements, dn candidate queries can be generated by the cartesian

product

>n
i=1
Li . We assume δ ≤ dn , otherwise, a largerd should

be specified by the users.

Clearly, generating the maximum number of candidate queries,

dn , will satisfy Privacy II, but if δ ≪ dn , this means that LSP will

compute many unnecessary queries. Our method will generate

a minimum number δ ′ of candidate queries such that δ ′ ≥ δ ,
thus, satisfying Privacy II. To this end, we partition the user

group into α subgroups of the size n̄ = (n̄1, · · · , n̄α ), and partition
every location set Li into β segments of the size ¯d = ( ¯d1, · · · , ¯dβ ).

{n̄, ¯d} is called partition parameters and is known to both users

and LSP. We will determine these parameters shortly. To ensure

that the real query will be generated as one of the candidate

queries, the following constraint must be satisfied by subgroups

and segments: all users arrange their real locations in the same
segment, and all users from the same subgroup arrange their

real locations on the same position of that segment. Our query

generation in Section 4.2 will enforce this constraint.

Example 4.1. In Figure 4a, the user group is partitioned into 2

subgroups by n̄ = (2, 2), and the location sets are partitioned into

2 segments by
¯d = (2, 2). All users arrange their real locations in

seдment2, highlight in red. Also, the users in subдroup1 arrange

the real locations on the 2-nd position of seдment2, and the users
in subдroup2 arrange the real locations on the 1-st position of

seдment2.□

Given the location sets and the partition parameters, LSP gen-

erates the candidate queries as follows. Let Gi, j,t be the subset

of locations from the t-th position of the i-th segment and the

j-th subgroup, and let Gi, j, : be the subset of locations from the

i-th segment and the j-th subgroup. Note that Gi, j, : contains
¯di locations. See Figure 4b for some examples. For 1 ≤ i ≤ β ,
LSP computes the candidate queries for the i-th segment by the

cartesian product

α?
j=1

Gi, j, : (6)

This gives a total number of

∑β
i=1
( ¯di )

α
candidate queries since

there are ( ¯di )
α
combinations for the i-th segment. Each candidate

query is uniquely identified by a sequence of the indexes (i, j, t)
forGi, j,t , and all candidate queries are listed in the lexicographic

order of such indexes. We call this list the candidate query list.
Figure 3c illustrates the cartesian product for each segment,

generating a total of 8 candidate queries. Figure 3d shows the

candidate query list, in which the real query C∗ is at the position
7. This position of the real query can be calculated by the users

based on the segment and the positions where the real locations

are placed in all location sets. However, LSP does not know this

position of the real query because the segment and positions for

the real locations are confidentially chosen by the users.

Determining the partition parameters {n̄, ¯d}. The parti-
tion parameters are determined by solving the problem

minimize

α,β, ¯d
δ ′ =

∑β

i=1

( ¯di )
α

(7)

subject to δ ′ ≥ δ (8)∑β

i=1

¯di = d (9)

α ∈ N≤n , β ∈ N≤d , { ¯di }
β
i=1
∈ N≤d (10)
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𝕃1: 𝑙1,1 𝑙1,2 𝑙1,3 𝑙1,4
𝕃2: 𝑙2,1 𝑙2,2 𝑙2,3 𝑙2,4
𝕃𝟑: 𝑙3,1 𝑙3,2 𝑙3,3 𝑙3,4
𝕃4: 𝑙4,1 𝑙4,2 𝑙4,3 𝑙4,4

subgroup1

subgroup2

segment1 segment2

(a)

𝐺1,1,1 𝐺1,1,2 𝐺2,1,1 𝐺2,1,2subgroup1

subgroup2

segment1 segment2

𝐺1,2,1 𝐺1,2,2 𝐺2,2,1 𝐺2,2,2

(b)

ℂ1: 𝐺1,1,1 𝐺1,2,1
ℂ2: 𝐺1,1,1 𝐺1,2,2
ℂ3: 𝐺1,1,2 𝐺1,2,1
ℂ4: 𝐺1,1,2 𝐺1,2,2

segment1

ℂ5: 𝐺2,1,1 𝐺2,2,1
ℂ6: 𝐺2,1,1 𝐺2,2,2
ℂ7: 𝐺2,1,2 𝐺2,2,1
ℂ8: 𝐺2,1,2 𝐺2,2,2

segment2

(c)

segment1

ℂ1: 𝑙1,1 𝑙2,1 𝑙3,1 𝑙4,1
ℂ2: 𝑙1,1 𝑙2,1 𝑙3,2 𝑙4,2
ℂ3: 𝑙1,2 𝑙2,2 𝑙3,1 𝑙4,1
ℂ4: 𝑙1,2 𝑙2,2 𝑙3,2 𝑙4,2
ℂ5: 𝑙1,3 𝑙2,3 𝑙3,3 𝑙4,3
ℂ6: 𝑙1,3 𝑙2,3 𝑙3,4 𝑙4,4
ℂ7: 𝑙1,4 𝑙2,4 𝑙3,3 𝑙4,3
ℂ8: 𝑙1,4 𝑙2,4 𝑙3,4 𝑙4,4

segment2

(d)

Figure 3: Candidate query generation, where n = 4, d = 4, and δ = 8: (a) the partition parameters are n̄ = (2, 2) and ¯d = (2, 2);
(b)G2,1,1 represents the set {l1,3, l2,3} for seдment2, subдroup1, and the first position in seдment2, whileG2,1, : = {G2,1,1,G2,1,2};
(c) candidate queries C1 − C4 are generated for seдment1, and candidate queries C5 − C8 are generated for seдment2; (d) the
candidate query list contains the real query (in red).

δ ′ in Eqn (7) is the total number of candidate queries generated

above. Eqn (9) requires that the sum of all segment sizes should

be d , and Eqn (10) requires that the parameters should be integers.

The sizes of subgroups are not included in Eqn (7) because they

are irrelevant. d,δ ,n are constants and the rest are unknown

variables. For the single user query, n = 1 and δ = d , we can
choose β = d with each segment size equal to 1. The above is

a nonlinear integer programming problem, which is NP-hard

[4]. However, the results for frequently used (n,d,δ ) can be pre-

computed off line (e.g., using open-source solvers [6], Bonmin
2
).

This only needs to be done once.

4.2 PPGNN Solution
The PPGNN solution has three stages: query generation, query

processing, and answer decryption. Following [14], we assume

that a coordinator user uc is selected randomly from the query

group to assist query generation and answer decryption. Like

any other user, no additional trust is assumed of uc .
Query Generation. Algorithm 1 presents the query gener-

ation stage. uc first determines the partition parameters {n̄, ¯d}
based on {n,d,δ } and calculates the number of candidate queries

δ ′. As discussed above, the partition parameters could be pre-

computed for frequently used {n,d,δ }. uc randomly selects a

segment seg from [1, β] according to the probability distribution

based on the segment sizes, i.e.,

P = (
¯d1

d
, · · · ,

¯dβ

d
) (11)

and uc randomly and uniformly selects a relative position x j
of that segment for the j-th subgroup, and broadcasts posj to
all users in the j-th subgroup, 1 ≤ j ≤ α , where posj is the
absolute position (over all segments) corresponding to x j . Then
uc computes the position of the real query C∗ in the candidate

query list, called query index, denoted by QIC∗ as follows. Note
that the candidate query list is arranged by the lexicographic

order of the triples (segment index, subgroup index, position in

the segment).

QIC∗ =
∑seg−1

i=1

( ¯di )
α +

∑α

j=1

(x j − 1)( ¯dseg)
α−j + 1 (12)

where the first term is the number of candidate queries before

reaching the seg-th segment, and the second term is the number

of candidate queries before reaching C∗ in the seg-th segment.

Example 4.2. In Figure 4a, with seg = 2, α = 2, and
¯d1 = 2, the

first term in Eqn (12) is 4, and with x1 = 2 and x2 = 1, the second

term is (2 − 1) ∗ 2
1 + (1 − 1) ∗ 2

0 = 2, thus QIC∗ = 7. □

2
https://neos-server.org/neos/solvers/

Algorithm 1: Query Generation

Input: n, d , δ , k , keysize, {li,∗ }ni=1
, θ0;

Output: Query {k, pk, n̄, ¯d , [v ], θ0, {(i, Li )}ni=1
};

1 Coordinator uc :
2 {n̄, ¯d } ← find the partition parameters; // Eqn (7)-(10);

3 seg← randomly select a segment by Eqn (11);

4 for j ∈ [1, |n̄ |] do
5 x j ← randomly and uniformly select from [1, ¯dseg];

6 posj ←
∑seg−1

i=1

¯di + x j ;
7 Send posj to all users in subgroupj ;

8 {sk, pk } ← Gen(keysize); // key generation

9 v ← construct indicator vector by the query index; // Eqn (12)

10 [v ] ← element-wise encryption Enc(v , pk );
11 Send {k, pk, n̄, ¯d , [v ], θ0 } to LSP;

12 Every user ui in subgroupj :
13 receive posj from uc ;
14 Li ← generate location set, arranging li,∗ on the posj -th position;

15 Send (i, Li ) to LSP;

Algorithm 2: Query Processing

Input: Query {k, pk, n̄, ¯d , [v ], θ0, {(i, Li )}ni=1
}, D;

Output: [a∗];
1 {Ct }

δ ′
t=1
← generate the candidate query list by

{n̄, ¯d , {(i, Li )}ni=1
}}; // Section 4.1

2 for t ∈ [1, δ ′] do
3 Pt ← compute kGNN query by (k , Ct , D);
4 P′t ← answerSanitation(θ0, Pt , Ct ); // Section 5.2

5 at ← encode P′t into integer vector by N stated in pk ;

6 A = (a1, · · · , aδ ′ );

7 [a∗] = A
⊗
[v ]; // Theorem 3.1

8 Send [a∗] to uc

Then, uc constructs the encrypted indicator vector [v] of

length δ ′, wherev has 1 at the position QIC∗ and 0 everywhere

else. Finally, uc sends the query {k,pk, n̄, ¯d, [v],θ0} to LSP.

Meanwhile, every user ui (i ∈ [1,n]) in the j-th subgroup

arranges its real location li,∗ at the received position posj in Li
and dummy locations at the remaining positions, and sends (i,Li )
to LSP independently. With the user ID i , LSP can reconstruct

subдroup1 as the first n̄1 users, subдroup2 as the next n̄2 users,

and so on. Note that no user, including uc , knows other users’
real locations, because each user sends the location set to LSP

directly.
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Query Processing. Algorithm 2 presents the query process-

ing stage. After receiving the query from users, LSP generates the

candidate query list containing δ ′ candidate queries as described
in Section 4.1, and executes the kGNN query for each candidate

query. Line 4 calls the answerSanitation method to ensure that

the query answer satisfies Privacy IV, which will be presented

in Section 5.2. Let Am×δ
′

be the answer matrix for the query

answers (a1, · · · ,aδ ′). LSP privately selects the query answer

[a∗] for C∗ following Theorem 3.1, and sends [a∗] to uc .
The answer decryption stage is the same as that in Section 3,

except that uc will broadcast the answer a∗ to all other users.

4.3 Privacy Guarantees
Theorem 4.3. The PPGNN solution satisfies Privacy I-III. .

Proof. Privacy I: The segment seд containing the real loca-

tions is selected following the probability distribution correspond-

ing to the segment sizes, Eqn (11), thus, the probability that LSP

infers this segment is
¯dseд/d . The position for the real locations

in the seд-th segment for each subgroup is selected randomly

and uniformly, so given the segment seд, the probability that LSP
can infer this position is 1/ ¯dseд . Overall, the probability for LSP

to identify each user’s real location is ( ¯di/d) · (1/ ¯di ) = 1/d .
Privacy II: LSP generates δ ′(≥ δ ) candidate queries and ob-

tain δ ′ query answers before the private selection. So the proba-

bility for LSP to identify group’s query C∗ and the query answer

is 1/δ ′, which is no larger than 1/δ .
Privacy III: The private selection ensures that only the answer

for C∗ is returned, so the users learn no extra POI information

beyond the query answer requested. □

5 FULL USER COLLUSION
So far, the PPGNN solution satisfies only Privacy I-III. We now

consider answerSanitation on line 4 in Algorithm 2 to enforce

Privacy IV under the full user collusion assumption. Our first

observation is that the only communicationwithin the user group

is {posj }
α
j=1

that are broadcast from uc to let all users arrange

their real locations in their location sets. This information alone

does not allow any n− 1 colluding users to learn the real location

of the remaining user. However, after receiving the query answer,

n− 1 colluding users can infer some possible region that contains

the remaining user’s real location, with the help of the ranking

and location information of the POIs in the query answer.We first

present this attack in Section 5.1, and devise a method to prevent

this attack and satisfy Privacy IV in the rest of the section.

5.1 Inequality Attack
Suppose the users {u1, · · · ,un } located at the locations C∗ =
{l1,∗, · · · , ln,∗} respectively obtain the query answer in the form

of k ranked POIs P = {p1, · · · ,pk } such that

F (pi ,C∗) ≤ F (pj ,C∗),∀1 ≤ i < j ≤ k (13)

Without loss of generality, let us assume that u1 is the attack

target and {ui }
n
i=2

collude together to infer u1’s location. There-

fore, there is only one unknown variable l1,∗ in Eqn (13) because

l2,∗, · · · , ln,∗ as well as the query answer P are known to the

colluding users. Consequently, the colluding users can construct

k − 1 independent inequalities to infer the possible region of l1,∗:

F (pi ,C∗) ≤ F (pi+1,C∗),∀1 ≤ i ≤ k − 1 (14)

We refer this inference as the inequality attack. Suppose that the
area of the solution region for Eqn (14) is θ (in percentage) of

the area of the whole data space, Privacy IV is satisfied if and

only if θ > θ0 for every target user u1; otherwise, i.e., θ ≤ θ0

for some target user u1, Privacy IV is not satisfied, and we say

the inequality attack succeeds. For instance, Privacy IV is not

satisfied in Figure 1 if θ0 = 0.5, because the possible region for

u1’s location (in shaded) is less than half of the whole location

space.

5.2 Answer Sanitation
One solution to prevent the inequality attack is that LSP randomly

perturbs the order of POIs in P such that the inequalities in Eqn

(14) cannot be correctly constructed. This solution will degrade

the utility of the query answer because the users need to know

the rank of returned locations. In addition, it is unclear how to

ensure that the colluding users cannot reconstruct the original

order or a partial order.

Instead, we design a sanitation method for LSP to return the

longest prefix P′ = {p1, · · · ,pt } of P while satisfying Privacy
IV. In fact, LSP can simulate the inequality attack for every user

using a prefix P′ of P in Eqn (14). If θ > θ0 holds on P′ for every
target user, where θ is the relative size of the solution region of

Eqn (14), P′ is safe of satisfying Privacy IV. We will consider

how to test θ > θ0 shortly. LSP can start with the shortest prefix

P′ = {p1}, which is always safe, and examine the length t prefix
only if the length t − 1 prefix is safe. The query answer for a

candidate query then is the prefix P′ = {p1, · · · ,pt } that is safe,
and if t < k , the next prefix {p1, · · · ,pt+1} is not safe. Note that

if the query answer for every candidate query is safe of satisfying

Privacy IV, the returned answer for C∗ after private selection
satisfies Privacy IV.

5.3 Testing θ > θ0

We now present how to test whether θ > θ0 for a target user,

where θ is the relative size of the solution region of Eqn (14).

One approach is finding the exact solution region of Eqn (14).

Unfortunately, finding this solution region is not straightforward,

especially for any choice of the aggregation function F and an

arbitrary shape of the data space. On the other hand, it is easy

to test whether a point l1,∗ satisfies all inequalities in Eqn (14),

that is, falls into the solution region, without explicitly finding

the solution region. This observation motivates the following

statistic test.

Consider two hypothesis H0 and H1:

H0 : θ ≤ θ0, H1 : θ > θ0 (15)

There are two types of errors:

• Type I Error: Pr(reject H0 |H0 is true) is the probability

that a successful attack is not identified for a target user.

• Type II Error: Pr(not reject H0 |H1 is true) is the proba-

bility that a non-attack is identified as a successful attack

for a target user.

A small probability for Type I Error provides more confidence

on privacy protection and a small probability for Type II Error

provides more confidence on better utility of the returned answer.

We want to bound these probabilities.

To test whether H0 should be rejected, LSP can uniformly and

independently sample NH points X1, · · · ,XNH from the data

space. The outcome of each sample is a Bernoulli random variable

B =

{
1, if Xi satisfies the inequalities in Eqn (14)

0, otherwise
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The probability of B = 1 is equal to the relative size θ of the

solution region of Eqn (14).X = X1+· · ·+XNH follows a Binomial

distribution. For a large NH , this Binomial distribution can be

approximated by the normal distribution. In this case, LSP can

reject H0 through the Z -test statistic [7]: reject H0 if

X > NHθ0 + zγ
√
NHθ0(1 − θ0) (16)

where zγ is the critical value of the normal distribution and γ
is a desired upper bound for the Type I Error probability, i.e.,

Pr(reject H0 |H0 is true) ≤ γ .
To test if θ > θ0 in the answer sanitation, LSP tests the inequal-

ity in Eqn (16) instead. From the above discussion, the probability

of capturing a successful attack, i.e., Pr(not reject H0 |H0 is true),

is at least 1 − γ . Since this approach only requires testing if a

point satisfies the inequalities in Eqn (14) (for computing X ), it is

applicable to any choice of the aggregation function F and any

shape of the data space.

To determine the sample sizeNH , we need to take the probabil-

ity of Type II Error, i.e., Pr(not reject H0 |H1 is true), into consid-

eration. Let θ1 denote the minimum θ value in H1 that we want

to significantly differentiate from θ0. [15] suggests
θ1

θ0

= (1 + ϕ),

where ϕ is the ratio difference between θ1 and θ0. The two types

of errors can be bounded given enough samples, as stated below.

Theorem 5.1 (Sample Size [11]). In the one-tailed hypothesis
testing, the sample size NH required for Pr(Type I Error) ≤ γ and
Pr(Type II Error) ≤ η is given by

NH ≥
[zγ√θ0(1 − θ0) + zη

√
θ1(1 − θ1)

θ1 − θ0

]
2

.□ (17)

The commonly used γ ,η,ϕ are γ = 0.05, η = 0.2, and ϕ = 0.1.

Once the users specify θ0, LSP can determine the sample size NH
using Eqn (17).

5.4 Privacy Guarantees
Theorem 5.2. The PPGNN solution with the answer sanitation

satisfies Privacy I-IV under the full user collusion assumption.

Proof. Privacy I-III follows from Theorem 4.3. Suppose the

returned query answer for C∗ is P∗, which passes the answer

sanitation. Therefore, for every target user ui in the group query,

the Type I Error probability, Pr(reject H0 |H0 is true), is bounded

by γ . In other words, ui ’s real location is guaranteed to hide in a

region that is at least θ0 (in percentage) of the whole space with

the confidence 1 − γ , i.e., Privacy IV is satisfied.

A noteworthy point is that the answer sanitation does not

affect the protection for Privacy I-III because it only reduces

the number of POIs in the query answer returned to the users

(by returning a prefix of the original top-k answer). The users

learn from the reduced list of POIs that the remaining POIs in

the answer are not returned because there is an inequality at-

tack. However, without these remaining POIs, the users cannot

perform such attacks. □

6 OPTIMIZED PPGNN
The indicator vectorv with length δ ′ has only a single 1 (specify-
ingC∗) and (δ

′−1) 0’s. If δ ′ is large, additional user computational

cost and communication cost are spent on encrypting and trans-

mitting many 0’s. In this section, we present an optimization of

PPGNN solution, called PPGNN-OPT, to reduce these costs. Let

⟦·⟧ denote the ciphertext generated by the generalized Paillier

cryptosystem εs with s = 2 (see Section 3.1), and as before, let [·]
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Figure 4: Optimization example: (a) changes on the user
side; (b) two phases private selection on the LSP side

denote the ciphertext generated by εs with s = 1. The encryption

and decryption with ε2 can use the same public key and secret

key as those with ε1 [10].

To explain our optimization, Figure 4 illustrates the changes

made on the user side and the LSP side for the example in Figure

3 where δ ′ = δ = 8. Instead of using the original indicator vector

v = (0, 0, 0, 0, 0, 0, 1, 0)T to indicate the position of the real query,

uc uses two small vectorsv1 = (0, 0, 1, 0)
T
andv2 = (0, 1)

T
. On

the user side, uc executes element-wise encryption onv1 with ε1

and executes element-wise encryption onv2 with ε2, obtaining

[v1] = ([0], [0], [1], [0])
T
, ⟦v2⟧ = (⟦0⟧, ⟦1⟧)T . These vectors are

sent to LSP. In this case, the user computational cost and the

communication cost are that for computing and transmitting

[v1] and ⟦v2⟧, instead of that for [v].

On the LSP side, after obtaining the answer matrix A, LSP
privately selects the desired answer in two phases. Firstly, LSP

partitionsA into two sub-matrices (A1,A2). For each sub-matrix,

LSP executes a private selection using [v1] (Theorem 3.1), re-

sulting in the vector ([a3], [a7]). Secondly, LSP selects the final

answer ⟦[a7]⟧ from ([a3], [a7]) using ⟦v2⟧, by treating the ci-

phertext of ε1 as a plaintext of ε2 in Theorem 3.1. uc can decrypt

⟦[a7]⟧ two times to obtain the plaintext query answer a7.

In general, if the length ofv2 isω, the length ofv1 is δ
′/ω. We

assume that δ ′/ω is an integer by padding 0’s at the end ofv if

necessary. We want to choose ω that minimizes the total commu-

nication cost between users and LSP. We focus on the ciphertexts

transmitted between uc and LSP because the plaintext location

sets transmitted between users and LSP remain unchanged. The

length of a ciphertext of ε2, which is in ZN 3 , is about twice the

length of a ciphertext of ε1, which is in ZN 2 . Let Le denote the
length of a ciphertext with ε1. We want the integer ω such that

minimize

ω ∈N≤d
cost(ω) = (2ω + δ ′/ω + 2m) · Le (18)

where the first term accounts for the length of ⟦v2⟧, the sec-

ond term accounts for the length of [v1], and the third term

accounts for the length of the returned answer (m is the number

of ciphertexts required for storing an answer). The optimal ω

for Eqn (18) is the nearest integer to

√
δ ′/2, with the minimum

communication cost cost ≈ 2(
√

2δ ′ +m) · Le .
In comparison, the communication cost of using the original

encrypted indicator vector [v] is cost ′ = (δ ′ +m) · Le , where δ
′

accounts for the length of [v] andm accounts for the length of

the returned answer. The above optimization reduces the cost

when cost < cost ′, or 2

√
2δ ′ < δ ′ −m. Since 2

√
2δ ′ is positive,

2

√
2δ ′ < δ ′ − m holds only if δ ′ > m, and in this case, we

have δ ′2 + bδ ′ + c > 0, where b = −(2m + 8) and c = m2
. The

solutions for δ ′2 + bδ ′ + c > 0 are δ ′ > r1 or δ ′ < r2, where
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Table 2: Performance analysis

PPGNN PPGNN-OPT

Total Communication Cost O(nd)Ll +O(δ
′)Le +O(k)Le O(nd)Ll +O(

√
δ ′)Le +O(k)Le

User Computational Cost O(nd)Cl +O(δ
′)Ce +O(k)Ce O(nd)Cl +O(

√
δ ′)Ce +O(k)Ce

LSP Computational Cost O(δ ′)(Cq +Cs ) +O(δ
′k)Ce O(δ ′)(Cq +Cs ) +O(δ

′k)Ce +O(
√
δ ′k)Ce

r1 = m + 4 + 2

√
2m + 4 and r2 = m + 4 − 2

√
2m + 4. However,

since δ ′ > m and r2 < m, only δ ′ > r1 can be the solution.

In conclusion, on the communication cost, PPGNN-OPT out-

performs PPGNN if and only if δ ′ > r1 holds. Usually k is not

very large and several POIs’ information can be encoded into one

big integer, thereforem is small and PPGNN-OPT can reduce the

cost.

7 PERFORMANCE ANALYSIS
Table 2 summarizes the performance analysis of the PPGNN and

PPGNN-OPT solutions in terms of communication cost, user

computational cost, and LSP computational cost.

Communication cost. Let Ll and Le denote the length of a

location and the length of a ciphertext of ε1, respectively. The

communication cost of PPGNN includes: n location sets with size

d each, i.e., O(nd)Ll , [v] with size δ ′, i.e., O(δ ′)Le , the returned
answer with m encrypted integers that is proportional to the

number of POI to be retrieved k , i.e., O(k)Le . The total cost is
O(nd)Ll + O(δ ′)Le + O(k)Le . With PPGNN-OPT, the cost for

location sets does not change, but the cost for ciphertexts is

O(
√
δ ′)Le + O(k)Le (see Section 6). Therefore, the total cost is

O(nd)Ll +O(
√
δ ′)Le +O(k)Le .

User computational cost. LetCl denote the cost for generat-
ing a dummy location, and Ce denote the cost for execution on a

ciphertext of ε1 (e.g., encryption, decryption). The user computa-

tional cost of PPGNN includes: location sets with sized generated

by all the users, i.e.,O(nd)Cl , encryption of [v] with size δ ′ com-

puted by uc , i.e.,O(δ
′)Ce , and decryption of the returned answer,

i.e.,O(k)Ce . The total cost isO(nd)Cl +O(δ
′)Ce +O(k)Ce . Similar

to the analysis of communication cost, for PPGNN-OPT, the total

cost is O(nd)Cl +O(
√
δ ′)Ce +O(k)Ce .

LSP computational cost. Let Cq denote the cost for execut-

ing a kGNN query (e.g., MBM algorithm [24]), andCs denote the
cost for answer sanitation for one candidate query. The LSP com-

putational cost of PPGNN includes: kGNN queries and answer

sanitation forO(δ ′) candidate queries, i.e.,O(δ ′)(Cq+Cs ), and the
private selection on δ ′ answers with sizem, i.e.,O(δ ′k)Ce . Hence,
the total cost isO(δ ′)(Cq +Cs )+O(δ

′k)Ce . For PPGNN-OPT, the
costs for kGNN query and answer sanitation remain unchanged,

but the cost for private selection is O(δ ′k)Ce + O(
√
δ ′k)Ce be-

cause of the two phases private selection, where the first phase

operates on O(δ ′) answers and the second phase on O(
√
δ ′) an-

swers. The total cost isO(δ ′)(Cq +Cs )+O(δ
′k)Ce +O(

√
δ ′k)Ce .

In summary, the communication cost of PPGNN-OPT is asymp-

totically better than that of PPGNN. However, since the above

analysis ignores constant coefficients, in practice, whether PPGNN-

OPT is better depends on δ ′ andm, as discussed at the end of

Section 6 (note thatm = xk , where x is the number of big integers

needed to encode one POI). The comparison on user computa-

tional cost is similar. The LSP computational cost of PPGNN-OPT

is always larger than PPGNN because the second private selection

is an extra cost comparing to PPGNN. We will experimentally

compare the two solutions in Section 8.

8 EXPERIMENTS
We evaluated the performance of PPGNN (Section 4.2), PPGNN-

OPT (Section 6), and the Naive solution (the beginning of Section

4). Since the baseline methods for n = 1 and n > 1 are different,

we consider the single user query scenario (n = 1) in Section 8.2,

and the group query scenario (n > 1) in Section 8.3.

8.1 Experimental Setup
We conducted experiments on a machine with Intel (R) Core (TM)

i7-3770 CPU@ 3.40 GHz×8 machine with 15.6G of RAM, running

Ubuntu 16.04.1 LTS. All algorithms were implemented in C++.

The classic Minimum Bounding Method (MBM) [24] is applied

as our plaintext kGNN algorithm in PPGNN, PPGNN-OPT, and

the Naive solution, and the aggregation function F is sum. We

employed the GMP3 library for big integer computation and

libhcs4 library for operations of the generalized Paillier scheme.

The keysize for ε1 is 1024 bits and the keysize for ε2 is 2048. Table

3 summarizes all parameters and their ranges.

Dataset. We used a real-world dataset Sequoia
5
, which is

widely used in previous studies [12–14, 27, 36]. The dataset con-

tains 62556 POIs from California, including the coordinate and

name. As in these previous works, the location space is normal-

ized into a square space, and the real location for every user in

a group query was randomly generated as a point in this space.

The coordinates of POIs (8 bytes per POI) are returned as the

query answer.

Baselines. For n = 1, we choose the approximate private

kNN query approach, APNN, in [36] as the baseline. In APNN,

LSP partitions the data space into grid cells and pre-computes

kNN results with respect to the center of each cell and encrypts

them. At the query time, the user chooses a square cloak-region

containing her location which consists of b2
cells, and initiates a

two-stages cryptographic protocol to retrieve the desired answer.

The protocol ensures that LSP does not know which cell the

user is located in, nor which answer is retrieved, which ensures

Privacy I-II with the privacy level b2
, and the user can only

decrypt the requested answer, which ensures Privacy III. In our

experiments, APNN has a query cloak-region consisting of 5
2

grid cells, which is equivalent to our default setting d = 25 for

Privacy I. Note that APNN produces only approximate answers

and relies on pre-computation of kNN results with respect to

the center of every cell. This method is not suitable if the exact

answer is required or if the database is dynamic. Also, it cannot

be extended to the group query scenario because the number of

possible queries is significantly large. We did not consider other

approaches such as [12, 27] because they are less efficient than

APNN according to [36].

For n > 1, the first baseline is the incremental pruning private

filter (IPPF) algorithm in [14], which is the first work considering

users’ location privacy in the kGNN query. With the cloak-region

technique, IPPF ensuresPrivacy I-II but notPrivacy III-IV. The

3
http://gmplib.org

4
https://github.com/tiehuis/libhcs

5
http://chorochronos.datastories.org/?q=node/58

284



second baseline is the group location privacy (GLP) algorithm

in [2], which applies a secure multiparty computation technique

for the users to compute their centroid, and LSP returns the kNN
query answer with respect to the centroid. GLP ensures Privacy
I and III, but not Privacy II and IV. A more detailed discussion

for IPPF and GLP solutions can be found in Section 9.

Metrics.We measured three dominating costs for the queries:

the total communication cost (including communications between

the user group and LSP, as well as the communications within the

user group), the total user cost (the sum of all users’ computational

cost), and the LSP cost (all the computations execute on LSP

during the query process). In the group query scenario, we also

evaluated the number of POIs returned to the users, an indicator

of the quality of the answer while resisting the full user collusion

inequality attack. We executed 500 queries and reported the

average cost.

For the discussion below, the reader is referred to Table 3 for

the ranges and default settings of all parameters.

Table 3: Parameters evaluated

Parameter Range Default

n = 1

Privacy I parameter (d) [5, 50] 25

POI to be retrieved (k) [2, 32] 8

n > 1

Privacy II parameter (δ ) [25, 200] 100

POI to be retrieved (k) [2, 32] 8

user number (n) [2, 32] 8

Privacy IV parameter (θ0) [0.01, 0.1] 0.05

8.2 Evaluation for Single User Query (n = 1)
For n = 1, we evaluated PPGNN and PPGNN-OPT by varying d
and k . We did not evaluate Naive that is designed for n > 1.

Varing d: Figure 5a-5c compares the three costs of PPGNN

and PPGNN-OPT for varying d . Note that APNN does not depend

on d and is not included. All three costs increase as d increases

because each user needs to generate more dummy locations and

executes more encryption on the indicator vector, and LSP needs

to compute more candidate queries and select the final answer

from more query answers. Figure 5a shows that d = 15 is the

threshold for PPGNN-OPT to outperform PPGNN regarding the

communication cost. When d ≥ 15 (note that δ ′ = d when n = 1),

the communication cost reduction of PPGNN-OPT starts to take

effect, which is consistent with the analysis in Section 7. Figure

5b shows a similar trend for the user cost, but with a different

threshold d = 25 for PPGNN-OPT to beat PPGNN, since the

coefficients in Eqn (18) are different with respect to user cost.

Usually the cost of operation using ε2 consumes more than 2

times (≈3 times in our experiments) than that using ε1, leading to

a larger threshold required. For the LSP cost (Figure 5c), PPGNN

always performs better because LSP needs to execute two-phases

private selection in PPGNN-OPT. In the mobile user scenario,

reducing the communication cost and the user cost has a priority

over reducing the LSP cost.

Varying k: Figure 5d-5f reports the performance of PPGNN,

PPGNN-OPT, and APNN for varying k . The communication costs

(Figure 5d) of the three solutions have a staged growth when k
goes up because 15 POIs information can be encoded by a big

integer in our settings. Figure 5e shows a similar trend on the user

cost for the three solutions. For PPGNN and PPGNN-OPT, the

LSP cost (Figure 5f) increases when k becomes larger because the

kNN query time and private selection time increase. APNN has
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Figure 5: Effect of parameters when n = 1

the lowest LSP computational cost because of pre-computed kNN
query answers for all grid cells. This computational gain is paid

by returning only approximate kNN answers and the potentially

expensive update cost for recomputing all kNN answers for a

dynamic database.

8.3 Evaluation for Group Query (n > 1)
When n > 1, we evaluated PPGNN, PPGNN-OPT and Naive

in Section 8.3.1 by varying δ , k , n, and θ0. We set d = 25 by

default and did not show its effect because of the relatively stable

performance. We experimentally tested for every (n,d,δ ) where
n ∈ [2, 32], d ∈ [5, 50], δ ∈ [50, 200] and the average difference

between δ ′ and δ is approximately 1, i.e., δ ′ ≈ δ . We used the

commonly used confidence levels γ = 0.05, η = 0.2 and ϕ = 0.1

in all experiments in the hypothesis testing. The comparison with

the baselines IPPF and GLP, which have only two parameters

same as ours, k and n, is reported in Section 8.3.2.

8.3.1 Evaluation of Our Approaches. Varying δ : Figure 6a-6c
shows the comparison for varying δ . Unlike the comparison for

n = 1 in Section 8.2, the communication cost and user cost of

PPGNN-OPT are much smaller than those of PPGNN and this ad-

vantage increases as δ increases. In fact, the size of the encrypted

indicator vectors ([v1], ⟦v2⟧) in PPGNN-OPT is proportional to

O(
√
δ ′), whereas the size of the encrypted indicator vector ([v])

in PPGNN is proportional toO(δ ′). Therefore, for a large enough
δ , although the encryption using ε2 in PPGNN-OPT consumes

about three times the cost of the encryption using ε1, the user

cost is still much lower.

The Naive solution incurs the most communication cost be-

cause every user in the group needs to send extra δ − d dummy

locations. The LSP costs are almost the same for the three solu-

tions, and are much larger than that for the single user query.

Because when n > 1, the answer sanitation in Section 5.1 is ac-

tivated to ensure Privacy IV, and this operation dominates the

LSP cost. We will discuss more about the LSP cost for answer

sanitation in Section 8.3.2.

Varing k: 6d-6f shows the comparison for varying k . The
relative comparison of the three solutions is similar to Figure 6a-

6c, except that the communication cost and user cost are relatively

stable as k increases, with PPGNN-OPT being the best performer.

Figure 6f shows that, when k increases, the LSP costs for the
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Figure 6: Effect of parameters when n > 1

three solutions first go up because the number of inequalities in

answer sanitation increases, and become stable when k reaches

a number since the number of safe POIs becomes stable as k
increases (see Figure 7a).

Varing n: Figure 6g-6i shows the comparison for varying n.
The trend is similar to Figure 6a-6c, with PPGNN-OPT being the

best performer for the communication cost and user cost. For

PPGNN and PPGNN-OPT, n does not affect the size of encrypted

indicator vector(s), but for the Naive solution, every user needs

to generate and send extra δ − d dummy locations, which leads

to the faster increase in the communication cost and user cost.

The LSP cost of three solutions increases linearly because the

total number of inequalities considered in the answer sanitation

grows linearly with n.
Varying θ0: Figure 6j-6l shows the comparison for varying

θ0. The communication cost and user cost are stable since θ0

only affects the computation on LSP through the sample size

NH required as in Eqn (17). The LSP cost first decreases greatly

and becomes stable as θ0 increases because the sample size in

Eqn (17) behaves this way. In other words, a stronger Privacy IV

level means a faster answer sanitation because fewer samples are

required in the hypothesis testing.

Number of POIs returned: Recall that the answer sanitation
will remove some lower ranked POIs in the top-k answer to

ensure Privacy IV under the full user collusion assumption.

Thus, the number of POIs actually returned to the users could
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Figure 7: The number of POIs returned per answer
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Figure 8: Comparison with other approaches.

be smaller than k . This experiment will study how the answer

sanitation affects this number. We only consider PPGNN because

PPGNN-OPT and Naive will return the same answer as PPGNN.

Note that k , n, and θ0 can affect this number, but δ cannot.

Figure 7a-7c shows the number of POIs returned per answer

for varying k , n, and θ0. The default settings of k , n, and θ0

are 8, 8, and 0.01, respectively. In Figure 7a, as k increases, the

number of POIs returned first increases and then becomes stable

around 4. This is because, with n = 8 and θ0 = 0.01, 4 inequalities

usually lead to a successful inequality attack and a larger k has no

additional impact. In Figure 7b, the number of returned POIs rises

slightly asn increases. At first glance, this seems counter-intuitive

because ensuring no attack on more users is more restrictive. At

a closer look, with more users involved in a query, the target

user’s location l1,∗ weights less in determining if the inequalities

in Eqn (14) hold or not, therefore, there are more choices for

l1,∗, thus, a larger solution region for l1,∗ and it is easier to add

the next POI in the answer. The trend in Figure 7c is expected

because a larger θ0 leads to a stronger Privacy IV, consequently,
fewer POIs can be returned.

To conclude, the top 2 to 5 POIs are still returned for a query

even after the answer sanitation. In practice, such numbers are

usually sufficient because the users might only need to select one

from them.

8.3.2 Comparison with Baseline Approaches. We compared

PPGNNwith the baselines IPPF and GLP for varying k and n. d , δ ,
and θ0 specific to PPGNN are set to their default values. We only

consider PPGNN because the experiments above have shown

that PPGNN-OPT is better than PPGNN. While PPGNN satisfies

Privacy IV assuming full user collusion, let PPGNN-NAS denote

286



Table 4: Comparison with existing work

Group Size Approaches Technique Privacy I Privacy II Privacy III Privacy IV

n = 1

[3, 9, 21] Cloak-Region ✓ ✓ × -

[17, 30] Dummy ✓ ✓ × -

[13, 26] Private Information Retrieval ✓ ✓ × -

[1, 34, 37] Perturbation ✓ × ✓ -

[12, 27, 36] Hybrid Techniques ✓ ✓ ✓ -

Our approach Dummy+Paillier ✓ ✓ ✓ -

n > 1

[14] Cloak-Region ✓ ✓ × ×

[2] Secure Multiparty Computation ✓ × ✓ ×

Our approach Dummy+Paillier ✓ ✓ ✓ ✓

the relaxed PPGNN that satisfies Privacy IV assuming no user

collusion. So PPGNN-NAS does not run the answer sanitation.

For IPPF, we chose the query rectangle area (for each user) to

be 0.0005% of the data space, which is comparable to choosing

d = 25 locations (our default setting) as the location set from

5000,000 addresses in California
6
. For GLP, we chose the same

keysize as PPGNN.
Varying k: Figure 8a-8c shows the comparison for varying

k . The communication cost of IPPF is much larger than PPGNN

and GLP. In fact, IPPF returns all the candidate POIs, which can

be several thousands per query on average, to the users, and

the users have to filter the candidate POIs. GLP consumes more

user cost than PPGNN and IPPF because there are O(n2) cryp-

tographic operations and every user has to transmit encrypted

values to all other users. In Figure 8c, the gap between PPGNN

and PPGNN-NAS is the LSP time spent on the answer sanitation,

which dominates the LSP cost. IPPF and GLP consume less LSP

cost, however, IPPF cannot satisfy Privacy III and IV, and GLP

cannot satisfy Privacy II and IV and provide only an approxi-

mate answer.

Varying n: Figure 8d-8f shows the comparison for varying n.
PPGNN is significantly communication efficient than IPPF and

GLP. The communication cost for GLP increases quickly with

n because the number of transmitted encrypted values is O(n2).

There is a similar trend on the user cost. Again, Figure 8f shows

that PPGNN spent significant LSP time on the answer sanitation

to deal with the full user collusion, whereas PPGNN-NAS has

almost the same LSP time as IPPF and GLP.

8.4 Summary
For n = 1, our solutions, PPGNN and PPGNN-OPT, are compara-

ble with or better than the existing solution APNN that heavily

relies on pre-computing the answers for all possible queries to

reduce the run-time cost. However, APNN produces only ap-

proximate answers and the pre-computation means an expensive

update cost. For n > 1, which is the main focus of this paper,

PPGNN and PPGNN-OPT, have significantly smaller communi-

cation cost and user cost than existing solutions IPPF and GLP

while providing stronger privacy guarantees, i.e., Privacy I-IV,
and PPGNN-OPT performs better than PPGNN in most cases.

We believe that reducing the communication cost and user com-

munication cost is the priority in the mobile user scenario as

considered here. The pay for achieving the stronger privacy guar-

antee is some increase in the LSP cost, especially when dealing

with the full user collusion assumption for Privacy IV. To our
knowledge, this is the first work considering this assumption.

6
https://openaddresses.io/

9 RELATEDWORK
Most existing work focus on the single user query case, i.e., n = 1.

To protect Privacy I, some techniques obfuscate user’s exact

location in a cloak-region (CR) [3, 9, 21] or use dummy query

locations [17, 30]. Another technique [13, 26] is based on pri-

vate information retrieval (PIR), allowing the user to retrieve a

particular record from LSP without revealing which record is

retrieving. In these techniques, LSP needs to return a super-set

of the exact query answer, which not only increases the commu-

nication cost but also sacrifices Privacy III. Data transformation

[37] and differential privacy approach [1, 34] perturb user’s exact

location to a false location, so the query answer is approximate,

and meanwhile, Privacy II is sacrificed because LSP knows the

query answer. The approaches [12, 27, 36] that based on a hybrid

of PIR and cryptography technique can protect Privacy I-III,
but LSP needs to pre-compute the answers to all possible queries.

This technique does not work for n > 1 because of too many

group queries. Also, if a POI information is updated, LSP needs

to re-compute all answers, which is too expensive.

For the group query scenario, i.e., n > 1, Hashem et al. [14]
obfuscates each user’s exact location into a region, and LSP exe-

cutes the kGNN query w.r.t. these regions, returning a super-set

of the query answer. Beside the extra work of filtering the an-

swer set by the users, this approach sacrifices Privacy III since
extra POI information is returned to the users. Privacy IV is

also violated because a user’s exact location is compromised if

its predecessor and successor collude in the filtering phase [2].

In the work by Talouki et al. [2], users compute their centroid

by secure multiparty computation (SMC) [35] and LSP returns

the kNN answer for that centroid. This approach cannot protect

Privacy II and Privacy IV because LSP knows the query answer

and n − 1 users can recover the last user’s exact location by their

own locations and the centroid.

Table 4 summarizes and compares the above works with our

work.

In the privacy preserving meeting location determination

(PPMLD) [5, 16, 31], a group of users each chooses a preferred

meeting location and send the encrypted locations to the server,

who then selects the one to minimize the aggregate distance to

all preferred locations. In our work, the query answer is selected

from the POI database of LSP and the users specify their current

locations, instead of preferred meeting locations. The PPMLD

method cannot be adopted to our privacy preserving kGNN prob-

lem because their cryptographic selection is specific to PPMLD.

On the other hand, our approach can be adopted to PPMLD by

replacing the kGNN building block with any existing non-privacy

preserving meeting location determination solution.
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The data ownership and privacy implication in our problem

are different from most works on secure query processing in the

outsourcing database (ODB) model [32]. In ODB, the users and

the data owner are trusted and the server is not trusted. The

data owner outsources the encrypted database to the server and

the user retrieves the query answer from the server. The privacy

objective is to prevent the server from learning anything about

the database and the user query. In our problem, LSP owns the

data and multiple users jointly specify a query, and no party

trusts anyone except herself.

10 CONCLUSION
This work identifies four privacy objectives for the group k-
nearest neighbor query, kGNN, and designs a privacy preserving

kGNN solution, PPGNN. To our knowledge, this is the first work

that address all of these privacy objectives. Though we consider

kGNN, the proposed privacy preserving approach can be easily

adopted to any group query because it treats the query answering

(i.e., kGNN) as a black box.
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ABSTRACT
Due to the wide availability of social media and the wide range of
real-life and human-centered applications, social networks have
become an attractive research area. However, the temporal aspect
of relations between entities in a social network has been widely
ignored. We argue that the temporal aspect of social networks
is the key to understand interactions and other phenomena hap-
pening in these networks and should thus be considered more
closely. In this work we address the problem of pattern search
in temporal social networks, thus finding all occurrences of a
temporal pattern in a large temporal social network. As a first
step, we define a temporal pruning criterion, which allows to
quickly reduce the search space of candidates. Then, we present
an index structure which allows to quickly find the occurrences
of simple temporal network structures, from which more com-
plex query structures can be derived from. Our experimental
evaluation on a real-world temporal social network shows the
effectiveness of our pruning approach and our proposed index
structures, reducing the search-time for small temporal patterns
by many orders of magnitude.

1 INTRODUCTION
Social networks and other interaction networks1 are dynamic
by nature. Bonds of friendship can last for an eternity, but often
break and fade away over time. Active collaborations between
researchers naturally change over time. Thus, any social network
today will look significantly different tomorrow. Keeping in mind
the dynamic nature of human beings, the history of a social net-
work showing how interactions between individuals evolve over
time should be considered when inferring knowledge from it,
because the knowledge about the evolution of a social network
yields further semantic information. For instance, in a collabo-
ration network it might be interesting to see in which order a
1Though this paper mainly refers to social network, the proposed concepts are also
applicable for other interaction networks, e.g. economical networks, etc.

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the 21st
International Conference on Extending Database Technology (EDBT), March 26-29,
2018, ISBN 978-3-89318-078-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.
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Figure 1: Example evolution of a social network.

group of researchers formed a network, which researchers only
have short-term collaborations and which have rather long and
sustainable research collaborations. However, existing solutions
that consider only a snapshot in time, or building the union of
all past collaborations, are not able to take such information into
account. By considering this dynamic aspect of a social network,
it becomes possible to identify more interesting and meaning-
ful patterns. As a minimal example, consider Figure 1, showing
an evolving social network. Initially, only one social link exists,
between Anna and Brian. In the next month, an additional link
is added between Brian and Chris. Finally, the triangle is closed
with a link between Chris and Anna. In this example, Brian might
act as a social hub, who brings Anna and Chris together. In prac-
tice, more detailed temporal social patterns could matter, as for
instance the duration of a social link between Anna and Chris,
which was induced by Brian, may be of interest. The temporal
development of edges like in our example has been adressed
for more than a hundred years through the concept of ‘triadic
closure’, where the future creation of the third connection in a
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triange is tried to be estimated, e.g. through link prediction in
social networks. A more complex temporal structure in a social
graph is the ‘microtaboo’, where it is frowned upon when per-
sons Alice and Dave want to engage in a relationship, but there
exist prior relationships between Alice and Bob, Bob and Carol,
and Carol and Dave (“don’t date your ex-girlfriend’s boyfriend’s
ex-girlfriend”) [2].

Another example are communication and transportation net-
works, where links between nodes and hubs are only established
temporarily. Routing policies of computer networks may decide
differently at various time points on how to create links between
network nodes in order to transmit data. Transportation net-
works with feeder trucks, cargo aircraft and delivery vehicles
link hubs differently according to current demand. To analyzes
the behaviour of those networks, a temporal pattern analysis of
the interaction graph can help in mining information from the
graph’s history to deduct findings and information for future
optimization.

In this paper we address the problem of efficient evolution
pattern search in large temporal social networks. Our approach
bridges the gap between social network analysis and temporal
logic. The contributions of this paper can be summarized as
follows:
• We formally introduce the temporal subgraph matching
query as a new problem.
• We introduce a language to express such pattern-based
queries.
• We introduce and discuss several query filter strategies.
• We propose an index structure that allows us to search
for temporal subgraph patterns in large temporal social
network graphs.
• We provide a broad evaluation of the performance of our
approaches based on real world datasets and show that
our approach significantly outperforms state-of-the-art
approaches. Though our problem is a generalization of
the subgraph isomorphism problem, which is known to
be NP-complete [6, 11], we can show that our index-based
solution is able to find simple temporal social patterns in
large real-world social networks efficiently.

We define the problem of temporal social subgraph search
in Section 2. In Section 4, we propose filter strategies and intro-
duce our new indexing method in Section 5. Our experimental
evaluation is given in Section 7.

2 PROBLEM DEFINITION
We first introduce our representation of a temporal social net-
work which we define as a graph where each node refers to an
individual and each edge between two nodes is associated with a
discrete function that maps time to the domain {0,1} specifying
the presence and absence of the edge over time.

Definition 2.1 (Temporal Social Graph). Let T = {0, 1, . . . ,m}
be a discrete time domain. A temporal social graph (TSG) G =
(VG ,EG , FG ) is a graph, where VG = {vG1 ,v

G
2 , . . . ,v

G
n } is the

set of nodes, EG ⊆ VG ×VG the set of links (with (vGi ,v
G
k ) ∈ E

G ),
and
FG = { f G

vGi ,vGk
(t)|(vGi ,v

G
k ) ∈ E

G } a set of discrete time-dependent

functions, where f G
vGi ,vGk

(t) ∈ {0, 1} describes the existence of a

connection between vGi and vGk (0 indicating no connection and
1 indicating there is a connection) at time t ∈ T . Furthermore, an
edge (vGi ,v

G
k ) is only an element of EG if ∃t ∈ T : f G

vGi ,vGk
(t) , 0.

Based on this definition we are now able to define temporal
subgraph matching which finds a subgraph from a TSG that
exactly matches a given temporal subgraph query.

Definition 2.2. [Temporal Subgraph Matching] Let G = (VG ,

EG , FG ) be a TSG defined on the time domain T = {0, 1, . . . ,m}.
And let q = (V q ,Eq , Fq ) be a query TSG defined on the time
domain Tq = {0, 1, . . . , tq } where tq ≤ m. A temporal subgraph
matching query retrieves the set S of all temporal subgraphs
S ∋ S = (V S ⊆ VG ,ES ⊆ EG , FS ⊆ FG ), such that there
exists a bijection h : V q → V S and ∆t ∈ {0, ...,m − tq } that
satisfies ∀(vqi ,vqk ) ∈ Eq : (h(vqi ),h(v

q
k )) ∈ ES and ∀t ∈ [0, tq ] :

f
q
vqi ,v

q
k
(t) = f S

h(vqi ),h(v
q
k )
(t + ∆t ).

An example for a temporal social graph G is given in Figure
2(a). For convenience we labeled the edges (vi ,vk ) with the set
of time steps t ∈ T for which the function fvi ,vk (t) = 1. Figure
2(b) illustrates a temporal subgraph query q. A pattern match of
q can be found at ♣ inG for ∆t = 2, h(vq1 ) = v

G
4 , h(vq2 ) = v

G
2 and

h(vq3 ) = v
G
1 . A more sophisticated query q′ is depicted in Figure

6, which matches for h(vq
′

1 ) = vG11, h(v
q′
2 ) = vG8 , h(v

q′
3 ) = vG9 ,

h(vq
′

4 ) = v
G
10, and h(v

q′
5 ) = v

G
6 at ∆t = 5 (around the ♥ marker).

A summary of the notations used throughout this paper can
be found in Table 1.

3 RELATEDWORK
Various applications of temporal graphs and sources of temporal
graph data can be found in surveys on temporals graphs [4, 10].
Existing research on temporal graphs primarily focuses to tempo-
ral paths and their applications [1, 4, 12, 13, 15, 19, 22, 23]. None
of these works study the search of a given query pattern. Most
related is existing work on temporal community detection over
temporal networks [9, 14, 25, 26] and multi-layer networks [3].
These work first identify communities in a static network, then
identify the evolution of the communities from the changes of the
network. Specifically, the problem of finding dense patterns in
temporal graphs has been studied in [25, 26]. This work allows to
find diversified dense regions, thus minimizing the temporal and
social redundancy of the returned patterns. Such diversification
may also be applied to the arbitrary patterns mined in this work,
but is not in this paper’s scope. A recent approach [16] considers
relations between edges, namely the time-respecting subgraph
isomorphism problem, where edges are put into temporal se-
quence of each other. This is useful to model propagation in a
network, but cannot handle more complex temporal constraints
in the query. The authors propose a time-first, topology-first and
a hybrid solution to approach their problem. A consideration of
the fact that edges can appear and disappear over time is made
in [18], which focuses on finding structural subgraph patterns
in the graph that persist over the longest period of time. This is
supported by three index structures that store label information,
neighbourhood constellations and path maps.

In summary, these works can be used to find dense regions
such as cliques and quasi-cliques in a temporal network, but do
not allow to find patterns arbitrarily shaped over time. Thus, to
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(a) Temporal Social Graph G
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(b) Temporal Subgraph Query q

Figure 2: Example TSG and TSQ. Time points where the time dependent function of an edge returns a non-zero value
are noted next to the edge: A dash (‘-’) is used to denote intervals and commas (‘,’) indicate enumeration of timepoints or
intervals. The suit markers (♥,♣, ♦) give visual guidance for the text description.

t ∈ T = {0, 1, . . . ,m} time-domain (discrete)

G = (VG ,EG , FG ) temporal social graph G
vertices/nodes V , edges/links E,
time-dependant function
FG = { f G

vGi ,vGk
(t) ∈ {0, 1}|

(vGi ,v
G
k ) ∈ E

G }
ex. Figure 2(a)

q = (V q ,Eq , Fq ) temporal social query graph q
ex. Figure 2(b)
ex. Figure 6

S ∈ S subgraphs of G matching q
S = (V S ,ES , FS )

G⊥ = (VG ,EG ) non-temporal projection of G

h : V q → V S bijection mapping

MS assignment map of an isomorph
S to q within G
size ofMS : |V q | × |VG |

M0 aggregation of allMS

ex. Figure 7

SSG = (V SSG,ESSG) simple subgraph structure
ex. Figure 3
ex. Figure 9

♠,♥,♣, ♦ visual markers

Table 1: Notations used throughout this paper.

the best of our knowledge, our work is the first one for finding
patterns in temporal graphs such that the query pattern exhibits
temporal constraints.

A further line of related work is pattern search on static (non-
temporal) graphs. The solution to this problem was proposed by
Ullmann [21] and serves as our baseline. This problem, for which
a survey of solutions is found in [5], still attracts vivid research
attention (e.g., [17, 20]). This pattern search has further been
extended to labelled vertex-graphs, as surveyed in [8]. While this
research field has received extensive attention, these solutions are
not applicable to our problem setting since they do not consider
any time-dependent network structures, which increases the
complexity of the problem.

Furthermore, solutions have been presented for the problem
of finding subgraphs in a large collection of small graphs [24].
This approach first mines frequent structures and stores for each
frequent structure the IDs of the graphs that contain it (similar
to an inverted file). A query can then be answered by identify-
ing the frequent structures contained in it and intersecting the
corresponding lists of IDs. Although, this problem setting is also
fundamentally different, it nonetheless inspired us for the index
structure proposed in this work.
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4 BASIC TEMPORAL SUBGRAPH
MATCHING

The problem of temporal subgraph matching is related to the
classic subgraph isomorphism counting problem, which is to find
the set S of all subgraphs of a non-temporal graph G that are
isomorphic to a given non-temporal query graph q. This problem
is a generalization of the NP-complete subgraph isomorphism
problem [6, 11], where the challenge is to decide whether any
such subgraph S ∈ S exists in G. Consequently, the subgraph
isomorphism counting problem is NP-hard, since its result can be
used in to decide the subgraph isomorphism problem in O(1), by
testing the number of subgraphs for positivity. The current best-
known algorithm for obtaining the exact count of an arbitrary
query graph q is in O(n

ωk
3 ), where k is the size of query graph

q and ω is the exponent of fast matrix multiplication [7]. Our
problem is at least as hard as subgraph counting, as we want to
enumerate all instances ofq inG , while also considering temporal
constraints on edges.

The problem of finding all subgraph isomorphisms on static
(non-temporal) graphs can be extended to temporal subgraphs
as follows: Given a temporal query subgraph q = (V q ,Eq , Fq ),
initialize the non-temporal graph q⊥ = (V q ,Eq ), where Fq⊥ , 0.
In informal words, two nodes in q⊥ are connected iff their corre-
sponding vertices in q are connected at least at one point of time.
This can be seen as a projection of the temporal query q to a
single point of time. Now this projection is applied on the tempo-
ral graph G = (VG ,EG , FG ) as well, yielding the non-temporal
graph G⊥ = (VG ,EG ). Now solve the subgraph isomorphism
problem on the “flattened” by finding the set of all subgraphs S⊥
ofG⊥ that are isomorphic to q⊥. This yields, for each any edge e
in any resulting graph S⊥ ∈ S⊥ a mapping h(e) to an edge in G
as described in Definition 2.2.

Since the temporal subgraph query is more selective than
the non-temporal query by considering temporal constraints,
an additional refinement step is necessary. For any S⊥ ∈ S⊥ to
be verified as a result of the overall temporal subgraph query,
there must exist a time offset ∆t such that the time-dependent
function Fq matches the time dependent function of S. More
formally, S⊥ = (V S ,ES ) satisfies the temporal subgraph query
of q iff ∃∆t ∈ {0, ...,m − qt } : ∀e ∈ S⊥ : ∀t ∈ [0, tq ] : f qe (t) =
f Gh(e)(t + ∆t ).

4.1 Subgraph Isomorphism in Non-Temporal
Graphs

Ullmann [21] introduces a viable method for solving the (non-
temporal) subgraph isomorphism problem, which we will extend
and briefly describe in this chapter: Let G be a non-temporal
graph, which is the special case of a temporal graph having a
singular time domain T = {0} and having all edges in EG exist
at time 0. For every subgraph S = (V S ,ES ) ∈ G that is isomorph
to a query graph q, we can define a |V q | × |VG | matrixMS , such
thatMS

i, j = 1 iff h(vqi ) = v
G
j and 0 otherwise.MS can therefore

be interpreted as an assignment map that locates the vertices
of the subgraph in the larger graph. Note that in every row of
MS , there is exactly one cell with the value of 1, while in every
column there is at most one cell to contain a 1.

Let furthermoreM0 be amatrix having the same dimensions as
MS andM0

i, j = 1−∏
S ∈G (1−MS

i, j ), so thatM
0 gives information

about whether there exists any unspecified subgraph S so that
h(vSi ) = v

G
j . It is now possible to retrieve the individual subgraph

matricesMS fromM0, along with possible other matrices, which
do not belong to a valid subgraph query solution: Alter the cells
ofM0 by setting different cells from 1 to 0, until the constraints
of a subgraph representation are fulfilled (exactly one 1 per row,
max. one 1 per column).

The main idea is to mine candidate subgraphs S from M0,
which are matching in the “flattened” graph G⊥ that is oblivious
to the time constraints. Therefore, a cell M0

i, j = 0 implies that
there exists no subgraph S where h(vSj ) would map vertex vSj to
vertexvGi in the social network. Analogously, a value of 1 implies
that such a graph may possibly exist. A trivial case is to set every
M0
i, j to 1, which means that every vertex inG can be part in any

subgraph that fulfills q. But in order to improve the runtime of
the algorithm, it is desireable to reduce the number of subgraph
combination. This can be achieved by setting as many cells inM0

to 0 as possible. There are different methods to prune candidates
with varying complexity and efficiency:

• Pruning based on anode’s degree. If deg(vSi ) > deg(vGj ),
thenM0

i, j can be set to 0. Note however, that in social net-
works the degree of the vertices is usually much higher
than the degree of vertices in the query pattern q, which
is why this approach yields limited pruning power.
• Pruning based on invalid neighbour mappings. Ver-
tices can be pruned if there is no valid assignment for
its neighbours, although the node itself can be mapped
between S and q. More formally, a cellM0

i, j = 1 can be set
to 0 (and thus be pruned), if there is a neighbour vertex
vSu of vSi (i.e. (vSi ,v

S
u ) ∈ ES ) and no neighbour vGw of vGj

(i.e. (vGj ,v
G
w ) ∈ EG ) such thatM0

u,w = 1:

M0
i j ← M0

i, j ·
( ∏
(vSi ,vSu )∈ES

(
1 −

∏
(vGj ,vGw )∈EG

(
1 −M0

uw
) ))

Pruning a cell may allow for further pruning of other cells,
so a new pruning iteration should be invoked after a suc-
cessfully setting a cell to 0. This method can be stacked
with other methods to further remove further candidates
after another method was successful in removing candi-
dates.

4.2 Additional Pruning Filters for Temporal
Graphs

Besides the generic filter steps enlisted in Section 4.1, we further-
more introduce two more viable filter steps that can be applied
in the context of temporal subgraph isomorphisms:

• Pruning based on time offset. As described before, ev-
ery derived subgraph S that is a candidate to be isomorph
to the query (represented throughMS ) needs to be refined
in the sense that there needs to exist a ∆t so that the time-
dependant functions match. When testing various ∆t , it is
feasible to create a copyMS

∆t
ofMS . Since only the time

frame from ∆t until ∆t + tq is relevant for the matching
of the functions, the graphG can be projected onto a more
sparse graph N∆t than N by only inserting an edge into
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EN∆t , if the corresponding edge in G exists in this more
narrow time frame.
• Pruning based on network distance. When iterating
through M0, after setting a candidate value for the first
processed row of M0, we can try to cut down the the
number of columns that can contain 1s at all. Let i be the
index of a row where exactly one column j is set to one.
Then we can compute the maximum hops from vSi to any
other node in S . Then we determine all nodes in the graph
N , whose hops distance to vNj is larger than that distance.
Those columns can then be set to zero. This is a viable
approach if |V N | ≫ |V S | and N is sparse. For efficiency
reasons, it is recommended to pick the first row i in a way
so that vSi lies in a central position in S , e.g. minimizing
the maximum hops distance. As temporal aspects are not a
pruning criterion for this filter, it can generally be applied
to non-temporal subgraph isomorphism queries as well.

In our experiments, we will take a deeper look at the effective-
ness and performance of the basic and our extended filters. We
will also evaluate the processing order, in which these filters are
applied.

5 AN INDEX STRUCTURE FOR TEMPORAL
GRAPHS

In this section we will give an in depth description of how to
build an index for temporal social graphs and how to perform
pattern queries on this index.

The construction of an index structure that supports subgraph
pattern search on temporal graphs can be summarized in four
steps: (1) Select one or more simple subgraph structures (SSGs)
and do the following steps for each of them. (2) Find each oc-
currence of the SSG in the graph G without consideration of
the temporal aspect. (3) Transform each occurrence into a string
reflecting its unique behaviour over time considering the func-
tions f of the edges. (4) Index the obtained strings using an index
structure for substring search. In the following we will consider
each of these steps in detail.
Simple Subgraph Structure Selection: The selection of suit-
able SSGs (SSG = (V SSG,ESSG)) is crucial for the performance of
the index, since the index can later on only answer queries that
contain at least one of the selected SSG. A good set of SSGs should
thus contain even the simplest possible query structures. Let us
note that a temporal pattern query on a TSG must involve at least
a relationship (edge) of two entities (nodes). The most simple
SSGs involving 2 and 3 nodes, illustrated in Figure 3, should thus
always be indexed in order to allow index support for all possible
queries. When challenging the trade off between simplicity and
ubiquitousness of SSGs, multiple different SSGs may be indexed
in parallel to suit a wider array of queries. In the following we
will showcase the construction of the index based on the triangle
structure.

Finding SSG Occurrences: To find all occurances of the SSG
in the graph, the temporal aspect of G will be neglected thus
using “flattened” version ofG⊥ ofG as used in Section 4. Within
G⊥, we search for all occurrences of the SSG using a traditional
subgraph isomorphism algorithm such as [21]. An SSG occurs at a
set of nodesVO ⊂ VG iff (vOi ,v

O
j ) ∈ E

N ⇔ (vSSGi ,vSSGj ) ∈ E
SSG.

Please note that due to possible symmetries, several occurrence

k
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Figure 3: Simple Subgraph Structures (SSGs) with 2 and 3
nodes
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Figure 4: Encoding the edges of a graph. Each possible
graph topology is encoded by an uppercase Latin charac-
ter A-H.

can happen for the same set of VO , depending on how VO is
mapped to V SSG.

Example 5.1. The triangle SSG occurs within the graph of
Figure 2(a) at the positions marked with ♥, ♣, and ♦. If there
would be an edge (vG6 ,v

G
10) at time 1, the set of nodesvG6 ,v

G
9 ,v

G
10

would also form an occurrence, even though at no point of time
an actual triangle is formed between the nodes.

The identification of those SSG occurances does not come
free of cost: In particular, finding all subgraphs of G that are
an occurance of the SSG has a runtime complexity of O(n

ωk
3 ),

where k is the size of query graph q and ω is the exponent of fast
matrix multiplication [7]. However, this task can be performed
offline and will not affect the query performance. Furthermore,
the actual runtime is in general low enough due to two reasons:
First, the SSGs are usually very small (in our example not more
than 3 nodes) and second, the graph G is not fully connected in
a real-world setting.

String Transformation: At every discrete point of time, a
set of nodes in the graph that belong to an SSG can form a certain
constellation via their edges. Figure 4 shows all possible com-
binations for a triangle SSG consisting of three, distinguishable
nodes (vSSG1 , vSSG2 , and vSSG3 ) and assigns each constellation a
unique symbol; here we are using uppercase Latin characters.
To encode an SSG’s temporal behaviour over time, at each time
frame the currently present edges have to be figured out and
be mapped via a pre-defined assignment table (such like Figure
4) to a unique symbol or character. In general, the alphabet to
encode all constellations of an SSG having k edges consists of 2k
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characters. Concatenating these characters along the chronologi-
cal time-series will yield in a string representing the temporal
behaviour.

Example 5.2. The graph q denoted in Figure 2(b) shall be repre-
sented by a string using the triangle SSG. When each node vqi is
mapped tovSSGi , the symbol representing the graph constellation
at each time frame tj (0 ≤ j ≤ tq ) can be looked up in Figure 4
(t0: B, t1: F, t2: H), thus yielding the string BFH. For other possible
mappings of vq to vSSG the string representations BGH, CEH,
CGH, DEH, and DFH are valid as well.

This schema can be applied to all substructure occurrences
found in the graph, so that each occurrence’s temporal behaviour
can be described through a string. It is then feasible to index
those strings in a way to efficiently support substring search.
We propose to employ a suffix-tree to index these substrings
concisely.

Example 5.3. Consider the triangle SSG. It occurs three times
in our example graphG (Figure 2(a)), namely at ♥, ♣, and ♦. For
every occurrence, there exist six possible permutations of how
the substructure can occur at this position, due to the ways vGi
may be mapped to vSSGi . We depict all of these occurrences and
permutations in Figure 5.

6 QUERY PROCESSING
Next, we describe how our string-index can find all occurrences
of a given temporal query pattern q. As described in Section 5,
in the following, we assume that an index has been build for a
specific simple subgraph structures SSG.

(1) Identify occurrences of the SSG in the “flattened” temporal
graph query q⊥.

(2) For each such occurrence, perform the same string trans-
formation than performed for the index (i.e., use the same
character map).

(3) Index-supported search for the transformed string to find
candidates for verification.

(4) Refine the candidates through verifying that the part of
q which is not contained in the SSG is isomorph to the
surrounding of a candidate.

In more detail, to answer queries according to Definition 2.2
using the index support of the suffix-tree, we first have to isolate
those SSG occurrences in the graph topology of the query graph
of the SSG that was used for the string transformation process
before. An SSGmay occur not at all, once, or multiple times in the
graph. If no SSG occurrence can be found, the index is of no help
and the search has to default to a full scan, which is why there
is a motivation to keep SSGs small and simple. In case of one
or several occurrences of the SSG in q, we isolate the temporal
behaviour of that part of the query graph and transform it using
the same string encoding method used for the index construction.

Since the queried time frame is usually smaller than the in-
dexed time span, the length of the string derived from the SSG
occurrence in q is shorter than the length of string belonging
to the occurrence in the graph which is stored in the index. To
answer the query, we now must find all those strings in the index
that contain the substring belonging to the query.

Example 6.1. Identification and String Transformation
of SSG in query q. In our example query q′ (Figure 6), the tri-
angle SSG occurs at the ♠ marker. Since there are six possible
permutations of the occurrence, valid string transformations are
EHH, EHH, FHH, FHH, GHH, andGHH. With each of these unique
query strings, we can search our encoding index (suffix tree) for
entries that contain the query string. The substring positions are
indicated through bold and underlined text in Figure 5. Entries
which do not contain one of the substrings can be pruned.

Since practical SSGs consist of more than one node, there is
usually always more than one way it can be mapped to either
the nodes of the occurrence in the query graph or the occurrence
in the main. I.e., there are also several string transformations of
the occurrence. There are in general several ways to approach
these permutations:
• Account for permutations at index creation and query
processing. This means that every permutation is indexed,
thus resulting in a larger index, and that index is queried
multiple times (once for each permutation of the query)
• Consider the permutations in the index, but not for the
query
• Consider the permutations only within the query
• Neglect the permutations in the query graph and at index
creation.

Neglecting all permutations may result in correct results not be-
ing found, as there is no guarantee that an ‘identical’ permutation
has been used for the index and the query. On the other hand,
if permutations are considered both times, the result will also
show how the query ‘fits’ into the graph, i.e. the direct mapping
from the nodes can be deducted. However, multiple queries have
to be performed on an increased index, thus increasing query
cost. As a trade-off, it is possible to only consider all permuta-
tions on one side (either the index or the query), and then find
out the mapping in a refinement step. We recommend to con-
sider all permutations within the index and not for the query,
as submitting multiple queries increases the overall query cost
linearly, while linearly enlarging the index results in a sublinear
increase in query performance. Compared to the approach where
permutations are considered on both sides, a refinement step
is now necessary to deduct the exact mapping of the query to
the substructure (one mapping per possible permutation). This is
likely to be done faster after the query than it is to do multiple
queries (one for each permutation).

Example 6.2. Index-supported Search for Transformed
String Representation of the SSG. If following our advice to
only consider permutations within the index, querying our exam-
ple query q′ (Figure 6) with a triangle SSG, the search string will
either be EHH or FHH or GHH. The exemplary index in Figure
5 will then yield the set of nodes {vG3 ,v

G
5 ,v

G
6 } for the ♦, and

the set {vG8 ,v
G
9 ,v

G
11} for the ♥ occurance. However, the mapping

of vq
′

i to vGj cannot be deducted from the index and has to be
refined computationally.

Searching for a substring in the index then retrieves two im-
portant facts for every match: (1) a subset ofVG that corresponds
to an SSG occurrence, and (2) the temporal offset ∆t at which
it occurred (calculated by the offset position of the substring
from the beginning of the indexed string). Both are crucial for
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Figure 5: Transforming the temporal behaviour of the triangular SSG occurances in G to strings.
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Figure 6: A more complex TSQ q′.

efficiently refining the candidates. A refinement is necessary, as
the query may be more restrictive than the SSG itself, i.e. through
additional edges attached to the SSG, the retrieved candidates
are a superset of the results. Therefore, this set has to be refined,
i.e. it has to be checked whether the found SSG is part of a larger
subgraph structure that can fulfill the query constraints with re-
gards to graph structure as well as temporal behaviour. To refine
the candidates, we return to the concept of Section 4.1. Before
evaluating the substring candidates, we can still apply the degree
filter for q′ and G toM0, as it is a quick way to eliminate some
impossible assignments.

Example 6.3. Figure 7 showsM0 for our sample query q′ after
applying the degree and neighbour filters. It shows that for ex-
ample vq

′

1 can only be mapped to nodes with a degree of at least
4, thus leaving only cellsM0

1,4 andM
0
1,9 in the first row with a 1.

On the other hand,M0
2,3 is set to 0, as vq

′

2 cannot be mapped to

vG4 , as v
G
4 (unlike vq

′

2 ) does not have a neighbour of degree 4.

After optimizing M0, for each found SSG x , we initialize a
copy of M0 denoted as Mx and thereby set Mx

i, j := M0
i, j . Each

found SSG instance x gives us a ‘hint’, where an occurrence of
q′ in G may occur as well as the temporal offset ∆t at which
the temporal pattern of the subgraph structure matched. This
hint will either lead to a correct result or may be false – but

M0 !"# !$# !%# !&# !'# !(# !)# !*# !+# !",# !""#

!"-′ 0 0 0 1 0 0 0 0 1 0 0

!$-′ 1 1 0 0 1 1 1 1 0 0 1

!%-′ 1 1 0 0 1 1 1 1 0 0 1

!&-′ 1 1 0 0 1 1 1 1 0 1 1

!'
-′ 1 1 0 0 1 1 1 1 0 1 1

Figure 7: Assignment matrix M0 for q′ and Q after apply-
ing the degree and neighbour filters.

M�4 !"# !$# !%# !&# !'# !(# !)# !*# !+# !",# !""#

!"-′ 0 0 0  1 ?! 0 0 0 0 0 0

!$-′ 0 0 ?!          0 0 0 0 0 0 0 0

!%-′ 0 0 0 0 0 1 0 0 0 0 0

!&-′ 1 1 0 0 0 0 1 1 0 1 1

!'
-′ 1 1 0 0 0 0 1 1 0 1 1

Figure 8: Assignment matrix M♦4 after applying the as-
signment from the index candidate. This means that the
bold cells should be set to 1. However, cells depicted with
‘?!’ already contain a 0 (ref. Figure 7) and cannot be set to
1 in a valid way.

its correctness will not have any effect on other SSG instances,
which is why we can process them individually and in parallel.
Since the index found a matching SSG which implicitly matches
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the vertices of the structure to vertices of the graph (after consid-
ering the permutations of the mapping), we can assign |V SSG | fix
assignments, thus nullifying all other cells in those rows (since
Mx is usually much wider than tall, this drastically increases the
number of cells containing a 0). Since ∆t is known at this point
of time, we can now apply the more sophisticated time offset and
network distance filters (Section 4.2) toMx .

Example 6.4. Let us return to our running example, where we
search for occurrences of the more complex query q′ (Figure 6)
in the running social net work G (Figure 2(a)). Let’s consider the
fourth permutation of the ♦ substructure, which is returned as
a candidate through the query permutation EHH (vq

′

1 → vSSG1 ,
v
q′
2 → vSSG3 , vq

′

3 → vSSG2 ) (see Figure 5). Mapping this SSG to G
yields the mappings vq

′

1 → vSSG1 → vG5 ; vq
′

2 → vSSG3 → vG3 ; and
v
q′
3 → vSSG2 → vG6 also shown in Figure 5. We attempt to make

this assignment in the corresponding matrixM♦4 depicted in Fig-
ure 8. Therefore, we have to set the values inM♦41,5,M

♦4
2,3 andM

♦4
3,6

to 1, but we see that the first two entries already contain a zero
in the global assignment matrix M0, such that this assignment
does not yield a valid matching. Therefore we can stop here and
prune this candidate. In fact, in our example we can prune all
permutations of ♦ in the same way, as well as permutations 1, 3,
5, and 6 of ♥; with ♣ not even providing candidates. In summary,
this just leavesM♥2 andM♥4 for further refinement.

We are now left with a set of matrices that we need to derive fi-
nal assignment candidates from. A naive way would be to iterate
over all possible assignments and verify them; one would do that
by choosing a singleMX

i, j = 1 and using it as an assignment, thus
nullifying other values row i and column j , and then proceeding
to row i + 1, re-applying the same concept. This needs to be done
iteratively for allmX

i, j = 1 of a row. We aim to improve this expo-
nentially expensive approach by using heuristics. Therefore, we
first take effort in finding a clever order of which we process the
rows. We process rows in breadth-first-order starting at the corre-
sponding SSG occurrence, skipping lines having a “1” assigned by
the SSG occurrence. For any other line b, we look at any previous
row a such that (vq

′
a ,v

q′

b ) ∈ E
q′ , i.e., a neighbour of vq

′

b that we
have already assigned. Since we always start with a pre-assigned
row and proceed in a breadth-first-manner, such a rowmust exist.
That row a contains a single assignment h(vqa ) = vGc . Assuming
this assignment is correct, we only need to look at columns d
where vGd is a neighbour of vGc , thus having (vGc ,vGd ) ∈ E

G . This
can be deducted from the following:

h(vqa ) = vGc ∧ h(v
q
b ) = v

G
d ∧ (v

q
a ,v

q
b ) ∈ E

q

⇒ (vGc ,vGd ) ∈ E
G

because Eq ⊆ EG .

For every neigbour vGd where Mx
b,d = 1 and the temporal

patterns match, we create a copy of the current Mx , nullify all
other cells in row b and proceed to the next row inMx . When the
last row is reached, every vertex in vq has been assigned exactly
one partner in vG , thus being a result.

Example 6.5. For our running example, we retrieve the follow-
ing assignments fromM♥2 andM♥4:

M♥2 : h(vq
′

1 ,v
q′
2 ,v

q′
3 ) = (v

G
9 ,v

G
8 ,v

G
11)

M♥4 : h(vq
′

1 ,v
q′
2 ,v

q′
3 ) = (v

G
11,v

G
8 ,v

G
9 )

The later one is invalid, as M0
1,11 is already 0 and v

q′
1 can

therefore not be mapped to vG11. Following the first assignment,
we now retrieve two final candidates for the complete occurance
of q′:

C1 : h(vq
′

1 ,v
q′
2 ,v

q′
3 ,v

q′
4 ,v

q′
5 ) = (v

G
9 ,v

G
8 ,v

G
11,v

G
6 ,v

G
10

C2 : h(vq
′

1 ,v
q′
2 ,v

q′
3 ,v

q′
4 ,v

q′
5 ) = (v

G
11,v

G
8 ,v

G
9 ,v

G
10,v

G
6 )

of which the first one C1 is invalid, as the time-dependant-
function on edges (vq

′

1 ,v
q′
4 ) and (v

Q
9 ,v

Q
6 ) do not match. C2 is a

valid result to the query.

7 EXPERIMENTS
In this section we show experimental results of our proposed
methods. As a baseline approach, we resort to Ullmann’s algo-
rithm as described in Section 4.1. This represents the expansion
of traditional solutions to the temporal domain. We further eval-
uate the included filters as well as our proposed additional filters
individually and in combination to distinguish the naive baseline
approach from a more advanced setup. We then compare this
baseline approach, which has been extended to temporal graphs,
to our advanced query processing approach proposed in Section
6 supported by the index structured introduced in Section 5. Ad-
ditionally, we introduce the evaluated queries and the employed
datasets. All experiments were performed on a 3Ghz workstation
having 32 GB of RAM. The experiments were run on a single
core.

7.1 Datasets
As a datasource for our real data evaluation we use a snapshot
of the ACM Digital Library2 taken on Dec 15, 2014 consisting
of 582,150 publications with author information. Using only the
co-author relationship for each calendar year, we build a tempo-
ral social graph G = {VG ,EG , FG }, reflecting the collaboration
network over time, in the following way:
• Each researcher present in the dataset is represented by a
node vG .
• Two researcher nodesvGi andvGj are connected by an edge
(vGi ,v

G
j ) if they have at least co-authored one publication

at any time t ∈ T .
• The time dependent function for an edge (vGi ,v

G
j ) indi-

cates collaboration over time and is set the following way:

f G
vGi ,vGj

(t) =


1 if vGi and vGj co-authored a publi-

cation in year t
0 if vGi and vGj did not co-author a

publication in year t

The resulting temporal social graph is called PUBS in the re-
mainder of this section. In order to evaluate naive approaches of
the proposed algorithms we also use small subgraphs of PUBS
2http://dl.acm.org/
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Square	Pan	 Crossbox	

Arrow	String	 Triangle	

Figure 9: Evaluated subgraph structures in our experi-
ments along with assigned names.

PUBS MiniPUBS MicroPUBS
Nodes 379,188 10,000 3,792
Edges 2,114,720 77,568 36,548
Timepoints 69 46 43
# Strings 2,114,720 77,568 36,548
# Arrows 44,379,646 1,541,152 917,810
# Triangles 13,191,264 422,736 176,286
# Squares 449,684,160 5,179,608 2,259,456
# Pans 1,438,921,874 25,601,204 21,972,438
# Crossboxes 411,978,792 3,967,824 1,196,184

Table 2: Characteristics of the researcher collaboration
datasets

Triangle	

T-Two-Legs	T-Long-Leg	

T-One-Leg	

T-Pair-Legs	

Double-Triangle	 Quad-Clique	

Figure 10: Small queries used in our experiments.

called MiniPUBS and MicroPUBS, with 10000 nodes and 3792
nodes, respectively. These subgraphs were generated from PUBS
by performing a breadth-first search rooted at the first two (anony-
mous) authors of this work.

Table 2 summarizes the characteristics of the three datasets.
In addition to the number of nodes, the number of edges and the
duration of the network in years Table 2 contains the number of
the subgraph structures illustrated in Figure 9.
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Figure 11: Querying with a triangle and a crossbox struc-
ture of constant edges and variable length tq .

7.2 Queries
Figure 10 shows a set of standard query subgraphs that we used
in our experimental evaluation. In the first set of experiments, the
query time domain tq is set to relatively small values of 3 ≤ tq ≤
5, to all the baseline approaches to terminate in reasonable time.
The temporal pattern on these subgraphs is chosen uniformly
random, such that at each point of time t ∈ Tq of the query
graph, any edge has a chance of 50% to be part of the query
pattern. To avoid degenerated cases, we ensure that each edge of
a standard query is required to exist at at least one time t .

7.3 Baseline vs. Index
In a first experiment we compare the performance of our pro-
posed index structure (cf Section 5) with the baseline approach as
discussed in Section 4. Since the baseline approach is very time
consuming we did this experiment on the MicroPUBS dataset. As
a basic subgraph structure for our index we used the triangle and
as queries we evaluated the triangle-query and the quad-clique-
query with increasing temporal query length tq . The results are
shown in Figure 11. The baseline approach has to build a projec-
tion of the original TSG for each possible start time t over the
duration of the query. With increasing duration of the query, this
projection becomes more and more dense, which results in in-
creasing runtime. The index based query processing on the other
hand performs much faster in this setting. Note that, although
the triangle query is beneficial to the index (since the index is
built on the triangle structure), the quad-clique query can also be
answered efficiently. With increasing query duration, the results
quickly decrease, yielding a lower number of candidates, which
leads to even lower runtime.

Figure 12 shows the query time for various query patterns. As
most of the 4-year-long queries have a highly specific temporal
pattern, the index-based approach profits from early pruning
of large parts of the data, while the baseline approach is first
looking for the general graph structure and can only prune at a
second step where the temporal behaviour is considered. We see
that the Triangle query for tq = 3 has the highest run-time using
our index, while having the lowest run-time of the baseline. The
reason is that this query yields the largest number of (verified)
results which, trivially, cannot be pruned. When changing the
query time tq for the more complex T-Two-Legs query, we can
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Figure 12: Querying with a distinct queries.
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Figure 13: no. of results and runtime with increasing
query length

again observe that our index supported approach can benefit
from early pruning. Note that the time needed to build the index
for this microPUBS dataset was less than a second.

7.4 Evaluating query parameters

0 20 40 60 80 100

Triangle t^q=4

T‐Pair‐Legs t^q=4

T‐Two‐Legs t^q=4

T‐Long‐Leg t^q=4

T‐One‐Leg t^q=4

Double‐Triangle t^q=4

Quad‐Clique t^q=4

query time [ms]

Figure 14: query time for harder queries

In the next set of experiments we demonstrate the effect of
the query duration tq on the large PUBS dataset. The Baseline
approach was not evaluated on this dataset due to its excessive
run-time. In the first experiment, shown in Figure 13, we use the

1 10 100 1000 10000 100000
Candidates from Index

Triangle
Arrow
String

Quad‐Clique tq=4

 T‐One-Leg tq=4

T‐Long-Leg tq=4

T‐Two-Legs tq=4

T‐Pair-Legs tq=4 

Double‐Triangle tq=4 

Triangle tq=4

Triangle tq=3

T‐Two-Legs tq=5

T‐Two-Legs tq=3

Figure 15: Testing different indexed subgraph structures:
number of candidates

0.1 1 10 100 1000
Processing time [ms]

Triangle
Arrow
String

Quad‐Clique tq=4

 T‐One-Leg tq=4

T‐Long-Leg tq=4

T‐Two-Legs tq=4

T‐Pair-Legs tq=4 

Double‐Triangle tq=4 

Triangle tq=4

Triangle tq=3

T‐Two-Legs tq=5

T‐Two-Legs tq=3

Figure 16: Testing different indexed subgraph structures:
processing time

Triangle structure for query and indexing. Index construction on
this large dataset took less than 30 minutes. Results using this
index are averaged over 1K runs for random temporal patterns
of the PUBS dataset. We observe that the run-time is directly
proportional to the number of results. This behaviour is expected,
since less refinement is needed.

The previous experiment show-cased a best-case scenario,
where the structure used for indexing is identical to the query
structure. In this case, candidates returning by the index need
only to be verified for temporally matching the query pattern.

To show the behaviour in more realistic scenarios, we made
the topological structure of the query more complex by adding
additional edges, while still using triangle SSGs for indexing.
Thus, those added edges are not covered by the index and need
to be accounted for in the refinement step. Figure 14 shows that
adding additional edges and nodes to the query increases the
processing time: Adding two edges to the triangle produces a
more complex query than just adding one (than adding none),
and a Quad-triangle is more specific than a Double-Triangle than
a simple triangle.

Thus, in the next set of experiments shown in Figures 15 and
16, we test the efficiency of different SSGs on the MiniPUBS
dataset. Here, we compare different structures used to build the
index (specifically, the SSGs Triangle, Arrow and String), and
different query structures for different time lengths tq .
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Figure 17: Comparing the number of candidates left after
applying filters toM0.
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Figure 18: Measuring the computational cost of applying
filters toM0.

Comparing these results to Table 2, we notice that simpler
subgraph structures appear more often in graphs, whereas more
complex structures appear less and are thus generally more selec-
tive when used as the basis for an index. This also reflects in the
number of candidates produced by our index-based approach for
different basic query structures. We note that in these queries,
using triangle structure for indexing yields much less candidates
for refinement. This is because many Arrow and String structures
may not be part of a triangle, thus creating additional candidates
to be pruned. However, it should be noted that the triangle index
is only applicable if the query structures contains at least one
triangle, which is the case for query structures featured in this
experiment.

7.5 Evaluating Pruning Filters
In Section 4.2 we introduced additional pruning filters appli-
cable to temporal graphs. We evaluated the various filters on
the candidates retrieved after querying the index with a sim-
ple subgraph structure (SSG) for our running query example
q′ on the MiniPUBS graph. Therefore, we measure the perfor-
mance of different pruning strategies (and their combinations)
in their number of candidates generated from M0 that need to
be refined. Figure 17 shows that the degree filter has no effect,
because the only nodes not matched in the initial assignmentM0

are the two legs not part of the SSG which just have a degree
of 1. The network distance filter and the neighbour mapping
filter reduce the number of candidates by a factor of about 10, 000
and 30, 000, respectively. The time offset filter has the highest
pruning power, reducing the number of candidates to less than

0	 10	 20	 30	

degree	filter	
neighbour	mapping	filter	

6me	offset	filter	
deg.	+	nei.	

deg.	+	nei.	+	netw.	
deg.	+	nei.	+	6me.	

deg.	+	nei.	+	netw.	+	6me.	
deg.	+	nei.	+	6me.	+	netw.	

processing	+me	for	filter	[ms]	
degree	filter	
neighbour	mapping	filter	
6me	offset	filter	
network	distance	filter	

Figure 19: Measuring the computational cost of applying
filters toM0 with highlight of individual cost.

two hundred. Furthermore, variations of sequential filter com-
binations are depicted as well: A combination allows to narrow
down the candidate size even more. Figure 18 shows the corre-
sponding computational time of the filters: the network distance
filter is by far the most expensive one, even though it cannot
outperform the time filter. We contribute the bad performance of
the network distance filter to the dataset, in which network dis-
tances are generally very short, as the dataset was generated by
a breadth-first search of a larger network. A more detailed look
into the combination of filters is shown in 19, where it becomes
clear that an expensive, but selective filter like the time offset
filter, becomes cheap if applied after another more generic filter
and in combination gives great results and a very small candidate
set. We summarize that the time-offset filter is the most powerful
pruning step in our setting. This is because most candidates to
not match the specific temporal patterns exhibited by the tem-
poral query graph, such that temporal pruning is very powerful.
This also shows how traditional pruning methods only, which do
not consider temporal patterns, are not sufficient to efficiently
find patterns on temporal graphs.

8 CONCLUSIONS
We proposed first solutions for the problem of searching patterns
on temporal social networks. For this problem, existing solutions
for graph isomorphism can not be applied directly, since tempo-
ral conditions need to be handled. As a baseline approach, we
define a temporal pruning heuristic to augment an existing sub-
graph isomorphism search algorithm. Due to the high run-time
of such approach on real social networks, we proposed a data
structure to index all occurrences of basic graph structures, to
find a candidate set of isomorphic subgraphs quickly at query
time. This data structure transforms temporal graphs and tempo-
ral graph queries in strings and employs a suffix tree to organize
these strings efficiently. Our experimental evaluation shows that
this index structure can reduce the run-time of searching small
temporal query patterns by orders of magnitude. Still challenges
remain open: since the problem of isomorphic subgraph search
is exponentially hard in the size of the query graph, we cannot
hope to scale to large query graphs. Thus, approximate solutions
are required for larger and more complex query patterns. Further,
we can relax the problem to estimation of the number of isomor-
phic subgraphs, rather than returning all occurences and their
location in the graph. This relaxation may allow more efficient
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approximations. Another important future aspect of this work
is the diversification of patterns as studied in [25, 26] for dense
subgraphs only. Applying such diversification to arbitrary sub-
graphs is a non-trivial task, as the notion of social and temporal
overlap has to be redefined.

As you have seen in our running examples, temporal subgraph
queries need to be defined very detailed, i.e., each configuration
at every point of time needs to be stated. In cases where such
level of detail is unneeded (for example when a certain link may
or not exist as well at a specific point of time) our algorithm
cannot specifically account for this fact. While intuitively, al-
lowing more configurations makes queries less hard to verify,
it actually increases the query complexity as the program must
now consider several possible configurations instead of one. A
future version could benefit in these scenarios.
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ABSTRACT
A core requirement of database engine testing is the ability to

create synthetic versions of the customer’s data warehouse at

the vendor site. A rich body of work exists on synthetic data-

base regeneration, but suffers critical limitations with regard to:

(a) maintaining statistical fidelity to the client’s query process-

ing, and/or (b) scaling to large data volumes. In this paper, we

present HYDRA, a workload-dependent database regenerator
that leverages a declarative approach to data regeneration to

assure volumetric similarity, a crucial aspect of statistical fidelity,

and materially improves on the prior art by adding scale, dy-

namism and functionality. Specifically, Hydra uses an optimized

linear programming (LP) formulation based on a novel region-
partitioning approach. This spatial strategy drastically reduces

the LP complexity, enabling it to handle query workloads on

which contemporary techniques fail. Second, Hydra incorporates

deterministic post-LP processing algorithms that provide high

efficiency and improved accuracy. Third, Hydra introduces the

concept of dynamic regeneration by constructing a minuscule

database summary that can on-the-fly regenerate databases of

arbitrary size during query execution, while obeying volumet-

ric specifications derived from the query workload. A detailed

experimental evaluation on standard OLAP benchmarks demon-

strates that Hydra can efficiently and dynamically regenerate

large warehouses that accurately mimic the desired statistical

characteristics.

1 INTRODUCTION
In industrial practice, a common requirement for database ven-

dors is to adequately test their database engines with represen-

tative data and workloads that accurately mimic the data pro-

cessing environments at customer deployments. This need can

arise either in the analysis of problems currently being faced by

clients, or in proactively assessing the performance impacts of

planned engine upgrades on client applications. While, in princi-

ple, clients could transfer their original data and workloads to

the vendor for the intended evaluation purposes, this is often

infeasible due to privacy and liability concerns. Moreover, even

if a client is willing to share the data, transferring and storing the

data at the vendor’s site may prove to have impractical space and

time overheads, especially in the anticipated Big Data era. For

instance, if a customer faces a problem on exabyte (10
18
) sized

relational tables, transferring and storing such data is likely to be

infeasible even on the best of systems. Therefore, an important

requirement, looking into the future, is to be able to dynamically
regenerate representative databases, at query execution time that

accurately mimic the behavior of the client’s data processing

environment.
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A rich body of literature exists on data regeneration, beginning

with workload-independent techniques (e.g [12, 15]), which pro-

vide scalable and efficient solutions, but fail to retain complex sta-

tistical characteristics such as the sizes of intermediate relations

created during execution of a query plan. To address this problem,

a particularly potent approach of workload-dependent database
regeneration was introduced in QAGen [11], and has served as

the foundation for many of the practicable systems proposed over

the last decade [6, 18]. Workload-dependent techniques aim to

generate synthetic data whose behavior is volumetrically similar
to the client database on the pre-specified query workload. That

is, assuming a common choice of query execution plans at the

client and vendor sites (ensured through “plan forcing” [3] or

“metadata matching” [8]), the output row cardinalities of indi-

vidual operators in these plans are very similar in the original

and synthetic databases. This similarity helps to preserve the

multi-dimensional layout and flow of the data, a pre-requisite for

achieving similar performance on the client’s workload. As a case

in point, the DataSynth [6, 7] tool from Microsoft expresses such

volumetric constraints as a Linear Program (LP) whose solution

is used to construct the synthetic database.

A common limitation of contemporary techniques (reviewed

in detail in Section 8), is that they run into issues of scale and
efficiency at one stage or the other in the regeneration pipeline.

This is partly due to their focus on materialized static solutions,

making them impractical at large volumes. Further, the ability to

scale to large query workloads and data volumes has not been

clearly established, and validations have been typically restricted

to relatively simple and small benchmarks such as TPC-H [2].

These limitations become especially problematic from a futuristic

“Big Data" perspective, where we have to contend with enormous

data volumes and complex query workloads.

To materially address this challenge, we present HYDRA, a
data regeneration tool, which ensures that scale and efficiency

are addressed through the entire regeneration pipeline. As a con-
crete example, Hydra was able to accurately regenerate the data

processing environment of a 100 GB TPC-DS client database with

a workload of 131 distinct representative queries, by generating

a database summary in less than 2 minutes on a vanilla machine.

This summary can be used to statically generate a materialized

database, or more potently, to dynamically regenerate the de-

sired database during query execution. When the former option

is chosen, the static database was successfully created in less

than 11 minutes. It is important to note here that the summary

construction time is independent of the data scale – therefore,

even the exabyte-sized data scenario alluded to earlier could be

modeled in just a few minutes using Hydra!

The key contributions of Hydra are the following:

Extended Workload Coverage: Hydra incorporates a novel

LP formulation technique, region-partitioning, that can en-

code volumetric constraints with an LP of low complexity.

When compared with the grid-partitioning approach used

in DataSynth, region-partitioning reduces the LP complex-

ity by many orders of magnitude. For instance, an LP with
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more than a billion variables in DataSynth is reduced to

an LP with a few thousand variables in Hydra– in fact, in

this case, the LP solver crashes on the DataSynth formula-

tion, but runs to completion in less than a minute on the

Hydra formulation. The beneficial outcome of the low LP

complexity is that it facilitates the efficient handling of

much richer query workloads.

Apart from enhancing the workload scale, Hydra also ex-

pands the database scope to include relational schemas

that have DAG-structured dependency graphs, and the

query scope to include DNF filter predicates.

Database Summary and Dynamic Regeneration: A unique

feature of our data regeneration approach is that it delivers

a database summary as the output, rather than the static

data itself. This summary is of negligible size, depending

only on the query workload and not on the database scale.

It can be used for dynamically generating data during

query execution, or for materializing static relations if

so desired. This summary-based approach eliminates the

enormous time and space overheads incurred by prior

techniques in generating and storing data before initiating

analysis.

Accuracy with Efficiency: Hydra replaces the sampling-based
approach to data regeneration in DataSynth by a determin-
istic alignment strategy. The alignment operates directly

on the database summary, and is therefore extremely ef-

ficient. Further, it does not suffer the probabilistic errors

that affect the sampling approach, and therefore delivers

better fidelity with regard to volumetric similarity.

Enhanced Evaluation: We evaluate Hydra on a diverse work-

load of 100-plus queries constructed from the complex

TPC-DS benchmark, and the results show that it can effi-

ciently regenerate databases for such workloads at various

data scales. Further, our evaluation is more comprehensive

than prior techniques, which have largely been evaluated

on simpler and small-sized query workloads operating

on modest databases. For instance, DataSynth has been

evaluated on simple TPC-H database environments that

resulted, with their formulation, in LPs with only a few

thousand variables.

Integration with CODD: CODD [8] is a graphical tool through

which database environments with desiredmeta-data char-

acteristics can be efficiently simulated without persistently

generating and/or storing their contents – i.e. a “dataless”

approach. We have integrated Hydra with CODD, thus

providing an end-to-end system that fully replicates the

client data processing environment at the vendor’s site,

and is compliant with the CODD’s “dataless” philosophy.

Organization. The remainder of this paper is organized as

follows: A brief background on the key underlying concepts is

outlined in Section 2. The Hydra architecture is presented in

Section 3, and our new region-based LP formulation in Section 4.

The database summary generator and the tuple generator are

described in Sections 5 and 6, respectively. Our experimental

results are analyzed in Section 7. Related work is reviewed in

Section 8, and our conclusions are summarized in Section 9.

2 PRELIMINARIES
In this section, we provide background information on the key

foundations – Annotated Query Plans [11] and Cardinality Con-

straints [6] – that lie under this data regeneration framework.

2.1 Annotated Query Plans
Consider a toy scenario (for ease of presentation) where the client

has the database schema shown in Figure 1a, where pk and fk
refer to primary-key and foreign-key attributes, respectively.

A sample client query on this schema is shown in Figure 1b,

with the corresponding query execution plan in Figure 1c. Note

that this execution plan has the output edge of each operator

annotated with the associated row cardinality (as evaluated dur-

ing the client’s execution) – for instance, there are 50000 rows

resulting from the join of R and (filtered) S. Such a plan is referred
to as an “Annotated Query Plan” (AQP) in [11]. The goal now is

to generate synthetic data at the vendor site such that when the

above query is executed on this data, we obtain an identical, or

very similar, AQP.

R (R_pk, S_fk, T_fk) S (S_pk, A, B) T (T_pk, C)

(a) Database Schema

select * from R, S, T

where R.S_fk = S.S_pk and R.T_fk = T.T_pk

and S.A >= 20 and S.A < 60 and T.C >= 2 and T.C < 3

(b) Example Query

◃▹

R.T_fk = T.T_pk

30000

σC ∈[2,3)

900

◃▹

R.S_fk = S.S_pk

50000

σA∈[20,60)

400

R

size = 80000

S

size = 700

T

size = 1500

(c) Annotated Query Plan (AQP)

|R | = 80000 |S | = 700 |T | = 1500

|σS .A∈[20,60)(S ) | = 400 |σT .C∈[2,3)(T ) | = 900

|σS .A∈[20,60)(R ◃▹ S ) | = 50000

|σS .A∈[20,60)∧T .C∈[2,3)(R ◃▹ S ◃▹ T ) | = 30000

(d) Cardinality Constraints (CCs)

Figure 1: Example Database Scenario

2.2 Cardinality Constraints
A unified and declarative mechanism for representing AQP data

characteristics, called cardinality constraints (CCs), was proposed
in [6]. For instance, the CCs expressing the AQP of Figure 1c are

shown in Figure 1d. The data regeneration technique takes the

schematic information and the set of CCs from the client site and

produces synthetic data that closely meets these CCs. To make

the problem tractable, it is assumed that CCs consist of filters on

only non-key attributes, and that all joins are between primary

keys and foreign keys, typically the case in data warehouses.
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Figure 2: Hydra Architecture

3 THE HYDRA ARCHITECTURE
In this section, we present an overview of Hydra’s architecture,

along with a summary of its various components and their inter-

actions with the database engine. A pictorial view of the archi-

tecture is presented in Figure 2 – in this picture, the green boxes

represent the new components designed specifically for Hydra.

Among these, the primary components are the LP Formulator,

the Summary Generator, and the Tuple Generator, all shown with

thick borders. The other modules have been sourced from the lit-

erature, including the preprocessor (orange) from DataSynth [7],

the CODD metadata processor (yellow) [8], and the Z3 solver

(blue) [14]. (Refer [21] for complete details.)

3.1 Client Site
The information flow from the client to the vendor is as fol-

lows: At the client site, Hydra fetches the schema information (S),
and the query workload (q1,q2,q3, ...,qn ) with its corresponding

AQPs (p1,p2,p3, ...,pn ) obtained from the database engine. The

AQPs are converted to equivalent cardinality constraints (CCs)
using a Parser. The metadata (M) from the database catalogs is

captured with the help of CODD. In order to address client secu-

rity concerns, all this information (schema, metadata, queries and

CCs) is passed through an Anonymizer that suitably masks the

information before shipping it to the vendor. Also in this process,

non-numeric constants appearing in the queries and plans are

mapped to numbers to facilitate LP formulation at the vendor site.

Due to this mapping, the final database summary generated at the

vendor site also consists of only numeric datatypes. It is possible

to reverse this mapping to get back the original datatypes, but is

not a relevant consideration with regard to satisfying CCs.

3.2 Vendor Site
The main modules at the vendor site are as follows:

Preprocessor [7]: In this module, sourced from DataSynth, the

schema information and CCs obtained from the client are pro-

cessed to create the input for the LP Formulator. Each relation is

solved independently, and this process is initiated by first creat-

ing a view comprised of its own non-key attributes, augmented

with the non-key attributes of the relations on which it depends

through referential constraints (both directly or transitively). This

transformation results in replacing the join-expression present in

a CC with a view that covers all the attributes (non-key) featured

in the relations participating in the join-expression. As a case in

point, following views are generated for the example in Figure 1:

R_view (A, B, C) S_view (A, B) T_view (C)
Further, the last two constraints in Figure 1d can be rewritten as:

|σA∈[20,60) (R_view)| = 50000

|σA∈[20,60)∧C ∈[2,3) (R_view)| = 30000

An LP is independently formulated for each view created by

the above process. Since the LP complexity is adversely affected

by the number of attributes in the view, the view is first decom-

posed into a set of sub-views to reduce the effective complexity.

This is achieved as follows: Construct a “view-graph” by first

creating a node for each attribute, and then inserting an edge

between a pair of nodes if the corresponding attributes appear

together in one or more CCs. Further, additional edges are added

(if required) to make the view-graph to be chordal, a property re-

quired to ensure acylicity in the subsequent processing. Now, the

sub-views are identified as themaximal cliques in the view-graph.

LP Formulator and Solver: For each view, the LP Formulator

takes as input the corresponding set of subviews and applicable

CCs, and then constructs the LP. The domain corresponding to

each sub-view is partitioned into regions using a novel region-
partitioning algorithm that takes as input the different cardinality

constraints. There is one variable for each region, corresponding

to the number of tuples chosen from the region. Each cardinality

constraint is encoded as an LP constraint on these variables,

and the solution of the LP is used in deciding which tuples to

include in the sub-view. The complete details of this algorithm

are enumerated in Section 4.

Our region-partitioning strategy is in marked contrast to the

grid-partitioning strategy used in DataSynth. Grid-Partitioning

first intervalizes the domain of each attribute based on the con-

stants appearing in the CCs, and divides the domain into a grid

aligned with the interval boundaries for each attribute. If a sub-

view has n attributes, and each attribute gets divided into ℓ in-

tervals, then the domain of the sub-view is partitioned into a

grid of ℓn cells. For each cell in the grid, a variable is created

that represents the number of data rows present in that cell. In

contrast, our region-partitioning strategy divides the domain into

only the number of regions required to precisely write out each
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cardinality constraint, and assigns one variable to each region –

this typically leads to far fewer variables than grid-partitioning.

To make the above concrete, consider a single view “Person"
with the following three selection CCs:

|age < 40 ∧ salary < 40K (Person)| = 1000

|20 ≤ age < 60 ∧ 20K ≤ salary < 60K (Person)| = 2000

|Person| = 8000

Grid-partitioning divides the domain of the view as shown in

Figure 3a. With a variable assigned to each grid cell, there is a

total of 16 variables. In contrast, the region-partitioning strategy

partitions the space into 4 regions as shown in Figure 3b, resulting

in a tally of only 4 variables.

(a) Grid-Partitioning (b) Region-Partitioning

Figure 3: Grid-Partitioning vs Region-Partitioning

The CCs of Person, expressed in terms of LP constraints, are

shown below in Figure 4a and 4b for grid-partitioning and region-

partitioning, respectively.

x9 + x10 + x13 + x14 = 1000

x6 + x7 + x10 + x11 = 2000

x1 + x2 + ... + x16 = 8000

(a) Grid-Partitioning

y1 + y2 = 1000

y2 + y3 = 2000

y1 + y2 + y3 + y4 = 8000

(b) Region-Partitioning

Figure 4: LP Constraints

The LPs are passed on to the solver, which provides one of

the feasible solutions as the output – we have used Z3 [14], a

popular SMT solver, to implement this functionality. With region-

partitioning, the LP is usually much simpler due to the smaller

number of variables. Further, as the cardinality constraints get

more complex, the differences in complexity of the LPs produced

by region-partitioning and grid-partitioning become more pro-

nounced. This effect is quantified in Section 7.

Summary Generator: This module generates the database sum-

mary from the LP solutions obtained on the views. Since parti-

tioning is carried out at a sub-view level, the LP solution, which

is expressed in terms of sub-view variables, needs to be mapped

to equivalents in the original view space. A sampling-based ap-

proach was proposed in [6] for this purpose – for example, say a

view (A,B,C) is split into a pair of sub-views (A,B) and (B,C), the
algorithm computes the distributions Prob(A,B) and Prob(C |B).
Then, each tuple is generated by first sampling a point from the

former distribution, and then sampling a point from the latter

conditioned on this outcome.

However, we have chosen not to take this approach since the

computational overheads incurred are enormous, and the sam-

pling process introduces errors in volumetric fidelity. Instead,

we have designed and implemented an alternative data-scale

free, deterministic alignment algorithm (details in Section 5),

which produces an intermediate database summary in the out-

put. This component is also responsible for ensuring that the

generated summary obeys referential integrity. Finally, summa-

rized relations from corresponding view summary are obtained.

An example database summary finally obtained from the AQP

shown in Figure 1c, along with additional two AQPs, is shown

in Figure 5. Here, entries of the type a - b in the primary key

columns (e.g. 101-250 for S_pk in table S), mean that the relation

has b−a+1 tuples with values (a, a+1, a+2,...,b) for that column,

keeping the other columns unchanged.

Figure 5: Example Database Summary

Tuple Generator: The Tuple Generator resides in the database

engine. It ensures that whenever a query is fired, data is not

fetched from the disk but instead gets generated on-demand,
using the database summary. The details of this component and

its implementation in PostgreSQL are presented in Section 6.

We note in closing that in order to ensure the execution plan

chosen at the vendor site is the same as that in the client site,

metadata matching is implemented in Hydra using CODD’s meta-

data transfer feature.

4 LP FORMULATION
An LP for a view V is constructed as follows: For each sub-view

s in V , every CC that is within its scope is formulated as an

LP constraint. Since sub-views may share common attributes,

additional consistency constraints are added to the LP to ensure

that themarginal distributions along the common set of attributes

are identical in the solutions for the sub-views.

In this section, we first present the mathematical basis under-

lying our formulation of LP constraints for a set of CCs applicable

on a sub-view. We then present an algorithm that partitions the

domain into the minimum number of regions required to capture

each CC precisely, resulting in an LP with the optimal number

of variables. Finally, we discuss the formulation of additional

consistency constraints to ensure consistency across multiple

sub-views belonging to V .

4.1 Mathematical Basis for LP Formulation
Let n denote the number of attributes in the given sub-view s ,
Di the domain of the ith attribute, and D the data universe

D1 × D2 × · · · Dn .

We are given a set of m CCs that are applicable on s . For
1 ≤ j ≤ m, each constraint Cj is a pair ⟨σj ,kj ⟩ where σj is a
selection predicate and kj is a non-negative integer equal to the

number of rows satisfying predicate σj . We assume that each

predicate is in disjunctive normal form (DNF).
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Simple LP Formulation. Let us first consider a simple way of

formulating an LP that encodes all CCs. For each tuple t ∈ D,

assign a variable xt that denotes the number of copies of t in the

sub-view s . Then, the LP formulation shown in Figure 6 ensures

that a feasible solution satisfies all CCs, including a constraint

on the total size of s .
The problem with this formulation is that the number of vari-

ables in the resulting LP is as large as the size of the universe D.

Hence, it is infeasible to work directly with this formulation.

(1) For each t ∈ D,xt ≥ 0

(2)

[∑
t ∈D

xt

]
= k

(3) For each j, 1 ≤ j ≤ m,


∑

t :σj (t )=true

xt

 = kj
Figure 6: Simple LP formulation

Reduced LP Formulation. We can derive an LP with far fewer

variables as follows: We first note that in the simple formulation,

variables corresponding to a pair of points t1, t2 ∈ D that behave

identically with respect to a constraintCj (i.e. σj (t1) = σj (t2)) can
be combined together as (xt1 +xt2 ), for the purposes of satisfying
constraint Cj . If this is true that with respect to every constraint

Cj for j = 1 . . .m, σj (t1) = σj (t2), then there is no need to treat

t1 and t2 separately – instead, they can be combined into a single

region, and the variables xt1 and xt2 can be merged into a single

variable (xt1 + xt2 ) in every equation, leading to fewer variables

in the LP. By repeating this variable merging process recursively

until it is no further possible, we arrive at a vastly reduced LP.

We hasten to add that the above LP construction process based

on merging variables is only for illustrating the concept – the

actual algorithm employed in our system directly derives the

regions, as described in Section 4.2.

For constraint C and t ∈ D, let C(t) be an indicator variable:

C(t) =

{
true if t satisfies C
false otherwise

Definition 4.1. For a pair of points p,q ∈ D and a set of con-

straints C, we say pRCq if for each C ∈ C, C(p) = C(q).

Observation 1. RC is an equivalence relation on D.

Proof. It can be easily seen thatRC is reflexive and symmetric.

For transitivity, suppose that for p,q, r ∈ D, pRCq and qRCr .
Note that for each C ∈ C, it must be true that C(p) = C(q) and
C(q) = C(r ). Therefore, it must be true that C(p) = C(r ) for each
C ∈ C, showing that the relation is transitive. �

A partition of D is a set of subsets of D such that every

element x ∈ D is in exactly one of these subsets. The individual

sets in a partition are called blocks.

Definition 4.2. A set of points b is said to be valid with respect

to a set of constraints C if for any two points p,q ∈ b, pRCq.
Given a set of constraints C, a partition P of D is said to be a

valid partition if for each block b ∈ P, b is valid with respect to C.

In a valid partition of D with respect to C, any pair of points

within the same block satisfy the same set of CCs. Once we

obtain a valid partition P, the LP can be re-formulated as shown

in Figure 7. Instead of a variable for each point t ∈ D, there is

now a single variable xb for each block b ∈ P representing the

number of tuples of the sub-view that are contained in this block.

Note that the tuples in a sub-view need not be unique, therefore

xb may include duplicates in its count.

(1) For each b ∈ P,xb ≥ 0

(2)

[∑
b ∈P

xb

]
= k

(3) For each j, 1 ≤ j ≤ m,


∑

b :σj (b)=true

xb

 = kj
Figure 7: Reduced LP formulation

The total number of variables in the reduced LP shown in

Figure 7 is equal to the number of blocks in the partition P and
is potentially much smaller than the number of variables in the

original LP, shown in Figure 6. Since we desire an LP with the

smallest number of variables, we look for a valid partition of

D with the minimum number of blocks. A valid partition with

respect to C is an optimal partition if it has the smallest number

of blocks from among all valid partitions of D with respect to C.

Lemma 4.3. The quotient set ofD by RC is the (unique) optimal
partition of D with respect to C.

Proof. Let P1 denote the quotient set
1
of D by RC. By the

definition of an equivalence relation, for any block b ∈ P1, all

points in b are related to each other by RC, and hence P1 is a
valid partition.

Suppose that P1 is not the unique optimal partition. Then,

there must exist another valid partition P2 such that P2 , P1 and
|P2 | ≤ |P1 |. This implies that there exist two points p,q ∈ D
such that p and q are in different blocks in P1, but in the same

block in P2. Since p and q belong to different blocks in P1, it must

be true that p and q are not related by RC. But, in P2 points p and

q belong to the same block, which implies that P2 cannot be a
valid partition, a contradiction. �

4.2 Deriving the Optimal Partition
We now present an algorithm to derive the optimal partition of

D with respect to C. Each constraint C ∈ C is in DNF, and is ex-

pressed as the union of many smaller “sub-constraints". Each sub-

constraint is the conjunction of many per-attribute constraints,

and each per-attribute constraint is a constraint on the values

that the attribute is permitted to take. For example, the following

constraint on attributes A1 and A2:

((A1 ≤ 20) ∧ (A2 > 30)) ∨ (A1 > 50)

is divided into the basic sub-constraints:

(A1 ≤ 20) ∧ (A2 > 30) and (A1 > 50)

Algorithm 1 (Optimal Partition) takes a set of DNF constraints

as input, and returns a partition with the smallest number of

regions with respect to this set. Internally, it invokes Algorithm 2

(Valid Partition) that takes a set of sub-constraints as input and

returns a valid partition of the domain with respect to this set.

1
The quotient set is the set of equivalence classes resulting from RC on D.
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Algorithm 1: Optimal Partition(D,C)

Input: Universe D, set of DNF constraints C
Output: An optimal partition P∗ of D subject to C

1 Generate the set of sub-constraints C′ resulting from the

constraints in C;

2 Construct a valid partition P′ of D subject to C′ using

Valid-Partition(D,C′) (Algorithm 2);

3 For each block b ∈ P′, compute the label ℓ(b), equal to the

set of all constraints in C that b satisfies. Let L denote the

set of all distinct labels from {ℓ(b)|b ∈ P′};

4 Coarsen partition P′ into P∗ as follows: For each label l ∈ L,
merge all blocks in P′ whose labels equal l into a single

block;

5 Return P∗;

Lemma 4.4. Given a set of DNF constraints C, Algorithm 1 re-
turns an optimal partition of D with respect to C.

Proof. As in the algorithm, let C′ denote the set of sub-

constraints resulting from constraints in C. From Lemma 4.7,

we know that P′ is a valid partition with respect to C′. Consider
any block b ∈ P′. Since b is valid with respect to C′, and each

constraint in C′ is stricter than a corresponding constraint in C,
b is valid with respect to C. Hence, P′ is a valid partition with

respect to C.
Next, consider that each block b∗ in P∗ was obtained by merg-

ing blocks in P′ that have the same label. For any pair of points

p,q in b∗, it is true they satisfy the same set of constraints in C,
showing that P∗ is a valid partition wrt C. Also, any two blocks

in P∗ have distinct labels (if they had the same label, they would

have been merged). Therefore, we conclude using arguments

similar to Lemma 4.3 that P∗ is an optimal partition of D with

respect to C. �

Deriving a Valid Partition for a Set of Sub-Constraints:We

now present an algorithm for deriving a valid partition with a

small number of blocks, for a set of sub-constraints C.

Definition 4.5. For a sub-constraint C and dimension i , let Ci

denote the restriction (projection) of C to dimension i . Further,

let Ci
1
=
∧
k=1...i C

k
denote the restriction of C to dimensions

1, 2, . . . , i . For instance, if C = (A1 ≥ 1) ∧ (A2 ≥ 4) ∧ (A2 ≤

5) ∧ (A3 > 6), then C2 = (A2 ≥ 4) ∧ (A2 ≤ 5), and C2

1
= (A1 ≥

1) ∧ (A2 ≥ 4) ∧ (A2 ≤ 5). For convenience, if C does not have a

constraint along dimension i , then Ci is defined to be “true”.

Our algorithm, described in Algorithm 2, proceeds iteratively,

one dimension at a time. Before processing dimension i , it has
a partition of D that is a valid partition subject to constraints

along dimensions 1 till (i−1). In processing dimension i , it refines
the current partition as follows: For each block b in the current

partition, it appropriately divides the block along dimension i if
there is a constraint C ∈ C such that there are some points in b
that satisfy constraint Ci , and some that do not.

Definition 4.6. A constraint C is said to split a block b ⊆ D
if there exist a pair of points p1,p2 ∈ b such that C(p1) = true

and C(p2) = false. If C splits b, then refining b by C partitions b
into two subsets b+(C) = {x ∈ b |C(x) = true} and b−(C) = {x ∈
b |C(x) = false}.

Lemma 4.7. Given a set of sub-constraintsC, Algorithm 2 returns
a valid partition of D with respect to C.

Algorithm 2: Valid-Partition(D,C)
Input: Universe D, set of sub-constraints C
Output: A valid partition P of D subject to set of

sub-constraints C
1 P0 = {D} // A partition with one set, D.

2 for i from 1 to n do
3 M ← Pi−1;

4 foreach C ∈ C do
5 M ′ ← ∅;

6 foreach block b ∈ M do
7 if Ci splits b then
8 Let b+ and b− result from refining b withCi ;

9 Add b+ and b− toM ′;

10 else
11 Add b toM ′;

12 M ← M ′;

13 Pi ← M ;

14 Return Pn ;

Proof. For 1 ≤ i ≤ n, let Ci
1
= {Ci

1
|C ∈ C}. We show by

induction on i that after the ith iteration of the outermost for

loop in the algorithm, Pi contains a valid partition of D with

respect to Ci
1
. Since Cn

1
= C, it follows that after n iterations, Pn

contains a valid partition of D with respect to C. We consider

i = 0 as the base case, and the set C0
1
as a set of “always true"

constraints. Hence, P0, which consists of only one element,D, is

a valid partition with respect to C0
1
.

For the inductive step, suppose that for i > 0, Pi−1 is a valid
partition ofD with respect to Ci−1

1
. For each block b ∈ Pi−1, two

cases are possible: (1) b is not split by Ci , for any C ∈ C. Then
b is valid with respect to Ci

1
, and will be retained in Pi . (2) b is

split by one more constraints Ci . The algorithm iterates through

all such constraints that split b, and partitions block b such that

every resulting block is valid with respect to each Ci , C ∈ C.
We next note that Pi is indeed a partition ofD (i.e. the union of

all blocks equalsD). To see this observe that each block b ∈ Pi−1

is either present in Pi or has been refined and all its constituent

blocks (whose union equals b) are in Pi . Thus, Pi is a valid parti-

tion with respect to Ci
1
. This proves the inductive step. �

Consistency Constraints. Since different sub-views can have

common attribute(s), additional constraints need to be added

to ensure that their distributions for the common attribute(s)

are the same. In order to do so, we may need to further refine

the partition generated from the above procedure. Specifically,

consider a pair of sub-views s1 and s2 with attribute sets A1 and
A2 respectively, such that A1 ∩ A2 , ∅. Let D

1 =
∏

i ∈A1
Di ,

and D2 =
∏

j ∈A2
Dj be the corresponding domains for s1 and

s2 respectively, and D1,2 =
∏

i ∈A1∩A2
Di . Let the partitions

obtained on D1
and D2

be P1 and P2, respectively. In order to

keep P1 and P2 consistent with each other, we need to ensure

that their region boundaries are aligned with each other, and

this is achieved by refining P1 and P2 so that they have common

boundaries along dimensions A1 ∩ A2. We consider the union

of the “split points" of P1 and P2 along dimensions A1 ∩ A2 and
further for each block in P1 (and P2), we refine this block until it

no longer crosses such a split point. Finally, we add LP constraints

that equate distributions of the common attributes in P1 and P2.
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5 DATABASE SUMMARY GENERATOR
This component takes the LP solution for each view as the input

and generates the database summary, which as mentioned pre-

viously, can be used for dynamically generating data for query

execution, or can optionally be used to generate the materialized

database.

Recall that a variable in the LP (for a view) represents an un-

derlying block in a sub-view’s partition, and its assigned value

is the number of rows present in that block – this value is here-

after referred to generically as NumTuples. The collection of

NumTuples values represent the sub-view solutions, and these

solutions are integrated to obtain the solution for the complete

view. However, since each view is solved independently, the refer-

ential constraints that exist between the corresponding relations

may be lost in these view solutions. Therefore, they may have to

be modified to ensure global consistency. Finally, it is necessary

to extract relations from the views in order to populate the data-

base. Accordingly, the summary generator component in Hydra

is responsible for the following sequence of tasks:

(1) Constructing a solution for complete views

(2) Instantiating view summaries

(3) Making view summaries consistent wrt each other

(4) Extracting relation summaries from view summaries

5.1 Constructing Solution for the View
For integrating the sub-view solutions to obtain the collective

solution for the complete view, we first order the sub-views. Then,
we iteratively build the view-solution by aligning and merging
the next sub-view solution in the given order. Let S denote the
input list of sub-view solutions, and viewSol be the final view
solution that we wish to compute. Algorithm 3 describes the high-

level process for constructing viewSol from S, and its ordering,

aligning and merging procedures are described in the remainder

of this sub-section.

Algorithm 3: View Solution Construction

1 S← OrderSubViews(S);

2 viewSol ← ∅;

3 foreach s ∈ S do
4 viewSol , s ← Align(viewSol , s) ;

5 viewSol ← Merge(viewSol , s);

5.1.1 Sub-View Ordering. Ordering is implemented through a

greedy iterative algorithm where we can start with any sub-view

as the first choice. Subsequently, at iteration i , let the set of visited
sub-views until now be S. A sub-view s from outside this set can

be chosen to be the next in the ordering only if it satisfies the

following condition: On removing the common vertices between

s and S in the (chordal) view-graph, there should not exist any

path between the remaining vertices of s and the remaining

vertices of S. This algorithm is described in detail in [21].

5.1.2 Aligning. After obtaining the sub-view merge order as

per above, in every iteration we merge the next sub-view solution

(s) in the sequence to the current view-solution (viewSol), after
a process of alignment. The alignment algorithm is a two step

exercise, as shown in the example of Figure 8:

Solution Sorting: First, the viewSol and s solutions are each

sorted on their common set of attributes to facilitate direct

comparison of their matching ranges. For instance, the

solutions A,B and A,C in Figure 8a are each sorted on the

intervals enumerated in the common attribute A.
Row Splitting: Our addition of consistency constraints during

the LP formulation ensured that the distribution of tu-

ples along the common set of attributes is the same in

the various sub-views. Therefore it easy to see that the

sum of NumTuples values in any interval of the common

attributes is the same for the sub-view solutions under

alignment. For example, in Figure 8a, the total number of

tuples with A = [40, 60) is 30K in both the A,B and A,C
solutions. Likewise, the other entries in column A also

have matching total number of tuples across the solutions.

The align step splits the rows in these solutions such that

the corresponding rows in both solutions have the same

number of tuples. The sub-view solutions of Figure 8a are

shown in Figure 8b after undergoing the alignment pro-

cess, with both solutions now having identicalNumTuples

in the corresponding rows.

(a) Sub-view Solution

(b) View Alignment

(c) Merged View Solution

Figure 8: Align and Merge Example

5.1.3 Merging. This is the last step in the construction of the

view solution. Here we simply merge the two solutions obtained

after alignment through a “position” based join, where the phys-

ically corresponding rows in each solution are combined, with

the common attributes being represented once. For example, the

aligned solutions of Figure 8b are merge-joined using the po-

sitions (or row identifiers) to deliver the final view solution of

Figure 8c.

As discussed earlier, DataSynth adopted a sampling algorithm

for constructing the view solutions post LP solving. In marked

contrast, Hydra deterministically generates the view solutions,

facilitating us to operate purely in the summary space. There are
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two tangible benefits of this deterministic strategy: (a) elimina-

tion of the time and space overheads due to sampling, and (b)

elimination of sampling-based errors in satisfying CCs.

5.2 Instantiating View Summaries
As shown in Figure 8c, each row in the view solution is comprised

of a series of intervals (across various attributes) and the number

of tuples in the region represented by these intervals. We now

need to decide as to how these tuples are distributed within the

attribute intervals. Our current solution is very simple: Assign

the entire cardinality to the left boundaries of the intervals. For
example, the third row in Figure 8c would result in generation of

10000 tuples all having A = 40,B = 5,C = 2 values.

Note that, in principle, we could have used a more sophisti-

cated cardinality distribution within the intervals. However, our

simple deterministic choice helps to reduce the subsequent addi-

tive errors that are incurred while ensuring referential integrity

across views (described in next subsection). This is so because

choosing values deterministically within a bucket minimizes the

likelihood of encountering an fk value that is not present in the

corresponding pk column.

5.3 Making View Summaries Consistent
Since the solution for each view is obtained independently, there

could be inconsistencies across them. For example, referring back

to the view schema shown in Section 3.2, R_view has attributes

borrowed from S_view and T_view , and its solution may fea-

ture values that are not present in the corresponding attributes

of these two views. To address this problem, we first carry out

a topological sort on the “referential dependency graph”
2
and

then iteratively make the current view consistent with its prede-

cessors. Since a topological sort is employed, Hydra can handle

dependency graphs that are DAGs unlike DataSynth which is

restricted to tree traversals.

To make a pair of views Vi and Vj consistent with each other,

whereVi is dependent onVj , we iterate over the rows in the view

solution of Vi and look for the value combination that each row

has for the attributes borrowed fromVj . If that value combination

is not present in the solution of Vj , we add a new row in its

solution with the corresponding NumTuples attribute set to 1.

This results in an additive error in the total number of tuples in

the view as compared to the original AQP at the client. But we

hasten to add that the error is a fixed number of rows, determined

by the nature of the constraints and the LP solution, and not by
the data scale. Therefore, at Big Data volumes, the discrepancy

can be expected to be minuscule, and our experiments empirically

confirm this expectation.

The inter view consistency component is present in DataSynth

as well, but since its view solutions are comprised of complete

database instantiations, and not just summaries, the time and

space overheads incurred for making the views consistent can be

large. Moreover, the additive error in DataSynth is amplified due

to its inherent sampling errors. Our experiments also capture

this distinction between the errors incurred due to referential

constraints in Hydra and DataSynth.

5.4 Constructing Relation Summaries
After constructing consistent solutions across all the views, we

next need to obtain the corresponding relation summaries. For

2
A graph where each relation is represented by a node and an edge (u, v ) is added
if relation u is dependent on relation v through a referential constraint.

this, we create a summarized relation schema R̃i for each relation

Ri . This schema consists of all attributes in Ri except the primary

key attribute, and additionally, the NumTuples value for each

entry in R̃i , as sourced from the view solutions.

For the common attributes between the summarized relation

and the corresponding view solution, the value combinations

and corresponding NumTuples value are directly borrowed from

the solution. What remains are the foreign key attributes. For

filling a foreign key attribute fk, we need to first consult the view
corresponding to fk’s s target relation, say Vj . To fill the fk value

in row r of R̃i , we extract the value combination in row r of view
solution ofVi , and then project the attributes corresponding toVj
– let this be denoted by v . Now, we iterate over the solution set

of Vj and compute the cumulative sum of the cardinality entries

till v is reached. This sum provides the fk value corresponding
to the r th row of R̃i , and we thus obtain R̃i for each relation Ri .

The set of relation summaries, computed as described above,

provides the entire database summary – a sample such summary

was previously shown in Figure 5 (for simplicity, the figure shows

the PK columns instead of the number of tuples).

Like before, DataSynth again iterates over the complete instan-

tiated (consistent) views to construct the corresponding material-

ized relations. Obviously, this leads to enormous time and space

overheads in contrast to our data-scale independent summary

based approach.

6 TUPLE GENERATOR
The Tuple Generator component resides inside the database en-

gine, and needs to be explicitly incorporated in the engine code-

base by the vendor. As a proof of concept, we have implemented

it for the PostgreSQL v9.3 engine by adding a new feature called

datagen, which is included as a property for each relation in the

database. Whenever this feature is enabled for a relation, the scan

operator for that relation is replaced with the dynamic generation

operator. As a result, during query execution, the executor does

not fetch the data from the disk but is instead supplied by the

Tuple Generator in an on-demand manner, using the available

relation summary.

Each row in the relation summary has a value combination

and an associated NumTuples entry. We consider the pk values

to be the row numbers of the relation. Therefore, to get the r th
tuple of a relation R, the pk is chosen as r and the rest of the

attributes come from the relation summary. We iterate over the

rows of R̃ and take the cumulative sum of the NumTuples entries

until the sum exceeds r . Say the summation crosses the value r

in jth row of R̃. Then the rest of the values of the r th tuple are

assigned to be precisely the same as those present in the jth row

of R̃. For example, the 120th row of relation S in Figure 5, would

be ⟨120, 20, 15⟩.

Note that this form of tuple generation is expected to be ef-

ficient since the attribute value assignments are deterministic

and independent, and these expectations are confirmed in the

experiments shown in the following section.

7 EXPERIMENTS
Wehave implemented theHydra design, described in the previous

sections, in a Java tool running to over 15K lines of code. The

popular Z3 [14] solver is leveraged to compute solutions for the

LP formulations. In this section, we evaluate Hydra’s empirical

performance, using our implementation of DataSynth as the

comparative yardstick in the analysis.
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Database Environment. The TPC-DS [1] decision-support bench-
mark database, with a default size of 100GB, is used as the baseline

in our experiments. The database is hosted on a PostgreSQL v9.3

engine [4] with the hardware platform being a vanilla HP work-

station (3.2 GHz 16 core processor, 32 GB memory, 500 GB SSD

hard drive) running Ubuntu Linux 16.04.3.

A complex queryworkload,WLc , featuring 131 distinct queries
(enumerated in [21]), was created by customizing the 99 queries

of the benchmark such that only non-key filter predicates and

PK-FK joins were retained, and all nested queries were separated

into independent sub-queries
3
. The AQPs for these queries were

generated on the PostgreSQL query processor, resulting in 351

cardinality constraints. The distribution of the cardinalities for

these CCs are shown in Figure 9, with the cardinalities measured

on a log-scale. The figure clearly indicates that a wide range of

cardinalities are present in the constraints, going from a few

tuples to almost a billion.

Figure 9: Distribution of Cardinality in CCs (WL_c)

The above constraints result in a large number of geometri-

cally overlapping regions. Hydra, due to its region-partitioning

approach, comfortably handles this scenario. In marked contrast,

DataSynth, due to its grid-partitioning construction, generates a

very large number of LP variables (in the several billion) from

the constraints, overwhelming the solver’s capabilities. We there-

fore also created an alternative simplified query workload, called

WLs , with 311 CCs, wherein the variables created by DataSynth

were less than a million, and therefore well within the solver’s

processing power.

7.1 Quality of Volumetric Similarity
We begin by investigating how closely the volumetric similarity,

with regard to operator output cardinalities, is achieved between

the client and vendor sites for theWLs workload by the Hydra

and DataSynth regenerators. This behavior is captured in Fig-

ure 10, which plots the percentage of CCs that are within a given

relative error of volumetric similarity. From the plot it is evident

that Hydra satisfies around 90 percent of the CCs with virtually

no error, and the remaining CCs are also satisfied within a rela-

tive error of less than 10%. This is in contrast to DataSynth, which

accurately satisfies around 80 percent of the CCs, but then incurs

as much as 60% relative error to achieve complete coverage of

the remaining CCs.

There are two reasons for the error-prone behavior of Data-

Synth: (1) the probabilistic sampling technique, and (2) the main-

tenance of referential integrity. While Hydra also is forced to

3
Similar to DataSynth, the restriction to non-key-based filters is because the con-

version from relations to views lose the key attributes. Likewise, only PK-FK joins

are supported since they are inherently present in the design of views.

Figure 10: Quality of Volumetric Similarity (WL_c)

insert additional tuples to maintain referential integrity, the num-

ber is substantially smaller than those injected by DataSynth.

This is because the integrity errors are amplified by the impact of

the sampling errors. This effect is quantified in Figure 11, where

the number of extra tuples inserted is plotted on a log-scale for

representative TPC-DS tables. We see here that Hydra is often an

order-of-magnitude smaller with regard to the addition of these

extra tuples as compared to DataSynth. Also, recall that integrity

errors in Hydra are independent of the data scale and therefore

are minuscule at Big Data volumes. We also show this in [21].

Figure 11: Extra tuples for Referential Integrity (WL_c)

As a final observation, it is interesting to note that DataSynth

has to contend with both negative (volumes less than desired)

and positive (volume greater than desired) relative errors, due to

its sampling strategy – in fact, about one-third of the CCs suf-

fered negative relative errors. In contrast, Hydra only generates

positive errors due to the inclusion of extra tuples for satisfying

referential integrity. From a practical standpoint, it is perhaps

preferable to have positive errors since they induce greater stress

on the data processing elements in the engine.

7.2 Scalability with Workload Complexity
We now turn our attention to evaluating the complexity of the

underlying LP that is formulated by Hydra and DataSynth. Since

LP complexity is essentially proportional to the number of vari-

ables in the problem, we compare this number for the two tech-

niques. Further, since LP complexity is, to the first degree of

approximation, independent of the database size, we present the

comparison only for the 100 GB instance.
4
The number of LP

variables for a representative set of TPC-DS relations, including

the major fact and dimension tables (catalog_sales, store_sales,
4
Of course, the database engine’s choice of query plans may change to some extent

with database size, leading to a slightly different set of CCs.

309



item) is captured, on a log-scale, in Figure 12 for theWLc com-

plex workload. We observe here that the LPs formulated using

the region-partitioning strategy in Hydra generate several orders
of magnitude fewer variables than the corresponding LPs derived

from the grid-partitioning in DataSynth. As a case in point, con-

sider the catalog_sales table – the number of variables created by

DataSynth was almost 5.5 million, which is reduced to as low as

1620 by Hydra. Even more dramatic is the change for item table,

where the number of variables is reduced from an enormous 10
11

to around 3700.

Figure 12: Number of variables in the LP (WLc )

From an absolute perspective also, the large number of vari-

ables created by DataSynth is a critical problem since, as men-

tioned previously, the LP solver crashed in handling these cases.

In marked contrast, the few thousands of LP variables generated

by Hydra were easily solvable in less than a minute. Moreover,

even when we switched to the simple workload,WLs , the LP
solution time for DataSynth was almost an hour, whereas Hydra

completed in a few seconds as shown in Figure 13.

Complex Workload (WLc ) Simple Workload (WLs )
DataSynth Hydra DataSynth Hydra
crash 58 sec 50 min 13 sec

Figure 13: LP Processing Time

7.3 Scalability with Materialized Data Size
This experiment compares the data instantiation times, post LP

solution, of DataSynth and Hydra on theWLs workload. While

Hydra, in principle, due to its summary-based approach, does

not have to instantiate the data immediately, we assume in this

experiment that the vendor requires complete materialization.

The experimental results are shown in Figure 14, wherewe also

present, for comparative purposes, the performance with 10 GB

and 1000 GB databases, apart from the default 100 GB database.

We see here that there is a huge reduction in the materialization

time of Hydra at all scales. Further, even in absolute terms, Hydra

is able to output a 100 GB database in around 11 minutes, whereas

DataSynth takes 42 hours to complete the same task.

The marked difference in the efficiency of the two techniques

is attributed to the fact that DataSynth instantiates complete

views through sampling, subsequently performs several passes on
these instantiations to ensure referential integrity, and to derive

relations from them. Hydra on the other hand, after LP-solving,

constructs the database summary in just a few seconds, and then

instantiates the materialized database directly from it.

Size (in GB) DataSynth Hydra
10 4 hours 2 min

100 42 hours 11 min

1000 > 1 week 1.6 hours

Figure 14: Data Materialization Time

7.4 Scalability to Big Data Volumes
In our next experiment, we validated the ability of Hydra, thanks

to its summary-based technique, to scale to Big Data volumes.

To demonstrate this feature, we modeled an exabyte-sized (10
18

bytes) data scenario as follows: We used CODD, which is ca-

pable of modeling arbitrary metadata scenarios, to obtain the

optimizer-chosen plans at the exabyte database scale for all the

workload queries. To get AQPs for this database, we executed

the obtained plans on the 100 GB instance and scaled the in-

termediate row counts with the appropriate scale factor. Hydra

was able to formulate and solve the LPs (one per relation), and

generate the database summary in less than 2 minutes. Once
the summary is generated, the database can begin to submit the

workload queries since the data required for the execution can

be produced on-the-fly by the Tuple Generator.

7.5 Dynamism in Data Generation
Our next experiment evaluates Hydra’s ability, due to the Tu-

ple Generator and Database Summary architecture, to produce

tuples on-the-fly instead of first materializing them, and then

reading from the disk. To verify whether dynamic generation

can indeed produce data at rates that are practical for support-

ing query execution, we compared the total time that Hydra’s

tuple generator took to construct and supply tuples to the execu-

tor, while running simple aggregate queries, as compared to the

standard sequential scan from the disk.

Rel. Name Size Row count Scan time (secs)
(in GB) (in millions) Disk Dynamic

store_returns 3 29 16 8

web_sales 10 72 43 25

inventory 19 399 107 74

catalog_sales 20 144 46 48

store_sales 34 288 168 87

Figure 15: Data Supply Times

The results of this experiment are shown in Figure 15 for

the five biggest relations in the 100 GB database instance. We

see here that the tuple generator is not only competitive with

a materialized solution, but is in fact typically faster. Therefore,
using dynamic generation can prove to be a good option since it

can help to eliminate the large time and space overheads incurred

in: (1) dumping generated data on the disk, and (2) loading the

data on the engine under test.

7.6 Performance on JOB Benchmark
A legitimate concernwith regard to the above encouraging results

for Hydra is that they may be an artifact of the TPC-DS database,

and perhaps might under-perform on other datasets. To address

this concern, we consider in our final experiment, a schematically

highly different database, namely the JOB benchmark [17], which

is based on the IMDB real-world dataset. Here, we created a
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workload of 260 queries, resulting in 523 CCs, whose cardinality

distribution is again highly varied as seen in Figure 16.

Figure 16: Cardinality distribution of CCs in JOB

We found that Hydra efficiently solved this workload as well,

with the number of variables in each view being typically in

the few thousands, and never exceeding a hundred thousand, as

shown quantitatively in Figure 17. The overall database summary

was quickly generated in around 20 seconds, and produced a

database of high fidelity that satisfied all the constraints with no

more than 2 percent relative error.

Figure 17: Number of Variables for JOB

8 RELATEDWORK
Over the past few decades, a rich corpus of literature has devel-

oped on synthetic database construction. There are two broad

streams of research on the topic, one dealing with the ab ini-
tio generation of new databases using standard mathematical

distributions (e.g. [12, 15]), and the other with regeneration of

an arbitrary existing database. In the latter category, there are

two approaches, one of which uses only schematic and statis-

tical information from the original database (e.g. [19, 22]). The

other uses both the original database and the query workload

to achieve statistical fidelity during evaluation (e.g [6, 11]) – our

work on Hydra falls into this class. In this section, we briefly

review recent literature on this spectrum of research categories.

Ab Initio Generation. Descriptive languages for the definitions
of data dependencies and column distributions were proposed

in [12, 16, 20]. For example, [12] proposed a special purpose lan-

guage called Data Generation Language (DGL) that is used by

the tool to generate synthetic data distributions by utilizing the

concept of iterators. It supports a broad range of dependencies be-

tween relations but the construction of dependent tables always

requires access to the referenced table, creating a bottleneck on

the data generation speed.

In contrast to the above, MUDD [23] and PSDG [16] generate

all related data at the same time. However, this approach can also

be rendered inefficient if the referenced tables are large in size.

MUDD proposes algorithms to parallelize the data generation

process, and to efficiently generate dense-unique-pseudo-random

sequences and derive nonuniform distributions. Both MUDD and

PSDG decouple data generation details from data description,

facilitating customization of the tool to suit user needs.

In the distributed setting, a faster way of generating references

is through recomputing since it eliminates the I/O costs incurred

to satisfy referential constraints across relations that are present

across different nodes. PDGF [20] was designed with this goal of

achieving scalability and decoupling. In PDGF, the user specifies

two XML configuration files, one for the data model and one

for the formatting instructions. The generation strategy is based

on the exploitation of determinism in pseudo-random number

generators (PRNG), which enables regeneration of the same se-

quences, hence eliminating the scan overheads. PDGF supports

the generation of data with cyclic dependencies as well, but in-

curs high computation costs for generating the associated keys.

Finally, PDGF comes with a set of fixed generators for different

datatypes and basic distribution functions.

A similar generator is Myriad [5], which implements an effi-

cient parallel execution strategy leveraged by extensive use of

PRNGs with random access support. With these PRNGs, Myriad

distributes the generation process across the compute nodes and

ensures that they can run independently from each other, without

imposing any restrictions on the data modeling language.

Finally, a rule-based probabilistic approach, based on an ex-

tension of Datalog, has been recently proposed in [9], which is

capable of generating data characterized by parametrized clas-

sical discrete distributions – however, it is not always feasible

to assign such distributions to real-world data, especially over

multivariate spaces.

Database-dependent Regeneration. DBSynth[19] is an exten-

sion to PDGF, which builds data models from an existing database

by extracting schema information, and using sampling to con-

struct histograms and dictionaries of text-valued data. Further, if

the textual data contains multiple words, Markov chain genera-

tors are used to analyze the word combination frequencies and

probabilities. Finally, after the model construction is complete,

PDGF is invoked to generate the corresponding data.

Like DBSynth, RSGen [22] takes a metadata dump, including

1-D histograms, as the input, and generates database tables along

with a loading script as the output. It uses a bucket based model

at its core, which is able to generate trillions of records with

minimum memory footage. However, the proposed technique

works well only for queries with only a single range predicate.

Further, due to the inaccurate statistical models in the query

optimizer, the volumetric similarity is poor for queries involving

predicates on correlated attributes.

UpSizeR [24] is a graph-based tool that uses attribute correla-

tions extracted from an existing database to generate an equiva-

lent synthetic database. A derivative work, Rex [13] produces an

extrapolated database given an integer scaling factor and the orig-

inal database, while maintaining referential constraints and the

distributions between the consecutive linked tables. Dscaler [26]
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addresses the problem of generating a non-uniformly
5
scaled ver-

sion of a database using fine-grained, per-tuple correlations for

key attributes, but such information is typically hard to come by.

Moreover, all these techniques only generate the key attributes,

whereas the non-key values are sampled from the original data-

base using these key values. Hence, the approach becomes imprac-

tical in Big Data and security-conscious environments. Finally,

Dscaler fails to retain accuracy for some common query classes.

Query-dependent Regeneration. Apart from the above tech-

niques, another line of work [6, 10, 11, 18] is based on workload

dependence (as in the case of Hydra). Here the aim is to gener-

ate a database given a workload of queries such that volumetric

similarity is achieved on these queries. In particular, RQP [10]

gets a query and a result as input, and returns a possible data-

base instance that could have produced the result for that query.

The idea of using cardinalities from a query plan tree was first

introduced in QAGen [11]. They start by constructing a symbolic
database6, and then translate the input AQPs to constraints over

the symbols in the database. Subsequently, a constraint satisfac-

tion program (CSP) is invoked to identify values for symbols that

satisfy all the constraints.

On the positive side, these generators are capable of handling

complex operators as they use a general CSP, but the performance

cost is huge since the number of CSP calls also increases with

the database size. Further, it requires operating on a symbolic

database of matching size to the original database, and processing

of the entire database during the algorithm execution. This makes

it impractical for BigData environments. Finally, QAGen supports

only one query plan in the input. This limitation was addressed

in a follow-up tool called MyBenchmark [18], which creates a

symbolic database on a per query basis and at the end tries to

heuristically merge the various databases into a small number

of databases. Clearly, generating a database on a per query basis

has enormous time and space overheads, and further, a single

database is not guaranteed in the output.

DataSynth [6] identified the declarative property of cardinality

constraints and its ability to specify data characteristics. Given

a large number of cardinality constraints as input, the paper

proposed algorithms based on the LP solver and graphical models

to instantiate tables that satisfy those constraints. However, it

suffers from high LP complexity, data scale dependencies, and

inaccuracies with regard to volumetric similarity, as we have

discussed in this paper. Hydra materially extends the DataSynth

approach by adding dynamism, scale and functionality.

9 CONCLUSIONS
The ability to synthetically regenerate data that accurately con-

forms to the volumetric behavior on queries at client sites is of

crucial importance to database vendors, and will become even

more so with the advent of Big Data applications. In this paper,

we have proposed Hydra, a data regeneration tool that takes

a substantial step forward towards achieving this goal. Specif-

ically, by reworking the basic LP problem formulation into a

region-based variable assignment, Hydra improves on the state-

of-the-art DataSynth’s performance by orders of magnitude with

regard to problem complexity, data materialization time, and

scalability to large volumes. Secondly, by using a deterministic

alignment technique for database consistency, it provides far

5
In non-uniform scaling, individual tables are scaled by different factors.

6
A symbolic database is similar to a regular database, but its attribute values are

symbols (variables), not constants.

better accuracy in meeting volumetric constraints as compared

to the probabilistic approach employed in DataSynth. Finally, its

summary-based framework organically supports the dynamic

regeneration of streaming data sources, an essential pre-requisite

for efficiently testing contemporary deployments.

In our future work, we plan to focus on covering a richer set

of query operators, such as grouping functions, within the Hydra

framework. Also, we would like to investigate how to leverage

additional summary information (such as value-based correla-

tions) that the client might be willing to provide for achieving

stronger fidelity with the original database.
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ABSTRACT
Complex Event Processing (CEP) has emerged as the state-of-
the-art technology for continuously monitoring and analyzing
streams of events in time-critical applications. The key feature
in CEP is sequential pattern matching to detect a user-defined
sequence of conditions on event streams. However, many CEP
applications are not restricted to events only, but require native
support for situations (aggregated event data lasting periods of
time) and expressive temporal pattern matching among these
situations. These important requirements regarding situations
are not sufficiently addressed in the CEP literature so far.

In this paper we present TPStream, a novel event-processing
operator for both deriving situations from event streams and
detecting temporal patterns among situations. First, we provide a
formal foundation of situations and TPStream. Then, we propose
a low-latency algorithm for TPStream that delivers situations and
temporal matches at the earliest possible point in time. Further-
more, we utilize a simple, yet effective costmodel in order to adapt
to changing workloads on the fly and with negligible cost for
migrating operator states. The results of our experimental evalu-
ation show that TPStream is capable of processing high-volume
event streams with low latency and outperforms applicable CEP
solutions from academia and industry.

1 INTRODUCTION
During the last decade, Complex Event Processing (CEP) has
emerged to the technology of choice for analyzingmassive streams
of events in near real time. Typically, CEP systems detect com-
posite (complex) events by combining, aggregating and filtering
streams of simple or other composite events and report matches
to registered event sinks. In turn, these sinks react to the detected
event by triggering appropriate actions in a timely manner. CEP
can be applied to a wide variety of application domains, including
IT infrastructure monitoring, traffic monitoring, health care and
financial applications.

Problem Statement: A noticeable fraction of currently avail-
able CEP systems is build upon point based temporal semantics.
That is, each event is associated with a timestamp (e.g., the mo-
ment a measurement was made) and event streams are ordered
accordingly. With only a single timestamp the expressible tem-
poral relations between two events are limited to before/after/at
the same time relationships. However, many real-world scenar-
ios comprise the detection of complex temporal patterns among
situations lasting for periods of time. Consider the following
traffic-monitoring application:

Example: A traffic monitoring system is continuously receiv-
ing sensor data from connected cars (i.e., position, speed, accelera-
tion). One of the systems goals is to notify drivers about potential

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the 21st
International Conference on Extending Database Technology (EDBT), March 26-29,
2018, ISBN 978-3-89318-078-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Figure 1: Detecting aggressive driving with situations

dangers around their locations, such as an aggressively driving
car. Among others, the American Automobile Association has
identified the following two actions being indicators for aggres-
sive driving1: “Operating the vehicle in an erratic, reckless, careless,
or negligent manner or suddenly changing speeds" and “Driving
too fast for conditions or in excess of posted speed limit". From
these definitions, a pattern to detect aggressive drivers could be
stated as: “A sharp acceleration followed by hard braking, both
accompanied by a period of speeding."

Challenges: This example illustrates three key-features a so-
lution for temporal pattern matching on instantaneous events
should provide: (i) Situations are derived from point events on-
the fly, by identifying subsequences of the input stream for which
the defined condition holds true (e.g., speed ą 70 mph). Optional
constraints can be applied to restrict the duration of situations. In
addition to its validity (expressed as a time interval), a situation is
enriched with meaningful summarizations of underlying events
(e.g., the average speed of the speeding phase). (ii) The pattern
language offers support for alternatives. That is, the order of the
situations’ start and end points is not required to be fully fixed.
Consider, for example, the two matches sketched in Figure 1:
In the first match, the three defined situations overlap, while
in the second match deceleration happens during the speeding
situation. (iii) The pattern should be detected with the lowest
possible latency. As depicted in Figure 1, both matches may be
concluded at the beginning of the deceleration situation, since at
this point in time speeding still holds true and the pattern allows
any combination of their endpoints. Technically, this means the
system should be able to conclude a successful match without
exact knowledge about the validity of all situations.

State-of-the-Art:To the best of our knowledge, the onlywork
on complex temporal relations in event stream pattern matching
is the ISEQ operator [20]. However, ISEQ has several shortcom-
ings concerning the desired features: First, the operator expects
interval-events (i.e., situations) as input, leaving all aspects of (i)
to an unspecified external entity. Being unaware of the origin of
interval-events severally limits the operator in processing power
(in terms of plan optimization) and most importantly renders a
detection with the lowest possible latency (iii) impossible since
there is no way to directly access an incomplete situation or indi-
rectly manipulate the building of a situation through constraints.

1http://www.iii.org/fact-statistic/aggressive-driving
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Second, a temporal pattern is specified using a conjunction of
endpoint relationships (i.e., an ordering on start (ts) and end (te)
of intervals). This way, alternatives are expressed by omitting
one or more endpoints. For example, the pattern A.ts ă B.ts ă

A.te ď B.te _ A.ts ă B.ts ă B.te ă A.te on two situations A
and B is expressed as A.ts ă B.ts ă A.te. Hence, disjunctions
like A.ts ă B.ts ă A.te ă B.te _ B.ts ă A.ts ă B.te ă A.te
are not expressible in a single query. Instead, they require multi-
ple queries in an approach without any specified optimization
component to detect shared processing opportunities. Finally,
ISEQ relies on auxiliary index structures and punctuation mecha-
nisms for efficient query execution, complicating the integration
into existing systems.

Straw Man’s Approach: Besides ISEQ, we identified two ap-
proaches to solve the task of temporal pattern matching with
point event streams. Thus, we can provide a point of comparison
to CEP systems featuring pattern matching via regular expres-
sions or equivalent techniques. The first approach works in two
phases: In the first phase, a pattern matcher is deployed for each
defined situation, computing its duration (start/end timestamp)
and the desired aggregates. Technically, this means matching pat-
terns of the form !S S+ !S with S being derived from the input
stream using the situation’s condition (e.g., speed ą 70 mph).
This results in a dedicated stream per defined situation. Each of
these streams is ordered according to the end timestamp, which
allows to map the temporal pattern to a sequence of situations
(reflecting the order of end timestamps, possibly containing al-
ternatives). In the second phase, a dedicated pattern matching
operator is used to find all matching sequences, whereby the
proper ordering of start timestamps is checked via additional
predicates. Even though this approach satisfies requirements (i)
and (ii), it fails to produce early results (iii), because, just like in
ISEQ, situations are fully derived before they are available for
pattern matching.

The second approach uses a single pattern matching opera-
tor and expresses the temporal pattern as a single sequence of
point events. To express temporal overlaps, the conditions of
all involved situations must be connected via a logical AND. For
example, Acceleration overlaps Speeding is expressed as
A B+ C with the following conditions: A : accel ą 8 m{s2,
C : speed ą 70 mph and B : A ^ C. Since patterns are expressed
on the granularity of events, early results (iii) are achieved, by
simply omitting the last portion of the pattern. At the same time
summarizations of single situations and the validation of duration
constraints (i) are left to a post-processing step, since situations
are disassembled to express temporal overlaps.

Solution:We present TPStream, a holistic operator for com-
plex temporal pattern matching on point event streams. Com-
pared to the presented approaches, our contributions are:

‚ TPStream is the first CEP operator to closely couple derivation
of situations with pattern matching, enabling match detection
at the earliest possible point in time.

‚ We also improve upon existing work on temporal pattern
matching (e.g. ISEQ) by allowing arbitrary alternatives and
duration constraints in pattern definitions.

‚ We introduce an optimizer component for interval-based pat-
tern matching which continuously adapts its execution strat-
egy to deal with fluctuating data rates and changes in the data
distribution of incoming streams.

‚ TPStream provides native query support for temporal pattern
matching, making it easier to formulate and read temporal

patterns in comparison to most existing CEP solutions relying
on a straw man’s approach.

‚ Unlike ISEQ, the operator and its low latency optimizations
can easily be implemented in commonly available point-based
systems, because time-intervals are used only internally and
results are again point event streams.

‚ In experiments, we show our latency improvements and the
performance limits of two existing CEP solutions from academia
and industry when handling situations. We present that TP-
Stream can outperform these systems by an order of magnitude
and that alternatives, which have great impact on the perfor-
mance of sequential pattern matching, influence TPStream’s
matching performance only marginally.

The rest of the paper is organized as follows. Section 2 reviews
related work, before we introduce TPStream’s query language
in section 3. In section 4 we model all aspects of TPStream in
an algebra. Efficient evaluation strategies, the algorithm for low-
latency matching and our optimization techniques are presented
in section 5.We evaluate the performance of TPStream in section 6
and conclude this paper in section 7.

2 RELATEDWORK
So far, native ways to work with situations in systems capable
of CEP have not been sufficiently addressed. Nevertheless, the
concept can be related to working with time intervals, aggre-
gating information and performing temporal joins, all of which
have seen recent contributions. Since these are broad areas, we
will loosely group the most relevant approaches under three
headlines: Event Pattern Matching, Context/State in CEP and
Spatio-Temporal Database Systems.

Event PatternMatching: Systems capable of CEP (e.g. [3, 9])
are generally closely associated with a pattern matching operator.
[27] features a discussion on the several different semantics of the
operator and a recent survey [12] covers several implementations,
that employ different techniques such as NFAs or Graphs, each
featuring their own unique optimization techniques. Regardless
of specific details, most approaches focus on data referring to
points in time and thus lack native capabilities to query complex
relations between time intervals as stated in [2] - a crucial aspect
for dealing with long-lasting situations. Cayuga [8], ZStream
[22] and Microsoft StreamInsight [1] are well-known approaches
that associate time intervals with data, showcasing the interest in
working with interval-based events. ZStream in particular shares
similarities with our join-based, adaptive processing approach
for pattern matching. However, each of the respective pattern
languages is based around a strictly sequential relation (interval i
ends before interval j begins) and/or explicitly order-independent
relations (conjunction, disjunction). Not only does this limit their
respective algorithmic support for complex temporal relations,
but, just like point-based systems, formulating derivation queries
naturally leads to the straw man’s approach mentioned above
using Kleene Operators (or FOLDS in [8]). As we will show in
our experiments, this approach results in significant performance
deficiencies.

Context/State in CEP: There has been recent work on intro-
ducing contexts into a CEP environment. CAESAR [23] associates
queries to long-lasting context windows, detects them from in-
coming events as soon as they start and suspends queries of
inactive contexts. Similarly, contexts in [11] are used to group
up event types to process them together. While contexts and
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Relation (R) Equivalent (R) Visualization

A before B B after  A

A star ts B B star ted-by A  

A meets B B met-by A

A over laps B B over lapped-by A

A dur ing B B contains A

A f inishes B B f inished-by A

A equals B

Defini tion (?R)

A.ts < A.te < B.ts < B.te

A.ts = B.ts < A.te < B.te

A.ts < A.te = B.ts < B.te

A.ts < B.ts < A.te < B.te

B.ts < A.ts < A.te < B.te

A.ts < B.ts < A.te = B.te

A.ts = B.ts < A.te = B.te

Table 1: Allen’s Interval Algebra

situations are related concepts, the key difference is that con-
texts are purposefully decoupled from events. Therefore, it is
not possible to query the relation of different contexts to each
other. In contrast, TPStream focuses on efficient, adaptive and
low-latency implementations of those temporal relations. Like-
wise, work on states [18] and on aggregating windows [14, 17]
focuses on derivation, but lacks interval relations [2] or pattern
matching.

Spatio-Temporal Database Systems: The spatial databases
community studied the problem of spatio-temporal pattern queries
(STPQ) in trajectory databases [10]. In general, these approaches
cannot be directly applied to an event processing environment,
because they are built on top of a persistent trajectory database
model, where movement histories are already stored and indexed
in the database. However, the design of [25] in particular served
as a foundation for our proposed TPStream operator as TPStream
adapts similar concepts of temporal predicates and constraints.
Furthermore, our evaluation method is related to temporal joins
(see [13] for an excellent survey), but as most of the work is not
based in stream processing, unique and important issues such
as continuously arriving data, continuous query optimization
and early result detection are overlooked. In comparison to join
algorithms on streams [6, 15] as well as adaptive approaches
[5], TPStream combines both the derivation of situations and the
detection of patterns. Thus, the operator can offer new techniques
for early result detection unique to CEP-style pattern matching.

3 QUERY LANGUAGE
In order to express temporal relations between situations, we
adopt Allen’s Interval Algebra [2] depicted in Table 1 for two
generic intervals A and B. Each interval has a starting point
(ts) and an ending point (te), resulting in a total of four points.
te is the first point in time when the interval is not valid, i.e.
the interval is half-open. The relation (R) between A and B is
represented through the relation between these four points as
given by the definition (δR ). As an example depicted in Table 1
A before B means the interval A ends before the interval B
begins. Similarly, A during Bmeans A happens during B, because
A.ts and A.te are between both points of B. We introduce the
TPStream query language by formulating and explaining the
query to detect aggressively driving cars from the introductory
example in Listing 1.

The operator works on streams containing data referring to
points in time. In the case of aggressive drivers, we work on a
singular stream CS, providing sensor data from cars, which is
specified as an input (FROM). This stream is partitioned by the
car_id to evaluate each driver individually (PARTITION BY). The
important aspect of deriving situations from the stream is handled
in the DEFINE clause: The acceleration situation is represented
with the symbol A, the condition CS.accel ą 8 m{s2 and the

FROM CarSensors CS PARTITION BY CS.car_id

DEFINE A AS CS.accel > 8m/s2 at least 5s,

B AS CS.speed > 70 mph between 4s AND 30s,

C AS CS.accel < -9m/s2 at least 3s

PATTERN A meets B;A overlaps B;A starts B;A during B

AND C during B;B finishes C;B overlaps C;B meets C

AND A before C

WITHIN 5 MINUTES

RETURN first(B.car_id) AS id,

avg(B.speed) AS avg_speed;

Listing 1: Agressive drivers query

(optional) duration constraint AT LEAST 5s, while speeding and
deceleration are defined by B and C respectively. The derived
situations are analyzed with a PATTERN. For aggressive drivers,
an acceleration (A) may meet, overlap, start or occur during
a phase of speeding (B). These are alternatives in the pattern
definition, separated with semicolons in the query language. The
same applies for deceleration (C) and speeding (B). The pattern
is fulfilled if at least one of each alternatives is true. We apply a
window condition on the evaluation period (WITHIN), specifying
that the pattern should only be searched within situations derived
in the past 5 minutes. Finally, in case of a match, we RETURN
aggregated results from each situation, in this case the car_id
and the average speed.

3.1 Expressiveness
Most common CEP systems define patterns based on symbols
connected via regular expressions. Specific extensions, like ag-
gregations, put the expressiveness of those languages between
regular and context-free grammars [27]. However, only ISEQ pro-
vides a native way to process patterns based on temporal relations.
This deficit is also reflected in the respective languages.

By design, TPStream can express all temporal relations (and un-
like ISEQ alternatives among them) in a single query. In contrast,
a single pattern matching query in CEP systems is designed to
detect a sequence, i.e., a before relation. Nevertheless, as shown
by both straw man’s approaches in our introduction, in a system
supporting Kleene-closure it is possible to express other temporal
relations through either multiple queries (decoupling derivation
and detection) or a single query (without aggregation capabilities
and the validation of duration constraints). Thus, our language
does not express more than the full language of other systems.

Instead, we focus on enabling the user to express complex
temporal patterns in a single, readable and maintainable query
via the widely-known interval algebra (Table 1). For this pur-
pose, we made two notable design choices that differ from some
sequence-based approaches. First, some languages [27] allow to
skip events while matching. In contrast, we derive the longest
possible contiguous sequence of events, because this aligns well
with the idea of long lasting situations and avoids ambiguity
whether a situations is still ongoing during other events. Second,
some languages [9] allow symbols to access aggregates of other
symbols. Due to ambiguity in the expected results when dealing
with situations, we do not allow this. For example, consider mod-
ifying the definition for symbol B in Listing 1 to B AS CS.speed
> max(A.speed). Then, for A overlaps B it is unclear whether
max(A.speed) is accessed when A finishes, when B starts or is
continuously monitored for each B. For a precise presentation of
our approach, we chose those two concessions and will work on
mitigating them in the future.
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Wewould also like to sketch that, apart from those concessions,
it is possible to express a purely sequence-based pattern with
TPStream: A sequence can be expressed with a before relation
and the implicit ongoing nature of situations can be eliminated
with a duration constraint. Nevertheless, the basis for our im-
plementation [19] features a standard sequence-based pattern
matching operator that is optimized and thus preferable for this
purpose. Similarly, our implementation can be easily integrated
into other systems, because TPStream consumes and produces
point-based event streams. In conclusion, this means that we
do not change the expressiveness of other approaches, but by
extending a query language with Allen’s Interval Algebra, our
benefits can be almost universally adopted.

4 ALGEBRA
The goal in designing TPStream is to develop an operator capable
of continuously deriving situations from a stream of events and
relate those situations to each other. To achieve this, we need to be
able to express both the derivation and relation. For this purpose,
we will formally model those aspects (streams, data, deriving
situations and temporal pattern matching) in an algebra.

4.1 Stream Model
Definition 1 (Data Stream). A data stream D is a potentially
unbounded sequence of data items xd1,d2, ...y totally ordered by
a relation ăD . di P D refers to the i-th data item in the stream
according to that order and all data items are from the same
domain D. xy refers to an empty data stream.

In order to refer to multiple data streams, we will utilize the
notation D1,D2,D3, . . . with Di “ xdi1,d

i
2, . . .y, i.e. a superscript

labels separate streams, while a subscript refers to the order
within a stream. For the sake of simplicity and legibility, we will
generally assume that each item in a data stream is unique and
refer to previous work on the matter of handling potentially
equal elements [8]. xy is mainly used to specify the case of no
output in upcoming definitions.

Definition 2 (Continuous Subsequence). Based on a data stream
D, Dri, js “ xdi , . . . ,dj y with i ă j refers to a continuous subse-
quence containing every data item as it pertains to ăD .

Definition 3 (Union). The union Z of two data streams D1 and
D2 both totally ordered with ăD results in a data stream D1 with
the same order ăD :

ZpD1,D2q :“ D1 “ xd 1
1,d

1
2, . . .y

such that D1 contains each element from both D1 and D2. Anal-
ogous to set theory, the union of n data streams D1, . . .Dn is
abbreviated with the notation

Ţn
i“1 D

i .

4.2 Data Model
Our operator involves two kinds of data which we need to define:
events and situations. In general, events refer to a notification
that something happened instantaneously at exactly one point
in time while situations span multiple points in time and contain
aggregated information for that time period.

Definition 4 (Event). An event e is a pair pp, tq consisting of a
payload p and an event timestamp t . p is from some domain D

and t is from a discrete and totally ordered time domain T . The
validity of p is the instant t .

Definition 5 (Situation). A situation s is a triple pp, ts, teq con-
sisting of a payload p and two timestamps: ts (start timestamp)
and te (end timestamp). p is from some domain D. ts and te are
from a discrete and totally ordered time domain T with ts ă te .
The half-open time interval rts, teq specifies the validity of p.

Event streams are ordered by the event timestamp and will
be represented with E. Situation streams are ordered by the
end timestamp of situations and will be represented with S . We
focus our efforts on presenting algorithms for streams with data
arriving in-order and leave the adjustment to out-of-order data
by adapting previous research on out-of-order pattern matching
[7, 21] for future work.

4.3 Derivation
Situations are derived from event streams through aggregation
and predicate evaluation. We will first formally define aggrega-
tion on continuous event subsequences before deliberating on
predicates and how to derive situation streams.
Definition 6 (Aggregated Event Subsequence). An aggregate
γaдд is applied to an event stream subsequence Eri, js by applying
the aggregate aдд to the events in the subsequence:

γaддpEri, jsq :“ paддpei , . . . , ej q, ei .ts, ej`1.tsq

When obvious from context, we abbreviate γaдд with γ .
The result in Definition 6 technically already is a situation.

However, for the derivation process as a whole, we want to
discover situations for which a set of circumstances hold true.
In order to provide an unambiguous process to identify these
situations we are looking for the longest possible sequences for
which these circumstances apply.
Definition 7 (Derived Situation). Situations are derived with
a function deriveϕ,τ ,γ which aggregates information of a con-
tinuous event subsequence Eri, js by applying γ iff the events
in Eri, js are the longest possible sequence of events to fulfill a
given predicate ϕ and the covered timespan is within the given
duration constraint τ :“ rdmin ,dmax s:

deriveϕ,γ ,τ pEri, jsq “

$

’

’

’

&

’

’

’

%

γ pEri, jsq if
@l P ri, js : ϕpel q^

!ϕpei´1q^!ϕpej`1q^

pej`1.ts ´ ei .tsq P τ

xy otherwise

Example. Assume the query in Listing 1 derives a speeding
situation for a car with the time interval r2, 10q. This means
CS.speed ď 70 mph at t “ 1 and t “ 10 and in between those
timestamps CS.speed ą 70 mph. From an algebraic standpoint,
assuming knowledge about the whole event stream, this aligns
well with a natural interpretation: There are not multiple situa-
tions (e.g. r2, 3q, r2, 4q, . . .) but rather one continuous speeding
phase which fulfills the duration constraint (dmin “ 4s and
dmax “ 30s). For that reason and because it results in unique
situations, we choose to derive the longest possible subsequence
in Definition 7.
Definition 8 (Derived Situation Stream). ThederiveStreamϕ,γ ,τ
function derives a stream of situations from a given event stream
E by applying the function deriveϕ,γ ,τ to all possible subse-
quences and unifying the results:

deriveStreamϕ,γ ,τ pEq “
ě

j

j
ě

i“1
deriveϕ,γ ,τ pEri, jsq
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Note that, due to assumption that each event in an event
stream has a unique timestamp and the fact that deriveϕ,γ ,τ
derives the longest situations possible, it is easy to show that
deriveStreamϕ,γ ,τ produces a stream of situations with disjoint
time intervals. This implies, that the order of situations using
start timestamps is the same as the order using end timestamps,
resulting in a beneficial pattern for query processing [16]. Due
to space limitations, we omit a formal proof here.

4.4 Pattern Matching
TPStream matches multiple situation streams to a temporal pat-
tern and produces a result event stream according to the given def-
initions. A temporal pattern is composed of temporal constraints
between situation streams, which in turn comprise multiple tem-
poral relations between exactly two streams. In this section, we
present formal definitions of these terms, the output of a success-
ful match and ultimately the TPStream operator.

Definition 9 (Temporal Relation). Given two situation streams
SA, SB , a temporal relation RA,B , defines a valid relationship be-
tween two situations sA P SA and sB P SB according to Allen’s
Interval Algebra (cf. Table 1). sA and sB fulfillRA,B , iff they satisfy
the corresponding algebraic definition (δR ).

Definition 10 (Temporal Constraint). A temporal constraint
CA,B between two situation streams SA, SB is a set of temporal
relations tRA,B1 , ...,RA,Bm u. Two situations sA P SA and sB P SB

fulfill CA,B , iff they at least fulfill one of the temporal relations.

In other words, temporal constraints allow to specify multi-
ple valid relations between two situation streams, providing the
desired flexibility in expressing alternatives.

Definition 11 (Temporal Pattern). For any number of situation
streams pS1, ..., Smq, a temporal pattern (P) is a set of temporal
constraints tCi, j |1 ď i ă j ď mu. A temporal pattern is matched
by a temporal configuration s “ ps1 P S1, ..., sm P Smq, iff s
satisfies every temporal constraint:

matchPpsq :ô @Ci, j P P : DRi, j P Ci, j : δRi, j ps
i , s j q

Example. Consider the example query of Listing 1 and let sA be
an acceleration situation as defined by A and sB , sC be a speed-
ing (B) and deceleration (C) situation respectively. The PATTERN
describes how pairs of situations in s “ psA, sB , sC q can relate to
each other via temporal constraints: For sA and sB the temporal
relation can be either A meets B, A overlaps B, A starts B or
A during B. It does not matter if acceleration overlaps speeding
or if speeding contains acceleration. Both cases may lead to the
result of detecting aggressive drivers. The temporal pattern on
the other hand is a conjunction of temporal constraints: In order
to match the pattern, each temporal constraint must be fulfilled.

Definition 12 (Pattern Matching Output). A temporal pattern
matching operator PMw,γ̂ matches a temporal configuration s “

ps1, s2, . . . , smq to a temporal patternP. It aggregates the informa-
tion of s with some suitable aggregate γ̂ and checks thewindow
condition (cf. WITHIN clause):

windowps,wq “ w ď max
sPs

ps .teq ´ min
sPs

ps .tsq

Figure 2: TPStream Architecture

The operator produces an output, if the temporal configuration
matches the pattern during the specified window, i.e.:

PMw,γ̂ ps,Pq :“

$

’

&

’

%

pγ̂ psq,max
sPs

ps .teqq if
matchPpsq^

windowps,wq

xy otherwise

Similarly to how we extended derived situations to derived
situation streams (Definition 7 to 8), we can extend Definition 12
to situation streams:

Definition 13 (TPStream). TPStreamw,γ̂ matches multiple sit-
uation streams S1, . . . , Sm to a temporal pattern P by applying
the corresponding pattern matching operator PMw,γ̂ to the cross
product of the situation streams and unifying the results:

TPStreamw,γ̂ pS1, . . . , Sm ,Pq :“
ě

sP
Śm

i“1 S i
PMw,γ̂ ps,Pq

Note that TPStreamw,γ̂ results in an event stream and can thus
easily be integrated into common CEP processing pipelines.

5 ALGORITHMS & IMPLEMENTATION
In this section, we present our algorithms and implementation
details for detecting temporal patterns among streams of point
events. Following the definitions from the previous section, the
general architecture consists of two main components, as de-
picted in Figure 2. The deriver-component consumes events from
the input stream and derives the defined situation streams. Then,
those streams are passed to the matcher-component, which per-
forms the actual pattern matching. In the following two subsec-
tions we will explain both components in detail. For the sake
of simplicity we defer low latency detection to section 5.3 and
initially wait for the end timestamp of derived situations before
invoking the matcher. The last part of this section describes how
TPStream computes efficient execution plans and dynamically
adapts to changing workloads.

5.1 Deriving Situations
Definition 8 introduced derived situation streams, using knowl-
edge about the whole input-stream. To compute situation streams
incrementally as new events arrive the deriver-component man-
ages a buffer for ongoing situations (B) and the situation stream
definitions (D). Algorithm 1 shows how they are used to de-
rive situations on-the-fly. For each defined situation, 3 cases are
checked: If there is no started situation on the buffer, but the
predicate holds true, a new situation is started. Therefore, we
compute initial values for all defined aggregates (e.g., p.speed
for an maxpspeedq aggregate). Those values are bundled with
the event’s timestamp and stored on the buffer (Lines 4,5). The
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Algorithm 1: DeriveSituations
Input: pp, tq: event
Data: B :“ rpp1, tsqi s: active situation buffer,

D :“ rpϕ,γ ,τ qi s: situation definitions
1 R Ð H;
2 foreach i P |D| do
3 pϕ,γ ,τ q Ð Dris;
4 if Bris “ H ^ ϕppq then
5 Bris Ð pinitAддpp,γ q, tq;
6 else if ϕppq then
7 updateAgg(p,Bris,γ );
8 else if Bris ‰ H then
9 if pt ´ Bris.tsq P τ then

10 R Ð R Y tpBris.p1,Bris.ts, tqu;
11 Bris Ð H;

12 if R ‰ H then
13 updateMatcher(R, t );

Algorithm 2: UpdateMatcher
Input: S : set of finished situations, t : the current time

1 purgeBuffers(t );
2 foreach s P S do
3 addToBuffer(s);
4 performMatch(tsu, 0);

temporal validity of a started situation is prolonged, if the current
event fulfills the predicate. In this case, the buffered aggregates
are updated using the event’s payload (p) (Lines 6,7). Finally, a
situation is finished on the first event not satisfying the defined
predicate. In this case, the situation’s end timestamp is fixed to
the current time, it is added to the result-set R (provided it satis-
fies the duration constraint τ ) and the corresponding buffer slot
is cleared (Lines 8-11). After updating the state of each situation
stream, the result-set is passed to the matcher-component (Lines
12,13).

5.2 Matching the Pattern
The matcher implements an incremental version of Definition 13
(TPStreamw,γ̂ ). In other words, it detects matches on-the-fly as
new situations are handed over from the deriver-component. The
general idea is to employ a buffer for each situation stream and
perform the pattern detection via a multi-way join between those
buffers, using the temporal constraints as join-conditions. Recap
that all situations within a stream are disjoint and thus imply the
same order on both the start and end timestamps (Definition 8).
We will use this fact to ensure efficient execution of the matcher
component.

Each time the deriver distills new situations, Algorithm 2 is
invoked: At first, expired situations are purged from the buffers
(Line 1). That is, removing all situations swith s.ts ă t´window.
Because of thementioned ordering, this effectivelymeans, finding
the first situation s1 with s1.ts ě t ´ window and discarding all
previous events. The buffers are implemented via array-backed
ring buffers, which efficiently support these operations.

After purging outdated situations, each new situation is first
added to its corresponding buffer, before the actual matching

Algorithm 3: PerformMatch
Input:ws: working-set, sc: current step count
Data: order: evaluation order

1 if sc “ order.getNumSteps() then
2 publishResult(ws);
3 return;
4 step Ð order.getSteppscq;
5 if step.isSet(ws) ^ step.checkConstraints(ws) then
6 performMatch(ws ,sc ` 1);
7 else if !step.isSet(ws) then
8 foreach pp, ts , te q P findMatches(step,ws) do
9 ws Ð ws Y tpp, ts , te qu;

10 performMatch(ws , sc ` 1);
11 ws Ð wsz tpp, ts , te qu;

algorithm (Algorithm 3) is invoked (Lines 2-4). We force the new
situation to be part of any successful match, by passing it as
a parameter. This ensures the desired incremental creation of
results, because we pass a new, not yet considered situation on
every invocation.

The matching algorithm relies on a so called evaluation order,
which we describe briefly upfront. An evaluation order deter-
mines the order in which situation buffers are joined and provides
the required information for each processing step (a reference to
the situation buffer and the set of temporal constraints to be ful-
filled). Using this information and a partial temporal configuration
(working-set), Algorithm 3 matches the temporal pattern as fol-
lows: In each step, the corresponding situation buffer is searched
for situations satisfying all applicable temporal constraints (Line
8). Applicable means, that the counterpart of the constraint is
already present in the working-set. Then, all returned situations
are successively added to the working-set and for each of the
new partial temporal configurations, the algorithm proceeds to
the next step (Lines 9-11). Lines 5 and 6 intercept the evaluation,
if the working-set already contains a situation for the current
step, which accounts for situations passed as a parameter from
Algorithm 2. In this case, the corresponding buffer is ignored
and the step’s temporal constraints are checked directly. Finally, a
match is detected if the working-set contains a situation from ev-
ery buffer (Lines 1-3). The publishResult function consumes this
working-set, assembles the result and pushes it into the output
stream.

Obviously, the evaluation performance of Algorithm 3 mainly
depends on the efficiency of the findMatches function. A naïve
approach would be, to scan the entire buffer and check the tem-
poral constraints for each situation separately. With Ri denoting
the i-th intermediate result, Bi the buffer traversed in step i
and |R1| “ |B1|, the costs (C) of performMatch following this
approach can be estimated with:

C “ |Rn | `

n´1
ÿ

i“1
|Ri | ¨ |Bi`1| (1)

To speed up the computation, we again use the order of situ-
ation streams: Because the order is reflected on the buffers, we
are able to find all matching situations using binary searches.

318



Figure 3: Temporal Matching via Range Queries

We first discuss how this is done for a single temporal rela-
tion before extending it to (multiple) temporal constraints. Re-
call that a temporal relation explicitly defines a relationship be-
tween all four endpoints of two situations. For instance, this is
A.ts ă B.ts ă A.te ă B.te for A overlaps B. Now, given an
instance of situation A, we can obtain matching instances of B
by (i) issuing two range-queries on the buffer of B, using the
timestamps of A as boundaries and (ii) intersecting the results of
those queries. For the example relation, these queries are:

(1) A.ts ă ts ă A.te for the start-timestamp and
(2) A.te ă te ă 8 for the end timestamp.

It is easy to see, that each situation falling into both ranges
fulfills the given temporal relation. Figure 3 illustrates this using 3
situations: Situation A1 in combination with the temporal relation
is used to build the two search ranges. After intersecting the
results ( tB1u for the start range and tB1, B2u for the end range),
we receive our final result B1. Note that for temporal relations
allowing more than one result (e.g., A before B), this strategy
additionally eliminates the need for checking each combination
individually.

Typically, a temporal constraint contains more than one tempo-
ral relation, stating each of them as a valid relationship between
two situations. This can be easily integrated by executing the
search separately for each of the defined relations and subse-
quently building the union of the obtained results. The conjunc-
tion of multiple temporal constraints can be implemented as an
intersection of the results from the respective individual queries.
Because the buffers are backed by a contiguous array, we can
represent the search results as index-ranges and thus efficiently
compute the required unifications and intersections. This ap-
proach reduces the estimated costs of performMatch to:

C “

n
ÿ

i“2

´

|Ri´1| ¨ |Ri | `Cf indMatches p|Bi |q
¯

(2)

withCf indMatches p|Bi |q being bounded by |P|¨13¨4¨log2p|Bi |q.
The constant factors 13 and 4 arise from the possible temporal
relations per constraint and the binary searches to execute for
each of them, respectively.

5.3 Low-Latency Matching
In this section, we will determine the earliest points in time (td )
to detect a temporal relation (td pRq), temporal constraint (td pCq)
and temporal pattern (td pPq). Then, we adjust our algorithms
from the previous section to deliver matches as early as possible.

5.3.1 Analysis. Two situations A,B can only be related once
we know they exist, making maxpA.ts, B.tsq ď td pRq a trivial
lower bound for all relations. For exact td pRq consider a relation’s
definition δR depicted in Table 2. Let t1 ď t2 ď t3 ď t4 be
the timestamps in the order they appear in δR . It is easy to see

Relation (R) Defini tion (?R) td(R)

A before B A.ts < A.te < B.ts < B.te B.ts

A meets B A.ts < A.te = B.ts < B.te B.ts

Prefix-Group (G) td(G)

A.ts < A.te ? B.ts B.ts

A star ts B A.ts = B.ts < A.te < B.te A.te

A.ts = B.ts B.tsA equal B A.ts = B.ts < A.te = B.te A.te = B.te

A star ted-by B A.ts = B.ts < B.te < A.te B.te

A over laps B A.ts < B.ts < A.te < B.te A.te

A.ts < B.ts B.tsA f inishes B A.ts < B.ts < A.te = B.te A.te = B.te

A contains B A.ts < B.ts < B.te < A.te B.te

Table 2: Low-Latency Analysis

that the ordering of t4 can implicitly be derived at t3, because
t3 ď t4 and there are no timestamps beyond that. Furthermore,
at t1 and t2 there are other relations sharing the same definitions
up to that point, i.e., it is not possible to distinguish them from
each other. To show this, we have grouped relations starting with
A.ts as prefix groups in Table 2 (B.ts groups are analogous). For
those reasons we can conclude td pRq “ t3.

A temporal constraint C “ pR1, . . . ,Rnq for A,B matches if at
least one relation matches. Therefore, the earliest detection time
is td pCq “ ttd pR1q, . . . , td pRnqu. Note that td pCq is a set and the
actual detection time of two situations depends on the fulfilled
relation. Further, if C contains all relations of a prefix group (cf.
Table 2), the detection time of these relations is shifted to the
trivial lower bound (td pGq).

Finally, for a pattern P “ pC1, ...,Cmq, each constraint must
be matched. However, a single temporal configuration matching
P fulfills exactly one temporal relation (R) from each constraint,
making td pPq “ maxptd pR P C1q, . . . , td pR P Cmqq. In gen-
eral, td pPq is among the constraint detection points: td pPq Ď
Ť

i“1...m td pCi q.

5.3.2 Implementation. For the ease of presentation, we ignore
the optional duration constraints on situations as well as prefix
groups during the development and discuss the required changes
at the end of this section.We gained two implementation-relevant
insights from the low-latency analysis. First, new matches can
only be detected if a new situation starts or a situation ends. Sec-
ond, only a subset of the defined situations can possibly produce a
match at td pPq. Thus, the matching process can be delayed until
a situation with at least one endpoint in td pPq occurs without
affecting the latency. We call those situations trigger situations
since only they should trigger a performMatch call. These insights
affect our algorithms in the following ways. Situations must be
available for matching from their start on, which can easily be
achieved by adjusting the deriver. Additionally, we need to de-
termine for each situation stream if the derived situations are
trigger situations. For trigger situations we need to identify the
point in time to execute performMatch (at its start, end or both).

However, the following cases must be considered during the
matching process. If a situation requires matching on both end-
points, care must be taken not to produce duplicate results. Fur-
ther, started situations must not be visible to the matcher in
all cases: If two situations are related via finishes or equals,
they could be mistakenly matched, because their temporary end
timestamps (i.e., the current time) are equal. On the other hand,
if two situations are not explicitly related via a temporal con-
straint they may participate in a successful match, even if both
end timestamps are unknown. To illustrate this, consider the
following pattern on four situations (A, B, C, D): A before B
AND A before C AND A before D AND (D during C OR C
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Figure 4: Earliest detection time (td ) of different temporal
configurations for the same pattern

finishes D OR C meets D). It defines situation A as starting
point of every match. B is not explicitly related to C and D and
required to happen after A. Consequently, B is a trigger situation
and B.ts is in td pPq. For D both D.ts (via meets) and D.te (via
during,finishes) are in td pPq. Figure 4 shows four represen-
tative temporal configurations for this pattern, highlighting the
earliest point of detection (td ). Configuration 1 showcases B as
a trigger situation with td “ B.ts. For the second configura-
tion, D is the trigger with td “ D.ts. This case also shows that
two started relations may participate in a match if their end is
unknown (B,D). The remaining configurations highlight D as a
trigger, but with td “ D.te.

Instead of handling these cases explicitly, our low latency
algorithm avoids them by ensuring a unique combination of
situations in the working-set, before passing it to the matching
algorithm. In particular, this means started situations are man-
aged in a separate buffer, inaccessible for the matching algorithm,
and all valid combinations among them (i.e., all combinations of
started situations, not explicitly related to the current one) are
built upfront inside the working-set. Furthermore, to avoid du-
plicate results, the following fact is exploited: temporal relations
enforcing matching on a situation’s start require its counterpart
to be finished in the past. On the other hand, temporal relations
triggering matching on a situation’s end require its counterpart
to be either started (and not yet finished) or finished at the same
time (cf. Table 2). Consequently, manually adding the started
counterpart to the working-set, before executing the matching al-
gorithm on a situation’s end ensures uniqueness of the produced
results.

The details are presented in Algorithm 4. After purging out-
dated situations from the buffers (Line 1), each started situation
(s) is added to the additional buffer and if s .ts P td pPq, the algo-
rithm performs a regular match with s being the only constant
in the working-set (Lines 2-5). Furthermore, if there are started
and unrelated situations, we perform matches with s and each
combination of them (Lines 6-8). This accounts for configurations
as seen in Figure 4.2. All finished situations are migrated from
the separate to the regular buffer (Lines 9-11) and if s .te P td pPq,
the matching process is triggered. This time with combinations
of s and all started and related situations (Lines 15-16), further
combined with all started and unrelated situations (Lines 17-18),
which fuses the avoidance of duplicate results and false positives.
An example for this case is shown in Figure 4.3. Note that, the
actual constraint-checking among the created combinations is
performed by the call to performMatch (Algorithm 3), since it is
aware of pre-set situations in the working-set. As we will show

Algorithm 4: Low-Latency MatcherUpdate
Input: Sf , Ss : sets of finished/started, t : current time

1 purgeBuffers(t );
2 foreach s P Ss do
3 startedBuffer.add(s);
4 if matchOnStart(s) then
5 performMatch( tsu, 0 );
6 U Ð getUnrelatedStarted(s);
7 foreach u P powersetpU qzH do
8 performMatch( u Y tsu, 0 );

9 foreach s P Sf do
10 startedBuffer.remove(s);
11 addToBuffer(s);
12 if matchOnEnd(s) then
13 R Ð getRelatedStarted(s);
14 U Ð getUnrelatedStarted(s);
15 foreach r P powersetpRqzH do
16 performMatch( r Y tsu, 0 );
17 foreach u P powersetpU qzH do
18 performMatch( r Y u Y tsu, 0 );

in section 6, the extensive building of combinations has only
minimal impact on the runtime-performance, because it shifts
load from joining to the update algorithm and does not introduce
additional computation steps.

Duration constraints on situations are incorporated into
low latency-matching with only a few modifications: First, if a
maximum duration constraint is defined (regardless of a possibly
specified minimum duration), the corresponding situation must
not be included in the matching process until its end is known –
and the constraint is fulfilled. Hence, these situations are excluded
from the set of started situations (Ss ) and if their start timestamp
is in td pPq, matching is deferred to their end timestamp. Second,
if a minimum but no maximum duration is defined, the inclusion
into the set of started situations is deferred until the constraint
is satisfied. This possibly implies the inclusion of its deferred
start timestamp (ts) into td pPq. As an example, consider the
pattern A during B and the following order of timestamps:
B.ts ă A.ts ă A.te ă B.ts ă B.te. This match can not be
detected at A.te, because B’s duration does not exceed the lower
bound at this point. Hence B.ts requires a matcher invocation.

To handle prefix groups the restriction that two started and
explicitly related situations must not be matched is relaxed. That
is, matching is performed if the corresponding temporal constraint
contains one or more prefix groups. However, for still being able to
omit false positives, the matcher must distinguish between prefix
group and regular detection. Technically this means splitting
the temporal constraint into two disjoint sets (one containing all
temporal relations forming a prefix group and another one holding
the remaining relations) and use the first set, when matching on
a situation’s start and the second one on its end.

5.4 Computing the Evaluation Order
The matcher component maps the problem of temporal pattern
matching to a multi-way join between situation buffers. Like
multi-join processing in traditional relational database systems,
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Relation before dur ing

Selectivi ty 0.445 0.03

over laps

0.01

star ts, f inishes, meets

0.0049

equal

0.0006

Table 3: Initial estimates for the selectivity of temporal re-
lations. Mirror relations are equivalent.

the performance of joining heavily depends on the order in which
the join operations are executed. In this section, we discuss how
the matcher’s evaluation order is computed and present the cost-
model used during this process.

Analogous to classical join processing we implemented an
optimizer that enumerates possible execution plans, computes
the expected computational costs for each of them and suggests
the most efficient plan for execution. We do not provide multi-
ple implementations of the join operator, so that enumerating
possible plans reduces to the enumeration of possible evaluation
orders. To further reduce the number of plans to consider, we
exclude orderings joining a situation buffer without an appli-
cable temporal constraint. In other words: Plans involving the
calculation of a cross product are omitted.

According to Equation 2, estimating the costs for a given plan
boils down to estimating the size of intermediate results:

|Ri | :“

#

|B1| if i “ 1
|Ri´1| ¨ |Bi | ¨ si otherwise

(3)

si denotes the selectivity of the applicable temporal constraints
in step i (Ci ), which can be composed from the selectivities of
the contained temporal relations as follows:

si :“
ź

CPCi

˜

ÿ

RPC
sR

¸

(4)

When a query is initially deployed into the system, the situ-
ation buffers are empty and we have no estimation on the se-
lectivity of the temporal constraints. Hence, we initially assume
the selectivities depicted in Table 3. These values are backed by
the following back-of-the-envelope calculation: The combined
selectivity of all possible relations should be 100%. Assuming
equal sized buffers and an equal temporal distribution of the
situations, the selectivity of a before relation will be around 50%.
For during, the number of results is limited by the maximum
of both buffer sizes, because a situation A can happen during
at most one other situation (B), but B may contain multiple A
situations. All other temporal relations define a 1:1 relationship,
which limits the worst case to the minimum of both buffer sizes.
As seen in Table 3, we additionally separate the last case by the
number of stated equalities. Note that even though this is an
initial estimate, the resulting plans prove to work well in most
cases (cf. section 6.4.2).

5.4.1 Adaptivity. Once a query is deployed in a CEP-system,
it is typically active for a long time. Hence, more important than
the quality of an initial execution plan is the ability to tune this
plan and adapt it to changing workloads. To do so, we keep
track of the buffer sizes and selectivities imposed by temporal
constraints during execution. The buffer-sizes are available at
any point in time and at no cost, since they are tracked by the
underlying data structure. However, to smooth out (potential)
spikes, we monitor the buffer size using an exponential moving
average, which is adjusted after each call to the matcher’s update
method as follows:

EMAi “ α ˚ |Bi | ` p1 ´ αq ˚ EMAi´1

EMAi holds after the i-th update. |Bi | denotes the size of the
considered buffer at update i and the smoothing factor α P p0, 1q

determines how much weight is given to previous values. For ex-
ample, a value close to 1 assigns almost no weight to older values,
while a value close to 0 decreases the influence of new values.
The selectivities of the temporal constraints are also managed
with EMAs using one EMA-value per constraint.

To check if a re-computation of the evaluation order is re-
quired, the active plan stores a snapshot of the statistics it is
based on. After each update, we compare them to the current val-
ues and if any of them differs by more than the defined threshold
(t ), we trigger a re-computation.

Finally, if a migration is required, we are able to migrate to
the new plan between any two invocations of the matcher com-
ponent. Because the matcher does not store any intermediate
results, but solely relies on the situation buffers this switch comes
without any additional migration costs. As we will show in sec-
tion 6.4.2, the total costs for adaptivity are negligible.

6 EXPERIMENTAL EVALUATION
In this section we present the results from our experimental
evaluation of TPStream2. First, we study TPStream’s evaluation
performance in comparison to ISEQ and point based CEP systems.
Then, we analyze the latency improvement of our approach in
comparison to ISEQ. Finally, we prove the validity of our opti-
mization techniques.

6.1 Setup
All experiments were conducted on a workstation equipped with
an Intel i7-2600 3.4 GHz processor and 8GB of memory, running
a Debian Linux (kernel version 4.11.11-1). The results presented
for each experiment are averaged values from a total of 10 runs,
whereby every run was preceded by a warm-up phase of evaluat-
ing at least 100,000 events before the measurement was started.

The main goal of this section is to compare TPStream’s process-
ing performance and our low latency approach to the state-of-the
art solution for temporal pattern matching (ISEQ). There is no
publicly available implementation of ISEQ, so we implemented
it based on the available description in [20]. As required by the
design of ISEQ, the input consists of interval streams ordered by
endpoint. These streams are again generated with our deriver
component.

In order to provide a comparison with point based systems, we
also included CEP-solutions from the open-source community
(Esper3 6.0.1) and academia (SASE+ 4), when applicable. While
Esper is a production ready CEP system, highly optimized for
efficient query execution, SASE+ is one of the most popular CEP
languages in the research community and served as foundation
for the ISEQ operator. The rich query language of Esper allowed
us to express both straw man’s approaches as sketched in the
introduction. We refer to the first approach (2 phase pattern
matching) with Esper-1 and the low latency approach is denoted
as Esper-2. Because the SASE+ implementation does not feature
chaining of queries, we only implemented the low-latency ap-
proach. TPStream and all its competitors are implemented in the
JAVA programming language, whereby TPStream and ISEQ are
based on JEPC [19] – an event processing middleware. We used

2Datasets and source code available at http://uni-marburg.de/oaCPk
3http://www.espertech.com
4https://github.com/haopeng/sase
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Figure 5: Processing time for aggressive driver detection as a function of the input size: (a) simplified pattern, (b) full
pattern and processing time for disconnected pattern detection as a function of the window size (c)

Figure 6: Processing time for various query patterns

Oracle JDK 1.8.0.144 compile the systems and ran all experiments
on that JVM with 6GB of heap space.

During the evaluation two data sources were used. The first
source comprises trip data generated with the Linear Road Bench-
mark [4]. Besides other attributes, each event consists of a unique
car id, its location, the current speed and acceleration. We gen-
erated data simulating 5 hours of traffic on a single expressway
with 1000 active cars per hour. Each active car reports its state
every second, leading to 887 million events (36 GB of data). The
second source is a random event generator, tuned to pose high
load on the system. It generates event streams with a config-
urable number of boolean attributes, each representing a single
situation stream. The generated situations last between 10 and
100 seconds, while the gaps between two consecutive situations
span 10 to 50 seconds (both uniformly distributed). Events are
generated with a frequency of 1Hz, so that for a situation lasting
n seconds, the corresponding attribute’s value is true for exactly
n consecutive events.

Independent of the data-source, we used a single thread for
both, reading/generating the data and evaluating the query. For
each experiment, we measured the reading/generation time up-
front and removed it from the presented results. The most im-
portant parameters throughout all experiments are as follows:
Event Rate The rate (events/s) with which events are pushed

into the systems.
Window Size The size of the time window (s) during which a

pattern must occur completely.
Event Count The total number of events to process.

6.2 Processing Time
This set of experiments compares the processing performance
of TPStream with its competitors using various queries and pa-
rameter settings. The events were pushed into the system at the
maximum possible rate and we used the processing time as main
measure.

6.2.1 Aggressive Drivers. We injected different fractions (1M
to 100M events) of the Linear Road dataset into the system and
executed the example query of Listing 1 (without duration con-
straints). The thresholds for speeding, acceleration and decel-
eration were the 99th, 90th and 90th percentiles for the speed
and positive/negative acceleration values of a 50M event sample.
Besides chaining of queries, the SASE+ implementation also lacks
support for disjunctions. Nevertheless, to include SASE+ in this
experiment, we also evaluated a simplified query version which
restricts the used temporal relations to meets and overlaps.

The results of this experiment are shown in Figure 5 (a –
simplified pattern, b – full pattern). The x-axis shows the num-
ber of processed events, the processing time is shown on the
y-axis.TPStream and ISEQ are head to head and their process-
ing times increase linearly with the number of processed events.
Further, they are insensitive to alternatives, resulting in almost
identical processing times for both query variants. TPStream was
not able to outperform ISEQ in this experiment, because in the
given pattern all situations overlap which in turn allows to break
the buffer scan early. Esper benefits from the simplified version
of the pattern, but its evaluation performance is inferior to TP-
Stream and ISEQ (up to 30x for the full query and 15x for the
simplified version). When evaluating the full query, Esper hit
the memory limit of 6GB and the system crashed if more than
30M (Esper-1) and 40M (Esper-2) events were processed. For the
simplified version, the processing time of Esper-1 increases dras-
tically when processing more than 50M events – Esper-2 runs
out of memory and crashes. SASE+ managed the evaluation, but
was clearly outperformed by TPStream and ISEQ.

6.2.2 Disconnected Pattern. The second experiment compares
processing time and memory consumption of the systems using
a pattern with high selectivity: A before B overlaps C. The
difference to the first experiment is, that each A situation may
be related to many B overlaps C sub-matches instead of con-
tributing to at most one match. Hence, we expected the number
of results and consequently the processing time/memory con-
sumption to depend on the size of the configured time window.
We injected 300M synthetic events into the systems and executed
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Figure 7: (a) application time latency gain per temporal relationand comparison of result latency (b) under maximum
possible throughput as a function of the window size, (c) under varying event rates with a fixed size window

the query with window sizes varying from 500s (8:20 minutes)
to 100,000s (slightly more than one day).

Figure 5 (c) shows the processing time of all systems as a func-
tion of the window size (note the log-scale). In this experiment,
TPStream is able to outperform ISEQ by a factor of 14 using a
window of 100,000s. This is because ISEQ does not make use of
the order on the situations’ start timestamp and requires addi-
tional computational steps during result construction and buffer
pruning. SASE+ did not finish this experiment in a reasonable
time for none of the window sizes and Esper barely managed
window sizes up to 20,000s. To measure the average memory con-
sumption, we monitored the used heap space with a frequency of
20Hz during each run and averaged these values. Both, TPStream
and ISEQ require only very little additional memory for increased
window sizes: TPStream 911 - 1018 MB, ISEQ 903 - 1027 MB. Esper
stays stable at 1 GB up to a window size of 10,000s but afterwards
suffers from buffering single events rather than a compact rep-
resentation like situations. For the last evaluable query (20,000s
window) Esper already consumed 1,7 GB of memory.

6.2.3 Query Patterns. To give a comprehensive overview of
TPStream’s processing performance, we evaluated 5 different
query patterns and varied the number of situation streams from
4 to 10. Queries 1-3 (Equal, Meets, Chain) are of the form S1 ‘1
S2 ‘2 . . . ‘n´1 Sn , with ‘i “ equals, ‘i “ meets and ‘i
a randomly drawn temporal relation, respectively. In query 4
(Star), S1 is connected with every other situation, via a random
temporal relation (i.e. S1 ‘1 S2, S1 ‘2 S3, . . . , S1 ‘n´1 Sn ). Query
5 (Combined) combines the two generic patterns by connecting
the first n{2 situations via the Chain pattern and the remaining
situations according to the Star pattern. Each query-type was
executed 100 times, using 50M synthetic events and a window
size of 2,000s.

The box plots in Figure 6 provide themedian as well as the 25th
and 75th percentiles of the processing time. For all query types,
the median processing time increases linearly with the number of
situations. The generic Chain pattern incurs higher maximum
values than Equal and Meets, because the possible temporal
relations include before, which is highly selective. This forces the
matcher to build many partial results – especially if three or more
consecutive situations are in a before relationship. Star queries
are more sensitive to the concrete pattern instance, because in
the worst case every situation triggers the matching process. This
effect can also be observed for the Combined pattern, but to a
smaller degree, because only half of the situations are connected
via a Star pattern.

6.3 Low Latency
This set of experiments compares the result latency of our ap-
proach with the state-of-the art solution for temporal pattern
matching, ISEQ.

6.3.1 Application Time. At first, we measure the latency im-
provement of TPStream compared to ISEQ in terms of application
time. That is, we compare the timestamps of the events that pro-
duced a result in both approaches and calculate their difference.
We evaluated each temporal relation independently using two
synthetic situation streams (A,B). We varied the average duration
ratio from 2:1 to 1:2, keeping A’s average duration fixed at 55
seconds. Note that the window size has no impact here (as long
as it is not too small to hold a match), so it was set to 1,000s.

Figure 7 (a) shows the average latency improvements per tem-
poral relation. For sequential relations (before, meets), the gain
in latency is equal to the average duration of B situations, be-
cause matches are detected at B.ts. For the remaining relations,
the detection time is A.te and the average improvement depends
on the concrete temporal relation. In the worst case (during)
this is B.duration{2. Note that, equals and finishes were not
included, because no latency improvements can be achieved.

6.3.2 Wall Clock Latency. We conducted two experiments,
showing that TPStream’s processing techniques significantly re-
duce the result latency in terms of wall clock time which is a
critical aspect in a streaming scenario. Therefore, we repeat the
experiment from section 6.2.2 twice: first, we measure the time
passed between the arrival of the first event that could produce
a result and the receipt of that result. We varied the window
size and pushed events with the maximum possible rate. For the
second experiment we fixed the window size at 100,000s and
varied the event rate from 1M to 1 events/s. This time, we split
the measured latency in (i) processing latency: the time passed
between arrival of the event that triggered the result and the
actual receipt of that result and (ii) event latency: the time passed
between arrival of the first event that could trigger the result and
the arrival of the event that actually triggered that result.

The results are shown in Figure 7 (b,c). Both figures show the
average latency per result (y-axis, note the log-scale for c). While
(b) shows, that TPStream’s evaluation techniques provide latency
savings through reduced processing time, (c) highlights the sav-
ings achieved with our low-latency matcher. Especially when the
rate is in sync with application time (1 event/s), the event latency
of ISEQ dominates the processing latency and almost reaches
the application time savings (~35s, cf. Figure 7 a, 1:1, overlaps),
while TPStream introduces no event latency at all.
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Figure 8: (a) Quality of the initial plans for Q1 – Q3, (b)
Throughput comparison: dynamic plan adaption vs. best
initial plans

6.4 Plan Quality & Adaption
Finally, we evaluate the optimization techniques presented in
section 5.4. Like in section 6.2, events were pushed with the
maximum possible rate.

6.4.1 Initial PlanQuality. To evaluate the quality of the gener-
ated initial plans, we used the following queries on three situation
streams: Q1: A overlaps B AND A overlaps C AND B starts
C, Q2: A overlaps B AND A before C AND B overlaps C and
Q3: A before B AND A before C AND B before C. For each
query, we generated all 6 valid plans and measured the through-
put (processed events/s) by evaluating synthetic events with a
window size of 5,000s.

Figure 8 (a) shows the results for the best, worst and suggested
plans and clearly confirms our approach. For queries Q1 and
Q2 the best plan was suggested. The initial plan for Q3 was
C Ñ B Ñ A even though the estimated costs for C Ñ A Ñ B are
the same. The experiments show, that C Ñ A Ñ B would have
been a slightly better choice, but the difference is negligible.

6.4.2 Dynamic Plan Adaption. To analyze the plan adaption
capabilities of TPStream, we executed Q3 again and processed
300M events. The occurrence ratio of situations A,B and C changed
from 1:1:1 to 1:50:50 after 100M events and finally to 50:1:50 af-
ter 200M events. The window size, smoothing-factor (α ) and
threshold for plan migration (t ) were set to 10,000s, 0.01 and 0.2,
respectively. Besides the adaptive implementation (TPS-A), we
ran the experiment with both best initial plans C Ñ B Ñ A (TPS-
1), C Ñ A Ñ B (TPS-2), and an implementation, doing a hard
coded switch to the best plan exactly when the characteristics of
the stream changes (TPS-O).

Figure 8 (b) shows the throughput for all four configurations
and the three different stream-characteristics: TPS-1 and TPS-2
both have drawbacks in either one of the skewed phases, while
our adaptive approach is very close to the optimal solution TPS-O
(suffering slightly from dynamic adaption). However, the total
runtime of TPS-O (63,523ms) compared to TPS-A (64,612ms)
reveals only a negligible overhead of 1,089ms (less than 2%) for
plan adaption.

7 CONCLUSION
We presented TPStream, a novel event processing operator for
detecting complex temporal patterns among event streams.We en-
abled TPStream to derive lasting situations directly from streams
of events and developed new techniques for detecting temporal
patterns at the earliest possible point in time. Furthermore, we
demonstrated low-cost adaptive approaches suitable for a stream-
ing scenario. We proved the potential of TPStream by comparing
it to industrial and academic solutions for CEP in experiments.

Since research on situations in CEP is scarce, we focused our
efforts on presenting a fundamental solution suited for this sce-
nario and equipped it with the capabilities to handle the adaptive,
low-latency nature of stream processing. For future work, we
intend to extend TPStream to tackle out-of-order arrivals [7, 21]
and parallel processing [24, 26].
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ABSTRACT
With large-scale simulations of increasingly detailed models and
improvement of data acquisition technologies, massive amounts
of data are easily and quickly created and collected. Traditional
systems require indexes to be built before analytic queries can be
executed efficiently. Such an indexing step requires substantial
computing resources and introduces a considerable and growing
data-to-insight gap where scientists need to wait before they
can perform any analysis. Moreover, scientists often only use
a small fraction of the data — the parts containing interesting
phenomena — and indexing it fully does not always pay off.

In this paper we develop a novel incremental index for the
exploration of spatial data. Our approach, QUASII, builds a data-
oriented index as a side-effect of query execution. QUASII dis-
tributes the cost of indexing across all queries, while building
the index structure only for the subset of data queried. It reduces
data-to-insight time and curbs the cost of incremental indexing
by gradually and partially sorting the data, while producing a
data-oriented hierarchical structure at the same time. As our
experiments show, QUASII reduces the data-to-insight time by
up to a factor of 11.4x, while its performance converges to that
of the state-of-the-art static indexes.

1 INTRODUCTION
The advances in data acquisition technologies and supercomput-
ing for large-scale simulations rapidly increase the amounts of
spatial data generated and collected. For instance, in the Human
Brain Project (HBP) [27], neuroscientists build spatial models
of the brain which will ultimately feature 1011 neurons [42],
each reconstructed with thousands of 3d cylinders. NASA re-
leased 500 TB of earth observation data generated through re-
mote sensing [30], while the Dutch government released point
cloud data with 640 billion points [31] acquired through airborne
scanning. Similarly, volunteers generate large amounts of spa-
tial data through services such as OpenStreetMap [33]. Given
these massive and growing amounts of spatial data, algorithms
to query them efficiently are crucial.

Previous research has proposed many techniques [11, 26, 42]
for the fast and scalable querying of spatial datasets. Existing ap-
proaches, however, have twomajor drawbacks. First, they require
a time-consuming step to build indexes before they can be used.
This pre-processing step significantly delays the analyses: index-
ing a model in the HBP, for example, can take several hours [42].
With increasing dataset size, the data-to-insight time grows as
well. Second, scientists frequently only analyse a small fraction
of the data [1, 8]. In the HBP, for example, a scientist builds a

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the 21st
International Conference on Extending Database Technology (EDBT), March 26-29,
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model of the brain but after a few queries may determine that it is
not biorealistic (e.g., density in certain areas does not agree with
measurements) and stops the analysis. Given the small number
of queries executed, the overhead of indexing the entire model
cannot be fully amortized.

The problems of delayed analysis (due to prior indexing) and
the impossibility to amortize indexing cost (due to too few queries)
are not exclusive to spatial data management. Database research
has proposed incremental indexes for relational data (e.g., crack-
ing [18] and adaptive merging [14]) and for time-series [45].
The core idea is to incrementally index only the parts of the
data queried, spreading the cost of indexing over the first few
queries. The major data-to-insight bottleneck is thus eliminated,
i.e., queries are answered as soon as data is available (albeit the
first queries run slower, as no index is initially available).

In this paper, we develop an incremental indexing approach
for spatial data in main memory, with the aim of reducing data-
to-insight time, as well as achieving performance comparable to
traditional spatial indexes (after enough queries are executed).
As no current incremental indexing approach for main memory
exists, we demonstrate the limitations of applying current op-
tions to incrementally index spatial data. As we show, using the
concepts for incrementally indexing one-dimensional data [18]
to index three-dimensional data does not significantly reduce
data-to-insight time, as the major bulk of work still has to be done
for the first query. Adapting Space Odyssey [35], an incremental
index for exploratory analyses of multiple spatial datasets on
disk, to main memory leads to excessive reorganization of the
data. As a consequence, a static index (including pre-processing
cost) quickly outperforms the proposed incremental solution, in
terms of total execution time.

We thus develop a QUery-Aware Spatial Incremental Index -
QUASII: a novel data-oriented, query-driven incremental index-
ing approach. QUASII substantially reduces data-to-insight time
and keeps the cost of incremental strategy low, by gradually and
partially sorting the spatial objects considering all dimensions.
QUASII thus distributes the cost of indexing across all queries,
while preserving spatial proximity and producing a data-oriented
style partitioning — which typically entails an expensive pre-
processing step in the static setting. Finally, being data-oriented,
it executes queries efficiently, as it adjusts to the distribution of
the data, while avoiding data replication.

Our experiments show that QUASII substantially accelerates
the exploratory analysis of spatial data in main memory by re-
ducing the data-to-insight time by up 11.4×, while achieving the
query performance of current algorithms for spatial indexing.
Static algorithms are not able to amortize their building cost over
QUASII even after 10000 queries.

To our knowledge we are the first to develop and analyze
incremental indexing for spatial data. Our contributions are:
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• We demonstrate the challenges of adapting and using
known incremental indexing [18, 35] to spatial data in
main memory. We use the resulting approaches as moti-
vation and baseline.
• We develop QUASII, an incremental approach that signifi-
cantly reduces the data-to-insight time, while achieving
the query performance of state-of-the-art spatial indexes.
• We experimentally analyse QUASII’s performance and the
number of queries it needs to reach the performance of its
static counterparts.

The remainder of the paper is structured as follows. We define
the problem in Section 2 and motivate it in Section 3. We then
describe QUASII in Sections 4 and 5 and experimentally evaluate
it in Section 6. Section 7 gives an overview of related work before
we conclude in Section 8.

2 PROBLEM DEFINITION
Our work is driven by the need for the exploratory analysis of
spatial datasets through querying. The queries executed are ad
hoc, i.e., the next query is only known after the results of the
first query are analyzed, and they thus cannot be batched and
executed with only one sequential read of the dataset.

Example Application. In the Human Brain Project, neuro-
scientists build spatial models of the brain [27]. Already now the
models are so detailed that to simulate a neocortical volume of
only 0.29 mm3 supercomputers are needed [28].

Once the part of a model is built, neuroscientists need to val-
idate it by choosing a subset of its regions at random and in-
specting them. Each region is queried with several spatially close
queries and the query results are used to verify the composition,
density and other metrics agree with the real brain. The results
of these analyses are crucial to determine whether or not the
model can be simulated or should be abandoned (subsequently
building a new one using a different configuration). Scientists
currently only have two fundamentally different options: index
all data a priori and execute queries with the index or scan all
data each time to answer a query. Not knowing a priori how
many queries will be executed (and if indexing can be amortized)
makes it difficult to decide.

Data. We consider spatially extended (volumetric) objects en-
closed by aminimumbounding box (MBB). In a three-dimensional
(3d) setting, each MBB b is defined by two 3d points lower (b) and
upper (b) corresponding to lower and upper coordinate at each di-
mension (lower (b) = (xl ,yl , zl ) and upper (b) = (xu ,yu , zu )) [11].

Queries. We focus on range (window) queries as they are
broadly used in many applications and are also the building
block for many other spatial queries (e.g., k-nearest neighbor
queries [22]). Each query is a 3d box specified by two 3d points,
e.g., (ql ,qu ). Given a query q, all objects with their bounding box
b intersecting with q, i.e., where b ∩ q , ∅, are in the result.

Setting. We assume that all data and necessary index struc-
tures fit in main memory. We consider a static setting, i.e., all raw
data is available before querying.

3 MOTIVATION
No current incremental indexing approach can index spatial data
in main memory. Research has developed incremental indexing
for relational, one-dimensional data in main memory, i.e., crack-
ing [18] and for spatial data on disk [35]. In the following we
extend the former [18] to the spatial domain and adapt the lat-
ter [35] to use in main memory — to demonstrate the limitations

of these ideas in reducing the data-to-insight time and tomotivate
the need for a new approach.

3.1 Cracking for Spatial Data
Relational Cracking. Database cracking [16, 18, 19] incremen-
tally builds an index as a byproduct of query execution in the
context of mainmemory column-stores. The proposed techniques
partially sort elements based on the query execution, essentially
performing an incremental quick sort. In its simplest form, crack-
ing [18] rearranges elements in an array according to the end
points of the query range (ql ,qu ): all values < ql are moved to-
wards the beginning of the array, while values > qu are moved
towards the end. With each query, the index becomes more re-
fined until it is fully sorted and indexed.

SFCracker. Using this strategy to index spatial data is in-
herently challenging: spatial data has multiple dimensions and,
unlike 1d data, no total order can be directly imposed on it. There-
fore, to be able to use the strategy of cracking we transform data
from the multi- to the one-dimensional domain. We perform this
transformation using a space-filling curve (SFC) — a common
approach to impose a total, 1d order on spatial objects.

A SFC maps data to 1d domain by visiting all the points in a
d-dimensional grid exactly once; the order in which the objects
are visited defines their order in 1d space. When mapping spatial
data, it is crucial to consider SFCs that preserve proximity (such
as Z-order [34] or the Hilbert curve [21]), so that data points close
in multi-dimensional space remain close in 1d space [10, 29].

The resulting approach, SFCracker, incrementally sorts SFC
codes based on the queried region. Both, data and queries are
transformed to 1d space. The data transformation takes place in
the first query, which makes it the most expensive one. Once the
data is transformed, the queries perform cracking based on the
1d intervals obtained through the query transformation.

3

4
8

ll

ur

Figure 1: 1d transfor-
mation: overhead.

A naive query transformation to
1d space results in a substantial num-
ber of false positives (needed to be
tested for intersection) because the
transformed 1d range can be signifi-
cantly larger than the original multi-
dimensional range if only the lower
and upper coordinates of the range
query are considered. An example
is shown in Figure 1: the curve seg-
ments in blue belong to the trans-
formed range (SFCcodel , SFCcodeu),
but they are outside of the original query range (in red). To re-
duce the overhead of false positives, we use a technique that
partitions the curve into multiple sub-intervals each of which is
fully contained in the original range [43]. Consequently, a range
query is transformed into a number of intervals and the data is
thus cracked multiple times per query, once for every interval.

Limitations. Cracking in the relational domain decreases
data-to-insight time, distributing the cost of sorting over all
queries with fairly low overhead and initialization cost. These
benefits, however, decrease for datasets with a higher number of
dimensions. First, the initial query is expensive as it maps all the
objects from the multi- to the one-dimensional domain. Second,
as opposed to relational data, a single query has to perform mul-
tiple expensive cracks to avoid performance penalties introduced
with the transformation to 1D space. Consequently, spatial crack-
ing still has a considerable data-to-insight time, along with an
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expensive incremental strategy.We demonstrate these limitations
experimentally in Section 6.3.

3.2 Disk-based Incremental Indexing
in Main Memory

Disk-based Incremental Indexing. Space Odyssey [35] is a
recently proposed incremental index for the exploration of spatial
data. However, it tackles a different problem: Space Odyssey is
designed for exploratory analyses of multiple spatial datasets.
Without prior information, it incrementally indexes the datasets
and adapts the physical layout of the data on disk for datasets
frequently queried together. Although Space Odyssey addresses a
different problem, we use its ideas related to incremental indexing
and adapt them for use in main memory in Mosaic.

q1

q2

q3

Figure 2: Mosaic:
incremental strategy.

Mosaic. Mosaic incrementally
builds an Octree [20] by dividing
the space uniformly into eight parti-
tions. Figure 2 depicts the indexing
process (in 2d for clarity). For ev-
ery query, Mosaic identifies the par-
titions that overlap with the query,
splits them into eight partitions
and reassigns their objects to the
newly created partitions. Frequently
queried areas in a dataset are in-
dexed fully, whereas less frequently queried areas are coarser
grained. The top-down strategy is thus beneficial for consecutive
queries, as they can reuse the previous partitioning, independent
of the workload pattern. However, data in frequently queried
areas is re-partitioned multiple times.

Limitations. Mosaic introduces significant overhead as the
data in frequently queried areas is re-partitioned multiple times
until it reaches its final configuration. Consequently, a static ap-
proach based on space-oriented partitioning, such as the uniform
grid, outperforms quickly Mosaic in terms of total execution time
(we provide more details in Section 6.3).

Mosaic additionally suffers from considering more objects
than strictly necessary — a problem inherent in space-oriented
partitioning and related to data assignment. For indexes based
on space-oriented partitioning, objects can be assigned to cells
with two strategies: replication and query extension. Replication
assigns an object to all partitions that it overlaps with. As a con-
sequence more objects need to be considered for intersection, the
memory footprint increases and an expensive de-duplication step
is needed. The alternative is to use query extension [40] which
assigns an object to a cell based only on its center. This technique
avoids object replication, however, it can considerably increase
the number of objects necessary to be tested for intersection.
More precisely, to ensure the correctness of the query result, it
extends the query range by the maximum object extent. As a
result, the area queried for is bigger than the initial query. Both
strategies, replication and query extension, slow down query ex-
ecution but, as we show in Section 6.2, replication is particularly
expensive when working with volumetric spatial objects and we
thus use query extension in Mosaic.

4 QUASII OVERVIEW
As discussed, an approach to incrementally index spatial data is
not as straightforward as adapting known approaches. Besides
the challenges, we also identify important design goals:

(i) minimal data-to-insight time: the main requirement
for incremental indexing is to enable instant access to
the data, i.e., the first queries must not introduce undue
overhead/processing;

(ii) efficient query performance: the performance of fre-
quently queried subsets of data should converge to that of
the fully indexed approach (or better);

(iii) low cost incremental indexing: indexing should intro-
duce as little overhead as possible, i.e., its cumulative exe-
cution time should only exceed the one of static indexes
after as many queries as possible (or not at all).

Given the design goals and our analyses, we develop QUery-
Aware Spatial, Incremental Index, QUASII. QUASII is a data-
oriented index, incrementally built as a side effect of query exe-
cution. It reduces data-to-insight time and curbs the cost of incre-
mental indexing by gradually and partially sorting the data, while
simultaneously producing a data-oriented hierarchical structure.
It is based on a nested reorganization strategy which incremen-
tally slices the space in each dimension and a hierarchical, data-
oriented structure designed to accommodate the incremental in-
dexing process and provide efficient query execution.

Overview. Figure 3a illustrates QUASII’s incremental strategy
on a high level. Given range queries of the form q = [ql = (xl ,
yl , zl ), qu = (xu , yu , zu )], QUASII reorganizes the objects based
on each query’s lower (ql ) and upper (qu ) coordinate by slicing
each dimension and performing a nested reorganization. It first
reorganizes objects on the x dimension, producing three x slices
where the middle one contains the objects in the range [xl , xu]
given the query range in dimension x . Subsequently, it continues
reorganizing the middle x slice on the y dimension, producing
again three slices where the middle one contains objects in the
range [yl , yu]. Finally, QUASII reorganizes the y slice on the z
dimension producing the z slice which contains the query result.
QUASII never performs a complete sort but reorganizes data
locally, given the query’s boundaries.

The slices produced are organized in a hierarchical structure
that incrementally forms the index. Figure 3b illustrates the struc-
ture of QUASII after the very first query (left) and after an ar-
bitrary number of queries (right) are executed. QUASII forms
a hierarchical structure with one level per dimension, i.e., the
first (top), second, and third (bottom) levels correspond to slices
at x , y, and z dimensions, respectively. The top level has the
coarsest granularity as its objects are constrained with one di-
mension, while the bottom level is the most fine-grained since
it is constrained by all dimensions. When executing the queries,
QUASII traverses the structure depth-first, performing additional
refinements when necessary, as we discuss later in Algorithm 1.

Nested Reorganization Strategy. The incremental strategy
of QUASII is query-driven and data-oriented. Being query-driven,
it reorganizes theminimal amount of datawhile executing queries.
At the same time, being data-oriented, it achieves query efficiency
as it adjusts to the data distribution, while avoiding replication.
QUASII accomplishes both through its nested reorganization.

Data-oriented partitioning typically entails an expensive pre-
processing step in the static setting as it preserves spatial prox-
imity based on a strategy for ordering multi-dimensional ob-
jects. QUASII distributes the cost of this pre-processing across
all queries by performing nested and partial reorganization. It
reorganizes only a subset of data driven by queries, gradually
curbing the amount of data partially sorted with every dimen-
sion. This strategy is inspired by the Sort-Tile-Recursive (STR)
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Figure 3: QUASII incremental indexing strategy and data structure.

R-tree bulkloading algorithm [26]. STR produces tiles that form
leaf-level nodes for the R-Tree by recursively, fully sorting spatial
objects in each dimension. More precisely, STR for 3d objects
first sorts the spatial objects on the x-axis and partitions them
in vertical tiles of equal size (i.e., the same number of objects).
Then, within each x tile, it recursively applies the same strategy
first considering y and then z dimension. This tiling strategy is
particularly efficient as the resulting R-Tree has less overlap than
other approaches [26]. By only performing partial reorganiza-
tions for the parts of the data that is actually queried, QUASII
outputs partitions targeting these characteristics at lower cost
(as opposed to complete sorts in STR).

Index Structure. QUASII’s index structure is designed to sup-
port an efficient incremental strategy with as little performance
penalty as possible. Its hierarchical structure is designed to ac-
commodate the reorganization strategy: each level corresponds
to one (reorganization) dimension and each parent node is rep-
resented by its children in a nested form along the dimensions
QUASII reorganizes data.We discuss the data structure and how it
accommodates incremental indexing in more detail in Section 5.1.

Benefits. Ultimately, the design choices behind our approach
enable us to achieve the goals we outlined. To reduce data-to-
insight time (i), QUASII keeps data in the multi-dimensional,
spatial domain. This avoids transforming all data at the very be-
ginning which significantly hurts performance of the first query.
Next, to achieve query efficiency (ii), QUASII uses data-oriented
partitioning that preserves spatial proximity, adjusts to the distri-
bution of data, and avoids object replication. Finally, to keep the
cost of the incremental indexing low (iii), QUASII gradually and
partially sorts the data using a nested reorganization strategy.

5 DATA STRUCTURE & QUERY
PROCESSING

In the following, we explain the QUASII index structure and data
organization before we proceed with discussing querying and
incremental indexing algorithms.

Throughout this section, we refer to a 2d example given in
Figure 4. It depicts a dataset D = {o0, . . . ,o9} of ten (gray) rect-
angular spatial objects. All subfigures have three main parts: the
top part shows a 2d view of the dataset D and how the space
is conceptually “sliced” by QUASII, the middle (“Data array”)
depicts how (raw) data objects are re-organized in main memory,
and the bottom shows QUASII’s hierarchical data structure that
is incrementally built. All x- and y-axis related slicing is marked
in green and blue, respectively. Figure 4a) shows the initial state:
the “slice-less” view of the data space with D objects and the very
first query q1, the data array of spatial objects in an arbitrary
initial order, and the data structure containing the initial slice, s0
(capturing the entire dataset).

5.1 Data Structure
QUASII forms a d-level hierarchical structure, organized accord-
ing to the number d of dimensions. Each level l has a one-to-one
mapping to the corresponding dimension. That is, the first level
(l = 1) represents slicing of data at x , the second level (l = 2)
slices aty, and the third level (l = 3) slices at the z dimension. The
top level always slices data objects at the coarsest granularity,
while the bottom level is the most fine-grained. Each slice is de-
scribed with four attributes: (i) its level, (ii) a minimum bounding
box capturing all its objects, (iii) indices to the data array corre-
sponding to the first and last entry of the objects that belong to
the slice, and (iv) pointers to sub-slices refining the slice further
on the subsequent dimension. In Figure 4, this corresponds to
the four fields present in each node of the data structure (next
to slice label, e.g., s0): l , box , ids , and arrow pointers (when not
null). In our two-dimensional view of the dataset, we mark boxes
with a solid line (in the corresponding color), while the slice cuts
are marked as dashed lines.

Data-oriented Slicing. One of the main advantages of data-
oriented partitioning is that each spatial object is always assigned
to just one partition (slice). However, QUASII determines the
slices in each dimension based on query ranges. Given volu-
metric spatial objects, objects can be sliced through and thus
overlap with multiple slices. To overcome this problem, QUASII
represents each object using only one of its coordinates and
uses this coordinate to identify a slice where an object will be
assigned to. In particular, during indexing, it uses each object’s
lower coordinate (xl ,yl , zl ). Being part of object’s MBB, this does
not require any additional computation or storage1. In Figure 4,
this coordinate is marked as a black dot for all objects. Figure 4b
illustrates slicing based on the very first query q1 and its range
[2, 4] on the x-axis. Slicing at x = 2 and x = 4 results in three
x-slices (s1, s2, and s3). While object o6 overlaps two slices (s2 and
s3), it is assigned to s2 based on its lower coordinate (xl ). Note
how the objects are re-organized in the data array and correspond
to three partitions (slices) with coordinates x < 2, 2 ≤ x ≤ 4,
and 4 < x . Accordingly, the data structure is updated with three
new (more refined) slices replacing the initial (coarser) slice s0
(capturing the whole dataset).

While QUASII assigns objects to slices based on their single
(lower) coordinate, it records a minimum bounding box for each
slice taking into account the actual spatial extent of the objects
and thus ensures the correctness of the query result. This also
results in slice representations (their MBBs) that are often much
smaller but not necessarily within the originally sliced bounds.
For example, s1 contains only one object and thus has a very
small MBB (i.e., its box = o2), while the MBB of s2 is b2 and
exceeds the original cut at x = 4 (Figure 4b). As we show later,
this enables QUASII to discard many unnecessary slices during

1The upper coordinate (xu , yu , zu ) or the object’s center (requires to be computed,
though) can equally be used.
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Figure 4: An example of query processing and incremental indexing in QUASII (configured with τx = 4 and τy = 2), given
ten spatial objects (o0–o9) and two range queries (q1 and q2).

query execution. To limit unnecessary computation (as a slice can
be reorganized multiple times until it is fully refined), QUASII
computes a full MBB only when a slice is completely refined.
Otherwise, a slice is represented with an open-ended MBB, i.e.,
the MBB has bounds only on the dimension it has been sliced on.

Configuration.QUASII has only one configuration parameter,
a size threshold τ , that determines the maximum number of ob-
jects in a slice at the finest level. That is, at the bottom level, when-
ever a slice s contains less or τ number of objects (i.e, |s | ≤ τ ),
it is considered to be fully refined. Intuitively, this is similar to
setting a (leaf) node size in the R-Tree.

The sizes of the remaining d−1 levels are calculated as follows.
Since QUASII performs data-oriented slicing, the total number of
partitions required to satisfy threshold τ is ⌈n/τ ⌉, where n is the
total number of objects (i.e., n = |D |). Consequently, the number
of times QUASII has to slice the data space across each dimension
to produce ⌈n/τ ⌉ partitions is equal to:

r =
⌈
d
√
n/τ

⌉
(1)

If we use τd to denote the slice threshold at the bottom level
l = d (i.e., τd = τ ), then the maximum number of objects per
slice for the remaining levels (up to the top) can be expressed
recursively as τd−1 = r × τd . Note that r corresponds to the
number of sub-slices (within a slice) at each index level.

Turning to our 2d example2, after x-based slicing in Figure 4b,
s1 contains one object and thus is considered fully refined (i.e.,
|s1 | = 1 ≤ τx ), while s3 has five objects and may be refined in the
future. Also note that s3 stores an open-ended MBB (s3.box = b3).

The number of levels in QUASII is fixed and always equals
to the dimensionality of the queried dataset. That is, it does not
depend on the size of the dataset. Therefore, to accommodate the
index growth (the index grows in breadth) and enable efficient
query execution, QUASII keeps the children (within a slice) or-
ganized/sorted according to the level’s dimension. QUASII uses
this order and the minimum bounding boxes (box ) of each node
2To minimize the required number of objects in Figure 4, we fix τx = 4 and τy = 2.

to prune the amount of objects necessary to be tested during the
query execution.

5.2 Query Processing and Index Refinement
Having defined QUASII’s data structure, we discuss how it is
incrementally built and maintained as a side effect of each query.

Query Processing. Algorithm 1 shows the pseudo-code for
query processing. Each query traverses the d-level structure
depth-first, starting from the first level (having x-slices). Because
the slices are sorted, QUASII performs a binary search (Line 3)
to find the starting slice. It then scans all the slices S[i] within
the query range on the current dimension (i.e., while the loop
conditions in Line 4 hold). The loop conditions guarantee that
each slice S[i] intersects q only in the current dimension. To
discard potential false positive slices early, Line 5 checks if its
actual boundaries (S[i].box ) also intersect with the query range.

Next, QUASII potentially refines S[i] (Line 6), which may be
further sliced into multiple more fine-grained slices S ′′ if it is
larger than the maximum size threshold τ (discussed in the next
algorithm). In Lines 7—16, QUASII traverses (potentially refined)
slices S ′′. For each s ∈ S ′′, it either checks all s objects for intersec-
tion in case of the bottom level or recursively proceeds querying
its children based on the next level/dimension (a default child
is assigned to a not fully refined slice, Line 15). Finally, all the
newly created slices are accumulated in S ′ (Line 17), appended
to S (Line 19), and re-sorted (Line 20). The slices are sorted based
on their ids , i.e., the position (index) of the first slice’s object in
the data array.

Index Refinement. With each query, QUASII attempts to
refine all query intersecting slices (i.e., Line 6 in Algorithm 1).
Algorithm 2 provides the simplified pseudo-code for this refine-
ment process. Note that the processing within Algorithm 2 is
always based only on the current dimension/level of slice s (s .l ).

The input slice s is considered for slicing only if it exceeds
the threshold τ . Given s is coarse enough, QUASII proceeds with
determining the type of slicing based on the intersection between
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Algorithm 1: query(query q, data D, slices S, result R)
1: S ′ ← ∅ // to store newly created (refined) slices
2: dim ← S[0].l // current level/dimension of slices in S
3: i ← binarySearch( S, lower (q[dim]) )
4: while i < |S | and lower (S[i].box[dim]) ≤ upper (q[dim])

do
5: if q ∩ S[i].box = ∅ then continue
6: S ′′ ← refine( S[i], D, q ) // as per Algorithm 2
7: for each slice s ∈ S ′′ do
8: if q ∩ s .box , ∅ then
9: if s .l is the bottom level then
10: for each j ∈ {s .ids} do
11: if D[j] ∩ q , ∅ then
12: R ← R ∪ D[j]
13: else
14: if |s .children | = 0 then
15: createDefaultChild(s )
16: query(q, D, s.children, R)
17: S ′ ← S ′ ∪ S ′′

18: i ← i + 1
19: S ← S ∪ S ′

20: sort(S )

query q and slice s . It considers three types of slicing. If both q’s
lower and upper coordinates are within s , a three-way slicing is
performed splitting s into three sub-slices (Line 5). If only one
of q’s coordinates is within s , a two-way slicing is performed
splitting s into two sub-slices (Line 6). Finally, if q contains s (i.e.,
both q’s coordinates are outside of s’s bounds), QUASII performs
a two-way slicing based on an artificially introduced coordinate.

QUASII iterates through the generated slices and for the ones
that still exceed τ (and overlap with the query) it applies addi-
tional refinement according to artificially introduced boundaries
in Line 10 (it repeats the process recursively until a slice is fully
refined in the corresponding dimension). The three- and two-
way slicing algorithms (Line 5 and Line 6) reorganize the data
(D) following the incremental quick sort strategy introduced in
database cracking [18]. In the reorganization process, QUASII
also records the information about the boundaries (box ) of newly
created or modified slices.

Example. Continuing with our example in Figure 4, after
refining s0 into three x sub-slices in Line 6 of Algorithm 1 (and
resulting in Figure 4b), QUASII recursively continues with the
intersecting (and just refined) slice s2 based on the y dimension
(Figure 4c). As such, s2 is further refined based on the queried y
range and results in three new slices (s21, s22, and s23). In this step,
only the objects within the s2 range (ids = [1..4]) are three-way
sliced and re-organized in the data array. The two new slices (s23
is empty) are appended to the data structure as children of s2.
They are fully refined (as |s21 | ≤ 2 and |s22 | ≤ 2) and have much
smaller MBBs (b21 and b22, respectively) than the initial slice cuts.
Finally, because it is the bottom level, the objects within s22 are
checked against the query range and the two qualifying objects
{o4,o6} are added to the result set (R).

The subsequent queryq2 benefits greatly from previous slicing,
as illustrated in Figure 4d. For example, x-slices s1 and s2 are
skipped completely because query q2 does not intersect with
their MBBs (i.e, test on Line 5 in Algorithm 1). Therefore, QUASII
proceeds with the only intersecting slice s3, which is not fully
refined and requires further slicing. As per Algorithm 2, this time
a two-way slicing is performed (at x = 5.5) resulting in two finer

Algorithm 2: refine(slice s, data D, query q) −→ slices S
1: if |s | ≤ τ [s .l] then

return {s}
2: S ← ∅ // to store refined slices
3: t ← determineSliceType(s, q)
4: switch ( t )
5: case both: S ′ ← sliceThreeWay(s, q, D)
6: case one: S ′ ← sliceTwoWay(s, q, D)
7: default: S ′ ← sliceArtificial(s, q, D)
8: for each slice s ∈ S ′ do
9: if |s | > τ [s .l] and q[s .l] ∩ s .box[s .l] , ∅ then
10: S ′′ ← sliceArtificial(s, q, D)
11: S ← S ∪ S ′′

12: else
13: S ← S ∪ s
14: return S

slices (s ′3 and s4) replacing the previous slice s3. Next, QUASII
continues with y-based slicing of the fully q2-contained slice s ′3.
Since s ′3 reaches the size threshold τy , it is not refined further.
Finally, the actual data array objects within s ′3 range (ids = [5..6])
are checked for intersection with q2 and the qualifying o8 is
added to the result set.

Artificial Refinement. To produce a balanced hierarchical
structure QUASII has to conform with the defined thresholds
when forming the slices and using only query boundaries does
not meet these requirements. One query is usually not suffi-
cient and we cannot use the subsequent queries for this purpose,
as they may interfere with the existing order of the slices. For
instance, reorganizing a slice again (that has been organized ac-
cording to all dimensions) based on the x dimension, may disrupt
the previously established partitioning for y and z dimensions.

To address this problem, QUASII reorganizes a slice s (Lines 7
and 10 in Algorithm 2) until it meets a size threshold τ in the
corresponding dimension. It achieves this by forcing a two-way
slicing based on artificially introduced coordinate and thus split-
ting the slice into two sub-slices. Given the range (xl ,xu ), the
new coordinate is c = ⌊(xl + xu )/2⌋. The two new slices are
recursively sliced further until the threshold τ is satisfied.

While more advanced approaches, e.g., based on the concepts
from R*-Tree node splitting algorithms [6], would minimize over-
lap in data structure, they would also significantly increase the
cost of incremental strategy. Therefore, QUASII employs the
above uniform and low-cost artificial slicing strategy to meet τ
thresholds at each of d levels.

o q

q’

x

y

Figure 5: Refinement
step: query extension.

Query & Refine. The outcome
of QUASII’s reorganization strat-
egy are the slices that are within
the query range and consequently
only the objects in these slices are
checked for intersection. However,
performing the reorganization fol-
lowing strictly the query’s bound-
aries would produce an incomplete
result, as illustrated in Figure 5. For
instance, the object o overlaps with the query range q, however,
its lower coordinate is outside the query’s boundaries and conse-
quently o would not be identified as a part of the result.

To ensure correct query execution while preforming refine-
ment, QUASII employs the query extension technique [40]. More
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precisely, it extends the query for maximum object extent in
each dimension, considering lower coordinate. This extension is
done only when performing refinement and only within not fully
refined slice. Consequently, the query that performs refinement
potentially considers more objects for intersection as its range
is enlarged. However, this introduces a minimal overhead as the
only alternative is the expensive scan of the entire unrefined slice.
We apply the same logic for the binary search where, to avoid
missing any slices due to the overlap within them, we extend the
query range (while performing binary search) for the maximum
slice extent in the corresponding dimension.

6 EXPERIMENTAL EVALUATION
In this section, we first describe the experimental setup &method-
ology and then present a thorough experimental analyses that
illustrates the benefits of our incremental approach, both on a
real-world neuroscience and synthetic datasets. We start the anal-
yses by outlining the shortcomings of the approaches based on
space-oriented partitioning in Section 6.2. We then study the
incremental approaches by comparing them with their static
counterparts in Section 6.3 and cross-evaluating their perfor-
mance in Section 6.4. Finally, Section 6.5 describes the sensitivity
analyses of QUASII.

6.1 Experimental Setup & Methodology
Hardware. We run our experiments on a Red Hat Enterprise
Linux Server release 7.3 machine equipped with 2 Intel Xeon
CPU E5-2650L processors at 1.80GHz and 768GB of RAM. Each
processor has 12 cores (24 hardware threads) with private L1
(32KB) and L2 (256KB) caches and 30MB of shared L3 cache.
Implementations. All indexing techniques are implemented in
C++ and compiled with g++ 4.9.3 with the maximum optimiza-
tion level. The list below summarizes the implementations that
we study:
Scan: performs a full data scan to answer each query.
SFCracker: is our incremental variant of database cracking [18]
for spatial data, described in Section 3.1. We use the Z-order as
a SFC order. The average farthest distance of neighbours in the
Z-order is (slightly) higher than in the Hilbert order [10] (i.e., it
has better locality), however, we opt to use the Z-order due to its
simplicity and the huge body of work on its efficient range query
algorithms [5, 39, 43, 44]. We use 32-bit to represent zcodes (i.e.,
10 bits per dimension) as a trade-off between memory resources
and precision (the number of false positives to be filtered).
SFC: is a static counterpart of SFCracker. In the pre-processing
phase, SFC transforms data from multi- to one-dimensional do-
main and sorts it according to the produced SFCcodes. During
querying, a (3d) query range is also converted to a 1d range and
a binary search is used to locate the objects in the 1d interval. We
employ the same representation of zcodes and query optimization
as in SFCracker (described in Section 3.1).
QUASII: is our incremental approach discussed in Section 4. We
use 60 objects as a node capacity τz .
R-Tree: According to our setting, all data is available before query-
ing. Therefore, we use a bulk-loading approach to build the R-Tree
index as it reduces overlap and decreases pre-processing time
compared to the R-Tree built by inserting one object at a time [26].
For this purpose, we use an efficient STR [26] bulk-loading strat-
egy that balances well the overhead of partitioning the data and
query performance. It outperforms Hilbert R-Tree [23] in terms
of query performance [26], while its pre-processing cost is not
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Figure 6: The impact of space-oriented partitioning.

significantly higher [42]. Similarly, TGS [12] and PR-Tree [4] can
outperform STR on datasets with extreme skew and aspect ratio,
however, they incur considerable overhead for data partition-
ing. We use the same configuration for node capacity (60) as in
QUASII.
Mosaic: corresponds to the space-oriented incremental approach
described in Section 3.2.
Grid: is a uniform grid-based index used as a static counterpart of
Mosaic. We use query extension [40] technique (as discussed in
Section 3.2) to assign an object to a grid cell. We use two config-
urations with 100 and 220 partitions per dimension for synthetic
and neuroscience datasets, respectively. Both configurations are
obtained through a parameter sweep.
Dataset and Queries. We use real-world neuroscience and syn-
thetic datasets.
Neuroscience: we use a small part of the rat brain model repre-
sented with 450 million cylinders as elements in a volume of 285
µm3. We approximate the cylinders with MBBs, resulting in the
total number of 450 million MBBs with a size of 21GB on disk.
Based on the previously described use cases, we synthetically
generate queries, each having a fixed volume qvol of 10−2% of
the queried brain volume and a clustered distribution. We gener-
ate 5 query clusters each with 100 queries, where query centers
are distributed around the cluster centers following a Gaussian
distribution (µ = 0, σ = qvol).
Synthetic: we create synthetic datasets by distributing spatial
boxes in a space of 10 000 units in each dimension of the 3d
space. The length of each side of each box is determined uniform
randomly between 1 and 10 for 99% of the objects, while 1% of
the objects has a side ranging from 10 - 1000 units. The spatial
elements are distributed according to a uniform distribution. The
datasets have 500 million and 1 billion elements (size on disk
22.5GB and 45GB). For completeness and to test non-skewed
cases, we generate uniform workload. The uniform workload
contains up to 10 000 uniformly distributed queries. To have
range queries of different selectivity, we vary qvol: 10−3%, 10−1%,
1%, and 10% of the universe.

6.2 Space-oriented Partitioning Challenges
Both, Mosaic and SFCracker (introduced in Section 3), use space-
oriented partitioning at their core — Mosaic partitions space,
while SFCracker assigns the SFCcodes using a uniform grid. Be-
fore we start the analysis of incremental approaches we experi-
mentally demonstrate the shortcoming of space-oriented parti-
tioning — the overhead introduced with data assignment strat-
egy — since it also affects incremental solutions. Further on, we
illustrate why a static approach based on space-oriented parti-
tioning, such as a uniform grid, is not a suitable replacement
for an incremental index despite having a comparatively cheap
pre-processing step (once properly configured).
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DataAssignment. In the first experiment we illustrate the im-
pact of data assignment strategies by comparing the performance
of Grid and R-Tree. We use two variants of the Grid approach:
GridQueryExt avoids the objects replication by using the query
extension technique — it assigns an object to the grid partition
based on its center, while GridReplication replicates the objects
— it assigns an object to all the overlapping partitions.

Figure 6a) shows the results of the experiments where we exe-
cute 500 clustered queries of selectivity 0.01% on the neuroscience
dataset. GridReplication is heavily affected by object replication
which increases the number of objects necessary to be checked
for intersection and introduces an expensive de-duplication step
(needed due to objects replication). GridQueryExt achieves better
performance, however, it still considers 3.1× more objects for
intersection than the R-Tree as it extends the initial query for the
maximum object extent. The R-Tree clearly outperforms both
GridReplication and GridQueryExt with a speedup of 19.4× and
3.7× respectively.

Configuration. In the second experiment we demonstrate
the difficulty to configure the grid-based approaches. We use
two datasets with identical extent and number of elements but
different data distributions: Uniform (uniform distribution, syn-
thetic dataset) and Neuro (skewed distribution, the neuroscience
dataset). We use the same experimental setup as for the previous
experiment. The best configuration (number of partitions per
dimension) is 100 for Uniform and 220 for the Neuro dataset
and is determined in a parameter sweep. We measure the execu-
tion time when using both configurations for each dataset and
illustrate the results in Figure 6b).

Although both datasets have the same number of elements and
extent, the best configuration significantly depends on the data
distribution — the neuroscience dataset requires more partitions
compared to the Uniform dataset since it has the very dense
regions that require fine grained partitioning. Furthermore, the
grid configuration significantly affects performance — the grid
performance on the Uniform dataset deteriorates notably when
using the Neuro dataset configuration and vice versa.

Summary. Space-oriented partitioning introduces performance
penalties. Depending of data assignment strategy, we either con-
sider more elements or suffer from replication. Additionally, the
grid configuration is non-trivial and using the wrong one has a
detrimental impact on the execution time. In practice we have
to use a parameter sweep to find the configuration for a given
workload. Consequently, grid configuration turns into a time-
consuming process, increasing data-to-insight time.

6.3 Incremental versus Static
We first analyze the incremental approaches by comparing their
performance with the performance of their static counterparts
(introduced in Section 6.1). Each static approach has similar prop-
erties as its incremental counterpart, however, it involves nec-
essary pre-processing. We categorize the approaches according
to these properties as a) one-dimensional, b) space-oriented and
c) data-oriented approaches. For each category we present the
performance of the incremental approach, its static counterpart
and Scan. We first evaluate if and when the approaches converge
to the performance of their static counterparts and then analyze
the overhead of the incremental strategy. For this purpose we ex-
ecute the clustered query workload with 500 queries of selectivity
0.01% on the neuroscience dataset.

Convergence. In the first experiment we evaluate the conver-
gence of the incremental approaches — how fast an approach con-
verges to the execution time of a fully indexed dataset. Figure 7
measures the execution time of each query for all approaches.

The results show five peaks in execution time, one for each
query cluster. The execution of the first cluster of queries (and
the associated processing of the data) takes the longest as no
index structure exists at the beginning. The first queries therefore
exceed the cost of Scan, because at this point, the entire dataset
has to be scanned along with building partial index structures.
Subsequent queries within a cluster use a partial index and thus
execute in less time than a full scan, but take longer than queries
on the static approach. This process continues as queries in the
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Figure 9: Comparative analysis of incremental approaches.

same cluster further refine the index. Queries in one cluster not
only refine the index locally but also carry out limited, global
refinement. The queries in a subsequent cluster thus benefit from
previous clusters and execute faster. As the index converges to
its full structure, the query execution time approaches that of the
to static approach.

CumulativeResponse Time.While in the previous set of ex-
periments we measure the individual query performance, in this
analysis we measure the cumulative execution time (including
index building step for the static approaches). Figure 8 illustrates
the experimental results.

Similar to the convergence experiment, the query clusters are
visible: the cumulative response time jumps each time the experi-
ment moves to a new cluster. The most expensive is the transition
from the first to the second cluster while subsequent transitions
become less evident as the index becomes more refined.

The cumulative cost of SFCracker is comparatively high and,
crucially, with a very expensive first query. One reason is that
the first query takes 12.9% of the total pre-processing by assign-
ing the objects to the grid cells and calculating the zcode values
for the entire dataset. Adding to this the cost of cracking, the
total execution time of the first query grows to 43% of the total
pre-processing time. More precisely, in order to minimize the
overhead introduced by the transformation to 1d space, we par-
tition the 1d query range into sub-intervals that tightly cover
its original 3d range. This optimization [43] results in a high
number of small intervals per query — on average 197. As a
consequence, the first queries crack the previously uncracked
area into a number of small adjacent intervals and therefore
reorganize significant amounts of data.

The static (SFC) index, on the other hand, is not substantially
slower for the first queries or, put differently, the building cost
of SFC is not much higher than the first query of SFCracker. In
fact, the cumulative execution time of SFCracker exceeds the
one of SFC after 23 queries already. The incremental approach
SFCracker thus does not offer a considerable benefit over SFC.

The incremental strategy of Mosaic is less expensive compared
to SFCracker — the objects within the partition queried are poten-
tially reassigned to the eight newly created partitions based on
their location. Therefore, it takes Mosaic longer, i.e., 100 queries,
before it exceeds the cumulative time of the static Grid. However,
its cumulative execution time is still considerable with the biggest
overhead being its top-down incremental strategy. The top-down
strategy ensures fast convergence but it also introduces overhead

as the data in frequently queried areas is re-partitioned multiple
times until Mosaic reaches its final level of refinement.

QUASII, at the same time, does not exceed the cumulative exe-
cution of the R-Tree in our experiments. Even after 500 executed
queries, the cumulative execution time for QUASII is 39.4% of
that of the R-Tree. The main benefit comes from its partial reor-
ganization strategy where the objects are gradually reorganized
within the query boundaries, as opposed to the complete sort.

Summary. While all the incremental approaches reach the
performance of their static counterparts, the incremental strate-
gies of SFCracker and Mosaic are comparatively expensive. As
we show for SFCracker, the major bulk of work has to be done
when executing the first query — as the data needs to be trans-
formed to 1d space and a single query has to perform multiple
cracking operations to avoid performance penalties due to the
transformation to 1d space. Mosaic increases its cumulative time
considerably due to its top-down partitioning strategy — it reor-
ganizes data in frequently queried areas multiple times until it
reaches its final level of refinement. Only the cumulative execu-
tion time of QUASII does not exceed the one of its static counter
part, the R-Tree, in our experiments.

6.4 Comparative Analysis
We now compare the performance of incremental approaches.We
use the same setup as previously and measure the convergence
of execution time as well as the cumulative execution time.

Convergence. Figure 9a) depicts the single query execution
time for all the incremental approaches compared with the R-Tree
and Scan. We use the R-Tree approach as a reference because it is
the fastest approach among the static indexes for the workloads
tested. We analyze the execution time of the first query and then
focus on the performance of the converged data structure.

The execution time of the first query determines data-to-
insight time and thus has to be as small as possible. Among the
incremental approaches, SFCracker has the most expensive first
query due to the transformation of data to the 1d space. Mosaic’s
first query is faster, but still expensive as it has to reassign all the
objects to new partitions, examining all three coordinates. Finally,
QUASII has the least expensive first query due to the nested data
reorganization — the number of objects necessary to be examined
and reorganized becomes smaller as more dimensions are taken
into account: all objects are scanned on the x-dimension, but on
the y-dimension only the objects with a x-value satisfying the
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Figure 10: Convergence and cumulative time: the first 500 (a & c) and last 100 (b & d) queries.

query will be scanned (accordingly for the z-dimension). Over-
all, Scan is 13.7, 9.2 and 4.6 times faster compared to SFCracker,
Mosaic and QUASII respectively, when executing the first query.

Among the incremental approaches, only QUASII attains the
query execution time of R-Tree on a fully converged index. Mo-
saic and SFCracker have at their core space-oriented partitioning
and therefore, their performance is affected by the data assign-
ment strategy as well as the skew in distribution, as Section 6.2
shows. SFCracker additionally transforms data to 1d domain and
thus cannot preserve spatial proximity to the same extent as the
other approaches. Consequently, QUASII outperforms Mosaic
and SFCracker with a speedup of 3.68x and 4.9x respectively for
the average execution time of a query in a fully refined area.

Cumulative Execution Time.We use the cumulative execu-
tion time as metric to evaluate the decrease in the data-to-insight
time as well as the "break-even" point — the point when the cu-
mulative cost of incremental exceeds that of static indexing — to
assess the quality of an incremental index. Figure 9b) shows the
experimental results. We use Grid as a reference since it has the
smallest cumulative execution time among the static approaches
— its pre-processing step is comparatively cheap (once its optimal
configuration is determined).

As discussed in Section 6.3, SFCracker and Mosaic have com-
paratively expensive strategies and thus reach the performance of
Grid after 13 and 100 queries respectively. Grid, on the other hand,
compared to QUASI, has not amortized its building cost after 500
queries. More precisely, QUASII reaches 84% of the Grid cumu-
lative execution time and, more importantly, it achieves 3.66x
faster query performance for completely refined areas. QUASII
executes the first query the fastest and consequently achieves
the highest decrease in data-to-insight time — 5.1x and 11.4x
compared to Grid and R-Tree.

For single query execution, the major benefit of QUASII comes
from its data-oriented partitioning. Similar the to R-Tree, it ad-
justs to the distribution of the data and, as opposed to Grid and
SFC, it does not replicate the objects or extend the query. It ad-
ditionally keeps the data in multidimensional space and does
consequently not suffer from decrease in dimensionality. Its low
cumulative cost is mostly attributed to its incremental strategy.
QUASII does not sort all objects, but rather reorganizes them
within the specific bounds, gradually curbing the amount of data
necessary to be reorganized.

Summary.QUASII outperforms other incremental approaches
with respect to the convergence of execution time and cumula-
tive time. It achieves performance comparable to the R-Tree (the
fastest static approach) in the areas of the dataset where enough
queries have been executed, while not exceeding the cumula-
tive time of Grid (the static approach with the least expensive
pre-processing) or the R-Tree. Its major benefits come from the
data-oriented partitioning and the nested reorganization strategy
which reorganizes precisely the data touched and used.
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Figure 11: Analysis of QUASII: scalability.

6.5 Analysis of QUASII
In this section we focus on QUASII. We evaluate its performance
on the workloads other than neuroscience, analyze its scalability
and the impact of query selectivity.

6.6 UniformWorkload
In the previous analyses we used workloads with query clus-
ters that show the benefit of incremental approaches: the index
quickly converges to the final performance as the queries are
targeting the same areas. In this experiment we evaluate the per-
formance of QUASII for a uniform workload. We execute 10000
uniformly distributed queries of selectivity 0.1% on the dataset
with uniform distribution and 500M elements. We compare the
performance of QUASII with Scan and R-Tree and additionally
consider Grid for the cumulative execution time. Figure 10 illus-
trates both convergence and cumulative time for the first 500 and
last 100 queries of the workload.

None of the first 500 queries is executed on a completely re-
fined index. Starting with the 300th query, however, the single
query execution is close to the final performance. Among the
last 100 queries, 64 are executed on a completely refined index.
The performance of queries on the refined structure is equal or
very close to the performance of the R-Tree, i.e., on average 7.5%
slower than the R-Tree.

After 10000 executed queries QUASII reaches 75% and 63.8%
of the cumulative time of the R-Tree and Grid approaches respec-
tively (y axis is in log scale). Likewise, it decreases data-to-insight
time by 10.3x and 5.6x compared to R-Tree and Grid. Although
the pre-processing step of Grid is significantly cheaper compared
to the R-Tree, its cumulative time deteriorates with more queries
executed due to the expensive single query performance.

6.7 Performance Trends
In the following experiment we evaluate the scalability of QUASII
by executing 10000 queries of selectivity 0.1% on datasets with
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500 million and 1 billion elements. In Figure 11 we compare the
cumulative time of QUASII with R-Tree, where we additionally
split the execution time of R-Tree into Building and Querying.

After 10000 executed queries QUASII reaches 75% and 73.7% of
the cumulative time of the R-Tree with datasets of 500M and 1B
elements respectively. By the time the R-Tree finishes its building
process QUASII has executed around 8000 queries in both cases.
QUASII also decreases data-to-insight time by 10.3x (on the 500M
dataset) and 10.6x (on the 1B dataset) compared to the R-Tree. As
illustrated in this experiment, QUASII maintains the performance
trends as the dataset size increases.

6.8 Impact of Selectivity
In this set of experiments we evaluate the impact of query selec-
tivity on the performance of QUASII. We measure the cumulative
time for a uniform workload: 500M dataset and 5000 queries of
0.001%, 1%, and 10% selectivity. Figure 12 illustrates the results
where we consider both the R-Tree and QUASII.

Intuitively, a static index (R-Tree) takes more time to amortize
its building cost when executing 0.001% selectivity queries. On
the other hand, the lower selectivity queries (10%) touch and
reorganize a significant amount of data and QUASII thus reaches
the break-even point with the R-Tree faster. Overall, after 5000
executed queries, QUASII reaches 68.8%, 79.8% and 85.6% of the
cumulative time of the R-Tree for queries with 0.001%, 1%, and
10% selectivity.

7 RELATEDWORK
To the best of our knowledge, no incremental strategy has been
proposed to spatial indexing in main memory. While recently
an incremental indexing technique has been proposed for ex-
ploration of multiple spatial datasets [35], the addressed prob-
lem is different (spatial search within multiple datasets) and the
proposed solution focuses solely on disk-based efficiency, i.e.,
reducing the number of expensive disk I/O operations. Never-
theless, there has been considerable interest in incremental data
processing within relational databases. Therefore, before giving
an overview of related (but not incremental) spatial indexing
techniques, we briefly describe incremental approaches used by
relational database systems.

7.1 Relational Incremental Indexing
Incremental (one-dimensional) indexing techniques are exten-
sively studied in database cracking [16, 18, 19] and adaptive merg-
ing [13, 14]. The former partially sorts keys in an in-memory

relation, essentially performing quicksort. The latter, adaptive
merging, takes the idea further and devises an incremental, ex-
ternal sort to make use of external memory as well.

Driven by the same goal (minimize data-to-insight time), novel
systems have been proposed that bypass data pre-processing
step and execute queries on raw data files. Instead, auxiliary data
structures are built incrementally so that the most popular data
subsets are serviced at the speeds of fully loaded/indexed data. For
example, NoDB [2], RAW [25], and ViDa [24] incrementally build
positional maps to track the position of frequently accessed data
fields. This enables the systems to “jump” to previously queried
data regions and potentially reduce the costs of tokenizing and
parsing raw data sources.

7.2 Spatial Indexing
Research in indexing spatial data has produced numerous ap-
proaches in past decades [11]. In the following we briefly review
spatial indexing approaches that we group into three classes
depending on how amenable they are to incremental indexing.

One-dimensional Indexing. One way to address the curse
of dimensionality in the context of spatial data is to transform
it from multi- to one-dimensional domain. Typical methods to
perform this transformation are space-filling curves like the Z-
order [34], the Hilbert curve [21], and the Gray-code curve [9].
They impose a total order and preserve spatial proximity between
objects - if the objects are close in higher-dimensional space, they
are also close on the space-filling curve - reasonably well. Given
such a mapping of spatial data, the existing 1d access methods,
such as B-Tree [5], can be used for querying.

Data-oriented Indexing. The data-oriented partitioning ap-
proaches create an index structure taking into consideration
the data distribution, where the prominent representatives are
the KD-Tree [7], the R-Tree [15], and its variants. The R-Tree,
arguably the most important data-oriented spatial index, is multi-
dimensional generalization of the B-Tree which recursively en-
closes objects inminimum bounding rectangles (MBRs). The basic
R-Tree definition faces the problems of overlap and dead space,
both detrimental to query execution performance [15, 42]. Multi-
ple approaches have been devised to address the issue. The R*-
Tree [6], for example, uses an improved version of the node split
algorithm and reinsertion of objects while the R+-Tree [37] tries
to avoid overlap through the duplication ofMBRs (leading to a big-
ger index). A priori knowledge of the entire dataset may help to re-
duce the above problems of the R-Tree by packing spatially close
objects on the same disk page. The Hilbert R-Tree [23] achieves
this using the Hilbert curve, Sort-Tile-Recursive (STR) [26] recur-
sively sorts objects in all dimensions to do so, while Top-down
Greedy Split (TGS) [12] recursively splits the data set into parti-
tions minimizing the area on each level.

Adaptive index structures [41] rearrange the nodes of data-
oriented hierarchical indexes (including the R-Tree index) in
response to queries so that they can be accessed sequentially
on disk. However, this reorganization is performed to improve
query performance by optimizing disk-access without taking into
consideration data-to-insight time.

A recently proposed partitioning mechanism for large-scale
spatial data also adapts to an incoming query workload [3]. In
contrast to QUASII, however, its primary goal is not to minimize
data-to-insight time (as all necessary data structures are still built
during pr-eprocessing), but to efficiently accommodate changes
in data and workload. Also, it considers a distributed setting.
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Space-oriented Indexing. The space-oriented partitioning
approaches assign the data to the partitions based on space, re-
gardless of data distribution. A typical representative is the uni-
form grid that partitions the space uniformly into partitions of
equal size [38]. Similarly, the Quadtree [36] and its variant for 3d
space, the Octree [20], recursively divide space into four/eight
partitions of equal size to build a hierarchy of partitions. Further
approaches, for example the grid file [32], use a non-uniform grid
to better accommodate skew in the data (and to also optimize for
disk access). The downside, is a more complex query execution
due to the cells of different size and location. The two level grid
file [17] addresses the issue by introducing an additional level
with a coarser grid. Still, the overhead of testing the query against
multiple cells can be substantial.

8 CONCLUSIONS
The advances in data acquisition technologies and supercomput-
ing for large-scale simulations rapidly increase the amounts of
spatial data generated and collected. This data helps the scientist
tremendously to gain insights and understand natural phenom-
ena, however, at the same time, it leaves them with the chal-
lenge of analyzing it. Known approaches to spatial indexing have
two major drawbacks with respect to exploratory analyses. First,
they require a time-consuming pre-processing step that delays
analyses. Second, given the massive amounts of data, a scientist
frequently only analyzes a small fraction of it and consequently
indexing the entirety of the data does not always pay off.

In this paper we propose a novel incremental index for the
exploration of spatial data, where the ultimate goal is to let the
scientists perform exploratory analyses as soon as the data is
available, while using their queries to incrementally index the
data. Our approach, QUASII, reduces data-to-insight time and
curbs the cost of incremental indexing, by gradually and partially
sorting the data, while producing a data-oriented hierarchical
structure. As our experiments show, QUASII reduces the data-
to-insight time by up to a factor of 11.4x, while its performance
converges to that of the fastest state-of-the-art static indexes.
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ABSTRACT
As with general graph processing systems, partitioning data over
a cluster of machines improves the scalability of graph database
management systems. However, these systems will incur addi-
tional network cost during the execution of a query workload,
due to inter-partition traversals. Workload-agnostic partition-
ing algorithms typically minimise the likelihood of any edge
crossing partition boundaries. However, these partitioners are
sub-optimal with respect to many workloads, especially queries,
which may require more frequent traversal of specific subsets of
inter-partition edges. Furthermore, they are largely unsuited to
operating incrementally on dynamic, growing graphs.

We present a new graph partitioning algorithm, Loom, that
operates on a stream of graph updates and continuously allocates
the new vertices and edges to partitions, taking into account a
query workload of graph pattern expressions along with their
relative frequencies. First we capture the most common patterns
of edge traversals which occur when executing queries. We then
compare sub-graphs, which present themselves incrementally in
the graph update stream, against these common patterns. Finally
we attempt to allocate each match to single partitions, reducing
the number of inter-partition edges within frequently traversed
sub-graphs and improving average query performance.

Loom is extensively evaluated over several large test graphs
with realistic query workloads and various orderings of the graph
updates. We demonstrate that, given a workload, our prototype
produces partitionings of significantly better quality than existing
streaming graph partitioning algorithms Fennel & LDG.

1 INTRODUCTION
Subgraph pattern matching is a class of operation fundamental
to many “real-time” applications of graph data. For example, in
social networks [9], and network security [3]. Answering a sub-
graph pattern matching query usually involves exploring the
subgraphs of a large, labelled graphG then finding those which
match a small labelled graph q. Fig.1 shows an example graph G
and a set of query graphs Q which we will refer to throughout.
Efficiently partitioning large, growing graphs to optimise
for given workloads of such queries is the primary contribu-
tion of this work.

In specialised graph database management systems (GDBMS),
pattern matching queries are highly efficient. They usually corre-
spond to some index lookup and subsequent traversal of a small
number of graph edges, where edge traversal is analogous to
pointer dereferencing. However, as graphs like social networks
may be both large and continually growing, eventually they sat-
urate the memory of a single commodity machine and must be
partitioned and distributed. In such a distributed setting, queries
which require inter-partition traversals, such as q2 in Fig. 1, in-
cur network communication costs and will perform poorly. A

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the 21st
International Conference on Extending Database Technology (EDBT), March 26-29,
2018, ISBN 978-3-89318-078-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.
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Figure 1: Example graph G with query workload Q

widely recognised approach to addressing these scalability issues
in graph data management is to use one of several k-way balanced
graph partitioners [2, 11, 14, 18, 30–32]. These systems distribute
vertices, edges and queries evenly across several machines, seek-
ing to optimise some global goal, e.g. minimising the number of
edges which connect vertices in different partitions (a.k.a min.
edge-cut). In so doing, they improve the performance of a broad
range of possible analyses.

Whilst graphs partitioned for such global measures mostly
work well for global forms of graph analysis (e.g. Pagerank), no
one measure is optimal for all types of operation [28]. In particu-
lar, the workloads of pattern matching query workloads, common
to GDBMS, are a poor match for these kinds of partitioned graphs,
which we call workload agnostic. This is because, intuitively, a
min. edge-cut partitioning is equivalent to assuming uniform, or
at least constant, likelihood of traversal for each edge through-
out query processing. This assumption is unrealistic as a query
workload may traverse a limited subset of edges and edge types,
which is specific to its graph patterns and subject to change.

To appreciate the importance of a workload-sensitive parti-
tioning, consider the graph of Fig.1. The partitioning {A,B} is
optimal for the balanced min. edge-cut goal, but may not be op-
timal for the query graphs in Q . For example, the query graph
q2 matches the subgraphs {(1, 2), (2, 3)} and {(6, 2), (2, 3)} in G.
Given a workload which consisted entirely of q2 queries, ev-
ery one would require a potentially expensive inter-partition
traversal (ipt). It is easy to see that the alternative partitioning
A′ = {1, 2, 3, 6}, B′ = {4, 5, 7, 8} offers an improvement (0 ipt)
given such a workload, whilst being strictly worse w.r.t min.
edge-cut.

Mature research of workload-sensitive online database parti-
tioning is largely confined to relational DBMS [4, 23, 26]

1.1 Contributions
Given the above motivation, we present Loom: a partitioner for
online, dynamic graphs which optimises vertex placement to
improve the performance of a given stream of sub-graph pattern
matching queries.

The simple goals of Loom are threefold: a) to discover patterns
of edge traversals which are common when answering queries
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from our given workload Q ; b) to efficiently detect instances of
these patterns in the ongoing stream of graph updates which con-
stitutes an online graph; and c) to assign these pattern matches
wholly within an individual partition or across as few partitions
as possible, thereby reducing the number of ipt and increasing
the average performance of any q ∈ Q .

This work extends an earlier “vision” work [7] by the authors,
providing the following additional contributions:
• A compact 1 trie based encoding of the most frequent
traversal patterns over edges inG. We show how it may
be constructed and updated given an evolving workload
Q .
• A method of sub-graph isomorphism checking, extending
a recent probabilistic technique[29]. We show how this
measure may be efficiently computed and demonstrate
both the low probability of false positives and the impos-
sibility of false negatives.
• A method for efficiently computing matches for our fre-
quent traversal patterns in a graph stream, using our trie
encoding and isomorphism method, and then assign these
matching sub-graphs to graph partitions, using heuris-
tics to preserve balance. Resulting partitions do not rely
upon replication and are therefore agnostic to the complex
replication schemes often used in production systems.

As online graphs are equivalent to graph streams, we present
an extensive evaluation comparing Loom to popular streaming
graph partitioners Fennel [31] and LDG[30]. We partition real
and synthetic graph streams of various sizes and with three dis-
tinct stream orderings: breadth-first, depth-first and random or-
der. Subsequently, we execute query workloads over each graph,
counting the number of expensive ipt which occur. Our results
indicate that Loom achieves a significant improvement over both
systems, with between 15 and 40% fewer ipt when executing a
given workload.

1.2 Related work

Partitioning graphs into k balanced subgraphs is clearly of
practical importance to any application with large amounts of
graph structured data. As a result, despite the fact that the prob-
lem is known to be NP-Hard [1], many different solutions have
been proposed [2, 11, 14, 18, 30–32].We classify these partitioning
approaches into one of three potentially overlapping categories:
streaming, non-streaming and workload sensitive. Loom is both
a streaming and workload-sensitive partitioner.

Non-streaming graph partitioners [2, 14, 18] typically seek to
optimise an objective function global to the graph, e.g. minimising
the number of edges which connect vertices in different partitions
(min. edge-cut).

A common class of these techniques is known as multi-level
partitioners [2, 14]. These partitioners work by computing a suc-
cession of recursively compressed graphs, tracking exactly how
the graph was compressed at each step, then trivially partition-
ing the smallest graph with some existing technique. Using the
knowledge of how each compressed graph was produced from
the previous one, this initial partitioning is then “projected” back
onto the original graph, using a local refinement technique (such
as Kernighan-Lin [15]) to improve the partitioning after each step.
A well known example of a multilevel partitioner is METIS [14],
which is able to produce high quality partitionings for small and
1Grows with the size of query graph patterns, which are typically small

medium graphs, but performance suffers significantly in the pres-
ence of large graphs [31]. Other mutlilevel techniques [2] share
broadly similar properties and performance, though they differ
in the method used to compress the graph being partitioned.

Other types of non-streaming partitioner include Sheep [18]:
a graph partitioner which creates an elimination tree from a
distributed graph using a map-reduce procedure, then partitions
the tree and subsequently translates it into a partitioning of
the original graph. Sheep optimises for another global objective
function: minimising the number of different partitions in which
a given vertex v has neighbours (min. communication volume).

These non-streaming graph partitioners suffer from two main
drawbacks. Firstly, due to their computational complexity and
high memory usage[30], they are only suitable as offline opera-
tions, typically performed ahead of analytical workloads. Even
those partitioners which are distributed to improve scalability,
such as Sheep or the parallel implementation ofMETIS (ParMETIS)
[14], make strong assumptions about the availability of global
graph information. As a result they may require periodic re-
execution, i.e. given a dynamic graph following a series of graph
updates, which is impractical online [13]. Secondly, as mentioned,
partitioners which optimise for such global measures assume
uniform and constant usage of a graph, causing them to “leave
performance on the table” for many workloads.

Streaming graph partitioners [11, 30, 31] have been proposed
to address some of the problems with partitioners outlined above.
Firstly, the strict streaming model considers each element of a
graph stream as it arrives, efficiently assigning it to a partition.
Additionally, streaming partitioners do not perform any refine-
ment, i.e. later reassigning graph elements to other partitions,
nor do they perform any sort of global introspection, such as
spectral analysis. As a result, the memory usage of streaming
partitioners is both low and independent of the size of the graph
being partitioned, allowing streaming partitioners to scale to to
very large graphs (e.g. billions of edges). Secondly, streaming
partitioners may trivially be applied to continuously growing
graphs, where each new edge or update is an element in the
stream.

Streaming partitioners, such as Fennel [31] and LDG [30],
make partition assignment decisions on the basis of inexpensive
heuristics which consider the local neighbourhood of each new
element at the time it arrives. For instance, LDG assigns vertices
to the partitions where they have the most neighbours, but pe-
nalises that number of neighbours for each partition by how full
it is, maintaining balance. By using the local neighbourhood of a
graph element e at the time e is added, such heuristics render
themselves sensitive to the ordering of a graph stream. For ex-
ample, a graph which is streamed in the order of a breadth-first
traversal of its edges will produce a better quality partitioning
than a graph which is streamed in random order, which has been
shown to be pseudo adversarial[31].

In general, streaming algorithms produce partitionings of
lower quality than their non-streaming counterparts but with
much improved performance. However, some systems, such as
the graph partitioner Leopard [11], attempt to strike a balance
between the two. Leopard relies upon a streaming algorithm (Fen-
nel) for the initial placement of vertices but drops the “one-pass”
requirement and repeatedly considers vertices for reassignment;
improving quality over time for dynamic graphs, but at the cost
of some scalability. Note that these Streaming partitioners, like
their non-streaming counterparts, are workload agnostic and so
share those disadvantages.
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Workload sensitive partitioners [4, 23, 24, 26, 28, 32] attempt
to optimise the placement of data to suit a particular workload.
Such systems may be streaming or non-streaming, but are dis-
cussed separately here because they pertain most closely to the
work we do with Loom.

Some partitioners, such as LogGP [32] and CatchW [28], are
focused on improving graph analytical workloads designed for
the bulk synchronous parallel (BSP) model of computation2. In the
BSP model a graph processing job is performed in a number of
supersteps, synchronised between partitions. CatchW examines
several common categories of graph analytical workload and
proposes techniques for predicting the set of edges likely to be
traversed in the next superstep, given the category of workload
and edges traversed in the previous one. CatchW then moves
a small number of these predicted edges between supersteps,
minimising inter-partition communication. LogGP uses a similar
log of activity from previous supersteps to construct a hyper-
graph where vertices which are frequently accessed together are
connected. LogGP then partitions this hypergraph to suggest
placement of vertices, reducing the analytical job’s execution
time in future.

In the domain of RDF stores, Peng et al. [24] use frequent
sub-graph mining ahead of time to select a set of patterns com-
mon to a provided SPARQL query workload. They then propose
partitioning strategies which ensure that any data matching one
of these frequent patterns is allocated wholly within a single
partition, thus reducing average query response time at the cost
of having to replicate (potentially many) sub-graphs which form
part of multiple frequent patterns. Harbi et al. [10] also detect
patterns common to workloads of SPARQL queries; their system,
called AdPart, redistributes data between partitions over time
such that more queries may be executed without ipt . However,
like Peng et al’s work, AdPart makes significant use of replication.
Additionally, AdPart’s re-partitioning approach relies upon an
initial input generated by a naive Hash partitioner. Thus, it could
potentially be used in conjunction with a streaming system like
Loom: a workload-aware initial partitioning reducing the amount
of data redistribution required later.

For RDBMS, systems such as Schism [4] and SWORD [26]
capture query workload samples ahead of time, modelling them
as hypergraphs where edges correspond to sets of records which
are involved in the same transaction. These graphs are then
partitioned using existing non-streaming techniques (METIS)
to achieve a min. edge-cut. When mapped back to the original
database, this partitioning represents an arrangement of records
which causes a minimal number of transactions in the captured
workload to be distributed. Other systems, such as Horticulture
[23], rely upon a function to estimate the cost of executing a
sample workload over a database and subsequently explore a
large space of possible candidate partitionings. In addition to a
high upfront cost [4, 23], these techniques focus on the relational
data model, and so make simplifying assupmtions, such as ignor-
ing queries which traverse > 1-2 edges [26] (i.e. which perform
nested joins). Larger traversals are common to sub-graph pattern
matching queries, therefore its unclear how these techniques
would perform given such a workload.

Overall, the works reviewed above either focus on different
types of workload than we do with Loom (namely offline an-
alytical or relational queries), or they make extensive use of

2e.g. Pagerank executed using the Apache Giraph framework: http://bit.ly/
2eNVCnv.

replication. Loom does not use any form of replication, both to
avoid potentially significant storage overheads [25] and to re-
main interoperable with the sophisticated replication schemes
used in production systems.

1.3 Definitions
Here we review and define important concepts used throughout
the rest of the paper.

A labelled graph G = (V ,E,LV , fl ) is of the form: a set of
verticesV = {v1,v2, ...,vn }, a set of pairwise relationships called
edges e = (vi ,vj ) ∈ E and a set of vertex labels LV . The function
fl : V → LV is a surjectivemapping of vertices to labels. Note that
throughout this work, for simplicity, we consider only undirected
graphs. However, all techniques subsequently presented may be
extended to directed graphs, which we highlight inline. We view
an online graph simply as a (possibly infinite) sequence of edges
which are being added to a graphG , over time. We consider fixed
width sliding windows over such a graph, i.e. a sliding window
of time t is equivalent to the t most recently added edges. Note
that an online may be viewed as a graph stream and we use the
two terms interchangeably.

A pattern matching query is defined in terms of sub-graph
isomorphism. Given a pattern graph q = (Vq ,Eq ), a query should
return R: a set of sub-graphs of G. For each returned sub-graph
Ri = (VRi ,ERi ) there should exist a bijective function f such
that: a) for every vertex v ∈ VRi , there exists a corresponding
vertex f (v ) ∈ Vq ; b) for every edge (v1,v2) ∈ ERi , there exists a
corresponding edge ( f (v1), f (v2)) ∈ Eq ; and c) for every vertex
v ∈ Ri , the labels match those of the corresponding vertices
in q, l (v ) = l ( f (v )). A query workload is simply a multiset of
these queries Q = {(q1,n1) . . . (qh ,nh )}, where ni is the relative
frequency of qi in Q .

A query motif is a graph which occurs, with a frequency
of more than some user defined threshold T , as a sub-graph of
query graphs from a workload Q .

A vertex centric graph partitioning is defined as a disjoint
family of sets of vertices Pk (G ) = {V1,V2, . . . ,Vk }. Each set Vi ,
together with its edges Ei (where ei ∈ Ei , ei = (vi ,vj ), and
{vi ,vj } ⊆ Vi ), is referred to as a partition Si . A partition forms a
proper sub-graph ofG such that Si = (Vi ,Ei ),Vi ⊆ V and Ei ⊆ E.
We define the quality of a graph partitioning relative to a given
workloadQ . Specifically, the number of inter-partition traversals
(ipt ) which occurwhile executingQ over Pk (G ).Whilst min. edge-
cut is the standard scale free measure of partition quality [14], it
is intuitively a proxy for ipt and, as we have argued (Sec. 1), not
always an effective one.

1.4 Overview
Once again, Loom continuously partitions an online graph G
into k parts, optimising for a given workload Q . The resulting
partitioning Pk (G,Q ) reduces the probability of expensive ipt ,
when executing a random q ∈ Q , using the following techniques.

Firstly, we employ a trie-like datastructure to index all of the
possible sub-graphs of query graphs q ∈ Q , then identify those
sub-graphs which are motifs, i.e. occur most frequently (Sec. 2).
Secondly, we buffer a sliding window overG , then use an efficient
graph stream pattern matching procedure to check whether each
new edge added to G creates a sub-graph which matches one of
our motifs (Sec. 3). Finally, we employ a combination of novel and
existing partitioning heuristics to assign each motif matching
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sub-graph which leaves the sliding window entirely within an
individual partition, thereby reducing ipt for Q (Sec. 4).

2 IDENTIFYING MOTIFS
We now describe the first of the three steps mentioned above,
namely the encoding of all query graphs found in our pattern
matching query workload Q . For this, we use a trie-like datas-
tructure which we have called the Traversal Pattern Summary
Trie (TPSTry++). In a TPSTry++, every node represents a graph,
while every parent node represents a sub-graph which is com-
mon to the graphs represented by its children. As an illustration,
the complete TPSTry++ for the workload Q in Fig. 1 is shown in
Fig. 2.

This structure not only encodes all sub-graphs found in each
q ∈ Q , it also associates a support value p with each of its nodes,
to keep track of the relative frequency of occurrences of each
sub-graph in our query graphs.

Given a threshold T for the frequency of occurrences, a motif
is a sub-graph that occurs at least T times in Q . As an example,
for T = 40%, Q’s motifs are the shaded nodes in Fig. 2.

Intuitively, a sub-graph of G which is frequently traversed by
a query workload should be assigned to a single partition. We
can idenfity these sub-graphs as they form within the stream
of graph updates, by matching them against the motifs in the
TPSTry++. Details of the motif matching process are provided in
Sec.3. In the rest of this section we explain how a TPSTry++ is
constructed, given a workload Q .

A TPSTry++ extends a simpler structure, called TPSTry, which
we have recently proposed in a similar setting [8]. It employs
frequent sub-graph mining[12] to compactly encode general la-
belled graphs. The resulting structure is a Directed Acyclic Graph
(DAG), to reflect the multiple ways in which a particular query
pattern may extend shorter patterns. For example in Fig. 2 the
graph in node a-b-a-b can be produced in two ways, by adding a
single a-b edge to either of the sub-graphs b-a-b, and a-b-a. In
contrast, a TPSTry is a tree that encodes the space of possible
traversal paths through a graph as a conventional trie of strings,
where a path is a string of vertex labels, and possible paths are
described by a stream of regular path queries [20].

Note that the trie is a relatively compact structure, as it grows
with |LV |t , where t is the number of edges in the largest query
graph inQ and LV is typically small. Also note that the TPSTry++
is similar to, though more general than, Ribiero et al’s G-Trie [27]
and Choudhury et al’s SJ-Tree [3], which use trees (not DAGs) to
encode unlabelled graphs and labelled paths respectively.

2.1 Sub-graph signatures
We build the trie for Q by progressively building and merging
smaller tries for each q ∈ Q , as shown in Fig. 3. This process relies
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on detecting graph isomorphisms, as any two trie nodes from
different queries that contain identical graphs should be merged.
Failing to detect isomorphism would result, for instance, in two
separate trie nodes being created for the simple graphs a-b-c and
c-b-a, rather than a single node with a support of 2, as intended.
One way of detecting isomorphism, often employed in frequent
sub-graph mining, involves computing the lexicographical canon-
ical form for each graph [19], whereby two graphs are isomorphic
if and only if they have the same canonical representation.

Computing a graph’s canonical form provides strong guaran-
tees, but can be expensive[27]. Instead, we propose a probabilistic,
but computationally more efficient approach based on number
theoretic signatures, which extends recent work by Song et al. [29].
In this approach we compute the signature of a graph as a large,
pseudo-unique integer hash that encodes key information such
as its vertices, labels, and nodes degree. Graphs with matching
signatures are likely to be isomorphic to one another, but there
is a small probability of collision, i.e., of having two different
graphs with the same signature.

Given a query graph Gq = {Vq ,Eq } we compute its signature
as follows. Initially we assign a random value r (l ) = [1,p), be-
tween 1 and some user specified prime p, to each possible label
l ∈ LVi from our data graph G; recall that the function fl maps
vertices in G to these labels. We then perform three steps:

(1) Calculate a factor for each edge e = (vi ,vj ) ∈ Eq , accord-
ing to the formula:

edдeFac (e ) = (r ( fl (vi )) − r ( fl (vj )))mod p

(2) Calculate the factors that encode the degree of each vertex.
If a vertex v has a degree n, its degree factor is defined as:

deдFac (v ) = ((r ( fl (v )) + 1)mod p)·

((r ( fl (v )) + 2)mod p) · . . . · ((r ( fl (v )) + n)mod p)

(3) Finally, we compute the signature of Gq = (Vq ,Eq ) as:

(
∏
e ∈Ei

edдeFac (e )) · (
∏
v ∈Vi

deдFac (v ))

Note that for the factors of directed edges, the random value for
the target vertex’s label is subtracted from the random value for
the source vertex’s label (i.e.vj is the target vertex). For undirected
edges the ordering of subtraction does not matter, provided it is
consistent (e.g. lexicographical).

To illustrate this signature calculation process, consider query
q1 from Fig. 1. Given a p of 11 and random values r (a) = 3,
r (b) = 10 we first calculate the edge factor for an a-b edge:
edдeFac ((a,b)) = (3 − 10)mod 11 = 7. As q1 consists of four a-b
edges, its total edge factor is 74 = 2401. Then we calculate the
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degree factors 3, starting with a b labelled vertex with degree 2:
deдFac (b) = ((10+1)mod 11) · ((10+2)mod 11) = 11, followed by
an a labelled vertex also with degree 2: deдFac (a) = 20. As there
are two of each vertex, with the same degree, the total degree
factor is 112 · 202 = 48400. The signature of q1 = 2401 · 48400 =
116208400.

This approach is appealing for two reasons. Firstly, since the
factors in the signature may be multiplied in any order, a signa-
ture forG can be calculated incrementally if the signature of any
of its sub-graphsGi is known, as this is the combined factor due
to the additional edges and degree inG \Gi . Secondly, the choice
of p determines a trade-off between the probability of collisions
and the performance of computing signatures. Specifically, note
that signatures can be very large numbers (thousands of bits)
even for small graphs, rendering operations such as remainder
costly and slow. A small choice of p reduces signature size, be-
cause all the factors are mapped to a finite field [17] (factor mod
p) between 1 and p, but it increases the likelihood of collision, i.e.,
the probability of two unrelated factors being equal. We discuss
how to improve the performance and accuracy of signatures in
Section 2.3.

2.2 Constructing the TPSTry++

Algorithm 1 Recursively add a query graph Gq to a TPSTry++

1: f actors (e,д) ← degree/edge factors to multiply a graph д’s
signature when adding edge e

2: support (д) ← map of TPSTry++ nodes (graphs) to p-values
3: tpstry ← TPSTry++ for workload Q
4: parent ← TPSTry++ node, initially root (an empty graph)
5: Gq ← query graph defined by a query q
6: д ← some sub-graph of Gq

7: for e in edges from Gq do
8: д ← new empty graph
9: corecurse(parent , e, tpstry,д)
10: siд ← f actor (e,д) · parent .siдnature
11: if tpstry.siдnatures contains siд then
12: n ← node from tpstry with signature siд
13: support (n) ← support (n) + 1
14: else
15: n ← new node with graph д + e and signature siд
16: support (n) ← 1
17: tpstry ← tpstry + n
18: if not parent .children contains n then
19: parent .children ← parent .children + n
20: newEdдes ← edges incident to д + e and not in д + e
21: for e ′ in newEdдes
22: corecurse(n, e ′, tpstry,д + e )
23: return tpstry

Our approach to constructing the TPSTry++ is to incremen-
tally compute signatures for sub-graphs of each query graph q
in a trie, merging trie nodes with equal signatures to produce a
DAGwhich encodes the sub-graphs of all q ∈ Q . Alg. 1 formalises
this approach.

Essentially, we recursively “rebuild” the graphGq | Eq | times,
starting from each edge e ∈ Eq in turn. For an edge e we calculate
its edge and degree factors, initially assuming a degree of 1 for
3Note we don’t consider 0 a valid factor, and replace it with p (e.g. 11mod 11 = 11)

each vertex. If the resulting signature is not associated with a
child of the TPSTry++’s root, then we add a node n representing
e . Subsequently, we “add” those edges e ′ which are incident to
e ∈ Gq , calculating the additional edge and degree factors, and
add corresponding trie nodes as children of n. Then we recurse
on the edges incident e + e ′.

Consider again our earlier example of the query graph q1:
as it arrives in the workload stream Q , we break it down to its
constituent edges {a-b, a-b, a-b, a-b}. Choosing an edge at random
we calculate its combined factor. We know that the edge factor
of an a-b edge is 7. When considering this single edge, both a
and b vertices have a degree of 1, therefore the signature for a-b
is 7 · ((3 + 1) mod 11) · ((10 + 1) mod 11) = 308. Subsquently,
we do the same for all other edges and, finding that they have
the same signature, leave the trie unmodified. Next, for each
edge, we add each incident edge from q1 and compute the new
combined signature. Assume we add another a-b edge adjacent
to b to produce the sub-graph a-b-a. This produces three new
factors: the new edge factor 7, the new a vertex degree factor
((3 + 1)mod 11) and an additional degree factor for the existing
b vertex ((10 + 2)mod 11). The combined signature for a-b-a is
therefore 308 · 7 · 4 · 1 = 8624; if a node with this signature does
not exist in the trie as a child of the a-b node, we add it. This
continues recursively, considering larger sub-graphs of q1 until
there are no edges left in q1 which are not in the sub-graph, at
which point, q1 has been added to the TPSTry++.

2.3 Avoiding signature collisions
As mentioned, number theoretic signatures are a probabilistic
method of ismorphism checking, prone to collisions. There are
several scenarios in which two non-isomorphic graphs may have
the same signature: a) two factors representing different graph
features, such as different edges or vertex degrees, are equal; b)
two distinct sets of factors have the same product; and c) two
different graphs have identical sets of edges, vertices and vertex
degrees.

The original approach to graph isomorphic checking [29]
makes use of an expensive authoritative patternmatchingmethod
to verify identified matches. Given a query graph, it calculates
its signature in advance, then incrementally computes signatures
for sub-graphs which form within a window over a graph stream.
If a sub-graph’s signature is ever divisible by that of the query
graph, then that sub-graph should contain a query match.

There are some key differences in howwe compute and use sig-
natures with Loom, which allow us to rely solely upon signatures
as an efficient means for mining and matching motifs. Firstly,
remember our overall aim is to heuristically lower the probability
that sub-graphs in a graphG which match our discovered motifs
straddle a partition boundary. As a result we can tolerate some
small probability of false positive results, whilst the manner in
which signatures are executed (Sec. 2.1) precludes false negatives;
i.e. two graphs which are isomorphic are guaranteed to have the
same signature. Secondly, we can exploit the structure of the
TPSTry++ to avoid ever explicitly computing graph signatures.
From Fig. 2 and Alg. 1, we can see that all possible sub-graphs
of a query graph Gq will exist in the TPSTry++ by construction.
We calculate the edge and degree factors which would multiply
the signature of a sub-graph with the addition of each edge, then
associate these factors to the relevant trie branches. This allows
us to represent signatures as sets of their constituent factors,
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Figure 4: Probability of < 5% factor collisions for various
numbers of factors and finite fields p

which eliminates a source of collisions, e.g. we can now distin-
guish between graphs with factors {6, 2}, {4, 3} and {12}. Thirdly,
we never attempt to discover whether some sub-graph contains
a match for query q, only whether it is a match for q. In other
words, the largest graph for which we calculate a signature is
the size of the largest query graph |Gq | for all q ∈ Q , which is
typically small4. This allows us to choose a larger prime p than
Song et al. might, as we are less concerned with signature size,
reducing the probability of factor collision, another source of
false positive signature matches.

Concretely, we wish to select a value of p which minimises
the probability that more than some acceptable percentage C%
of a signature’s factors are collisions. From Section 2.1 there are
three scenarios in which a factor collision may occur: a) two
edge factors are equal despite different vertices with different
random values from our range [1,p); b) an edge factor is equal to
a degree factor; and c) two degree factors are equal, again despite
different vertices. Song et al. show that all factors are uniform
random variables from [1,p), therefore each scenario occurs with
probability 1

p .
For either edge or degree factors, from the above it is clear that

there are two scenarios in which a collision may occur, giving a
collision probability for any given factor of 2

p . The Handshaking
lemma tells us that the total degree of a graph must equal 2|E |,
which means that a graph must have 3|E | factors in its signature:
one per edge plus one per degree. Combined with the binary
measure of “success” (collision / no collision), this suggests a
binomial distribution of factor collision probabilities, specifically
Binomial (3|E |, 2p ). Binomial distributions tell us the probability of
exactly x “successes” occuring, however we want the probability
that no more than Cmax = C% · 3|E | factors collide and so must
sum over all acceptable outcomes x ∈ Cmax :

Cmax∑
x=0

Pr (X = x ) where X ∼ Binomial (3|E |, 2
p
)

Figure 4 shows the probabilities of having fewer than 5% factor
collisions given query graphs of 8, 12 or 16 edges and p choices
between 2 and 317. In Loom, when identifying and matching
motifs, we use a p value of 251, which as you can see gives a
neglible probability of significant factor collisions.

4Of the order of 10 edges.

3 MATCHING MOTIFS
We have seen how motifs that occur in Q are identified. By con-
struction, motifs represent graph patterns that are frequently
traversed during executions of queries inQ . Thus, the sub-graphs
ofG that match those motifs are expected to be frequently visited
together and are therefore best placed within the same parti-
tion. In this section we clarify how we discover pattern matches
between sub-graphs and motifs, whilst in the next Section we
describe the allocation of those sub-graphs to partitions.

Loom operates on a sliding window of configurable size over
the stream of edges that make up the growing graph G. The sys-
tem monitors the connected sub-graphs that form in the stream
within the space of the window, efficiently checking for isomor-
phisms with any known motif each time a sub-graph grows.
Upon leaving the window, sub-graphs that match a motif are
immediately assigned to a partition, subject to partition balance
constraints as explained in Section 4.

Note that this technique introduces a delay, corresponding to
the size of the window, between the time edges are submitted to
the system and the time they are assigned and made available. In
order to allow queries to access the new parts of graph G, Loom
views the sliding window itself as an extra partition, which we
denote Ptemp . In practice, vertices and edges in the window are
accessible in this temporary partition prior to being permanently
allocated to their own partition.

To help understand how the matching occurs, note that in the
TPSTry++, by construction, all anscestors of any node n must
represent strict sub-graphs of the graph represented by n itself.
Also, note that the support of a node n is the relative frequency
with which n’s sub-graphGn occurs in Q . As, by definition, each
timeGn occurs inQ so do all of its sub-graphs, a trie node n must
have a support lower than any of its anscestors. This means that
if any of the nodes in the trie, including those representing single
edges, are not motifs, then none of their descendants can be
motifs either. Thus, when a new edge e = (v1,v2) arrives in the
graph stream, we compute its signature (Sec. 2.1) and check if e
matches a single-edge motif at the root of the TPSTry++. If there
is no match, we can be certain that e will never form part of any
sub-graph that matches a motif. We therefore immediately assign
e to a partition and do not add it to our stream window Ptemp .
If, on the other hand, e does match a single-edge motif then we
record the match into a map, matchList, and add e to the window.
The matchList maps vertices v to the set of motif matching sub-
graphs in Ptemp which contain v; i.e. having determined that
e = (v1,v2) is a motif match, we treat e as a sub-graph of a
single edge, then add it to the matchList entries for both v1 and
v2. Additionally, alongside every sub-graph in matchList, we
store a reference to the TPSTry++ node which represents the
matching motif. Therefore, entries in matchList take the form
v → {⟨Ei ,mi ⟩, ⟨Ej ,mj ⟩, . . .}, where Ei is a set of edges in Ptemp
that form a sub-graph дi with the same signature as the motif
mi .

Given the above, any edge e which is added to Ptemp must
at least match a single edge motif. However, if e is incident to
other edges already in Ptemp , then its addition may also form
larger motif matching sub-graphs which we must also detect and
add to matchList. Thus, having added e = (v1,v2) to matchList,
we check the map for existing matches which are connected to
e; i.e we look for matches which contain one of v1 or v2. If any
exist, we use the procedure in Alg. 2, along with the TPSTry++,
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Algorithm 2Mine motif matches from each new edge e ∈ G
1: f actors (e,д) ← degree/edge factors to multiply a graph д’s

signature when adding edge e
2: tpstry ← filtered TPSTry++ of motifs for workload Q

3: for each new edge e (v1,v2) do
4: matches ←matchList (v1) ∪matchList (v2)
5: for each sub-graphm inmatches do
6: n ← the tpstry node form
7: if n has child c w. f actor = f actors (e,m) then
8: add ⟨m + e, c⟩ tomatchList for v1&v2 //Match found!
9: ms1 ←matchList (v1)
10: ms2 ←matchList (v2)
11: for all possible pairs (m1,m2) from (ms1,ms2) do
12: n1 ← the tpstry node form1
13: recurse(tpstry,m2,m1,n1)
14: for each edge e2 inm2 do
15: if n1 has child c1 w. f actor = f actors (e2,m1) then
16: recurse(tpstry,m2 − e2,m1 + e2, c1)
17: if m2 is empty then //Match found!
18: add ⟨m1 +m2,n1⟩ tomatchList for v1&v2

to determine whether the addition of edge e to these sub-graphs
creates another motif match.

Essentially, for each sub-graph дi from matchList to which
e is connected, we calculate the set of edge and degree factors
f ac (e,дi ) which would multiply the signature of дi upon the
addition e , as in Sec. 2. Recall, also from Sec. 2, that a TPSTry++
node contains a signature for the graph it represents, and that
these signatures are stored as sets of factors, rather than their
large integer products. As each sub-graph in matchList is paired
with its associated motif n from the trie, we can efficiently check
if n has a child c where a) c is a motif; and b) the difference
between n’s factor set and c’s factor set corresponds to factors for
the addition of e toдi , i.e., f ac (e,дi ) = c .siдnatures\n.siдnatures .
If such a child exists in the trie then adding e to a graph which
matches motif n (дi ) will likely create a graph which matches
motif c: the addition of e to Ptemp has formed the new motif
matching sub-graph дi + e .

We also detect if the joining of two existing multi edge motif
matches (⟨E1,m1⟩, ⟨E2,m2⟩) forms yet another motif match, in
roughly the same manner. First we consider each edge from the
smaller motif match (e.g. e ∈ E2 from ⟨E2,m2⟩), checking if the
addition of any of these edges to E15 constitutes yet another
match; if it does then we add the edge to E1 and recursively
repeat the process until E2 is empty. If this process does exhaust
E2 then E1 ∪ E2 constitute a motif matching sub-graph. Once
this process is complete, matchList will contain entries for all of

5Treating E1 as a sub-graph.

the motif matching sub-graphs currently in Ptemp . Note that as
more edges are added to Ptemp , matchList may contain multiple
entries for a given vertex where one match is a sub-graph of
another, i.e. new motif matches don’t replace existing ones.

As an example of the motif matching process, consider the
portion of a graph stream (left), motifs (center) and matchList
(right) depicted in Fig. 5. Our window over the graph streamG
is initially empty, with the depicted edges being added in label
order (i.e. e1, e2, . . .). As the edge e1 is added, we first compute
its signature and verify whether e1 matches a single-edge motif
in the TPSTry++. We can see that, as an a-b labelled edge, the
signature for e1 must match that of motifm1, therefore we add
e1 to Ptemp , and add the entry ⟨e1,m1⟩ to matchList for both e1’s
vertices 1,2. As e1 is not yet connected to any other edges in
Ptemp , we do not need to check for the formation of additional
motif matches. Subsequently, we perform the exact same process
for edge e2. When e3 is added, again we verify that, as a b-c
edge, e3 is a match for the single-edge motifm3 and so update
Ptemp and matchList accordingly. However, e3 is connected to
existing motif matching sub-graphs in Ptemp therefore the union
of matchList entries for e3’s vertices 4,5 (line 4 Alg. 2) returns
{⟨e2,m1⟩}. As a result, we calculate the factors to multiply e2’s
signature by, when adding e3. Remember that when computing
signatures, each edge has a factor, as well as each degree. Thus,
when adding e3 to e2 our new factors are an edge factor for a
b-c labelled edge, a first degree factor for the vertex labelled c (5)
and a second degree factor for the vertex labelled b6 (4) (Sec. 2.1).
Subsquently we must check whether the motif for e2,m1, has any
child nodes with additional factors consistent with the addition
of a b-c edge, which it does:m3. This means we have found a
new sub-graph in Ptemp which matches the motifm3, and must
add ⟨{e2, e3},m3⟩ to the matchList entries for vertices 3, 4 and 5.
Similarly, the addition of b-c labelled edge e4 to our graph stream
produces the new motif matches ⟨e4,m2⟩ and ⟨{e1, e4},m3⟩, as
can be seen in our example matchList.

Finally, the addition of our last edge, e5, creates several new
motif matches (e.g. ⟨{e1, e5},m4⟩, ⟨{e2, e5},m5⟩ etc. . . ). In particu-
lar, notice that the addition of e5 creates a match for the motifm6,
combining the new motif match ⟨{e1, e5},m4⟩ with an existing
one ⟨e2,m1⟩. To understand how we discover these slightly more
complex motif matches, consider Alg. 2 from line 11 onwards.
First we retrieve the updated matchList entries for vertices 2 and
3, including the new motif matches gained by simply adding the
single edge e5 to connected existing motif matches, as above.
Next we iterate through all possible pairs of motif matches for
both vertices. Given the pair of matches (⟨{e1, e5},m4⟩, ⟨e2,m1⟩),
we discover that the addition of any edge from the smaller match
(i.e. e2) to the larger produces factors which correspond to a child
ofm4 in the TPSTry++:m6. As e2 is the only edge in the smaller

6As, with the addition of e3 , vertex 4 has degree 2.
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match, we simply add the match ⟨{e1, e2, e5},m6⟩ to thematchList
entries for 1, 2, 3 and 4. In the general case however, we would
not add this new match but instead recursively “grow” it with
new edges from the smaller match, updating matchList only if
all edges from the smaller match have been successfully added.

4 ALLOCATING MOTIFS
Following graph stream pattern matching, we are left with a
collection of sub-graphs, consisting solely of the most recent t
edges in G, which match motifs from Q . As new edges arrive in
the graph stream, our window Ptemp grows to size t and then
“slides”, i.e. each new edge added to a full window causes the
oldest (t + 1th ) edge e to be dropped. Our strategy with Loom
is to then assign this old edge e to a permanent partition, along
with the other edges in the window which form motif matching
sub-graphs with e . The sole exception to this is when an edge
arrives that may not form part of any motif match and is assigned
to a partition immediately (Sec. 3). This exception does not pose a
problem however, because Loom behaves as if the edge was never
added to the window and therefore does not cause displacement
of older edges.

Recall again that with Loom we are attempting to assign
motif matching sub-graphs wholly within individual partitions
with the aim of reducing ipt when executing our query work-
load Q . One naive approach to achieving this goal is as fol-
lows: When assigning an edge e = (v1,v2), retrieve the mo-
tif matches associated with v1 and v2 from Ptemp using our
matchList map, then select the subsetMe that contains e , where
Me = {⟨E1,m1⟩, . . . ⟨En ,mn⟩}, e ∈ Ei and Ei is a match formi .
Finally, treating these matches as a single sub-graph, assign them
to the partition which they share the most incident edges. This
approach would greedily ensure that no edges belonging to mo-
tif matching sub-graphs in G ever cross a partition boundary.
However, it would likely also have the effect of creating highly
unbalanced partition sizes, portentially straining the resources of
a single machine, which prompted partitioning in the first place.

Instead, we rely upon two distinct heuristics for edge assign-
ment, both of which are aware of partition balance. Firstly, for the
case of non-motif-matching edges that are assigned immediately,
we use the existing Linear Deterministic Greedy (LDG) heuristic
[30]. Similar to our naive solution above, LDG seeks to assign
edges7 to the partition where they have the most incident edges.
However, LDG also favours partitions with higher residual capac-
ity when assigning edges in order to maintain a balanced number
of vertices and edges between each. Specifically, LDG defines the
residual capacity r of a partition Si in terms of the number of
vertices currently in Si , given asV (Si ), and a partition capacity
constraintC : r (Si ) = 1− |V (Si ) |

C . When assigning an edge e , LDG
counts the number of e’s incident edges in each partition, given
as N (Si , e ), and weights these counts by Si ’s residual capacity; e
is assigned to the partition with the highest weighted count. The
full formula for LDG’s assignment is:

max
Si ∈Pk (G )

N (Si , e ) · (1 −
|V (Si ) |

C
)

Secondly, for the general case where edges form part of mo-
tif matching sub-graphs, we propose a novel heuristic, equal
opportunism. Equal opportunism extends ideas present in LDG
but, when assigning clusters of motif matching sub-graphs to a
single partition as we do in Loom, it has some key advantages.

7LDG may partition either vertex or edge streams.

By construction, given an edge e to be assigned along with its
motif matches Me = {⟨E1,m1⟩ . . . ⟨En ,mn⟩}, the sub-graphs Ei
Ej inMe have significant overlap (e.g. they all contain e). Thus,
individually assigning each motif match to potentially different
partitions would create many inter-partition edges. Instead, equal
opportunism greedily assigns the match cluster to the single par-
tition with which it shares the most vertices, weighted by each
partition’s residual capacity. However, as these vertices and their
new motif matching edges may not be traversed with equal like-
lihood given a workload Q , equal opportunism also prioritises
the shared vertices which are part of motif matches with higher
support in the TPSTry++.

Formally, given the motif matches Me we compute a score
for each partition Si and motif match ⟨Ek ,mk ⟩ ∈ Me , which we
call a bid. Let N (Si ,Ek ) = |V (Si ) ∩V (Ek ) | denote the number
of vertices in the edge set Ek (which is itself a graph) that are
already assigned to Si 8. Additionally, let supp (mk ) refer to the
support of motifmk in the TPSTry++ and recall that C is a ca-
pacity constraint defined for each partition. We define the bid
for partition Si and motif match ⟨Ek ,mk ⟩ as:

bid (Si , ⟨Ek ,mk ⟩) = N (Si ,Ek ) · (1 −
|V (Si ) |

C
) · supp (mk ) (1)

We could simply assign the cluster of motif matching sub-
graphs (i.e. E1 ∪ . . . ∪ En ) to the single partition Si with the
highest bid for all motif matches in Me . However, equal op-
portunism further improves upon the balance and quality of
partitionings produced with this new weighted approach, lim-
iting its greediness using a rationing function we call l . l (Si ) is
a number between 0 and 1 for each partition, the size of which
is inversely correlated with Si ’s size relative to the smallest par-
tition Smin = minS ∈Pk (G ) |V (S ) |, i.e. if Si is as small as Smin
then l (Si ) = 1. Equal opportunism sorts motif matches in Me
in descending order of support, then uses l (Si ) to control both
the number of matches used to calculate partition Si ’s total bid,
and the number of matches assigned to Si should its total bid be
the highest. This strategy helps create a balanced partitioning by
a) allowing smaller partitions to compute larger total bids over
more motif matches; and b) preventing the assignment of large
clusters of motif matches to an already large partition. Formally
we calculate l (Si ) as follows:

l (Si ) =
|V (Si ) |

Smin
· α , α =




1, |V (Si ) | = |V (Smin ) |

0, |V (Si ) | > |V (Smin ) | · b

α , otherwise
(2)

where α is a user specified number 0 < α ≤ 1 which controls
the aggression with which l penalises larger partitions and b
limits the maximum imbalance. Throughout this work we use
an empirically chosen default of α = 2

3 and set the maximum
imbalance to b = 1.1, emulating Fennel [31].

Given definitions (1) and (2), we can now simply state the
output of equal oppurtinism for the sorted set of motif matches
Me , as:

max
Si ∈Pk (G )

l (Si ) · |Me |∑
k=0

bid (Si , ⟨Ek ,mk ⟩) (3)

Note that motif matches in Me which are not bid on by the
winning partition are dropped from thematchList map, as some
of their constituent edges (e.g. e , which all matches in Me share)
have been assigned to partitions and removed from the sliding
window Ptemp .
8Note that N is a generalisation of LDG’s function N
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To understand how to the rationing function l improves the
quality of equal opportunism’s partitioning, not just its balance,
consider the following: Just because an edge e ′ falls within the
motif match setMe of our assignee e , does not necessarily imply
that placing them within the same partition is optimal. e ′ could
be a member of many other motif matches in Ptemp besides those
inMe , perhaps with higher support in the TPSTry++ (i.e. higher
likelihood of being traversed when executing a workload Q). By
ordering matches by support and prioritising the assignment
of the smaller, higher support motif matches, we often leave
e ′ to be assigned later along with matches to which it is more
“important”.

As an example, consider again the graph and TPSTry++ frag-
ment in Fig. 5. If assigning the edge e1 to a partition at the
time t + 1, its support ordered set of motif matchesMe1 would
be ⟨e1,m1⟩, ⟨{e1, e4},m3⟩, ⟨{e1, e5},m4⟩ and ⟨{e1, e2, e5},m6⟩. As-
sume two partitions S1 and S2, where S1 is 33.3% larger than
S2 and vertex 2 already belongs to partition S1, whilst all other
vertices in the window are as yet unassigned (i.e. this is the first
time edges containing them have entered the sliding window).
In this scenario, S1 is guaranteed to win all bids, as S2 contains
no vertices fromMe1 and therefore N (S2, _) will always equal 0.
However, rather than greedily assign all matches to the already
large S1, we calculate the ration l for S1 as 1

1.33 ·
1
1.5 =

1
2 , given

α = 1.5. In other words, we only assign edges from the first half of
Me1 (⟨e1,m1⟩, ⟨{e1, e4},m3⟩) to S1; edges such as e5 and e2 remain
in the window Ptemp . Assume an edge e6 = (4, 6) subsequently
arrives in the graph stream G , where vertex 6 already belongs to
partition S2 and e6 matches the motifm2 (i.e. has labels b-c). If we
had already assigned e5 to partition S1 then this would lead to an
inter-partition edge which is more likely to be traversed together
with e5 than are other edges in S1, given our workloadQ . Instead,
we compute a match in Ptemp between {e5, e6} and the motifm3,
and will likely later assign e5 to partition S2. Within reason, the
longer an edge remains in the sliding window, the more of its
neighbourhood information we are likely to have access to, the
better partitioning decisions we can make for it.

5 EVALUATION
Our evaluation aims to demonstrate that Loom achieves high
quality partitionings of several large graphs in a single-pass,
streaming manner. Recall that we measure graph partitioning
quality using the number of inter-partition traversals when ex-
ecuting a realistic workloads of pattern matching queries over
each graph.

Loom consistently produces partitionings of around 20% supe-
rior quality when compared to those produced by state of the art
alternatives: LDG [30] and Fennel [31] Furthermore, Loom parti-
tionings’ quality improvement is robust across different numbers
of partitions (i.e. a 2-way or a 32-way partitioning). Finally we
show that, like other streaming partitioners, Loom is sensitive
to the arrival order of a graph stream, but performs well given a
pseudo-adversarial random ordering.

5.1 Experimental setup
For each of our experiments, we start by streaming a graph from
disk in one of three predefined orders: Breadth-first: computed
by performing a breadth-first search across all the connected com-
ponents of a graph;Random: computed by randomly permuting
the existing order of a graph’s elements; and Depth-first: com-
puted by performing a depth-first search across the connected

Entity

Activity

Entity Paper

Person Person

PaperPaperAgent

Artist

Label

Area

Area

DBLPProvGen MusicBrainz

Figure 6: Examples of q forMusicBrainz, DBLP & ProvGen

components of a graph. We choose these stream orderings as
they are common to the evaluations of other graph stream parti-
tioners [11, 22, 30, 31], including LDG and Fennel.

Subsequently, we produce 4 separate k-way partitionings of
this ordered graph stream, using each of the following partition-
ing approaches for comparison: Hash: a naive partitioner which
assigns vertices and edges to partitions on the basis of a hash
function. As this is the default partitioner used by many exist-
ing partition graph databases9, we use it as a baseline for our
comparisons. LDG: a simple graph stream partitioner with good
performance which we extend with our work on Loom. Fennel:
a state-of-the-art graph stream partitioner and our primary point
of comparison. As suggested by Tsourakakis et al, we use the Fen-
nel parameter value γ = 1.5 throughout our evaluation. Loom:
our own partitioner which, unless otherwise stated, we invoke
with a window size of 10k edges and a motif support threshold
of 40%.

Finally, when each graph is finished being partitioned, we
execute the appropriate query workload over it and count the
number of inter-partition traversals (ipt ) which occur.

Note that we avoid implementation dependent measures of
partitioning quality because, as an isolated prototype, Loom is
unlikely to exhibit realistic performance. For instance, lacking a
distributed query processing engine, query workloads are exe-
cuted over logical partitions during the evaluation. In the absence
of network latency, query response times are meaningless as a
measure of partitioning quality.

All algorithms, data structures, datasets and query workloads
are publicly available10. All our experiments are performed on
a commodity machine with a 3.1Ghz Intel i7 CPU and 16GB of
RAM.

5.1.1 Graph datasets. Remember that the workload-agnostic
partitioners which we aim to supersede with Loom are liable
to exhibit poor workload performance when queries focus on
traversing a limited subset of edge types (Sec. 1). Intuitively, such
skewed workloads are more likely over heterogeneous graphs,
where there exist a larger number of possible edge types for
queries to discern between, e.g. a-a, a-b, a-c . . . vs just a-a. Thus,
we have chosen to test the Loom partitioner over five datasets
with a range of different heterogeneities and sizes; three of these
datasets are synthetic and two are real-world. Table 1 presents
information about each of our chosen datasets, including their
size and how heterogeneous they are (|LV |). We use the DBLP,
and LUBM datasets, which are well known. MusicBrainz11 is a
freely available database of curated music metadata, with vertex

9The Titan graph database: http://bit.ly/2ejypXV
10The Loom repository: http://bit.ly/2eJxQcp
11The MusicBrainz database: http://bit.ly/1J0wlNR
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(a) Random order (b) Breadth-first order (c) Depth-first order

Figure 7: ipt %, vs. Hash, when executing Q over 8-way partitionings of graph streams in multiple orders.

(a) k = 2 (b) k = 8 (c) k = 32

Figure 8: ipt %, vs. Hash, when executing Q over multiple k-way partitionings of breadth-first graph streams.

Dataset ∼ |V | ∼ |E | |LV | Real Description
DBLP 1.2M 2.5M 8 Y Publications & citations
ProvGen 0.5M 0.9M 3 N Wiki page provenance
MusicBrainz 31M 100M 12 Y Music records metadata
LUBM-100 2.6M 11M 15 N University records
LUBM-4000 131M 534M 15 N University records
Table 1: Graph datasets, incl. size & heterogeneity

labels such as Artist, Country, Album and Label. ProvGen[6] is
a synthetic generator for PROV metadata [21], which records
detailed provenance for digital artifacts.

5.1.2 Query workloads. For each dataset we must propose a
representative query workload to execute so that we may mea-
sure partitioning quality in terms of ipt . Remember that a query
workload consists of a set of distinct query patterns along with a
frequency for each (Sec. 1.3). The LUBM dataset provides a set of
query patterns which we make use of. For every other dataset,
however, we define a small set of common-sense queries which
focus on discovering implicit relationships in the graph, such as
potential collaboration between authors or artists 12. The full
details of these query patterns are elided for space10, however
Fig. 6 presents some examples. Note that whilst the TPSTry++
may be trivially updated to account for change in the frequencies
of workload queries (Sec. 2), our evaluation of Loom assumes
that said frequencies are fixed and known a priori. Recall that, for
online databases, we argue this is a realistic assumption (Sec. 1).
However, more complete tests with changing workloads are an
important area for future work.

12If possible, workloads are drawn from the literature, e.g. common PROV
queries [5]

5.2 Comparison of systems
Figures 7 and 8 present the improvement in partitioning quality
achieved by Loom and each of the comparable systems we desribe
above. Initially, consider the experiment depicted in Fig. 7. We
partition ordered streams of each of our first 4 graph datasets13
into 8-way partitionings, using the approaches described above,
then execute each dataset’s query workload over the appropriate
partitioning. The absolute number of inter-partition traversals
(ipt ) suffered when querying each dataset varies significantly.
Thus, rather than represent these results directly, in Fig. 7 (and 8)
we present the results for each approach as relative to the re-
sults for Hash; i.e. how many ipt did a partitioning suffer, as a
percentage of those suffered by the Hash partitioning of the
same dataset.

As expected, the naive hash partitioner performs poorly: it
produces partitionings which suffer twice as many inter-partition
traversals, on average, when compared to partitionings produced
by the next best system (LDG). Whilst the LDG partitioner does
achieve around a 55% reduction in ipt vs our Hash baseline, its
produces partitionings of consistently poorer quality than those
of Fennel and Loom. Although both LDG and Fennel optimise
their partitionings for the balanced min. edge-cut goal (Sec. 1),
Fennel is the more effective heuristic, cutting around 25% fewer
edges than LDG for small numbers of partitions (including k =
8) [31]. Intuitively, the likelihood of any edge being cut is a coarse
proxy for the likelihood of a query q ∈ Q traversing a cut edge.
This explains the disparity in ipt scores between the two systems.

Of more interest is comparing the quality of partitionings pro-
duced by Fennel and Loom. Fig. 7 clearly demonstrates that Loom
offers a significant improvement in partitioning quality over Fen-
nel, given a workload Q . Loom’s reduction in ipt relative to
Fennel’s is present across all datasets and stream orders, however
13Excluding LUBM-4000
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Dataset LDG (ms) Fennel (ms) Loom (ms) Hash (ms)
DBLP 91 96 235 28
ProvGen 144 146 240 33
MusicBrainz 48 52 129 18
LUBM-100 47 51 147 22
LUBM-4000 45 49 138 16

Table 2: Time to partition 10k edges

it is particularly pronounced over ordered streams of more het-
erogeneous graphs; e.g. MusicBrainz in Sub-figure 8b(b), where
Loom’s partitioning suffers from 42% fewer ipt than Fennel’s.
This makes sense because, as mentioned, pattern matching work-
loads are more likely to exhibit skew over heterogeneous graphs,
where query graphs Gq contain a, potentially small, subset of
the possible vertex labels. Across all the experiments presented
in Fig. 7, the median range of Loom’s ipt reduction relative to
Fennel’s is 20 − 25%. Additionally, Fig. 8 demonstrates that this
improvement is consistent for different numbers of partitions. As
the number of partitions k grows, there is a higher probability
that vertices belonging to a motif match are assigned across mul-
tiple partitions. This results in an increase of absolute ipt when
executing Q over a Loom partitioning. However, increasing k
actually increases the probability that any two vertices which
share an edge are split between partitions, thus reducing the qual-
ity of Hash, LDG and Fennel partitionings as well. As a result,
the difference in relative ipt is largely consistent between all 4
systems.

On the other hand, neither Fig. 7, nor Fig. 8, present the run-
time costs of producing a partitioning. Table 2 presents how long
(in ms) each partitioner takes to partition 10k edges. Whilst all 3
algorithms are capable of partitioning many 10s of thousands of
edges per second, we do find that Loom is slower than LDG and
Fennel by an average factor of 2-3. This is likely due to the more
complex map-lookup and pattern-matching logic performed by
Loom, or a nascent implementation. The runtime performance
of Loom varies depending on the query workload Q used to gen-
erate the TPSTry++ (Sec. 2), therefore the performance figures
presented in Table 2 are averaged across many different Q . The
minimum slowdown factor observed between Loom and Fennel
was 1.5, the maximum 7.1. Note that popular non-streaming par-
titioner METIS [14] is around 13 times slower than Fennel for
large graphs [31].

We contend that this performance difference is unlikely to be
an issue in an online setting for two reasons. Firstly, most produc-
tion databases do not support more than around 10k transactions
per second (TPS) [16]. Secondly, it is considered exceptional for
even applications such as twitter to experience >30k-40k TPS 14.
Meanwhile, the lowest partitioning rate exhibited by Loom in
Table 2 is equivalent to ~ 42k edges per second, the highest 72k.

Note that Figures 7 and 8 do not present the relative ipt figures
for the LUBM-4000 dataset. This is because measuring relative ipt
involves reading a partitioned graph into memory, which is be-
yond the constraints of our present experimental setup. However,
we include the LUBM-4000 dataset in Table 2 to demonstrate that,
as a streaming system, Loom is capable of partitioning large scale
graphs. Also note that none of the figures present partitioning
imbalance as this is broadly similar between all approaches and

14Tweets per second in 2013: http://bit.ly/2hQH5JJ

Figure 9: ipt (y-axis) when executing Q over Loom parti-
tionings with multiple window sizes t (x-axis)

datasets 15, with LDG varying between 1%−3%, Loom and Fennel
between 7% and their maximum imbalance of 10% (Sec. 4).

5.3 Effect of stream order and window size
Fig. 7 indicates that Loom is sensitive to the ordering of its given
graph stream. In fact, Sub-figure 7(a) shows Loom achieve a
smaller reduction in ipt over Fennel and LDG, than in 7(b) and
7(c). Specifically Loom achieves a 42% greater reduction in relative
ipt than Fennel given a breadth-first stream of the MusicBrainz
graph, but only a 26% when the stream is ordered randomly,
despite Fennel and LDG also being sensitive to stream order-
ing [30, 31]. This implies that Loom is particularly sensitive to
random orderings: edges which are close to one another in the
graph may not be close in the graph stream, resulting in Loom
detecting fewer motif matching subgraphs in its stream window.

Intuitively, this sensitivity can be ameliorated by increasing
the size of Loom’s window, as shown in Fig. 9 As Loom’s window
grows, so does the probability that clusters of motif matching
subgraphs will occur within it. This allows Loom’s equal oppor-
tunism heuristic to make the best possible allocation decisions
for the subgraph’s constituent vertices. Indeed, the number of
ipt suffered by Loom partitionings improves significantly, by as
much as 47%, as the window size grows from 100 to 10k. However,
increasing the window size past 10k clearly has little effect on
ipt suffered to execute Q if your graph stream is ordered. The
exact impact of increasing Loom’s window size depends upon
the degree distribution of the graph being partitioned. However,
to gain an intuition consider the naive case of a graph with a uni-
form average vertex degree of 8, along with a TPSTry++ whose
largest motif contains 4 edges. In this case, a breadth-first traver-
sal of 84 edges from a vertex a (i.e. window size t ≈ 4k) is highly
likely to include all the motif matches which contain a. Regard-
less, Fig. 9 might seem to suggest that Loom should run with the
largest window size possible. However, besides the additional
computational cost of detecting more motif matches, remember
that Loom’s window constitutes a temporary partition (Sec. 3). If
there exist many edges between other partitions and Ptemp , then
this may itself be a source of ipt and poor query performance.

15Except Hash, which is balanced.
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6 CONCLUSIONS AND FUTUREWORK
In this paper, we have presented Loom: a practical system for
producing k-way partitionings of online, dynamic graphs, which
are optimised for a given workload of pattern matching queries
Q . Our experiments indicate that Loom significantly reduces the
number of inter-partition traversals (ipt ) required when execut-
ing Q over its partitionings, relative to state of the art (workload
agnostic) streaming partitioners.

There are several ways in which we intend to expand our
current work on Loom. In particular, as a workload sensitive
technique, Loom generates partitionings which are vulnerable
to workload change over time. In order to address this we must
integrate Loom with an existing, workload sensitive, graph re-
partitioner [8, 10] or consider some form of restreaming ap-
proach [11]. In addition to the query workloads already con-
sidered, it would be necessary to evaluate such an integrated
approach using a dynamic, changing query workload.

Furthermore, due to our approaches reliance upon graph pat-
tern matching in a single streamwindow, Loom is single threaded.
The ability to have multiple instances of the Loom algorithm as-
sign motif matches to the same graph partitioning would doubt-
less increase system scalability, and is therefore an important
focus of ongoing research.
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ABSTRACT
The efficient management of metric data is extremely important
in many challenging applications as they occur e.g. in the life
sciences. Here, data typically cannot be represented in a vec-
tor space. Instead, a distance function only allows comparing
individual elements with each other to support distance queries.
As high-dimensional data suffers strongly from the curse of di-
mensionality, distance-based techniques also allow for better
handling of such data. This has already led to the development of
a plethora of metric indexing and processing techniques. So far,
the important problem of cardinality estimation on metric data
has not been addressed in the literature. Standard vector-based
techniques like histograms require an expensive and error-prone
embedding. Thus, random sampling seems to be the best choice
for selectivity estimation so far, but errors are very high for mod-
erately small queries. In this paper, we present a native cardinality
estimation technique for distance queries on metric data based
on kernel-density estimation. The basic idea is to apply kernels to
the one-dimensional distance function among metric objects and
to use novel global and local bandwidth optimization methods.
Our results on real-world data sets show the clear advantage of
our method in comparison to its competitors.

1 INTRODUCTION
Statistics about the distribution of data in a database are used for
two very important aspects of data management: query optimiza-
tion and data exploration. In query optimization, they allow esti-
mating the costs of operations, choosing appropriate algorithms,
and computing the order of joins. For very large databases, where
computations take a very long time, small in-memory statistics
can deliver approximate answers. Those are often sufficient to
determine whether it is worth further investigating the data in a
particular direction.

While one- and multidimensional vector data is very common
in traditional applications, there are many domains for which
data is in a metric space only. This means data is not describable
by a d-dimensional vector, instead there exists only a metric mea-
suring distances between pairs of objects. Examples include the
life sciences, where e.g. proteins are usually described by their
geometrical structure or at least a sequence of amino acids. Mul-
timedia data comes in different datatypes such as JPEG or MPEG
which are also not appropriate for a relational representation.

In such domains there is a severe lack of native statistical sup-
port. Thus, a standard approach is to transform metric data into
a multidimensional vector space and to apply one of the standard
estimation techniques [18]. There are two serious opposing ef-
fects. First, a metric embedding causes in general a considerable
information loss. In order to alleviate this, the number of dimen-
sions needs to be sufficiently high. Second, the well-known curse
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of dimensionality is already noticeable for a moderate number
of dimensions. Thus, statistics provide only accurate results for
low-dimensional vector spaces [1].

In this paper, we present the first native method for cardinality
estimation of distance queries in metric spaces. The basic idea
is to consider the distances of objects in a metric space and to
use kernel techniques to estimate the underlying distance distri-
bution. By tuning the bandwidth of the kernels and the kernel
function, we obtain a robust estimator for the cardinality of dis-
tance queries in metric spaces. Moreover, our approach is also
beneficial for high-dimensional vector spaces by treating them as
metric spaces, thus considering only the distance among objects,
to overcome the shortcomings of standard vectorial statistics.

The main contributions of this paper are:
• We show the deficiencies of traditional cardinality estima-
tion techniques on metric data sets.
• We present the first effective and efficient method for
cardinality estimation in metric space.
• Extensive experiments on real-world data show the valid-
ity of our approach.

The rest of the paper is structured as follows. Section 2 de-
scribes several applications for cardinality estimation in metric
spaces, formally defines the problem, and emphasizes the dif-
ferences of vector and metric data. Section 3 presents related
work in the areas of cardinality estimation in general, techniques
for embedding metric data into vector space and kernel-based
techniques for cardinality estimation. Section 4 presents our
distance-based kernel estimator approach in metric space. Sec-
tion 5 describes our methods for global and local bandwidth
optimization. Section 6 presents our experimental findings. Fi-
nally, Section 7 concludes the paper.

2 PRELIMINARIES
We first give a formal description of the problem of cardinality
estimation on metric data. Then, we discuss several applications
that greatly benefit from a suitable solution to this problem. Fi-
nally, we discuss the fundamental differences between vector
and metric data that lead to the ineffectiveness of established
methods.

2.1 Problem Specification
Let X be a set of N objects {x1, . . . ,xN } ⊆ X. These objects are
all of a certain type, in particular a type which can differ from
Rn . Moreover a distance function distX : X × X → R+ is given
which fulfills the three properties of a metric, namely

(a) identity of indiscernibles: distX(x ,y) = 0⇔ x = y,
(b) symmetry: distX(x ,y) = distX(y,x) and
(c) triangle inequality: distX(x , z) ≤ distX(x ,y)+distX(y, z),

with x ,y, z ∈ X. We will refer to the combination of X and distX
as metric data. In mathematics the pair (X,distX) is called metric
space.

Cardinality estimation for metric data can be formalized as
follows: Given a distance queryQ = (xQ , rQ ), with object xQ ∈ X
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and distance rQ ∈ R+, efficiently approximate the cardinality of
the set {x ∈ X | distX(xQ ,x) ≤ rQ }. We will refer to the distance
rQ as query radius. The true cardinality is denoted by c(Q) and
the estimated cardinality by c̃(Q). The goal is to minimize the
error of the estimation, but also the construction costs and the
size, as well as the query time of the estimator. Note that the
actual cardinality can, of course, be calculated by computing the
distance to every other item in the data set. This requires a linear
number of distance calculations. Each of them can be very costly
as, e.g., in video dissimilarity. Hence, we want to minimize the
computational costs induced by an estimator.

2.2 Applications
Cardinality estimation in metric spaces has many applications.
Among others we want to mention the domain of Machine Learn-
ing and Data Mining, where algorithms are usually based on a
distance measure. The most prominent example is the so-called
k-nearest neighbor (kNN) classifier which can be used to classify
any kind of data, if it is endowed with a distance measure.

The basic idea is to retrieve thek objects from a database which
have the smallest distances to a certain query object. Assuming
that the objects within the database carry a certain class label (e.g.
customers of an insurance with label churn or no churn), the query
is classified with the majority label from the set of the k nearest
neighbors. kNN classifiers are known to be inefficient since for
each run of such an algorithm a complete scan of the data set
is required. To accelerate this algorithm typically metric index
structures [28] are employed that allow the efficient retrieval of
elements within a given distance of a query object. However, it is
hard to specify the radius for the corresponding queries since the
kNN classifier requires rather the set of k nearest neighbors than
a certain set of neighbors exhibiting a certain maximal distance
to the query object. For calculating the minimum radius, leading
to a retrieval of k results, cardinality estimation can be used. For
example, [14] make use of cardinality estimation to assign objects
to different Locality Sensitive Hashing tables of different radii.
This improves kNN queries on data sets where the distances of
the k nearest neighbours of items vary greatly over the data set.
A single LSH table could not sufficiently answer such queries.

Another example is the estimation of densities, e.g. for Bayes
Classifiers, where the density around an element x is propor-
tional to the amount of elements in a database that are in a small
vicinity to x . This vicinity is typically specified by a certain small
distance. Obviously, a reliable cardinality estimation approach
would increase the efficiency of such classifiers enormously.

If a query is expressed as a conjunction of multiple proximity
predicates, each of them with a different distance function, car-
dinality estimation is useful for computing an efficient order of
their computation. In an optimal execution plan queries should
be applied in an order that leads to quickly decreasing result
sets. Cardinality estimation can be used to answer exactly this
question and to find an order in which the different distance
measures are to be applied. Applications in which such scenarios
occur are, e.g., pharmaceutical chemistry, where different dis-
tance measures covering certain requirements are applied onto
protein and/or ligand databases to get the final result in form
of a very small set of therapeutically effective drugs. In general,
this is a metric scenario, since proteins cannot be described on
the structural level by vectors without a considerable loss of
information.

2.3 Vector Data vs. Metric Data
In order to emphasize the fundamental differences of metric
data to vector data that lead to the in-applicability of established
methods, we now briefly review important properties of a vector
space. We limit our discussion to vector spaces over the real
numbers. Here, ad-dimensional vector space consists of elements
xxx = (x1, ...,xd )with a real value xi ∈ R called coordinate for each
dimension. Individual elements can be added to each other and
multiplied with scalar values v ∈ R. This, e.g., allows to compute
the mean of multiple elements which is not possible in a metric
space. Thus one of the most basic data summarization operators
is not available in a metric space. Furthermore, the coordinates
of the vector allow determining the location of an element with
respect to other elements. Such a direction cannot be determined
in a metric space.

A set of vectors can be ordered globally by component-wise
sorting or by a space-filling curve [27] that better preserves the
proximity of subsequent elements. In contrast, elements in a
metric space can only be ordered based on the distance to a
single reference object. Furthermore, it is straight-forward to
divide a vector space into a finite number of distinct subsets by
incrementally subdividing the space along the dimensions. In
a metric space such subsets have to be defined using a center
object and a radius. In general, such partitions will overlap if the
complete data space should be covered.

A vector space has ameasure that allows calculating the vol-
ume of subspaces and their intersections. In particular, this is the
foundation for the definition of a density and a distribution of a
data set. The notions of volume, density and distribution are not
available in a metric space.

Finally, in a vector space, the costs of distance calculations
between elements is linear in the number of dimension if an
Lp norm (typically p = 2 for Euclidean distance) is used. In
a metric space a distance function can be arbitrarily complex,
such as e.g. the edit distance between two strings which has a
quadratic runtime. Furthermore, we can calculate a bounding
box of a vector data set in linear time by finding the minimum
and maximum value for each dimension. In contrast, finding the
maximum distance between elements in a metric space requires a
quadratic number of distance computations. In summary, metric
data lacks most of the tools available in traditional scenarios
for cardinality estimation. This makes most established methods
infeasible as we discuss in the Section 3.

However, as discussed previously, metric data appears in many
different applications naturally. Furthermore, it supports distance
queries, which are also highly relevant for vector data [4]. As
our experiments will show later, using distance-based techniques
helps lowering the impact of the curse of dimensionality.

3 RELATEDWORK
The most basic idea for estimating the size of a query result is
to perform the query on a sample of the data and scale up the
resulting cardinality by the sample’s fraction of the total data
size. Using Reservoir Sampling [32], a random data selection can
be computed in linear time. We can apply this method also on
metric data. However, small sample sizes result in underestimates
often equal to zero because metric spaces are sparse.

Histograms are the most popular technique for cardinality
estimation in database systems [18]. They divide a domain into
multiple buckets and store the number of contained elements.
When estimating the cardinality within a given query range, they
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approximate the actual cardinality usually by assuming a uniform
distribution within the buckets. Computing optimal histograms
that minimize the error induced by this assumption is NP-hard
[25]. The most prominent example of an efficient heuristic is
MinSkew [2]. It recursively subdivides the space by splitting
the most skewed bucket until the desired number of buckets is
reached. Other techniques like rkHist [11] and R-V histogram [1]
start from the leaves of a spatial index structure and merge them
together for limiting the amount of buckets.

The introduced histograms are, however, not applicable for
metric data. There is no straight-forward criterion for subdivid-
ing a metric space into a finite amount of disjoint buckets. The
missing notion of uniform distribution within a bucket and the
unavailability of a volume measure make the incorporation of
such buckets into a cardinality estimate impossible. It is possi-
ble to transform metric data into vector data in order to build a
spatial histogram, though. We can then extract the cardinality
estimate for a distance query by calculating the intersection of
the query (in form of a hyper-sphere) with the histogram buckets.
However, such a transformation into a vector space is costly and
introduces an error in form of distance distortions.

Compression techniques like wavelets and cosine transfor-
mations are also suitable for cardinality estimation [24]. Both
techniques are applicable to multi-dimensional vector data and
are shown to provide accurate results. They approximate the
actual data distribution by means of a basis function and several
coefficients, thus drastically reducing the amount of data. The
cardinality estimate is computed as a cumulative joint distribu-
tion of the individual dimensions of the data set. However, in a
metric space we are not able to use these techniques as the data
has no such dimensions and there is no notion of a distribution.

Another method for approximate query processing is Local
Sensitive Hashing (LSH). LSH performs very well on data from a
high-dimensional vector space. It is for example used for approx-
imate similarity search [15] and thus related to distance queries
in metric spaces. There has been work in cardinality estimation
of similarity joins using LSH [21]. Also, multiple LSH indexes
with different radii can be used for cardinality estimation by
counting collisions of hash buckets [14]. However, LSH requires
a similarity-preserving hash function which does not universally
exist for metric data.

A more recent approach uses Machine Learning [4] for car-
dinality estimation. It is, to the best of our knowledge, the only
method supporting distance queries. The query-driven approach
learns to differentiate several prototype queries and predicts the
cardinality of unseen queries by assignment to a prototype and
subsequent interpolation using regression. The optimization of
the query prototypes is performed via gradient descent where
the prototype query is moved across the data space. This manip-
ulation of a query object is not possible in a metric space. Thus,
like the other approaches, this approach is infeasible for metric
data, unless it is mapped into a vector space first.

A distance preserving mapping of data from a metric space to
a vector space is called embedding. The goal is to find for each
xi ∈ X an embedding yi ∈ Rd , such that the induced stress [19]
on the distances is minimized. This stress measure incorporates
the deviations of the resulting distances among objects with
respect to the original distances.

There are different approaches available to embed metric data
into a vector space [3]. One prominent example is Multidimen-
sional scaling (MDS) [20]. It tries to preserve the pairwise dis-
tances in vector space by using such a stress function [19] and
minimizing it subsequently. This minimization can be performed
by eigendecomposition or gradient descent. However, both meth-
ods are expensive to compute, and thus, not suitable for very large
data sets. Landmark MDS [9] was introduced as an alternative to
MDS for big data scenarios. It uses samples of the data called land-
marks and applies MDS on them. The remaining points are then
embedded based on the distances to the l landmark elements.

Kernel estimators [26] are a competitor of histograms which
exhibit a fast convergence for 1-dimensional data [7] and have
been generalized to multi-dimensional data [16]. Note, that both
approaches do not support distance queries on metric data. Here,
samples distribute their weight using a kernel function K , e.g.
Epanechnikov [12] or Gaussian. This weight corresponds to the
probability of data points existing in the vicinity of the sample.
One approximates the underlying probability density function f̂
of a data set at the evaluation point x by using a set of samples S
and summing up over all samples: f̂ (x) = 1

|S | ·h
∑
s ∈S K(

x−s
h ) =

1
|S |

∑
s ∈S Kh (x − s). Here, h is the smoothing-factor called band-

width. The cardinality estimate results from integrating the ker-
nel density function within a given rectangle query and scaling
the result up. In a d-dimensional vector space typically product
kernels are used where the density function is integrated for
each dimension separately. This is only feasible for rectangular
queries and not for distance queries. Hence, the application of
existing kernel-density estimators for distance queries on met-
ric data embedded into a vector space is not straight-forward.
Approximating the distance query as a hyper-sphere introduces
an error that is also influenced by the curse of dimensionality.
Our approach makes use of kernels, but we avoid the curse of
dimensionality by using the one-dimensional distance function.

The choice of the actual kernel function is considered to be
of low impact according to the literature [8]. Nevertheless, we
consider different kernel functions in the experiment section of
this paper. However, the selection of the kernel bandwidth h has
a much more crucial impact on the resulting estimator quality.

There are two general approaches for the bandwidth selection:
global and locally adaptive methods [31]. Using a global (fixed)
bandwidth means that all samples and evaluation points use the
same bandwidth. One method of obtaining this bandwidth is by
minimizing the mean integrated squared error (MISE) [30]. In
contrast to traditional applications, the underlying distribution
that shall be fitted by the kernel estimator is known in cardinality
estimation. It is given by the data itself. This enables other opti-
mization techniques than those used in the statistics literature.
Recent work [17] used a gradient descent based approach to find
the optimal bandwidth for a given set of training queries. They
fit a global bandwidth for each dimension of the vector space.
However, a global bandwidth is usually not optimal, as the result-
ing estimator oversmoothes the distribution in dense regions and
undersmoothes in sparse regions of the data set. While the au-
thors of [17] were able to exploit the different distributions in the
individual dimensions, we found the error of a global bandwidth
for different query sizes in our metric scenario to be significantly
high. Furthermore, a gradient descent based approach to band-
width estimation turned out to get stuck in local optima of poor
quality in our experiments. We thus also investigate locally adap-
tive kernel estimators that vary the bandwidth either based on
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Figure 1: The incorporation of a kernel-sample s into the
cardinality estimation for a query Q = (xQ , rQ ). The omit-
ted y-axis corresponds to the probability density.

Algorithm 1: Generic Kernel Estimation Algorithm
Input :Kernel function Kh : R→ R+, centered at 0

Optimized bandwidths B : X × X × R+ → R+
Samples S ⊂ X ⊆ X
Total data set size |X |
Distance function distX : X × X → R+
Query Q = (xQ , rQ ) with object and radius

Output :Estimated cardinality c̃(Q)
1 total ← 0.0;
2 foreach s ∈ S do
3 h ← B(s,xQ , rQ );
4 s̃ ← distX(xQ , s);
5 contribution ←

∫ rQ
0 Kh (x − s̃) dx ;

6 total ← total + contribution;
7 end
8 probability ← total/|S |;
9 return ⌊probability · |X |⌋;

the sample point or the evaluation point. The latter is also called
balloon estimator [30].

Other work in kernel-based techniques for cardinality estima-
tion in vector spaces focuses also on improving the efficiency of
the estimation process. One approach is reducing the number of
samples to a so-called coreset [33] that maximizes both quality
and efficiency of the estimator. In the scope of this paper we do
not yet consider such improvements but focus on demonstrating
the general applicability of kernel estimators to this new scenario
of metric data.

4 DISTANCE-BASED KERNEL ESTIMATORS
Kernel estimators allow us to overcome a fundamental problem
of using a sample directly for estimating the cardinality of a
query result. Namely that the information is concentrated at a
sample point. In contrast to a histogram we also get a continuous
distribution. In a metric space it is, however, not straight-forward
how we can apply a kernel function on a sample point, as there
are no dimensions in which they could gradually distribute the
mass of a sample. The central idea of our proposed technique is
therefore to apply the kernel function on the distance to a sample
point in order to incorporate the probability of elements in the
vicinity fractionally.

In the following we show how to incorporate a sample point
into the cardinality estimate. Here, the query Q = (xQ , rQ ) with
object xQ and radius rQ is located at distance s̃ B distX(xQ , s)
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Figure 2: Influence of the bandwidth on the estimation er-
ror on the Moby data set (cf. Section 6) for a fixed query
size. The left-hand side shows the median of the relative
errors (Equation (2)). The right-hand side shows the sum
of squared errors (measureMLS ).

from the sample point s . As depicted in Figure 1, we introduce an
axis expressing the distance to xQ . For that wemap xQ to x̃Q B 0,
the origin of the axis. The sample point s is then mapped onto s̃ .
The kernel function Kh is then centered at point s̃ by subtracting
s̃ from its argument. We take the area under the curve of the
kernel function between x̃Q and rQ as the contribution of this
sample to the cardinality estimate.

Algorithm 1 shows the full estimation process. For each sam-
ple point we calculate the contribution and compute the sum.
For this we first compute the optimized bandwidth by calling the
function B for the given sample point and query with object and
radius. In case of a global bandwidth, this function ignores the
parameters and always returns the same bandwidth. In case of a
locally adaptive approach, it either uses the sample or evaluation
point (query) to obtain a specific bandwidth. We detail algorithms
for computing the bandwidth in the next section. Given the opti-
mized bandwidth, the distance between sample and query object,
and the radius, we calculate the contribution of the sample to the
running total . After all samples are processed, the probability
is then the total divided by the number of samples, see line 8.
Finally, we scale the resulting probability up by the total data set
size and return this value as the cardinality estimate.

The general workflow of our technique consists of (1) collect-
ing a set S of samples, (2) determining the optimal bandwidths B
and (3) applying Algorithm 1 to estimate the cardinality of new
queries. In the following we present the process of optimizing
the bandwidths.

5 BANDWIDTH OPTIMIZATION
It is well-known [31] that the bandwidth of a kernel function
has a crucial impact on the resulting cardinality estimate. A too
small bandwidth leads to undersmoothing, a too large bandwidth
to oversmoothing. The two edge cases are an infinitely small
bandwidth that converges to sampling and an infinitely large
bandwidth that converges to a uniform distribution. We thus
take particular care of finding an optimal value. We distinguish
between a global bandwidth for all samples and queries, and
locally adaptive methods where the bandwidth is individually
fitted to accommodate for sparser and denser regions of the data
space.
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5.1 Global
The computation of the optimal global bandwidth for a kernel
function and a given data set is an optimization problem. We
first formalize this problem and then present our optimization
strategy.

5.1.1 Optimization Problem. We want to find a bandwidth h
that minimizes the error of estimates for future queries on the
given data set. As we do not know the future queries, we extract
a set of training queries Q from the data set and minimize the
error for these queries. Afterwards, we validate the performance
against an independent set of test queries that we extracted from
the data set beforehand. We formally define the optimization
problem for a fixed kernel function as

arg min
h

ErrorX (h,Q) , (1)

where h is the bandwidth,X is the data set and ErrorX a function
that computes the error of the queries Q on X for the given
bandwidth h.

We define an appropriate error measure for Equation (1) in
two steps. First, we define an auxiliary function

errorX (h,Q) B
c̃h (Q) − c(Q)

c(Q)
, (2)

where c̃h (Q) is the estimated cardinality using bandwidth h and
c(Q) the actual cardinality of queryQ on data setX . This measure
differs slightly from the common relative error metric, as we do
not take the absolute value in the numerator. This allows us to
assess over- and underestimates separately. It returns values in
the interval [−1,∞]. Two values are of particular interest: −1
indicates that the estimator returns simply a result of zero even
though there are results contained in the query. On the other
hand, an error of zero indicates a perfect result: the estimated
cardinality is equal to the true number of elements the query
returns. There is no upper bound for our measure. However, one
should notice, that a value of 1 means already an overestimation
by a factor of 2.

To compute the error of a set of queries Q we combine the
errors errorX (Q) of the individual queriesQ ∈ Q using ameasure
M : R |Q | → R+. M computes for a set of errors E a single value
that is then subject to minimization. Two examples for M are the
deviation of the median error from zero, and the sum of squared
errors (LS for least squares):

Mmedian (E) B | median(E) |

MLS (E) B
∑
e ∈E

e2 .

For M ∈ {Mmedian ,MLS }, the final optimization problem is
defined as

arg min
h

ErrorX (h,Q) = arg min
h

M({errorX (h,Q) | Q ∈ Q})

(3)

5.1.2 Optimization Strategy. The minimization of the error
function (3) requires an efficient and robust optimization method.
Figure 2 shows the relationship between bandwidth and error
for an example data set. On the left-hand side of the plot we ob-
serve that starting from an infinitely small bandwidth results first
underestimate the true cardinality. A higher bandwidth reduces
the error to a certain degree. At some point the bandwidth over-
smoothes the distribution, leading to very high overestimations.
The right-hand side shows the mean squared errors. While the
general trend of the error function is clearly visible, we can also

see that the results are noisy. This poses a difficult to find global
optimum as the multitude of local optima has to be overcome.
A method that has shown to be very effective in practice are
Evolution Strategies.

An Evolution Strategy (ES) is a global numeric optimization
approach inspired by the Darwinian theory of natural selection.
We implemented the approach of Beyer and Schwefel [6]. Here,
µ parents produce another set of λ offspring. From the thus ob-
tained set of µ + λ individuals the best µ individuals are selected
for the next generation based on a fitness function. An offspring
is produced using a recombination of p parents followed by mu-
tation. The evolutionary process is repeated until either a fitness
threshold, a number of stall iterations without improvement, or
a total number of iterations is reached.

In our case each individual represents a bandwidth h. For cal-
culating the fitness, we use the error function from Equation (3)
which we want to minimize. We tried different parametrizations
and found the following to provide a good compromise between
runtime and estimation errors: µ = 100, λ = 300,p = 2, recombi-
nation via mean and mutation via a Gaussian distribution. We
stop the optimization process after either 25 stall iterations or a
given total amount of 1000 iterations is reached.

As the fitness function has no side-effects and only depends on
the parameterhwe can easily parallelize the evolutionary process
by computing the score for different individuals on different
threads. Because the evaluation of the fitness function is the
most expensive part of the computation we can effectively scale
up the throughput linearly in the amount of CPU cores.

We also exploit the fact that only a limited number of distinct
distance computations are required. In the fitness evaluation for
a given bandwidth h we need to compute a new estimate for each
training query based on h. However, the distances of the query
objects to the samples that give the interval for the integral in line
5 of Algorithm 1 remain constant. In our implementation we thus
precompute these distances and store them in a matrix D. In the
iterations of the optimization process we then avoid redundant
recomputations by performing simple look-up operations. The
matrix D is of size |S | · |O |, where S is the set of samples and
O B {xQ | (xQ , rQ ) ∈ Q} is the set of distinct training query
objects. D is discarded after the optimization process is finished.
It thus only influences the construction-time space complexity
of our algorithm. Reasonable numbers are 102 distinct query
objects and 104 samples as used in our experiments. This means
D typically requires only a few megabytes of memory.

5.2 Locally Adaptive
Afixed global bandwidth is usually insufficient for approximating
the cardinality of small and large queries in dense aswell as sparse
regions. One possibility is to extend the bandwidth optimization
process from the previous subsection to individual bandwidths
per sample point. For the following reasons we refrain from this
direction and rather focus on the balloon estimator [30].

In the Evolution Strategy we can extend the configuration to
incorporate individual bandwidths. However, this leads to a very
high-dimensional optimization problem as we potentially need to
optimize hundreds or thousands of bandwidths simultaneously.
Such an optimization may take very long to converge or get stuck
in a local optimum of overall poor quality.

Another approach is to use coordinate search, where we op-
timize only one bandwidth at a time, keeping the others fixed.
Here, we would initialize the N individual bandwidths hi e.g.
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Figure 3: A general overview of the locally adaptive estimator construction and execution.

randomly and then optimize them one at a time in the order
i = 1, . . . ,N ,N − 1, . . . 1. We repeat this until no significant im-
provement is made in one full sweep. This approach, however, is
also prohibitively expensive to compute.

We thus limit our investigation to the balloon estimator de-
fined by the kth-nearest neighbor estimator [23]. It chooses the
bandwidth on basis of the evaluation point (query) and the sur-
rounding sample points. In contrast to the traditional balloon
estimator, we again use a set of training queries in the optimiza-
tion process. Given a query Q = (xQ , rQ ) and the samples S we
choose the bandwidth h as follows:

h = B(_,xQ , rQ ) ∝ distance(xQ , samplek (xQ )) , (4)

where samplek (xQ ) ∈ S is the kth-nearest neighbor of the query
object xQ in S , and B the function returning the optimized band-
width as introduced in Algorithm 1. We thus ignore the first
parameter of B and apply the same bandwidth to all samples in
the final cardinality estimation of the query Q . Obviously, the
distance to the kth-nearest neighbor is smaller in denser regions
than it is in sparser regions. This leads to the desired adaptive
bandwidth.

Using the distance to the kth-nearest neighbor directly, how-
ever, turns out to be insufficient. First of all, we need a linear
scaling factor to transform the distance to a bandwidth. Fur-
thermore, we incorporate the query radius into the bandwidth
optimization as well. As our experiments will show, the optimal
bandwidth varies for different query sizes (selectivity). However,
we only know the radius at query time. The result size is precisely
the value we want to estimate.

We can, however, distinguish differently sized queries by the
relationship between the query’s radius and the distance to the
kth-nearest neighbor sample. Here, the latter is an indicator of
the density around the query object. We denote this relationship
as

ρ(Q) =
rQ

distX(xQ , samplek (Q))
. (5)

It is an indicator for the cardinality of the query. If we fix the query
radius, ρ(Q) gets larger the smaller the distance to the kth-nearest
neighbor gets. This matches our intuition as this indicates the
data space becoming more dense. On the other hand, if we fix the
density in form of the denominator, a larger radius corresponds
to a larger ρ value, indicating a larger cardinality.

For our extended balloon estimator called BalloonEstimator+

(B+ for short) we thus optimize the local bandwidth for a given
query Q depending on ρ(Q). Here, we again make use of the
methods presented in the previous subsection. The optimization
process consists of the following steps which are also presented
in Figure 3:

1. Generate a set Q of training queries based on a query
specification (e.g. m query objects with a set of target
selectivities). This involves calculating for a given query
object xQ a radius rQ and the true cardinality that fulfill
the query specification.

2. Divide Q into k disjoint partitions Pi ⊆ Q such that the
intra-partition variance Var ({ρ(Q) | Q ∈ Pi }) is mini-
mized.

3. For each partition Pi compute the optimal bandwidth hPi
that minimizes ErrorX (hPi , Pi ).

At query time we assign the query to a partition and use the
optimized bandwidth.

In order to obtain the k partitions required in Step 2 we use
hierarchical clustering with complete linkage based on ρ. We
extract the k partitions from the dendrogram. For each partition
we then compute the locally optimal bandwidth by means of an
ES. Each partition is then identified by the mean ρ-value over all
queries in the partition: ρ(Pi ) = 1

|Pi |
∑
Q ∈Pi ρ(Q) . Given a new

query Q we first assign it to the nearest partition P∗ by

P∗ = arg min
Pi

|ρ(Pi ) − ρ(Q)| .

We then use hP ∗ as the bandwidth for the kernel functions when
estimating the cardinality of query Q .

The depicted construction process of the B+ estimator requires
several distance computations and incurs some overhead in stor-
age. For calculating the k-nearest neighbor when determining
the ρ-value of the training queries we use the same matrix D as
for the actual bandwidth optimization. Storing the B+ estimator
requires storing for each cluster the mean ρ-value and the opti-
mized bandwidth. This slightly reduces the amount of samples
that can be stored with a given amount of space.

When estimating the cardinality for a given query Q , we in-
duce some overhead with respect to a kernel estimator with a
global bandwidth. Namely, we need to compute ρ(Q) which in-
cludes finding the kth-nearest neighbor sample. However, we
calculate the distances of all samples to the query object anyway
when calculating the estimation after the bandwidth has been de-
termined. Thus, the additional overhead of the B+ estimator only
consists of finding the k-smallest element in the list of distances.
We can efficiently determine this element while computing the
distances using a bounded max-heap. Here, we always store the
k smallest elements and larger elements are discarded. At the
end the k-smallest distance is at the top of the heap. We then in-
corporate this distance in the calculation of ρ(Q) and retrieve the
bandwidth of the nearest partition. The remaining computations
are identical to a kernel estimator with a global bandwidth.
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6 EXPERIMENTAL EVALUATION
This section presents the results of our experimental study. First,
we present the experiment setting, data sets and investigated
methods. Then, we present the results of the experiments.

6.1 Setting
We implemented the kernel estimators and baseline algorithms in
Java using embedding techniques and histograms from the XXL
library [10]. All experiments were run on an Intel Core i7-4771
CPU and 16GB of RAM. We consider four real-world data sets
which, together with our generated queries, are on our website1.
Moby Word List (Moby) contains word lists in different lan-
guages2. We used the German word list consisting of about
160 000 words and the Levenshtein distance [22] as a metric.
Protein Binding Sites (PBS) are taken from CavBase [29], a
database of protein binding sites (PBS) from experimentally de-
termined protein structures. In CavBase, currently 248 686 PBS
are stored. Each PBS is described by a set of points in the 3-
dimensional Euclidean space that model the shape of the protein.
In addition to the coordinate, each point also carries a label spec-
ifying the physico-chemical property of that point. To compare
pairs of PBS we use the measure presented in [13] which fulfills
all metric properties.
Rea16 is a 16-dimensional vector-data set representing Fourier
coefficients from CAD data. It contains 1.3 million points and is
often used for benchmarking high-dimensional queries [5]. We
use the Euclidean distance measure as metric.
Wikipedia (Wiki) is a data set consisting of 4.5 million Wiki-
pedia articles represented by the article name and a short abstract.
We used the data provided by the DBpedia project3. We removed
articles that are only a disambiguation or a list of links to other
articles. For easier syntactic comparisonswe also removed all non-
ASCII characters. The distance measure for this data set is based
on the Jaccard coefficient of character shingles4 of length k = 3.
The distance between two articles is computed by dist(a,b) =

1 − |sk (a)∩sk (b) |
|sk (a)∪sk (b) |

, where a and b are articles and s is a function
that computes the set of k-shingles of a short abstract.

We generate our test queries uniformly at random from the
data set at hand. For this, we select 100 items as query objects and
remove them from the data set. In particular we remove these
items from the data set before optimizing the kernel bandwidths
on a different set of training queries. We then choose the min-
imum radius around these items such that at least 0.01%, 0.1%
and 1% of the data set are contained in the query. This radius
varies depending on the density at the particular query object.
The training queries are generated in the same fashion as the test
queries. Note that it is not always possible to create a query from
a data object that contains exactly the desired amount of data.
Especially for discrete distance measures, many objects share the
same distance to a reference object. Also note that by generating
queries this way, they follow the distribution of the data. This
means that it is more likely for a query to be placed in a more
dense region of the data space. However, this is no undesired
effect, since this approach intuitively matches real-world query
patterns [17]. In contrast to vector spaces it is not possible to
uniformly sample queries from a domain for metric data (e.g. of

1http://uni-marburg.de/qiFqp
2http://icon.shef.ac.uk/Moby
3http://wiki.dbpedia.org/services-resources/documentation/datasets#
ShortAbstracts
4A k -shingle is a sequence of k characters

newspaper articles). We are thus forced to limit our investigation
to queries drawn uniformly from the data items.

In our experiments we compare the estimated cardinality for
a given query with the actual cardinality – the closer both values,
the better the estimator. We use our error measure from Equation
(2) again. Recall that we use this slight variation of the common
relative error to capture under- and overestimations individually.

For measuring the build time of the individual estimators we
use wall-clock time. Note that we parallelized the Evolution Strat-
egy and used all 8 threads of the machine. For our kernel-based
approaches we measure only the time for creating the estima-
tor and not for generating the training queries as, in practice,
they can e.g. be obtained from historic queries or the current
workload.

In addition to our kernel estimators we consider spatial his-
tograms as a baseline method for cardinality estimation. For
metric data, the spatial histograms require an embedding into
a vector space. We use the following popular measure to assess
the quality of the resulting embeddings:

STRESS1 =

(∑
i<j (distX(xi ,x j ) − distE (yi ,yj ))

2∑
i<j distX(xi ,x j )

2

) 1
2

, (6)

where distE is the Euclidean distance. It measures on a relative
scale how well distances are preserved by the specific embedding.
According to the literature [19] a value greater than 0.2 is already
considered as a low-quality embedding.

We evaluated the performance of different kernels with opti-
mized bandwidths. Even though the concrete choice of kernel
function is considered to be insignificant in the literature [8], we
found differences among the optimization results. We consider
Cauchy, Epanechnikov, Exponential and Gauss kernels.

We now describe the estimators we used in our experiments.
All of them are given 0.1% of the total data set size in memory
to allow a fair comparison across the data sets of varying sizes.
This size presents a reasonable value in big data scenarios and
returned representative results in our experiments.
Sampling uses reservoir sampling to efficiently build a uniform
random sample S of the data in one pass. The query is executed
on the sample and the resulting cardinality cS (Q) is scaled up to
return the estimated cardinality c̃(Q) = cS (Q) · |X |/|S |.
MSnd and R-Vnd use aMinSkew or R-V histogram, respectively.
The parameter n indicates that the data was first embedded in
an n-dimensional vector space using Landmark MDS. A distance
query Q is then also embedded and becomes an n-dimensional
query sphere Q̂ . For estimating the cardinality we calculate the
volume VI (Q̂,B) of the intersection between Q̂ and histogram
bucket B and sum up the fractional bucket counts:

c̃(Q) =
∑
B

VI (Q̂,B) · count(B) .

For n > 2 we use a Monte Carlo simulation for VI , as it is more
efficient than an analytical solution.
Global size uses a kernel estimator with the Cauchy kernel func-
tion and a global bandwidth optimized by means of an Evolution
Strategy, as described in Subsection 5.1, with 100 individuals.
We use Mmedian as defined in Section 5. The parameter size
gives the cardinality of the training queries: S =̂ small =̂ 0.01%,
M =̂medium =̂ 0.1%, L =̂ large =̂ 1%,MIX =̂X =̂mixed =̂ S∪M∪L.
The query objects are selected uniformly at random.
B+k,n uses a kernel estimator with the Cauchy kernel and lo-
cally optimized bandwidths as described in Subsection 5.2 using
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Figure 4: Estimation errors of the spatial histograms on queries of 1% of the data. The green line indicates an error of 0, the
red line an error of -1 (zero-estimate). The top row plots show the total error range, the bottom row the interval [−1, 10].
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Figure 5: The stress induced by the embedding into a vec-
tor space of d dimensions. The dashed line indicates the
threshold for a low-quality embedding.

the same measure as Global on the MIX training queries. The
parameter k expresses that the kth-nearest neighbor is used and
n defines the number of clusters.

6.2 Estimation Quality
We now present the results of our experiments of the described es-
timators on the introduced data sets. We visualize the estimation
errors in terms of boxplots.

6.2.1 Baseline Algorithms. Figure 4 shows the estimation er-
rors of MinSkew and R-V histogram for the individual data sets
and a query size of 1%. We embedded all data sets into 2, 3, 4, 5, 6
and 7 dimensions using Landmark MDS with 10 landmark points.
We can immediately see very large estimation errors. Using a
higher target dimension for the embedding leads to lower estima-
tions. However, this does not lead to good estimates. In contrast,
the very high estimates turn into zero-estimates (error = −1) for
higher dimensions.

Figure 5 shows the stress induced by the embedding. Overall,
the embeddings are of poor quality with stress values above 0.2
as indicated by the dashed line. We observe that, in general, the
stress decreases with the number of used dimensions. For PBS
we notice a slightly worse embedding for higher dimension. This
reveals a weakness of the Landmark MDS embedding. Only the
landmarks profit directly from the higher degree of freedom in a
higher dimensional vector space. They are properly embedded
using an MDS that minimizes the stress. The remaining elements
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Figure 6: Influence of the choice of kernel function on the
Moby data set for a query size of 0.01%.

are only embedded with respect to the landmarks, not with re-
spect to the other objects. Thus, a higher dimensionality does
not necessarily guarantee a better embedding.

In addition to the poor embedding quality, the spatial his-
tograms suffer from the curse of dimensionality. This leads to an
overall performance degradation with an increasing dimension-
ality. The vector space becomes sparse leading to almost empty
buckets or queries that intersect with no buckets at all. This is
apparent as the high overestimations induced by the embedding
turn into zero-estimates for higher dimensions. We conclude that
spatial histograms are not a reliable choice for cardinality esti-
mation in metric spaces. For the vectorial Rea16 data set in the
original 16-dimensional vector space (omitted in Figure 4 due to
lack of space), nearly all queries return an estimate of zero. This
motivates the idea of using distance-based approaches on high-
dimensional data in order to counter the curse of dimensionality.

Figure 4 also shows the performance using a random sample
for estimating the cardinality. The resulting cardinality on the
sample is scaled up by the constant factor |X |/|S |, where S is the
sample and X the data set. If the sample is large enough with
respect to the query size it reflects the data distribution well and
estimates become accurate. However, if the sample is small or the
query highly selective, errors increase dramatically. Estimates
are either zero because no sample is contained in the query, even
though there are qualifying items in the underlying data set. Or,
estimates are very high because by chance a sample was included
and then scaled up by a large factor. This results in a median of
-1 and a very high maximum error.
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Figure 7: Estimation errors of the kernel estimators with global and local optimized bandwidths for different query sizes.

6.2.2 Kernel-Based Techniques. Figure 6 exemplifies the per-
formance of different kernel functions using an optimized band-
width as described in Section 5. It is apparent that different kernel
functions lead to a different estimation accuracy. However, our
experiments confirm that the selection of the bandwidth has
a much greater impact on the performance than the choice of
the kernel function. As the Cauchy kernel gave the overall best
performance in our experiments, we limit our following presen-
tation to this kernel. The reason for its superior performance is
that its distribution is more heavy-tailed than that of the other
kernels. In contrast to, e.g., the Gaussian kernel, the density does
not decrease exponentially in the distance from the mean. This
allows the kernel to distribute its weight more effectively.

Figure 7 shows the estimation errors of the kernel estimators
with globally and locally optimized bandwidths. We also report
the statistics in Tables 2-5 at the end of the paper. In contrast
to sampling the kernel estimators are able to give reasonable
cardinality estimations also for very selective queries. In particu-
lar they overcome the problem of either zero estimates or very
high overestimates. For the global bandwidth optimization we
generated training queries of different cardinality. In Figure 7
the labels S, M, L and MIX indicate the target query size for the
bandwidth optimization process.

Kernel estimators optimized for a specific query size give good
results on new queries of equal size. This proofs that the band-
width generalizes well from training to test queries. However,
estimators optimized for small queries tend to underestimate the
cardinality of larger queries. The optimal bandwidth for larger
query sizes also leads to overestimates for smaller queries. Opti-
mizing the bandwidth for all query sizes at the same time leads
to a bandwidth that is not optimal for any of the query sizes.
This result shows that a global bandwidth is not sufficient for
applications where queries vary greatly in size.

The BalloonEstimator+ (B+k,n) uses the same set of training
queries, but computes a set of optimal bandwidths. The concrete
bandwidth for a given query is chosen based on the local density
and the query radius. We restrict our results to the setting k = 2
and n = 8 that gave slightly better results than for other settings.

Figure 8 displays how many results of good quality are pro-
duced by sampling and B+2, 8, respectively. It confirms the results
indicated by the boxplots that the kernel approach outperforms
sampling for small queries. The plot shows the percentage of
estimates within the error bounds given by the x-axis. Thus, it be-
gins with all estimates with error zero, meaning perfect results. It
then gradually increases the bounds uniformly in both directions,
thus accumulating more results. The x-axis ends with all queries
of errors in the interval ]−1, 1[, as we consider greater errors as
a failure of the estimator. Accordingly, we can see the number
of estimates not fulfilling our requirements by the height of the
plot. For all data sets the smallest queries show no results for
sampling with absolute errors below 1. B+2, 8 on the other hand
is able to produce high quality results within the shown interval.
Moreover, the shape of the curve is very consistent between the
different query sizes and data sets, indicating the robustness of
the approach. Sampling shows step-wise increments when new
sample points are incorporated into the estimate.

The concrete choice of n and k is subject to optimization. We
report one setting (k = 2, n = 8) that worked for all our data
sets. There is a general tradeoff between the number of clusters
(improving the estimation quality) and the required space (wors-
ening the quality). In general, we observed in our experiments
that large values for n and k do not improve the performance.
Overall we conclude that the BalloonEstimator+ presents a sig-
nificant improvement over the global bandwidth approach.
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Figure 8: The plotted lines display the number of estimates with absolute errors within the bounds, given by the x-axis.
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Figure 9: The build time of the estimators in seconds.

6.3 Runtimes
The efficiency of an estimator is the second criterion for assessing
its performance. We first discuss the theoretical complexity of the
construction of our B+ estimator. Then, we present our empirical
findings of the build and query time of all investigated methods.

6.3.1 Construction Complexity of the B+ Estimator. The time
complexity of the construction of our B+ estimator is determined
by (1) the costCP for creating P partitions of the training queries
and (2) the cost CES of executing the ES which is dominated by
evaluating the fitness of the individuals. All other operations are
negligible because they cause only constant overhead.

The number of partitions P is defined by the user. The cost for
partitioning the training queriesQ using hierarchical clustering is
dominated by the construction of the dendrogram which requires
CP = O(Q|

2) time.
The fitness evaluation of a single individual requires calcu-

lating the cardinality estimate for each training query in Q by
incorporating the contribution of all samples S . We denote this
cost as ceval = O(|Q| · |S |). Given the number of iterations I , the
number of parents µ and the number of offspring λ the cost for

executing the ES is CES = O((µ + I · λ) · ceval). As we execute
one ES for each of the P partitions, the final time complexity is
O(|Q|2 + P · (µ + I · λ) · |Q| · |S |).

The time complexity depends on the number of iterations
I of the ES. The termination condition is a given number of
stall iterations Ī and thus depends on the fitness development
of the individuals. We can consider I as a random variable. For
Ī = 25, we observed the following number of iterations in our
experiments: min. 79, 1st quantile 86, median 89, mean 93.57, 3rd
quantile 101 and max. 136. Note that we also limit the ES to at
most 1 000 iterations which gives an upper bound on the runtime.

6.3.2 Empricial Findings. Figure 9 shows the build times of
the estimators from Subsection 6.2. The spatial histograms show
a more or less constant construction time, regardless of the di-
mension. Sampling is the cheapest estimator to construct as it
only requires a single scan of the data set. In comparison, our
kernel-based techniques take more time to build. As our B+ esti-
mator performsmultiple bandwidth optimization for the different
query partitions, its runtime exceeds the global bandwidth ap-
proach. However, the required time for construction is still very
reasonable in practical applications, especially as the estimator
has to be built only once which makes the query response time
much more crucial. We observed a very quick convergence of the
Evolution Strategy in our experiments, where an optimum was
usually found within very few iterations. We report the average
build time for the different used configurations. The bandwidth
optimization was performed in parallel, while the spatial his-
tograms were constructed on a single thread. As the ES is very
easy to parallelize, we can thus improve the construction time
using more CPU cores. We also want to emphasize that a sto-
chastic approach is only one method to bandwidth optimization.
If another method turns out to be more efficient in this regard,
it does not lower the accuracy of a kernel estimator. However,
the build time is already very reasonable for practical scenarios.
For Moby and PBS the construction of our estimator took less
than a minute and for Rea only slightly more than two minutes.
This means the overhead of constructing the estimator while
importing the data into a database is insignificant. On the Wiki
data set the construction was significantly slower with ~17 min-
utes. This has two reasons: The first is that the estimator size is
much larger, as we choose it in relation to the data set size in our
experiment. The second reason is that the distance computations

358



Table 1: Mean query times of the estimators in ms.

Method Moby PBS Rea16 Wiki

MS2d 0.232 0.210 0.985 1.825
R-V2d 0.075 0.935 1.229 0.752
MS3d 5.114 114.848 438.672 363.161
R-V3d 4.968 723.424 438.997 4 868.446
MS4d 4.391 41.765 158.357 97.783
R-V4d 4.270 0.055 384.439 4 239.452
MS5d 4.072 21.134 35.995 35.169
R-V5d 4.020 0.051 351.146 3 854.658
MSd 0.203 0.227 0.203 0.967
R-V6d 3.551 915.755 328.374 3 609.655
MS7d 0.224 0.278 0.231 0.992
R-V7d 3.480 872.779 313.527 3 429.448
Kernel Global 0.105 1.032 0.209 354.941
B+2,8 0.138 1.071 0.299 348.178
Sampling 0.104 1.412 0.241 351.645

are the most complex of all data sets. This is also visible in the
high construction times of the spatial histograms.

Table 1 shows the query response times of the cardinality
estimation. The spatial histograms suffer from slow response
times for dimensions greater than 2 which is amplified by the
more complex calculation of the sphere-bucket intersection. For
some experiments the time gets close to zero as no intersecting
buckets were found due to the exponentially increasing vector
space. Sampling, again, has the benefit of being very fast, as only
few distance calculations are necessary. The kernel estimators
additionally need to compute an integral for every sample point
which results in a longer execution time. However, as reflected
by the query times, this turns out to be insignificant overhead
in comparison to the distance computations. The B+ estimator
is also very efficient. Our experiments confirm that the deter-
mination of the appropriate bandwidth induces only very little
overhead. In conclusion kernel-based cardinality estimation is an
efficient method with effectively zero overhead in comparison
to sampling in practical applications. The only reason to use
sampling is its low cost for computing the estimator.

6.4 Impact of Estimator Size
The estimator size limits the number of samples used for cal-
culating the cardinality estimate and thus impacts the quality
of the estimates. We expect that a larger estimator size leads to
overall better estimates. For estimator sizes of 0.05%, 0.1%, 0.2%
and 0.4% of the total data set size we measured the performance
of the estimators in 10 runs using different samples. In each run
we, again, measure the error of 100 test queries. We compute the
trimmed mean of the thus generated 100 error values with a ratio
of 10% to accommodate for outliers. Figure 10 shows boxplots of
the trimmed means for our B+2,8 estimator and pure sampling
with a query selectivity of 0.01%. For both estimators we observe
an overall improvement of the estimates with greater estimator
sizes. Our B+2,8 estimator is able to already give good results
when given only a very limited amount of space. The improve-
ments for larger estimator sizes are relatively small for all data
sets. In contrast, we can see that sampling benefits much greater
from more available data. It starts with very bad results for such
selective queries with a median of zero when only few sample
are used. Overall we observe a tendency to underestimates while

Table 2: Estimation errors on the Moby data set.

Glob S Glob M Glob L Glob X B+2,8 Sampling

0.
01
% Min -0.790 -0.128 1.717 -0.397 -0.863 -1.000

Median -0.011 3.070 11.594 1.896 0.243 -1.000
Max 7.613 12.167 40.111 8.581 57.842 61.750

0.
1%

Min -0.919 -0.661 0.056 -0.765 -0.884 -1.000
Median -0.744 -0.011 1.711 -0.277 -0.155 -1.000
Max 3.302 3.823 6.348 3.546 6.869 6.007

1%

Min -0.967 -0.864 -0.624 -0.906 -0.755 -1.000
Median -0.455 -0.331 -0.014 -0.375 -0.107 -0.123
Max 0.852 0.984 1.505 0.931 1.177 1.703

Table 3: Estimation errors on the PBS data set.

Glob S Glob M Glob L Glob X B+2,8 Sampling

0.
01
% Min -1.000 -0.852 -0.704 -0.926 -0.852 -1.000

Median -0.111 3.574 7.315 0.889 0.782 -1.000
Max 37.111 41.667 46.333 38.333 37.593 36.037

0.
1%

Min -0.993 -0.949 -0.905 -0.978 -0.956 -1.000
Median -0.818 -0.071 0.670 -0.617 -0.735 -1.000
Max 6.442 7.011 7.551 6.595 7.022 6.299

1%

Min -0.969 -0.850 -0.742 -0.936 -0.957 -1.000
Median -0.246 -0.136 -0.015 -0.216 -0.134 0.091
Max 1.538 1.507 1.485 1.529 1.546 2.638

the errors of our approach are more centered around zero. With
greater estimator size, sampling is able to catch up with our
kernel-based approach for some data sets. However, small es-
timator sizes with respect to the total data set size are highly
relevant in practical scenarios because the amount of data in
databases is rapidly growing. This makes our estimator superior
to sampling in practical scenarios.

7 CONCLUSION AND FUTUREWORK
We presented the first effective and efficient approach to cardi-
nality estimation on metric data. Our approach is based on the
application of kernel-density techniques to the one-dimensional
distance function. We are able to outperform sampling which
suffers from zero-estimates and large overestimates for small
queries. Our approach is also superior to spatial histograms on
embedded data which suffer both from the poor quality of embed-
dings and the curse of dimensionality. We presented approaches
for determining the bandwidth of the kernel estimator globally
and locally adaptive.

In our future work we will further investigate efficient local
bandwidth optimization strategies. Furthermore, we will look
into adapting our estimator to changing data and query work-
loads by performing the ES continuously in the background. We
will also address the incorporation of query feedback into the
estimation process.
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ABSTRACT
Answering crucial socioeconomic questions often requires com-
bining and comparing data across two or more independently
collected data sets. However, these data sets are often reported as
aggregates over data collection units, such as geographical units,
which may differ across data sets. Examples of geographical units
include county, zip code, school district, etc., and as such, they
can be incongruent. To be able to compare these data, it is neces-
sary to realign the aggregates from the source units to a set of
target spatially congruent geographical units. Existing intelligent
areal interpolation/realignment methods, however, make strong
assumptions about the spatial properties of the attribute of in-
terest based on domain knowledge of its distribution. A more
practical approach is to use available reference data sources to
aid in this alignment. The selection of the references is vital to
the quality of prediction.

In this paper, we devise GeoAlign, a novel multi-reference
crosswalk algorithm that estimates aggregates in desired target
units. GeoAlign is adaptive to new attributes with need for nei-
ther distribution-related domain knowledge of the attribute of
interest nor knowledge of its spatial properties in Geographic
Information System (GIS). We show that GeoAlign can easily be
extended to perform aggregate realignment in multi-dimensional
space for general use. Experiments on real, public government
datasets show that GeoAlign achieves equal or better accuracy in
root mean square error (RMSE) than the leading state-of-the-art
approach without sacrificing scalability and robustness.

1 INTRODUCTION
Data are often found in silos, created independently. For example,
administrative agencies and governments collect a great deal of
data about their domain, most of which are then published in
aggregate form. The primary purpose of the data collection is
administrative, and the choice of data representation and struc-
ture is made by each agency for its own purpose. These data
can be invaluable for understanding many social issues, partic-
ularly in conjunction with other data sources. However, most
administrative agencies are not concerned with interoperability
with other agencies, therefore standardization is unlikely. On the
other hand, agencies value the privacy of individual citizens, and
do not want any benefits from public data release to hurt their
primary administrative mission. Therefore, in many cases, they

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the 21st
International Conference on Extending Database Technology (EDBT), March 26-29,
2018, ISBN 978-3-89318-078-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Figure 1: Join two tables for steam consumption (mg)
and per capita income ($) in New York State together by
county.

will release data only in aggregate form. Similar reasoning ap-
plies in many other contexts as well. For example, Google Trends
data is aggregated by geographical unit and time period, to avoid
disclosing information about individual queries.

Data integration [25, 34] has been extensively studied, since
there is often great benefit from joining multiple data sets. The
bulk of the work on this topic addresses structural discrepancies,
through schema mapping [2, 26, 42], and identification of indi-
viduals across data sets, through entity matching [21, 29]. One
challenge not addressed in data integration is the case of data
reported as aggregates over incompatible geographical/temporal
units. This is a practical problem faced by government data cen-
ter, NGOs, social scientists, and the general public when trying to
related socioeconomic data to drive decision making processes,
approximately 80% of which are related to a geographical loca-
tion [14]. Even if the intention of joining such aggregated data
based on their spatial or temporal properties seems to be the
reasonable action of practice, these aggregates cannot easily be
realigned accurately.

Motivating example. Let us consider two tables shown in Fig-
ure 1 – one table has the steam consumption amount aggregated
by zip code and the other has the per capita income reported by
county. A sociologist wants to study the correlation of energy con-
sumption with income in order to plan for future energy supply
arrangement. Valuable insight could be obtained by joining these
two tables. However, this is not straightforward since the data are
reported on incompatible aggregate units, since one zip code may
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intersect several counties and one county may contain or overlap
with multiple zip codes.

This challenge can be addressed by realigning one or both data
sets to a common geographic type (target type) before performing
the join. Let the intended target type be county, by which the per
capita income is already reported. However, we only know the steam
consumption amount by zip code, and have to estimate the number
for each county. This estimate is obtained as a form of interpolation.
Finding a good estimate of steam consumption per county is the
challenge we need to address.

This problem of estimating aggregate values for geographic
areas arises in many contexts, and has been extensively studied.
Areal Interpolation, in Geographical Information Systems (GIS),
is the process of aligning an attribute from one areal unit sys-
tem (the source type of a set of polygons) to another spatially
incongruent system (the target type of another set of polygons)
[12, 22, 23, 31, 33]. It is more commonly known as crosswalk, or
the modifiable areal unit problem in socioeconomic fields. If the
attribute is uniformly distributed in space, then the interpolation
can be performed in a straightforward way based on area. For
example, if 70% of the area of a zip code lies in county A and
30% in county B, then we could estimate that 70% of the crimes
reported in the zip code occurred in county A and the remaining
30% in B.

This uniform distribution assumption or homogeneity assump-
tion rarely holds in practice. If we know something about the
distribution, that can be taken into account in the interpolation.
For example, if we know that more crimes occur in densely pop-
ulated urban areas than in sparsely populated rural areas, we can
take this into account. The mathematics can be tricky depending
on exactly what we know about the distribution of the attribute
of interest, so there has been a stream of research in the literature
towards solving the problem based on different assumptions. We
discuss this more in the related work.

In the data integration scenario, we often do not know much
about an attribute of interest. Therefore, we may be unable to de-
velop good rules for how it should be distributed. Even so, we can
do better than make an unrealistic uniformity assumption, if we
have access to additional data. In particular, if we can find a ref-
erence attribute, for which we know the detailed distribution, we
can use it to perform a crosswalk from source units to target units
of aggregation. For example, we may have detailed distribution
available for population, with fine granularity aggregates giving
us the population in every intersection of county and zip code. If
we believe the crimes are distributed similarly to population (or
at least more similarly to population than to area), then we can
exploit our knowledge of population distribution to estimate the
desired aggregates for number of crimes. In particular, consider
a zip code with a population of 25,000 people. Suppose this zip
code intersects two counties A and B, with the population in the
intersections being 10,000 and 15,000 respectively. Suppose that
we know there were 100 reported crimes in this zip code last year.
We can estimate that 40 of these crimes occurred in county A and
60 occurred in county B, following the same ratio as the popula-
tion. This approach makes no assumptions about the probability
distribution of the reference attribute or the attribute of interest.
It can work well if the attribute of interest is distributed similarly
to the reference attribute. To the extent the distributions differ,
the estimates will be off.

In this paper, our goal is to solve this data alignment problem
through the use of more data. We often may have access to

more than one candidate reference attribute, each with its own
distribution. We may not have domain knowledge enough to
understand which reference is most similar to our variable of
interest. Even if we found the best reference, its distribution may
still not be close enough. Is there some way we can combine the
information in the multiple reference attributes to do better? And
at the same time, more adaptively predicts the estimates to new
attributes of interest than using a single reference.

In this paper, we develop GeoAlign, a technique that does just
this. The idea is to weight their relative contributions to the final
estimate so that the most similar reference attributes have the
greatest impact on the estimate.

The intellectual contributions of the paper are as follows:

• We define the general aggregate interpolation problem
over unaligned partitions in one ormore dimensions, which
is an important problem in data integration (§2).

• We propose GeoAlign, an adaptive multi-reference cross-
walk algorithm that solves the areal interpolation problem
by realigning aggregates from source units to target units
by learning distribution similarities between the attribute
of interest and the reference attributes (§3). We show that
GeoAlign can be used not just in two-dimensional maps
but also for spaces with arbitrary numbers of dimensions.

• We evaluate the performance of GeoAlign against real
data from data.ny.gov and Esri data in 2-dimensional space.
These experiments show that GeoAlign outperforms the
state-of-the-art single reference crosswalk approach in
accuracy (§4). It is, at the same time, efficient, scalable and
robust to noisy references even when limited references
are available.

We then survey related work in areal interpolation (§5) before
we conclude with future work (§6).

2 PROBLEM STATEMENT
In this section, we first introduce the terms we use throughout
this paper before we formally define the aggregate interpolation
problem in multi-dimensional space. We then illustrate, with
examples, the aggregate interpolation problem in 2-D and in
other dimensions.

2.1 Preliminaries
In Geometry, an n-dimensional universe Ω ⊂ Rn can be par-
titioned into some unit system γy composed of a set of units
Uy = {uy1 ,u

y
2 , ...}, where ∀uyi ∈U yu

y
i ⊂ Rn . Units inUy satisfy

∀uyi ,uyj ∈U y,i,ju
y
i ∩ u

y
j = ∅, (1)

that is any pair of units inUy is disjoint with each other since they
have no spatial overlap inn dimensions. Suppose that an attribute
of interest αx exists, then we denote its aggregate vector as ayx =
[ayx [1],a

y
x [2], ...,a

y
x [|Uy |]] such that ayx [i] is the aggregate of αx

in the ith unit ofUy .
As an example in 2-D space, in the universe of New York State

Ω, county partitions compose a unit system γy . They share no
areal intersection such that they are spatially incongruent with
each other. Steam consumption, which is the attribute of interest
αx , has its data in Figure 1 collected from such a set of county
units Uy . Another possible unit system is zip code partitions.
We can view the steam consumption column in the table as its
aggregate vector ayx for the county unit system. Each entry of
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Figure 2: Examples of units in the partial map of New York State for aggregate interpolation: (a) zip code units (source
units), (b) zip code and county intersection units and (c) county units (target units).

the vector represents the amount of steam consumption in some
county.

2.2 The Aggregate Interpolation Problem
We define the following terms for the aggregate interpolation
problem in Rn :

• U s = {us1 ,u
s
2 , ...}, source units of the source unit system γ s

in the universe Ω.
• U t = {ut1,u

t
2, ...}, target units of the target unit system γ t

in the same universe.
• aso = [aso [1],aso [2], ...,aso [|U s |]], aggregate vector of the
objective attribute αo in source units. aso [i], the ith aggre-
gate of aso , is collected from source unit usi .

• ato = [ato [1],ato [1], ...,aso [|U t |]], aggregate vector of the
objective attribute αo in target units. ato [j], the jth aggre-
gate of ato , is collected from target unit utj .

GivenU s ,U t and aso , aggregate interpolation approximates ato
as âto = [âto [1], âto [2], ..., âto [|U t |]].

Aggregate Interpolation Problem in 2-DWhen it comes to a
2-dimensional space R2, units are simple polygons consisting of
straight, non-intersecting edges forming a closed path by pair-
wise join. A unit in 2-dimensional space can be denoted by

ui = (Vui ,Eui ) where |Vui | = |Eui | = ni , (2)

where Vui is a set of vertices in R2 and Eui is a set of edges
connecting the vertices in Vui such that every vertex is shared
by exactly two edges. Then, ui is the closed area formed by
connecting ni vertices in Vui by ni edges in Eui .

This problem is referred to as the areal interpolation problem in
the GIS community. The 2-dimensional space is the map; and the

unit system, also recognized as feature layer in GIS, is composed
of partitions delimited by boundaries of some geographic type.
Some of the most widely used geographic types in demographic
data are county, zip code, and more. For instance, as shown in
Figure 2, U s is the feature layer for zip code in (a); U t is the
other feature layer for counties in (c). Given the aggregates of
steam consumption in zip codes aso shown in Figure 1 from the
motivating example, the aggregate interpolation problem in 2-D
approximates the steam consumption in counties, âto .

Aggregate Interpolation Problem in other dimensions In
the 1-dimension setting of the problem, units are intervals or line
segments between two points such that

ui = [ui1 ,ui2 ], (3)

where ui1 and ui2 are two points on the real line R. We may
illustrate the problem as interpolation of population histogram
aggregates for two sets of age intervals as depicted in Figure 3. In
this case, we can treat the set of narrow bins of age in (a) asU s ,
the set of wide bins of age in (b) asU t , for the same range of age
as the universe of interest Ω. Given the population histogram for
narrow age bins, aso , the aggregate interpolation problem in 1-D
predicts the population histogram for wide age bins âto .

Unit system overlapping also exist in 3-D or higher dimen-
sions. One example is 3-D GIS data, such as the distribution of
disease, evaluated for cubic units of different size scales. Another
example is the data collected for 4-D space (3D) and time systems,
such as environmental exposures, crosswalked to another system
incongruent in both space and time units. For both cases, areal
interpolation is the bridge to map the data across unit systems
to enable side-by-side comparison with data from incompatible
units.
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Figure 3: Realign population histogram in two sets of age
intervals by transforming aggregates from (a) narrow bins
to (c) wide bins. The dotted lines separate the age range
into a set of tentative intersection units as in (b).

3 AGGREGATE INTERPOLATION BY
GEOALIGN

In this section, we first introduce some additional definitions and
notations used throughout the rest of the paper and a general two-
step solution solving the aggregate interpolation algorithm. We
then lay the groundwork for the assumptions made by GeoAlign
before exploring the details of the algorithm.

3.1 GeoAlign preliminaries
Before introducing the general steps to solve the aggregate inter-
polation problem, we further define the set of intersection units for
the intersection unit system γ st as U st = {ust1 ,u

st
2 , ...}, where∀ustk ∈U st ,ustk ⊂ Rn . Each intersection unit is a subregion within

some source unit and some target unit, that is

∀ustk ∈ U st ,∃usi ∈ U s ∧ utj ∈ U t ,ustk ⊆ usi and u
st
k ⊆ utj . (4)

It can be thus deduced that |U st | ≥ max(|U s |, |U t |).
The aggregate vector of the intersection units for some at-

tribute αx is denoted as astx = [astx [1],astx [2], ...,astx [|U st |].
In the simplest case, the intersection units are then-dimensional

spatial intersections of source and target units. For instance, for
the areal interpolation problem in Figure 2, U st is the set of in-
tersection areas between zip codes and counties in (b); and for
the histogram realignment problem in Figure 3,U st is the set of
age intersection intervals between source and target bins. More
fine-grained partitions of intersection units may be introduced if
necessary when disparate spatial properties of the attribute in
these partitions are introduced by auxiliary data.

Assume that the probability density function of attribute αx
for γ st is a piecewise function, denoted as

f stx (z) =


f stx [1](z) , z ⊂ ust1
f stx [2](z) , z ⊂ ust2
...

f stx [|U st |](z) , z ⊂ ust|U st |

(5)

is known, then its aggregate in the source units and target units
follows:

asi =
∑

∀ustk ∈U st ,ustk ⊆usi

astk

=
∑

∀ustk ∈U st ,ustk ⊆usi

∫
z⊂ustk

f stx [k](z)dz, (6)

and similarly

atj =
∑

∀ustk ∈U st ,ustk ⊆utj

astk

=
∑

∀ustk ∈U st ,ustk ⊆utj

∫
z⊂ustk

f stx [k](z)dz. (7)

Alternatively speaking, the aggregate in each source/target unit
is equivalent to the sum of aggregates of all intersection units
within it.
Two-step Approximation.We use a two-step solution to solve
the aggregate interpolation problem for objective attribute αo .
In our solution, we first compute the approximate asto (asto is the
aggregate vector for the intersection units). We then aggregate
these approximate intersection unit aggregates to determine the
approximate target unit aggregates. The two steps in our solution
are described below:

(1) Disaggregation: Split the aggregates in each source unit
to its intersection units. Mathematically speaking,

âsto [k] = B(aso [i], ...), s.t. ustk ⊆ usi , (8)

where the disaggregation function B(aso [i], ...) computes
the approximated âsto [k] of asto [k]. Note that ... denotes
the ancillary data that contribute to the approximation.
Some of the most commonly used ancillary data are shape
files of usi and ustk , etc. More advanced approximation
function may use external ancillary data. For instance,
the distribution of a reference attribute that is positively
related to the distribution of αo .

(2) Re-aggregation: Aggregate the approximated intersec-
tion unit aggregates for the target unit they reside in, or
equivalently

âto [j] =
∑

∀ustk ∈U st ,ustk ⊆utj

âsto [k]. (9)

General Solution Properties. Regardless of the types of ancil-
lary data available, some constraints are widely adopted in the
existing two-step approximation solutions. We name two of them
here.

One of these constraints is the volume preserving property
[31, 46]. This property ensures that every source aggregate is pre-
served by the total of approximated aggregates in its intersection
units, or

aso [i] =
∑

∀ustk ∈U st ,ustk ⊆usi

âsto [k]. (10)

The property is improving the estimation in that greater fi-
delity is given to the approximation in the intersection units,
which propogates to a more accurate estimation in target units. It
has been shown experimentally that methods following the vol-
ume preserving property make comparatively better predictions
[31].

Homogeneity is also often used to compensate for the absence
of information. Mathematically, for some attribute αx , its proba-
bility density function in a given unit is constant. In other words,
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its aggregate on any sub-unit of the given unit is proportional to
the area of the sub-unit. However, the assumption of homogene-
ity is rarely met in the real world [49].

3.2 GeoAlign Assumptions
We often have access to multiple reference attributes, no one
of which perfectly matches the objective attribute we wish to
estimate. It would appear advantageous for us to use all of them
instead of using a single reference attribute as the current ex-
tensive approaches described above. To this end, we propose
GeoAlign, an aggregate interpolation algorithm that realigns
aggregated data by learning from a combination of reference
attributes to best predict the actual aggregates of the objective
attribute in target units. GeoAlign leverages the advantages of
extensive approaches and is, at the same time, robust to various
objective attributes.

An intuitive idea could be to model the objective attribute ag-
gregates as a function of multiple reference attributes aggregates
in source units, evaluate coefficients with estimation methods
and substitute reference attributes in target units for prediction.
However, this is not applicable for the aggregate interpolation al-
gorithm since training samples (objective attribute aggregates in
source units) and test samples (objective attribute aggregates in
target units) are not randomly drawn from the same population
and the test samples are constrained by the training samples.

To address the linkage between two sets of samples and to ac-
count for the scale variations of reference attributes, in GeoAlign,
the realignment of the objective attribute is related to that of the
reference attributes through a statistical model for re-aggregation.
In order to make the problem tractable, we assume that different
attributes are independent across source units, and that every at-
tribute is correlated in its distribution between source and target
units. We will loose the independence assumption of references
later as shown in experiments in §4.4.2.

3.3 Disaggregation Matrix
Since we study the partition of aggregates in intersection units,
in the disaggregation step, B(aso [i], ...) can be reformulated as

âsto [k] = ωst
o [k]
ωs
o [i]

aso [i]

subject to
∑

∀ustk ∈U st ,ustk ⊆usi

ωst
o [k] = ωs

o [i], (11)

where ωst
o [k ]
ωs
o [i] is the share of aggregate in the k-th intersection

unit (ωst
o [k]) over that in the i-th source unit (ωs

o [i]) it resides in.
Intuitively, the re-aggregation step sums up the weighted share
of all intersection units in all source units that overlap with the
target unit. Alternatively speaking,

âto [j] =
∑

∀usi ,usi ∩utj ,∅

∑
∀ustk ⊆usi ∩utj ω

st
o [k]

ωs
o [i]

aso [i]. (12)

Rather than approximating asto in the disaggregation step,
we can instead infer ωst

o [k ]
ωs
o [i] , ω

st
o [k] or∑∀ustk ⊆usi ∩utj ω

st
o [k]. This

choice often depends on the type of ancillary data available. The
most widely used ancillary data is the true disaggregation of a
reference attribute between source and target units. For instance,
for the population reference mentioned in the introduction, the
population aggregates in intersection units of counties and zip
codes. We denote the disaggregation matrix of some attribute

Table 1: Notations in §2 and 3

Notation Description

Ω
an n-dimensional universe of
interest

γy
a unit system in Ω, for example γ s
at source level

Uy = {uy1 ,u
y
2 , ...} the set of units in γy

αo the objective attribute
Ar = {αr1 ,αr2 , ...} the set of reference attributes
αx ∈ αo ∪Ar an attribute of interest
a
y
x = [ayx [1],a

y
x [2],

...a
y
x [|Uy |]]

the aggregate vector of αx in units
ofUy

f
y
x

the probability density function of
αx for γy

B(aso [i], ...) the disaggregation function
ω
y
x the weighted share vector of αx for γy

a
′y
x the normalized ayx

DM
y1,y2
x

the dimension matrix of αx , where
DM

y1,y2
x [i, j] is the aggregate of αx

in the intersection of uy1i and uy2j
β = [β1, β2, ...β |Ar |] weights computed from Equation (15)

αx between two unit systems γy1 and γy2 as DMy1,y2
x , where

DM
y1,y2
x [i, j] is its aggregate in the intersection area of uy1i and

u
y2
j . For γ s and γ t ,

DMs,t
x [i, j] =

∑
∀ustk ⊆usi ∩utj

astx [k] (13)

The disaggregation matrix of the reference attribute between
source and target units is often wrapped up in a crosswalk rela-
tionship file. When the disaggregation matrix of only one refer-
ence attributeαr is available, we can substitute

∑
∀ustk ⊆usi ∩utj ω

st
o [k]

for DMs,t
r to complete the approximation of the objective at-

tribute in target units. This type of method is named as the
dasymetric method [32, 33, 48]. A special case of it is the areal
weighting method [30], using the disaggregation matrix of area
as the reference. Dasymetric methods are widely employed in
socioeconomic data realignment by general users [10].

Since we only consider the disaggregation matrix between
source and target units, from now on, we use DMx for DMs,t

x .

3.4 GeoAlign Algorithm
In the real world, the disaggregation matrix of more than one
references attributes is often available. GeoAlign is a volume-
preseving method that leverages the distribution similarity of the
objective attribute with reference attributes at the source level
and predicts the dimension matrix of the objective as a weighted
combination of the dimension matrices of the references. We will
first extend some of the notations in Section 2, and then describe
our proposed algorithm in detail.
Notation. Let Ar = {αr1 ,αr2 , ...} be the set of reference at-
tributes available. The aggregate vectors of these reference at-
tributes in source units are represented as asr1 ,a

s
r2 , . . . ,a

s
r |Ar |

,
where asrk = [asrk [1],a

s
rk [2], ...,a

s
rk [|U

s |]] for the kth reference
attribute. Similarly, the aggregate vectors of these reference at-
tributes in target units are represented as atr1 ,a

t
r2 , ...,a

t
r |Ar |

, where
atrk = [atrk [1],a

t
rk [2], ...,a

t
rk [|U

t |]].
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Figure 4: GeoAlign interpolation for the objective steam consumption data in Figure 1 from zip codes to counties using
two reference attributes: population and accidents, in three steps: weight learning, disaggregation and re-aggreagtion.

We assume that the ancillary data available is the disaggrega-
tion matrix of all the reference attributes. We denote the disag-
gregation matrix of the kth reference attribute as DMrk .

To avoid variation in scale, we normalize the objective at-
tribute and the references at the source level, adjusting their
values measured on different scales to a notionally common scale.
This is reasonable in two ways. First, GeoAlign is dependent on
the distribution similarity between the objective attribute and
the references across source units rather than their actual value
similarity. Second, GeoAlign jointly considers the similarity of
the objective with multiple references. The magnitude of the
references should not be a contributing factor.

The normalized asrk is denoted by a′srk for k = 1, 2, ..., |Ar |,
and is computed as a′srk = asrk /maxi,i≤ |U s | a

s
rk [i],a

s
rk [i] ≥ 0.

The aggregate vector of the objective attribute in source units
aso is also normalized similarly, and is denoted as a′so .
GeoAlign Steps In the disaggregation step, GeoAlign computes�DMo , which is the estimated weighted dimension matrix of the
objective attribute. Our intention is to best predict �DMo , and
at the same time, preserve its volume preserving property. We
propose

�DMo [i, j] =


|Ar |∑
k=1

βk×DMrk [i, j]

|Ar |∑
k=1

βk×asrk [i]
· aso [i],

|Ar |∑
k=1

asrk [i] , 0

0, otherwise

(14)

where β = [β1, β2, ..., β |Ar |] is the learned weight vector and∑ |Ar |
i=1 βi = 1.
Our preliminary experiments lay the ground work of our as-

sumption such that the higher the similarity between two at-
tributes at the source level, the more likely their distribution in
the intersection level are similar. We can thus express the objec-
tive attribute as linearly associated with the reference attributes
for both aggregate vector in source units and disaggregation ma-
trix. The weights are obtained by solving a constrained linear

least squares programming problem with objective function:

min
β

1
2
| |Aβ − b| |2

subject to
∑ |Ar |

k=1
βk = 1

where βk ≥ 0, for k = 1, 2, ..., |Ar |

(15)

where A is the column-wise concatenation of a′srk for k = 1, 2, ...,
|Ar | and b is a′so . Instead of computing �DMo by directly applying
the weights to DMrk s, we adapt it to the scale of reference at-
tributes and insert back the weights to Eq. (14) to get an adjusted�DMo .

The approximated disaggregation matrix of the objective at-
tribute satisfies the volume preserving property such that�DMo [i, j] ≥ 0 and

∑ |U t |
j=1

�DMo [i, j] ≈ aso [i]. (16)

The estimated aggregates of the objective attribute in target
units are computed in the reaggregation step as

âto [j] =
∑ |U s |

i=1
�DMo [i, j] (17)

Following the pseudocode in Algorithm 1, we further illustrate
the algorithm by the motivating example in Figure 1, with the
steps depicted in Figure 4. Assume that GeoAlign is crosswalk-
ing the steam consumption objective from zip codes to counties.
Moreover, assume that the aggregate vectors, asr1 and asr2 , and
the disaggregation matrices, DMr1 and DMr2 , for two reference
attributes, population and accidents, are readily available. Maxi-
mizing the distribution similarity across units between the nor-
malized objective, a′so , and the normalized references, a′sr1 and
a′sr2 , the objective attribute is first optimized as a weighted combi-
nation of the references at the source level (zip code level). The
weights, β1 and β2, are then reassigned to the disaggregation
matrices of the references DMr1 and DMr2 , and adjusted to pre-
dict an approximated disaggregation of the objective �DMo . The
approximated disaggregation matrix is eventually re-aggregated
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Algorithm 1: GeoAlign
Input: aggregate vectors of reference attributes in source

units asr1 ,a
s
r2 , ...,a

s
r |Ar |

; corresponding
disaggregation matrices DMr1 ,DMr2 , ..., DMr |Ar | ;
and the aggregate vector of the objective attribute in
source units aso .

Output: estimated aggregates of the objective attribute in
target units âto

1 Step 1. Weight Learning: Compute weights, β , by solving
the least squares problem in Equation (15)

2 Step 2. Disaggregation: Compute the estimated weighted
disaggregation matrix of the objective attribute, �DMo ,
using Equation (14)

3 Step 3. Re-aggregation: Re-aggregate to estimate the
aggregates of the objective attribute in target units, âto ,
using Equation (17)

to derive an approximate of the objective at the target county
level (âto ).

It can be easily shown that GeoAlign is applicable to any di-
mension since the algorithm involves no dimension dependent
information or computation. Rather, the only information needed
is the true partition of reference attributes in source and target
intersection units regardless of dimension or dimension-related
information, such as spatial correlation for geospatial data. Al-
ternatively, if true partition of references in finer granularity is
available, the data can be aggregated to the level of source and
target intersection as a reference attribute.

4 EXPERIMENTAL EVALUATION
We evaluated the feasibility of the GeoAlign algorithm from two
crucial aspects: whether the algorithm can correctly complete the
realignment task (effectiveness), and whether the runtime of the
algorithm is fast enough (efficiency). Additionally, we consider
runtime scalability when larger datasets are involved and the
robustness of the algorithmwhen low quality or limited reference
attributes present.

We compare the performance of GeoAlign with that of areal
weighting method [31] and dasymetric method [32, 33, 48] that
utilizes three reference attributes separately.

4.1 Experimental Setup
We developed the GeoAlign algorithm in Python. All experi-
ments were performed on a 2.3 GHz Intel Core i7 with 8 GB
memory and a 7200 rpm SATA disk.

We evaluated GeoAlign for 2-D areal interpolation. We used
county and zip code as the two geographic types of interest, and
focused on data from two different universes, New York State and
the United States. Most of the New York State data ere collected
from data.ny.gov, populated in tabular form. Three population
level demographic datasets have been used as reference data for
the single crosswalk algorithm, namely the population data from
United States Census Bureau [4], the aggregated USPS residential
address data and the aggregated USPS business address data [41].
In addition, we also selected five large individual level datasets
(The New York State Restaurants dataset is generated by selecting
unique restaurants in the Food Service Inspections dataset) with
geographic information and aggregated their number of records
for the intersection area of the two geographic types to form

their disaggregation matrices [5–8]. Thus we obtained a total of
eight reference datasets with accurate distributions by zip code
and by county, and their disaggregation matrices from zip codes
to counties.

Besides the three population level Census data, which cover
the entire nation including New York State, other data for the
United States were collected from Esri, where the Maps and
Data group provides publicly available geocoded GIS data. Six
individual level GIS data [15–20] were aggregated based on their
geospatial information for zip code and county levels and their
intersections using ArcGIS Pro [27]. We also computed the area
of units at these three levels, which is later used as the reference
attribute by the areal weighting method, yielding 10 datasets in
total for the universe of the United States.

There are more datasets with attributes for which the aggre-
gate vectors are available for both zip code and county for New
York State or for the United States. However, we did not use them
as reference attributes due to two reasons. First, it was not clear
whether these aggregates are accurate or approximate. In §4.4.1,
we further discuss the impact of the reference approximates on
the prediction. The other reason is that several attributes do not
have their disaggregation matrices publicly accessible and such
attributes cannot be used as reference attributes. In case of lim-
ited reference attributes, we show in §4.4.2 that GeoAlign makes
reasonable predictions even when the references are poorly se-
lected.

Since the number of datasets with accurate disaggregation
matrix is limited, we adopted the cross-validation evaluation
method that deals with the problem well. We conducted two
series of experiments, one for each universe. More specifically,
for each universe, we picked one of the datasets as the test dataset,
in turn, and used the remaining datasets to develop crosswalks
in GeoAlign whose combined weighted performance is then
evaluated for the test dataset. The performance of GeoAlign is
compared with the base-line single reference crosswalk method
that redistributes by a disaggregation matrix of some known
attribute. More specifically, GeoAlign is compared with the areal
weighting method and the dasymetric algorithm referencing
the three population level datasets. Note that when one of the
population reference datasets or the area dataset is used as the
test dataset, the performance of both methods referencing this
dataset is not evaluated.

4.2 GeoAlign Effectiveness
To evaluate the effectiveness of GeoAlign, we adopted root mean
square error (RMSE) as the evaluation criterion that computes
the deviation of estimated aggregates from true aggregates of the
attribute in counties. To ease the comparison across datasets of
heterogeneous scales, in Figure 5, we show the RMSE normalized
by the mean of the measured data (NRMSE).

The NRMSE of GeoAlign is compared with that of the dasy-
metric method using three population level datasets and the areal
weighting methods for both New York States (Figure 5a) and the
United States (Figure 5b), using eight and ten datasets respec-
tively. The performance of areal weighting method is not shown
in the figure since it makes poor predictions for all test datasets:
over 15 times of the NRMSE of GeoAlign for New York State
experiments and over 50 times of the NRMSE of GeoAlign for
the United States experiments.

The NRMSE of GeoAlign is less then 0.13 for New York State
experiments and less than 0.26 for the United States experiments.
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Figure 5: GeoAlign prediction performance (NRMSE) compared with dasymetric methods. Since a better prediction yields
a lower NRMSE, GeoAlign is making comparable or better predictions than the dasymetric methods for tests in New York
State and the Unite States.

Though three dasymetric methods have comparable error on
most datasets, for these datasets, GeoAlign is making equal or
better predictions. It should also be noted that no one of these
three methods is predicting uniformly well for all datasets as
GeoAlign does, in whichever universe. For instance, the dasy-
metric method referencing the population data presents much
higher error than the other methods when predicting for attorney
registration and USPS Business Address counts for counties in
New York State; all three dasymetric methods fail in accuracy
for both area and USA uninhabited places datasets in the United
States.

Except the USPS business address dataset, the rest three are
individual level datasets with limited number of observational
units that are sparsely distributed in the universe. Also, they do
not align well with demographic attributes as those in the areal
weighting and dasymetric methods. We observe that GeoAlign
accounts for sparsity and heterogeneous distributions with flexi-
bility.

4.3 GeoAlign Efficiency and Scalability
We evaluated the efficiency of GeoAlign in terms of algorithm
runtime. Apart from the horizontal efficiency comparison across
cross-validated tests for a given universe, we also considered the
scalability of GeoAlign runtime. This is realized by comparing
GeoAlign efficiency vertically across the universes of different
scales.

In addition to New York State and the United States, new
universes were selected as a set of states whose boundaries are
congruent with any other state in the universe. The selection is
a greedy process that ensures the states in a universe are tightly
connected from a geospatial perspective. These four new uni-
verses includeMid-Atlantic division andNortheast region defined
by Census Bureau, states contained entirely in the Eastern Time
Zone and all states excluding the ones in the Census West Region
(non-West). They form a spatial coverage hierarchy preventing
the inter-state influence of randomly selected universes.

Moreover, for factor control purpose, instead of collecting
more datasets for new universes, for each universe, we subset
the ten datasets covering the United States, keeping the entries
collected from units within the universe as inputs.

To avoid random error, we averaged the runtime across ten
trials for the cross-validated experiments in each universe.

Experimental results show that GeoAlign runtime is stable
across experiments for the same universe. This is consistent with
our claim that the complexity of GeoAlign is not related to the
magnitude of the count data. The majority of the runtime, over
90%, is spent on computing the disaggregation matrix after the
weights are estimated. Note that the aggregate vectors of the ob-
jective attribute in source geographic units has the same size for
all the different datasets (the size is |U s |). Similarly the aggregate
vectors of the reference attributes in source geographic units
are all of the same size (all of size |U s |), the aggregate vectors
of the reference attributes in target geographic units are all of
the same size (all of size |U t |). Further, all the disaggregation
matrices are all of the same size as well. The reason for the minor
difference in GeoAlign runtime for different datasets is because
of the difference in the number of non-zero entries in the disag-
gregation matrix, which is stored as sparse matrix, of reference
attributes. For the disaggregation matrix, sparse datasets, such as
cemeteries, have less non-zero entries, while dense datasets, such
as population, have more non-zero entries. Matrix operations
involving sparse matrices are influenced by this factor in SciPy
package.

As for cross-universe comparison, we ploted GeoAlign run-
time versus the number of zip codes (source units) and the number
of counties (target units) in Figure 6. These two plots show that
GeoAlign is fast: it runs for less than 0.15 second even for cross-
walk between 30238 zip codes and 3142 counties in the United
States universe. They also prove the linear relationship between
GeoAlign runtime with the number of units in source and target
levels since the dominating disaggregation matrix construction
operation is linearly related to these two factors.
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Figure 6: GeoAlign runtime scales linearly with respect to the number of units in source level and target level
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Figure 7:When noises are introduced in references, the prediction deviation is evaluated as the ratio of the RMSE using the
perturbed references to the RMSE using the original references. The closer the ratio is to 1, the more invariant GeoAlign
is to reference noises. For up to 50% level of noise, most experiments have the prediction deviation around 1 indicating
the robustness of GeoAlign to noisy references.

4.4 GeoAlign Robustness
As mentioned earlier in §4.1, during the reference attribute collec-
tion process, we encountered two difficulties: the undetermined
accuracy of reference attributes at the source level, and the limited
availability of datasets with disaggregation matrix. We conducted
two series of experiments evaluating the robustness of GeoAlign
with respect to these two problems respectively.

4.4.1 Inaccurate Reference Attributes. Public aggregated data
can be derived in multiple ways. They can be aggregates of in-
dividual level data, approximates derived from some crosswalk
algorithm, etc. Without the raw data and the transformation
information available, the accuracy of these aggregates are un-
known. It is thus hard to determine whether the data can be used
as references.

To quantitatively evaluate the influence of the accuracy of ref-
erence attributes on GeoAlign, we artifially introduced "noise"
to the reference attributes. We define noise as the deviation from
the actual value. Noise is measured by "levels" such that a x%
level of noise for y is ±x ∗ y/100. The noise-polluted y is thus

(1 + x/100) ∗ y. For each of the ten cross-validated experiments
in United States, we synthetically generated noisy reference at-
tributes at the source level with 1%, 2%, 5%, 10%, 20%, 30% and
50% degrees of noises for all references. Each experiment is repli-
cated 20 times to account for random error due to randomness
of positive or negative noises. We quantify the prediction devi-
ation as the ratio of the RMSE using perturbed noisy reference
attributes to the RMSE using the original reference attributes.
The closer the prediction deviation is to 1, the smaller the im-
pact of the noises is. GeoAlign is making better prediction with
the perturbed reference attributes if the ratio is higher than 1;
whereas a less than 1 ratio indicates worse prediction with the
perturbed reference attributes.

In Figure 7, we show the box plot of the prediction deviation
with respect to different levels of noise. The prediction perfor-
mance of GeoAlign is stable across experiments. For each exper-
iment, GeoAlign is making robust predictions for all levels of
noise. Though for the area and population datasets, higher levels
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Figure 8: GeoAlign is robust to the choice of reference attributes. Though extra reference attributes do not create any loss,
reference attributes with higher correlation with the objective are preferred.

of noise resulted in higher prediction error, the mean prediction
deviation for these levels is still small (less than 1.1).

4.4.2 Limited Reference Attributes. In general, we cannot pre-
dict how many reference attributes will be available. We may
have very few, or we may have very many. In the process of
reference attribute selection, there are two questions to consider:
whether GeoAlign can make reasonable predictions with limited
number of reference attributes, and how to select the reference
attributes when more than one is available.

To answer these two questions, we chose multiple subsets of
reference attributes among all reference attributes and repeated
the cross-validated experiments for datasets in the United States.
The subset of reference attributes were chosen based on their
relationship with the target attribute of each test dataset. We
adopted the leave-n-out metric such that n = 1, 2 for reference
attributes with the highest (or lowest) correlation with the target
attribute at the source level. The NRMSEs of these four series of
experiments are compared with experiments using all reference
attributes in Figure 8.

For 7 out of 10 tests, GeoAlign is making robust predictions
regardless of the subset of reference attributes used. As for the
series of experiments leaving 1 or 2 least target-attribute-related
reference(s) out, the performance of GeoAlign is almost identi-
cal to using all reference attributes. This is in accordance with
GeoAlign’s ability of assigning little weights to reference at-
tributes loosely related to the target attribute.

Leaving out the most target-related attributes out can have
an impact on accuracy. This does impact three of our attributes:
area, USA uninhabited places and USPS business address datasets.
None of the references are closely related to the area and the USA
uninhabited places datasets at the source level (correlations less
than 0.25). Apart from the two references left out, the rest of the
references have even lower correlation with the target attribute
(less than 0.2 and 0.05 respectively). According to the assumption
basis of GeoAlign, the distribution of the target attributes is thus
poorly related to the distribution of these attributes, leading to
increased prediction error. We also found that leaving out the ref-
erence most related to the target attribute has almost no impact
on the prediction for the USPS business address dataset; while
leaving out top two such references dramatically worsens the
situation. Further analysis reveals that these two references are

highly correlated with each other at the source level (≈ 96%), the
weight assigned to the reference most related to the target at-
tribute is reassigned to the other when the former is left out. This
verifies that similar attributes at the source level are also similarly
distributed in the intersection units, as the predicted disaggrega-
tion matrix of the target attribute is almost the same regardless
of using the reference most related to the target attribute or not.

These experiments give us more insight into GeoAlign refer-
ence attribute selection. GeoAlign prefers reference attributes
highly related to the target attribute at the source level. For refer-
ence attributes poorly related to the target variable, it is able to
weigh their contributions accordingly. The reference attributes
are not necessarily independent of each other and the reference
attributes are not necessarily accurate at the source level. From
the user’s perspective, GeoAlign is able to make reasonable pre-
dictions by simply given all available reference attributes.

5 RELATEDWORK
In the GIS community, spatial interpolation has advanced from
isoline mapping in cartography to data realignment in different
units or grids for multivariate analysis in geographic research
[3, 31, 38]. Realignment, crosswalk, or regridding, is commonly
used today as a preprocessing step before further data analysis
in physics and socioeconomics to interpolate spatial or temporal
data distribution from one grid to another [28]. Since these data
are either point or areal based, two categories of methods are
proposed for these two types respectively.

Areal interpolation is a subset of the spatial interpolation
problem that realigns aggregates. Early methods built upon point-
based interpolation, such as point-in-polygon method, do not
follow the volume-preserving property such that reconstruction
of exactly the original aggregates of each source unit with the
transformed value of each target unit is not possible [31, 44].
It has been shown that these methods are not comparable in
approximation efficiency with those that do have the property
[31, 47]. Later methods thus introduce the property and turn
over to the area-based areal interpolation instead [12]. These
approaches depend highly on the spatial properties of the data
collection area and thus different forms of ancillary data are
introduced ever since.
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Areal weighting method, one of the early area-based areal
interpolation method, makes use of the area ancillary data avail-
able in the form of disaggregation partitions between source
and target units [13, 36]. This method is widely available in GIS
software for general users nowadays. However, it assumes even
distribution within units (homogeneity) whereas this assumption
hardly stands in reality. Areal weighting has been extended by
referring to other single known reference attributes, called dasy-
metric weighting [1, 24, 37, 43]. These methods are restricted by
the assumption of proportionality of the objective attribute to the
single reference attribute. Hence the selection of the reference
attribute is vital to the prediction accuracy and the methods are
not adaptive to different objective attributes.

The regression methods are later introduced as extensions to
the dasymetric methods allowing for multiple auxiliary variables.
In general, the regression methods involve a regression of the
source level data of the objective attribute on the values of the
references in target units. For this track of methods, more ad-
vanced techniques such as EM algorithm,Monte Carlo simulation,
smoothing techniques[9, 11, 31, 45, 46, 48], etc., are introduced
later in the literature. However, they make different assumptions
of density distribution within units, some of the mostly used ones
are Poisson distribution and binomial distribution, and their per-
formances are rather assumption dependent [30] and auxiliary
variable dependent. Recently, more complicated regression mod-
els [35, 39, 40] are developed based on domain knowledge such
as spatial correlation. However, they lack general applicability to
heterogeneous target attributes and are hard to implement for
practitioners.

These approaches can also be categorized as extensive or inten-
sive approaches based on their approximation target. Extensive
approaches approximate asto while intensive ones approximate
f sto . Most approaches for solving the areal interpolation problem
are intensive approaches that build spatial statistical models for
f sto in the disaggregation step. These approaches, mostly devel-
oped in 2-D space, can be extended to higher dimensions, though
these extensions are typically non-trivial. Other major limitations
of intensive approaches include narrow scope of application and
low robustness to heterogeneous objective attributes.

Current intensive approaches for areal interpolation are not
generally applicable for aggregate interpolation due to three
main reasons. First, integration of f sto is computable in 2-D, how-
ever, it is computationally intensive in high dimensions with
complex f sto . Second, shape files are indispensable for intensive
approaches, and the probability density function for each inter-
section unit, f sto [k], is associated with the shape files of source
and/or intersection units. Further, attributes in plain tables with-
out handy shape files of target units typically fail re-aggregation.
Even if shape files are available, some of them constantly change
over time, resulting in approximation inaccuracies. Last but not
least, these approaches are not easily approachable for general
users, especially those with little technical proficiency in mathe-
matics, statistics and GIS. The f̂ sto model is built upon the spatial
knowledge of the objective attribute; however, this knowledge is
not available for all users. Further, implementations of intensive
approaches are not publicly available, making them even harder
to use.

Another limitation of intensive approaches is that they are not
adaptive to new attributes. f̂ sto models are attribute dependent
since the true f sto models for two attributes can be very differ-
ent. Another point to note is that these approaches make many

assumptions of f̂ sto . For instance, the distribution model of each
intersection unit, the choice of parameters for these distributions
and so on. Any change in these assumptions may dramatically in-
fluence the accuracy of approximation in some target unit. What
is worse, there is no efficient verification of whether they are
appropriate or not.

Extensive approaches are more generally applicable than the
intensive ones: they can be easily extended to high dimensions,
need no unit shape files, and are easy to implement. However,
existing extensive approaches make use of a single reference
attribute and are still limited in robustness. When the objective
attribute and the reference attribute does not share similar spatial
distribution, the approximated result can differ substantially from
the true aggregates in target units. Further, since they use the
same reference attribute irrespective of the objective attribute,
they are not adaptive to different objective attributes with het-
erogeneous spatial distributions.

6 CONCLUSIONS AND FUTUREWORK
In this paper, we formally define the problem of aggregate in-
terpolation in multi-dimensional space and propose GeoAlign,
an adaptive multi-reference algorithm that realigns aggregates
better than state-of-the-art approaches for real socioeconomic
datasets. Unlike existing areal interpolation algorithms, GeoAlign
requires no knowledge of spatial properties or dasymetric maps
of source and target units and is thus generally applicable for
plain aggregate tables. Our experiments show that GeoAlign is
making better predictions in a reasonably short time. Its runtime
scales linearly with the number of units in source and target lev-
els, and is robust to noisy references evenwhen limited references
are available.

A potential future direction is to extend this work into an
automatic aggregate data integration system that joins multiple
aggregate tables without user intervention.
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ABSTRACT
The concept of similarity is used as the basis for many data ex-
ploration and data mining tasks. Nearest Neighbor (NN) queries
identify the most similar items, or in terms of distance the closest
points to a query point. Similarity is traditionally characterized us-
ing a distance function between multi-dimensional feature vectors.
However, when the data is high-dimensional, traditional distance
functions fail to significantly distinguish between the closest and
furthest points, as few dissimilar dimensions dominate the dis-
tance function. Localized similarity functions, i.e. functions that
only consider dimensions close to the query, quantize each dimen-
sion independently and only compute similarity for the dimensions
where the query and the points fall into the same bin. These quanti-
zations are query-agnostic. There is potential to improve accuracy
when a query-dependent quantization is used.

In this paper we propose a Query dependent Equi-Depth (QED)
on-the-fly quantization method to improve high-dimensional sim-
ilarity searches. The quantization is done for each dimension at
query time and localized scores are generated for the closest p frac-
tion of the points while a constant penalty is applied for the rest
of the points. QED not only improves the quality of the distance
metric, but also improves query time performance by filtering out
non relevant data. We propose a distributed indexing and query
algorithm to efficiently compute QED. Our experimental results
show improvements in classification accuracy as well as query
performance up to one order of magnitude faster than Manhattan-
based sequential scan NN queries over datasets with hundreds of
dimensions.

1 INTRODUCTION
Nearest Neighbor (NN) searches over high-dimensional data are
ubiquitous in information retrieval, machine learning, and multi-
media data mining. These searches are often performed through k
nearest neighbor (kNN) queries over multi-dimensional feature
vectors. Spatial and multimedia objects can be represented as
feature vectors characterizing their shape and/or content. Social
network data objects, for instance can be represented by links
with other data objects, history actions, preferences, etc. Applica-
tion domains such as spatial data-bases[8], computer vision [5],
multimedia and social network applications [29] can all benefit
from a more efficient method for finding nearest neighbors in high
dimensional spaces.

However, due to the rapid advancements in data generation
and collection, it is increasingly challenging to process similarity
searches in a rapid and meaningful way on these larger and more
complex datasets. Existing methods for finding nearest neighbors

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the 21st
International Conference on Extending Database Technology (EDBT), March 26-29,
2018, ISBN 978-3-89318-078-3 on OpenProceedings.org.
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license CC-by-nc-nd 4.0.

using tree-based indexing for spatial data [36] and low dimen-
sional data [13, 23, 24], suffer from the curse of dimensionality
when applied to high-dimensional spaces. Moreover, not only pro-
cessing time degrades, but also the ability to characterize similarity
using a distance function for high-dimensional spaces is greatly
reduced[3]. The reason is that distances between data points in
high-dimensional spaces, are usually very concentrated around
their average [7]. This makes it difficult to distinguish between
the closest and furthest data points [3].

To overcome this limitation, localized distance functions [1, 37,
39] have been proposed in the literature. These functions only con-
sider dimensions that are close to the query point to characterize
similarity providing a better distinction between closer and further
points and often improving the accuracy of the results. The IGrid
index [1] efficiently supports the computation of a partial distance
called PiDist and its performance scales well for high dimensional
data. IGrid pre-process the data and define equi-populated par-
titions (bins) over each dimension independently. The points in
these partitions are then mapped to buckets and only the points
that fall into the same bucket as the query point are considered
similar for that dimension. The points with the largest cumula-
tive similarity are then retrieved after all dimensions have been
processed. As stated in the paper, the accuracy of the results are
affected by the binning strategy and the number of bins used.

In this paper, we expand on the ideas proposed in [1, 15] and
define a query-dependent quantization strategy that further im-
proves the accuracy of the results. The main idea is to use the
query itself to determine a range for which the points falling
within are considered similar. Note that considering a fixed in-
terval around the query value for each dimension is not a viable
option. Since the distribution of each attribute varies, a small in-
terval could yield empty bins, while a large interval could include
all the points. Determining the range needs to consider the data
values in the attribute. We want to define a bin for each dimension
where the number of points is roughly the same for each dimen-
sion. This novel function, called Query dependent Equi-Depth
(QED) quantization, can be used with traditional distance func-
tions (e.g. Euclidean, Manhattan) to improve their accuracy in
high-dimensional spaces. In order to efficiently support QED over
big-data, we design a distributed indexing and efficient query algo-
rithm. The proposed approach includes the usage of compressed
bitmap-based indexing and low level parallel bitwise operations.

Our approach does not require any pre-computations for quan-
tization, or excessive storage or memory. On the contrary, the
index requires less storage than the data itself. The index and
query algorithms are designed for parallelism and can run on
centralized systems as well as cluster systems. In this work we
evaluate the distributed indexing and query processing on a Spark
cluster, however it is suitable for other distributed environments
as well. With QED quantization, as shown in our performance
evaluation we observe an improvement in query time of up to one
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order of magnitude when compared to Sequential Scan on high
dimensional data.

We also evaluated the kNN classification accuracy of the pro-
posed QED quantization on a set of nine high-dimensional datasets
and observed an average improvement in accuracy of 2.4% for
Manhattan distance and 10.95% for Hamming distance when using
QED quantization.

The primary contributions of this paper can be summarized as
follows:

• We present a bitmap-based, distributed index for answer-
ing similarity searches and nearest neighbor queries. The
cumulative distance is computed in parallel through an op-
timized distributed aggregation that uses task mapping by
slice depth at its core.

• We formalize the cost for the distributed aggregation and
optimize the partition size to balance the memory shuffling
and parallel processing trade-off.

• We propose a novel Query dependent Equi-Depth quantiza-
tion (QED) for improved similarity searches. This dynamic
quantization not only improves accuracy but also execution
time because it reduces the amount of data processed by
only considering, for each dimension, the closest points to
the query.

• We introduce a power function using the number of tuples
and the number of dimensions as a heuristic to determine
the number of points that are considered similar in each
dimension and empirically evaluated it.

• We evaluate the kNN classification accuracy of QED on
a number of labeled real datasets and the performance of
the proposed index and query algorithms in a distributed
setting.

The rest of the paper is organized as follows. Section 2 presents
related work on NN searches. Section 3 describes the index struc-
ture, the proposed quantization, and the parallel query optimiza-
tion for similarity searches. Section 4 provides an experimental
evaluation of QED over a Spark/Hadoop cluster. Finally, conclu-
sions are presented in Section 5.

2 RELATED WORK
This section presents related work for high-dimensional similarity
searches and nearest neighbor queries. The most recent exact
nearest neighbor searches are using localized similarity functions.
While some of the most recent approximate nearest neighbor
searches use hashing or product-quantization techniques.

2.1 High-dimensional Similarity using Localized
Functions

As described in [37], for high-dimensional applications where
human cognition is the target judge of object similarity, it is more
important to closely match a subset of attributes rather than pro-
vide some least total distance measurement over all the attributes.
The similarity function, called Dynamic Partial Function (DPF)
[37], considers only the smallest N distances between all dimen-
sions to compute the similarity. Since the method is so sensitive to
N , the k-N-match problem is introduced in [37] and the authors
propose the use of a frequent k-N-match algorithm, where the
most frequent k objects appearing in the k-N-match solutions for
a range of N values. It is worth noting that DPF is not a distance
since the triangle inequality does not hold.

In [1], quantization was used to create equi-populated parti-
tions for each dimension to bound the worst case performance

of the query. Quantization has been widely used to improve the
accuracy of classifiers and clustering algorithms as it reduces the
noise of the data and simplifies the models. Supervised methods
use the class label and a training dataset to make an informed
decision about the optimal split points. Unsupervised methods
rely solely on the statistics collected about the data. Examples
of unsupervised methods are equi-width (divide into intervals of
the same length) and equi-populated or equi-depth (divide into
intervals with the same number of data objects). Examples of
supervised methods are entropy-Minimum Description Length
Principle (MDLP) [9], chi-merge [25], class-attribute interdepen-
dent maximization (CAIM) [26], and Class-attribute Contingency
Coefficient (CACC) [38], among others. A detail survey of quan-
tization methods can be found in [11].

After quantization, each attribute is represented using discrete
values and points are considered “close” if they fall into the same
bin. Hamming distance is the preferred distance metric for discrete
domains and is defined as:

Hamm(x, y) =
d∑

i=1

{
0 ifxi = yi
1 otherwise

where x and y are the high-dimensional quantized vectors, d
is the number of dimensions and xi denotes the value of x for
dimension i. The evaluation of the Hamming function produces
discrete values in the range [0,d]. This is a source of ambiguity
when defining similarity as the distance score is the same for an
increasing number of nearest neighbors. To break these ties a
weighted hamming distance function can be used. PiDist [1]
computes the normalized Manhattan distance over the continuous
values for the dimensions where the two points fall into the same
discretization range. When equi-populated ranges are used, the
attribute is forced to follow a uniform distribution and the distance
between the continuous values is used to capture similarity.

PiDist is defined as:

PiDist(X ,Y ,kd ) =


∑

i ∈S [X ,Y ,kd ]

(
1 −

|xi − yi |

mi − ni

)p 
1
p

where kd is the number of splits for each dimension, S [X ,Y ,kd ]
is the set of dimensions for which the two objects lie in the same
range, and mi and ni are the upper and lower bounds of the
corresponding range in dimension i.

This function accumulates benefit for each attribute for which
a data object maps to the same quantization as the query object.
It does not differentiate between data and query objects that do
not map to the same quantization. Therefore, a data point is not
excessively penalized for a few dissimilar attributes.

2.2 Approximate nearest neighbor searches
Given the difficulty of answering exact nearest neighbor searches,
approximate nearest neighbor searches were introduced to solve
the NN problem in high dimensional spaces [10, 12, 20–22]. Local
Sensitive Hashing (LSH)[12] hashes the data so that similar items
fall into the same buckets. However, data sets are typically not
distributed uniformly over the space, and as a result, the buckets of
LSH are unbalanced, causing the performance of LSH to degrade.
Data Sensitive Hashing (DSH) [10] aims to keep the buckets
balanced with the help of a new hash family, while preserving the
nearest neighbor relations.

Hashing techniques require the pre-computation of the hash
tables without prior knowledge of the query. The accuracy of a
similarity search is determined by the number and the quality of

374



Raw Data Bit-Sliced Index (BSI) BSI SUM
Attrib 1 Attrib 2

Tuple Attrib 1 Attrib 2 B1[1] B1[0] B2[1] B2[0] sum[2] sum[1] sum[0]
t1 1 3 0 1 1 1 1 0 0
t2 2 1 1 0 0 1 0 1 1
t3 1 1 0 1 0 1 0 1 0
t4 3 3 1 1 1 1 1 1 0
t5 2 2 1 0 1 0 1 0 0
t6 3 1 1 1 0 1 1 0 0

Figure 1: Simple BSI example for a table with two attributes and three values per attribute.

the hash functions along with other tuning parameters. A higher
number of hash functions can result in higher a probability of
grouping similar objects together, however this can also result in a
significant storage overhead. Moreover, with addition of new data,
the hash index has to be re-computed. While QED uses some of
the same concepts by projecting data into smaller ranges, it does
not come with the storage overhead required by the hash index,
and uses the query directly for data projection. Moreover, QED is
an exact similarity function.

We compare QED against a distributed LSH 1 implementation
and show that QED could present advantages in terms of smaller
index size, and better accuracy for some applications.

3 DISTRIBUTED QED FOR HIGH
DIMENSIONAL SIMILARITY SEARCHES

Consider a relation R and query vector Q . Every object in R is
represented bym attributes or numeric scores. The query vector
Q = {q1, . . . ,qm } is also represented bym values. The task is to
find the k most similar objects to Q in R. This k nearest neighbor
(kNN) query can either compute the similarity between each data
object and the query and retrieve the k objects with the highest
score or, inversely, compute the distance between each object and
the query and retrieve the k objects with the smallest distance.

In high dimensional spaces however, many distance functions
such as Manhattan and Euclidean metrics are not as effective and
the quality of the answer returned by the kNN query degrades. The
reason these functions are directly affected by the dimensionality
of the data lies in the fact that the dominant components are the
dimensions for which two points are farthest apart. With higher
dimensionality, the probability of having high discrepancies be-
tween two points in at least one dimension increases. The authors
of [1, 3] show that for Lp -norm distance functions, the averag-
ing effects of the different dimensions start predominating with
increasing dimensionality. To prevent this, the authors of PiDist
[1] show that imposing a proximity threshold for each dimension,
beyond which the degree of dissimilarity is not relevant, could
improve accuracy in nearest neighbor and similarity searches.

They achieve this by quantizing the indexed space into a fixed
number of bins which are either equi-width or equi-depth (equi-
populated). These quantizations are performed over the dataset
without considering the query points. Even when a query point
lies close to the boundary of a bin, only the points within the bin
are considered for computing the similarity. In this section we
describe a novel equi-depth quantization method that considers
the query value for defining the bin boundaries and it is done
on-the-fly during query execution.

1https://github.com/mrsqueeze/spark-hash

3.1 Bit-sliced indexing
In order to efficiently support QED over large datasets, we design
a distributed indexing and efficient query algorithm. The proposed
approach includes the usage of compressed bit-vector indexing
and low level parallel bitwise operations. As shown previously
[16, 18], this setup can leverage SIMD instructions and use the
processing hardware more efficiently, for arithmetic operations.

Bit-sliced indexing (BSI) was introduced in [30], and it encodes
the binary representation of attribute values with binary vectors.
Therefore, ⌈log2values⌉ vectors, each with a number of bits equal
to the number of records, are required to represent all the values
for a given attribute.

Figure 1 illustrates how indexing of two attribute values and
their sum is achieved using bit-wise operations. Since each at-
tribute has three possible values, the number of bit-slices for each
BSI is 2. For the sum of the two attributes, the maximum value is 6,
and the number of bit-slices is ⌈log2 6⌉ = 3. The first tuple t1 has
the value 1 for attribute 1, therefore only the bit-slice correspond-
ing to the least significant bit, B1[0] is set. For attribute 2, since the
value is 3, the bit is set in both BSIs. For example, the addition of
the BSIs representing the two attributes is done using efficient bit-
wise operations. First, the bit-slice sum[0] is obtained by XORing
B1[0] and B2[0]: sum[0] = B1[0] ⊕B2[0]. Then sum[1] is obtained
in the following way: sum[1] = B1[1]⊕B2[1]⊕ (B1[0]∧B2[0]). Fi-
nally sum[2], which is the carry, ismajority(B1[1],B2[1], (B1[0]∧
B2[0])), wheremajority(A,B,C) = (A ∧ B) ∨ (A ∧C) ∨ (B ∧C).

BSI arithmetic for a number of operations, including the addi-
tion of two BSIs, is defined in [34]. Previous work [19, 33], uses
BSIs to support preference and top k queries efficiently. BSI-based
top k for high-dimensional data [16, 19] was shown to outperform
current approaches for centralized and distributed query process-
ing. In this work we adapt the distributed BSI query processing
for NN queries. Furthermore, each individual bit-vector is com-
pressed. The compression mechanism is described in section 3.6.

3.2 Query Dependent Equi-Depth Quantization
Further in this section we describe a novel function, called Query
dependent Equi-Depth (QED) quantization, which can be used
with traditional distance functions (e.g. Euclidean or Manhattan)
to improve their accuracy in high-dimensional spaces. QED is im-
plemented using a distributed bitmap-based index, and is designed
with performance considerations in mind.

The main idea with localized functions is that for each dimen-
sion, if the data point has its respective dimension within threshold
x then the distance to the query is considered for that dimension
otherwise a dissimilarity penalty larger than x is assigned.

For this work, instead of directly specifying x , we consider
parameter p as the minimum number of data points that should
be contained within the query bin boundaries. Parameter p is
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Figure 2: High level system overview

expressed as a percentage. Given the query value for dimension i,
qi , we find the ⌈pn⌉ smallest distances to qi and define a similar
bin around the query point.

To illustrate the proposed dynamic quantization, consider a
1-dimensional dataset with values:

{{r1, 9}, {r2, 2}, {r3, 15}, {r4, 10},
{r5, 36}, {r6, 8}, {r7, 6}, {r8, 18}}

and query {q, 10}. If using Manhattan distance, the distance be-
tween the data points and the query are:

{{r1, 1}, {r2, 8}, {r3, 5}, {r4, 0},
{r5, 26}, {r6, 2}, {r7, 4}, {r8, 8}}

For QED, if parameter p = 0.35 (35% of the population), only
the 3 points with the smallest distances, i.e. {r1, r4, and r6}, will
be considered according to their distance. The rest of the points
will be given a larger penalty δi to characterize a large dissimilarity.
This normalization of the larger differences gives point r5 a chance
to make it as a NN in the cases where there are other many
dimensions for which r5 is really close to the query.

The value of the penalty, δi , can be assigned a constant larger
than the distances computed within the query-dependent interval
for each dimension. In the case of PiDist, the penalty assigned
to dissimilar points is 1 and the distance for similar points is
normalized to less than 1. Another approach could be to make δi
to represent a number larger than the largest distance between the
query and the closest p elements in dimension i.

Equation 1 shows the Manhattan distance between a data point
a and the query q after applying the QED quantization.

QEDManhattan(a, q) =
d∑

i=1

{
| ai − qi | ifa ∈ Pi

δi otherwise
(1)

Where Pi is the subset of points closest to the query in dimen-
sion i, and δi is the penalty for the points outside the similar range
in dimension i.

Performing QED for kNN queries without an index would slow
the execution time, as it needs to dynamically compute a range
for each dimension based on the query, in addition to computing
the distance. We choose to implement QED on top of a bit-sliced
index because BSI provides a compact representation of numeric
values and an implicit ordering of the values as the set bits in the
most significant bit-slice represent the largest values. In the next
section we show how using the BSI index can in fact improve the
performance of the kNN query.

3.3 Distributed Bit-Sliced Index (BSI)
Figure 2 depicts a high level overview of the proposed system.
There are two main components: the indexing module and the
query engine. The indexing module encodes each attribute into
a bit-sliced index (BSI), compresses and partitions them, and
generates the metadata required by the query engine to ensure
correctness of the execution plan. The query engine encodes the
user query into a BSI, runs the distributed kNN query, and returns
the k nearest neighbors to the query.

We support both vertical (a subset of the attributes) and horizon-
tal (a subset of the rows) partitioning. Distributed query algorithms
are developed to minimize shuffling, improve load balancing, and
maximize cluster utilization. For this work, we use Apache Spark
and its Java API to distribute the workload across the cluster.

3.3.1 Indexing. Let us denote by Bi the bit-sliced index
(BSI) over attribute i. Bi [j] is a binary vector containing n bits
(one for each tuple), where j represents the jth bit in the binary
representation of the attribute value. j can hold a value between
0 and the number of slices s used to represent values from 0 to
2s − 1. The bits are packed into words, and each binary vector
encodes ⌈n/w⌉ words, where w is the computer architecture word
size (64 bits in our implementation).

For every attribute i in R we create a Bit-sliced index Bi . The
BSI index is then partitioned and distributed across the nodes of a
cluster. The BSIAttr class serves as a data structure for an atomic
BSI element included in a partition. Each partition can include
one or more BSIAttr objects. A BSIAttr object can represent all
the attribute tuples (in the case of vertical-only partitioning) or
only a subset (in the case of horizontal, or vertical and horizontal
partitioning). Furthermore, a BSIAttr object can carry all of the
attribute bit-slices or only a subset of them. The BSIAttr metadata
generated includes information regarding the data type, encoding,
number of slices, partition mapping. An example of attribute
partitioning and use of metadata for partition mapping is shown
in Figure 3.

We extended the BSI to handle signed numbers (both 2’s com-
plement and sign and magnitude) and represent decimal numbers
using a fixed point format for each attribute. For every decimal
BSI, the position of the decimal point is maintained as metadata
for the attribute. To perform arithmetic operations between two
attributes with different precision, namely a and b, where a > b,
the decimal point for the second attribute is moved (a − b) posi-
tions by multiplying the second attribute by the appropriate power
of 10. Multiplication by a constant, as in this case, can be done
efficiently by adding the logically shifted BSI to the original BSI
for every set bit in the binary representation of the constant.
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Figure 3: Example of vertical and horizontal partitioning of
a BSI Attribute.

At query time, a BSI index is also generated for each partition
using the attribute values in the query. Since the query value is
constant, compressed bit-slices of all 0s or all 1s are used to
generate a BSI with as many bits as objects in the partition in
order support the bit-wise operations between the query and the
BSIAttr . The hybrid query execution model [14] allows us to
operate compressed and verbatim bit-vectors together and the
results are dynamically compressed/decompressed as needed.

3.3.2 Query Engine. For developing the distributed algo-
rithm we identified three main steps in the kNN query processing:
compute the distance between the query Q and each BSIAttr ,
accumulate the partial distances for all dimensions, and retrieve
the k closest points as the answer to the query. For an efficient
execution of these three steps we are proposing a dynamic query
aware quantization method called QED, and integrate it with al-
gorithms for parallel execution of BSI arithmetic operations. In
the following sections we describe in more detail the different
components of the query engine.

3.4 Distributed kNN Query Processing
Most parts of the three-step process described earlier must be exe-
cuted in parallel for achieving good scalability and performance.
The computation of the absolute value of the difference between
the query and each attribute BSI for all dimensions in parallel, ag-
gregating all the distances into a single SUM_BSI also in parallel,
and performing the top-k operation over the result BSI (can be
executed in a single node or in parallel). We apply the same slice
mapping distributed BSI aggregation developed for preferences
queries [16]. This approach, described next, outperforms other
parallel baseline implementations such as tree-reduction (adding
pairs of BSIs together and using multiple reduce rounds) and its
optimization Group Tree Reduction that reduces together groups
of BSIs to reduce the number of rounds and the amount of data
shuffled.

3.4.1 SUM_BSI Using Slice Mapping. It is true that the
compact representation of the BSI makes the baseline implementa-
tions highly competitive versus their array counterparts. However,
most of the performance gains, if not all, come from the reduced
size of the BSI, and not necessarily because the algorithms are
efficient. We propose an aggregation algorithm that promotes the
bit-slices as the processing data units and applies the lessons-
learned in computer arithmetic optimization to further improve

the performance of the parallel aggregation. The basic idea of
this approach lies in the use of the bit-slice depth as the mapped
key and implement a two-phase aggregation algorithm, shown
in Figure 4. In the first phase, the slices are added by bit-depth,
producing a weighted partial sum BSI. In the second phase, all the
partial sums are added together in a method similar to a carry-save
adder.

Consider a dataset where m = 128 attributes are added using
10-nodes. Let us now assume that each attribute’s value is within
1M = 220, so every attribute i can be further partitioned into a set
of 20 vertical bit-slices: {Bi [d] | 19 ≥ d ≥ 0}. In the proposed
two-phase algorithm, the first task is to map all the bit-slices with
the same depth (d) to a single node. Then addition is performed
over 128 BSIs containing only 1 slice each, producing 20 partial
sum BSIs. Each partial sum is in the range [0, 128] and would
require at most 8 slices. Next, these partial sums are added using
their original depth d as their “weight.” For example, the partial
sum for the bit-slices of depth d = 2 would have a weight of
2d = 4. Because the weight is always a power of 2, this weighting
scheme can be done efficiently by bit-shifting. Since the BSIs are
stored column-wise, this shift can be represented using an offset
and never materialized.

It is also possible to perform the parallel aggregation using
groups of bit-slices to reduce data shuffling. In the previous ex-
ample, with a group size of д = 2, we could have slices 0 and 1
from all 128 attributes added together in the same node during the
first stage. This ability to group the slices and divide the attributes
(e.g., half of the depth 0 slices added in one node and the other
half in another), allows us to balance the load and keep all the
nodes busy longer.

For clarity in describing our algorithms, we use the example
illustrated in Figure 4. In the first phase, every BSI attribute has its
slices mapped locally to based on their depth d . The splitting of the
BSI attribute in individual bit-slices allows for a finer granularity
of the indexed data and for a more efficient parallelism during
the aggregation phase. The pseudo-code of the mapping step is
shown in the first Map() function of Algorithm 1. Every mapper
has a BSIAttr (containing multiple slices) as input, and outputs
a set of BSIAttrs that contain one bit-slice each. These bit slices
are mapped by their depth in the input BSIAttr . Although there
is an overhead associated with encapsulating each bit-slice into a
BSIAttr , by creating a higher level of parallelism, we also achieve
better load balancing and resource utilization.

Still in the first phase, the aggregation is done by the Reduce-
ByKey() function of Algorithm 1. In this step, all the bit-slices
with the same key (depth) are aggregated into a BSIAttr . Line 9
of Algorithm 1 performs the summation of two BSIs. We use the
same addition logic as the authors in [35]. However, we achieve
a parallelization of the BSI summation algorithm by splitting the
BSIAttr into individual slices and executing their addition in par-
allel similarly to a carry-save adder. The offset of the resulting
BSIAttrs are saved in the o f f set field of each BSIAttr object to
ensure the correctness of the final aggregated result. The summa-
tion is optimized by aggregating the bit-slices on the same node
first, then on the same rack, and then across the network. Thus,
trying to minimize the network throughput. The aggregation by
depth is done locally first.

After aggregating partial local results, the second phase initi-
ates to complete the aggregation by depth through shuffling the
partial sums and reducing by their depths. The final step of the
aggregation is done by reducing all the BSIs (pSum) produced in
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Figure 4: SUM_BSI Using Slice Mapping Example

the previous ReduceByKey() stage, regardless of their key. The
final result (attSum) of this reduce phase is a single BSI attribute
in the case of vertical only partitioning, or a set of BSI attributes,
that should be concatenated, in the case of vertical and horizontal
partitioning. Concatenation is straight forward, as each BSI in a
partition has the same number of bits corresponding to the same
rowIds.

3.4.2 Cost Estimations and Query Optimization. It is
possible to estimate the complexity of the two-phase distributed
aggregation and the expected amount of data shuffling. These
estimations can help in choosing the most optimal partitioning
strategies (group slicing) for the distributed aggregation, thus
finding the best compromise between parallelism and the cost of
network communication.

Note that the mapping in the first phase (Figure 4) does not
produce any shuffling since it aggregates only the slices from
attributes found on the same node. Data shuffling occurs twice in
our two-phase aggregation. The first time is between the reducers
of phase 1 and the mappers of the phase 2, and the second time
data is shuffled between the mappers and reducers of the second
phase. The amount of data shuffled depends on the number of
nodes, partitions, tasks (or the number of attributes per task), and
the number of slices per group. The number of slices per group
can vary from 1 to s, where s is the highest number of slices per
attribute in the dataset. In Figure 4 the slices are mapped into
groups of one.

In order to determine the amount of data shuffled between the
phase 1 and the phase 2, we should find first the number of outputs
created by the reducers of phase 1. Given m attributes with s
maximum slices per attribute, a attributes per node, and д slices
per group, each node produces s

д partial aggregations by depth.
The size of each of these partial aggregations is in the worst case:⌈

log2(д + a)
⌉

(2)

This represents the number of slices each partial aggregation
by depth contains after the reduce phase 1. The total number of

slices shuffled at this stage is:

Sh1 =

[
(min

(⌈
s

д

⌉
,
⌈m
a

⌉)
− 1

]
·

⌈m
a

⌉
·
⌈
log2(д + a)

⌉
(3)

Algorithm 1: Two phase distributed BSI aggregation by slice
depth

Map(): //Map slices by depth
begin

Input: RDD<BSIAttr> indexAtt
Output: RDD<Integer, BSIAttr> byDepth

1 int sl iceDepth=0;
2 while indexAtt has more slices do
3 bsi = new BSIAttr();
4 bsi .add(indexAtt .nextSlice());
5 byDepth.add(new Tuple(sl iceDepth, bsi));
6 sl iceDepth++;
7 end
8 return byDepth

end
ReduceByKey()://Reduce by depth - first reduce phase
begin

Input: RDD<Integer, BSIAttr> byDepth1, byDepth2
Output: RDD<Integer, BSIAttr> pSum

9 pSum = byDepth1.SUM-BSI(byDepth2);
10 return pSum

end
Map():
begin

Input: RDD<Integer, BSIAttr> par tSum
Output: RDD<BSIAttr> pSum

11 pSum = par tSum._2();
12 return pSum

end
Reduce(): //Second reduce phase
begin

Input: RDD<BSIAttr> pSum1, pSum2
Output: RDD<BSIAttr> sumAtt

13 sumAtt = pSum1.SUM-BSI(pSum2);
14 return sumAtt

end
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The mappers of the second phase produce s
д outputs, each with

the size: ⌈
log2(д + a)

⌉
+
⌈
log2(

m

a
)

⌉
=

⌈
log2

(д + a)m

a

⌉
(4)

The total number of slices shuffled between the mappers and
reducers of the second phase is:

Sh2 =

(⌈
s

д

⌉
− 1

) ⌈
log2

(д + a)m

a

⌉
(5)

The total amount of data shuffled is the sum of the results from
Equations 3 and 5:

Sh = Sh1 + Sh2. (6)

The amount of data shuffled decreases as д - the number of
slices per group increases, or as a - the number of attributes per
node increases. However, less data shuffling means a higher load
on individual tasks. We further analyze the time complexity for
each individual task, and its impact on the total query time in the
two-phase distributed aggregation.

The cost of summing two BSI attributes is linear on the number
of slices and the number of rows in the attributes. If v is the
number of slices of the attribute with a higher number of slices,
then the cost of adding the two attributes is equal to the cost of
executing v bitwise logical operations between two vectors. Given
that the number of slices per group is a constant, д is the number
of slices for each depth-shifted attribute in the reduce phase 1.
Adding all the depth-shifted attributes within one node has the
following complexity:

T1 =

log2 a∑
i=1

(д + i). (7)

There are m
a partial sums with the same key per task, to com-

plete the aggregation of partial sums shifted by depth. Thus the
cost of this aggregation is:

T2 =

⌈log2m/a⌉∑
i=1

(
д +

⌈
log2 a

⌉
+ i

)
(8)

Finally, the cost of aggregating the partial sums shifted by depth
into one final attribute, is given by:

T3 =

⌈log2 s/д⌉∑
i=1

(
д +

⌈
log2 a

⌉
+
⌈
log2

m

a

⌉
+ i

)
(9)

When taking into consideration the time complexities from
Equations 7, 8, and 9, one must account for the different number
of tasks executed in these three steps. For example, if T1 has a
weight of one, i.e.WT1 = 1, then the number of tasks for T2 and
T3 is different. ForWT1 = 1, the weight for T2 is:

WT2 =
1

⌈ma ⌉
(10)

since there are fewer tasks for T2 than T1 by a factor of m
a .

While the weight for T3 is:

WT3 =
1

⌈ma ⌉ ⌈
s
д ⌉

(11)

In this case, there are s/д fewer tasks than in the previous step.
Using the time complexities discussed above, together with the

data shuffle estimations, it is possible to find the optimum values
for the number of slices per group (д) and the number of initial
tasks/attributes per task.

3.5 QED over the distributed BSI
QED can be done gracefully with the BSI index without imposing
any overhead when compared to the computation of the Manhattan
distance without indexing, as shown in Algorithm 2. We operate
on top of a BSI index representing the distance between the query
and the data points in each dimension. Thus we define the penalty
δi as the truncation of the most significant bits for the largest
distances as depicted in Figure 5.

Algorithm 2: QED Quantization
Input: BSI A, int p
Output: BSI S

1 BitSlice penalty = (A[A.size − 2] XOR A.siдn);
2 for (i = A.size − 2; i >= 0; i − −) do
3 penalty = (penalty OR (A[sSize] XOR A.siдn));
4 if penalty.count() >= n − p then
5 sSize = i;
6 break;
7 end
8 end
9 BSI S = new BSI(sSize);

10 for (i = 0; i < sSize; i++) do
11 S[i] = (A[i] XOR A.siдn);
12 end
13 S .addSlice(penalty);
14 return S

QED can be included in the calculation of the absolute value
of the distance between query and each dimension as shown in
Algorithm 2. In datasets with large attribute ranges, the output
of Algorithm 2 is significantly smaller in size than the size of
the actual distance measures, for most distributions. This is very
important because the result of this operation is further processed
to aggregate and rank similar objects. As a result of reducing
significantly the output size of this step, the overall execution
time of the kNN query is generally improved. The number of
bit-vectors required to encode a difference attribute is equal to the
number of bits required to encode the difference range. Where the
difference range is the maximum difference between the query
dimension and the same dimension of any of the ⌈pn⌉ tuples, and
their minimum difference.

In large datasets where the number of tuples is high, p should
typically be small, and most of those p closest tuples are much
closer than the attribute range. Thus the reduction in size of the
result of Algorithm 2. A more detailed discussion on parameter p
follows in section 3.5.1.

For a better understanding of Algorithm 2, we show how the
distance BSI attribute between the query and the data points used
in our previous running example is quantized using QED in Figure
5. For simplicity, all the distances are positive in Figure 5 (leftmost
BsiAttribute). Starting from the most significant bit-slice, the bit-
slices in the distance attribute are OR-ed until the count of set-bits
in the resulting bit-slice (the penalty bit-slice) is equal or greater
than (n − p). At this point the bit-slices that were operated are
dropped and replaced with one single penalty bit-slice.

The effect of this quantization is the identification of the fur-
thest (n − p) points from the query for one given dimension, and
reducing their distance, while keeping an accurate distance for the
close points. Hence avoiding over penalizing a point if only a few
dimensions are far from the query.
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Figure 5: Query dependent Equi-Depth(QED) quantization with population range p = 35%

Figure 5 and Algorithm 2 use Manhattan distance along with
QED quantization. However it is also possible to use other distance
metrics such as Euclidean or Hamming.

Equation 12 shows the Hamming distance between a data point
a and the query q after applying the QED quantization.

QEDHamming(a, q) =
d∑

i=1

{
0 ifa ∈ Pi

1 otherwise
(12)

Where Pi is the subset of points closest to the query in dimen-
sion i.

3.5.1 Estimating parameter p. The main idea of QED is to
use the query itself for determining a range in which the points
falling within are considered similar. Determining this range needs
to consider the data values in the attribute. Thus we want to define
a bin for each dimension where the percentage of points p in each
bin is roughly the same for each dimension. We define p as a
fraction of the total number of rows n in the dataset.

The value of p is directly influenced by the data dimensionality
and the total number of rows in the dataset. Intuitively, for large
datasets with a large number of tuples, p should be small, as even
a small p would represent a large number of candidate points.
Conversely, as the number of dimensions increases, p should also
increase to prevent all the tuples from being penalized in many
dimensions.

Inspired by the Pareto principle [31], where only the vital few
produce the majority of results, we define the power function
given in Equation 13 as a heuristic to estimate p:

p̂ =
( m

m + n

) 1
lg(n) (13)

For this power distribution, we use the number of attributes, m,
as the scale, and the number of tuples, n, to derive the shape. We
made the power function m

m+n to guarantee a number less than 1.
Figure 6 shows the estimated values of p for four datasets

with 1M, 10M, 100M, and 1B tuples as the number of attributes
increases. We empirically evaluated this estimations over two large
datasets and observed that the estimations for p were at or near the
point with maximum accuracy for the task of kNN classification.

3.6 Bitmap Compression
For further optimization, in our setup, we apply compression
to each individual bit-vector, when suitable [14]. Most types of
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Figure 6: Estimated values of parameter p for maximizing
accuracy of the kNN query results with QED

bitmap (bit-vector) compression schemes use specialized run-
length encoding schemes that allow queries to be executed without
requiring explicit decompression.

Word-Aligned Hybrid Code (WAH) [40] proposes the use of
words to match the computer architecture and make access to
the bitmaps more CPU-friendly. WAH divides the bitmap into
groups of length w − 1, where w is the CPU’s word size. WAH
then collapse consecutive all-zeros or all-ones groups into a fill
word.

Recently, several bitmap compression techniques that improve
on WAH by making better use of the fill word bits have been
proposed in the literature [27, 41], and others. Previous work have
also used varying segment lengths s within s ≤ w encoding [17].

In this work we use our recently proposed bit-vector com-
pression scheme [14], which is a hybrid between the verbatim
scheme and the EWAH/WBC [27] bitmap compression. This hy-
brid scheme compresses the bit-vectors if the bit density is below
a user-set threshold. Otherwise the bit-vectors are left verbatim.
In our experiments we begin with compressed bit-vectors if the
compressed size for the bit-vector is 0.5 or smaller than the size
of the uncompressed bit-vector. The query optimizer described
in [14] is able to decide at run time when to compress or decom-
press a bit-vector, in order to achieve faster queries. We choose
this compression scheme due to its capability of operating with
denser bitmaps, which is the case for the bit-vectors inside the
bit-sliced index, and it allows for uncompressed bit-vectors to
be operated with compressed ones. Nonetheless, it is possible to
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apply other compression models, such as the one proposed in [6].
The compression model is orthogonal to the contributions of this
work.

4 EXPERIMENTAL EVALUATION
In this section we evaluate the proposed indexing, quantization,
and distributed kNN querying algorithms in terms of classifica-
tion accuracy and query performance. When evaluating the query
speed of the kNN query with QED quantization, we set p = p̂ as
described in Equation 13. In our evaluations we use two distance
metrics with QED: QED with Manhattan distance (QED-M), and
QED with Hamming distance (QED-H).

4.1 Experimental Setup
We implemented the proposed index and query algorithms in
Java, and used the Java API provided by Apache Spark to run our
algorithms on an in-house Spark/Hadoop cluster. The Java version
installed on the cluster nodes was 1.7.0_79, Spark version 1.6.1.
and Hadoop version 2.4.0.

Our Hadoop stack installation is built on the following hard-
ware: There is one Namenode (master) server (Two 6-core In-
tel Xeon E5-2420v2, 2.2GHz, 15MB Cache; 48 GB RAM at
1333 MT/s Max). The cluster also contains four Datanode (slave)
servers (two 6-core Intel Xeon E5-2620v2, 2.1 GHz,15MB Cache;
64 GB RAM at 1333 MT/s Max). As cluster resource manager we
used Apache Yarn. The namenode and datanodes are connected to
each other over 1 Gbps Ethernet links over a dedicated switch. Un-
less otherwise noted, we use all the available hardware resources
in this cluster for running the experiments.

In our experiments we used a number of real datasets to evaluate
the proposed indexing and querying. We used nine datasets from
the UCI repository [4] for accuracy evaluation, and two larger
datasets (HIGGS[2], and Skin Data [32]) were used on the
Spark/Hadoop cluster for performance measurements. The number
of dimensions in the datasets range from 19 to 279 and the number
of classes from 2 to 24. The Skin-Images dataset contains integer
numbers (image pixel values), while the other datasets contain
real numbers. The details of the characteristics of the data and the
class distribution can be found in Table 1.

Dataset Rows Cols Classes
anneal 798 38 5
arrhythmia 452 279 13
dermatology 366 33 6
higgs 11M 28 2
horse-colic 300 26 2
ionosphere 351 33 2
musk 476 165 2
segmentation 210 19 7
skin-images 35M 243 2
soybean-large 307 34 19
wdbc 569 30 2

Table 1: Description of the characteristics of the real datasets
used in the experiments.

4.2 QED Classification Accuracy
Classification accuracy is computed over the labeled data using
the leave-one-out methodology as the number of correct classifica-
tions divided by the total number of tuples in the data set. Voting
was used to decide the class for each data point. Table 2 shows
the best classification accuracy when using kNN classification
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Figure 7: kNN Classification accuracy as the number of near-
est neighbors (k) increases for Horse Colic dataset. (Dataset:
HourseColic, 300 rows, 26 attributes, 2 classes (99/201))

for each method. We vary the number of nearest neighbors used
in classification k = {1, 3, 5, 10}, and report the best result for
each distance function. For quantization, we apply Equi-width and
Equi-Poplulated partitioning varying the number of bins/clusters
from 3 to 20 {3, 5, 7, 10, 15, 20}. The same number of bins/clusters
was used for all the dimensions. The only case where attributes
could be quantized using a different number of bins/clusters than
the one provided as a parameter was the categorical attributes
with less categories than the number of bins/clusters provided. In
that case each value was considered as a bin/cluster. For dynamic
quantization we set p as a percentage of the number of rows.
We vary p = {60%, 50%, 40%, 30%, 25%, 20%, 10%, 5%, and 1%}.

For each function metric we report the best result, and then the
best accuracy for each dataset is highlighted in bold in Table 2.
As shown in the table, QED is able to improve the results for
Manhattan and Hamming in most datasets. QED using Manhattan
is consistently better than Manhattan with no quantization (8/9)
with up to 7.35% accuracy increase (2.4% on average). For Ham-
ming distance, QED quantization outperformed no-quantization
in 7/9 cases with up to 57.7% accuracy improvements (10.95% on
average).

4.2.1 Evaluation of Parameter k. When using nearest neigh-
bor searches for classification purposes, the number of neighbors
considered is often crucial for the accuracy of the classifier. In
this experiment we evaluate the effect of k (the number of near-
est neighbors) when QED is used in k-Nearest Neighbor (kNN)
classification.

Figures 7 and 8 show the classification accuracy for several
distance functions as the number of neighbors k increases for
two different datasets. In figure 7 for the Horse-colic dataset, the
classification accuracy increases gradually for QED (QED-M with
Manhattan distance, and QED-H with Hamming distance), while
the other distance functions are more sensitive to the value of
k. Regardless of the value picked for k, QED-H has the high-
est accuracy among the measured distance functions for kNN
classification for this dataset.

As Figure 8 shows for the Arrhythmia dataset, QED-M (with
Manhattan distance) has the highest accuracy. It is worth noting
that while the accuracy performance for other distance functions
decreases as k increases, classification accuracy for QED is not
significantly affected.

4.2.2 Evaluation of Parameter p. The p parameter deter-
mines the number of tuples for each dimension to be considered
similar for distance computation, while the other tuples get a dis-
similarity penalty. Expressed as a percentage, p falls within the
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Hamming PiDist/iGrid
Dataset Euclidean Manhattan QED-M NQ EW ED QED-H EW ED
anneal .934 .939 .964 .986 .984 .980 .994 .990 .990
arrhytmia .659 .653 .701 .602 .686 .646 .650 .695 .635
dermatology .975 .978 .986 .975 .973 .883 .921 .981 .970
horse-colic .740 .770 .783 .780 .827 .857 .867 .833 .843
ionosphere .866 .909 .943 .809 .926 .860 .920 .929 .903
musk .882 .893 .916 .819 .876 .870 .878 .868 .887
segmentation .843 .886 .881 .586 .871 .857 .924 .900 .876
soybean .873 .899 .938 .909 .912 .902 .821 .909 .922
wdbc .940 .949 .949 .692 .967 .951 .967 .961 .960

Table 2: Leave-one-out best classification accuracy using k-nearest neighbor (k ∈ {1, 3, 5, 10}) classification with different distance
functions and quantization methods (NQ=No Quantization, EW=Equi-witdth, ED=Equi-depth, QED=Query-dependent Equi-
depth). The best result for each dataset is highlighted in bold.
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Figure 8: kNN Classification accuracy as the number of near-
est neighbors (k) increases for Arrhythmia dataset. (Dataset:
Arrhythmia, 452 rows, 279 attributes, 13 classes)

interval (0, 1]. If p = 1 then the results of the kNN query are the
same for both QED-M and Manhattan distance. Clearly, the value
of p affects the accuracy of the kNN query results.

In this experiment we vary the value of p from 0.01 to 0.6 and
measure the kNN classification accuracy. We chose the two largest
of the datasets: HIGGS and Skin-Images, as a higher number of
data objects results in a more robust evaluation of p. The accu-
racy is reported after running 1000 queries obtained by random
sampling. We compare the kNN classification accuracy results of
QED against sequential scan Manhattan distance and a distributed
implementation of Locality Sensitive Hashing (LSH).

The LSH implementation and parameter choice was largely
based on the description in chapter 3 of [28]. The LSH number
of bins was set to 10000, number of hash functions: 25, and the
number of hash tables: 4. For all three methods 5 nearest neighbors
were considered for classification.

Figures 9 and 10 show the kNN classification accuracy results
as the value of parameter p varies. The filled marker is the p value
computed using Equation 13 from Section 3.5.1, and in both cases
it is at, or near the highest accuracy point.

4.3 Index size
Given the rapid advancements in data collection, not only the
data becomes more complex and harder to analyze, but also its
size requires more computational resources. As described earlier,
we make use of the BSI index to represent data in a more com-
pact form. A smaller index size should enable performance gains
through less network shuffling, fewer CPU cycles required for
processing, and less memory utilization and I/O.
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Figure 9: The impact of the p parameter on kNN classifica-
tion accuracy (Dataset: HIGGS, 11M rows, 28 attributes, 2
classes)
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Figure 10: The impact of the p parameter on kNN classi-
fication accuracy (Dataset: Skin-Images, 35M rows, 243 at-
tributes, 2 classes)

An important advantage of the BSI index is that it has a compact
size. The compression comes not only from using a lower number
of bit-slices per attribute than the number of bits used in a Long
or Double data type, but also from compressing each individual
bit-slice (where beneficial) using a hybrid bitmap compression
scheme [14]. The compression of the bit-slices occurs only if it
can improve the query performance.

Figure 11 shows the size of the BSI index in comparison with
the size of the raw data, the LSH index, and the PiDist (10 and 20)
index for the HIGGS and Skin Images datasets. Five LSH hash
tables were generated using 25 hash functions and 10,000 bins.
PiDist-10 refers to the PiDist index with the bin size of 10, while
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Figure 11: Index sizes for the HIGGS and Skin-Images
datasets.

PiDist-20 has the bin size of 20. These are some of the bin sizes
that where shown to perform well in [1].

The Skin Images dataset has a higher compression ratio than
HIGGS when compared to the raw data size. This is mostly due to
the low cardinality of this dataset, which has RGB encoded pixel
values. The HIGGS dataset requires approximately 60 slices per
attribute to encode its values, while the Skin Images dataset only
requires 8 bit-slices per attribute (values from 0 to 255).

Because the BSI index does not require accesses to the raw
data, and due to its small size, it is possible to fit more information
into memory and less network communication is required when
the kNN queries are performed in a distributed setting.

4.4 Performance impact of data cardinality
Given that the BSI index is sensitive to data cardinality, we set up
to measure the scalability of the QED quantization method when
compared to running NN searches over the BSI index without
QED quantization. We use the HIGGS dataset for this experiment
as its data has high cardinality. We vary the number of bit-slices per
attribute for indexing from 15 to 60. Note that while it is possible
to encode any attribute with any number of slices, using less than
⌈loд2ci ⌉ slices, where ci is the attribute cardinality, results in a
lossy compression where the values are approximated to some
degree. This approximation however, could have little effect on
the kNN classification accuracy depending on the dataset. The
evaluation of the BSI approximation is left as a subject for future
work.

The query time is reported in milliseconds per query, and was
obtained by averaging the kNN classification query times over
1000 queries. As Figure 12 shows, with the increase in cardinality,
the query speed degrades at a much slower pace for QED-M than
BSI Manhattan (without QED quantization). As mentioned in the
previous section when describing Algorithm 2, the performance
improvements is largely due to a smaller output, independent of
the attribute cardinality, and consequently less data shuffling and
processing in the aggregation phase. Running the same queries
with Manhattan distance without any indexing took approximately
two seconds. Thus, the kNN query time using BSIs was two to
five times faster than sequential scan, while QED-M achieved an
improvement in performance of one order of magnitude.

4.5 QED query time performance
Many of the existing indexing techniques fail to run faster than
sequential scan when tested against high dimensional data. Thus,
the approximate nearest neighbor searches became a solution that
improves on query time performance by trading off accuracy.
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Figure 12: BSI Manhattan and QED Manhattan kNN query
performance when increasing data cardinality (Datasets:
HIGGS)
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Figure 13: kNN query performance comparison. (Dataset:
HIGGS, 11M rows, 28 attributes, 2 classes)

0

2000

4000

6000

LSH Man(SS) BSI-M QED-M QED-H PiDist-10 PiDist-20

Ti
m

e 
(m

s)

Figure 14: kNN query performance comparison. (Dataset:
Skin-Images, 35M rows, 243 attributes, 2 classes)

We ran a total of 1000 kNN classification queries over the
HIGGS and Skin Images datasets, with the configuration for LSH
and PiDist described earlier. Figures 13 and 14 show the average
query time per query in milliseconds. Because the number of
nearest neighbors k in kNN classification applications is generally
low, we set k in our query speed evaluations to 5 and do not vary
it. Increasing k, however, doesn’t impact the query performance
in any significant way because the scores are computed for all
the points in the dataset regardless of k. The best query times
were achieved when using the QED quantization over the BSI
index. The average query time for QED-M was only 14% of the
average Sequential Scan query time for the HIGGS dataset. For
the Skin Images data set the QED Manhattan query time was 20%
of Sequential Scan query time.

5 CONCLUSION
In this work we described the indexing structure and the methods
for on-the-fly Query dependent Equi-Depth (QED) quantization to
improve high-dimensional similarity. The quantization is done for
each dimension at query time and localized scores are generated
for the closest p% of the points. A constant penalty is applied for
the rest of the points. By normalizing the penalty for values out-
side the similarity range we are able to improve nearest neighbor
searches in high dimensional spaces.
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We evaluated the kNN classification accuracy of the proposed
QED quantization on a set of nine high-dimensional datasets
and observed an average improvement in accuracy of 2.4% for
Manhattan distance and 10.95% for Hamming distance when using
QED quantization.

The index structure and the query algorithms that support the
kNN searches were designed with distributed processing in mind.
We implemented several BSI arithmetic operations such as: addi-
tion with a constant, absolute value, and various transformation
of the BSI attribute. The index can be partitioned vertically as
well as horizontally and makes for a fine level of task granularity
and load balancing. Because each dimension is indexed indepen-
dently, this approach is also scalable for high dimensional data.
We evaluated the scalability for datasets up to 243 dimensions
on a Spark/Hadoop cluster. We also show that when using QED
quantization, the kNN query performance is very robust and does
not decrease significantly with the increase in data cardinality.

Due to a smaller index size, the ability to partition the index
vertically and horizontally, and the fast bitwise operations, the BSI
index proves to be a good data structure for performing distributed
Nearest Neighbor searches with query aware quantization at run
time. With QED quantization, in our performance evaluation we
observe an improvement in query time of up to one order of mag-
nitude when compared to Sequential Scan on high dimensional
data.

As future work we plan to investigate further the penalty ap-
plied for dissimilar dimensions and under what conditions the
normalization of the penalty or the distance would improve the
accuracy of nearest neighbor searches. More work is also required
in expanding the distance metrics for which the QED quantization
can be applied.
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ABSTRACT
Global-Scale Data Management (GSDM) empowers systems by
providing higher levels of fault-tolerance, read availability, and
efficiency in utilizing cloud resources. But, at which datacen-
ters should data be placed? Current cloud providers offer tens of
datacenters and hundreds of edge datacenters that are globally
distributed all over the world. Unlike networks within a datacen-
ter, the topology of theWide-Area Network (WAN) is asymmetric
and diverse—the latency connecting a pair of datacenters can
be an order of magnitude larger than the latency connecting
another pair. This makes placement a significant factor in perfor-
mance. However, it is not only placement. The specifics of the
transaction management protocol play a crucial role in decid-
ing which placement is ideal. In this paper, we develop GPlacer,
a placement optimization framework that embeds the transac-
tion protocol constraints into an optimization to derive both the
data placement and the transaction protocol configuration that
minimize the overall transaction latency. In developing GPlacer,
we discover counter-intuitive lessons about data placement and
transaction execution practices. Our evaluation shows that ap-
plying these lessons in addition to known best practices generate
deployments that reduce the average transaction latency by up
to 68%.

1 INTRODUCTION
Internet applications strive for high-performance 24/7 service to
clients dispersed around the world. Achieving this is threatened
by complete datacenter outages; either planned or unplanned.
To overcome these challenges, application services and their
backend databases are increasingly being deployed on multiple
datacenters spanning large geographic regions (geo-replication).
F1 [29], Spanner [11], and Tao [8] are examples of deployed
systems that are geographically replicated for fault-tolerance and
performance reasons.

Moving to Global-Scale Data Management (GSDM), despite
its benefits, raises many challenges that are not faced by tradi-
tional deployments. The large WAN communication latency is
orders of magnitude larger than the traditional LAN communica-
tion latency. Figure 1 illustrates the latency difference between
communication messages that occur within the same machine,
among different machine in the same datacenter, or in multiple
datacenters in different geographical regions. This large com-
munication latency of the WAN motivates systems like Yahoo’s
PNUTS [9], Facebook’s Tao [8] and others [17, 24] to trade off
replica consistency and/or multi-row transaction support with
high availability and scalability. However, enterprise applications
and applications with complex and evolving schemas have more
interest in data management systems that provide transactional

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the 21st
International Conference on Extending Database Technology (EDBT), March 26-29,
2018, ISBN 978-3-89318-078-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.
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Figure 1: Latency of the Wide-Area Network Round-Trip
Time communication (WAN RTT) compared to memory
access latency [27] and network latency within the data-
center (local RTT).

ACID properties [5, 11, 30]. Application developers spend sig-
nificant time to build transaction semantics and complex mech-
anisms, that are error-prone, on top of the eventual consistent
datastores in order to handle stale data items and reason about
inconsistency [11, 29]. Therefore, in the past few years, many
solutions have emerged to provide strongly consistent trans-
actions for geo-replicated databases [11, 16, 18, 21–23]. These
solutions use different replication and isolation techniques in
order to minimize the number of WAN messages required to
achieve strong ACID transactional guarantees for geo-replicated
databases, hence reducing the transaction latency.

Data placement is the problem of deciding the subset of data-
centers to host a full or a partial replica of the data to achieve a
certain objective such as minimizing the transaction latency, min-
imizing the deployment monetary costs, and any combination of
these and other user-defined objective functions.

In this paper, we propose GPlacer; an optimization framework
that solves the data placement problem. GPlacer embeds the
commit protocol constraints into an optimization to derive both
the data placement and the commit protocol configurations that
minimize the overall transaction latency. In developing GPlacer,
we discover counter-intuitive lessons about data placement and
transaction execution practices. These lessons exploit the latency
diversity and asymmetry of the WAN links and are widely appli-
cable to Paxos-based commitment protocols [13, 21] and leader-
based commitment protocols [5, 11]. GPlacer incorporates these
lessons, the commitment protocol constraints, and the applica-
tion requirements in an optimization to find the placement that
minimizes the average transaction latency.

WAN links are diverse and asymmetric; a link connecting a
pair of datacenters can be an order of magnitude larger than a link
connecting another pair. Table 1 shows the average measured
Round-Trip Time (RTT ) between every pair of nine Amazon
AWS datacenters in California (C), Oregon (O), Virginia (V ), São
Paulo (SP ), Ireland (I ), Sydney (Sy), Singapore (Si), Tokyo (T ),
and Seoul (Se). As shown, the average RTT between California
and Oregon datacenters is 22ms while the average RTT between
Singapore and São Paulo datacenters is 329ms. Therefore, the
number of WAN messages required per transaction is not the
only factor that dominates the transaction latency. Transaction la-
tency is a product of both the transaction commit protocol, which
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C O V I Si T Se Sy SP

C 0(1) 22(2) 65(13) 136(5) 189(12) 113(5) 142(12) 159(2) 185(11)

O 22(2) 1(1) 88(14) 125(2) 166(13) 101(11) 131(13) 178(3) 182(11)

V 65(13) 88(14) 1(16) 73(13) 220(22) 156(16) 179(20) 219(13) 121(16)

I 136(5) 125(2) 73(13) 0(0) 180(18) 211(10) 233(14) 301(5) 185(12)

Si 189(11) 166(12) 220(22) 180(17) 1(9) 68(8) 97(13) 169(8) 329(21)

T 113(5) 101(11) 156(18) 211(10) 68(9) 0(3) 32(9) 104(2) 263(15)

Se 142(9) 131(13) 179(20) 233(13) 97(13) 32(10) 1(9) 133(8) 290(16)

Sy 159(2) 178(3) 219(12) 301(5) 169(10) 104(2) 133(8) 1(0) 338(11)

SP 185(13) 182(12) 121(17) 185(13) 329(23) 263(16) 290(18) 338(14) 1(11)

Table 1: The average RTT latencies between different dat-
acenters inmilliseconds and the standard deviation inside
parentheses.

Figure 2: The average latency, of all the clients in 9 data-
centers, to reach the closest quorum (2 out 3) for all the
possible

(9
3
)
= 84 different placements sorted by latency.

controls the number of the WAN messages required per trans-
action, and the locations of the replicas, hence the placement,
which controls the latency per a WAN message. To illustrate the
placement effect on the average obtained transaction latency,
we hold the following experiment. We equally distribute clients
among the nine AWS datacenters. Three out of the nine data-
centers are chosen to host a data replica. The time to reach the
closest quorum, two replicas out of these three, is measured for
all the clients for all the possible placements and the average
latency is reported. Figure 2 shows the effect of only changing
the placement on the average obtained latency for all the clients
while fixing the protocol. As seen in Figure 2, changing only the
placement while fixing all the other parameters (the protocol,
the workload distribution, etc.) can lead to a significant change
of 1.75x between the minimum and the maximum reported aver-
age latency. This latency difference amplifies for real workloads
when transactions are executed in chains [20].

Unlike GPlacer that optimizes the placement for multi-row
transactional workload with strong consistency requirements, many
works focus on optimizing the placement for weaker consistency
levels and single-row operations. SPANStore [33] develops an op-
timization framework to optimize the monetary cost of deploying
a geo-replicated key/value store. This framework optimizes the
total cost of processing, storage, bandwidth, and I/O and finds the
placement that achieves the minimum overall cost while meeting
the application requirements. Liu et al. [19], like SPANStore, opti-
mize the deployment monetary cost. However, they consider cost
savings exploiting resource reservation payment model instead
of the pay-as-you-go payment model while avoiding over reserva-
tion. Ping et al. [26] propose the use of a utility function to derive
a placement that achieves a balance between the availability and
the speed of data access. Volley [4] analyzes data access logs and

generates a migration plan for data partitions to minimize the
access latency.

Sharov et al. [28] optimize the placement for strong consis-
tent transactions using leader-based protocols. Sharov assumes
that a database is sharded into multiple partitions and each par-
tition is replicated independently. Each partition has a leader
replica that serializes all the transactions that span this par-
tition to achieve isolation. This leader replicates the updates
to a majority quorum of the partition replicas to achieve fault
tolerance. Although they provide placements for strong con-
sistent transactional workloads, their optimizations are tightly
coupled with leader-based protocols and it does not apply to
the many non-leader-based protocols that are widely used such
as [6, 13, 16, 21, 25]. Also, their resulting optimal placement allo-
cates all the partition leaders together in one datacenter. Placing
all partition leaders in one datacenter introduces the risk of los-
ing access to the entire data until the leaders are re-elected. In
addition, the transactions that span a single partition might incur
higher latency than the latency observed when the leader of each
partition is placed closer to the clients that access this partition.

The rest of the paper is organized as follows. Section 2 explains
the transaction model, the client requests, and the assumptions
and limitations of application requirements. Although GPlacer
can optimize the placement for different classes of commitment
protocols, a Paxos-based protocol is used to explain the details
of GPlacer. Section 3 formalizes the placement problem into an
exhaustive search problem. Although the exhaustive search finds
the optimal placement, it does not efficiently scale with the num-
ber of datacenters. Therefore, we introduce several placement
heuristics that find sub-optimal placements while efficiently scale
with the number of datacenters. Section 4 describes the counter-
intuitive lessons learned during the development of GPlacer and
their effect on the transaction latency. In Section 5, we evaluate
the effect of the placement lessons on the transaction latency and
the abort rate. We also evaluate the output and the performance
of the proposed heuristics compared to the exhaustive search. In
Section 6, we explain the changes that need to be done to extend
GPlacer to optimize for other protocols. The paper is concluded
in Section 7.

2 BACKGROUND
Global-scale placement is the problem of deciding which datacen-
ters will store a full or a partial replica of an application’s data
subject to a certain objective function. Objective functions can
vary between minimizing the deployment monetary cost [19, 33]
or minimizing the data access latency for a defined set of client op-
erations [28]. Objective functions are always constrained by the
application requirements (e.g., availability, upper bound access
time, or bandwidth usage). In this section, we present our storage
model and our assumptions about the workload distribution, the
application requirements, and the objective function.

The universe of datacenters, denoted by DC , is defined as all
the datacenters that can host an application1 instance and/or a
replica2 of the database. We assume that the application is de-
ployed on a subset of the datacenters DCapp ⊆ DC . The clients
of the application are scattered around the globe and for sim-
plicity, we assume that clients are collocated with their closest
datacenter. The application is deployed in all the datacenters
that have clients. However, these datacenters can be different

1Application refers to the middle tier logic.
2Replica refers to a copy of the backend database.
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Figure 3: The state-transition diagram of a distributed
transaction adopted from [13].

from the datacenters that host replicas. DCdb ⊆ DC is the subset
of datacenters that host a database replica. We assume that the
database is partitioned and all the partitions are fully replicated
in DCdb .

2.1 The Transaction Management Protocol
The clients of the application access the globally-distributed stor-
age by issuing transactions, which are collections of read and
write operations followed by a commit or an abort. GPlacer con-
siders transactions with strong guarantees, i.e., serializability [7].
Strong consistent transactions on globally-distributed data re-
quire more coordination than weaker forms of access like even-
tual consistency or single-key atomicity— thus making strongly
consistent transactions more expensive. A strong consistency
transactional interface is more natural to programmers and is re-
quired by many applications. Thus, we adopt such strong access
semantics for GSDM as others did from both academia [16, 21]
and industry [11].

We adopt the distributed transaction model proposed by Gray
and Lamport [13]. Figure 3 shows the different states of a transac-
tion and the corresponding execution phases. A client drives the
execution of a transaction in three phases. The details of these
three phases differ across different transaction management pro-
tocols. However, the abstract semantics behind these phases are
the same for all the protocols that provide the same strong trans-
actional guarantees. The three phases of a transaction are: the
execution phase, the vote collection phase, and the apply phase.

During the execution phase, the transaction is in the working
state when read and write operations are processed. We assume
that writes are locally buffered at the client and the updates are
sent to the data replicas in the second phase. This assumption
is widely used in many geo-replicated transaction management
protocols [11, 16, 21]. For a read operation, clients communicate
with their read coordinator, rc . rc processes a read request and
responds back to the client. The RTT between a client c and rc is
denoted by RTTc−to−rc and the time for rc to process the read
request is denoted by Prc . The total execution phase latency is
denoted by Le = nr .(RTTc−to−rc + Prc ) where nr is the average
number of read requests per transaction. The transaction manage-
ment protocol determines the values of nr , RTTc−to−rc , and Prc .
Some protocols assume that the client is the read coordinator. In
such case, RTTc−to−rc = 0. Also, some protocols require that the
client issues read requests one by one and others require that the
client should batch all the reads in one request. The processing
time Prc depends on how many replicas rc should communicate
with to serve a read request. In our model protocol, rc has to
communicate with a majority quorum to serve each read (we
also consider read optimizations later in Section 2.2. As write
requests are locally buffered, their effect on the execution phase
latency is negligible. During the execution phase, a client might

decide to abort the transaction by simply moving the transaction
to the aborted state. However, if the client decides to commit the
transaction, the transaction is moved to the prepared state and
the vote collection phase starts.

During the vote collection phase, the client sends the trans-
action’s details to the commit coordinator cc which is responsi-
ble for coordinating with the other replicas to decide either to
commit or to abort the transaction. Typically, the cc uses either
two-phase commit (2PC) with two-phase locking (2PL) [11] or
quorum-based approaches (e.g., Paxos) with 2PL [21]. The vote
collection phase can be mapped to the first phase of the 2PC
or the first round of Paxos. The latency of the voting phase is
denoted by Lv =

RTTc−to−cc
2 + RTTcc−to−p where RTTc−to−cc

is the RTT between c and cc and RTTcc−to−p is the round-trip
time between the cc and the furthest participant p included in
the voting process.

If the decision of the vote collection phase is to abort, the
client is notified, the transaction is moved to the aborted state, the
other participants are asynchronously updated, and the obtained
locks are released. However, if the decision is to commit, cc
starts the apply phase by sending the apply message to all the
participants. Upon receiving the apply message, the participants
commit the transaction, release the locks, and respond back to the
coordinator. cc notifies the client and the transaction is moved to
the committed state. The latency of the apply phase is denoted by
La = RTTcc−to−p +

RTTc−to−cc
2 as the apply phase takes a round

of communication with the participants in addition to the time
to inform the client about the decision. A transaction commit
latency Lc is the time spent in the vote collection phase and the
apply phase combined: Lc = RTTc−to−cc + 2 · RTTcc−to−p . The
transaction latency Lt is the time from the beginning till the
end of a transaction: Lt = Le + Lc = nr · (RTTc−to−rc + Prc ) +
RTTc−to−cc + 2RTTcc−to−p .

GPlacer optimizes the average overall transaction latency over
all the clients in different datacenters. It is designed to optimize
the placement for a wide class of transaction commitment proto-
cols. In this paper, we focus on optimizing for multi-master Paxos-
based protocols [13, 21] and for leader-based protocols [11] both
on partitioned fully replicated databases. In multi-master Paxos,
each replica can act as the commitment coordinator role and
uses the two rounds of Paxos for both transaction isolation and
replication. However, in leader-based protocols, a transaction can
fall into one of two categories: single-partition transactions or
multi-partition transactions. Single-partition transactions span
only one partition and the isolation between transactions that
span this partition is managed by the leader of this partition.
Multi-partition transactions span multiple partitions and typi-
cally 2PC is used between the leaders of the partitions involved
in a transaction to achieve isolation. In both categories, partition
leaders replicate the updates of committed transactions to a ma-
jority quorum of their partition replicas using only the second
round of Paxos.

In Section 3, we formalize GPlacer. We use Replicated Com-
mit [21] as our protocol model where reads are served from a
majority of the replicas and commits are done using the two
rounds of Paxos for isolation and replication. In Section 2.2, we
explain some commonly used optimization to reduce the exe-
cution phase latency. In Section 6, we explain how to extend
GPlacer to optimize placement for leader-based protocols like
Spanner [11].

387



2.2 Read optimizations
In this section, we present two widely-used read optimizations
that are considered in GPlacer. A read request latency Lr =
(RTTc−to−rc +Prc ). The first optimization, optimistic read, aims
to eliminate the read processing time Prc . The second optimiza-
tion, passive replica read aims to eliminate the time to reach
the coordinator RTTc−to−rc and the processing time Prc by bring-
ing a copy of the data to the client’s datacenter. We define two
different types of replicas a datacenter can host: active replica
or passive replica. An active replica contributes synchronously
in the voting collection and the apply phases and can act the
coordinator and the participant roles. However, a passive replica
is a read-only replica. It is asynchronously updated after the
transactions are committed.

Optimistic read aims to eliminate the read request process-
ing time by optimistically reading data values from the closest
active replica without any coordination with other active repli-
cas. This optimization has been introduced before as early as in
Postgres-R local reads [15] and as fast reads in Zookeeper [14].
Applying optimistic reads require validating the value read in the
commit phase to guarantee the freshness of the optimistically
read values in the execution phase. In Spanner [11], reads are
served by the leader of each partition. However, optimistic reads
can be beneficial by reading from the closest partition replica
instead from the partition leader. In Replicated Commit [21], a
client is required to read from a quorum of the replicas. Applying
optimistic read reduces the read latency by reading from one
replica instead of a quorum.

Passive replica read aims to completely eliminate the read
latency by processing read requests from a local read-only replica
or a passive replica. The reason behind this naming is that a
passive replica does not participate actively in the commit de-
cision. Therefore, adding more passive replicas does not affect
the commit latency. However, these replicas need to be asyn-
chronously updated which increases the bandwidth required per
committed transaction. Also, having many passive replicas in-
creases the deployment cost. Data read from a passive replica
needs to be validated in the commit phase to guarantee freshness.
If the data is frequently updated at the active replicas, the data
values read from a passive replica will be stale which increases
the transaction abort rate. The concept of passive replica read
has also been introduced in [28] as weak reads.

GPlacer chooses the set of active replicas and the set of passive
replicas. In addition, it assigns rc and cc for clients in every
datacenter. Application requirements are given as inputs to the
framework. GPlacer takes as an input the fault tolerance level f ,
the total number of replicas t , and the workload distribution. f
determines the number of active replicas and t determines the
number of passive replicas. The workload distribution determines
which datacenters should have active replicas, which should
have passive replicas, and which should not have a replica at
all. GPlacer finds placements that optimize the overall average
transaction latency for strongly consistent multi-row transaction
workloads. However, systems that require non-transactional or
weakly consistent operations can easily be tuned in GPlacer’s
prototype but we do not discuss them since they were treated in
previous works [4, 33].

3 FRAMEWORK FORMULATION
GPlacer finds the placement that minimizes the average trans-
action latency for partitioned fully replicated databases. As ex-
plained in Section 2, Paxos-based protocols use majority quorums
for both transaction isolation and replication while leader-based
protocols use majority quorums only for replication. Placement
for Paxos-based protocols requires finding the subset of datacen-
ters that should host replicas and the majority quorums used
by the protocol. Leader-based protocols requires an additional
step of placing the leaders of different database partitions on
the replicas chosen in the first step. In Section 3.1, we formu-
late the placement problem into an exhaustive search model
for Paxos-based protocols. This model evaluates all the possible
placement combinations and returns one placement that achieves
the minimum average transaction latency for a given workload.
The model finds the placement DCdb ⊆ DC and the majority
quorums for each replica in this placement that optimizes the ob-
jective function. Although the model finds the optimal placement,
due to the model complexity, it does not scale with the number
of datacenters when multiple cloud providers and edge datacen-
ters are considered. Therefore, in Section 3.2, we introduce two
replica-placement heuristics to find placements that are close
to optimal among hundreds of datacenters. The performance
and the resulting placements of these heuristics are evaluated in
Section 5.

3.1 Model formulation
The inputs of GPlacer fall into two categories:

• Datacenter information: this includes the number of
datacenters |DC | and the average RTT between every pair
of the datacenters.
• Application information: this includes the number of
datacenter scale outages f the deployment should tolerate
and the application workload distribution. The workload
distribution is denoted by ci and represents the number
of clients c at datacenter i .

The outputs of GPlacer include:

• The list of datacenters that should host a database replica.
• The read and the commit coordinator of clients at each
datacenter. Clients at one datacenter share the same read
and commit coordinators.

As the placement problem can be represented as an optimiza-
tion model, we first implemented the placement model as an
integer program and used the open source GLPK solver [2]. How-
ever, the solver could not efficiently scale with the number of
datacenters. Many of the optimization constraints are conditional
and to convert them to linear constraints, multiple binary out-
put variables are introduced. The binary outputs and their re-
lated constraints are quadratic in the number of the datacenters
O(|DC |2). In addition, GLPK solver introduced performance over-
head. Therefore, to conduct a fair comparison with the replica-
placement heuristics, we implement both the exhaustive search
and the heuristics in Java. The objective function of the place-
ment model is to minimize the average transaction latency of all
the clients in all the datacenters. Algorithm 1 shows the details
of the exhaustive search model.

Algorithm 1 evaluates all the possible subsets of the input
datacenters of size 2f + 1 and returns the one that minimizes
the average transaction latency. The function evalLat , in line 3,
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Algorithm 1 Evaluates all the possible placement combinations
and returns the one that achieves the minimum average latency
for given application requirements.
Input: f , |DC |, RTTi j ∀i, j ∈ DC and the Set C = {ci ∀i ∈ DC}

Output: DCdb , DCrc , and DCcc
1: DCdb ,DCrc ,DCcc ← {},minL← MaxInt
2: for each Set S ⊂ DC, |S | = 2f + 1 do
3: l , Src , Scc ← evalLat(S,RTT ,C)
4: if l < minL then
5: minL← l , DCdb ← S
6: DCrc ← Src , DCcc ← Scc
7: end if
8: end for

has different implementations based on the enabled read opti-
mizations. When all the read optimizations are disabled, evalLat
assumes that the read coordinator and the commit coordinator
are collocated with the client who issues a transaction and reads
are served from a majority quorum of replicas. However, if opti-
mistic read is enabled, the read latency is updated to the RTT to
the closest chosen replica from the client. Also, if passive replica
read is enabled, the read latency is updated to zero as all the
clients perform read operations from a local replica.

3.2 Replica-placement heuristics
Although Algorithm 1 finds the optimal placement among all
the possible placements, it does not efficiently scale when the
total number of the datacenters, |DC |, or the number of the repli-
cas, |DCdb |, increases. Our experiments show that choosing 7
replicas out of 60 datacenters

(60
7
)
takes 2 hours while choos-

ing 7 replicas out of hundreds of datacenters (which is the case
when we consider edge datacenters) could take years. Therefore,
we present two replica-placement heuristics that efficiently find
placements with sub-optimal average transaction latency. These
replica-placement heuristics consider the two main aspects that
affect the transaction latency; the latency between the clients
and the replicas and the latency between the replicas each other.
The running-time of these heuristics is polynomial in the total
number of the datacenters. The performance and the resulting
placements of these heuristics are compared to the exhaustive
search results in Section 5.2.

The first replica-placement heuristic is shown in Algorithm 2.
It uses an iterative greedy algorithm to choose the replicas. It
starts with an empty set of chosen replicas DCdb ← {}, line 1,
and at each iteration, it adds one replica to DCdb until 2f + 1
replicas are chosen. The inner loop, lines 4-14, evaluates the
effect of adding each unchosen replica to DCdb on the average
transaction latency and the replica that achieves the minimum
latency is added to DCdb , line 15. evalLat is the same evaluation
function introduced in Algorithm 1 line 3. The intuition behind
this heuristic is that choosing the best candidate at each step
should lead to a solution that is optimal or close to the optimal.

The second replica-placement heuristic is presented in Algo-
rithm 3. It is based on the K-Means algorithm. It assigns weights
to every datacenter, initially equals to the number of clients in
this datacenter; line 4. A datacenter weight is updated according
to the number of quorums it participates at; line 13. Datacenter
weights are iteratively updated and datacenters are sorted by
their weights. The top 2f + 1 datacenters are chosen to host
replicas in lines 5 and 18. The algorithm evaluates the placement

Algorithm 2 Greedily adds one replica at a time achieving the
minimum average latency at each iteration.
Input: f , |DC |, RTTi j ∀i, j ∈ DC and the Set C = {ci ∀i ∈ DC}

Output: DCdb , DCrc , and DCcc
1: DCdb ,DCrc ,DCcc ← {}
2: while |DCdb | < 2f + 1 do
3: S ← DCdb ,minL← MaxInt ,minDC ← ϕ
4: for all dc ∈ DC do
5: if dc < S then
6: S ← S ∪ {dc}
7: l , Src , Scc ← evalLat(S,RTT ,C)
8: if l < minL then
9: minL← l ,minDC ← dc
10: DCrc ← Src , DCcc ← Scc
11: end if
12: S ← S \ {dc}
13: end if
14: end for
15: DCdb ← DCdb ∪ {minDC}
16: end while

in every iteration and stops when the average transaction la-
tency converges. To avoid fast convergence to a local minimum,
a minimum iteration count is required before terminating the
algorithm; lines 1 and 7. The minimum evaluated placement is
saved to make sure that the final placement does not achieve
higher transaction latency than any placement that has been
evaluated before.

Algorithm 3 Assigns weights to datacenters and iteratively
chooses the top weighted 2f + 1 to host replicas.
Input: f , |DC |, RTTi j ∀i, j ∈ DC , t and the SetC = {ci ∀i ∈ DC}

Output: DCdb , DCrc , and DCcc
1: minIter ← t , iter ← 0
2: DCdb ,DCrc ,DCcc ← {}
3: ln−1, ln ← MaxInt
4: Weiдhts ← {c0, c1, ..., c |DC |} // Initialize weights with the

number of clients at each datacenter.
5: DCdb ← top(sort(Weiдhts), 2f + 1) // Sort on weights and

choose a placement of the top 2f + 1.
6: ln ,DCrc ,DCcc ← evalLat(DCdb ,RTT ,C)
7: while ln < ln−1 | | iter + + < minIter do
8: ln−1 ← ln
9: NewW ← {0, 0, ..., 0} // New Weights
10: for all dc1 ∈ DC do
11: for all dc2 ∈ DC do
12: if dc2 ∈ nearestQuorum(dc1) then
13: NewW [dc2]+ =Weiдhts[dc1]
14: end if
15: end for
16: end for
17: Weiдhts ← NewW
18: DCdb ← top(sort(Weiдhts, 2f + 1)
19: ln ,DCrc ,DCcc ← evalLat(DCdb ,RTT ,C)
20: end while

4 SURPRISING PLACEMENT LESSONS
During the development of GPlacer, we learned some counter-
intuitive lessons about data placement that exploit the diversity
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and the asymmetry of the WAN links to decrease the execution
and the commit latencies, hence the transaction latency. (The
transaction latency Lt is sum of the execution latency Le and
the commit latency Lc .) In this Section, we explain the details
of these placement lessons and their effect on the transaction
latency.

4.1 Request handoff
A client executes either read or commit requests. The latency of
these two requests can be abstracted as the sum of: RTTc−to−c ,
the round-trip time between the client and the request coordina-
tor and Lp , the time for the coordinator to process the request.

Therefore, the request latency is mainly affected by the dis-
tance between the client and the coordinator, the distance be-
tween the coordinator and the participants, and finally the num-
ber of communication rounds required between the coordinator
and the participants to serve the request. Different transaction
management protocols choose the coordinator based on some
intuitive heuristics. In [21], Mahmoud et al. assume that the client
is the coordinator of a transaction. In Spanner [11], the 2PC co-
ordinator is randomly chosen from the leaders of the partitions
involved in a multi-partition transaction. In [23], Nawab et al.
choose the coordinator to be the closest replica to the client.
However, the choice of the coordinator can drastically affect the
request latency. To illustrate this effect, we provide two examples
of 2PC and Paxos deployments to show that carefully choosing
the coordinator can save up to 48% of the average latency.

Two-phase commit: assume there are three data partitions
X , Y , and Z deployed in three AWS datacenters in SP , V , and I
respectively. Now, assume a client in datacenter I wants to com-
mit a transaction t that updates the elements x1 ∈ X , y1 ∈ Y , and
z1 ∈ Z . The commit latency at any coordinator equals to double
the RTT between the coordinator and the furthest involved parti-
tion leader. Therefore, if the client chooses the leader of partition
Z in datacenter I to be the commit coordinator, the resulting
commit latency is 2 ·max(RTTIV ,RTTI SP ) = 2 ∗ 185 = 370ms .
Although the time between the client and the coordinator is
neglected, the latency is still high because the coordinator is
relatively far from SP . However, if the client chooses the leader
of partition Y in datacenter V to be the commit coordinator, the
resulting commit latency is RTTIV + 2 ·max(RTTV I ,RTTV SP ) =
73 + 2 ∗ 121 = 315ms saving around 15% of the commit latency
without modifying any constraint of the original 2PC protocol.
Also, when datacenter V is the 2PC coordinator, the participant
at datacenter I will be notified about the commit decision after
RTTIV

2 +max(RTTV I ,RTTV SP ) + RTTIV
2 = 36.5 + 121 + 36.5 =

194ms . The participant at datacenter I can directly inform the
client with the decision saving around 48% of the latency obtained
when I is chosen to be the coordinator.

Paxos: assume there are five replicas of the database in dat-
acenters I , V , SP , O , and C as shown in Figure 4. A client in
datacenter SP wants to commit a transaction which requires to
execute the two rounds of Paxos to reach a consensus about the
commit decision. The latency of the two rounds of Paxos equals to
double the RTT between the coordinator and the furthest replica
in the closest majority to the coordinator. Therefore, if the client
in SP chooses the replica in SP to be the coordinator, the resulting
commit latency equals to 2 ·max(RTTSPSP ,RTTSPV ,RTTSPO ) =
2 ·max(1, 121, 182) = 2∗182 = 364ms . However, if the client in SP ,
delegates the coordination to the replica in V , the resulting com-
mit latency will be RTTSPV + 2 ·max(RTTVV ,RTTV I ,RTTVC ) =

Figure 4: Five replicas of the database are deployed in dat-
acenters I , V , SP , O , and C.

121 + 2 ∗ 73 = 267ms saving around 26.6% of the commit latency
obtained when SP is chosen to be the coordinator.

We presented a primitive version of the handoff idea in [34]. To
generalize, for any requestR from a client at datacenterA, it might
be beneficial to handoff this request to a replica at datacenter
B if the summation of RTTAB and the time for datacenter B to
serve this request LB are less than LA, the time to serve this
request at datacenter A. In other words, request handoff from
datacenter A to datacenter B is beneficial if LA > RTTAB + LB .
This optimization is widely applicable on different protocols and
different request types.

4.2 Cover all the optimization aspects
During our SIGMOD demo [34], we ask the participants to place
5 data replicas in 5 out of the 9 datacenters shown in Figure 5.
The participants are told that the data is fully replicated in the
5 chosen datacenters and the commitment protocol uses the
two rounds of Paxos for isolation and replication and reads are
served from the closest quorum. In addition, optimistic read and
passive replica reads can be used and there is no restriction on the
number of passive replicas that can be used. Finally, the workload
at each site is represented by the number of blue clients at each
datacenter and handoff can be used when possible.

When passive replica read is enabled and there is no restriction
on the number of passive replicas assuming low contention, the
commit latency contributes the most to the average transaction
latency. As explained in Section 2, the commit latency is expressed
as: Lc = RTTc−to−cc + 2 · RTTcc−to−p .

Most of the demo participants tried to optimize the time to
reach the commit coordinator cc by placing the active replicas
at the datacenters that have clients. Although this strategy is
intuitive and reduces the time to reach cc to zero, it does not
find the placement the minimizes the overall average commit
latency. This happens because the datacenters that have clients
happen to be far from each other and the time to reach a quorum
of participants is maximized using this strategy.

Figure 5 shows that the placement that minimizes the commit
latency must consider all the optimization aspects of the com-
mit latency. It places quorums of replicas close to each other
(quorums are shown using the dotted curves) and uses handoff
to handoff the commitment to replicas that can quickly form a
quorum (handoff is shown using solid arrows). Surprisingly,
in this example, non of the chosen replicas are placed in
datacenters that have clients.
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Figure 5: A placement scenario that shows the importance
of considering different optimization aspects to minimize
the average transaction latency.

5 EVALUATION
A performance evaluation study of the request handoff, the read
optimizations, and the proposed heuristics is conducted in this
section. In our study, we first evaluate the effect of the read opti-
mizations and the request handoff on execution and commit la-
tencies in Section 5.1. In Section 5.2, we evaluate the performance
of the replica-placement heuristics introduced in Section 3.2. We
compare the running time and the resulting placement laten-
cies of these heuristics to the running time and the placement
latencies of the exhaustive search algorithm in Algorithm 1.

5.1 Placement optimizations
5.1.1 Experimental setup. We use the placement scenario in

Figure 4 to evaluate the effect of read optimizations and request
handoff on the transaction latency. Request handoff exploits
the diversity of the WAN links to decrease the transaction la-
tency and this scenario shows a good example of this diversity,
RTTSPC > 8RTTOC . Amazon EC2 machines in Ireland (I ), Vir-
ginia (V ), São Paulo (SP ), Oregon (O), and California (C) datacen-
ters are leveraged as infrastructure for our experiments. Larger
machines are used in datacentersC andO so that we can measure
the handoff effect without causing throttling in datacentersC and
O . Compute optimized machines are used because computing is
the main source of contention in our experiments. We use one
compute optimized (c4.large) machine with 2 vCPUs and 3.75 GB
of RAM in datacenters V , I , and SP while we use one compute
optimized (c3.4xlarge) machine with 16 vCPUs and 30GB of RAM
in datacenters C and O . We assign active replicas to servers in
C , O , and V while we assign passive replicas to servers in I and
SP . These machines use HBase [3] as the underlying persistent
data store. The average RTTs observed between different data-
centers are shown in Table 1. The observed RTTs are sampled
over 48 hours using AWS nano machines pinging each other. The
data is fully replicated in all five datacenters and an optimistic
Paxos-based concurrency control protocol is used. A transaction
requires two majority rounds to commit and the read-set is vali-
dated at commit time. We implemented multiple versions of the
protocol based on how read requests are processed in the execu-
tion phase. Maj0 is conservative and requires read requests to
be processed from a majority of the active replicas.Maj1 imple-
ments the optimistic read optimization and requires read requests
to be processed from one active replica. Maj2 implements the
optimistic read and passive replica optimizations and processes
read requests from either active or passive replica. Transaction
commitment is implemented the same way in all three versions.

The commit handoff optimization is applied on all three versions
and it only changes the way a commit coordinator is chosen. For
this, we implemented Maj0h, Maj1h, and Maj2h to apply the
handoff optimization on the three protocol implementations. We
compare the average obtained commit and transaction latencies
for all the three implementations with and without applying
the handoff optimization. In addition, we compare transaction
throughputs and abort rates for all three implementations.

Dedicated client machines in each datacenter generate client
workloads. Each client machine is configured with a read coordi-
nator and a commit coordinator. Also, client machines execute
a workload thread per client. Clients are uniformly distributed
among the 5 datacenters in all the experiments unless otherwise
stated. Client machines use YCSB [10] to generate workloads.
Since YCSB is not designed to generate multi-record transactions,
we use Transactional YCSB (T-YCSB) [12], an extended version of
YCSB that generates multi-record transactions, for this purpose.
T-YCSB generates transactions that consist of read and write
operations on different data records followed by a commit. Each
transaction is configured to have five operations. The ratio of
read to write operations is 1:1 unless otherwise specified. Read
and write operations choose a key from a pool of 50000 keys fol-
lowing a zipfian distribution. This small number of keys enables
us to observe the performance of the system under contention.
Each client can have only one outgoing transaction. Clients sub-
mit a new transaction as soon as they receive a decision for their
outgoing transaction. Each experiment runs for 10 minutes.

5.1.2 Experimental results. Transaction latency. Active repli-
cas are placed in only three datacenters C , O , and V . Therefore,
a majority quorum consists of two active replicas. The Maj0 im-
plementation assumes that clients at each datacenter drive their
transactions(no handoff). Also, it assumes that reads have to be
processed from at least two active replicas and commits have to
be accepted by and applied to at least two active replicas.Maj0h
allows clients in SP to handoff their commit to O and clients
in I to handoff their commits to C .Maj1h andMaj2h allow the
same handoff plans while enabling optimistic reads inMaj1h and
optimistic reads and passive replica reads inMaj2h.

Figure 6 shows the effect of increasing the number of clients
from 10 to 200 on transaction latency. As a transaction requires
two round trips to a quorum of two active replicas to commit,
clients in C and O have their location as an advantage that they
can always achieve lower transaction latency and higher through-
put than clients in other sites as long as the number of clients
is equal in all the datacenters. Therefore, to measure the effect
of the placement optimizations on transaction latency in isola-
tion from the throughput, we use the normalized transaction
latency as a comparison metric between different implemen-
tations. The normalized transaction latency Lnorm is the av-
erage of the average transaction latency in all the datacenters
Lnorm =

LC+LO+LV +LI+LSP
5 where Li is the average transac-

tion latency at datacenter i . As shown in Figure 6a, applying
read optimizations inMaj2 significantly enhances Lnorm by 48%
compared toMaj0. Also, the handoff inMaj2h enhances Lnorma
by 26% compared toMaj2 leading to a total enhancement of 60%
compared toMaj0. Increasing the number of clients beyond 100
(20 at each datacenter) causes throttling in server machines. This
throttling leads to an increase in the overall transaction latency
and a decrease in the benefit obtained from the applied opti-
mizations. Figures 6b and 6c shows the effect of applying read
optimizations and handoff on transaction latencies at I and SP
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(a) Overall normalized transaction latency.
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(b) Transaction latency in Ireland.

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 0  5  10  15  20  25  30  35  40

T
ra

n
s
a
c
ti
o
n
 l
a
te

n
c
y
 (

m
s
)

Number of clients

(c) Transaction latency in São Paulo.

 0

 50

 100

 150

 200

 250

 300

 350

 0  5  10  15  20  25  30  35  40

T
ra

n
s
a
c
ti
o
n
 l
a
te

n
c
y
 (

m
s
)

Number of clients

(d) Transaction latency in California.

Figure 6: Transaction latency as number of clients in-
creases. Figures 6a, 6b, 6c, and 6d share one plotting leg-
end.

respectively. As shown, read optimizations and handoff together
inMaj2h enhances transaction latency compared toMaj0 by 62%
and 68% in I and SP respectively. Also, handoff inMaj2h saves
30% and 38% of the transaction latency compared to Maj2 for
clients in I and SP . Figure 6d presents the effect of the placement
optimizations on the transaction latency in C . As shown, read
optimizations significantly reduce the transaction latency in C
by 49% as reads are served locally. This applies until throttling
happens. After throttling, the transaction latency in C increases
forMaj2 because serving reads locally in all the datacenters in-
creases the frequency of the transactions that are ready to commit
in the system causing more contention in datacenters C and O .
The handoff slightly increases the transaction latency in C and
its negative effect is negligible before the throttling happens.
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Figure 7: Overall average commit latency as number of
clients increases.

Commit latency. Figure 7 shows the effect of the placement
optimizations on the overall average commit latency. While the
normalized transaction latency is significantly enhanced by ap-
plying read optimizations, read optimizations negatively affect
the overall commit latency. By reducing the execution phase
latency, the number of active transactions that are ready to com-
mit increases and leads to an increase in the commit latency.
However, applying handoff enhances the overall average commit
latency by 10 − 15% in Maj0h, Maj1h, and Maj2h compared to
Maj0,Maj1, andMaj2 respectively.
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(a) Overall throughput.
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(b) Throughput in Ireland.
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Figure 8: Throughput as number of clients increases. Fig-
ures 8a, 8b, and 8c share one plotting legend.
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Throughput. The throughput, measured by number of op-
erations per second, is presented in Figure 8. Figure 8a shows
that applying read optimizations in Maj1 andMaj2 achieves 2x
the throughput inMaj0 until hitting the thrashing point(≥ 100
clients). After that, throughput is slightly higher inMaj1,Maj2,
and Maj1h and about 8% higher in Maj2h. Throughput results
in I and SP are shown in Figures 8b and 8c. These figures show a
significant increase of 100% between Maj0 and Maj2h in I and
170% between the same implementations in SP . Applying hand-
off not only significantly benefits I and SP but also benefits the
overall throughput.

Abort rate. The abort rates are shown in Figure 9. The abort
rate is a result of many factors, such as the amount of contention,
the number of concurrent transactions, the lifetime of a transac-
tion, among others. As shown, the overall abort rate is below 1%
for all six different implementations. However, we observed two
important patterns that are worth analyzing. First, read optimiza-
tions increase the abort rate by 100% for some experiment runs.
Obtaining the read-set from a local copy increases the chances
of reading a stale value and hence increasing transaction aborts.
However, these stale values has a small life-time as all the passive
replicas are asynchronously updated. Second, handoff decreases
the abort rate by 25−30% because a transaction’s lifetime is short-
ened by reducing the overall transaction latency and specifically
the high latency transactions in I and SP .

5.2 Replica-placement heuristics
We evaluate the replica-placement heuristics in this section. This
evaluation tries to answer two questions: How fast can these
heuristics find a placement? and how good is this placement com-
pared to the optimal placement?. For that, we compare the per-
formance and the resulting placements of the proposed heuris-
tics in Algorithms 2 and 3 to the performance and the resulting
placements of the exhaustive search in Algorithm 1 at scale. We
assume that optimistic reads and passive replica reads are en-
abled. Therefore, we use commit latency as a comparison metric
as the transaction execution latency is negligible when reads and
writes are served locally and none of the replicas are overloaded
with requests. The proposed heuristics and the exhaustive search
programs are all implemented in Java which allows us to conduct
a fair comparison. The exhaustive search algorithm evaluates
all possible placement combinations and returns the placement
that achieves the minimum average commit latency for a certain
workload. Algorithm 2 introduces a greedy heuristic that adds
one replica at a time achieving the minimum average transaction
latency at each iteration. Algorithm 3 is inspired by the K-Means
algorithm and it assigns initial weight to each datacenter equals
to the number of clients at this datacenter. Weights are updated

based on the quorums a datacenter participates at and based on
handoff.

Finding the optimal placement of five replicas within ten data-
centers can be efficiently done. It requires the evaluation of only
252 different placements and the exhaustive search is sufficient
in this case. However, in a more realistic setting, the number of
datacenters around the globe, including edge datacenters, may
easily exceed 4000 datacenters [1]. Also, it has been shown in [33]
that it is economically efficient to deploy storage in datacenters
of different cloud providers as non of them provides cheaper
storage in all the deployment regions. To choose five datacenters
out of 4000 datacenters requires to evaluate 8.5e+15 different
placements. To get a sense of the space size and the running time,
we evaluated the exhaustive search algorithm and the heuristics
proposed in Section 3.2 using different datasets.

First, we generate multiple datasets of datacenters DC dis-
tributed around the globe with randomly chosen round-trip time
0 ≤ RTT ≤ 500 ms. We also make sure that the triangle inequal-
ity holds among any three datacenters such that ∀A,B,C ∈DC
RTTAB + RTTBC ≥ RTTAC . Second, we distribute the workload
around the generated datacenters with ratios between 0− 10. We
use the generated data as inputs to both the exhaustive search
program and the placement heuristics. These experiments are
run locally on an Intel Core i5-3210M CPU 2.50GHz with 8GB of
RAM.

Running time. In this part of the evaluation, we answer the
first question, namely How fast can these heuristics find a place-
ment?. Figures 10a and 10b show a running time comparison be-
tween the exhaustive search and the placement heuristics when
the number of replicas are 5 and 7 respectively. As shown, the run-
ning time of the exhaustive search grows exponentially with the
number of datacenters while the running time of both heuristics
are negligible(< 1 second). Also, the exponential power signifi-
cantly increases as the number of replicas required to be placed
increases. This shows that it is infeasible to use the exhaustive
search when the datacenter set size exceeds few tens.

Resulting placements. The second part of the evaluation
answers the second question about the quality of the placements
found by the proposed heuristics.We compare the commit latency
of the resulting placement to the optimal commit latency of the
resulting placement decided by the exhaustive search. Figures 11a
and 11b show the relative commit latency of the heuristics com-
pared to the optimal commit latency when the number of placed
replicas are 5 and 7 respectively. In these figures, the optimal
commit latency is represented by 1.0. A relative comparison of
the commit latency is shown for both the placement heuristics
and the best of the two heuristics as well. As shown, the best
of the two heuristics is optimal in 70% of the cases and within
5% − 11% of the optimal in the rest of the cases. As the running
times of both heuristics is negligible, we can always run both the
heuristics and choose the best placement out of the two results.
Figure 11 suggests that neither heuristics beats the other in all
cases.

6 GPLACER EXTENSIONS
In this section, we discuss how GPlacer can be extended to opti-
mize the placement for leader-based protocols. In leader-based
protocols, a transaction can fall into one of two categories: single-
partition transactions or multi-partition transactions. Single-
partition transactions span only one partition and the isolation
between transactions that span this partition is managed by the
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datacenters increases. Figures 10a and 10b show the run-
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Figure 11: A comparison of the resulting commit la-
tency of placements by exhaustive search and placement
heuristics as number of datacenters increases. Figures 11a
and 11b compare the estimated latency when 5 replicas
and 7 replicas are chosen respectively. Both figures share
one plotting legend.

leader of this partition. Multi-partition transactions span multiple
partitions and typically 2PC is used between the leaders of the
partitions involved in a transaction to achieve isolation. In both

categories, partition leaders replicate the updates of committed
transactions to a majority quorum of their partition replicas using
only the second round of Paxos.

The average transaction latency for leader-based protocols is
affected by the following factors:

• The distance between the client and the partition leader
• The distance between the partition leader and its replicas
• The distance between different partition leaders involved
in multi-partition transactions
• The percentage of multi-partition transactions Pmp−txn
(how often 2PC is required to be executed)

The first two factors mainly affect single-partition transactions
while the last two factors mainly affect multi-partition transac-
tion. Finding the optimal placement for leader-based protocols
can easily become impractical. Consider a database with p par-
titions and we want to place the leaders of these partitions on
r replicas. There are rp different placement combinations and
finding the optimal placement by checking all the combinations
is impractical. For example, if a database has 500 partitions and
we want to place these partitions among 5 replicas. To find the
optimal leader placements, 5500 different combinations need to
be evaluated. Therefore, different heuristics are usually used to
limit the search space.

6.1 Leader-placement heuristics
A solution that considers all the optimization aspects should adapt
the placement based on the percentage of the multi-partition
transactions Pmp−txn . Sharov et al. [28] place the leaders of all
the partitions in one datacenter. Algorithm 4 implements the
leader-placement heuristic introduced in [28]. It iterates over
all the replicas, line 4, and evaluates the latency assuming that
all the partition leaders are placed in the currently evaluated
replica. The replica that achieves the minimum latency is re-
turned. This heuristic optimizes the placement when Pmp−txn
is high. However, when Pmp−txn is low, placing the leaders of
all the partitions in one datacenter can hurt the performance in
addition to introducing a single point of failure.

The second heuristic is to independently place the leaders of
different partitions. For every partition, place its leader at the
same datacenter where it is accessed the most. This heuristic
optimizes the placement when Pmp−txn is low and partitions are
mostly accessed from one datacenter.

Algorithm 4 Finds datacenter dcl ∈ DC that achieves the min-
imum average transaction latency assuming all the partition
leaders are put together in one datacenter.

Input: DC , RTTi j ∀i, j ∈ DC , and ci ∀i ∈ DC
Output: dcl

1: dcl ← ∅, l ← MaxInt
2: for all j ∈ DC do
3: tempL← 0
4: for all i ∈ DC do
5: tempL+ = ci · (RTTi j +qj ) // qj is the time for replica

j to reach its closest quorum from DC .
6: end for
7: if tempL < l then
8: l ← tempL, dcl ← j
9: end if
10: end for
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Placing all the partition leaders in one datacenter favors multi-
partition transactions while independently placing them in mul-
tiple datacenters favors single-partition transactions. When the
workload is a mixture of both transaction categories, both heuris-
tics fail to optimize the placement. Therefore, we present a third
heuristic that optimizes the placement when the workload is di-
vided between the two categories. This heuristic uses GPlacer to
find the set of 2f + 1 datacenters that should host a replica DCdb
according the workload distribution. Then it runs Algorithm 5
to independently place the leaders of each partition among the
chosen replicas. The second heuristic independently places parti-
tion leaders in the universe of all datacenters DC while the third
heuristic limits the placement to the set of datacenters that are
chosen by GPlacerDCdb . In Section 6.2, we compare the resulting
placements of the three heuristics.

Algorithm 5 Places the leader of each partition among the cho-
sen replicas and closer to the clients who access this partition
the most.
Input: DCdb , and pi ∀i ∈ DC and ∀p ∈ P // P is the set of all

partitions and pi is the percentage of access for partition p from
datacenter i .

Output: ∀p∈P lp

1: for all p ∈ P do
2: i ←max(∀j ∈DC pj )
3: lp ← nearest(dc ∈ DCdb , i) // returns the nearest data-

center dc ∈ DCdb to datacenter i .
4: end for

6.2 Leader-placement heuristics evaluation
We compare the expected average commit latency of the resulting
leader placements using the three heuristics. The percentage of
distributedmulti-partition transactions is varied and the expected
commit latency is calculated for the three heuristics. Before plac-
ing partition leaders in the third heuristic, we use the exhaustive
search algorithm to find DCdb . Then, we use the heuristic to
place partition leaders among the chosen replicas.

The commit latency of a single partition transaction is esti-
mated as the RTT from the client datacenter to the partition
leader datacenter plus the RTT from the partition leader datacen-
ter to a majority of the partition replicas. The commit latency of a
multi-partition transaction requires an addition 2PC between the
involved partitions. In our evaluation, we assume that the 2PC
added latency is negligible if all the involved partition leaders are
placed together and two round-trips to all the partition leaders if
they are not placed together. This assumption favors algorithm 4
over our proposed heuristic in algorithm 5.

Figure 12 shows the expected commit latency when the three
heuristics are used to place partition leaders. The expected com-
mit latency is shown in a log scale in the y-axis and the percentage
of the multi-partition transaction is shown in the x-axis. In this
scenario, clients are distributed among 10 datacenters and 5 data-
centers host replicas for heuristic 3. A transaction has to be repli-
cated to 3 replicas before it is committed. As heuristic 1 places all
partition leaders in one datacenters, the average commit latency
does not change with the percentage of multi-partition trans-
actions. Therefore, the average estimated commit latency is a
horizontal line. However, for heuristics 2 and 3, increasing the per-
centage ofmulti-partition transactions boosts the average commit
latency as the cost of the 2PC between all partition leaders in-
creases. Figure 12 suggests that heuristic 2 should be used to place

partition leaders as long as Pmp−txn is low (below 9%). Heuristic
3 should be used when 9% < Pmp−txn < 25% and heuristic 1
should be used if Pmp−txn is high (above 25%). Typically, the
percentage of multi-partition transactions is < 10% [31, 32].
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Figure 12: A commit latency comparison between leader-
placement heuristics as the percentage of multi-partition
transaction increases.

It is important to mention that the commit latency crossing
lines between the three heuristics are different for different sce-
narios and estimates should be calculated a priori to decide which
leader placement achieves the minimum commit latency for a
given scenario. Our framework evaluates the outcomes of the
three heuristics and choses the placement that achieves the mini-
mum latency.

7 CONCLUSION
In this paper, we address the data placement problem of geo-
replicated databases with strong consistency guarantees. We
present different placement optimizations to reduce transactions
execution latency and commit latency. These placement opti-
mizations are widely applied on different distributed transaction
management protocols. Our evaluation shows that applying the
read optimizations and the request handoff optimization could
reduce transaction latency by 68% and increases throughput by
170%. To address the placement problem at scale, we propose dif-
ferent placement heuristics that can efficiently find sub-optimal
placementswithin 5−10% of the optimal placements. Experiments
show that these heuristics are able to scale without significantly
reducing the quality of the resulting placements from the optimal
placement. Finally, we discuss three partition leader placement
heuristics to place partition leaders. Experiments show that non
of the three heuristics is superior when the percentage of multi-
partition transactions changes. Unlike in [28] which uses one
heuristic to place partition leaders regardless of the percentage
of multi-partition transactions, our framework switches between
different heuristics when the percentage of multi-partition trans-
actions changes.
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ABSTRACT
Online analytics, in most advanced scientific and business appli-
cations, rely heavily on the efficient execution of large numbers
of Aggregate Continuous Queries (ACQs). Incremental sliding-
window computation is used in the state-of-the-art ACQ process-
ing algorithms (FlatFIT, TwoStacks, and DABA) to avoid the re-
evaluation of the aggregate value of the window from scratch on
every update. FlatFIT and TwoStacks aim to increase throughput,
and DABA to minimize latency, while all process invertible and
non-invertible aggregates uniformly. In this paper, we propose a
novel algorithm, SlickDeque, that distinguishes the execution be-
tween invertible and non-invertible aggregates and offers better
throughput and latency for both types. In addition, our method
requires less memory and efficiently supports multi-ACQ pro-
cessing. We theoretically show the time and space complexity
advantages of SlickDeque and experimentally validate them using
a real workload. Specifically, our approach maintains 283% lower
latency spikes on average while achieving up to 19% throughput
improvement in a single query environment and up to 345% im-
provement in amulti-query environment over the state-of-the-art
approaches along with requiring up to 5 times less memory.

1 INTRODUCTION
Motivation Data stream processing has gained momentum in
many applications that require quick responses based on incom-
ing high velocity data flows. A representative example is a stock
market application, where multiple clients monitor the price fluc-
tuations of the stocks. In this setting, a system needs to be able to
efficiently answer analytical queries (e.g., average stock revenue,
profit margin per stock, etc.) for different clients, each one with
(possibly) different timing requirements. Efficient data stream
processing is also important in monitoring applications in the
fields of health care, science, social media, and network control.

Data Stream Management Systems (DSMS) [1–3, 22, 30] have
been proposed as the most suitable systems for handling such
data flows on-the-fly and in real time. In a DSMS, clients register
their analytical queries on incoming data streams. These queries
continuously aggregate streaming data, and as such they are
called Aggregate Continuous Queries (ACQs). ACQs are typically
associated with a range (r) and a slide (s) (also referred to as
window and shift [15]), which can be either count or time-based.
A slide denotes the period at which an ACQ updates its answer;
a range is the window for which the statistics are calculated.

An ACQ requires the DSMS to keep state over time while per-
forming aggregations. Normally, DSMSs only keep the window
of the most recent data, and produce the answers by running ag-
gregate queries over it. It has been shown that in sliding-window

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the 21st
International Conference on Extending Database Technology (EDBT), March 26-29,
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stream processing, it is beneficial to use incremental evaluation,
which involves storing and reusing calculations performed over
the unchanged parts of the window, rather than performing the
re-evaluation of the entire window after each update [10, 20].
Incremental evaluation typically runs partial aggregations on the
data and produces the answer by performing the final aggrega-
tion over the partial results [18, 19].
Problem Statement Handling of aggregate operations that are
both invertible and non-invertible proved to be essential in do-
mains such as finance and science. Invertible operations include
Sum, Product, Count, Average, and Standard Deviation, while
non-invertible operations include Max, Min, Range, Alphabetical
Max (for strings), ArgMax of Cosine, and ArgMin of x2. It was
shown previously that invertible operations can be processed
efficiently by maintaining a running Sum (or other aggregation),
and invoking the inverse operation (such as Subtract) on every
expiring tuple, however non-invertible operations require more
effort to be processed efficiently and remain a challenge.

The current state-of-the-art solutions for processing ACQs,
FlatFIT [26] and TwoStacks [28], aim to increase throughput and
DABA [28], to minimize latency. These solutions process invert-
ible and non-invertible aggregates uniformly, which negatively
affects their performance with increasing workloads. To address
the aforementioned shortcomings, in this paper we propose a
novel solution named SlickDeque, which handles aggregate op-
erations differently based on their invertibility property. The
invertible operations are processed using SlickDeque (Inv), our
new modified Panes (Inv) approach, while non-invertible ACQs
are processed with SlickDeque (Non-Inv), our novel deque-based
algorithm that intelligently maintains and utilizes intermediate
partial aggregates allowing a greater level of reuse of previously
calculated results. The separation based on invertibility leads
to exceptional throughput and latency for both invertible and
non-invertible operations in systems with heavy workloads.

We consider alsomulti-query, multi-tenant environments, where
large numbers of ACQs with different ranges and slides operate
on the same data stream, calculating similar aggregations.
ContributionsWe make the following contributions:
• We propose a novel solution for processing ACQs,
SlickDeque, which processes invertible and non-invertible
operations differently. SlickDeque is applicable for both single
query and multi-query environments. (Section 3)
• We theoretically evaluate SlickDeque and show that it achieves

better time and space complexities compared to the state-of-
the-art FlatFIT, TwoStacks, andDABA solutions. To our knowl-
edge, there are no prior algorithms that can achieve the same
time and space complexities without loss of query generality
in terms of supported aggregate operations. (Section 4)
• We experimentally evaluate SlickDeque based on a real dataset
and show that it significantly outperforms state-of-the-art
techniques in all tested scenarios by increasing the ACQ
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Figure 1: Panes Technique

Figure 2: Paired Window Technique

throughput by up to 19% in a single query environment and
by up to 345% in a multi-query environment, while main-
taining 283% lower latency spikes on average and reducing
memory consumption by up to 5 times. We also show that our
approach becomes superior to the state-of-the-art approaches
starting at window sizes as small as eight tuples with its ben-
efits increasing rapidly, making SlickDeque widely applicable
for processing ACQs in a variety of DSMSs. (Section 5)

2 BACKGROUND & RELATEDWORK
In this section we briefly review the underlying concepts of our
work, which are the incremental sliding-window computation
techniques. These could be broadly divided into partial aggrega-
tion and final aggregation. We also review other related work.

2.1 Partial aggregation
Partial aggregation can be thought of as the buffering of partial
results until the query result needs to be returned by the final
aggregation. Since partial aggregation allows some buffering be-
fore the result needs to be processed by a more expensive final
aggregator and each buffered partial can be reused multiple times
as part of final aggregations, the use of the CPU and memory
resources to maintain the partials can be amortized. The follow-
ing techniques aiming to reduce the number of partials were
proposed for partial aggregations.
Panes [19] was proposed as the first partial aggregation tech-
nique for processing ACQs efficiently. The idea behind it is to
partition the incoming datastream into “panes” (we refer to them
as partials), andmaintain just one aggregate value for each partial.
This way every incoming tuple will affect the aggregate value for
just the current partial, and when the whole aggregate is due to
be reported, the answer is assembled by performing the final ag-
gregation over all the partials in the current window. Therefore,
each new partial will be reused multiple times for different final
aggregations. For example, in Fig. 1 partial P5 is used 3 times as
part of the final aggregations F1, F2, and F3.
PairedWindow technique, or simply Pairs [18], was introduced
to reduce by a factor of 2 the number of partials in a window in
cases where the range is not divisible by the slide, reducing the

Figure 3: Cutty-slicing Technique

Figure 4: FlatFAT Technique

memory consumption and accelerating the final aggregations.
As illustrated in Fig. 2, two fragment lengths are used, f1 and f2,
where f2 = ranдe%slide and f1 = slide − f2.
Cutty-slicing was proposed as part of the Cutty optimizer [8],
and it starts each new partial only at positions that signify the
beginning of new windows. This way the final aggregation can
execute in the middle of the partial aggregation calculation by
accessing the current value in the partial (Fig. 3). This reduces
the number of partials per window by a factor of two compared
to Pairs but it comes at a cost: additional punctuations have to
be sent over the data stream to the execution module to indicate
the beginnings of the new partials, which reduces the effective
bandwidth of the stream and can slow down the system, espe-
cially if the workload includes a large number of queries with
small windows.

2.2 Final Aggregation
The goal of final aggregation is to produce the result of a query
by utilizing the partials. Initially it was performed by simply
iterating over them and constructing the answer [18, 19]. For
example the Panes technique (which we consider Naive in this
work) in Fig. 1 performs a final aggregation F1 by iterating over
partials P2, P3, P4, and P5. Naturally, such a solution quickly
became outdated due to the increasing workloads that created
bottlenecks in the final aggregator. To improve this, several final
aggregation techniques have been proposed [5, 21, 26–29, 31].
Panes (Inv) [19] (or Panes for Invertible (Differential) Aggregate
Queries) was proposed to efficiently process invertible aggregates,
and it works by maintaining a running aggregate (e.g. running
Sum), and invoking the inverse operation (e.g. Subtract) on every
expiring tuple. This algorithm (with minor differences) was also
proposed as R-Int [5] and Subtract-on-Evict [28]. In this paper we
extend this approach into SlickDeque (Inv), which can do multi-
query processing by maintaining a running aggregate for each
query with a distinct range registered on the data stream.

Despite being very effective, Panes (Inv) is only applicable for
invertible operations. In order to allow greater generality in query
processing, the following techniques have been introduced.
FlatFAT [29] (or Flat Fixed-sized Aggregator) is a final aggrega-
tion approach which stores tuples in a pre-allocated pointer-less
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Figure 5: B-Int Technique

tree-based data structure (Fig. 4), and was later extended [8] to al-
low partial aggregation and multi-query processing by allowing
to store partial aggregates as tree leaves. Each internal node of
the tree contains an aggregate of its two children. New partials
are inserted into the leaves of the binary tree left-to-right. The
leaves form a circular array, meaning that after inserting a value
to the rightmost leaf, the next insert will go into the leftmost one.
Each insert triggers the update procedure, which is performed
by walking the tree bottom-up and updating all internal nodes.
An example of an update operation on leaf 15 is illustrated with
green squares in Fig. 4. The look-up of the answer in FlatFAT is
performed by returning the root node value if a query requires
the result for the maximum window, or by aggregating a min-
imum set of internal nodes that covers the required range of
leaves. The example of answering a query with a range of 11
partials starting from leaf 15 is shown with red triangles in Fig. 4.
B-Int[5] (or Base Intervals) is another final aggregation tech-
nique that uses a multi-level data structure that consists of dyadic
intervals of different lengths. On the first level, the intervals are
of a length of one partial, on the next level the interval length is
two partials, on the third level the length is four partials, and so
on. The top level has just one interval of the maximum supported
range length. The whole data structure is organized in a circular
fashion, so that the rightmost interval on any level is followed
by the leftmost interval from the same level (Fig. 5). Similarly to
FlatFAT, when producing the final aggregate, B-Int determines
the minimum number of intervals needed to represent the de-
sired range, and aggregates them. For example, in Fig. 5 B-Int
aggregates all intervals marked with color to get the answer for
the specified query range. Another tree-like approach similar to
FlatFAT and B-Int is [6].
FlatFIT [26] (or Flat and Fast Index Traverser) was proposedwith
a goal of increasing the throughput of ACQ processing. FlatFIT
achieves acceleration by dynamically storing the intermediate
results and their corresponding pointers, which indicate how
far ahead FlatFIT can skip in its calculation. It uses two circular
arrays, Pointers and Partials, interconnectedwith their indices and
a stack, Positions, for keeping indices that are currently processed.
The FlatFIT algorithm is applicable in a multi-query environment,
where it achieves a high throughput by allowing additional partial
result reuse between all ACQs on the stream.
TwoStacks [28] was shown to also achieve a high throughput by
using an old trick from functional programming to implement a
queue with two stacks, F (front) and B (back), where all insertions
push a value, val, and an aggregation, agg, of everything below it
onto B, and evictions pop from F. When F is empty, the algorithm
flips B onto F, making it a calculation heavy step that introduces
latency spikes to processing. To produce the final aggregation,
the tops of both the F and B stacks are aggregated.
DABA [28] (or De-Amortized Bankers Algorithm) was proposed
as an alternative to TwoStacks that reduces the latency spikes

Figure 6: DABA Technique

Figure 7: Shared Processing

while maintaining high throughput. The algorithm uses a prin-
ciple of the Functional Okasaki Aggregator to de-amortize the
TwoStacks algorithm. DABA uses two queues, vals and aggs, as
shown in Fig. 6 implemented as chunked-array queues with six
ordered pointers which make up the F and B stacks similarly to
TwoStacks. However after each insertion and eviction event, a
function fixup is called which re-balances the pointers and fixes
the consistency of the aggs queue.

Currently, neither TwoStacks nor DABA are known to support
multi-query execution as opposed to the other above algorithms.

2.3 Shared Processing of ACQs
Since theACQs are executed periodically (unlike one-shot queries),
several processing schemes, as well as ACQ optimizers, take
advantage of the shared processing of ACQs [8, 14, 18], which
reduces the long-term overall processing costs by sharing par-
tial results. To show the benefits of sharing in such scenarios,
consider the following example:
Example 1 (Fig. 7) Assume two ACQs monitor Max stock value
over the same data stream. The first ACQ has a slide of 2 tuples
and a range of 6 tuples, the second one has a slide of 4 tuples
and a range of 8 tuples. That is, the first ACQ is computing
partial aggregates every 2 tuples, and the second is computing
the same partial aggregates every 4 tuples. Clearly, the calculation
producing partial aggregates only needs to be performed once
every 2 tuples, and bothACQs can use these partial aggregates for
their corresponding final aggregations. The first ACQ will then
run each final aggregation over the last three partial aggregates,
and the second ACQ will run each final aggregation over the last
4 partial aggregates. ■

Partial results sharing is applicable for all matching aggregate
operations, such as Max, Product, Sum, etc. and for different but
compatible aggregate operations, for example Sum, Count and
Average can share results by treating Average as sum

count .
To determine how many partial aggregations are needed after

combining n ACQs into a shared execution plan, we first find the
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length of the new composite slide, which is the Least Common
Multiple (LCM) of the slides of the combined ACQs (in Example 1
it is four). Each slide is then repeated LCM/slide times to fit
the length of the composite slide, and all slide multiples are
marked within the composite slide as edges. If slides consist of
several fragments due to the partial aggregation, all fragments
are also marked within the composite slide as edges. The more
common edges are present in the composite slide, themore partial
aggregations can be shared.

In this work we combine all compatible ACQs into one shared
plan to achieve maximum sharing, which, in a general case, pro-
vides the most computational resource savings. Although, in
specific cases it was shown that aiming for maximum sharing is
not always beneficial [13, 14, 24, 25].

2.4 Other Related Work
Work similar to sliding-window aggregation exists in Temporal
Database Systems, which store the entire stream of tuples and
allow aggregations over any continuous segments of the stream,
which are calledHistorical Windows. In contract,DSMSs generally
support windows that end at or near the most recent results are
referred to as SuffixWindows in Temporal Databases. In Temporal
Databases, Red-black trees [17, 21], SB-trees, B-trees [31], and
Skylines [23] are used for aggregations. Due to the tree-based na-
tures of these algorithms their update complexities areO (loд(s )),
where s is the size of the entire stream history.

Several approximate calculation approaches were proposed
to save time and space by giving up accuracy [4, 7, 9, 11]. Our
approach focuses solely on computing exact answers since it is
crucial for many applications (e.g., financial, medical, etc.).

3 SLICKDEQUE
In this section we describe our new algorithm, SlickDeque, that
significantly speeds up the final aggregation calculations in a
sliding-window environment by employing different processing
schemes for invertible and non-invertible aggregations.

3.1 Algebraic Properties and Assumptions
One of the important metrics that allows the evaluation of the
difficulty of incremental evaluation of a particular query is the
algebraic properties of the underlying aggregate operation. Based
on classification from [12], all aggregate operations are divided
into three broad categories: distributive, algebraic, and holistic.
• Distributive aggregation means that the aggregation for the

set S can be computed from two of the same aggregations of
subsets S1 and S2, where subsets S1 and S2 were constructed
by splitting S in two. For example, if we have a set of 10
numbers and the Sum of the first 7 is 20, and the Sum of the 3
remaining is 15, then we can get the Sum of all 10 numbers by
adding 20 and 15. Therefore, Sum is a distributive aggregation.
• Algebraic aggregation means that the aggregation can be
computed from a number of distributive aggregations, e.g.,
Average, which is calculated from Sum and Count. The list of
common distributive aggregations includes Count, Sum, Sum
of Squares, Product, andMax. By combining these distributive
aggregations we can calculate some commonly used algebraic
aggregations such as: Average (Count and Sum), Standard
Deviation (Sum of Squares, Sum, and Count), GeometricMean
(Product and Count), and Range (Max and Min).

• Holistic aggregations are neither distributive nor algebraic,
e.g., Median, Top-K, Quantile, Collect Distinct. Holistic ag-
gregates are out of the scope for this work since they require
specifically tailored algorithms which cannot be generalized.
In this paper wewill focus on optimizing the distributive aggre-

gations; calculating the algebraic aggregations follows trivially.
Distributive aggregations can be further classified by their math-
ematical properties: associativity, invertibility, and commutativity.
Below we provide brief definitions of these properties.
• An operation ⊕ is associative if x ⊕ (y ⊕ z) = (x ⊕ y) ⊕ z is
true for all x ,y, z.
• An operation ⊕ is invertible if there exists an operation ⊖ such

that (x⊕y)⊖y = x for allx ,y, and ⊖ is feasibly inexpensive.

◦ Note: if operation ⊕ is non-invertible, thenx⊕y = z, where
z ∈
{
x ,y
}
. This is only true for non-holistic operations

(which we target in this work).

• An operation ⊕ is commutative if x ⊕ y = y ⊕ x is true for all
x ,y.

Query Operation Assumptions In terms of query operation
generality, our proposed approach, SlickDeque, is no different
from the state-of-the-art approaches, which all support non-
invertible and non-commutative operations while requiring the
operations to be associative. In general, all operations that can
be executed on a window of values are associative. The common
non-associative operations such as subtraction (x−y−z), division
(x/y/z), exponentiation (xyz ), and some binary operations such
as NAND and NOR, are generally impractical when executed on
sets of values larger than two. The difference of our proposed
SlickDeque approach is that it has separate processing algorithms
for the invertible operations (e.g., Sum, Product, Count, etc.) and
non-invertible operations (e.g., Max, Min, Range, Alphabetical
Max (for strings), ArgMax of Cosine, ArgMin of x2, etc.), which
allows us accelerated processing of both.
Window Structure Assumptions In non-FIFO window struc-
tures, the events of insertion and expiration are not synchronized,
which can cause window overflow situations when there are not
enough expiring tuples (or partial aggregates) to make room in
the window for the insertions. All of the compared approaches,
including ours, are able to handle such cases by performing dy-
namic resize operations. However in this paper we are focusing
on the FIFO window environment which is the most common
way to processing sliding-window aggregations in practice.
Arrival Order Assumptions Similarly, all of the aforemen-
tioned algorithms allow updates on multiple partial aggregates
already stored within the window. However in this paper we
focus on the classic streaming scenario when all new partial ag-
gregates are processed by the final aggregator one-by-one as they
become available. In such settings the arriving tuples have to be
in-order or slightly out-of-order. As long as the out-of-order tuples
are within the same partial aggregation, the final result will not
be affected. If, however, some tuples fall outside of their partial,
inconsistencies in the final result may arise. The mechanism that
all systems uses to cope with such extreme situations is outside
of the scope of this paper.

3.2 The SlickDeque Algorithm
In this subsection we provide the algorithm and implementation
details for our approach followed by the clarifying examples. We
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Algorithm 1 SlickDeque (Inv) Pseudocode
1: Input: A set of aggregate continuous queriesQ , invertible aggregate

operation ⊕, the initial value for ⊕ initVal, the inverse operation ⊖,
and partial aggregation technique PAT

2: Output: Continuous answers to queries in Q according to their
specifications.

3: Phase 1 (Preparation)
4: sharedPlan = buildSharedPlan(Q, PAT)
5: wSize = sharedPlan.wSize
6: partials = new array[wSize]
7: answers = new map(queryRange→ answer)
8: for i=0 to wSize do
9: partials[i] = initVal
10: end for
11: for each query q Q do
12: answers.insert(q.range, initVal)
13: end for
14: currPos = 0
15: Phase 2 (Execution)
16: while results are expected do
17: length = sharedPlan.getNextPartialsLength()
18: newPartial = partialAggregator.aggregate(length, PAT)
19: for each (qR→ ans) pair in answers do
20: startPos = currPos - qR
21: if startPos < 0 then
22: startPos += wSize
23: end if
24: ans = ans ⊕ newPartial ⊖ partials[startPos]
25: end for
26: queriesToAnswer = sharedPlan.getNextSetOfQueries()
27: for each query q in queriesToAnswer do
28: send answers.getVal(q.range) as answer to q
29: end for
30: partials[currPos] = newPartial
31: currPos++
32: if currPos == wSize then
33: currPos = 0
34: end if
35: end while

break down our algorithm description based on invertibility of
the aggregate operator.

SlickDeque for Invertible Aggregates
For processing invertible aggregates we propose SlickDeque (Inv),
a modified Panes (Inv) extended for processing multiple ACQs.
Pseudocode for it is depicted in Algorithm 1. The algorithm con-
sists of two major phases: Preparation and Execution.
The Preparation Phase given a set of queries,Q , and one of the
partial aggregation techniques (PAT) discussed in Section 2.1 (e.g.,
Pairs) as an input, SlickDeque (Inv) builds a shared execution plan
by executing the buildSharedPlan function (line 4). The sharedPlan
is constructed as discussed in Section 2.1, and includes a full list
of partials (or edges) augmented with their lengths and lists of
queries to be evaluated for each partial. The buildSharedPlan
function identifies the query with the longest range in terms of
the number of partials, and saves the range as the member wSize
of the sharedPlan (line 5). wSize signifies the necessary window
length needed to process all input queries.

After generating the sharedPlan, SlickDeque (Inv) initializes
its data structures: a circular array, partials, (line 6) and a map,
answers, (line 7). The partials array is initialized to a length equal
to wSize, and is used to store partial aggregates. The answers
map maintains the mappings of all queries with unique ranges to

their current answers. Queries operating over the same range can
share results even if they have different slides. Both the partials
array and the values of the answers map are initialized (lines 8-
13) with the initial value for the operation ⊕, initVal, supplied as
input. For example, initVal is −∞ for the Max operation.

The currPos variable signifies the current position within the
partials array (line 14). It starts at 0 initially and increases to
wSize − 1 during execution, after which it wraps back to 0. The
arriving partial aggregates will be inserted into the partials array
always at the currPos.
The Execution Phase is implemented as a loop that continu-
ously returns all query results while they are expected. At the
beginning of the loop (lines 17-18), SlickDeque (Inv) gets the next
partial’s length from the sharedPlan, and passes it to the new-
Partial Aggregator which uses the provided PAT technique to
produce the newPartial value.

Next, SlickDeque (Inv) loops over all range-to-answer map-
pings (qR → ans) in the answers map (lines 19-25). The loop
starts by identifying the start position, startPos, for each map-
ping within the partials array from which the values need to be
aggregated. startPos is identified by rewinding currPos back by
query range, qR, length.

Since SlickDeque (Inv) only works for the invertible queries,
it utilizes both the aggregate operation ⊕ (e.g., Sum if query
is seeking Sum), and an inverse operation ⊖ (e.g., Subtract if
the original operation is Sum). This way each answer, ans, is
updated by executing the aggregate operation ⊕ with the newly
calculated newPartial value and the inverse operation ⊖ with
expiring partials[startPos] value (line 24).

Next, the answers to all queries scheduled at the current po-
sition need to be produced (lines 26-29). After receiving the
queriesToAnswer (a subset of Q) from the sharedPlan, SlickDeque
(Inv) loops over them while sending back the corresponding an-
swers pulled from the answers map. Then, the Parial value is
inserted into the circular partials array at currPos, and currPos is
moved one position forward (lines 30-34).

The following Example 2 (illustrated in Fig. 8) should clarify
the above algorithm. In order to make the explanation more
intuitive we execute the two queries, Q1 and Q2, on the same
incoming datastream using two algorithms: Naive and SlickDeque
(Inv), and we illustrate each step of their calculations side-by-side.

Example 2 Assume we have queries Q1 and Q2, which are
seeking the Sum over the ranges of 3 and 5 tuples, respectively,
both with a slide of 1 tuple. The slide size is set to one tuple in
this example for simplicity, which means that there is no partial
aggregation and the answers to both queries need to be calculated
after every new tuple arrival. Since the range ofQ2 is 5, which is
greater than the range of Q1, and the slides of Q1 and Q2 are the
same, the shared execution plan has a wSize of 5 tuples.

Both Naive and SlickDeque (Inv) algorithms use the partials
array in order to maintain incoming partial aggregates (in this
case just tuples). The difference is that Naive produces answers
to queries by iterating over this array, while SlickDeque (Inv)
utilizes the additional answers map (Introduced above).

In the partials array we mark the positions that have been
modified by the algorithm in each step. The current position
(currPos) at each step is bolded in Fig. 8 for convenience. The
tuples enter the system in the order: 6, 5, 0, 1, 3, 4, 2, 7.

After the initialization in Step 0, in Step 1 the first tuple, 6,
arrives. Both algorithms store the new tuple at the currPos in the
partials array, and Naive iterates over indexes 3, 4, and 0 in order
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Figure 8: Example 2 processing of invertible aggregate
queries Q1 and Q2 using Naive and SlickDeque (Inv) algo-
rithms.

to answer Q1, and iterates over the entire array to answer Q2.
Both answers in this case are 6.

SlickDeque (Inv) on the other hand in step 1 just updates all
answers in the answers map by executing the operation ⊕ (in
this example it is Sum) with the newly arrived tuple 6 and the
inverse operation ⊖ (in this example it is Subtract) with values at
indexes 2 and 0 in the partials array, which both are zeros. The
updated answers are stored in the answers map.

In Step 2, the new partial, 5, arrives, and Naive iterates again
over the past 3 tuples to answer Q1 and over the whole window
to answerQ2, and sums up all of the values that were visited. The
SlickDeque (Inv) algorithm on the other hand, is able to provide
answers to both queries with just two operations each. It adds 5
and subtracts 0 from both answers in the map, making both 11.

Skipping ahead, in Step 4 SlickDeque (Inv) adds the new tuple,
1, to both answers, subtracts 6 from the answer to Q1 (since it is
now out of range of Q1), and then subtracts 0 from the answer
to Q2 (since 0 was in partials[3] in the previous step), returning
6 and 12 as answers to Q1 and Q2 respectively.

Skipping further, in Step 7 SlickDeque (Inv) adds 2 to both
answers, and subtracts 1 from Q1’s answer (since it is now out
of range for Q1) making it 9, and subtracts 5 from Q2’s answer
(since 5 was in partials[1] in the previous step) making it 10. ■

Notice that in this example Naive had to execute a total of
48 Sum operations, while SlickDeque (Inv) executed a total of 32
operations (Sum and Subtract).

SlickDeque for Non-Invertible Aggregates
For processing non-invertible aggregates we propose a novel
algorithm, SlickDeque (Non-Inv), which accelerates the process-
ing of ACQs by intelligently maintaining and utilizing a deque
data structure consisting of nodes allocated in chunks intercon-
nected with pointers. For simplicity of explanation we assume

that each node is allocated on a separate chunk. The benefits of
allocating multiple nodes per chunk are explained in Section 4.2.
Pseudocode for SlickDeck (Non-Inv) is depicted in Algorithm 2,
and similarly to SlickDeque (Inv) it consists of two major phases:
Preparation and Execution.
The Preparation Phase Similarly to SlickDeque (Inv), the exe-
cution starts by building a sharedPlan by executing the function
buildSharedPlan (line 4). It is constructed using one of the partial
aggregation techniques as discussed in Section 2.1, and it includes
a full list of partials augmented with their lengths and lists of
queries that need to be evaluated for each partial. The query with
the longest range in terms of the number of partials is identified
and saved as the member wSize of the sharedPlan, signifying the
necessary window length needed to process all input queries.

After generating the sharedPlan, SlickDeque (Non-Inv) defines
node, Node , structure that has members pos and val, and initial-
izes deque, d , composed of nodes, Node , (lines 6-7). SlickDeque
utilizes the currPos variable to signify the sequential number of
the current partial aggregate. It starts at 0 initially and increases
towSize − 1 during execution, after which it wraps back to 0.
The Execution Phase is implemented as a loop that contin-
uously returns all query results while they are expected, and
identically to SlickDeque (Inv), it begins by aggregating a newPar-
tial. The if-statement on line 13 is removing the expired node (if
present) from the head of the deque, d . The while-loop after that
(line 16) is executing operation ⊕ on two values: the value of the
tail node and of the new partial. If the new partial is returned by
the operation, the tail node is removed from the deque (it will
never be a query answer), and the next one is tested, otherwise
the loop stops. The new node is then added to the deque with
currPos as the position and newPartial as the value (line 19).

Next, set queriesToAnswer (a subset of Q scheduled at this
position) is accessed from the sharedPlan, and the answers for its
queries are produced in the for-loop below. Naturally, when the
sharedPlan was constructed, all queries in each queriesToAnswer
set were ordered descendingly by their range. We utilize this
ordering to answer all queries by looping over the deque only
once, since the larger ranges always correspond to the deque
nodes closest to the head. Therefore, the position i within the
deque is defined outside the loop and initialized to the head of
the deque (line 21).

The loop starts by identifying the startPos of the aggregation
for each query, q, by subtracting q’s range from currPos (line 23).
If startPos is negative it means that this range crosses a boundary
between two windows, and thus the boolean boundaryCrossed
is set to true and startPos is increased by the wSize. Otherwise
boundaryCrossed is set to false.

Then, based on whether the current range crosses the window
boundary or not, one of the two subsequent Answer Loops is exe-
cuted (lines 29-39), iterating over nodes from the current position
i until the answer node is identified based on the pos member
of each node, and returned as an answer to the query, q. The
next iteration (to answer the next query) will continue working
from the position i forward, until all queries are processed. After
returning all required answers the currPos is moved one position
forward (lines 42-45).

The following Example 3 (illustrated in Fig. 9) should clarify
the above algorithm. To make the explanation more intuitive we
again execute the two queries Q1 and Q2 on the same incoming
datastream using Naive and SlickDeque (Non-Inv), and illustrate
each step of their processing side-by-side.
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Algorithm 2 SlickDeque (Non-Inv) Pseudocode
1: Input: A set of aggregate continuous queries Q , non-invertible ag-

gregate operation ⊕, and partial aggregation technique PAT
2: Output: Continuous answers to queries in Q according to their

specifications.
3: Phase 1 (Preparation)
4: sharedPlan = buildSharedPlan(Q, PAT)
5: wSize = sharedPlan.wSize
6: Node with members pos and val
7: Deque d composed of nodes of type Node
8: currPos = 0
9: Phase 2 (Execution)
10: while results are expected do
11: length = sharedPlan.getNextPartialsLength()
12: newPartial = partialAggregator.aggregate(length, PAT)
13: if d.size > 0 AND d.front.pos == currPos then
14: d.pop_front()
15: end if
16: while d.size>0 AND d.back.val⊕newPartial==newPartial do
17: d.pop_back()
18: end while
19: d.push_back(new Node(currPos, newPartial))
20: queriesToAnswer = sharedPlan.getNextSetOfQueries()
21: i = d.firstNode
22: for each query q in queriesToAnswer do
23: startPos = currPos - q.range
24: boundaryCrossed = false
25: if startPos < 0 then
26: startPos += wSize
27: boundaryCrossed = true
28: end if
29: if boundaryCrossed == false then
30: //Answer Loop 1
31: while i.pos < startPos OR i.pos > currPos do
32: i = i.nextNode
33: end while
34: else
35: //Answer Loop 2
36: while i.pos < startPos AND i.pos > currPos do
37: i = i.nextNode
38: end while
39: end if
40: send i.val as answer to q
41: end for
42: currPos++
43: if currPos == wSize then
44: currPos = 0
45: end if
46: end while

Example 3 Assume we have queries Q1 and Q2, which are
seeking Max over the ranges of 3 and 5 tuples respectively, both
with a slide of 1 tuple. The slide size is again set to one tuple for
simplicity, which means that there is no partial aggregation and
the answers to both queries need to be calculated after every new
tuple arrival. As before, the range of Q2 (5) is greater than the
range of Q1 (3), and the slides of Q1 and Q2 are the same, the
shared execution plan has awSize of 5 tuples.

While Naive uses the circular partials array to maintain the
incoming partials (in this case just tuples), SlickDeque (Non-Inv)
only utilizes deque in its operation. In both partials and deque
we mark the positions modified in each step. The tuples enter
the system in the same order as in Example 2: 6, 5, 0, 1, 3, 4, 2, 7.

After the initialization Step, in Step 1 the first tuple, 6, arrives.
Naive stores it at the currPos in the partials array, and iterates

Figure 9: Example 3 processing of non-invertible aggre-
gate queries Q1 and Q2 using Naive and SlickDeque algo-
rithms.

over the last 3 indexes (3, 4, and 0) to answer Q1, and over the
entire array to answer Q2. Both answers in this case are 6.

SlickDeque (Non-Inv) places a new node with pos = 0 (which
is currPos) and val = 6, at the head of the deque, and since its pos
value is both within the last 3 and 5 positions from currPos, its
val is returned as the answer to both Q1 and Q2.

In Step 2, the new partial, 5, is placed into the currPos, and
Naive iterates again over the past 3 tuples to answerQ1 and over
the whole window to answerQ2, and returns the Max value from
all values visited, which is 6. Our algorithm on the other hand,
places the new tuple 5 as a val of the new node (with pos = 1) at
the end of the deque, and returns 6 (the val of the head node of
the deque) as an answer to both queries.

Skipping ahead, in Step 4 SlickDeque (Non-Inv) removes the
tail node of the deque since the newly arrived tuple, 1, is greater
than 0, which is the val of the tail node, and adds the new node
with pos = 3 and val = 1 at the end of the deque. Since Q2 has
a larger range, it is scheduled to be processed first. Its startPos
is identified: 3 − 5 = −2, and since -2 is negative, the window
boundary is crossed. Therefore startPos is moved to−2+5 = 3, and
the Answer Loop 2 is executed returning the val of the head node,
6. The startPos of Q1 is 3 − 3 = 0, and since 0 is not negative, the
window boundary is not crossed. Thus, the answer is produced
by iterating using Answer Loop 1, which returned 5, the val of the
second node from the head.

Skipping further, in Step 6 SlickDeque (Non-Inv) removes the
head node of the deque (with pos = 0 and val = 6) which expires
at this step since the currPos is 0. Also, since the newly arrived
tuple, 4, is greater than 3, the last node of the deque is removed,
and the new node with pos = 0 and val = 4 is added at the end
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of the deque. Q2 and Q1 are then both processed by executing
the Answer Loop 2 and returning 5 and 4 respectively. ■

Note that this example also shows the advantage of SlickDeque
(Non-Inv) over Naive by showing that Naive had to execute 48
Max operations total, while SlickDeque (Non-Inv) executed 11.

4 COMPLEXITY ANALYSIS
In this section, we calculate the time and space complexities of
Naive, B-Int, FlatFAT, FlatFIT, TwoStacks, DABA, and SlickDeque.
These are summarized in Table 1.

4.1 Time Complexities
We evaluate each algorithm’s time complexity in terms of the
number of aggregate operations it performs per slide to return
all query answers given a window size of n partial aggregates.
This metric was chosen because the aggregate operations are (1)
applied directly to the input data, (2) constitute the the bulk of
all performed operations, and (3) their number correlates best
with the actual query performance. In order to cover the entire
complexity space, we calculate amortized complexities as well as
worst-case complexities. Amortized complexities are important
to us because they correlate with ACQ processing throughputs,
while worst-case ones reflect possible latency spikes.

In addition to providing calculations for a single query envi-
ronment (where only one query covering the entire window is
executed each slide), we also evaluate a multi-query environment
with the maximum number of queries (which we refer to as a
max-multi-query environment). This way, a single query envi-
ronment can be though of as a lower bound of complexity per
slide, while a max-multi-query environment (which executes all
queries covering all possible ranges from 1 to the window length
(n) each slide), can be thought of as the upper bound. It is clear
that in most cases the complexity of the general case (with any
other numbers of queries) lays between these bounds.
Naive has an exact time complexity (with matching amortized
and worst cases) because it always executes the same number of
operations per slide. In a single query environment, its complexity
is n − 1 (asymptotically n) because it simply iterates over all n
partials and aggregates them.

In a max-multi-query environment, Naive needs to return
n answers each slide for ranges from 1 to n, yielding 0 to n − 1
operations, respectively. By summing up this arithmetic sequence
we get n2

2 −
n
2 (asymptotically n2).

FlatFAT has an exact time complexity of loд2 (n) in a single query
environment since each new partial updates the binary tree in a
bottom-up fashion from the leaf to the root. Since the number

Table 1: Algorithmic Complexities

Algorithm
Time Space

Single Query Max-Multi Single Max-Multi
Amort Worst Query Query Query

Naive n n n2 n n

FlatFAT loд(n) loд(n) n · loд(n) 2n** 2n**
B-Int loд(n) loд(n) n · loд(n) 2n** 2n**
FlatFIT 3 n n 2n 2n

TwoStacks 3 n — 2n —
DABA 5 8 — 2n —

Slick Inv 2 2 2n n 2n
Deque Non-Inv <2 n* n 2 to 2n* 2 to 2n*

*the probability of these cases is negligible: 1 in n!.
**true only when n is a power of 2, otherwise 3n.

of levels in a binary tree is loд2 (n) + 1, FlatFAT needs exactly
loд2 (n) operations to calculate the query answer. In a max-multi-
query environment it is intuitive that the upper bound of the
time complexity is n · loд2 (n), since FlatFAT needs to iterate over
n different query ranges at each slide and each range would
require loд2 (n) operations at most to return the result. The exact
complexity per slide can be produced by iterating over all possible
ranges and summing their required numbers of operations, which
equates to: n · loд2 (n) − 3n

2 +
5loд2 (n)

2 + 5
2 . For simplicity, we use

the asymptotic equivalent of this complexity: n · loд(n).
B-Int similarly to FlatFAT is of a binary nature, and is only dif-
ferent in how it handles updates and look-ups. In [29] B-Int has
been shown to have the same asymptotic time complexity as
FlatFAT, with B-Int being slower by a constant factor, which we
confirm in this work as well.
FlatFIT executes different numbers of operations for different
slides, unlike Naive, FlatFAT, and B-Int, which causes spikes in
latency. The execution of FlatFIT follows a cyclical pattern which
repeats every n + 1 slides, where n is the window size. In a single
query environment, the so called window reset event happens
once per such period and constitutes the worst-case complexity
per slide. During the window reset the indexes of the entire data
structure are updated in n − 1 steps. The window reset operation
is surrounded by two slides that require just one operation, and
the rest of the slides in a period require two operations each. By
summing everything, we have the amortized complexity for the
natural period of FlatFIT: (n−1)+2(n−2)+2 = 3(n−1), equating
to 3n operations for the period of n slides, which in turn makes
the amortized complexity asymptotically constant and equal to 3
operations per slide.

In a max-multi-query environment, FlatFIT keeps the data
structure maximally updated by answering queries over all pos-
sible ranges each slide, which allows it to calculate the query
answers with just one or zero operations each. Due to this, the
window reset event happens only once at the beginning of the
execution phase, and therefore in this scenario the operational
complexity of the FlatFIT algorithm is not amortized and yields
n − 1 operations per slide (asymptotically n).
TwoStacks also executes different numbers of operations for dif-
ferent slides, which introduces latency spikes similarly to FlatFIT.
During insertions, each new partial is added to the B stack and
one aggregate operation is performed to determine the new ag-
gregate value of the entire stack B. After that, another operation
is performed using the top values of both the F and B stacks to
return the query answer, which makes the complexity of inser-
tions 2 operations. The majority of evictions are free since they
are done by just popping the node from the F stack. When F
becomes empty, however, B is flipped onto F by popping values
one-by-one from B and inserting them into F while performing
one aggregate operation per insertion (to populate agg values on
F ). The flip procedure (n operations) clearly constitutes the worst-
case complexity per slide. To calculate the amortized complexity
we add all operations per one full iteration of the algorithm: n
insertions (1 operations each), n queries (1 operation each), and
one eviction that causes stack flip procedure (n operations), to-
talling 3n operations per n slides. Thus, the amortized complexity
of the algorithm in constant and equals 3 operations per slide.
TwoStacks does not currently allow multi query processing.
DABA was proposed to alleviate latency spikes in TwoStacks by
making its worst-case time complexity constant (though it still
performs different numbers of operations each slide). By doing
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that DABA sacrifices its amortized time complexity (and conse-
quently its throughput). Per one full window iteration DABA
executes 2 flip actions, n shift actions, and n evict actions (which
all cost 0 operations), n shrink actions (costing 3 operations each),
and also n insert actions and n answer look-up actions (cost 1 op-
eration apiece), totalling 5n operations per n slides, which yields
the amortized complexity of 5 operations. DABA’s worst-case
complexity can be attributed to a step that performs the follow-
ing sequence of actions: Evict, Flip, Shrink, Insert, Shrink, Query,
which costs 8 operations total. Similarly to TwoStacks DABA does
not currently support multi query processing.
SlickDeque for Invertible Operations has an exact time com-
plexity of just 2 operations per slide in a single query environ-
ment, since after each arrival of the new partial aggregate, the
query answer is updated twice: once by executing an aggregate
operation with the incoming partial, and once by executing the
inverse operation with the expiring partial. In a max-multi-query
environment SlickDeque (Inv) has to perform 2n operations, since
one aggregate operation and one inverse operation need to be
executed on each of the answers to n queries, which makes the
algorithm’s exact time complexity 2n.
SlickDeque for Non-Invertible Operations executes variable
numbers of operations per slide. As opposed to FlatFIT, TwoStacks,
and DABA which are input agnostic and have their worst-case
steps executed periodically, SlickDeque (Non-Inv) depends on the
input, and the probability of ever executing its worst-case step is
minuscule as we point out below.

Intuitively, in the long-running environmentwith a non-infinite
window, each partial can causes at most two operations: one
when it is inserted (invokes its comparison with the tail of the
deque), and one when it is deleted by another incoming partial
(invokes comparison of the incoming partial with the next item
on deque). Clearly, the only two situations when a partial per-
forms less than two operations in its lifetime are (1) if it becomes
the first element of the deque after its insertion (either by remov-
ing all other partials or by being inserted into an empty deque),
or (2) if it expires before being removed by another partial. If
both situations happen to the same partial it will be involved in
0 operations in its lifetime. Also, it is impossible to execute a full
window iteration without hitting one of the two situations by
one of the partials at least once, since we cannot have an element
in a deque that would both not get removed by another incoming
partial as well as not expired after a full window iteration. Thus,
the amortized complexity of this algorithm depends on the input,
however it is always less than 2 operations.

The worst time complexity of this algorithm happens when
the input (except the last partial of the window) is ordered in
the opposite way of the aggregate operator order, e.g., if Max is
processed and the entire input is ordered descendingly, forcing
the deque to fill up, after which the next input partial has the
largest value so far. This causes the new element to perform n op-
erations while deleting all nodes on the deque. Fortunately, such
a situation is highly unlikely on most inputs (1 in n! chance in
the uniform case). Consider the state-of-the art DABA algorithm
that we showed to have a worst-case complexity of 8 operations.
In order for SlickDeque (Non-Inv) to have a step with the same
complexity there should be at least 9 ordered partials in the input.
The probability of receiving 9 values ordered in a specific way in
a row is 1 out of 9! (equals 362880), which is highly unlikely.

In a max-multi-query environment, to process all queries
scheduled at a slide, the deque is traversed from the head while

answering each query. Clearly, if the number of nodes in the
deque is smaller than the number of different queries to answer,
some nodes will have answers to multiple queries. Thus, the
worst case would again be when the input forced the deque to
completely fill up, for which the probability is again 1 in n!. In
such a case, iterating over the entire deque at each step will take
n operations (and at worst 2 operations per step as shown in
the single query environment), so the complexity of the worst-
case becomes 2n. In the best case, the deque would have only
one node each slide that would answer all queries, which would
make complexity just 2 operations total.
Summary The differentiated processing of invertible and non-
invertible operations allows SlickDeque to utilize optimizations
tailored towards each type that are not available in the general
case. Thus, SlickDeque is superior in the time complexity for
both invertible and non-invertible cases compared to all other
algorithms. However, in the worst-case complexity per slide,
theoretically SlickDeque has a small possibility (1 in 362880 based
on the input) to be outperformed by DABA.

4.2 Space Complexities
Naive has the space complexity of n since it stores partials only
once and does not keep any additional structures. This complexity
stands despite the number of registered queries, since additional
queries do not require any additional structures.
FlatFAT andB-Int both have the space complexity of 2⌈loд (n)⌉+1.
Due to thir binary nature, they are more space efficient when
the window size is a power of two, in which case they consume
2n of memory: n for all leaf nodes and n − 1 for all tree nodes
above leaves. The first position within a flat array is normally
left unused in order to simplify the addressing of nodes within
the tree. In cases where the window size is not a power of two,
FlatFAT and B-Int round it up to the closest power of two, which
is mathematically expressed as: 2⌈loд (n)⌉ . Therefore, the space
complexity of these algorithms yields 2⌈loд (n)⌉+1. The window
rounding manifests the worst-case space complexity of 3n.
FlatFIT needs two pre-allocated arrays of size n to operate and
a stack that can grow up to 2 values total in a single query en-
vironment and in a max-multi-query environment. This results
in an asymptotic space complexity of FlatFIT 2n. However, in
terms of space complexity, single query and max-multi-query
environments do not bound FlatFIT. In a general case where we
have more than one query and less than the maximum queries
registered, the stack might have to store up to n/2 values (case
with two queries) at most. However, each additional query (of
a different range) after that cuts the maximum stack memory
consumption in half. Therefore, if the number of queries is q, the
space complexity of FlatFIT becomes 2n for q = 1 and q = n, and
2n + n

2q−1 for the rest of the possible values of q.
TwoStacks uses stack structures with nodes containing two
values, however both stacks combined can never have more than
n nodes total by the nature of the algorithm, which makes its
space complexity 2n.
DABA similarly to TwoStacksmaintains the front and back stacks
with nodes consisting of both values and aggregates, however it
is implemented on top of the doubly linked list of chunks. The
space complexity of DABA depends on the number of underlying
chunks, specifically, having less chunks that are bigger in size
saves space on pointers (left and right), but wastes space on over-
allocations (periodically window slides between chunks during
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the execution leaving up to two chunks’ worth of space wasted).
If the window is split into k chunks, then DABA’s space complex-
ity is: 2n + 4k + 4n/k . If we take a derivative with respect to k ,
equate it to zero, and solve for k , we conclude that the minimum
space complexity for DABA is achieved by setting k to

√
n, and it

equals 2n + 4
√
n (asymptotically 2n).

SlickDeque for invertible operations stores partial aggregates
similarly to Naive. In addition, it stores the answer for each query
with a unique range, making its single query space complexity
n + 1, and max-multi-query 2n.
SlickDeque for non-invertible operations performs node al-
locations in chunks to reduce the space required by pointers sim-
ilarly to DABA, causing an overallocation of up to two chunks’
worth of space (at the beginning and at the end of the deque).
The space complexity of SlickDeque (Non-Inv) does not depend
on the number of registered queries, but depends on the input. In
the worst-case, the input forces the deque to become full. In such
a case, having n nodes with two values each, and k chunks with
two pointers each, the space consumption becomes 2n+4k+4n/k .
By taking a derivative with respect to k , equating it to zero, and
solving for k , we conclude that k should be set to

√
n to minimize

the worst-case complexity, which becomes 2n + 4
√
n (asymptot-

ically 2n). Similarly to the time complexity, the chance of the
worst-case happening in normal conditions is very low: just 1
in n!. In the best case, however, each incoming partial forces the
deque to eliminate all of its nodes, making the space complexity
constant (2).
Summary SlickDeque shows a clear advantage over the rest of
the algorithms in terms of space complexity. SlickDeque (Inv)
shares the space complexity of n with Naive, while the rest of the
algorithms have a complexity of at least 2n, and the complexity
of SlickDeque (Non-Inv) is always less or equal than 2n (based on
the input). This means that only Naive can possibly outperform
it, however the probability of that happening is low (just 1 in
n!/2), and even then, Naive is still not a feasible solution because
of its high time complexity.

5 EXPERIMENTAL EVALUATION
In this section, we present our experimental evaluation that con-
firms the theoretical superiority of SlickDeque in practice, by
comparing it to other final aggregation approaches.

5.1 Experimental Testbed
Platform In order to test the performance of our sliding-window
aggregation technique, we built an experimental platform in
C++ (compiled with G++5.4.1). Specifically, we implemented a
stand-alone stream aggregator platform and programmed the
Naive, FlatFAT, B-Int, FlatFIT, TwoStacks, DABA, and SlickDeque
(Inv and Non-inv) algorithms within the same codebase, sharing
data structures and function calls to enable a fair comparison.
Although all of the compared algorithms can be easily ported
to any commercial general purpose stream processing system,
we chose to go with a stand-alone platform to carry out our
evaluation in an isolated environment in order to avoid any
potential system interference and overheads. In the future we
are planning to repeat our evaluation on a production system.
DatasetWe utilized the DEBS12 Grand Challenge Dataset [16]
which contains events generated by sensors of large hi-tech man-
ufacturing equipment. Each tuple in this dataset incorporates 3
energy readings and 51 values signifying various sensor states.
The records were sampled at the rate of 100Hz, and the whole

dataset includes ~33 million unique events, which we made into
a dataset of 134 million tuples.
WorkloadClearly, the performance of the final aggregation tech-
niques heavily depends on the window size, i.e., the larger the
window size the longer it takes to process updates to it. Thus, we
varied the window size from 1 tuple to 134 million tuples, which
is the maximum window size with our dataset. Given that the
goal of our evaluation is just to compare different final aggrega-
tion techniques, we eliminated any side effects (i.e., overheads
or benefits) induced by partial aggregation by setting all query
slides to one tuple.
Evaluation Metrics We chose to compare the algorithms using
throughput, latency, and memory requirement. Throughput is
measured as the number of query results returned per second in
a single query environment, while in a multi-query environment
it is measured as the number of slides of a shared execution plan
processed per second. Latency is measured in terms of the total
time it took to calculate and return the answer to each query.
Memory Requirement is measured by the maximum resident set
size of processes running the corresponding techniques.

5.2 Experimental Results
We ran our experiments on an Intel(R) i7-4770 CPU @ 3.40GHz
with 16 GB of RAM. For robustness, all the results were averaged
over three independent runs of each experiment aggregating
three different energy readings from the DEBS12 dataset.

Exp 1: Single Query Throughput
Exp1(a) Invertible Aggregates (Fig. 10)
In this experiment we varied the window size from 1 to 134
million tuples where each window is a power of two, and ran a
query calculating the invertible aggregation Sum over the entire
window after each new tuple arrival. From the results in Fig. 10
we clearly see that there are two groups of algorithms based on
their behavior with increasing window size: (1) with constant
throughput (SlickDeque, FlatFIT, TwoStacks, and DABA), and (2)
with steadily degrading throughput (FlatFAT, B-Int, and Naive).
Notice that the throughput rates are similar to what we expected
from the theoretical analysis of the algorithms in Section 4.

Fig. 10 shows that SlickDeque’s throughput is on average 15%
higher than the throughput of the second best algorithm (Flat-
FAT on windows 1 through 16, and FlatFIT on the rest) with a
maximum of 19%. We also observed that SlickDeque starts outper-
forming other algorithms on windows as small as 4 tuples and
increases its gain rapidly. FlatFAT showed to be more beneficial
than SlickDeque only on window sizes from 1 to 4 tuples, however
this benefit is negligible (1% at max).
Exp1(b) Non-Invertible Aggregates (Fig. 11)
In this experiment we replaced the calculation of Sum with the
non-invertible aggregation Max, that again runs over the entire
window after each tuple arrival. Similarly to Exp1(a), we see that
the throughput of some algorithms is practically unaffected by
the increasing window size. The results are depicted in Fig. 11.
Once again, the throughput rates correspond to what we expected
from the theoretical analysis of the algorithms.

In this experiment SlickDeque’s throughput is on average 7%
higher than the throughput of the second best algorithm with a
maximum of 10%, and SlickDeque starts outperforming all other
algorithms on windows as small as 16 tuples. FlatFAT showed to
be more beneficial than SlickDeque only on window sizes from 1
to 8 tuples with an advantage of 7% at max.
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Figure 10: Exp 1 Throughput in processed queries per sec-
ond in single query environment (Sum)

Figure 11: Exp 2 Throughput in processed queries per sec-
ond in single query environment (Max)

Exp 2: Max-Multi-Query Throughput
Exp2(a) Invertible Aggregates (Fig. 12)
In this experiment we ran a maximum number of queries calcu-
lating Sum value over the ranges from 1 to the window size after
each new tuple arrives. In this context increasing the window
also increases the number of queries that are processed after each
slide, enabling higher reuse of unchanged partial results among
them. Thus, in Fig. 12 we see that the throughput gradually in-
creases until the moment when the overhead of dealing with the
large window outweighs the benefit of sharing between queries.

In this setting, our approach demonstrated superior scalability
yet again by yielding throughput that is on average 45% higher
than the throughput of the second best technique with a maxi-
mum of 60%. Notice that SlickDeque performs the best on window
sizes from 4 tuples to 134 million tuples and only underperforms
compared to other algorithms on window sizes 1 and 2 by 3%
and 2%, respectively.
Exp2(b) Non-Invertible Aggregates (Fig. 13)
In this experiment we ran the maximum number of queries cal-
culating Max over all ranges from 1 to the entire window after
each tuple arrival. The results are depicted in Fig. 12, and are
close to our results in experiment Exp2(a).

In this setting SlickDeque yielded throughput on average 266%
higher than the throughput of the second best technique with
a maximum of 345%. SlickDeque showed to perform the best on
windows from 4 tuples to 134 million tuples while falling behind
Naive and FlatFAT on windows 1 and 2 by 7% on average.
Summary In all throughput experiments SlickDeque exhibits the
best results, while being slightly outperformed on small window

Figure 12: Exp 3 Throughput in processed slides per sec-
ond in multi-query environment (Sum)

Figure 13: Exp 4 Throughput in processed slides per sec-
ond in multi-query environment (Max)

sizes (between 1 and 8 tuples) when the overhead of maintaining
its structure outweighed the benefit of using it.

Exp 3: Query Processing Latency (Fig. 14)
In this experiment we fixed our window size at 1024 tuples and
ran all algorithms on the first million tuples of the DEBS data
set while recording how long it took to return an answer to each
query. We executed a single query processing Sum (invertible)
in the first test, and Max (non-invertible) in the second test. We
dropped the highest 0.005% latencies from all algorithms as out-
liers. The latency results of both tests were nearly identical for all
algorithms except SlickDeque, thus we combined them in Fig. 14,
where only SlickDeque has separate entries for invertible and
non-invertible cases.

Fig. 14 shows that both invertible and non-invertible SlickD-
eque versions exhibited the lowest latency in all the following
categories: Min, Max, Average, Median, 25th Percentile, and 75th
Percentile. Across all of the abovementioned categories, SlickD-
eque outperformed the second best algorithm by 8% on average
and 17% at most (for the non-invertible version), and by 75%
average and 548% at most (for the invertible version). Also, Slick-
Deque outperformed the second best DABA algorithm by 283%
on average in terms of the lowest max latency spike.

Exp 4: Memory Requirement (Fig. 15)
In this experiment we again varied the window size from 1 tuple
to 134 million tuples (but also included window sizes that are not
powers of two). We executed a query calculating the invertible
Sum aggregation in the first experiment, and the non-invertible
Max aggregation in the second. We measured the maximum
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Figure 14: Exp 4 Latency in nanoseconds per query answer

Figure 15: Exp 5 Experimental Memory Usage in Gigabyte
increments

resident set size (RSS) of the processes for all runs. The results of
this test are depicted in Fig. 15. On this graph, we combined the
results of both invertible and non-invertible runs of all algorithms
since their space requirements were identical in both Sum and
Max cases except for SlickDeque, which we plotted separately
for each case. Notice that due to the great similarity of space
requirement for several algorithms, we plotted: FlatFAT together
with B-Int, FlatFIT together with TwoStacks and DABA, Naive
together with SlickDeque (Inv), and SlickDeque (Non-Inv) was
plotted separately. The memory requirement rates correspond
to what we predicted from the theoretical analysis in Section 4.
SlickDeque demonstrated excellent scalability by matching the
space usage of Naive for the invertible case, and for the non-
invertible one outperforming the second best algorithm (Naive)
by 2 times on average with a maximum of 5 times.

6 CONCLUSIONS
The key contribution of this paper is SlickDeque, a novel tech-
nique for incremental sliding-window final aggregation process-
ing for single- and multi-query environments. Its power is the
differentiated handling of aggregate operations based on their in-
vertibility, which allows SlickDeque to use optimizations tailored
towards each type and that are not available in the general case.

We theoretically showed that SlickDeque significantly decreases
the number of operations required for a continuous query to re-
turn results while reducing its space requirement. As far as we
know, there are no prior algorithms that can achieve the same
time and space complexities without loss of query generality.
We showed experimentally that SlickDeque achieves up to 3.5x
higher throughput compared to the state-of-the-art algorithms,

while maintaining up to 5.5x lower latency and utilizing up to 5x
less memory. Our next step is to evaluate SlickDeque in dynamic
and multi-node environments on production systems.
Acknowledgments Research reported in this publication was
partially supported by the National Institutes of Health under
Award U01HL137159 and gift from EMC. The content is solely the
responsibility of the authors and does not necessarily represent
the official views of the National Institutes of Health or EMC.

REFERENCES
[1] D. J. Abadi et al. Aurora: a new model and architecture for data stream

management. VLDBJ, 2003.
[2] D. J. Abadi et al. The design of the borealis stream processing engine. In CIDR,

2005.
[3] T. Akidau et al. Millwheel: Fault-tolerant stream processing at internet scale.

In VLDB, 2013.
[4] A. Arasu and G. S. Manku. Approximate counts and quantiles over sliding

windows. In SIGMOD, 2004.
[5] A. Arasu and J. Widom. Resource sharing in continuous sliding-window

aggregates. In VLDB, 2004.
[6] S. Badiozamany, K. Orsborn, and T. Risch. Framework for real-time clustering

over sliding windows. In SSDBM, 2016.
[7] A. Bulut and A. K. Singh. Swat: Hierarchical stream summarization in large

networks. In DataEngConf, 2003.
[8] P. Carbone, J. Traub, A. Katsifodimos, S. Haridi, and V. Markl. Cutty: Aggregate

sharing for user-defined windows. In CIKM, 2016.
[9] M. Datar, A. Gionis, P. Indyk, and R. Motwani. Maintaining stream statistics

over sliding windows. SIAM journal on computing, 2002.
[10] T. M. Ghanem, M. A. Hammad, M. F. Mokbel, W. G. Aref, and A. K. Elmagarmid.

Incremental evaluation of sliding-window queries over data streams. TKDE,
2007.

[11] P. B. Gibbons and S. Tirthapura. Distributed streams algorithms for sliding
windows. In SPAA, 2002.

[12] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venkatrao,
F. Pellow, and H. Pirahesh. Data cube: A relational aggregation operator
generalizing group-by, cross-tab, and sub-totals. Data mining and knowledge
discovery, 1997.

[13] S. Guirguis, M. Sharaf, P. K. Chrysanthis, and A. Labrinidis. Three-level
processing of multiple aggregate continuous queries. In ICDE, 2012.

[14] S. Guirguis, M. A. Sharaf, P. K. Chrysanthis, and A. Labrinidis. Optimized
processing of multiple aggregate continuous queries. In CIKM, 2011.

[15] V. Gulisano, R. Jimenez-Peris, M. Patino-Martinez, C. Soriente, and P. Valduriez.
Streamcloud: An elastic and scalable data streaming system. TPDS, 2012.

[16] Z. Jerzak, T. Heinze, M. Fehr, D. Gröber, R. Hartung, and N. Stojanovic. The
debs 2012 grand challenge. In DEBS, 2012.

[17] M. Kaufmann, A. A. Manjili, P. Vagenas, P. M. Fischer, D. Kossmann, F. Färber,
and N. May. Timeline index: A unified data structure for processing queries
on temporal data in sap hana. In SIGMOD, 2013.

[18] S. Krishnamurthy, C. Wu, and M. Franklin. On-the-fly sharing for streamed
aggregation. In SIGMOD, 2006.

[19] J. Li, D. Maier, K. Tufte, V. Papadimos, and P. A. Tucker. No pane, no gain:
efficient evaluation of sliding-window aggregates over data streams. SIGMOD,
2005.

[20] J. Li, D. Maier, K. Tufte, V. Papadimos, and P. A. Tucker. Semantics and
evaluation techniques for window aggregates in data streams. In SIGMOD,
2005.

[21] B. Moon, I. F. V. López, and V. Immanuel. Scalable algorithms for large temporal
aggregation. In DataEngConf, 2000.

[22] R. Motwani, J. Widom, A. Arasu, B. Babcock, S. Babu, M. Datar, G. Manku,
C. Olston, J. Rosenstein, R. Varma. Query processing, approximation, and
resource management in a data stream management system. In CIDR, 2003.

[23] D. Piatov and S. Helmer. Sweeping-based temporal aggregation. In SSTD,
2017.

[24] A. U. Shein, P. K. Chrysanthis, and A. Labrinidis. F1: Accelerating the opti-
mization of aggregate continuous queries. In CIKM, 2015.

[25] A. U. Shein, P. K. Chrysanthis, and A. Labrinidis. Processing of aggregate
continuous queries in a distributed environment. In BIRTE, 2015.

[26] A. U. Shein, P. K. Chrysanthis, A. Labrinidis. Flatfit: Accelerated incremental
sliding-window aggregation for real-time analytics. In SSDBM, 2017.

[27] E. Soisalon-Soininen and P. Widmayer. Single and bulk updates in stratified
trees: An amortized andworst-case analysis. In Computer Science in Perspective.
Springer, 2003.

[28] K. Tangwongsan, M. Hirzel, and S. Schneider. Low-latency sliding-window
aggregation in worst-case constant time. In DEBS, 2017.

[29] K. Tangwongsan, M. Hirzel, S. Schneider, and K.-L. Wu. General incremental
sliding-window aggregation. VLDB, 2015.

[30] A. Toshniwal et al. Storm@twitter. In SIGMOD, 2014.
[31] J. Yang and J. Widom. Incremental computation and maintenance of temporal

aggregates. In DataEngConf, 2001.

408



Modeling and Exploiting Goal and Action Associations for
Recommendations

Dimitra Papadimitriou
University Of Trento

Trento, Italy
papadimitriou@disi.unitn.it

Yannis Velegrakis
University Of Trento

Trento, Italy
velgias@disi.unitn.eu

Georgia Koutrika
Athena Research Center

Athens, Greece
georgia@imis.athena-innovation.gr

ABSTRACT
Recommender systems are used to identify those items in a large
collection that are more likely to be of interest to a user. A com-
mon principle of most recommenders is that whatever happened
in the past is a good indicator of the future. We offer a different
perspective. Considering the fact that in real life users do their
selections with certain goals in mind, we recommend items (or
actions) that help users fulfilling their intended goals using their
past only as a way of identifying goals of interest. We introduce
a model that connects goals and actions through action sets im-
plementing the respective goals. Such a model captures latent
associations among goals and actions and allows the ranking of
actions considering different user strategies such as to complete at
least one goal with the minimum effort (i.e., minimum number of
actions), or to open up more paths for fulfillment of more goals
in the future. For each strategy we recommend an algorithm that
exploits the user action and goal spaces to rank the actions in a
different way. We have performed extensive experimental studies
to understand how these techniques are related and compare the
results against traditional recommendation methods. The experi-
ments illustrate that it is not possible to replicate the results of our
approach using existing techniques.

1 INTRODUCTION
People are daily facing situations in which they have to make
choices from large collections of items. Selecting the best answer
to a search engine query among those satisfying the query condi-
tions, selecting a movie to watch, an item to purchase, or friend
activities to read about in social media, are only some of the most
characteristic examples. Recommender systems [3, 7, 12, 16, 20]
give advice to users on items that are likely of interest to them.
There are two main categories of recommender systems. The
first is the collaborative filtering, which is based on the idea that
similar users have similar preferences, thus, the analysis of the
choices of similar users can result in successful recommendations
of items that have not been selected yet. The second category is
the content-based which is based on the idea that users would like
items that have similar features with items they have liked in the
past. The principle behind both approaches is that whatever the
past indicated as preference, it is likely to be preferred also in the
future.

In this work, we approach the problem based on a different
principle. There have been studies in psychology and social sci-
ences [4] that have shown that human actions are not random and
unrelated events. They may be of course affected by preferences
but they are mainly results of rational selections performed with
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the purpose of achieving some specific goal that a person has set
and aims to fulfill [1].

Based on these studies, we advocate that by recognizing the
goals for which actions of the past have been performed, it is
possible to identify the driving forces of the users’ future actions
and make recommendations that better fit these needs. Since the
fulfillment of a specific goal may require actions that are highly
different in nature, this form of recommendation may recommend
actions that are highly different from those of the past, or from
those that similar users have done in the past. Note that we may
use the term “actions” and not “items” as typically done in rec-
ommender systems; with this option we are being more generic
since the selection of an item, the purchase of a product, or the
watching of a movie are practically all actions.

Existing studies in recommender systems have already recog-
nized that methods taking into account similarity with what has
happened in the past are not always matching user expectations
and have tried different techniques that focus on other aspects
such as serendipity, novelty and diversity to improve the quality of
recommendations [9]. However, these solutions are not principled
and are not driven by some specific, user-selected, well-defined
target while in many recommendation scenarios there exist targets
that users are willing to reach. For instance, in online learning
platforms, users may target at specializations or/and degrees. In
employment-oriented social networking services such as LinkedIn
users are encouraged to take actions that will lead them into their
next position. In addition, they can see how some actions can
lead to the same target following different career paths. Moreover,
users may perform actions that will lead them to the fulfillment
of commercial goals such as to get discount coupons, or everyday
goals such as to become fit or to cook.

Consider, for instance, the case of a customer in a supermar-
ket that has placed in the cart a kilo of potatoes and carrots. A
content-based recommendation will try to propose products that
are close to what is already in the cart, i.e., similar to potatoes
and carrots which means it may propose other kinds of vegetables,
or even suggest other types of potatoes. On the other hand, a col-
laborative filtering system may suggest light beer or red peppers,
because these items have been bought in the past by customers
with similar preferences. Both methods, through clearly different
routes, recommend items based on the customer’s past. Instead,
by taking into account that the items in the customer’s cart can be
combined with other items to produce one or more food recipes,
the system can open up new options to the customer. For instance,
considering a recipe to make an olivier (russian) salad that in-
cludes: potatoes, carrots and pickles, an item to be recommended
would be pickles. Another useful ingredient would be nutmeg that
is a spice used for mashed potatoes and pan-fried carrots, two
recipes that require products some of which are already in the
customer’s cart. Such a recipe-based recommendation of products
may not be justified by similarity to products already in the cart,
neither by other product combinations found frequently in the
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carts of other customers. This means that neither association rules
nor techniques that detect correlations among items can be em-
ployed to make such recommendations since they highly depend
on the popularity of these item sets. So, unless we consider the
product combinations found in the recipes, these products will
not be recommended by other techniques. Furthermore, given the
recipes, the recommendations can be optimized for an overall
benefit. For example, recommended products may give the ability
to the customers to maximize the number of recipes that they can
materialize.

Considering goals in the recommendation problem is challeng-
ing. The challenge comes from the fact that, in real life, there
are typically multiple goals that one needs to fulfill at any given
time. Each of these goals may require fewer or more actions in
order to be fulfilled, and there may exist alternative ways for the
fulfillment of a specific goal. Users have to reason on the priorities
between the goals they try to achieve and the benefit they will
have by the execution of each action towards the fulfillment of
these goals. For instance, some users may prefer actions that help
them fulfill a goal as soon as possible, while others may prefer
actions that help the advancement of as many goals as possible. A
goal-oriented recommender will have to leverage the goals by first
recognizing the intended user goals, decide the priorities among
them, and quantify the benefit of each action in relationship to the
intended goals and in conjunction with the other possible actions.

We introduce a new family of recommendation strategies, i.e.,
goal-based recommendations, that deal with the above challenges.
The goal-based strategies identify the goals for which exists evi-
dence that the user is aiming at achieving. The evidence originates
from the previous user activity, i.e., the actions that the user has
already performed. Given this goal space, the strategies explore
the sets of actions that lead to the fulfillment of these goals and
contain actions that the user has already performed to find actions
which the user has not performed and may be willing to complete.
The sets of actions together with the goals they fulfill constitute
the user’s goal implementation space. The likelihood that the users
will like an action from the candidate set of actions in this space
depends on their approach towards the goals they would like to
fulfill. We have identified three different strategies for exploring
and exploiting the user’s spaces in order to select the actions to be
recommended. The three strategies correspond to three different
policies based on which users often make their selections.

The first strategy is the Focus that examines each of the action
sets in the user’s goal implementation set to find which of them
lead to the fulfillment of the goal that is closest to completion,
either because most of the required actions have been already
performed (Focuscmp ), or because they require only a few more
actions (Focuscl ). Then, it forms the recommendation lists from
the actions in these action sets. It is the policy preferred by users
that need to fulfill at least one goal through the actions in the
current recommendation list. The second strategy, Breadth, is not
examining each action set in the user’s goal implementation space
separately. It considers more than one set of actions at the same
time. Specifically, it evaluates and ranks the actions in the user’s
action space based on all the sets this action participates and se-
lects those actions that belong in as many sets as possible together
with as many as possible actions from the user activity. This strat-
egy is for users that would like to fulfill as many goals as possible,
if possible, through this recommendation list, but in order to max-
imize the number of fulfilled goals, they are willing to complete
some or all of them in the future, i.e., not only through the actions
in the current recommendation list. This way it keeps some “paths”

open for the future (i.e., unfulfilled goals) but those paths contain
the minimum number of additional actions. We also suggest a third
strategy, the Best Match, that similarly to Breadth is not trying to
fulfill at least one goal through the current recommendation list.
It recommends actions that contribute to the goals of the user’s
goal space. However, in contrast to Breadth, Best Match evaluates
an action considering the whole goal space, not only the goals to
which this specific action contributes. It generates a profile for the
user and estimates a similarity between this profile and the actions
to be recommended. The action representation shows how much
that action contributes to the fulfillment of the various goals and
the user profile how many of the user actions contribute to the
various goals. It is a policy that may end up in the fulfillment of
many goals in the future. However, it is a strategy for users that
are interested in actions that are more useful (contribute more) to
the goals to which the user has has put more effort in the past (and
respectively less to goals to which the user has put less effort).
Our contributions can be summarized as follows:

• We introduce and formally define the notion of goal-oriented
recommendation, which evaluates every action considering
the goals which the current user may be willing to fulfill
and how that action contributes to the fulfillment of one or
more of these goals together with other actions of the user
(Section 3).
• We explain how it differs from existing techniques and why

the latter cannot be used to offer this type of recommenda-
tion (Section 2).
• We present different strategies for ranking the candidate

actions, with each strategy implementing a different policy
in prioritizing the goals and selecting the actions to be
recommended (Section 5).
• We describe efficient ways of implementing the above

strategies and materializing the goal oriented recommenda-
tion paradigm (Section 4).
• We study the effectiveness of our methods and compare

them to the state-of-the-art recommendation approaches.
We show that goal-based approaches can recommend ac-
tions that bring the user closer to the fulfillment of goals
that are related to her/him, are highly different from each
other and at the same time from actions performed by other
users in the past (Section 6).

2 RELATED WORK

Goal modeling. Goal modeling has attracted a lot of research
interest for decades. However, the focus of the different fields has
been in goal and next action inference [13] such as prediction of
the next action in a sequence, e.g., the next web page to click or
the next location to be [11, 18]. The purpose of such systems is for
instance to promote the inferred actions or act in anticipation of
the user’s actions [2]. To infer the next action(s) they employ mod-
els such as probabilistic (state transition) models, e.g., Bayesian
Networks [15], or Markov models [18] or other variations [2].

Recommender Systems. Our method retrieves actions to be rec-
ommended but does not consider neither the user’s neighborhood
activity nor the activity of the current user as in state-of-the-art rec-
ommendation approaches but the actions in the implementations
of the various goals. In contrast to Collaborative Filtering [7, 8]
that exploits previous item selections or interactions that similar
users have performed, it selects implementations that contain sub-
sets of the user activity and can be adequately extended to lead to
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the fulfillment of one or more goals. It also differs from Content-
based Filtering [3] that recommends items similar to what the
user has used in the past with a high degree of satisfaction.

Association rule mining. Association rule mining analyzes the
user’s histories to identify groups of items appearing together and
use this as the basis for making recommendation [19]. The ap-
proach is based on popularity, while our technique is not affected
by popularity fluctuations. Furthermore, different actions may of-
ten appear together but for different goals, which means not only
that recommendations different than ours will be made, but these
recommendations will also be incomplete, i.e., they will manage
to fulfill none of the goals, since the system is confused and un-
able to distinguish the different intended goals of the actions that
appear together.

3 GOAL-BASED RECOMMENDATIONS

Actions, Goals and Goal Implementations. We assume the ex-
istence of a set U of users. Users perform actions such as the
purchase of an item, the visit of a web page, the watching of a
movie, or any other recordable task. We consider the existence of
a set A of actions.

People set the goals that they need to achieve and then they
decide to perform those actions that they believe will help them
fulfill their goals. We denote G the set of goals. A set of actions
constitutes an activity, which means that there are 2A different
possible activities. The activities that are intended for a goal д ∈ G,
alongside the respective goal, are referred to as goal implementa-
tions.

Definition 3.1. A goal implementation, or simply implementa-
tion, is a pair ⟨д,A⟩ with A∈2A and д∈G.

Goal Implementation Data sources. Goal implementations can
be found in sources related to almost every aspect of human
activity. Recipes, for instance, are implementations of specific
goals (the food that the recipe is about). Online learning platforms
have specializations and degree that are implemented through
courses. Each specialization is associated with one or more set
of courses indicating the actions required to achieve the goal,
i.e., the specialization. Goals can also be found in online stores.
Many online clothing stores, for instance, give users the ability
to form outfits and annotate them with labels such as ‘for friend
meetings”, “to be warm” and so forth. Those outfits constitute
implementations of the goal, with the goal being the label. With
this knowledge, when the system recommends some item to a user
apart from considering the user preferences on characteristics such
as color or material (content based filtering) or considering what
clothes others have bought in the past (collaborative filtering), it
can employ a goal-based recommendation technique and suggest
items that can be combined with clothes the user has bought in
the past to form complete outfits.

Another rich source of goal implementations are social net-
works or specialized web sites where users record and share
success stories of things that they do in life. Examples include
43Things (https://43things.com) and wikihow (www.wikihow.com),
where users describe actions to achieve real-life goals. There are
many works on transforming such textual descriptions into a struc-
tured form, like an ontology [10, 14, 17], or a taxonomy [6, 21].
They typically employ structural information such as HTML tags
or enumeration. A different way to create such datasets from web
pages is by posing queries of the form “in order to + a goal
description” on search engines [21].

i1	 i2	 i3	 i4	 i5	 i6	
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Friends	

	Be	
Warm	
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Going	to	
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Going	to	
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i1	 i1	 i1	
i1	

i2	 i2	

i3	
i3	 i3	
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i5	

i6	
i6	

Figure 1: Combinations and the goals they serve

One of the datasets that we are using in the experimental evalu-
ation of this work contains 18k goal implementations that we have
extracted by performing action identification on user-generated
descriptions about everyday goals such as learn english, travel to
Italy and so forth from the 43Things website. We did this action
extraction with a module that we have developed for this purpose,
that works on a simpler model and for plain text (ref. Section 4).
We do not elaborate further on the extraction task since it is or-
thogonal to the focus of the current paper and a different line of
work of ours.

Example 3.2. Figure 1 depicts a set of goal implementations
from an online clothing store. We denote a goal implementation
set as L. The columns indicate outfit purposes (the goals) while
the rows are the items (the actions). If we depict by ak the action
of buying the item ik , then the implementation set is:

Implementation ⟨Goal,Activity⟩
p1 ⟨д1,A1⟩ where A1={a1,a2,a3}
p2 ⟨д2,A2⟩ where A2={a1,a2,a4}
p3 ⟨д3,A3⟩ where A3={a1,a4,a5}
p4 ⟨д3,A4⟩ where A4={a3,a5,a6}
p5 ⟨д3,A5⟩ where A5={a1,a3,a5,a6}

Recommendation Setting We assume an implementation set L.
The set may have been constructed through one of the many meth-
ods mentioned earlier that are already available in the literature, or
through the text-based module we developed for the experimental
evaluation.

The actions that the user has already performed is referred to
as the user activity H . We do not know why these actions have
been performed but given the goal implementation set. there is
a number of possible goals that the user may have had in mind
when performing each of these actions. These goals constitute the
goal space of the activity H .

The goal space makes all the actions that contribute to one or
more goals in the goal space to be likely of interest to the user.
Our aim is to recommend to the user actions that are not in H ,
and which the user would be happy to perform. However, not all
the actions offer the same benefit. What action the user would be
more willing to perform depends on what priorities the user puts
on the goals. Some actions may help towards the fulfillment of
many goals, while others towards the fulfillment of goals almost
completed. Thus, we need to create a ranked list of the actions
to recommend according to some criterion. Depending on the
criterion/policy we use, a different recommendation strategy is
materialized. These policies comprise the topic of the next section.
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Figure 2: Illustration of our model.

4 GOAL MODEL
Our aim is to recommend to the users a set of actions considering
the goals that they can fulfill given their activity. Those goals are
associated with at least one action from the user activity, i.e., at
least one action contributes to one or more of their implementa-
tions. An action a∈A is said to contribute to a goal д through a
goal implementation p, when there exists a goal implementation
p=⟨д,A⟩. and we denote it as a{pд.

The set of goals that are associated with an action forms its
goal space.

Definition 4.1. Given a goal implementation set L, the goal
space of an action a is the set GS(a)={д | д∈G ∧ p∈L ∧ a{pд}.

The goal space extends naturally to the case where we have a
set of actionsA instead of one, to be the union of the goal spaces of
the individual actions in A, i.e., GS(A)=∪a∈AGS(a). Considering
the individual goal spaces of each action a∈H={a1, .. , ,an} there
are two extreme cases: (i) GS(a1) ∩ . . .∩ GS(an ) = ∅ (i.e., there
are no common goals) and (ii) GS(a1) ∩ . . .∩ GS(an ) = GS(H )
(i.e., the goal spaces of all actions are the same), where we have
no evidence whether one or more goals constitute a priority for the
user. In all the other cases the goal spaces are a valuable source of
information and should be exploited for retrieving the actions.

Another important factor that should be considered is that ac-
tions are not independent from each other since subsets of actions
co-contribute to one or more goals. Therefore, given an action,
there exist other actions that should be also performed in order for
a goal in the goal space to be fulfilled. The set of these actions
forms the action space of an action.

Definition 4.2. Given a goal implementation set L, the action
space of an action a is the set AS(a)={a′ | д∈G ∧ p∈L ∧ a{pд
∧ a′{pд ∧ a,a′}.

The action space, similarly to the goal space, extends naturally
to the case where we have a set of actions A instead of one, to be
the union of the action spaces of the individual actions in A, i.e.,
AS(A)=∪a∈AAS(a).

Example 4.3. In the implementation set of Example 3.2, since
action a1 participates in the activities A1, A2, A3 and A5, its imple-
mentation space is the IS(a1)={p1,p2,p3,p5}, and its goal space
the GS(a1)= {д1,д2,д3,д5}. Its action space is the set of all the
other actions in A1, A2, A3 and A5, i.e., AS(a1)={a2, a3, a4, a5,
a6}.

Thus, above we have determined two very important associ-
ation types that correspond to two basic “operations” given an
activity, i.e., a set of actions A: to form the goal space GS(A), and

the action space AS(A). Moreover, we need a matching function
connecting the goals with the action set(s) that implement them.

We suggest a model that sees each activity A in the L as a hyper-
edge that connects the actions that participate in it. Moreover,
it labels each activity A with the goal that fulfills given a goal
implementation ⟨д,A⟩. Figure 2 graphically illustrates our model
that we call association-based goal model.

Given a small goal implementation set, we can, for instance,
form the user goal space by visiting one by one all the imple-
mentations and check whether there exist any common actions
in the user activity and their activity (i.e., the set intersection).
However, when moving to hundreds or millions of implementa-
tions, the cost gets prohibitive. Therefore, we should implement
our model in a way that apart from capturing all the associations,
allows us to form efficiently the goal and action spaces consid-
ering the interconnections among actions and goals through the
goal implementations.

In order to retrieve the information we need in real time, we
employ a set of indexes. We first build an index A-idx for the action
set and an index G-idx for the goal set. Keeping the information
derived from the goal implementation set L needs a more complex
structure. We refer to each goal implementation using a unique
identifier id. We split the information of the goal implementation
pairs in two indexes: Goal Implementation ActiVity index (GI-AV-
idx) and GI-G-idx (Goal Implementation Goal Index (GI-G-idx).
The first one matches the activity of a goal implementation to
the id of the goal implementation where it belongs. We store a
set with the ids of the actions. The second index matches each
goal id to all the implementation ids that exist for the specific
goal. Now we need to connect the goal implementations with the
actions they contain. For this, we use A-GI-idx (Action to Goal
Implementation Index) that retrieves all the goal implementation
ids where an action contributes, i.e., the implementation ids (pIds)
s.t., a {p д.

Equations 1 and 2 describe how we exploit the above index
structures to implement the basic operations that we described
earlier, i.e., to form the goal and action space given an activity.

GS(A)={GI -G-idx[pId] | a∈A ∧ aId=A-idx[a]

∧pid=A-GI -idx[aId]}
(1)

AS(A)=A−{GI -AV -idx[pId] | a∈A ∧ aId=A-idx[a]

∧pid=A-GI -idx[aId]}
(2)

5 STRATEGIES
Having built the association-based goal model described above,
we can retrieve the actions to be recommended exploiting their
associations with the actions in the user activity and the goals
in the user goal space. In practice, we perform set operations to
evaluate how strong the associations are. We suggest different
strategies considering options with which we believe users prior-
itize actions. The first strategy examines the associations of the
user activity and each of the sets of actions that contribute to goals
from the user goal space. Examining each set of actions separately
and not in conjuction with other action sets as well helps users to
stay focused on one goal at a time (Focus strategy). On the other
hand, the second strategy examines more than one action sets at
the same time. For this reason we call it Breadth. Breadth gives
priority to actions that are strongly associated with each other
and the user activity; such actions can be exploited in the fulfill-
ment of a subset of the user goal space at the same time. There is
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also a third strategy that considers at the same time all the action
sets that are associated with the user activity. In this case, the
associated goals are an evidence of the user preferences on goals
(goal-oriented profile). The strategy is referred to as Best Match.
The three strategies that are called respectively Focus, Breadth
and Best Match are described in the Subsections 5.1 and 5.2, 5.3
respectively.

5.1 Focus
Strategy Focus gives the user the option to have access to actions
that lead to the completion of one of the goals in the user goal
space. For an action set A in a goal implementation ⟨д,A⟩ where
д ∈GS(H ), the intersection | A ∩ H | gives the number of actions
in the implementation that have been already performed. Focus
does consider the association of the user activity and the actions
sets in the implementation set. But that is not enough to retrieve
the actions that together with a subset of the user activity H form
the activity of a goal implementation in the library L, i.e., they
comprise the actions that are required for the goal to be completed.
For this purpose we introduce two measures, goal implementation
completeness and closeness, that evaluate and rank the candidate
action sets and by extension the respective goal implementations.
Completeness considers the proportion of the actions that are
common in the user activity (set intersection) and the actions in
the examined action set while closeness considers the common
actions in comparison with the remaining actions.

completeness(⟨д,A⟩,H ) = |A ∩ H |/|A|⟩ (3)

closeness(⟨д,A⟩,H ) = 1/|A − H | (4)
Goal implementation completeness is inspired by plan infer-

ence in plan libraries for intelligent agents [5]. However, in intel-
ligent agents the aim is to predict which sequence of actions the
agent is following (i.e., the agent has already selected a plan) while
in our problem the recommendation mechanism aims to guide
the user to options that s/he may have not considered without the
recommendation system.

Algorithm 1 Focus Ranking

Ranks actions based on completeness (step 3) or alternatively
closeness (step 3∗) of the corresponding goal implementations
Input Set H , Set CA, int k
Output List R
1 CI←[],R←{}
//get the goal implementations that connect the goals in
GS(H) with the actions in H
2 for all aId ∈ H , for each pid ∈ A-GI-idx[aId]
3 IS= { A-GI-idx[aId] | a ∈ A∧ aId=A-idx[a] }
4 end for all
5 for each pId in IS
6 ⟨p, sc⟩← ⟨ pId, |A∩H |

|A | ⟩

6∗ ⟨p, sc⟩← ⟨ pId, 1
|A−H | ⟩

7 CI .add(⟨д,A⟩,sc⟩)
8 end for all
9 rank CI based on sc
10 return the top k actions from the action sets of the top

implementations (set CI )

We rank the goal implementations in the set of the implemen-
tations that are associated with the user activity in descending

order of completeness. Given this ranking, the list of action rec-
ommendations is formed as follows. We pull from the first goal
implementation all the actions that have not been performed yet,
i.e., that are not in the user activity, and we add them to the recom-
mendation list. If more actions are needed for the top-k list, we
pull the next goal implementation and so forth, until the list gets
full. Note that it may be the case that the remaining slots in the
top-k list are fewer than the actions of the next goal implemen-
tation in the ranked list of implementations. In this case, we can
decide to leave the list with fewer recommendations or expand k
to include the required actions for this implementation.

The completeness ranking function promotes the actions in
the activities of the goal implementations with the largest com-
pleteness (see Algorithm Focus Ranking, line 3). This way the
recommendation mechanism guides the user to actions that will
lead to the fulfillment of the goal for which the user has already
done most of the work, i.e., she has performed most of the actions
needed for its fulfillment.

5.2 Breadth
With the strategy Focus, a single goal drives the recommenda-
tion process. This can be very restrictive if the user is not that
determined to fulfill the specific goal. Therefore, we give the user
another option: Breadth that evaluates every candidate action a
considering a subset of goals in the goal space. This subset con-
sists of the goals that are connected to the candidate action a
through one or more goal implementations, i.e., the goal space
GS(a). The reasoning behind this is that since every action in
the action set A can participate at the same time in more than
one goal implementations in the set L and possibly contribute to a
number of goals, its benefit should be estimated based on all these
goals.

First, in order to evaluate a candidate action a, we should take
into consideration the number of goal implementations in its im-
plementation space, i.e., the IS(a). We will refer to this quantity
as utility.

u(a) = |{A −GI − idx[aId] | a ∈ A ∧ aId = A − idx[a]}| (5)

∀pid ∈ A-GI-idx[aId]. The larger the utility of an action, the
larger the benefit that the user can have by a single action. For
instance, in the Example 3.2, the action of buying item i5 (i.e.,
a5) is part of three goal implementations: p3, p4, p5, i.e., it can be
used in 3 different outfits. Hence, it can be considered as more
beneficial to the user compared to the action of buying i6 (i.e., a6)
that contributes only through 2 goal implementations: p4 and p5.
However, considering the user activity H={a2, a3}, we remark
that the user has not showed interest to goal implementation p3
(p3 < IS(H )). Consequently, goal implementation p3 should not
have been taken into consideration. Thus, we need a measure
that captures the utility of an action considering the user activity
as well. Moreover, recommending actions of high utility is not
enough. We should also consider how related, or else strongly
connected, is a candidate action to the user activity. To do so, we
need to consider how many of the actions in the user activity are
connected to action sets that fulfill goals in the examined goal
subspace.

sc(a,H ,Breadth) =
∑

∀⟨д,A⟩ whereA∩H,∅, anda∈A

| A ∪ H | (6)

The above equation captures both the utility of a candidate
action and its relatedness to the user activity. Now, we can rank
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Algorithm 2 Breadth Ranking

Ranks Candidate actions based on all the Implementations
of the user’s Implementation space where they participate
Input: Set H (user activity), int k
Output: top k actions
1 R← {}
2 for all aId ∈ H , for each pid ∈ A-GI-idx[aId]
3 IS= { A-GI-idx[aId] | a ∈ A∧ aId=A-idx[a] }
4 for each pId in IS:
5 ActionsInP← GI-AV-idx[pId]
6 comm←| ActionsInP∩H |
7 for each aId ∈ ActionsInP
8 if aId in R.keys:
9 R.add( ⟨ aId, R[aId] + comm ⟩)
10 else:
11 R.add( ⟨ aId, comm ⟩)
12 rank R on score value and return the top k actions

the candidate actions and get the recommendation list R. To form
the recommendation list, we rank the candidate actions using the
function described in Equation 6.

Algorithm Breadth Ranking presents in pseudocode the steps of
the Breadth. The algorithm does not estimate the score (ref. Eq. 6)
of each action in the AS(H) separately. It examines each asso-
ciated implementation and updates the score of all the actions
of the AS(H) that belong in the current implementation. This
way, when all the implementations have been examined the action
scores (ref. Eq. 6) are ready and the action ranking takes place.

5.3 Best Match
Best Match policy in contrast to Breadth that evaluates each action
in the user action space considering only the goals in the goal space
to which this specific action contributes, considers the whole goal
space. In fact, it generates a user profile that reflects the effort that
the user has made towards all the goals and retrieves actions that
contribute similarly to those goals. Best Match considering the
user goal space, represents every action as a vector and aggregates
the representations of the individual actions in the user activity
into a single vector. The final vector constitutes the user profile.
Subsequently, the candidate actions can be ranked based on their
similarity to the user profile. Such an approach promotes actions
that contribute to most of the goals in the user’s goal space.

Goal-based user representation. In recommendation systems, user
profiles are described in terms of the features of the items that
a user prefers. In our case, a profile captures the user dedication
towards a set of goals. We consider that the more actions from
the user activity H contribute to a specific goal in the goal space
GS(H ) of the user activity, the more the user cares for this goal.

Hence, we consider that an action a can be represented as a
vector ®a in the feature space F GS(H ) (as an item is represented by
considering features in content-based recommendation methods).
One option would be to form a boolean vector, ∀i∈ {0, |GS(H )|},
where д←F GS(H )[i]:

®a[i] =

{
1, i f ∃p ← ⟨д,A⟩ s .t . a ∈ A,д ∈ GS(H )
0,otherwise (7)

The problem with the above representation is that it disregards
the fact that an action in the user activity may contribute to a goal
through one or more implementations. Therefore, instead of the
boolean representation, we adopt a vector representation where
®a[i] is defined to be the number of goal implementations p s.t.

Algorithm 3 Get-Goal-Based-Profile

Creates the user profile that reflects her connections with the
Goal Space
Input: Set H (user activity)
Output: ®H vector in GS(H ) that aggregates the contribution of
all actions in H
1 ®H←∅
2 GPmap←∅

3 for all aId ∈ H , for each pid ∈ A-GI-idx[aId]
4 IS= { A-GI-idx[aId] | a ∈ A∧ aId=A-idx[a] }
5 for each pId in IS:
6 gIdTmp← GI-G-idx[pId]
7 if gIdTmp in GPmap .keys:
8 GPmap [gIdTmp]← GPmap [gIdTmp]+1
9 else:
10 GPmap [gIdTmp]←1
11 /*convert map GPmap to a vector in F GS(H ) space*/
12 for each gId in GS(H)
13 ®H .add(GPmap [gId])

a{pд and д∈GS(H ). The value in each position of the vector ®a
becomes ∀i∈ {0, |GS(H )|}, where д←F GS(H )[i]:

®a[i] =
∑

∀p←⟨д,A⟩ s .t . a∈A, д∈GS(H )
1, (8)

To get the user profile, we aggregate all the representations of
the actions of the user activity in the feature space F GS(H ) into
a single vector. The user profile captures for each goal in GS(H )
how many of the user actions contribute to this goal considering
the different goal implementations for the same goal as well. Since
the user profile is generated based on the current user activity H ,
we denote it as ®H .

®H =
∑

∀a∈H
®a (9)

For example, for the user activity: H={a2, a3}, the number of
goal implementations where at least one of the actions of the user
activity participate is 4. The user profile is ®H ={ 3, 0, 2 }. In the
user profile is reflected the fact that the user has performed a1 and
a3 that contribute to д1: “meeting friends” 3 times and to д3:“going
to the office” via one goal implementations each, and that the user
has shown her/his preference to the goals д1 and д2 over the rest
of the goals in the goal space GS(H ).

Goal-based representation of candidate actions. To rank the can-
didate actions against the user profile, we represent each candidate
action in the same goal space, i.e., as goal vectors in the space
F GS(H ) in the exact same way the actions from the user activity
have been represented (ref. Eq. 8).

Distance-based Ranking. To rank the candidate actions, we can
use a standard metric between the user profile and each of the
candidate actions, as follows:

sc(a,H ,Best Match) = dist( ®H , ®a) (10)

For instance, considering the Example 3.2, action a1 from the
user activity H would be closer (smaller distance) to the user
profile than that of a4 since the first contributes to д1: “meeting
friends” via two goal implementations and via another goal im-
plementation to д3:“going to the office” as well; while the latter
contributes to д1 via only one goal implementation and to д2:“be
warm” to which the user has shown no interest.
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Algorithm 4 Best Match Ranking

Ranks actions based on their distance to the goal-based user
profile
Input user activity H , int k
Output top k actions
1 R←{}, CA←AS(A)-H
2 ®H←Get-GoalBased-Profile(H )
3 for each aId in CA:
4 GPmap←∅

5 IS ← IS(aId)
6 for each pId in IS:
7 gIdTmp← GI-G-idx[pId]
8 if gIdTmp in GPmap .keys:
9 GPmap [gIdTmp]← GPmap [gIdTmp]+1
10 else:
11 GPmap [gIdTmp]←1
12 /*convert map GPmap to a vector in F GS(H ) space*/
13 for each gId in GS(H)
14 ®a.add(GPmap [gId])
15 ⟨aId, sc⟩←⟨ aId, dist(®a, ®H )⟩
16 R.add(⟨ aId, sc ⟩)
17 rank R on sc and return top k actions

Algorithms Get-GoalBased-Profile and Best Match Ranking de-
scribe the procedure. Get-GoalBased-Profile forms the goal-based
vector representation of the user (user profile) by considering for
each action in the user’s activity all the implementations where
the examined action belongs (i.e., its implementation space) in
order to find to which of the goals of the user’s goal space it
contributes and add one in the respective position of the vector ®H .
On the other hand, Best Match Ranking compares the user profile
with the goal-based vector representation of each action in CA
by considering again the goal implementation space of the actions
and the goals to which they contribute. and ranks them according
to their distance with the user profile to get the top k.

5.4 Complexity analysis of strategies
The complexity of the goal-based recommendation mechanisms
is mainly determined by the action connectivity of the association-
based goal model, i.e., the average number of implementations
where an action belongs. Focus first retrieves all the implemen-
tations that are associated with the user activity and estimates
the closeness or the completeness of each of the implementations.
Therefore, the cost of the mechanism is estimated as the product of
| H |, connectivity and of the cost of set intersection or asymmetric
set difference that are the main operations of the two alternatives
of the Focus algorithm. The estimation of completeness may be
more time consuming in practice (ref. Figure 7). For instance, in
our implementation, intersection takes more time than set differ-
ence for sets of equal size due to the larger number of element
removals that are required in the latter. Best Match also starts with
retrieving the implementations that are associated with the user
activity and then transforms them to vectors in the feature space
F GS(H ) (O(| H |*connectivity)). Subsequently, this transforma-
tion is also performed in all the actions in the action space of the
user activity AS(H ). For an action a, the complexity of forming
its space AS(a) depends again on the action connectivity and the
average implementation length. Since connectivity is significantly
higher than the size of the average goal implementation and the

user activity, the time cost is mainly determined by connectiv-
ity: O(connectivity*|H | + connectivity*average implementation
length). On the other hand, Breadth retrieves the associated im-
plementations and gets the intersections of the actions in each of
the implementations and the user history. The asymptotic time
complexity for the first step is O(|H |*connectivity) and for the
second step O(connectivity*set intersection cost).

In practice, if we consider two association-based goal models
built on sets of the same connectivity with the second one contain-
ing more implementations, the recommendation time would be
higher for the set with the larger number of implementations. The
reason is that in larger implementation sets the spaces of associ-
ated actions, goals and implementations of the individual actions
in the user activity are not overlapping and by consequence their
union gets larger. Nevertheless, the algorithms scale very well
even on sets of millions of implementations (ref. Figure 7).

6 EVALUATION
For our experimental evaluation, we examine two different scenar-
ios: (a) a grocery store where clients (users) buy food products,
and (b) a system where users record actions they perform in their
lives such as read a book or eat healthy. We selected these sce-
narios to show that goal-based recommendation can be used both
in practical scenarios where existing recommendation techniques
have already been applied, and to offer innovative services that
have not been available so far. In both scenarios, we want to rec-
ommend to the users actions of interest (i.e., buy + “a product”
and everyday actions respectively). The actions are characterized
to be of interest based on the goals that they serve: food products
can serve food recipes, while everyday actions can serve life goals
such as lose weight or learn english. Another reason for examin-
ing these scenarios is that they cover two different cases: the first
one covers the case where the same action participates in a great
range of goal implementations (on average 1.2K impl.), while in
the second case, most actions are limited to specific “families” of
goals (on average an action participates in 3.85 implementations).

Dataset Description. The first dataset is an open source grocery
shopping dataset (https://github.com/julianhyde/foodmart-data-mysql)
that contains 1560 food products (items) and records of customer
purchases in different time slots, i.e., carts. The food products are
organized in 128 (sub)classes such as “baking goods”, “seafood”,
“fruit”, “spices” and so forth. Clients can utilize these products
in various recipes to produce different dishes (goals). We used a
dataset of 56.5k recipes from a food ontology (http://data.lirmm.fr/
ontologies/food#Recipe). The number of implementations in which
an action participates on average, i.e., the connectivity, is 1.2K.
We run our recommendation techniques and the state-of-the-art
algorithms using as input, i.e., current user activity, 20.5k client
carts.

The second dataset consists of goal implementations from a
goal-setting online social platform called 43Things where users
could publish the goals they set in their lives, “cheer” other users’
goals and efforts, and provide descriptions about how they man-
aged to fulfill their goals. We have extracted 18047 goal imple-
mentations that contain 3747 goals such pay my depts, get a new
job, lose weight, and 5456 actions e.g., stop eating at restaurants
and drink more water. Both goals and actions are identified by
unique identifiers. In contrast to the foodmarket dataset, users
are focused on a few real-life goals. In total, we have examined
8071 users. The majority of the users (5047 users) are pursuing
one goal, 1806 of them pursue 2 goals, 623 pursue 3, and 595
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Goal Id Actions Performed for Goal Fulfillment
д1 {3,4,5,6,7, 8,9,10,11}
д2 {12,13,14,15,16,17,18,19,20}
д3 {1,2}

Initial User Activity {3,4,5,6,7, 8,9,10,11,12,
13,14,15,16,17,18,19,20,1,2}

User activity used as input
(unhidden actions) {11,20,8,12,1,13 }

Table 1: Forming of user activity.

pursue more than 3 goals. Moreover, the action connectivity is
very low, 3.84. The fact that actions here in contrast to actions that
involve food ingredients are useful in a narrow range of goals and
by extension goal implementations makes the analysis of the two
sets more intriguing. User activities consist of all the actions that a
user has performed for the fulfillment of all the goals that s/he has
set. Therefore, in order to evaluate the recommenders we should
hide a portion of the actions from the real user activities before
applying the recommendation techniques. For instance, Table 1
illustrates all the actions that a user has performed to fulfill three
goals. To get the input for the recommenders, we first concatenate
the actions of the three respective implementations into the vector
{1, 2 . . . 20}. Subsequently, the vector elements are shuffled and
the 30% of the actions is considered to be the known user activity.
The rest 70% is kept for evaluation purposes. Specifically, the
recommenders, having some evidence that the user is interested in
fulfilling one or more goals, should retrieve actions that are asso-
ciated with those goals. In the example, the activity that remains
unhidden consists of 6 actions. Two of the actions regard the first
goal, three of them the second goal, and one action regards the last
goal. Actions are both about goals that are closer to fulfillment
and about goals for which there is no strong evidence. Some goals
may also remain hidden.

Comparison with the State-of-the-art. Beyond the goal-based
mechanisms, we examine how state-of-the-art recommendation
approaches behave under the same context. We consider a nearest-
neighbor Collaborative Filtering method (CF KNN) [20] and a
matrix factorization method that employs alternating least squares
with weighted-lamda-regularization (ALS-WR) to factorize the
user-item matrix before performing the recommendations (CF MF)
[8]. For the CF KNN since the user feedback is implicit, i.e., user
selection, non-selection, the neighborhoods have been formed by
employing jaccard coefficient, or else Tanimoto coefficient. The
used implementation of the CF MF is from Mahout framework
(https://mahout.apache.org/). We also consider a Content-based
method that represents actions and users using domain-specific
features, i.e., that builds vector-based representations for profiling
the actions and users. For the foodmarket dataset the used domain-
specific features are the 128 (sub)categories of the food products
(e.g., “baking goods”, “seafood”). Based on the description of each
food product, we matched each product to an ingredient leaving
out products that are not included in any recipe, such as napkins.
Therefore, each cart can be seen as the user activity, the set of
recipes as the goal implementation set L, while the actions refer
to the purchase of certain products/ingredients. On the other hand,
for the 43T dataset, there are no widely accepted domain-specific
features; therefore, we do not apply the content approach. For
the goal-based recommendations, we used the methods described
in Subsections 5.1, 5.2, and 5.3), namely Focuscmp and Focuscl ,
Breadth and Best Match.

Subsection 6.1 compares all methods. Subsection 6.2 focuses
on the time efficiency of the goal-based methods.

6.1 Evaluation and Comparisons
Since we are introducing a novel recommendation approach, in
Subsection 6.1.1, we first verify that this approach, indeed offers
a different perspective to the users. To do so, we perform several
comparisons on the results (i.e., the recommendation lists) pro-
duced by all the goal-based and the standard recommendation
mechanisms.

• We compare the lists formed by the goal based mechanisms
with the two standard recommendation mechanisms (ref. C.1.1.
Result Overlapping).

• Collaborative filtering is based on the past activities of similar
users (to the current user), while our algorithm is intended for
discovering useful actions, i.e., actions that will help the user
fulfill one or more goals. Thus, we examine whether actions
that appear frequently in the activities of other users (popular
actions) appear frequently in the recommendation lists as well.
In other words, we study which recommendation mechanisms
perpetuate the collective user behavior (ref. C.1.2. Correla-
tion of appearances in the user activities and the respective
recommendation lists).

• Next, we examine how useful the actions in the top-10 lists
of each algorithm are for the user. To measure usefulness, we
estimate the completeness of the goals in the user’s goal space
after s/he performs the recommended actions (ref. C.1.3. Use-
fulness).

• We also study how similar the recommended actions in each
list are presenting their (max, min and avg) pairwise similar-
ity based on their domain-specific characteristics. Retrieving
items that are very similar to each other is often considered
a drawback of the Content-based filtering. It is important to
understand how the rest of the examined approaches work
as well (ref. C.1.4. Pairwise similarity of the recommended
actions).

• Moreover, we examine how many of the actions in the rec-
ommendation lists have been indeed performed by the users.
These actions are not of course part of the considered user
activity but the users “like” them since they have performed
them at some point (ref. C.1.5. Average Percentage Of Recom-
mended Actions that the user has indeed Performed.)

Subsequently, Subsection 6.1.2 further examines the actions
retrieved by the goal-based mechanisms (ref. C.2.1 Frequency of
Retrieved Items) and presents the percentage of common actions in
their top-10 recommendation lists (ref. C.2.2 Result Overlapping
of Goal-based methods).

6.1.1 Comparison of all Approaches. C.1.1. Result Over-
lapping. Table 2 illustrates a very low overlapping of the top-10
lists formed by the goal-based mechanisms with the lists formed
by the two state-of-the-art approaches. This result is expected,
since as we have explained in Section 2, these approaches adopt
fundamentally different philosophies.

C.1.2. Correlation of the number of appearances in the user activ-
ities and the number of appearances in the respective recommen-
dation lists of the top-20 most popular actions. Table 3 illustrates
the Pearson’s correlation between these two numbers. Correlation
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Food Market 43T
Methods Overlap.with Overlap.with Overlap. with Overlap. with Overlap. with

Content Filt. Collab. Filt. kNN Collab. Filt. Matrix Factorization Collab. Filt. kNN Collab. Filt. Matrix Factorization
Best Match 2.31% 0.85% 0.34% 0.13% 0.06%
Focuscmp 1.49% 0.85% 0.36% 0.11% 0.008%
Focuscl 1.85% 0.85% 0.35% 0.08% 0.01%
Breadth 2.32% 0.86% 0.35% 0.26% 0.11%

Table 2: Overlap of the top-10 actions retrieved by the goal-based mechanisms and the standard recommendation approaches.

Food Market 43T
Methods Correlation Correlation
Content 0.115 -
Collaborative KNN 0.45 0.75
Collaborative MF 0.78 0.87
Best Match -0.13 -0.24
Focuscmp -0.048 -0.26
Focuscl -0.02 -0.27
Breadth -0.04 -0.15

Table 3: How correlated the recommendation lists with the
top-20 popular actions in the user activities are.
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Figure 3: The average goal completeness per list after the user
follows the recommended actions in each list.

takes negative values from -1 to 1, with 1 reflecting highly cor-
related values. Collaborative filtering, which looks into the past
actions of similar users for actions that may be of interest to the
current user, shows the highest correlation. On the other hand,
goal-based methods show negative correlation. They do not pro-
mote actions that were popular (frequent) so far. The content-based
approach shows a lower correlation than collaborative filtering,
which is still high in comparison to the goal-based methods.

C.1.3. Usefulness: the completeness of the goals in the user’s goal
space after s/he follows the recommended actions. The actions
recommended to the user can help her get closer to the fulfillment
of (or fulfill) one or more goals. Table 4 shows the average average

Food Market 43T
Methods Completeness Completeness

Avg- Avg- Avg- Avg- Avg- Avg-
Avg Max Min Avg Max Min

Content 0.09 0.67 0.05 - - -
Collabo- 0.08 0.63 0.05 0.29 0.32 0.26
rative KNN 0.29 0.33 0.26
Collabo- 0.08 0.64 0.05 0.29 0.32 0.26
rative MF
Best 0.15 0.79 0.076 0.82 0.87 0.77
Match
Focuscmp 0.12 0.73 0.064 0.83 0.88 0.77
Focuscl 0.13 0.74 0.062 0.789 0.84 0.73
Breadth 0.16 0.8 0.076 0.76 0.8 0.72

Table 4: How complete become the goals of the user after s/he
follows the recommended actions per list.

(AvgAvg), min (MinAvg) and max (MaxAvg) completeness val-
ues for all the recommendation lists formed for the two datasets.
Figure 3 shows graphically the average values. These values are
estimated by finding first the average, minimum and maximum
values of completeness of all the goals that are related to the user
considering each list separately. Subsequently, the average for all
the recommendation lists is estimated. The goals that we consider
in the estimation of goal completeness in the case of the 43T are
those that the user has added in the system, while in the case of the
food market we consider the whole user’s goal space since we do
not have any information about which goals the user is pursuing in
reality. In the foodmarket dataset, the goal implementation space
can be large and not every goal can be fulfilled by performing
only 10 actions (i.e., the actions in the recommendation list) in
any case. As a consequence, the AvgAvg values in this dataset are
not that informative in comparison to those of the 43T dataset.

We observe that Breadth and Best Match in the first dataset and
Focuscmp in the second dataset manage the largest completeness
(considering both the user activity and the recommended actions),
while the lowest contribution is met in the state-of-the-art algo-
rithms. The results are explained by the fact that Best Match con-
siders the whole user’s goal implementation space, Breadth creates
a well-connected subspace, while Focuscmp selects a single goal
(actually a single implementation), if possible, and extends to a
few more to complete the recommendation list. If the user wants
to get closer to a wider range of goals, s/he should select Breadth;
otherwise (i.e., if s/he is focused on a few goals), s/he should select
Focuscmp . Best Match and Focuscl follow.

C.1.4. Pairwise similarity of the recommended actions (i.e., the
corresponding products) in each list. Table 5 shows the pairwise
similarity among the retrieved actions in each recommendation
list. Due to the lack of widely-accepted domain-specific character-
istics for the actions in the 43T dataset, we study the food market
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Methods Pairwise Action Similarity
AvgAvg AvgMax AvgMin

Content 0.81 1 0.6
Collaborative KNN 0.16 0.5 0.05
Collaborative MF 0.15 0.77 0.04
Best Match 0.33 0.72 0.22
Focuscmp 0.24 0.31 0.21
Focuscl 0.24 0.34 0.19
Breadth 0.33 0.73 0.22

Table 5: Pairwise feature-based similarity among the actions
within each recommendation list for the foodmarket dataset.

dataset. AvgAvg is estimated in two steps: first the average pair-
wise similarity considering all the action pairs within each list is
estimated, and then the average of the derived values is estimated.
The same applies for AvgMax and AvgMin. As expected Con-
tent shows the highest value with an AvgAvg pairwise value 0.8
and AvgMin value 0.6. Collaborative filtering shows the lowest
similarity (AvgAvg 0.15), while all goal-based mechanisms are
found in the middle (avg-avg: 0.24-0.33). However, looking at
the average maximum pairwise values (AvgMax), we see that the
goal-based methods Best Match and Breadth often share a pair of
very similar actions in their lists (on average their max pairwise
similarity values are 0.72 and 0.73 respectively). The two Focus
methods are the goal-based methods that retrieve highly dissimilar
actions in most of the cases.

C.1.5. Average percentage of recommended actions that the user
has indeed performed (per recommendation list). In the food mar-
ket dataset, we consider as the user’s current activity a single cart;
we have more than one cart for the same user in different time
slots though. On the other hand, in the 43T dataset we consider
only the 30% of the actions that the users have performed to ful-
fill their goals. Therefore, we can check whether the different
techniques by considering only the actions in the user activity,
recommend actions that the user has performed. We should clar-
ify that the average percentage of recommended actions that the
user has indeed performed does not reflect the precision of the
recommendation tasks since the user has not acted after checking
the recommendation lists. In fact, it shows the percentage of the
recommended actions for which the user has shown interest at
some point. Unlike precision, being able to retrieve actions that
the user would anyway perform can be an advantage or a disad-
vantage for a recommendation technique depending on the view
point of the application. If the purpose of the recommendation
system is to show to the user unknown actions as well, a very
high percentage is not preferable. On the contrary, if the purpose
of the system was to provide the user with a discount coupon in
order to keep her/him satisfied, a high value would be preferable.
Keeping that in mind, we can say that the average percentage
represents the Average True Positive Rate. Figure 4 illustrates
for each method the Avg TPR for top-5 and top-10 lists. In the
top-5 lists, first the Best Match, then the Focuscmp and Breadth
show the largest percentage. In the top-10 lists of the foodmarket
dataset though, it is the Content method that shows the highest
percentage. Nevertheless, all the methods show low percentages
in the foodmarket dataset. This is explained by the fact that we
have no more than 3 carts for each user.

6.1.2 Further Comparison of Goal-based results. Con-
sidering the lists derived from the goal-based methods, we have
already argued about the fact that the appearance of an action in
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Figure 4: Percentage of recommended actions that the user
has indeed performed (True Positive Rate for top-5 and top-
10 lists).

the recommendation lists is not correlated to its appearance in
the user activities (ref. Table 3). Next we also present whether
there exist actions that monopolize the recommendation lists, and
how different the recommendation lists formed by the alterna-
tive goal-based methods are (Result Overlapping of Goal-based
methods).

C.2.1. Frequency of Retrieved Items. In recommenders, we do not
want certain actions to monopolize the recommendation lists. In
the 43T dataset, the frequency of an action in different recommen-
dation lists is very low: at maximum 0.001. On the other hand,
in the food market dataset, where there are a lot of actions that
participate in a great number of implementations (average connec-
tivity 1.2k), the frequency is higher. Figure 5 illustrates that the
majority of actions appear with frequency less than 0.2. However,
Best Match and then Breadth, in their effort to serve more than one
goal at the same time, repeat the same actions in more recommen-
dation lists (22% and 14% actions respectively with frequency
above 0.2). The actions with high frequency are those that ap-
pear frequently in subsets of implementations that share common
actions. Actions that appear in many goal implementations but
together with different actions in each goal implementation are
not selected more frequently. On the contrary, Figure 6 shows that
very few actions that appear frequently in the goal implementation
sets are in the end selected by any goal-based mechanism. The
great majority (more than 92%) of the retrieved actions (by all the
goal-based mechanisms) appear in the implementation set with a
frequency less than 0.2.

C2.2. Result Overlapping of Goal-based methods. In Paragraph C1.1,
we have presented how different are the results of the goal-based
mechanisms from those of the standard recommendation methods,
next we present the result overlapping of the goal-based mecha-
nisms. Table 6 illustrates the percentage of common actions in
their top-10 lists considering again as input the 21k real carts and
the 8k user activities of the food market and the 43T datasets
respectively. First of all, we observe a great overlapping in the
results of Best Match and Breadth: 98% and 79% respectively.
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Figure 5: How often the same action appears in the recom-
mendation lists that have been formed for the user activi-
ties of the food market dataset. Distribution of actions in fre-
quency ranges.
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Figure 6: How often the same retrieved action appears in the
goal implementation set (herein recipes). Distribution of ac-
tions in frequency ranges.

Food Market 43T
Methods Overlapping Overlapping
Best Match-Focuscmp 42% 68%
Best Match-Breadth 98% 79%
Focuscmp -Breadth 44% 71%
Focuscl -Focuscmp 35.6% 78%
Focuscl -Best Match 49% 72%
Focuscl -Breadth 49% 72%

Table 6: Common actions in the top-10 recommendation lists.

The overlapping is higher in the first case because in the food
market ingredients participate in a lot of recipes at the same time.
Therefore, Breadth instead of examining subsets of the user’s goal
space to evaluate a certain action, it ends up considering (almost)
the whole goal space similarly to Best match. In general, the user
profile that Best Match considers reflects more strongly her/his
preference towards a subset of goal(s); thus it (almost) neglects
the rest of the goals in the user’s goal space the same way Breadth
does. Since the two algorithms show similar behavior, Breadth
is preferred since, as we will see in Subsection 6.2, Breadth is
significantly more efficient in terms of time.

Moreover, Focuscmp and Focuscl retrieve the same actions in
35.6% and 78% of the lists respectively. In these cases, there exist
goal implementations for which the user has performed most of
the actions (completeness) and at the same time these are the
implementations with the less remaining actions. Furthermore,
Focuscl and Focuscmp show an overlapping of over 40% and 70%
(for the respective datasets) with Breadth and Best Match. This
is justified by the fact that the Focus mechanisms after popping
out all the actions of the goal implementation on which they have
selected to focus, they move on to another goal implementation.
Therefore, they select actions from different goal implementations
as Breadth and Best Match do. Another way to see this is that the
latter two algorithms select actions that serve more than one goals
at the same time; but that means that the selected actions serve
each single goal on its own as well.

Another observation is that the overlapping in the lists for the
43T dataset is larger than in the lists for the food market dataset
in all the cases because the action space of the users are wider in

Set Con- Num Of Dist- Num Of Imp-
nectivity inct Actions lementations

IS 1.2K 380 56K
I S2 7.6K 380 282K
I S3 15.6K 380 564K
I S4 50.3K 380 1.6M

I S5 8K 10K 120K
I S6 8K 100K 1.2M

I S7 8K 1M 12M

Table 7: Goal Implementation Sets.

Alg IS (56K IS2 (282K IS3 (564K IS4 (1.6M
Impls, Impls, Impls, Impls,
Conn Conn Conn Conn
1.2K) 7.6K) 15.6K) 50.3K)

Best Match 0.37 s 1.5s 3 s 9.7s
Focuscl 0.001s 0.053 0.096s 0.35s
Focuscmp 0.091s 0.42 0.86s 2.98s
Breadth 0.006s 0.089s 0.089s 0.34s

Table 8: Average Execution Time in implementation sets with
high connectivity.

Alg IS5 (10K IS6 (100K IS7 (1M Actions
Actions, Actions, Actions,

120K Impls 1.2 Impls 12M Impls
Best Match 0.713s 3.37s 5.38s
Focuscl 0.0017 s 0.0026s 0.0034s
Focuscmp 0.0024s 0.0035s 0.0055s
Breadth 0.0029s 0.0052 s 0.008s

Table 9: Average Execution Time in implementation sets with
a large number of actions and implementations.

the latter dataset due to the high action connectivity. Considering
a larger set of candidate actions, the algorithms are not forced to
select the same actions due to lack of alternatives.

6.2 Scalability
We ran the 4 goal-based strategies (i.e., the 3 strategies plus the
extra option for Focus) on goal-based association models that
have been built based on 7 implementation sets of different char-
acteristics: (a) implementation set size, (b) action set size, and
(c) number of implementations in which an action participates on
average (connectivity). Table 7 illustrates the implementation sets.
In sets IS2, IS3 and IS4 the connectivity is stretched up to 50.3K in
a set of 1.2M implementations, while in IS5, IS6 and IS7 the size
of the action set and the number of implementations increases by
10 times (IS7 consists of 1M actions and 12M implementations).

Results. Figure 7 illustrates the average time per information
need (i.e., per user activity) in secs considering each of the differ-
ent implementation sets. We observe that the Best Match shows
the highest execution times in all the cases. The reason is that
in goal-based profiles the feature space is not fixed, and thus the
representation of the actions is formed on the fly. The rest of the
mechanisms show low recommendation time even in the extreme
cases of the sets IS4 and IS8 (connectivity: 50315, average par-
ticipation: 19M, and connectivity: 12110, average participation:
137M respectively). On the other hand, Focuscl shows the lowest
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Figure 7: Average recommendation time considering implementation and action sets of different characteristics.

execution time. The difference between Focuscl and Focuscmp
results from the two set operations that the mechanisms use, i.e.,
asymmetric difference and intersection respectively.

In conclusion, the goal-based mechanisms scale well even in
sets of millions actions and implementations. Moreover, the num-
ber of actions and implementations alone do not affect much the
execution time, it is the higher connectivity that results in higher
execution times.

7 CONCLUSION
Based on the theory that goals rationalize and by consequence
trigger user actions, we introduce a family of recommendation
approaches that recommend actions seeing them in respect with
a number of goals that the users may fulfill through different ac-
tion sets. We have presented 3 strategies, each one incorporating
goals into the scoring of actions in a different way. The action
selections of the goal-based mechanisms are not affected by their
domain-based similarity with the actions in the user’s activity, nor
by the activities of other users. However, they are affected by the
benefit of the actions to be recommended to the goals in the user’s
goal space. The strategies Breadth and Best Match focus on more
than one goal at a time. In fact, the latter considers all the goals
in the goal space independently from the examined action. On
the other hand, the Focus mechanisms focus on the fulfillment
of one goal at a time. Nevertheless, they all increase the average
goal completeness in the user’s goal space without retrieving ac-
tions that monopolize the goal implementations. Moreover, all the
mechanisms create different recommendation lists for different
inputs (i.e., user activities). As part of our future work, we have
been examining methodologies that enhance the goal-based mech-
anisms by considering the user preferences on certain domain-
specific characteristics, i.e., hybrid goal-based and content-based
approaches.
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ABSTRACT
For Big Data analytics, working in low dimensionalities is bene-

ficial for high performance. Instead of projecting onto a single

low dimensionality, we examine, both analytically and empiri-

cally, the effects on the ‘learning utility’ of the original dataset

when combining several very low-dimensional random projec-

tions. The embedding proposed exhibits many favorable traits to

existing low-dimensional methodologies, such as low runtime

and equivalent or better embedding quality.

1 INTRODUCTION
Random linear projections are well studied owing to the Johnson-

Lindenstrauss (JL) lemma [11]. The JL lemma states that any n
point-set in high-dimensional Euclidean space can be projected

intoO (logn) dimensions while accurately preserving all pairwise

distances. The lemma is tight, in the sense that Ω(logn) dimen-

sions are necessary –see [3] and [10] for lower bounds. Although

these lower bounds suggest that reducing the dimensionality of

the input data further is not feasible while preserving its metric

structure, this could be possible by combining the information

from several very low-dimensional random projections. So here

we examine the following: Given any Euclidean set of n points

P in Rd
and a target dimensionality t which is smaller than

O (logn), is it possible to preserve pairwise distances by com-

bining multiple random projections? How many independent

random projections would be required? We study this particular

question both from a theoretical and a practical perspective. On

a theoretical aspect, we derive bounds on the expected number

of random projections needed to accurately answer proximity

queries (Theorem 3.1). From a practical perspective, we propose

an embedding, VLR-Map, that learns the k-Neighborhood struc-

ture of the data-points.

2 RELATEDWORK
Several approaches exist in the literature that use several ran-

dom projections for data analysis [2, 5, 8, 12, 13]. We enumerate

a representative list of these efforts. The power of several one-

dimensional random projections has been exploited by Kleinberg

in an algorithm for nearest-neighbor search [12]. Several one-

dimensional random projections of the input data are used as

proximity tests for a given query point, which is the underly-

ing idea for constructing efficient data-structures for nearest-

neighbor search. The use of multiple random projections into

an arbitrary small number of dimensions for nearest neighbor

search has been also studied by [2], in which the author projects

randomly the original data in several independent trials and then
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builds a KD-tree data structure for each instance of the projected

data. The set of these KD-trees are used for approximately an-

swering nearest-neighbor queries. Designing a family of locality

sensitive hashing (LSH) functions shares conceptual similarities

to the framework proposed here [8, 13]. LSH principles also use

random projections and aggregate the projections. Finally, data

embedding techniques also follow a similar methodology. For

example, Boostmap [5] learns a data embedding using triplets

of inequalities; the learning process is driven by AdaBoost [7].

Boostmap works effectively in practice, but does not offer any

formal analytical guarantees on the quality of its embedding,

unlike the present work.

3 OUR APPROACH
The intuition behind the algorithm proposed is as follows: Al-

though a single very-low-dimensional random projection might

not be useful for approximately preserving all pairwise distances

of a given set of points, it might be the case that several very-low-
dimensional random projections are sufficient, when combined

appropriately. There are several questions to be addressed: (1)

Howmany dimensions should be chosen when projecting a given

dataset? (2) How many different random projections are needed?

(3) How should we combine these random projections? In the

related literature there do not exist any satisfying answers to

the first question, so far. However, we will see shortly, that as

Theorem 3.1 suggests, one can set the number of dimensions t
to be Ω(1/ε2), where ε > 0 is the desired accuracy. Theorem 3.1

also provides a rigorous answer to the second question. Now, we

turn our attention to the third question.

For the sake of presentation, assume that we want to preserve

the distance between two input points p1 ∈ P and p2 ∈ P with

respect to a query point q ∈ Rd
. The proposed algorithm con-

structs several independent low-dimensional random projections

using random matrices G1,G2, . . . ,Gl . We view each random

projection as a voter that advocates on the proximity of p1 (or p2)
to q: each random projection votes for (or against) the validity

of the predicate {p1 − q2 < p2 − q2} by checking whether

the corresponding projected points satisfy the above predicate.

If
p1 − q2 ≪ p2 − q2, then it is easy to show that p1 will be

closer to q than p2 in the projected space with at least constant

probability [11]. An unbiased way to combine the votes of all

random projections is to take their majority vote. More precisely,

if at least half of the random projections vote that p1 is closer to
q than p2 is, then the algorithm reports that p1 is closer to q, or
vice versa.

To complete the description of the above algorithm, we have to

specify the required number of independent random projections.

Given P, the following theorem bounds the number of random

projections that are needed for the algorithm to be effective with

probability 1 − δ . The proof of the theorem below (given in the

appendix) is based on concentration of measure arguments ap-

propriately combined with ε-net arguments. In more detail, we

build a very dense net
1 N , i.e., (ε/

√
d )-net, on the unit ball of

1
In a metric space M = (X , d ) and ε > 0, an ε -net is a subset N of X so that for

every x ∈ X there existsw ∈ N so that d (x, w ) ≤ ε .
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Rd
and bound the probability that for each pair of points in N

their norms are preserved for the majority of random projections.

Although ε-net arguments of this type can be encountered pre-

viously in the relevant literature, the next theorem we state is

novel, and appears, to the best of our knowledge, for the first

time here.

Ourmain theorem states that if we drawO (d log(d )+log(1/δ ))
independent random projections then, with probability at least

1 − δ , proximity queries between any two points of P can be

answered correctly for well-separated points.

Theorem 3.1. Let A ∈ Rd×n = [p1, p2, . . . , pn], 0 < δ < 1 and
0 < ε < 1/2. Fix any integer t = Ω(1/ε2) and let G1,G2, . . . ,Gl
be an i.i.d. sequence of t ×d random-sign matrices rescaled by 1/

√
t .

If

l ≥ Ω

(
d ln(d/ε2)

ε2t
+ ln(1/δ )

)
(1)

then with probability at least 1−δ the following holds: Let pi , pj ∈ A
and given any query q ∈ Rd with (1 + γ ) pi − q2 ≤

pj − q
2

where γ > 6ε then Gk (pi − q)2 <
Gk (pj − q)

2 holds for the
majority of indices k ∈ [l].

Remark 1. When we are only interested in answering near-
est neighbour queries between points in P, the parameter d in
Equation (1) can be replaced with n. Indeed, repeat the proof of
Theorem 3.1 by building an ε-net on the span of P.

Theorem 3.1 provides a guarantee on the preservation of near-

est neighbor queries and as a direct consequence, it preserves

the kNN metric structure of the input dataset. The kNN preser-

vation property implies that the accuracy of the proposed kNN

classification method converges to the accuracy of the kNN clas-

sifier in the original high dimensionality, as progressively more

independent projections are used.

Discussion: Theorem 3.1 suggests that it is possible to bound the

distortion even for very-low-dimensional projections. The result

may appear pessimistic at first glance because it recommends a

prohibitive number, for practical consideration, of O (d log(d ))
independent projections. It is important to consider that the

analysis is necessarily pessimistic, because it is not based on

the characteristics of a particular distribution or structure, but

is generic. That is why the bounds may seem large. However,

conditioned on the event that we possess a family of projections

that satisfy the conclusion of Theorem 3.1, a Chernoff bound

implies that only a constant number of projections are required.

Lemma 3.2. Sample S indices from {1, 2, . . . , l } uniformly at

random with replacement. If S ≥ 2(1+2η)2 ln(1/θ )
4η2 , then with proba-

bility at least 1 − θ , 0 < θ < 1, the sample S will return the same
answer as the majority over all {Gi }i ∈[l ].

Proof. Let Ii be the indicator random variable correspond-

ing to the success of the i-th sample from S . By hypothesis,

E[Ii ] = 1/2 + η. The multiplicative Chernoff bound implies

that Pr

(∑S
i=1 Ii < (1 − ζ ) (1/2 + η)S

)
≤ exp(−ζ 2S/2) for every

ζ ≥ 0. Set ζ = 1− 1

1+2η which implies that (1−ζ ) (1/2+η)S = S/2,

also S ≥ 2 ln(1/θ )/ζ 2 implies that exp(−ζ 2S/2) ≤ θ . □

Lemma 3.2 suggests that in practice there is no need to aggre-

gate over all projections, but only over a small number of them.

This is verified in the experimental section, in which we demon-

strate that in practice substantially fewer number of projections

are required for datasets with particular structure (i.e., real-world

datasets). For all our experiments, we set an upper bound of

l = 70 independent projections which preserved accurately the

neighborhood structure. In fact, in the experimental Section 5

one can see that using multiple but lower-dimensional projec-

tions is typically better than having a single higher-dimensional

projection with the same storage space. The intuition, here, is

that introducing randomness is a favorable component in classifi-

cation, similar, for example, to the approach that random forests

also follow.

4 VLR-MAP
Using the previous theoretical results, we now present VLR-Map,

standing for Very-Low Random Projection Map. It capitalizes on

very-low-dimensional projections which, when combined, yield

an effective embedding. The power of the embedding proposed,

lies on its simplicity of implementation and low runtime cost.

At its core, VLR-Map learns a low-dimensional embedding by

drawing independent random projections, until the distances

of the kNN neighbors over all points are sufficiently preserved

through a voting process in the low-dimensional space.

Training the embedding:Assume a set of t×d random-projection

matrices G1,G2, . . . ,Gl and an integer 1 ≤ k < n representing

the number of nearest neighbors. For each point p ∈ P, we de-
fine the i-th nearest neighbor of p ( w.r.t. P) as γi (p) for every
1 ≤ i ≤ k < n. Define the following, T(q, pi , pj ) equals 1 if

q − pi 2 <
q − pj

2 and −1, otherwise. Similarly, for every

random projection s = 1, 2, . . . , l , define

T̃

(s )
(q, pi , pj ) :=




1 if
Gs (q − pi )2 <

Gs (q − pj )
2

−1 otherwise

In essence, T̃

(s )
(q, pi , pj ) gives us the vote of the projection ma-

trix Gs regarding the proximity between the vectors q, pi and pj .
Now, given several different projections/voters, one can define

the majority vote over them:

Maj(q, pi , pj ) :=



pi if
1

l
∑l
s=1 T̃

(s )
(q, pi , pj ) ≥ 0

pj otherwise

Given a query q, Maj(q, pi , pj ) reports which point between pi
and pj is nearest to q. Following the above discussion, we define

the misclassification rate for a given set of random projections

given by Eqn. (2).

Errk (A) =
1

n
(
k
2

) ∑
p∈P

k−1∑
i=1

k∑
j=i+1

1γi (p)=Maj(p,γi (p),γj (p)), (2)

where 1x is the indicator function, i.e., 1x equals to 1 if x is true,

and zero otherwise.

The equation measures the average misclassification rate of

each point p ∈ P between all pairs of points in the kNN set and

will be used as the measure of quality of any embedding.

Given the original high-dimensional pointsP, VLR-Map learns

the minimum number of random projections that are required to

approximately preserve the nearest neighbors using very simple

voting principles. We are only interested in preserving the near-

est neighbor set of P, so VLR-Map draws independent random

projections until the misclassification rate in the kNN neigh-

borhood is sufficiently small. We measure the error using the

distance ordering over all pairs of points of the original kNN

neighborhood , i.e., the ordering of the distances between any

two nearest neighbor points of p γi (p) and γj (p) for 1 ≤ i, j ≤ k .
VLR-Map is scalable because its complexity is essentially linear

to the dataset size; the algorithm has an O (nk2) cost per iteration
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and the bound of Theorem 3.1 points to the fact that the algo-

rithm will terminate after a finite number of iterations. In the

experimental section, we provide further empirical validation on

the quality and runtime of our technique and compare it with

other embedding methodologies.

Answering kNN queries: After execution of VLR-Map, the re-

sulting set of projected instances of P can be used for answering

proximity queries. Given a query point q ∈ Rd
and any two

points pi , pj ∈ P we can test whether q is closer to p1 or p2 by
using Maj(q, pi , pj ). A crucial computational feature when evalu-

ating Maj(·, ·, ·) is that it can be effectively approximated by ran-

dom sampling as previously explained in Lemma 3.2. In practice,

a constant number of projections are sufficient for approximately

answering proximity queries. So, for any any unlabeled query

point q, the algorithm will provide a label based on the consensus

voting from all the very-low dimensional classifiers.

5 EXPERIMENTS
We examine the performance and quality of the algorithms pre-

sented on several publicly available datasets. [4, 15]. All the

datasets are high-dimensional (with dimensionalities varying

from 100+ to 10,000), and while they are not very big datasets,

they serve well for showcasing the differences in performance

and accuracy of the techniques compared. We compare the em-

bedding quality of our approachwith traditional random-projection

approaches which project on a higher dimensionality that uses

the same total space as our methodology. We show that our ap-

proach exhibits better classification accuracy and briefly analyze

this result.

5.1 Validation of Main Theorem
First, we provide empirical validation for our main result of The-

orem 3.1. Recall that the Theorem states essentially that as we

increase the number of independent projections, preservation of

nearest neighbor structure will be progressively better. Figure 1

plots the embedding error when preserving the 3-NN structure as

we progressively increase the number of independent projections.

For clarity, we plot the results on four datasets: Email, Gisette,
USPS and MUSK. The results for the other datasets exhibit similar

pattern and are omitted.
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Figure 1: Empirical validation of Theorem 3.1. When project-
ing to 10 dimensions (right) instead of 20 (left) an equivalent
NN-error can be achieved by using additional independent pro-
jections.

We use two target dimensions, t = 20 and t = 10 and average

the results over ten independent executions. Observe that Fig-

ure 1 validates the main result, because by using a lower target

dimensionality of t = 10 an equivalent error of the higher target

dimensionality t = 20 can still be achieved through the use of

additional projections.

Therefore, the power of the methodology proposed lies in its

simplicity; by using and combining additional very-low-dimensional

projections we can substantially influence the quality of the em-

bedding and of the distance preservation. It is important to un-

derscore that because the individual projections are independent

of each other, the classifiers operating on each of the projections

are totally segregated and could be run in parallel. Because each

classification is independent of the others (aside from the small

voting phase), given sufficient CPUs/cores, the overall runtime of

our approach should remain approximately constant, even under

increasing cardinality of projections/classifiers.

5.2 Random Projection Methodologies
We compare the classification error of various methodologies

based on random projections: VLR-Map, a kNN classifier using

a single projection onto t dimensions (sRPt ), a kNN classifier

with a single projection onto t · l dimensions (sRPl ·t ) and locality-
sensitive-hashing (LSH) [8]. sRPl ·t is included in the comparisons

to compare the performance of VLR-Map with the traditional

single random projection methodology which uses the same space
(sRPl ·t has the same number of coordinates with our approach).

The comparison with LSH is also done under fair settings; the

number of hash functions equals the number of projections l of
VLR-Map, and the number of bins for each hash function equals

the projected dimensionality t . Finally, for reference, we also

include the classification accuracy of the kNN classifier on the

original high-dimensional points (kNN). We report the results for

k = 3 nearest neighbors and target dimensionality of t = 30

in Table 1. The experiments indicate that our approach can, in

fact, achieve comparable (or sometimes even better) performance

than the kNN classifier which operates in the original data dimen-

sionality. An advantage of our framework is that it is computa-

tionally lighter than a traditional kNN classifier, because in very

low dimensional spaces (in which our framework operates) the

nearest-neighbor search can be executed efficiently using data

structures, such as KD-trees. However, in higher-dimensional

spaces, the performance of these techniques degrades rapidly as

validated both analytically and empirically in many studies [9].

More importantly, the results suggest that our approach outper-
forms the traditional projection methodology which uses the same
space (i.e., a single random projection at dimensionality t · l ). One
can think of this as quite analogous to the concept behind random

forests [6]. Having multiple random classifiers (unweighted in

our case) can boost classification and also introduce robustness.

Finally, in Table 2 we report the runtime for one experiment

on three datasets for the various techniques based on random

projections. VLR-Map and sRPt ·l have equivalent runtime, while

LSH is costlier.

6 CONCLUSION
Our main theorem highlights that it is feasible to combine many

very-low-dimensional projections and guarantee a bounded dis-

tortion on the original distances. From a practical viewpoint, the

embedding proposed, VLR-Map, exhibits many favorable traits,

such as: i) simplicity of implementation, and, ii) scalability: sig-

nificantly reduced run-time compared to state-of-art embedding

techniques with comparable accuracy.
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Classification Error on test data (%)

Method 3-NN sRPt VLR-Map sRPt ·l LSH VLR-Map sRPt ·l LSH VLR-Map sRPt ·l LSH VLR-Map sRPt ·l LSH

no. projections l = 10 30 50 70
MNIST 2.95 9.25 4.29 3.23 10.14 3.73 3.11 3.77 3.61 3.12 4.64 3.5 3.15 8.95

COIL 1.15 2.3 0.92 1.23 0.69 0.85 1.15 1.85 0.38 1.15 5.0 0.77 1.23 11.47

Email 18 19.84 13.71 15.76 26.73 12.91 16.04 26.78 12.38 16.38 26.69 12.27 16.6 26.69

lights 1.9 6 .06 2.41 2.49 3.96 2.02 2.33 3.96 2.33 2.25 3.96 2.3 2.33 3.81

PIE 11.7 22.5 12.2 12.02 16.49 10.1 11.51 18.36 9.8 11.98 19.76 9.49 11.79 22.21

USPS 5.7 11.5 6.53 5.7 6.77 5.23 5.47 12.5 4.97 5.53 45.33 4.67 5.87 71.53

GISETTE 3.0 25.1 13.17 6.07 2.6 7.8 3.9 2.6 6.7 3.6 2.6 6.07 3.3 2.6

MUSK 4.21 9.33 4.98 5.82 9.47 4.91 5.89 10.25 4.98 5.47 12.00 4.42 5.12 16.07

Table 1: VLR-Map offers overall better accuracy (on t dimensions using l projections) than LSH or a single projection that uses that same
space (sRPt ·l ). Red color denotes better values (smaller classification error).

sRPt ·l VLR-Map LSH

MNIST 0.87 1.22 1.95

USPS 0.06 0.10 0.85

MUSK 0.01 0.04 0.34

Table 2: Time comparison (in sec) between a single random pro-
jection (sRPt ·l ), VLR-Map ( l = 30 and t = 10) and LSH. VLR-Map
and single random projection exhibit equivalent runtime, while
LSH computations are more expensive.
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Proof. of Theorem 3.1: Assume two points x, y of the pointset A and a query point

q ∈ Rd . The goal is to decide whether q is nearest to x or to y. Without loss of generality, we

can assume that q is the origin by linearity (otherwise apply the argument below to the vectors

x − q and y − q). So, it suffices to argue that one can check the distances of x and y.

Let G be a t × d random-sign matrix rescaled by 1/
√
t , i.e., a matrix whose entries are i.i.d.

uniformly distributed r.v. on {±1}. For any 0 < ε < 1/2 and z ∈ Rd , the following bound is

well-known [1]

P *
,

������

∥Gz∥2
2

∥z∥2
2

− 1

������
> ε+

-
≤ exp(−CJLε2t ) (3)

where C
JL

> 0 is an absolute constant. More precisely, C
JL

is the constant of the Johnson-

Lindenstrauss lemma with random sign matrices. For any z1, z2 ∈ Sd−1 , define the following

event

Ej (z1, z2) :=
{����Gj z1


2

2

− 1
���� < ε and

����
Gj z2


2

2

− 1
���� < ε

}
.

It follows by (3) that for every j = 1, . . . , l : P
(
Ecj (z1, z2 )

)
≤ 2exp(−C

JL
ε2t ). Moreover,

let us define the event Maj(z1, z2 ) = {Ej (z1, z2 ) holds for ≥ ⌈l/2⌉ indices j . }. Let us first

bound the probability

P (Maj(z1, z2)c ) =
l∑

s=⌈l /2⌉

P
(
Ej (z1, z2)c for exactly s indices

)

≤

l∑
s=⌈l /2⌉

(
l
s

)
P (E1 (z1, z2)c )s ≤

l∑
s=⌈l /2⌉

(
l
s

)
2
s
exp(−CJLε2st )

≤

l∑
s=⌈l /2⌉

(
l
s

)
2
l
exp(−CJLε2 ⌈l/2⌉t )

≤2l exp(−CJLε2 ⌈l/2⌉t )
l∑
s=0

(
l
s

)
≤ 2

2l
exp(−CJLε2t l/2).

Now, we bound the probability that the majority of random projections {Gj } preserves the

norms of every pair of points in N , where N is an (ε/
√
d )-net of Sd−1 . Recall that |N | ≤

(3
√
d/ε )d [14]. Namely, we bound the following P (∀z1 ∈ N , ∀z2 ∈ N : Maj(z1, z2 )) = 1−

P (∃z1, z2 ∈ N , Maj(z1, z2 )c ) . The last quantity can be bounded as follows:

P (∃z1, z2 ∈ N , Maj(z1, z2)c ) ≤
∑

z1,z2∈N

P (Maj(z1, z2)c )

≤ |N |222l exp(−CJLε2t l/2) ≤ (

√
d

3ε
)2d 22l exp(−CJLε2t l/2)

= exp(−l (CJLε2t/2 − ln(4)) + 3d ln(d/ε2)),
where in the first inequality we used the union bound and the final inequality by (3). Assume

that ε2t > 2 ln(4)/C
JL

(t = Ω(1/ε2 ) by assumption), hence if l ≥ 4d ln(d/ε2 )
C
JL
ε2t−2 ln(4)

+ ln(1/δ )

then

P (∀z1 ∈ N , ∀z2 ∈ N : Maj(z1, z2 )) ≥ 1 − δ .
From now on, assume that the following event holds{

∀z1 ∈ N , ∀z2 ∈ N : Maj(z1, z2 )c
}
. (4)

Next we prove that (assuming (4)) if (1 + γ ) ∥x∥
2
≤ y2 , then the majority of the fixed

projections {Gi }i∈[l ] will satisfy ∥Gi x∥2 < Gi y2 .
Indeed, let xN and yN be the net points that are nearest to x/ ∥x∥

2
and y/ y2 , respec-

tively. Namely, it holds that ∥x/ ∥x∥
2
− xN ∥2 ≤ ε/

√
d and

y/ y2 − yN 2 ≤ ε/
√
d .

Conditioning on the event in Eq. (4) implies that for the majority of {Gj }j∈[l ]

Gjx
2 = ∥x∥2

Gjx/ ∥x∥2 − GjxN + GjxN
2

≤ ∥x∥
2
(Gj

2 ∥x/ ∥x∥2 − xN ∥2 +
GjxN

2)

≤ ∥x∥
2
(Gj

2 ε/
√
d + 1 + ε ) ≤ (1 + 2ε ) ∥x∥

2
,

where the first inequality is triangle inequality combined with standard matrix norms, the sec-

ond inequality follows by Eq. (4) and the definition of xN and the last inequality follows since

Gj
2 ≤

Gj
F ≤

√
d .

Similarly, for the majority of the indices j ,

Gjy
2 =

y2
Gjy/ y2 − GjyN + GjyN

2
≥ y2 (

GjyN
2 −

Gj
2

y/ y2 − yN 2)

≥ y2 (1 − ε −
Gj

2 ε/
√
d ) ≥ (1 − 2ε ) y2 .

Therefore, we conclude that the ratio
Gj y

2 /
Gj x

2 is at least
(1−2ε ) ∥y∥

2

(1+2ε )∥x∥
2

≥
(1−2ε )
(1+2ε ) (1+

γ ) > 1 for the majority of random projections {Gj }j∈[l ] as γ > 6ε . □
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ABSTRACT
Interval joins find applications in several domains, including tem-
poral and spatial databases, uncertain data management, stream-
ing data processing. In this paper, we study the evaluation of
an interval count semi-join (ICS J ) operation that can be used
for selecting or ranking intervals based on the number of join
pairs they appear in. We extend the state-of-the-art algorithm
for interval joins to evaluate ICS J at the cost of only scanning
the sorted interval endpoints.

1 INTRODUCTION
The interval join (I J ) is an important and well-studied operation
that finds several applications. In its most widely used definition,
the interval join takes as input two collections of intervals R and
S , and outputs the pairs (r , s ) ∈ R × S , such that intervals r and s
overlap1. In temporal databases [8], tuples are associated with
validity intervals and interval joins can be used to find pairs of
tuples with overlapping validity (e.g., find pairs of employees
who worked in two enterprises during overlapping time periods).
In spatial databases, multidimensional overlap joins reduce to
interval joins if the spatial extent of the objects is represented
by a set of intervals with the help of space-filling curves [11]. In
probabilistic databases, values in continuous domains are often
represented by intervals of values which have non-zero prob-
ability [4]. Finally, in applications that process streaming data,
values read from different streams can be joined by (often param-
eterized) temporal windows [7]. Such sliding window joins can
be modeled as overlap joins, if the values are extended by the
window lengths and modeled as intervals. A number of single-
processor [2, 5, 6, 13, 14] and parallel [1, 3, 9] algorithms for
interval joins have been proposed. Among them, methods that
are based on plane-sweep prevail due to their optimal worst-case
complexity and their efficient implementations [1, 13].

In this paper, we study the efficient evaluation of an Interval
Count Semi-Join (ICS J ) operation, where the objective is to find
how many pairs in the interval join I J (R, S ) result include each
r ∈ R. For example, consider interval collections R = {r1, r2, r3}
and S = {s1, s2, s3, s4} depicted in Figure 1. ICS J (R, S ) =
{(r1, 2), (r2, 1), (r3, 3)} because r1, r2 and r3 overlap with 2, 1, and
3 intervals from S , respectively. ICS J (R, S ) can be seen as a case
of temporal aggregation on S , using R as the set of fixed intervals
[12]. The result of ICS J can be used to select or rank objects
that are associated with the intervals in R based on the number
of intervals in S they intersect. For example, if R includes the
employment periods of employees in company A and S includes
the periods of employees in company B, we may wish to find the
k employees in A whose employment time overlaps with that of

1Two intervals overlap (or intersect) if they share at least one common value.

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the 21st
International Conference on Extending Database Technology (EDBT), March 26-29,
2018, ISBN 978-3-89318-078-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.
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Figure 1: Collections R = {r1, r2, r3} and S = {s1, s2, s3, s4}.

the most employees in B (e.g., employee r3 in Figure 1, if k = 1).
This problem can be solved by ranking the ICS J output, or by
using a priority queue to keep track of the top-k ICS J results
while they are computed.

To our knowledge, ICS J has not been adequately studied to-
date. Top-k count semi-joins have been studied in relational [15]
and spatial databases [16], but the techniques in these studies
are unsuited for ICS J , as they apply on different data domains
and they make use of indices. We present an efficient smart
counting algorithm for evaluating ICS J , which applies on two
sorted input collections R and S and extends the state-of-the-
art sweeping based I J algorithm. The algorithm bears only the
minimal cost of scanning the sorted inputs. Experiments on four
real datasets show that it is orders of magnitude faster than
simpler alternatives.

2 BACKGROUND
Related work on I J includes techniques based on indexing or
partitioning [2, 5, 6] and methods that sort inputs R, S to perform
merge-join [14] or plane-sweep based join [1, 13]. Recent studies
[1, 13] focused on in-memory processing and showed that plane-
sweep based techniques are superior to other methods.

Algorithm 1 describes a plane-sweep based algorithm for in-
terval joins. Initially, the domain points (or simply points) of all
intervals in R, S are extracted and sorted into list L (Lines 2–3).
Intuitively, L defines the stops of an imaginary line that sweeps
the domain; so, the sweep line stops both at the start and the
end point of an interval. An active set AR and AS is initialized for
each of the two input collections. Sets AR and AS keep track of
the intervals that are currently “open” (i.e., their start point has
been encountered but not their end point). Each point in list L is
accessed in order; if it is a start point of an interval, e.g., r ∈ R, r
is guaranteed to overlap all intervals inAS . Therefore, all pairs in
{r } ×AS are reported. For example, consider Figure 1 and assume
that the start point of r3 is currently accessed (i.e., the sweep
line is the leftmost vertical line). The active set of S is AS = {s2},
hence the algorithm outputs pair (r3, s2) as part of the join result.
If an end point is encountered by the sweep line (Lines 11–12 and
18–19 of Algorithm 1), the corresponding interval is no longer
open, so it is removed from its respective active set.

Assuming an efficient data structure, which performs inser-
tions and deletions to the active sets in constant time (e.g., a hash
table), Algorithm 1 computes the join in O ( |R | + |S | + K ) time,
where K is the number of result pairs, excluding the sorting cost
of list L. Note that when a start point is encountered, an active set
should be scanned to generate join results. Scanning a hash table
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ALGORITHM 1: Plane-Sweep based Interval Join
Input : collections of intervals R and S
Output : set of all intersecting interval pairs (r, s ) ∈ R × S
Variables : interval points list L, active sets AR , AS

1 AR ← ∅, AS ← ∅; ▷ sets of active intervals from R and S
2 L ← start and end points of all intervals in R ∪ S ;
3 sort L;
4 while L is not depleted do
5 p ← next point in L;
6 if p originates from collection R then
7 r ← interval in R where p belongs;
8 if p is a start point then
9 add r to AR ; ▷ r is open

10 output {(r, s ) : ∀s ∈ AS } ; ▷ r overlaps all

intervals in AS

11 else remove r from AR ; ▷ r no longer open

12 else
13 s ← interval in S where p belongs;
14 if p is a start point then
15 add s to AS ; ▷ s is open

16 output {(r, s ) : ∀r ∈ AR } ; ▷ s overlaps all

intervals in AR

17 else remove s from AS ; ▷ s no longer open

is expensive as it incurs random accesses in memory; to this end,
Piatov et al. [13] designed the gapless hash map which efficiently
supports all three insert, remove and getNext operations.2 Fi-
nally, in [1], an implementation of the plane-sweep based interval
join that replaces active sets (e.g., AR ) by forward scans to the
other collection (i.e., S), was investigated and optimized.

3 EVALUATING ICS J
We now investigate how the plane-sweep based Algorithm 1
can be extended to efficiently evaluate interval count semi-joins.
Recall that the goal is to count for every interval r ∈ R, the
number of overlapping intervals from S .

A naïve approach for computing ICS J (R, S ) is to evaluate
I J (R, S ) first. Then in an aggregation step, we need to sort or
hash the (r , s ) join pairs by their first element, and count and
report the number of pairs for each r ∈ R. Naturally, this method
is at least as expensive as the interval join problem. In fact, since
the number of overlapping intervals can be much greater than the
sizes |R | and |S | of the two inputs, the cost of sorting or hashing
the I J (R, S ) results may dominate the overall evaluation cost.3

To address these shortcomings, we next present two methods,
which extend Algorithm 1 to directly compute ICS J (R, S ).

3.1 The Simple Counting Approach
We first discuss an intuitive extension to Algorithm 1 based on
the following observation. When the start point of an interval
(e.g., r ∈ R) is encountered, the algorithm scans the active set of
the other collection (i.e., AS ) to produce join pairs {r } ×AS . As
our objective is only to count the intervals from S that overlap
interval r , we do not have to scan active set AS ; instead, we only
need to add its size |AS | to a dedicated counter for r . Note that

2In [13], Algorithm 1 is presented as the Endpoint-Based Interval (EBI) Join
algorithm.
3Note also that this naïve method is not suitable for in-memory evaluation of count
semi-joins due to buffering all I J (R, S ) result pairs.

ALGORITHM 2: Simple Counting
Input : collections of intervals R and S
Output : for each r ∈ R , |s : s ∈ S , and r intersects s |
Variables : interval points list L, active sets AR , AS , hash table C

1 AR ← ∅, AS ← ∅; ▷ sets of active intervals from R and S
2 L ← start and end points of all intervals in R ∪ S ;
3 sort L;
4 while L is not depleted do
5 p ← next point in L;
6 if p originates from collection R then
7 r ← interval in R where p belongs;
8 if p is a start point then
9 add r to AR ; ▷ r is open

10 C[r ]← |AS |; ▷ initialize counter for r

11 else
12 remove r from AR ; ▷ r no longer open

13 output (r, C[r ]);
14 delete C[r ];

15 else
16 s ← interval in S where p belongs;
17 if p is a start point then
18 add s to AS ; ▷ s is open

19 foreach r ∈ AR do
20 C[r ]← C[r ] + 1; ▷ s overlaps all

intervals in AR

21 else remove s from AS ; ▷ s no longer open

this is not the final value of this counter, because r may also
overlap with intervals from S that start later. Nevertheless, we
can eliminate the overhead of scanning the active set of collection
S , which in practice also means that a typical hash table can be
used for AS instead of an optimized special structure (e.g., the
gapless hash map of [13]) as we only need to support efficient
insertions and deletions. In contrast, we still have to support
efficient scans for active set AR , because for each encountered
start point from S , we have to scan AR in order to increase the
counters of all open intervals from r .

Algorithm 2 is a pseudocode of this Simple Counting approach.
Compared to Algorithm 1, we define a hash table C to maintain
the dedicated counter for each open interval from collection R.
Further, as already discussed, Simple Counting initializes counter
C[r ] in Line 10, when the start point of an interval r ∈ R is seen.
The counter for each r ∈ AR is then increased by 1, when the start
of an interval from S is seen in Lines 19–20. Finally, as soon as
the end point of r is accessed, counterC[r ] is finalized and hence
removed from hash table C and reported as result (Lines 13–14).
Consider for example r3 in Figure 1; when accessing the start
point of the interval, counterC[r3] is initialized to 1 asAS = {s2}.
After the next two stops of the sweep line marked in the figure,
i.e., when the start points of intervals s2 and s3 are encountered,
C[r3] is increased to 3. Algorithm 2 is similar to the general
approach for temporal aggregation, proposed in [12].

Simple Counting is expected to always outperform the naïve
solution; recall that the latter needs to completely evaluate I J as
its first step. On the other hand, Algorithm’s 2 cost is in same
order to Algorithm 1 as half of the I J results are still computed,
i.e., the pairs generated in Lines 19–20 when encountering start
points from S . Note that Simple Counting is also charged with
the book-keeping cost for the counters of hash table C . In view
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ALGORITHM 3: Smart Counting
Input : collections of intervals R and S
Output : for each r ∈ R , |s : s ∈ S , and r intersects s |
Variables : interval points list L, hash table C

1 |AS | ← 0; ▷ active set counter for intervals from S
2 д ← 0; ▷ global counter

3 L ← start and end points of all intervals in R ∪ S ;
4 sort L;
5 while L is not depleted do
6 p ← next point in L;
7 if p originates from collection R then
8 r ← interval in R where p belongs;
9 if p is a start point then

10 C[r ]← |AS | − д; ▷ initialize counter for r

11 else
12 C[r ]← C[r ] + д;
13 output (r, C[r ]);
14 delete C[r ];

15 else
16 s ← interval in S where p belongs;
17 if p is a start point then
18 |AS | ← |AS | + 1; ▷ increase active set counter

19 д ← д + 1; ▷ increase global counter

20 else
21 |AS | ← |AS | − 1; ▷ decrease active set counter

of these shortcomings, we next present a significantly faster
extension to Algorithm 1.

3.2 The Smart Counting Approach
The main idea behind the Smart Counting extension to Algo-
rithm 1 is to maintain cheap statistics about the intervals from S
instead of keeping track ofAS at every position of the sweep line.
Algorithm 3 is the pseudocode of the Smart Counting approach.
We now discuss its key features.

First, we observe that only the size of active set AS is in fact
needed for the ICS J computation. Although the Simple Count-
ing algorithm presented in Section 3.1 keeps track of the open
intervals from S , the contents of AS are never scanned and only
|AS | is used on Line 10 of Algorithm 2. Hence, we can replace the
hash table of active set AS by a simple size counter |AS |; when
the start point of an interval s ∈ S is encountered, this counter
is increased by 1 (Line 18) while after an end point from S is
accessed the same counter is reduced by 1 (Line 21). Next, we
define a global counter д to keep track of the number of intervals
from S that have opened (regardless whether their end point is
already accessed or not). Similar to |AS |, counter д is increased
by 1 in Line 19 when a start point from collection S is seen but
never decreased which means that д ≥ |AS | always holds.

By combining counters |AS | and д, we are able to compute
the number of intervals from S that opened or were open in-
between the start and the end point of an interval r ∈ R. In
specific, we initialize the dedicated counter C[r ] = |AS | when
the start point of r is encountered but then subtract the value of
global counter д (Line 8). Compared to Algorithm 2, notice that
we no longer maintain open intervals from R to active set AR ;
instead we employ hash table C to store the current value of r ’s
dedicated counter. After the end point of interval r is seen, we
just need to add back the current value of д to C[r ] and report

Table 1: Characteristics of experimental datasets
FLIGHTS BOOKS GREEND WEBKIT

Cardinality 445,827 2,312,602 110,115,441 2,347,346
Domain duration (secs) 2,750,280 31,507,200 283,356,410 461,829,284
Shortest interval (secs) 1,261 1 1 1
Longest interval (secs) 42,301 31,406,400 59,468,008 461,815,512
Avg. interval duration (secs) 8,791 2,201,320 16 33,206,300
Distinct domain points 41,975 5,330 182,028,123 174,471

result (r ,C[r ]) (Lines 12–13). This procedure guarantees that we
will end up with the correct value ofC[r ], because the difference
from global counter д corresponds to the number of intervals
from S that opened after r ’s start point. Note that these intervals
overlap with r but were not considered whenC[r ]was initialized.

We expect the Smart Counting approach to significantly out-
perform Simple Counting as the cost of maintaining and scanning
active sets AR , AS is completely eliminated. Further, we manage
to avoid the random accesses that incur during the for-loop on
Lines 19–20 of Algorithm 2 when the counters for multiple inter-
vals are concurrently updated. Overall, the cost of Smart Count-
ing (excluding sorting) is O ( |R | + |S |) due to the constant-time
cost of processing at each position of the sweep line.

4 EXPERIMENTAL ANALYSIS
4.1 Setup
For our experiments, we implemented all methods in C++ and
compiled them using gcc (v5.2.1). Note that all data (input collec-
tions, active sets, interval points list etc.) resided in main memory.
Methods. Besides gapless hash map, the authors in [13] also
discussed a lazy optimization for plane-sweep based Algorithm 1,
which buffers consecutive start points in list L from the same
input (e.g., R). When producing I J results, a single scan over the
active set of the other input (i.e., AS ) is performed for the entire
buffer. By restricting buffers to fit inside L1 cache or even the
cache registers, this technique reduces cache misses. To enhance
ICS J computation, we applied this lazy optimization on Naïve
and Simple Counting. For the latter, we buffer consecutive start
points from S allowing us to increaseC[r ] for each r ∈ AR by the
buffer size instead of 1 as in Lines 19–20 of Algorithm 2. On the
other hand, lazy optimization has no effect on Smart Counting.
Datasets. Table 1 details our 4 real-world experimental datasets.
FLIGHTS records domestic flights in USA during January 2016
(https://www.bts.gov); valid times indicate the duration of a flight.
BOOKS records the transactions at Aarhus public libraries in 2013
(https://www.odaa.dk); valid times indicate the periods when a
book is lent out. GREEND [10, 13] records power usage informa-
tion in households across Austria and Italy from January 2010 to
October 2014; valid times indicate the period of a measurement.
WEBKIT records the file history in the git repository of the We-
bkit project from 2001 to 2016 (https://webkit.org); valid times
indicate the periods when a file did not change.
Tests. We ran interval count semi-joins using a uniformly sam-
pled subset of each dataset as outer input R and the entire dataset
as inner S ; for this purpose, we varied ratio |R |/|S | inside {0.25, 0.5,
0.75, 1}. To assess the performance of the methods, we measured
their total execution time which breaks down to the time spent
(i) to generate and sort the list of interval points L, denoted by
Sorting, and (ii) to compute the ICS J result, denoted by Joining.

4.2 Experiments
Figures 2 and 3 report the results of our experimental analysis. In
specific, Figure 2 reports the total execution time of each method
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Figure 2: Total execution time while varying the |R |/|S | ratio.
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Figure 3: Execution time breakdown for |R | = |S |.

while varying the |R |/|S | ratio and Figure 3 reports a breakdown
of the execution time for the |R | = |S | case. As expected, we
were able to run the Naïve method only when ICS J was very
selective, i.e., for datasets FLIGHTS and GREEND. Recall from
Section 3 that Naïve first evaluates the I J of the input collections;
on BOOKS and WEBKIT, it was impossible to accommodate the
enormous number of I J result pairs in main memory.4

Figure 2 demonstrates the efficiency of the Smart Counting ap-
proach, which outperforms Simple Counting in all cases. In fact,
Simple is competitive to Smart only for very selective join setups
(see Figure 2(c)) while in all other cases, Smart is at least one
order of magnitude faster. To explain the performance cost differ-
ences between Smart and Simple, we breakdown their execution
times. In Figure 3(c), the execution cost of Simple is dominated
by the generation and sorting of the points list L, because the
number of overlapping interval pairs is small, rendering the inner
loop at lines 19-20 of Algorithm 2 cheap. On other hand, when
there is a large number of overlapping intervals, Figure 3 unveils
that maintaining active sets and performing random accesses to
update C counters severely impacts the joining time of Simple.
In contrast, observe that the cost by Smart to compute the ICS J
result is always much lower than that of generating/sorting L.
This is expected because Smart is insensitive to the I J result, as
discussed in Section 3.2.

5 CONCLUSIONS
In this paper, we studied the evaluation of the interval count
semi-join operation; we presented an efficient algorithm based
on plane sweep. Our algorithm has lower complexity compared
to state-of-the-art interval join algorithms if the number of join
results is large. We experimentally showed that its overhead on
top of sorting the data is minimal in all setups, which means that
it is especially tailored in cases where the join inputs are already
sorted (e.g., in streaming data applications). In the future, we
plan to further study the semantics and the evaluation of top-k
4We also experimented with a version of Naïve that flushes the I J result pairs on
disk which was even slower.

interval joins. We also intend to investigate the applications of
interval joins and other temporal operations in streaming data.
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ABSTRACT
Query answering routinely employs knowledge graphs to assist

the user in the search process. Given a knowledge graph that

represents entities and relationships among them, one aims at

complementing the search with intuitive but effective mecha-

nisms. In particular, we focus on the comparison of two or more

entities and the detection of unexpected, surprising properties,

called notable characteristics. Such characteristics provide intu-

itive explanations of the peculiarities of the selected entities with

respect to similar entities. We propose a solid probabilistic ap-

proach that first retrieves entity nodes similar to the query nodes

provided by the user, and then exploits distributional properties

to understand whether a certain attribute is interesting or not.

Our preliminary experiments demonstrate the solidity of our

approach and show that we are able to discover notable charac-

teristics that are indeed interesting and relevant for the user.

1 INTRODUCTION
Search engines have greatly evolved from simple indexes of pages

to complex systems that are able to predict user intentions and

answer queries on a variety of data sources. One way to im-

prove the search quality is by using a knowledge graph that

represents entities (e.g., Angela Merkel, Germany) as nodes and

relationships between them (e.g., leaderOf) as edges in a graph.

The great expressiveness of knowledge graphs can complement

the search with more flexible search paradigms. Assume for in-

stance a scholar who requires to know some non-trivial facts

about Angela Merkel and Emmanuel Macron with respect to

other country leaders. It would be interesting to discover for

instance that Angela Merkel studied Physics as opposed to most

of the other leaders, and that she has no children. We call this

fact a notable characteristic, to remark the unexpected and non-

trivial aspect of the discovery. To this end, we propose a novel

type of search called notable characteristics search that allows the

retrieval of such facts from a set of input query entities. Discov-

ering notable characteristics constitutes a ground for targeted

analyses of products (e.g., comparing two cameras effectively) in

electronic commerce or microorganisms in biological networks

(e.g., two influence bacteria) with respect to a set of similars. As

a consequence, in all the cases in which a knowledge graph is

available, the discovery of notable characteristics becomes an

expressive and powerful search type for any user, from experts

and practitioners to novice users.

In our setting, we assume the user provides a set of query
nodes to be compared and the algorithm finds a set of notable

characteristics of these nodes. Given a node, a property is a

relationship with other nodes (e.g., leaderOf). A characteristic or

property is notable, if it deviates from what one would expect for

the kind of nodes (e.g., presidents) into consideration. To the best

of our knowledge, this is the first study of automatic discovery

of notable characteristics (or properties).

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the 21st

International Conference on Extending Database Technology (EDBT), March 26-29,

2018, ISBN 978-3-89318-078-3 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons

license CC-by-nc-nd 4.0.

studied

hasChild

studied

Mariano

Physics

Query

Mariya
Yecaterina

hasChild

LawPhilosophy

hasChild

Juan

Context

Xi	Mingze

studied

Figure 1: An example knowledge graph, the query (Merkel
and Macron), and the discovered context nodes (Putin, Xi
Jinping, and Rajoy). The fact that Merkel and Macron do
not have children is a notable characteristic.

The discovery of notable characteristics entails two challenges.

First, given the set of query nodes we need to compare them to

only those nodes that are similar to some extent. Second, we need

to select only those properties that are significantly different

from the one expressed in the query. Note that tackling the first

challenge is very important, as the comparison of the query

nodes has to be performed with a set of similar nodes, which we

call the context of the query. Consider the naïve approach that

returns notable characteristics simply by comparing the query

nodes and assume that the user provides “Angela Merkel” and

“Theresa May” as query. This is a counter example for the naïve

direct comparison, as it will not return the gender as a notable

characteristic. Both query nodes are female, however only in

comparison with other presidents this becomes an interesting

fact. On the other extreme, selecting all the nodes in the graph

as context will mislead the analysis towards non-relevant nodes.

Take our example of “Angela Merkel” and “Emmanuel Macron”.

A naïve selection of all humans will not work as context, since

the gender characteristic is not notable among all persons.

It is crucial to provide a thorough context selection to prevent

the above cases. Therefore, we introduce the discovery of context
nodes, i.e., nodes similar to the query nodes. An example of the

proposed approach is depicted in in Figure 1. To this end, we

devise a method that exploits metapaths [12] and random walks

for context discovery. We also propose a generic framework

that efficiently discover notable characteristics through a novel

probabilistic approach based on distribution comparison.

Our contributions are summarized as follows: (1) We formal-

ize the problem of notable characteristics search given a set of

query nodes as input. (2)We show how to effectively compute

metapaths to find the context nodes in knowledge graphs. (3)We

introduce a probabilistic approach to discover notable charac-

teristics given a query node set. (4) We experimentally evaluate

our context selection approach through a user study, and show

evidence of our discovered notable characteristics and the real

time performance of the proposed algorithms.

2 NOTABLE CHARACTERISTICS SEARCH
We are given a set A of node labels and a set L of edge labels.

A knowledge graph is a directed graph G : ⟨V, E,ϕ,ψ ⟩, where
V is a set of nodes, E ⊆ V ×V is a set of edges, ϕ : V 7→ A,

ψ : E 7→ L are node and edge labeling functions, respectively.
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For simplicity, we assume that everything is modeled as rela-

tionships and nodes. This is the case for attributes such as birth

date: we assume that the date itself is a node connected with a

birthdate relationship. Additionally, we assume that for every

edge e ∈ E with type ψ (e) = l exists a reverse edge e−1 with

ψ (e−1) = l−1 to model cases such as presidentOf and hasPresi-
dent. The above assumptions do not change the generality of the

methods but simplify the notation and the analysis.

We aim at discovering notable characteristics expressed as a

set of input query nodes (entities) in relation to their similars.

This intuitive definition entails two questions: (1) what is the set
of similars? (2) what are the notable characteristics?

Given a knowledge graph G : ⟨V, E,ϕ,ψ ⟩, the set of input
nodes, referred to as query set or query in short, is any setQ ⊆ V .

The query is manually provided by the user and therefore con-

sidered reasonably small (i.e., ≤10 elements). The first question

concerns the definition of a set of similars referred in this work

as context nodes. We assume the existence of a similarity function
σ : V × 2

V 7→ R that assigns a high score to nodes that are

similar to those in the query set and low otherwise. Given such

similarity, the context are the top-k most similar nodes.

Definition 2.1 (Context set). Given a knowledge graph G :

⟨V, E,ϕ,ψ ⟩, a query set Q ⊆ V , a similarity function σ : V ×

2
V 7→ R, and a parameter k , the context set (or simply context)

is a set C ⊆ V such that Q ∩ C = ∅, |C | = k , and for each

nc ∈ C ∧ n ∈ V \ (Q ∪C),σ (n,Q) ≤ σ (nc ,Q).
The second question concerns the notable characteristics. The

characteristics are attributes or relationships of a specific node

since they implicitly represent a signature of the node itself. We

assume the existence of a generic discrimination function δ : L ×

2
V × 2

V 7→ R+
0
, which represents how a specific characteristic

is discriminative or unexpected comparing two set of nodes. The

discrimination function returns 0 if the value is not discriminative.

We are now ready to define a notable characteristic.

Definition 2.2 (Notable characteristic). Given a knowledge graph
G : ⟨V, E,ϕ,ψ ⟩, a queryQ ⊆ V , a contextC ⊆ V , and a discrim-

ination function δ : L × 2
V × 2

V 7→ R+
0
a notable characteristic

is a relationship l ∈ L|Q∪C such that δ (l ,Q,C) , 0.

The notation L|Q∪C = {l | ∃x ∈ Q ∪ C,y ∈ V s.t. (x ,y) ∈

E ∧ψ (x ,y) = l} denotes the set of edge labels restricted to those

found in the edges directly connected to Q ∪C .
The general problem we aim to solve is efficiently returning

the notable characteristics, given a query, a similarity function

and a discrimination function.

Problem 1 (Notable characteristics search). Given a knowl-
edge graph G : ⟨V, E,ϕ,ψ ⟩, a query Q ⊆ V , a similarity function
σ : V×2V → R and a discrimination function δ : L×2V×2V 7→

R+
0
, find the set of notable characteristics.

3 A PROBABILISTIC SOLUTION
The problem entails the definition of appropriate σ (similarity)

and δ (discrimination) functions. Section 3.1 introduces a graph-

principled solution based on random walks for retrieving context

nodes, while Section 3.2 describes a probabilistic approach to

effectively discover notable characteristics.

3.1 Finding the context
Given the query Q , we define a similarity function σ to retrieve

a set of context nodes. Although many notions of similarity func-

tions have been developed, such as SimRank [4], none seems

suitable to our case since they compare two nodes at the time. We

devise an algorithm that takes into account edge labels and com-

bines the advantages of random walk and metapath approaches.

In the random walk model, a walker chooses one of the out-

going edges from a node with uniform probability. Motivated by

information theoretic notions applied to graphs [10], instead of

uniform probability, we favor edge labels with lower frequency.

We define El = {(i, j) ∈ E|i, j ∈ V,ψ (i, j) = l}, the set of edges
having label l ∈ L. The frequency of a label l is the fraction of

l-labeled edges with respect to the total number of edges. The

weighted adjacency matrix is a |V|×|V| matrix, where for each

node i and j ,Ai j = 1− |El |/|E | if (i, j) ∈ E andAi j = 0 otherwise.

The Personalized PageRank is the vector p=cÃp + (1 − c)v,
where Ãi j=Aji/

∑
k Ajk , c is the damping factor, and v is vector

called personalization vector. In our experiments the damping

factor is 0.8, in line with previous works. We compute p starting

from each node in the query to retrieve the k nodes with the

highest score. This is done by setting vn=1/|Q | for each n∈Q . We

refer to this baseline as RandomWalk.

The PageRank disregards which type of relationships are in-

volved in the random walk, discarding the valuable information

encoded in the surrounding of the query nodes. To this end, we

adopt the notion of metapath [8, 12] which generalizes the con-

cept of path. A metapath for a path ⟨n1, ...,nt ⟩,ni ∈ V, 1 ≤ i ≤ t
is a sequence ⟨ϕ(n1),ψ (n1,n2), ...,ψ (nt−1,nt ),ϕ(nt )⟩ that alter-
nates node and edge labels along the path.

We mine metapaths as follows. We sample a node in V \Q
uniformly and run a random walk until a query node is reached.

The sequence of edge labelsm encountered in the random walk

is added to the set of metapaths M along with the number of

times c(m) the same metapath has been found so far. It has been

proved that random walks are effective in mining metapaths [7].

Once the metapaths are retrieved, we compute a score for each

node based on the probability that some metapath starting from

a query node ends in such node. Given the set of metapathsM ,

{n
m
⇝ n′} is the set of paths from node n to n′ matching metapath

m∈M . The score of a node n′∈V \Q with respect to n∈Q is

σ (n′,Q) =
∑

m∈M,n∈Q

|{n
m
⇝ n′}|

|{n
m
⇝ n′′ |n′′ ∈ V \Q}|

Pr(m) (1)

Pr(m) = c(m)/
∑
m∈M c(m) is the probability of choosing metap-

athm. Intuitively, σ gives a higher score to nodes that are reach-

able through frequent metapaths connecting the query nodes or

connected through many of these metapaths. Hence, nodes that

are reached from infrequent metapaths will have a low score. We

refer to this method as ContextRW.

3.2 Comparing the distributions
We revise the definition of notable characteristics in probabilistic

terms. Assume we have computed the distribution of values for

each characteristic (i.e., edge label) for both query and context

nodes found with the method in Section 3.1. Such distribution of

the context represents the expected, or normal behavior, to be

evaluated against the notable behaviour of the query set.

Formally, for each characteristic l ∈ L, we consider two vec-

tors in order to evaluate its notability. The first represents the

count of the node labels (e.g., France) connected to a specific edge

label (e.g., bornIn). This expresses information about the values

in the nodes and can be used to identify cases where different

attribute values are relevant. For instance, in the query in Figure 1

all people are European, while in the context half are Europeans

and half Asian. We refer to these vectors as instance vectors
Iq (l ,C,Q) = (x1,x2, ...,xt ),Ic (l ,C) = (y1,y2, ...,yt )

where xi and yi are the number of occurrences of node i at
the end of an edge labeled l from a node in Q and C , respec-
tively. In the example in Figure 1, Iq (studied,C,Q) = (1, 1, 0),
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Ic (studied,C) = (0, 0, 3), where the positions in the vector indi-

cate (Physics, Philosophy, Law). Note that both vectors have the

same size, so xi is zero if i appears only in the context.

Similarly, the second vector represents aggregates over the

number of occurrences of a specific edge label in the context,

which are useful to represent the characteristic “Angela Merkel”

has no child, instead of listing the children names. We refer to

these vectors as cardinality vectors.
Kq (l ,C,Q) = (x1,x2, ...,xt ),Kc (l ,C) = (y1,y2, ...,yt )

where xi and yi are the number of times a node in Q and C
respectively has i edges labeled l .

Both vectors can be built by iterating through the nodes in

each set and counting the respective occurrences. For a given

l ∈ L, this results in two scores δI and δK . The final score δ is

the maximum score between δI and δK .

δ (l ,C,Q) = max(δI (l ,C,Q),δK (l ,C,Q)) (2)

Many measures have been proposed in statistics to compare

two vectors in terms of distributions, such as the Kullback-Leibler

(KL) divergence, the χ2 test, and Earth Mover’s Distance (EMD).

However, most of them draw specific assumptions, such as non-

zero probabilities, or normality, that are not fulfilled in our case

since IandK have no natural ordering and no distance-function

between the values. Therefore, we resort to a more natural multi-

nomial test that better expresses the relationship between our

distributions. The multinomial test assumes that a set of observa-

tions (the query) is drawn from a multinomial distribution (the

context). If the values observed in the query are drawn from

the multinomial, than the hypothesis cannot be rejected and the

characteristic is marked as non-notable; otherwise, the success

of the test denotes that the characteristic is notable.

Assume we have a random variable XN ,π ∼ Mult(N ,π ), with
parameters N and distribution π . We normalize Ic and Kc to

express the probability distributions Îc = Ic/| |Ic | |1 and K̂c =

K̂c/| |K̂c | |1. The significance probability is

Prs (XN ,π = x) =
∑

y :Pr(XN ,π =y) ≤ Pr(XN ,π =x )

Pr(XN ,π = y)

where Prs(π ,x) is the probability of x or any equally or less likely

outcome being drawn from the probability distribution
1
. A differ-

ence in distributions is considered significant if the hypothesis is

rejected with probability p > 0.95.

MT(π ,x) =

{
1 − Prs(XN ,π = x) if Prs(...) ≤ 0.05

0 otherwise

Finally, δ id defined as δI (l ,C,Q) = MT(Îc (l ,C),Iq (l ,C,Q))

and δK (l ,C,Q) = MT(K̂c (l ,C),Kq (l ,C,Q)).

4 EXPERIMENTAL EVALUATION
We experimentally evaluate our approach on different datasets

and show the impact of the parameters on the final results.

Datasets:We perform experiments on two real datasets.

• YAGO is a large knowledge graph based onWikipedia, Wordnet

and Geonames, with 3.3M nodes, 27M edges, 366K node types

and 38 edge labels. We downloaded YAGO 2.5
2
and converted

node attributes to edges and attribute values to node labels.

• LMDB3: LinkedMDB is a knowledge graph for the movie do-

main, extracted from the Internet Movie Database (IMDB), with

739K nodes, 1.6M edges, and 18 edge types.

Experimental Setup: We implemented our solution in Java 1.8,

and ran the experiments on a Intel i5-4210U 1.7 GHz machine

1
In case of large N , an approxiamte Montecarlo sampling is performed.

2
http://resources.mpi-inf.mpg.de/yago-naga/yago2.5

3
https://datahub.io/dataset/linkedmdb

with 12GB RAM. All datasets are loaded into Apache Jena triple

store. Along our ContextRW described in Section 3.1 for context

selection and FindNC for notable characteristics identification

on top of ContextRW, we implement RandomWalk, a baseline

for context selection based on Personalized PageRank (see Sec-

tion 3.1) computed through the power iteration method with 10

iterations and c = 0.8.

4.1 Evaluating Context selection
We compare the effectiveness of ContextRW with the baseline

RandomWalk within different topics. Since no ground truth

for finding context nodes given a set of query nodes were avail-

able, we generated context nodes via CrowdFlower (https://www.

crowdflower.com) for 15 query sets in three domains, namely

politicians, actors, and movie contributors. For each domain we

manually determined 6 entities belonging to the domain and

generated queries of increasing size (up to 6 entities). We asked

34 workers to provide a ranked list of related entities given the

query, resulting in 7’650 entities. From such entities we removed

those mentioned only once and obtained 36 to 76 entities per

query that are mapped into YAGO.

Context size |C |. Context size affects the quality of the results,

since more context nodes potentially lead to better recall but

worse precision. Figure 2a compares RandomWalk and our Con-

textRW in terms of F1 score at different |C |.In all cases, Contex-

tRW performs up to four times better than the RandomWalk,

vindicating the effectiveness of our metapath constrained ran-

dom walk in finding context nodes, while RandomWalk mostly

returns nodes that are close to the query nodes, but semantically

irrelevant. Quality does not improve for |C | > 100 due to a loss in

precision. We also experience a lower variance for ContextRW

that exploits metapaths for guiding the search.

Query size |Q |.We analyze the performance of the algorithms

varying the query size |Q |. Figure 2 shows that ContextRW

improves in result quality whenmore query nodes are considered,

which means that our method capture semantic relationships

between the nodes. On the contrary, RandomWalk is not affected

by the size of the query disregarding metapaths.

Figure 3a reports the time to compute the context, showing

that RandomWalk is on average up to two orders of magnitude

slower than ContextRW, for |Q | = 5. Expectedly, ContextRW

is faster with larger queries (<20s comprising the database time),

since the chance to end up in a query node is larger.

Figure 2c reports the maximum F1 of ContextRW at increas-

ing |Q |, comparing YAGO and LMDB datasets within the actors
domain. Unsurprisingly, ContextRW performs moderately bet-

ter than YAGO in LMDB due to the specificity of the dataset;

however, YAGO result testifies the generalization ability of Con-

textRW in larger, more complex datasets.

Number of paths |M |. The ContextRW algorithm depends on

the number of paths. Figure 2d shows the F1 score in relation to

the context size and the number of paths. The number of paths

does not affect the score; however, as shown in Figure 3b the time

increases as the length of the metapaths (and also the number,

not reported) increases. Therefore, a reasonable choice for the

number of metapaths |M | and maximum length is 5.

4.2 Distribution Comparison
Test cases.We show preliminary evidence of the effectiveness of

FindNCwith respect to the RandomWalk baseline for context re-

trieval with the multinomial test. The test case in Figure 4a shows

the instance distribution of the query Q = {Georдe Clooney,
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|Q | max F1 |C |
2 YAGO 0.23 23

LMDB 0.30 101

3 YAGO 0.2 107

LMDB 0.25 122

4 YAGO 0.19 130

LMDB 0.24 124

5 YAGO 0.25 162

LMDB 0.26 198

6 YAGO 0.22 285

LMDB 0.25 139

(c) Dataset comparison

Number of paths ( |M |)
|C | 5 10 15 20

50 0.15 0.16 0.13 0.15

100 0.22 0.21 0.21 0.21

150 0.22 0.23 0.23 0.23

200 0.22 0.22 0.22 0.22

(d) Number of paths |M |

Figure 2: Average quality in terms of F1 varying parameters |C |, |q |, and |M | in YAGO dataset.
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Figure 4: Test cases for the actors domain and 5 query
nodes. A “C” in the labels denotes cardinality distributions

Brad Pitt ,Leonardo DiCaprio, Scarlett Johansson, Johnny Depp}
over the top-100 context nodes for the created edge label. The

created edge label is absent in 43% cases (represented as None
instance), whereas all the other values are equally likely with

0.66% chances. The query presents a different distribution, with

one actor without created labels and all the others with a dif-

ferent value. This clear deviation from the context is a notable

characteristic by the multinomial test.

In the second test case, not reported due to space limits, we test

the query {Douдlas Adams,Terry Pratchett} against the top-30
nodes as context. Our solution identified the edge influences as
a notable characteristic. This is because the two authors in the

query influenced an actor that was influenced by only 3 in total.

Algorithm comparison. Figure 4b compares FindNC with RW-

Mult, with query {George Clooney, Brad Pitt, Leonardo DiCaprio,

Scarlett Johansson and Johnny Depp}. All items above the thresh-

old, depicted as a dashed line, are considered not interesting

(δ = 0). The random walk selects mostly famous people in the

movie business; hence, actedIn that connects actors with movies,

is rare in the context but common in the query.However, this is

clearly not correct and our FindNC algorithm marks actedIn as

uninteresting. Similarly, hasWonPrize shows a significant differ-
ence between the two algorithms, as winning a prize is common

for actors (75%), but not so in the rather mixed random walk

context (only 25%). The chart also shows that the significance

level of the multinomial test can be used as a parameter to obtain

the desired “interestingness” level. Choosing 0.1 would include

the owns relationship as a notable characteristic, revealing that

Brad Pitt is (according to the dataset) the only relevant actor to

own a company (Plan B Entertainment).

5 RELATEDWORK
Finding notable characteristics reminisces the problem of anom-

aly detection in attributed graphs [1]; yet, it is fundamentally

different, for it does not provide explanations on the nodes re-

turned as anomalies, nor such approaches are query-driven.

Node comparison measures. Node similarities, typically de-

fined in terms of neighbors, is a centerpiece for community de-

tection, classification, and link prediction. Structural equivalence,

such as SimRank [4] defines two nodes similar if the neighbors are

similar. Random walk approaches, such as Personalized PageR-

ank [2] and HITS [5] can also be used to find structurally similar

nodes. However, node similarities cannot readily explain differ-

ences among query nodes and other similar nodes.

Seed set expansion. Seed set expansion, or example-basedmeth-

ods, refers to methods that ask the user to provide an initial set

of entities or structures and retrieve similar nodes. Seed nodes

are used to discover groups of nodes with similar characteris-

tics [6] exploiting the specificity of each node in the seed set. Like-

wise, seed-based approaches are used to discover dense graph

regions [3, 11]. Although these methods provide multiple groups

of nodes they cannot properly explain the characteristics and the

differences among them; in general, they do not directly compare

the query nodes with the others.

Relevant path summarization. Our problem is connected to

the discovery of metapaths between nodes [8, 12]. Methods have

been proposed to automatically learn metapaths from a given

seed set [9]. However, metapaths cannot express the lack of an

edge (e.g., Angela Merkel has no children), nor they cannot detect

notable characteristics: Being born in the same place is notable,

only if similar people are born in different places.
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ABSTRACT
While the growing corpus of knowledge is now being encoded
in the form of knowledge graphs with rich semantics, the current
graph embedding models do not incorporate ontology informa-
tion into themodeling.We propose a scalable and ontology-aware
graph embedding model, EmbedS, which is able to capture RDFS
ontological assertions. EmbedS models entities, classes, and prop-
erties differently in an RDF graph, allowing for a geometrical
interpretation of ontology assertions such as type inclusion, sub-
classing, and alike.

1 INTRODUCTION
A growing corpus of knowledge is being encoded in the form
of knowledge graphs, i.e. in the form of (s,p,o) triples which
represent simple subject-predicate-object sentences. These triple-
based formats consist of binary relational data, where an (s,o)
pair is effectively declared to be related by the p binary relation.
Although more complex–or higher arity–information is difficult
to express in this way, the simple syntax enjoyed by these triple-
based data models has proved highly useful for a wide range of
applications and has thus been widely adopted. Today, the linked
open data cloud consists of hundreds of interlinked datasets,
including a few very large knowledge graphs such as Freebase
and DBpedia, which contain billions of triples and millions of
entities.

Modern knowledge graphs are used in applications such as
web search, where graph data provides structured data that com-
plements hyperlink answers, artificial intelligence question an-
swering systems such as Watson and voice-based assistants, and
semantic web query engines that run powerful declarative query
languages such as SPARQL. However, there are still important
issues to be resolved. Even the largest knowledge graphs are ex-
tremely incomplete (i.e. many true facts have yet to be encoded as
triples) and prone to errors (often triples encoding incorrect facts
are included) [12]. The main tasks of link prediction (which con-
sists of predicting new triples) and triplet classification (which
seeks to assign a probability that a certain triple–be it new or
existing–is true or not) look to address these shortcomings. In
this context, there is renewed interest in machine learning over
(binary) relational data. The techniques used vary [9] from rule-
based learning [5] to tensor factorisation, neural network-based
approaches, etc. In this work we focus on latent feature-based
techniques, which are also known as graph embeddings.

Graph embeddings correspond to latent feature statistical re-
lational learning models in that they assume the existence of a
set of n latent features–or random variables–that account for the
predictions we desire (triplet classification or otherwise). As such,
these latent features provide machine learning-friendly represen-
tations of graph data, which can then be used as input to further

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the 21st
International Conference on Extending Database Technology (EDBT), March 26-29,
2018, ISBN 978-3-89318-078-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

machine learning tools such as neural networks or logistic regres-
sion for classification. The input to a graph embedding model, as
with other statistical relational learning techniques, is a knowl-
edge graph, and the output is a mapping which associates to each
entity in the graph the set of n real-valued latent features. The
name graph embedding refers to the geometrical interpretation
given to the obtained latent features: the entities are interpreted
as points in an n-dimensional real coordinate space, and thus are
said to have been embedded into said space. On the other hand,
the relations of the knowledge graph are varyingly represented
as translational vectors [3], matrix transformations [11], etc.

Graph embedding models are usually trained via the minimi-
sation of a global cost function, which can be expressed as the
sum of a cost assigned to each triple in the knowledge graph.
The minimisation itself is achieved via stochastic gradient de-
scent or similar methods. One of the greatest advantages of graph
embedding models, and especially translational models (loosely
defined as those models which represent relations as one or more
translational vectors, as opposed to transformation matrices), is
that they are able to perform efficiently for very large graphs and
with high accuracy. Current graph embedding models achieve
high performance on basic learning tasks such as link prediction–
ranking the correct entity among the top ten candidates 95% of
the time [10].

Despite the positive scenario described above, one of the great-
est limitations of current graph embedding models is that they
consider a very simple model of the data: they consider a knowl-
edge graph to be a set of triples, where each triple mentions two
entities and one relation, with no special semantics for any par-
ticular triple. In contrast, standard knowledge graphs are often
accompanied by rich ontological information which encodes a
wealth of metadata, including type hierarchies and other con-
straints. Current graph models are entirely agnostic to such meta-
data, and thus ontological triples are usually manually removed
before training (or, if they are included, simply interpreted as
plain data triples). One of the consequences of this is that current
graph embedding models do not directly incorporate constraints
that humans would consider obvious (e.g. knowing that a human
cannot be friends with a building). A huge potential exists in the
rich ontologies that inform modern knowledge graphs, and the
objective of this work is to explore ways in which such ontologies
can become first class citizens of graph embedding models.

Specifically, we explore the problem of graph embedding on
ontology-rich knowledge graphs, where the ontology is specified
in a standard language such as RDFS (more expressive languages
such as OWL2 have been developed, but will not be considered in
this study). Drawing on the geometrical interpretation that graph
embeddings give to their latent features (namely, that entities
are embedded as points in a real coordinate space), we explore
the case where RDFS classes are correspondingly modelled as
sets of points in the same coordinate space, and relations are
embedded as sets of pairs of points. This generalisation of the
basic geometrical interpretation allows for a natural expression
of ontological constraints in the global cost function. The result
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is a model we name EmbedS, which is able to model RDFS onto-
logical constraints as first-class citizens. Along with providing
the precise definitions for the EmbedS cost function, we pro-
vide experimental results that show EmbedS to be comparable to
state-of-the-art graph embedding techniques when measured on
traditional benchmark knowledge graphs, while performing well
on a new ontology-rich dataset we have prepared for the pur-
poses of studying the new enriched geometrical interpretation
that EmbedS provides.

The preliminary results presented in this paper showcase the
potential of extending current graph embedding research to in-
clude ontological information, and will hopefully encourage fur-
ther development of the area. This paper is organised as follows.
In Section 2 we introduce necessary mathematical notation and
preliminary definitions. In Section 3 we introduce the EmbedS
model, its global cost function, and the geometrical interpreta-
tion induced on embedded entities and relations. In Section 4 we
explain the experimental setting and evaluation metrics, includ-
ing a discussion of an ontology-rich benchmark dataset we have
prepared for testing the EmbedS model. Finally, in Section 5 we
present our conclusions and suggest future avenues of work.

2 PRELIMINARIES AND RELATEDWORK
Graph embedding models are usually defined on a knowledge
graph, which is essentially a set of triples, similar to the RDF data
model, but lacking specialised features of the latter, such as the
precise definition of IRIs, literals, and the semantics associated
with certain keyword IRIs. In this section we will introduce nec-
essary definitions, noting the similarities and discrepancies with
the RDF data model. We will then introduce needed concepts
such as graph embeddings, and finally we will discuss related
work.

Let E and P be twomutually disjoint and countably infinite sets
of entities and relations, respectively. A knowledge graph is then
defined as a finite set of triples of the form (s,p,o) ∈ E × P × E.
As such, a knowledge graph can be interpreted as a directed
graph with labelled edges, or as a set of binary relations. As this
work will seek to allow graph embeddings to operate on more
expressive graph data, it is important to note the differences
with the full RDF data model. RDF also considers an infinitely
countable set of literals L, disjoint from E and P, and note that
RDF triples are drawn from the more general set (E ∪ P) × (E ∪
P) ∪ (E ∪ P ∪ L). For example, note that RDF allows relations
to be mentioned in the subject position of a triple, thus blurring
the distinction that exists between relations as edge labels and
nodes of the graph. This is generally disallowed in the traditional
definition of knowledge graph.

The base RDF data model described provides very little seman-
tics other than the basic interpretation of the triple as a fact. To
enrich an RDF dataset, several ontology languages have been
developed, of which RDFS is one of the simplest. RDFS defines
the following core keyword IRIs: rdf :type, rdfs :subClassOf,
rdfs :sub PropertyOf, rdfs :domain, and rdfs :range (abbrevi-
ated type, sc, sp, dom, range, resp.), which are assigned special
semantics in order for richer knowledge—including basic type
systems—to be encoded into RDF format1.

In what follows, we will consider, in addition to the sets E and
P, a set C of classes, also infinitely countable and disjoint from

1The prefixes used are themselves abbreviations. Actually, rdf : expands
to http://www.w3.org/1999/02/22-rdf-syntax-ns# and rdfs : expands to
http://www.w3.org/ 2000/01/rdf-schema#.

the previous two. Furthermore, we define five special relations
type, sc, sp, dom, range ∈ P. We will only consider triples t =
(s,p,o) for which one of the following hold:

• (s,p,o) ∈ E × P × E (called data triples),
• (s,p,o) ∈ E × {type} × C (called type triples),
• (s,p,o) ∈ C × {sc} × C (called subclass triples),
• (s,p,o) ∈ P × {sp} × P (called subproperty triples),
• (s,p,o) ∈ P × {dom} × C (called domain triples),
• (s,p,o) ∈ P × {range} × C (called range triples).

An RDF data graph (or, simply, a graph) D is a finite set of
triples such that for every triple t ∈ D, t is a data triple or a type
triple. An RDFS ontology (or, simply, an ontology) S is a finite
set of triples such that for every triple t ∈ S , t is not a data triple
or a type triple.

Example 2.1. Consider the graphD = {(anne, type, Woman), (jo
hn, type, Man), (john, knows, anne)}. This data about people and
their relationships can be enrichedwith the ontology S = {(Woman,
sc, Person), (Man, sc, Person)} The full dataset is then I = D∪S .
Notice that the semantics of RDFS allow us to conclude facts
which are not explicitly included in the dataset, such as (anne, type,
Person) and (john, type, Person). □

Crucially, the semantics of RDFS allow for inferencing new tri-
ples using a series of inference rules. For example, the following is
an inference rule for RDFS: (x , type, c ), (c, sc,b) → (x , type,b),
which is read as follows: given a dataset I = D∪S which contains
two triples of the form (a, type, C) and (C, sc, B), for any entity
a ∈ E and classes B,C , the triple (a, type,B) may be inferred to
hold [1]. In this context, inferring a triple to hold would cause
a query engine to return the inferred triple as an answer to a
query.

Graph embedding—and statistical relational learning—models
use varying techniques in order to obtain machine-usable repre-
sentations of knowledge graphs. In general, however, the main
problem—that of knowledge base completion—gives a common
direction to these techniques: constructing statistical models of
the data that allow for link prediction (e.g. given an incomplete
fact (T arantino, inspiredBy, ?) return the entity that would
complete the triple) and triple classification (assign a probability
that a triple is true).

The most expressive models involve tensor or matrix factori-
sation techniques, although these are also the models with the
highest complexity, measured in the number of parameters that
must be trained. A well-known example of this is RESCAL [11],
which explains triples using pairwise interactions of the latent
features of entities. Thus, the cost associated to a triple xi jk has
the form:

cost(xi jk ) = e⊤i Wkej .

Other highly expressive models use techniques such as matrix
factorisation, neural tensor networks, and multilayer percep-
trons [6, 8]. The latter, also known as word2vec, was strictly
a word embedding model, but had as an interesting and unin-
tended consequence a translational property among the latent
representation of words: simple binary relations between words
could be captured when interpreting the latent representation—
embedding—of the relation as a translational vector. For exam-
ple, after training on a textual corpus, researchers found that
incomplete sentences such as (Madrid, capitalof, Spain) had
the property that the vector eMadrid + ecapitalof was nearest to
eSpain.
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(ei , ej )

(pαk , p
β
k )

σk

Figure 1: Cost of a triple (ei ,pk , ej ) ∈ I . The circle repre-
sents a 2n-sphere of radius σk centered at (pαk , p

β
k ). The pair

(ei , ej ) is embedded as the 2n-dimensional point (ei , ej ).
The (red) error line shows the cost.

The previous translational property spawned renewed interest
in distance-based models that incorporated a geometrical inter-
pretation for latent representations. The first of these was TransE
[3], and was quickly followed by refinements such as TransH
[13], and TransR [7]. While less expressive, translation-based
models prove more scalable, as their model complexity is lower
and a simpler cost structure allows for more efficient training.

The model proposed in this work draws from research in trans-
lation-based models. Our problem scenario focused on ontology-
rich knowledge graphs, which contain specific semantics for
keyword triples. This metadata has not been considered in previ-
ous work, to the best of our knowledge. The idea of considering
ontological information in training statistical models, however,
has been considered. In [4], type constraints are considered by
removing type-constraint-violating triples, improving training
speed and link predicition performance. They do not incorporate
ontological information into the model as a first class citizen,
however, and neither does the geometrical interpretation of the
model adapt to reflect the presence of this metadata.

3 MODEL
Consider an RDF dataset I = D ∪ S , and let EI ⊆ E, CI ⊆ C , and
PI ⊆ P be the sets of entities, classes, and properties that appear
in I , respectively. Define for each entity ei ∈ EI an n-dimensional
vector of parameters (i.e. variables) ei = (ei1, . . . , ein ); for each
class ci ∈ CI define an n-dimensional vector of parameters
ci = (ci1, . . . , cin ) and a parameter ρi ; and for each property
pi ∈ PI define two n-dimensional vectors of parameters pαi =
(pαi1, . . . ,p

α
in ) and pβi = (p

β
i1, . . . ,p

β
in ) and a parameter σi . We

have thus defined a total of |EI | ·n + |CI | · (n + 1) + |PI | · (2n + 1)
parameters for our model.

For what follows, we first define a distance function distwhich
assigns to every pair of n-dimensional vectors x = (x1, . . . ,xn ),
and y = (y1, . . . ,yn ) a non-negative real value dist(x, y), with
the standard distance function properties2. In this paper, we
choose to set dist(x, y) = ∥x − y∥2 =

∑i=n
i=1 (xi −yi )

2, that is, the
L2 norm of x − y. We also define an activation function act, for
which we choose the rectifier function, act(x ) = max(0,x ).

Assuming that |EI | = NE , |CI | = NC , and |PI | = NP , the cost
L will be a function of all the variables previously defined:

L = L ( e1, . . . , eNE ;c1, . . . , cNC , ρ1, . . . , ρNC ;

pα1 , . . . , p
α
NP
, pβ1 , . . . , p

β
NP
,σ1, . . . ,σNP ).

We now define the precise form of the cost function L. For
the entire dataset, define LI =

∑
t ∈I Lt , where the cost of each

2(a) dist(x, y) ≥ 0, (b) dist(x, y) = 0⇔ x = y, (c) dist(x, y) = dist(y, x), and (d)
dist(x, z) ≤ dist(x, y) + dist(y, z).

ei

cj

ρ j

Figure 2: Cost (red error line) of t = (ei , type, c j ), where
class c j is embedded as an n-sphere at cj with radius ρ j .

triple t = (ei ,pk , ej ) ∈ I (note that ei , ej ∈ EI ∪ CI ∪ PI and
pk ∈ PI ), is defined as follows:

Lt = act
(
dist(ei , pαk ) + dist(ej , p

β
k ) − σk

)
.

The geometrical interpretation of this cost is provided in Sec-
tion 3.1, and is visualized in Figure 1. Next, we define a cost term
for each possible RDFS assertion. For each t ∈ S :

(1) If t = (ei , type, c j ) ∈ S , where ei ∈ EI and c j ∈ CI , define:

LSt = act
(
dist(ei , cj ) − ρ j

)
,

(2) If t = (ci , sc, c j ) ∈ S , where ci , c j ∈ CI , define:

LSt = act
(
dist(ci , cj ) − (ρ j − ρi )

)
,

(3) If t = (pi , sp,pj ) ∈ S , where pi ,pj ∈ PI , define:

LSt = act
(
dist(pαi , p

α
j ) + dist(p

β
i , p

β
j ) − (σj − σi )

)
,

(4) If t = (pi , dom, c j ) ∈ S , where pi ∈ PI and c j ∈ CI , define:

LSt = act
(
dist(pαi , cj ) − σi

)
,

(5) If t = (pi , range, c j ) ∈ S , where pi ∈ PI and c j ∈ CI ,
define:

LSt = act
(
dist(pβi , cj ) − σi

)
.

Finally, we sum, for every triple t ∈ S , the cost of t depending
on the RDFS relation it mentions. In that way, we define the
cost term LS =

∑
t ∈S L

S
t , and thus define the final cost to be

L = LI + LS .

3.1 Geometrical interpretation
We now give a geometrical interpretation to the model defini-
tion. By embedding entities as single n-dimensional vectors we
are modelling them as points in the n-dimensional euclidean
space. Classes, on the other hand, are modelled as regions of the
euclidean space, being embedded as a vector and a radius, rep-
resenting n-spheres. This allows for the following geometrical
interpretation: if an entity is embedded within the region defined
by the embedding of a class, then it is interpreted to be of that
type, and vice-versa (see Figure 2). Finally, properties, insofar as
they represent binary relations, are modelled as 2n-spheres which
constitute a set of pairs of points. Thus, each relation pk ∈ PI has
an embedding which consists of two n-dimensional vectors pαk
and pβk and a radius ρk . The corresponding geometrical interpre-
tation is analogous to the previous case: in 2n-space, a pair (ei , ej )
is interpreted to be related by a relation pk if the 2n-point (ei , ej )
is in the region defined by the 2n-sphere centered at (pαk , p

β )k )

with radius σk (see Figure 1).
The main advantage conferred by this ontology-aware geomet-

rical interpretation is that RDFS classes and ontological assertions
are now first-class citizens of the model. By modelling classes as
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regions of the euclidean space, for example, certain properties
are obtained for free, such as type containment transitivity: if
after training the entity aturing is (correctly) embedded within
the class Researcher, and said class is (correctly) embedded fully
contained within the region corresponding to class Person, then
the transitive fact that aturing is a Person will be provided for
free. In this way, the embedding space will presumably encode
ontological information geometrically.

4 EXPERIMENTAL EVALUATION
In this section we provide preliminary experimental results show-
ing that EmbedS can perform at state-of-the-art levels on a stan-
dard benchmark dataset, while providing a new complementary
triple classification method based on the geometrical interpreta-
tion which shows encouraging results. An exhaustive experimen-
tal evaluation will be left for future work. We use the following
datasets for experimental evaluations:

wn18 Dataset extracted fromWordNet. This dataset consists
of 151,442 triples, 40,943 entities, and 18 relations.

dbpedia32k RDF dataset extracted from DBpedia, consist-
ing of 340,827 triples, 32,657 entities, and 296 relations.

The first dataset has become a standard benchmark in the
graph embedding field [3], and allows for an apples to apples
comparison between our model and existing work. However,
EmbedS has been designed for a fundamentally different problem
setting: that of embedding in ontology-rich RDF data. In order to
test the performance of our model, we have prepared a dataset,
named ‘dbpedia32k’ which includes an RDFS ontology.

We now describe the construction of the dbpedia32k dataset.
It initially draws from three distinct downloads, which are freely
available: the ‘DBpedia Ontology’ file, which contains ontology
triples, the ‘Instance Types’ file, which contains data triples of
the form (a, type,C ) for some entity a and some classC , and the
‘Mappingbased Objects’ file, which contains general data triples,
representing facts on entities present in Wikipedia articles. From
the Mappingbased Objects file first define a relation to be useful
if it appears in at least 1000 triples. We define an entity to be
useful if it is mentioned at least 10 times in the file. A uniform
sample of useful entities is built, keeping only triples which
mention useful relations and these sampled entities only. Finally,
we recalculate useful entities (in the filtered dataset) and remove
triples which mention non-useful entities. We thus obtain the
final set of Mappingbased Objects triples to be used. We complete
the dataset by extracting, from Instance Types, triples (a, type,C )
where a is mentioned in the previous dataset, and similarly we
extract relevant ontology triples from DBpedia Ontology. The
resulting complete dataset is split uniformly into three subsets
for training, validation, and testing, with proportions 0.8, 0.1, and
0.1, respectively.

Selection of hyperparameters of the model is achieved via
random search. Although more sophisticated methods have been
proposed, random search is competitive with these systems [2]
and thus serves our purposes. For each dataset-model choice
(e.g. dbpedia32k with EmbedS), a suitable bounding box for the
hyperparameters of the model is chosen, and training is per-
formed over 500 epochs for 1,000 different random hyperparam-
eter values.

To measure the performance of the model, we use the standard
filtered hits@10 and filtered mean reciprocal rank metrics. The
final model selected after training is that which maximizes the
estimated mean reciprocal rank for the validation dataset.

As EmbedS allows for a geometrical interpretation of triples,
we also evaluate a triple classification performance. For each
triple in the dataset, and an equal amount of randomly generated
false triples (i.e. triples not in the dataset), if t = (ei ,pk , ej ), the bi-
nary classification consists in asking whether the 2n-dimensional
point (ei , ej ) is contained in the sphere centered at (pαk , p

β
k ) with

radius σk or not. Precision and recall values are obtained for this
test.

EmbedS was trained on the wn18 dataset, optimizing for best
validation (filtered) hits@10 value, obtaining 94.9%, which is
comparable to state-of-the-art models such as HolE [10]. HolE
is clearly superior in the mean reciprocal rank metric, however,
with a value of 0.938, compared to 0.560 for EmbedS. It must be
noted, though, that these values correspond to harmonic mean
ranks of 1.07 for HolE and 1.79 for EmbedS. If EmbedS is now
instructed to optimise the geometrical interpretation, we achieve
a precision of 84.2% and a recall of 83.9%, corresponding to an
f-measure of 84.0%.

On the dbpedia_v2 dataset, we find that EmbedS achieves a
performance on hits@10 of 22.7% and a mean reciprocal rank of
0.133 (corresponding to a harmonic mean rank of 7.52). TransE,
on the other hand, performs at 11.6% hits@10 and 0.054 mean
reciprocal rank (corresponding to a harmonic mean rank of 18.52).

5 CONCLUSIONS
In this paper we study the new problem of training graph em-
beddings on ontology-rich datasets. We propose a model which
considers RDFS classes and other ontological information as first-
class citizens, providing a geometrical interpretation for triples
and for ontology assertions. Preliminary experimental results
show that the model can perform at state-of-the-art levels on
standard benchmark datasets, while on ontology-rich datasets
it is also able to provide an alternative form of triple classifica-
tion which takes advantage of the geometrical interpretation.
An exhaustive experimental evaluation is required to be able
to fully understand the limitations of this new model, although
the encouraging results shown seem to indicate that incorporat-
ing ontological information into graph embedding models can
potentially open a new avenue of research.
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ABSTRACT
Complex Event Processing (CEP) deals with matching a stream

of events with the query patterns to extract complex matches.

These matches incrementally emerge over time while the par-

tial matches accumulate in the memory. The number of partial

matches for expressive CEP queries can be polynomial or expo-

nential to the number of events within a time window. Hence,

traditional strategies result in an extensive memory and CPU

utilisation. In this paper, we revisit the CEP problem through

the lens of complex queries with expressive operators (skip-till-

any-match and Kleene+). Our main result is that traditional

approaches, based on the partial matches’ storage, are ineffi-

cient for these types of queries. We advise a simple yet efficient

recomputation-based technique that experimentally outperforms

traditional approaches on both CPU and memory usage.

1 INTRODUCTION
Complex Event Processing (CEP) matches a sequence of events

within a stream against a complex query pattern that specifies

constraints on the extent, order, values, and quantification of

the matching events. Most of the CEP systems incrementally

produce matched patterns, where partial matches are stored and

then computed to avoid the recomputation cost [11, 14]. That

is, with the arrival of an event, a CEP system (i) can generate a

new partial match by matching incoming event with the prefix

of the defined query pattern; (ii) checks with the existing partial

matches if the incoming event can be part of them or complete

them. The number of partial matches for such strategy can be

polynomial or exponential to the number of events within a

window [1, 9, 14]: some partial matches lead to the complete

matches while others fail. This results in extensive memory and

CPU utilisations. In the following, we present a real-world CEP

query to showcase the issues of incrementally processing partial

matches.

Example 1. A stock market application processes thousands

of financial transactions per second to detect patterns that sig-

nify emerging profit opportunities. An example of such a pattern,

called V-shaped pattern [12, 14], is described in Query 1 using the

syntax from SASE [13]. Query 1 detects an increasing and then de-

creasing pattern per company. Hence, the price of the events must

first increase from an initial value (a.price < b.price), then the

events should show an uptrend (b.price < NEXT(b.price)) using
the Kleene+ operator, and then the price of the matched events

should decrease such that it is less than the first reported in-

crease (c.price < FIRST(b.price)). All the matched events should
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Figure 1: (a) Partial matches for Query 1 over the event stream, (b)
complete matches for the Query 1

be within a window of size 30 minutes which slides every 2
minutes.

Query 1. PATTERN SEQ (a, b+, c)WHERE [companyID]

AND a.price < b.price AND
b.price < NEXT(b.price) AND c.price < FIRST(b.price)

WITHIN 30 minutes SLIDE 2 minutes

To reveal all the profit opportunities, Query 1 detects all the

combinations of patterns using an operator called as skip-till-
any-match event selection strategy in the literature [1, 12, 14].

This operator assists in ignoring the local price fluctuations to

preserve opportunities for detecting longer and thusmore reliable

patterns. Fig. 1 shows the evaluation of Query 1 over an event

stream. From Fig. 1 (a), before the arrival of an event c1, six
partial matches (shown with the connected lines) for a1 and a2
are produced, and one for each b1 and b2. Note that the prefix
of the Query 1 is highly unselective ( a.price < b.price) and any

event can start a partial match. Consequently, there can be a large

number of partial matches that would not produce full matches,

which result in wasted computation. The complete set of matches,

after the arrival of a trigger event c1 are shown in Fig. 1 (b).

State of the art and limitations. The issues with a large num-

ber of partial matches and their effect on the memory and CPU

resources have been acknowledged in the literature [1, 9, 12, 14].

The usual remedy proposed for such issues is to factorise the

commonalities between the partial matches that originate from

the same set of events [12, 14]. Hence, the query evaluation is

broken into two phases. The first phase tracks the commonali-

ties between the partial matches and compresses them using an

additional data structure, e.g. an events graph. The second phase

constructs the complete matches while decompressing the set

of common partial matches, e.g. through depth-first-search. This
strategy can reduce the memory requirements from exponential

to polynomial, at the cost of the compression/decompression

operations. Moreover, since a sub-partial match can be part of
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multiple complete matches, this strategy recomputes common

sub-partial matches for each match that contains one. This results

in redundant computations, and the high cost of maintaining ad-

ditional structure and reconstruction of the matches remains

quite significant. For instance, in Fig.1 (a), all the partial matches

are kept – and computed – even if a trigger event, i.e. c1, never ar-
rives within a window. Finally, due to the high space complexity,

these systems spend a considerable amount of time in repeated

memory allocation and reclamation with the expiration of a win-

dow.

Contributions.This paper initiates the study of a recomputation-

based CEP that addresses the following two main points.

• Since storing partial matches is expensive, only events

should be stored in a window. This reduces the memory

cost from polynomial or exponential to linear

• The matches should be recomputed only when the trigger

events’ arrive and results should be directly stored on the

disk. Hence, redundant computations are not performed

and only the subsets of events are processed to produce the

matches. Furthermore, sincematches are directly stored on

the disk, repeated in-memory allocation and reclamation

operations are avoided.

In theory, both recomputation and incremental evaluation tech-

niques have the same worst-case run-time cost. However, in

practice, recomputation process provides the following proper-

ties: (1) it is performed for a fewer number of times (depending on

the trigger events); (2) it alleviates the redundant computations

that arrive due to the partial matches that would not produce a

complete match; (3) it avoids the cost of creation and deletion of

partial matches.

The detailed structure and contributions of this paper are as

follow. We first provide the compilation of the query tree for a

CEP query (§ 2.2). We then present the design of an algorithm for

recomputing matches and analyse its complexity(§ 2.3). Based

on this algorithm, we present the techniques to process joins

between events and to execute the Kleene+ operator (§ 2.4). We

implemented our solution and demonstrate that it outperforms

existing solutions both in terms of memory and CPU cost (§ 3).

2 RECOMPUTATION BASED CEP
2.1 Preliminaries
In this section, we present the CEP specifics definitions, query

representation and query evaluation techniques.

Event. An event e is tuple (A, t ), where A = {A1,A2, . . . ,Am }
(m ≥ 1) is a set of attributes and t ∈ T is an associated timestamps

that belongs to a totally ordered set of time points (T, ≤).
Event Stream. An event stream S is a possibly infinite set of

events such that for any given timestamps t and t ′, there is a
finite amount of events occurring between them.

Event Sequence. A chronological ordered sequence of events,
with a total ordering given byT is represented as ®E = ⟨e1, e2, . . . , en⟩
with e1 refer to the first event and en to the last.

CEP Query. A CEP query Q has the following form:

PATTERN P [WHERE Θ ]WITHINw SLIDE s

where P = SEQ(p1, . . . ,pk ) is a sequence of pairwise disjoint
variables of the formp andp+,Θ = θ1, . . . ,θl is a set of predicates
(constant and variable) over the variables in P (see Query 1 in

Example 1), ω is the time window and s is slide of the window
to define the scope of event stream. A variable p ∈ P binds

a sequence of a single event ⟨ei ⟩, while the qualified variables

p+ ∈ P binds a sequence of one or more events ⟨e1, . . . , en⟩,n ≥ 1

for a query match.

CEP Query Match. To define the matching of a CEP query

Q , we use a substitution γ ={p1/ ®E1, . . . ,pk/ ®Ek } to bind the event

sequences ( ®E) with the variables. Given Q and the event stream

S, a substitution γ is a match of Q in S, iff (i) all the predicates

Θ inQ evaluate to true, (ii) for events in the two event sequences

e ∈ ®Ei and e
′ ∈ ®Ei+1, we have e .t < e ′.t and (iii) all the events

in each event sequence ®Ei has timestamps less than the defined

windoww . Since no order is imposed on the selected events, it

complies to the skip-till-any-match selection strategy.

2.2 Query Tree
Given the CEP query, we need to compile it from the high-level

language into some form of automaton [1, 4, 6, 13] or a tree-

like [5, 11] structure to package the semantics and execution

framework. Since we are working with the recomputation-based

model, a traditional tree structure customised for the streaming

and recomputation settings would suit our needs. Given Q we

construct a tree, where leaf nodes are the substitution pairs,

i.e. (pi/ ®Ei ), to store the primitive events and the internal nodes

represent the joins on the defined predicates Θ and temporal

ordering. We call it a query tree Tq . Our model differs from other

tree-structures [5, 11] since we do not store any partial matches.

An example of such a tree for Query 1 is shown in Fig 2, where

we have three leaf nodes for the variables bindings a/ ®E1, b/ ®E2
and c/ ®E3. The internal nodes in Fig. 2 evaluate the defined Θ
in terms of joins (denoted as ZΘ) for all the variables p ∈ P .
Furthermore, since for a CEP query, the matched events should

follow the sequential order, joins on the timestamps (denoted as

Zt ) are also provided in the Tq .
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Figure 2: (a) Left-deep and (b) Right-deep Query tree for Query 1
in Example 1

2.3 Query Evaluation
We now present the algorithm to evaluate the query tree over the

event stream without storing the partial matches. Algorithm 1

shows the query evaluation and is divided into three main steps.

Step 1. For each incoming event e , we add e to the compatible

event sequence ®Ei , such that constant predicates (e.g. a.price >

10 ) filter the unwanted events for each ®Ei in Tq . For instance,

for a constant predicate a.price > 10, all the events in a/ ®Ei ,
should have the price > 10. This step (lines 4-6) constitutes to
the accumulation of events within a defined window.

Step 2. For each incoming event e , check if it can trigger the

query evaluation to produce matches. That is, if e can be part of

®Ek (k = |P |), it can complete a set of matches; since it contains

the highest timestamp within the window. For instance, Query 1
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Algorithm 1: CEP Query Evalution

Input: Query Tree Tq and an event stream S

Output: A set of query matches

1 Q ← (P, Θ, ω, s) ; // CEP Query

2 ®E ← { ®E1, ®E2, . . . , ®Ek }, k = |P | ; // Event sequences for Tq
3 for each e ∈ S do
4 for each ®Ei ∈ ®E do
5 if isCompatible( ®Ei ,e ) then
6 ®Ei = ®Ei ∪ e ; // Step 1

7 if isCompatible( ®Ek ,e ) then
8 ExecuteJoins( ®E , Θ); // Step 2

9 ExecuteKleenePlus( ®E , Θ); // Step 3

produces thematches onlywhen an event of type c arrives. Hence,
we execute the query tree for a trigger event. By execution, we

mean executing the joins between events within each ®Ei using
the predicates Θ and timestamps t . This step (lines 7-8) assembles

all the events, in a batch manner, for each ®Ei that can produce

the set of matches.

Step 3. For ap+i ∈ P , we need to compute all the combinations for

the events in p+i /
®Ei , i.e. a power set of events in ®Ei . For instance,

in Fig. 1 and using Query 1, each a event has 2
|2 | − 1 matches for

two b events. This step (line 9) groups all the combinations by

following the one or more semantics of the Kleene+ operator.

2.4 Detailed Analysis
We now present the details of the two main processes of Algo-

rithm 1, i.e. joining the set of events and computing the power

set of events for the Kleene+ operator.

Execution of Joins. Let ®Ei and ®Ej are two event sequences

with theta-join ®Ei Z
t
Θ
®Ej over the timestamp t and predicates

Θ. Hence, we have joins on multiple relations for the Step 2.
The generic cost of such joins, i.e. pairwise join, is O(| ®Ei | | ®Ej |)
and the problem of its efficient evaluation resembles the tradi-

tional theta-joins with inequality predicates [8]. The wide range

of methods for this problem includes: the textbook merge-sort,

hash-based, band-join and various indices such as Bitmap [7].

These techniques are mostly focused on equality joins using a sin-

gle join relation, however. The inequality joins on multiple join

relations are notoriously slow and multi-pass projection-based
strategies [3, 8] are usually employed. These strategies, however,

require multiple sorting operations, each for a distinct relation,

and are only optimised for the static datasets, where indexing

time is not of much importance. Considering this, we employ

the general nested-loop join for our preliminary algorithm. Our

experimental analysis showcase that even such a naive algorithm

provides competitive performance.

Execution of Kleene+ Operator. For Step 3, we need to create
all the possible combinations of matches over the joined events.

That is, enumerating the powerset of event sequences’ with p+

bindings. A traditional solution in this context would be to gen-

erate Gray code sequence of events with p+ bindings, where a
new match can be constructed from its immediate predecessor

by adding or removing an event. However, this would require

storing the predecessor matches to produce the next one and

would result in an extra load on the memory resources. To im-

plement Kleene+ operator efficiently, we use the joined results

(from Step 2) while generating the binary representation of the
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Figure 3: Execution of the Kleene+ operator using the Banker’s
sequence and generated binary numbers

possible matches using the Banker’s sequence [10]. That is, we

check the number of events in event sequences’ with p+ bindings
after the join process. For |m | number of such events, we need to

create 1 to 2
m − 1 matches. This means if we generate all binary

numbers from 1 to 2
|m | − 1, and translate the binary represen-

tation of numbers according to the location of the events in the

p+/ ®Ei , we can produce all the matches for the Kleene+ operator

in a batch manner. For instance, consider Fig. 3 (using Query 1),

where there are three b events for the Kleene+ operator. Hence,

we generate binary numbers from 1 to 2
3 − 1. Now equates 1 as

take element at the specified location of the ®E2 and 0 as do not

take the element. Then using the generated binary numbers, we

generate all the combinations of matched events.

Complexity Analysis. Herein, we briefly present the complex-

ity analysis for the three steps described in Algorithm 1. Step
1 results in a constant time operation since an incoming event

can be directly added to an event sequence. Step 2 has a polyno-

mial time-cost (pair-wise joins) and depends on the number of

patterns P defined in a CEP query. For n events in a window and

k = |P |, we have O(nk ). Step 3 requires producing an exponen-

tial number of matches for a Kleene+ operator. For n events in a

window, we haveO(2n ). The memory cost for the Algorithm 1 is

linear to the number of events within a window.

3 EXPERIMENTAL EVALUATION
In this section, we report the results of our experimental study

on both incremental and recomputation-based methods for CEP.

Our proposed techniques have been implemented in Java and our

system is called RCEP. All the experiments were performed on a

machine equipped with Intel Xeon E3 1246v3 processor and 32

GB of memory. For robustness, each experiment was performed

3 times and we report median values.

Datasets.We employ both real and synthetic datasets to compare

the performance of our proposed techniques.

Synthetic Stock Dataset (S-SD): We use the SASE++ generator,

as used in [14], to produce the synthetic dataset. Each event

carries a timestamp, company-id, volume and the price of a

stock. This dataset enables us to tweak the selectivity measures of

matches
#of Matches
#of events to evaluate the performance of the systems

at different workloads. In total, the generated dataset contains 1

million events.

Real Credit Card Dataset (R-CCD): We use a real dataset of

credit card transactions [2]. Each event is a transaction accompa-

nied by several arguments, such as the time of the transaction,
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Figure 4: Memory cost and throughput analysis of the CEP systems over the two datasets S-SD and R-CCD

the card ID, the amount of money spent, etc. This dataset con-

tains around 1.5 million events.

Queries.We consider 8 different variations of Query 1 (Section 1)

against the stock dataset. These queries variations differ by the

constant predicates and time window to control the selectivity of

producedmatches. For the credit card dataset, we use a CEP query

describing “Big after Small”pattern [2] using the SEQ(a,b+) tem-

plate. That is, an outstandingly large amount of transactions after

one or a series of small amounts.

Methodology.We compare RCEP with the SASE++ [14] and the

open source streaming system Apache Flink [6]. All of these sys-

tems support skip-till-any-match and Kleene+ operator: both

SASE++ and Flink employ incremental evaluation of partial

matches. Flink guarantees that events are processed in paral-

lel but in-order by their timestamps. Unless otherwise specified,

all experiments use a slide granularity s = 1. We measure two

standard metrics common for the CEP systems: throughput and

memory requirements [1, 12, 14]. The memory requirements

were measured by considering the resident set size (RSS) in MBs.

RSS was measured using a separate process that polls the /proc
Linux file system, once a second. We use the selectivity measures

#of Matches
#of Events and window size to test different workloads.

MemoryCost. Figs. 4 (a) and (b) show the memory consumption

of all the systems for both datasets. As expected, increase in the

selectivity measures (subsequently window sizes) results in a

large number of partial matches and an extensivememory cost for

both SASE++ and Flink. In particular, Apache Flink consumption

is exponential in terms of the number of events in the window.

SASE++ managed to sustain memory requirement due to the

superior compression of Kleene+ matches. However, with the

increase in the number of events that prefixed a new partial

match, its memory utilisation increases to about two orders of

magnitude compared to our recomputation-based approach. This

phenomenon is largely observed in Fig. 4 (b), where the credit

card dataset contains a large number of events that can initiate

a new partial match. In contrast, RCEP scales linearly to the

number of events within a window and not the partial matches.

CPUCost. Figs. 4 (c) and (d) show the relative performance of the

CEP systems over both datasets.We can see that, in general, RCEP

have much higher throughput (more than an order of magnitude)

than Flink and SASE++. As a matter of fact, SASE++ and Flink do

not produce results for several hours for themoderate selectivities

and window sizes. This is because the cost of SASE++ and Flink

is highly dependent on the number of partial matches within a

window. As the window size (subsequently selectivity) increases,

both systems produce a large number of partial matches and

spend most of their time in compressing and decompressing of

the common events within the partial matches. That is, traversing

through the stack of pointers using depth-first-search to extract

all the matches. In contrast, (i) RCEP initiates the recomputation

of matches only if the triggered events’ arrive; (ii) the execute

joins over the stored events; and (iii) the Kleene+ operator is

executed only for the events that can be part of the final matches.

Hence, RCEP performs much better and consume less memory

than SASE++ and Flink, often by 1-2 orders of magnitude.

4 LOOKING AHEAD
In this preliminary study, we have highlighted the utility of

recomputation-based CEP for expensive CEP queries. We have

proposed our first algorithm for recomputing the matches with

the arrival of new events. To our knowledge, ours is the first

algorithm of this kind in the context of CEP. Our experimental

results show that recomputation-based approach outperforms

the incremental approach used by the existing systems.

Our study opens up several directions for the future work. A

major direction is to establish techniques to efficiently store and

index events within a defined window. Without this, we cannot

discard events within an event sequence unless it is accessed

and compared with all the other events. Hence, the indexing of

events would enable us to prune irrelevant events before the

joining process. Further, we plan to consider new algorithms

for the multi-relational and inequality joins in the streaming

settings since existing algorithms are only effective for the static

workloads and require extensive indexing time. Finally, we would

like to incorporate our solution in the open-source Apache Flink

framework.
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ABSTRACT
Do you dream to create good visualizations for your dataset
simply like a Google search? If yes, our visionary systemDeepEye
is committed to fulfill this task. Given a dataset and a keyword
query, DeepEye understands the query intent, generates and
ranks good visualizations. The user can pick the one he likes and
do a further faceted search to easily navigate the visualizations.
We detail the architecture of DeepEye, key components, as well
as research challenges and opportunities.

1 INTRODUCTION
Nowadays, the ability to create good visualizations has shifted
from a nice-to-have skill to a must-have skill for all data analysts.
However, the overwhelming choices of interactive data visualiza-
tion tools (e.g., Tableau, Microsoft Excel and D3 [5]) only allow
experts to create good visualizations, assuming that the experts
know many details: the meaning and the distribution of the data,
the right combination of attributes, and the right type of charts –
these requirements are apparently not easy, even for experts.

Unfortunately, creating good data visualization is hard. From
the user perspective, there are many possible ways of visualiza-
tions for a given dataset (for example, different attribute combi-
nations and visualization types), and many ways of transforming
data (for example, grouping, binning, sorting, and a combination
thereof) – these make it infeasible for the user to enumerate
all possible visualizations and select the ones he needs. From
the system perspective, among numerous problems, no consen-
sus has emerged to quantify the “goodness” of a visualization.
What makes it harder is when the system does not even know
what the user wants. Recently, there have been proposals for
visualization recommendation systems [15, 18], which focus on
automatically recommending “interesting” visualizations from a
diversified criteria, such as relevance, surprise, non-obviousness,
diversity and coverage. However, as pointed out by [3], these
systems may mislead the user, by generating visualizations that
might be worse than nothing, since it is basically impossible to
guess a user’s query intent from nothing.

The natural problem arises:What is the most feasible way to
(automatically) create good visualizations even for dummies?

We have three key intuitions for handling the above problem.

(1) What is the ideal language for the user to specify his intent? Of
course, the mother tongue – Google-like natural language search
interface is friendly to everyone. Note that (i) most visualizations

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the 21st
International Conference on Extending Database Technology (EDBT), March 26-29,
2018, ISBN 978-3-89318-078-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

are generated using declarative languages like Vega-Lite [12];
and (ii) using machine learning to convert text to SQL queries
for relational databases has been proved effective [11]. Hence,
we can allow users to pose keyword queries and our system
automatically converts them to declarative visualization queries.

Keyword-to-Visualizations is hard: keywords are typically am-
biguous and underspecified; and good visualizations concern sta-
tistical properties such as trends, comparisons, which are rather
hard to grasp even for human.

(2) How can we solve the fundamental cognitive science problem for
quantifying good visualizations? Evidently, good visualizations
exist, which can be collected frommany sources that take experts
hours or even days to produce such valuable visualizations. Natu-
rally, the research problem is how to transfer the knowledge from
these known good visualizations to judge a new visualization.

Transferring good visualizations. The basic intuition is: a new
visualization is good, if itmatches some known good visualization
(see Section 2.2 for a further discussion).

(3) How can we rank visualizations? Ranking is the secret sauce
to any search engine. Note, however, that it is almost impossible
to rank visualizations, if they are independent of each other.

Visualization link graph. We propose a novel graphical model
to link good visualizations. Informally speaking, two visualiza-
tions are linked if they are relevant, which are further classified
into different types (or facets), e.g., similar or diverse that are
captured by different facet functions (or criteria [15]).

The main benefit of having the above graph is twofold. (i) We
can devise PageRank [6] like algorithms to rank visualizations. (ii)
We can leverage the edge types to provide faceted search (a.k.a.
faceted browsing) such that the user can easily set the compass
to navigate the ocean of visualizations by simple clicks.

DeepEye is our visionary system to create good visualizations
by keyword search and simple clicks.

DeepEyeWorkflow. A user can pose a keyword query K . Deep-
Eye translates this keyword query to multiple candidate visual-
izations V, discovers good visualizations V′ in V, ranks V′, and
returns the top ones V′′. When the user selects a visualization
V in V′′ and further explores by clicking a facet of V , DeepEye
discovers more visualizations and helps the user to easily explore
his desired visualizations. The user may iterate over the above
processes until he finds all visualizations that he wants.
Remarks. (1) Different from visualization recommendation sys-
tems [15, 18], (i) DeepEye is a visualization search engine that
the user needs to provide his intent – we do not believe in the
magic that one can guess something from nothing; and (ii) Deep-
Eye decides and ranks good visualizations by comparing with

∗Guoliang Li is the Corresponding Author.
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Figure 1: The Architecture of DeepEye

known good visualizations. (2) After finding good visualizations,
DeepEye will support to export them to a designated interactive
data visualization tool (e.g., Tableau) for more customized manip-
ulations. (3) Although intuitively, DeepEye, as a search engine,
shares a similar architecture with well known search engines
such as Google and Bing, there are many new challenges for
designing visualization search algorithms (see Section 3).

2 THE DEEPEYE ARCHITECTURE
The architecture ofDeepEye is given in Figure 1.DeepEye crawls,
stores and indexes good visualizations from multiple sources.

The user starts by posing a keyword search and provides a
dataset. The visualization search engine (VSE) will first generate
a set of visualizations V by the Keyword-to-Visualizationsmodule.
These candidate visualizations V will be matched with known
good visualizations by the Visualization Transformation module
that produces V′ ⊆ V, which will then be ranked by the Visual-
ization Rankingmodule and the top ones V′′ ⊆ V′ are returned to
the user. The user may pick the one he likes and discovers more
visualizations by the Faceted Navigation module. This module
aims to reduce the number of user interactions and helps users
to find the target visualizations as soon as possible.

2.1 Preliminary

Datasets.We crawl visualizations with data and visualizations
charts (e.g., pie/line/bar charts) from multiple sources. Then we
use them to visualize a user-given dataset D. For simplicity, we
consider D as only one table, which can be easily extended to
support multiple tables by relational joins (see SeeDB [16]).

Data Features. Typically, what will decide whether a visualiza-
tion of a dataset is good or not depends more on its features (or
representations [2]), not its data values. More specifically, we
consider the following features of a dataset D: the data type of a
column (e.g., categorical, numerical, and temporal), the number
of distinct values of a column, the number of tuples in a column,
the ratio of unique values in a column, the max() and min() val-
ues of a column, and statistical correlation between two columns
(e.g., linear, polynomial, power, and log).

Visualization Queries. For declarative visualization language,
we use Vega-Lite [12], a high-level grammar that enables rapid
specification of interactive data visualizations. (Note that our sys-
tem can support any declarative visualization query language.)
Each query Q , specified in the Vega-Lite JSON format over the
dataset D, denoted by Q (D), will produce a visualization. A sam-
ple Vega-Lite query is as follows:
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Figure 2: A Sample Visualization Link Graph

“data”: {“url”: “flights.json”},
“mark”: “bar”,
“encoding”: {

“x”: {
“bin”: true,
“field”: “carriers”,
“type”: “qualitative” },

“y”: {
“aggregate”: “count”,
“type”: “quantitative” },

}

Visualization Crawler. The DeepEye crawlerwill extract tables
and their associated visualizations from multiple sources, where
both the table and the visualization specifications (or equivalently,
queries) need to be explicitly given. For example, there are hun-
dreds of visualization examples in https://www.highcharts.com,
with both data values and visualization specifications. Note that
we do not require these sources to use Vega-lite – most visualiza-
tion specifications can be easily converted to Vega-lite queries,
for which we need to implement corresponding tools for query
rewriting. When only the data and visualizations are given but
the visualization queries are absent, an interesting open problem
is to automatically infer the declarative visualization queries.

Visualization Link Graph. A visualization link graph is a di-
rected graph G(N,E) with nodes N and directed edges E. Each
node v ∈ N is a visualization (i.e., Q (D)). Each directed edge
e : (u,v ) ∈ E can have multiple labels, denoted by L(e ), where
each label L(e ) ∈ L(e ) is a facet, such as similar, diverse, coverage.

In order to decide the edges and their labels, we have defined
a set of facet functions. For example, there is a “similar”-edge
from node u to node v , if the corresponding similar-function
fs (u,v ) returns true, denoting that u is similar to v . There can
have another “similar”-edge from v to u if fs (v,u) also returns
true. Note that any facet function does not have to be symmetric
– f (u,v ) is true does not imply that f (v,u) is true as well. The
other edges and labels are generated similarly using different
facet functions. Please find more details in the Faceted Navigation
module in Section 2.2.

A sample visualization link graph is given in Figure 2. The
number associated with each node denotes the importance of the
node, which will be further discussed in Section 3.

2.2 Visualization Search Engine Modules
In this section, we will discuss the functionalities and our basic
designs for the modules of DeepEye visualization search engine.
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Keyword-to-Visualizations. Given a keyword query K and a
dataset D, this module generates all candidate visualizations.

As mentioned earlier, this problem is hard because keyword
queries are always ambiguous and underspecified – there might
have a large number of candidate visualizations due to different
attribute combinations and multiple data transformation oper-
ations (e.g., grouping, binning, sorting). Fortunately, there are
simple observations about good/bad visualizations, e.g., pie charts
are best to use when comparing parts of a whole, and they do
not show changes over time; and bar graphs are used to compare
things between different groups or to track changes over time,
and too many bars (e.g., > 50) are hard for human to interpret.
The traditional wisdom from visualization experts can be en-
coded into rules to prune many apparently bad charts (see e.g.,
https://www.pinterest.com/pin/20125529565819990/ for a chart
type cheat sheet that can be easily leveraged).

Visualization Transformation. The broad intuition is that, if a
visualizationV can “match” a known (crawled) good visualization,
thenV is probably good. Asmentioned earlier in the data features,
visualization matching focuses more on feature matching (e.g.,
similar domains and similar trends), in contrast to traditional
value matching of strings.

Given a visualization V and another visualization N , it is to
compute the similarity between their features, which typically
falls in the range [0, 1]; and we say that V matches N if their
similarity is above a threshold σ .

Given a set of visualizations V, the module of Visualization
Transformation will find a set of existing good visualizations N
thatmatch these candidate visualizations. Note that one candidate
query can match multiple good visualizations, and vice versa.
Also, a candidate visualization that cannot match any existing
good one will be removed, which will result in a subset V′ of V.

Visualization Ranking. Given a set of visualizations V′ and
their matched good visualizations N, the Visualization Ranking
module will rank V′ based on N (i.e., a subgraph of the visualiza-
tion linkage graph) and return to the user. We can either use the
learning-to-rank [7] techniques to learn the features from known
good visualizations or design new ranking functions. We can also
use the user click-through data to rank the visualizations.

Faceted Navigation. When a user picks a visualization V he
likes, he can further explore other visualizations by facets. The
Faceted Navigation module will discover another set of visualiza-
tions based on V , which will also be ranked and returned to the
user, in order to help users navigate the visualizations.

We plan to implement this module by providing each facet a
programming interface (i.e., an API) that implements a facet func-
tion, e.g., similar, diverse, coverage. Also, we make it extensible by
allowing domain experts to plug in other APIs for different facets.
The main reason to allow this flexibility is that till now, there is
no consensus about criteria of finding interesting visualizations,
which remains an open problem. Note that these facet-functions
do not need to be mutually exclusive.

3 RESEARCH OPPORTUNITIES
3.1 Visualization Data
An effective visualization system replies on high-quality and
high-coverage visualization data. Although there are some open
websites that we can crawl some data, the coverage is limited
and we need to construct a visualization benchmark.

Opportunity. First, our system requires visualizations with data,
visualization queries and visualization charts. Many websites,
however, do not contain such data, and we need to infer one
dimension based on the others, e.g., inferring a query based on
the data and a visualization. Second, we also need some well-
ranked visualizations to help us rank the visualizations for a new
dataset. However many websites do not contain rankings, and it
is challenging to infer rankings. Third, we can use crowdsourcing
to collect more visualization data and rank the visualizations, and
the challenge is to reduce the crowdsourcing cost, improve the
quality, and avoid the redundancy with existing data.

3.2 Visualization Search Engine
3.2.1 Keyword-to-Visuliazations. The essential problem is to

understand natural language and generate visualization queries.
Fortunately, the recent machine learning and deep learning tech-
niques have made it easy to understand natural language (see e.g.,
the OpenNLP toolkit: https://opennlp.apache.org). Furthermore,
several approaches have studied the problem of translating natu-
ral language to SQL queries, such as NLIDBs [1] and NaLIR [11].

Opportunity. Although the above approaches shed some light
on our problem, translating natural languages to visualization
queries remains a hard problem. The main reason is that when
searching visualizations, the user cares more about the statistical
properties such as trends, comparisons, fast increase, which are
more ambiguous than querying a DBMS such as “return the
average number of publications by Bob in each year”. In other
words, even if an expert knows precisely what is the meaning
of the natural language query of the user, it is still hard for the
expert to formulate using the declarative visualization language,
since good visualizations are also data dependent.

The research problem is: Given a keyword query K and a
dataset D, discovers candidate visualizations Q(D ′) that the user
wants, whereD ′ could be transformed fromD (e.g., by operations
like binning, grouping, sorting, and a combination thereof).

3.2.2 Visualization Transformation. The fundamental prob-
lem of visualization transformation is to transform the knowl-
edge (or features) from known good visualizations to deciding
the goodness of unknown visualizations. A possible way is to
compute the similarity between two visualizations Q1 (D1) and
Q2 (D2) (i.e., the known good one). If Q1 (D1) is very similar to
Q2 (D2) and Q2 (D2) is good, then by inference, Q1 (D1) is also
good: showing an interesting trend, using the same chart as em-
ployed in Q2, etc.

Opportunity. The open problem is how to define the similarity
function sim(Q1 (D1),Q2 (D2)), which relates to many factors.

(1) The statistical correlation between the two visualizations
Q1 (D1) and Q2 (D2), such as the same trend.

(2) The domain similarity, i.e., whether the attributes used for
Q1 (D1) and Q2 (D2) come from the same domain.

(3) The type similarity, e.g., whether the data types used in
Q1 (D1) and Q2 (D2) are both temporal data.

3.2.3 Visualization Ranking. As mentioned earlier, there is
still no consensus to quantify the “goodness” of a visualization.
Intuitively, it is harder to quantify “better” visualizations.

Opportunity. The great success of search engines has shown us
multiple ways of doing link analysis, with the purpose of “mea-
suring” the relative importance within a set of linked webpages.
Maybe themost successful story is PageRank [6].We have defined
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our visualization link graph (see Figure 2) in a way that we can
use a similar idea of PageRank, which is referred to as VisualRank.
However, implementing VisualRank faces four challenges:

(1) The edges in the visualization link graph and the edges in
the Webgraph have different meanings. In the Webgraph,
an edge from a page X to a page Y if there exists a hyper-
link on pageX referring to pageY . In the visualization link
graph, the edges have diversified semantics (or facets).

(2) The search behaviors between a normal search engine and
a visualization search engine are quite different.

(3) We also want to use the graph in faceted navigation to
reduce the number of interactions with the user. It is chal-
lenging to design multi-goal optimization algorithms.

(4) Our end goal is not to rank nodes in the visualization link
graph, but the unlinked visualizations for an input dataset,
for which we need to infer from the “importance values”
of their matched good visualizations to rank.

Hence, a good research opportunity is how to design a Visual-
Rank algorithm, which shares the basic intuition of PageRank,
but serves the purpose of ranking visualizations.

3.2.4 Faceted Navigation. The recent proposal towards visual-
ization recommendation systems [15] made an attempt to define
the criteria of recommending good visualizations: relevance, sur-
prise, non-obviousness, diversity and coverage. Another recent
work proposes a general-purpose query language for visualiza-
tion recommendation [18].

Opportunity. We can certainly use these criteria to create
our facets. Unfortunately, these are just research hypothesis –
whether they can lead to good visualizations is still not well
justified. Besides, there is no well accepted implementation for
each of them. Hence, it remains open that which facets should
be considered and how to implement them.

3.3 Optimization
Response time is critical to real-time applications – response
times under one second are usually considered to be good for
search engines. Naturally, this requires us to carefully design
DeepEye, from storage, indexes, to algorithms.

Opportunity. The first opportunity is about storage: What is
the best physical representation of the data and the existing visu-
alizations, assuming that they are stored in tables and JSON files?
The work RodenStore [8] proposed an adaptive and declarative
storage system providing a high-level interface for describing the
physical representation of data. The similar idea can be adopted
in the problem of storing datasets and visualizations. The second
opportunity is how to store the visualization link graph – this
will be tightly coupled with all (ranking) algorithms that use
this graph. We can also group the visualizations effectively, e.g.,
in a hierarchy or using partial orders, to help users to quickly
find target visualizations. The third challenge is how to design
effective index, especially for large datasets. We can borrow the
idea from the search engine, e.g., inverted index and forward
index. However, it is rather challenging to design indexes for
visualization search and ranking, because they involve more data
features and more visualization operations.

4 RELATEDWORK
Visualization Recommendation Systems. One important
line of work is visualization recommendation systems [14–16].
Roughly speaking, given a dataset, they want to automatically

recommend visualizations to the user under different criteria.
DeepEye differs from them in the following two key aspects:
(1) instead of guessing the user’s intent, DeepEye accepts key-
word search; and (2) DeepEye uses existing good visualizations
to reason about the input dataset.
Interactive Data Visualization. There are some interactive
data visualization systems, such as D3 [5], protovis [4], mat-
plotlib [10], Tableau [17]. We do not plan to reinvent the wheel –
DeepEye will export the user selected visualizations to the above
toolkits for more complicated manipulations.
Visualization Languages. There are many visualization lan-
guages, e.g., Vega [13], Vega-Lite [12], VizQL [9], Ermac [19], and
DeVIL [20]. We use Vega-Lite as it is simple yet general enough.

5 CONCLUDING REMARKS
With increasing interest and importance of data visualization for
data science applications, there is an emerging need for a tool
to easily create good visualizations. We believe that DeepEye,
the first visualization search engine, will lead to interesting and
impactful problems for many communities, including: database,
information retrieval, machine learning, and visualization.
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ABSTRACT
Blockchain technology has emerged as a primary enabler for
verification-driven transactions between parties that do not have
complete trust among themselves. Bitcoin uses this technology
to provide a provenance-driven verifiable ledger that is based on
consensus. Nevertheless, the use of blockchain as a transaction
service in non-cryptocurrency applications, for example, busi-
ness networks, is at a very nascent stage. While the blockchain
supports transactional provenance, the datamanagement commu-
nity and other scientific and industrial communities are assessing
how blockchain can be used to enable certain key capabilities for
business applications.

We have reviewed a number of proof of concepts and early
adoptions of blockchain solutions that we have been involved
spanning diverse use cases to draw common data life cycle, persis-
tence as well as analytics patterns used in real-world applications
with the ultimate aim to identify new frontier of exciting re-
search in blockchain data management and analytics. In this
paper, we discuss several open topics that researchers could in-
crease focus on: (1) leverage existing capabilities of mature data
and information systems, (2) enhance data security and privacy
assurances, (3) enable analytics services on blockchain as well
as across off-chain data, and (4) make blockchain-based systems
active-oriented and intelligent.

1 INTRODUCTION
Blockchain (a.k.a. distributed ledger [31]) is an emerging plat-
form that is designed to support transactions services within a
multi-party business network, with the goal of enabling signifi-
cant cost and risk reductions for all parties through the creation
of innovative new business models. Data maintained within the
distributed ledger can only be accessed through the execution
of a smart contract [29] (i.e., a stored procedure call on the dis-
tributed ledger) that describes rules that govern a transaction.
In addition, the design of blockchain technology ensures that
no one business entity can modify, delete, or even append any
record to the ledger without the consensus from other business
entities in the network, making the system useful for ensuring
the immutability of data and legal documents.

Given the aforementioned important features, blockchain tech-
nology has taken the world by storm in the recent years for
its promise to transform every industry. For instance, it has
started to be used in a wider range of applications, e.g., Inter-
net of Things (IoT) [11]. A blockchain enables IoT devices to
send data for inclusion in a shared transaction repository with
tamper-resistant records, and enables business parties to access
and supply IoT data without the need for central control and
management. Blockchain for IoT can optimize supply chains by
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International Conference on Extending Database Technology (EDBT), March 26-29,
2018, ISBN 978-3-89318-078-3 on OpenProceedings.org.
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tracking objects as they traverse the export/import supply chain
while enforcing shipping and expediting incremental payments.

Similarly, blockchain technology also has the potential to dis-
rupt insurance industry. It has been used in a car micro-insurance
application to enable the concept of pay-as-you-go insurance [20].
This application allows drivers who rarely use cars to only pay in-
surance premium for particular trips rather than the hefty yearly
premium. By transparently storing on blockchain all the data
pertaining to the actual trip and premium payment, every party
in the insurance contract including the driver, the insurance com-
pany, and the financial institution is confident that the data are
tamper-proof and traceable. This guarantees that any insurance
claim request regarding to a trip can be processed quickly and
indisputably, hence offering a better customer experience. Fur-
ther, as the micro-insurance application also requires accessing
multiple risk analytic databases such as past driving behaviour
statistics and past vehicle runtime statistics for computing pre-
miums, a system architecture that allows for maintaining and
analyzing both on-chain and off-chain data was also proposed.

In fact, Gartner’s 2016 research report1 identified blockchain as
one of the key platform-enabling technologies to track. Nonethe-
less, while there is currently no standard in the blockchain space,
there is a growing consensus that blockchain is entering its peak
of inflated expectations. The report anticipated that it would take
5 to 10 years for blockchain technology to get mainstream adop-
tion. Further, most of nowadays blockchain efforts, especially
when applied to business environments, are still in a nascent
state. Research perspectives and challenges related to blockchain
have been presented in [12], but they are mainly for cryptocur-
rencies and public blockchain environments. The time is ripe
for database community to get more deeply involved in solving
open problems pertaining to data management and analytics in a
permissioned blockchain network for business applications [28].

As the building blocks of blockchain include some combina-
tion of database, transaction, encryption, consensus and other
distributed system technologies, it is natural to investigate if
it is possible to utilize existing capabilities of mature data and
information systems through robust integration into blockchain
systems. There exist open research issues such as multi-storage
and index support, novel transaction concurrency model, scalable
transaction throughput, master and reference data management,
smart contract management, data security and privacy assur-
ances, as well as information leakage prevention.

Furthermore, even though the blockchain database is useful
for transparent persistence of streaming business data, there is no
one-size-fits-all database solution for an application [30]. While
blockchain is originally designed to maintain transaction data,
there is a growing interest in providing analytics capabilities in
blockchain-based data systems. Particularly, in this paper we shall
elaborate on specific research problems such as built-in analytics
for blockchain, and data integration and analytics across on-chain
and off-chain data.

1http://www.gartner.com/newsroom/id/3412017
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Last but not least, with recent advances in areas such as infor-
mation retrieval, machine learning, and AI, there is a tremendous
opportunity to bring cognitive capabilities, e.g., understanding,
learning, and contextual awareness into blockchain-based data
systems so as to make them active-oriented and intelligent. We
shall discuss open research issues encountered while developing
intelligent blockchain-based data systems. Our list is by nomeans
comprehensive and other research opportunities exist as well.

2 BACKGROUND
Blockchain. Blockchain technology [31] provides a framework
for building a distributed ledger that can provide consensus,
provenance, immutability and finality of transaction data. The
use of blockchain was first popularised by Bitcoin [1], which is
a cryptocurrency. In a blockchain, a group of ledger entries, i.e.,
a list of transactions, are periodically accumulated into a block
which contains a cryptographic hash of the prior block linking
the blocks together. This way of chaining the blocks allows the
global order of the ledger entries to be established and to verify
that the content of a particular block have not been modified.
Every node in this distributed system maintains its own copy
of the blockchain and participates in an appropriate consensus
mechanism to keep the replicated data in sync across nodes.
For example, Bitcoin uses a consensus protocol called “Proof-of-
Work” [31], whereas Hyperledger Fabric [8] develops a variant
of Byzantine fault-tolerant (BFT) state machines [32].

Permissioned/private blockchain. In Bitcoin, a public im-
plementation of blockchain, entities that participate in the trans-
fer of assets are anonymous and any entity can participate. In
contrast, many business networks may have a need for a dis-
tributed ledger that is only accessible to a closed community of
known entities. Permissioned blockchain technologies such as
Hyperledger Fabric[8] and R3 Corda[5] have been developed to
support these requirements, i.e., entities participating the net-
work are identified so that their permissions can be determined
and the activities of an entity are only visible to those participants
of the business network that have a need to know.

Smart contract. Some distributed ledger technologies sup-
port an additional capability called a smart contract [29], which
is similar to the concept of stored procedure in classical rela-
tional databases to some extent. Smart contracts allow the shared
business processes within a business network to be standardised,
automated and enforced via computer programs to increase the
integrity of the ledger.

3 BLOCKCHAIN DATA MANAGEMENT
3.1 Leverage capabilities of mature data and

information systems
Multi-storage and index support. Most blockchain platforms
such as Ethereum [7] adopt key-value data model, while a few
of them like R3 Corda [5] use relational data model. This makes
any single blockchain platform not suited for different types
of data used in a wide range of business applications. For ex-
ample, geo-location data recorded from vehicles in a car micro-
insurance application [20] as discussed in Section 1 may not be
efficiently queried using a key-value store. Furthermore, even
though blockchain platforms such as Hyperledger Fabric [8] opt
for pluggable storage model, developer users have to decide at
development time which storage to use, e.g., either LevelDB [9]
(key-value store) or CouchDB [6] (document store). Therefore,
novel techniques are needed for supporting multiple types of

data stores such as key-value, document, SQL and spatial data
stores simultaneously in the same blockchain system.

Additionally, blockchain is originally not designed to store dig-
ital documents, which, however, are a popular type of data shared
in a business network as observed in a majority of blockchain so-
lutions that we have been involved. These digital records are usu-
ally large, and their aggregate size grows significantly over time.
It is infeasible to store these data directly on the blockchain due
to several constraints such as storage size, bandwidth and trans-
action throughput. One possible solution is to store these records
in a third-party offline storage, and maintain their locations and
a digital hash of the data on the blockchain for verification. Nev-
ertheless, this approach requires integration of blockchain and
offline storages. Thus, it is critical to develop blockchain systems
with built-in offline storage strategies for handling big data.

We also observe from the implementation of those blockchain
solutions that rich queries (e.g., conditionals, operators etc.) of
data on blockchain are typically read-only and based on non-
primary keys. To deal with these situations, explicit smart con-
tracts for maintaining secondary indices have to be developed.
This motivates exciting research problems related to index man-
agement in blockchain-based data systems.

Master data management. Unlike blockchains used in pub-
lic cryptocurrency environments, a business blockchain network
is not a single universal collaborative environment for every or-
ganization to join in this same network. Instead, each network
usually includes a specific set of organizations sharing some com-
mon business interests, and more importantly, an organization
may join a number of different blockchain networks due to the
large scope of their business. It is likely that each network will
have a different data schema and may record a different version
of some common data referring to the same entity across the
networks. Therefore, organizations need master data manage-
ment rules, processes and techniques in order to consolidate data
across multiple blockchain networks that they participate in. In
addition, we also envision an interesting opportunity for future
research to explore a new concept of cross-chain smart contracts
that run across multiple blockchains.

Reference data management. Since the data in blockchain
cross over the boundary of organizations, semantically right in-
terpretation of data is must. Hence, one important problem is
interpreting the data w.r.t. reference data and business glossary.
Particular technical problems include identification of reference
data entities, automatic interpretation/conversion, and manag-
ing the reference data as they are provided by external sources.
Another technical question is whether this logic of references
should be handled in the smart contract or at application level.
Further, query processing on blockchain must take such context,
i.e., references, into account to carry out meaningful processing.

Scalable transaction throughput. There continues to be
the quest for scalable transaction throughput in blockchain. The
blockchain in Bitcoin [1] uses “Proof of Work” (PoW) consensus
method that is computationally expensive (by design) for having
to solve a cryptographic puzzle in the process [12, 31]. Instead, the
permissioned blockchains where participants are identified use
consensus methods based on variants of Byzantine fault-tolerant
(BFT) state machines [32], which have been chosen to provide
higher transaction throughput and lower consensus latency as
shown in the recent benchmark [16]. Nevertheless, even with
that performance improvement, the benchmark paper concludes
that current blockchain technologies are not suited for large-scale
data processing workloads. Consequently, there still exists the
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need of novel methods, e.g., implicit consensus [22] and sharding
data [19] that provide high levels of transaction throughput for
blockchain. A different direction to achieve scalable throughput,
e.g., BigchainDB [4], is developing blockchain-like trusted trans-
actions on top of existing modern distributed database systems.

ACID properties. Presently, no blockchain platform fully
guarantees ACID properties [24] because blockchain is not de-
signed to support databases, nor it is always tractable to support
these properties on distributed ledgers. Nevertheless, as we ap-
ply transactional semantics to blockchain and use it for data
management, we need to assure the important ACID properties.
It is interesting to see that even though blockchain platforms
are designed to maintain transaction data, they adopt a simple
concurrency control, or not at all, to deal with concurrent trans-
actions accessing the same data item. Transactions in blockchains
are validated based on a first-come first-served basis. That is, the
first transaction to get endorsed and committed by all nodes in
the blockchain network wins and invalidates other conflicting
transactions that are concurrently modifying some common data
items. In this case, all other client applications executing those
conflicting transactions have wasted time waiting for the noti-
fication from the blockchain about the rejected status of their
submitted transactions. Hence, an important research issue here
is to develop novel concurrency control models for blockchains
so that they are applicable to a wider range of applications.

3.2 Enhance information protection
Blockchain-enabled applications involving security- and privacy-
sensitive data, e.g., financial [17] and healthcare [33], requires
confidentiality, security and privacy assurances at different levels
to be supported by the system, which are mandated by regulatory
compliance requirements such as HIPAA [2] and GDPR [3].

Confidentiality.Access control mechanism is mainly used to
protect access data on permissioned blockchains [18]. However,
access control is insufficient to provide protection from data ex-
posure. Data that is stored on distributed ledger of the blockchain
networks need to be encrypted. Thus, it is essential to determine
the “computational hop” in which data shall remain encrypted,
primarily because if we assume that data shall remain encrypted
across its life cycle, processing of such data using smart contracts
shall be difficult (unless we use fully homomorphic encryption
or some form of malleable encryption schemes). Querying data
on blockchain has to be enabled even when the data is encrypted.
Models such as “search on encrypted databases” if implemented
shall have severe impact on the performance of the blockchain
system. Therefore, in the presence of encrypted data available
for querying, the query execution system on blockchain has to
be properly designed and implemented.

Privacy. Bitcoin [1] and Ethereum [7] claim to support some
form of privacy for transactional information, which, however,
has been shown not to be entirely privacy-preserving [23]. Data
on blockchain may need to be shared across others for analytics.
There are use cases where research needs to be carried out on
implementing “right-to-forget” on blockchain. GDPR and EU
regulation on data privacy have recently asked Google and other
internet companies to support “right-to-forget” – a user may
ask the service providers to remove their data from the search
results or from the system altogether. When a blockchain stores
healthcare, finance and such other sensitive data, a user may
request the blockchain provider to delete some or all the records
pertaining to the user, which is hard to support today due to

the immutability of blockchain. This necessitates cryptographic
techniques to rewrite history in blockchains [10].

Information leakage prevention. For blockchains thatmain-
tain unstructured data such as business documents, a more com-
prehensive data redaction mechanism [15] would be needed to
protect business-critical information contained in these docu-
ments from unintentional disclosure. Typically, these documents
can be accessed fully or they are protected completely. However,
there is real need that documents can be released partially by
redacting certain data entities that should be prohibited from the
users. Thus, it is important to support fine-grained access con-
trol on these documents (i.e., access control at data entity level
rather than at document level). This fine-grained access control
can be achieved by detecting and removing the business-critical
information from the document shared on the blockchain based
on the role of the user who requests to access the document.

3.3 Manage smart contracts
Smart contract governance. As smart contracts capture the
shared business processes between parties in a blockchain net-
work, the governance of these smart contracts at every step of
their life cycle including business analysis, design, development,
testing, deployment, and monitoring would in general require the
coordination and approval of these multiple parties. Nevertheless,
this governance process is not standardised and automated as per
current practice. Instead, it is common that only one or a subset
of parties are delegated and trusted to manage the entire life cycle
of a smart contract. This points to the need of tools that allow
automated and collaborative governance of smart contracts.

Smart contract template. As current practice, smart con-
tracts are manually programed by developers after studying re-
quirements described in legal documents agreed by multiple par-
ties. However, this process is time consuming and error-prone as
there is currently no standard regarding the legal enforceability
of code-based contracts. It is, therefore, important to make the
development of smart contracts as much automated as possi-
ble. An open research issue in this direction is to define a stan-
dardised semantic framework for smart contracts that considers
both operational and non-operational aspects based on exist-
ing legal documents [13]. Another related research challenge is
to propose standardised templates for automated generation of
legally-enforceable smart contracts from legal documents. This
requires understanding natural language used in legal documents
and identifying operational parameters that can be used as the
connection between legal agreements and smart contracts.

Trusted smart contracts. Smart contracts vulnerable to at-
tacks can expose blockchain data or contain backdoors that may
be used to exfiltrate data from the blockchain. Hence, it is essen-
tial to develop security analysis technology for smart contracts
and reasoning about their semantic trustworthiness, i.e., trust
between parties defined based on the semantics of smart con-
tracts rather than the digital signatures of the code for smart
contracts. Several open questions need to be addressed, e.g., how
to detect bugs in smart contract codes [26], how to deal with
smart contract codes behaving erratically and how to update
with correct codes without impacting the network [27].

4 BLOCKCHAIN DATA ANALYTICS
4.1 Built-in analytics for blockchain
As the original blockchain is purely a transaction repository, an
execution engine will be required for analytics running directly
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on blockchain data. A possible solution to this problem is to make
blockchain data readily accessible by data parallel processing
systems such as MapReduce [14] or Spark [34]. In particular, an
input reader could be implemented so that MapReduce and Spark
programs are able to scan through blockchain data efficiently.
Further, MapReduce or Spark execution nodes can be physically
co-located with blockchain data nodes to reduce the need of data
transfer, and hence improving analytics performance. Apart from
the above batch analytics, there are also use cases such as IoT
applications in the supply chain domain as discussed in Section 1
in which lightweight or edge analytics capability (i.e., analyzing
data as ingested into blockchain) would be critical to the system.

4.2 Integration and analytics across on-chain
and off-chain data

It is worth noting that the need of data integration across multi-
ple blockchains that an organization participates in, as discussed
in Section 3.1, is just one dimension of the problem. Another
dimension of data integration problem comes from common data
entities referred by both the blockchains and the organization’s
legacy systems of record. In particular, whereas blockchains func-
tion independently of legacy systems in most cases, at some point
in the application development process organizations will need
to integrate blockchain data with their existing systems of record
for deriving complete business insights. Since multiple parties
are joining a blockchain network, cases of overlapping or incon-
sistent data between the blockchain and their legacy systems
will likely arise. As a consequence, there is much scope for de-
velopment of new techniques in entity resolution for big data
spanning across blockchain and off-chain data.

In addition, as the analytics now spans across on-chain and
off-chain data systems, query processing over federated data and
optimisation techniques would be the key to the performance of
query federation. For example, would the strategy that exports
all data on blockchain into an off-chain database where all the
analytics are executed be optimal? In contrast, are there better
approaches that only materialize part of relevant blockchain data
in the off-chain database and how it could be done dynamically
given the changing workload? More importantly, it is also chal-
lenging to ensure the immutability of the data that has been
exported from blockchain into external data stores. These are
very interesting research issues and they require more explo-
ration on query federation, translation, and optimization, as well
as data security in the context of analytics over both on-chain
and off-chain data.

5 INTELLIGENT BLOCKCHAIN SYSTEMS
As discussed in Section 1, blockchain technology has started to
be used in a wider range of applications, e.g., Internet of Things
(IoT) [11]. Nevertheless, the volume of data generated in this era
of the Internet of Things is growing significantly, which puts
blockchain systems to their limits of transaction throughput and
storage capacity. Consequently, when a new piece of data ar-
rives, it is important for the blockchain system to be able to
understand the input data, reason about its relevance to the busi-
ness so as to determine whether dropping the data or accepting
and storing it in the blockchain. Recently, a technique to reduce
data acquisition cost by only accepting data that is useful for an-
swering queries has been proposed [25]. However, none of prior
systems is able to self learn the relevance of incoming data to
the business. This necessitates an active-oriented and intelligent

blockchain system for making sense and intelligently classifying
incoming data, which greatly helps reduce redundant data stor-
age and computation at later stages. In fact, intelligence can be
embedded at every step in the pipeline of data processing inside
a blockchain-based systems, similar to the concept of intellective
data warehousing [21].

6 CONCLUSIONS
We have highlighted research topics that characterize the com-
mon issues of on-going data management and analytics problems
encountered in the development of real-world blockchain appli-
cations. We hope that this study could provide a basis for further
research to identify likely solutions to these open problems.
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ABSTRACT
We introduce a novel interactive framework to handle both
instance-level and temporal smoothness constraints for cluster-
ing large temporal data. It consists of a constrained clustering
algorithm which optimizes the clustering quality, constraint vio-
lation and the historical cost between consecutive data snapshots.
At the center of our framework is a simple yet effective active
learning technique for iteratively selecting the most informative
pairs of objects to query users about, and updating the clustering
with new constraints. Those constraints are then propagated
inside each snapshot and between snapshots via constraint in-
heritance and propagation to further enhance the results. Experi-
ments show better or comparable clustering results than existing
techniques as well as high scalability for large datasets.

1 INTRODUCTION
In semi-supervised clustering, domain knowledge is typically
encoded in the form of instance-level must-link and cannot-link
constraints [8]. Such constraints specify that two objects must
be placed in the same clusters or not. Constraints have been
successfully applied to improve clustering quality in real-world
applications, e.g., identifying people from surveillance cameras
[8] and aiding robot navigation [7]. However, current research
on constrained clustering still suffers from several issues.

Most existing approaches assume that we have a set of con-
straints beforehand, and an algorithm will use this set to produce
clusters [2, 7]. Davidson et al. show that the clustering quality
varies significantly using different equi-size sets of constraints [5].
Moreover, annotating constraints requires human intervention,
an expensive and time consuming task that should be minimized
as much as possible given the same expected clustering quality.
Therefore, how to choose a good and compact set of constraints
rather than randomly selecting them from the data has been the
focus of many research efforts, e.g., [1, 11, 14].

Many approaches employ different active learning schemes to
select themostmeaningful pairs of objects and then query experts
for constraint annotation [1, 11]. By allowing the algorithms to
choose constraints themselves, we can avoid insignificant ones,
and expect to have high quality and compact constraint sets com-
pared to randomized constraint selection. These constraints are
then used as input for constrained clustering algorithms to oper-
ate. However, if users are not satisfied with the results, they are
asked to provide another constraint set and start the clustering
again, which is obviously time consuming and expensive.

Other algorithms follow a feedback schema which does not
require a full set of constraints in the beginning [4]. They iter-
atively produce clusters with their available constraints, show
results to users, and get feedback in the form of new constraints.
By iteratively refining clusters according to user feedback, the
acquired results fit users’ expectations better [4]. Constraints

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the 21st
International Conference on Extending Database Technology (EDBT), March 26-29,
2018, ISBN 978-3-89318-078-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

are also easier to select with an underlying cluster structure as a
guideline, thus reducing the overall number of constraints and
human annotation effort for the same quality level. However, ex-
ploring the whole data space for finding meaningful constraints
is also a non-trivial task for users.

To reduce human effort, several methods incorporate active
learning into the feedback process, e.g., [10, 11, 14]. At each
iteration, the algorithm automatically chooses pairs of objects and
queries users for their feedback in terms ofmust-link and cannot-
link constraints instead of leaving the whole clustering results
for users to examine. Though these active feedback techniques
are proven to be very useful in real-world tasks such as document
clustering [10], they suffer from very high runtime since they
have to repeatedly perform clustering as well as exploring all
O(n2) pairs of objects to generate queries to users.

In this paper, we develop an efficient framework to cope with
the above problems following the iterative active learning ap-
proach as in [10, 14]. However, instead of examining all pairs of
objects, our technique, called Border, selects a small set of objects
around cluster borders and queries users about the most uncer-
tain pairs of objects. We also introduce a constraint inheritance
approach based on the notion of µ-nearest neighbors for infer-
ring additional constraints, thus further boosting performance.
Finally, we revisit our approach in the context of evolutionary
clustering. Evolutionary clustering aims to produce high qual-
ity clusters while ensuring that the clustering does not change
dramatically between consecutive timestamps. We propose to for-
mulate a temporal smoothness constraint and add a time-fading
factor to our constraint propagation.

This paper’s contributions are: (i) a new algorithm CVQE+
that extends CVQE [7] with weighted must-link and cannot-link
constraints, (ii) a new algorithm, Border, that relies on active
clustering and constraint inheritance to choose a small number
of objects to solicit user feedback for, (iii) an evolutionary cluster-
ing framework which incorporates instance-level and temporal
smoothness constraints, and (iv) experiments with 6 datasets that
show the superiority of our algorithms over state-of-the-art ones.

2 PROBLEM FORMULATION
Let D = {(d, t)} be a set of of |D | vectors d ∈ Rp observed
at time t . Let S = {(Ss ,Ds , tss , tes )} be a set of preselected |S |
data snapshots. Each Ss starts at time tss , ends at time tes and
contains a set of objects Ds = {(d, t) ∈ D | tss ≤ t < tes }. Two
snapshots Ss and Ss+1 may overlap but must satisfy the time
order, i.e., tss ≤ tss+1 and tes ≤ tes+1. For each snapshot Ss ,
letMLs = {(x ,y,wxy )} be a set of must-link constraints related
to x ,y ∈ Ds with a degree of belief of wxy ∈ [0, 1]. Similarly,
let CLs = {(x ,y,wxy )} be a set of cannot-link constraints of Ss .
Initially,MLs and CLs can be empty.

In this paper, we focus on the problem of grouping objects in
all snapshots into clusters. Our goals are (1) reduce the number
of constraints thus reducing the constraint annotation costs (2)
make the algorithm scale well with large datasets and (3) smooth
the gap between clustering results of two consecutive snapshots,
i.e., ensure temporal smoothness.
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Figure 1: Our active temporal clustering framework

3 OUR PROPOSED FRAMEWORK
Figure 1 illustrates our frameworkwhich relies on two algorithms,
Border and CVQE+. Our framework starts with a small (or empty)
set of constraints in each snapshot. Then, it iteratively produces
clustering results and receives refined constraints from users
in the next iterations. This process is akin to feedback-driven
algorithms for enhancing clustering quality and reducing human
annotation effort [4]. However, instead of passively waiting for
user feedback as in [4], our algorithm, Border, actively examines
the current cluster structure, selects β pairs of objects whose
labels are the least certain, and asks users for their feedback in
terms of instance-level constraints. Examining all possible pairs
of objects to select queries is time consuming due the quadratic
number of candidates. To ensure scalability, Border limits its
selection to a small set of most promising objects. When there
are new constraints, instead of reclustering from scratch as in
[10, 14], our algorithm, CVQE+, incrementally updates the cluster
structures. We also aim to ensure a smooth transition between
consecutive clusterings [3]. We additionally introduce two novel
concepts: (1) the constraint inheritance scheme for automatically
inferring more constraints inside each snapshot and (2) the con-
straint propagation scheme for propagating constraints between
different snapshots. These schemes help significantly reduce the
number of constraints for acquiring a desired level of clustering
quality. To the best of our knowledge, Border is the first frame-
work that combines active learning, instance-level and temporal
smoothness constraints.
The new algorithm CVQE+. For each snapshot Ss , we use con-
strained kMeans for grouping objects. Any existing techniques
such as MPCK-Means [2], CVQE [7] or LCVQE [13] can be used.
Here we introduce CVQE+, an extension of CVQE [7] to cope
with weighted constraints, to do the task. LetC = {Ci } be a set of
clusters. The cost of Ci is defined as its vector quantization cost
VQEi and the constraint violation costsMLi and CLi as follows.
Note that, ourMLi cost is symmetric compared to [7].

CostCi = CostVQEi +CostMLi +CostCLi (1)

CostVQEi =
∑
x ∈Ci

(ci − x)2,

CostMLi =
∑

(a,b)∈MLi∧vl (a,b)

wi j (ci − cπ (a,b,i))
2

CostCLi =
∑

(a,b)∈CLi∧vl (a,b)

wi j (ci − cφ(i))
2

where, vl(a,b) is true for (a,b) that violates must-link or cannot
link constraints, ci is the center of cluster Ci , π (a,b, i) returns
the center of clusters of a or b (not including clusterCi ), and φ(i)
returns the nearest cluster center of Ci . Note that, CostMLi is
symmetric compared to [7]. Taking the derivative of CostCi , the

new center of Ci is updated as:

ci =

∑
x∈Ci

x +
∑

(a,b)∈MLi∧v l (a,b)

wi jCπ (a,b,i ) +
∑

(a,b)∈CLi∧v l (a,b)

wi jCφ (i )

|Ci | +
∑

(a,b)∈MLi∧v l (a,b)

wi j +
∑

(a,b)∈CLi∧v l (a,b)

wi j

(2)
For each constraint (a,b), CVQE+ assigns objects to clusters by

examining all k2 cluster combinations for a and b like CVQE. The
major difference is that when we calculate the violation cost, we
consider all constraints starting and ending at a and b instead of
only the constraint (a,b) as in CVQE [6] or LCVQE [6], which is
very sensitive to the cost change when some constraints share the
same objects (changing these objects affects all their constraints).
Thus, this scheme is expected to improve the clustering quality
of CVQE+ compared to CVQE and LCVQE.
Active learning with Border. To avoid examining all pairs of
objects, Border chooses a subset ofm =min(O(

√
n),M) objects lo-

cated at the boundary of the clusters as themain targets since they
are the most uncertain ones, whereM is a predefined constant.
For each object a in cluster Ci , the border score of a is defined
as bor (a) = (a−ci )2

(a−cφ (i ))
2(1+ml (a))(1+cl (a)) , whereml(a) and cl(a) are

the sums of weights of must and cannot-link constraints of a.
Here, we favor objects that have fewer constraints for increasing
constraint diversity. This also fits well with our constraint inher-
itance scheme. For each cluster Ci , we selectm |Ci |/n top objects
based on their border score distribution in Ci . This can be done
by building a histogram with O(

√
|Ci |) bins (a well-known rule

of thumb for the optimal histogram bin). Then, objects are taken
sequentially from the outermost bins.

For each selected object a, we estimate the uncertainty of a
as sco(a) = ent(µnn(a)) + vl (ml (a))+vl (cl (a))

ml (a)+cl (a)+1 , where ent(µnn(a))
is the entropy of class labels of µ nearest neighbors of a and
vl(ml(a)) and vl(cl(a)) are the sums of violated must-link and
cannot-link constraints of a. A high score(a) means that a is in
high uncertain areas with different mixed class labels and a high
number of constraint violations.

We dividem2 = O(n) pairs of selected objects into two sets:
the set of inside cluster pairs X and between cluster pairs Y ,
i.e., for all (x ,y) ∈ X : label(x) = label(y) and for all (x ,y) ∈

Y : label(x) , label(y). For a pair (x ,y) ∈ X , it is sorted by
val(x ,y) =

(x−y)2(1+sco(x ))(1+sco(y))
(1+ml (x )+cl (x ))(1+ml (y)+cl (y)) . For (x ,y) ∈ Y ,val(x ,y) =

(x−y)2(1+ml (x )+cl (x ))(1+ml (y)+cl (y))
(1+sco(x ))(1+sco(y)) . The larger val is, the more

likely x and y belong to different clusters and vice versa. We
choose top β/2 non-overlapped largest val pairs of X and top
β/2 non-overlapped smallest pairs of Y in order to maximize the
changes in clustering results (inside and between clusters).

We show β pairs to users to ask for the constraint type and
add their feedback to the constraints set and update clusters until
the total number of queries exceeds a predefined budget δ .
Constraint inheritance in Border. For further reducing the
number of queries to users, the general idea is to infer new con-
straints automatically based on annotated ones. Our inheritance
scheme is based on the concept of µ nearest neighbors below.

Let h be the distance between an object p and its µ nearest
neighbors. The influence of p on its neighbor x is formulated by
a triangular kernel function ϕh (p,x) centered at p as in Figure 2.
Given a constraint (p,q,wpq ), for all a ∈ µnn(p) and b ∈ µnn(q),
we add (a,b,wab ) to the constraints set, wherewab is defined as:

wab = wpqϕh (p,a)ϕh (q,b) (3)
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Figure 2: (A) Constraint inheritance from (p,q) to (a,b). (B)
The effect of the object b on its neighbors

The general intuition is that the label of an object a tends to
be consistent with its closest neighbors (which is commonly
used in classification). This scheme is expected to increase the
clustering quality, especially when combined with the active
learning approach described above.
Updating clusters. For incrementally updating clusters, we only
need to take the old cluster centers and update them following
Equation 1 with the updated constraints set.
Temporal smoothness. The general idea of temporal smooth-
ness [3] is that clusters not only have high quality in each snap-
shot but also do not changemuch between sequential time frames.
We re-define the cost of cluster Ci of snapshot Ss in Equation 1
as follows:

TCostVQEi = (1 − α)CostVQEi + αHist(Ci , Ss−1) (4)

where Hist(Ci , Ss−1) is the historical cost of cluster Ci between
two snapshots Ss and Ss−1 and α is a regulation factor to balance
the current clustering quality and the historical cost. We define
the historical cost as follows:

Hist(Ci , Ss−1) = (ci −ψ (Ci , Ss−1))
2 (5)

where ψ (Ci , Ss−1) returns the closest cluster center to Ci in
snapshot Ss−1. Taking the derivation of (4) as in (1), we have
Ci =

(1−α )A+αψ (Ci ,Ss−1)
(1−α )B+α , where A and B are respectively the

numerator and the denominator given in Equation 1.
Constraint propagation. Whenever we have a new constraint
(x ,y,wxy ) in snapshot Ss , we propagate it to snapshots Ss ′ where
s ′ > s if x ,y ∈ S ′. The intuition is that if x andy are linked (either
by must or cannot-link) in Ss , they are more likely to be linked
in Ss ′ . Thus we add the constraint (x ,y,w ′

xy ) to Ss ′ where:

w ′
xy = wxy

tes − tss ′

tes ′ − tss
(6)

where (tes − tss ′)/(tes ′ − tss ) is a time fading factor. This scheme
helps to increase the clustering quality by putting more con-
straints into the clustering algorithm like the inheritance scheme.
Complexity analysis. Let n be the number of objects. Both
CVQE+ and Border have linear time complexity to O(n).

4 EXPERIMENTS
Experiments are conducted on a workstation with 4.0Ghz CPU
and 32GB RAM using Java. We use 6 datasets Iris, Ecoli, Seeds,
Libras, Optdigits and Wdbc acquired from the UCI archives1. The
numbers of clusters k are acquired from the ground truths. We
use Normalized Mutual Information (NMI) [12] for assessing the
clustering quality. All results are averaged over 10 runs.
Performance of CVQE+. Figure 3 shows comparisons among
CVQE+ and existing techniques including kMeans, MPCK-Means
[2], CVQE [7] and LCVQE [13]. CVQE+ consistently outperforms
or acquires comparable results to CVQE and others, especially
when the number of constraints is large. This can be explained
1http://archive.ics.uci.edu/ml/
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Figure 3: Performance of CVQE+ compared to others
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Figure 4: Comparison among different active learning
techniques

by the way CVQE+ assigns objects to clusters. Compared to its
predecessor algorithm CVQE or LCVQE, it deals well with con-
straint overlap (constraints that share the same objects), which
increases with the number of constraints.
Active constraint selection. Unless otherwise stated, the bud-
get limitation δ is set to 200, the query size β = 10 and the neigh-
borhood size µ = 4. Figure 4 shows comparisons between Border,
NPU [14], Huang [14] (a modified version of [10] for working
with non-document data), Min-max [11], Explorer-Consolidate
[1], and a randomized method (Huang and Consolidate are re-
moved from Figure 4 for readability). Border acquires better re-
sults than others on Libras, Wdbc and Optidigits, comparable
results on Iris and Ecoli. For the Seeds dataset, it is outperformed
by NPU. The difference is because Border tends to strengthen
existing clusters by fortifying both the cluster borders and inter
connectivity for groups of objects rather than connecting a single
object to existing components like others. However, Border has
some parameters to set such as the query size β . Tuning these pa-
rameters is a difficult problem that requires deeper investigation.

For runtimes, we create five synthetics datasets of sizes 2000 to
10000 consisting of 5 Gaussian clusters and measure the time for
acquiring 100 constraints. Border is orders of magnitude faster
than others in selecting pairs to query. For 1000 objects, it take
Border 0.1 seconds while NPU and Min-max need 439.4 and
3.0 seconds. For 10000 objects, Border, NPU and Min-max con-
sumes 0.18, 5216.3 and 18.2 seconds, respectively. Additionally,
the higher the number of objects and constraints, the higher the
runtime differences. We omit the plots due to space limitations.
Cluster update. Figure 5 shows the NMI and the number of
iterations of our algorithm for the Ecoli dataset. The NMI scores
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Figure 5: Update vs. fully reclustering for the Ecoli dataset
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are comparable, while it takes fewer iterations for our algorithm
to converge in its update mode.
Temporal clustering. Figure 6 shows the active temporal clus-
tering results for three snapshots of the Optdigits dataset (we set
α = 0.5). As we see, our active learning scheme can help boost
clustering quality inside each snapshot compared to the original
kMeans or a randomized constraint selection method. With the
constraint propagation scheme (Border-Propagation), the cluster-
ing results are further boosted compared to Border. Since we only
consider forward propagation, the clustering result in Snapshot
3 will be more affected than Snapshot 2 and Snapshot 1. We can
easily extend the algorithm for the backward propagation case.

5 RELATEDWORK
Constraint clustering. There are many proposed constrained
clustering algorithms such as MPC-kMeans [2], CVQE [7] and
LCVQE [13]. These techniques optimize an objective function
consisting of the clustering quality and the constraint violation
cost like our algorithm CVQE+. CVQE+ is an extension of CVQE
[7], where we extend the cost model to deal with weighted con-
straints, make the must-link violation cost symmetric and change
the way each constraint is assigned to clusters by considering all
of its related constraints. This makes cluster assignment more
stable, thus enhancing the clustering quality. Interested readers
are referred to [6] for a comprehensive survey on constrained
clustering methods.
Active learning. Most existing techniques employ active learn-
ing for acquiring a desired constraints set before or during cluster-
ing. In [1], the authors introduce the Explorer-Consolidating algo-
rithm to select constraints by exploiting the connected-components
of must-link ones. Min-max [11] extends the Consolidation phase
of [1] by querying most uncertain objects rather than randomly
selecting them. These techniques produce constraints sets be-
fore clustering. Thus, they cannot exploit the cluster labels for
further enhancing performance. Huang et al. [10] introduce a
framework that iteratively generates constraints and updates
clustering results until a query budget is reached. However, it is
limited to a probabilistic document clustering algorithm. NPU
[14] also uses connected-components of must-link constraints
as a guideline for finding most uncertain objects. Constraints
are then collected by querying these objects again existing con-
nected components like the Consolidate phase of [1]. Though
more effective than pre-selection ones, these techniques typically
have a quadratic runtime which makes them infeasible to cope

with large datasets like Border. Moreover, Border relies on border
objects around clusters to build constraints rather than must-link
graphs [1, 14]. The inheritance approach is closely related to the
constraint propagation in the multi-view clustering algorithm
[9] for transferring constraints among different views. The major
difference is that we use the µ-nearest neighbors rather than the
ϵ-neighborhoods which is limited to Gaussian clusters and can
lead to an excessive number of constraints.
Temporal clustering. Temporal smoothness has been intro-
duced in the evolution framework [3] for making clustering re-
sults stable w.r.t. the time.We significantly extend this framework
by incorporating instance-level constraints, active query selec-
tions and constraint propagation for further improving clustering
quality while minimizing constraint annotation effort.

6 CONCLUSION
We introduce a scalable novel framework which incorporates
an iterative active learning scheme, instance-level and tempo-
ral smoothness constraints for coping with large temporal data.
Experiments show that our constrained clustering algorithm,
CVQE+, performs better than existing techniques such as CVQE
[7], LCVQE [13] and MPC-kMeans [1]. By exploring border ob-
jects and propagating constraints via nearest neighbors, our ac-
tive learning algorithm, Border, results in good clustering results
with much smaller constraint sets compared to other methods
such as NPU [14] and Min-max [11]. Moreover, it is orders of
magnitude faster making it possible to cope with large datasets.
Finally, we revisit our approach in the context of evolutionary
clustering adding a temporal smoothness constraint and a time-
fading factor to our constraint propagation among different data
snapshots. Our future work aims at providing more expressive
support for user feedback. We are currently using our frame-
work to track group evolution of our patient data with sleeping
disorder symptoms.
Acknowledgments.We thank anonymous reviewers for their
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ABSTRACT

Skipping mechanisms have been extensively studied to improve
query performance over large data volumes. A powerful skip-
ping technique for in-memory columnar databases is partition
elimination. The goal is to eliminate, as much as possible, loading
physically partitioned data into memory and probing column
partitions against queries. This is achieved by consulting column
partition summaries. The summary is often very compact com-
pared to the column partition itself, and is kept in memory, e.g.
the MinMax zone map. These summaries have been extensively
integrated into modern in-memory database systems including
SAP HANA [6]. In this paper, we argue that probing byMinMax
range is not efficient when there are gaps in the values that ap-
pear in a column partition. Any predicate that needs to probe
values in a gap inside a MinMax range naturally ends up re-
quiring a candidate check; this reduces the benefits of column
partition pruning. To address this problem, we propose a mech-
anism to encode each partition (likewise, query) using global
ranges, carefully designed to reduce false positive rates. Our ap-
proach not only provides a compact in-memory representation,
but also supports efficient partition pruning using bitwise op-
erations. Compared toMinMax, our experiments support that
our approach significantly reduces the false positive rate. It can
allocate memory budget among ranges in partition groups, based
on column density, estimated false positive rates from recent
workload, and gaps.

1 INTRODUCTION

Partition elimination is a powerful technique to improve query
performance over large volume of data [1, 4, 6, 8, 9]. To increase
parallelism and achieve operational scalability, physical partition-
ing is often employed to divide data into independent partitions.
This is done to eliminate loading partitions, and probing them
against the query, when partitions to access can be inferred ex-
plicitly from the query itself. For an in-memory database, this
can prevent unnecessary loads of cold partitions (better memory
utilization) and can bring significant performance improvement
[6]. Small materialized aggregates for partitions, e.g. theMinMax
synopsis, are small memory footprint objects that are good can-
didate for partition examination [5, 6]. If the predicate range of a
query does not intersect with the partitions’s MinMax synopsis,
then it is safe to skip the column partition without incurring false
negative. Pruning by partition synopsis is effective if:

• it causes no false negative (i.e. synopsis freshness [6]), and
• it minimizes the need for redundant partition examination.

This paper considers the second synopsis requirement.
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2 MOTIVATION: THE LIMITATIONS OF

MINMAX SYNOPSIS FOR SPARSE DATA

MinMax synopsis has high false positive rate for sparse par-
titions [7]. If the synopsis of a column partition includes data
points within its min-max range that do not actually exist in the
column partition, pruning byMinMax can yield false positive.
This can happen when the column partition has gaps or values
from a sparse distribution. For example, for a table storing the
prices of an item over the years, there are usually some gaps
in the price column. Although the price is expected to increase
monotonically over time, it often does not increase by smallest
price unit, and naturally some gaps are present. A natural im-
provement of theMinMax synopsis is to store several ranges for
each column partition. This way, some gaps can be excluded from
the column partition representation. However, this approach has
two limitations. First, it requires storing a number of value pairs
for each partition. This is space-consuming as we usually have
thousands of partitions. Second, processing predicates against
this extended synopsis becomes very expensive; for each par-
tition it requires comparison against ranges that represent the
partition.

3 OVERVIEW OF OUR CONTRIBUTIONS

To address the two limitations stated in Sec. 2, we propose a
new list-based structure called the Global Range Table (GRT).
This structure helps to construct compact synopses for single
column partitions, which supports efficient partition pruning
using bitwise operations. Fundamentally, the pruning approach
is very similar to the MinMax synopsis [6] and to the Adaptive
Range Filters [1] in that we use value ranges to determinewhether
to access each partition. The key properties of our ranges are:

(1) We construct the list of value ranges that is common across
all the partitions. This facilitates probing queries against
synopsis using bitwise operations, and

(2) We incorporate recent workload knowledge into our range
extraction algorithm. This is motivated by the observa-
tion that frequently–accessed values can suffer more from
false positives than rarely–accessed values, if the workload
characteristics does not change significantly.

We use the extracted GRT to encode column partitions; each bit
of the compact encoding indicates whether the corresponding
column partition contains some values within the respective
GRT range. The GRT ranges can be improved to have small
false positive rates, based on the knowledge learned from recent
workload and the importance of value ranges. We use the same
encoding approach to represent each query as a bit string. This
facilitates efficient query probing on partitions. Furthermore,
storing only one GRT global to all partitions in memory is much
cheaper, compared to storing multiple value ranges per partition.
Finally, the amortized space overhead of our approach is one
compressible bit string per partition. We propose algorithms to
further reduce this overhead, when the memory budget to store
partition synopses is limited (Sec. 4.2.2).
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Figure 1: Encoding column partitions using Global Range Table

Table 1: List of Notations

Notation Description
V The universe set of column values

C[v] The popularity of column value v (Sec. 4.1)
Np The total number of partitions
N p
V The total number of distinct values on the column in partition p
k The maximum number of sub-partitions for each partition
NR The number of ranges in rGRT (Sec. 4.2)
m The desired number of final GRT (i.e. the length of each encoded bit string)

4 DEEP DIVE: GLOBAL RANGE ENCODING

We demonstrate pruning by Global Range Table (GRT) using an
example. Table 1 summarizes the notations used in this section.

Example 4.1. The table shown in Fig. 1a has two columns, Age and

Income. This table is divided into three partitions based on the Age
attribute (Fig. 1b). The list of ranges in Fig. 1c defines 5 mutually

exclusive Income ranges. Using these Income ranges, each of the

three Income column partitions in Fig. 1a can be encoded using a

bit strings of length 5 in Fig. 1b. For instance, the Income column

for partition P3 is encoded as 10000, This is because this partition
only contains values 15 and 16, which fall in the range [15-16] of
the GRT table in Fig. 1c. As range [15-16] has index 5, only the

fifth bit is set. Now consider the query Income ≤ 12. This query

intersects with three ranges from the GRT, namely [1-3], [5-9], and
[11-12]. Therefore, the query can be encoded as 00111. Comparing

the bit string of the query with that of the encoding column in

Fig. 1c, one can verify that 00111 ∧ 10000 = 00000, hence partition
P3 can be pruned safely. The bit string encoding preserves more gap

information, compared with MinMax, e.g. encoding P1 as [1-13]
implies that [11-12] is included. The bit string excludes this range.

Conceptually, the global range table is a set of ranges on col-
umn partitions. The extraction of these ranges can be performed
in either a single-phase process from all column partitions at
once, or in a two-phase process by integrating the ranges from
partitions. The two-phase approach has several advantages:

• Memory consumption: the single phase approach requires
every column partition to be loaded into memory. The
alternative way reduces the memory footprint by integrat-
ing ranges extracted from independent partitions.

• Performance enhancement: the two-phase approach can
be implemented within the MapReduce framework, with
theMap phase applied to independent partitions (Sec. 4.1)
and the Reduce step to integrate ranges (Sec. 4.2).

• Capturing gaps: ranges extracted from all data might not
capture gaps inside partitions. Our two-step approach
avoids this by regarding gaps in partitions as constraints,
penalized in the goodness measure for ranges (Eq. 3).

4.1 The Sub-Partitioning Step

This step produces a set of ranges from each partition. Once
the set of all ranges have been created, they will be integrated
to construct GRT (Sec. 4.2). Given a set of values V , integer k ,
and cost function of Eq. 2, the sub-partitioning problem is to
find an optimal selection of non-empty subsets S1, . . . , Sk , s.t.
∪1≤i≤kSi = V . As the order of values is not represented in a set,
we re-order the rows in each column partition when extracting
ranges and consider subsets with consecutive members. That
leads to a simplified problem: given an ordered list of values
V , we find the optimal k mutually exclusive sub-lists V1= V [1 :
i1], . . . ,Vk = V [1+ik−1 : ik ], with i1≤j≤k being indices of sorted
value list.

4.1.1 Sub-Partitioning Cost Model. A column value is popular
if it can satisfy a large fraction of queries in the recent workload1.
The more query predicates a value can satisfy, the higher its pop-
ularity ranking is. For example, suppose we have two predicates
1 ≤ x ≤ 5 and 4 ≤ x ≤ 10 on an integer column. Values 4 and 5
can satisfy both predicates while the other values between 1 to
10 satisfy only one predicate each. In this case, 4 and 5 are more
popular than 1,2,3,6–10. Let |Pred | denote the total number of
predicates in the workload and let V be the set of column values.
We define the popularity of a column value v ∈ V (denoted by
C[v]) to be the ratio of predicates from the recent workload satis-
fied by v .C[v] is between 0 and 1, inclusive. A value is popular if
it satisfies many predicates. If a popular value is in a gap within
a partition, a query for this value returns nothing2. Thus, we
observe that the probability of false positives depends directly
on the popularity of the value(s) in gaps. Let G be a gap and VG
be the set of values included in G. We define the cost of gap for
G to be the sum of the popularities of the values it contains:

Cost(G) =
∑
v ∈VG

C[v]. (1)

For each sub-partition s , letV s
G be the set of values of the gaps

that are included in s . If a popular value v ∈ V s
G (i.e. v does not

exist in sub-partition s), then those predicates thatv satisfies will
cause false positives on the partition to which sub-partition s
belongs. The reason is that the sub-partition value range will
indicate the existence of v , but it is not true (i.e. false positive).
Therefore, the sub-partitioning cost of a partition is the sum of
gap costs included in any created sub-partition. Let Subp be the
set of sub-partitions in the partition p. Then,

SubCost(P) =
∑

s ∈Subp

∑
v ∈V s

G

C[v]. (2)

Thismeasure gives the likelihood that the sub-partitioning scheme
will create false positives for a partition, for values that do not
actually exist in the partition. Thus, creating sub-partition value
ranges that include popular gaps yields a high false positive rate.
Intuitively, the lower the cost is, the better the sub-partitioning
scheme is. When the cost is 0, that means there is no sub-partition
that produces false positives on any predicate. Thus, we would
like to minimize this measure. To normalize this cost, we divide
it by the maximum number of possible distinct values that the
partition can take. To summarize, the normalized cost penalizes
gaps that cause false positives in a set of ranges extracted from
each partition. The ranges are extracted via sub-partitioning.
1We base our approach on predicate stability, i.e. popular column values continue to
satisfy many predicates in future queries. If predicates are not stable, our approach
will remain valid but sub-optimal considering the false positive rates.
2However, a MinMax synopsis would incur false positive on this gap.
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4.1.2 The Largest Gap Greedy Algorithm. Sub-partitions with
fewer gaps reduce the cost of the ranges extracted from each
partition. Therefore, if we exclude popular gaps from each sub-
partition, the cost would be toward optimal. The main idea of our
greedy algorithm is to find top (k−1) popular gaps. We use a min-
heap to keep track of the top (k−1) popular gaps (i.e. with largest
costs). For each node of the min-heap, we keep the gap cost (i.e.
Eq. 1; the gap popularity) and the index of the gap. The index of
the gap is defined as the identifier of the value immediately before
the gap. The min-heap property is maintained with respect to the
costs stored in nodes. We go through the sorted list of distinct
values of the partition and manage the top (k − 1) popular gaps
as well as the indices of those gaps in the heap. At the end, the
indices determine sub-partition boundaries. At the beginning,
there are Np

V -1 candidate boundary points in partition p with Np
V

distinct values. Our algorithm selects (k−1) positions to minimize
the sum of the costs of sub-partitions (i.e. Eq. 2) in O(N

p
V logk)

time. We omit algorithm detail and proofs for brevity.

4.2 Extracting GRT And Optimizations

The sub-partitioning step produces k value ranges per partition.
Integrating at most kNp ranges into a single list may have over-
lapping ranges, as well as duplicates. In this step, a value-range
list global to all partitions is produced, with the primary goal to
reduce false positive rates. To achieve this, we extend Eq. 2 to
quantify the quality of a global range table GRT, as opposed to
one partition:

Cost(GRT ) =
∑

r ∈GRT

∑
p

(
C[v] : v ∈ V

p
G ∩r s.t. V P

G ∩r , r
)
. (3)

We first integrate kNp ranges (k ranges for Np partitions) into
one list, and call this rGRT (for raw GRT). We refine rGRT in two
steps. First, we remove duplicate ranges and value range overlaps
(Sec. 4.2.1). Then, for a given a memory budget, we show how to
merge ranges effectively and derive a reduced list (Sec. 4.2.2).

4.2.1 Mutually Exclusive GRT. Starting from rGRT, the goal
is to make every pair of ranges mutually exclusive. For this, we
propose an approach based on the greedy algorithm proposed
for the interval scheduling problem [3], where the range with
smallest endpoint from the list is picked and inserted into the
result list, if it does not intersect with any other ranges already
in the result list. The range is discarded if it is in conflict with
at least one range in the result list (i.e. cannot be scheduled
together). In our approach, whenever the value range overlaps
with some value range already in the result list, we split the
to-be-inserted range into smaller ranges instead of discarding it.
Each smaller range is either mutually exclusive or a duplicate (i.e.
already completely covered) of the ranges in the result list. Then,
we discard those duplicates and insert the others. For example,
assume that we want to insert value range [2-18] to the list of
ranges R={[1-4], [7-10], [15-16]}. In our approach, we split [2-
18] into six smaller ranges: [2-4], [5-6], [7-10], [11-14], [15-16],
and [17-18]. This is done based on the overlap of [2-18] with
the ranges in R. We process each sub-range separately. Because
[2-4], [7-10], and [15-16] are already present in the result list, we
discard them and insert [5-6], [11-14], and [17-18]. We iterate this
split-and-insert process for every range in rGRT and obtain a
mutually exclusive global range table (xGRT) in time linear to
the number of ranges in rGRT. In this process, the ranges are
refined and Eq. 3 reduces, but the number of ranges grows. This
increases the number of bits needed to encode each partition.

4.2.2 GreedyMerge Algorithm. A synopsis is expected to have
a small memory footprint. We propose a greedy algorithm to
merge ranges and reduce the size of xGRT while keeping the
GRT cost low. Merging t ranges R1, . . . ,Rt has two overheads:
the extra range cost3 and the cost of the newly introduced gaps.

Example 4.2. Suppose partition P={1, 3, 6, 8, 9, 13} and a given

xGRT. Suppose we select two ranges [8-9] and [11-12] to merge, and

let [11-12] be a range from another partition. The ranges [8-9] and
[11-12] would merge into [8-12]. After this merge, the popularities

of value 11 and 12 contribute to the GRT cost against partition P
while it would not before. This is the extra cost of the range [11-12].
Before merging, the query 11 ≤ x ≤ 12 would not have any match

on this partition since the GRT would tell that this partition has no

match. However, after merging, the GRT would suggest to load the

partition since this partition has data within [8-12]. Because there
is a gap between the two ranges (i.e. value 10 is missing), the cost

of the gap contributes to the extra cost of merging, which comes

from the popularities of 10, 11, and 12.

The greedy merge algorithm must maintain cost matrix EC ,
with ECi, j being the extra cost of merging ranges ri , . . . , r j in
xGRT. After merging ranges ru , . . . , rv , all entries at rowv or col-
umn v are invalidated, and every entry ECi, j at row u or column
u must be recomputed. We continue picking the lowest extra
cost and updating EC , until onlym ranges remain. However, we
notice that if a larger merging fully contains a smaller one, then
it is guaranteed that the smaller merging has a lower (or equal)
cost than the larger one since the extra-cost is non-negative.
Therefore, we simplify the algorithm to use a 1-dimensional list
of extra-cost, with EC having NR -1 entries. In this case, ECi de-
notes the extra-cost of merging the i-th range with the next one
in xGRT. At each iteration of the algorithm, we pick the lowest
extra-cost, ECu , and merge theuth range with the (u+1)th range
and update EC : we invalidate ECu+1 and range (u+1) in xGRT. If
ECu is the last entry, then ECu itself is invalidated. On the other
hand, we at most need to update two entries of EC . If ECu is not
the first or the last entry, we re-calculate ECu−1 and ECu using
the updated xGRT. Note that ECu now stores the extra-cost of
merging the uth and (u + 2)th ranges as the (u + 1)th entry has
been invalidated. If ECu is the first (the last) entry, then we only
re-calculate ECu (ECu−1). We iterate until onlym ranges remain.
We name the result list cGRT (for compact GRT). Our algorithm
takes O

(
(kNp −m)Np log(kNp )

)
time to find cGRT.

4.3 Partition Encoding and Elimination

Encoding partitions. Once the GRT is constructed withm mu-
tually exclusive ranges, each column partition can be encoded
using a bit string of lengthm. The bit i is 1 if and only if the par-
tition has at least one value within the value range ri in the GRT.
This is a pre-processing step. For each partition, the encoded bit
string serves as its compact synopsis, which is kept in memory.
Encoding query. At query processing time, each query is en-
coded as a bit string. The i-th bit is set to one if at least one value
in the range ri of the GRT satisfies the query predicate.
Partition pruning. The encoded query is compared against the
encoded bit string for each partition, using bitwise AND opera-
tion. If the result bit string has at least one set bit, there might
be some value(s) in the corresponding partition that satisfy the
query predicate. Otherwise, no record in the partition will satisfy
the query predicate, and the partition can be safely pruned.

3I.e. the range cost of merging R1, . . . , Rt but excluding Ri .
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(a) GRT based encoding vs. MinMax (ratio of gaps preserved)

(b) Normalized GRT cost, varying the number of bits (left)
(c) GRT construction time (seconds), varying the number of bits (right)

Figure 2: Experiments on 1M rows

5 EXPERIMENTAL EVALUATIONS

We conducted experiments on a machine with Intel Core i7-
4770 CPU. The dataset is from a real SAP application. We range-
partitioned the table based on a date column, and extracted syn-
opsis (MinMax or GRT based) from the document identifier (SAP
UUID) of each partition. The distribution of values in this column
was sparse with many gaps. Fig. 2a compares GRT encoding with
MinMax based on the ratio of gaps preserved. For each column
partition, the measure quantifies the ratio of values in column
partition’sMinMax range, that 1) do not appear in the column
partition, and 2) can be excluded using the column synopsis. This
ratio is between 0 and 1, with larger value more desirable; it indi-
cates better pruning. This measure is zero for MinMax; none of
the values appearing in a column partition gap can be excluded
by the minimum and the maximum range. The memory overhead
for MinMax for each partition is a pair of minimum and max-
imum values. For GRT based encoding, the memory overhead
is one bit string per partition, plus one global range table for
all partitions. Note that we need to have values (i.e. value pairs
for MinMax and value ranges in GRT) in memory, instead of
dictionary value identifiers. This is mainly because the pruning is
performed without accessing each column and its data structures
(i.e. encoded data vector and dictionary).

Using GRT based encoding (Sec. 4.2.2), one can preserve more
gaps as "zero" bits of the synopses to demonstrate values in the
gap that are not included in a partition. The number of gaps
preserved decreases when the number of bits dedicated to each
synopsis reduces; merging GRT ranges produce wider the ranges
in the target GRT table. This reduces the number of zeros as
well as pruning opportunity. Fig. 2b reports the normalized GRT
cost for no merge (xGRT of Sec. 4.2.1) and cGRT (Sec. 4.2.2).
With reduction in the number of bits, the overhead of merge
is observed as increase in the normalized GRT cost and in the
construction time (Fig. 2c). For both xGRT and merged GRT, the
normalized GRT cost decreases when the dataset size increases
(Fig. 3a,b). The reason is that partitions become larger and the
number or the size of gaps reduces in each partition. Therefore,
the number of split ranges in xGRT decreases. Consequently, the
time spent to merge these ranges reduces.

(a) Normalized GRT cost, varying the number or rows

(b) GRT construction time (seconds), varying the number or rows
Figure 3: Scalability

6 CONCLUSION AND FUTUREWORK

We introduced GRT, a compact data structure to achieve partition
pruning. GRT is a list of ranges which we use to encode partitions
and predicates. Bit string encoding is compact (compared to orig-
inal partitions) and can be used for efficient partition elimination.
This encoding is superior toMinMax zone maps. In particular,
when the distribution of values in column partitions is sparse and
value gaps appear, pruning byMinMax becomes less effective;
false positives demand for extra candidate check [7]. Encoding
partitions using global range tables, as opposed to local range
tables optimized per partition (e.g. [9]), has the advantage that
partition elimination can be performed without re-encoding the
query per partition. Our results confirm the effectiveness of our
approach, in preserving gap information. We studied the applica-
tion of GRT in the context of query processing on cold partitions.
However, its application can be extended to other use cases, e.g.
semi-join reduction and enforcing the uniqueness constraint. Our
encoding is reminiscent of Bloom filters [2]; we set bits using a
global range table common to all partitions, to assist point and
range queries. Designing GRT to offer bounds on false positive
rates is an interesting future research direction. We plan to assign
different sub-partitioning quota for dense vs. sparse partitions
(non-homogeneous sub-partitioning). Sparse partitions should
receive more encoding space than dense and uniform partitions,
to reduce false positive rates.
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ABSTRACT
Modern persistent Key/Value stores are designed to meet the de-
mand for high transactional throughput and high data-ingestion
rates. Still, they rely on backwards-compatible storage stack and
abstractions to ease space management, foster seamless prolifera-
tion and system integration. Their dependence on the traditional
I/O stack has negative impact on performance, causes unaccept-
ably high write-amplification, and limits the storage longevity.

In the present paper we present NoFTL-KV, an approach that
results in a lean I/O stack, integrating physical storage manage-
ment natively in the Key/Value store. NoFTL-KV eliminates back-
wards compatibility, allowing the Key/Value store to directly con-
sume the characteristics of modern storage technologies. NoFTL-
KV is implemented under RocksDB. The performance evaluation
under LinkBench shows that NoFTL-KV improves transactional
throughput by 33%, while response times improve up to 2.3x.
Furthermore, NoFTL-KV reduces write-amplification 19x and
improves storage longevity by imately the same factor.

1 INTRODUCTION
Over the last decade, various specialized DBMSs have been in-
tensively investigated to meet the demand of new workloads,
applications or data models. Persistent Key/Value stores (KV-
stores) are specialized for high-throughput and predominantly
update-intensive, OLTP-style workloads.

KV-stores exhibit a characteristic lightweight architecture, sim-
plifying the deployment and integration process for large in-
frastructures and lowering maintenance demand in production.
Scalability is intrinsically supported in terms of partitioning and
distribution schemes, making KV-stores an excellent choice for
current data-center architectures. The simplicity of their interface
(with put and get) as well as data model matches wide range of
modern insert and update intensive applications running high-
throughput OLTP-style workloads. Last but not least, the abil-
ity to serve as DB-Engines in traditional and modern NoSQL
databases (e.g. MyRocks[13] or MongoRocks), allows for the in-
tegration as meta stores into applications and distributed file
systems (e.g. Ceph[10]), or serve as a backend for OLTP services.
∗Produces the permission block, and copyright information
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Persistent KV-stores leverage the properties of modern hard-
ware due to the lean architecture, interface and flexibility, yet
native hardware support is rare. The majority of such KV-stores
rely on backwards-compatible storage, to ease administration and
foster proliferation. Furthermore, the use of file systems simpli-
fies space management, support for various storage architectures
and the embedding in existing data center environments. The un-
derlying assumptions are that: (1) files and file-based I/O are the ap-
propriate storage abstractions, and (2) use of standard/compatibility
interfaces (and abstractions) on each individual layer of the I/O
stack does not harm performance.

The traditional I/O stack was developed with the characteris-
tics of HDDs in mind, with the block-device interface, block I/O
operations and files as abstractions. New storage technologies
such as Non-Volatile Memories or Flash exhibit very different
characteristics. However, to utilize them, persistent KV-stores
require multiple layers of backwards compatibility, having a neg-
ative impact on performance and longevity. (1) Hardware re-
sources are not fully exploited because of the hardware-oblivious
abstractions. (2) DBMS access patterns result in suboptimal physi-
cal I/O patterns due to the presence of multiple abstraction layers
along the critical I/O path. (3) KV-store information about the
current workload cannot be used for better physical data place-
ment. (4) Functionality along this critical I/O path is redundant.
Significant write-amplification and suboptimal performance are
the inevitable consequences.
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To verify the above claims we perform an experiment under
RocksDB running LinkBench and measure the end-to-end write-
amplification along a backwards-compatible, file-system based
stack. The results (Fig. 2a) indicate a 19x physical write volume
increase, lower performance and longevity.

In this paper we present NoFTL-KV (Fig. 1), an approach that
avoids backwards compatibility and targets the above disadvan-
tages by controlling the underlying physical storage directly.
NoFTL-KV integrates physical storage (Flash) management na-
tively in the KV-store. Subsequently, it opens up ways for work-
load adaptability within the storage layer and new abstractions
for native storage.
The main contributions of this paper are:
(1) The extension of the concept of native storage management

(NoFTL) to persistent KV-stores. We show that by coherently
integrating address mapping, data placement, GC and free
space management into the KV-store, storage characteristics,
on-device parallelism and wear-leveling are addressed.

(2) NoFTL-KV is implemented under RocksDB.
(3) The performance evaluation under LinkBench[1] shows that

NoFTL-KV improves the transactional throughput by 33%,
while the response times improve up to 2.3x. Furthermore,
NoFTL-KV improves physical storage management. In terms
of write efficiency, NoFTL-KV performs 87% less physical
page writes (including maintenance I/O and GC). Moreover,
NoFTL-KV performs 19x less erases, improving the endurance
by approximately the same factor.
The rest of the paper is structured as follows. NoFTL-KV and

the integration into RocksDB are described in Section 3. Experi-
mental results are discussed in Section 4. We conclude in Section
5.

2 RELATEDWORK
Modern workloads (Social Media, Big Data or IoT) not only have
become write-intensive and require high sequential throughput,
but also demand low latencies [16]. Read- andWrite-Amplification
are major performance factors [16].

These can either be approached by utilising compression to de-
crease I/O in general [5] or by aligning better with the character-
istics of modern storage devices. The latter is addressed in terms
of either new data structures [3, 4, 19], or new software interfaces
[2] as well as Flash interface extensions [9, 12, 14]. However, nei-
ther of those takes the issues with the cooked stack into account.
[6] and [7] present a full integration of native storage support
within traditional DBMS. A few lightweight KV-stores address
the concept of direct native storage integration [8, 15, 17, 18] by
moving the entire KV-store onto the device. Yet, physical storage
management is only partially addressed.

With NoFTL-KV we address the deep integration of native
storage management to tackle all issues regarding the traditional
cooked stack while avoiding to overload the device controller
with database functionality and maintaining a mature KV-store.

3 NOFTL-KV: NATIVE STORAGE KV-STORE
We investigate the concept of native storage management and
NoFTL under persistent KV-stores to address and evaluate the
above mentioned claims. RocksDB exhibits an append-only I/O
pattern for various write-intensive workloads, because of its
LSM-Tree-based persistent storage. LSM-trees perform regular
compactions to remove old records, to ensure optimal tree struc-
ture and to perform hot-cold-separation. Compactions reorganize

levels of the LSM-Tree, removing updated or deleted KV-Pairs, at
regular intervals or given a certain threshold. As a consequence,
frequently changing data is placed in the upper levels of the
LSM-Tree, while the lower levels contain the cold data.

Under NoFTL-KV we pursue coherent integration of Flash
management into existing modules of the KV-store as shown
in Fig. 3. Firstly, NoFTL-KV has direct control over hardware
resources through a native storage interface (NSI). NSI allows the
DBMS to operate with I/O operations, in granularity and with
addressing schemes supported by the the underlying storage
technology. Furthermore, NSI eliminates the need to support
backwards compatibility. Secondly, we revisit hardware-oblivious
abstractions and propose using physical storage abstractions
such as Regions to: (a) reduce read/write amplification along the
I/O path, (b) utilize available I/O parallelism more efficiently,
(c) provide better hot-cold data separation to (d) improve space
management and (e) increase longevity.

Moreover, unnecessary DBMS data transfers can be reduced by
pushing tasks down to the storage device. For instance, parts of
garbage collection and compaction can be planned by the NoFTL-
KV storage manager for certain Regions, but are executed onto
the device to reduce I/O contention and data transfers. Likewise,
queries, i.e scans, can be pushed down and executed on the stor-
age device. Especially in combination with Regions, such queries
can profit by the involved address mapping and level of on-device-
parallelism. Also worth to mention is that processors on such
storage devices usually exhibits the characteristics of common
co-processor (ASIC or FPGA). These are perfectly aligned to the
characteristics of modern storage technology (Flash, NVM) e.g.
in respect to parallelism.
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NoFTL concept within an entire KV-store for native stor-
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By integrating address mapping into the storage manager
of the KV-store, the latter gets control over the physical data
placement on Flash. Hence, the KV-store can utilize available
information about data semantics, statistics and the access pat-
tern (e.g., desired level of I/O parallelism) to perform efficient
placement. Individual levels of the LSM-Tree can be physically
separated on different chips to improve I/O throughput and par-
allelism since I/O-heavy compaction jobs do not block the entire
device. Consequently, new storage abstractions can be defined
besides files.
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Figure 2: Results of the experimental evaluation of NoFTL-KV using LinkBench

We introduce Regions as physical storage abstractions span-
ning multiple chips/dies (i.e. parallel unit of the storage device).
They can be effectively optimized for different access patterns (se-
quential, random, append) of various KV-store components (e.g.
Levels of LSM-Tree and Log Manager). Regions allow for flexible
physical storage management as the parameters of hot-cold data
separation, garbage collection etc. are part of the definition. The
level of supported I/O parallelism per Region can be defined in
terms of the number of chips/dies it spans or whether these run
in pseudo SLC, MLC or TLC Flash mode. Region definitions are
not static, but can evolve over time to reflect properties of the
workload.
CREATE REGION rgBlockMapping (

MAX_CHIPS=4, MAX_CHANNELS=4,..., ADDR_MAPPING=BLOCK,
NAND_MODE=MLC, ...);

CREATE TABLESPACE MyRocks.tblBlock (
REGION=rgBlockMapping, UNIFORM EXTENT SIZE 128K );

CREATE TABLE MyRocks.nodetable(...)
TABLESPACE MyRocks.tblBlock;

Furthermore, the functional redundancy along the cooked I/O
stack is reduced. While, the file-system and the FTL distort the
append-based access pattern and amplify the read/write data
volume, NoFTL-KV simplifies the critical I/O path, exhibits a
physically sequential I/O pattern, and offers better physical stor-
age management. Consequently, write-amplification is signifi-
cantly reduced. Similarly, the integration of the garbage collec-
tion within the compaction process of the LSM-Tree, allows for

elimination of the time and resource-expensive merges common
for traditional FTL-based SSDs. As a result, the KV-store is able
to trigger the GC only when necessary and under the current
workload. Higher longevity through less block erases and better
throughput are the consequence.

4 EXPERIMENTAL EVALUATION
Testbed. Our testbed comprises a server equipped with an Intel
Xeon E5-1620 v3 3.50 GHz CPU-core, 32GB RAM and an Intel
DC 3600 SSD under Ubuntu 12.04 LTS, kernel 3.13.0.

The Flash storage device for the NoFTL-KV data is emulated
by our real-time Flash Simulator[6], which is running as a kernel
module. Configured with common latencies for reads, writes, and
erases of current SLC NAND Flash it is able to simulate a mod-
ern enterprise SSD with either block- or char-device interfaces.
For the block device, FASTer[11] is utilised as FTL with an over-
provisioning area of 14%. In our setup, the simulator consumes
24 GB of memory to emulate an SSD of the same capacity with
256 pages (4KB) on 24576 blocks. The level of parallelism (emu-
lated NAND chips/dies) is limited by the number of hardware
threads. For our experiments we configured NoFTL-KV to only
store RocksDB LSM-Tree files on the emulated device and the
remaining files on the Intel DC 3600 formatted with an ext4 file
system.
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LinkBench. The experimental evaluation is performed using
LinkBench[1], which is an OLTP-style workload on large up-
datable graphs. Under LinkBench the working data set size is
an order of magnitude larger than the database buffer. The re-
quest phase of LinkBench comprises common graph queries like
adding, getting, counting, deleting, updating nodes or edges on
the graph. The experimental dataset is a graph of 15M nodes (ini-
tial), amounting to 15GB raw data. The number of requests and
duration vary depending on the experiment. The baseline utilises
the same configuration (ext3, 4KB blocksize, active journal) for
MyRocks with RocksDB, hereinafter referred to as RocksDB.

Write-Amplification. Tomeasure write amplification, hooks
are placed in the storage engine of RocksDB (DB), the file system
(FS), and the Flash emulator (FTL), i.e., in all layers along the
I/O path. The number of requests is limited to 1M per thread
with sufficient time (10h) to be executed completely. This ensures
that, at the end, both variants have executed the same number of
operations. The results (Fig. 2a) for NoFTL-KV and the baseline
RocksDB represent average values of multiple runs.

Not surprisingly, the significant write amplification of the
cooked stack becomes evident. The 26 GB of raw data, bulk-
loaded during the load phase, swells up by more than 14 times to
383 GB. On top of that, the file system adds about 225 GB and
the FTL increases this again by 132 GB. During the request phase,
the disadvantages of the cooked I/O stack become even more
visible. The average write-amplification here is more than 19x.
This creates enormous I/O overhead, which is clearly reflected
by the metrics to follow.

Throughput. The mean number of executed operations and
their errors for every operation type is shown in Fig. 2c. NoFTL-
KV outperforms RocksDB in every type of query. This is because
of the smaller data volume to be written, and the better utilisation
of available Flash parallelism. The workload of LinkBench has a
high write-intensity over the complete duration. Consequently,
the throughput increases about 31% accross all operation types.
The performance stability across different runs, indicated by the
error bars increases by an order of magnitude.

Response Time. To investigate the impact on response time
for common operations, we perform further experiments with
1M requests per thread. Fig. 2d shows the average duration, while
the error bars indicate the standard deviation.

One can clearly see that the latency is lower under NoFTL-KV.
Especially reading operations like GetNode(), GetLinksList(), and
MultigetLink() perform significantly better. This is even more
relevant, since about 22% of these could not be served by data-
base buffer (cache miss rate) and are read from the persistent
device. On the other hand, inserting and updating operations
like AddNode(), AddLink(), and UpdateLink() complete directly
after pushing the data into an in-memory buffer and the WAL.
This buffer is persistet only after a compaction, which is not
taken into account for the operation latency. This explains the
similar performance for both RocksDB and NoFTL-KV. The only
exception is UpdateNode(), which might result in multiple gets
that are slower with the traditional I/O stack.

Erases and Longevity. Write-amplification on Flash devices
inevitably leads to more physical Flash erases, which has negative
impact on device longevity. Table 2b captures the GC activity
in terms of physical page writes and block erases during the
benchmark runs of the previous experiment.

RocksDB performs almost 19 times the physical block erases
than NoFTL-KV, which is primarily due to (i) the journal of the
file system, which doubles Flash page writes, and (ii) FASTer’s

hybrid address mapping scheme. It is worth noting that the erase
overhead of FASTer would also be present in other FTLs, which
utilize hybrid address translation (common for current SSDs).
As soon as the so-called log block area of the device runs out
of space, the GC kicks in and merges the updated data with
the corresponding Flash blocks in the data block area. Each of
those merges requires multiple page migrations (on-device write
amplification), and one or two erase operations (partial or full
merges). NoFTL-KV is configured to use BLM, which matches the
append-only LSM-Tree based storage management of RocksDB.

5 CONCLUSION
In the present paper we propose NoFTL-KV, an approach that re-
sults in a lean I/O stack, integrating physical storage management
natively in the Key/Value store. NoFTL-KV eliminates backwards
compatibility, allowing the Key/Value store to directly exploit
the characteristics of modern storage technologies. NoFTL-KV
is implemented under RocksDB and evaluated using LinkBench.
The transactional throughput improves by 33%, while response
times improve up to 2.3x. Furthermore, NoFTL-KV reduces write-
amplification 19x and improves endurance. In addition, our cur-
rent integration on the file-based LSM-Tree can be further im-
proved by a deeper integration into the KV-store’s data structure
in future work to gain additional performance improvements.
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Towards Hypothetical Reasoning Using
Distributed Provenance

Daniel Deutch, Yuval Moskovitch, Itay Polack Gadassi and Noam Rinetzky
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ABSTRACT
Hypothetical reasoning is the iterative examination of the effect
of modifications to the data on the result of some computation
or data analysis query. This kind of reasoning is commonly per-
formed by data scientists to gain insights. Previous work has
indicated that fine-grained data provenance can be instrumental
for the efficient performance of hypothetical reasoning: instead
of a costly re-execution of the underlying application, one may
assign values to a pre-computed provenance expression. How-
ever, current techniques for fine-grained provenance tracking
are ill-suited for large-scale data due to the overhead they entail
on both execution time and memory consumption.

We outline an approach for hypothetical reasoning for large-
scale data. Our key insights are: (i) tracking only relevant parts
of the provenance based on an a priori specification of classes of
hypothetical scenarios that are of interest and (ii) the distributed
tracking of provenance tailored to fit distributed data processing
frameworks such as Apache Spark.We also discuss the challenges
in both respects and our initial directions for addressing them.

1 INTRODUCTION
Data analytics often involves hypothetical reasoning; repeatedly
modifying the database according to specific scenarios, and ob-
serving the effect of such modifications on the result of some
computation. A naive way to perform such an analysis is to
create a copy of the data, modify it, and recompute the results
for the inspected scenario. However, this approach can be very
costly when the computation involves access to large-scale data.
A more efficient method is to use provisioning [4, 6]: compute
a symbolic provenance expression (PE) which encodes the result
of the computation under any possible scenario. Then, the user
interacts with the PE for efficient exploration of the scenarios.
Creating the PE incurs a one-time overhead over the evaluation of
a specific query. However, if the analyst inspects multiple scenar-
ios, the creation of the PE may pay off in an inspection which is
orders-of-magnitude more efficient than a naive recomputation.

Example 1.1 (Running example). Consider a database of a tele-
phony company containing the number, name, zip code, and call
plan of every customer, the price per minute (ppm) of every plan,
and a log of the duration and date of every call (see Fig. 1). The
following query computes the company revenues (this example
is inspired by the one used in [6]):

SELECT Calls.Mo, SUM(Calls.Dur * Plans.Price)

FROM Calls , Cust , Plans

WHERE Cust.Plan = Plans.Plan

AND Cust.Num = Calls.Num

GROUP BY Calls.Mo

The query computes the monthly revenues by summing the per-
call-revenue, computed by multiplying the duration of every call

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the 21st
International Conference on Extending Database Technology (EDBT), March 26-29,
2018, ISBN 978-3-89318-078-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Cust

Num Name Zip Plan

555-777 Bob 10001 Plan1
555-942 Alice 10002 Plan2
555-465 Dave 10003 Plan2

Plans

Plan Price

Plan1 0.1
Plan2 0.2

Calls

Num Mo Dur

555-777 Jan 21
555-777 Jan 8
555-777 Jan 14
555-777 Feb 7
555-777 Feb 17
555-777 Feb 33
555-942 Jan 28
555-942 Jan 20
555-942 Jan 23
555-942 Jan 21

Num Mo Dur

555-942 Feb 33
555-942 Feb 27
555-942 Feb 32
555-942 Feb 16
555-465 Jan 9
555-465 Jan 7
555-465 Jan 8
555-465 Feb 33
555-465 Feb 14
555-465 Feb 12

Figure 1: Example database

by the ppm of the customer’s plan and grouped by month. An
analyst may be interested in the effect of possible changes to the
call price on the company revenues. For example, the analyst
may wish to compute the revenues under (some combination of)
the following hypothetical scenarios:
HS1 What if the ppm is decreased by 10% in calling plan 1 and

set to $0.3 in calling plan 2?
HS2 What if all the customers with vanity phone numbers were

subscribed to plan 1?
HS3 What if the ppm for costumers in Boston is set to $0.3?
HS4 What if a 25% discount is given to calls which took less than

ten minutes?

Computing a PE for the query of Example 1.1 and the scenario
HS1 is relatively straightforward for small-scale data [4, 6] (see
Section 2.1). Scenario HS2 is more challenging, since it involves
changes to the parts of data that is in a comparison in the query.
This may be handled in a c-table-like construction as mentioned
in [6] (see Section 2.2). The two other scenarios involve changes
that may not be directly applied to input data, but rather only to
some views over it; we discuss the semantics of such scenarios
and the questions that arise in Section 2.3. Further, for all scenar-
ios, there is the concern of space and time overhead incurred by
provenance tracking. We propose distributed provenance repre-
sentations to address this, in Section 3. Specifically, we present
two different methods for representing fine-grained provenance
in a distributed manner: a combined representation that stores
each polynomial as a single tuple in the output table comprised
of a collection of monomials, and a separated representation that
stores separately each monomial. Our preliminary results, based
on an implementation in Apache Spark [12, 14, 15], indicate that
the combined approach allows for more efficient exploration, pro-
vided that the provenance expression is relatively small, while
the separated approach scales better as it is more suitable to the
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distributed model, however it incurs a non-negligible overhead
over the combined approach where the latter can be used.

Related Work. Data provenance has been studied for different
data transformation languages, from relational algebra to Nested
Relational Calculus, with different provenance models and appli-
cations and with different means for efficient storage. Particularly
relevant are systems that support provenance for distributed sys-
tems [3, 5, 9, 11, 13]. We note that the Spark framework already
supports a provenance-like logging mechanism that allows for
fault tolerance. Unlike those existing works, we focus on cell-
based provenance, where polynomials replace individual values,
which is necessary fo answering what-if questions. The use of
data provenance for hypothetical reasoning has also been studied
in e.g., [4, 6, 7], but without targeting big data and addressing
the scalability issues that consequently arise.

2 PROVISIONING IN A NUTSHELL
Provisioning, i.e., hypothetical reasoning using provenance, is a
two step process: First, the analyst parameterizes some entries
in the input database. Then, she explores the effect of hypotheti-
cal modifications by instantiating the parametrized entries with
specific values [4, 6]. Technically, parametrization entails instru-
menting entries using symbolic variables, e.g., by (symbolically)
adding or multiplying them with the original numerical values.
When the provisioning engine runs an SQL query, it treats the pa-
rameterized entries in a symbolic way, and creates a provenance
expression (PE); an output table which may contain symbolic val-
ues. The symbolic representation allows the analyst to explore
multiple scenarios by evaluating the PE using a specific assign-
ments of concrete values to symbolic variables. Different types of
scenarios lead to different challenges as we next explain.

2.1 Basic Provisioning
We start with the case where the parametrization involves a sin-
gle table and the program does not perform selection or join over
parameterized attributes. In this case, the semantics of provision-
ing is fairly straightforward. First, the parameterized data entries
are annotated with variables which, roughly speaking, replace
every parameterized data by a multivariate polynomial. Second,
a query Q is executed according to its standard semantics except
that summations and multiplications are executed symbolically
to produce polynomials instead of concrete values. As for aggre-
gation, we simply combine the polynomials in the provisioned
attributes using a symbolic plus (+) operator. The analyst uses
the generated provenance expression to explore a specific sce-
nario by providing an assignment ρ which defines a (concrete)
valuation for each symbolic variable and computing the value of
the polynomial under ρ. It is straightforward to observe that this
computation produces the same results as the re-execution of Q
on a correspondingly modified database.

Example 2.1. Reconsider our running example query and sce-
nario HS1 from the Introduction. To generate a PE for them
(where we wish to support a generalized version of HS1), we
first parameterize the input database as shown in the Plans table
of Figure 3. In this example, the price for plan 1 is multiplied
by a variable p1 and the price for plan 2 is both multiplied by
a variable p2 and added a variable s2, the latter allowing for its
replacement by a different value. Evaluating the running example
query using these symbolic values results in the output table and
provisioning expressions shown in Figure 2.

Provenance expression
Mo Revenues
Jan 43 · (0.1 · p1) + 116 · (0.2 · p2 + s2)
Feb 57 · (0.1 · p1) + 167 · (0.2 · p2 + s2)

Output
Mo Rev.
Jan 38.67
Feb 55.23

Figure 2: A PE and the results of its evaluation according
to scenario HS1 (i.e., ρ = [p1 7→ 0.9,p2 7→ 0, s2 7→ 0.3])

2.2 Conditional Provisioning
Hypothetical scenario HS2 in Example 1.1 is a particular member
in a family of scenarios which enable computing the company’s
monthly revenues under different reassignments of customers to
plans. A PE which allows inspecting the scenarios in this family
can be generated by the techniques of [4, 6]. In our example, this
entails parameterizing the Plan attribute in table Cust by replac-
ing its content in every entry by a customer-unique symbolic
variable, and then representing the join of Cust and Plans over
the parameterized attribute using a c-table [10].

Example 2.2. Reconsider Figure 3, and now note that the Cust
table is also parameterized, adding the parameters n777, n942 and
n465 for HS2. Each of these may be assigned to Plan1 or Plan2.
The resulting PE for January in this example is
43 · (0.1 · p1) · [n777 = Plan1] + 43 · (0.2 · p2 + s2) · [n777 = Plan2] +
92 · (0.1 · p1) · [n942 = Plan1] + 92 · (0.2 · p2 + s2) · [n942 = Plan2] +
24 · (0.1 · p1) · [n465 = Plan1] + 24 · (0.2 · p2 + s2) · [n465 = Plan2]

Expressions in brackets are mapped to 1 or 0 based on their
truth value upon assignment of values to the variables. If we
are still interested in exploring HS1, we simply assign to the
n variables their original values, and proceed to assigning the
other variables as in the previous example. But we can also, e.g.,
assign Plan2 to n777, intuitively switching the plan of Bob to be
Plan2; then the expression [n777 = Plan1] is evaluated to 0 and
[n777 = Plan2] to 1, so that Bob is given the price of Plan2.

2.3 View-Based Provisioning
The parameterization of the database in Examples 2.1 and 2.2 is
done over a single table for each hypothetical scenario. However,
the symbolic representation needed for capturing scenarios HS3
and HS4 require the pre-generated views produced by joining
tables Cust and Plans and tables Cust and Calls, respectively.
The view is required because Price is parameterized based on
the customer’s Zip code in HS3 and the call’s duration (Dur) in
HS4. We can parameterize a view as if it is a single (albeit joined)
table, and use it to generate a provenance expression as described
in Section 2.1. However, the use of a parameterized view may
render some queries as undefined for hypothetical reasoning as
the following example shows.

Example 2.3. Retrieving the ppm of Plan1, using the param-
eterized view generated for scenario HS3 does not make sense
because the price of the plan depends on the customer’s zip code.
Conversely, determining the monthly revenues over this view is

Cust

Num Name Zip Plan

555-777 Bob 10001 n777
555-942 Alice 10002 n942
555-465 Dave 10003 n465

Plans

Plan Price

Plan1 0.1 · p1
Plan2 0.2 · p2 + s2

Figure 3: Data with provenance annotation
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well defined, and can be computed using, e.g., a rewrite of the
query shown in Example 2.1.

The problem of using views for hypothetical reasoning is
highly related to the problem of answering queries using views [8].
One notable difference between the two problems is that a query
may be well defined under an hypothetical scenario also if it only
relies on tables that are not used in the views; the problem arises
only when the query uses the same pieces of data affected by the
parameterization, but does so in a “different" way. Formalizing
and studying the properties that make a query answerable under
a definition of hypothetical scenarios over views is an intriguing
problem for investigation.

3 DISTRIBUTED BASIC PROVISIONING
Provisioning large-scale data is challenging: computing andmain-
taining provenance expressions may lead to large overheads in
terms of both memory and time. We propose a partial remedy
to this problem via an adaptation of basic provisioning to the
distributed setting, and report on initial promising experimental
results obtained in the context of Apache Spark [12, 14, 15].

Simplifying assumptions. We focus on basic provisioning and
further assume that only numerical attributes may be parameter-
ized and that the parameterization is performed on each record
separately—parameterization based on information located at
multiple tables requires creating an appropriate (unparameter-
ized) view at a preliminary stage.

3.1 Apache Spark
Apache Spark is a popular framework for writing large scale data
processing applications. Spark provides operations such as map,
filter and fold which can be seen as extensions to the standard
database operations project, select and aggregation, respectively,
with arbitrary UDFs applied. In addition, Spark provides a natural
join operation between multisets indexed by a common (possibly
non-unique) key and foldByKey operations which, analogously
to the groupByKey operation in databases, aggregates together
the values pertaining to the same key.

Spark programs are executed on a cluster comprised of a sin-
gle master node, which coordinates one or more worker nodes.
Roughly speaking, a spark program operates as follows: It first
partitions the data across the cluster nodes. map and filter opera-
tions are executed by each node, and on each partition in parallel.
fold operations are executed in two stages: Every worker node
aggregates the values in its partitions and sends the partial result
to the master node which aggregates them together. foldByKey
and join operations may require a preliminary (expensive) shuf-
fle stage where records are exchanged between working nodes
according to a strategy determined by the driver. At the end of
the shuffle stage, all the records pertaining to any key are located
in the same partition. This allows to compute the (by-key) fold
and join operations by every working node separately.

3.2 Distributed Provenance Expressions
Representing and interacting with a provenance expression can
be computationally expensive when it is generated from large-
scale data. Specifically, two challenges may arise: (i) the table may
contain many polynomials, thus representing it would consume
a lot of space, and (ii) every polynomial may be comprised of
a large number of monomials, thus designing efficient ways to
represent and evaluate large polynomials is required.

Key Value
(Jan, p1) 43 · 0.1
(Jan, p2) 116 · 0.2
(Jan, s2) 116
(Feb, p1) 57 · 0.1
(Feb, p2) 167 · 0.2
(Feb, s2) 167

Figure 4: Separated provenance representation.

Handling challenge (i). Using a polynomial-level distributed rep-
resentation, which we refer to as the combined representation. In
this representation, the provenance expression is spread across
the cluster so that different nodes manage different polynomials
(and each node manages a whole polynomial). Technically, the
combined representation stores every polynomial as an additional
attribute of each relation. The attribute is an array of monomials,
where every monomial is a pair comprised of a coefficient and an
array of symbolic variables. The symbolic execution of an aggre-
gation operation amounts to combining the monomials coming
from different polynomials by performing algebraic simplifica-
tions to compute the coefficients. For example, the provenance
expression shown in Figure 2 is in the combined representation.
Evaluating the provenance expression is done by an invocation
of a map operation that evaluates every polynomial for the given
assignment in the standard way.

Handling challenge (ii). Using monomial-level distributed rep-
resentation, which we refer to as the separated representation: We
split every polynomial into its constituent monomials and store
each monomial in its own record. Technically, every monomial is
represented as a key-value pair, where the value is themonomial’s
coefficient and the key is a combination of a unique identifier
of the polynomial that the monomial belongs together with the
product of its variables. For example, Figure 4 depicts a separated
representation of the PE shown in Figure 2. Under the separated
representation, the (symbolic) execution of an aggregation oper-
ation does not combine different symbolic values into a single
polynomial. Instead, when evaluating the provenance expression,
a map operation evaluates the value of every monomial and a
foldByKey operation computes the value of every polynomial.

3.3 Experimental Evaluation
We have performed a preliminary evaluation of our approach,
and show two basic experiments based on our running example
and a synthetically generated database. In the first experiment,
we have joined the Cust and Plans tables, and parameterized
the Price attribute of every customer record by multiplying it
with a unique customer-unique variable. We ran the query using
a Cust table that contained 218 (262,144) customers, identified
by their unique phone number, and uniformly distributed across
the 41,668 US zip codes, and eight call plans. This resulted in
a provenance expression comprised of 1536 polynomials. We
considered different sizes of the input data by populating the
Calls table with either 128, 256, 512, 1024, or 2048 calls for every
customer. The resulting sizes of the Calls tables are in the range
of 500MB to 9.1GB.

Creating the provenance expressions was up to ×2.1 slower
than the computation of the non-provisioned query. Evaluating
the queries, on the other hand, up to ×385 time faster than a naive
recomputation. Figure 5 depicts the provenance evaluation time
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for the smallest database1. We made sure that changing the size
of the data only affected the value of the coefficients, specifically,
it did not change the number of monomials in any of the poly-
nomials. As a result, the time it took to evaluate the provenance
expression was independent of the size of the database.

In the second experiment, we evaluated the efficacy of the
different representations using polynomial of different sizes by
generating a provenance expression that comprised of a single
polynomial with different number of monomials. We joined the
Cust and Plans tables, and parameterized the Price attribute of
every customer by multiplying it with a symbolic variable. We
used the same database as in the first experiment using a Calls
table with 32 calls for every customer. We ran the experiment
nine times, where in the ith experiment, for i = 0..8, we used the
same variable for all the customers whose phone numbers ended
with the same 10+i bits. Thus, the smallest polynomial contained
1024 monomials, and the biggest one had 262144. Figure 6 depicts
the time it took to generate the provenance expressions. It shows
that the Combined approach has the upper hand for small poly-
nomials, yet it quickly becomes much slower than the Separated
approach, up to the point of being prohibitively expensive.

Analysis. The Separated representation has an advantage for
big polynomial whereas the Combined approach is better when
the polynomials are small. We believe that the reason for this is
that the Separated representation allows to store and evaluate a

1We ran our experiments on Amazon EC2 public cloud [2] using a cluster comprised
of nine m4.xlarge virtual machines. Eight machines were used as workers and one
as the cluster’s driver. Each virtual machine has four virtual CPUs, 16GB memory.
(The physical CPU used for an m4.xlarge virtual machine is a 2.4GHz Intel Xeon
E5-2676 v3 processor, where every virtual CPU is a hyperthread of an Intel Xeon
core.) We ran Spark version 1.62 over Amazon Linux AMI 2016.03, with Linux kernel
4.4.11, Java runtime 1.8.0_101, and Scala version 2.10.5. The UDFs were implemented
in Scala, and the data was stored in Amazon Simple Storage Service (S3) [1].

single polynomial concurrently using multiple nodes. Further-
more, this representation is particularly beneficial in the con-
text of Spark which handles tables containing a large number of
records very efficiently, but struggles when it is asked to process
large records due to its in-memory representation of the data and
its single-threaded record processing.

4 OPEN PROBLEMS AND FUTUREWORK
We briefly discussed in this paper the problem of provisioning
for big data, highlighting semantic and scalability issues, and
proposing partial solutions in the context of Apache Spark. Both
facets of the problem require extensive investigation, which is
the subject of our on-going work. On the semantic side, a no-
table omission in the current literature is a formal language for
specifying hypothetical scenarios (the need for such language
is also mentioned in [4]); then, given a formal specification, can
we efficiently decide whether an hypothetical is “answerable"
(as in the view-based examples we have shown, this is not a
given) and if so efficiently generate the PE? In terms of efficiency,
we plan to extend our Spark-based implementation to allow for
conditional provisioning. In addition, we are interested in explor-
ing the benefits of a hybrid method for representing distributed
provenance which combines the methods Separated and Com-
bined we have presented by maintaining every polynomial as a
table of sub-polynomial instead of single monomials. Last, we
plan to investigate possibilities of “approximate provisioning",
where we lose some granularity of the possible assignments to
variables but gain in performance.
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ABSTRACT
Why-not queries help scientists understand why a given data
item was not returned by the executions of a given work�ow.
While answering such queries has been investigated for relational
databases, there is only one proposal in this area for work�ow
provenance, viz. the Why-Not algorithm. This algorithm makes
the assumption that the modules implementing the steps of the
work�ow preserve the attributes of the input datasets. This is,
however, not the case for all work�ow modules. We drop this
assumption, and show in this paper how theWeb can be harvested
to answer why-not queries against work�ow provenance.

1 INTRODUCTION
Scienti�c work�ows have been shown to facilitate and accelerate
scienti�c data exploration and analysis in many areas of sciences
[6]. A work�ow can be viewed as an acyclic graph in which
the nodes are modules that can be executed locally or remotely,
and the edges specify the data dependencies between the con-
stituent modules. Work�ows have been utilized to model and
enact in-silico experiments in a range of scienti�c �elds, includ-
ing proteomics, transcriptomics, metabolics, plant phenotyping,
astronomy, and bio-medicine.

Fig. 1 illustrates an example of a simple work�ow used for
identifying the pathway associated with a given input metabolite
(compound). Given a compound identi�er, the �rst module re-
turns a compound name, which is used to feed the second module
to obtain the corresponding pathway.

Figure 1: Example work�ow.

Major work�ow systems are instrumented to capture prove-
nance information that records the data items used and generated
by the work�ow modules together with information specifying
the lineage of such data items across the work�ow execution.

Work�ow provenance information can be utilized in a range
of applications [8]. For example, it can be used to i)- estimate the
quality of data based on the source data, ii)- determine the entity
(author) to whom a given data item should be attributed, and

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the 21st
International Conference on Extending Database Technology (EDBT), March 26-29,
2018, ISBN 978-3-89318-078-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

iii)- debug errors in the work�ow execution. In this work, we
focus on an application that has received little attention within
the work�ow provenance community, namely why-not queries.
Given the provenance traces of work�ow executions, the scientist
may want to understand why a given result, e.g., his/her favorite
protein, does not appear in the result of work�ow executions.

1.1 Related Work
We distinguish between two classes of proposals for answering
why-not queries: instance-based and module-based.

Instance-based. Proposals that fall into this category attempt
to �nd the data items in the inputs that are responsible for the non
appearance of a given data item in the result. More speci�cally,
they determine the changes that need to be applied to the input
datasets for the data item provided by the user to appear in the
result. Artemis [9] and Missing-Answers [10] are examples of
algorithms for processing instance-based why-not queries over
relational databases. There is no proposal in the state of the art
that investigates instance-based why-not queries for work�ow
provenance.

Module-based. Proposals in this class attempt to identify the
modules that are responsible for the non-appearance of a given
data item in the work�ow results. The only proposal in this
category for work�ow provenance is the Why-Not algorithm
proposed by Chapman and Jagadish [4]. Indeed, while why-not
queries have been investigated in databases, where datasets are
manipulated using (white boxes) query operators with known
operational semantics, this is not the case for scienti�c work�ows,
where the steps of the work�ow are implemented by black boxes,
the behavior of which is not necessarily known. Using the Why-
Not algorithm proposed by Chapman and Jagadish, the user query
is expressed as a set of atomic predicates that are combined using
AND and OR. An atomic predicate is evaluated over a single
attribute of the Input datasets of the work�ow. Chapman and
Jagadish make the assumption that the attributes of the input
datasets are preserved by themodules that compose the work�ow.
This is not the case, however, in the general case. For example,
the modules in the work�ow illustrated in Fig. 1 do not preserve
the attribute of the input, viz. Compound � ID, in that the output
of the �rst and the second module do not contain information
about the compound identi�er.

As well as identifying the reason why a result is missing, a
number of proposals investigated changes that can be made to
the query to include known missing results (see e.g., [1, 5]).

In this work, we focus on explaining why a data item is missing
from the results of a data-driven work�ow. In doing so, we drop
the assumption made by Chapman and Jagadish, and propose
a solution that can be utilized for answering why-not queries
for work�ow with modules that do not preserve attributes of
the input datasets. Furthermore, unlike the Why-Not algorithm
which is module-based, our proposal is hybrid in that it seeks
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to answer instance- and module-based why-not queries. This
makes our solution the only hybrid solution targeted for work-
�ow provenance.1

In the rest, we start by lying down the foundations in Sect. 2.
We sketch our algorithm in Sect. 3. We then focus on operations
that are central to our algorithm, namely determining if a module
is picky, i.e., responsible for the non-appearance of an output data
item, and determining the missing input data item for a given
module in Sect. 4. Finally, we report on the results of a feasibility
study that we conducted, and conclude the paper in Sect. 5.

2 FOUNDATIONS
We de�ne a work�ow WF as a directed acyclic graph in which the
nodes correspond to modules, and the edges specify data �ow
dependencies. A data link connecting a module M1 to a module
M2 speci�es that the output produced by the invocation of the
�rst is used as input to feed the execution of the latter.

The invocation of a module M, which we call module instance
and denote by m, takes one or more data items as input and
produce a data item as output. We write m(dI1 , . . . , dIn ) = d

O,
where I1, . . . , In represents the domain of values of the inputs
of M and O the domain of values of the output. For the purpose
of this work, we consider that the modules of a work�ow are
functions, in that they return the same output data item given
the same input data items.

The execution of a work�ow WF gives rise to a work�ow in-
stance wf, which takes one or more data items and produce as a
result a data item. Major scienti�c work�ow systems are instru-
mented to capture provenance information of work�ow instances
specifying the data items used and generated by the work�ow,
which can be utilized to track the lineage of the work�ow results.

Typically, a scientist would execute a work�ow WF multiple
times, and then proceed to the exploration and analysis of the
results. We are, therefore, interested in querying the datasets
used and generated as a result of multiple executions (instances)
of WF. We write WF(DI1 , . . . , DIn ) = DO to denote that collectively
the instances of the work�ow WF, took as input the datasets
D
I1 , . . . , DIn and generated the dataset DO. Similarly, we write
M
WF(DI1 , . . . , DIn ) = DO to denote that the invocations (instances)

of themodule M that took place with the instances of the work�ow
WF used the datasets DI1 , . . . , DIn and generated the dataset DO.

Inverse of a Module. Central to our solution is the notion of the
inverse of a module. The inverse of a module M, which we denote
byMin� takes as input data items that are type-compatible with
the output of M, and delivers data items that are type-compatible
with the inputs of M .

Picky module. A module M is picky with respect to a data item
d if Min� does not accept d as input. More speci�cally, Min�
throws an illegal input exception when its execution is fed d.

3 ANSWERINGWHY-NOT QUERIES
3.1 Why-Not Queries
A user speci�es a why-not query by specifying a data item, which
has the same data type as the output of the last module of the
work�ow. Let such a module be MWF(DI1 , . . . , DIn ) = DO Consider
for the sake of simplicity that such a module output data items
that are characterized by the attributes ha1, . . . , ami. A why not-
query is a data item hv1, . . . , vmi that was not generated by M

1There are existing hybrid solutions, but they are targeted for relational databases
(see e.g., [2]).

when invoked within the work�ow WF. That is, ha1, . . . , ami < DO.
We denote such a data item in what follows by dwhy�not. Note
that, in the general case, a work�ow may have multiple �nal
modules. Our solution is applicable to those work�ows. To do
so, our algorithm is applied to each output data item (why-not
query) provided by the user.

3.2 Processing Why-Not Queries
To answer a why-not query, the modules of the work�ow are
explored from the sink to the source in a breadth-�rst fashion. To
do so, we group the work�owmodules into levels as illustrated in
Figure 2. Amodule belongs to a level i if its outputs are connected
to modules in levels  i � 1. Of course, this does not apply to
the modules in level 0, the outputs of which carry the results
of the work�ow execution. The modules of a given level can be
examined only if the examination of the modules of the previous
level has completed.

Figure 2: Work�ow levels.

Algorithm 1, which we named Why-Not Detective, sketches
the evaluation of a why-not query. It takes as input a data item
dwhy�not speci�ed by the user, and the work�ow modules orga-
nized into levels starting from the sink WF_Modules. The mod-
ules of each level are examined to identify if the module is picky.
Speci�cally, the inverse of the module in question M is examined
to check if:

• It does not accept the corresponding data items that were
generated by the inverse of the modules in the previous
level. By corresponding data items, we mean data items
generated by module parameters in the previous level, if
any, that are connected to the output of the Mmodule. The
module M is �agged in this case as picky.

• It accepts the corresponding data items that were gener-
ated by the inverse of the modules in the previous modules.
In this case, the data items the inverse of M produces are
saved to be used to feed the inverse of the modules in the
succeeding levels, if any. Notice here that the provenance
of the work�ow subjects to analysis will not contain such
data items, otherwise, the work�ow would have produced
dwhy�not.

The algorithm iterates over the modules of each level until i)- it
�nds modules of a given level that are picky, or ii)- it does not �nd
any picky modules. In the �rst case, the algorithm stops (see line
15). Indeed, the modules of the succeeding level, or at least subset
thereof, cannot be examined. This is because we will not have
data items to probe the inverse of such modules with. The picky
modules are therefore returned by the algorithm as the source
of the non appearance of dwhy�not in the results. Note here that
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our notion of picky module corresponds to the notion of Frontier
Picky Manipulation in the Why-Not algorithm by Chapman and
Jagadish [4]. In the second case (ii), the datasets used as input to
the execution of the work�ow are designated as the source of the
non-appearance of dwhy�not in the results. Speci�cally, the data
items returned by the inverses of the modules in the last level
are designated as missing in the inputs datasets.

Example 3.1. Consider our example work�ow in Fig. 1, and
suppose that the scientists did not �nd the pathway identi�ed by
map00220 in the results of the provenance of the work�ow. In
this simple example, we have two levels composed of one module
each. The algorithm starts by examining the getPathway mod-
ule. The inverse of this module accepts the value map00220 and
provides the compound name L � Argentine. This compound
name is accepted by the inverse of getCompoundName, which in
turn delivers the compound identi�er cpd : C00062. The Why-
Not detective concludes, in this case, that none of the modules is
picky, and that the non appearance of the pathway map00220 in
the results is due to the missing input data item cpd : C00062.

Algorithm 1Why-Not Detective
Input: WF_Modules = {L0, . . . , Lk } //work�ow modules grouped into

levels (breadth) from the sink to the source.
dwh��not // missing work�ow result.

Output: PickyModules // set of picky modules
MissingInputData// set of data items missing in the work�ow input
dataset

1: PickyModules = ;
2: MissingInputData = ;
3: Dcurrent = {dwhy�not }
4: Dcurrent+1 = ;
5: for Level in WF_Modules do
6: for M in Level do
7: if accept(inv(M), getInput(Dcurrent)) then
8: datacurrent+1 + = getResult(inv(M), getInput(Dcurrent))
9: else
10: PickyModules + = {M}
11: end if
12: Dcurrent+1+ = getResults(Minv, getInput(Dcurrent))
13: end for
14: if PickyModules , ; then
15: breakall
16: end if
17: Dcurrent = Dcurrent+1

18: end for

4 DETERMINING THE OUTPUT OF THE
INVERSE MODULE

The central operations, which are repeatedly performed in the
above algorithm, are the test of acceptance of data items by the
inverse of a given module M, and the calculation of the results
(data items) returned by the invocation of the inverse module.

To assess whether a module Minv accepts a given data item
d, we need to invoke Minv using d. If the invocation of Minv ter-
minates successfully, then we can conclude that Minv accepts d.
Otherwise, if the execution of Minv raises an illegal input excep-
tion, then we can conclude that Minv does not accept d.

Unfortunately, we cannot perform this test, because we do
not have access to Minv. To address this issue, we harvest the
(probably) biggest source of information, namely the Web. There
are several proposals in the literature that attempted to extract

relational data from tables on the Web (see e.g., [3, 11]). Our
objective is, however, di�erent. We do not seek to transform all
tabular HTML data into a structured format, but instead, identify
the input data items that may be candidate for producing a giving
data item when used to feed a given module.

We adopt for this purpose a process, composed of three steps:
i)- identifying candidate pages, ii)- extracting candidate input
data items, and iii)- examining the candidate input data items.

4.1 Identifying Candidate Web Pages
To identify the web pages of interest, we make use of semantic
annotations describing the input and output parameters of the
module M. Indeed, a number of scienti�c modules are annotated
with ontological concepts informing the semantic domain of the
input and output parameters of the module, see e.g., bio-tools2.
We make use of semantic annotations, because often the names
of the input and output parameters are non-informative and take
values like in or out. Semantic annotations provide a crisper
description of parameter types.

Consider for example that M has an input with a semantic
domain cin and an output of a semantic domain cout. We issue a
query with the following keywords: {cin, cout, d} against a Web
search engine. We are interested in �nding the web pages Wc that
contains all of the keywords. We call Wc candidate web pages. If
the set Wc is empty, then Minv is likely not to accept the data item
d. Note that we say likely. This is partly because the Web, albeit a
large data source, there is no guarantee of it being complete, and
partly because the keywords used may fail to locate a Web page
that contains the desired information, even if such a page exists.

4.2 Extracting Candidate Input Data Items
For each web page in Wc, we apply information extraction algo-
rithms to retrieve data items that have cout as a semantic domain.
The problem we face here is that Web pages are unstructured.
Solutions that have been proposed for information extraction,
e.g., [3, 7, 11] can be used for this purpose.

As well as the above proposals, in the context of our work,
we use recognizers. Indeed, many of the semantic domains, e.g.,
pathways, enzymes, proteins, etc., in the scienti�c �elds are as-
sociated with recognizers, able to identify the semantic domain
of a given raw text/string. This applies particularly to accessions,
which can be seen as scienti�c identi�ers for entities such pro-
teins, RNAs, etc., as well as other more complex structures such
as sequence entries, e.g;, Fasta format, IPR entry, etc. Therefore,
if cout is associated with a recognizer, then we apply the recog-
nizer to each of the web pages in Wc. This will result in a list of
candidate data items Dc

in
.

4.3 Examining Candidate Input Data Items
We use the data items in D

c

in
to feed the execution of the module

M. It an execution that takes an input data item din yields a
successful execution of M and produces as a result d, then we can
conclude that the inverse Minv accepts d and it delivers as a result
din. Note that in the general case, multiple input data items can
be associated with d. For the purpose of this work, however, we
assume that the module M and its inverse are functions.

If, on the other hand, none of the candidates in D
c

in
yields d

when invoking M, then we conclude that Minv is likely not to
accept d.

2https://bio.tools
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5 FEASIBILITY STUDY
The approach we have just described raises the following ques-
tion. Is the algorithm proposed able to identify the reason why a
given data item does not appear in the work�ow results? More
speci�cally, How e�ective is our solution in identifying picky mod-
ules and missing input data items?

To answer the above questions, we run a feasibility exper-
iment, in which we used a sample of 6 real-world work�ows
from the myExperiment repository 3. We selected work�ows
that involve deterministic modules, which mean modules that
deliver the same result (if any) given the same input. We did
not consider work�ows that include modules performing data
mining operations, for instance. We have also selected work�ows
for which the inverse modules are also deterministic functions.

5.1 Set-up
We have executed each work�ow using example data inputs
provided by the work�ow authors. In doing so, we used the
Taverna work�ow systems [12]. We then speci�ed two kinds of
queries for each work�ow:

• Instance-based why-not query. To assess the ability of the
algorithm in answering this type of queries, we randomly
selected an output data item d that was returned by the
work�ow executions. Next, we used our algorithm to see
if it is able to reconstruct the lineage of d by harvesting the
web to identify the input data items that were responsible
for its derivation. We then compared the lineage recon-
structed for d with the lineage available in the provenance
of the work�ow executions previously recorded by the
work�ow system. This allows us to see if our algorithm
was able to successfully identify the input data items re-
sponsible for the derivation of d.

• Module-based why-not query This kind of query is used
to assess if the algorithm is able to identify picky modules.
That is modules that are responsible for the non deliver-
ance of a given data item d by the work�ow executions.
To do so, for each work�ow, we identi�ed a data item that
we know it cannot be delivered by the work�ow because
of a given (picky) module. We then used our algorithm to
assess if it is able to identify such a module.

In total we had 6 queries of the �rst kind, which we denote
by {q+

1
, . . . , q+

6
}], and 6 queries of the second kind, which we

denote by {q�
1
, . . . , q�

6
}. The + sign indicates that we should be

able to reconstruct the provenance of the why-not query up to
the work�ow input, and the � sign indicates that we should not
be able to do so, and instead identify the picky module.

5.2 Results
Of the queries {q+

1
, . . . , q+

6
}, our algorithm was able to success-

fully constructs the provenance of the why-not query up to the
work�ow input for 3 queries. Most of the modules composing
these work�ows, namely 8 out of 11, provides information about
the input and output datasets on the Web using Tabular formats.

After examination of the three remaining work�ows, we found
that one them utilizes proprietary data sources, the content of
which is not accessible on the surface web. The last two work-
�ows, on the other hand, contain modules that manipulate ex-
cerpt from HTML web pages. Because of this, our algorithm was
not able to �nd the content on the Web of the input and output

3www.myexperiment.org

of those modules. However, we made a key observation thanks
to these two work�ows that will allow us to improve the quality
of the results delivered by our algorithm. Indeed, these modules
that were problematic for our algorithm perform format trans-
formation, which we refer to as Shims in scienti�c work�ows.
Such modules could be ignored (skipped) by our algorithm. For
example, once ignored, our algorithm was able to identify the
inputs data items of the remaining modules in the work�ows.

We also measured the number of Top-k web pages that needed
to be examined to identify the input data item corresponding
to a given output data item. On average, we needed to examine
the content of the 4 top web pages returned by the key-word
search engine4. In several cases, however, the top web page was
the right one, in the sense that it contained the input data item
we are after.

Regarding the queries {q�
1
, . . . , q�

6
}, our algorithm was more

successful in the sense that it was able to correctly identify 4
pickymodules out of 6. For two remaining work�ows, the module
that was identi�ed as picky by our algorithm was not the correct
one. After examination, it transpired that for certain modules the
corresponding data item could not be found on the web. Again
this issue was due to shims modules the input and output data
items are not published on the Web.

To sum up, this small feasibility study has shown that our
method is promising. It has also brought some insights into the
way our solution can be improved. Our ongoing work includes:
i)- tuning our algorithm to deal with shims modules in a work-
�ow, ii)- explore new source of information for identifying picky
modules, iii)- extending our solution to cases where the inverse
of a module is not a function, and iv)- an experiment involving a
large number of scienti�c work�ows.
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ABSTRACT
The rapidly growing size of RDF graphs in recent years neces-
sitates distributed storage and parallel processing strategies. To
obtain efficient query processing using computer clusters a wide
variety of different approaches have been proposed. Related to
the approach presented in the current paper are systems built on
top of Hadoop HDFS, for example using Apache Accumulo or
using Apache Spark. We present a new RDF store called PRoST
(Partitioned RDF on Spark Tables) based on Apache Spark. PRoST
introduces an innovative strategy that combines the Vertical Par-
titioning approach with the Property Table, two preexisting mod-
els for storing RDF datasets. We demonstrate that our proposal
outperforms state-of-the-art systems w.r.t. the runtime for a wide
range of query types and without any extensive precomputing
phase.

1 INTRODUCTION
Organizations and institutions increasingly see a need to repre-
sent their data in a semantically-structured way [7] and, thus,
rely on the RDF data model. As the data represented in RDF
constantly grows in size, storing and querying these very large
RDF graphs becomes a major challenge. In order to increase the
query efficiency, many different approaches have been proposed
e.g. [1, 10, 13, 15]. Most of the current solutions use DBMS-based
systems and map SPARQL queries to SQL queries for the retrieval.
Besides the systems which are implemented for single-node ma-
chines, such as RDF-3X [11], Sesame [6] and Jena [16], systems
designed for distributed environments are increasingly being
used. They allow to scale up the storage and to provide parallel
query execution capabilities, which is essential to handle very
large data. Systems of distributed environments use in particular
Hadoop technologies: S2RDF [15] and SPARQLGX [8] are im-
plemented on top of Apache Spark, Rya [13] on top of Apache
Accumulo, and Sempala [14] on top of Impala.

Typically, these systems are optimized for specific query pat-
terns and their data loading times are often sacrificed for better
querying performance. Thus, there is need for a distributed RDF
store with better performance on a wide range of query types,
without renouncing a rapid loading phase.

In this work, we describe the approach of PRoST1 (Partitioned
RDF on Spark Tables), that aims to improve the efficiency of
queries on RDF data, thereby covering a wide range of query
types. Instead of building a standalone system, such as [12], Ad-
Part [2] or TriAD [9], PRoST is based on reliable Hadoop tech-
nologies for storing and processing the data and therefore its
1The source code of PRoST is online available at https://github.com/
tf-dbis-uni-freiburg/PRoST.
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performance depends more on the general approach than on
the details of the implementation (e.g. memory management,
network protocols). In this paper, we focus on querying RDF effi-
ciently by means of Apache Spark2, as it emerged as an important
component of the Hadoop ecosystem: It offers general purpose
data processing functions that exploit efficiently the main mem-
ory — differently from MapReduce that relies mainly on disk
operations. This characteristic makes Spark very fast in practice
and able to compute complex queries on large RDF graphs. In
particular, it is possible to obtain high querying performances
using Spark SQL, a module of Spark that adds well-established
DBMS techniques to the distributed computation framework.

Our main contribution is proposing a new storage model for
loading RDF graphs into Hadoop, including an appropriate strat-
egy for translating SPARQL queries into Spark execution plans.
We show that combining the so far separately applied strategies
for representing RDF data in Hadoop — Vertical Partitioning [1]
and the strategy of using Property Tables [16] — can be imple-
mented with relatively little effort and leads to superior querying
performances in many cases, as our evaluation results show.

The paper is structured as follows: In Section 2, we present
an overview of similar systems for querying RDF. In Section 3,
we outline our approach for modeling the data, our strategy for
translating SPARQL queries, and the techniques for improving
the performances of PRoST. We summarize our evaluation results
in Section 4 and, in Section 5, we conclude and present ideas for
future implementations of PRoST.

2 RELATEDWORK
Due to space limitations, in the following we restrict ourselves
to Hadoop-based RDF querying approaches, as they are the most
similar to our system PRoST. S2RDF [15] is a "SPARQL processor"
based on Spark SQL. It introduces a data partitioning approach
that extends Vertical Partitioning [1] with additional tables, con-
taining precomputed semi-joins. As a consequence, many inter-
mediate results of queries are already computed and can be used
to shorten the retrieval time. However, S2RDF trades off the per-
formances with disk space and loading time. For datasets with a
large number of properties (e.g., DBpedia [5]), the time required
may make the loading unfeasible.

SPARQLGX [8] is another system for distributed SPARQL
queries that uses Vertical Partitioning. SPARQLGX compiles the
queries directly into Spark operations. The system relies entirely
on its own statistics to optimize the computation, in particular
for the order of the joins. Differently from S2RDF and PRoST,
SPARQLGX does not use Spark SQL.

Rya [13] is a popular RDF management system, developed
by an active open-source community and currently an incubat-
ing project at Apache. It is built on top of Apache Accumulo3,
a distributed key-value datastore for Hadoop. Since Accumulo
2https://spark.apache.org.
3https://accumulo.apache.org/.
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keeps all its information sorted and indexed by key, Rya stores
whole RDF triples as keys. For this reason, single triples or short
ranges can be accessed very fast. However, considering that the
triple table model of Rya contains three columns, it requires to
replicate the data multiple times in order to exploit the indexes
over all the possible elements. Rya uses some query optimization,
e.g. joins reordering, but it lacks of the powerful in-memory data
processing that make, in practice, other systems faster.

3 APPROACH
The main idea behind PRoST is to store the data twice, parti-
tioned in two different ways. Each one of the two data structures
can be more beneficial (in terms of performance) than the other
regarding certain query types, mainly because of the different
location of the data in the cluster. Our system tries to exploit this
characteristic. We do not limit ourselves to choose the single best
model out of these two for each query, but we split a query in
several parts, such that each sub-query can be executed with the
most appropriate approach. At the end, all the parts can be joined
together to produce the final result. In this way, our approach
achieves better performance than when running only on one of
the two representations, as it leverages the synergy effects of
both models.

3.1 PRoST Data Model
The two data structures we use to store an RDF graph are Vertical
Partitioning and Property Table. Vertical Partitioning (VP) is an
approach proposed by Abadi et al. [1]. It has a strong popularity
among RDF storage systems and it is the main choice of the
state-of-the-art approaches S2RDF [15] and SPARQLGX [8]. The
main concept is to create a table for each distinct predicate of the
input graph, containing all the tuples (subject, object) that are
connected by that predicate. The vertical partitioning approach is
at the same time powerful and simple, but it has the drawback that
it needs a number of joins proportional to the number of triple
patterns in the query (precisely, the number of triple patterns
minus one). Even with this disadvantage, because the VP tables
are narrow and often small, VP is a valid and practical choice.

The Property Table (PT) is a data scheme that was introduced
in the implementation of Jena2 [16], an influential toolkit for
RDF graph processing, and Sempala [14], another SPARQL pro-
cessor built on top of the Impala framework. A PT consists of a
unique table where each row contains a distinct subject and all
the object values for that subject, stored in columns identified by
the property to which they belong.

The most important advantage of PT, when compared with
VP, is that several joins can be avoided when some of the triple
patterns in a query share the same subject. In this case, part of the
query can be executed by a simpler select operator. Therefore,
this approach is beneficial for queries where all the triple pat-
terns have the same subject variable, usually called star queries.
However, as observed by Abadi et al. [1], the PT has some is-
sues, in particular the number of NULLs and the multi-valued
attributes. Since not every possible pair subject-predicate has a
corresponding object value, the PT potentially contains a very
large number of NULLs. We solve this problem by storing the
table in Parquet 4, a format that uses run-length encoding. The
other problem of the PT is the presence of multi-valued proper-
ties, i.e., when more than one different object value exists for at
least one subject. In this case, the values are stored using lists
4http://parquet.apache.org
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Figure 1: Example of a conjunction of triple patterns trans-
lated to a Join Tree. The root node uses the Property Table,
the others Vertical Partitioning.

that need to be flattened when executing operations on these
attributes. This particular situation produces an overhead in re-
spect to the VP model, significant if we use the PT for a single
attribute, but negligible if compared to the benefit of avoiding
more than one join to compute the same query.

We have several advantages (e.g. efficient compression) in
using the columnar format Parquet to store the PT, but we then
introduce also the undesirable possibility that the data belonging
to a single subject could be split into different nodes. In order
to keep benefiting from the structure of the property table, we
partition horizontally on the subject column. In this way, we
ensure that every row is stored entirely in the same node.

3.2 Query Strategies
Having two data structures at the same time requires an ab-
straction to represent the queries. For this reason, we define an
intermediate format that we call Join Tree. Each node of this
tree represents a sub-query extracted from a VP table or from
the PT. Using Spark, PRoST can execute a query by calculating
the intermediate results from the nodes and then joining them
together in a bottom-up fashion.

We now explain how we translate SPARQL queries into the
Join Tree format. For the sake of clarity, we consider queries
with a unique basic graph pattern without filter, which are a
conjunction of triple patterns. The triple patterns with the same
subject are grouped together and translated into a single node
with a special label, denoting that we should use the property
table in this case. All the other groups with a single triple pattern
are translated to nodes that will use the vertical partitioning
tables. An example is shown in Figure 1. There could be a join
edge between every pair of nodes that shares a variable, it means
that more than one Join Tree translation is possible for a single
query. Since the tree structure influences the final performances,
choosing carefully the Join Tree is important for the quality of
the system. For this reason, we choose a tree guided by simple
statistics, as explained in the following section.

3.3 Statistics-based Optimization
In the context of our work, joins are the most expensive operators
because they need large portion of the data to be shuffled across
the network. The order of the joins is important to limit this
issue, and therefore to speed up the calculation. An effective
way is sorting the joins using statistics of the input graph. The
Join Tree of a query decides indirectly the order in which the
operations are computed. For example, the leaves are computed
first, and the root node is the final one. The statistics we use,
simple but effective in practice, are (1) the total number of triples
and (2) the number of distinct subjects for each predicate. They
are calculated during the loading phase without any significant
overhead.
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As a general rule of thumb, we want to compute the joins
involving few data or with a high selectivity first (high priority),
and finally the ones with many tuples (low priority). The priority
value of a node of the Join Tree is decided by the following
criteria:

• Triple patterns containing literals are scored with the high-
est priority. The presence of a literal is a strong constraint
that limit the number of resulting tuples. Therefore, it is a
good approach to push down these kind of nodes.

• A triple pattern of which the underlying data contains
many tuples will be scored proportionally. For instance,
a triple with the highest number of tuples will have also
the lowest priority and it will be the root of the tree. This
number is also adjusted according the number of distinct
subjects for that predicate.

• The priority of a node containing data belonging to the
Property Table is scored taking in account all its triple
patterns. However, the presence of a triple pattern with a
literal is weighted heavily.

In addition to our effort, Spark SQL’s Catalyst Optimizer [4] uses
its internal heuristics to improve query performances further.
The trees are not substantially changed, but Spark intervenes in
producing optimized physical plans, since it knows the concrete
location of the data on the cluster. In particular, the optimizer
can choose the type of joins to perform, for example if one of the
relations involved is small, a broadcast join will be performed.

4 EVALUATION RESULTS
4.1 Benchmark Environment
We perform our tests on a small cluster of 10 machines connected
via Gigabit Ethernet connection. Each machine is equipped with
32GB of memory, 4TB of disk space and with a 6 Core Intel Xeon
E5-2420 processor. The cluster runs Cloudera CDH 5.11.0 on
Ubuntu 14.04 and Spark 2.1.0. Since one machine is the master,
Spark uses only 9 workers. The executor’s memory is 21GB. We
use the WatDiv [3] dataset provided by the Waterloo SPARQL
Diversity Test Suite 7. It is developed in order to measure how
an RDF data management system performs across a wide variety
of SPARQL queries with varying characteristics and has already
been applied in the evaluations of the comparable systems. Given
WatDiv we generate a dataset containing around 100 Million
RDF triples (5.16 GB) and we evaluate PRoST with the given
WatDiv basic query set. It contains queries of varying shape and
selectivity in order to model different scenarios. The queries are
grouped into the following subsets:

• C: Complex shaped queries.
• F (F1, F2, F3, F4, F5): Snowflake shaped queries.
• L (L1, L2, L3, L4, L5): Linear shaped queries.
• S (S1, S2, S3, S4, S5, S6, S7): Star shaped queries.

4.2 Loading
As we can see from Table 1, the storage size used by PRoST de-
creases when being stored in HDFS. This is a direct consequence
of the compression used by the Parquet format.

The database size of S2RDF is the largest in this analysis, since
its model not only needs the creation of VP tables, but also many
additional ones containing the results of its precomputations.
SPARQLGX occupies minimal space because it uses only Vertical
Partitioning, where instead PRoST requires double SPARQLGX’s
size for having in addition the Property Table. The loading time of

System Size Time
PRoST 2.1 GB 25m 32s
SPARQLGX 0.9 GB 20m 01s
S2RDF 6.2 GB 3h 11m 44s
Rya 3.1 GB 41m 32s

Table 1: Size and loading times using WatDiv100M

Figure 2: Querying time for WatDiv100M with only Verti-
cal Partitioning and with the mixed strategy.

PRoST is similar to SPARQLGX and around an order of magnitude
shorter than S2RDF. Similarly to what we said before for the
database size, S2RDF’s model requires longer times because of
its extensive precomputations.

4.3 Vertical Partitioning vs Mixed Strategy
One of our central points is the introduction of the Property Table
alongside Vertical Partitioning. As a consequence, we evaluated
the impact of this addition on query performances.
In Figure 2, we show the times to compare the query set fromWat-
Div100M with Vertical Partitioning only and with the additional
support of the Property Table.

The chart shows clearly that the introduction of the Property
Table has a strong positive impact on performances. For almost
every type of query this version outperforms abundantly the
simple Vertical Partitioning approach. The new strategy is ef-
fective for Star queries (S), where most of the triples share the
same subject, as well as Complex (C) and Snowflake (F) queries,
that have more than one different subject. For some of the Linear
queries (L), the results are very similar between the two versions.
This result comes from the fact that Linear queries contain mostly
triples with distinct subject variables, translated using mostly
Vertical Partitioning.

4.4 PRoST vs Other Systems
To better evaluate our systemwe compared it in the same environ-
ment with other similar solutions: S2RDF, Rya and SPARQLGX.
In Figure 3 we show the querying times on the WatDiv100M
dataset with the other systems and our implementation. Note that
we used a logarithmic scale, since the large differences would pre-
vent us from visualizing these results well. Compared to S2RDF,
PRoST is faster for the queries F2, S1, S3 and S5 but slower for
the remaining queries. In particular, for the complex queries (C)
and some of the snowflake ones (F3, F4) the S2RDF’s approach
makes it faster by a considerable margin. These differences can
be explained with the extensive precomputations of S2RDF, that
heavily decrease the processing time for joins between VP ta-
bles. However we have to keep in mind that S2RDF can reach
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Figure 3: Querying time for WatDiv100M with PRoST, S2RDF, Rya and SPARQLGX. The scale is logarithmic.

Queries ProST S2RDF Rya SPARQLGX
Complex 9,364ms 3,392ms 2,195,322ms 61,363ms
Snowflake 5,923ms 1,564ms 369,016ms 24,046ms
Linear 2,419ms 527ms 49,044ms 18,254ms
Star 1,195ms 884ms 6,9606ms 2,1046ms

Table 2: Average querying time grouped by type of query.

these results because of a possibly large loading time, that, for
some datasets, may make it less attractive in practice. In con-
trast, PRoST relies on a faster loading phase and its performances
does not depend on the particular input graph, i.e. number of
predicates.

For some queries, Rya is very fast and outperforms PRoST
but in other cases it suffers from significant slowdowns, that
are several orders of magnitude slower. Therefore, its average
query time is the worst of the systems considered, as shown in
Table 2. The queries in which Rya performs very well have in
common that their computation involves only few intermediate
results. As a matter of fact, Rya uses powerful indexing methods
but it lacks of more sophisticated approaches to calculate joins.
For SPARQLGX, almost all the queries are computed in around
twenty seconds, except the Complex ones (C) that have a higher
number of resulting tuples. PRoST outperforms SPARQLGX in
every case, mostly by around an order of magnitude. Since SPAR-
QLGX uses simple vertical partitioning, this difference confirms
further the improvements produced by the introduction of the
new data organization approach and also increases the validity of
the implementation choices of PRoST. The evaluation results pre-
sented in [8] are obtained using a virtual cluster of 10 nodes on 2
physical machines. In particular, when SPARQLGX is compared
to S2RDF, their results are not consistent with the results from
our experiment, obtained on a cluster of 10 physical machines.

5 CONCLUSION AND FUTUREWORK
In this paper, we presented PRoST, a distributed system for RDF
storage and SPARQL querying built on top of Apache Spark.With
PRoST we introduce an innovative data structure for partitioning
RDF data that, to the best of our knowledge, for the first time
combines efficiently two pre-existing approaches, namely Vertical
Partitioning and the Property Table. Our evaluations, in which
we compare PRoST on a Hadoop cluster with some state-of-
the-art systems Rya, SPARQLGX, and S2RDF, show that PRoST

outperforms Rya and SPARQLGX in terms of querying time
to a large extent and that it achieves similar results to S2RDF.
Notably, PRoST shows consistently good results for every type of
query and is not limited to datasets with certain characteristics
to keep the pre-computation feasible. Therefore, our approach is
in particular appropriate for real-world applications, for which
the query type and the dataset are unknown a priori.

For future work, we considered further improvements in terms
of both storage and querying performance. For example, a promis-
ing step might be to add another Property Table where, instead
of the subjects, the rows would be created around objects. This
could be beneficial for triple patterns that share the same object.
Another possible improvement would be to collect more precise
statistics of the input dataset in order to produce better trees and,
hence, a less expensive retrieval.
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ABSTRACT
We leverage vectorized User-Defined Functions (UDFs) to effi-
ciently integrate unchanged machine learning pipelines into an
analytical data management system. The entire pipelines includ-
ing data, models, parameters and evaluation outcomes are stored
and executed inside the database system. Experiments using our
MonetDB/Python UDFs show greatly improved performance due
to reduced data movement and parallel processing opportuni-
ties. In addition, this integration enables meta-analysis of models
using relational queries.

1 INTRODUCTION
The ad-hoc nature of data analysis pipelines using complex statis-
tical or machine learning algorithms bundled with large volumes
of data quickly leads to a latent need for data management sys-
tems [9]: 1) Manually managing large datasets as flat files quickly
becomes cumbersome and error-prone, and additionally intro-
duces many difficulties when multiple people are working with
the same data or when the data has to be written to or updated. 2)
Loading data from structured text files (e.g. XML or CSV) is very
inefficient, as the data has to be parsed and converted to native
binary formats before being subjected to analysis. Files are read
from disk every single time an analysis pipeline is run, signifi-
cantly increasing the time necessary to run these pipelines. These
problems are exasperated as analysis pipelines are evaluated and
moved towards production use.

These problems can be solved by using existing relational
database management technologies. However, it has traditionally
been very difficult to combine analytical tools with relational
databases. The standard approach of running a separate database
server and connecting with it through a socket connection is
very inefficient and introduces severe bottlenecks when work-
ing with large amounts of data [15]. On the other end of the
spectrum, in-database processing techniques have typically been
cumbersome and difficult to use. Rewriting analytical pipelines
in plain SQL is non-trivial and the subject of research papers [10].
Traditional scalar user-defined functions (UDFs) as supported by
“mainstream” relational data management systems are difficult
to utilize for complex machine learning tasks where a view on
the entire dataset is required.

Recently, vectorized UDFs [8, 14] have been proposed that
allow for efficient and flexible integration of popular analytical
tools inside column-store databases. By utilizing these UDFs,
existing complex analytical pipelines can be moved inside the
© 2018 Copyright held by the owner/author(s). Published in Proceedings of the 21st
International Conference on Extending Database Technology (EDBT), March 26-29,
2018, ISBN 978-3-89318-078-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

database. This allows us to gain all the advantages of storing
data inside a relational database, while still having flexible and
easy-to-use analytical tools available.

An additional benefit of training and using machine learning
models directly in the database is that it is possible to persist both
models and metadata (e.g. classification scores on test sets) in the
database. Standard relational queries can then be used to apply
the trained models to data. This allows for example to compare
and combine output from multiple models, each specialized for
certain classification tasks. Also, it is possible to classify the same
data using multiple models and use the result of the model that
reports the highest confidence.

In this paper we showcase how we can use vectorized user-
defined functions to efficiently integrate a complex analysis
pipeline inside a columnar database management system. We
show how we can train models directly inside the database, and
how to store the models and subsequently use them to classify
data without having to export the data from the database system.

The main contributions of this paper are:

• We show how traditional classification models can be in-
tegrated into a column-store relational database manage-
ment system.

• We describe how models can be stored inside the data-
base system and how these models can then be used to
efficiently and flexibly classify data.

• We experimentally show the performance benefit of di-
rectly running the models inside the database system ver-
sus loading the data from structured text, binary files or
using database client protocols.

Outline. This paper is organized as follows: Section 2 dis-
cusses related work. Section 3 presents our integration approach,
followed by a concrete use-case and performance results in Sec-
tion 4. In Section 5 we draw our conclusions and discuss future
work.

2 RELATEDWORK
There is a variety of related work on combining relational data-
base systems with machine learning pipelines. In this section we
will present the most recent related work regarding the integra-
tion of machine learning through UDFs and model management
systems and compare them with our solution.

2.1 Machine Learning Integration
Integrating existing Database Management Systems and machine
learning algorithms has been a long standing problem due to the
complexity of implementing the machine learning code inside a
DBMS.
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Early work [2, 16] on this focuses on rewriting analytical
algorithms into portable SQL code. This allows the pipelines to be
executed within any database system without requiring database-
specific modifications. However, rewriting complex analytical
pipelines in SQL requires a lot of manual effort and might not
be possible for certain algorithms because SQL is not a Turing
complete language.

In Ordonez et al. [12], machine learning algorithms are trans-
lated to either C, C++ or C# code (depending on the DBMS
language support) and inserted into UDFs. As a consequence
they achieve high performance when analyzing large data sets
compared to external data analysis tools, as data movement is
mitigated. However, these algorithm must be coded in one of
the previously listed languages. This often results in the need
for rewriting code, because most prominent machine learning
libraries are usually available in scripting languages (e.g., Python
and R). In our solution we allow the developer to use popular
scripting languages together with their entire ecosystem of data
analytics packages as UDFs in MonetDB.

Other work [4, 6, 7] focuses on more templated approaches
for machine learning integration to reduce the necessity of code
rewriting. However, the main disadvantage of these methods is
that they only work for a limited subset of algorithms, which
limits their applicability to general machine learning tasks.

2.2 Machine Learning Model Management
When training and using a variety of models the problem of
managing these models arises. This problem is exasperated be-
cause most Machine Learning Systems do not provide support
for storing and querying their models. Due to these issues, data
scientists quickly lose track of their models.

In Vartak et al. [19], a system called ModelDB is introduced
that can be used for storing, tracking and managing machine
learning models in their native environment. This allows data
scientists to use SQL to query their models based on their meta-
data (e.g., hyperparameters, parameters) and quality metrics (e.g.,
accuracy). It also has the option to store the used train/test data
sets for each model. However, since ModelDB only stores the
models in their native environment, it does not provide a solu-
tion for coupling machine learning applications with traditional
relational databases.

3 MACHINE LEARNING INTEGRATION
Machine learning pipelines consist of three stages [5].

(1) Preprocessing. In this stage, the raw data is loaded and
cleaned. The data is normalized, and any inconsistencies
from incorrect or missing measurements are corrected for
or removed.

(2) Training andVerification. In this stage, the cleaned data
is used to train the model. Typically the training set is
divided into parts, and techniques like cross validation are
used to prevent overfitting the model.

(3) Classification. In the final stage, the trained model is
used to classify new data. In this stage, the model can still
be refined further based on new data or new properties of
the data.

The preprocessing stage can often be performed entirelywithin
traditional database management systems. Loading data and sim-
ple cleaning operations such as missing value removal can be
done using standard SQL queries. However, when more advanced

preprocessing such as interpolation is required, user-defined func-
tions can be used to simplify this step.

The real challenge of integrating these pipelines into databases,
however, is implementing the machine-learning models. The
models rely on complex math operations and iterative refinement,
which are not supported by standards-complaint SQL.

There are many libraries and packages in vectorized scripting
languages that implement commonmachine learning and classifi-
cation models, such as TensorFlow [1] and Sci-Kit Learn [13]. Us-
ing vectorized user-defined functions, we can plug these libraries
into the database. However, the typical processing pipelines must
be adjusted so they can fit into a SQL workflow. In this section,
we will describe how these analytical pipelines can be integrated
into traditional database management systems through the use
of user-defined functions.

3.1 Training
To train a classification model, we take a set of annotated data as
input and use the annotations to find patterns in the data. After
learning these patterns, the trained model can accurately classify
un-annotated data.

The training pipeline therefore takes as input a set of columns
representing the data, and a single column representing the
classes of the data. This will be the input to our user-defined
function. The output of this stage of the pipeline is the trained
model, which will be the output of our UDF. The actual creation
and training of the model will happen inside the function.

Model Storage.Models exist as in-memory objects within the
scripting language. However, they can be serialized to a binary
format for persistent storage on disk. In Python, this is done using
the pickle library. In order to store the objects in the database
we need to serialize the objects to this binary format, after which
we can place them in a BLOB field.

Listing 1: Training The Model
1 CREATE FUNCTION train(data INTEGER, classes INTEGER,
2 n_estimators INTEGER)
3 RETURNS TABLE(classifier BLOB, estimators INTEGER)
4 LANGUAGE PYTHON
5 {
6 import pickle
7 from sklearn.ensemble
8 import RandomForestClassifier
9
10 clf = RandomForestClassifier(n_estimators)
11
12 clf.fit(data, classes)
13
14 return {'classifier': pickle.dumps(clf),
15 'estimators':n_estimators }
16 };

An example of a user-defined function that trains a Random
Forest Classifier using Sci-Kit Learn is given in Listing 1. This is
a vectorized user-defined function, and as such both data and
classes are vectors of integers within the function instead of
individual elements. This function can be called from within SQL
with the model data, classes and the amount of estimators (i.e.,
model parameters) as input, and will produce a table containing
the trained classifier and its meta-data as output. This table can
either be stored in the database, or used directly as input to
another function that uses the trained classifier (if no persistent
storage is necessary). Note that it is trivial to alter this UDF to
train a different model from the Sci-Kit Learn library, as all that
is required is importing a different model and using that.
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3.2 Classification
After the model has been trained, it is ready to accept unlabeled
data and can be used to classify that data. The classification
stage therefore takes as input a set of columns representing the
unannotated data, and the trained classifier that will be used
to classify the data. The output is the set of predicted labels
produced by the classifier. Inside the user-defined function, the
classifier will again have to be deserialized into an in-memory
object, after which it can be used to classify the input data and
produce a set of labels.

An example of a user-defined function that classifies a set of
data is given in Listing 2. This function can be called from within
SQL with the unlabeled data and the classifier as input, and will
produce a list of predicted classes.

Listing 2: Classification
1 CREATE FUNCTION predict(data INTEGER, classifier BLOB)
2 RETURNS INTEGER
3 LANGUAGE PYTHON
4 {
5 import pickle
6 classifier = pickle.loads(classifier)
7 return classifier.predict(data)
8 };

The predict function can be used both to test a trained model
and to classify a set of new data using such a model. The model
can be tested by predicting a set of data for which the labels
are known, and comparing the predicted labels against the new
labels. The model can be used to

3.3 Ensemble Learning
In addition to only storing the trained models, we can store addi-
tional metadata about the models in the database. This metadata
can include information such as parameters used to instantiate
the model, or information about the effectiveness of the model
obtained through testing it against certain datasets. We can then
choose a model to classify new data based on this metadata, or we
could classify the data using multiple models that are stored and
use the results from the classifier with the highest confidence.

4 EXPERIMENTAL ANALYSIS
In this section, we demonstrate how a real classification pipeline
can be integrated into a column-store database, and show how
the in-database processing pipeline performs when compared
against the same pipeline implemented in a standard scripting
language where the input data is loaded from a file or transferred
over a database socket connection.

The pipeline we use in our experiments is used to attempt
to classify who people from North Carolina will vote for in the
Presidential Elections based on data from the 2012 Presidential
Election. For this purpose, we use two separate datasets:

• The North Carolina Voters Dataset contains the infor-
mation about the individual voters. This is a dataset of
7.5M rows, where each row contains information about the
voter. There are 96 columns in total, describing character-
istics such as place of residence, gender, age and ethnicity.
Note that we do not know who each person actually voted
for, as this information is not publicly available.

• The Precint Votes Dataset contains the aggregated vot-
ing statistics for each precinct, (i.e., how many people in
each precinct voted Democrat, and how many voted Re-
publican). This dataset has 2751 rows, one for each precinct
in North Carolina.

By combining these two datasets we can attempt to classify in-
dividual voters. We know the voting records of a specific precinct,
and we know in which precinct each person voted, so we can
make an educated guess who each person voted for based on this
information.

Preprocessing. As we do not have the true class labels for
each voter, we have to generate them from the information we
have about the precincts. This requires us to join the voter data
with the precinct data, giving us the voting records of the precinct
that each voter voted in. We then generate a “true” class la-
bel for each voter using a weighted random function based on
the precinct voting records. For example, if voters in a specific
precinct voted for Democrats 60% of the time, each voter in that
precinct has a 60% chance of being classified as Democrat and
40% chance of being classified as Republican.

Training. After we have generated the true class labels, we
have to train the model using the data and the labels. However,
we don’t simply want to use all the data for training. Instead,
we want to divide the data into a training set and a test set to
prevent overfitting. We then feed the data in the training set to
the model using the function shown in Listing 1 and store the
resulting model in the database.

Testing. After the model is trained, we want to test how it
performs by classifying the data in the test set and looking at the
results. We can classify the voters in the test set by running the
function shown in Listing 2. After having obtained the predicted
class labels, we can test the accuracy of our model by comparing
against the known true class labels of the data. However, since
we only have the generated class labels of the individual voters,
comparing the predicted labels against those would not give us a
lot of information about our classification accuracy. Instead, we
aggregate the total amount of predicted votes for each party by
precinct. Then we compare the aggregated predictions against
the known amount of votes in each precinct.

PerformanceAnalysis.To determine howwell our in-database
processing solution performs compared to ad-hoc analysis pipelines
we have implemented the pipeline described above both (1) using
MonetDB/Python UDFs and (2) inside Python, using various dif-
ferent methods of initially loading the data. For loading the data
in Python, we have experimented with loading from binary files
(NumPy [20] files and HDF5 [18] using PyTables), CSV files using
an optimized parser, transferring the data to Python through a
database socket connection (with PostgreSQL [17], MySQL [21]
and SQLite [3] as database servers). For the scenarios where
the data is stored inside a relational database, we use SQL to
perform the preprocessing steps involving joins and aggrega-
tions. Whereas for the pure Python solutions, we use the Pandas
library [11] to perform these steps.

The experiments were run on a Fedora (Release 26) machine
with 2.6GHz 8-core Intel Xeon processor (Turbo Boost up to
3.2GHz), 20MB shared L3 cache and 256 GB of RAM. All the
tests are hot runs. The datasets and source code used for the
experiments are publically available1.

Results. The results of the benchmark are displayed in Fig-
ure 1. The numbers display the total time required to run the
entire classification pipeline, whereas the bottom gray bars in-
dicate the time spent loading the initial data into Python and
performing the initial preprocessing steps and aggregations.

1https://github.com/pholanda/VoterClassification
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Figure 1: Voter Classification Benchmark

We can see that the in-database processing solution using
MonetDB/Python is significantly faster than the alternative data-
base solutions. The time spent on initial wrangling of the data is
an order of magnitude lower than transferring it over a socket
connection using the other database solutions. We also note that
loading the data from CSV files is comparable in speed to trans-
ferring the data over a socket connection.

Loading the data from binary files is much faster than load-
ing from structured text or transferring the data over a socket
connection. However, this introduces additional challenges in
managing the data. Especially in the case of NumPy binary files,
where each of the 96 columns is stored as a separate file on disk.
We do still see that the in-database processing solution spends
less time on initial wrangling of the data and runs the entire
pipeline significantly faster.

5 CONCLUSION
In this work, we have shown how complex analysis pipelines
can be efficiently integrated into column-store databases. Using
these pipelines, it is possible to perform preprocessing, training,
testing and prediction using complex machine learning models
directly on data stored within a relational database. We have
demonstrated the efficiency gained from using these in-database
processing methods, and shown the additional benefits that come
with storing data in a relational database system.

5.1 Future Work
In our pipeline, there is still some unnecessary overhead in the
serialization of the models. Whenever a model is stored in the
database, we are serializing it to a BLOB. Before it can be used
again, it must be deserialized. For larger models, this can have a
performance impact. The database system could be extended to
directly store snapshots of the in-memory representation of the
models to avoid this (de)serialization overhead.

Additionally, we have only experimented with datasets that
fit in memory. Additional work could be done on working with

out-of-memory datasets, distributed execution of the UDFs, or
applying several models to the data in parallel.
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ABSTRACT

Machine learning techniques for data stream analysis suffer
from concept drifts such as changed user preferences, varying
weather conditions, or economic changes. These concept drifts
cause wrong predictions and lead to incorrect business decisions.
Concept drift detection methods such as adaptive windowing
(Adwin) allow for adapting to concept drifts on the fly.

In this paper, we examine Adwin in detail and point out its
throughput bottlenecks.We then introduce several parallelization
alternatives to address these bottlenecks. Our optimizations lead
to a speedup of two orders of magnitude over the original Adwin
implementation. Thus, we explore parallel adaptive windowing to
provide scalable concept detection for high-velocity data streams
with millions of tuples per second.

1 INTRODUCTION

Machine learning (ML) techniques gain more and more adop-
tion in stream analysis. They enable various use-cases such as
theft detection, event classification, and failure prediction. In a
nutshell, ML techniques train a ML model and apply that model
when they process stream tuples (e.g., to classify them). Concept
drifts cause a discrepancy between ML models and reality, which
makes concept drifts a crucial challenge for machine learning on
data streams. High discrepancies lead to incorrect predictions and
wrong results. As a consequence, we need to continuously mon-
itor concept drifts and retrain ML models accordingly. Stream
processing engines require scalable solutions for concept drift de-
tection and adaptation to execute ML techniques on high-velocity
data streams with millions of tuples per second.

A naive approach to cope with concept drifts is to retrain
the ML model periodically on a fixed size batch of recent data.
This periodic re-computation is in conflict with the real-time
requirement of stream processing applications for two reasons:
(i) Models do not yet cover the most recent data when they are
applied although the most recent data might indicate a concept
drift. (ii) The data, which is reflected in the model, indicates
concept drifts leading to deviations between model and reality.

In contrast to the naive solution, a wide range of approaches
detects concept drifts on the fly [8]. Some monitor the evolution
of different performance indicators [10, 12], while others observe
the distributions on two different time-windows [9].

We study the scalability limitations of such approaches on the
example of adaptive windowing (Adwin) [2]. In general, Adwin
maintains a global window of adaptive size which is the data basis
for the model computation. It trades off the variance in the global
window (i.e., the data variance reflected in the model) against the
size of the global window (i.e., the amount of data reflected by the

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the 21st
International Conference on Extending Database Technology (EDBT), March 26-29,
2018, ISBN 978-3-89318-078-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

model).We choseAdwin because it has proven its capabilities in a
wide range of real-world applications:Adwinwas combined with
Kalman Filters and demonstrated with Naìve Bayes and k-means
clustering [1]. Furthermore, Adwin is used for an online version
of the Bagging method by Oza and Rusell [5] and in a parameter-
free variant of the Space Saving algorithm [4]. Moreover, Adwin
is available in the open source MOA framework [3].

In this paper, we present the following contributions:
(1) We analyze the original Adwin approach, point out its

scalability limitations, and identify its bottlenecks.
(2) We parallelize Adwin to overcome its bottlenecks and to

provide scalable concept drift adaptation in real-time.
(3) We evaluate the latency and throughput of our solution.

It achieves two orders of magnitude speedup over the
original Adwin implementation and 54 times speedup in
comparison to an optimized sequential implementation.

The source code of our implementation is available on GitHub1.
In the remainder of this paper, we discuss Adwin and its

bottlenecks in Section 2, present our parallel adaptive windowing
approaches in Section 3, and evaluate them in Section 4.

2 CONCEPT DRIFT DETECTIONWITH

ADAPTIVE WINDOWING

In this section, we present the original Adwin algorithm [2]
(Section 2.1), discuss an optimization based on exponential his-
tograms (Section 2.2) and analyze the performance of the open
source Adwin implementation (Section 2.3).

2.1 The ADWIN Algorithm

Adwin is an algorithm which detects concept drifts on the fly
and adapts ML models accordingly. The algorithm maintains an
adaptive window which is the basis for computing the ML model.
Adwin grows the window (i.e., adds the most recent tuples) as
long as there is no concept drift detected. As a result, the model
can rely on growing training data. Adwin shrinks the window
by removing old tuples when it detects a concept drift.

The algorithm does not require users to configure minimum
or maximum times between concept drifts in advance because
it identifies concept drifts on a per-tuple basis. This removes an
important drawback of approaches which use fixed-size windows
(i.e., batches) of data to recompute models periodically. InAdwin,
users configure only the confidence value δ ∈ (0, 1) to adjust the
sensitivity of the concept drift detection.

When processing a stream tuple, Adwin first adds the tuple
to the adaptive window. Then, the algorithm analyzes the con-
tent of the adaptive window to identify concept drifts. To that
end, Adwin iterates over all possible combinations of two large

enough sliding subwindows, as shown in Figure 1. If the value
distributions of the two subwindows are different enough, Adwin
detects a concept drift and removes the oldest tuple from the
1Source Code: https://github.com/TU-Berlin-DIMA/parallel-ADWIN
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Figure 1: Iterations of the cut check procedure in Adwin

Figure 2: Exponential histogram: We first assign tuples to

buckets of exponential size. We then compress buckets

and store sums and variances only.

adaptive window. We call this cut detection because it determines
when to cut the adaptive window in order to remove old data.
The cut detection repeats removing old tuples until the content of
the adaptive window does not indicate a concept drift anymore.

2.2 Exponential Histograms

A naive Adwin implementation is computationally expensive
because it performs a cut check for all possible combinations
of subwindows for each tuple of the input stream. To address
this problem, Adwin uses an exponential histogram as underly-
ing data structure of the adaptive window [7]. The exponential
histogram assigns input tuples to buckets (Step 1 in Figure 2).
Buckets of recent data contain just a few tuples. Buckets of older
data contain an exponentially growing number of tuples. Each
bucket stores the sum and variance of its tuples only. This reduces
the memory consumption of the histogram (Step 2 in Figure 2).
In summary, the number of buckets and the respective memory
consumption grow logarithmically when the adaptive window
grows. The cut check procedure now compares buckets instead
of per-tuple subwindows which leads to anO(loд(n)) complexity
for the cut-check procedure. Thereby, n is the number of tuples
in the adaptive window and loд(n) the number of buckets.

Figure 3 shows an overview of the Adwin algorithm including
exponential histograms. The algorithm performs two tasks:

(1) Adwin inserts arriving tuples to the adaptive window, i.e.,
the exponential histogram (Step 1.1 in Figure 3). This occa-
sionally causes bucket compression and fusion of smaller
buckets to larger buckets (Step 1.2 in Figure 3).

(2) Adwin detects concept drifts with its cut detection proce-
dure and potentially removes old data from the histogram.

In the following subsection, we analyze the runtimes of the
different tasks and thereby identify the bottlenecks.

2.3 Initial Performance Analysis

As a starting point of our work, we study the original Adwin
implementation, which is also part of the MOA framework [3].
This implementation is not parallel, i.e., it runs in a single thread.
As we will show in detail in our experiments in Section 4, the
single thread version has a low throughput compared to our
parallel approaches which we present in Section 3.

Figure 3:Adwin overview: New tuples are added to the his-

togram (1.1), buckets are compressed (1.2), and the cut de-

tection procedure identifies concept drifts (2).

0 20 40 60 80 100

2. Cut detection

1.2 Compress

1.1 Insert

97.8

1.7

0.5

fraction of runtime in %

Figure 4: Runtime distribution among Adwin tasks

In order to identify the bottlenecks of the existing implemen-
tation, we use JProfiler2 and Java VisualVM3 for performance
profiling. In Figure 4, we show the processing time distribution
among the tasks performed by Adwin. A single thread imple-
mentation spends about 98% of its runtime with cut checks. In
comparison, the time spent on maintaining the exponential his-
togram is almost negligible as it contributes only 2.2% to the
total processing time of a tuple. Although the number of buckets
grows logarithmically with the number of tuples contained in
the histogram, bucket comparisons dominate the execution effort
since they are performed for each tuple. Based on the observa-
tions above, we focus our optimizations on parallelizing the cut
check procedure because it exhibits the largest saving potential.

In our code analysis, we identifiedways to improve the original
Adwin implementation. We did a logically equivalent reimple-
mentation to speedup the execution. The major improvement of
our reimplementation is the use of circular array buffers as an un-
derlying data structure for the histogram. This reduces memory
copy operations compared to the original implementation.

3 PARALLEL ADAPTIVE WINDOWING

In this section, we introduce several approaches to parallelize
Adwin in order to improve its throughput. We focus on paral-
lelizing the cut detection because we identified it as bottleneck in
Section 2.3. We discuss single-node parallelization in Section 3.1
and multi-node parallelization in Section 3.2.

3.1 Single-Node Parallelization

In Figure 5, we show in pseudo code how Adwin processes an
input tuple and point out possible single-node parallelizations.
We present each parallelization in detail in the following subsec-
tions. First, we decouple histogram updates and cut-checks from
each other such that cut-checks cannot delay processing input
tuples (Section 3.1.1). This decoupling is generally applicable to
algorithms that store stream statistics in a separate data structure.
Then, we parallelize the cut-check procedure itself which we call
Intra Cut-Check Parallelization (Section 3.1.2). Finally, we discuss
how to perform multiple cut-check procedures in parallel in case
Adwin detects cuts. We call this Inter Cut-Check Parallelization
(Section 3.1.3). Both parallelizations are generally applicable to
all algorithms which use multidirectional iterable datastructures.
2JProfiler: https://www.ej-technologies.com/products/jprofiler/overview.html
3VisualVM: http://visualvm.java.net
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Figure 5: Scope of Adwin parallelizations.

Figure 6: Optimistic Adwin Decoupling histogram main-

tenance and the cut detection procedure.

3.1.1 Cut-Check Decoupling. We introduce an optimistic par-
allelization of Adwin which assumes that most input tuples do
not indicate a concept drift (i.e., a cut). This assumption regularly
holds for big data streams, because real-world data follows laws
of nature and causes few cuts compared to the number of tuples.

As explained in Section 2,Adwin performs two tasks: updating
the histogramwith new tuples and detecting concept drifts with a
cut detection procedure. Originally, Adwin performs these tasks
in succession for each tuple. This limits the throughput because
the cut detection blocks the processing of the input stream.

In Optimistic Adwin, we decouple histogram updates and cut
checks from each other to overcome throughput limitations. The
algorithm performs cut checks on a separated snapshot histogram
and adds new tuples to a primary histogram concurrently. We
synchronize histograms after each run of the cut check procedure.

We illustrate Optimistic Adwin in Figure 6. One thread adds
new input tuples to the primary histogram and a redo log. An-
other thread creates a deep copy of the primary histogram (step
1) and performs the cut check procedure on this copy (step 2).
In case of a concept drift, we initiate a rollback which replaces
the primary histogram with the snapshot manipulated by the cut
detection procedure (step 3). Finally, we use the redo log to add
missing input tuples to the primary histogram again. The overall
process repeats continuously. Thereby, the majority of runs does
not detect a cut and requires no rollback.

The main benefit of Optimistic Adwin is that the cut detection
procedure cannot block the input stream anymore. During one
execution of the cut check procedure, new tuples are processed
already. It is important to notice thatOptimisticAdwin introduces
a latency between the insertion of a new tuple in the primary
histogram and the notification about a cut. We discuss this effect
in detail in Section 4. Our experiments show that we achieve
detection latencies below 15µs with Optimistic Adwin.

3.1.2 Intra-Cut-Check Parallelization. A single thread execu-
tion of the cut-check procedure starts to check for cuts at the
ending of the histogram and moves towards the beginning (top
of Figure 7). Thereby, the algorithm compares sliding subwin-
dows as described in Section 2.1. This comparison requires sums
and variances of subwindows, which are aggregates of sums and
variances of buckets covered by the subwindows. The algorithm
updates the aggregates of subwindow (i.e., the aggregation of
buckets) incrementally when moving from one iteration to the
next. As initialization for the cut-check iteration, the histogram
stores and maintains its overall aggregate.

Figure 7:Half-Cut Adwin: Parallelisation of the cut check

procedure with two threads. Both threads iterate till the

middle of the histogram.

We change the cut-check iteration such that two cut checks
run in parallel. To that end, we introduce Half-Cut Adwin in
Figure 7 (bottom). Since the cut check in each iteration step is
independent of cut checks of previous iteration steps, two threads
can iterate over the histogram concurrently. Thereby, each thread
covers half of the cut-check positions. One thread starts at the
beginning and moves towards the end of the histogram and the
other thread moves in the opposite direction. Both threads still
update subwindow aggregates incrementally in each iteration
step. Half-Cut Adwin terminates the cut check procedure when
both threads reach the middle of the histogram or when it finds
a cut. This leads to a maximal speedup factor of two and halves
the latency of the cut detection. It is also easy to add on top of
existing histogram implementations.

In general, the concept of Half-Cut Adwin extends to more
than two threads. Therefore, the histogram needs to maintain
additional aggregates of subwindows as initialization for addi-
tional threads. This overhead pays off for large histograms only.
Since the number of buckets grows logarithmically, a high degree
of Intra-Cut-Check Parallelism pays off seldom considering the
overhead for aggregate maintenance in the histogram. Half-Cut
Adwin does not have this overhead because it uses the same
aggregate as initialization for both threads.

3.1.3 Inter-Cut-Check Parallelization. If Adwin finds a cut, it
removes the oldest bucket from the histogram and repeats the
cut check procedure till no further cuts are detected. This enables
a pessimistic parallelization which assumes that we detect further
cuts after removing old buckets from the histogram.While thread
1 performs cut checks on all buckets 1..n, thread 2 could already
check if there will be another cut after removing an old bucket
and perform cut detection on buckets 2..n. This extends to n − 1
parallel cut check procedures each of which could also apply
Half-Cut Adwin. However, the detection of cuts is usually rare
compared to the total number of cut check procedures. Inter-Cut-
Check Parallelization is not beneficial when we detect no cut.
Respectively, we expect a minimal speedup from this approach.
Still, it can reduce the latency of the cut detection, which is
valuable for situations with frequent concept drifts.

3.2 Multi-Node parallelization

It is desirable to distribute stream processing applications over
multiple nodes in a cluster in order to achieve linear speedup.
Common distributed streaming engines such as Apache Flink [6]
and Storm [11] achieve data parallelism on multiple nodes with
data partitioning. Thus, each node is responsible for processing
tuples of certain keys (e.g., user ids, regions, or event classes).
Half-Cut Adwin and Optimistic Adwin are complementary to
this approach and increase the throughput per partition.

It is also possible to distribute the cut detection procedure on
multiple nodes. However, this requires a central shared histogram
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or histogram copies with multi-version concurrency control. The
coordination and network overhead for these histograms would
dominate the processing in our network-bounded cluster and
prevent a speedup. However, multi-node parallelization of cut
checks can be beneficial if we overcome the network bottleneck
with technologies such as InfiniBand.

4 EVALUATION

In this section, we provide an experimental evaluation ofHalf-Cut
Adwin, Optimistic Adwin , and the state-of-the-art. We discuss
our setup in Section 4.1 and present our results in Section 4.2.

4.1 Experiment Design

Throughput. The throughput of Adwin depends on the size of
the histogram. Large histograms contain more buckets and, thus,
require more cut checks. More concept drifts (i.e., cuts) increase
the throughput by reducing the histogram size. Our experiment
measures the throughput for different histogram sizes.
Latency.We analyze the latency between adding a tuple to the
histogram and the completion of the cut check procedure. This
corresponds to the detection latency of cuts. We show the worst-
case execution time of the cut check procedure which corre-
sponds to finding a cut at the last cut check position. In addition,
the latency of Optimistic Adwin includes the waiting time of a
tuple in the primary histogram before the decoupled cut check
procedure starts. We show a range of latencies which reflects the
shortest and longest possible waiting time.
Data. Since the overhead of Optimistic Adwin is negligible, the
performance depends on the histogram size only. Therefore, we
generate batches of constant values and measure their insertion
times. The insertion times include performing cut detections.
Execution Environment.We measure runtimes and latencies
with JMH

4 which enables reliable and reproducible microbench-
marks on a Java Virtual Machine. We run all experiments on a
machine with 8GB RAM and an Intel Core i5-4210U processor.
Algorithms. We compare four versions of Adwin. The open
source version5, our optimized sequential version (Section 2.3),
Optimistic Adwin (Section 3.1.1), Half-Cut Adwin (Section 3.1.2).

4.2 Results

Throughput. The left plot in Figure 8 shows that our sequential
reimplementation is on average 5 times faster than the original
implementation. Half-Cut Adwin is 10 times faster than the orig-
inal implementation. As expected, Half-Cut Adwin is almost 2
times faster than our optimized sequential reimplementation be-
cause it reduces the execution time of cut checks by almost 50%.
Optimistic Adwin improves upon Half-Cut Adwin by a factor
of 27 and is 54 times faster than our optimized reimplementa-
tion. This leads to a 274 times speedup compared to the original
Adwin implementation. Moreover, Optimistic Adwin decouples
the insertion of tuples into the histogram from the cut check
procedure. Therefore, its throughput is not directly correlated to
the histogram size, which leads to a better scalability.
Latency. In the right plot in Figure 8, we show the latencies of
different Adwin versions depending on the histogram size. Our
new Adwin versions reduce latencies compared to the original
implementation by up to 90% and at least by 50%.Half-CutAdwin

has the lowest latency because it distributes the cut detection
procedure on two threads without any snapshot and concurrency
4JHM - http://openjdk.java.net/projects/code-tools/jmh/
5Adwin open source repository: https://github.com/abifet/adwin
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control overhead. Optimistic Adwin exhibits the largest variance
(10µs) among the latencies of different tuples. This is because of
the additional waiting time between adding a tuple to the primary
histogram and the start of the next cut check procedure. In the
worst case, a snapshot of the histogram was taken directly before
inserting the tuple. This roughly doubles the latency because
we first finish the cut check procedure on the recent snapshot
before we do a cut check which includes the new tuple. While
Half-Cut Adwin decreases the latency compared to Optimistic

Adwin by 70% on average, Optimistic Adwin show a 27 times
higher throughput. In general, all latencies are in the range of
microseconds which enables fast reactions on concept drifts.

5 CONCLUSIONS

Concept drift detection, with algorithms such as Adwin, is a cru-
cial component of stream analysis. We analyzed the bottlenecks
of the Adwin algorithm and discussed several approaches for its
parallelization. Our Optimistic Adwin algorithm decouples the
concept drift detection and the window maintenance. Its evalua-
tion shows that it has two orders of magnitude higher throughput
and an at least 50% lower latency than state-of-the-art solutions.
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[8] J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, and A. Bouchachia. A survey
on concept drift adaptation. ACM Computing Surveys (CSUR), 46(4):44, 2014.

[9] D. Kifer, S. Ben-David, and J. Gehrke. Detecting change in data streams. In
VLDB, pages 180–191. VLDB Endowment, 2004.

[10] R. Klinkenberg and I. Renz. Adaptive information filtering: Learning in the
presence of concept drifts. Learning for Text Categorization, pages 33–40, 1998.

[11] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J. M. Patel, S. Kulkarni,
J. Jackson, et al. Storm@twitter. In SIGMOD, pages 147–156. ACM, 2014.

[12] G. Widmer and M. Kubat. Learning in the presence of concept drift and hidden
contexts. Machine learning, 23(1):69–101, 1996.

480



Point-of-Interest Recommendation Using Heterogeneous Link
Prediction

Alireza Pourali

Laboratory for Systems, Software

and Semantics (LS
3
)

Ryerson University

alireza.pourali@ryerson.ca

Fattane Zarrinkalam

Laboratory for Systems, Software

and Semantics (LS
3
)

Ryerson University

fzarrinkalam@ryerson.ca

Ebrahim Bagheri

Laboratory for Systems, Software

and Semantics (LS
3
)

Ryerson University

bagheri@ryerson.ca

ABSTRACT
Venue recommendation in location-based social networks is

among the more important tasks that enhances user participation

on the social network. Despite its importance, earlier research

have shown that the accurate recommendation of appropriate

venues for users is a difficult task specially given the highly sparse

nature of user check-in information. In this paper, we show how

a comprehensive set of user and venue related information can

be methodically incorporated into a heterogeneous graph repre-

sentation based on which the problem of venue recommendation

can be efficiently formulated as an instance of the heterogeneous

link prediction problem on the graph. We systematically compare

our proposed approach with several strong baselines and show

that our work, which is computationally less-intensive compared

to the baselines, is able to shows improved performance in terms

of precision and f-measure.

1 INTRODUCTION
The recent interest in location-based social networks (LBSNs)

such as Foursquare and Gowalla has generated a high volume

of user location information on the Web [17]. This has attracted

researchers to analyze social data related to users’ point of inter-

ests (POI) based on their preferences and personalities, which has

the potential to improve the quality of higher-level applications

such as civic planning, healthcare, advertising/marketing, and

crime prediction [10], just to name a few. The recommendation

of a point-of-interest to a given user based on her past activity is

one of the applications that has already been explored by several

authors [3]. These earlier works primarily use features such as

spatial and temporal activity of users where both spatial features

(location of venues) and temporal features (time of visit) are

taken into account. The spatial features are extracted using the

geographical information of the user check-ins, which are longi-

tude and latitude of the venues. The collection of these features

are then used to train classifiers to determine and recommend a

point-of-interest for a given user.

In our work, we take a different perspective on the same prob-

lem of point-of-interest recommendation by formalizing user

LBSN information in the form of a heterogeneous graph which

consists of different node types including users, venues, venue

categories, and geographical regions, among others. We propose

that the problem of point-of-interest recommendation can be

viewed as an instance of the link prediction problem on hetero-

geneous graphs. In this paper, we systematically show (1) how a

collection of LBSN information including user relationships, past

user-venue interaction history, venue category information and
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geographical coordinates can be unified into and represented as a

heterogeneous graph; (2) how meta-paths can be extracted from

such a heterogeneous graph representation in order to identify

potential links between users and venues (points-of-interest);

and (3) that compared to much more complex baselines that in-

corporate spatio-temporal information into strong recommender

techniques such as matrix factorization models, our proposed

approach shows improved performance. We extensively compare

our work with several state of the art techniques based on the

gold standard dataset from [7] and show that while our heteroge-

neous link prediction model is quite computationally lightweight,

it can offer improved performance over more computationally

demanding techniques.

2 RELATEDWORK
There has already been strong work on Point-of-Interest (venue)

recommendation in the literature. Gambs et al. [4] have proposed

an extended version of regular Markov Chains which incorpo-

rates the n previous visited venues of users. This model was then

used for next location prediction using the users historical lo-

cation visits. In their work, the next location of the users was

predicted using the mobility Markov chain that was built for each

individual user. Most of the location recommendation markov

based models only use the geographical information of the loca-

tions without considering the context of the user footprints.

Matrix factorization has been widely used in location recom-

mendation. In [2], matrix factorization is fused with geographical

influence using Multi-center Gaussian Model (MGM) and social

influence. In their work, location recommendation is based on

the probability of a Gaussian distribution model, which is applied

to the checked-in location centers along with the fusion frame-

work with user preferences. However, the rich information of

the check-in footprints such as the geographical context are not

taken into account. In contrast, Yang et al. [18] have proposed a

fusion framework, which exploits both spatial and temporal ac-

tivity preferences (using tensor factorization) of users to predict

their next point-of-interest. For each user, the spatial features are

captured by building Personal Functional Regions, which are built

based on frequented regions that the user visits. This model uses

the spatial and temporal features separately for recommendation

to users. In their work, each region is assigned with a category

that the user is more interested in based on her historical visits.

Therefore, when the user is near each region, the category as-

signed to that region is used for venue recommendation. Also,

in this work, the lifestyle behavior of users is observed by using

the temporal nature of the check-ins. It should be noted that

Yang’s model does not recommend venues to users and only

recommends location categories.

Supervised learning models were also investigated in [9] for

location recommendation. In this work, two supervised meth-

ods, linear regression and M5 trees were compared and it was
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Figure 1: Sample heterogeneous graph representation of
LBSN data.

found that M5 trees achieve higher prediction accuracy. Similar

to other work, the set of features that were used for learning

the classifiers were the user transitions between locations and

spatio-temporal features of the check-in footprints. In our work,

we have trained our model using the linear regression classifier

and have achieved better recommendation accuracy due to using

the features collaboratively and not individually compared to the

work by Noulas et al. [9]. In [18] and [7], the importance of venue

context information such as categories for location recommen-

dation was also investigated. The accuracy of point-of-interest

recommendations was improved by using the users’ preferences

that were based on the location categories they had visited. While

in most existing work the current location of the user is needed

for location recommendation; in our work, we show improved

performance compared to the state of the art without requiring

information about the last location of the user.

3 PROPOSED APPROACH
The objective of our work is to recommend a point-of-interest

(venue) to a user based on her historical check-in data. Formally,

given the check-in profile of a user in time interval t (Definition
1), we aim at recommending a list of venues that the user may

be interested in at time interval t + 1.

Definition 1. (User Check-in Profile). The check-in profile
of user u ∈ U at time interval t , with respect to a set of venues V,
denoted by CP t (u), is represented by a vector of weights over the
K venues, i.e., (f tu (v1), ..., f

t
u (vK )), where f

t
u (vk ) is equal to one if

user u checked in at venue v in time interval t and 0 otherwise.

We propose to turn the problem of venue recommendation

into a link prediction problem that operates over a heterogeneous

graph. In addition to historical check-in data of users, there are

other types of data that can be considered while recommending

venues, namely venue categories, venue regions and user relation-

ships. In this paper, we combine these data points into a unified

heterogeneous graph representation model to consider them si-

multaneously. An illustration of our underlying representation

model G can be found in Figure 1.

As illustrated in Figure 1, our representation model contains

four types of nodes and four types of relations. Besides User and

Venue nodes and User-Venue relations that represent historical

check-in data of users, other types of data that are included

consist of the following:

• Category nodes: In location-based social networks, venues

are organized by a hierarchical category tree which pro-

vides a semantic classification of the various venues. For

Figure 2: Network schema of the representation model.

Table 1: Meta-Paths between users and venues.

Meta-Path Meaning of the Meta-Path

U − U − V
A user visits a venue where her friends have

visited

U − V − C − V
A user visits venues that belong to the same

category

U − V − R − V
A user visits venues located in the same

region

example, Foursquare contains a 3-level category hierarchy

where categories are grouped into 10 top-level categories,

such as Event, Food, Nightlife Spot and Residence. Each

top-level category is classified into different subcategories.

In our approach, we have infused the categories at the

lowest level (Level 3) as our category nodes.

• Region nodes: Each region indicates a geographical area.

Given the longitude and latitude of existing venues, we

use X-means clustering [11] to cluster geographical coor-

dinates and extract different regions.

• Venue-Category relations: Based on the hierarchical cat-

egory tree defined in LBSNs for organizing venues, we

assign each venue to its corresponding category in the

lowest level of the hierarchy.

• Venue-Region relation: To identify the region of a venue,

we calculate the Euclidean distance between the venue

geographical coordinate (longitude and latitude) and the

center of the identified regions and connect each venue to

its nearest region.

• User-User relation: Users are connected to each other based
on the friendship relation among them on the LBSN. By

using this relation, potential interaction between users is

also taken into account for point-of-interest recommenda-

tion.

Having built the representation model G, in order to recom-

mend a point-of-interest to a user u ∈ U, we formulate a graph-

based link prediction problem that operates overG. As our rep-
resentation model is a heterogeneous graph, the neighbors of an

object could belong to multiple types and the paths between two

objects could have different meanings. Therefore, it is not possi-

ble to apply link prediction strategies such as Adamic/Adar and

Common Neighbor, which treat all types of nodes and relations

as the same in the form of a homogeneous graph [6].

Sun et al. [16] proposed the concept of heterogeneous infor-

mation networks and the meta-path concept for heterogeneous

information network analysis, which are now widely known and

used in different data mining tasks such as ranking [8], clustering
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Table 2: Performance comparison of different approaches.

City

Austin Chicago Houston Los Angeles San Francisco

R P F1 R P F1 R P F1 R P F1 R P F1

Our Approach 0.056 0.096 0.071 0.096 0.130 0.111 0.207 0.122 0.153 0.120 0.112 0.116 0.072 0.116 0.089
CPOIR [7] 0.157 0.026 0.045 0.292 0.049 0.083 0.279 0.046 0.080 0.203 0.034 0.058 0.159 0.027 0.045

BasicMF 0.064 0.011 0.018 0.086 0.014 0.025 0.082 0.014 0.024 0.072 0.012 0.021 0.066 0.011 0.019

GeoCF [19] 0.122 0.020 0.035 0.227 0.038 0.065 0.165 0.027 0.047 0.164 0.027 0.047 0.126 0.021 0.036

MGMMF [2] 0.117 0.020 0.034 0.186 0.031 0.053 0.159 0.027 0.045 0.152 0.025 0.046 0.112 0.019 0.032

Markov [4] 0.086 0.014 0.025 0.116 0.019 0.033 0.102 0.017 0.029 0.096 0.016 0.027 0.088 0.015 0.025

ML [9] 0.116 0.019 0.033 0.170 0.028 0.049 0.152 0.025 0.044 0.132 0.022 0.038 0.111 0.018 0.032

[13], link prediction [1], and influence analysis [12]. In order to

solve the problem of link prediction in heterogeneous graphs, Sun

et al. [14] proposed the PathPredict method, i.e., meta path-based

relationship prediction model to predict links between dissimilar

node types. Therefore, to distinguish different types of objects

and relations, following the works in [14, 15], we use the Path-

Predict method to determine the relevance of a point-of-interest

v ∈ V for a user u. The core of the PathPredict method rests

on the idea of meta-paths. A meta-path is a path defined over

the heterogeneous network schema which can be used to define

topological features with different semantic meanings. Figure

2 summarizes our representation model using a meta-structure

known as the network schema.

Based on PathPredict, for the target relation < U,V >, we
define a set of meta-paths starting with type U and ending with

type V other than the target relation itself. We extract all such

meta-paths by traversing the network schema using Breadth-

First Search (BFS) within a fixed length constraint (max = 3). The

extracted meta-paths and their semantic meaning are shown in

Table 1. For example, The meta-path U − V − C − V, i.e., user-
venue-category-venue considers those venues which belong to

the same category of the historical check-in venues of a user as

her next check-in venue.

Once the meta-paths are retrieved from the network schema,

for each user-venue pair in the representation model G, we use
the Degree-Weighted Path Count metric [5] to quantify each

meta-path as a topological feature in the training step. For the

given meta-path, Degree-Weighted Path Count penalizes paths,

which pass through high-degree nodes. Then, given all user-

venue pairs in the representation graph G and the extracted

topological features for them, a logistic regression classifier is

trained as the learning model to recommend a ranked list of

points-of-interest for a given user.

4 EXPERIMENTS
In this section, we describe our experiments in terms of the

dataset, setup and the details of the baselines used in the paper.

The performance of our approach is then compared to the state

of the art baselines and our findings are discussed.

4.1 Dataset and Experimental Setup
Our experiments were conducted on a dataset collected from the

popular location-based social network of Gowalla introduced in

[7]. It includes check-in data (longitude, latitude, timestamp, cat-

egories, among others.) of more than 600,000 users from Austin,

Chicago, Houston, Los Angeles and San Francisco. For each user,

we randomly select 70% of her check-ins to construct the training

data and the remaining 30% of her check-ins for testing data as

suggested in [7].

We compare our approach with several state of the art point-

of-interest recommendation methods that are briefly described

in the following:

(1) BasicMF is a classical matrix factorization techniques,

which only considers users’ past venue check-ins and,

hence their preferences, for Point-of-Interest recommen-

dation.

(2) GeoCF [19] is based on both user preference and geo-

graphical influence which are integrated into a collabora-

tive filtering model.

(3) MGMMF [2] is a framework based onMulti-Center Gauss-

ian Model, which combines both the user preference and

MGM based check-in probability for Point of interest rec-

ommendation.

(4) Markov [4] applies Mobility Markov Chain model for

predicting next venue of a user based on her mobility be-

havior over different time intervals and the recent venues

that she has visited.

(5) ML [9] considers user mobility, global mobility and tem-

poral features to describe users’ check-in behavior and

applies M5 decision tree to predict the next POIs of a user.

(6) CPOIR is one of the most related work in the literature

by Liu et al [7], which proposes a Category-aware Point-

Of-Interest Recommendation model that exploits the tran-

sition behavior of users between venue categories. They

employ a matrix factorization model to predict the transi-

tion patterns of users’ interests over categories and conse-

quently her interests in different venues.

For evaluation purposes, we measure the performance of the

methods based on Precision@K, Recall@K and F1-score as sug-

gested in [7].

4.2 Experimental Results
In this section, inline with [7], we compare the performance of

our proposed approach with other state of the art baselines when

Top-6 venues are recommended by each method. The results are

reported in Table 2 in terms of Recall, Precision and F1-score.

It can be observed that BasicMF model, which is solely based

on user interests performs worse than others for most of the

cities and in terms of all three metrics. This means that incorpo-

rating other auxiliary information such as geographical, social,

and temporal features leads to improved quality of venue recom-

mendation. Markov models that incorporate temporal features

outperform BasicMF; however, they perform much less accu-

rately than the other baselines. This is because Markov models

assume that a user’s mobility data is dense, as a result they may

not perform so well on users’ venue data in LBSNs which is very

sparse.
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As another observation, MGMMF and GeoCF that fuse geo-

graphical influence and user interest into their proposed approach

and take into account the correlation between these features of-

fer more accurate recommendations compared to the ML model,

which exploits geographical influence as a single feature. As men-

tioned before, the CPOIR model incorporates two novel features,

i.e., the transition patterns of a user’s interests among venues

and venue categories, for the purpose of point-of-interest rec-

ommendation. It can be seen that CPOIR offers superior results

compared to both MGMMF and GeoCF in all cities and in terms

of all metrics. This demonstrates the benefits of these two factors

to improve the quality of venue recommendations.

Inspired from these insights, in order to be able to utilize the

benefits of useful features in a unified model for point-of-interest

recommendation, we formalize user LBSN information in the

form of a heterogeneous graph. As highlighted in Table 2, it is

evident that our proposed approach outperforms all the compari-

son methods in all cities in terms of Precision and F1-score. This

means that our approach can successfully take advantage of dif-

ferent features, i.e., venue categories, geographical influence, the

relationship between users, and the correlation between these

features to produce more accurate recommendations, i.e., less

false positive. However, it can be observed that our proposed

approach results in lower Recall values, i.e., more false negatives

compared to others. In other words, our method is not able to

identify those venues through the current limited set of defined

meta-paths in this paper. To cover more meta-paths, as our future

work, we intend to increase the length constraint of meta-paths,

which is currently set to 3, and take into account more features

in our representation model such as transition of user’s interests

and sentiments of user-venue related comments.

5 CONCLUDING REMARKS
In this paper, we have proposed that venue recommendation in

location-based social networks can be viewed as an instance of

the link prediction problem on heterogeneous graphs. As such,

we have systematically shown how various types of information

can be incorporated into a heterogeneous graph based on which

distance metrics between nodes can be employed as features to

learn ranking classifiers. We find that even a logistic regression

method can effectively show competitive performance compared

to the state of the art despite its simplicity and light-weight com-

putational requirements. We further found that while our pro-

posed approach shows improved performance over the baselines

in terms of precision and f-measure, it does not show competitive

performance in recall. This can be attributed to the fact that we

have only employed three meta-paths and a depth of three in the

BFS search.

Our future work will explore two synergistic directions: 1) We

will explore whether a more extensive set of meta-paths defined

over the network schema can lead to improved recall or not. We

will also study whether a higher search depth is able to identify

more relevant information that can be included in the link pre-

diction process. 2) Some users provide written textual feedback

about their experience at venues they visit. These include textual

reviews or recommendations. We are interested in the possibility

of incorporating such unstructured user feedback into the net-

work schema to see whether textual feedback, while quite sparse,

can improve the venue recommendation task.
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ABSTRACT
Exploratory data analysis characterized by analytic query work-
loads over large databases is now commonplace on both academia
and industry. In these scenarios, data production velocity and
unknown and drifting access patterns make the choice of access
methods a challenging task. In this context, adaptive indexing
techniques propose the use of partial indexes that are incremen-
tally built in response to the actual query sequence and as a
byproduct of query processing to optimize the access only to the
key ranges of interest. This work presents a further development
to this principle by leveraging the recent query history to predict
the next key ranges and index them in advance, so the queries
arriving in the near future find data in its final representation and
higher placed in the storage hierarchy, since data must be loaded
into main memory in order to be indexed. Adaptive merging
is used as base architecture for the data structures and merge
operations are executed in parallel with query execution instead
of being the same operation. An extreme learning machine is
used to perform key range forecasting and undergo continuous
training by the indexing thread. The experiments show up to
38% lower query response times over a 1000 queries than adap-
tive merging, therefore lower overall response times and the
decoupling of indexing operations during scan executions.

1 INTRODUCTION
Important modern database applications do not have a known
workload in terms of access patterns. Data subsets which are the
focus of query attention change over time, and ad hoc queries
should be expected. Examples of this kind of application are
found in scientific work or in exploratory analysis, which is an
increasingly common daily task in many business areas today. No
assumptions can be made about the workload, and database sys-
tems must still be able to answer the queries from these dynamic
workloads efficiently, searching through and updating suitable
data structures to speed up query processing.

To accomplish this task, adaptive indexing [7] was introduced.
By adapting the DBMS internal structures to quickly answer
queries that follow the current trends, it enables the system to
perform better according to the dynamic workload. The funda-
mental idea is that each time data is scanned to answer a user
query, an incremental step is performed to provide an index struc-
ture or refine it, which will permit subsequent scans to prune
the search space and perform better. Such operations must be
simple in order to avoid adding a prohibitive overhead to query
execution [2] while still being useful to speed up queries and
save access to slow storage devices.

Changing database physical layout in response to theworkload
can be powerful if used properly. The advantages of optimizing
access only for the records of interest is based on the fact that,

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the 21st
International Conference on Extending Database Technology (EDBT), March 26-29,
2018, ISBN 978-3-89318-078-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

in most applications, a subset of the records is accessed more
often than the rest. Partial indexes recognize this fact by focusing
layout tuning in a subset of the indexed relation, but they lack
the adaptive behavior and the possibility of incremental change.
Instead of relying in periodic statistics observation, our approach
continuously tracks the workload, since the access patterns and
the set of records requested more frequently changes over time.

On the other hand, consider the situation in which, while
trying to follow the query trends, the system organizes data in
response to single queries which deviate from the underlying
workload pattern. This wastes time and compromises perfor-
mance. Additionally, the current query may not provide sufficient
information to figure out the best key range to index in order
to enable the next queries to take full advantage from the struc-
ture. More contextual information is needed. A workload model,
instead of the advice from the current request, provides better
guidance. These issues are similar to the problems of overfitting
and generalization in pattern recognition tasks.

Improvements to adaptive indexing can be achieved by index-
ing key ranges not strictly equal to those of the query responses,
possibly adding a stochastic component to the indexing process
[4]. Another possibility is using periods of time when computing
resources are not being exhaustively used to index key ranges
not yet touched [10]. The main advantage of these approaches is
the possibility of indexing a region of data that will be queried
in the near future. When this happens, the response time will be
optimal and the effort of indexing can be done independently of
query processing, thus not incurring any extra overhead to it.

This work develops this analogy further by using an actual
machine learning technique to create and continuously update
a model of the query sequence. In other words, it leverages an
adaptive structure and adds a predictive behavior to the index
building operations based on a dynamic model of the workload,
using the most recent requests as training data. By indexing data
expected to be requested next, our index builder is less sensitive
to anomalies, and avoids the effort of indexing uninteresting
records. Such intelligent access structures fit naturally in the
context the emerging self-driving systems [1], which promise to
be able to handle highly dynamical and hybrid workloads while
requiring even less manual operation than traditional systems.

The benefits of performing incremental indexing detached
from query processing occurs when the forecasting succeeds and
a key range is placed in the final index form before it is queried.
In this case the access is logarithmic in the size of the indexed
data, not on the total amount of data. If the forecasting predicts
the wrong key range then the cost of the next query will be that
of a scan in the partial index structure built in the first query,
a partitioned B+ tree, as discussed in the next section. Even in
this case, the scan will not be as costly as it would be in a strictly
adaptive indexing scheme, because the scan algorithm will not
have to move data around, but only to find the qualifying records.
This scheme keeps the hypothesis that the workload is unknown,
as in previous adaptive indexes, but it recognizes that application
queries are not random, and an underlying pattern should exist.
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2 METISIDX
MetisIDX is an indexing mechanism for relational data that tar-
gets secondary storage (HDDs, SSDs, etc) and uses the accumu-
lated knowledge from previous queries in the workload to guide
the index construction. The partitioned B+ tree, and some of the
index creation and maintenance procedures are similar to those
developed for adaptive merging [3]. A B-tree based structure
was chosen to exploit its paged data transfer, which is naturally
performed with block-addressed devices and permits meaningful
data blocks to be exchanged between the levels of a memory hier-
archy. However, differently from the adaptive merging approach,
MetisIDX indexing routine is decoupled from data scanning and
is less sensitive to workload anomalies since it leverages the in-
formation provided by multiple requests rather than the current
query alone.

The learning algorithm must be lightweight enough to be exe-
cuted in time frames that do not exceed the order of magnitude
required to answer a single query. This constraint makes it im-
practical to use many state-of-art machine learning techniques
such as massive deep neural networks, since using these meth-
ods would result in a training time long enough to make the
resulting model already outdated, in the sense that it reflects a
workload pattern that is already gone. Additionally, it must be
able to update the model using new available data, new queries
in this context, without discarding the previous model version
altogether. A suitable technique that fulfills these requirements
is the Extreme Learning Machine (ELM) [9], a class of neural
networks which always has a single hidden layer, and only the
weights of the connections between the hidden neurons and the
output neurons must be trained.

The training data used in model updates is the sequence of
key range boundaries from the last N queries processed by the
system. N is a hyper parameter that has to be chosen. The trained
network is the current model of the workload, used to forecast
index range candidates and trigger a new merging operation.
In the next training step the model is updated to keep track of
possible workload trends shift. After that, the model is used to
forecast the key range to be queried next, and a new merging
operation is triggered. The process of training and triggering
merges is carried out cyclically in a dedicated execution thread.

The first query triggers a full scan over the non-indexed data.
During this first scan execution, data is read from secondary
storage in chunks, called runs hereafter. Each run is then sorted
using an algorithm suitable for main memory resident data. The
records that belong to the query response set are then collected
and returned to the user. The sorted runs are written back to
disk as the leaves of a partitioned B+ tree and global ordering
is achieved by introducing an artificial leading attribute whose
value is the runs creation order.

The size of the runs is limited by the amount of main memory
available and should be as big as possible, since longer runs
provide fewer index partitions and thus faster access, because the
tree must be traversed from root to leaf level for each partition.
This partitioned index is already able to speed up the processing
of subsequent queries, each time a search operation is executed
the partitioned tree is traversed from the root to leaf level once per
partition. In order to achieve optimal read access, the partitions
must be merged into a single one so that the index becomes a
regular B+ tree (not partitioned). In the adaptive merging [3]
approach, partition merging and query processing are a single
operation.

Algorithm 1: Forecast And Index Thread
Data: Predicates of last N queries
Result: Predicted query key ranges indexed continuously

1 while True do
2 if at least N new queries observed then
3 train neural network;
4 discard training data;
5 else
6 predict next key range;
7 if range is not locked by query thread then
8 acquire latch on key range;
9 merge key range to final index;

10 release latch;
11 end
12 end

In MetisIDX, two separate structures are used, one is the parti-
tioned tree resulting from the first query, and the second, another
B+ tree structure for the final index, which is composed of the re-
sults of the merging operations performed by the indexing thread.
This design was chosen to minimize the efforts of structure main-
tenance, as a result, no merges are performed on the nodes of
the partitioned tree, i. e. they are permitted to underflow and the
height of the tree is fixed. In the final index, however, overflow
checks happen and nodes are split as more data is moved from
the partitioned tree to their final position. Adaptive merging,
on the other hand, has to deal with structure maintenance for
merges and splits, because the transition from the partitioned
structure to the final index is accomplished by collecting the
records that belong to the response set of the query and merging
them into a final partition, which becomes the full index after
a number of queries. All the partitions compose a single tree
structure, including the final partition.

In order to answer a range query, such as the ones used in the
experiment, the query processing thread traverses the partitioned
tree once for each partition in the tree and collects the records of
interest, then it proceeds to scan the final index to account for
the case in which the required records have already been merged
to that location. The predictive behavior of MetisIDX minimizes
the need for the operation of scanning the partitioned tree since
the merging operations are made in anticipation and eventually
make entire partitions empty.

The decisions on which key ranges to merge and the actual
merging operations are done independently and in parallel to
query processing. Such decision process comes from the extreme
learning machine that is continuously trained in background by a
dedicated thread. That same thread is used to perform merges at
the end of each trainingmini-batch. After eachmerging operation
the indexing thread attempts to perform a new model update if
enough new queries have been observed. An important difference
between a predictive system and a strictly adaptive one is the
fact that, by indexing a key range before it is queried, the records
in the indexed range will be brought up to cache. This means
that predictive indexing is also a predictive cache prefetching.

Algorithm (1) depicts this process. The whole procedure is
executed in an infinite loop in the indexing thread, that continu-
ously tries to perform merge operations if the required resources
are not protected by a latch, and performs a training step if a
number of queries have been observed. This number must be
chosen by the user, for our setup we used 10.
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Figure 1: Response times

3 EXPERIMENTAL EVALUATION AND
SETUP

MetisIDX and Adaptive Merging were both implemented for
comparison in a custom storage engine named MetisDB, which
implements the usual B+ tree access operations including persis-
tence. The inclusion of adaptive merging and MetisIDX imple-
mentations in well known and complete database management
systems would be a valuable way to fully evaluate and compare
the performances and the implications for transaction processing
by making the use of standard benchmarks possible. However,
as pointed out by the authors of adaptive merging, conventional
database architectures make a clear distinction between scans
and index updates, treating the first as read-only, and the modifi-
cations needed to integrate the query-and-index strategies use
in adaptive approaches call for whole new system architectures
built with adaptive components in mind. This is the primary
motivation for the MetisDB.

Since MetisIDX is not a strictly adaptive technique, and it
adds indexing steps which are not part of query processing, it
would make sense to compare it with Holistic Indexing, which
has similar attributes. However, that technique is designed to
work in the context of main memory column stores, while our
approach targets tuple-based systems in secondary storage. For
this reason Adaptive Merging is used as a baseline, as its applica-
tion domain and data structures used are the same. The machine
in which the experiments were carried out consists of a 3.1GHz
Intel i5 processor, a 500GB, 7200RPM Seagate hard disk drive,
and a 2x4GB DDR3 memory. The software stack is composed of
a Debian GNU/Linux version 9 operating system and MetisDB
was compiled using the GNU C++ compiler version 6.3.

The MetisDB storage engine contains a buffer manager that
uses an LRU cache replacement policy on 8KB pages, LRU was
chosen to favor recently loaded pages to remain in memory, as
this is the case for recently indexed key ranges. Response times
are used as a performance metric for the purpose of comparison.
We use this metric instead of the usual I/O operations count used
in disk-based access method evaluation because this quantity
is not as directly linked to response times in MetisIDX as it is
in other access methods. The reason is that, as we index data
before query processing occurs and the indexing process must
bring data up to the main memory cache, the select operator is
expected to find its response set in the buffer pool. In other words,
it does not matter how many disk accesses were performed if the
data is in cache by the time one needs it.

The synthetic data used in the experiments consists of tuples
with a 64bit integer used as the index key, and a 48B random
string added to increase volume. Two tables were created, one
containing 500MB and 7,106,208 tuples with the format described
above, hereafter called T1, and another containing 50GB and
727,483,873 tuples, called T 2. Two different data sizes were used
to assess the effects of the domain size for the neural network
predictions and cache invalidation, since the 500MB data can be
entirely accommodated on cache while the larger one can not.

The query workload consists of 1000 range queries of the form
SELECT COUNT(*) ... WHERE A => QLOW AND A <= QHI ;
where the key range limits, QLOW and QHI , are generated from
a function Q that maps each query to a point in the search key
space. Let the domain of the key be [0,M) and j be the order of a
query, then the Q used is

Q(j) = M · (j/C)2 (1)
where M is the maximum value of the search key and C is the

order of the last query, 1000 in the given setup. In this form Q
will distribute the queries over the entire key range. From this
function (1) QLOW and QHI are derived by

QLOW (j) = Q(j) − R1

QHI (j) = Q(j) + R2
(2)

where R1 and R2 in (2) are random positive values generated
by a normal distribution with standard deviation equal to 1%
of the key range. This parameter determines the selectivity of
the queries and additional executions with different values were
performed with similar results. These are the functions the neural
networks learn. A quadratic function was chosen to define the
access pattern as it is a simple non-linear function, and the goal is
not to test the ELM forecasting capabilities for complex functions
as it is done elsewhere [5]. This quadratic function, even though
non-linear, is a sequential access, the worst case for adaptive
indexes since, as a key range is never queried more than once,
each one faces the non-indexed part of the data.

Two ELMs were used, one learns QLOW and the other learns
QHI , both as functions of j. Each network has one neuron in
the input and output layers, since the target function is one-
dimensional, and four neurons in the hidden layer. A test with
4 neurons was carried out and yielded the same results, since 4
is enough for such simple function. In a real application where
the access pattern may be more complicated, the use of more
neurons in the hidden layer is advisable.
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Figure 2: Accumulated response times

Figure (1) shows the response times of MetisIDX and adaptive
merging for the two data sizes. For both experiments the fact
that the first query has a cost much higher than the ones that
follow is visible, this result is compatible with the related work
in adaptive indexing in general. The queries over the 500MB data
have a noisy behavior likely due to the CPU usage of the training
thread and other processes running in parallel, since the data is
small enough to be all in memory after the first query. On the
other hand, the queries over 50GB data have a more consistent
behaviour and the advantage of decoupling indexing from query
processing becomes clear. The soft increase seen along the query
sequence is due to the the growing number of cached pages,
which increases the addressing costs.

Figure 2 Shows the accumulated query processing time, that
is, the time spent to perform the first N queries as a function
of N . The behavior of the curves show that as more queries are
processed the gain in overall performance increases so that long
running applications benefit the most from the technique. This
also points a common trait of adaptive indexes, that is, as more
queries are processed, the system gains knowledge of the data
stored and of the workload.

In a few queries, the response times of MetisIDX jumps to
the level of adaptive indexing. This happens when a key range
starts being indexed and then is requested by a query before
the indexing action finishes. It is the only situation in which the
query processing thread waits. Since the observation window
used is 10 queries and the indexing action for the next immediate
query happens after each observation window, this is expected
to be the periodicity of these peaks.

4 CONCLUSIONS AND FUTUREWORK
MetisIDX is able to speed up access by range queries by decou-
pling index building efforts from query processing while main-
taining the workload oriented behavior of adaptive indexes. In
this technique not only the current query is treated as a hint on
how to physically organize the data but the entire query sequence
is taken to be a sample of the underlying workload patterns. The
workload is still assumed to be unknown, only the existence of
an underlying pattern is required.

It shares the concurrency concerns of other adaptive tech-
niques in terms of application access. Additionally, indexing oc-
curs in parallel to query processing when the key ranges do not
overlap. These considerations call for a latch free alternative to
data structure access in order to alleviate latch contention, or

even make the two actions race free, and increase throughput.
An option to address these challenges is the adaptation of the
approach presented here to the context a latch-free B-tree based
structure, such as the Bw-tree [8] and a multiversion strategy
to distinguish the data accessed by the current query and that
being indexed may also be an option.

An in-depth analysis of the overall concurrency issues would
be valuable not only for this particular technique but for any
machine learning and pattern recognition based access methods.
These are interesting issues for big data exploration as building
full indexes upfront is an increasingly less attractive option [6]
as data volumes grow. Learning from the data not only about the
information it carries but also about the best ways to access it is
a reasonable and, as far as we know, open research problem.
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ABSTRACT
Hashing is at the core ofmany efficient database operators such as
hash-based joins and aggregations. Vectorization is a technique
that uses Single Instruction Multiple Data (SIMD) instructions
to process multiple data elements at once. Applying vectoriza-
tion to hash tables results in promising speedups for build and
probe operations. However, vectorization typically requires in-
trinsics – low-level APIs in which functions map to processor-
specific SIMD instructions. Intrinsics are specific to a processor
architecture and result in complex and difficult to maintain code.

OpenCL is a parallel programming framework which provides
a higher abstraction level than intrinsics and is portable to dif-
ferent processors. Thus, OpenCL avoids processor dependencies,
which results in improved code maintainability. In this paper,
we add efficient, vectorized hashing primitives to OpenCL. Our
results show that OpenCL-based vectorization is competitive to
intrinsics on CPUs but not on Xeon Phi coprocessors.

1 INTRODUCTION
Modern processors support Single InstructionMultiple Data (SIMD)
extensions. These vectorized instructions process multiple data
values in a single instruction to increase the computational effi-
ciency of a program. Database operators that use SIMD instruc-
tions are several times faster than scalar operators, because they
process multiple tuples at once [8, 10, 11, 13].

Compilers expose SIMD instructions through function-like
primitives called intrinsics [5]. Since intrinsics correspond di-
rectly to SIMD instructions of a processor, they are processor-
dependent. Different processor architectures use specific instruc-
tion sets and each processor generation typically adds new in-
structions. Consequently, supporting vectorized database opera-
tors on different processors requires continuous maintenance of
a growing code base and increases development costs.

Parallel computing frameworks such as OpenCL abstract from
low level intrinsics and enable programmers to write code in
a restricted dialect of C. The major advantage of OpenCL is
its portability. Processor-specific compilers translate OpenCL
programs to efficient machine code. OpenCL natively supports
vectorized data types, which are directly compiled to the native
SIMD instructions of a particular processor. However, OpenCL’s
vectorized instruction set is limited to arithmetic, logical, and
permutation operations. Therefore, we need to emulate more
complex SIMD instructions such as Gather and Scatter [8].

In this paper, we leverage OpenCL to provide vectorized imple-
mentations of database operators which are portable to different
instruction set architectures and processors (e.g., Intel CPUs and
Xeon Phi coprocessors). OpenCL programs are implemented in
special functions called kernels. We provide vectorized kernels for
the data movement primitives selective load, selective store, gather,
and scatter [8]. These primitives are essential building blocks of
hash-based operators. We use vectorized hashing operations for
© 2018 Copyright held by the owner/author(s). Published in Proceedings of the 21st
International Conference on Extending Database Technology (EDBT), March 26-29,
2018, ISBN 978-3-89318-078-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.
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Figure 1: Vectorized data movement primitives. Grey
boxes indicate values that are neither read nor written.

our case study because they are at the core of many database
operators. Our results show that portable OpenCL-based hashing
is competitive to processor-specific vectorized implementations.

Specifically, we make the following contributions:
(1) We adapt vectorized data movement primitives to the

OpenCL computation model. Using these primitives, we
formulate explicitly vectorized algorithms of different data
processing operations (Section 3).1

(2) We compare our OpenCL-based approach with intrinsics-
based SIMD instruction sets – namely, AVX2 on a Haswell
CPU and AVX512 on a Xeon Phi coprocessor (Section 4).

2 BACKGROUND
2.1 Vectorized Data Movement Primitives
Vectorized data movement primitives move data between SIMD
lanes (i.e., the components of SIMD registers) and memory loca-
tions [8]. Selective Load, Selective Store, Gather, and Scatter are
such data movement primitives. Selective Load (Figure 1a) selects
data from contiguous memory (starting at an offset) and copies
it into SIMD lanes specified by a bitmask. Selective Store is the
inverse operation of Selective Load, which copies data from SIMD
lanes into contiguous memory. Gather (Figure 1b) selects data
from discontiguous memory and copies it into SIMD lanes. A
separate SIMD register provides the pointers to data elements.
Scatter is the inverse operations ofGather which copies data from
SIMD lanes to discontiguousmemory. Modern processors support
these operations natively to a certain extent: The Intel Xeon Phi
coprocessor, which uses the AVX512 SIMD instruction set, sup-
ports all four primitives. Intel Haswell CPUs, which use the AVX2
SIMD instruction set, support Gather operations only. However,
Polychroniou et al. emulate these primitives using basic SIMD
permutation instructions at a small performance penalty [8].

2.2 Vectorized Linear Probing in Hash Tables
A probe operation iterates over many keys. Vectorized hash tables
use a SIMD register (k) to probe multiple keys (ki ) at once. We
show the initial iteration step of vectorized hashing in Figure 2a:

1 We load probe keys (ki ) into a SIMD register (k) with
Selective Load. In the first iteration, we load all SIMD lanes
as indicated by the green bitmask.

2 For each probe keyki in the SIMD register, we compute the
hash hi and store it in a SIMD register h. We keep separate
SIMD registers for probe keys (k) and their hashes (h).

3 We use the hash values as position pointers in a Gather
operation to load buckets from the hash table. We store
the found keys in a new SIMD register k ′.

1Source Code: https://github.com/TU-Berlin-DIMA/OpenCL-SIMD-hashing
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Figure 2: Vectorized operations on a linear probing hash table.

4 We compare the original probe keys (k) with the keys we
retrieved from the hash table (k ′). This comparison results
in a collision mask (c). Light green boxes in the mask
indicate matches and dark red boxes indicate collisions.

In our example, we find three expected keys: k1, k3, and k4. How-
ever, the hash table contains the key k5 at position h2 instead
of k2, which indicates a collision (i.e., k2 and k5 have the same
hash). In general, there are three possible cases per probe key:
(1) The bucket contains the key. (2) The hash bucket is empty.
(3) The key in the hash bucket and the probe key are different.

In cases one and two, we replace the matched probe key in
k with a new probe key. In case three, we keep the probe key
ki , but increment its hash value hi in h to probe the next bucket
(Figure 2b, step 5 ). We now continue with the next iteration.

6 We use the collision mask to load new keys into the SIMD
lanes for which there was no collision in the previous
iteration, leaving key k2 unchanged as described above.

7 We compute hashes for the new keys in k , leaving the
value h2+1 unchanged. Steps 3 to 7 repeat until all
probe keys are processed.

Note that we need to write the payload (matched keys) into an
output buffer with Selective Store between steps 4 and 5 , e.g., to
perform a hash join. For simplicity, we ignore empty hash buckets
in the illustration in Figure 2. To handle empty hash buckets, we
need to compute three bitmasks. The first bitmap (c ′) indicates
found keys, the second bitmap (c ′′) indicates empty buckets, and
the third bitmap (c) indicates collisions (c = ¬c ′ ∧ ¬c ′′).

If we are building a hash table, instead of using a Gather oper-
ation to load payloads, we use a Scatter operation to store keys.
Since multiple SIMD lanes can point to the same hash bucket, we
need to verify afterwards if the hash table contains the expected
keys using steps 3 and 4 . For successfully stored keys, we
store the payload in the hash table using a scatter operation. For
conflicting keys we need to probe the next bucket using step 5 .

Note that the hash table is unaware of being accessed with
vectorized operations. We can use the described scheme to access
hash tables built with scalar operations and vice versa.

2.3 Related Work
Heimel et al. showed that OpenCL is a viable way to run database
systems on heterogeneous processors [4]. Ourwork complements
this research by porting vectorization optimizations to OpenCL.
Pirk et al. introduced Voodoo – a vector algebra that abstracts
from the underlying processor and generates OpenCL code [7].
Breß et al. introduced Hawk – a hardware-tailored code generator
which produces custom code for heterogeneous processors [3].
Our work complements Voodoo and Hawk with templates for
efficient vectorized hash tables in OpenCL.

Richter et al. showed a seven-dimensional analysis of hash
tables [9]. Balkesen et al. [1] and Blanas et al. [2] studied efficient
hash joins focusing on radix joins. Jha et al. optimized hash joins
for Xeon Phis, but with limited use of SIMD instructions [6].

Zhou and Ross introduced vectorizations for major database
operators (selections, joins, aggregations, etc.) [13]. They pointed
out opportunities of SIMD in databases but did not apply SIMD to
hash tables. Complementary to ourwork, Ye et al. evaluated differ-
ent strategies for efficient aggregations on multi core CPUs [12].

3 PORTABLE VECTORIZED HASHING
In this section, we review vectorization support in OpenCL and
present the internals of our OpenCL-based primitives Selective
Load, Selective Store, Gather, and Scatter.

3.1 Vectorization Support in OpenCL
To implement data movement primitives, we use several built-in
functions. OpenCL natively supports vector data types which
represent SIMD registers. OpenCL also provides arithmetic and
logical operations on vector types. For example, we compare two
vectors containing four values in Listing 1. We can also access
individual vector components by their indices which increase
from left to right. For example, probeKeys.s0 selects the left-
most component containing the value k1.

1 u i n t 4 probeKeys = {k1 , k2 , k3 , k4 } ;
2 u i n t 4 foundKeys = {k1 , k5 , k3 , k4 } ;
3 u i n t 4 mask = probeKeys == foundKeys ; / / { - 1 , 0 , - 1 , - 1 }

Listing 1: Vectorized data types and operations inOpenCL.

The function shuffle(input, mask) returns a vector in
which each component si contains the value of input.sj that
is specified by the corresponding component si in mask, i.e.,
j = mask.si . The function select(a, b, mask) returns a vec-
tor in which each component si contains the value of a.si if
mask.si ≥ 0 and b.si otherwise.

3.2 Implementation of Primitives
Selective Load. Listing 2 shows the internals of the Selective

Load primitive which we introduce with the other primitives
in Section 2.1 (Figure 2a). The algorithm has four parameters:
(1) input: source memory buffer, (2) offset: read offset on input.
(3) vector: target vector, and (4) mask: indicates the components
in vector which will be overwritten. The algorithm uses the
parameters as follows: (1) It moves components which will be
overwritten to the left of the target vector and adjusts the mask
accordingly (Lines 3–6). (2) The algorithm loads the input data
into a temporary vector (Line 7). (3) It copies the left-most values
from the temporary vector into the target vector according to
the mask (Line 8). (4) The algorithm moves the components of
the target vector back to their original positions (Lines 11–12).

The shuffle functions used in steps 1 and 4 of the algorithm
require permutation masks (left and back) to reorder the target
vector. To speed up execution, we precompute these masks and
store them in two lookup tables (one per step).
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1 / / I npu t s : input , o f f s e t , v e c to r , mask
2 / / Outputs : o f f s e t , v e c t o r
3 u sho r t index =

∑n
i=0 −2n−i × mask.si ;

4 uchar8 l e f t = c onv e r t _ u i n t 8 ( move_ le f t_masks [ index ] ) ;
5 v e c t o r = s h u f f l e ( v ec to r , l e f t ) ;
6 i n t 8 mask2 = s h u f f l e ( mask , l e f t ) ;
7 u i n t 8 tmp = v load8 ( 0 , &inpu t [ o f f s e t ] ) ;
8 v e c t o r = s e l e c t ( v e c to r , tmp , mask == - 1 ) ;
9 o f f s e t += popcount ( index ) ;
10 / / l i n e s below can be omi t t ed f o r o p t im i z a t i o n
11 uchar8 back = c onv e r t _ u i n t 8 ( move_back_masks [ index ] ) ;
12 v e c t o r = s h u f f l e ( v ec to r , back ) ;

Listing 2: OpenCL implementation of Selective Load.

1 / / I npu t s : output , o f f s e t , v e c to r , mask
2 / / Outputs : o f f s e t
3 uchar index =

∑n
i=0 −2n−i × mask.si ;

4 uchar8 l e f t = c onv e r t _ u i n t 8 ( move_ le f t_masks [ index ] ) ;
5 u i n t 8 tmp = s h u f f l e ( v ec to r , l e f t ) ;
6 v s t o r e 8 ( tmp , 0 , &ou tpu t [ o f f s e t ] ) ;
7 o f f s e t += popcount ( index ) ;

Listing 3: OpenCL implementation of Selective Store.

1 / / I npu t s : input , v e c to r , mask
2 / / Output : v e c t o r
3 v e c t o r . s0 = inpu t [mask . s0 ] ;
4 v e c t o r . s1 = inpu t [mask . s1 ] ;
5 / / . . . up to v e c t o r . s7 = inpu t [mask . s7 ] ;

Listing 4: OpenCL implementation of Gather.

We select the required permutation mask depending on the
mask parameter (Line 3). The lookup tables together consume 4
KB and fit comfortably in the L1 cache.

Step 4 of the algorithm is only required if the calling code ex-
pects the components of target vector to remain in the original
order. In many cases the calling code does not have this expec-
tation. For example, the hashing scheme in Section 2.2 does not
require the original order as long as reordering is mirrored be-
tween probe keys and the collision mask. Therefore, we optimize
the general implementation shown above by omitting step 4 of
the algorithm (Lines 11 and 12). This optimizations discards one
lookup table and saves the respective space in the L1 cache.

Selective store. The implementation of Selective Store is pro-
vided in Listing 3. It is similar to Selective Load and has the same
parameters. Again, we move the components of vector that
will be stored according to mask to the left (line 5). The values
are then written to output (Line 6). Since the original vector is
unchanged, we do not have to shuffle it back.

Gather and Scatter.We provide the implementations for the
Gather and Scatter primitives in Listings 4 and 5. We access the
components of vector and mask by their indices (see Section 3.1).
Overall, we replace a complex and non-portable implementation
based on intrinsics (Listing 6) with a fairly simple and portable
implementation in OpenCL. Our implementation offers the same
functionality, while improving maintainability and portability.

4 EVALUATION
4.1 Experimental Setup

Execution Environment.We evaluate our implementation
on two processors, an Intel Core i7-6700K CPU2 and a Xeon Phi
7120P coprocessor3 based on Intel’s MIC architecture. As of writ-
ing, the newer Xeon Phi Knights Landing (KNL) product line does
not yet support OpenCL. On the Xeon Phi, we utilize 60 threads
for our measurements to emphasize call overheads. On the CPU,

24 GHz, 4 physical cores, 2 threads/core, 8 MB L3 shared, 32 GB RAM
31.24 GHz, 61 physical cores, 4 threads/core, 512 kB L2 per-core, 16 GB RAM

1 / / I npu t s : input , v e c to r , mask
2 ou tpu t [mask . s0 ] = v e c t o r . s0 ;
3 ou tpu t [mask . s1 ] = v e c t o r . s1 ;
4 / / . . . ou tpu t [mask . s7 ] = v e c t o r . s7

Listing 5: OpenCL implementation of Scatter.

1 / / I npu t s : u i n t 6 4 _ t ∗ t a b l e , _ _ 1 28 i index
2 __m128i index_R = _mm_s h u f f l e _ ep i 3 2 ( index , _MM_SHUFFLE

↪→ ( 1 , 0 , 3 , 2 ) ) ;
3 __m128i i 1 2 = _mm_c v t e p i 3 2 _ e p i 6 4 ( index ) ;
4 __m128i i 3 4 = _mm_c v t e p i 3 2 _ e p i 6 4 ( index_R ) ;
5 s i z e _ t i 1 = _mm_c v t s i 1 2 8 _ s i 6 4 ( i 1 2 ) ;
6 s i z e _ t i 3 = _mm_c v t s i 1 2 8 _ s i 6 4 ( i 3 4 ) ;
7 __m128i d1 = _mm_ l o a d l _ e p i 6 4 ( ( __m128i ∗ )&t a b l e [ i 1 ] ) ;
8 __m128i d3 = _mm_ l o a d l _ e p i 6 4 ( ( __m128i ∗ )&t a b l e [ i 3 ] ) ;
9 i 1 2 = _mm_ s r l i _ s i 1 2 8 ( i 12 , 8 ) ;
10 i 3 4 = _mm_ s r l i _ s i 1 2 8 ( i 34 , 8 ) ;
11 s i z e _ t i 2 = _mm_c v t s i 1 2 8 _ s i 6 4 ( i 1 2 ) ;
12 s i z e _ t i 4 = _mm_c v t s i 1 2 8 _ s i 6 4 ( i 3 4 ) ;
13 __m128i d2 = _mm_ l o a d l _ e p i 6 4 ( ( __m128i ∗ )&t a b l e [ i 2 ] ) ;
14 __m128i d4 = _mm_ l o a d l _ e p i 6 4 ( ( __m128i ∗ )&t a b l e [ i 4 ] ) ;
15 __m256i d12 = _mm256_ca s t s i 1 28_ s i 2 56 (_mm_unpack l o_ep i 64

↪→ ( d1 , d2 ) ) ;
16 __m256i d34 = _mm256_ca s t s i 1 28_ s i 2 56 (_mm_unpack l o_ep i 64

↪→ ( d3 , d4 ) ) ;
17 __m256i r e s = _mm256_permute2x128_si256 ( d12 , d34 ,

↪→_MM_SHUFFLE ( 0 , 2 , 0 , 0 ) ) ;

Listing 6: SIMD implementation of Gather [8].

we utilize eight threads to emphasize attainable throughput. We
use native implementations based on intrinsics [8] as a baseline.
First, we perform microbenchmarks to measure the performance
of our vectorized data movement primitives in isolation. We then
evaluate the complete hash table implementation by executing a
hash join. We separately measure building the hash table on the
inner join table, and probing it with keys from the outer table.

Every experiment is executed 20 times. We prevent autovec-
torization of the scalar and intrinsics implementation. For each
experiment we generate new test data to obtain unbiased results.

Load and Store. To evaluate both primitives, we stream 100
million keys (108, 32-bit int) from memory into a SIMD register
(or vice versa) and measure the throughput. For each invocation,
we change the mask indicating which SIMD lanes are accessed,
accessing four out of eight lanes on average. The large number
of keys simulates a large outer table of a hash join.

Gather and Scatter. To evaluate Gather and Scatter, we read
100 million keys from discontiguous memory locations into a
SIMD register. We use memory regions of different sizes, from
4 kB to 64 MB, to simulate hash tables built on inner tables used
in a hash join. The stride size between the memory locations
depends on the size of the memory region. Especially for large
memory regions, we chose the indices so that the accessed data
does not fit into the processor cache.

Hash Join Build and Probe. In general, we adopt the ex-
perimental setup of Polychroniou et al. [8] in order to obtain
comparable results. We build a hash table on the inner table with
a load factor of 50% and evaluate hash tables of different sizes,
from 4 kB to 64 MB. On the Xeon Phi, we cannot build 60 hash
tables of 64 MB in OpenCL due to OpenCL memory allocation
restrictions. As the reference [8] does not provide an intrinsics
implementation for the build on CPUs, we omit the curve.

To simplify partitioning the workload to different threads, the
number of keys in the outer table depends on the processor. On
the CPU, the outer table contains 100 million keys. On the Xeon
Phi, it contains 245.76 million keys. We chose the keys in the
outer table so that on average every tenth key is found in the
hash table. Note, that our hash join implementation includes
writing the matched probe keys to an output buffer.
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Figure 3: Evaluation results on the Intel Core i7-6700K CPU and Xeon Phi 7120 coprocessor.

4.2 Results
Selective Load and Store. Figure 3a shows the results of

the Selective Load and Store microbenchmarks. The intrinsics-
based version of Selective Load outperforms the portable OpenCL
implementation by a factor of 1.75. The native Selective Store
implementation is 4.6 times faster than the OpenCL version.

Gather and Scatter. Figure 3d shows the results of the Gather
and Scatter microbenchmark. If the hash table fits into the L1
cache, the intrinsics implementation of Scatter is 1.5 times faster
than the OpenCL version. However, if the hash table size exceeds
the L1 cache, the performance of both implementations drops.
The native implementations of Gather is between 1.75 and 1.9
times faster than the OpenCL-based implementation.

Hash Join Build. We present the results of the hash build
experiment for the CPU in Figure 3b and for the Xeon Phi in
Figure 3e. On the CPU, the OpenCL-based vectorized implemen-
tation is marginally slower than the OpenCL-based scalar imple-
mentation. Both are significantly slower than the C-based build
and exhibit a curious rising trend up to a hash table size of 1 MB.
This trend is due to overheads of OpenCL kernel invocations.
To illustrate this, we also show scalar implementations which
build 10000 hash tables inside a single function to minimize call
overhead (dashed lines). These curves follow the expected shape.
On the Xeon Phi, all implementations show a rising trend due to
function call overhead. These overheads cause the bowl-shaped
form of the curves which is most visible for the C-based scalar im-
plementation. However, we cannot fully explain why the curves
of the C-based and OpenCL-based scalar implementations cross
between the hash table sizes of 64 kB and 128 kB.

Hash Join Probe. Figures 3c and 3f show the result of the
hash probe experiment on the CPU and the Xeon Phi.We compare
the vectorized OpenCL-based implementation with an intrinsics-
based implementation [8] and a scalar implementation. On the
CPU, both vectorized implementations outperform the scalar
version as long as the hash table fits into L2 cache. For 4 kB hash
tables, the intrinsics-based implementation is twice as fast as the
scalar implementation, whereas the OpenCL-based implementa-
tion is 1.3 times faster. For small hash tables on the Xeon Phi, the
intrinsics-based implementation greatly outperforms the scalar
version whereas the OpenCL-based vectorized implementation

is slower. On this processor, the data movement primitives are
implemented directly as SIMD instructions which perform much
faster than implementations that rely on an emulation.

5 CONCLUSION
Vectorized database operators improve performance but require
processor-specific APIs. In this paper, we vectorize the essential
primitives Gather, Scatter, Selective Load and Selective Store in
OpenCL to reduce code complexity and to ensure portability.

We conduct an evaluation on CPUs and Xeon Phi coprocessors.
In general, vectorized hashing based on intrinsics outperforms
OpenCL-based hashing. Hash tables usually exceed processor
caches. In this case, both variants arememory-bound and perform
similarly. However, on CPUs, OpenCL-based vectorized hashing
outperforms scalar hashing for moderately sized hash tables that
fit into the L2 cache. In this case, our OpenCL-based hashing
scheme is competitive to intrinsics-based hashing.

Acknowledgements: This work was funded by the EU projects SAGE (671500)
and E2Data (780245), DFG Stratosphere (606902), and the German Ministry for
Education and Research as BBDC (01IS14013A) and Software Campus (01IS12056).

REFERENCES
[1] Cagri Balkesen, Jens Teubner, et al. 2013. Main-memory hash joins on multi-

core CPUs: Tuning to the underlying hardware. In IEEE ICDE. 362–373.
[2] Spyros Blanas, Yinan Li, et al. 2011. Design and evaluation of main memory

hash join algorithms for multi-core CPUs. In ACM SIGMOD. 37–48.
[3] Sebastian Breß et al. 2017. Generating Custom Code for Efficient Query

Execution on Heterogeneous Processors. CoRR abs/1709.00700 (2017).
[4] Max Heimel, Michael Saecker, Holger Pirk, et al. 2013. Hardware-Oblivious

Parallelism for In-Memory Column-Stores. PVLDB 6, 9 (2013), 709–720.
[5] Intel. [n. d.]. Intel C++ Intrinsic Reference. Retrieved September 30, 2017 from

https://software.intel.com/sites/default/files/a6/22/18072-347603.pdf
[6] Saurabh Jha, Bingsheng He, et al. 2015. Improving main memory hash joins

on intel xeon phi processors: An experimental approach. PVLDB, 642–653.
[7] Holger Pirk, Oscar Moll, Matei Zaharia, et al. 2016. Voodoo-a vector algebra

for portable database performance on modern hardware. PVLDB, 1707–1718.
[8] Orestis Polychroniou, Arun Raghavan, and Kenneth A Ross. 2015. Rethinking

SIMD vectorization for in-memory databases. In ACM SIGMOD. 1493–1508.
[9] Stefan Richter, Victor Alvarez, et al. 2015. A Seven-dimensional Analysis of

Hashing Methods and Its Implications on Query Processing. PVLDB, 96–107.
[10] Thomas Willhalm et al. 2009. SIMD-scan: Ultra Fast In-memory Table Scan

Using On-chip Vector Processing Units. PVLDB 2, 1, 385–394.
[11] Thomas Willhalm, Ismail Oukid, Ingo Müller, and Franz Faerber. 2013. Vector-

izing Database Column Scans with Complex Predicates. In ADMS. 1–12.
[12] Yang Ye, Kenneth A. Ross, and Norases Vesdapunt. 2011. Scalable Aggregation

on Multicore Processors. In ACM DaMoN. 1–9.
[13] Jingren Zhou and Kenneth Ross. 2002. Implementing database operations

using SIMD instructions. In ACM SIGMOD. 145–156.

492



Histogram Domain Ordering for Path Selectivity Estimation
Nikolay Yakovets, Li Wang,

George Fletcher

TU Eindhoven, Netherlands

{hush@,l.wang.3@student.,g.h.l.

fletcher@}tue.nl

Craig Taverner

Neo4j, Sweden

craig.taverner@neo4j.com

Alexandra Poulovassilis

Birkbeck, University of London, UK

ap@dcs.bbk.ac.uk

ABSTRACT
We aim to improve the accuracy of path selectivity estimation

in graph databases by intelligently ordering the domain of a his-

togram used for estimation. This problem has not, to our know-

ledge, received adequate attention in the research community.

We present a novel framework for the systematic study of path

ordering strategies in histogram construction and use. In this

framework, we introduce new ordering strategies which we ex-

perimentally demonstrate lead to significant improvement of the

accuracy of path selectivity estimation over current strategies.

These positive results highlight the fundamental role that domain

ordering plays in the design of effective histograms for efficient

and scalable graph query processing.

1 INTRODUCTION
Analytics on graph-structured data is increasingly important in a

variety of domains, e.g., role discovery in social networks, impact

analysis in citation networks, functional analysis of biological

networks, and querying knowledge graphs. Querying in graph

query languages such as openCypher and PGQL is at the heart of

these analytics tasks [1, 3, 11]. However, current graph database

systems have difficulty in scaling query processing as the size

and complexity of graph data collections continue to grow [4, 9].

Towards addressing this challenge, a crucial step in scalability

of graph databases is the generation of effective query execution

plans. Query optimizers rely on accurate data statistics for cardin-

ality estimation during plan generation. Histograms are among

the most widely used data structure for maintaining statistics

for cardinality estimation, in particular for relational database

systems [5]. However, there has been relatively little work on

histograms for graph queries, even for the most basic graph query

building block, namely, path queries [6–8, 10].

Our contributions. In this paper, we give an overview of find-

ings in our ongoing investigations into histograms for path se-

lectivity estimation [12]. We focus in particular on ordering

strategies for path queries, i.e., how to order the domain over

which histograms are built, with the goal of minimizing the vari-

ance within histogram buckets (and thereby improving estima-

tion accuracy). We present a novel framework for systematically

introducing ordering strategies, showing experimentally that

the choice of domain ordering is a fundamental aspect of effect-

ive histograms. We introduce new ordering strategies which we

demonstrate lead to significant improvement on the accuracy of

obtained estimates, over current ordering approaches.

State of the art. The study and efficacy of histogram-based

cardinality estimation are well-established [5], e.g., for path and

twig query optimization in XML databases [2, 13]. Several studies

have also considered path selectivity estimation on graph data
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Figure 1: Visualization of a data distribution (black) and
an equi-width histogram (red) of Moreno Health dataset
with k = 3.

with cycles (i.e., beyond trees and DAGs) [6–8, 10]. These works,

however, have not investigated histograms or the impact of path

ordering on estimation quality. To the best of our knowledge,

we present here the first systematic study of this basic aspect of

histogram construction and use in graph data management.

2 HISTOGRAMS ON LABEL-PATHS
We investigate selectivity estimation of path queries on graphs.

A graph G is composed of a finite set of vertices V, a set of edge
labels L, and a set of directed labeled edges E ⊆ V × L × V .
A k-label path is a sequence ℓ = l1/. . . /lk , where li ∈ L, for
all 1 ≤ i ≤ k . We say k = |ℓ | is the length of ℓ. Viewing ℓ

as a path query, the evaluation of ℓ on G returns the set ℓ(G)
consisting of all pairs of vertices (vs ,vt ) in G such that there

exist vertices v0,v1, ...,vk ∈ V where vs = v0, vt = vk , and for

0 < i ≤ k , (vi−1, li ,vi ) ∈ E. The total number of such pairs, i.e.,

the cardinality of ℓ(G), is called the selectivity of ℓ on G, which
we denote by f (ℓ).

Let Lk be the set of all label paths over L with length up to k.1

An ordering of Lk is a bijection from Lk to integer set [0, |Lk |).

Once we establish an ordering on a label path set, a label path can

be represented by its positional index in the ordering. For each

label path ℓ, let index(ℓ) denote the index of ℓ in the ordering.

A histogram is a mechanism used to provide the approximation

of frequency for a given value (point query) or value range (range

query) without storing or accessing the complete original data

distribution. More precisely, given an attribute X, a histogram on

this attribute is constructed by partitioning the data distribution

of X into β ≥ 1 mutually disjoint subsets called buckets and
storing the statistics information and bucket boundaries for each

bucket. In this work, attribute X, also called the domain of the

1
We will let L denote a label path set regardless of k when this does not cause

ambiguity.
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histogram, is an ordered label path sequence produced by an

ordering of Lk . Then, given label path ℓ and its index index(ℓ),
such a label-path histogram is used to compute an estimate e(ℓ)
of the selectivity f (ℓ). An example of a label-path histogram is

shown in Figure 1.

3 ORDERING FRAMEWORK
The purpose of histogram domain reordering is to ensure that

label paths with similar cardinality are located close to each other,

such that they can be allocated in the same bucket. This leads to

lower variance, lower error rates, and overall better quality.

An intuitive and ideal way is to arrange the data distribution

such that when index(ℓ) increases, f (ℓ) monotonically increases

or decreases. Themost straightforward, yet not feasible, approach

is to sort the label paths by their selectivity and assign the index
of each label path as its position in this sequence. This idea is not

practical, however, as it requires extra memory to store |L| index
values. The exact amount of memory can also be used to store

the cardinality for each label path, such that instead of returning

an estimation of selectivity, we can obtain the precise selectivity.

We call such ordering an ideal ordering. Despite an ideal ordering

being prohibitive, we can still construct an approximately mono-

tonic sequence based on the awareness of precise cardinalities of

a subset of L.

For example, by looking at Figure 1, one can observe that the

label 1 has the highest cardinality among all length-1 label paths

while label 5 has the lowest. Similar trend repeats in the other

6-member groups with the same prefix {1/1, 1/2, . . . , 1/6}, {2/1,

2/2, ..., 2/6}, and so on. Hence, we can assume that the label path

that is composed of label paths with high cardinalities should

also have high cardinality.

3.1 Concepts
We define a base label set as a B ⊆ L such that every label path

in L can be decomposed into pieces which are all in B.2 Then, a
splitting rule defines how to decompose a label path. For example,

L6
onMorenoHealth dataset is {1, 2, 3, 4, 5, 6, 1/1, . . . , 6/6/6/6/6/6},

if we choose B to be L2
, with a greedy splitting rule which at

each split step always cuts a piece in B as long as possible. For

example, label path “4/4/3/3/6” is decomposed into “4/4”, “3/3”

and “6”.

An ordering method can be described by the following three

components. First, we need a base label set B. Second, we define
(un)ranking function over the base label set that gives a rank

for each base label and vice-versa. It is a bijection which maps

between edge label set B and integer set [1, |B |]. Finally, we con-
struct an ordering rule which is combined with a ranking rule to

eventually determine the index of a label path (sequence of base

labels) in Lk . It is a bijection that maps between label path set L

and integer set [0, |Lk |). A complete ordering method, therefore,

is seen as the combination of a ranking rule and an ordering

rule on a given dataset. We refer to an ordering method that is

composed of ranking rule A and ordering rule B as B-A ordering.

We define two ranking rules in our study. Alphabetical ranking
assigns ranks based on the alphabetical order of base labels. Car-
dinality ranking is ranking based on the cardinality of base labels,

which places a base label with lower cardinality in front of the

label with higher cardinality, i.e., l1 <
card l2 ⇐⇒ f (l1) < f (l2)

2
Naturally, L ⊆ B , otherwise there might exist label paths which cannot be

decomposed into label paths in B .

In this work, we focus on the approach that takes the edge

label set as the base label set, i.e., B = L. We define two bijections:

alph and card. Let alph(l) and card(l) denote the index of edge
label l , which will be referred to as the rank of l , in the set L totally
ordered by alphabetical order and cardinality, respectively.

3.2 Numerical and Lexicographical Orderings
In numerical ordering, each rank is an integer, and a composition

of ranks produces a number in |B |-based numeral system. For

example, to compare two label paths ℓ1 = l1
1
/l1
2
/. . . /l1m and

ℓ2 = l2
1
/l2
2
/. . . /l2n , if one is shorter than the other then it has a

lower ranking (rule (1) below), otherwise the two paths’ labels

are compared pairwise until a pair of different values is found at

position i (rule (2) below):

ℓ1 < ℓ2 ⇐⇒

{
|ℓ1 | < |ℓ2 | |ℓ1 | , |ℓ2 | (1)

∧i−1j=1(l
1

j = l
2

j ) ∧ (l
1

i < l2i ) |ℓ1 | = |ℓ2 | (2)

Lexicographical ordering is the same as the ordering rule used

in dictionaries; it is similar to numerical ordering with the fol-

lowing difference. Instead of comparing lengths of two label

paths first, we append k − |ℓ | blank symbols (i.e., special symbols

for which ∀l ∈ L, rank(blank) > rank(l)) to every ℓ to form a

length-k sequence. We can then apply Formula 2 to compare the

resulting label paths. The time complexity of both ranking and

unranking functions for numerical and lexicographical orderings

is O(k).

3.3 Sum-based Ordering
Given label path ℓ, the idea of sum-based ordering is to use the

sum of ranks of all base labels in ℓ to approximate the cardinality

of ℓ. While being conceptually simple, the implementation of this

ordering method is not trivial. First, given a path label ℓ of length

k , ℓ is split into base labels and an integer rank is computed for

each of the base labels to obtain a k-length integer permutation.
Then, the integer permutation of ℓ is mapped to index(ℓ) by
performing a three-stage partitioning of a histogram domain as

follows.

The first stage partitions the histogram domain according to

the length of the integer permutations, with shorter lengths being

assigned partitions with lower indexes in the domain. Then, the

size of each of the stage-one partitions can be computed by the

following formula (where n is the length of the permutation):

sumn = |L|
n

The second stage performs further division of stage-one par-

titions by grouping allm-length permutations by their summed
ranks. Those permutations with lower summed rank will have a

lower index within a stage-one partition:

srm =
m−1∑
i=0

rank(li )

To compute the boundaries of each of the stage-two partitions,

we need to determine how many label paths are in the group

with a certainm and srm . This question is the same as how many

ways there are to distribute srm indistinguishable balls overm
distinguishable bins of finite capacity |L| with at least one ball in

each bin. From combinatorics’ inclusion−exclusion principle we
have:

dist(srm ,m,L) =
∑
j≥0
(−1)j

(
m

j

) (
srm − j · |L| − 1

m − 1

)
(3)
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The third stage explores combinations inside each of the stage-

two partitions marked by lengthm and summed rank srm . These

combinations are all integer partitions of srm into exactlym parts,

where each part is less than |L|. Let integersv,b represent srm and

|L| respectively. A general formula for integer partition ip(v,b,m)
is as follows:

ip(v,m,b) =

⌊v/b ⌋⋃
i=0

ip(v − i · b,m − 1,b − 1),b, · · · ,b︸   ︷︷   ︸
i bs

(4)

Based on Formula 4, we present a partitioning algorithm which

outputs all combinations in the desired cardinality-based order

and has time complexity is O(loд(|L|)k ) [12].
Finally, to compute the boundaries of each of the stage-three

partitions, we need to determine how many permutations we

skip when we skip a stage-three partition. This is equivalent

to identifying how many permutations can be generated by a

certain combination in which there might be duplicates. Let C
denote the combination,di denote the number of times an integer

i occurs in C , then the number of permutations is given by the

following formula:

nop(C) =
|C |!∏

i ∈{0, ..., |L |−1}
di !

(5)

Algorithm 1 finds the combination to which the target per-

mutation belongs and has time complexity of O(k2).

Algorithm 1 Unranking permutation of combination

1: procedure unranking_permutation(index ,C)
2: if i < 0 ∨ i ≥ nop(C) then
3: return null
4: end if
5: if |C | = 1 then
6: return [C[0]]
7: end if
8: i ← 0

9: while i < |C | do
10: S ← C \ [C[i]] ▷ subset of C
11: if index ≥ nop(S) then
12: index ← index − nop(S)
13: i ← i + count(C,C[i])
14: continue
15: else
16: sub ← unrankinд_permutation(index , S)
17: sub .add(0,C[i])
18: return sub
19: end if
20: end while
21: end procedure

Algorithm 2 illustrates the complete version of unranking

permutation in sum-based order and has time complexity of

O(loд(|L|)k ).

3.4 Ordering Example
We illustrate the proposed ordering methods with examples on an

artificial dataset which has 3 unique edge labels and its label paths

set with k up to 2. Consider the cardinalities 20, 100, and 80 for

edge labels “1”, “2”, and “3”, respectively. Then, for the summed

ranks shown in Table 1, label paths arranged in the corresponding

Algorithm 2 Unranking in sum-based order

1: procedure unranking_in_sumbased(index ,L,k) ▷ index,
edge label set, k

2: if index < 0 ∨ index > |Lk | then
3: return null
4: end if
5: for len ∈ 1, ...,k do
6: if index ≥ |L|len then
7: index ← index − |L|len

8: continue
9: end if
10: for sum ∈ len, ..., len ∗ |L| do
11: if index ≥ dist(sum, len, |L|) then
12: index ← index − dist(sum, len, |L|)
13: continue
14: end if
15: P ← ip(sum, len, |L|)
16: for p ∈ P do
17: if index ≥ nop(p) then
18: index ← index − nop(p)
19: continue
20: end if
21: p′ ← {i − 1|i ∈ p}
22: sort(p′)
23: return unrankinд_permutation(index ,p′)
24: end for
25: end for
26: end for
27: end procedure

Label Path 1 2 3 1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3

Summed Ranks 1 3 2 2 4 3 4 6 5 3 5 4

Table 1: Summed ranks

O
Index

0 1 2 3 4 5 6 7 8 9 10 11

num-alph 1 2 3 1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3

num-card 1 3 2 1,1 1,3 1,2 3,1 3,3 3,2 2,1 2,3 2,2

lex-alph 1 1,1 1,2 1,3 2 2,1 2,2 2,3 3 3,1 3,2 3,3

lex-card 1 1,1 1,3 1,2 3 3,1 3,3 3,2 2 2,1 2,3 2,2

sum-based 1 3 2 1,1 1,3 3,1 3,3 1,2 2,1 3,2 2,3 2,2

Table 2: Ordered label paths according to different order-
ing methods O

orderings are shown in Table 2. Respectively, numerical ordering

associated with alphabetical ranking, numerical ordering with

cardinality ranking, lexicographical ordering with alphabetical

ranking, lexicographical ordering with cardinality ranking, sum-

based ordering with cardinality ranking are referred to as num-
alph, num-card, lex-alph, lex-card and sum-based.

4 EXPERIMENTAL STUDY
We implemented a k-path histogram construction and path se-

lectivity estimation in Java. All experiments are conducted on an

Ubuntu 16.04 machine equipped with an Intel i5 CPU with 4GB

of RAM. We use the datasets shown in Table 3. The goal of our

experiments is two-fold. First, we verify the impact of different

domain ordering techniques on the estimation time. Second, we

showcase the gains in estimation accuracy which can be obtained

by using sum-based histogram domain ordering.
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Figure 2: Mean error rate of estimation for different domain ordering techniques on V-Optimal k-path histogram

Dataset #Edge Labels #Vertices #Edges Real world data
Moreno health

3
6 2539 12969 yes

DBpedia (subgraph)
4

8 37374 209068 yes

SNAP-ER
5

6 12333 147996 no

SNAP-FF 8 50000 132673 no

Table 3: Datasets

β
Average Estimation Running Time (in ms)

num-alph num-card lex-alph lex-card sum-based
27993 9.98 8.62 9.65 8.7 11.02

13996 7.69 7.23 7.79 7.3 9.39

6998 7.36 6.8 7.07 6.93 8.55

3499 6.4 6.52 5.97 6.31 7.42

1749 5.71 5.76 5.76 5.21 6.64

874 5.8 5.06 5.78 5.18 6.1

437 5.19 4.58 4.52 4.29 6.13

Table 4: Average estimation execution time in V-optimal
histogram with different ordering methods (in ms)

Performance. We study the execution time of estimation asso-

ciated with different ordering methods as follows. For k = 6, five

V-optimal histograms are built, each of which is associated with

an ordering method: num-alph, num-card, lex-alph, lex-card, and
sum-based. The total number of label paths is 55996. We run 7

experiments by varying the number of buckets (β) in each histo-

gram. All experiments are executed 100 times and the average

estimation time is taken. The results (Table 4) demonstrate that

sum-based ordering is approximately 20% slower in estimation

than native ordering methods. This is explained by the higher

complexity of the sum-based (un)ranking function.

Accuracy. We measure the average estimation accuracy by con-

structing a V-optimal histogram for each ordering method for

varying k and β (Figure 2). We use the following err (ℓ) metric to

measure the error of an estimation:

err (ℓ) =

{
0 if e(ℓ) = f (ℓ)

e(ℓ)−f (ℓ)
max (e(ℓ),f (ℓ)) else

(6)

3
http://konect.uni-koblenz.de/networks/moreno_health

4
http://wiki.dbpedia.org

5
https://snap.stanford.edu/snappy/

We observe that, for the synthetic datasets, sum-based order-

ing provides accuracy which is far superior to other ordering

methods, especially, for histograms with a low number of buck-

ets. For the real-life datasets, the performance difference is not

as significant, but still observable. This can be explained by the

presence of edge-label cardinality correlations in real-life data.

5 CONCLUDING REMARKS
We have reported on initial findings in our ongoing study of

domain ordering for improving histogram-based path selectivity

estimation. Experimental study has demonstrated the promise of

our framework, which facilitates the further systematic study of

effective histogram design for graph databases. A primary future

research direction is to expand the framework with additional

ordering strategies, e.g., those built over richer base sets such as

L2
, towards capturing correlations between label paths.
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ABSTRACT
The continuing growth and success of many edge technolo-
gies such as the Internet of Things (IoT), wearables and Vir-
tual and Augmented Reality (VR/AR) relies on providing a high-
performance and low-latency computing infrastructure. In this
paper, we envision extending edge computing with mobile, mov-
ing, and possibly flying edge datacenters, that we call nomadic
datacenters to improve the performance and capacity of the edge
infrastructure. In particular, we study how the introduction of
nomadic datacenters will affect data management systems and
find that novel challenges and opportunities need to be addressed.
We present some of these challenges and opportunities in ad-
dition to an outline of how they can be tackled by future data
management systems.

1 INTRODUCTION
Emerging classes of computing technologies are promising to
transform our lives, change how we interact with each other and
with the world. These include Internet of Things (IoT), wearables,
and Virtual and Augmented Reality (VR/AR). IoT enables har-
nessing the multitude of sensor data via applications ranging
from smart farming to autonomous cars. Wearable technology
enables personalized applications such as activity tracking and
health monitoring.With VR/AR, we will be immersed in designed
experiences that will touch every facet of our lives. Common
among these transformative technologies are the utilization of
sophisticated edge devices and the demand for high-throughput
and/or low-latency. We will use the term edge technologies to
denote IoT, wearable, and VR/AR technologies in light of their
common characteristics.

To realize the potential of edge technologies, it is necessary to
provide the hardware and software infrastructures that support
the high-throughput and low-latency demands for application
processing. To this end, many efforts have advocated for the use
of edge computing technology to provide more compute and stor-
age power [4, 13]. Edge computing enhances cloud computing by
introducing edge datacenters that are closer to users and that con-
sist of a few to hundreds of machines. With edge computing, data
can be processed at the edge, saving the communication latency
to the datacenter that can take up to 100s of milliseconds [13].
Additionally, processing at edge datacenters saves the monetary
bandwidth costs of cloud-edge communication.

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the 21st
International Conference on Extending Database Technology (EDBT), March 26-29,
2018, ISBN 978-3-89318-078-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Realizing the benefits of edge datacenters has been limited by
the static nature of edge datacenter deployment. Typically, edge
datacenters are rigidly stuck in fixed locations. This introduces
two limitations:

• A static deployment cannot follow the hot spots: It is diffi-
cult for a static deployment to adapt to a dynamic, mobile
environment, where the current location of the highest
data traffic is continuously, and often unpredictably chang-
ing. For example, consider building an edge infrastructure
to support a taxi transportation organization. Taxi cabs
connect to edge datacenters that are placed in various
locations around the city. However, the location of taxi
cabs depends on many volatile aspects such as traffic and
passengers. This makes it very difficult to decide where to
place the edge datacenters and how to provision resources
around the city.
• A static deployment cannot be recovered swiftly: In the
event of a natural disaster and power outages, a large area
may be affected. The edge datacenters across these large
areas may be inaccessible or even permanently damaged.
To recover from such catastrophic failures that damage
infrastructure, replacing the infrastructure is necessary.
However, it may take days to replace and deploy the new
infrastructure. This is especially devastating when the
edge infrastructure is needed to aid in responding to natu-
ral disasters.

In this paper, we propose extending edge computing technol-
ogy with dynamic, mobile edge datacenters, and call them no-
madic datacenters. Nomadic datacenters denote small, portable
edge datacenters, that can be relocated swiftly by large vehicles
(e.g., trucks) and air crafts (e.g., helicopters). Nomadic datacenters
can overcome the two limitations of static edge datacenters that
we outlined in the previous paragraph. A nomadic datacenter can
follow the hot spot. In the taxi organisation example, nomadic
datacenters can be continuously moving to maximize the utility
of resources. Also, nomadic datacenters can replace a damaged
infrastructure swiftly in cases of natural disasters and power
outages. In fact, nomadic datacenters can be thought of as an aid
to first responders that may need the edge computing resources
to collect and process data in addition to providing connectivity
during relief and rescue operations.

The potential feasibility of the concept of nomadic datacen-
ters is due to recent advances in datacenter and communication
technology. Edge datacenter technology has been continuously
improving during the past decade, resulting in small, container-
ized datacenters, also calledmicro datacenters. A micro datacenter
may contain as little as a few servers on a single rack with built-
in cooling, power supply/backup, and fire suppression systems.
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Already, these micro datacenters are being leveraged for their
portable nature that allows deploying them in remote areas such
as shallow- and deep-water oil rigs [1]. Our proposal is to lever-
age this portability to react to dynamic, mobile edge applications
and actively follow hotspots in addition to replacing damaged
edge infrastructure.

The other technology that is enabling nomadic datacenters
is 5th generation mobile networks (5G). 5G is 4G’s successor
telecommunication standard. It aims to provide lower latency,
higher communication throughput, and low power transmission.
More importantly, 5G is geared towards supporting emerging
edge applications, such as ones based on IoT and wearables. This
is envisioned by providing support of device-to-device andmobile
broadband communication. This is significant for the realization
of nomadic datacenters that will rely on wireless communica-
tion to connect to edge users/devices and the cloud. 5G will
allow larger-scale communication between a nomadic datacenter
and edge users and devices through device-to-device and mobile
broadband communication. Also, nomadic datacenters would
need a large capacity wireless link to connect to the backbone
in the cloud. 5G’s larger capacity will ameliorate the capacity
limits of wireless telecommunication technology compared to
wired and optical fiber communication. Also, nomadic datacen-
ters would typically be powered for long (or all) durations on
batteries. Thus, low power consumption based on 5G is an im-
portant feature.

The concept of a nomadic datacenter is not new, as many have
suggested the idea for its practical uses in many applications [12].
However, it was not realized because the relevant communication
and datacenter technologies were not ready. With the advances
of micro datacenters and 5G telecommunication, nomadic data-
centers are positioned to be a reality now more than ever.

In this paper, we envision the last piece in the puzzle of mak-
ing nomadic datacenters a feasible technology—we propose the
study of data management systems for nomadic datacenters. In
addition to the hardware and communication infrastructures (i.e.,
micro datacenters and 5G) to realize nomadic datacenters, data
management technology must be revisited to tackle the unique
challenges and exploit the opportunities of the new edge archi-
tecture. We present a system model that encompasses several
scenarios of how nomadic datacenters will be realized. Then, our
study of the system model reveals a set of novel data manage-
ment challenges and opportunities. We present these challenges,
opportunities and a roadmap to tackle them.

2 A SYSTEM MODEL FOR NOMADIC
DATACENTERS

In this section, we present our vision of emerging system models
of nomadic datacenters. The development of these system mod-
els is important to guide the design decisions and identification
of the salient properties of the new technology. We begin by
describing the base architecture of nomadic datacenters and its
interaction with the cloud, users, and other edge datacenters.
Then, we discuss how the model can be adapted to various prop-
erties of nomadic datacenter deployments that have varying sizes
and mobility characteristics.

The base system model consists of three tiers (shown in Fig-
ure 1):

• (1) Cloud tier: This denotes the cloud resources at tradi-
tional, large datacenters.

Cloud Tier

Edge Tier

Nomadic

datacenter

Figure 1: The system model with nomadic datacenters.

• (2) Edge tier: This denotes the resources at edge and no-
madic datacenters. Edge datacenters communicate with
the cloud tier through high-bandwidth links, such as fiber
optics, and nomadic datacenters communicate with the
cloud tier via wireless telecommunication (e.g., 5G). How-
ever, nomadic datacenters are also capable of communi-
cating with other edge datacenters through wireless links.
This will enable coordination between nodes in the edge
tier and also enables relaying communication between no-
madic datacenters and the cloud tier through intermediate
edge datacenters.
• (3) User tier: This denotes the users and devices gener-
ating data and making requests. Nodes in the user tier,
that we will call user nodes, communicate with the ap-
plication through the edge tier, if an edge or nomadic
datacenter is nearby. Typically, this communication would
be through wireless links, using Wi-Fi technology. If no
edge or nomadic datacenter is nearby, then the user nodes
communicate directly with the cloud tier.

Nomadic datacenters will vary in size to adapt to various
application and environment requirements. We abstract the dif-
ferent sizes of nomadic datacenters to fall in one of three sizes:
(1) Light: This represents nomadic datacenters that contain a
single machine and minimal datacenter capabilities for cooling
and security. This is ideal in cases where the nomadic datacenter
should be carried by small vehicles, such as drones. (2) Medium:
This represents nomadic datacenters that contain a few machines
and is ideal to be carried by small vehicles such as taxi cabs.
(3) Heavy: This represents nomadic datacenters that resemble
current micro datacenters that contain 4 or more machines with
various datacenter capabilities. This is ideal for cases where a
truck or an aircraft carries the datacenter. The size of the nomadic
datacenter influences its mobility characteristics. For example,
light nomadic datacenters can be deployed for high mobility sce-
narios with constant movement and relatively smaller vehicles
(e.g., drones). Medium ones can be deployed on medium-sized
vehicles, and thus can be used for mobility cases in urban settings.
Heavy nomadic datacenters has relatively restricted mobility and
are ideal in cases where mobility is in reaction to a non-frequent
event.

Given this view of the system model of nomadic datacenters,
we discuss some data management issues in the context of no-
madic datacenters.
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Centralized
Infrastructure

Extended
Infrastructure

Static
Resources

Client-Server
(Cloud Computing) Edge Computing

Mobile
Resources MDMS Nomadic Datacenters

Table 1: The high-level differences in the systemmodel of
Nomadic datacenter in comparison to other system mod-
els.

3 DATA MANAGEMENT FOR NOMADIC
DATA CENTERS

In the nomadic datacenter architecture, is there a need for inno-
vation in data management systems to support the new environ-
ment or do existing systems suffice? This section answers this
question by discussing how the nomadic datacenter architecture
is positioned in relation to early work on mobile databases (Sec-
tion 3.1). Then, we show how the unique properties of nomadic
datacenters require innovation in data management systems in
Section 3.2.

3.1 Nomadic Datacenters in the Space of
Mobile Data Management

Building data management systems for mobile environments
has been studied extensively for a number of decades [3, 6, 8, 9].
In these early works, that we will denote as mobile data man-
agement systems (MDMS), users and data copies are mobile and
may use wireless communication. These properties are similar to
the properties brought forth in the nomadic datacenters system
model (Section 2).

So, can we just use MDMS [3, 6, 8, 9] to build solutions for
nomadic datacenters? Our study of MDMS systems have revealed
that they are an excellent starting point and basis for datamanage-
ment solutions for nomadic datacenters. MDMS outlines many
solutions to tackle challenges that also arise in nomadic dat-
acenters such as resources asymmetry, mobility, caching, and
energy efficiency. Many of these techniques can—and should—be
adopted by data management systems for nomadic datacenters.

However, there is a key difference in the nomadic datacenters
architecture compared to early MDMS architectures. In MDMS,
there is a “core” database and mobile users. This makes MDMS
consider a centralized infrastructure with mobile resources. For
nomadic datacenters, the users are mobile like MDMS, but the
infrastructure is different. The infrastructure in nomadic data-
centers is extended beyond a centralized location to mobile edge
nodes (i.e., nomadic and edge datacenters).

Table 1 summarizes the high-level position of nomadic datacen-
ters compared to relevant architectures. An interesting relation
that can be observed from the table is that a nomadic datacen-
ters architecture to MDMS is what edge computing is to cloud
computing. Therefore, the data management challenges of edge
computing in comparison to cloud computing will likely exist
for nomadic datacenters in comparison to MDMS. The nature of
these challenges stems from the fact that edge resources are more
powerful than client machines, and thus there is an opportunity
to leverage them more aggressively for data management tasks
like caching [5], and offloading [11, 14]. This makes the caching
and offloading results for edge computing [5, 11, 14] different
from ones for MDMS [3, 6, 8, 9].

Although transforming edge solutions to adapt to the nomadic
datacenter architecture is important and may entail interesting
designs, we are interested more in the novel challenges and op-
portunities that are unique to nomadic datacenter architecture.
The next section introduces such challenges and opportunities.

3.2 New Challenges and Opportunities
We postulate that the nomadic datacenter architecture has fun-
damental differences compared to previous architectures and
combinations of previous architectures (e.g., MDMS with edge
computing). These differences require innovative solutions to
tackle the challenges and benefit from the opportunities of no-
madic datacenters. In this section, we present the imminent chal-
lenges and opportunities in this space.

3.2.1 The wireless link: a bottleneck and an opportunity. No-
madic datacenters communication with users, other edge and
nomadic datacenters, and the cloud tier through wireless links.
Although emerging technology such as 5G will ameliorate this
bandwidth limitation of wireless links, they are still limited com-
pared to wired infrastructures. In addition, communication be-
tween nomadic datacenters and users and other edge datacenters
will likely still rely on Wi-Fi or similar technologies. Therefore,
communication bandwidth will be an extremely costly resource for
nomadic datacenters. This is not the case for other architectures.
(Unlike MDMS, a nomadic datacenter manages the data of a large
number of users and thus require a significantly larger bandwidth
than a single MDMS client.) The bandwidth cost significantly
affects the design trade-offs space for data management tasks as
we outline in the next example.

A case study on coordination. An example of a data man-
agement task that will be affected by the high bandwidth cost is
coordination. Coordination is necessary to maintain consistency
across different copies of data via protocols such as Two-Phase
Commit [7], Paxos [10], and others. Coordination is communication-
intensive, where each request is typically coordinated among
nodes that hold copies of the accessed data. Take for example a
scenario of two nomadic datacenters, A and B, that are located
to be close to a large event that is anticipated to generate a lot of
traffic. Both nomadic datacenters, A and B, are providing access
to the same data but half the users are connected to A and the
other half is connected to B. Now, in applications where requests
would require coordination (such as OLTP transactions), A and
B must coordinate every request they receive. For example, a
request that is received at A would create a coordination request
from A to B. This means that, potentially, double the wireless
link bandwidth is consumed than necessary. This is exacerbated
for cases with more nomadic datacenters and represents a major
source of wasted resources and stress to the most limited nomadic
datacenter resource—communication bandwidth.

Optimizing the bandwidth of coordination is an open chal-
lenge for nomadic datacenters and can be tackled based on fa-
miliar approaches in batching and compression. However, there
are also opportunities for innovative solutions to this problem
that are allowed by the unique architecture of nomadic datacen-
ters. Specifically, since all communication is through the wireless
medium, nodes can eavesdrop on other nodes’ communication. Con-
sider our earlier coordination scenario whereA receives a request
and then coordinate with B. Since B can eavesdrop on the com-
munication from the user to A, then it already knows about the
request, even before A initiates coordination for it. This allows
efficient alternatives to coordination. For example, B can signal
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that it has heard about the request and decides a certain action
regarding it. This is more efficient in two ways: (1) A does not
have to communicate with B, and (2) the communication from
B is a control message only and does not need to contain the
payload of the request that is likely much bigger than control
messages. Another example to reduce coordination overhead is
partitioning. However, unlike traditional partitioning where the
system controls partitioning the data only, in our scenario, the
nomadic datacenters can also partition the users between them.
This means that A and B can judiciously decide which users con-
nect to which nomadic datacenter, and in jointly with a data
partitioning strategy between A and B, the need for coordination
between A and B would be reduced.

To summarize, we foresee innovations in coordination and
other data management tasks that tackle the main bottleneck of
nomadic datacenters (communication bandwidth) via innovative
solutions specific to the nomadic datacenter environment such
as eavesdropping and users-data partitioning.

3.2.2 Challenges of a Dynamic Mesh Environment. In many
of the scenarios we envision, there is a large number of nomadic
datacenters that roam around continuously. For example, con-
sider a deployment on taxi cabs, where each taxi cab contains a
nomadic datacenter. This may serve an application for the taxi
cabs, but may also be serving urban applications. In this scenario,
there are potentially thousands of nomadic datacenters that get
connected to each other sporadically. We call this a dynamic mesh
model, akin to Wireless Mesh Networks (WMNs) [2]. However,
unlike WMNs, mobility and relocation are rapid and each node is
a nomadic datacenter that performs extensive computation and
performs data management tasks on behalf of users, rather than
just being a communication hub.

The dynamic mesh model introduces serious challenges to
distributed protocols that are necessary to manage replicated or
partitioned data across nodes. Such distributed protocols, such
as Paxos [10], Two-Phase Commit [7], and others, were designed
for a static infrastructure, where the participants in a protocol
are known. However, in a dynamic mesh model, the participants
and topology configuration changes continuously, requiring the
invocation of expensive membership and leader election protocols
continuously. This motivates the study of data management sys-
tem designs that assume that membership and leader election is
invoked frequently.

A case study on Paxos. For example, consider the Paxos pro-
tocol [10]. Paxos performs two tasks: leader election and repli-
cation. Replication is performed by a leader to make sure data
is persistent. Leader election is only invoked during a suspected
failure of the current leader. Therefore, many Paxos designs and
variants optimize for the case where leader election is rare. Fur-
thermore, Paxos reconfiguration is invoked in cases where a
machine is to be replaced or to migrate the infrastructure. Paxos
reconfiguration [10] is very expensive and in traditional deploy-
ment this is not problematic because it is extremely rare. Because
nomadic datacenters move rapidly and the configuration changes
continuously, leader election and reconfiguration are invoked
frequently. This invites a redesign of the Paxos protocol to make
leader election and reconfiguration more efficient. Such redesigns
might be enhanced by exploiting the opportunities enabled by
the special characteristics of nomadic datacenters. An example is
that leader election and reconfiguration are triggered by mobility
in nomadic datacenters, rather than failures as the traditional
cases. This can be exploited because the current leader is aware

of the anticipated leader election and/or reconfiguration and
can participate in it. Therefore, rather than elaborate complex
mechanisms to ensure the correct election of a new leader, a live,
mobile leader can simply relinquish leadership to another node
unilaterally.

Although we discussed a single case study on Paxos, the chal-
lenges of membership and reconfiguration in an extremelymobile
environment are applicable to a wide-range of distributed proto-
cols. We believe that opportunities to optimize membership and
reconfiguration mechanisms for nomadic datacenters exist akin
to the high-level optimization that we discussed for the Paxos
case study.

4 CONCLUSION
Nomadic datacenters have the potential of enabling a wide-range
of edge applications that rely on emerging edge technologies
such as IoT, wearables, and Virtual and Augmented Reality. No-
madic datacenters introduces a dynamic, mobile infrastructure
that allocate resources on demand in reaction to changes in work-
load and failures. This makes it suitable for emerging mobile edge
applications. In this paper, we outline our vision of nomadic dat-
acenters, how they are becoming more feasible, how they will
be realized, and what are the imminent data management prob-
lems that arise with their introduction. We find that the areas
that require attention in designing data management systems for
nomadic datacenters are: the mobility of the extended infrastruc-
ture hierarchy, the wireless nature of communication, and the
dynamic, mesh nature of the topology. We outline pathways to
solutions to these problems and envision that they will provide a
building block towards realizing nomadic datacenters.
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ABSTRACT
Searching the nearest available resource is an important query

with many applications in spatial database systems. Examples

are searching free parking spots or charging stations in a road

network. Information about the availability is usually approxi-

mated as long-term statistics. Recently, online systems and sensor

networks become more and more common providing access to

real-time information about resource availability. In this paper,

we consider searching the next available resource in a road net-

work considering real-time information about all resources in

a target area. To make the best use of this information, it is not

enough to predict a static result route. Instead we propose to

model the problem as a Markov decision process (MDP) and

compute a routing policy which allows flexible reaction to newly

observed developments. In our experiments, we demonstrate that

our new approach is capable to exploit the additional informa-

tion and outperforms previous approaches built on long-term

distributions on a real-world parking data set.

1 INTRODUCTION
In modern location based services, queries often aim at finding a

spatial resource of a specific type. In contrast to a point of interest

(POI), a spatial resource is not generally available but might be

occupied at a certain point in time. Correspondingly, an occupied

resource might become available during search time. Examples

for spatial resources are parking spots, charging stations, rental

vehicles or drop-off locations for rental vehicles. To handle the

availability of spatial resources, online systems can provide real-

time information about currently available resources. However,

there is no guarantee that a currently available resource will

be available at the arrival time of our user. One might argue

that a reservation service might solve any such problem, but

reservation services often add additional complexity which of-

ten makes them impractical. Reserved resources might be used

without authorization and generally available resources might

remain unused due to just-in-case reservations. For example, a

parking spot might be occupied even if it was reserved before

because the previously parked vehicle was not removed in time.

Correspondingly, inner-city parking spots might remain unused

due to rich people having a permanent reservation just in case

they want to go into town. To conclude, for many applications

reservation systems might be unreliable and expensive to enforce.

Thus, we focus on the case that a resource is claimed by the first

user to arrive.

We investigate the task of finding an available resource spend-

ing minimal travel time or any other type of cost. Furthermore,

we assume real-time information on all available and occupied

resrouces in a specified target area. To properly exploit the avail-

able real-time information, a simple route is not enough. Since
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Figure 1: Example for a parking search using our new al-
gorithm. The car symbol denotes the car whose driver is
looking for a parking spot. The blue circles denote at least
one free available parking slot at the corresponding loca-
tion.

the availability of resources might be constantly changing, a

fixed route cannot include reactions to developments during the

search. Thus, we need to compute a policy which indicates the

most promising action for each situation during the search. For

example, when looking for a parking spot a natural behavior

is to take any parking spot getting available along the way. A

resource route as proposed in [5] would follow its fixed search

order which is based on the information provided at search time.

Thus, a resource route would only consider the vacant spot if

it is scheduled in the route. In contrast, a policy driven system

would recognize the improved situation and propose to take the

available parking spot if it is a suitable location.

In this paper, we propose to employ the statistical model of

Markov decision processes (MDP) to learn such a policy. A policy

is a mapping of any possible situation to the most promising

actionwhich an agent should perform tomaximize the probability

of success. Thus, our proposed solution allows that resources

might get occupied or available during the search. The availability

of each resource is modeled as a time-continuous Markov chain.

Based on these probabilities, we define anMDP to model resource

search with real-time information. A drawback of this model is

that the state space grows exponentially with the number of

acceptable resources. Since in many cases resources are stacked

at particular areas, we propose resource aggregation to limit

the number of considered states. Additionally, we propose to

precompute policies for relevant target areas and store them in a

data structure for efficient retrieval of the proposed action. To

conclude, the contributions of this paper are as follows:

• A model to compute a search policy for resource search

considering real-time information.

• A method for precomptung policies and apply the learned

policy for guiding a user.
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• Experiments on real-world parking data demonstrating

the advantage of using real-time information.

The rest of the paper is organized as follows: Section 2 surveys

previous works on resource search and MDPs. In Section 3, we

give a brief introduction to MDPs and introduce our model for

resource search. Section 4 outlines the use of policies for routing

services. In our experimental evaluation in Section 5, we demon-

strate the advantages of our new approach. Section 6 concludes

the paper with a short summary and directions for future work.

2 RELATEDWORK
The methods being closest to our approach are [5] and [3]. [5]

describes a method for computing a route minimizing the ex-

pected search time in a setting where resources can get occupied

and available during the search. However, real-time information

is only considered to be available at query time. Thus, the re-

sulting resource route cannot react to updates during the search.

In [3], the authors compute a policy for resource search. The

solution is basically an MDP and the proposed method resem-

bles the basic value iteration algorithm for computation. The

major difference to our work is that the method does not con-

sider the availability of real-time information during the search.

However, there are already several prototypes and testbeds pro-

viding this type of information for urban areas such as the city

of Melbourne in our evaluation. Our method employs Markov

decision processes (MDP) as described in [7]. Though there is a

plethora of more sophisticated solution methods for computing

MPDs like [1, 2, 4, 6, 8, 9], we employ the basic value iteration

algorithm since the approach in this paper precomputes policies

and afterwards queries these policies to guide a user.

3 PROBLEM SETTING
3.1 Markov Decision Processes
A Markov Decision Process consists of a set of states S , sets of
actions ∀s ∈ S : A(s ), the probability distribution for each state

action pair P (s ′ |s,a) and a cost (or reward) function c (s,a). It is
important to note that P (s ′ |s,a) indicates that the result of the
action (s,a) is uncertain and that any state transition s → s ′ with
P (s ′ |s,a) > 0 for any a ∈ A(s ) is potentially possible.

A policy π is a set of state action pairs (s,a) that determines

for any state s ∈ S exactly one action a ∈ A(s ). In our usage of

MDPs, we assume terminal states S∗ which indicate the targets

of the search. Thus, the goal of a policy π is to reach any terminal

state s∗ ∈ S∗ and a proper policy guarantees that we will reach a

terminal state s∗ at some point in time. To compare policies, we

now define the expected cost U (s ) which is also referred to as

utility or value function in literature.

In general, U π (s ) of policy π represents the expected cost

which is aggregated over all possible state sequences starting

with state s . We define the optimal policy π∗ for any state s as:

π∗ (s ) = argmin

a∈A(s )

∑
s ′

P (s ′ |s,a) ·U ∗ (s ′)

WhereasU (s ) can be computed by the following equation also

known as Bellman equation:

U (s ) = min

a∈A(s )
c (s,a) + γ ∗

∑
s ′

P (s ′ |s,a) ·U (s ′)

In other words, the minimal expected cost for state s are achieved
by taking the action a where the sum of direct costs c (s,a) and
the expected future cost are minimal. The parameter γ is used to

weight direct costs against future costs which is often beneficial

for the convergence of computation.

3.2 Modelling Resource Search
After giving a brief general introduction to MDPs, we will now

turn to modelling resource queries as an MDP problem. In our

setting an agent, e.g., a driver or a personmoves in a road network.

A road network G = (N ,E) consists of a set of nodes N and a

set of edges E ⊆ N × N . Each edge e ∈ E yields traversing costs

ce , e.g., travel time or distance. Additionally, we model resource

locations as nodes P ∈ N . For each resource p ∈ P , the boolean
function a(p) denotes 0 if p is occupied and 1 if p is available.

The state space of our MDP is a concatenation of the agent

position l ∈ N and the value of a(p) for each p ∈ P . Thus, the

number of all possible states is |N | · 2 |P | . All states where l ∈ P
and a(l ) = 1 are considered as terminal states because the agent

arrives at the location of a currently available resource. The

actions in our model consists of the possible routing directions

at each crossing, e.g., turn left, turn right, go straight or turn.

After defining states and actions, we now have to provide

the likelihoods P (s ′ |s,a). In our setting, the next location of the

agent l ′ is determined by the selected action a. However, the
change of the available resources depends on the status changes

of the resources P . Thus, we need to compute the likelihood that

a resource p changes its current status from occupied to available

or vice versa. Given that we assume exact information at the

current point of time, we only need to estimate the distribution

of a state change for the required time to travel from l to l ′.
To do so, we rely on the continous time Markov model being

proposed in [5]. The model predicts the likelihood P (p (t ) = 0)
that resource p is available at time t based on two parameters,

the average occupation time and the average vacancy time. Both

parameters can be easily derived from empirical data.

Finally, the cost of each action (s,a) is considered as the travel
cost c (l,l ′) for the edge (l , l

′) where l is the agent location in state

s and l ′ is the node after taking action a. Obviously, the given
model allows to compute proper policies as long as any resource

does not converge to a state of being constantly occupied. In

this case, returning infinitely often to the resource will result in

finding the resource available at some point in time.

After defining all components to model resource search as

an MDP, we now want to briefly describe the employed value

iteration algorithm for computing the minimal expected cost

U ∗ (s ) for each state s ∈ S . The idea of value iteration is to employ

the Bellman equation to each state in each iteration until the

utility for any state does not improve significantly anymore.

The pseudcode of value iteration is presented in algorithm 1.

After computingU ∗ (s ) processing the optimal policy is straight

forward by applying the arдmin function instead of the min
function in the Bellman equation. Note that we employed value

iteration due to its simplicity and for comparability with previous

approaches. For a more detailed introduction to value iteration

please refer to [7].

4 USING MDPS FOR RESOURCE SEARCH
A general problem of the method proposed above is the exponen-

tial increase of the state space with the considered resources P .
Obviously, computing the basic value iteration method for large

numbers on resources in not feasible. Thus, in order to make the

approach applicable for real systems, we need to make sure that
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Algorithm 1 Value iteration algorithm for computing the ex-

pected costU of an optimal policy.

1: procedure Value Iteration(mdp, ϵ)
2: initU ′

3: repeat
4: U ← U ′

5: δ ← 0

6: for all s ∈ S do
7: U ′[s] = mina∈A(s ) c (s,a) + γ ∗

∑
s ′ P (s

′ |s,a) ·U [s ′]
8: if |U ′[s] −U [s]| > δ then
9: δ ← |U ′[s] −U [s]|

10: until δ < ϵ (1 − γ )/γ
11: returnU

the number of potential resources is as small as possible. Fortu-

nately, in many cases the region where resources are acceptable

is usually limited to a certain spatial region being specified by a

user. For example, parking spots should be in walking distance to

the actual target of the user. Similarly, charging stations should

be close to planned route and in the region where the battery

is already empty to make charging feasible. Similar statements

hold for rental vehicles such as bikes and drop off stations. Thus,

a first approach to limit the considered resources would be to

compute isochrones around the actual target of the user and

only consider resources within the tolerable walking distance.

However, this approach would not work if the user would not

specify an exact target location but only a rough area where he

needs the resource. Additionally, in many cases the amount of

acceptable resources would still push the computational effort

beyond interactive query times. Thus, we propose another ap-

proach where MDPs are precomputed for typical target regions.

For example, parking MDPs might be precomputed for typical

shopping areas and MDPs for bike sharing make sense around

universities. Let us note that precomputation can be done even

for overlapping areas. Finally, the selection of the most suitable

area can be easily performed by the user based on map interface

displaying the available areas.

However, limiting the spatial area might not yield a successful

reduction of available resources because many types of resources

are spatially stacked on close-by locations. Examples are parking

spots and rental bikes. For these type of resources, we propose

to aggregate close-by resources and model them as a single ag-

gregate resource in the MDP. For example, instead of modeling

a road segment with ten parking spots as ten nodes having one

resource, we aggregate all spots on the segment into a single

aggregate resource. Of course, we have to adapt the probabilities

for computing the likelihood P (p (t ) = 0) to mirror the fact that it

is enough that any of the underlying resources is available. Thus,

the probability P (p̂ (t ) = 0) of the aggregate resource p̂ for being

available corresponds to the likelihood that not all of the under-

lying resources are occupied at time t . Formally, given a set of

close-by resources P̂ = {p1, . . . ,pk } which are aggregated to the

aggregate resource p̂ then P (p̂ (t ) = 0) = 1 −
∏

pi ∈P̂
P (pi (t ) = 1).

However, P (p̂ (t ) = 1) =
∏

pi ∈P̂
P (pi (t ) = 1) because p̂ can only

be considered as occupied if none of the underlying resources is

available. A drawback of resource aggregation is that it removes

the time for traveling between the aggregated resources. Thus,

the learned policy might not be able to handle searches within

the combined resources. However, we argue that with a proper

selection of resources, the user should be able to solve the prob-

lem by himself, e.g. finding a free resource among the combined

resources. A heuristic, we employed to find sets of resources

that can be aggregated is to make sure that all heuristic can be

reached by making the same routing decision. In other words,

all resources are placed on the same edge of the underlying road

network.

A final aspect of our proposed method is the use of the learned

policy in systems for guiding users to an available resource. As

mentioned before, we precompute policies and let the user de-

cide on the best suitable precomputed query region in order to

find a suitable policy. Afterwards the system can combine the

current user location and the online information about available

resources to determine the current state and propose the direction

aka action being stored in the policy. If the user wants to have an

outlook on the following actions, the system could compute the

most likely states for the current situation. However, in a volatile

environment it is likely that these directions will change during

travel to the next waypoint. A remaining task in this solution

is to efficiently retrieve the optimal action for the current state

for a given policy. Though we can identify the current state by

combing location and resource information, we still have to find

the state in the precomputed policy. Given the exponential size

of the state space finding the entry for a particular state has to

be done in an efficient way. Thus, we propose to store policies

in a two dimensional array. We index the set of locations N by

enumeration which indicates the first dimension. For the index

of the second dimension, we encode the status information of the

considered resources. This is done by mapping each resource to a

particular bit in a bit vector of length |P | and set the bit according
to the availability of the resource. The resulting bit vector is then

interpreted as an integer which indicates the second index in the

array. Thus, the proposed action is retrieved in constant time.

5 EVALUATION
In order to evaluate our approach on a realistic scenario, we sim-

ulate the states of the parking spots for the city of Melbourne.

The simulation samples for a given time-stamp and time interval

the next states of any given parking spot. We have developed

two different simulation models. The first model is based on

the continuous-time Markov chain (similar to our MDP model)

which enables us to do experiments based on the same condi-

tions that our MDP assumes. However, continuous-time Markov

chains might not provide a suitable model for real-world data.

Thus, we implemented a simulator that is based on a real-world

parking dataset, namely the freely available Melbourne “Parking

bay arrivals and departures 2014” dataset
1
. The dataset that con-

tains arrival and departure times of most central business district

parking bays. When we take the arrival and departure time into

consideration, we can decide for every contained time-stamp,

whether the parking bay is available or occupied. This simula-

tion can be equated to a realistic real-time information system

because it retrieves events that actually happened at the given

time-stamp.

We compare our new approach denoted as D3RI to the UGCM

algorithm that was proposed in [3] which also computes a policy

but does not consider real-time information.

In figure 2, we can observe that the average time of finding

a parking spot in the simulator is two to four times shorter

1
https://data.melbourne.vic.gov.au/Transport-Movement/

Parking-bay-arrivals-and-departures-2014/mq3i-cbxd
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Figure 2: This figure shows the average search time of
the agent in the time-continuous Markov chain simulator.
Therefore we ran 1000 simulations and computed the av-
erage parking search time.
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Figure 3: This figure shows the average search time of the
agent in the Melbourne simulator. Therefore we ran 10

simulations on different days and computed the average
parking search time.

with the approach proposed in this paper D3RI than the UGCM

approach[3].

This is mainly because D3RI considers the real-time infor-

mation of the parking spots while UGCM does not know if the

parking spot, the agent is currently heading to, is available. This

property can be observed in the real-world (Melbourne parking

bays) simulation as well (c.f. figure 3). By knowing the exact

states of the parking spots, D3RI can guide the driver directly to

a freely available parking bay. However, if the information is not

available, the driver may head to a nearby currently occupied

parking spot. Because there are more possibilities for occupied

parking spots, the approach of [3] becomes even worse when

there are more spots available, since UGCM does not knowwhich

of the parking slots are free right now and usually with increasing

amount of parking spots the amount of occupied spots increases

as well. As expected, the use of real-time information yields a

strong advantage which can be exploited by the D3RI model

presented in this paper.

Figure 4 illustrates the runtime of our approach regarding

the number of parking spots. In this experiment, we have used

an error acceptance rate ϵ of 0.001 and a γ -value of 0.99. Obvi-
ously, the runtime increases exponentially with the amount of
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Figure 4: This figure shows the runtime of our approach
depending on the number of spots. Onemay pay attention
to the logarithmic y-axis.

considered parking spots. This suggests how essential resource

aggregation is to reduce the computational overhead and the

size of the policy. To conclude, without resource aggregation

modeling realistic scenarios quickly get infeasible.

6 CONCLUSION
In this paper, we propose a novel approach for dynamic resource

search in spatial networks considering real-time information

on resource availability. To exploit valuable real-time informa-

tion, solutions must react to recent developments in a flexible

way. Therefore, we propose to learn a routing policy which pro-

vides the most promising action for any potentially occuring

situation. To compute such a policy, we model resource search

using real-time information as a Markov Decision Process (MDP).

Furthermore, we discuss the design of a query system using pre-

computed policies for guiding a user to an available resource. In

our experiments, we compare our new approach using real-time

information to a previous approach which computes policies

based on historical data only. The results indicate that our new

approach can exploit the real-time information to clearly out-

perform the comparison partner. For future work, we plan to

examine techniques to mine areas for which building an MDP

is most valuable. Furthermore, we will examine techniques to

improve resource aggregation in order to compute MDPs for

larger areas. Finally, we plan to examine database technology for

storing and querying policies with very large state spaces.
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ABSTRACT
Algorithmic problems of computing influence estimation and in-
fluence maximization have been extensively studied for decades.

We researched several data structures for implementing the Re-

verse Influence Sampling method proposed by Borgs, Brautbar,

Chayes, and Lucier in 2014. Our implementations solve the prob-

lems of influence estimation and influence maximization in large

graphs fast and using small memory footprint. For instance, we

are able to produce results 3 times faster and scale 8 times more

than a state-of-the-art algorithm, all this while preserving the the-

oretical guarantees of Borgs et al. for Reverse Influence Sampling.

1 INTRODUCTION AND DEFINITIONS
The most popular definition of influence relies on probabilistic

reachability [4, 7]. The network is modeled as a directed graph

and a node influence is calculated as the (expected) number of

other nodes reachable from it. Given a set of seeds (initial nodes),
influence estimation is calculated as the total number of nodes

reachable from all the seeds in the set. To find a set of seeds that

gives the maximum influence spread (the number of influenced

nodes) is the influence maximization problem.

Running time and required space are the primary considera-

tions for the algorithms solving influence estimation and influ-

ence maximization problems; the networks of interest are usually

quite massive in size. Kempe et al. [7] showed that the influence

maximization problem is NP-hard, and Chen et al. [3] showed for
the influence estimation problem that computing the exact influ-

ence of a single seed is #P-hard. Moreover, as Feige [5] proved in

1998, the problem is hard to approximate to anything better than

1 − (1 − 1/s )s of the optimum for a seed set of size s .
To model the influence spreading, Kempe et al. proposed the

Independent Cascade (IC) model [7]: Starting from a seed, influ-

ence spreads in rounds/steps: each node after getting influenced

has one possibility to influence its neighbors. IC selects edges

from the seed neighborhood with independent probabilities. In-
fluenced neighbors, in their turn, have one possibility to influ-

ence their neighbors forming a cascade of information propaga-

tion. Kempe et al. proved that influence maximization on the IC

model is monotone and submodular, and therefore the approxi-

mate Greedy algorithm produces near-optimal solutions with a

theoretical guarantee. Approximate Greedy starts with an empty

seed set S . In each iteration, it adds to S a seed - the node with

maximum marginal gain. IC became a standard model of infor-

mation diffusion, and we are using it for our algorithms.

Building on the Kempe et al. results, several approximate

algorithms with theoretical guarantees have been developed

[3, 6, 10, 11, 13, 14]. However, the problem of scalability remains.

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the 21st
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Recently, a new approach was proposed by Borgs et al. [2]: the
Reverse Influence Sampling (RIS) method. RIS selects (uniformly

at random, with replacement) a node and finds a set of nodes that

would have influenced it. The set of found nodes is stored in a

structure called hypergraph. This process is repeated many times.

If a node appears often in sets of “influencers”, then this node is

a good candidate for the most influential node in the graph. RIS

is a faster algorithm for the influence maximization problem, ob-

taining the near-optimal approximation factor of (1 − 1/e − ϵ ),
for any ϵ > 0, in time O ((m ∗ k ∗ ϵ−2 ∗ loд(n)), where k is the

number of seeds. RIS can be modified to allow an early termi-

nation: if it is terminated after O (β ∗m ∗ k ∗ loд(n)) steps, then
it returns a solution with an approximation factor that depends

on β (the greater the β , the better the approximation is, and the

guarantees are made precise in [2]). However, still RIS needs to

sample nodes many times and consumes vast amounts of mem-

ory. The problem of scalability remains.

We note that there are several works that propose better

bounds on the number of samples that need to be taken to achieve

the same theoretical approximation (cf. [6, 9, 13]). Our research

is orthogonal to these works. We aim at optimizing the compu-

tation and storage of sketches in the hypergraph; the aforemen-

tioned works aim at reducing the number of sketches needed.

Algorithms in this paper.Our main goal is to scale-up comput-

ing of influence maximization and influence estimation to large

graphs with tens of millions of edges. We use several data struc-

tures all aiming at reducing the required memory and speeding

up the computation.

(1) We use Webgraph, a highly efficient, and actively main-

tained graph compression framework [1].

(2) We design a new way of storing the hypergraph that sig-

nificantly decreases the required space, without affecting

the theoretical guarantee of the approximation.

(3) We conduct experiments on large graphs on a consumer-

grade laptop comparing the data structures, and provide a

detailed analysis of the results.

2 PRELIMINARIES
Notations
Let G = (V ,E,p) be a directed graph, where V is the node set

(|V | = n), E is the edge set (|E | = m), and p : E → [0,1] is

a probability function on the edges existence. Let S be a set of

seeds. The influence spread of a seed set S under the Independent

Cascade (IC) model, denoted by σ (S ), is defined as the expected

total number of reachable nodes for S .

IM and IE Problems
Influence EstimationProblem (IE). Given a graphG = (V ,E,p)
and a seed set S ⊆ V , compute the influence spread σ (S ) of S .
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InfluenceMaximization Problem (IM). Given a graphG =
(V ,E,p) and an integer k , find a seed set S ⊆ V of size k that

maximizes σ (S ).

3 PROPOSED DATA STRUCTURES
We developed three different algorithms implementing RIS. Each

algorithm uses a distinct data structure for storing the hyper-

graph. We compared the performance of different data structures

on a consumer-grade laptop.

3.1 RIS
The original RIS method (Algorithm 1 in [2]) selects nodes uni-

formly at random. Let v be such a node. Then RIS determines the

set of nodes that would have influenced v by running a search

in the inverse graph (the graph with the directions of edges re-

versed). RIS stores the found set of nodes, called a sketch, in a

data structure, called a hypergraph. The process continues until
the hypergraph reaches a pre-defined weight.

The weight of the hypergraph is defined as the number of

graph edges "touched" by RIS. RIS selects an edge to follow at

random, with a given edge probability p. During search, each

edge incident to a visited node is counted as "touched" and con-

tributes to the weight calculation. Note, that the edge is consid-

ered "touched" regardless of it being selected by the search or

not. How large the weight should be in order to guarantee an

approximation to the optimal solution is defined in [2].
1

The RIS hypergraph is a two-dimensional (2D) list that con-

tains, for each node u in the graph, the IDs of the sketches where

u appeared. Further, RIS runs an approximate Greedy algorithm

on the hypergraph, which returns a set of k seeds (nodes with
approximately maximal influence in the original graph).

3.2 Two-Dimensional List (2DL)
We started with a straightforward implementation of RIS de-

scribed in subsection 3.1, where we use a two-dimensional list

structure (list of lists) for storing the hypergraph. Algorithm 1

shows the pseudocode of this implementation.

For a better performance, we added the following improve-

ments: 1. The Webgraph [1] format for the input inverse graph

(saves space); 2. Java 8 parallel streams and lambda expressions

(speeds up performance by executing several reachability proce-

dures in parallel); 3. BitSet structure for marking deleted sketches

(speeds up the marginal influence calculation); and 4. Leskovec

et al. technique [8] (speeds up the seed calculation).

Influence estimation is part of seeds calculation. With minor

changes, the code provides the solution for IE problem, when a

seed set is inputted.

We compared the runtime and space of 2DL and DIM, a state-

of-the-art implementation of RIS by Ohsaka et al. ([12]). For
both algorithms, we used the same lower bound on the hyper-

graph weight from [2]. Our 2DL implementation significantly

outperforms DIM. Testing results are discussed in detail in sub-

section 4.1.

3.3 Flat Arrays (FA)
FA implementation modifies the BuildHypergraph procedure of

2DL (subsection 3.2). The pseudocode is shown in Algorithm 2.

To store the hypergraph, FA creates two flat, one-dimensional,

arrays of integers: sketches and nodes. sketches stores the sketch

1
Theorem 4.1 in [2], version 5, updated June 22, 2016.

Algorithm 1 2DL

Input: directed graph G with n nodes andm edges, coefficient

β , number of seeds k
Output: seeds set S ⊆ V of size k , spread σ (S )
1: R ← β ∗m ∗ k ∗ loд(n)
2: H ← BuildHyperдraph(R)
3: return GetSeeds (H )
4: procedure BuildHypergraph(R)
5: while H_weiдht < R do
6: v ← random vertex of GT

7: sketch ← reachable nodes in GT
starting from v

8: for each node u ∈ sketch do
9: append sketchID to u’s list of sketches
10: count[u]← count[u] + 1

11: return hypergraph H

12: procedure GetSeeds(H )

13: S ← ∅, σ (S ) ← 0

14: for i = 1, ...,k do
15: seed vi ← arдmaxv {count[v])}
16: S .insert (vi )
17: σ (S ) ← σ (S ) + count[vi ]
18: remove the sketches containing vi

19: output S , σ (S )

ID, nodes stores the node IDs reached by this sketch. Arrays

sketches and nodes are synchronized, so that knowing the index

of a sketch, we can easily find the corresponding nodes, and vice
versa. In the following figure we show an example of a sketches
array (first row) and corresponding nodes array (second row):

0 0 0 0 1 1 2 2 3 4 4 5

0 1 2 3 2 3 1 3 2 2 3 0

In this example, sketch IDs and their corresponding node IDs

are divided by double bars from other sketches: sketch 0 contains

four nodes: 0, 1, 2, and 3; sketch 1 contains two nodes: 2 and 3; and

so on. Note that sketches are listed in ascending order, and the

corresponding nodes for each sketch are listed in ascending order

as well. We use these features for speeding up the calculation of

seeds. Testing FA on real-life graphs shows its better usage of

space and faster performance than 2DL (subsection 4.1).

Algorithm 2 FA

1: procedure BuildHypergraph(R)
2: initialize sketches and nodes arrays to -1

3: while H_weiдht < R do
4: v ← random vertex of GT

5: sketch ← reachable nodes in GT
starting from v

6: for each node u ∈ sketch do
7: sketches[i]← sketchID
8: nodes[i]← u
9: count[u]← count[u] + 1

10: return hypergraph H = (sketches,nodes )

3.4 Compressed Flat Arrays (CS-FA)
Here we present a more efficient implementation, the CS-FA algo-

rithm (Algorithm 3). The main difference between CS-FA and FA

is the design of the sketches array: CS-FA stores the accumulated

506



Algorithm 3 CS-FA

1: procedure BuildHypergraph(R)
2: initialize nodes array to -1

3: while H_weiдht < R do
4: v ← random vertex of GT

5: sketch ← reachable nodes in GT
starting from v

6: for each node u ∈ sketch do
7: node_count ← node_count + 1
8: add nodeID to array nodes
9: count[u]← count[u] + 1

10: add node_count to array sketches
11: return hypergraph H = (sketches,nodes )

count of nodes included in sketches, thus making the sketches ar-
ray compressed. Now we do not need to store sketch id’s explic-

itly: sketch id’s are the indexes in array sketches. The example be-

low shows that sketch 0 includes three nodes, sketch 1 includes

(5 - 3) = 2 nodes, and so on. The nodes array lists the correspond-

ing nodes.

sketches: 3 5 6 8 10

nodes: 0 1 3 0 1 0 2 3 3 4

When we want to retrieve a sketch with id, say i , we need to

find where its nodes start in the nodes array. This is given by

the number stored in sketches[i − 1] or 0 if i = 0. Testing shows

CS-FA’s smaller footprint and better run time than 2DL’s or FA’s

(subsection 4.1).

4 EXPERIMENTAL RESULTS
We tested our IM and IE solutions by extensive experiments on

several real-world graphs. For brevity, we included in this paper

only the most interesting and telling results for IM and their

analysis. All the presented results are achieved on a consumer-

grade laptop with 16G of main memory.

We implemented the algorithms in Java 8 taking advantage

of parallel streams and lambda expressions, and used Webgraph

[1] as a graph compression framework. We compared our imple-

mentations with each other and with the DIM algorithm, imple-

mented in C++ ([12]). We used the DIM code from

https://github.com/todo314/dynamic-influence-analysis.

Datasets. Due to space constraints, we only present results

for three real world graphs. Results for other datasets were simi-

lar. The datasets are available from the Laboratory for Web Algo-

rithmics (http://law.di.unimi.it/datasets.php).

Dataset n m

UK100K 100,000 3,050,615

CNR-2000 325,557 3,216,152

EU-2005 862,664 19,235,140

Table 1: Datasets ordered bym.

While the size of the networks we considered is in the medium

range, since each node can be sampled many times (we use sam-

pling with replacement), the count of edges touched by the algo-

rithms is in the billions. For example, the smallest of presented

datasets, UK100K, requires a hypergraph with a weight of at least

5.6 billion, in order to produce the IM solution for β = 16 and

k = 100.

Equipment. The experiments were conducted on a laptop

with processor 2.2 GHz Intel Core i7 (4-core), RAM 16GB 1600

MHz DDR3, running OS X Yosemite.

Parameters. The parameters we use in our testing are as

follows. k is the number of seeds in the seed set, β is a coefficient

in Borgs et al. formula for the hypergraph weight, and p is the

probability of edge existence . The tests are conducted varying k
and β for p = 0.1.

4.1 Comparison of arrays, 2D list, and DIM
performance

Fig. 1 shows the total running time and the time used for seeds

calculation by DIM vs. our implementation of 2DL vs. FA vs. CS-
FA. The test shown was conducted on CNR-2000, for k = 10,

p = 0.1, and ϵ = 0.1, varying β in powers of 2, from 2 to 128.

(1) Total Time (sec) (2) Seeds Time (sec)
Figure 1: Processing time for cnr-2000; k=10, varying β .

The two-dimensional list implementations, DIM and 2DL, run

slower and require more memory than array implementations.

The reason for comparatively poor performance of 2D list imple-

mentations is the fragmentation of the main memory, when allo-

cating space for each second-dimension list of sketch numbers

for a node. This causes the memory manager to perform a lot of

work trying to rearrange memory blocks. Improvements imple-

mented in 2DL listed in subsection 3.2 allow for a better time per-

formance on both the hypergraph computation and seed calcula-

tion, compared to DIM. For example, for β = 16, DIM took three

times longer than 2DL to produce the result. The running times of

FA and CS-FA are almost identical with each other. This is good

for CS-FA; the compression we perform not only does not slow

downCS-FA, but it makes CS-FA slightly faster due to bettermem-

ory utilization. Both FA and CS-FA are faster than 2DL and DIM.

On both charts in Fig. 1, some data points are missing, because

of the required memory being higher than what is available on

the machine. 2DL and FA can handle runs with a β up to 32 and

64, respectively, while CS-FA can handle β equal to 128 due to its

smaller memory footprint. That is, CS-FA scales the most, about

8 times more than DIM.

Fig. 2 shows the performance of 2DL, FA, and CS-FA when

parameters k and β are growing, from the first chart, where

all three implementations could run to completion, till the last

one, where only the most efficient data structure (CS-FA) could

produce one result, for the lowest β . The larger the β and k , the
longer it takes for building the hypergraph and calculating the

seeds, within one graph. This can be seen in the charts, while

following a column from the top chart down. The larger the graph,

the longer it takes for building the hypergraph and calculating

the seeds. This can be seen in the charts, while following a row

from the left chart to the right.

The largest hypergraph, successfully created and processed on

the laptop, touched almost 5.6 billion edges. This hypergraph was
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(1) uk100K (2) uk100K (3) cnr2000 (4) cnr2000 (5) eu2005 (6) eu2005

(7) uk100K (8) uk100K (9) cnr2000 (10) cnr2000 (11) eu2005 (12) eu2005

(13) uk100K (14) uk100K (15) cnr2000 (16) cnr2000 (17) eu2005 (18) eu2005

(19) uk100K (20) uk100K (21) cnr2000 (22) cnr2000 (23) eu2005 (24) eu2005

(25) uk100K (26) uk100K (27) cnr2000 (28) cnr2000 (29) eu2005 (30) eu2005

Figure 2: Total time (sec), and seeds time (sec). Per row, k = 5, 10, 25, 50, 100

processed by CS-FA (subsection 3.4). It took CS-FA one hour six

minutes, including five minutes for calculating 100 seeds. We do

not know another algorithm that can process such a hypergraph

on a comparable machine.

Finally, in both Fig. 1 and 2, we observe that the time for

calculating seeds is only a small part of the total time, which

influenced our decision to not show separately experiments for

IE (due to space constraints).

5 CONCLUSIONS AND FUTURE RESEARCH
We presented several implementations for computing influence

estimation and influence maximization on graphs with multimil-

lion edges. Our algorithms use different data structures.We tested

the performance of these data structures on larger graphs, and

provided a comparative analysis of test results. We substantially

reduce the running time and required memory, without affecting

the theoretical guarantees, to the point that multimillion-edge

graphs could be processed on a consumer-grade laptop. Future

research will involve further compression and parallelism aim-

ing at scaling the computation of influence to bigger networks.

The source code for this paper can be found at:

https://github.com/dianapopova/InfluenceMax
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ABSTRACT
Despite many research efforts, similarity queries are still poorly
supported by current systems. We analyze the main stream re-
search in processing similarity queries and argue that a general-
purpose query processor for similarity queries is required. We
identify three goals for the evaluation of similarity queries (declar-
ative, efficient, combinable) and identify the main research chal-
lenges that must be solved to achieve these goals.

1 INTRODUCTION
In a similarity query, two data objects “match” if they are similar.
Similarity queries are required in scenarios where equality and
exact matches are not effective, for example, when dealing with
noisy data (e.g., in data analytics, ETL processes, data cleaning,
and entity resolution), for detecting small differences between
data objects (e.g., finding similar molecular structures in computa-
tional biology), for comparing complex objects (e.g., trees, graphs,
or multimedia content), and for querying physical measurement
data (e.g., time series, spatial objects, sensor data).

Similarity queries involve a similarity function defined on a
specific data type and an operator. The similarity function as-
sesses the similarity (or dissimilarity) between pairs of objects,
e.g., the edit distance between strings or trees, Cosine similarity
between sets, or Euclidean distance between vectors. The opera-
tor defines the input signature (e.g., lookup vs. join) and the pairs
that qualify for the result set (e.g., top-k , range, or skyline query).

Database management systems (DBMS) for exact queries (i.e.,
predicates based on equality, less-than, or greater-than) have
evolved into powerful and mature systems, which transparently
and efficiently deal with data storage and querying. Unfortu-
nately, this development has not happened for similarity queries.
Applications that require advanced similarity features cannot
rely on general-purpose systems that transparently handle data
storage and querying. Instead, similarity queries must be dealt
with in custom, ad hoc code. Writing custom code for similarity
queries is expensive, requires advanced query processing skills,
and often results in inflexible, hard-coded query plans. Changing
the query beyond simple parameter settings requires additional
programming efforts.

In this paper we argue that the integration of similarity queries
into declarative DBMS (relational or non-relational) and the ef-
ficient processing in a systems context are the next challenges
to be solved for similarity queries. In the past, the main research
focus was on physical operators and access methods: new evalu-
ation algorithms and index structures for specific combinations
of operators, data types, and similarity functions were proposed.
The evaluation of similarity queries in a larger systems context,
however, has received little attention.

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the 21st
International Conference on Extending Database Technology (EDBT), March 26-29,
2018, ISBN 978-3-89318-078-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Developing a general-purpose query processor for similarity
queries is challenging, both from a conceptual and a technical
point of view. From a conceptual point of view, similarity queries
pose a particular challenge. While the meaning of similarity
is highly application dependent, the query interface should be
general and serve a wide range of application needs. Note that
application dependency is much less pronounced in equality
queries: for most data types, the notion of equality is well defined
and application independent.

From a technical point of view, many techniques that are effec-
tive for equality queries are not applicable to similarity queries.
Techniques for equality queries often rely on exact matches or
some ordering, which cannot be assumed between similar objects.
An example is hashing, which leverages the fact that identical
data values are hashed to the same bucket. This does not hold for
similar values: they will typically be hashed to different buckets.
Another example is sorting, which is not reliable for similar data
items since even a small change may have a large impact on the
position of the data item in the sort order. Further, little is known
about the interaction of physical similarity operators with other,
equality-based operators in the query context. This involves all
aspects of query processing, including modeling similarity op-
erators at the logical level (e.g., extending relational algebra),
rewriting query plans, estimating the cost of similarity operators,
and gracefully adapting to limited memory resources.

This paper suggests to depart from the main stream in sim-
ilarity research with its narrow focus on individual physical
operators and studies similarity queries from a broader systems
perspective. The overall goal is to develop a deep understanding
of all aspects of similarity queries that are required to build a
general-purpose query processor for these queries.

2 DEC – DESIDERATA FOR SIMILARITY
QUERIES

We identify three core requirements for a similarity query pro-
cessing system: declarative, efficient, combinable (DEC), i.e., declar-
ative queries that combine equality and similarity predicates
should be processed efficiently. We believe that all DEC require-
ments must be satisfied in a useful end-to-end system for similar-
ity queries. We next discuss each of the three DEC requirements,
which are orthogonal aspects of a query answering system.

Declarative. The queries should be declarative, i.e., the query
describes what the answer to the query should look like rather
than how the answer should be computed. A declarative approach
allows flexible queries and a clearer separation between logical
and physical layer. While the users express their queries at the
logical level, the system must translate the query into a phys-
ical execution plan. Declarative data query languages are the
predominant approach in the traditional relational model [9]
with SQL (Structured Query Language) as a practical query lan-
guage, but have also been applied to non-relational data models
(e.g., XPath1 for semi-structured data) and to cluster computing
1http://www.w3.org/TR/xpath-30/
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systems with flexible data types (e.g., HiveQL [25] for analytic
queries on large data clusters). Effective techniques for translat-
ing declarative queries to physical operators are required, and
the resulting query plans must be optimized.

Efficient. The queries should be executed efficiently, i.e., effi-
cient query plans that consider appropriate techniques for similar-
ity operators should be constructed. Similarity predicates [13, 27]
often involve complex and expensive functions, and a straight-
forward evaluation of the similarity predicate on each tuple is not
feasible. A rich set of algorithms and access methods have been
proposed to allow similarity queries to be processed efficiently.
Such techniques are often based on an index or a filter/verify
approach to reduce the number of expensive predicate evalua-
tions [6, 11, 23]. Filters produce a set of candidates which contains
false positives; in the verification step the false positives are re-
moved. A widespread approach avoids the evaluation of the cross
product in similarity joins by rewriting the join into an equal-
ity join on tokens, e.g., q-grams in a string similarity join [13].
When the similarity function is a metric, the triangle inequality
and metric index structures can be leveraged [26]. A system for
similarity queries should be able to effectively apply the efficient
evaluation strategies that have been developed.

Combinable. Similarity and equality predicates should be arbi-
trarily combinable into complex queries. In useful queries, simi-
larity predicates are embedded into a larger query context which
includes a mix of equality and similarity predicates. In order to
evaluate such a complex query efficiently, the query must be
considered as a whole. It is not enough to process the similarity
part independently from the equality part and then intersect (or
union) the results. This may lead to very poor evaluation strate-
gies since large intermediate results are produced. An example
are conjunctive queries in which each individual predicate has
weak selectivity (i.e., produces a large intermediate result set),
but the conjunction of all predicates is strongly selective (i.e.,
the final result is small). A query processor for similarity queries
should not be limited to the evaluation of the similarity predicate
of the query, but should be able to evaluate both similarity and
exact predicates alike.

3 SIMILARITY SUPPORT IN CURRENT
SYSTEMS

Database Management Systems. DBMS typically offer basic sup-
port for similarity queries on strings, e.g., Soundex, a phonetic
transcription of English surnames. More advanced similarity
predicates are supported in the form of user defined functions
(UDF). The UDF is used to evaluate the similarity predicate on
a pair of attribute values. Unfortunately, the DBMS cannot pro-
duce efficient evaluation plans for queries with UDFs since they
are a black box for the optimizer. UDFs are typically applied in
a naive way (e.g., on each pair of tuples in a join [13]). Since
the DBMS does not understand the properties of the similarity
join, efficient filter/verify techniques (which have been proposed
for similarity joins) or other optimizations cannot be leveraged.
Overall, DBMS offer declarative, combinable similarity queries,
but fail to process them efficiently.

Custom Software. Applications that require more sophisticated
algorithms rely on custom software, e.g., as part of an entity
resolution tool [10], at the back-end of a search form [18], or in
some scientific application [7]. Due to the narrow focus and the
predictable nature of the queries, the query plan is generated by

hand and hard-coded, and appropriate algorithms and indexes are
implemented. Hard-coded query plans are problematic since the
quality of a query plan depends on the query parameters and the
data distribution. Good query plans are particularly important for
similarity queries, which often involve expensive predicates [14,
16, 27]. Extending custom software with new queries requires
substantial programming efforts.

Integrating Similarity into DBMS. There have been several at-
tempts to extend DBMS with similarity features. Barioni et al. [2]
propose the SIREN system and an SQL extension to deal with
similarity queries over multimedia and relational data. SIREN
processes the similarity part outside the DBMS in a separate sys-
tem and integrates the results in a second step. This separation
substantially limits the options for efficient query plans since the
similarity predicate cannot be freely moved in the query plan.
Guliato et al. [15] propose an extension for PostgreSQL (an open
source DBMS) for image retrieval. Similarly, the pg_similarity
extension of PostgreSQL defines a set of similarity functions (e.g.,
edit and q-gram distance for strings). These approaches do not
change the query processor, but are UDF-based and cannot lever-
age advanced algorithms, indexes, and optimization techniques.
Silva et al. [21] integrate physical operators for similarity join
and group-by into the core of PostgreSQL; the similarity opera-
tors are limited to numeric values. The Metric Similarity Search
Implementation Framework (MESSIF) [3] is a library for object
retrieval in metric space; it supports metric indexes and algo-
rithms for range queries and top-k selection, but no declarative
query interface or a query optimizer. An attempt to define an
SQL-based query language for MESSIF has been reported, but
query processing is not discussed.

Silva et al. [22] study the conceptual evaluation and query
transformation rules for various types of similarity queries based
on metric distances. In addition to the well-known ϵ-join (range
distance join), the kNN-join (k nearest neighbor join), and kD-
join (k-distance join) they also discuss join-around, a combination
of range and nearest neighbor join. In terms of select queries, ϵ-
and kNN -selection are discussed. Carey and Kossmann [5] and
Bruno et al. [4] discuss the optimization of top-k queries.

The system closest to our vision is DIMA [24], which ex-
tends SQL with range queries over strings and sets. DIMA builds
on Spark, supports distributed query evaluation, and uses a
signature-based approach to distribute the query load and fil-
ter candidate matches. Compared to our vision discussed in the
next section, the high-level similarity operators are not split into
algebraic primitives, there is no metadata to select filters and
transform the queries accordingly, and a high-level similarity op-
erator is mapped one-to-one to the respective physical operator.

Other Systems. Entity resolution systems like NADEEF [10, 12]
use similarity functions between individual attribute values to
deal with noise in the data. Digital libraries deal with mixed ob-
jects (multimedia, text, 3D structures) with the goal of preserving
digital objects, allowing users to enter new items, and accessing
content. In both cases, the query patterns are hard-coded in the
application, i.e., declarative queries are not supported.

Information retrieval systems like INDRI2 or Lucene3 store
collections of documents (e.g, plain text, HTML, PDF) in files,
build indexes over these files, and deal with stemming and stop
word removal. Queries are phrases, possibly with wildcards, that

2http://www.lemurproject.org/indri
3http://lucene.apache.org
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can be combined with boolean operators; the search can be lim-
ited to individual fields of a document (e.g., the title field). The
query result is a list of documents, which is ranked by relevance.
Similarity queries are supported at a very basic level. Lucene, for
instance, supports the phonetic encodings Soundex and Meta-
phone, and edit distance selection. The queries in these systems
are limited to selection and ranking; more complex query patterns
(e.g., joins) are not supported.

4 ROADMAP
Challenges.We identify three challenges that must be addressed
to build similarity queries into declarative database management
systems: (1) A new, minimal set of algebraic operators for simi-
larity queries must be defined. (2) Dynamic rewriting: metadata
about eligible filters, indexes, and data transformations must be
made available to the query optimizer. (3) A uniform cost model
for physical similarity operators must be developed.

Minimal algebra. The goal is to develop a new algebra for sim-
ilarity queries which extends relational algebra with a minimal
set of operator primitives that is able to express a wide range of
similarity operators.

Similarity (unlike equality) is not a binary predicate, and data
items can be ranked by their “degree” of similarity w.r.t. some
query. This gives rise to a large variety of new matching princi-
ples, for example, k-closest neighbor selection, similarity group-
by, or join-around (k closest neighbors within a maximum dis-
tance range). Previous work, e.g., Silva et al. [22], defines an
algebraic operator for each of these matching principles. We be-
lieve that this approach will not scale: (a) Each new operator
requires deep changes in the system. (b) Query rewriting rules
for each pair of operators must be defined, leading to a quadratic
number of such rules. The key to success will be to establish a
minimal, non-redundant set of primitives that are composed to
express high-level operators. This will provide great flexibility
in reordering queries, and introducing new high-level operators
will not require changes in the algebra.

The new algebra should satisfy the following requirements.
(a) Minimal: the new operators should be small, non-redundant
primitives; the new algebra should cleanly separate two orthog-
onal concepts, which have often been mixed in previous work:
the similarity function between two objects (e.g., edit distance)
and the matching principle (e.g., top-k join). (b) Expressive: a
wide range of similarity queries should be expressible in the new
algebra; complex similarity operators (e.g., top-k join with edit
distance), for which efficient implementations exist at the phys-
ical level, may be expressed by composing several of the new
primitives at the logical level. (c) Extendable: Introducing new
physical operators or query flavors at the user level should not
require changes in the algebra. (d) Transformable: The new alge-
bra should provide equivalence rules which allow the optimizer
to reorder the logical operators in a flexible way. This is partic-
ularly important for small primitives since multiple primitives
may compose a single physical operator.

Dynamic Rewriting. In order to expand queries with filters,
metadata about similarity functions (e.g., edit distance), their
relationship and properties (e.g., upper and lower bounds, metric
properties), and applicable filters (e.g., q-grams for range joins)
must be available. This metadata will be leveraged to dynamically
produce query transformation rules. New filters can easily be
introduced by updating the filter ontology: no changes in the
optimizer are required.

The metadata stores properties of (a) similarity functions, (b)
matching principles, and (c) filters, and their relationships. Sim-
ilarity functions may satisfy metric properties (e.g., string edit
distance) or even some Li -norm (e.g., cardinality of set intersec-
tion, geographic distances). The relationships between similarity
functions are guarantees like lower and upper bounds (e.g., the
q-gram distance provides a lower bound for the more expensive
edit distance). The filter ontology must further relate similarity
function / matching principle pairs to eligible filter techniques.
Some filters require data transformations, e.g., the computation
of tokens [1], which should be specified in the metadata. The fil-
ter ontology must also provide information about the selectivity
of filters, which will be used to model the query cost. Given a sim-
ilarity predicate, the ontology should be able to derive all eligible
filters (including necessary transformations and selectivity).

Expanding queries with filters leads to very different physical
plans for a single logical query. The physical plans may involve
techniques that have been developed by different communities,
e.g., metric and token-based techniques. A uniform cost model is
required to evaluate the plans. The cost model must consider the
cost of similarity functions, which may be very expensive, filter
selectivity, and the effect of filters on the data distribution.

Uniform cost model. A new cost model for physical similarity
operators must be developed. The cost model should quantify the
cost of different physical query plans, which result among oth-
ers from introducing filters into the query plan or transforming
data to the appropriate representation (e.g., string data may be
transformed into tokens or signatures for filtering purposes). In
the past, cost models for some individual operations (e.g., M-tree
lookups [8]) have been developed. For other operations (e.g.,
set similarity joins [19]) experimental studies provide qualita-
tive insights, but lack a model to predict the cost. Selectivity
estimates [17, 20] are an important input for cost models, but
selectivities are independent of physical operators. A quantitative
assessment of the costs of all physical operators in the query is
required. Computing comparable cost estimations is particularly
challenging for approaches that have evolved in different com-
munities, for example, edit similarity, token-based approaches,
and metric techniques. The cost estimation will need to take into
account the data distribution, any query parameters, the available
resources, and the filter selectivities. The cost model should fur-
ther integrate well with existing cost models for non-similarity
operators since the overall query cost must be assessed.

Query processing. We envision the evaluation of a query
that includes similarity predicates as illustrated in Figure 1: The
parser generates a query tree that involves both standard re-
lational operators and the new algebraic similarity primitives.
Thereby, a high-level similarity operator like a top-k join or a sky-
line query will be represented by a number of low-level algebra
operators. The query planner consults the similarity metadata
to learn about eligible filter techniques like lower and upper
bounds for the given similarity function and operator. Thereby,
the query planner is not limited to the high-level operators in the
original query. For example, there may only be filter information
for nearest neighbor queries in the metadata, but the query is
join-around [22] (which combines nearest neighbor and range
join). The planner decomposes join around into algebraic primi-
tives and tries to rearrange and match the primitives to known
combinations in the metadata.

The query plans with filters will typically include additional al-
gebra operators (representing the filter). Some filters will require
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Figure 1: Interaction of system components.

on-the-fly index construction (e.g., prefix index for set similarity
joins) or data transformations (e.g., tokens or signatures). The
transformation rules for expanding the query plan with filters
will be dynamically derived from the metadata. When new filters
are registered in the metadata, they will trigger new query plans
that apply these filters.

Finally, the cost of the query plans must be assessed. To this
end, the algebraic operators must be arranged such that they
match existing physical operators. Note that the logical query
level (e.g., a query expressed in an SQL-like language) and the
physical level are independent. There is no one-to-one match
between the operators visible to the users and the physical oper-
ators actually implemented in the system. Rather, the operators
in the user query are disassembled into algebra, and subtrees of
the query plans are matched against existing physical operators.

5 CONCLUSION
This paper suggests to depart from the main stream in similarity
research with its narrow focus on individual physical operators
and studies similarity queries from a broader systems perspective.
The overall goal is to develop a deep understanding of all aspects
of similarity queries that are required to build a general-purpose
query processor for these queries. The systems aspects discussed
in this paper must be solved to enable wide applicability and
impact of similarity queries in real systems. The main research
challenges are the development of aminimal algebra for similarity
queries, the design and querying of metadata regarding filter
techniques for similarity queries, and the cost estimation for
physical similarity operators.

A declarative interface will have a fundamental impact on the
user interaction with similarity queries. Database users will no
longer need to write ad-hoc code for evaluating similarity predi-
cates. Instead, similarity predicates are expressed in a declarative
way and are processed efficiently. Application developers will
not need to bother about the details of similarity query process-
ing. We expect a general-purpose query processor to trigger a
wide adoption of similarity queries also in applications that so
far could not afford the overhead of writing custom code.

Finally, a declarative similarity query processor will set new
standards in the research community. New algorithms for physi-
cal operators must be evaluated against the query plans produced
by the similarity-enabled optimizer, which can leverage a wide
range of techniques, and dynamically adapts to query parameters
and data distribution. Further, new algorithm proposals will not
only be measured by their performance in an isolated setting,
but also by their usefulness in a systems context.
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ABSTRACT
Data exploration is seeing a renewed interest in our community.
With the rise of big data analytics, this area is growing to encom-
pass not only approaches and algorithms to find the next best data
items to explore but also interactivity, i.e. accounting for feedback
from the data scientist during the exploration. Interactivity is es-
sential to account for evolving needs during the exploration and
also customize the discovery process. In this tutorial, we focus on
the interactive exploration of Composite Items (CIs).

CIs address complex information needs and are prevalent in
online shopping where products are bundled together to provide
discounts, in travel itinerary recommendation where points of in-
terest in a city are combined into a single travel package, and task
assignment in crowdsourcing where persoalized micro-tasks are
composed and recommended to workers. CI formation is usually
expressed as a constrained optimization problem. For instance,
in online shopping, package retrieval can retrieve the cheapest
smartphones (optimization objective) with compatible accessories
(constraints). Similarly, a city tour must be the most popular and
conform to a total time and cost budget. A data scientist inter-
ested in exploring a variety of CIs has to repeatedly reformulate
optimization problems with new constraints and objectives. In
this tutorial, we investigate the applicability of interactive data
exploration approaches to CI formation.

We will first review CI applications and shapes (15mn). We
then discuss three big research questions 60mn): (i) algorithms for
CI formation, (ii) modes of exploration for CIs, and (iii) human-in-
the-loop CIs. We will conclude with research directions (15mn).

The proposed tutorial is timely. It brings together several re-
lated efforts and addresses unsolved questions in the emerging
area of human-in-the-loop exploration of complex information
needs. The tutorial is relevant to the general area of data science
and more specifically to Scalable Analytics, Data Mining, Clus-
tering and Knowledge Discovery, Indexing, Query Processing
and Optimization, and Crowdsourcing. The technical topics cov-
ered are constrained optimization, ranking semantics, clustering,
algorithms, and empirical evaluations.

1 OUTLINE AND SCOPE
1.1 Scope
The tutorial targets theoreticians and practitioners interested in the
development of data science applications. It should be of particular
interest to an audience who wants to learn about how different
domains, such as product recommendation, scientific simulation,
or team formation in the social sciences, have been developing
their “siloed” definitions of CIs. Tutorial attendees are expected
to have basic knowledge in algorithms and data management.
Knowledge in constrained optimization is not necessary.

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the 21st
International Conference on Extending Database Technology (EDBT), March 26-29,
2018, ISBN 978-3-89318-078-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Figure 1: A Star CI

Figure 2: A Chain CI

1.2 Outline
1.2.1 CI Applications and Shapes (15mn). We will begin

the tutorial by providing example applications that justify the need
for Composite Items (CIs). This part will gather those examples
and attempt to unify them. Figures 1, 2, 3 show the many shapes
CIs can take in shopping (star shape, where satellite items must
be compatible with a central item), traveling (chain shape, where
an item must be geographically close to its preceding item), and
dining (where items are jointly co-reviewed by the same people),
respectively.

1.2.2 Research Questions: (60mn). As our tutorial topic
is building and exploring CIs interactively, the second part of
the tutorial is organized into three big research questions: (i) al-
gorithms for CI retrieval, (ii) how data exploration is typically
done for large-scale datasets and its applicability to exploring
CIs, and (iii) what types of user interactivity are common and
their applicability to building and exploring CIs interactively. For
each question, we will review the state of the art and discuss new
research challenges.

Research Question 1: CI Retrieval (20mn). Different CI shapes
require the specification of different constraints and optimiza-
tions, thereby leading to a no “one-size-fits-all" CI definition. We
will discuss why and how the nuances of data, such as type het-
erogeneity, dimensionality, distribution, or even storage, impact

Tutorial

 

 

Series ISSN: 2367-2005 513 10.5441/002/edbt.2018.60

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2018.60


Figure 3: A Snowflake CI

the semantics and performance of building different shapes of
CIs. For example, the type of aggregation that a climatologist
seeks to build a CI that reflects a meaningful “climate model”
is significantly different from that of a retail business manager
who packages compatible items for product recommendation, or
from a crowdsourcing platform that bundles diverse micro-tasks
to address workers’ bordedom. Using these applications, we will
present scenarios where exploration of CIs and interactivity are
essential. For instance, in the domain of experiment design, we
will show the necessity of leveraging feedback from domain sci-
entists to select a different set of parameters that appropriately
capture a scientific simulation process, and represent it as a CI. In
the travel world, we will argue that interactivity helps refine one’s
partial needs and build personalized packages [20, 24]. Similarly,
in crowdsourcing, a CI may represent a bundle of diverse tasks
that are more exciting to workers than a ranked list of tasks [4].

Research Question 2: CI Exploration (20mn). The aim of this
part is to bridge the gap between exploration in emerging data
science applications and exploring structured data, and discuss
how that can serve CI exploration.

We will first describe approaches that are popularly used among
data scientists to explore large-scale datasets. Such data explo-
ration techniques lack well-defined objectives and are mostly done
following a trial-and-error approach. Consequently, most of the
visualization-based data exploration techniques that data scientists
popularly use are ad-hoc and unprincipled.

After that we will discuss data exploration techniques that are
more principled and investigated in conjunction with structured
databases, especially considering a user input, in the form of
queries, example data, or data distributions. Some notable exam-
ples in that space relate to faceted search and query expansion
techniques [8, 9, 11, 12, 14, 16, 21, 29, 30]. We will also dis-
cuss some recent work that investigates exploration and visual-
ization techniques intended to assist users by looking for similar
data distributions [5, 22, 23, 26] or in an example-driven explo-
ration [15, 19]. We will argue why these techniques are not directly
applicable to CI exploration.

Finally, we will discuss why CI exploration needs to go beyond
existing techniques and rely on optimization-guided data explo-
ration as in [18]. We will pose open problems and computational
challenges in designing appropriate solutions for exploring CIs.

Figure 4: Recommending Satellite Items

Research Question 3: Human-in-the-Loop CIs (20mn). The
third challenge is how to incorporate human-in-the-loop effec-
tively to enable interactive data exploration.

We will first discuss different types of interactivity that a user
is allowed to provide, ranging from binary responses to capturing
implicit actions. We will do that in the context of different contexts
such as crowdsourcing, recommender systems, experiment design,
or machine learning applications that require supervised samples
for training models. In conjunction, we will discuss different types
of users, such as naive users or domain experts, and investigate
what types of challenges, such as expressivity of interaction, bias,
and real-time interactions, they incur. We will examine how these
questions can be revisited in the context of building CIs and review
preliminary work on satellite item recommendation [7, 20] (also
see Figure 4), and on adding or deleting specific items in CIs [24]
(also see Figure 5). An additional challenge when interacting with
CIs is the visual layout. Unlike “flat” items, aiding users in their
interactions with CIs, via recommendations or maps for instance,
is necessary for a full-fledged exploration.

In a second part, we will describe other types of feedback
that are rather non-traditional and only discussed in recent work,
such as feedback on metadata rather than on the entire object.
We will discuss how such feedback is processed for answering
queries, feature selection, or feature engineering in the data sci-
ence pipeline [10, 17, 32]. We will describe our vision on hybrid
approaches that discuss how to leverage sophisticated yet limited
human feedback in the computational loop and show their utility
for CIs.

1.3 Research Challenges: (15mn)
In this last part of the tutorial, we will summarize and brainstorm
our overarching framework to enable optimization-guided data
exploration techniques that enable a human-in-the-loop approach.
We will discuss what types of applications it will support and
conclude by outlining some major challenges in combining CI
exploration and interactive CIs.

1.4 Overlap with Previously Presented Tutorials
In WWW 2015, the authors presented a tutorial on composite
items in the context of complex crowdsourcing [1]. This tutorial
will have a very small overlap with that tutorial in the part that
reviews various CI definitions. Other than that, the content of this
tutorial was not presented before.

514



Figure 5: CIs on a Map
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ABSTRACT
Recent years have witnessed an explosion in methods applied to
solve the recommendation problem. Modern recommender sys-
tems have become increasingly more complex compared to their
early content-based and collaborative filtering versions. In this
tutorial, we will cover recent advances in recommendation meth-
ods, focusing on matrix factorization, multi-armed bandits, and
methods for blending recommendations. We will also describe
evaluation techniques, and outline open issues and challenges.
The ultimate goal of this tutorial is to present a toolkit of new
recommendation methods in perspective to data-related prob-
lems, and highlight opportunities and new research paths for
researchers and practitioners that work on problems in the inter-
section of recommender systems and databases.

1 INTRODUCTION
The proliferation of digital content in a plurality of forms (in-
cluding e-news, movies, and online courses), along with the pop-
ularity of portable devices has created immense opportunities
as well as challenges for systems to provide users with infor-
mation and services that best serve the users’ needs. Matching
consumers with the most appropriate items is key to enhancing
user satisfaction and loyalty. Recommender systems come to the
rescue providing advice on movies, products, travel, leisure ac-
tivities, and many other topics. Personalized recommendations
can elevate the user experience. That is why e-commerce leaders
like Amazon and Netflix have made recommender technology a
salient part of their systems [15].

Broadly speaking, recommender systems are based on one of
two strategies. Content-based filtering creates a profile for each
user or item to characterize their features. The profiles allow the
recommender system to associate users with matching items. An
alternative to content-based filtering relies only on past user be-
havior (e.g., previous purchases or user ratings). This approach is
known as collaborative filtering, a term coined by the developers
of Tapestry, an early recommender system [10]. Collaborative
filtering analyzes relationships between users and interdependen-
cies among items to identify new user-item associations based
on which to make recommendations.

Recent years have witnessed an explosion in methods applied
to solve the recommendation problem and modern recommender
systems have become increasingly more complex. Matrix factor-
ization methods, popularized with the Netflix prize [15], have
become a dominant methodology within collaborative filtering
recommenders due to their superior performance both in terms
of recommendation quality and scalability. On the other hand,
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multi-armed bandits are becoming popular in interactive rec-
ommendation settings, for example for recommending songs in
Pandora [29]. Ranked lists of items generated by different rec-
ommender systems are blended together into the final list of
recommendations shown to the user. The blending problem is
essentially a multi-objective optimization problem, with objec-
tives such as relevancy, coverage and diversity competing with
each other [6, 25]. Overall, the landscape of recommender sys-
tems has changed immensely since the first content-based and
collaborative filtering systems emerged, and the state-of-the-art
approaches show outstanding results and open up new opportu-
nities and research paths.

Interestingly, we are used to thinking of recommendations in
the context of systems that serve items, such as movies, products,
friend connections, etc, to users. The reality is that the recom-
mendation problem arises in many different scenarios beyond
those targeting user consumption. For example, in the context
of databases, such scenarios include but are not limited to data
exploration, query optimization, visualization, data integration,
and workflow design, where the purpose is to select tuples [7],
queries [9], views [8], exploration actions [19], query plans [30],
visualization graphs [26–28], work flows [12], and so forth. While
there is work in these areas, it pales compared to the amount and
diversity of recommendation methods developed for items such
as movies and products.

Therefore, the purpose of this tutorial is two-fold. First, it aims
at providing a comprehensive overview of recent advances in
recommendation methods, highlighting their capabilities and
their impact. The focus of the tutorial is on matrix factorization
methods, multi-armed bandits, and blending methods. It will
discuss major techniques, evaluation methodologies, and open
issues. Since the recommendation problem appears in many dif-
ferent settings, it is the purpose of this tutorial to provide a solid
framework for placing novel recommendation work into perspec-
tive for data-related problems, provide a toolkit of new methods,
and highlight research opportunities for researchers and practi-
tioners in database systems, data-intensive applications, and the
intersection of recommender systems and databases.

The following sections describe the structure and contents of
the tutorial. The tutorial does not require any prior knowledge in
recommender systems since there will be detailed introductions
to the relevant techniques.

2 OUTLINE
The tutorial is structured in the following parts.

2.1 Recommendation Framework
The objective of this section is to introduce the audience to the
recommendation problem, define the basic concepts as well as
the different instances of the problem (e.g., rating prediction
and whole-page optimization), and provide an overview of the
classical approaches for generating recommendations.
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Recommender systems appeared back in the nineties, and
two broad categories of recommendation approaches emerged:
content-based and collaborative filtering. Content-based approaches
analyze user past selections (e.g., web pages they visited, movies
they watched) to learn user preferences and recommend items
with similar content to the user’s past selections and likes.

Collaborative filtering analyzes usage data (e.g., user ratings
and purchases) and recommends to the user either items with
similar usage characteristics as the items selected by this user or
items from users with similar usage characteristics to this user.

We will explain the basic characteristics and operations be-
hind each family of methods as well as their advantages and
their shortcomings. The objective of this section is to lay the
necessary foundations for the rest of the tutorial. It also aims
at preparing the ground for understanding the methods to be
presented subsequently and their impact.

2.2 Matrix Factorization
Matrix Factorization has gained popularity in recommender sys-
tems in recent years due to its superior performance both in terms
of recommendation quality and scalability. Part of its success is
due to the Netflix Prize contest for movie recommendations,
which popularized a Singular Value Decomposition (SVD) based
matrix factorization algorithm [13]. The Netflix Prize competition
began in October 2006 and has fueled much recent progress in
the field of collaborative filtering. For the first time, the research
community gained access to a large-scale, industrial strength
data set of 100 million movie ratings while the nature of the com-
petition encouraged rapid development, where innovators built
on each generation of techniques to improve prediction accuracy.

Experience with datasets such as the Netflix Prize data has
shown that matrix factorization methods deliver accuracy supe-
rior to classical nearest-neighbor techniques [14]. At the same
time, they offer a compact memory-efficient model that systems
can learn relatively easily. What makes these techniques even
more convenient is that models can integrate naturally many cru-
cial aspects of the data, such as multiple forms of user feedback,
temporal dynamics, and confidence levels.

In its basic form, matrix factorization characterizes both items
and users by vectors of latent factors inferred from the ratings
users gave to the items. Early systems use Singular Value De-
composition (SVD) – a well-established technique for identifying
latent semantic factors in information retrieval – as a matrix
factorization method for collaborative filtering. In the following
years, several extensions to matrix factorization have been pro-
posed and matrix factorization becomes the foundation in most
recent recommender systems.

We will start with some background on Singular Value De-
composition and describe how early works (e.g., [23]) use SVD
to capture latent relationships between customers and products
and to produce a low-dimensional representation of the origi-
nal customer-product space in order to compute the predicted
likeliness of a certain product by a customer. We will introduce
Low-rank Matrix Factorization [13, 21] followed by most recent
important extensions to Matrix Factorization for recommenda-
tions, such as SLIM [20].

2.3 Multi−armed Bandits
Traditional recommender systems, including collaborative filter-
ing, content-based filtering and hybrid approaches, can provide
meaningful recommendations at an individual level by leveraging

users’ interests as demonstrated by their past activity. However,
in many web-based scenarios (e.g., filtering news articles or dis-
play of advertisements), the content universe undergoes frequent
changes, with content popularity changing over time as well. Fur-
thermore, a significant number of visitors are likely to be entirely
new with no historical consumption record whatsoever; this is
known as a cold-start situation. These issues make traditional rec-
ommender approaches difficult to apply. In such highly dynamic
recommendation domains, it is essential for the recommenda-
tion method to adapt to the shifting preference patterns of the
users and the evolving space of items. Exploration-exploitation
methods, a.k.a. multi-armed bandits, have been shown to be an
excellent solution.

In probability theory, the multi-armed bandit problem is a
problem in which a gambler at a row of slot machines (sometimes
known as “one-armed bandits”) has to decide which machines to
play, how many times to play each machine and in which order
to play them. When played, each machine provides a random
reward from a probability distribution specific to that machine.
The objective of the gambler is to maximize the sum of rewards
earned through a sequence of lever pulls.

For example [17], in the context of article recommendation,
we may view articles in the pool as arms. When a presented
article is clicked, a reward of 1 is incurred; otherwise, the reward
is 0. With this definition of reward, the expected reward of an
article is precisely its clickthrough rate (CTR), and choosing
an article with maximum CTR is equivalent to maximizing the
expected number of clicks from users, which in turn is the same as
maximizing the total expected reward in the bandit formulation.
Furthermore, we may “summarize” users and articles by a set
of informative features that describe them compactly. By doing
so, a bandit algorithm can generalize CTR information from one
article/user to another, and learn to choose good articles more
quickly, especially for new users and articles.

We will first present context-free K-armed bandit algorithms
[4, 22], such as ϵ-greedy and upper confidence-bound (UCB)
algorithms [1, 3, 16], and then move to contextual bandit algo-
rithms [17, 29]. We will focus on multi-armed bandits used in
the context of recommender systems and in particular in three
problems: (a) Popularity ranking, to balance exposure of new
items (exploration) with old winners (exploitation), (b) Model-
based collaborative filtering [11, 18], and (c) Dueling bandits, to
efficiently compare multiple recommendation methods [5, 24].

2.4 Blending Models
Several domains require ”blending” of recommendations from dif-
ferent sources. Blending allows different recommendation strate-
gies to develop independently, and combine their outputs post-
hoc into a meta-recommender. The result aims at providing rec-
ommendations of higher quality and diversity. For instance, the
Pinterest Homefeed is a personalized feed of content (i.e., pins)
drawn from many sources, including followed users, followed
topics, and recommendations, among other sources. Each type
of content is ranked by its own specialized machine learning
model, and then blended with a ratio-based round-robin method
to create the final Homefeed [6].

We will examine different methods to blend recommendations,
including fixed ratio, greedy, calibrated ranker and multi-armed
bandit-approaches [2, 6, 25]. As we examine these blending sys-
tems, new questions arise as to how to measure success. Unlike
traditional search ranking problems, recommender systems face

2
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both short- and long-term optimization challenges as there is a
need to balance immediate user-engagement metrics and long
term ecosystem health. We will examine new such metrics and
approaches to this end.

2.5 Lessons Learnt and Open Issues
In this section, we will discuss lessons learnt, open issues and new
research directions created by these novel recommendation meth-
ods. We will also discuss about recommendation problems that
do not target user consumption. In particular, we will describe
such scenarios including data exploration, query optimization,
visualization, data integration, workflow design, and so forth,
where the purpose is to sort out not movies or products but
queries, views, exploration actions, query plans, visualization
graphs, and so forth. We will examine these problems in the light
of the recent developments in the recommendation arena and
discuss new research directions and opportunities that arise.
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ABSTRACT
Cypher is a property graph query language that provides expres-

sive and efficient querying of graph data. Originally designed

and implemented within the Neo4j graph database, it is now

being used by several industrial database products, as well as

open-source and research projects. Since 2015, Cypher has been

an open, evolving language, with the aim of becoming a fully-

specified standard with many independent implementations.

We introduce Cypher and the property graph model, and then

describe extensions – either actively being developed or under

discussion – which will be incorporated into Cypher in the near

future. These include (i) making Cypher into a fully compositional

language by supporting multiple graphs and allowing graphs to

be returned from queries; (ii) allowing for more complex patterns

(based on regular path queries) to be expressed; and (iii) allowing

for different pattern matching semantics – homomorphism, rela-

tionship isomorphism (the current default) or node isomorphism

– to be configured at a query-by-query level.

A subset of the proposed Cypher language extensions has

already been implemented on top of Apache Spark. In the tutorial,

wewill present our approach including an in-depth analysis of the

challenges we faced. This includes mapping the property graph

model to the Spark DataFrame abstraction and the translation

of Cypher query operators into relational transformations. The

tutorial will conclude with a demonstration based on a real-world

graph analytical use case.

1 INTRODUCTION
The past few years have seen amarked increase of property graph

databases [12] – such as Neo4j [20], Sparksee and JanusGraph

– in both the industrial and research arenas. Property graphs

have become the model of choice for next-generation graph ap-

plications
1
. Their use increasingly replaces older approaches to

graph data processing such as cross-linked document stores or

object-oriented database management systems.

Across both research and industry, property graphs have been

used in a wide variety of domains, spanning areas as diverse as

fraud detection, recommendations, geospatial data, master data

management, network and data centre management, authorisa-

tion and access control [23], the analysis of social networks [5],

bioinformatics [1, 14, 28] and pharmaceuticals [18], software

system analysis [9], and investigative journalism [3].

This trend of increased usage of property graphs is grounded

in: (i) their ability to operate onmultiple large and highly-connected

data sets as one graph that enables novel pattern matching and

1
https://db-engines.com/en/ranking/graph+dbms
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graph analytical queries; (ii) their natural ability to cleanly map

onto object-oriented or document-centric data models in pro-

gramming languages; (iii) their visual nature that helps commu-

nication between business, application domain, and technical

experts; and (iv) their historical development based on the prag-

matic needs of real world application developers.

This trend is evidenced by two major factors. The first is the

emergence of Cypher as the de-facto standard declarative query

language for property graphs, and the second is the growing

number of both industrial and academic software products for

property graphs.

Since 2015, as part of the openCypher project [22], Cypher has

been an open language, and is evolving under the auspices of the

openCypher Implementers Group (oCIG), with the aim of becom-

ing a fully-specified standard that can be independently imple-

mented. The recently released Cypher 9 reference [21] along with

accompanying formal grammar definitions (EBNF and ANTLR4)

and conformance test suite (TCK) – published under the Apache

2.0 license – already provide implementers with a solid basis for

adopting Cypher. At the time of writing, Cypher is supported by

several commercial systems including SAP HANA Graph [24],

Agens Graph, Redis Graph, and Memgraph, along with research

frameworks including – in varying degrees of completeness –

Gradoop [11], inGraph [15], Cytosm [25], Cypher for Apache

Spark [19] and Cypher over Gremlin.

Current developments that are under way include the ability

to pass multiple graphs and a table as input to a Cypher query.

Moreover, queries will also be able to project and save multiple

graphs, and this, coupled with the ability to chain queries to-

gether, will render Cypher as the first graph compositional query

language. Following on from this work, complex pattern match-

ing and configurable pattern matching semantics will further

increase the utility of Cypher in the very near future.

2 SCOPE OF THE TUTORIAL
2.1 Intended audience
This tutorial is aimed at a wide scope of audience, including

researchers, students, developers, and industrial practitioners

who are interested in the emerging and quickly-evolving area

of graph data, databases and languages. All attendees will gain

a comprehensive idea of what this field comprises, as well as

the future features and challenges that lie ahead for Cypher, the

most-used property graph query language.

It is our hope that owing to the many challenges that exist in

this area, researchers and students will be motivated to consider

this area as a future topic of research.

There are no preliminary requirements for this tutorial, as it

will be self-contained and commence with the property graph

data model and Cypher, thus assuming no prior knowledge of

these.

Tutorial

 

 

Series ISSN: 2367-2005 520 10.5441/002/edbt.2018.62

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2018.62


2.2 Goals of the tutorial
The main outcomes of the tutorial comprise:

• A comprehensive understanding of the property graph

data model, and how it compares against some of the other

graph data models.

• A good understanding of the Cypher property graph query

language and its main constructs and features.

• An in-depth treatment of how Cypher will become a fully

compositional language through the introduction of mul-

tiple graph support and query chaining.

• An overview of Cypher’s version of regular path queries
in the form of path pattern queries, which additionally

include node and relationship property tests to increase

the expressivity of Cypher to manage emerging industrial

use-cases and requirements.

• An understanding of node and relationship isomorphism

and homomorphism, the characteristics of each, the ben-

efits and drawbacks of each (from an industrial point of

view) and how these are envisioned to be incorporated

into Cypher.

• A good understanding of the Cypher implementation on

top of Apache Spark and how to map a schema-free graph

data model to a schema-based relational abstraction.

• An understanding of real-world use-cases which can be

better solved by using graphs and the proposed language

extensions.

3 TUTORIAL OUTLINE
We will begin the tutorial with a brief history of Cypher and

the property graph model, and provide an overview of the open-

Cypher project and how this is helping to drive forward the

design of the language, before proceeding onto the main topics.

3.1 The Cypher property graph query
language

Property graph data model. The property graph data model

will be described, along with how it originated historically from

application use cases. We will compare and contrast property

graphs with other graph data models. The tutorial will also con-

tain a discussion of ongoing work on potential extensions to the

property graph data model.

Cypher query language. Cypher as it stands today will be pre-

sented, focusing on its core elements: pattern matching, path

functionality and how updates to the data are performed. We will

also cover how Cypher queries are structured, as this will lead

into the topic of query composition further on in the tutorial. To

set the scene and lay the foundation for the later topics, we will

walk through an example query in detail, describing the syntax

and semantics at each stage of the query.

Challenge: language evolution. Evolving a language with active
users is not a trivial undertaking. Every language change needs

to be understood in terms of a plethora of interlocking concerns

such as usability, relevant use cases, consistency, ergonomics,

syntax, tractability, implementability and performance, as well as

aesthetics. Every design decision may have hidden consequences

in terms of constraining the design in the future. We will talk

about some of these concerns, how we design language changes,

and the formal openCypher process for evolving the language.

3.2 Multiple graphs and composition
Multiple graphs. Having set the scene, we will proceed with

describing current developments in Cypher. The first of these is

the notion of supporting multiple graphs. We will describe how

graphs can be referenced, created, updated, saved as a named

graph, and projected. We also define a series of set operations on

graphs. Throughout, we will use a running example and describe

the syntax and semantics at each stage.

Query composition. Having support for multiple graphs, and

being able to return one or more graphs from a query paves the

way for true graph query composition. Each query can be consid-

ered a function, taking as input a table andmultiple named graphs,

and returning as output a table and multiple named graphs. Thus,

a Cypher query can be thought of as a chain of functions, com-

posed of a series of constituent, elementary queries to form a

query chain or pipeline. The addition of subqueries – a well-

known construct from SQL – may be used to transform a query

chain into a tree. Named queries – allowing for queries to be

re-used in different contexts – will also be presented. We will

illustrate these concepts with examples, and show the power

and expressivity conferred through graph query composition; we

note that, to our knowledge, no other declarative, widely-used

query language allows for this.

Challenge: language revolution. Ideal language additions do not
interfere with existing features. Sometimes languages need to be

changed so substantially that it is impossible to avoid conflicting

with pre-existing semantics. In the history of Cypher, various

breaking changes have occurred. We will discuss our experiences

with breaking changes, language versioning, and planning and

executing large scale additions to the language such that the

concerns of all relevant stakeholders are incorporated.

3.3 Powerful pattern matching
Path Pattern Queries (PPQs). Regular path queries were first

proposed by Cruz, Mendelzon and Wood [4] in 1987, and now,

thirty years later, we have turned our attention to this topic and

how it may be included in Cypher in the form of Path Pattern
Queries, or PPQs.

PPQs, inspired by recent work by Libkin, Martens and Vr-

goč [13], extend RPQs with notions of node property tests, and

are an extremely powerful and expressive mechanism for graph

querying. PPQs have been designed to allow for the composition

of paths into more complex ones, incorporating both node and

relationship property tests, along with the consideration of path

costing. We see this as an integral part of Cypher, particularly

as the need for users to express ever more complex patterns be-

comes more pressing in the near future. Using a running example,

we will describe the syntax and semantics in detail.

Configurable pattern-matching semantics. The default pattern-
matching semantics in Cypher uses relationship (or edge) isomor-

phism (referred to informally as ‘Cyphermorphism’). Although

it has been stated that it is a useful default in most real-world

queries [26], there are some cases where a different semantics

would be more appropriate. To this end, Cypher will allow the

writer of a query to configure the type of pattern-matching se-

mantics the query is to use: either homomorphism, relationship

isomorphism, or node isomorphism. We will discuss how this is

envisaged to function, and the benefits and drawbacks conferred

by each approach.
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Challenge: Tractability. Providing more powerful and flexi-

ble pattern matching is grounded in ever-growing application

requirements. This needs to be balanced against what can be

implemented efficiently and what is theoretically tractable. How-

ever, in certain cases, these equally valid theoretical and practical

viewpoints may be at variance with each other. We will discuss

this and provide a perspective on the tensions that exist between

theoretical complexity analysis and industrial requirements of

graph query languages.

3.4 Cypher for Apache Spark
Graph query languages are currently most prominent in graph

database systems such as Neo4j [20]. However, it is our opinion

that many systems can benefit from having such a language as

part of their feature set. One of these systems is Apache Spark

[6], which is one of the most popular open source frameworks

in the context of distributed processing of large data volumes

within complex analytical workloads.

Apache Spark. Apache Spark is a distributed dataflow frame-

work supporting the declarative definition and execution of dis-

tributed dataflow programs sourced from batch data. The basic

abstractions of such programs are so-called Resilient Distributed

Datasets (RDDs) [29] and transformations between those. A

Spark RDD is an immutable, distributed collection of arbitrarily-

structured data; transformations are higher-order functions (e.g.

map and reduce) that describe the construction of new RDDs

either from existing ones or from data sources (e.g., HDFS or

RDBMS). To describe an analytical task, a Spark program may in-

clude multiple chained transformations. During execution, Spark

manages data distribution, parallel execution, load balancing and

failover across a cluster of machines.

In addition to the RDD abstraction, Apache Spark includes

libraries which offer a higher level of abstraction tailored to spe-

cific analytical tasks such as machine learning (SparkML), graph

processing (GraphX [8, 27]) and relational operations (SparkSQL).

In SparkSQL [2], the abstraction is a so-called DataFrame, which

handles structured data according to a fixed schema. Available

transformations are well known from relational algebra, com-

prising, for example, selection, projection, join and grouping.

Furthermore, SparkSQL includes Catalyst [2], a rule-based query

optimizer that transforms a relational query into an optimized

dataflow program by undertaking well-known techniques such

as predicate pushdown, column projection and code generation

[7].

To incorporate the benefits of Cypher from the graph database

domain into the world of distributed dataflow processing, we

began developing Cypher for Apache Spark (CAPS) [19]. CAPS

is an additional library built on top of SparkSQL and can be inte-

grated into a regular Spark analytical program. CAPS is primarily

focused on graph-powered data integration and graph analytical

query workloads within the Spark ecosystem. In addition, CAPS

is our testbed for Cypher language extensions as specified in

the previous sections; for example, query composition, graph

transformation and multiple graphs.

Challenge: Schema-flexible mapping. In order to benefit from

the query optimization capabilities of Catalyst, we decided to im-

plement CAPS on top of SparkSQL.
2
This however introduces the

problem of mapping the schema-flexible property graph model to

2
The CAPS architecture is backend-agnostic and can be ported to alternative back-

ends / systems.

a schema-fixed DataFrame representation. We solve this problem

by defining a graph schema, which includes information about

node labels, relationship types and associated properties poten-

tially having conflicting data types. For structured data sources,

such as CSV files or RDBMSs, the schema can be derived directly

from meta data supplied by the data source. However, unstruc-

tured or semi-structured data sources – exemplified by native

graph databases such as Neo4j or document databases such as

CosmosDB [17] – will require a full scan of the source data to

compute the schema, should it not exist in the first instance. Once

a schema is available, it is used to split node and relationship

data into multiple column entries, i.e., a row inside a structured

DataFrame (“flatten out nodes and relationships”) resulting in

potentially sparse tables. In the tutorial, we will discuss the pro-

cess of schema computation and node / relationship flattening in

detail including more information about our type system.

Challenge: Multi-phase planning. A second challenge we faced

when building CAPS was the translation of a Cypher graph query

to a sequence of relational operations on the Spark DataFrame

API. Our implementation approach is based on our experiences

from building the Neo4j query planner as well as several ex-

isting publications discussing the formal aspects of that topic

[10, 11, 16]. CAPS uses multiple compilation phases to produce

an executable Spark program, including: building a canonical

query representation from an abstract syntax tree; translating

the canonical form into graph-specific query operators (logical

planning); computing the schema for intermediate results (flat

planning); and translating logical operatos into Spark DataFrame

transformations (physical planning). A physical CAPS plan is

optimized by Catalyst and translated into an executable Spark

program. In the tutorial, we give an introduction into the CAPS

compilation phases as well as optimization techniques like reuse

of intermediate results, tree rewriting and Catalyst optimization.

3.5 Demonstration
To highlight the analytical benefits of the graph data model

as well as the Cypher query language and its proposed exten-

sions, we will end the tutorial with a live demonstration of

CAPS. The demonstration will illustrate a hypothetical analyt-

ical workflow including graph data integration from multiple

data sources, graph transformation and graph analytical queries.

We also demonstrate the integration of CAPS within the Spark

ecosystem by using Apache Zeppelin, a tool for browser-based

interactive data analytics.
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ABSTRACT
Users have come to expect reactivity from mobile and web ap-
plications, i.e. they assume that changes made by other users
become visible immediately. However, developers are challenged
with building reactive applications on top of traditional pull-
oriented databases, because they are ill-equipped to push new
information to the client. Systems for data stream management
and processing, on the other hand, are natively push-oriented
and thus facilitate reactive behavior, but they do not follow the
same collection-based semantics as traditional databases: Instead
of database collections, stream-oriented systems are based on a
notion of potentially unbounded sequences of data items.
In this tutorial, we survey and categorize the system space be-
tween pull-oriented databases and push-oriented stream man-
agement systems, using their respectively facilitated means of
data retrieval as a reference point. A particular emphasis lies on
the novel system class of real-time databases which combine the
push-based access paradigm of stream-oriented systems with the
collection-based query semantics of traditional databases. We
explore why real-time databases deserve distinction in a separate
system class and dissect their di�erent architectures to highlight
issues, derive open challenges, and discuss avenues for addressing
them.

1 INTRODUCTION
Reactive applications require the underlying data storage to pub-
lish new and updated information as soon as it is created; data
access is push-based. In contrast, traditional database manage-
ment systems [6] have been tailored towards pull-based data
access where information is only made available as a direct re-
sponse to a client request. While triggers and other push-oriented
mechanisms have been added to their initial design, they are out-
performed by several orders of magnitude when held against
natively push-based systems [9]. In consequence, the inadequacy
of traditional database technology for handling rapidly chang-
ing data has been widely accepted as one of the fundamental
challenges in database design [8].

To warrant low-latency updates in quickly evolving domains,
data stream management systems [5] break with the idea of

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the 21st
International Conference on Extending Database Technology (EDBT), March 26-29,
2018, ISBN 978-3-89318-078-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

maintaining a persistent data repository. Instead of random ac-
cess queries on static collections, they perform sequential, long-
running queries over data streams. Data stream management
systems generate new output whenever new data becomes avail-
able and are thus natively push-based. However, data is only
available for processing in one single pass, because data streams
are conceptually unbounded sequences of data items and there-
fore infeasible to retain inde�nitely. Consequently, queries over
streams are con�ned to data that arrives after query activation.

Database Management Data Stream Management
pull-based push-based

persistent collection ephemeral stream
ad hoc, random access continuous, sequential

Table 1: A side-by-side comparison of core characteristics
of database and data stream management systems.

Database and data stream management, respectively, follow
fundamentally di�erent semantics regarding the way that data is
processed and accessed as Table 1 summarizes. The concept of
persistent collections conforms to applications that require a
(consistent) view of their domain, for instance to keep track of
warehouse stock or do �nancial accounting. The data stream
model, on the other hand, comes natural for domains that en-
tertain a notion of event sequences or need to reason about the
relationship between events, for example to analyze stock prices
or identify malicious user behavior. However, the access para-
digm – pull-based or push-based – is tied to the data model: Data-
base management systems lack support for continuous queries
over collections, whereas data stream management systems only
provide limited options for persistent data handling.

Acknowledging the gap between traditional databases on the
one side and data stream management and stream processing
systems on the other, a new class of information systems has
emerged that combines collection-based semantics with a push-
based access model. These systems are often referred to as real-
time databases [10, 13], because they keep data at the client
in-sync with current database state “in realtime” [7], i.e. as soon
as possible after change. Like traditional databases, they store
consistent snapshots of domain knowledge. But like stream man-
agement systems, they allow clients to subscribe to long-running
queries that push incremental updates.
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Figure 1: Di�erent classes of data management systems and the access patterns they support.

2 SYSTEM LANDSCAPE OVERVIEW:
PULL VS. PUSH

We think systems for data management can be classi�ed by the
way they facilitate access to data as illustrated in Figure 1. At
the one extreme, there are traditional databaseswhich repre-
sent snapshots of domain knowledge as the basis of all queries.
At the other extreme, there are general-purpose stream pro-
cessing engines which are designed to generate output from
conceptually unbounded and arbitrarily structured ephemeral
data streams. Real-time databases and data stream management
systems both stand in the middle, but adhere to di�erent seman-
tics: Real-time databases work on evolving collections that are
distinguished from their static counterparts (i.e. from database
collections) through continuous integration of updates over time,
enabling continuous (real-time) queries over database collections.
Data stream management systems, as the name implies, pro-
vide APIs to query data streams, for example by �ltering speci�c
data and computing rolling aggregations and joins over to-be-
speci�ed time windows. In contrast to most general-purpose
stream processors, datastream management systems usually sup-
port pull-based access to some degree, e.g. in the form of common
ad hoc database queries over the set of currently retained records.

2.1 Static Queries vs. Continuous Queries
A pull-based (static) query assembles data from a bounded data
repository and completes by returning data once, whereas a push-
based (continuous) query processes a conceptually unbounded
stream of information to generate incremental output over time.
Given these fundamental di�erences, the design of any data man-
agement system re�ects a bias towards one or the other; for
example, while databases support push-based data access to a
certain degree (e.g. through triggers), they are clearly geared
towards e�ciency for pull-based data retrieval.

2.2 Collections vs. Streams
While a database collection represents the current state of the
application domain, a data stream rather encapsulates recent
change.

A stream-based representation of an application domain pro-
vides a sequential view on events as they occur, but does not
retain them inde�nitely: Data items are available for a certain
time window and are discarded eventually. This view on the data
promotes use cases that require noti�cations, but queries do not
re�ect actions that happened long ago, since the system only
operates on a su�x and not the entirety of event history. In order
to serve historical data, the ephemeral events have to be applied
to a persistent representation of application state.

A database collection re�ects all data ever written and thus
enables queries that take all events into account. Since collection-
based ad hoc queries only generate one single output, though,
traditional databases do not propagate informational updates to
the client.

2.3 Real-Time Queries Over Database
Collections

Given a database’s limitation to mainly pull-based access, re-
active user interfaces are hard to build on top of an ordinary
database. One possibility is to reevaluate a given collection-based
query from time to time which is ine�cient and introduces stale-
ness on the order of the refresh interval. Another approach is to
merge results from collection-based and stream-based queries;
thus, the application is e�ectively burdened with the task of
view maintenance which is complex and error-prone. Real-time
databases aim to close the gap between both paradigms by pro-
viding collection-based semantics for pull-based and push-based
queries alike.

3 IN-DEPTH SURVEY:
REAL-TIME DATABASES

Our real-time database survey will concentrate on the systems
we perceive as the most popular. Due to space limitations, we do
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Meteor RethinkDB Parse Firebase
poll-and-di� oplog tailing

scales with
3 7 7 7 ?write throughput

scales with
7 3 3 3 ?number of queries

composite queries
3 3 3 3 7(AND/OR)

sorted queries 3 3 3 7 �
(single attribute)

limit 3 3 3 7 3

o�set 3 3 7 7 3

aggregations 7 7 7 7 7

joins 7 7 7 7 7
event stream

3 3 3 3 3queries
self-maintaining

3 3 7 7 7queries
Table 2: A direct comparison of the di�erent real-time query implementations covered in the in-depth survey.

not discuss these systems in the extended tutorial abstract and
refer to our written survey for reference [11]. Table 2 sums up the
respective capabilities of each system detailed in our discussion:
Meteor, RethinkDB and Parse provide complex real-time queries,
but present scale-prohibitive bottlenecks in their respective ar-
chitectures. While the technology stack behind Firebase is not
disclosed, it is apparent that Firebase avoids scalability issues by
simply not o�ering complex queries to begin with.

3.1 Open Challenges
In concept, real-time databases extend traditional databases as
they follow the same semantics, but provide an additional mode
of access. In practice, though, there is no established scheme how
to build a practically useful real-time database system. As will be
shown in the tutorial, every push-based real-time query mecha-
nism is de�cient in at least one of the following characteristics:

(1) scalability: Serving real-time queries is a resource-
intensive process which requires continuous monitoring
of all write operations that might possibly a�ect query
results. To sustain more demanding workloads than a sin-
gle machine could handle, real-time databases typically
partition the set of queries across database nodes. As each
node is only responsible for a subset of all queries in this
scheme,most systems can scale with the number of concur-
rent queries. However, we are not aware of any real-time
database that supports partitioning the change stream
as well. Thus, responsibility for individual queries is not
shared among nodes and overall system throughput re-
mains bottlenecked by single-machine capacity: Queries
simply become intractable as soon as one node is not able
to keep up with processing the entire change stream.

(2) expressiveness: The majority of real-time query APIs are
limited in comparison to their ad hoc counterparts. Aggre-
gations are generally not available and sorting queries are

often unsupported or have severe restrictions; for example,
there are implementations that only allow ordering by a
single attribute or o�er a limit , but no o�set clause. The
lack of such basic functionality on the database side ne-
cessitates ine�cient workarounds in the application code,
even for moderately sophisticated data access patterns.

(3) legacy support: Today’s real-time databases have been
designed from scratch or on top of NoSQL datastores [11]
that do not follow standards regarding data model or query
language. They implement custom protocols for pull-based
and push-based data access alike and exhibit interfaces
that are incompatible among di�erent vendors. While the
complete lack of support for legacy interfaces (particularly
SQL) may be acceptable in development of a new applica-
tion, it complicates the adoption of push-based queries in
the context of existing technology stacks.

(4) abstract API: Many real-time query APIs expose speci-
�cities of the underlying implementation and thus o�er
poor data independence. As such, these interfaces re�ect
bottom-up design and force developers to reason about
problems that lie beyond the application domain. For ex-
ample, most real-time databases do not provide interfaces
that can be used without knowledge of system internals.
Instead, they mostly require an understanding of internal
mechanisms or the structure of change events.

During the talk, we will illustrate how the above-mentioned
limitations present themselves in practice. We also identify the
underlying issues in the respective system architectures and dis-
cuss possibilities to avoid them in future designs. In this context,
we will discuss related technology (e.g. distributed stream pro-
cessing engines [12]) and use them as a source of inspiration for
resolving the apparent challenges.
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4 DIFFERENTIATION FROM OTHER
VERSIONS OF THE TUTORIAL

The survey of stream processing engines and the overview over
real-time databases have already been presented at di�erent oc-
casions, e.g. at BTW 2017 [4]. Some of the use cases that will be
presented have been discussed in our VLDB 2017 industry paper
[2]. However, since two of the authors (Wolfram Wingerath and
Felix Gessert) are just now �nishing their Ph.D. theses on real-
time big data management, the tutorial intended for March 2018
will incorporate signi�cant updates and extensions. In particular,
the scienti�c portion of the talk will be amended by recent de-
velopments in the space of real-time databases. Further, we will
present our experiences in building and using a real-time data-
base in customer-facing applications at the Backend-as-a-Service
company Baqend. Thus, the tutorial will provide a unique combi-
nation of broad scienti�c research and real-world experiences.

5 SCOPE, LENGTH & INTENDED AUDIENCE
The tutorial in the form outlined here is intended for 90 minutes
and will concentrate on push-based systems, namely real-time
databases and stream processing engines. We can also extend
this tuotrial to 180 minutes by including our previous tutorials
on NoSQL database systems [1, 3, 4] and discussing them in
the light of real-time and stream processing requirements. This
tutorial is intended for anybody interested in novel database
technology; there are no prerequisites, even though a certain
technical understanding of databases will be helpful in following
the in-depth discussion.

6 PRESENTER BIOGRAPHIES
Wolfram Wingerath is a Ph.D. student under supervision of
Norbert Ritter teaching and researching at the University of Ham-
burg. He was co-organiser of the BTW 2015 conference and has
held workshop and conference talks on his published work on
several occasions. Wolfram is part of the databases and informa-
tion systems group and his research interests evolve around real-
time databases and related technology such as scalable stream
processing, NoSQL database systems, cloud computing, and Big
Data analytics. His Ph.D. thesis explores a scalable design for
push-based real-time queries on top of pull-based databases.

Felix Gessert is a Ph.D. student at the databases and informa-
tion systems group at the University of Hamburg. His main re-
search �elds are scalable database systems, transactions, and web
technologies for cloud data management. His thesis addresses
caching and transaction processing for low-latency mobile and
web applications. He is also founder and CEO of the startup
Baqend that implements these research results in a cloud-based
backend-as-a-service platform. Since their product is based on a
polyglot, NoSQL-centric storage model, he is very interested in
both the research and practical challenges of leveraging and im-
proving these systems. He is frequently giving talks on di�erent
NoSQL topics.

Erik Witt is a Full Stack developer and perforamance en-
gineer at Baqend where he builds and optimizes scalable web
applications for the cloud. As the highlight of his master’s degree
at the university and in cooperation with Baqend, he developed
a web-caching-based transaction concept for distributed cloud
databases. Erik has talked about his work at numerous confer-
ences and also regularly authors articles on the Baqend company
blog and related media in order to present the intricacies of web
performance to a broader audience.

Ste�en Friedrich is a Ph.D. student working under super-
vision of Norbert Ritter at the University of Hamburg. He has
taken part in several workshops and conferences, both as pre-
senter and as co-organiser (BTW 2015). Being a member of the
databases and information systems group, Ste�en is interested
in large-scale data management and data-intensive computing.
Furthermore, in his Master thesis, he also dealt with data qual-
ity issues, speci�cally with duplicate detection in probabilistic
data. His research project is primarily concerned with bench-
marking of non-functional characteristics (e.g. consistency and
availability) in distributed NoSQL database systems.

Norbert Ritter is a full professor of computer science at the
University of Hamburg, where he heads the databases and in-
formation systems group. He received his Ph.D. from the Uni-
versity of Kaiserslautern in 1997. His research interests include
distributed and federated database systems, transaction process-
ing, caching, cloud data management, information integration,
and autonomous database systems. He has been teaching NoSQL
topics in various courses for several years. Seeing the many open
challenges for NoSQL systems, he and Felix Gessert have been or-
ganizing the annual Scalable Cloud Data Management Workshop
(www.scdm.cloud) to promote research in this area.
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ABSTRACT
Many applications require similarity query processing. Most ex-
isting work took an algorithmic approach, developing indexing
structures, algorithms, and/or various optimizations. In this work,
we choose to take a different, systems-oriented approach. We de-
scribe the support for similarity queries in Apache AsterixDB, a
parallel, open-source Big Data management system for NoSQL
data. We describe the lifecycle of a similarity query in the system,
including the support provided at the query language level, in-
dexing, execution plans (with and without indexes), plan rewrites
to optimize query execution, and so on. Our approach leverages
the existing infrastructure of AsterixDB, including its operators,
parallel query engine, and rule-based query optimizer. We have
conducted an experimental study using several large, real data sets
on a parallel computing cluster to evaluate AsterixDB’s support
for similarity queries, and we share the efficacy and performance
results here.

1 INTRODUCTION
Similarity queries compute answers satisfying matching condi-
tions that are not exact but approximate. The problem of sup-
porting similarity queries has become increasingly important in
many applications, including search, record linkage [1], data clean-
ing [27], and social media analysis [4]. For instance, during a live
phone conversation with a client, a call center representative might
wish to immediately identify a product purchased by the customer
by typing in a serial number. The system should locate the product
even in the presence of typos in the search number. A social media
analyst might want to find user accounts that share common hob-
bies or social friends. A medical researcher may want to search
for papers whose title is similar to a particular article. In each of
these examples the query includes a matching condition with a
similarity function that is domain specific, such as edit distance
for a keyword or Jaccard for sets of hobbies.

There are two basic types of similarity queries. One is search, or
selection, which finds records similar to a given record. The other
is join, which computes pairs of records that are similar to each
other. There have been many studies on these two types of queries,
both with and without indexes. A plethora of data structures,
partitioning schemes, and algorithms have been developed to
support similarity queries efficiently on large data sets. When the
computation is beyond the limit of a single computer, there are
also parallel solutions that support queries across multiple nodes
in a cluster. (See Section 1.1 for an overview.) The techniques
developed in the last two decades have significantly improved the
performance of similarity queries and have enabled applications
to support such queries on millions or even billions of records.

Most existing work has taken an algorithmic approach, de-
veloping index structures and/or algorithmic optimizations. We

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the 21st
International Conference on Extending Database Technology (EDBT), March 26-29,
2018, ISBN 978-3-89318-078-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

have taken a different, systems-oriented approach – tackling the
problem of supporting similarity queries end-to-end in a full,
declarative parallel data management system setting. Here we
explain how such queries are supported in Apache AsterixDB, an
open-source parallel data management system for semi-structured
(NoSQL) data. By “end-to-end”, we refer to the whole lifecycle
of a query, including query language support for similarity condi-
tions, internal index structures, execution plans with or without an
index, plan rewriting to optimize execution, and so on.

Achieving our goal has involved several challenges. First, as
similarity in queries can be domain specific, we need to support
commonly used functions as well as letting users provide their
own customized functions. Second, due to the complex logic of
existing algorithms, we need to consider how to support them
using existing operators without “reinventing the wheel” (without
introducing new, ad hoc operators). Third, we need to consider
how to leverage an existing query optimizer framework to rewrite
similarity queries to achieve high performance. In this paper we
discuss these challenges and offer the following contributions:

(1) We show how to extend the existing query language of
AsterixDB to allow users to specify a similarity query, either by
using a system-provided function or specifying their own logic as
a user-defined function (Section 3).

(2) We show how to implement state-of-the-art techniques using
existing operators in AsterixDB, both for index-based and non-
index-based plans (Section 4) and for both search and join queries.
Our solution not only allows the query plans to benefit from the
built-in optimizations in those operators, but also to automatically
enjoy future improvements in these operators.

(3) We show how to rewrite similarity queries in an existing
rule-based optimization framework (Section 5). A plan for an ad
hoc similarity join can be very complex. As an example, a three-
stage join plan based on the technique in [34] can involve up to
77 operators (Section 5.2). To enable the optimizer to more easily
transform such complex plans, we developed a novel framework
called “AQL+” that takes a two-step approach to rewriting a plan.
A major advantage of the framework is that it allows AsterixDB to
support queries with more than one similarity join condition, mak-
ing it the first parallel data management system (to our knowledge)
to support similarity queries with multiple similarity joins.

(4) We present an empirical study using several large, real data
sets on a parallel cluster to evaluate the effects of these techniques.
The results show the efficacy of AsterixDB’s support for parallel
similarity queries on large data sets. (Section 6).

1.1 Related Work
There are various kinds of similarity queries on strings and sets.
For string similarity search, many algorithms use a gram-based
approach (e.g., [5, 20, 29]). VGRAM [19] extends the approach
by introducing variable-length grams. For string similarity join,
filtering techniques are widely used. Length filtering uses the

2Contact author and part of his work was done when visiting UC Irvine. †Work done
when affiliated with UC Irvine.
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length of a string to reduce the number of candidates. For ex-
ample, an algorithm called gram-count [15] utilizes the fact that
for two strings to be similar based on a threshold δ , their length
difference should be within δ . Prefix filtering [3, 7, 12, 22, 26,
28, 35, 37–39] utilizes the fact that two strings are similar only
if they share some commonality in their prefixes. Many algo-
rithms have been proposed based on this observation, such as All-
Pair [3], PPJoin [39], PPJoin+ [39], MPJoin [28], ED-Join [38],
AdaptJoin [35], QChunk [26], VChunk [37], and Pivotal pre-
fix [12]. Other related algorithms exist such as M-Tree [9] and
trie-Join [14]. There have been several evaluation studies about
string-similarity [18] and set-similarity joins [24]. There is a recent
survey about string similarity queries [25]. The authors of [18]
found that AdaptJoin [35] and PPJoin+ [39] were best for Jac-
card similarity. Meanwhile, the authors of [24] concluded that
AllPair [3] was still competitive. The authors of [25] discussed
prefix-filtering techniques. Many of these algorithms assume the
data to be searched or joined can fit in main memory.

For parallel similarity join, a number of studies have used the
MapReduce framework [11, 21, 31, 34, 36]. There is one survey
that discusses parallel similarity join [13]. Vernica et al. [34]
proposed a three-stage algorithm in such a setting. There are also
studies on integrating similarity join into database management
systems [10, 15, 16, 30, 32]. Some adopted similarity join as a
UDF or express a similarity join in a SQL expression; others
introduced a relational operator to support similarity joins.

Our focus is different, as it is about supporting similarity in a
general-purpose parallel database system context. We needed to
address various systems-oriented challenges when adopting exist-
ing techniques in this context. System-wise, a parallel similarity
query processing system, Dima [33], has been proposed recently.
A key difference is that Dima is an in-memory based system, un-
like AsterixDB. There are some search systems and DBMSs that
support similarity queries, including Elasticsearch, Oracle, and
Couchbase. Unlike AsterixDB, Elasticsearch is middleware and it
focuses on search, not join. Oracle supports edit distance via an
extension package if a specific type of index is created. Couchbase
supports edit distance searches on NoSQL data in its new full-text
search service, but only via a separate full-text API (not its N1QL
query language). In contrast, AsterixDB provides a general class
of similarity functions for strings that work for both select and
join operations, and a similarity predicate can be part of a general
query along with non-similarity predicates.

2 PRELIMINARIES
2.1 Similarity Functions
A similarity measure is used to represent the degree of similarity
between two objects. An object can be a string or a bag of ele-
ments. There are various types of similarity measures depending
on the objects that are being compared. In this paper, we focus
on two widely used classes of measures, namely string-similarity
functions and set-similarity functions.
String-Similarity Functions: One widely used string similarity
function is edit distance, also known as Levenshtein distance.
The edit distance between two strings r and s is the minimum
number of single-character operations (insertion, deletion, and
substitution) required to transform r to s. For instance, the edit
distance between “james” and “jamie” is 2, because the former
can be transformed to the latter by inserting “i” after “m” and
deleting “s”. There are other string-similarity functions such as
Hamming distance and Jaro-winkler distance.

Set-Similarity Functions: These are used to represent the simi-
larity between two sets. There are many such functions, such as
Jaccard, dice, and cosine. In this paper, we focus on Jaccard simi-
larity, which is one of the most common set-similarity measures.
For two sets r and s, their Jaccard similarity is Jaccard (r ,s ) =
|r∩s |
|r∪s | . For example, the Jaccard similarity between r = {“Good”,

“Product”, “Value”} and s = {“Nice”, “Product”} is 1
4 .

Such set-similarity functions can also be utilized to measure the
similarity between two strings by tokenizing them (i.e., into n-
grams or words) and measuring the set similarity of their token
multisets. Dice and cosine values can be calculated similarly.
Similarity Search: Similarity search finds all objects in a collec-
tion that are similar to a given object based on a given similarity
metric. Let sim be a similarity function, and δ be a similarity
threshold. An object r from a collection R is similar to a query
object q if sim(r ,q) ≥ δ .
Similarity Join: Joins find similar ⟨r ,s⟩ pairs of objects from two
collections R and S , where r ∈ R, s ∈ S , and sim(r ,s ) ≥ δ .

2.2 Answering Similarity Queries
For similarity queries, using a brute-force, scan-based algorithm
is computationally expensive, so there have been many studies in
the literature to support similarity queries more efficiently. One
widely used method is the gram-based approach, which utilizes
the n-grams of a string. An n-gram of a string r is a substring of
r with length n. For instance, the 2-grams of string “james” are
{“ja”, “am”, “me”, “es”}.

5  Better ever than I expectedmaria
 Great Product - Fantastic Gift4 jamie
 Different than my usual but goodmario3

mary  The best car charger I ever 
bought

2
 This movie touched my heart!1 james

review-summaryreview-id username

Figure 1: Example data of Amazon reviews (simplified).

String-similarity queries can be answered by utilizing an n-
gram inverted index. For each gram д of the strings in a collection
R, there is an inverted list lд of the ids of the strings that include
this gram д. Figure 2 shows the inverted lists for the 2-grams of
the “username” field of the sample Amazon reviews in Figure 1.

gram am ar es ia ie io ja ma me mi ri ry

inverted
list

1
4

2
3
5

1 5 4 3 1
4

2
3
5

1 4 3
5

2

Figure 2: Inverted lists for 2-grams of the “username” field.
We can answer a string-similarity query by computing the n-

grams of the query string and retrieving the inverted lists of these
grams. We then process the inverted lists to find all string ids that
occur at least T times, since a string r within edit distance k of
another string s must share at least T = |G (r ) | − k × n grams with
s [17]. This problem is called the T -occurrence problem. Solving
the T -occurrence problem yields a set of candidate string ids. The
false positives are removed in a final verification step by fetching
the strings of the candidate string ids and computing their real
similarities to the query. As an example, given a gram length n = 2,
an edit distance threshold k = 1, and a query string q = “marla”,
Figure 3 illustrates how to find the similar usernames from the
data in Figure 1. We first compute the 2-grams of q as {“ma”,
“ar”, “rl”, “la”} and retrieve the inverted lists of these 2-grams.
We consider the records that appear at least T = 4 − 2 × 1 = 2
times on these lists as candidates, which have review-ids 2, 3, and
5. Last, we compute the real similarity for these candidates, and

529



the review-id 5 is the final answer. Note that if the thresholdT ≤ 0,
then the entire data collection needs to be scanned to compute the
results, which is called a corner case. In the above example, if the
threshold is 3, then T = 4 − 2 × 3 = −2, causing a corner case.

2
3
5

2
3
5

- -
ma ar rl la

5 ✔
3 ✘
2 ✘

VerificationCandidate

Figure 3: Answering an edit-distance query for “q”=marla
and T=2.

2.3 Apache AsterixDB
Initiated in 2009, the AsterixDB project integrated ideas from
three distinct areas – semi-structured data, parallel databases, and
data-intensive computing – to create an open-source software plat-
form that scales on large, shared-nothing commodity computing
clusters. AsterixDB consists of several software layers. The top-
most layer provides a parallel DBMS with a full, flexible data
model (ADM) and query languages (AQL/SQL++) for describing,
querying, and analyzing data. The next layer, a query compiler
based on Algebricks [8], is used for parallel query processing.
This algebraic layer receives a translated query plan from the
upper layer and transforms it using rule-based optimization. It
also generates Hyracks jobs to be executed on the Hyracks [6]
layer. It provides storage facilities for datasets that are stored and
managed by AsterixDB as partitioned LSM-based B+-trees with
optional LSM-based secondary indexes [2]. AsterixDB translates
a computation into a directed-acyclic graph (DAG) of operators
and connectors, and sends it to Hyracks for execution.

Each record in an AsterixDB dataset is identified by a unique
primary key and records are hash-partitioned across the nodes on
their primary keys. Each partition is locally indexed by a primary
key in an LSM B+-tree, a.k.a. the primary index, and resides on its
node’s local storage. AsterixDB also supports secondary indexing,
including B+-tree, R-tree, and inverted indexes, partitioned in the
same way as the primary index.

3 USING SIMILARITY QUERIES
In this section, we discuss similarity measures supported in As-
terixDB and how users express similarity queries. We also show
how users can specify indexes to expedite query processing.

3.1 Supported Similarity Measures
AsterixDB supports two similarity measures, edit distance and Jac-
card, to solve string and set similarity queries. Both measures can
be processed with or without indexes. Let us focus on edit distance
first. It can be calculated on two strings. As an extension in Aster-
ixDB, edit distance can also be computed between two ordered
lists. For example, the edit distance between ["Better", "than",
"I", "expected"] and ["Better", "than", "expected"] is
1. This generalization is possible since a character in a text string
can be viewed as an element on an ordered list if we think of a
string as a collection of ordered characters.

A Jaccard value can be computed on two lists of elements.
If a field type is string, a user can use a tokenization function
such as “word-tokens()” to make a list of elements from
the string. For example, it is possible to calculate the Jaccard
similarity between two strings by tokenizing each string into a list
of words. The types of the elements on a list should be the same.

If a user wishes to use their own similarity measure, they can opt
to create a user-defined function (UDF). A UDF can be expressed

in AQL or SQL++ (two query languages supported by AsterixDB)
or implemented as an external Java class. If the desired UDF
can be expressed in AQL or SQL++, the user can create such a
function using the following syntax.

create function similarity-cosine(x, y) {
. . . . . .

}

3.2 Expressing Similarity Queries
AsterixDB provides two ways to express a similarity query in AQL
or SQL++, illustrated by the example AQL in Figure 4. These
queries find the record pairs from the Amazon review dataset that
have similar summaries. In Figure 4(a) before the actual query, the
similarity function and threshold are defined with a “set” state-
ment. The query then uses a similarity operator “∼=”, which is a
syntactic sugar defined for similarity functions. The “∼=” operator
computes the similarity between its two operands according to
the “simfunction” and “simthreshold,” and returns the
records that are similar. The same query can be written without
using the similarity operator by a more experienced user. In Fig-
ure 4(b), the query uses the “similarity-jaccard()” func-
tion, and this query is equivalent to that in Figure 4(a). The first
syntax can be easier to use since default settings for “simfunction”
and “simthreshold” exist so that a user does not need to pro-
vide the two “set” statements. In addition, the user does not
need to know the exact function name. Also, if the user wants
to change the similarity function, they only need to change the
“set” statements without changing the query itself. During query
parsing and compilation, it is easy for the optimizer to detect this
syntactic sugar and generate a desired optimized plan. On the
other hand, the second form gives the user more direct control.
There are a few variations of similarity functions in AsterixDB,
e.g., one that can do early termination during the evaluation, and
a user can freely choose any of them.
use dataverse TextStore;
set simfunction 'jaccard';
set simthreshold '0.5';
for $t1 in dataset AmazonReview

for $t2 in dataset AmazonReview

where word-tokens($t1.summary) ∼= word-tokens($t2.summary)
return { 'summary1': $t1, 'summary2': $t2 }

(a) ∼= Notation

use dataverse TextStore;
for $t1 in dataset AmazonReview

for $t2 in dataset AmazonReview

where similarity-jaccard(word-tokens($t1.summary),
word-tokens($t2.summary)) >= 0 .5

return { 'summary1': $t1, 'summary2': $t2 }

(b) Function Notation

Figure 4: AQL join on the “summary” field of the Amazon
reviews using Jaccard similarity.

3.3 Using Indexes
Without an index, AsterixDB scans the whole dataset to compute
the result for the given query. To expedite the execution, Aster-
ixDB supports two kinds of inverted indexes. The first type, called
“keyword index,” uses the elements of a given unordered list, and
is suitable for Jaccard similarity. The two queries in Figure 4 could
utilize a keyword index on the “summary” field. A keyword index
can be created using the following DDL statement, where “smix”
is the index name:
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create index smix on AmazonReview(summary) type keyword;

The second index type is “n-gram index,” and is suitable for
edit distance. An n-gram index uses the extracted n-grams of a
string as the keys, and maps those keys to their corresponding
primary ids. The following is an example DDL statement to create
a 2-gram index on the “reviewerName” field:

create index nix on AmazonReview(reviewerName) type ngram(2);

4 EXECUTING SIMILARITY QUERIES
In this section, we discuss how similarity queries are internally
executed in AsterixDB. First, we present the execution flow for
a similarity query in the presence of an index, then describe the
execution flow when no index is available.

4.1 Executing Similarity Selections
We first present the execution strategy for selection queries. We
use an example query to explain the execution flow for Figure 5,
which computes the edit distance between a field V of a dataset
and a constant C.

for $t1 in dataset bar

where edit-distance($t1.V, C) < 2

return {"id": $t1.id, "field":$t1.V}

Figure 5: A similarity-selection query.

4.1.1 Index-Based Search Execution. When running the
above query on a cluster with multiple nodes, the query coor-
dinator (a.k.a. cluster controller) sends a request containing the
constant search key C to each participating node, since Aster-
ixDB uses a shared-nothing architecture. Figure 6 illustrates how
a similarity-selection query is executed using a secondary inverted
index on a 3-node cluster. Each node contains a partitioned pri-
mary index and a local inverted index.

Node Controller A

Cluster 
Controller

Step 1

Step 2

Step 3 3
3

Inverted Index

Primary Index

1 1

S P Sel

S

P

Sel Verification

Node Controller B

2
S P Sel

Node Controller C

2
S P Sel

Figure 6: Parallel execution of a similarity-selection query.

If an index is available, AsterixDB runs an index-based selec-
tion plan at each node. It first gives the constant value C to the
secondary inverted index. The secondary-inverted-index search
generates

〈
SecondaryKey,PrimaryKey

〉
pairs that satisfy the T -

occurrence condition, which may include false positives. It then
looks up these primary keys in the primary index to fetch their
corresponding records. The primary keys are sorted prior to this
search to increase the chance of page cache hits in the buffer. After
the primary-index search, a SELECT operator is applied to remove
false positives and generate the final results. If the similarity con-
dition is selective enough, such an index-based search plan can be
much more efficient than a non-index-based plan that uses SCAN
and SELECT operators. Once the local results are generated at
each node, they are sent to the coordinator to be combined.

The compiler generates a non-index-based selection plan (the
left part of Figure 7). The optimizer then transforms the initial plan
to an index-based selection plan if there is an applicable index.
We will discuss this rewriting process further in Section 5.1.
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Rewrite
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Non-Index-Based Plan Index-Based Plan

C
Broadcast to 

all nodes

Figure 7: A similarity-selection query plan

4.1.2 Non-Index-Based Search Execution. Similar to index-
based execution, when there are multiple nodes, the coordinator
sends a request containing the search key C to all the nodes. At
each node, as there is no index on the field in the given similarity
condition, AsterixDB scans the primary index, fetches all records,
and verifies the similarity condition on the given field for each
record. This process was depicted on the left part of Figure 7.
Finally, the results will be returned to the coordinator.

4.2 Executing Similarity Joins
A join has two branches as its input. We call the first one the “outer
branch” and the second one the “inner branch.” For example, in
Figure 8, the AQL variable $t1 refers to the outer branch and $t2
refers to the inner branch.

for $t1 in dataset bar

for $t2 in dataset foo

where similarity-jaccard($t1.A, $t2.B) > 0 .5
return {"of1": $t1.f1, "of2": $t1.f2, "A": $t1.A,

"if1": $t2.f1, "if2": $t2.f2, "B": $t2.B}

Figure 8: A similarity-join query.

4.2.1 Index-Based Join Execution. Similar to the similarity-
selection case, where a predicate was broadcast to all nodes, the
records from the outer branch of each node are broadcast to all
nodes in the similarity-join case. Figure 9 depicts how a similarity-
join query is executed using a secondary inverted index on a
3-node cluster.
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Figure 9: Parallel execution of a similarity-join query.

The coordinator sends the query request to each participating
node. Each node of an outer-branch partition scans the outer-
branch data and broadcasts its records to all nodes with a secondary-
index partition. This broadcast replicates all records of the outer-
branch on each node where the secondary-index search will be
performed. Each node with an index-side partition uses the in-
coming outer-branch records as well as its local ones to search
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its local inverted index. Once each secondary-index partition has
processed all the records from the outer branch, the resulting pri-
mary keys from the search will be fed into the primary index, and
a primary-index search will be executed. Again, the primary keys
are sorted before the primary-index search to increase the chance
of page cache hits. As before, we need to remove false positives
from the index-based subplan using a SELECT operator on the
original similarity condition, which is taken from the join operator.
This plan is depicted on the right part in Figure 10. Finally, the
results are sent to the coordinator to be combined.
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Join 
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…

Rewrite
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Broadcast 
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Local
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Figure 10: A similarity-join query plan.

4.2.2 Non-Index-Based Join Execution. When there is
no index, a simple nested-loop join could be performed. The
outer branch would feed the predicate from each record to the
primary index of the inner branch. The complexity of this solution
is quadratic. To avoid a costly nested-loop join, we instead adopt
a three-stage algorithm [34] in AsterixDB.

Since this algorithm uses a prefix-filtering method, a global
token order needs to be established to generate a prefix for each
field value. This global token order can be any arbitrary order, and
we choose the increasing token-frequency order, which tends to
generate fewer candidate pairs [34]. The first stage computes a
global token order by counting the frequency of each token in the
tokenized data and sorting the tokens based on their frequencies.
In the second stage, the algorithm computes a short prefix subset
for each set based on the global token order produced in the first
stage. Then, the record id and only the join attribute of each record
are replicated and repartitioned by hashing its prefix tokens. After
the repartitioning step, candidate pairs are generated by grouping
the pairs by their ids, and the similarity is computed for each pair
to filter out the dissimilar ones. This stage produces only similar
record id pairs. Finally, the third stage rescans the inputs to fetch
the rest of the record fields for these id pairs.

To apply this algorithm in AsterixDB, rather than implementing
new operators and complex query plans, we chose to represent the
algorithm using existing AQL constructs such as “for”, “let”,
“group by”, and “order by” since this approach is more ex-
tendable in the future. In addition, if/as we improve existing op-
erators, we do not need to modify the given AQL to utilize the
improved operators. Figure 11 shows an AQL query capturing
the three stages for a self-similarity join on the “summary” field
of the Amazon Review dataset, using Jaccard similarity with a
threshold; each step is implemented using basic AQL constructs
and functions. We now discuss the details of these three stages.

Stage 1: Token Ordering is expressed in lines 11-18 of Fig-
ure 11. In this subquery we iterate over the records in the dataset.
For each record, we retrieve the tokens in the “summary” field and

1 / / -- - Stage 3 - --

2 for $ARevLeft in dataset('ARevs')

3 for $ARevRight in dataset('ARevs')

4 for $ridpair in
5 / / -- - Stage 2 - --

6 for $ARevLeft in dataset('ARevs')

7 l e t $lenLeft := len($ARevLeft.summary)
8 l e t $tokensLeft :=
9 for $tokenUnranked in $ARevLeft.summary

10 for $tokenRanked at $i in
11 / / -- - Stage 1 - --

12 for $t in dataset('ARevs')

13 l e t $id := $t.ARev_id
14 for $token in word-tokens($t.summary)
15 /*+ hash */
16 group by $tokenGrouped := $token with $id

17 order by count($id), $tokenGrouped
18 return $tokenGrouped

19 where $tokenUnranked = /*+ bcast */ $tokenRanked
20 order by $i

21 return $i

22 for $prefixTokenLeft in subset-collection($tokensLeft, 0,
23 prefix-len-jaccard($lenLeft, .5f) - $lenLeft + len($tokensLeft))

24
25 for $ARevRight in dataset('ARevs')

26 l e t $lenRight := len($ARevRight.summary)
27 l e t $tokensRight :=
28 for $tokenUnranked in $ARevRight.summary
29 for $tokenRanked at $i in
30 / / -- - Stage 1 - --

31 for $t in dataset('ARevs')

32 l e t $id := $t.ARev_id
33 for $token in word-tokens($t.summary)
34 /*+ hash */
35 group by $tokenGrouped := $token with $id

36 order by count($id), $tokenGrouped
37 return $tokenGrouped

38 where $tokenUnranked = /*+ bcast */ $tokenRanked
39 order by $i

40 return $i

41 for $prefixTokenRight in subset-collection(

42 $tokensRight, 0, prefix-len-jaccard($lenRight, .5f))
43
44 where $prefixTokenLeft = $prefixTokenRight

45 l e t $sim := similarity-jaccard($tokensLeft, $tokensRight, .5f)
46 where $sim >= .5f and $ARevLeft.ARev_id < $ARevRight.ARev_id
47 group by $idLeft := $ARevLeft.ARev_id,
48 $idRight := $ARevRight.ARev_id with $sim

49 return {'idLeft': $idLeft, 'idRight': $idRight, 'sim': $sim[0]}
50
51 where $ridpair.idLeft = $ARevLeft.ARev_id and
52 $ridpair.idRight = $ARevRight.ARev_id
53 order by $ARevLeft.ARev_id, $ARevRight.ARev_id
54 return {'left': $ARevLeft, 'right': $ARevRight, 'sim': $ridpair.sim}

Figure 11: Three-stage set-similarity algorithm expressed in
AQL for a self join on the Amazon Review (ARevs) dataset
using Jaccard similarity with a threshold of 0.5.

count the number of occurrences of each token using a group-by
clause. To expedite this calculation, we use a compiler hint in line
15, which suggests using hash-based aggregation instead of the
default sort-based aggregation for the group-by statement, since
the order of tokens at this particular step is not meaningful. Finally,
we order the tokens based on their count using an order-by clause.
The same subquery is repeated later, in lines 30-37, in the context
of the second dataset. During the optimization, the optimizer will
detect the common subquery and execute the subquery only once
using a replicate operator to send the results to both outer plans.
More details can be found in Section 5.4.2.

Stage 2: Record ID (RID)-Pair Generation is expressed in lines
5-50. We scan the dataset in line 6, then retrieve each token from
the “summary” field. We order the tokens by the rank computed
in the first stage (lines 12-23) by joining the set of tokens in one
summary with the set of ranked tokens. We use a hint in line
19 that advises the compiler to use a broadcast join operator to
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broadcast the ranked-tokens. Next, we order the join results by
rank, stored in the variable “$i.” We then extract the prefix tokens
in line 22, and use the “prefix-len-jaccard()” built-in
function to compute the length of the prefix for Jaccard similarity
with a threshold of 0.5. The built-in “subset-collection()”
function extracts the prefix subset of the tokens. The same process
of tokenizing, ordering the tokens, and extracting the prefix tokens
is done in lines 25-42 for the second stream of the dataset. We
then join the two streams on their prefix tokens in line 44, and
compute and verify the similarity of each joined pair. We use the
built-in “similarity-jaccard()” function to compute the
similarity. Since a pair of records can share more than one token
in their prefixes, duplicate pairs could be produced, and they are
eliminated by using a group-by clause in line 48.

Stage 3: Record Join is expressed in lines 1-4 and 51-54, which
consists of two joins. The first join adds the record information
for the first RID of each RID pair, while the second join adds the
record information for the second.

The plan resulting from this large AQL query is shown in Fig-
ure 12. In the figure, “Hash repartition” means that a tuple is
repartitioned to a corresponding node based on its hashed value.
With “Hash repartition merge,” a step of merging tuples based on
sort field values occurs after a “Hash repartition.” To transform
a logical plan generated from a user’s similarity join query to
the three-stage-similarity query plan utilizing the AQL in Fig-
ure 11, we develop a new framework called AQL+, which will be
discussed in Section 5.2.
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Figure 12: A logical plan of a three-stage-similarity join.

5 OPTIMIZING SIMILARITY QUERIES
In this section, we discuss how AsterixDB optimizes similarity
queries and describe the AQL+ framework.

5.1 Rewriting a Similarity Query
AsterixDB uses rule-based optimization [8]. A logical plan is
constructed from a given query, and each optimization rule is tried
on this plan. If a rule is applicable, then the plan is transformed. A
logical plan involving a dataset always starts with a primary-index
scan, followed by a SELECT operator if there is one or more
conditions. A non-index similarity query plan is constructed first,
and an index-based transformation or a three-stage-similarity join
can be introduced during the optimization.

5.1.1 Rewriting a Similarity-Selection Query. Figure 7
showed how a similarity-selection query is optimized to use an
index. The left-hand side shows the original scan-based query
plan, and the right-hand side shows the optimized plan. Based on
a selection operator with a similarity condition (using the “∼=”
notation), the optimizer tries to replace the primary-index scan
with a secondary-index-based search plan.

To rewrite a similarity-selection query, the optimizer first matches
an operator pattern consisting of a pipeline with a SELECT op-
erator and a PRIMARY-INDEX SCAN operator. Next, it ana-
lyzes the condition of the given SELECT operator to see if it
contains a similarity condition and if one of its arguments is
a constant. If so, it determines whether the non-constant argu-
ment originates from the PRIMARY-INDEX SCAN operator and
whether the corresponding dataset has a secondary index on a
field variable V . For each secondary index on V , it checks an
index-to-function-compatibility table (Figure 13) to determine its
applicability. For example, an n-gram index can be utilized for
the “edit-distance()” function. The final SELECT operator
filters out false positives.

Supported FunctionsIndex Type
edit-distance(), contains()n-gram

similarity-jaccard()keyword
Figure 13: Index-function compatibility table.

Corner cases: Recall that for queries using edit distance, the
lower bound on the number of common q-grams (or tokens) may
become zero or negative. For such a corner case, the optimizer
must revert to a scan-based plan even if an index is available. For
selection queries, it can foresee such cases at compile time when
applying the corresponding index-rewrite rule by analyzing the
constant argument in the similarity condition. When detecting a
corner case, it simply stops rewriting the plan. Note that no such
corner cases are possible for similarity queries based on Jaccard,
because if two sets have no elements in common, then they can
never reach a Jaccard similarity greater than 0. In contrast, two
strings could be within a certain (large) edit distance even if the
n-gram sets of the (short) strings have no common elements.

5.1.2 Rewriting a Similarity-Join Query. The basic rewrit-
ing of a similarity-join query using an index is shown in Figure 10.
The optimized plan on the right-hand side uses an index-nested-
loop join strategy. Similar to the rewrite for selection queries,
the optimizer replaces the primary-index scan of the inner branch
with a secondary-index search followed by a primary-index search.
Thus, it is required that the inner branch of the join is a primary-
index scan, while the outer branch could be an arbitrary operator
subtree (shown as “Subtree” in the figure). In the optimized plan,
the outer branch feeds into the secondary-index search operator,
i.e., every record from “Subtree” will be used as a search key to
the secondary index.

As in the similarity-selection case, the optimizer needs to re-
move false positives from the index-based subplan with a SELECT
operator on the original similarity condition, which is taken from
the join operator. Notice the “broadcast” connection between the
outer subtree and the secondary-index search, which signifies that
each partition executing the “Subtree” plan will broadcast its out-
put stream’s records to all the secondary-index partitions. The op-
timizer first matches the required operator pattern consisting of a
JOIN that has at least one input coming from a PRIMARY-INDEX
SCAN. Next, it analyzes the join condition to make sure the simi-
larity function has two non-constant arguments. If so, it continues
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by checking if the inner argument B of the similarity condition is
produced by the join input from the PRIMARY-INDEX SCAN,
and whether the corresponding dataset has applicable secondary
indexes. Finally, the optimizer consults the index compatibility
matrix to decide whether it can rewrite the query using an index.
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Figure 14: An optimized similarity-join query plan with the
corner case.

Corner cases: For string-similarity joins using edit distance,
we must modify the basic index-nested-loop join plan in Figure 10
to correctly handle corner cases. Unlike selection queries where
the secondary-index search key is a constant, the secondary-index
search keys for an index-nested-loop join are produced by the
outer branch (“Subtree”). Join corner cases must therefore be
dealt with at query runtime, as opposed to query compile time
for selection queries. Figure 14 shows the modified index-nested-
loop plan for correctly handling corner cases for edit distance.
The main difference lies in separating the records produced by
the outer subtree into two sets, one containing non-corner-case
records (T > 0), and one containing corner-case records (T ≤ 0).
We do this by using a replicate operator above the outer subtree,
followed by a selection operator on each of its two outputs to filter
out the corner-case and non-corner-case records, respectively. The
non-corner-case records are fed into the secondary-to-primary
index plan as before, while the corner records participate in a
non-index nested-loop join plan. The final query answer is the
union of the results of those two joins.

5.2 AQL+ Framework
As discussed in Section 4.2.2, we need to find a way to transform
a nested-loop-join plan generated from a user’s similarity-join
query to a three-stage join plan. An issue is that, unlike the index-
nested-loop-join optimization that adds or replaces a few operators
from a nested-loop join plan, as we can see in the AQL query in
Figure 11, a three-stage-similarity join query generates a large
number of operators. Figure 15 shows the number of operators in
a three-stage-similarity join.
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Figure 15: Number of operators for a nested-loop join and
three-stage-similarity join plan for the same query.

Due to this complexity, it would be difficult to build an opti-
mization rule that manually constructs these operators to transform
a simple nested-loop join plan to a three-stage join plan. Instead,
we develop a novel rewrite framework called “AQL+.” As shown
in Figure 16, we use this framework to convert a simple logical
plan generated from a user’s join query to a three-stage join plan.

Once the optimizer receives a logical plan in AQL+, it extracts
the information from the logical plan and integrates it into an
AQL+ query template. The generated AQL+ query can be parsed
and compiled again using the AQL+ parser and translator. The
result is a transformed logical plan, and the plan optimization
process can then continue.
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Figure 16: Execution of a similarity-join query using AQL+.
To combine the information from a logical plan and the three-

stage-similarity-join AQL query template, we need to find ways
to refer to the portions of the logical plan from the query tem-
plate. Therefore, the AQL+ framework consists of a few AQL
language extensions and the compilation of these language ex-
tensions during the optimization process. As a result, the AQL+
language is a superset of AQL. The AQL+ has three AQL ex-
tensions: Meta Variable (denoted as “$$”), Meta Clause (“##”),
and Explicit Join (“join”). We need these extensions to refer to
the logical variables and operators in the logical plan during the
optimization process, since the AQL+ transformation of a given
plan happens during the optimization process. This is because the
optimizer only sees the logical plan and physical plan, not the orig-
inal query. Since AQL itself does not have an explicit join clause,
AQL+ includes one in order to express a join on two branches.
For example, we use meta-variables to refer to the primary keys
of the input records or variables in the similarity predicate. The
usage of meta-clauses is to refer to inputs of the AQL query and to
logical constructs that cannot be directly specified in AQL, such
as joins. So any AQL+ template can be combined with any join
input branches, where the inputs can be from any kind of subplans
of other algebraic operators. In addition, to support various types
of data, similarity functions, and thresholds, the similarity-join
rule template uses placeholders, which are parts of the AQL+
query and are unknown until runtime. They are used for data
types, similarity-specific functions, or values. For example, the
“SIMILARITY” placeholder is used for built-in AQL functions,
and the “THRESHOLD” placeholder is for numerical values.

Table 1: AQL+ extensions.
Extension Symbol Functionality
Meta Variable $$ Refer to a variable in the plan
Meta Clause ## Refer to an operator in the plan
Join Clause join Express an explicit join

The AsterixDB optimizer integrates the information from the
given logical plan into the AQL+ query template and compiles the
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resulting AQL+ query. Specifically, for a three-stage-similarity
join, it needs to identify a similarity join operator that contains
a Jaccard similarity join and its threshold. It also needs to get
the information about the two branches of this join operator. Us-
ing the information from the join operator, the logical plan fed
into this AQL+ template can be transformed to the equivalent
three-stage-similarity plan. Rather than doing this transformation
by introducing a number of operators by hand, we rely on the
existing compilation path to generate a revised plan. This process
is depicted in Figure 16; the details of this optimization will be
discussed in the next subsection.

For the similarity join query in Figure 11, the optimizer will
generate an equivalent AQL+ template and use it to transform a
simple query during the rule-rewrite phase. In this way, the simple
query of Figure 4(a) can be transformed to the query in Figure 11
during the optimization process. Figure 17 shows a part of the
AQL+ template that generates a three-stage-similarity-join plan.
Here, we can see that actual dataset-scans are replaced with meta-
clauses and a meta-variable ($$LEFTPK_3) is used to refer to to
the primary key of an incoming record in the given logical plan.
Join-clauses are used to join two meta-clauses.

1 / /---Stage3---
2 join( (##RIGHT_1),
3 ( join( (##LEFT_1) ,
4 / / -- - Stage 2 - --

5 ( join( (##LEFT_2
6 . . . . . .
7 / /--- Stage1---

8 ##LEFT_3
9 l e t $id := $$LEFTPK_3

10 for $token in TOKENIZER($$RIGHT_3)

11 /*+ hash */
12 group by $tokenGrouped := $token with $id

13 . . . . . .

Figure 17: A part of three-stage-similarity-join algorithm ex-
pressed in AQL+.

In addition, the AQL+ framework can be applied to transform
multi-way-similarity join plans as well because of its power to han-
dle a logical plan iteratively. Similar to non-similarity-join cases,
multi-way-similarity joins can be transformed sequentially with-
out a limitation. For instance, Figure 18 shows a similarity-join
plan involving four datasets. The join between first two datasets, R
and S , has already been transformed into a three-stage-similarity
join plan. This branch will act as the outer branch when the opti-
mizer processes the next join operator on the third dataset T .

Scan 3 : T

Scan 4 : U(R ~= S) ~= T 
(Similarity Join 2)

R ~= S
(Similarity Join 1)

((R ~= S) ~= T) ~= U 
(Similarity Join 3)

Figure 18: Rewriting a multi-way-similarity-join plan on four
datasets.

It should be noted that AQL+ is a general extension framework,
not only for similarity queries, and it can be used to support a
transformation using AQL during the compilation process.

5.3 Optimization Rule For Similarity Queries
As discussed before, optimization in AsterixDB is rule-based [8].
Once the Algebricks layer receives a compiled plan from an AQL

query, it first optimizes the given plan logically. Then Algebricks
sets up physical operators for each logical operator. After that,
the physical optimization phase begins. When it is finished, a
Hyracks job is created and executed. During the logical and physi-
cal optimization, there are a number of rule sets that are applied
sequentially. A rule can be assigned to multiple rule sets. Based on
the configuration of a rule set, each rule can be applied repeatedly
until no rule in the set can transform the plan.

To apply the similarity-query optimization framework to this
optimization path, we create a new rule set for the AQL+ frame-
work and similarity queries. The rule set includes a similarity
join rule (SJR) along with a handful of other rules that need to
be applied after SJR is applied. As described earlier, the main
functionality of AQL+ is a transformation using a complex AQL
template to re-generate a logical plan while maintaining the cur-
rent surrounding plan as part of the new plan. SJR first analyzes the
conditions of each join operator. If its condition includes a similar-
ity predicate, it applies the AQL+ template to the plan to generate
an AQL+ query. Then it compiles the query into a new logical
Algebricks plan. Some parts of the plan were already optimized if
they belonged to the original incoming plan. However, most part
of the plan is not optimized yet, since the three-phase plan was
just compiled and has not gone through the optimization process
before the SJR rule set. Therefore, the newly generated plan needs
to go through some of the earlier optimization rules again. This
re-application process is not necessary for non-similarity queries,
since the plan generated from non-similarity queries is not trans-
formed in the SJR rule set. Therefore, we need to ensure that the
similarity-join rule set is only applied to similarity-join queries.
The benefit of this approach is that the optimization for similarity
queries can be processed without interfering with non-similarity
queries. This approach also gives a chance to the newly generated
similarity-query plan to reach the same level of transformation
once the similarity rule set has finished its work.

5.4 Improvements
We discuss two improvements to similarity query processing,
which can be applied to non-similarity query processing as well.

5.4.1 Surrogate Index-Nested-Loop-Join. A drawback of
an index-nested-loop join using a local secondary index is the need
to broadcast the outer side data to all secondary-index partitions
as explained in Section 4. For example, during an execution of
the AQL query in Figure 8, the outer side needs to broadcast join
key field “A,” as well as “f 1” and “f 2” field. If there are more
fields in the return clause, the broadcasting cost will be increased
as well. This broadcast step is a direct consequence of the co-
partitioning of each secondary index with its primary index. Also
a secondary-inverted-index search can generate multiple pairs of
results for the same primary key, as there can be multiple entries of
the secondary keys for the same primary key; thus, we also want
to reduce the sorting cost between the secondary-index search and
primary index search. We can reduce the cost by only sending
the secondary-key fields together with a compact surrogate for
each outer-side record, so that we can later use the surrogates to
obtain the surviving original records. This idea is reminiscent of
semi-join optimization in distributed databases [40].

Figure 19 shows a surrogate-based index-nested-loop-similarity
join plan. Notice the PROJECT operator that follows the REPLI-
CATE operator after the outer subtree, which eliminates all non-
essential fields from the outer side. The optimizer filters out the
“f 1” and “f 2” fields since the search key is “A.” In addition, since
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Figure 19: Surrogate index-nested-loop-join plan.

the same subtree is used twice in the plan, a REPLICATE opera-
tor is introduced to reduce the subtree calculation time. We will
discuss this optimization in-depth in the next subsection. After the
secondary-to-primary index search, we must use the surrogates
from the outer side to obtain their complete records. As shown
in the figure, we resolve the surrogates via a top-level join of
the original outer subtree with the indexed nested-loop subtree
(after removing false positive matches). Since the top-level join
is an equi-join on the surrogates SL and SR , it can be executed
efficiently in parallel, e.g., using a hash join.

5.4.2 Materializing/Reusing Shared Subplans. As shown
in a simplified version of a three-stage-similarity join in Figure 20,
in case of the three-stage-similarity self join, the dataset R may
need to be scanned three to four times. For this case, we could sim-
ply execute the original data-scan operation four times. However,
if the two branches of this join result from a complex computation
from a subquery, it would be expensive to compute the result
of the subquery many times. To minimize the cost, AsterixDB
materializes the common subplan and reuses it several times.

Stage 1

Stage 2

Stage 3

Subtree 1

Subtree 1

Subtree 1 Subtree 1

Materialize/Reuse

Stage 1

Stage 2

Stage 3

Replicate

Subtree 1

Materialize
Subtree 1

Identical 
subplan

Figure 20: Materializing and reusing a subtree of a three-
stage-similarity self join.

6 EXPERIMENTS
We have conducted an experimental evaluation of our approach in
AsterixDB using large, real data sets. We used an 8-node cluster to
host an AsterixDB (0.9.2) instance, where each node ran Ubuntu
with a Quadcore AMD Opteron CPU 2212 HE (2.0GHz), 8GB
RAM, 1 GB Ethernet NIC, and two 7,200 RPM SATA hard drives.
Each dataset was horizontally partitioned into 16 partitions (2

per node) based on primary keys to provide full I/O parallelism.
Table 2 shows the AsterixDB configuration parameters.

Table 2: AsterixDB parameters for the experiments.
Parameter Value
Global memory budget per node 6GB
Budget for in-memory components per dataset 1.5GB
Data page size 128KB
Disk buffer cache size 2GB
Sort buffer size 128MB
Join buffer size 128MB
Group-by buffer size 128MB

6.1 Datasets
Different similarity functions were used for different types of data.
Edit distance is more suitable for short string fields, while Jaccard
is more suitable for long fields with many elements. To evalu-
ate AsterixDB for different similarity functions, we used three
datasets with different characteristics, as shown in Table 3. The
Amazon Review dataset, discussed in earlier sections, included
Amazon product reviews [23]. The Reddit Submission dataset in-
cluded Reddit postings for about eight years. The Twitter dataset
had 1% of US tweets for three months obtained via Twitter’s
public API. When imported into AsterixDB, each data set had an
additional auto-generated primary key field, as AsterixDB requires
that each dataset must have a primary key. Other than this field,
we did not define more fields in the schema. This gave us a lot
of flexibility to import any datasets into AsterixDB. The dataset
size in AsterixDB was greater than the raw data size, since each
record included the information about each field. For example, for
a string field, its type needs to be included in addition to its value.

Table 3: Dataset properties.

Dataset AmazonReview Reddit Twitter

Content Amazon product
reviews Reddit postings Tweets

Number of
Records 83.68M 196M 155M

Data Period 1996 - 2014 01/2006 -
08/2015

06/2016 -
08/2016

Raw Data For-
mat JSON JSON JSON

Raw Data Size 55 GB 252 GB 465 GB
Dataset Size 60.6 GB 320 GB 582 GB

Fields used summary,
reviewerName title, author text, user.name

Table 4 shows the characteristics of the fields of the datasets.
The minimum character length and minimum word count of the
fields were 0. The first three fields were used for edit distance,
while the last three fields were used for Jaccard.

Table 4: The characteristics of the fields.

Field
Avg
char
count

Max
char
count

Avg
word
count

Max
word
count

AmazonReview.
reviewerName 10.3 49 1.7 14

Reddit.author 24.3 275 4.1 32
Twitter.user.name 10.6 20 1.7 10
AmazonReview.
summary 22.8 361 4.0 44

Reddit.title 1,056.2 400K 1,173 20K
Twitter.text 62.5 140 9.7 70

6.2 Index Size
We built a keyword index for Jaccard similarity queries and a
2-gram index for edit distance queries. To measure the execution
time of basic exact match queries on the same fields as a baseline,
we also built a B+ tree index on the search fields. Table 5 shows
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the index sizes for the Amazon Review dataset and the time it took
to create each index. An n-gram index took much more space than
a B+ tree or keyword index as it had more secondary keys per
record. For instance, a 2-gram index on the “reviewerName” field
took 15.6GB of disk space, which was about 25% of the original
dataset size. The size of a keyword index was also greater than a
B+ tree index on the same field since there are many secondary
keys per record. For a given type of index, the construction time
was roughly proportional to the size of an index. In each case, the
dataset itself was also stored in a primary B+ tree index.

Table 5: Index size and build time for Amazon reviews.
Field Index Type Size (GB) Build Time (s)

Dataset itself B+ tree 60.6 1,563
reviewerName B+ tree 2.7 223
reviewerName 2-gram 15.6 1,441

summary B+ tree 3.5 275
summary keyword 5.4 573

6.3 Selection Queries
To measure the performance of similarity-selection queries, we
first created a search value set that contained 10,000 random
unique values extracted from the search field. For Jaccard queries,
we ensured that the minimum number of words in each value in
the set was 3. For edit distance queries, the minimum length of
characters in each value was 3. For each similarity threshold, we
randomly chose a search value from the set for each query, sent
100 such queries to the cluster, and measured the average execution
time. The performance baseline for comparison purposes was an
equality-condition query that used the same value for the given
field. The query template in Figure 21 below was used to measure
the average execution time. “Simfunction” and “simthreshold” in
the queries were replaced with a specific similarity function and a
threshold. “V” was the given field and “C” was the random value
from the above set.
count ( for $o in dataset X

where @simfunction($o.V, C) >= @simthreshold

return {"oid":$o.id, "v":$o.V} );

Figure 21: Similarity-selection query template.

6.3.1 Jaccard Similarity. For each of the three datasets we
ran similarity queries using Jaccard similarity on suitable fields
using different thresholds: 0.2, 0.5, and 0.8. Figure 22(a) shows
the results. We see that the average execution time for similarity
selection queries decreased as the threshold increased in case of
index-based plans. For example, it took the index-based method
67.6 seconds to conduct a Jaccard query with a threshold of 0.2,
while it only took 25.5 seconds to execute a query with a threshold
of 0.5. If there was no applicable index, both similarity and exact-
match queries showed a high execution time as each record had to
be read from the primary index and that scan time was a dominant
factor in the overall execution time. We can also see the overhead
of the similarity query versus the exact-match query for all the
thresholds since it takes more time to calculate a Jaccard value
than to get the result of an exact match. This overhead decreased
as the threshold increased; this is because we applied certain
optimizations such as early termination and pruning based on
string lengths, which significantly reduced the cost of computing
the similarity.

When the threshold was low, the times were similar for both
index-based and non-index-based queries. This is because the
candidate set size using T -occurrence for index-based queries
was quite large when the threshold was low. This can be seen in
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Figure 22: Execution time of selection queries on Amazon re-
views.

Table 6. As the number of candidates increased, the search time
increased due to the need for a primary-index lookup for each
candidate.

Table 6: Candidate size and the final result size for the
indexed-select query for Amazon reviews in Figure 22(a).

Jaccard
Threshold

Actual Result
Record Count (B)

Candidate Set
Record Count (C)

Ratio
(B/C)

0.2 559,167 8,298,473 6.7%
0.5 12,260 660,016 1.9%
0.8 36 12,420 0.3%

6.3.2 Edit Distance. We measured the average execution
time of an edit distance selection query using different thresholds,
namely 1, 2, and 3. Figure 22(b) shows the results. As the threshold
increased, the execution time increased. The reason is similar
to the case of Jaccard queries: the candidate set size using T -
occurrence increased as the threshold increased. It took the index-
based method 2 seconds to run a selection query with a threshold
of 2; it took 8.9 seconds to run a query with a threshold of 3.
We can also see that the execution time of non-index-based edit
distance queries increased as the threshold increased for the same
reason as described above.

6.4 Join Queries
To measure the performance of similarity join queries, we ran self-
join queries on the three datasets. Specifically, the query template
in Figure 23 was used to measure the average execution time as in
the similarity-selection query case. Here, V is the field on which
we applied a similarity function and id is the primary key field.

count ( for $o in dataset X

for $i in dataset X

where @simfunction($o.V, $i.V) >= @simthreshold

and $o.f1 = C and $o.id < $i.id
return {"oid":$o.id} );

Figure 23: Similarity-join query template.

6.4.1 Varying Threshold. We first extracted certain number
of records from the outer branch of the join to limit its input. For
each query, we chose 10 random records from the outer branch.
In the query template in Figure 23, a field named f 1 was used to
specify such a limit. For Jaccard join queries, we used different
thresholds, namely 0.2, 0.5, and 0.8. For edit distance queries, we
used thresholds of 1, 2, and 3. When there was no applicable index,
AsterixDB chose to employ the three-stage-similarity-join plan for
Jaccard queries. The results are shown in Figures 24(a) and 24(b).
The trends were similar to those of selection queries except for the
exact-match join, which significantly outperformed both Jaccard
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and edit distance joins since it used a hash join, where the join
keys were broadcast to multiple nodes.

Regarding the compilation overhead of AQL+, we observed
that the average overhead of generating a new logical three-stage-
similarity-join plan using AQL+ for the queries in Figure 24(a)
was around 50 ms, and it took around 500 ms to optimize that
plan. The overall compilation time of the three-stage-similarity-
join query was around 900 ms.

 0
 100
 200
 300
 400
 500
 600
 700
 800

Exact match 0.2 0.5 0.8Av
er

ag
e 

ex
ec

ut
io

n 
tim

e 
(s

ec
)

Jaccard threshold

Without-Index With-Index

(a) Jaccard

 0

 50

 100

 150

 200

 250

Exact match 1 2 3Av
er

ag
e 

ex
ec

ut
io

n 
tim

e 
(s

ec
)

Edit distance threshold

Without-Index With-Index

(b) Edit distance

Figure 24: Execution time of join queries on Amazon reviews.

6.4.2 Varying Record Number. For a Jaccard join query,
its execution time was smallest when the threshold was 0.8. In
this experiment, we varied the number of records from the output
branch and fixed the threshold at 0.8. The times for the non-index-
nested-loop self-join, index-nested-loop self-join, and three-stage-
similarity self-join on the Amazon Review dataset are shown in
Figure 25(a). We increased the number of output records from the
outer branch and measured the resulting execution time of each
join. First, we see that the execution time of non-index-nested-
loop self-join was already highest for 200 records and increased
drastically compared to other two types of joins. Once the number
of output records from the outer branch reached around 400, the
three-stage-similarity join began to outperform the index-nested-
loop join. This is because the time for the index-nested-loop join
is proportional to the number of records fed to the secondary-
index search, as it needs to deal with each record at a time. In
contrast, for the three-stage-similarity join, most of the time is
spent on global-token-order generation in the first stage. Once this
is generated and broadcast to all the nodes, hash joins in stage 2
and 3 can deal with the incoming records efficiently, since each
join key is sent to only one node. This benefit is visible in the
figure. For instance, the time for the three-stage-similarity join for
800 records was 619 seconds, while it was 674 seconds for 1,000
records. This result shows only 55 seconds of increase, while the
execution-time difference for the index-nested-loop joins going
from 800 to 1,000 records was 384 seconds.
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Figure 25: Execution time of join queries.

6.4.3 Multi-Way Join Queries. So far, we have used only
one similarity condition per similarity query. Next, we used two
similarity conditions in a query and varied the order of the two
conditions. The query template in Figure 26 was used to measure

the average execution time. The dataset Y and the field f 1 were
used to limit the number of records from the outer branch.

count ( for $p in dataset Y

for $o in dataset X

for $i in dataset X

where $p.f1 = $o.f1 and $p.id = C

and @simfunction1($o.V1, $i.V1) >= @simthreshold1

and @simfunction2($o.V2, $i.V2) <= @simthreshold2

and $o.id < $i.id
return {"oid":$o.id, "iid":$i.id} );

Figure 26: Multi-way-join query template.

Each query had an equi-join and a similarity join with two con-
ditions, including a Jaccard condition with a threshold of 0.8 and
an edit distance condition with a threshold of 1. For the equi-join,
we used an index-nested-loop join to fetch output records quickly.
Also, this join was used to limit the number of output records
from the outer branch fed into the similarity join. Then, Jaccard
similarity and edit distance conditions were applied. If we applied
the Jaccard condition first, the Jaccard join will be followed by the
edit distance condition in a SELECT operator. For both similarity
conditions, we used an index-based method for the first condition
and a non-index-based method for the second. Figure 25(b) shows
that the performance was the best when the index-based-Jaccard
join was conducted first, as there were no corner cases for Jaccard
similarity. This order generated fewer candidates than applying
the index-based edit distance predicate first. In contrast, for the
edit distance case, it needed to augment the corner-case path in
the logical plan, thus generated more candidates. In addition, it
should be noted that other queries showed similar patterns for all
the three datasets as well. That is, the average execution time of a
similarity query was proportional to the size of datasets when the
result cardinality was similar.

6.5 Scalability Tests
6.5.1 Scale-Out. For the scale-out experiment, we used four

clusters with different sizes, namely 1, 2, 4, and 8 nodes. When
we doubled the number of nodes in a cluster, we also doubled
the data size to store the same amount of data per node. Thus,
the 1-node cluster had 12.5% of our original data set size, the
2-node cluster had 25%, and the 4-node cluster had 50% of the
data. The 8-node cluster contained the original dataset, where the
data size was 100%. In other words, each node had 12.5% of the
original dataset. Ideally, the response-time graph would show a
flat line per query. As the number of nodes increased, the queries
were handled as expected, as shown in Figure 27(a). We can see
some variance in the case of the Jaccard-similarity join without
an index; in the three-stage-similarity join, the global token order
generated in stage 1 of the join needed to be broadcast to all the
nodes. Therefore, as the number of nodes increased, the commu-
nication cost increased as well. This gap was the greatest between
1 node and 2 nodes, since that was where we first incurred the
communication cost of global-token-order propagation. However,
the execution time increase was not high between 2 nodes and 4
nodes. Between 4 nodes and 8 nodes, we can see the trend as well.
Once the communication cost was accounted for, the execution
time of three-stage-similarity joins was quite scalable.

6.5.2 Speed-Up. For the speed-up experiment, we also used
four cluster sizes (1, 2, 4, and 8 nodes) with each cluster size
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Figure 27: Scale-out and speed-up queries on Amazon reviews.

being given the entire (100%) data set. Figure 27(b) shows that the
speed-up was proportional to the number of nodes. The speed-up
for the index-based-Jaccard-selection query with a threshold 0.8
was less than that of the other Jaccard queries. This was because
its execution time was already less than a few seconds on the
1-node cluster, and there was a basic overhead for each cluster
such as communication cost. In particular, the execution time of
that query on the 1-node cluster was 6.5 seconds, and its execution
time on the 8-node cluster was 1.5 seconds. Figure 27(c) shows
the execution time of the same queries on each cluster.

7 CONCLUSIONS
In this paper, we presented the support for similarity queries in
Apache AsterixDB, a parallel data management system. We de-
scribed the entire life cycle of a similarity query in the system,
including the query language, indexing, execution plans with or
without index, and plan rewriting to optimize the execution. Our
solution leverages the existing infrastructure of AsterixDB, in-
cluding its operators, query engine, and rule-based optimizer. We
presented an experimental study based on several large, real data
sets on a parallel computing cluster to evaluate the proposed tech-
niques, and showed their efficacy and performance to support
similarity queries on large data sets using parallel computing.
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ABSTRACT
To derive real-time actionable insights from the data, it is impor-
tant to bridge the gap between managing the data that is being
updated at a high velocity (i.e., OLTP) and analyzing a large
volume of data (i.e., OLAP). However, there has been a divide
where specialized solutions were often deployed to support ei-
ther OLTP or OLAP workloads but not both; thus, limiting the
analysis to stale and possibly irrelevant data. In this paper, we
present Lineage-based Data Store (L-Store) that combines the real-
time processing of transactional and analytical workloads within
a single unified engine by introducing a novel update-friendly
lineage-based storage architecture. By exploiting the lineage, we
develop a contention-free and lazy staging of columnar data from
a write-optimized form (suitable for OLTP) into a read-optimized
form (suitable for OLAP) in a transactionally consistent approach
that supports querying and retaining the current and historic data.

1 INTRODUCTION
We are witnessing an architectural shift and divide in database
community. The first school of thought emerged from an academic
conjecture that “one size does not fit all” [37] (i.e., advocating
specialized solutions), which has lead to manifolds of innovations
over the last decade in creating specialized and subspecialized
database engines geared toward various niche workloads and ap-
plication scenarios [5, 9, 12, 22, 28, 29, 37, 38]. This school has
motivated major commercial database vendors such as Microsoft
to focus on building novel specialized engines offered as loosely
integrated engines, namely, Hekaton in-memory engine [9] and
Apollo column store engine [19], within a single umbrella of data-
base portfolio. Notably, recent efforts are focused on a tighter
real-time integration of Hekaton and Apollo engines [17]. It has
inspired Oracle to push the boundary of the basic premise that
“one size does not fit all” as far as data representation is concerned
and has led Oracle to develop a dual-format technique [15] that
maintains two tightly integrated representation of data (i.e., two
copies of the data) in a transactionally consistent manner.

However, the second school of thought, supported by both aca-
demia (e.g., [2, 6, 7, 13, 16, 24]) and industry (e.g., SAP [10],
IBM DB2 BLU [29], and IBM Wildfire [4]) have revisited the
aforementioned fundamental premise and advocates a generalized
solution. Proponents of this idea, rightly in our view, make the
following arguments. First, there is a tremendous cost in building
and maintaining multiple engines from both the perspective of
database vendors and users of the systems (e.g., application devel-
opment and deployment costs). Second, there is a compelling case
to support real-time decision making on the latest version of the
data [27] (likewise supported by [15, 17]), which may not be fea-
sible across loosely integrated engines that are connected through

*Work by S. Bhattacherjee was performed as part of a summer internship at IBM T.J.
Watson Research Center under M. Sadoghi’s mentorship.
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the extract-transform load (ETL) process. Closing this gap may be
possible, but its elimination may not be feasible without solving
the original problem of unifying OLTP and OLAP capabilities or
without being forced to rely on ad-hoc approaches to bridge the
gap in hindsight. We argue that the separation of OLTP and OLAP
capabilities defers solving the actual challenge of real-time analyt-
ics. Third, combining real-time OLTP and OLAP functionalities
remains as an important basic research question, which demands
deeper investigation even if it is purely from the theoretical stand-
point.

In this dilemma, we support the latter school of thought (i.e.,
advocating a generalized solution) with the goal of undertaking
an important step to study the entire landscape of single engine
architectures and to support both transactional and analytical work-
loads holistically (i.e., “one size fits all”). In this paper, we present
Lineage-based Data Store (L-Store) with a novel update-friendly
lineage-based storage architecture to address the conflicts between
row- and column-major representation. This is achieved by devel-
oping a contention-free and lazy staging of columnar data from
write optimized into read optimized form in a transactionally con-
sistent manner without the need to replicate data, to maintain
multiple representation of data, or to develop multiple loosely
integrated engines that sacrifices real-time capabilities.

To further disambiguate our notion of “one size fits all”, in
this paper, we restrict our focus to real-time relational OLTP and
OLAP capabilities. We define a set of architectural characteris-
tics for distinguishing the differences between existing techniques.
First, there could be a single product consisting of multiple loosely
integrated engines that can be deployed and configured to support
either OLTP or OLAP. Second, there could be a single engine
as opposed to having multiple specialized engines packaged in
a single product. Third, even if we have a single engine, then
we could have multiple instances running over a single engine,
where one instance is dedicated and configured for OLTP work-
loads while another instance is optimized for OLAP workloads,
in which these instances are assumed to be connected using an
ETL process. Finally, even when using the same engine running a
single instance, there could be multiple copies or representations
(e.g., row vs. columnar layout) of the data, where one copy (or
representation) of the data is read optimized while the second
copy (or representation) is write optimized.

In short, we develop L-Store, an important first step towards
supporting real-time OLTP and OLAP processing that faithfully
satisfies our definition of generalized solution, and, in particular,
we make the following contributions:

• Introducing an update-friendly lineage-based storage architec-
ture that enables a contention-free update mechanism over a
native multi-version, columnar storage model in order to lazily
and independently stage stable data from a write-optimized
columnar layout (i.e., OLTP) into a read-optimized columnar
layout (i.e., OLAP)
• Achieving (at most) 2-hop away access to the latest version of

any record (preventing read performance deterioration for point
queries)
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Figure 1: Overview of the lineage-based storage architecture.

• Contention-free merging of only stable data, namely, merging
of the read-only base data with recently committed updates
(both in columnar representation) without the need to block
ongoing or new transactions by relying on the lineage
• Contention-free page de-allocation (upon the completion of

the merge process) using an epoch-based approach without the
need to drain the ongoing transactions
• A first of its kind comprehensive evaluation to study the lead-

ing architectural storage design for concurrently supporting
short update transactions and analytical queries (e.g., an in-
place update with a history table architecture and the commonly
employed main and delta stores architecture)

2 UNIFIED ARCHITECTURE
The divide in the big data community is partly attributed to the
storage conflict pertaining to the representation of transactional
and analytical data. In particular, transactional data requires write-
-optimized storage, namely the row-based layout, in which all
columns are co-located (and preferably uncompressed for in-place
updates). This layout improves point update mechanisms, since
accessing all columns of a record can be achieved by a single I/O
(or few cache misses for memory-resident data). In contrast, to
optimize the analytical workloads (i.e., reading many records), it
is important to have read-optimized storage, i.e., columnar layout
in highly compressed form. The intuition behind having columnar
layout is due to the observation that most analytical queries tend
to access only a small subset of all columns [1]. Thus, by storing
data column-wise, we can avoid reading irrelevant columns (i.e.,
reducing the raw amount of data read) and avoid polluting proces-
sor’s cache with irrelevant data, which substantially improve both
disk and memory bandwidth, respectively. Furthermore, storing
data in columnar form improves the data homogeneity within each
page, which results in an overall better compression ratio.

2.1 L-Store Storage Overview
To address the dilemma between write- and read-optimized lay-
outs, we develop L-Store. As demonstrated in Figure 1, the high-
level architecture of L-Store is based on a native multi-version,
columnar layout (i.e., data across columns are aligned to allow
implicit re-construction), where records are (virtually) partitioned
into disjoint ranges (also referred to as update range). Records
within each range span a set of read-only, compressed pages,
which we refer to them as the base pages. More importantly, for
every range of records, and for each updated column within the
range, we maintain a set of append-only pages to store the lat-
est updates, which we refer to them as the tail pages. Anytime
a record is updated in base pages, a new record is appended to
its corresponding tail pages, where there are explicit values only
for the updated columns (non-updated columns are preassigned
a special null value when a page is first allocated). We refer to
the records in base pages as the base records and the records in
tail pages as the tail records. Each record (whether falls in base

or tail pages) spans over a set of aligned columns (i.e., no join is
necessary to pull together all columns of the same record).1

A unique feature of our lineage-based architecture is that tail
pages are strictly append-only and follow a write-once policy. In
other words, once a value is written to tail pages, it will not be
over-written even if the writing transaction aborts. The append-
only design together with retaining all versions of the record
substantially simplifies low-level synchronization and recovery
protocol and enables efficient realization of multi-version concur-
rency control. Another important property of our lineage-based
storage is that all data are represented in a common unified form;
there are no ad-hoc corner cases. Records in both base and tail
pages are assigned record-identifiers (RIDs) from the same key
space. Therefore, both base and tail pages are referenced through
the database page directory using RIDs and persisted identically.
Therefore, at the lower-level of the database stack, there is abso-
lutely no difference between base vs. tail pages or base vs. tail
records; they are presented and maintained identically.

To speed up query processing, there is also an explicit linkage
(forward and backward pointers) among records. From a base
record, there is a forward pointer to the latest version of the record
in tail pages. The different versions of the same records in tail
pages are chained together to enable fast access to an earlier
version of the record. The linkage is established by introducing a
table-embedded indirection column that stores forward pointers
for base records and backward pointers for tail records (i.e., RIDs).

The final aspect of our lineage-based architecture is a periodic,
contention-free merging of a set of base pages with its correspond-
ing tail pages. This is performed to consolidate base pages with
the recent updates and to bring base pages forward in time (i.e.,
creating a set of merged pages). Each merged page independently
maintains its lineage information, i.e., keeping track of all tail
records that are consolidated onto the page thus far. By main-
taining explicit in-page lineage information, the current state of
each page can be determined independently, and the base page
can be brought up to any desired snapshot. Tail pages that are al-
ready merged and fall outside the snapshot boundaries of all active
queries are called historic tail-pages. These pages are re-organized,
so that different versions of a record are stored contiguously in-
lined. Delta-compression is applied across different versions of
tail records, and tail records are ordered based on the RIDs of their
corresponding base records. Below, we describe the unique design
and algorithmic features of L-Store that enables efficient transac-
tional processing without performance deterioration of analytical
processing; thereby, achieving a real-time OLTP and OLAP.

2.2 Lineage-based Storage Architecture
In L-Store, the storage layout is natively columnar and applies
equally to both base and tail pages. A detailed view of our lineage-
based storage architecture is presented in Figure 2. In general, one
can perceive tail pages as directly mirroring the structure and the
schema of base pages. As we pointed out earlier, conceptually for
every record, we distinguish between base vs. tail records, where
each record is assigned a unique RID. But it is important to note
that the RID assigned to a base record is stable and remains con-
stant throughout the entire life-cycle of a record, and all indexes
only reference base records (base RIDs); consequently, eliminat-
ing index maintenance problem associated when update operation
results in creation of a new version of the record [33, 34]. When a
reader performing index lookup, it always lands at a base record,
and from the base record it can reach any desired version of the
record by following the table-embedded indirection to access the
latest (if the base record is out-of-date) or an earlier version of
the record. However, when a record is updated, a new version is

1Fundamentally, there is no difference between base vs. tail record, the distinction is
made only to ease the exposition.
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Figure 2: Detailed, unfolded view of lineage-based storage architecture (a multi-version, columnar storage model).

created. Thus, a new tail record is created to hold the new ver-
sion, and the new tail record is assigned a new tail RID that is
referenced by the base record (as demonstrated in Figure 2).

Each table in addition to having the standard data columns has
several meta-data columns. These meta-data columns include the
Indirection column, the Schema Encoding column, the Start Time
column, and the Last Updated Time column. An example of table
schema is shown in Table 1.

The Indirection column exists in both the base and tail records.
For base records, the Indirection column is interpreted as a forward
pointer to the latest version of a record residing in tail pages,
essentially storing the RID of the latest version of a record. If
a record has never been updated, then the Indirection column
will hold a null value. In contrast, for tail records, the Indirection
column is used to store a backward pointer to the last updated
version of a record in tail pages. If no earlier version exists, then
the Indirection column will point to the RID of the base record.

The Schema Encoding column stores the bitmap representation
of the state of the data columns for each record, where there is
one bit assigned for every column in the schema (excluding the
meta-data columns), and if a column is updated, its corresponding
bit in the Schema Encoding column is set to 1, otherwise is set to
0. The schema encoding enables to quickly determine if a column
has ever been updated or not for base records. In tail records,
the encoding tracks which columns have been updated and have
explicit values as opposed to those columns that have not been
updated and have an implicit special null values (denoted by ∅).
An example of Schema Encoding column is provided in Table 1.

The Start Time column stores the time at which a base record
was first installed in base pages (the original insertion time), and
for a tail record, the Start Time column holds the time at which
the record was updated, which is also the implicit end time of the
previous version of the record. The Start Time column is essen-
tial for distinguishing between different version of the record. In
addition, to the Start Time column, for base records, we maintain
an optional Last Updated Time column, which is only populated
after the merge process is taken place and reflects the Start Time
of those tail records included in merged pages. Also note that the
initial Start Time column for base records is always preserved
even after the merge process for faster pruning of those records
that are not visible to readers because they fall outside the reader’s
snapshot. Lastly, we may add the Base RID column optionally to
tail records to store the RIDs of their corresponding base records;
this is utilized to improve the merge process. Base RID is a highly
compressible column that would require at most two bytes when
restricting the range partitioning of records to 216 records.

3 FINE-GRAINED MANIPULATION
The transaction processing can be viewed as two major challenges:
(1) how data is physically manipulated at the storage layer and
how changes are propagated to indexes and (2) how multiple

RID Indirection Schema Encoding Start Time Key A B C

Partitioned base records for the key range of k1 to k3
b1 t8 0000 10:02 k1 a1 b1 c1
b2 t5 0101 13:04 k2 a2 b2 c2
b3 t7 0001 15:05 k3 a3 b3 c3

Partitioned base records for the key range of k4 to k6
b4 ⊥ 0000 16:20 k4 a4 b4 c4
b5 ⊥ 0000 17:21 k5 a5 b5 c5
b6 ⊥ 0000 18:02 k6 a6 b6 c6

Partitioned tail records for the key range of k1 to k3
t1 b2 0100* 13:04 ∅ a2 ∅ ∅
t2 t1 0100 19:21 ∅ a21 ∅ ∅
t3 t2 0100 19:24 ∅ a22 ∅ ∅
t4 t3 0001* 13:04 ∅ ∅ ∅ c2
t5 t4 0101 19:25 ∅ a22 ∅ c21
t6 b3 0001* 15:05 ∅ ∅ ∅ c3
t7 t6 0001 19:45 ∅ ∅ ∅ c31
t8 b1 0000 20:15 ∅ ∅ ∅ ∅

Table 1: An example of the update and delete procedures (con-
ceptual tabular representation).
transactions (where each transaction consists of many statements)
can concurrently coordinate reading and writing of the shared
data. The focus of this paper is on the former challenge, and
we defer the latter to our discussion on the employed low-level
synchronization and concurrency control in Section 5.

Without loss of generality, from the perspective of the storage
layer, we focus on how to handle a single point update or delete
in L-Store (but note that we support multi-statement transactions
through L-Store’s transaction layer as demonstrated by our evalua-
tion). Furthermore, in our technical report [31], we discuss how
our model can easily be extended to deal with insertion as well.
Each update may affect a single or multiple records. Since records
are (virtually) partitioned into a set of disjoint ranges as shown in
Table 1, each updated record naturally falls within only one range.
Now for each range of records, upon the first update to that range,
a set of tail pages are created (and persisted on disk optionally)
for the updated columns and are added to the page directory, i.e.,
lazy tail-page allocation. Consequently, updates for each record
range are appended to their corresponding tail pages of the up-
dated columns only; thereby, retraining all versions of the record,
avoiding in-place updates of modified data columns, and cluster-
ing updates for a range of records within their corresponding tail
pages.

To describe the update procedure in L-Store, we rely on our
running example shown in Table 1. When a transaction updates
any column of a record for the first time, two new tail records
(each tail record is assigned a unique RID) are created and ap-
pended to the corresponding tail pages. For example, consider
updating the column A of the record with the key k2 (referenced
by the RID b2) in Table 1. The first tail record, referenced by the
RID t1, contains the original value of the updated column, i.e., a2,
whereas implicit null values (∅) are preassigned for remaining
unchanged columns. Taking a snapshot of the original changed
values becomes essential in order to ensure contention-free merg-
ing as discussed in Section 4.1. The second tail record contains
the newly updated value for column A, namely, a21, and again
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implicit special null values for the rest of the columns; a column
that has never been updated does not even have to be materialized
with special null values. However, for any subsequent updates,
only one tail record is created, e.g., the tail record t3 is appended
as a result of updating the column A from a21 to a22 for the record
b2.

In general, updates could either be cumulative or non-cumulative.
The cumulative property implies that when creating a new tail
record, the new record will contain the latest values for all of the
updated columns thus far. For example, consider updating the
column C for the record b2. Since the column C of the record
b2 is being updated for the first time, we first take a snapshot of
its old value as captured by the tail record t4. Now for the cu-
mulative update, a new tail record is appended that repeats the
previously updated column A, as demonstrated by the tail record
t5. If non-cumulative update approach was employed, then the tail
record would consists of only the changed value for column C and
not A. It is important to note that cumulation of updates can be
reset at anytime. In the absence of cumulation, readers are simply
forced to walk back the chain of recent versions to retrieve the
latest values of all desired columns. Thus, cumulative update is an
optimization that is intended to improve the read performance.

As part of the update routine, the embedded Indirection column
(forward pointers) for base records is also updated to point to the
newly created tail record. In our running example, the Indirection
column of the record b2 points to the tail record t5. Also after
updating the column C of the record b3, the Indirection column
points to the latest version of b3, which is given by t7. Likewise,
the Indirection column in the tail records point to the previous
version of the record. It is important to note that the Indirection
column of base records is the only column that requires an in-place
update in our architecture. However, as discussed in our low-level
synchronization protocol (cf. Section 5), this is a special column
that lends itself to latch-free synchronization.

Furthermore, indexes always point to base records (i.e., base
RIDs), and they are never directly point to any tail records (i.e.,
tail RIDs) in order to avoid the index maintenance cost that arise
in the absence of in-place update mechanism [33]. Therefore,
when a new version of a record is created (i.e., a new tail record),
first, all indexes defined on unaffected columns do not have to
be modified and, second, only the affected indexes are modified
with the updated values, but they continue to point to base records
and not the newly created tail records. Suppose there is an index
defined on the column C (cf. Table 1). Now after modifying the
record b2 from c2 to c21, we add the new entry (c21,b2) to the
index on the column C.2 Subsequently, when a reader looks up
the value c21 from the index, it always arrives at the base record
b2 initially, then the reader must determine the visible version of
b2 (by following the indirection if necessary) and must check if

2Optionally the old value (c2, b2 ) could be removed from the index; however, its
removal may affect those queries that are using indexes to compute answers under
snapshot semantics. Therefore, we advocate deferring the removal of changed values
from indexes until the changed entries fall outside the snapshot of all relevant active
queries.

the visible version has the value c21 for the column C, essentially
re-evaluating the query predicates.

There are two other meta-data columns that are affected by
the update procedure. The Start Time column for tail records
simply holds the time at which the record was updated (an implicit
end of the previous version). For example, the record t7 has a
start time of 19:45, which is also the implied end time of the
first version of the record b3. The Schema Encoding column is a
concise representation that shows which data columns have been
updated thus far. For example, the Schema Encoding of the tail
record t7 is set to “0001”, which implies that only the column C
has been changed. To distinguish between whether a tail record
is holding new values or it is the snapshot of old values, we add
a flag to the Schema Encoding column, which is shown as an
asterisk. For example, the tail record t6 stores the old value of the
column C, which is why its Schema Encoding is set to “0001*”.
The Schema Encoding can also be maintained optionally for base
records as part of the update process or it could be populated only
during the merge process.

Notably, when there are multiple individual updates to the
same record by the same transaction, each update is written as
a separate entry to tail pages. Each update results in a creation
of a new tail record and only the final update becomes visible to
other transactions. The prior entries are implicitly invalidated and
skipped by readers. Also delete operation is simply translated into
an update operation, in which all data columns are implicitly set to
∅, e.g., deleting the record b1 results in creating the tail record t8.
An alternative design for delete is to create a tail record that holds
a complete snapshot of the latest version of the deleted record.

4 REAL-TIME STORAGE ADAPTION
To ensure a near optimal storage layout, outdated base pages are
merged lazily with their corresponding tail pages in order to pre-
serve the efficiency of analytical query processing. Recall that
the base pages are read-only and compressed (read optimized)
while the tail pages are uncompressed3 that grow using a strictly
append-only technique (write optimized). Therefore, it is nec-
essary to transform the recent committed updates accumulated
in tail pages that are write optimized into read optimized form.
A distinguishing feature of our lineage-based architecture is to
introduce a contention-free merging process that is carried out
completely in the background without interfering with foreground
transactions. Furthermore, the contention-free merging procedure
is applied only to the updated columns of the affected update
ranges. There is even no dependency among columns during the
merge; thus, the different columns of the same record can be
merged completely independent of each other at different points
in time. This is achieved by independently maintaining in-page
lineage information for each merged page. The merge process is
conceptually depicted in Figure 3, in which writer threads (i.e.,
update transactions) place candidate tail pages to be merged into

3Even though compression techniques such as local and global dictionaries can be
employed in tail pages, but these directions are outside the scope of the current work.
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the merge queue while the merge thread continuously takes pages
from the queue and processes them.

4.1 Contention-free, Relaxed Merge
In L-Store, we abide to one main design principle for ensuring
contention-free processing that is “always operating on stable
data”. The inputs to the merge process are (1) a set of base pages
(committed base records) that are read-only,4 thus, stable data
and (2) a set of consecutive committed tail records in tail pages,5
thus, also stable data. The output of the merge process (that is also
relaxed) is a set of newly consolidated base pages (also referred to
as merged pages) with in-page lineage information that are read-
only, compressed, and almost up-to-date, thus, stable data. To
decouple users’ transactions (writers) from the merge process, we
also ensure that the write path of the ongoing transactions does not
overlap with the write path of the merge process. Writers append
new uncommitted tail records to tail pages, but as stated before
uncommitted records do not participate in the merge. Writers also
perform in-place update of the Indirection column within base
records to point to the latest version of the updated records in tail
pages, but the Indirection column is not modified by the merge
process. In contrast, the write path of the merge process consists
of creating only a new set of read-only base pages.

Merge Algorithm The details of the merge algorithm, con-
ceptually resembling the standard left-outer join, consists of (1)
identifying a set of committed tail records in tail pages; (2) loading
the corresponding outdated base pages; (3) consolidating the base
and tail pages while maintaining the in-page lineage; (4) updating
the page directory; and (5) de-allocating the outdated base pages.
The pseudo code for the merge is shown in Algorithm 1, where
each of the five mentioned steps are also highlighted.
Step 1: Identify committed tail records in tail pages: Select a set
of consecutive fully committed tail records (or pages) since the
last merge within each update range.
Step 2: Load the corresponding outdated base pages: For a se-
lected set of committed tail records, load the corresponding out-
dated base pages for the given update range (limit the load to only
outdated columns). This step can further be optimized by avoiding
to load sub-ranges of records that have not yet changed since the
last merge. No latching is required when loading the base pages.
Step 3: Consolidate the base and tail pages: For every updated
column, the merge process will read n outdated base pages and
applies a set of recent committed updates from the tail pages and
writes outm new pages.6 First the Base RID column of the com-
mitted tail pages (from Step 1) are scanned in reverse order to find
the list of the latest version of every updated record since the last
merge (a temporary hashtable may be used to keep track whether
the latest version of a record is seen or not). Subsequently, apply-
ing the latest tail records in a reverse order to the base records
until an update to every record in the base range is seen or the
list is exhausted, skipping any intermediate versions for which
a newer update exists in the selected tail records. If a latest tail
record indicates the deletion of the record, then the deleted record
will be included in the consolidated records. The merged pages
will keep track of the lineage information in-page, i.e., tracking

4The Indirection column is the only column that undergoes in-place update that also
never participates in the merge process.
5Note that not every committed update has to be applied as the merge process is
relaxed, and the merge eventually process all committed tail records.
6At most up to one merged page per column could be left underutilized for a range
of records after the merge process. To further reduce the underutilized merged pages,
one may define finer range partitioning for updates (e.g., 212 records), but operate
merges at coarser granularity (e.g., 216 records). This will provide the benefit of
locality of access for readers given smaller range size of 212, yet it provides a better
space utilization and compression for newly created merge pages when larger ranges
are chosen (cf. Section 4.3).

Algorithm 1: Merge Algorithm
Input :Queue of unmerged committed tail pages (mergeQ)
Output :Queue of outdated and consolidated base pages to be deallocated

(deallocateQ)
1 while true do
2 // Step 1
3 // wait until the the concurrent merge queue is not empty
4 if mergeQ is not empty then
5 // Step 2
6 // fetch references to a set of committed tail pages
7 batchTailPagec mergeQ.dequeue()
8 // create a copy of corresponding base pages
9 batchConsPage← batchTailPage.getBasePageCopy()

10 decompress(batchConsPage)
11 // track if it has seen the latest update of every record
12 HashMap seenUpdatesH
13 //reading a set of tail pages in reverse order
14 // Step 3
15 for i = 0; i <batchTailPage.size; i ← i + 1 do
16 tailPage← batchTailPages[i]
17 for j = k − 1; j ≥ tailPage.size; j ← j − 1 do
18 record[j]← jth record in the tailPage
19 RID← record[j].RID
20 if seenUpdatesH does not contain RID then
21 seenUpdatesH.add(RID)
22 // copy the latest version of record into consolidated pages
23 batchConsPage.update(RID, record[j])
24 end
25 if if all RIDs OR all tail pages are seen then
26 compress(batchConsPage)
27 persist(batchConsPage)
28 stop examining remaining tail pages
29 end
30 end
31 end
32 // Step 4
33 // fetch references to the corresponding base pages
34 batchBasePagec batchTailPage.getBasePageRef()
35 // update page directory to point to the consolidated base pages
36 PageDirect.swap(batchBasePage, batchConsPage)
37 // Step 5
38 // queue outdated pages for deallocation once readers prior merge are drained
39 deallocateQ.enqueue(batchBasePage)
40 end
41 end

how many tail records have been consolidated thus far. Any com-
pression algorithm (e.g., dictionary encoding) can be applied on
the consolidated pages (on column basis) followed by writing the
compressed pages into newly created pages. Moreover, the old
Start Time column is remained intact during the merge process
because this column is needed to hold the original insertion time
of the record.7 Therefore, to keep track of the time for the consoli-
dated records, the Last Updated Time column is populated to store
the Start Time of the applied tail records. The Schema Encoding
column may also be populated during the merge to reflect all the
columns that have been changed for each record.
Step 4: Update the page directory: The pointers in the page di-
rectory are updated to point to the newly created merged pages.
Essentially this is the only foreground action taken by the merge
process, which is simply to swap and update pointers in the page
directory – an index structure that is updated rarely only when
new pages are allocated.
Step 5: De-allocate the outdated base pages: The outdated base
pages are de-allocated once the current readers are drained natu-
rally via an epoch-based approach. The epoch is defined as a time
window, in which the outdated base pages must be kept around
as long as there is an active query that started before the merge
process. Pointers to the outdated base pages are kept in a queue to
be re-claimed at the end of the query-driven epoch-window. The
pointer swapping and the page de-allocation are illustrated in
Figure 4. ■

7The Start Time column is also highly compressible column with a negligible space
overhead to maintain it.
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RID Indirection
Schema

Encoding
Start
Time

Last
Updated

Time
Key A B C

Partitioned base records for the key range of k1 to k3; Tail-page Sequence Number (TPS) = 0
b1 t8 0000 10:02 k1 a1 b1 c1
b2 t5 0101 13:04 k2 a2 b2 c2
b3 t7 0001 15:05 k3 a3 b3 c3

Relevant tail records (below TPS ≤ t7 high-watermark) for the key range of k1 to k3
t5 t4 0101 19:25 ∅ a22 ∅ c21
t7 t6 0001 19:45 ∅ ∅ ∅ c31

Resulting merged records for the key range of k1 to k3; TPS = t7
b1 t8 0000 10:02 10:02 k1 a1 b1 c1
b2 t5 0101 13:04 19:25 k2 a22 b2 c21
b3 t7 0001 15:05 19:45 k3 a3 b3 c31

Table 2: An example of the relaxed and almost up-to-date
merge procedure (conceptual tabular representation).

An example of our merge process is shown in Table 2 based on
our earlier update example, in which we consolidate the first seven
tail records (denoted by t1 to t7) with their corresponding base
pages. The resulting merged pages are shown, where the affected
records are highlighted. Note that only the updated columns are
affected by the merge process (and the Indirection column is not
affected). Furthermore, not all updates are needed to be applied,
only the latest version of every updated record needs to be consoli-
dated while the other entries are simply discarded. In our example,
only the tail records t5 and t7 participated in the merge, and the
rest were discarded.

Merge Correctness Analysis A key distinguishing feature of
our lineage-based storage architecture is to allow contention-free
merging of tail and base pages without interfering with concurrent
transactions. To formalize our merge process, we prove that merge
operates only on stable data while maintaining in-page lineage
without any information loss and that the merge does not limit
users’ transactions to access and/or modify the data that is being
merged.

LEMMA 4.1. Merge operates strictly on stable data.

PROOF. By construction, we enforced that merge “always op-
erate on stable data”. The inputs to the merge process are (1) a
set of base pages consisting of committed base records that are
read-only, i.e., stable data and (2) a set of consecutive committed
tail records in tail pages, thus, also stable data. The output of the
merge process is a set of newly merged pages that are read-only,
i.e., stable data as well. Hence, the merge process strictly takes as
inputs stable data and produces stable data as well. □

LEMMA 4.2. Merge safely discards outdated base pages with-
out violating any query’s snapshot.

PROOF. In order to support snapshot isolation semantics and
time travel queries, we need to ensure that earlier versions of
records that participate in the merge process are retained. Since
we never perform in-place updates and each update is transformed
into appending a new version of the record to tail pages, then as
long as tail pages are not removed, we can ensure that we have
access to every updated version. But recall that outdated base
pages are de-allocated using our proposed epoch-based approach
after being merged. Also note that base pages contain the original
values of when a record was first created. Therefore, any original
values that later were updated must be stored before discarding
outdated base pages after a merge is taken place. In another words,
we must ensure that outdated base pages are discarded safely.

As a result, the two fundamental criteria, namely, relaxing the
merge (i.e. constructing an almost up-to-date snapshot) and oper-
ating on stable data, are not sufficient to ensure the safety property
of the merge. The last missing piece that enables safety of the
merge is accomplished by taking a snapshot of the original values
when a column is being updated for the first time (as described in
Section 3). In other words, we have further strengthened our data
stability criterion by ensuring even stability in the committed his-
tory. Hence, outdated base pages can be safely discarded without
any information loss, namely, the merge process is safe. □

RID Indirection
Schema

Encoding
Start
Time

Last
Updated

Time
Key A B C

Recently merged records for the key range of k1 to k3; TPS = t7
b1 t8 0000 10:02 10:02 k1 a1 b1 c1
b2 t12 0101 13:04 19:25 k2 a22 b2 c21
b3 t11 0001 15:05 19:45 k3 a3 b3 c31

Partitioned tail records for the key range of k1 to k3
t1 b2 0100* 13:04 ∅ a2 ∅ ∅
t2 t1 0100 19:21 ∅ a21 ∅ ∅
t3 t2 0100 19:24 ∅ a22 ∅ ∅
t4 t3 0001* 13:04 ∅ ∅ ∅ c2
t5 t4 0101 19:25 ∅ a22 ∅ c21
t6 b3 0001* 15:05 ∅ ∅ ∅ c3
t7 t6 0001 19:45 ∅ ∅ ∅ c31
t8 b1 0000 20:15 ∅ ∅ ∅ ∅
t9 t5 0010* 13:04 ∅ ∅ b2 ∅
t10 t9 0010 21:25 ∅ ∅ b21 ∅
t11 t7 0001 21:30 ∅ ∅ ∅ c32
t12 t10 0110 21:55 ∅ a23 b21 ∅

Table 3: An example of the indirection interpretation and lin-
eage tracking (conceptual tabular representation).

THEOREM 4.3. The merge process and users’ transactions do
not contend for base and tail pages or the resulting merged pages,
namely, the merge process is contention-free.

PROOF. As part of ensuring contention-free merge, we have
already shown that merge operates on stable data (proven by
Lemma 4.1) and that there is no information loss as a result of the
merge process (proven by Lemma 4.2). Next we prove that the
write path of the merge process does not overlap with the write
path of users’ transactions (i.e., writers). Recall that writers append
new uncommitted tail records to tail pages, but as stated before,
uncommitted records do not participate in the merge. Writers also
perform in-place update of the Indirection column within base
records to point to the latest version of the updated records in tail
pages, but the Indirection column is not modified by the merge
process. In contrast, the write path of the merge process consists of
creating only a new set of read-only merged pages and eventually
discarding the outdated base pages safely.

Therefore, we must show that safely discarding base pages does
not interfere with users’ transactions. In particular, as explained in
Lemma 4.2, if the original values were not written to tail records
at the time of the update, then during the merge process, we were
forced to store them somewhere or encounter information loss. It
is not even clear where would be the optimal location for storing
the original values. A simple minded approach of just adding
them to tail pages would have broken the linear order of changes
to records such that the older values would have appeared after
the newer values, and it would have interfered with the ongoing
update transactions. But, more importantly, the need to store the
old values at any location would have implied that during the
merge process multiple coordinated actions were required to en-
sure consistency across modification to isolated locations; hence,
breaking the contention-free property of the merge. Therefore,
by storing the original updated values at the time of update, we
trivially eliminate all the potential contention during the merge
process in order to safely discarding outdated base pages.

As a result, users’ transactions are completely decoupled from
the merge process, and users’ transactions and the merge process
do not contend over base, tail, or merged pages. □

4.2 Maintaining In-Page Lineage
The lineage of each base page and consequently merged pages
is maintained within each page independently as a result of the
merge process. In-page lineage information is instrumental to de-
couple the merge and update operations and to allow independent
merging of the different columns of the same record at different
points in time. In-page lineage information is captured using a
rather simple and elegant concept, which we refer to as tail-page
sequence number (TPS) in order to keep track of how many up-
dated entries (i.e., tail records) from tail pages have been applied
to their corresponding base pages after a completion of a merge.
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Original base pages always start with TPS set to 0, a value that is
monotonically increasing after every merge. Again to ensure this
monotonicty property, as stressed earlier, always a consecutive set
of committed tail records are used in the merge process.

TPS is also used to interpret the indirection pointer (also a
monotonically increasing value) by readers after the merge is
taken place. Consider our running example in Table 2. After the
first merge process, the newly merged pages have TPS set to 7,
which implies that the first seven updates (tail records t1 to t7) in
the tail pages have been applied to the merged pages. Consider the
record b2 in the base pages that has an indirection value pointing
to t5 (cf. Table 2), there are two possible interpretations. If the
transaction is reading the base pages with TPS set to 0, then the
5th update has not yet reflected on the base page. Otherwise if the
transaction is reading the base pages with TPS 7, then the update
referenced by indirection value t5 has already been applied to the
base pages as seen in Table 2. Notably, the Indirection column is
updated only in-place (also a monotonically increasing value) by
writers, while merging tail pages does not affect the indirection
value.

More importantly, we can leverage the TPS concept to ensure
read consistency of users’ transactions when the merge is per-
formed lazily and independently for the different columns of the
same records. Therefore, when the merge of columns is decou-
pled, each merge occurs independently and at different points in
time. Consequently, not all base pages are brought forward in
time simultaneously. Additionally, even if the merge occurs for all
columns simultaneously, it is still possible that a reader reads base
pages for the column A before the merge (or during the merge
before the page directory is updated) while the same reader reads
the column C after the merge; thus, reading a set of inconsistent
base and merged pages.

LEMMA 4.4. An inconsistent read with concurrent merge is
always detectable.

PROOF. Since each base page independently tracks its lineage,
i.e., its TPS counter; therefore, TPS can be used to verify the read
consistency. In particular, for a range of records, all read base
pages must have an identical TPS counter; otherwise, the read
will be inconsistent. Hence, an inconsistent read across different
columns of the same record is always detectable. □

THEOREM 4.5. Constructing consistent snapshots with con-
current merge is always possible.

PROOF. As proved in Lemma 4.4, the read inconsistency is
always detectable. Furthermore, once a read inconsistency is en-
countered, then each page is simply brought to the desired query
snapshot independently by examining its TPS and the indirection
value and consulting the corresponding tail pages using the logic
outlined earlier. Hence, consistent reads by constructing consistent
snapshots across different columns of the same record is always
possible. □

TPS, or an alternative but similar counter conceptually, could
be used as a high-water mark for resetting the cumulative updates
as well. Continuing with our running scenario, in which we have
the original base pages with the TPS 0 (as shown in Table 2),
the merged pages the with TPS 7 (as shown in Table 3). For
simplicity, we assume the cumulation was also reset after the 7th
tail record. For the record b2, we see that the indirection pointer
is t12, for which we know that the cumulative update has been
reset after the 7th update. This means that the tail record t12 does
not carry updates that were accumulated between tail records 1
to 7. Suppose that the record was updated four times, where the
update entries in the tail pages are 3rd , 5th , 10th , and 12th tail
records. The tail record t5 is a cumulative and carries the updated

values from the tail record t3. However, the tail record t10 is not
cumulative (reset occurred at the 8th update), whereas the tail
record t12 is cumulative, but carries updates only from the tail
record t10 and not from t5 and t3. Suppose that a transaction is
reading the base pages with the TPS 0, then to reconstruct the full
version of the record b2, it must read both the tail records t5 and
t12 (while skipping 3rd and 10th ). But if a transaction is reading
from the merged pages with the TPS 7, then it is sufficient to
only read the tail record t12 to fully reconstruct the record because
the 3rd and 5th updates have already been applied to the merged
pages.

4.3 Record Partitioning Trade-offs
When choosing the range of records for partitioning (i.e., update
range) there are several dimensions that needs to be examined. An
important observation is that regardless of the range size, recent
updates to tail pages will be memory resident and no random disk
I/O is required. This trend is supported by continued increase
in the size of main memory and the fact that the entire OLTP
database is expected to fit in the main memory [9, 17].

In our evaluation, we did an in-depth study of the impact of
the range size, and we observed that the key deciding factor is
the frequency at which the merges are processed. How frequent
a merge is initiated is proportional to how many tail records are
accumulated before the merge process is triggered. We further
experimentally observed that the update range sizes in the order of
212 to 216 exhibit a superior overall performance vs. data fragmen-
tation depending on the workload update distribution. Because
for a smaller update range size, we may have many correspond-
ing half-filled tail pages, but as the range size increases, the cost
of half-filled tail pages are amortized over a much larger set of
records.8 Furthermore, the range size affects the clustering of
updates in tail pages. For larger the range size, it is more likely
that cache misses occur when scanning the recent update that are
not merged yet. Again, considering that recent cache sizes are in
order of tens of megabytes, the choice of any range value between
212 to 216 is further supported. As noted before, one may choose
a finer range partitioning for handling updates (i.e., update range),
e.g., 212, to improve locality of access while choosing coarser
virtual range sizes when performing merges, essentially forcing
the merge to take-in as input a set of consecutive update ranges
that have been updated, e.g., choosing 24 consecutive 212 ranges
in order to merge 212 × 24 = 216 records.

For example, suppose the scan operation (even if there are
concurrent scans) may access 2 columns, assume each column
is 23 bytes long. We further assume that the merge can keep up,
namely, even for 216 update range size, the number of tail records
yet to be merged is less than 216 (as shown in Section 6, such
merging rate can be achieved while executing up to 16 concurrent
update transactions). The overall scan footprint (combining both
base pages and tail pages) is approximately 216 × 23 × 2 × 2 = 221
(2 MB), which certainly fits in today’s processor cache (in our
evaluation, we used Intel Xeon E5-2430 processor, which has 15
MB cache size). Thus, even as scanning base records, if one is
forced to perform random lookup within a range of 216 tail records,
the number of cache misses are limited compared to when the
range size was beyond the cache capacity.

Another criteria for selecting an effective update range size is
the need for RID allocation. In L-Store, upon the first update to
a range of records (e.g., 212 to 216 range), we pre-allocate 212 to
216 unused RIDs for referencing its corresponding tail pages. Tail
RIDs are special in a sense they are not added to indexes and no
unique constraint is applied on them. Once the tail RID range is
8To reduce space under-utilization, tail pages could be smaller than base pages, for
instance, tail pages could be 4 KB while base pages are 32 KB or larger.
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fully used, then either a new unused RID range is allocated or an
existing underutilized tail RID range can be re-assigned (partially
used RID range must satisfy TPS monotonicity requirement).
Furthermore, in order to avoid overlapping the base and tail RIDs,
one could assign tail RIDs in the reverse order starting from 264;
therefore, tail RIDs will be monotonically decreasing, and the
TPS logic must be reversed accordingly. The benefit of reverse
assignment is that while scanning page directory for base pages,
there is no need to first read and later skip tail page entries (read
optimization).

5 FAST TRANSACTIONAL CAPABILITIES
In order to support concurrent transactions where each transac-
tion may consists of many statements, any database engine must
provide necessary functionalities to ensure the correctness of con-
current reads and writes of the shared data. Furthermore, trans-
action logging is required in order to recover the system from
crash and media failure. In this section, we focus on low-level
synchronization protocol and logging requirements. In terms of
concurrency protocol for transaction processing, any existing pro-
tocols can be leveraged because L-Store primarily focuses on
the storage architecture. In particular, we relied on our recently
proposed optimistic concurrency model in [32] that supports full
ACID properties for multi-statement transactions, and we also
employed the speculative reads proposed in [18]. The details of
the concurrency protocol is presented in our technical report [31].

Low-level Synchronization Protocol In terms of low-level
latching, our lineage-based storage has a set of unique benefits,
namely, readers do not have to latch the read-only base pages
or fully committed tail pages. Also there is no need to latch par-
tially committed tail pages when accessing committed records.
More importantly, writers never modify base pages (except the
Indirection column) nor the fully committed tail pages, so no
latching is required for stable pages. The Indirection column is
at most 8-byte long; therefore, writers can simply rely on atomic
compare-and-swap (CAS) operators to avoid latching the page.

As part of the merge process, no latching of tail and base pages
are required because they are not modified. The only latching
requirement for the merge is updating the page directory to point
to the newly created merged pages. Therefore, every affected page
in the page directory are latched one at a time to perform the
pointer swap or alternatively atomic CAS operator is employed
for each entry (pointer swap) in the page directory. Alternatively,
the page directory can be implemented using latch-free index
structures such as Bw-Tree [20].

Recovery and Logging Protocol Our lineage-based storage ar-
chitecture consists of read-only base pages (that are not modified)
and append-only updates to tail pages (which are not modified
once written). When a record is updated, no logging is required
for base pages (because they are read-only), but the modified tail
pages requires redo logging. Again, since we eliminate any in-
place update for tail pages, no undo log is required. Upon a crash,
the redo log for tail pages are replayed, and for any uncommit-
ted transactions (or partial rollback), the tail record is marked as
invalid (e.g., tombstone), but the space is not reclaimed until the
compression phase.

The one exception to above rule for logging and recovery is the
Indirection column, which is updated in-place. There are two pos-
sible recovery options: (1) one can rely on standard undo-redo log
for the Indirection column only or (2) one can simply rebuild the
Indirection column upon crash. The former option can further be
optimized based on the realization that tail pages undergo strictly
redo policy and aborted transactions do not physically remove
the aborted tail records as they are only marked as tombstones.
Therefore, it is acceptable for the Indirection column to continue
pointing to tombstones, and from the tombstones finding the latest

committed values. As a result, even for the Indirection column
only the redo log is necessary. For the latter recovery option, as
discussed earlier, to speedup the merge process, we materialize
the Base RID column in tail records that can be used to populate
the Indirection column after the crash. Alternatively, even without
materializing an additional RID column, one can follow back-
pointers in the Indirection column of tail records to fetch the base
RID because the very first tail record always points back to the
original base record.

The merge process is idempotent because it operates strictly
on committed data and repeated executions of the merge always
produce the exact same results given a set of base pages, their
corresponding tail pages, and a merge threshold that dictates how
many consecutive committed tail records to be used in the merge
process. Therefore, only operational logging is required for the
merge process. Also updating the entries in the page directory
upon completion of the merge process simply requires standard
index logging (both undo-redo logs). If crash occurs during the
merge, simply the partial merge results can be ignored and the
merge can be restarted.

6 EXPERIMENTAL EVALUATION
In order to study the impact of high-throughput transaction pro-
cessing in the presence of long-running analytical queries, we
carried out a comprehensive set of experiments. These experi-
ments were performed using an existing micro benchmark pro-
posed in [18, 32], i.e., a comprehensive transactional YCSB-like
benchmark [8], for the sake of a fair comparison and evaluation.
This benchmark allows us to study different storage architectures
by narrowing down the impact of concurrency with respect to
the active data set by adjusting the degree of contention between
readers and writers.

6.1 Experimental Setting
We evaluate the performance of various aspects of our real-time
OLTP and OLAP system. Our experiments were conducted on
a two-socket Intel Xeon E5-2430 @ 2.20 GHz server that has 6
cores per socket with hyper-threading enabled (providing a to-
tal of 24 hardware threads). The system has 64 GB of memory
and 15 MB of L3 cache per socket. We implemented a complete
working prototype of L-Store and compared it against two dif-
ferent techniques, (i) In-place Update + History and (ii) Delta +
Blocking Merge, which are described subsequently. The prototype
was implemented in Java (using JDK 1.7). Our primary focus
here is to simultaneously evaluate read and write throughputs of
these systems under various transactional workloads concurrently
executed with long-running analytical queries, which is the key
characteristic of any real-time OLTP and OLAP system.

Our employed micro benchmark defined in [18, 32] consists
of three key types of workloads: (1) low contention, where the
active set is 10M records; (2) medium contention, where the ac-
tive set is 100K records; and (3) high contention, where the active
set is 10K records. It is important to note that the data size is
not limited to the active set and can be much larger (millions or
billions of records). Similar to [18, 32], we consider two classes
of transactions. (1) Read-only transactions executed under snap-
shot isolation semantics that scan up to 10% of the data to model
TPC-H style analytical queries. (2) Short update transactions
executed under committed read semantics to model TPC-C and
TPC-E transactions, in which each short update transaction con-
sists of 8 read and 2 write statements over a table schema with
10 columns. In addition, we vary the ratio of read/writes in these
update transactions to model different customer scenarios with
different read/write degrees. By default, transactional through-
put of these schemes are evaluated while running (at least) one
scan thread and one merge thread to create the real-time OLTP
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Figure 5: Scalability under varying contention level.

and OLAP scenario. Unless stated explicitly, the percentage of
reads and writes in the transactional workload is fixed at 80% and
20%, respectively. On average 40% of all columns are updated
by the writers. Lastly, the page size is set to 32 KB for both base
and tail pages because a larger page size often results in a higher
compression ratio suitable for analytical workloads [13].

Next we describe the two techniques that are compared with
L-Store. We point out the primary features of these techniques
and describe it with respect to L-Store. For fairness, across all
techniques, we have maintained columnar storage, maintained
a single primary index for fast point lookup, and employed the
embedded-indirection column to efficiently access the older/newer
versions of the records. Additionally, logging has been turned off
for all systems as logging could easily become the main bottleneck
(unless sophisticated logging mechanisms such as group commits
and/or enterprise-grade SSDs are employed). In the In-place Up-
date + History technique, we are required to write both redo-undo
logs for all updates while for L-Store and Delta + Blocking Merge
only redo log is needed due to their append-only scheme.

In-place Update + History (IUH): A prominent storage orga-
nization is to append old versions of records to a history table and
only retain the most recent version in the main table, updating it
in-place. Such table organization is motivated by commercial sys-
tems such as [26]; thus, our In-place Update + History is inspired
by such table organization that avoids having multiple copies and
representations of the data. However, due to the nature of the
in-place update approach, each page requires standard shared and
exclusive latches that are often found in major commercial big
data systems. In addition to the page latching requirement, if a
transaction aborts, then the update to the page in the main table is
undone, and the previous record is restored. Scans are performed
by constructing a consistent snapshots, namely, if records in the
main table are invisible with respect to query’s read time, then the
older versions of the records are fetched from the history table
by following the indirection column. In our implementation of
In-place Update + History, we also ignored other major costs of
in-place update over the compressed data, in which the new value
may not fit in-place due to compression and requires costly page
splits or shifting data within the page as part of update transactions.
We further optimized the history table to include only the updated
columns as opposed to inserting all columns naively.

Delta + Blocking Merge (DBM): This technique is inspired
by [14], where it consists of a main store and a delta store, and
undergoes a periodic merging and consolidation of the main and
delta stores. However, the periodic merging requires the draining
of all active transactions before the merge begins and after the
merge ends. Although the resulting contention of the merge ap-
pears to be limited to only the boundary of the merge for a short
duration, the number of merges and the frequency at which this
merge occurs has a substantial impact on the overall performance.
We optimized the delta store implementation to be columnar and
included only the updated columns [27]. Additionally, we applied
our range partitioning scheme to the delta store by dedicating a
separate delta store for each range of records to further reduce the
cost of merge operation in presence of data skew. The partitioning

L-Store IUH DBM
Scan Performance (in secs.) 0.24 0.28 0.38

Table 4: Scan performance for different systems.

allow us to avoid reading and writing the unchanged portion of
the main store.

6.2 Experimental Results
In what follows, we present our comprehensive evaluation results
in order to compare and study our proposed L-Store with respect
to state-of-the-art approaches.

Scalability under contention: In this experiment, we show
how transaction throughput scales as we increase the number of
update transactions, in which each update transaction is assigned
to one thread. For the scalability experiment, we fix the number of
reads to 8 and writes to 2 for each transaction against a table with
active set of N = 10 million rows. Figure 5(a) plots the transaction
throughput (y-axis) and the number of update threads (x-axis).
Under low contention, the throughput for L-Store and In-place Up-
date + History scales almost linearly before data is spread across
the two NUMA nodes. The Delta + Blocking Merge approach how-
ever does not scale beyond a small number of threads due to the
draining of active transaction before/after of each merge process,
which brings down the transaction throughput noticeably. With
increasing number of threads, the number of merges and the drain-
ing of active transactions become more frequent, which reduces
the transaction throughput significantly. The In-place Update +
History approach has lower throughput compared to L-Store due
to the exclusive latches held for data pages that block the readers
attempting to read from the same pages. The presence of a single
history table also results in reduced locality for reads and more
cache misses.

In addition, we study the impact of increasing the degree of
contention by varying the size of the active set. For a fixed degree
of contention, we vary the number of parallel update transactions
from 1 to 22. For both medium contention (Figure 5(b)) and high
contention (Figure 5(c)), we observe that L-Store consistently out-
performs the In-place Update + History and Delta + Blocking Merge
techniques as the number of parallel transactions is increased. For
medium contention, we observed a speedup of up to 5.09× com-
pared to the In-place Update + History technique and up to 8.54×
compared to the Delta + Blocking Merge technique. Similarly for
high contention, we observed up to 40.56× and 14.51× speedup
with respect to the In-place Update + History and Delta + Blocking
Merge techniques, respectively. The greater performance gap is
attributed to the fact that in In-place Update + History, latching
contention on the page is increased that is altogether eliminated in
L-Store. In Delta + Blocking Merge, since the active set is smaller,
and all updates are concentrated to smaller regions, the merging
frequency is increased, which proportionally reduces the overall
throughput due to the constant draining of all active transactions.
Finally, due to the smaller active set sizes in the medium- and
high-contention workloads, the cache misses are also reduced as
the cache-hit ratio increases. As a consequence, the transaction
throughput also increases proportionately.

Scan Scalability: Scan performance is an important metric for
real-time OLTP and OLAP systems because it is the basic building
block for assembling complex ad-hoc queries. We measure the
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Figure 6: Scan performance.

scan performance of L-Store by computing the SUM aggregation
on a column that is continuously been updated by the concurrent
update transactions. Thus, the goal of this experiment is to deter-
mine whether the merge can keep up with high-throughput OLTP
workloads. As such, this scenario captures the worst-case scan
performance because it may be necessary for the scan thread to
search for the latest values in the merged page or tail pages when
the merge cannot cope with the update throughput. For columns
which do not get updated, the latest values are available in the
base page itself, as described before. In this experiment (Figure 6),
we study the single-threaded scan performance with one dedicated
merge thread. We vary the number of tail records (M) that are
processed per merge (x-axis) and observe the corresponding scan
execution time (y-axis) while keeping the range partitioning fixed
at 64K records. We repeat this experiment by fixing the number
of update threads to 4 and 16, respectively. In general, we observe
that as we increase M , the scan execution time decreases. The
main reasoning behind this observation is that the scan thread
visits tail pages for the latest values less often because the merge
is able to keep up. However, for the smaller values of M , the merge
is triggered more frequently and cannot be sustained. Addition-
ally, the overall cost of the merge is increased because the cost
of merge is amortized over fewer tail records while still reading
the entire range of 64K base records. Notably, if we delay the
merge by accumulating too many tail records, then there is slight
deterioration in performance. Therefore, it is important to balance
the merge frequency vs. the amortization cost of the merge for the
optimal performance, which based on our evaluation, it is when
M is set to around 50% of the range size.

We also compare the single-threaded scan performance (for
low contention and 4K range size) of L-Store with the other two
techniques in the presence of 16 concurrent update threads (as
shown in Table 4). Our technique outperforms the In-place Update
+ History and Delta + Blocking Merge techniques by 14.28% and
36.84%, respectively. It is important to note that smaller update
range sizes, namely, assigning separate tail pages for each 4K base
records instead of 64K base records, increases the overall scan
performance by improving the locality of access within tail pages.
Therefore, as elaborated previously in Section 4.3, it is beneficial
to apply (virtual) fine-grained partitioning over base records (e.g.,
4K records) to handle updates in order to improve locality of
access within tail pages while applying (virtual) coarser-grained
partitioning (e.g., 64K records) when performing the merge in
order to reduce the space fragmentation in the resulting merged
pages.

Impact of varying the workload read/write ratio: Short up-
date transactions update only a few records. A typical transactional
workload comprises of 80% read statements and 20% writes [18].
However, our goal is to explore the entire spectrum from a read-
intensive workload (read/write ratio 10:0) to a write-intensive
workload (read/write ratio 0:10) while fixing the number of update
threads to 16. Figure 7(a) shows transaction throughput (y-axis)
as the ratio of read-only transactions varies in the workload (x-
axis) with low contention. As expected, the performance of all
the schemes increases as we increase the ratio of reads in the
transactions because contention is a function of writes. As we
have more writes in the workload, In-place Update + History tech-
nique suffers from increased contention as acquiring read latches
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Figure 7: Impact of varying the read/write ratio of short up-
date transactions.
conflict with the exclusive latches resulting in an extended wait
time. The performance of the Delta + Blocking Merge technique
also exacerbates since increasing the number of writes increases
the number of merges performed. This brings down the perfor-
mance further due to frequent halt of the system while draining
active transactions. However, note that the gap between all of the
schemes is the least when the workload consists of 100% reads. In
summary, the speedup obtained with respect to In-place Update
+ History is up to 1.45× and up to 5.78× with respect to Delta +
Blocking Merge technique. Note, even for 100% read, In-place Up-
date + History continues to pay the cost of acquiring read latches
on each page.

We repeat the same experiment but restrict the active set size
to 100K rows (Figure 7(b)). L-Store significantly outperforms the
other techniques across all workloads while varying the read/write
ratio. But the performance gap is similar with respect to the low
contention scenario when there are no update statements in the
workload. The speedup obtained compared to In-place Update +
History and Delta + Blocking Merge techniques is up to 4.19× and
up to 6.34× respectively.

Impacts of long-read transactions: As mentioned previously,
it is not uncommon to have long-running read-only transactions
in real-time OLTP and OLAP systems. These analytical queries
touch a substantial part of the data compared to the short up-
date transactions, and the main goal is to reduce the interference
between OLTP and OLAP workloads. In this experiment, we in-
vestigate the performance of the different schemes in the presence
of these long-running read-only transactions, which on an average
touch 10% of the base table. We fix the number of concurrent
active transactions to 17 while increasing the number of concur-
rent read-only transactions from 1 to 16 (the short transactions
simultaneously vary from 16 to 1). We also allocated a single
merge thread for L-Store and Delta + Blocking Merge. Figures 8(a)-
8(b) represent the scenario for a low contention workload, while
Figures 8(c)-8(d) represent the scenario for medium contention.

We observe that for both low and medium contention, there is
an increase in throughput for both long-read transactions and short
update transactions when the number of threads are increased.
Moreover, the performance of read-only transaction increases
for the medium contention scenario for all the techniques as the
updates are restricted to a small portion of the data resulting in
a higher read throughput. In other words, majority of the read-
only transactions touch portions of the data in which updates
do not take place resulting in higher throughput. For read-only
transactions, our technique outperforms Delta + Blocking Merge
up to 1.97× and 2.37× for low and medium contention workloads,
respectively. For short update transactions, we outperform In-place
Update + History and Delta + Blocking Merge by at most 5.37×
and 7.91×, respectively, for medium-contention workload. In the
earlier experiments, we had demonstrated that L-Store outperforms
other leading approaches for update-intensive workloads, and
in this experiment, we further strengthen our claim that L-Store
substantially outperforms the leading approaches in the mixed
OLTP and OLAP workload as well, the latter is due to our novel
contention-free merging that does not interfere with the OLTP
portion of the workload.

Impacts of comparing row vs. columnar layouts We revisit
the scan and point query performance while considering both row
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Figure 8: Impact of varying the number of short update vs. long read-only transactions.
L-Store (Column) L-Store (Row)

Scan Performance without updates (in secs.) 0.043 0.196
Scan Performance with updates (in secs.) 0.24 0.66

Table 5: Scan performance based on row vs. columnar lay-
outs.

10% of Columns 20% 40% 80% All Columns
L-Store (Column) 1.46 1.35 1.17 1.08 0.98

L-Store (Row) 1.45 1.45 1.45 1.45 1.45

Table 6: Point query performance vs. percentage of columns
read (M txns/second).

Lineage-based Log-structured
Update throughput (16 threads) with 1 scan thread 0.76M txns/sec 0.15M txns/sec

Scan performance (in sec) with update txns (16 threads) 0.24 0.63

Table 7: Update/Scan performance of lineage-based vs. log-
structured storage architecture.

and columnar storage layouts. To enable this comparison, we ad-
ditionally developed a variation of our L-Store prototype using
row-wise storage layout, which we refer to as L-Store (Row).9
In particular, we compared the single-threaded scan performance
(for low contention and 4K range size) of L-Store using both row
and columnar layouts in the presence of when there is no updates
or when there are 16 concurrent update threads (as shown in Ta-
ble 5). As expected, the scan performance of L-Store (Column) is
substantially higher than L-Store (Row) by a factor of 2.75× and
4.56×, with and without updates, respectively. Also note that we
did not enabled column compression for L-Store (Column), other-
wise even a higher performance gap would be observed because
in column stores, an average of 10× compression is commonly
expected [5, 36].

We further conducted an experiment with only point queries
(on a table with 10 columns), where each transaction now consists
of 10 read statements, and each read statement may read 10%
to 100% of all columns (as shown in Table 6). As expected, the
performance of any column store is deteriorated as more columns
are fetched. When reading only 10-20% of columns, L-Store (Col-
umn) exhibit a comparable throughout as L-Store (Row); however,
as we increase the number of fetched columns, the throughput
is decreased. But, even in the worst case when all columns are
fetched, the throughout only drops by 33%. However, the preva-
lent observation is that rarely all columns are read or updated
in either OLTP or OLAP workloads [1, 5, 36]; thus, given the
substantial performance benefit of columnar layout for predomi-
nant workloads, then it is justified to expect a slight throughput
decrease in rare cases of when point queries are forced to access
all columns.

Impacts of comparing lineage-based vs. log-structured stor-
age architecture For completeness, in our prototype, we also
implemented log-structured merge-tree (LSM) [25] storage archi-
tecture that is predominant in the distributed key-value stores. In
particular, we have based our implementation on LevelDB [21]. In
this experiment, we studied the single-threaded scan performance
(for low contention) of L-Store (i.e., lineage-based storage archi-
tecture) and LSM while having 16 concurrent update threads (as
shown in Table 7). As expected, due to the multi-layered structured
of LSM, the fine-grained read/write access and scan performance
9Notably our proposed lineage-based storage architecture is not limited to any
particular data layout; in fact, our technique can be employed even for non-relational
data such as document or graph data.

of LSM are substantially lower than L-Store. As a result, L-Store
outperforms LSM on update throughput and scan performance by
a factor of 5× and 2.6×, respectively.

7 RELATED WORK
In recent years, we have witnessed the development of many in-
memory engines optimized for OLTP workloads either as research
prototypes such as HyPer [13, 24], ES2 [6], and ExpoDB [11]
or for commercial use such as Microsoft Hekaton [9], Oracle In-
Memory [15], VoltDB [38], and HANA [14, 27]. Most of these
systems are designed to keep the data in row format and in the
main memory to increase the OLTP performance. In contrast, to
optimize the OLAP workloads, columnar format is preferred. The
early examples of these engines are C-Store [36] and MonetDB [5].
Recently, major big data vendors also started integrating columnar
storage format into their existing engines. SAP HANA [10] is de-
signed to handle both OLTP and OLAP workloads by supporting
in-memory columnar format. IBM DB2 BLU [29] introduces a
novel columnar OLAP engine that is memory-optimized and sub-
stantially improves the execution of complex analytical workloads
by operating directly on compressed data. In what follows, we
shift our focus to the recent developments that aim to bring both
OLTP and OLAP capabilities into the same platform.

HyPer, a powerful main-memory system, guarantees the ACID
properties of OLTP transactions and supports running OLAP
queries on consistent snapshot [13]. The design of HyPer leverages
a novel OS-processor-controlled lazy copy-on-write mechanism
enabling to create a consistent virtual memory snapshot. Unlike
L-Store, HyPer resorts to running transactions serially when the
workload is not partitionable. Notably, HyPer recently employed
multi-version concurrency to close this gap [24]. IBM Wildfire is
a variant of DB2 BLU [29] that is integrated into Apache Spark
to support fast ingest by adopting the relaxed last-writer-wins
semantics and offers an efficient snapshot isolation on recent, but
stale, data by relying on periodic shipment and writing of the logs
onto a distributed file system [4]. In the same spirit, BatchDB
is based on primary-secondary replication design to efficiently
isolate OLTP and OLAP workloads by relying on batch migration
of recent updates and executing OLAP queries over recent (but
possibly stale) snapshots [23]. The unified storage architecture
in L-Store eliminates the need for classical log shipment design
and does not restrict reads to stale snapshots. Elastic power-aware
data-intensive cloud computing platform (epiC) was designed to
provide scalable big data services on cloud [6]. epiC is designed
to handle both OLTP and OLAP workloads [7]. However, unlike
L-Store, the OLTP queries in ES2 are limited to basic get, put, and
delete requests (without multi-statements transactional support).
Furthermore, in ES2, it is possible that snapshot consistency is
violated and the user is notified subsequently [6].

Microsoft SQL Server currently consists of three unique en-
gines: the classical SQL Server engine designed to process disk-
based tables in row format, the Apollo engine designed to maintain
the data in columnar format that offers significant performance
gain for OLAP workloads [19], and the completely redesigned
Hekaton in-memory engine designed to excel at OLTP work-
loads [9, 17]. Noteworthy, Microsoft has also recently announced
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moving towards supporting real-time OLTP and OLAP capabili-
ties [17], which further reinforces our position to support real-time
analytics. To support OLTP and OLAP among loosely integrated
engines, an intricate foreground routine is proposed to enable a
continuous data migration from Hekaton (a row-based engine) into
Apollo (a columnar engine) [17]. In contrast, in L-Store, we rely
on a single unified columnar engine (without the need for main-
taining multiple copies of the data) and, more importantly, our
consolidation is based on a novel contention-free merge process
that is performed asynchronously and completely in the back-
ground, and the only foreground task is pointer swaps in the page
directory for pointing to the newly created merged pages.

Oracle offers a novel dual-format option to support real-time
OLTP and OLAP, where data resides in both columnar and row
formats [15]. To avoid maintaining two identical copies of data in
both columnar and row format, an effective “layout transparency”
abstraction was introduced that maps data into a set of disjoint
tiles (driven by the query workload and the age of data), where
a tile could be stored in either columnar or row format [3]. The
key advantage of the layout-transparent mapping is that the query
execution runtime operates on the abstract representation (lay-
out independent) without the need to create two different sets of
operators for processing the column- and row-oriented data. In
the same spirit, SnappyData proposed a unified runtime engine
to combine streaming, transaction, and analytical processing, but
from the storage perspective, it maintains recent transactional data
in row format while it ages data to a columnar format for analyti-
cal processing [30]. SnappyData employed data aging strategies
similar to the original version of SAP HANA [35].

Contrary to the aforementioned efforts, in L-Store, we strictly
keep only one copy and one representation of data; thus, fun-
damentally eliminating the need to maintain layout-independent
mapping abstraction and storing data in both columnar and row
formats. HANA [14, 27] also strives to achieve real-time OLTP
and OLAP engine. Most notably, we share the same philosophy
governing HANA that aims to develop a generalized solution for
unifying OLTP and OLAP as opposed to building specialized
engines. But what distinguishes our architecture from HANA is
that we propose a unified columnar storage without the need to
distinguishing between a main store and a delta store. We fur-
ther propose a contention-free merge process, whereas in [14],
the merge process is forced to drain all active transactions at the
beginning and end of the merge process, a contention that results
in a noticeable slow down as demonstrated in our evaluation.

8 CONCLUSIONS
We develop Lineage-based Data Store (L-Store) to realize real-time
OLTP and OLAP processing within a single unified engine. The
key features of L-Store can succinctly be summarized as follows.
Recent updates for a range of records are strictly appended and
clustered in its corresponding tail pages to eliminate read/write
contention, which essentially transforms costly point updates into
an amortized, fast analytical-like update query.s L-Store achieves
(at most) 2-hop access to the latest version of any record through
an effective embedded indirection layer. We introduce a novel
contention-free and relaxed merging of only stable data in order
to lazily and independently bring base pages (almost) up-to-date
without blocking on-going and new transactions. Every base page
relies on independently tracking the lineage information in order
to eliminate all coordination and recovery even when merging
different columns of the same record independently. Lastly, a novel
contention-free page de-allocation using epoch-based approach
is introduced without interfering with ongoing transactions. We
demonstrate that L-Store outperforms In-place Update + History by
factor of up to 5.37× for short update transactions while achieving
slightly improved performance for scans. It also outperforms Delta

+ Blocking Merge by 7.91× for short update transactions and up to
2.37× for long-read analytical queries.
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ABSTRACT
False alarms triggered by security sensors incur high costs for all
parties involved. According to police reports, a large majority of
alarms are false. Recent advances in machine learning can enable
automatically classifying alarms. However, building a scalable
alarm verification system is a challenge, since the system needs
to: (1) process thousands of alarms in real-time, (2) classify false
alarms with high accuracy and (3) perform historic data analysis
to enable better insights into the results for human operators. This
requires a mix of machine learning, stream and batch processing
– technologies which are typically optimized independently. We
combine all three into a single, real-world application.

This paper describes the implementation and evaluation of an
alarm verification system we developed jointly with Sitasys, the
market leader in alarm transmission in central Europe. Our sys-
tem can process around 30K alarms per second with a verification
accuracy of above 90%.

1 INTRODUCTION
False alarms triggered by sensors of alarm systems pose a signifi-
cant challenge due to the high costs they incur for all involved
parties. On the one hand, false alarms waste expensive police,
medical and firefighter resources. On the other hand, Alarm Re-
ceiving Centers (ARCs) cannot efficiently prioritise important
alarms, because they are overwhelmed with false ones. According
to police reports, a large majority of alarms prove to be false [34].
This is often attributed to technical errors, installation errors
or user errors. As a consequence, owners of alarm systems end
up switching their systems off to avoid the risk of paying for
intervention forces deployed as a response to a false alarm.

From a technical perspective, false alarm verification is very
challenging, since it requires the combination of three tradition-
ally separate fields, namely stream processing, batch processing
and machine learning. Depending on the data sources used for
verification, both structured data (originating from the physical
security sensors) and unstructured (originating from external
sources, such as social media or police news feeds, available in
free-text format) should be integrated. Recently, stream and batch
processing have been integrated into combined systems such as

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the 21st
International Conference on Extending Database Technology (EDBT), March 26-29,
2018, ISBN 978-3-89318-078-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Flink [7] or Apache Structured Streaming [44]. However, adding
machine learning, unstructured data and a real use-case to the
equation makes the problem much harder. Machine learning has
proven successful in a wide range of classification and anomaly
detection tasks [26]. In particular, a classification model can be
trained in order to compute the likelihood that a new alarm is
either true or false, based on the history of alarms previously
received in the system. Such algorithms have the potential to
significantly reduce costs involved by false alarms, by enabling
ARCs to focus on the alarms that are most likely true, while
reducing the priority and the resources allocated for alarms that
are likely false.

In this paper we present our experience in building an end-to-
end alarm verification system that combines stream processing,
batch processing and machine learning on both structured and
unstructured data in an industrial setting. We use state-of-the-art
Big Data technology such as Apache Kafka [21], MongoDB [33]
and Apache Spark [38]. We show that our models can classify
false alarms with over 90% accuracy and can scale up to 30K
alarms per second including historical analysis using real alarm
data from our industrial partner. Furthermore, we show that our
models can be adapted with minimal effort and achieve good
performance for similar use cases. For example, we use the same
algorithms to train a new model from the history of fire incidents
recorded by the cities of London and San Francisco.

The main contributions of this paper are:

• Wepresent an end-to-end application that combines stream
processing, batch processing and machine learning in or-
der to uncover false alarms in an industrial setting. Using
a dataset of 350K real alarms from alarm sensors deployed
in production, we evaluate 4 machine learning algorithms
and show that the best 2 algorithms (random forest and
deep neural networks) can classify alarms with over 90%
accuracy. This is, to our knowledge, the first study to show
the applicability of machine learning techniques for false
alarm reduction in the field of physical security, using real
data collected from alarm sensors used in production.
• We show that a simple set of generic alarm features (loca-
tion, time, property type) can be used for similar use cases.
By reusing the exact same algorithms implemented for
our industrial use case, we yield a verification accuracy
of above 80% for the additional datasets from the cities of
London and San Francisco.
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• We discuss how to extend the approach to include a-priori
risk factors extracted from external sources, such as news
articles and social media postings, that potentially cover
incidents related to alarms ("hybrid approach"). These
sources usually provide unstructured, free-text data. In our
prototype implementation, we focus on reports about fire
and intrusion incidents. Even though we had only limited
external data available, we increased the accuracy of our
classifications from a baseline of 86.56% for the subset of
fire and intrusion alarms to 87.56% when including the
a-priori risk in the machine learning model.

The rest of this paper is organized as follows: We introduce
Related Work in Section 2. In Section 3 we present the indus-
trial use case for alarm management. We discuss the architecture
as well as the design of our system in Section 4. We describe
our experiments with various machine learning algorithms as
well as end-to-end performance results based on stream process-
ing, batch processing and machine learning in Section 5. Finally,
we present an extensive list of lessons learned in Section 6 and
conclude in Section 7.

2 RELATEDWORK
2.1 Stream Processing
Stream and continuous event processing for real-time analyt-
ics has been a major topic of the database community for more
than a decade with Aurora [9] being one of the pioneers. Other
popular systems are Gigascope [13], Esper [16] or Stream Base
[40]. Common to these systems is that they provide a declarative
query language based on SQL to process data streams. The advan-
tage of these systems is that end users can formulate analytics
queries using the expressiveness of SQL rather than learning new
APIs. Moreover, since SQL is declarative, the end-users need not
care of how they would optimize the system performance since
the stream systems can apply query optimization techniques by
understanding the query patterns.

Common to all these systems is that they are highly specialized
for one particular functionality, namely stream processing with
short time windows. However, they are inadequate for combined
stream and batch processing since they only focus on stream
processing.

2.2 Real-time Data Warehousing
Typical data warehouses of large enterprises are used for report-
ing, analytical and predictive purposes. In order to optimize query
performance, these systems organize data in a star schema [10].
Moreover, data is usually ingested on a daily or subdaily basis.
Common to all traditional data warehouses is that they are very
efficient for processing historical data but not particularly well
suited for processing streams of data.

In order to overcome these problems, recently so-called data
stream warehouses have been proposed to handle both big and
fast amounts of data within one single system. In other words,
the idea is to use one, combined system for stream and historical
data analytics. Examples of such systems include Borealis [1],
DataDepot [17], DejaVu [14], Moira [6] or TruViso [24].

The advantage of these systems over streaming-only systems
is that they can handle combined workloads of both stream and
batch processing.

2.3 Combined Stream and Batch Processing
As part of our previous work we have used bitmap indexes to
enable stream and batch processing in TelegraphCQ [35]. We
have demonstrated the approach for analyzing a large set of
network traffic data.

To tackle the problem of combined stream and historical data
analytics for more recent Big Data systems, the Lambda archi-
tecture [31] was introduced that currently sets the standard in
system design for building big data real-time analytics environ-
ments. It is trying to provide a solution to compensate latency
and waiting time when accessing and analyzing batch processed
data through the availability of real-time data streams. However,
criticism on the Lambda architecture revolves around the oper-
ational complexity of systems implementing this architecture.
This does not only include operations of the systems but espe-
cially also implementing and maintaining an efficient code base
for the two different data processing approaches - stream and
batch processing - used in systems built according to the Lambda
architecture.

Real-time processing for NoSQL systems has recently been
introduced in Muppet [25], SCALLA [29] and Spark Streaming
[44]. In particular, structured streaming seems very promising.
Another system that provides both stream and batch processing
is Apache Flink [7]. However, it is still difficult to smoothly in-
tegrate different technologies to develop a system for complex
scenarios that can leverage existing legacy systems. A more re-
cent reflection on main memory vs. stream systems can be found
in [23].

2.4 Machine Learning for Anomaly Detection
Machine learning has been widely used for classification and
anomaly detection. The research closest to ours has been done in
intrusion detection systems in the field of computer and network
security [26]. Subsequently, in order tomake these systems usable
in practice, a lot of work has focused around means to reduce
their false positives [27], [4], [12]. The recent shift of the alarm
industry towards IoT and smart connected sensors has opened
the path for applying the same algorithms in a relatively new
context, namely that of physical security, which is our focus in
this paper. There is to-date surprisingly little published data on
the effectiveness of these techniques for physical IP-connected
alarm systems.

Most of the related work published either in research papers
or in industrial patents aims at reducing false alarms by means
of verification through a secondary channel - e.g. a video camera
or additional sensors, such as temperature, shock or vibration
sensors. In [30], an intelligent home security system based on the
ZigBee protocol is presented. The system detects false alarms by
means of image processing from surveillance cameras. However,
we do not rely on any other information apart from alarm device
properties, the type of supervised premise, location and time.

Similarly, a patent issued by Honeywell AG presents a system
that reduces false alarms in a home security system by using
information provided by additional sensors, such as an acous-
tic glass break sensor, shock sensor and vibration sensor [3].
More recently, Honeywell extended their systems with a video-
verification step to reduce the number of false alarms [19]. In
contrast, our approach has the advantage of being more generic,
given that it relies only on information provided by basic sensors
and a model trained offline (from the history of alarms received
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Figure 1: Alarm System Architecture. ARC = Alarm Re-
ceiving Center.

from these same sensors), even in the lack of more contextual
information (camera images, weather sensors etc).

An interesting approach is presented in [32], where the most
suitable machine learning algorithm is chosen adaptively based
on the performance of the currently used one - this could be
an interesting path for future work in our system, as we have
already implemented 4 machine learning pipelines, therefore we
would only require the logic to adaptively choose among these
at run-time. Another angle to consider would be a majority vote
among the different classifiers, providing the overall verification
and probability as an aggregate of the information provided by
all 4 classifiers.

In a recent publication, Spark Streaming [44] and Apache
Kafka [21] were used to detect anomalies in Big Data streams by
applying various metrics based on entropy theory and Pearson
correlation [36]. In our project we partially build on these results.
Our initial machine learning experiments showed promising
results [37].

3 ALARM VERIFICATION USE CASE
In a typical security installation, transmitting an alarm originat-
ing from a sensor (e.g. motion or smoke detector) to a security
organization involves a chain of equipment and people. A simpli-
fied view of this setup is shown in Figure 1. An alarm triggered
at a supervised premise (a home or enterprise) will reach the se-
curity organization (also called Alarm Receiving Center - ARC),
where the alarm is handled by one of multiple operators who
take predefined actions based on the so called action plan which
was previously elaborated together with the customer. This usu-
ally involves trying to contact the customer by phone to verify
the alarm. This is an important step because more than 90% of
all alarms are false positives [34]. If the operator is not able to
reach out to the customer or the alarm was verified, he sends out
intervention personnel (police, ambulance or firefighters) to go
on-site.

The high amount of false alarms makes alarm handling costly.
Certas AG, one of the major companies in the alarm monitoring
market, processes nearly 5 million alarms and over 2 million
phone calls a year, as they report in the Alarm Management Sym-
posium in 2017 [11]. Our industrial partner, Sitasys, operates a
platform that connects hundreds of such monitoring centers. To-
day, a large number of messages are generated from a relatively
small amount of sources (like fire sensors or motion detectors).

With the advent of Smart Homes and IoT technologies, the num-
ber of sensors and therewith the number of alarms is expected to
increase drastically. Meanwhile the demand for security also in-
creases. The security industry in Austria, for example, has grown
almost 45% between 2010 and 2016 (as indicated in the yearly
security book 2017 published by VSO [42]). With these trends,
the monitoring centers risk to get flooded with alarm messages.
Keeping in mind that the rate of false alarms is above 90%, it
becomes clear that there is a need for improvement.

Uncovering false alarms through machine learning is challeng-
ing, since there may not even be a clear definition on whether an
alarm is worthy of investigation or not, thus rendering a 100%
accuracy a hypothetical goal. However, by changing the pro-
cess of alarm handling, there might be a way to use predictive
modelling in a safe way in order to reduce costs significantly.
The way this could be achieved is to transfer the verification of
the alarm partly to the customer. The idea is to transmit alarms
with a high probability of being false positives to the customer’s
mobile phone first. The customer can then decide within a time
window whether the alarm is real or false and whether it should
be sent to the alarm receiving center. Only alarms with a high
probability of being true (and those for which a timely answer
could not be received directly from the customer), are forwarded
to the monitoring center, which can then send out intervention
personnel.

With this approach, the number of alarms arriving at the
monitoring center decreases, while the handling of the particular
alarm becomes more effective, since the manual verification can
be omitted. With this self-monitoring solution, the customer
can actively take part in the alarm processing chain, which will
decrease the workload at the monitoring center and consequently
potential errors caused by overwhelmed operators.

Furthermore, the probability for true and false alarms can be
used by the monitoring center in order to effectively prioritize
alarms. This is especially helpful in the case of large events, which
generate a spike of messages that need to be processed fast. An
effective prioritization of alarms allows a more effective use of
intervention personnel. This ultimately benefits the customer as
well, because it reduces the fees he has to pay if the police or fire
brigades respond to false alarms repeatedly.

The solution envisioned by Sitasys involves an online portal
called "My Security Center". Using "My Security Center" the cus-
tomer can configure the threshold for the probability of alarms
being classified as true. The customer thus decides which alarms
should be sent to the monitoring center and which should be sent
to his mobile phone first. He can also decide not to send technical
alarms, like connection interruptions, to the monitoring station
at all. Based on his settings, the alarm handing can be offered for
about 40% of the price that is currently common in the market
– without any sacrifice concerning security. Since "My Security
Center" allows dynamic changes of the rules how and where
alarms are being transmitted, it will also allow the offering of
more custom tailored services.

4 SYSTEM DESIGN
In this section we motivate the main workflow, the system ar-
chitecture for our alarm verification application and discuss our
design choices.
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Figure 2: System design consisting of four components: (1)
Stream Processing, (2) Batch Processing (Alarm History),
(3) Machine Learning (Verification Service) and (4) Hybrid
Approach (Incident History).

Figure 3: Workflow diagram.

4.1 Workflow
Theworkflow for alarm verification, shown in Figure 3, consisting
of stream processing, batch processing and machine learning,
can be characterized as follows.

The stream processing part identifies all devices that trigger
an alarm within a certain observation period (the streaming
window). As part of the batch processing part, all devices that
triggered an alarm are analyzed in more detail by producing a
histogram of the number of alarms starting from a specific time
t . Finally, for all the new alarms in the given time window, a
machine learning algorithm verifies whether the alarm is true or
false, based on a classifier trained periodically offline (for example,
once per day during idle periods, such as after midnight).

Figure 4: System Architecture and Process Flow

4.2 System Architecture
An overview of the system we developed for handling the above
mentioned workflow is shown in Figure 2. The four main com-
ponents we developed are:

(1) Streaming Component. This component is responsible for
transmitting and receiving alarms. The simplified format
of an alarm sent by a Sitasys sensor through a Kafka
stream is shown on the left hand-side of Figure 4.We chose
Apache Kafka [21] for this component as it is the state-
of-the-art distributed streaming platform, highly scalable
and also easy to integrate with Spark. We coupled Spark
with Kafka through Direct Dstreams [44], which offers
exactly-once semantics "out-of-the-box". This is crucial in
our case in order to ensure that we neither miss an alarm,
nor process the same one multiple times. For more details
refer to [22].

(2) Batch Component (Alarm History). This component is re-
sponsible for long-term storage of alarms and for doing
batch analytics on the history of alarms. For this com-
ponent we chose to use MongoDB [33], both because of
its flexibility (we can store alarms directly as JSON-like
documents and query by fields, such as by location of the
alarm in order to compute a histogram) and because of its
scalability.

(3) Machine Learning Component (Verification Service). The
reception of a new alarm through the stream immedi-
ately triggers the computation of a classification (true/false
alarm) and the associated probability (confidence), based
on a machine learning model trained offline. The verifica-
tions will be used by the Alarm Receiving Centers in order
to prioritize incidents where an intervention (police or
fire department) is highly likely to be required. We chose
to implement this component using Apache Spark, first
because it is easy to scale-out when required - for exam-
ple, if more customers install alarm systems - and second,
because of its fault tolerance guarantees. Coupling Kafka
with Spark results in an exactly-once semantics streaming
application.

(4) Hybrid Approach (Incident History). For the hybrid ap-
proach we collect reports about fire and intrusion inci-
dents in Switzerland. The incidents are reported as textual
data, for example in RSS feeds, Twitter messages or web-
pages (see Figure 5). The goal is to use this historical data
in order to calculate an a-priori risk factor per each lo-
cation (village or city in Switzerland) and incorporate it
in the machine learning model. Our pipeline collects as
many reports as possible and then filters those pertaining
to relevant topics (fire and intrusion), based on a set of
keywords defined in the pipeline. Each incident report is
then annotated with a time and location, extracted directly
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Figure 5: Schema of the incidents history pipeline. In a
first step, reports from different sources, such as Twitter,
RSS feeds and web pages are collected. Next, reports re-
lated to relevant topics (e.g. fire, intrusion) are selected (fil-
tered). The remaining relevant reports are annotated with
a date, a location and a language and saved in MongoDB.

from the textual data or from the metadata (if available).
Finally, similar to the alarm history, we store the incident
history in MongoDB. The a-priori risk factors are defined
as the number of incidents per capita on location level.

4.3 Reflection on Design Choices
One of the major design choices was the architecture and technol-
ogy used for streaming processing, batch processing and machine
learning. For stream processing the main options available were
Apache Storm [39], Apache Kafka and Apache Spark Streaming
[44]. We have decided for the combination of Apache Kafka and
Spark Streaming due to the good integration and the scalability
of both systems. Even though Storm allows topologic modelling
of streaming tasks, we decided against it since our application
does not have a complex dependency between tasks.

In order to combine stream and batch processing, the design
choices would be either the more traditional Hadoop stack for
batch processing combined with Storm for streaming processing,
or the more recent, in-memory, Apache Spark technology. We
have chosen the latter due to its tighter integration of function-
ality (stream and batch processing as well as machine learning
available in a single framework). This was an important advan-
tage for our industry partner Sitays, in order to decrease the
complexity of the overall system architecture, as well as to re-
duce maintenance costs and required skills of their workforce.

At the start of our project, Spark Structured Streaming was
marked experimental, therefore not yet production ready, hence
we decided against it. Moreover, our industry partner has a large
collection of alarm data stored in MongoDB which should be
leveraged. After analyzing the integration of Spark with Mon-
goDB, we decided for this design option since it allowed us to
re-use technology already existing at our industrial partner and

to effectively combine it with state-of-the art stream process-
ing. Moreover, MongoDB is flexible to schema changes, which
makes it a better option for long-term storage than a traditional
Relational Database, given that in our use case the structure of
an alarm differs across sensor types and even across software
updates. Using MongoDB allowed our industry partner to easily
ingest data from new alarm installations, even when the structure
of the new alarm data did not match the structure from previous
installations. In our experiments we achieved satisfying scala-
bility results of MongoDB queries for large datasets. For more
details see Section 5.

Using Spark ML for machine learning was a natural choice
since it is readily integrated within the Spark technology stack.
However, since Spark ML did not provide deep learning algo-
rithms at the start of our project, we used various other deep
learning frameworks such as DeepLearning4J [15] as well as
Theano [41] and Lasagne [28].

5 EVALUATION
In this section we first describe the alarm datasets we used for our
experiments, namely from Sitasys, as well as from the cities of
London and San Francisco. Next, we describe the incidents dataset
we used for the hybrid approach to enrich the Sitasys alarm
dataset. This is followed by a description of our machine learning
experiments in order to classify false alarms and a description of
our experiments using the hybrid approach in order to improve
the machine learning pipeline. Finally, we present the end-to-
end evaluation of our system, which includes stream processing,
batch progressing, as well as machine learning. Our results show
that using production data we can process 30K alarms per second
with an accuracy of above 90%.

5.1 Alarm Datasets
In order to build and evaluate a model for false alarm verification,
we started by analyzing the alarm data provided by our industrial
partner, Sitasys. This data is presented in Section 5.1.1. First,
we selected the set of features best suited for verification. We
describe this in Section 5.3. Then, in order to evaluate how well
we can extrapolate using this set of features for similar use cases,
but also to see how well our algorithms scale, we looked for
larger datasets available online. We identified two candidates,
namely the London Fire Brigade Data and the San Francisco Fire
Department Data. The most relevant features from all 3 datasets
are shown in Table 1. In the next sections we describe each dataset
in more detail.

5.1.1 Sitasys Production Data. Real alarm data from October
2015 to April 2016 was collected and anonymized by our indus-
trial partner Sitasys, gathering a total of 350K alarms in roughly
equal proportions of true and false alarms. The main types of in-
formation provided are location (ZIP code), device address (MAC
and IP address), timestamp, alarm duration, type of incident (fire,
intrusion, etc.) and a few other sensor-specific information (type
of sensor, software version, etc). The ObjectType feature classifies
the type of supervised premise the alarm originates from: indus-
trial, residential etc. The location information was anonymized
(hashed) for privacy reasons. One important challenge we faced
when using this data is the lack of real labels (i.e. indications
about true and false alarms). These could not be provided to
us in due time from the Alarm Receiving Centers that register
them. However, in collaboration with Sitasys we have defined a
heuristic to infer the labels, which is to consider the duration of
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Dataset Location Time Type of Location Incident Type Label
Sitasys ZIP code Timestamp ObjectType Alarm Type Alarm Duration
London ZIP code Date/TimeOfCall PropertyType PropertyCategory Incident Group

San Francisco Zip code Of Incident ReceivedDtTm - Call Type Call Final Disposition
Table 1: Features of the three data sets

Figure 6: London Fire Brigade Statistics

the alarm as a threshold - the more quickly the alarm was reset
after being triggered, the higher the likelihood that the alarm
was false, given that the customer was able to reset it in a short
period of time. We chose several different values for the alarm
reset duration threshold between 1 and 10 minutes. We used 50%
of the alarms for training (roughly equal amount of true and false
alarms) and the remaining 50% for testing. Moreover, we were
interested in the response time for an incoming alarm on a data
stream, therefore we also simulated a stream of new alarms from
the testing data and tested the performance of our verification
system. Details are given in Sections 5.3 and 5.5.

5.1.2 London Fire Brigade Data. The London Fire Brigade
(LFB) is the busiest fire and rescue service in the United Kingdom
and one of the largest firefighting and rescue organizations in the
world. We used the open data of every incident reported since
January 2009, available online1. The dataset provides information
about the location, time and type of incident for all records.

Figure 6 shows the high-level statistics of incident groups
between 2009 and 2016, as well as the ratio of false vs. true alarms
recorded. In total, 885K incidents were recorded, out of which
430K (48%) were false. This dataset is therefore very convenient
to use for our classification algorithms, because the true and false
classes are almost equally balanced, which makes it suitable even
for algorithms that are very sensitive to unbalanced data (e.g.
Random Forest).

This dataset is useful for two purposes: first, it allows us to
test hypotheses on a coarser time-scale, since the incidents are
recorded from 2009 until today, meaning that for example we
can try to draw statistics and make verifications based on the
days of the year with peaks of incidents. Second, it serves as a
scalability test as the number of incidents is twice as larger as
those provided by our industrial partner.

1https://data.london.gov.uk/dataset/london-fire-brigade-incident-records

5.1.3 San Francisco Fire Department Open Data. In an attempt
to extend our study, we also considered the San Francisco Fire De-
partment Dataset (available online2), which contains 4.3 million
incidents from the city of San Francisco from the year 2000 until
today. We found that, in contrast to the London Fire Brigade Data,
the quality of the San Francisco dataset is lower, given that more
than half of the records (2.5 million) are not properly labeled, the
Call Final Disposition - which denotes the final classification of
the incident - marked "other". Only 105K are explicitly labeled as
"No Merit" (false alarm), i.e. less than our production data from
Sitasys from 2015 and 2016 only. Moreover, as shown in Table 1,
there is no entry in the dataset that indicates the type of property,
which in our study of the Sitasys alarms proved to be an impor-
tant feature for the classifier. An added problem is the diversity
of the types of incidents recorded. For example, more than half
of the entries are medical incidents, which are not present at all
in the other two datasets. Around 1 million incidents are alarms
and fire incidents and only a small fraction of these are properly
labeled.

All in all, in our study we could only consider incidents of
type "alarm" and "fire" that have a proper label indicating either
true or false alarm. Unfortunately, this only results in around 12K
incidents, much less than we initially expected. We report results
from this small subset in the next section. Finally, we note that
we have tried our classification algorithms against all properly
labeled incidents (including medical, hazards etc) but for this
purpose we did not obtain meaningful results - only around 53%
accuracy.

5.2 Incidents Dataset
This dataset is a collection of reports about real fire and intru-
sion incidents, gathered from online resources, such as RSS feeds,
Twitter or relevant web pages (police, fire brigades etc.). This ex-
ternal data is used in order to enrich the knowledge base provided
by the Sitasys Production Data. In particular, we annotate alarms
with an a-priori risk factor, based on their location. Since the
Sitasys Production Data only consists of data from Switzerland,
we focus on collecting reports about Swiss incidents. For exam-
ple, we collected messages related to incidents from 50 different
Twitter accounts (cantonal police, fire brigade departments and
others) from January 2015 until end of October 2017. Our pipeline
checks, for each message, whether it contains information about
intrusions or fire (see Figure 5). Next, it identifies the language,
the date and the location of the incident, either from the meta-
data (if available) or directly from the textual data (the message).
However, since the metadata does not contain information about
ZIP codes, the granularity of each location is either a city or a
village. In turn, the granularity of our alarm data set is slightly
more detailed, namely, at the level of ZIP codes. For example,
some larger cities, such as Basel and Zurich, have multiple ZIP
codes for different districts of the city. Since the incidents dataset
does not have the same level of granularity as the alarms dataset,

2https://data.sfgov.org/Public-Safety/Fire-Department-Calls-for-Service/
nuek-vuh3/data
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Figure 7: Discrepancy between the amount of incidents
and amount of true fire and intrusion alarms in the two
data sets.

Figure 8: Screenshot of the security map with focus on
Zurich (Switzerland). Red areas imply a higher risk level.

we can only approximate an aggregated risk over all districts of
a large city with several ZIP codes (see Table 2).

The dataset contains 5,056 descriptions of incidents, out of
which 2,743 are in German, 1,516 in French and 797 in English.
The corresponding incidents are located in 1,027 distinct cities
and villages of Switzerland, covering around 1/4 of all cities and
villages in Switzerland. The discrepancy between the number
of incidents in the dataset and true fire and intrusion alarms in
the Sitasys Production Data is shown in Figure 7. For example,
the first entry in Figure 6 shows the number of true fire and
intrusion alarms for the location with ZIP code 3013 provided
from the Sitasys Production Data (lower bar shown in light gray).
However, the number of reports about fire and intrusion incidents
is significantly smaller (upper bar shown in black).

Finally, we use the incidents dataset to build and display a
security map of Switzerland, shown here in Figure 8. The fig-
ure shows the risk of different areas in the canton of Zurich,
Switzerland. Green areas indicate safe regions, whereas yellow
indicate medium-risk and finally, red implies higher risk. For a
detailed discussion on the calculations of the risk levels we refer
to Section 5.4.

#-true-alarms #-incidents
ZIP codes Basel intrusion fire intrusion fire

4001 43 3 [unknown]
4051 142 3 [unknown]
4057 304 0 [unknown]
4058 0 55 [unknown]

Total for city of Basel 489 61 10 464
Table 2: Divergence between the number of true alarms
in different districts in Basel (Switzerland) in the Sitasys
Production Data and the number of incidents collected in
the Incident Data. The Incidents Data only contains loca-
tion information at a coarser granularity (per city / village)
than the Sitasys alarm data (per ZIP code).

5.3 Machine Learning
We chose 4 of the most commonly used algorithms for ma-
chine learning: Random Forest, Support Vector Machine, Logistic
Regression and Deep Neural Networks (DNN). For the first 3
we used the readily available implementations from Spark ML,
whereas for DNNs we developed an application using DeepLearn-
ing4J [15] as well as Theano [41] and Lasagne [28].

For feature selection we first evaluated which of the alarm
fields best separate true from false alarms. We used the Pear-
son correlation inspired by [36] to find dependencies between
features and labels as well as dependencies among features. In
addition, we ran a grid search for each algorithm, varying the
features used to train the models, and finally selected the follow-
ing most promising features: location (for privacy reasons we
only received hashed location information), day of week, hour
of day, alarm type and property type.

Although in our experimental evaluation we only take into
account accuracy in terms of number of correct verifications, we
note here that, given that our main use case is a decision support
system for human operators in the Alarm Receiving Centers,
not only is the verification important, but also the probability
(confidence) associated with it, as the human operator will likely
take a decision according to this metric rather than just the
verification.

For our experiments we used the following hardware setup:
• For initial experiments using a single Producer, single
Consumer workflow, described in Section 5.5, we used
two Intel Xeon E5-2620 machines at 2.4 GHz with 8 GB
RAM.
• For multi-node Spark experiments we used a cluster of 4
Intel Xeon E5-2640 CPUs at 2.5 GHz with 16 GB of RAM
each.
• For the DNN experiments we used 1 Intel Xeon E5-2650
with 1 Titan X GPU.

5.3.1 Accuracy. As our main use case is to verify false alarms
based on the alarm data from our industrial partner, we focused
on extracting the features that best separate true from false alarms
in the Sitasys dataset. We then investigated how well the equiva-
lent set of features in the open data sets from London and San
Francisco can be used to verify false alarms. We show in the next
subsections that our approach can be easily transfered to these 2
similar use cases with good accuracy results.

5.3.2 Parameter Tuning. The first important parameter we
investigated for the Sitasys alarm dataset was the threshold for
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Figure 9: Verification Accuracy vs. ∆ t (Sitasys Dataset)

the alarm duration. This parameter is used as a heuristic to deter-
mine whether the alarm is true or false. For example, when using
a threshold of 1 minute, all alarms with a duration smaller than
1 minute are considered false. The intuition is that an alarm that
was reset (turned off) within a very short time is likely false (the
owner immediately shut it off). In order to evaluate the effective-
ness of our machine learning approach, we experimented with
various values for delta t ranging between 1 and 10 minutes. The
goals of our evaluation were as follows: (1) Evaluate the accu-
racy of four different machine learning algorithms. (2) Study the
impact of various deltas t on the verification accuracy. The idea
was to show that the results are stable with respect to changes
in the choice of delta t. The results are shown in Figure 9. We
can see that on average the best classification quality among all
algorithms is achieved with the smallest threshold, of 1 minute,
and that moreover in all cases Random Forest and Deep Neural
Networks achieve the best performance, of over 90% accuracy,
independent of the choice of delta t, which means the accuracy
results are stable across changes in the choice of this parameter.

Next, the selection of hyper parameters for each of the learning
algorithms (e.g. architecture of neural network) was essential for
the verification accuracy. We used grid search to tune the hyper
parameters. Tables 3, 4, 5, 6 and 7 show the best ones for each of
the 4 algorithms we tested.

Parameter Value
Maximum depth of a tree 30
Number of trees to train 50

Table 3: Parameters for Random Forest

Parameter Value
Maximum number of iterations 2,000

Step size 1.0
Mini batch fraction 0.2

Regularization parameter 1e-2
Kernel Linear

Update Function Squared L2
Table 4: Parameters for Support Vector Machine

5.3.3 Training Time. One important factor we investigated
to ensure that our prototype is usable in practice is the train-
ing time. Essentially, this determines how fast we are able to

Parameter Value
Maximum number of iterations 500

Convergence tolerance of iterations 1e-6
Table 5: Parameters for Logistic Regression

Parameter Value
Maximum number of epochs 10,000

Mini batch size 200
Loss function Cross Entropy

Update function Nesterov Momentum
Learning rate 0.1
Momentum 0.9

Table 6: Parameters for Deep Neural Network

Layer #Nodes Type Activation
Function

Input 803 Nodes
Hidden 1 50 Nodes Fully connected ReLU
Hidden 2 2 Nodes Fully connected ReLU
Output 2 Nodes Fully connected Softmax
Table 7: Architecture of Deep Neural Network

rebuild our models, a step that is required periodically (ideally,
upon reception of a large enough number of new events, for
example once per day). Table 8 shows the training times for our
classification algorithms, using the 3 datasets: Sitasys, London
Fire Brigade (LFB) and San Francisco Fire Department (SF). The
short training time for the San Francisco dataset is explained
by the fact that we can only use around 12K incidents properly
labeled from the alarm and fire categories. Another observation
is that for all the datasets, the smallest training time is required
for Logistic Regression, while Deep Neural Networks take much
longer to train. Moreover, we use the One Hot Encoding for this
algorithm, which means we end up with twice as many input
features (around 800) for the Sitasys dataset than for the oth-
ers (around 300), given that we also use some sensor-specific
categorical features in the case of Sitasys (each of the values of
these attributes becomes a separate feature when using One Hot
Encoding).

Algorithm Sitays LFB SF
Random Forest 600 1200 75

Support Vector Machine 200 480 20
Logistic Regression 100 60 10

Deep Neural Network 5100 2460 60
Table 8: Training Time [sec] for Machine Learning Algo-
rithms

5.3.4 Accuracy Results. Figure 10 presents a comparison of
the accuracy obtained for the 3 datasets we tested. We can see
that the best results are obtained for the Sitasys dataset with
a classification accuracy of up to 92% for Random Forest. The
promising results can be explained by the fact that, apart from
the generic features (Location, Property Type, DayOfWeek and
HourOfDay), the Sitasys dataset contains a few other features
that can identify technical faults more easily (sensor-specific in-
formation), which allows the algorithms to better classify false
alarms. By contrast, for the LFB and SF datasets we could only use
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Figure 10: Verification accuracy comparison using four
different machine learning algorithms for three Sitasys,
London Fire Brigade (LFB) and San Francisco Fire Depart-
ment (SF) Datasets. RF = Random Forest, LR = Logistic
Regression, SVM = Support Vector Machine, DNN = Deep
Neural Network

the generic features. However, it is interesting to note that this
still results in fairly good accuracy, of around 85%, for the LFB
dataset (best result is obtained for the Support Vector Machine)
and 80% for the SF dataset (Random Forest). As mentioned pre-
viously, the San Francisco dataset does not contain information
regarding the type of property an alarm originates from, which
could explain the lower accuracy. Furthermore, the volume of
the training data we could select from the SF dataset is generally
too low (only around 12K alarms).

Another interesting result is that, although there are some
differences among the accuracy results for the 4 algorithms we
tested, they are never higher than 5%. This is encouraging for
two reasons. First, because some algorithms require less training
time and less resources to run (Logistic Regression), therefore
they could be chosen over the others in case response time is
more crucial than accuracy. Second, because more generally this
validates our approach, given that the good accuracy is not an
artifact of a particular choice of machine learning algorithm, but
rather a consequence of the feature selection, which accurately
describes the problem we aim to solve. On the other hand, a
5% improvement in classification accuracy (from 85% to 90%)
effectively means reducing the error rate by 50%, which means
the best algorithms perform significantly better.

5.4 Hybrid Approach
For the hybrid approach we collected descriptions of fire and in-
trusion incidents from different online resources, such as Twitter,
RSS feeds, or web pages collected through a provider of web-
based data feeds, webhose.io. Each incident is annotated with the
time and location, extracted from the original message or web
page. We use this information to calculate an a-priori risk factor
for intrusion and fire alarms, based on the number of incidents
that happened in a certain location (village or city), normalized
by the population size. Next, we evaluate the impact of the in-
clusion of a-priori risk factors on the accuracy of the machine
learning model.

We chose three different ways to include the a-priori risk
factors into our machine learning pipeline:

(1) absolute risk factor
(2) normalized risk factor

(3) binary risk factor

(1) The absolute risk factor is calculated by dividing the num-
ber of incidents found in various resources by the population in
the annotated location. (2) The normalized risk factor has a range

of 0 to 1, and is calculated as x ′ =
x −min(x )

max (x ) −min(x )
, where x is

the absolute risk factor of a location. (3) The binary risk factors
are either 0 or 1. The risk factor is 1, if the incident is in the most
frequent 25% locations, otherwise the risk factor is 0.

Our efforts for the hybrid approach are still in the early stages,
and the data we have collected so far is limited. As a consequence,
for the evaluation we only use alarms with a ZIP code where
we have corresponding reports about incidents. This reduces the
number of alarms from about 350,000 to 130,958 (see Figure 7).
As mentioned previously, the granularity of the alarm data is on
ZIP code level, while the granularity of external reports about
incident data is on city or village level. To analyze the influence
of this discrepancy in granularity, we run additional experiments
where we only select alarms about small cites or villages that
have one ZIP code rather than multiple ones. This reduces the
number of alarms from around 130,958 to 37,241 and further the
number of incidents from 5,056 to 4,379 (see Table 9). Moreover,
the Sitasys Production Data provides more alarm types than fire
and intrusion. Hence, we needed to filter only those alarms that
are triggered due to fire or intrusion.

Table 9 shows the experimental results for alarm classification
of four different scenarios (a-d) and three different a-priori risk
factors, compared to a baseline approach. The baseline shows
the alarm classification accuracy without a-priori risk factors (as
reported in Section 5.3). The results are averaged over 10 runs for
each experiment. In the scenario (a), using all locations and all
alarms, we have around 130,958 alarms. This scenario only shows
a small increase of 0.04% of the classification accuracy using the
normalized risk factor. Scenario (b) uses all locations, but only
the fire and intrusion alarms, which reduces the training data to
24,934 alarms. In this scenario, the results show that the absolute
risk factor leads to an increase of 0.22% in accuracy compared to
the baseline.

The scenarios (c) and (d) use only locations with a single ZIP
code attached. Therefore we make sure that the a-priori risk fac-
tor does not contribute wrong information to larger cities with
multiple ZIP codes. Out of the total of 130,958 alarms, 37,241
refer to cities with single ZIP codes. This implies that around 2/3
of the alarms are located in larger cities. The results of scenario
(c) show an improvement of 0.4% for the absolute risk factor,
compared to the baseline. The normalized and binary risk factors
also have a slight positive impact. Finally, scenario (d) uses only
fire and intrusion alarms for cities with single ZIP codes. There-
fore, the number of alarms is reduced to about 10,000 alarms. In
this scenario, the impact of applying a-priori risk factors is the
strongest, with an increase of 1% compared to the baseline.

Overall, the results obtained by including the external, unstruc-
tured data are still preliminary. The scarcity of this data, coupled
with an uneven distribution of the reported incidents makes it
difficult to measure a significant impact. We still consider the re-
sults promising, as they show a) that adding in potentially noisy
textual information from third-party sources does not degrade
the results even though we are using a limited set of collection
and filtering approaches and b) that a small positive impact can al-
ready be seen when focusing the analysis on the subset of alarms
for which we have matching unstructured data.
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all locations single ZIP code locations
all types F/I alarms all types F/I alarms

scenario (a) (b) (c) (d)
baseline 89.35 85.73 87.16 86.56
ARF 89.29 85.95 87.56 87.45
NRF 89.39 85.67 87.41 87.56
BRF 89.31 85.79 87.51 87.48
#-incidents 5,056 4,379
#-alarms 130,958 24,934 37,241 10,036

Table 9: Accuracy of alarm classification using three dif-
ferent a-priori risk factors and four scenarios: (a) all loca-
tions, all alarm types, (b) all locations, only fire & intru-
sion alarms, (c) single ZIP code locations, all alarm types
and (d) single ZIP code locations, only fire & intrusion
alarms. ARF = absolute risk factor, NRF = normalized risk
factor, BRF = binary risk factor.

5.5 End-to-End Data Processing
Oncewe have trained and tested themachine learning algorithms,
the next step was to build the end-to-end pipeline to integrate
machine learning into stream and batch processing. In particu-
lar, as soon as an alarm arrives, a machine learning algorithm
classifies in real-time whether the alarm is true or false. In ad-
dition, historical data analysis is performed on the sensors that
triggered the new alarms. The goal of our experiments was to
evaluate the maximum throughput of our system, identify poten-
tial bottlenecks and to derive lessons learned from building such
a production system.

5.5.1 Setup of Streaming System. In order to test the scal-
ability of our prototype, we handcrafted a Producer application,
which simulates a stream of new alarms. The stream is created
by randomly selecting alarms from the test set (alarms from our
production data, that have not been used for training the machine
learning model) and writing them into Kafka, at a controlled rate
(alarms per second). We aim to to evaluate the response time of
our system, which runs as a Consumer application.

First, we are interested in measuring the maximum through-
put (number of verified alarms per second) on the consumer side.
We assume that the training phase has already been completed
offline and the model is readily available for computing classfica-
tions. Second, we must take into account the maximum latency
(system response time) per alarm, as it is critical to ensure that a
human operator in the Alarm Receiving Center can get a timely
verification result. Currently we set the goal of responding in at
most 10 seconds since the reception of the alarm at the ARC.

5.5.2 Identifying Bottlenecks.
Throughput of Producer-Consumer. With a setup as simple
as just one producer and one consumer application (running
each on a separate machine connected through a 1 GB Ethernet
network), we were able to identify several bottlenecks in our
system. First, our tests showed that both the producer and the
consumer were processing events at an unexpectedly low rate
(about 12K alarms produced per second, where one alarm is less
than 1KB in size), even if Kafka benchmarks made us expect much
higher throughputs. After further investigation we found that
the bottleneck in both applications was in fact the serializer used
for writing alarms into, and reading them from, the Kafka stream.
At first, our implementation used the Jackson serializer, which
turned out to be a poor choice for small objects [18], where the
Gson serializer is more appropriate. We were surprised to find

Figure 11: Scalability Jackson vs Gson serializer

that just replacing this led to a 2x speedup in both applications.
Figure 11 shows the results. We can see that by switching from
the Jackson serializer to the Gson serializer the throughput of
the producer more than doubled to about 25K alarms per second.
On the consumer side, the increase was slightly less than double.
This is due to the fact that the consumer has a higher computing
load than the producer.

DetailedAnalysis of Consumer. Next we analyzed the com-
puting time of the consumer in more detail (Figure 12). In particu-
lar we were interested in the time contribution of stream process-
ing (Spark Streaming), batch processing (MongoDB query) and
machine learning (Spark ML). The breakdown of time per compo-
nent using a 10 second window of alarms shows that the majority
of time is spent in the machine learning part (around 80% of the
total time) to classify. We also notice that an insignificant fac-
tor goes to the historic component (retrieving the histogram of
alarms originating from the same addresses as those in the time
window). The remaining time goes to the streaming component:
first, for deserializing alarms into the native Spark data format,
RDDs (Resilient Distributed Datasets [43]), then for extracting
all distinct addresses from the RDD etc.

Kafka Optimization. After this step, we further noticed that
although our consumer machine has 8 cores, none of the compu-
tations were parallelized, although Spark was configured to use
all the cores on the local machine. After investigating this we
found that by default, Kafka streams are not partitioned, mean-
ing that all RDDs will be processed on a single execution thread.
To fix this, there are 2 options available: first, creating multiple
streams and reading from them in parallel - this would be useful
for the case where, for instance, different customers would be
registering alarms to different Kafka streams. However, since
for the moment we collect all alarms on the same stream and
aim to test per-stream scalability, we chose the second option,
which is to configure the repartition number of the Kafka stream,
when creating it from the Spark application. In order to test the
maximum throughput on the Consumer side, we created multiple
threads in the Producer application (to make sure that this does
not become the bottleneck) and were in this way able to reach a
maximum throughput per consumer of around 30K alarms per
second.

6 LESSONS LEARNED
In this paper we have presented an end-to-end system for veri-
fying false alarms in real-time based on a combined stream and
batch processing approach. Our results demonstrated that for
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Figure 12: Breakdown of time per component in the Con-
sumer Application

the real production data our machine learning algorithms gained
an accuracy of more than 90%. However, even a 99% verification
accuracy might not be good enough and could potentially result
in missing a fire that burns down a building when no intervention
force is deployed. For our industry partner this was the major
issue about accepting our approach in a real-world setting. In
order to overcome this problem, we introduced the following
solutions: (1) The end user (property owner) is in the loop to
verify alarms. For instance, before an alarm is sent to the alarm
receiving center, the end user can verify it. As an example, let us
assume apartment X systematically triggers fire alarms after mid-
night. A closer inspection shows that the alarms were triggered
by the kids since the family has forgotten to de-activate the alarm
during the periods the kids went to the bathroom. In this case,
the property owner could verify the false alarm and hence no in-
tervention force would be sent. (2) Every alarm is prioritized and
evaluated by a human operator. This gives the human operator
more time to react to the most critical alarms first and has the
potential to drastically decrease human error due to information
overload within a short time interval. (3) We provide histograms
about historic alarms that help identify recurring problems.

In the next few sections we will report on further lessons
learned in the areas of machine learning and Spark processing.

6.1 Machine Learning
• Provide probability of verification
Although in our experimental evaluation we only take into
account accuracy in terms of number of correct classifica-
tions, given that our main use case is a decision support
system for human operators in the Alarm Receiving Cen-
ters, not only is the verification important, but also the
probability (confidence) associated with it. This allows hu-
man operators to take a decision according to this metric
rather than just the classification. Luckily, most imple-
mentations of machine learning (classification) algorithms
provide this confidence factor by default. We used the
probabilities associated with verifications for the Random
Forest or Logistic Regression classifiers from Spark ML as
well as for the Neural Networks implementation from the
Theano library. Moreover, we provide operators a way to
analyze the history of the sensors that triggered alarms
in order to get a better understanding about the nature of
the new incoming alarms.
• Keep it simple

Our experience in testing different machine learning algo-
rithms proved that, while the accuracy was similar for all
4 algorithms we tested, there was a big difference in the
training time (from a couple of minutes for Logistic Regres-
sion to more than 1.5 hours for Deep Neural Networks). It
is therefore crucial to always try out the simplest hypothe-
ses first (even when new advances in the field make it
tempting to start with the latest, but much more complex
algorithms). This is even more so the case in time-critical
applications, where it could be desirable to trade off some
accuracy in order to gain in response time.
• Design for reusability
While evaluating our prototype we found it extremely use-
ful to have a generic data type that describes our problem,
e.g. LabeledAlarm, that would not be tied to our particular
use case (the data set from Sitasys). We therefore crafted
a generic class with categorical features like Location,
Property Type, HourOfDay, DayOfWeek, which generally
describe alarms (and which can be enriched with other
features by extending the class if needed). This minimized
the efforts required to adapt and validate the algorithms
for new, similar, datasets such as the London Fire Brigade
or the San Francisco dataset. Moreover, even if you do not
foresee using the algorithms in a new context, it is very
likely that the structure of the input data from the initial
use case will change over time (in fact, this happened dur-
ing our project’s lifespan), either because of technology
changes, software updates or because new components
are added in the system (e.g. new types of sensors). There-
fore having code that describes the problem in a generic
way allows for reusability and adaptability whenever the
structure of the input data changes.

6.2 Spark Processing
Although Spark can be very convenient to use, allowing for rapid
productivity thanks to its integration of different components
in a single platform, it may also lead to suboptimal performance
when misconfigured or improperly used. When using Spark we
found the following considerations useful:

• Cache data that will be reused
Spark’s lazy evaluation leads to unnecessary re-computations
for data that is not explicitly cached. This side effect is not
apparent by just reading the code. We first noticed this
problem when evaluating the deserialization mechanism
on the consumer side - not only did we notice this step was
too slow, it was also executed twice, because we reused
the input streaming data for both machine learning and
for querying historic data, without explicitly caching it.
• Make use of the monitoring UI
Spark provides an extremely useful set of statistics, both
for batch and streaming, which makes it easy to monitor
the application while it is running. The most important
statistics we used were the level of parallelism for batch
computations and the average delays for stream process-
ing. Both offered insights into points in the application
that performed suboptimaly.
• Make sure the parallelism level is the expected one
One of the problems we noticed by examining the stats
in the Spark UI was that input data read from Kafka was
always processed serially instead of in parallel. After read-
ing through the documentation, we found that by default,
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Kafka streams are not partitioned. Therefore, Spark will
not process incoming data in parallel, unless explicitly
configured in the code when setting up the Kafka stream.

6.3 Hybrid Approach
The lessons we can draw from our experiments with the hybrid
approach are still limited. We believe there is great potential in
integrating information from third-party sources into the verifi-
cation, but to fully leverage this potential, substantial additional
research is needed. In this spirit, the following lessons should
be read more as suggestions on how to improve on our initial
approach:
• Integrate as many external sources as possible
Thus making sure the sources cover the alarms as broadly
as possible. We have shown that the highest impact can
be measured when restricting analysis on the alarms that
have corresponding incidents in the external sources.More-
over, our preliminary results show that this has the poten-
tial to positively impact classification accuracy.
• Localize incidents with finer granularity
This will allow combining incidents and alarms more di-
rectly, which should be especially beneficial in heavily
populated (urban) areas, where a-priori risks for incidents
such as intrusions may vary significantly from one area
(neighborhood) to the next.

7 CONCLUSIONS
In this paper we presented the design and evaluation of an alarm
verification system using real data from an industry application.
The problem is very challenging since it requires a combination
of stream processing, batch processing and machine learning. We
have built the system using Spark Streaming (stream processing),
MongoDB (batch processing) and Spark ML (machine learning).
Our experiments with various machine learning algorithms show
that the system can classify alarms with an accuracy of more than
90% at a streaming rate of about 30K alarms per second, including
historical data analysis. To further extend our system, we also
presented preliminary results of an integration of unstructured
data to increase the classification accuracy. We concluded with
an extensive list of lessons learned that give insights for both
academics and practitioners who want to build a similar system.
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ABSTRACT
Enterprise customers of cloud services are wary of outsourcing

sensitive user and business data due to inherent security and

privacy concerns. In this context, storing and computing directly

on encrypted data is an attractive solution, especially against

insider attacks. Homomorphic encryption, the keystone enabling

technology is unfortunately prohibitively expensive. In this pa-

per, we focus on finding k-Nearest Neighbours (k-NN) directly on

encrypted data, a basic data-mining and machine learning algo-

rithm. The goal is to compute the nearest neighbours to a given

query, and present exact results to the clients, without the cloud

learning anything about the data, query, results, or the access and

search patterns. We describe a novel protocol in the two-party

cloud setting, using an underlying somewhat homomorphic en-

cryption scheme. In comparison to the state-of-the-art protocol

in this setting, we provide asymptotically faster performance,

without sacrificing any security guarantees. We implemented

our protocol to demonstrate that it is efficient and practical on

large and relevant real-world datasets and study how it scales

well across different parameters on simulated data.

1 INTRODUCTION
Finding k-Nearest Neighbours (k-NN) is viewed as one of the

simplest data mining algorithms for discovering patterns. It is

non-parametric, making no assumptions about underlying data

distributions. It is also a lazy learning technique, where no at-

tempt is made to generalize the data until a query is presented.

The goal of a k-NN algorithm for a given query is to find its k

“nearest" neighbours according to a suitable measure of nearness

or distance. It has applications in finding candidate patterns for

image segmentation, location-based search, and in the classifica-

tion of symptoms and diagnosis over medical records, to name a

few. These patterns may be subsequently used as inputs for more

sophisticated learning algorithms.

In the context of cloud computing services, client data records

stored on clouds are increasingly confidential in nature, from

customer transactions, order histories, credit card numbers and

other personally identifiable information (PII). Algorithms, and

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the 21st
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especially algorithmic parameters, e.g., in recommendation sys-

tems, are also proprietary and sensitive. Inadvertent or unautho-

rised disclosure of data or computation can have serious legal or

business consequences. In order to protect the confidentiality of

sensitive information, clients can store encrypted data in data

centres. However, it is not cost effective to import back all the

data to the client, decrypt and perform computations, as this

negates the advantages of moving to the cloud platform in the

first place.

The Secure k-NN problem for encrypted data has been a topic

of active research [13, 14, 34, 39–41]. The goal is to compute k-
NN over encrypted data stored in the cloud, given a query, with

the requirement that the cloud provider does not get any infor-

mation about the plaintext values in the database, the query, the

results, the access patterns during query evaluation, and search

patterns. The technology to work effectively on encrypted data is

provided by a class of encryption schemes called homomorphic

encryption (HE), which allow one to compute arbitrary functions

on encrypted data and produce encrypted results. Clients, who

have the secret keys can decrypt and use these results safely,

without revealing the data or results to the servers. Fully HE [16]

schemes are expensive and impractical for now [12]. Existing

solutions for Secure k-NN, therefore, work in one of two models:

the centralised (private) or the two-party (public with multiple

servers) cloud model. These solutions rely on a combination of

partially or somewhat homomorphic schemes (PHE or (S)HE) for

computation [14, 28, 39] of simpler mathematical functions, such

as order preserving encryption, homomorphic addition, com-

putation of limited degree polynomials, etc., which are faster

to compute. These choices impose different tradeoffs on com-

putation and communication overheads, and provide different

security guarantees, making this a rich field for new research.

We present a new protocol in the two-party honest-but-

curious cloud model for computing k-NN on encrypted data,

which is asymptotically faster than the current state-of-the-art

protocol [14], without compromising on strong security guaran-

tees. We use LFHE (leveled fully homomorphic encryption) [9],

and compute squared Euclidean distances directly on encrypted

data. In order to compute the ranking among the distances, we

transform the distances suitably to preserve their order and of-

fload the comparison to a federated public cloud, who has secret

keys. Since this cloud has access only to transformed results of

computations performed on plaintext data, we show that in spite
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of this knowledge, this honest-but-curious cloud does not learn

anything useful about the original database, the results, or the

query.

We implement our protocols and run experiments on two real-

world datasets from the UCI machine learning repository
1
: the

cervical cancer (risk factors) dataset, and the default of credit card

clients dataset. Both datasets have a large number of dimensions

(32 and 23 respectively). Our implementation shows that we are

able to find k-NN very efficiently: 166 s on the cancer data and

373 s for the credit card dataset for our secure version for an

8-NN query, making our implementation practical for real-world

applications. This trend is also echoed in the simulation results

on synthetic datasets, to study the sensitivity of our protocol to

various parameter choices empirically.

The rest of the paper is organized as follows: In Section 2 we

present background information about our adversary and cloud

models as well as a brief tutorial on homomorphic encryption.

In Section 3 we present our protocol in detail, followed by a

security analysis in Section 4. We describe our implementation

and experiments in Section 5, relevant related work in Section 6,

and conclude with future work in Section 7.

2 BACKGROUND
In this section, we present our two-party cloud architecture and

describe our adversary model and trust assumptions. We also

specify the Secure k-NN problem in terms of what functions

need to be computed on encrypted data, and briefly introduce

homomorphic encryption, with the goal of making this paper

self-contained.

2.1 Cloud Architecture
The security implications of outsourcing data or computation

to cloud servers need to be studied carefully. There are many

deployment choices, including private clouds, public clouds and

hybrid clouds. For enterprises that place a high value on data

confidentiality and computational integrity, outsourcing data and

computation may not be a justifiable risk. Private cloud solutions

address this need, with services being accessible only within

enterprise intranets, with limited benefits of cloud computing

such as on-demand scaling and load balancing, as well as added

initial infrastructure and set-up costs to new services. At the

other end of the spectrum are the public clouds, where large

third-party owned server farms and data centres host client data

and computation services for hire. Two concerns stand out here:

insider attacks, where employees within the public cloud enter-

prise can observe and infer trade secrets, and side channels, e.g.,
inadvertent or indirect information leaks when data belonging

to different companies who may be competitors share the same

bare metal. Analysis of side channels is outside the scope of this

paper. A third model, the hybrid cloud model adopts a best of

both worlds where depending on the sensitivity of the data and

computation, enterprises may choose to offload only a part of

their services on public clouds.

Our Secure k-NN solution is specifically targeted at public

clouds. In particular, we work in what is called the two-party fed-

erated cloud setting, with two non-colluding public cloud servers,

which is introduced in Twin Clouds [11] and subsequently used

by the current state-of-the-art secure k-NN solution [14]. Feder-

ated clouds are an example of what are called interclouds [20], a

collection of global stand-alone clouds. Interclouds allow better

1
http://archive.ics.uci.edu/ml/

load balancing and allocation of resources and help in address-

ing specific scenarios, e.g., services that are region-specific and

require the data to be stored in a particular geography. Coordi-

nation of services across the intercloud can be centralized, or

peer-to-peer as in the case of federated clouds. A detailed survey

of the taxonomy of intercloud architectures is presented in [20].

2.2 Trust Assumptions
With federated clouds, as with public clouds, the trust model

is of an honest-but-curious or the semi-honest adversary, who

does not tamper directly with the computation or data. However,

the adversary is free to observe inputs and outputs, as well as

side-effects of computation and other behavioural characteristics

on the cloud networks and servers. This type of adversary is

different from the passive observer or the malicious adversarial

model traditionally considered in the past, as the adversary is

trusted to perform the computation correctly, but in addition has

access to the internal state of the service, which includes client

data. Such an adversary can observe the state of memory, and

network traffic, or study operating systems behaviour in response

to client queries. The choice of this particular type of adversary

is justified, as data owners have to relinquish this control to the

cloud service providers. While these exposures can be limited and

controlled by legal contracts and liabilities, the threat of a curious

insider can never be ruled out. This is where computing directly

over encrypted data fills the gap. The goal is that even though we

operate in the honest-but-curious adversary model, a malicious

insider cannot obtain meaningful information from the data or

the computation by observation. Further, we want to prevent

the adversary from learning database access patterns, such as

the set of (encrypted) result tuples returned corresponding to a

particular input query, as well as the search patterns of queries,

which may reveal information such as how many times the same

query was issued.

Given an honest-but-curious adversary, the task of computing

the k-nearest neighbours (k-NN) of a given query using a public

cloud server, with the objective of achieving the above security

goals in the cloud environment is difficult. One of the most attrac-

tive solutions is to use homomorphic encryption(HE). FHE (fully

homomorphic encryption) [16] schemes allow the computation

of arbitrary functions on encrypted data. Using FHE, data owners

can offload their encrypted data to the public cloud, keeping all

private or symmetric keys secret. When a client sends a query,

the query is also encrypted using the same secret key and sent

over to the cloud server. All computation on the cloud server is

done on encrypted data and the resulting encrypted result is sent

back to the clients, without compromising data confidentiality

or the integrity of computation, even in the honest-but-curious

adversary setting. Note that in this model, however, the actual

algorithm, which is the sequence of computational steps on the

data, is known to the insider, and is considered public. Care must

be taken to design the algorithm to prevent leakage of search

patterns and access patterns. Knowledge of the algorithm should

not reveal anything about the data, query or results. Such FHE

schemes however come at a significant operational cost and are

not currently practical. For example, the state-of-the-art homo-

morphic sorting algorithm [12], takes 2 minutes to just sort 64

data items (32 bit), whereas as we show in our paper in Section 5,

we are able to compute k-NN securely, with k = 2 for 30000

real-world data points (each point having 23 dimensions) in the

same time.
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To address performance issues of FHE, somewhat and par-

tial HE ((S)HE and PHE) schemes have been proposed, which

allow a restricted set of operations or sequences of operations

on encrypted data, and are therefore more efficient. Examples in-

clude Paillier encryption [27] (which allow encrypted additions),

LFHE [9], and BGN [8] (which allow computing restricted depth

functions on encrypted data). While using simpler and more ef-

ficient schemes with restricted functionality, only a part of the

computation is performed directly on the encrypted data. When

more complex calculations are called for, these have to be done

on plaintext values of intermediate results. To do this, another

cloud provider is incorporated in the protocol. This cloud ser-

vice provider is also assumed to be honest-but-curious and has

access to secret keys which will allow it to decrypt the result of

partial computations. Using intermediate plaintext values, more

complicated operations are performed on these partial results,

re-encrypted and sent back to the original cloud. The two clouds

do not collude, the assumption is justified as these are public

servers governed by legal contracts, and may even be business

rivals. Colluding with each other will affect their reputation. This

setting is called the federated cloud model as explained earlier.

The challenge now is to show that knowledge of such inter-

mediate results does not leak information about the original data,

query, and results as well as the access and search patterns. In

this context, the state-of-the-art algorithm designed by Yousef et

al. [14], shows that it is possible to design a secure k-NN scheme,

where some of the secrets are given to one of the cloud servers,

but both cloud servers do not learn anything about the original

data. Our work also takes advantage of this model but explores a

novel construction using a (S)HE scheme, and a more efficient

protocol, allowing for asymptotically more efficient implementa-

tions for real-world scenarios.

2.3 Encrypted Computation
To findk-Nearest Neighbours, the distance between a given query
point and all the other points in the database needs to be com-

puted (in some appropriate dimension and measure). For com-

puting Euclidean distance say in a two-dimensional space i.e.,

between two points (x1,y1) and (x2,y2) we need to compute√
(x2 − x1)2 + (y2 − y1)2). In the interest of efficiency of compu-

tation, we can avoid the square root operation and work with

squared Euclidean distances. This computation requires subtrac-

tion, squaring and addition operations in that order. After we

compute the squared Euclidean distances in the cloud, we need to

find the k minimum values. This requires us to order encrypted

values.

Order Preserving Encryption (OPE), first proposed in [7] is

also emerging as an important area of new research. Using OPE,

it is possible for an observer to compute the order between two

ciphertexts without having to decrypt them. Any OPE solution

therefore necessarily leaks the original plaintext order among the

encrypted ciphertexts [2], even if it does not reveal the value of

the plaintexts themselves. OPE solutions by themselves are not

sufficient for our problem, since our definition of Secure k-NN
does not allow the adversary to learn anything about the original

points or the query, and points have to be in plaintext for the

server to order them after computing the distances. In [40], it

is shown that solving Secure k -NN in the single cloud model

securely implies that a secure OPE solution exists in this context,

one which does not leak any information, including the very

order, which is leaked by definition, and this is not possible.

(S)HE schemes on the other hand offer more functionality (rather

than simple OPE) on encrypted data, and can be used cleverly to

build a secure k-NN scheme.

2.4 Homomorphic Encryption and the LFHE
scheme

We now give a brief description of the salient features of HE

schemes and highlight the features of the leveled FHE (LFHE) [9]

scheme we used in our implementation. HE allows direct compu-

tations to be performed on encrypted values, giving an encrypted

result, which when decrypted gives the same plaintext results as

if the same computations were performed on the plaintext values.

An FHE scheme allows the computation of arbitrary functions

on encrypted data.

A public key FHE scheme is an ensemble of four polynomial

time algorithms:

• (sk,pk ) ← KeyGen($), the generation of a random public

key and corresponding secret key pair.

• c ← Encpk (m), the encryption of the a messagem with

the public key pk to produce a ciphertext c .
• m ← Decsk (c ), the decryption of the ciphertext with

secret key sk to produce the same plaintextm.

• c
′

← Evalpk (ϕ, c1, · · · , cn ) where ϕ is an arbitrary func-

tion in the message space, c1, · · · , cn are encryptions of

inputsm1, · · · ,mn to function ϕ. The result c
′

is the en-

cryption ofm
′

= ϕ (m1, · · · ,mn ), the encrypted output of

application of the function on the plaintext inputs.

A partial homomorphic encryption scheme PHE is an HE scheme

with a pre-defined function ϕ
′

, a restriction on the arbitrary func-

tion allowed in FHE. This restriction can be one function, such as

addition or a sequence of functions in order, leading to a some-

what homomorphic encryption scheme ((S)HE) such as BGN, or

a restriction on the kind of function (degree of the polynomial it

can evaluate), for performance reasons. We assume that PHE and

(S)HE satisfy the standard notion of security, whether it is against

chosen plaintext attacks, which guarantee that ciphertexts output

by the chosen HE scheme are indistinguishable from random,

even to an adversary with access to an encryption oracle.

The (S)HE scheme we use in this paper is the Levelled

FHE (LFHE) scheme implemented in HELib [17]. This LFHE

scheme is based on the Brakerski-Gentry-Vaikuntanathan (BGV)

scheme[10], and includes optimizations to make homomorphic

evaluation runs faster, focusing mostly on the effective use of

the Smart-Vercauteren [33] ciphertext packing techniques and

the Gentry-Halevi-Smart [18] optimizations, with support for

bootstrapping. The scheme is based on the ring learning with

errors (RLWE) and the LWE problem, which have 2
λ
security

against known attacks. In addition to the KeyGen, Enc, and Dec
functions, picking a level in the implementation L picks a depth

L arithmetic circuit in Eval, with the computation quasilinear in

the security parameter λ, lower levels corresponding to lower

overheads. Further details of the LFHE scheme are presented in

Appendix A.

3 SECURE k-NN
In this Section, we now describe our new Secure k-NN protocol

in the non-colluding two-party setting described in Section 2.

Section 3.1 presents the entities involved and Section 3.2 lays

down the notation. Section 3.3 gives protocol details. The security

guarantees of our protocol are discussed in detail in Section 4
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and the performance characteristics are explored in detail in

Section 5.

3.1 Entities

Figure 1: Entities and Relationships

The main entities in our protocol are shown in Figure: 1.

• Data owner : The data owner is a trusted entity, the le-

gal owner of the plaintext database, who outsources the

storage of the encrypted data to Party A for k-NN com-

putation, i.e., the plaintext database is not revealed to the

party A. Once the data is outsourced, the data owner can

be offline.

• Party A : Party A implements the storage and computa-

tion on an encrypted database. It receives encrypted query

inputs and responds with k encrypted database points that

represent the k-NN of the query point. It does not have

access to any secret keys and works only on the encrypted

data. Party A is assumed to be an honest-but-curious ad-

versary, who will not tamper with the normal execution

of the protocol, but has access to the internal state of its

implementation, and could attempt to infer additional in-

formation about the characteristics of the plaintext data,

query, results, or access and search patterns.

• Party B : Party B has access to the secret keys used to

encrypt a given database, and does not have access to

the encrypted database or query directly. Instead, it only

has access to (partial) results of computations done on

the encrypted data. Similar to Party A, Party B is honest-

but-curious and does not tamper with the computation.

However, it can use any information provided to infer

characteristics about the plaintext database and query.

A Secure k-NN solution will show that this information

cannot be learned by Party B even if it has the secret key.

• Clients : These are users who are authorised by the data

owner to interface with Party A and ask k-NN queries

on the outsourced database. Clients have access to keys

which allow them to send encrypted queries and decrypt

the corresponding responses.

As the name suggests, in the non-colluding two party setting,

Party A and Party B do not collude to expose the plaintext data-

base to each other.

3.2 Notation
Our database P consists of n points p1, p2 . . .pn . Each point is

d-dimensional. The query Q is also a d-dimensional point.

• D(pi , Q) represents the squared Euclidean distance be-

tween pi and Q.

• (S)HE: is a somewhat homomorphic encryption scheme

which allows computation of this distance measure in the

encrypted domain itself. For the distance measure used

in this paper i.e. Euclidean Distance, we use the LFHE

scheme [9]. Depending on the level chosen, e.g., with level

2, we can compute other measures such as Manhattan

distance etc.

3.3 Setup
Figure 2 shows the entities, the communication and the compu-

tation phases in our main protocol. The Setup phase is executed

once at the time of transferring the encrypted data to Party A.

Let (sk,pk ) ← KeyGen($) be the secret-key and public-key re-

spectively for the the chosen (S)HE.

• Party A receives the public key pk from the data owner,

as shown in label 1 in Figure 2.

• Party A also receives the encrypted database P ′ from the

data owner, where the magnitude of each dimension d of

each pointpi is encrypted under (S)HE using Encpk . These
d encrypted values together constitute the d dimensional

encrypted data points p
′

i .

• Party B receives both sk and pk , as shown in label 2 in

Figure 2.

• Clients receive both sk and pk , as shown in label 3 in

Figure 2.

The inputs to our Secure k-NN protocol are the n encrypted

points in P ′ and an encrypted d-dimensional query point Q ′ ←
Encpk (Q ), of the plaintext query pointQ computed by the client

as shown in label 4 in Figure 2.

The output of the protocol, returned by Party A to the client,

is the set of k encrypted points ⟨p
′

i1,p
′

i2, · · · ,p
′

ik ⟩, which are the

encrypted k nearest neighbours to query Q in database P .

3.4 Secure k-NN Protocol
We describe our Secure k-NN protocol, which involves only one

round of communication between the two parties, alternating

between computations performed at Party A and Party B. At

Party A, the computations are performed on encrypted data, and

we show how no information is revealed to a curious insider apart

from the protocol parameters, which are inputs to the algorithm

itself. Party B has the secret key, but only sees values that are

obtained by applying some function derived from the points in

the database. We present the security guarantees of our protocol

in detail in Section 4.

Compute Distances: In the first phase of our protocol after

Setup at Party A, as shown in label 5 in Figure 2, we are given

the encrypted database P ′, and encrypted query Q ′. For each

d-dimensional point p
′

i ∈ P
′
, i.e., the for all the n points in the

encrypted database, we find the squared Euclidean distance be-

tween the given point and the query using our (S)HE with Evalpk
as shown in Steps 2–4 in Algorithm 1. Each EDi is the encrypted

value of the (square of the) distance between the given query and

the i-th database point. In Step 5, we pick a polynomialm(x ) of
the form a0 + a1 · x + a2 · x

2 + · · · + ap · x
p
for some random

p ∈ N, where the coefficients a0, · · · ,ap are picked uniformly

at random within the range of the values of the (S)HE domain.

For example, in our prototype implementation presented in this

paper, we use positive random values picked from the range of

points in [1, 232 − 1]. We evaluate this monotonically increasing
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Figure 2: Secure k-NN Protocol

1 Compute Distances: Party A

Data: P ′, Q ′

Result: D
′

i , the Di in random permuted order

1 begin
2 for Each p

′

i ∈ P
′ do

3 EDi ← FindEncryptedDistance(p
′

i ,Q
′

)

4 FindEncryptedDistance uses Evalpk to compute∑d
i=1 (p

′

i −Q
′

i )
2

5 Pickm a monotonically increasing polynomial with

random coefficients

6 for i ← 1 to n do
7 Di ← EvalPoly(m,EDi )

8 EvalPoly uses Evalpk to evaluatem with EDi

9 Pick permutation Π over i points

10 Send D
′

i ← Π(Di ) to Party B

polynomial transformation on each encrypted database point

using EvalPoly to obtain the Di s in Steps 6–8. Finally, we pick

a permutation Π uniformly at random over the n(n − 1)/2 points

Di s asD
′

i ← Π(Di ), in Steps 9–10 and send the distances to Party
B out of order, as shown in label 6 in Figure 2.

Find Neighbours: In the second phase of our protocol at Party

B, as shown in label 7 in Figure 2, the transformed points D
′

i are

received in random permuted order. We now form two vectors

(arrays) of size k : NN and NNindex . In Steps 2–5 in Algorithm 2,

we initialize NN [i] to the first k points by decrypting the D
′

i s

(since we have the secret key sk), and store the corresponding

index values (1, · · · ,k ) in NNindex as shown. For the remain-

ing k − n points, in steps 7–10, we first find the point with the

maximum distance in NN and its correspondingmaxindex as

2 Find Neighbours: Party B

Data: D
′

i , the Di in random permuted order

Result: B = Bi1, · · · ,Bik

1 begin
2 NNindex[i]← 0

3 for i ← 1 to k do
4 NN [i]← Decsk (D

′

i )

5 NNindex[i] = i

6 for i ← k + 1 to n do
7 max ← NN [1],maxindex ← 1;

8 for j ← 2 to k do
9 if NN [j] > max then

10 max ← NN [j];maxindex ← j

11 if (d ← Decsk (D
′

i )) < max then
12 NN [maxindex] = d

13 NNindex[maxindex] = i

14 B ← ∅

15 for j ← 1 to k do
16 for i ← 1 to n do
17 if i = NNindex[j] then
18 B

j
i ← Encpk (1)

19 else
20 B

j
i ← Encpk (0)

21 B ← B ∪ B j

22 Send B to Party A

shown. Next, in Steps 11–13, for the new point in the ith po-

sition, we decrypt the value D
′

i and check if it is smaller than

themax distance we have seen so far. If it is, then we replace
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the maximum value in NN with this and update the index value

appropriately. At the end of this outer loop, the array NN will

contain the k smallest values and the corresponding NNindex
will track the index of these points. It is easy to see that the points

corresponding to these permuted indices will be the k nearest

neighbours for the query point in the original database, however,

we need to transfer this information to Party A without revealing

either the permuted indices or these values directly.

To do this, we construct the set B of k row vectors B j , where
each B j is a n-vector. For each permuted index value in NNIndex ,

we populate the array B j as follows: for the position i in B
j
i at the

NNIndex[j] value, i.e., i = NNindex[j] we store an encryption

of the value 1 (Party B also has the public key pk), and in the

remaining n − 1 i-positions we store an encryption of the value

0 as shown in Steps 15–21. This new vector B j is added to the

set B. We repeat this k times until all indices in NNIndex have

been processed. At the end of this phase, as shown in label 8

in Figure 2, we send the k row vectors B to Party A (Step 22 in

Algorithm 2).

3 Return kNN: Party A

Data: B ← B1, · · · ,Bk

Result: p
′

i1,p
′

i2, · · · ,p
′

ik
1 begin
2 Receive set of k n−dimensional vectors B

3 for j ← 1 to k do
4 T j ← (Π(P

′

))·B j

5 p
′

i j ← Enc(0)
6 for l ← 1 to n do
7 p

′

i j ← p
′

i j +T
j
l

8 Return p
′

i1,p
′

i2, · · · ,p
′

ik

Return kNN: In the next phase of our protocol, Party A receives

k n-dimensional row vectors (Algorithm 3 Step 2). As shown in

label 9 of Figure 2, and Step 4 of the algorithm, we first apply

the permutation Π selected by Party A in Algorithm 1 to the

encrypted database points P
′

. Applying the permutation Π on the

points corrects the order of the 0s and 1s in B j that was derived
from the permuted sums in Party B. Next, we compute the scalar

dot product (pointwise multiplication) between this permuted

row vector with each of our B j s, giving us an n-dimensional

vector T j
. After this multiplication, the original point that is

one of the k-NNs, i.e., p
′

i j , will remain (in encrypted form) in

T j
, all other entries will become (encrypted) zeros. We sum the

n elements of each of the T j
row vectors as shown in Steps 5–

7. The k vector sums are the encrypted k-NNs, i.e., the points

p
′

i1,p
′

i2, · · · ,p
′

ik , which can now be returned as the final result in

Step 8 of algorithm and label 10 in Figure 2. Clients can decrypt

these p
′

i j s using sk to obtain the plaintext points that correspond

to the k nearest neighbours as shown in label 9 in Figure 2.

There are two main novel ideas in our protocol:

• The use ofm, a monotonically increasing polynomial with

uniformly random coefficients, which effectively masks

the database values to Party B.

• The construction of vectors B
j
i along with the uniformly

random permutation Π, which prevents Party A from

learning the query results, as well as the access pattern

and query search pattern.

The communication and computation overheads in our pro-

tocol are as follows. Party A computes O (n) encrypted values,

and sends one set of n values to Party B. Party B computes n
decryptions andO (nk ) encryptions and returnsO (nk ) encrypted
values to Party A. In the last phase Party A performs O (nkd )
operations on the ciphertexts.

3.5 Comparison of Performance and
Efficiency with Yousef et al.

We present an algorithmic comparison of the efficiency of our

protocol with that of Yousef et al. [14], the current state-of-the-art

scheme for Secure k-NN in the two-party model. Both schemes

involve a pair of non-colluding parties, one of which is in pos-

session of the secret key of the somewhat homomorphic encryp-

tion scheme underlying the respective protocol. The first major

advantage of our protocol is the reduced number of round com-

munications - one, as compared to k for Yousef et al., where k is

the number of nearest neighbours requested by the client. Thus,

the cost of round communication in their protocol depends on

the query, while in our protocol it is constant. Additionally, the

construction of Yousef et al. performs bit-level decomposition

operations on the encrypted data, which are costly and require

specific capabilities which only certain (S)HE schemes can afford

(e.g. Yousef et al. use the Paillier cryptosystem-based (S)HE). On

the other hand, our protocol only exploits the basic capabilities

that any (S)HE scheme can afford. In other words, our protocol

uses the (S)HE scheme as a black-box, which can be easily instan-

tiated using known (S)HE schemes such as LFHE (leveled fully

homomorphic encryption) with optimized implementations. The

comparison in terms of computational overheads is presented in

Table 1 for computing k-NN overn data points, each of dimension

d such that each dimension takes l bit values andm is a degree

D polynomial in our solution.

4 SECURITY GUARANTEES
In this section, we discuss the security of our protocol in detail.

We begin with the assumptions. In our secure k-NN protocol,

Party A and Party B are assumed to be honest-but-curious, as

described earlier. Party A will follow the protocol steps correctly,

but we cannot rule out insider attacks. As discussed earlier, we

do not address side channels in this paper. We also assume Party

A and Party B do not collude. Party B additionally is trusted with

the secret key of the (S)HE scheme. Party B again is honest-but-

curious, and anything that Party B has or can compute is also

assumed to be exposed to an insider. Informally, our protocol is

secure in the following sense: even if this key is compromised

and the data values exposed to an insider in Party B, the original

database, query, and results are still secret to both Party A and B.

For emphasis, we recall that Party B and Party A do not collude,

and Party A does not have the decryption keys.

We present our security arguments focusing on the views

of the two untrusted parties – Party A and Party B, under the

assumption that they aremutually non-colliding. All other parties

(clients and database owners) are trusted.

4.1 Leakage Profile for Party A
We explicitly enumerate the leakage to Party A at different phases

of the overall protocol. Observe that Party A is involved in Com-
pute Distances and Return kNN, we focus on the leakage to

Party A during each of these:
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Table 1: Computational overheads

Yousef et al Our Secure k-NN protocol
Number of Homomorphic operations O (n(2kl + d )) O (n(k + d + D))

Number of encryptions O (nkl ) O (nk )

Number of decryptions (Party B) O (n(kl + d )) O (n)

Number of round communications O (k ) 1

Communication overhead per round O (nl + d ) bits O (nl ) bits

• Compute Distances: In this phase, Party A computes the

set of encrypted distances EDi between each encrypted

data point p
′

i and the encrypted query point Q ′ (Steps
3–4). Each of these computations is performed using the

FindEncryptedDistance function, which in turn uses

the homomorphic evaluation function Eval of the (S)HE
scheme. Hence, the CPA security guarantees of the un-

derlying (S)HE ensures that none of these computations

reveal any information about the underlying data points

or the plaintext distances to Party A. Subsequently, Party

A homomorphically evaluates a randomly chosen polyno-

mialm on each EDi using the EvalPoly function to obtain

the corresponding encrypted output Di . Again, since all

polynomial evaluations are on encrypted data, any non-

negligible leakage to Party A from these computations

amounts to a violation of the CPA security of the (S)HE

scheme.

• Return kNN: This phase is an oblivious transfer of the

knowledge of the k-nearest data points to Party A. Specifi-
cally, we argue that Party A does not learn which k points

in the encrypted database correspond to the output set of

points p′i1, · · · ,p
′
ik . The first observation that we use is

that the set ofk n-dimensional vectorsB1, · · · ,Bk received

by Party A contain encryptions of 0 and 1. As already

mentioned, the CPA security guarantees of the underlying

(S)HE ensures that Party A cannot distinguish between

these 0 and 1 entries. Hence the vectors themselves do not

reveal to Party A their correspondence to the respective

points in the database. The inner product computations in

Steps 4–7 are again performed homomorphically and leak

no information to Party A. Finally, observe that multiply-

ing an encrypted point by an encryption of 1 essentially

results in a randomized re-encryption of the same point.

Since, Party A has no knowledge of which entry in the

vectors B1, · · · ,Bk corresponds to 1, the output points

p′i1, · · · ,p
′
ik cannot be traced back to the originally en-

crypted points in the database. Once again, any violation

of the above guarantee amounts to a violation of the CPA

security of the (S)HE scheme.

The aforementioned leakage profile for Party A leads to the fol-

lowing security guarantee with respect to Party A:

Theorem 4.1. Secure k-NNGuarantee: Party A: Our secure
k-nearest neighbour protocol leaks no information to Party A except
the number of nearest neighbours k returned by the protocol. In
particular, Party A gains no knowledge of the access pattern, that
is, the set of points in the database corresponding to the k-nearest
neighbour points returned by the protocol, and does not learn the
query pattern, which reveals if two queries were the same.

4.2 Leakage Profile for Party B
In this section, we explicitly enumerate the leakage to Party B

in the Find Neighbours phase of the protocol. Party B receives

the set D
′

i of encrypted polynomial evaluation outputsm(EDi )
in random permuted order. Note that since we have picked a

secure pseudorandom permutation, which is computationally

difficult to invert, implying that the exact identity of points as-

sociated with any given difference value is hidden from Party

B. Since the polynomialm is order preserving, Party B can sort

the decrypted polynomial outputs. We now examine the pos-

sibility of any leakage to Party B from the resulting system of

ordered equations. Let d
′′

1
< d

′′

2
< · · · < d

′′

n be the ordered set

of plaintext distances, and m(d
′′

1
) < m(d

′′

2
) < · · · < m(d

′′

n ) be
the ordered set of polynomial outputs obtained by Party B upon

decryption. As mentioned earlier, the polynomialm(x ) is of the
form a0 + a1 · x + a2 · x

2 + · · · + ap · x
p
for some random p ∈ N.

Party B can formulate the following system of equations:

m(d
′′

1
) = a0 + a1 · d

′′

1
+ a2 · (d

′′

1
)2 + · · · + an · (d

′′

1
)p

m(d
′′

2
) = a0 + a1 · d

′′

2
+ a2 · (d

′′

2
)2 + · · · + an · (d

′′

2
)p

...

m(d
′′

n ) = a0 + a1 · d
′′

n + a2 · (d
′′

n )
2 + · · · + an · (d

′′

n )
p

where only the left-hand side of each equation is known to Party

B. Without loss of generality, we may assume that Party B can

guess with high probability the degree p of the polynomial cho-

sen by Party A, as well as the range of values (say [0, 2N ]) that

each plaintext distance d
′′

i can take. This is a particularly rele-

vant assumption in the context of real-world datasets, where the

adversary may possess some apriori knowledge of the range of

Euclidean distances between the data points. In addition, since

homomorphic polynomial evaluation in the encrypted domain is

a costly operation, the degree p can only take a small range of val-

ues, which Party B can also accurately guess in a small number of

trials. However, we prove that even if Party B has full knowledge

of the aforementioned parameters, it cannot recover the original

data points within a feasible amount of computation time. Ob-

serve that the system of equations has exactly n+p + 1 unknown
variables from Party B’s point of view, while the number of equa-

tions is only n. Hence, Party B must correctly guess the p + 1

smallest distances d
′′

1
,d
′′

2
, · · · ,d

′′

p+1 to recover the polynomial

coefficients. The average number of possible values that these

distances can take is

(
2
N

p+1

)
, which is approximately the same as

2
N ·(p+1)

for 2
N >> (p + 1). In other words, the probability that

Party B successfully recovers the polynomial coefficients, and sub-

sequently the plaintext distances, is approximately 1/2N ·(p+1) ,

which is close to negligible. For example, for N = 16 and p = 9,

the probability that Party B is able to recover the plaintext dis-

tances is approximately 2
−160

, which is close to negligible for a

security level of 160 bits. Thus even when the range of plaintext

distances and the degree of the polynomial chosen by Party A

are reasonably small and known apriori to Party B, the informa-

tion leakage is negligible. Also note that Party A refreshes the

polynomial for each query point, implying that Party B gains no
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additional information across the queries. Finally, even if Party B

is able to recover the plaintext distances in some extreme cases

(e.g., when the plaintext distance values follow some specific

pattern), it still does not directly reveal the plaintext data points

to Party B, as the query point is also unknown.

The only possible leakage to Party B in this round is the

presence of such points in the database that are equidistant from

the query point Q . This is leaked from the presence of identical

values in the set of values m(d
′′

1
),m(d

′′

2
), · · · ,m(d

′′

n ). However,
since the order of the values is randomly permuted by Party A,

Party B cannot map these values back to the original index of

the data points in the database.

The aforementioned leakage profile for Party B leads to the fol-

lowing security guarantee with respect to Party B:

Theorem 4.2. Secure k-NN Guarantee: Party B: Our secure
k-nearest neighbour protocol leaks no information to Party B except
the number of nearest neighbours k to be returned by the protocol
and the number of equidistant points in the database with respect
to a given query point Q .

4.3 Comparison of Security Guarantees with
Yousef et al.

We conclude the discussion on the security of our k-NN protocol

with a comparison of our security guarantees with those afforded

by the current state-of-the-art scheme proposed by Yousef et

al. [14]. Both schemes involve a pair of non-colluding parties,

one of which is in possession of the secret key of the somewhat

homomorphic encryption scheme underlying the respective pro-

tocol. In both schemes, one of the parties (Party A in our case),

encounters only encrypted data and consequently, learns nothing

about the data access pattern or search pattern from the protocol.

In Yousef et al.’s protocol, one of the parties (equivalent to Party

B) learns the distance between the query point and the global

nearest neighbour at each stage of the protocol. Moreover, the

presence of an irreversible permutation implies that this leakage

cannot be mapped back to an actual point in the database. This

distance value is not leaked by our protocol.

In our protocol, Party B learns the presence of pairwise equidis-

tant points in the database with respect to a given query point.

That is, whether there are two or more points that are equidistant

is revealed to Party B, not the value of the distances unlike in

Yousef et al. Moreover, the pairwise distances in our protocol are

randomly permuted, which ensures that these leakages cannot

be mapped back to identify the corresponding point pairs in the

actual database. In both protocols, in spite of the knowledge of

some distance values, or the knowledge of the number of equidis-

tant points, the original database, query, results or access and

search patterns cannot be deduced.

In the next section, we describe our reference implementation

and show how it is asymptotically faster than the state-of-the-

art algorithm and present its performance characteristics on

simulated and real-world data sets.

5 IMPLEMENTATION AND EXPERIMENTS
In this section, we present our implementation details and record

the experiments carried out to test the performance of the pro-

posed protocol. Our experimental setup consists of four machines,

representing the data owner, Party A, Party B and client. The

configuration of machines representing Party A and Party B are:

4 core 2.8 GHz processors, 16 GB RAM running Ubuntu 16.04

Figure 3: Running time for real world cancer data set, 858
points with 32 dimensions

Figure 4: Running time for real world credit card data set,
30000 points with 23 dimensions

LTS. The configuration of machines representing Data Owner

and Client are: 4 core 2.8 GHz processors, 8 GB RAM running

Ubuntu 16.04 LTS.

We used the HELib [17] library, with LFHE as the underlying

encryption mechanism. This library is written in C++ and we

implemented our protocols also in C++. In our implementation,

we set p = 1099511627689, a large prime between 2
40

and 2
87
,

the maximum depth to 10 and the security parameter to 128, i.e.,

offering 2
128

bits of security.

5.1 Real world data
Our first set of results is on real-world data from the UCI Machine

learning repository [24]. We focus on two datasets: Cervical

cancer (Risk Factors) and Default of credit card clients. Our goal

is to test how our Secure k-NN algorithm performs when we

attempt to find reports that cluster near a chosen query report.

The cervical cancer dataset contains 858 data points each having

32 dimensions, representing demographic information, habits,

and historic medical records of 858 patients. The default of credit

card clients dataset contains 30000 data points each having 23

dimensions including sensitive information such as the amount

of given credit, gender, age, education, marital status etc. We pre-

processed these datasets so that they contain only non-negative

integer values. Both these datasets have PII information and are

good candidates for encrypted analytics. Again we emphasize

that our goal in this study is not to comment on the predictive

accuracy of k-NN by itself as a suitable data mining algorithm

for these datasets.
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Figure 5: Running time when number of dimensions = 2
and k = 5

Figure 3 shows the measured running time of our protocol

when we vary k from 2 to 20 on the cancer data set. As shown in

the figure, we can compute 2-NN for all the points in less than a

minute (45 s), 8-NN in 2 minutes and 45 seconds and 16-NN in 5

minutes and 28 seconds. The function grows linearly with k .
Figure 4 shows the measured running time of our protocol

when we vary k from 2 to 20 for the credit card clients data. As

shown in the figure, we can compute 2-NN in less than 2 minutes

and 20-NN in 14 minutes and 20 seconds, with the function

growing linearly in k . In each of these experiments, we generate

a random data point to serve as the query point. The experiment

is then repeated with multiple such query points and the average

time taken to execute a query is recorded. From the figures, it is

clear that our protocol scales linearly with k .
Both these experiments show that our implementation over-

heads are very competitive, making a case for real-world appli-

cation of our algorithms to perform simple pattern matching

on sensitive data. Other applications where this technique can

be directly applied include spatial databases and location-based

search (for example a taxi-for-hire application), where the query

looks for points within a small set of records that are already

filtered.

Note that in our protocol, the two parties A and B communicate

with each other directly, without going back to the client. The

communication cost between the parties, i.e., sending the mono-

tonically increasing function of squared Euclidean distances, is

independent of the number of dimensions in the original dataset,

i.e., only one value is sent for each pair of points (regardless of

the value of d). Response from Party B is also independent of the

dimension of the data. The computational overhead of calculating

the squared Euclidean distances on Party A depends naturally

on the dimensions, which is unavoidable.

5.2 Simulation
There are three varying parameters in our protocol, a) number of

data points n b) the number of dimensions d and c) k the number

of nearest neighbours. By generating synthetic data we are able

to keep two parameters fixed and check the effect of the third

parameter on running time of the query. Our simulation-data

generator uses a uniform random distribution to generate the

data.

Figure 5 shows how the running time varies when the number

of data points are increased, keeping the number of dimensions

d and k constant (5 in this case). From this figure, we can clearly

Figure 6: Running time when number of data points =
200000 and k = 2

Figure 7: Running time when number of data points =
200000 and dimensions = 2

see that the running time of our protocol ranges from 23 seconds

up to 3 minutes, and grows linearly with the size of the dataset

n, which ranges from 20000 to 200000 points.

Figures 6 shows how the running time varies when the number

of dimensions in the data is increased, from 1 to 10, keeping the

number of data points n as 200000 and k = 2 as constant. The

running time ranges from 2 minutes and 17 seconds to less than

9 minutes for 10 dimensions. The figure clearly shows that our

protocol scales linearly with the number of dimensions.

Figures 7 shows how the running time varies when k is in-

creased from 1 to 20 keeping the number of data points as 200000

and number of dimensions d = 2. The running time ranges from

less than 2 minutes to around 8 minutes as shown. The figure

clearly shows that the running time scales linearly with k .
From the above experiments, it is clear that the running time

of our protocol is linear in k , n and d . Note that our protocol

requires only one round of communication between Party A

and Party B. In comparison, Yousef et al., requires at least O (k )
rounds of communication to compute the secure k-NN, with
each round sending O (nb) points where n is the database size

and b the bit size of every element. Additionally, more rounds are

required to compute the squared Euclidean distances and secure

bit decomposition, which are used subsequently to compute k-
NN.

For a similar machine configuration
2
, for 2000 points and 6

dimensions, with k = 25 our protocol runs in 1 minute and 37

seconds, whereas Yousef et al., report a running time of 55 min-

utes and 39 seconds. We emphasize that while this comparison is

2
6 cores, 3.07 GHz processor and 12GB RAM running Ubuntu 10.04 LTS
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done on different machines, the trend observed is explained by

our efficient one-round communication and the simplified com-

putations on Parties A and B, without compromising security

guarantees.

6 RELATEDWORK
Finding k- Nearest Neighbours is a fundamental operation in

many data mining and machine learning algorithms. In this sec-

tion, we present an overview of the techniques developed for

secure k-nearest neighbour problem (SkNN). SkNN is a specific

use case of the much broader problem of secure processing over

outsourced encrypted data. This area has been well studied and

many techniques have been proposed. Some of the techniques are

generic, i.e. they are able to support a wide variety of queries over

the encrypted data, while others enable a particular operation,

such as k-NN, over the encrypted data. The existing work can

be categorized into various buckets depending on the underly-

ing mechanism used, including privacy preserving data mining,

garbled circuit implementations of secure k-NN, secure multi-

party computation (SMC), private information retrieval (PIR)

schemes, secure hardware-based techniques and other solutions

that directly implement secure k-NN protocols.

The first three solutions, privacy-preserving data mining, gar-

bled circuits, and SMC, cannot be compared directly with our

work, as the goals, assumptions and models are different as dis-

cussed next. In privacy-preserving data mining [3] [15] [23]

[25] [35] privacy is achieved by transforming the data using

anonymization models such as k-anonymity, data perturbation

i.e adding noise to the data, suppressing some tuples, etc. The

transformed data preserves the ability to answer the required

query within an accepted error limit. The drawback of these tech-

niques is that they lead to information loss. Typically a superset

of the results are returned and the client has to process the query

results further. These techniques outsource the transformed data

to the server in plaintext, which leaks information as well.

Songhori et al[34] propose to use Yao’s garbled circuit protocol

for secure k-NN computation. In their setting, Alice has a query

pointQ and Bob has the dataset S . They want to jointly compute

the k-NN of Q in S such that Bob does not learn anything about

Q and Alice does not learn anything about S except k-NN. This
solution is not geared to outsourcing as Bob has the data in

plaintext.

Secure multiparty computation (SMC) techniques enable mul-

tiple parties to securely evaluate a function of their private inputs

without revealing the inputs of one party to the others. SMC has

been leveraged to compute SkNN by various solutions [32] [31]

[37]. They partition the data and give to multiple parties, which

then compute k-NN as an SMC. Again, this is fundamentally

different from our work because the parties can view the data in

plaintext.

Providing secure database-as-a-service has been investigated

by CryptDB[30] and Monomi [36]. They use property preserving

encryption such as OPE [2][7][6] to handle a portion of the

query processing directly on encrypted data stored at the cloud

efficiently. The portion of query which cannot be processed by

these property preserving encryption schemes is executed at the

client side after decryption of data returned by cloud. Monomi

[36] shows that such solutions can provide good performance

if they are tuned properly for the query workload, though for

an arbitrary query the performance can deteriorate significantly.

Also, it needs a full-fledged database engine at the client side

which is not always possible, e.g., on mobile devices.

Secure Hardware based techniques, including Cipherbase and

others[1] [26] [4] [5] assume the availability of a secure co-

processor at the cloud server. These co-processors are specially

built such that no outside entity can read the data stored inside

it (tamper-proof hardware). The computations performed inside

the co-processor are also isolated from the outside world. Data

owners upload the keys to the co-processor in a secure manner.

The logic for processing, for example, k-NN, is also installed

on the co-processor. For query processing, the encrypted data

and encrypted query point are sent to the co-processor, which

decrypts the data using the keys stored on it and runs the in-

stalled logic on the decrypted data returning the final answer

in encrypted form to the client. Such techniques give strong

security guarantees. However, the co-processors are resource

constrained and are less powerful than the regular processors

with limited memory available to them. Also, the deployment

and maintenance of such co-processors is not straight forward,

as some operations have to be performed by the clients, e.g., key

refresh, requiring the client to maintain the hardware.

Using PIR (Private Information retrieval) for secure k-NN has

been studied in [19] [29]. PIR allows users to retrieve an object

Xi from a set X = Xi , Xi , . . .Xn stored at the server without

revealing i to server. Again, PIR schemes work on plaintext data

on the server and guarantee that a user
′
s query point will not be

revealed, different from our setting.

Wong et al[39] propose a new encryption scheme called ASPE

(Asymmetric Scalar Product Preserving Encryption), to compare

the distance between a query point and compute the distances

required for k-NN. Hu et al[21] propose a secure k-NN method

based on provable secure homomorphic encryption. However,

the setting used by them is different from us in that the client

has the ciphertext while the server has the capability to decrypt.

Both solutions are vulnerable to Chosen Plaintext Attacks [40].

Yao et al[40] establish a relationship between the SkNN prob-

lem and the order preserving encryption (OPE) problem. They

show that SkNN is at least as hard as OPE in a single cloud setting.

They propose a solution based on Voronoi diagrams, in which

the server returns a superset of results for the k-NN. On the other

hand, we return the exact result of k-NN to the client in the two

party federated cloud setting.

Sunoh et al[13] provide a solution for secure k-NN which uses

mOPE(mutable Order Preserving Encryption). They propose two

methods, one based on Voronoi diagrams, which returns the exact

k-NNs but is expensive when k > 1, and another method based

on triangulation, which is more efficient but gives exact results

for only k = 1. For k > 1 it gives false positives which have to

be filtered out by the client. Their solution also requires round

communication between the server and client to first reduce the

potential candidates and to find the k-NN. No security proofs are

provided. Also, this solution has an expensive database update

procedure which requires changing of encrypted data.

In his seminal work, Gentry [16] proposed a construction

for a fully homomorphic encryption scheme (FHE). FHE allows

computation of any function directly on encrypted data and a

solution for computing k-NN can be developed using this. As

discussed earlier, the computational cost of FHE is very high for

real world applications.

Yousef et al[14] describe the current state-of-the-art protocol

for SkNN in the two party federated cloud model. They use Pail-

lier encryption [27] as the underlying cryptographic tool. Paillier
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encryption is additive homomorphic. Using this property they

develop protocols which compute k-NN securely in the federated

cloud model. Their solution provides very strong security guaran-

tees and is able to hide the data access pattern as well. However,

this security comes at the cost of performance, taking minutes to

perform queries that we can execute in seconds and milliseconds.

We are able to improve upon the performance characteristics as

shown in Section 5, while maintaining strong security guarantees,

making it more suitable for real-world deployments.

Other recent related work includes Lei et.al. [22], a SkNN

scheme for 2-D data points using LSH (location sensitive hash-

ing). They first construct the secure index for the data and then

outsource the secure index and encrypted data to the cloud. Since

the scheme uses LSH data structures, their results contain false

positives. Also related to computing on encrypted data, though

not kNN, is Seabed [28], where the authors use an additively sym-

metric homomorphic encryption scheme to compute large-scale

aggregations of data in an enterprise setting and prevent against

frequency attacks.

7 CONCLUSIONS
This paper describes a new protocol for efficient secure k- Near-
est Neighbours on encrypted data. We use LFHE, a somewhat

homomorphic encryption scheme as our basic building block,

in the two party federated cloud model. Our adversary model

captures insider attacks under the honest-but-curious assump-

tion. Our protocol is fast compared to the state of the art, without

compromising on security guarantees. Our implementations are

fast and scalable, and our experiments on real-world data show

how basic data mining on encrypted data can be practical. In

the future, we plan to extend our work to other data mining

algorithms, including k-Means and Apriori.
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A THE LFHE SYSTEM
The general encryption of BGV scheme that can be instantiated

to both LWE and RLWE. We will describe RLWE which used

by HELib. The RLWE-based public key encryption scheme as

follows. Most of the description and equations are taken from[9]

[38].

In general, homomorphic encryption scheme is a tuple

(HE.KeyGen, HE.Enc, HE.Dec, HE.Eval) of probabilistic polyno-

mial time algorithms. In BGV, the message space of the scheme

will always be some ring RM and our computational model will

be arithmetic circuits over this ring (i.e. addition and multiplica-

tion gates).

(1) HE.KeyGen takes the security parameter (and possibly

other parameters of the scheme) and produces a secret

key sk and a public key pk.
(2) HE.Enc takes the public key pk a message m and produces

a ciphertext c, which is the encryption of m.

(3) HE.Dec takes the secret key sk and a ciphertext c and

produces a message m.

(4) HE.Eval takes the public key pk, an arithmetic circuit f
over RM , and ciphertexts c1, ..., cl where l is the number

of inputs to f, and outputs a ciphertext cf .

Given the security parameter λ and an additional parameter µ,
first choose a µ-bit modulus q. Where q an odd positive modulus

q = q(λ). For RLWE scheme, chose the degree d = d (λ, µ ), a
"noise" distribution χ = χ (λ, µ ) , let the "dimension" n = [3 logq].
Let Rq = Zq[x]/( f (x )) with f (x ) a polynomial of degree d.

f (x ) = xd + 1 and d = d (λ) is a power of 2. To get the secret key,
first draw s’ uniformly from χ . The secret key is then

s = (1, s’) ∈ R2q

To get the public key, first generate vectors A’←− Rnq , e ← χn ,

then set b = −A’s’ + 2e . Set public key A = (b |A’) ∈ Rn×2q . Note

that A.s = 2e .
Supposem ∈ 0, 1 Is the bit we wanting to encrypt. To encrypt,

we do the following:

(1) Select a random r ∈ Rn
2
and expand the message m =

(m, 0) ∈ Rnq .

(2) Output =m +AT r ∈ Rnq .

According to RLWEd,q, χ where χ is a uniform distribution over

Rq , we can use this scheme a polynomial number of times with

negligible probability that an adversary can guess s.
To decrypt, do the following:

(1) Compute b ′ = [⟨c,s⟩]q
(2) Outputm = [b ′]2
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ABSTRACT
Increasing interest in JSON data has created a need for its efficient
processing. Although JSON is a simple data exchange format, its
querying is not always effective, especially in the case of large
repositories of data. This work aims to integrate the JSONiq ex-
tension to the XQuery language specification into an existing
query processor (Apache VXQuery) to enable it to query JSON
data in parallel. VXQuery is built on top of Hyracks (a framework
that generates parallel jobs) and Algebricks (a language-agnostic
query algebra toolbox) and can process data on the fly, in con-
trast to other well-known systems which need to load data first.
Thus, the extra cost of data loading is eliminated. In this paper,
we implement three categories of rewrite rules which exploit
the features of the above platforms to efficiently handle path
expressions along with introducing intra-query parallelism. We
evaluate our implementation using a large (803GB) dataset of
sensor readings. Our results show that the proposed rewrite rules
lead to efficient and scalable parallel processing of JSON data.

1 INTRODUCTION
The Internet of Things (IoT) has enabled physical devices, build-
ings, vehicles, smart phones and other items to communicate and
exchange information in an unprecedented way. Sophisticated
data interchange formats have made this possible by leveraging
their simple designs to enable low overhead communication be-
tween different platforms. Initially developed to support efficient
data exchange for web-based services, JSON has become one
of the most widely used formats evolving beyond its original
specification. It has emerged as an alternative to the XML format
due to its simplicity and better performance [28]. It has been
used frequently for data gathering [22], motion monitoring [20],
and in data mining applications [24].

When it comes time to query a large repository of JSON data,
it is imperative to have a scalable system to access and process
the data in parallel. In the past there has been some work on
building JSONiq add-on processors to enhance relational database
systems, e.g. Zorba [2]. However, those systems are optimized
for single-node processing.

More recently, parallel approaches to support JSON data have
appeared in systems like MongoDB [10] and Spark [7]. Nev-
ertheless, these systems prefer to first load the JSON data and
transform them to their internal data model formats. On the other
hand systems like Sinew [29] and Dremel [27] cannot query raw
JSON data. They need a pre-processing phase to convert the input
file into a readable binary for them (typically Parquet [3]). They
can then load the data, transform it to their internal data model

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the 21st
International Conference on Extending Database Technology (EDBT), March 26-29,
2018, ISBN 978-3-89318-078-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

and proceed with its further processing. The above efforts are ex-
amples of systems that can process JSON data by converting it to
their data format, either automatically, during the loading phase,
or manually, following the pre-processing phase. In contrast, our
JSONiq processor can immediately process its JSON input data
without any loading or pre-processing phases. Loading large data
files is a significant burden for the overall system’s execution time
as our results will show in the experimental section. Although,
for some data, the loading phase takes place only in the beginning
of the whole processing, in most real-time applications, it can be
a repetitive action; data files to be queried may not always been
known in advance or they may be updated continuously.

Instead of building a JSONiq parallel query processor from
scratch, given the similarities between JSON and XQuery, we
decided to take advantage of Apache VXQuery [4, 17], an ex-
isting processor that was built for parallel and scalable XQuery
processing. We chose to support the JSONiq extension to XQuery
language [8] to provide the ability to process JSON data. XQuery
and JSONiq have certain syntax conflicts that need to be resolved
for a processor to support both of them, so we enhanced VX-
Query with the JSONiq extension to the XQuery language, an
alteration of the initial JSONiq language designed to resolve the
aforementioned conflicts [9].

In extending Apache VXQuery, we introduce three categories
of JSONiq rewrite rules (path expression, pipelining, and group-by
rules) to enable parallelism via pipelining and to minimize the
required memory footprint. A useful by-product of this work is
that the proposed group-by rules turn out to apply to both XML
and JSON data querying.

Through experimentation, we show that the VXQuery proces-
sor augmented with our JSoniq rewrite rules can indeed query
JSON data without adding the overhead of the loading phase
used by most of the state-of-the art systems.

The rest of the paper is organized as follows: Section 2 presents
the existing work on JSON query processing, while Section 3 out-
lines the architecture of Apache VXQuery. Section 4 introduces
the specific optimizations applied to JSON queries and how they
have been integrated into the current version of VXQuery. The
experimental evaluation appears in Section 5. Section 6 concludes
the paper and presents directions for future research.

2 RELATEDWORK
Previous work on querying data interchange formats has pri-
marily focused on XML data [26]. Nevertheless there has been
considerable work for querying JSON data. One of the most pop-
ular JSONiq processors is Zorba [2]. This system is basically a
virtual machine for query processing. It processes both XML
and JSON data by using the XQuery and JSONiq languages re-
spectively. However, it is not optimized to scale onto multiple
nodes with multiple data files, which is the focus of our work. In
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contrast, Apache VXQuery is a system that can be deployed on a
multi-node cluster to exploit parallelism.

A few parallel approaches for JSONdata querying have emerged
as well. These systems can be divided into two categories. The
first category includes SQL-like systems such as Jaql [14], Trill
[18], Drill [6], Postgres-XL [11], MongoDB [10] and Spark [13],
which can process raw JSON data. Specifically, they have been
integrated with well-known JSON parsers like Jackson [1]. While
the parser reads raw JSON data, it converts it to an internal (table-
like) data model. Once the JSON file is in a tabular format, it can
then been processed by queries. Our system can also read raw
JSON data, but it has the advantage that it does not require data
conversion to another format since it directly supports JSON’s
data model. Queries can thus be processed on the fly as the JSON
file is read. It is also worthwhile mentioning that Postgres-XL (a
scalable extension to PostgreSQL [12]) has a limitation on how
it exploits its parallelism feature. Specifically, while it scales on
multiple nodes it is not designed to scale on multiple cores. On
the other hand, our system can be multinode and multicore at
the same time. In the experimental section we show how our
system compares with two representatives from this category
(MongoDB and Spark).

We note that AsterixDB [5], can process JSONdata in twoways.
It can either first load the file internally (like the systems above) or,
it can access the file as external data without the need of loading it.
However, in both cases and in contrast to our system, AsterixDB
needs to convert the data to its internal ADM data model. In
our experiments we compare VXQuery with both variations of
AsterixDB.

Systems in the second category (e.g. Sinew [29], Argo [19]
and Oracle’s system [25]) cannot process raw JSON data and
thus need an additional pre-processing phase (hence an extra
overhead than the systems above). During that phase, a JSON file
is converted to a binary or Parquet ([3]) file that is then fed to
the system for further transformation to its internal data model
before query processing can start.

Systems like Spark and Argo process their data in-memory.
Thus, their input data sizes are limited by a machine’s mem-
ory size. Recently, [23] presents an approach that pushes the
filters of a given query down into the JSON parser (Mison). Using
data-parallel algorithms, like SIMD vectorization and Bitwise
Parallelism, along with speculation, data not relevant to the ac-
tual query is filtered out early. This approach has been added
into Spark and improves its JSON performance. Our work also
prunes irrelevant data, but does so by applying rewrite rules.
Since the Mison code is not available yet, we could not compare
with them in detail; we also need to note that Mison is just a
parallel JSON parser for JSON data. In contrast, VXQuery is an
integrated processor that can handle the querying of both JSON
and XML data (regardless of how complex the query is).

As opposed to the aforementioned systems, our work builds a
new JSONiq processor that leverages the architecture of an exist-
ing query engine and achieves high parallelism and scalability
via the employment of rewrite rules.

3 APACHE VXQUERY
Apache VXQuery was built as a query processing engine for
XML data implemented in Java. It is built on top of two other
frameworks, namely the Hyracks platform and the Algebricks
layer. Figure 1, also, shows AsterixDB [5], which uses the same
infrastructure.

Figure 1: The VXQuery Architecture

3.1 Infrastructure
The first layer is Hyracks [16], which is an abstract framework
responsible for executing dataflow jobs in parallel. The processor
operating on top of Hyracks is responsible for providing the
partitioning scheme while Hyracks decides how the resulting
job will be distributed. Hyracks processes data in partitions of
contiguous bytes, moving data in fixed-sized frames that contain
physical records, and it defines interfaces that allow users of the
platform to specify the data-type details for comparing, hashing,
serializing and de-serializing data. Hyracks provides built-in base
data types to support storing data on local partitions or when
building higher level data types.

The next layer, Algebricks [15], takes as input a logical query
plan and, via built-in optimization rules that it provides, converts
it to a physical plan. Apart from the transformation, the rules are
responsible for making the query plan more efficient. In order to
achieve this efficiency, Algebricks allows the processor above (in
this case Apache VXQuery) to provide its own language specific
rewrite rules.

The final layer, Apache VXQuery [4, 17], supports a XQuery
processor engine. To build a JSONiq processor, we used the
JSONiq extension to XQuery specifications. Specifically, we fo-
cused mostly on implementing all the necessary modules to suc-
cessfully parse and evaluate JSONiq queries. Additionally, several
modules were implemented to enable JSON file parsing and sup-
port an internal in-memory representation of the corresponding
JSON items.

The resulting JSONiq processor accepts as input the original
query, in string form, and converts it to an abstract syntax tree
(AST) through its query parser. Then, the AST is transformed
with the help of VXQuery’s translator to a logical plan, which
becomes the input to Algebricks.

As mentioned above, VXQuery uses Hyracks to schedule and
run data parallel jobs. However, Hyracks is a data-agnostic plat-
form, while VXQuery is language-specific. This creates a need
for additional rewrite rules to exploit Hyracks’ parallel proper-
ties for JSONiq. If care is not taken, the memory footprint for
processing large JSON files can be prohibitively high. This can
make it impossible for systems with limited memory resources
to efficiently support JSON data processing. In order to identify
opportunities for parallelism as well as to reduce the runtime
memory footprint, we need to examine in more depth the char-
acteristics of the JSON format as well as the supported query
types.
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3.2 Hyracks Operators
We first proceed with a short description of the Hyracks logical
operators that we will use in our query plans.

• EMPTY-TUPLE-SOURCE: outputs an empty tuple used
by other operators to initiate result production.

• DATASCAN: takes as input a tuple and a data source and
extends the input tuple to produce tuples for each item in
the source.

• ASSIGN: executes a scalar expression on a tuple and adds
the result as a new field in the tuple.

• AGGREGATE: executes an aggregate expression to cre-
ate a result tuple from a stream of input tuples. The result
is held until all tuples are processed and then returned in
a single tuple.

• UNNEST: executes an unnesting expression for each tuple
to create a stream of output tuples per input.

• SUBPLAN: executes a nested plan for each tuple input.
This plan consists of an AGGREGATE and an UNNEST
operator.

• GROUP-BY: executes an aggregate expression to produce
a tuple for each set of items having the same grouping
key.

Figure 2: XML vs JSON structure

It is imperative for understanding this work to describe the rep-
resentation along with the navigation expressions of JSON items
according to the JSONiq extension to the XQuery specification.
A json-item can be either an array or an object, in contrast to an
XML structure, which consists of multiple nodes as described in
Figure 2. An array consists of an ordered list of items (members),
while an object consists of a set of pairs. Each pair is represented
by a key and a value. The following is the terminology used for
JSONiq navigation expressions:

• Value: for an array it yields the value of a specified (by
an index) array element, while for an object it yields the
value of a specified (by a field name) key.

• Keys-or-members: for an array it outputs all of its ele-
ments, and for an object it outputs all of its keys.

4 JSON QUERY OPTIMIZATION
The JSONiq rewrite rules are divided into three categories: the
Path Expression, Pipelining, and Group-by Rules. The first cate-
gory removes some unused expressions and operators, as well as

streamlining the remaining path expressions. The second cate-
gory reduces the memory needs of the pipeline. The last category
focuses on the management of aggregation, which also contains
the group-by feature (added to VXQuery in the XQuery 3.0 spec-
ification). For all our examples, we will consider the bookstore
structure example depicted in Listing 1.� �

{
"bookstore": {

"book": [
{

"-category": "COOKING",
"title": "Everyday Italian",
"author": "Giada De Laurentiis",
"year": "2005",
"price": "30.00"

},
...
]

}� �
Listing 1: Bookstore JSON File

4.1 Path Expression Rules
The goal of the first category of rules is to enable the unnesting
property. This means that instead of creating a sequence of all
the targeted items and processing the whole sequence, we want
to process each item separately as it is found. This rule opens up
opportunities for pipelining since each item is passed to the next
stage of processing as the previous step is completed.� �

json -doc("books.json")("bookstore")("book")()� �
Listing 2: Bookstore query

The example query in Listing 2 asks for all the books appearing
in the given file. Specifically, it reads data from the JSON file
("book.json") and then, the value expression is applied twice,
once for the bookstore object (("bookstore")) and once for the
book object (("book")). In this way, it is ensured that only the
matching objects of the file will be stored in memory. The value
of the book object is an array, so the keys-or-members expression
(()) applied to it returns all of its items. To process this expression,
we first store in a tuple all of the objects from the array and then
we iterate over each one of them. The result that is distributed at
the end is each book object separately.

Figure 3: Original Query Plan

In more detail, we can describe the aforementioned process
in terms of a logical query plan that is returned from VXQuery
(Figure 3). It follows a bottom-up flow, so the first operator in
the query plan is the EMPTY-TUPLE-SOURCE leaf operator. The
empty tuple is extended by the following ASSIGN operator, which
consists of a promote and a data expression to ensure that the
json-doc argument is a string. Also, the two value expressions
inside it verify that only the book array will be stored in the
tuple.
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The next two operators depict the two steps of the processing
of the keys-or-members expression. The first operator is an AS-
SIGN, which evaluates the expression to extend its input tuple.
Since this expression is applied to an array, the returned tuple
includes all of the objects inside the array. Then, the UNNEST
operator applies an iterate expression to the tuple and returns a
stream of tuples including each object from the array.

The final step according to the query plan is the distribution of
each object returned from the UNNEST. From the analysis above,
we can observe that there are opportunities to make the logical
plan more efficient. Specifically, we observe that there is no need
for two processing steps of keys-or-members.

Originally, the tuple with all the book objects produced by the
keys-or-members expression flows into the UNNEST operator
whose iterate expression will return each object in a separate
tuple. Instead, we can merge the UNNEST with the keys-or-
members expression. That way, each book object is returned
immediately when it is found.

Finally, to further clean up our query plan, we can remove
the promote and data expressions included in the first ASSIGN
operator. The fully optimized logical plan is depicted in Figure 4.

Figure 4: Updated Query Plan

The new and more efficient plan opens up opportunities for
pipelining since when a matching book object is found, it is
immediately returned and, at the same time, passed to the next
stage of the process.

4.2 Pipelining Rules
This type of rule builds on top of the previous rule set and con-
siders the use of the DATASCAN operator along with the way to
access partitioned-parallel data. The sample query that we use is
depicted in Listing 3.� �

collection("/books")("bookstore")("book")()� �
Listing 3: Bookstore Collection Query

According to the query plan in Figure 5, the ASSIGN operator
takes as input data source a collection of JSON files, through
the collection expression. Then, UNNEST iterate iterates over the
collection and outputs each single file. The two value expressions
integrated into the second ASSIGN output a tuple source filled
with all the book objects produced by the whole collection. The
last step of the query plan (created in the previous section) is
implemented by the keys-or-members expression of the UNNEST
operator, which outputs each single object separately.

The input tuple source generated by the collection expression
corresponds to all the files inside the collection. This does not
help the execution time of the query, since the result tuple can
be huge. Fortunately, Algebricks offers its DATASCAN opera-
tor, which is able to iterate over the collection and forwards to
the next operator each file separately. To accomplish this proce-
dure, DATASCAN replaces both the ASSIGN collection and the
UNNEST iterate.

Figure 5: Query Plan for a Collection

Figure 6: Introduction of DATASCAN

By enabling Algebrick’s DATASCAN, apart from pipeline im-
provement, we also achieve partitioned parallelism. In Apache
VXQuery, data is partitioned among the cluster nodes. Each node
has a unique set of JSON files stored under the same directory
specified in the collection expression. The Algebricks’ physical
plan optimizer uses these partitioned data property details to
distribute the query execution. Adding these properties allows
Apache VXQuery to achieve partitioned-parallel execution with-
out any user-level parallel programming.

To further improve pipelining, we can produce even smaller
tuples. Specifically, we extend the DATASCAN operator with
a second argument (here it is the book array). This argument
defines the tuple that will be forwarded to the next operator.

In the updated query plan (Figure 6), the newly insertedDATAS-
CAN is followed by an ASSIGN operator. Inside it, the two value
expressions populate the tuple source with all the book objects
of the file fetched from DATASCAN. We can merge the value
expressions with DATASCAN by adding a second argument to
it. As a result, the output tuple, which was previously filled with
each file, is now set to only have its book objects (Figure 7).

Figure 7: Merge value with DATASCAN Operator

At this point, we note that by building on the previous rule
set, both the query’s efficiency and the memory footprint can
be further improved. In the query plan in Figure 7, DATASCAN
collection is followed by an UNNEST whose keys-or-members
expression outputs a single tuple for each book object of the
input sequence.

Figure 8:Merge keys-or-members with DatascanOperator

This sequence of operators gives us the ability tomergeDATAS-
CAN with keys-or-members by extending its second argument.
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Figure 8 shows this action, whose result is the fetching of even
smaller tuples to the next stage of processing. Specifically, in-
stead of storing in DATASCAN’s output tuple a sequence of all
the book objects of each file in the collection, we store only one
object at a time. Thus, query’s execution time is improved and
Hyracks’ dataflow frame size restriction is satisfied.� �

for $x in collection("/books")("bookstore")
("book")()
group by $author :=$x("author")
return count($x("title"))� �

Listing 4: Bookstore Count Query

4.3 Group-by Rules
The last category of rules can be applied to both XML and JSON
queries since the group-by feature is part of both syntaxes. Group-
by can activate rules enabling parallelism in aggregation queries.� �

for $x in collection("/books")("bookstore")
("book")()
group by $author :=$x("author")
return count(for $j in $x return $j("title"))� �

Listing 5: Bookstore Count Query (2nd form)

The example query that we will use to show how our rules
affect aggregation queries is in Listings 4 and 5. Both forms of
the query read data from a collection with book files, group them
by author, and then return the number of books written by each
author.

Figure 9: Query Plan with Count Function

In Figure 9, the DATASCAN collection passes a tuple, for one
book object at a time, to ASSIGN. The latter applies the value
expression to acquire the author’s name for the specific object.
GROUP-BY accepts the tuple with the author’s name (group-by
key) and then its inner focus is applied (AGGREGATE) so that all
the objects whose author field have the same value will be put in
the same sequence.

At this point, ASSIGN treat appears; this ensures that the input
expression has the designated type. So, our rule searches for the
type returned from the sequence created from the AGGREGATE
operator. If it is of type item which is the treat type argument,
the whole treat expression can be safely removed. As a result,
the whole ASSIGN can now be removed since it is a redundant
operator (Figure 10).

After the former removal, GROUP-BY is followed by an AS-
SIGN count which calculates the number of book titles (value
expression) generated by AGGREGATE sequence. According to
the JSONiq extension to XQuery, value can be applied only on a
JSON object or array. However, in our case the query plan applies

Figure 10: Query Plan without treat Expression

value to a sequence, since GROUP-BY aggregates all the records
having the same group-by key in a sequence. Thus, ("title") is
applied on a sequence. To overcome this conflict, we convert
the ASSIGN to a SUBPLAN operator (Figure 11). SUBPLAN’s
inner focus introduces an UNNEST iterate which iterates over
AGGREGATE sequence and produces a single tuple for each item
in the sequence. The inner focus of SUBPLAN finishes with an
AGGREGATE along with a count function which incrementally
calculates the number of tuples that UNNEST feeds it with.

Figure 11: Convert scalar to aggregation expression

This conversion not only helps resolving the aforementioned
conflict but it also converts the scalar count function to an ag-
gregate one. This means that instead of calculating count on a
whole sequence, we can incrementally calculate it as each item
of the sequence is fetched.

In Figure 11, GROUP-BY still creates a sequence in its inner
focus, which is the input to SUBPLAN UNNEST. Instead, we can
push the AGGREGATE operator of the SUBPLAN down to the
GROUP-BY operator by replacing it (Figure 12). That way, we
exploit the benefits of the aforementioned conversion and have
the count function computed at the same time that each group
is formed (without creating any sequences). Thus, the new plan
is not only smaller (more efficient) but also keeps the pipeline
granularity introduced in both of the previous rule sets.

At this point, it is interesting to look at the second format of
the query in Listing 5. The for loop inside the count function
conveniently forms a SUBPLAN operator right above the GROUP-
BY in the original logical plan. This is exactly the query plan
described in Figure 11, which means that in this case we can
immediately push theAGGREGATE down toGROUP-BY, without
any further transformations.
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Figure 12: Updated Query Plan with Count Function

Now that the count function is converted into an aggregate
function, there is another rule introduced in [17] that can be acti-
vated to further improve the overall query performance. This rule
supports Algebricks’ two-step aggregation scheme, which means
that each partition can calculate locally the count function on its
data. Then, a central node can compute the final result using the
data gathered from each partition. Thus, partitioned computation
is enabled, which improves parallelism effectiveness.

The final query plan, produced after the application of all the
former rules, calculates the count function at the same time that
each grouping sequence is built as opposed to first building it
and then processing the aggregation function.

5 EXPERIMENTAL EVALUATION
We have tested our rewrite rules by integrating them into the
latest version of Apache VXQuery [4]. Each node has two dual-
core AMD Opteron(tm) processors, 8GB of memory, and two
1TB hard drives. For the multi-node experiments we built a clus-
ter of up to nine nodes of identical configuration. We used a
real dataset with sensor data and a variety of queries, described
below in Sections 5.1 and 5.2 respectively. We repeated each
query five times. The reported query time is an average of the
five runs. We first consider single-node experiments and include
measurements for execution time (before and after applying our
rewrite rules) and for speed-up. For the multi-node experiments
we measure response time and scale-up over different numbers
of nodes. We, also, include comparisons with Spark SQL and
MongoDB that show that the overhead of their loading phase
is non-negligible. Finally, we compare with AsterixDB which
has the same infrastructure as our system; in particular we com-
pare with two approaches, one that sees the input as an external
dataset (depicted in the figures as AsterixDB) and one that first
loads the file internally (depicted as AsterixDB(load)).

5.1 Dataset
The data used in our experiments are publicly available from the
National Oceanic and Atmospheric Administration (NOAA) [21].
The Daily Global Historical Climatology Network (GHCN-Daily)
dataset was originally in dly format and was converted to its
equivalent NOAA web service JSON representation.

Listing 6 shows an example JSON sensor file structure. All
records are wrapped into a JSON item, specifically array, called
"root". Eachmember of the "root" array is an object itemwhich
contains the object "metadata" and the array "results". The
latter stores various measurements organized in individual ob-
jects. A specific measurement includes the date, the data type (a
description of the measurement, with typical values being TMIN,
TMAX, WIND etc.), the station id where the measurement was
taken, and the actual measurement value. The "count" object

included into the "metadata" denotes the number of measure-
ments objects in the accompanying "results" array. Typically a
"results" array contains measurements from a given station for
one month (i.e. typically 30 measurements). A sensor file contains
only one "root" array which may consist of several "results"
(measurements from the same or different stations) accompanied
by their "metadata".

Sensor file sizes vary from 10MB to 2GB. Each node holds a
collection of sensor files; the size of the collection varies from
100MB to 803GB. The collection size is varied throughout the
experiments and is cited explicitly for each experiment. In our ex-
periments, we assume that the data has already been partitioned
among the existing nodes.� �

{
"root": [

{
"metadata": {

"count":31,
},
"results": [

{
"date":"20132512 T00:00",
"dataType":"TMIN",
"station":"GSW123006",
"value":4

},
...

]
},
{

"metadata": {
"count":29,

},
"results": [

{
"date":"20142512 T00:00",
"dataType":"WIND",
"station":"GSW957859",
"value":30

},
...

]
},
...

]
}� �

Listing 6: Example JSON Sensor File Structure

5.2 Query Types
We evaluated our newly implemented rewrite rules by evaluating
different types of queries including selection (Q0, Q0b), aggre-
gation (Q1, Q1b) and join-aggregation queries (Q2). The query
description follows.� �

for $r in collection("/sensors")("root")()("
results")()

let $datetime := dateTime(data($r("date")))
where year -from -dateTime($datetime) ge 2003

and month -from -dateTime($datetime) eq 12
and day -from -dateTime($datetime) eq 25

return $r� �
Listing 7: Selection Query (Q0)� �

for $r in collection("/sensors")("root")()("
results")()("date")

let $datetime := dateTime(data($r))
where year -from -dateTime($datetime) ge 2003

and month -from -dateTime($datetime) eq 12
and day -from -dateTime($datetime) eq 25

return $r� �
Listing 8: Selection Query (Q0b)
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Q0: In this query (Listing 8), the user asks for historical data
from all theweather stations by selecting all December 25weather
measurement readings from 2003 on.

Q0b is a variation of Q0where the input path (1st line in Listing
8), is extended by a value expression ("date").� �

for $r in collection ("/sensors") ("root")()
("results")()
where $r("dataType") eq "TMIN"
group by $date:= $r("date")
return count($r("station"))� �

Listing 9: Aggregation Query (Q1)� �
for $r in collection ("/sensors") ("root")()
("results")()
where $r("dataType") eq "TMIN"
group by $date:= $r("date")
return count(for $i in $r return $i("station"))� �
Listing 10: Aggregation Query (Q1b)

Q1: This query (Listing 10), finds the number of stations that
report the lowest temperature for each date. The grouping key is
the date field of each object.

Q1b is a variation of Q1 that has a different returned result
structure.

Q2: This self-join query (Listing 11) joins two large collec-
tions, one that maintains the daily minimum temperature per
station and one that contains the daily maximum temperature
per station. The join is on the station id and date and finds the
daily temperature difference per station and returns the average
difference over all stations.� �

avg(
for $r_min in collection("/sensors")("root")()(

"results")()
for $r_max in collection("/sensors")("root")()(

"results")()
where $r_min("station") eq $r_max("station")

and $r_min("date") eq $r_max("date")
and $r_min("dataType") eq "TMIN"
and $r_max("dataType") eq "TMAX"

return $r_max("value") - $r_min("value")
) div 10� �
Listing 11: Join-Aggregation Query (Q2)

5.3 Single Node Experiments
To explore the effects of the various rewrite rules we first con-
sider a single node, one core environment (i.e. one partition)
and progressively enable the different sets of rules. We start by
considering just the path expression rules. Figure 13 shows the
execution time for all five queries with and without these rules.
For this experiment, we used a 400MB collection of sensor files
(each of size 10MB). Note that for these experiments we used a
relatively small collection size since without the JSONiq rules
Hyracks would need to process the whole (possibly large) file
thus slowing its performance. The application of the Path Ex-
pression Rules results to a clear improvement of the execution
time for all queries. These rules decrease the buffer size between
operators since large sequences of objects are avoided. Instead,
each object is passed on to the next operator separately, resulting
in faster query execution.

Using the same dataset and having enabled the Path Expres-
sion rules, we now examine the effect of adding the Pipelining
rules (Figure 14). We observe that in all cases the pipelining
rules provide a drastic improvement (note the logarithmic scale!),

Figure 13: Execution Time before and after Path Expres-
sion Rules

Figure 14: Execution Time (logscale) before and after the
Pipelining Rules

speeding queries up by about two orders of magnitude. Apply-
ing these rules decreases the initial buffering requirement since
we don’t store the whole JSON document anymore, but just the
matching objects. It is worth noting that the best performance is
achieved by Q0b. Q0b stores in memory only the parts of the ob-
jects whose key field is "date". By focusing only on the "date", this
gives the DATASCAN operator the opportunity to iterate over
much smaller tuples than Q0. Clearly, the smaller the argument
given to DATASCAN, the better for exploiting pipelining.

Figure 15: Execution Time before and after Group-by
Rules
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Having enabled both the path expression and the pipelining
rules, we proceed considering the effect of adding the Group-by
rules. The results are depicted in Figure 15. Clearly Q0, Q0b and
Q2 are not affected since the Group-by rules do not apply. The
Group-by rules improve the performance of both queries Q1 and
Q1b. The improvement for both queries comes from the same
rule, the rule that pushes the COUNT function inside the group-
by. We note that the second Group-by rule, the one performing
conversion, applies only to Q1; we do not enjoy an improvement
from the conversion rule here because Q1b is already written
in an optimized way. It is worth mentioning that the efficiency
of the group-by rules depends on the cardinality of the groups
created by the query. Clearly, the larger the groups, the better
the observed improvement.

To study the effectiveness of all of the rewrite rules as the
partition size increases, we ran an experiment where we varied
the collection size from 100MB to 400MB. Figure 16 (again with
a log scale) depicts the execution time for query Q1 both before
and after applying all three sets of rewrite rules. We chose Q1
here because it is indeed affected by all of the rules. We can see
that the system scales proportionally with the dataset size and
that the application of the rewrite rules results in a huge query
execution time improvement.

Figure 16: Execution Time (logscale) for Q1 before and af-
ter Rewrite Rules for different Data Sizes

From the above experiments, we can conclude that the Pipelin-
ing rules provide the most significant impact. It is also worth
noting that the execution of the rewrite rules during query com-
pilation adds a minimal overhead (just a few msec) to the overall
query execution cost.

Single node Speed-up: To test the system’s single node speed
up, we used a dataset larger than our node’s available memory
space (8GB). Specifically, we used 88GB of JSON data, which we
progressively divided from one up to eight partitions (our CPU
has 4 cores and supports up to 8 hyperthreads). Each partition
corresponds to a thread. The results are shown in Figure 17.

For up to 4 partitions and for almost all query categories, we
achieve good speed-up since our observed execution time is re-
duced by a factor close to the number of threads that are being
used. On the other hand, when using 8 hyperthreaded partitions
we observe no performance improvements and in some cases
a slightly worst execution time. This is because our processing
is CPU bound (due to the JSON parsing), hence the two hyper-
threads are effectively run in sequence (on a single core). In
summary, we see the best results when we match the number of
partitions to the number of cores.
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Figure 17: Single Node Speed-up

Comparison with MongoDB and AsterixDB: When com-
paring our performance against MongoDB and AsterixDB we
observed that the performance of these systems is affected by
the structure of the input JSON file. For example, a file with the
structure of Listing 6 will be perceived by MongoDB and Aster-
ixDB as a single, large document. Since MongoDB and AsterixDB
are optimized to work with smaller documents (MongoDB has
in addition a document size limitation of 16MB), to make a fair
comparison we examined their performance while varying the
number of documents per file.

We first unwrapped all the JSON items inside "root" (Listing
6). This results to many individual documents per file, each doc-
ument containing a "metadata" JSON object and its correspond-
ing "results" JSON array (typically with 30 measurements).
We further manipulated the number of documents per file by
varying the number of member objects (measurements) inside
the "results" array from 30 (one month of measurements per
document) to 1 (one day/measurement per document).

Figure 18.a depicts the query time performance for query Q0b
for VXQuery, MongoDB, AsterixDB and AsterixDB(load); the
space used by each approach appears in Figure 18.b. The total
size of the dataset is 88GB and we vary the measurements per
JSON array.

In contrast to MongoDB and the AsterixDB approaches, we
note that the performance of VXQuery is independent of the
number of documents per file. MongoDB has better query time for
larger documents (30 measurements per array). Since MongoDB
performs compression per document, larger documents allow for
better compression and thus query time performance. This can
also be seen in figure 18.b, where the space requirements increase
as the document becomes smaller (and thus less compression is
possible). The space for both AsterixDB approaches and VXQuery
is independent from the document size (which is to be expected
as currently these systems do not use compression).

AsterixDB shows a different query performance behavior than
MongoDB. Its best performance is achieved for smaller document
sizes (one measurement per document). Since it shares the same
infrastructure as VXQuery, the difference in its performance rel-
ative to VXQuery is due to the lack of the JSONiq Pipeline Rules.
Without them, the system waits to first gather all the measure-
ments in the array before it moves them to the next stage of
processing. This holds for both AsterixDB and AsterixDB(load).
Among the two approaches, the AsterixDB(load) approach has
better query performance since it is optimized to work better for
data that is already in its own data model. Interestingly, for the
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Figure 18: (a) Execution Time and (b) Space Consumption for Different Measurement Sizes per Array

Measurements/Array 30 22 15 7 1
MongoDB 9000 11703 14443 17146 19876

AsterixDB (load) 24659 23987 24205 24547 24612
Table 1: LoadingTime in sec forAsterixDB (load) andMon-
goDB for Different Record Sizes

smaller document sizes (where compression is limited), Aster-
ixDB and MongoDB have similar query performance. For larger
document sizes their query performance difference seems to be
directly related to their data sizes. For example, with 30 measure-
ments per document, MongoDB uses about 4.5 times less space
due to compression and has about 4 times less query time than
AsterixDB(load).

Table 1 depicts the loading times for MongoDB and Aster-
ixDB(load) for different measurements/array (in contrast there
is no loading time for AsterixDB and VXQuery). The different
loading times can also be explained by the space consumed by
MongoDB and AsterixDB(load) (Figure 18.b). Specifically, Mon-
goDB needs less loading time due to its use of compression; as
expected, its loading time increases as the number of measure-
ments per array is decreased due to less compression.

Comparison with SparkSQL: We next compare with a well-
known NoSQL system, SparkSQL. In this experiment we ran Q1
both on VXQuery with the JSONiq rewrite rules and on Spark
SQL and we compared their execution times. We used a single
node and one core as the setup for both systems. We varied the
dataset sizes starting from 400MB up to 1GB. We could not run
experiments with larger input files because Spark required more
than the available memory space to load such larger datasets.

Table 2 shows the SparkSQL loading times for the datasets used
in this experiment. Figure 19 shows the query times for query
Q1 for the different data sizes. Note that the VXQuery bar shows
the total execution time for each file (which includes the loading
and query processing) while the SparkSQL bar corresponds to
the query processing time only. VXQuery’s total execution time
is slower than Spark’s query time for small files. The two sys-
tems show similar performance for 800MB files. However, as the
collection size increases, Spark’s behavior starts to deteriorate.
For the 1GB dataset our system’s overall performance is clearly
faster. If one counts also for the file loading time of SparkSQL
(the overhead added by loading and converting JSON data to
a SQL-like format), the VXQuery performance is faster. While
the overhead of the loading phase is not a significant burden for
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Figure 19: Spark SQL vs VXQuery Execution Time for
Query Q1 Using Different Data Sizes (MB)

Data Size (MB) Loading Time (s)
400 6.3
800 15
1000 40

Table 2: Loading Time for Spark SQL

Data Size (MB) Spark Memory (MB) VXQuery Memory (MB)
400 5650 1690
800 6230 1750
1000 7953 1760
Table 3: Data size to system memory in MBs

SparkSQL when considering small inputs (400MB) it becomes an
important limiting factor even for medium size files (800MB).

We also examined the memory allocated by both systems (Ta-
ble 3). The results show that VXQuery stores only data relevant
to the query in memory, as opposed to SparkSQL, which stores
everything. For file sizes above 2GB, the memory needs of Spark-
SQL exceeded the node’s available 16GB, so it was unable to load
the input data so as to query it.

5.4 Cluster Experiments
The goal of this section is to examine the cluster speed-up and
scale-up achieved by VXQuery due to our JSONiq rewrite rules
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Figure 22: VXQuery vs AsterixDB: Cluster Speed-up for Q0b and Q2 (803GB Dataset)

and compare it with AsterixDB and MongoDB. For all the follow-
ing experiments we used 4 partitions per node which achieves
the best execution time as shown in the previous section.

To measure the cluster speed-up we started with a single node
and extended our cluster by one node until it reached to 9 nodes.
We used 803GB of JSON weather data which were evenly parti-
tioned among the nodes used in each experiment. This dataset
exceeds the available cluster memory. The results for this evalua-
tion are shown in Figure 20. We note that in all the cases cluster
speed-up is proportional to the number of nodes being used,
without depending on the type of the query. We observe that the
last query (Q2) takes the most time to execute. This is expected
because Q2 is a self join query, which means that it has to process

twice the amount of data. On the other hand, for VXQuery, Q0b
has the best response time due to its small input search path as
described in previous sections.

To show the scalability achieved by VXQuery, we started with
a dataset of size 88GB which exceeds one node’s available mem-
ory (8GB). With each additional node added we add four parti-
tions totaling 88GB (hence when using 9 nodes the whole collec-
tion is 803GB). The results appear in Figure 21. As it can be seen
our system achieves very good scale-up performance; the query
execution time remains roughly the same, which means that the
additional data is processed in roughly the same amount of time.

Comparison with AsterixDB: In the cluster experiments,
we compare against AsterixDB (i.e. without loading; each dataset
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Figure 25: VXQuery vs MongoDB: Cluster Scale-up for Q0b and Q2 (88GB per Node)

is provided as an external data source). As seen in the single-node
experiments, the best performance for AsterixDB is achieved
when "results" consists of only one measurement; thus we use
this structure for the following evaluation.

Following similar reasoning with the single-node comparison,
we observe that VXQuery performs better both for speed up
(Figure 22) and scale up (Figure 23), using queries Q0b and Q2 as
representative examples.

ComparisonwithMongoDB: Similarly, we compare against
the MongoDB configuration that achieved the best performance
in the single-node experiments (i.e., "results" contains all monthly
measurements). Overall, MongoDB has faster query time for se-
lection queries than VXQuery (Figure 24 shows speedup for query

Q0b; the Q0 query performed similarly). Since MongoDB per-
forms a compression during the loading phase of the dataset, the
dataset stored in the database is much smaller giving an advan-
tage to selection queries. However, VXQuery’s execution time
for query Q0b is still comparable since its small input search path
gives the opportunity for the Pipeline rules to be exploited.

In contrast, VXQuery has a faster execution time than Mon-
goDB on join queries (like Q2). For this self-join, MongoDB tries
to put all the documents that share the same station and date in
the same document; thus creating huge documents which exceed
the 16MB document size limit causing it to fail. To overcome
this problem, we perform an additional step before the actual
join. We unwind the "results" array and we project only the
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Data Size (GB) Loading Time (sec)
88 9000
803 81000

Table 4: Loading Time for MongoDB

necessary fields. After that, we perform the actual join on the
corresponding attributes (i.e. station, date of measurement).

On the other hand, in VXQuery there is no document size
limitation, making VXQuery more efficient in handling large
JSON items. Table 4 shows the MongoDB loading times per node.
This adds a huge overhead to the performance of the overall
system and it can be prohibitively large for real-time applications
where the dataset may not been known in advance.

Comparison with SparkSQL: As mentioned in the single
node experiments SparkSQL could not run experiments with
larger input files because of the required memory space to load
such larger datasets. Hence we omit multi-node experiments with
SparkSQL, since the dataset size will be very small to indicate
and difference in the execution time.

6 CONCLUSIONS AND FUTURE WORK
In this work we introduced two categories of rewrite rules (path
expression and pipelining rules) based on the JSONiq extension
to the XQuery specification. We also introduced a third rule
category, group-by rules, that apply to both XML and JSON data.
The rules enable new opportunities for parallelism by leveraging
pipelining; they also reduce the amount of memory required as
data is parsed from disk and passed up the pipeline.We integrated
these rules into an existing system, the Apache VXQuery query
engine. The resulting query engine is the first that can process
queries in an efficient and scalable manner on both XML and
JSON data. Through experimentation, we showed that these rules
improve performance for various selection, join and aggregation
queries. In particular, the pipelining rules improved performance
by several orders of magnitude. The system was also shown both
to speed-up and scale-up effectively. Moreover, when compared
with other systems that can handle JSON data, VXQuery shows
significant advantages. In particular, our system can directly
process JSON data efficiently without the need to first load it and
transform it to an internal data model.

We are currently working on supporting indexing over both
types of data (XML and JSON). Indexing presents a significant
challenge, as there is no simple way to decide the level at which
an object could be indexed; indexing will further improve the
system’s performance since the searched data volume will be
significantly reduced. All of the code for our JSONiq extension
is available through the Apache VXQuery site [4] and it will be
included in the next Apache VXQuery release. Furthermore, we
plan to add the proposed path and pipelining rules directly to
AsterixDB given that it shares the same infrastructure (Algebricks
and Hyracks) with VXQuery.
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ABSTRACT
In the past years, we have witnessed an explosion of web ap-

plications, and in particular of electronic commerce websites.

This has led to unquestionable benefits for both producers and

consumers of goods. On the other hand, however, untrusted com-

panies have the opportunity to bypass checks and regulations

imposed by relevant bodies. This problem is prevalent in the

context of online commerce of pharmaceutical products, where

it is essential that such products are safe, of good quality, and

only used with a proper prescription. In this work, we study the

problem of internet pharmacy verification. To this effect, we build

a classifier, able to find patterns and predict the class of unseen

data. Moreover, we devise algorithms that give a trust score to

each pharmacy, in order to have a legitimacy indicator usable

by human reviewers. We experimentally evaluate the proposed

approach with real data coming from two different time periods.

The results demonstrate the effectiveness of our approach, as

well as the potential of using similar techniques for automatically

checking regulation compliance in electronic commerce.

1 INTRODUCTION
The growth of web-related technologies, and in particular e-

commerce, has offered companies the opportunity to increase

their own business, selling directly their products and goods to

customers within and across borders. Even though this has led

to unquestionable benefits for customers, untrusted companies

can also access the market and sell products, for which it is not

always possible to assess the quality.

The above problem is even more prominent when we are

dealing with pharmaceutical products. Online sale of counter-

feit drugs has become an important problem, with studies by

the World Health Organization (WHO) showing that in more

than 50% of the cases, drugs sold by websites that conceal their

physical address are counterfeit
1
. The WHO argues that coun-

terfeiting occurs both with branded and with generic products,

and counterfeit drugs may include the correct ingredients but

fake packaging, the wrong ingredients, insufficient active ingredi-

ents, or no active ingredients whatsoever
2
. Evidently, counterfeit

drugs represent an enormous public health challenge [26], and

also a major illicit economic activity, with an estimated $75 billion

market for 2010
3
.

Moreover, the mere task of distinguishing a legitimate from
an illegitimate online pharmacy is rather challenging. This is

true for domain experts, and is often times impossible to do for

simple users, especially since illegitimate pharmacies and drugs

are designed to look like legitimate ones (including the packaging

1
http://who.int/bulletin/volumes/88/4/10-020410/en/

2
http://apps.who.int/iris/bitstream/10665/65892/1/WHO_EDM_QSM_99.1.pdf

3
The complete article can be found at: http://www.usatoday.com/money/industries/

health/drugs/story/2011-10-09/cnbc-drugs/50690880/1

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the 21st

International Conference on Extending Database Technology (EDBT), March 26-29,

2018, ISBN 978-3-89318-078-3 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons

license CC-by-nc-nd 4.0.

of drugs, and the drugs themselves, which are usually identical

to the original ones).

Figure 1 shows the front webpage of two online pharmacies,

only one of which is legitimate. Evidently, a simple observation

of the two webpages is not enough to reveal which one
4
. Hence,

there is a pressing need for assessing the quality of pharmaceuti-

cal products sold online, and a major step in this direction is to

assess the trustiness of online pharmacies, which is the focus of

this study.

There are different factors that make a pharmacy illegitimate.
In U.S.A. (as well as in many other countries), an online phar-

macy must satisfy regulations and meet strict requirements. The

requirements that are most frequently violated in the U.S. are, for

example, the selling of products without prescriptions and the

selling of drugs that are not “FDA-Approved”
5
[21]. Evidently,

checking these factors is not an easy task, especially for people

that do not have any kind of competence and knowledge in this

field, such as the normal consumers.

It is for this reason that specialized companies have made

the verification of health-related websites their own business.

LegitScript
6
, for example, offers an internet pharmacy verifica-

tion service and collaborates with the major search engines (e.g.,

Google, Bing) in order to enforce policies against illegitimate
online pharmacies, which can be as much as 90% of the total

number of online pharmacies [21].

The process of classifying health-related websites into legit-
imate and illegitimate pharmacies is currently mostly manual,
and requires a great investment of time and human resources.

The increasingly large number of online pharmacies, and corre-

spondingly large number of illegitimate online pharmacies, leads

to the necessity of streamlining the review process with a system

capable of automatically giving a trust score to online pharma-

cies. In this manner the system can assist the human reviewers,

relieving them of some tedious and time-consuming tasks.

In this paper, we propose the first systematic approach to

the aforementioned problem, using techniques that are based

on both text and network features, and we describe a system

capable of verifying internet pharmacies. We have made all our

code publicly available
7
. Even though previous studies have

discussed this problem (e.g., [3, 23, 28]), they did not provide

algorithmic solutions for it.

The contributions we make in this paper are as follows.

• We provide the first systematic study for the problem

of internet pharmacy verification and formalize two sub-

problems: (a) classification of online pharmacies into legit-
imate and illegitimate; and (b) ranking online pharmacies

according to a legitimacy score.

• We study and evaluate indicators that can distinguish be-

tween legitimate and illegitimate pharmacies. We propose

4
The pharmacy depicted in Figure 1a is illegitimate, while the one depicted in

Figure 1b is legitimate.
5
If a drug is FDA-Approved it means that specific tests have been conducted to

prove the quality of the product.

6
http://www.legitscript.com

7
https://sites.google.com/view/acolfplg/home
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(a) front webpage of online pharmacy 1

(b) front webpage of online pharmacy 2

Figure 1: Examples of two online pharmacies.

novel features that are based on both the text of the on-

line pharmacy website, and its network structure, and

integrate these features in our models.

• We describe effective and efficient solutions for the classifi-

cation and ranking problems. The proposed solutions can

automate to a large extent the process of online pharmacy

verification.

• We experimentally validate our methods with the two

largest real datasets used in the literature, comprising of

almost 2500 illegitimate pharmacies and 200 legitimate
pharmacies, crawled in two different time periods. The

results demonstrate the accuracy of our approach and

its practical value, and showcase the potential of similar

techniques in relevant problems in e-commerce.

The rest of this paper is organized as follows. In Section 2,

we elaborate on existing work. In Section 3, we provide some

background material that is necessary for the discussion that

follows, and we formally define the two problems we solve. We

describe our proposed solution in Sections 4 and 5. We present

the experimental results in Section 6, and finally, we conclude

in Section 7 with a brief summary and some thoughts on future

work.
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2 RELATEDWORK
2.1 Pharmacy Verification
Previous works have discussed the problem of online pharmacy

verification [22], and advocated the need for studying this prob-

lem from the regulation and public-health points of view [27, 28].

A study in the area of medicinal drug commerce has shown

that consumers should be able to reduce their risk by relying

on trusted lists compiled by credited agencies [3], and by using

common sense when examining packaging and pills, while other

studies have explored the problem of identifying controversial

drugs, by monitoring consumer opinion [33, 34].

Nevertheless, the major problem is that it is not possible to

assess the quality of a drug sold online, at least until it has been

purchased. And even at that time, determining if such medicine

is safe or not, requires several analyses and competences, often

not held by the normal consumer. The most promising solution is

the one of using official lists of trusted online pharmacies. Never-

theless, this is a daunting task to complete manually, because of

the sheer number of online pharmacies and the rate with which

they appear (or disappear).

Some studies have focused on the problem of identifying fea-

tures and signals that distinguish legitimate and illegitimate on-
line pharmacies [23, 27, 28]. In [23] the authors performed a

comparative analysis of website trust features applied to the case

of online pharmacies, which showed that proven legitimate phar-
macies use more extensively verification seals and have more

instances of health content than illegitimate pharmacies. On the

other hand, illegitimate pharmacies have fewer store presence

features than legitimate pharmacies. In [22] the authors try to

understand the reasons for the success of unlicensed online phar-

macies. They discover that instead of directly competing with

licensed pharmacies, unlicensed pharmacies often sell drugs that

licensed pharmacies do not, or cannot sell.

Additional studies [27, 28] demonstrate that the problem of

online pharmacy verification should be studied at two different

levels: from the regulation point of view and from the public

health point of view. The very same conclusion has been outlined

another study as well [27], where the authors perform a review

of the scientific literature and a study of several scientific and

institutional databases. They showed that the phenomenon is

continuing to spread, and in order to enhance the benefits and

minimize the risks, a 2-level approach could be adopted: first,

from a policy point of view implementing international level laws,

and second on an individual consumer point of view. Note that

none of studies mentioned above propose algorithmic solutions

for tackling the problem at hand.

CADRE [36] is a cloud-assisted drug recommendation system,

which can recommend users with related drugs, according to

their symptoms. The system clusters drugs into several groups

according to the functional description information, and designs

a basic personalized drug recommendation based on user col-

laborative filtering. While this system can help consumers find

alternative drugs for their symptoms, it can not be used for iden-

tifying illegitimate drugs, or illegitimate online pharmacies.

In this study, we show that another direction is possible and

effective. We claim that relevant bodies (e.g., LEAs and private

agencies in health-care system) could use state-of-the-art data

mining techniques in order to find, isolate, and eventually shout-

down illegitimate online pharmacies. Our approach outlines a

text classification process and a network trust algorithm in order

to assess the legitimacy of internet pharmacies.

2.2 Text Classification and Network Trust
Algorithms

Our problem is reminiscent to spam detection [5]. Even though

the problems of internet pharmacy verification and web spam

detection exhibit some similarities, they are very different in the

definition of what is considered legitimate. In our case, we might

require very specific knowledge in order to differentiate between

legitimate and illegitimate examples. Moreover, the final scope of

the two systems are different. In [5] the authors aim to improve

search engines algorithms, while in this work the final users are

domain-specific analysts working in the field of online pharmacy

verification.

Text Classification (TC) is defined as the process, in which a

document is automatically classified in one or more categories

(classes) [1, 31]. In this process, a set of labeled data is used to

train a classifier, which recognize patterns among instances of

the same class. These patterns are then used to build a model

able to classify unlabeled instances. TC have been used in many

contexts, including language identification [6], message filtering

(i.e., spam filtering) [2, 19, 25], hierarchical categorization of

web pages [7, 11], and others. Recent studies have surveyed text

classification algorithms [1], and also studied the behavior of

classifiers in the presence of label noise [14, 24].

In the specific context of web content, the classification of

web content in one or more classes has been studied by many

researchers. In [17], the author analyzes the nature of web content

and metadata in relation to requirements for text features, and

presents a system for automatically classifying websites into

industrial categories. The work presented in [11] explores the use

of a hierarchical structure for classifying a large, heterogeneous

collection of web content.

In [13], the authors compare three different text representation

techniques, based on (character) N-GramGraphs, the TermVector

model, the Character N-Grams model, and the N-Gram Graphs

model, with respect to three different categories of documents:

curated, semi-curated and raw documents. They show that each

category calls for different classification settings with respect

to the representation model; moreover they show that N-Gram

Graphs model achieves higher performances on each of the three

different categories analyzed. This is a versatile technique that

we use in our work, and that we further discuss in the following

sections.

Assessing the trustiness in a network of hosts or websites has

become very important in the web context, where the number of

web spam pages increases by the minute. In order to address this

problem, some search engines have adopted trust algorithms to

reduce the rank of such pages in query results. TrustRank [15]

is a link analysis technique for semi-automatically separating

useful webpages from spam. Starting from a seed of reputable

web pages, TrustRank uses the underlying network structure to

discover other pages that are likely to be legitimate.

In [20] the authors provide a variation of TrustRank algo-

rithm, called Anti-TrustRank, where non-reputable web pages

are selected as initial seed. A different algorithm, which is able

to decrease the number of downloads of inauthentic files in a

peer-to-peer file-sharing network, is presented in [18].

An important characteristic of our domain is that the two

classes - legitimate and illegitimate- are strongly imbalanced:

the number of legitimate examples represents only a small per-

centage of the total. The effect of skewed distribution has been

studied in many aspects. In [35] the authors analyzed the effect
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of class distribution on classifier learning and showed that the

naturally occurring class distribution is often not the best choice

for learning. In [10, 29, 32] the effects of dataset distribution have

been studied for two very well known classifiers: C4.5 and SVM.

In our work, we compare the results obtained by training clas-

sifiers with the natural distribution and with resampling (both

undersampling and oversampling).

3 PRELIMINARIES AND PROBLEM
DEFINITION

In this section, we recap some concepts and techniques needed

for the rest of the paper, and formally define the problems we

solve.

3.1 Preliminaries
We first define the concept of an online pharmacy, and we point

out the differences between legitimate and illegitimate online
pharmacies. This is important, since the term illegitimacy may

have different interpretations depending on the contexts.

An online pharmacy is a website that offers medical products

for sale. In this context there are different levels of illegitimacy
for a pharmacy, and such levels depend on certain features that,

if present, contribute to make that pharmacy illegitimate. We can

group illegitimate pharmacies in three big categories:

• online pharmacies that do not adhere to accepted stan-

dards of medicine and/or pharmacy practice, including

standards of safety;

• online pharmacies that violate, appear to violate, encour-

age violation of, or are not in compliance with applicable

national or regional laws or regulations;

• online pharmacies that engage in fraudulent or deceptive

business practices.

The first two categories are self explanatory. They include

pharmacies that represent a threat for the people’s health, as they

sell drugs that are not approved, or they are not in compliance

with national or regional regulations. The third category is a

more general class that includes those websites that scam people,

stealing their data, or money (obviously, these websites are not

only health-related). These three categories are not mutually

exclusive, and a illegitimate pharmacy may belong to more than

one, which is actually true for the majority of them.

Signals that make a pharmacy more likely to be illegitimate
include concealing its physical address, being isolated frommajor

trusted websites, as well having fewer store presence features,

and fewer health-related text content than legitimate pharma-

cies [3, 28].

3.2 Problem Statement
We now formalize the problems that we solve in this study: first,

classification of online pharmacies in illegitimate and legitimate;
and second, ranking of online pharmacies according to their

legitimacy.
We denote with P the set of all the pharmacy websites. Let’s

call P+ and P− the legitimate and the illegitimate pharmacies,

respectively, in P. We also suppose to know the class of a subset

of pharmacies P0 ⊆ P, i.e., there exists an oracle function O that

for all the p ∈ P0:

O(p) =

{
1 if p ∈ P+

0 if p ∈ P−
(1)

Assuming that a human reviewer can evaluate if a website is

legitimate or not, we can think of the oracle function O as an

evaluation performed by a human reviewer. However, oracle in-

vocations are expensive and we cannot callO for each pharmacy

in P, so we aim to find another function, T , such that for some

model Π:

T (p) =

{
1 if Π |= p ∈ P+

0 if Π |= p ∈ P−
(2)

We recall that the formal notion Π |= p ∈ P+ means that Π
entails p ∈ P+, where Π is a model derived and built from the

training set P0 with some learning algorithm.

Note that there exist infiniteT derived by infinite Π, but we are
interested in the one that maximizes some evaluation measure

(e.g., number of correctly classified instances, recall, precision).

We can now formalize the classification problem:

Problem 1 (Online Pharmacy Classification (OPC)). Given
a set of pharmacies P divided in two classes P+ and P−, a set of
“known” pharmacies P0 ⊆ P, and an evaluation measure φ, we
seek a model Πi such that ∀p ∈ P,Ti (p) maximizes φ.

The second problem we are trying to solve is a ranking prob-

lem. We want to give a trust score to each pharmacy, which

we could then use to produce an ordered list. More formally,

we want to define a totally ordered set, where for each pair of

pharmacies p1,p2 ∈ P it holds that score(p1) ≤ score(p2) or
score(p2) ≤ score(p1). The score for each pharmacy is computed

by combining different models.

Problem 2 (Online Pharmacy Ranking (OPR)). Given a set
of pharmaciesP divided in two classesP+ andP−, a set of “known”
pharmacies P0 ⊆ P, and a list of models Π1, . . . ,Πk , we seek a
totally ordered set ⟨ P, ≤ ⟩ such that, for each pair of elements
p1,p2 ∈ P, if score(p1) ≤ score(p2), then p1 is “less legitimate”
than p2.

We expect that the ordered list naturally divides the pharma-

cies P in two subsets (i.e., legitimate and illegitimate pharmacies),

with all the elements of one subset at the top of this list, and all

the elements of the other subset at the bottom. Without loss of

generality, in the following we will focus on a legitimacy rela-

tion, which builds a list with legitimate examples at the top and

illegitimate ones at the bottom.

In the following sections, we discuss how we solve the two

problems formalized above, namely the classification and the

ranking problem.

4 ONLINE PHARMACY CLASSIFICATION
Our classification algorithm is based on features that are relevant

to both the text contained in the website of the online pharmacy

and the web network structure around it.

4.1 Text Analysis
In order to reduce the dimensionality of the problem, it is com-

mon practice in Text Classification (TC) to use preprocessing and

summarization.
Preprocessing: In the preprocessing step we remove the stop

words found in the documents. In this way the most common

words, which could adversely affect classification accuracy, are

removed. To do so we rely on Apache Lucene
8
version 3.4.0.

We also decided to not use stemming, as the text contains a lot

8
http://lucene.apache.org/
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of technical words and trademarks, and this technique causes

undesirable side-effects.

Summarization: The process of transforming a set of web pages

into a unique summary is called summarization. For each phar-

macy, we merge the text content of all the pages crawled into a

single document. This step produces documents that include a

large number of terms; documents comprising of 160, 000 terms

are not unusual. In our experiments, we evaluate the performance

of the classifier models when we use the entire content of the

document (all terms), as well as subsets of it. During this phase,

we generate subsamples of the summary document considering

a limited number of terms by randomly selecting 100, 250, 1000

and 2000 terms.

We are now ready to describe the core steps of our classifi-

cation approach. Considering pharmacy websites as documents,

and the two classes, legitimate and illegitimate, as mutually exclu-

sive, we map our problem into the TC problem. We first convert

each document (i.e., the text contained in an online pharmacy

website) in a format suitable for the classification phase. We study

two different such models, the Term Vector model [30], and the N-

Gram Graphs model [12], both outlined below. Then, we use TC

to classify unseen data relying on models built using the subset

of labeled data P0. We employ different learning algorithms to

build a two-class classifier, including Naïve BayesianMultinomial

(NBM), Support Vector Machine (SVM), and the C4.5 decision

tree learning algorithm.

4.1.1 Term Vector Model. :
The Term Vector model is the most widely used text represen-

tation model in information retrieval, due to its high level of

performance and scalability [30]. The model works as follows:

given a set of documentsD, each document d ∈ D is represented

as a vector of words vd = (v1,v2, . . .v |W |), whereW is the set

of all the distinct words in D. Each position vi with 1 < i < |W |
in the vector represents the presence, or the absence, of wordwi
in document d .

There are many variants to represent di values, but the most

popular is the TF-IDF approach, which takes into account the

number of occurrences of a term in a document (term frequency),

and its overall frequencies in the whole set of documents D

(inverse document frequency).

4.1.2 N-Gram Graphs. :
The N-Gram Graph is a graph G(V ,E) which has character n-

grams as its vertices, while the edges connecting the n-grams

indicate proximity of the corresponding vertex N-Grams [12].

The weights on the edges represent how much the two N-Gram

are related (one way of setting these weights is by counting how

many times two N-Grams co-occur within a sliding window in

the text). The advantage of N-Gram Graphs is that they conserve

the order of the characters’ appearance in the original text, and

hence aremore stable than the standard Character N-GramModel.

The three measures characterizing an N-Gram Graph are: (i) the

minimum n-gram rank Lmin , (ii) the maximum n-gram rank

Lmax , and (iii) the minimum neighborhood distance Dwin . In

our experiments, we use Lmin = Lmax = Dwin = 4 [13].

In order to use N-Gram Graphs, we first transform each docu-

ment d in a N-Gram Graph (refer to Figure 2). For each class c ,
we build an N-Gram Graph derived from merging the individual

graphs in c , and we compute the similarities between each docu-

ment d and the class graph. We then use the following similarity

measures, namely, Containment Similarity (CS), Size Similarity

Figure 2: An overview of the classification process using N-Gram Graphs [13].

(SS), and Value Similarity (VS) in order to build a classifier able

to predict the class of unseen data.

Containment Similarity (CS) expresses the proportion of edges

of a graph Gi that are shared with a graph G j .

CS(Gi ,G j ) =

∑
e ∈Gi µ(e,G j )

min(|Gi | ,
��G j

��)
where e is an edge, and µ(e,Gi ) = 1 if, and only if e ∈ Gi . The

cardinality |Gi | here is intended as the number of edges of the

graph Gi .

The ratio of sizes between two graphs is measured by the Size

Similarity (SS):

SS(Gi ,G j ) =
min(|Gi | ,

��G j
��)

max(|Gi | ,
��G j

��)
We recall that with |Gi | we indicate the number of edges in graph

Gi
Value Similarity (VS) represents how many of the edges con-

tained in Gi are contained in G j , considering also the weight of

such edges.

VS(Gi ,G j ) =

∑
e ∈Gi

min(w i
e ,w

j
e )

max (w i
e ,w

j
e )

max(|Gi | ,
��G j

��)
wherewi

e is the weight of edge e in the graph Gi .

A combination of VS and SS gives another useful measure,

called Normalized Value Similarity (NVS):

NVS(Gi ,G j ) =
VS(Gi ,G j )

SS(Gi ,G j )

4.2 Network Analysis
Apart from the text features described above that we use for the

classification of online pharmacies, we additionally use features

derived from the web network in which they are embedded. More

specifically, we are interested in the links an online pharmacyweb

page has with other web pages: the web pages that this pharmacy

points to, and the web pages that point to this pharmacy.

To this effect, we use features extracted from the TrustRank

algorithm [15]. In TrustRank, the network is represented as a

graph G(V ,E), where the set of nodes V are websites (or more

generally web pages) and the links between pages, represented by

the set E, are drawn as directed edges. The algorithm computes a
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(a) Initial state of a network made of “good”
(white) and “bad” (black) nodes.

(b) The network after the execution of the
TrustRank algorithm, with different levels
of “trustiness”.

Figure 3: Illustration of the TrustRank algorithm.

Algorithm 1 Creates the network graph G(V ,E)

GRAPH-CREATION(P : set of pharmacies)

1: V ← ∅
2: E ← ∅
3: for all Pharmacy p ∈ P do
4: V ← V ∪ p
5: L ← outboundLinks(p)
6: for all Link u ∈ L do
7: V ← V ∪ endpoint(u)
8: E ← E ∪ {u}
9: end for
10: end for

trust score for each node in the graph, based on the premise that

“good” pages rarely point to “bad” ones (this property is also called

approximate isolation of good pages). More specifically, TrustRank

starts by selecting a seed of “known” pages, and gives a trust

score of 1 to good pages and 0 to all others. After normalizing

the values, the trust is propagated at each step until convergence.

This process is illustrated in Figures 3a and 3b.

In order to run our version of TrustRank, we first need to

construct the graph (refer to Algorithm 1), onwhich the algorithm

will be applied.

Recall that the set P contains both labeled and unlabeled

examples. The outboundLinks() function (line 5) accepts the URL

of an online pharmacy as input, and returns all the outbound links

for this website, namely, all links that point to external domains
9
.

The endpoint() function (line 7), returns the final destination of

a link, extracting the second level domain.

For example, assume thatoutboundLinks(p) for somewebsitep
returns the following set of links: "http://www.medicalnewstoday.

com/articles/238663.php", and "http://www.fda.gov/forconsumers/

consumerupdates/ucm149202.htm". Then, the function endpoint()
applied on each one of these URLswill return: "medicalnewstoday.

com", and "fda.gov", respectively.

This step is important because it allows us to significantly

prune the feature space, which in this case is represented by

URLs. Please also note that this step will not affect the quality

as we can assume all the pages belonging to the same domain

having the same trustiness.

In a second step we have to assign an initial trust score to each

node in the graph. In our graph we have 4 types of nodes:

(1) legitimate nodes in P0; we denote this set with P+
0

9
In other contexts outbound links are sometimes called external links, or outcoming
links.

(2) illegitimate nodes in P0; we denote this set with P−
0

(3) unknown pharmacy nodes in P \ P0

(4) non-pharmacy nodes pointed to by nodes in P

Note that the last category includes all the websites extracted

frompharmacy linkswith functionsoutboundLinks() and endpoint().
Following our previous example, these are "medicalnewstoday.

com" and "fda.gov".

During the initialization phase of TrustRank, we assign to all

nodes in P0 the value returned by the oracle function, O , when
invoked on these nodes. Hence, after the initialization, the known

legitimate nodes (the first category of the list) have a trust score

of 1, while all the other nodes have a value of 0. Finally, we can

run TrustRank and train a classifier using the output values of

corresponding nodes in P0.

5 ONLINE PHARMACY RANKING
Our goal here is, given a pharmacy, to calculate a value that

indicates the degree by which this pharmacy is legitimate or

illegitimate. Having these values for all pharmacies will allow

us to compute the totally ordered set sought in Problem 2. We

assume that the list is ranked in decreasing order of legitimacy
(if p1 ≤ p2 then p1 is “less legitimate” than p2). We propose a

cumulative model that combines the models built with text and

network:

rank(p) = textRank(p) + networkRank(p).

When we use the Term Vector model with TF-IDF to represent

documents, the textRank of a pharmacy p is computed as the

membership probability of this instance p to the legitimate class,
as estimated by a classifier solving Problem 1. For example, in the

case of the Naïve Bayesian Multinomial classifier, the probability

of a document d being in class c is computed as:

P(c | d) ∝ P(c)
∏

1≤k≤nd

P(tk | c),

where P(c) is the prior probability of class c , and P(tk | c) is the
conditional probability of term tk occurring in a document of

class c . If the classifier is non-probabilistic, like for example SVM,

we give to textRank a value of 1 if the instance is classified as

legitimate and 0 if it is classified as illegitimate, which is the same

as the output of function T .
On the other hand, when we use the N-Gram Graphs represen-

tation model, we compute textRank() using a different formula:

rather than considering the output of the classifier, we sum up

the graph similarity measures according to this formula:

textRank(p) = CSlegitimate(p) + (1 −CSillegitimate(p))

+ SSlegitimate(p) + (1 − SSillegitimate(p))

+VSlegitimate(p) + (1 −VSillegitimate(p))

+ NVSlegitimate(p) + (1 − NVSillegitimate(p)) (3)

The abbreviations CS , SS , VS and NVS denote containment,

size, value and normalized value similarities for the class in sub-

script, described in Section 4.1.

The function networkRank() simply returns the TrustRank

value computed with the algorithms presented in Section 4.2.

6 EXPERIMENTAL EVALUATION
We now evaluate the proposed approach using real data provided

by an American company, who is a leader in internet pharmacy

verification. We will call this company PharmaVerComp. The
pharmacies used in our study have been manually labeled as
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Dataset 1
Date 1

Dataset 2
Date 2

(6 months later)

# Examples 1459 (100%) 1442 (100%)

# Legitimate Examples 167 (12%) 167 (12%)

# Illegitimate Examples 1292 (88%) 1275 (88%)

Table 1: Datasets

legitimate or illegitimate by personnel of this company. Therefore,

the dataset is consistent and error free.

All our code is publicly available at: https://sites.google.com/

view/acolfplg/home.

6.1 Experimental Setup
At the time of this study, PharmaVerComp monitored almost

200, 000 health-related websites, out of which about 42, 000 are

active internet pharmacies. Only 0.5% of them are legitimate,

while 96.7% are not legitimate. The remaining 2.8% are pharma-

cies defined as potentially legitimate. This class is represented

by pharmacies that do not fully adhere to the PharmaVerComp

policies, but are probably not illegitimate. In this database, the ex-

amples are manually labeled by experts in the sector (i.e., human

reviewers), and constitutes our ground truth.

We worked on two different instances of this database, gen-

erated with a six months difference, which were provided by

PharmaVerComp. The summary statistics of these two instances

are provided in Table 1. The intersection between the illegitimate
instances of Dataset 1 and Dataset 2 is empty, i.e., in Dataset 2

we have 1275 different illegitimate domains. The two datasets

contain the same legitimate instances, but crawled in different

periods of time. We used crawler4j
10

in order to crawl each one

of the domains in the two datasets, without depth limit, but for a

maximum of 200 pages. In our analysis we use Dataset 1 as base
dataset to test our algorithms, while we use Dataset 2 to inspect

how our models evolve over time, i.e., how models built on “old”

data behave in dealing with “new” data.

We observe that the two classes in both datasets are strongly

imbalanced. In order to cope with this situation, we can use under-
sampling, which modifies the frequencies of the two classes by

randomly removing examples belonging to the majority class

in the training set, until the minority class reaches the same

percentage as the majority class. The other technique we used is

SMOTE [9]. SMOTE is an oversampling technique in which the

minority class is oversampled by creating “synthetic” examples.

Examples are created operating in “feature space” rather than in

“data space”, the opposite of what happens in oversampling with

replacement. In our experiments we trained our classifiers using

the natural class distribution as well as the ones generated using

these two sampling techniques. Then, for each classifier, we took

the one which offered the best results.

6.2 Evaluation Measures
In the following, we call “positive” the legitimate class, and “neg-

ative” the illegitimate class. With the notionsTN ,TP , FN , FP we

denote respectively the number of true negatives, true positives,

false negatives and false positive. Based on those, the evaluation

measures we use are the following.

Overall Accuracy. Overall accuracy is the general correctness

of the classifier and it is calculated as the sum of correct classified

10
https://github.com/yasserg/crawler4j

instances divided by the total number of instances:

Acc =
(TP +TN )

(TP +TN + FP + FN )
.

Note that in the case of imbalanced classes this indicator does not

provide a very good evaluation measure. In fact, given the actual

distribution of our dataset (12% legitimate, 88% illegitimate), a
simple strategy of guessing the majority class would have an

accuracy of 88%, but, of course, such a kind of classifier does

not help us to distinguish between illegitimate and legitimate
pharmacies.

Precision. Precision is a measure of the accuracy provided for

a specific class. It is defined as the number of correct classified

instances for a specific class divided by the total number of in-

stances for that class. For example, the precision for the legitimate
class is computed as:

Precisionlegitimate =
TP

TP + FP
.

Recall. Recall measures how many examples of one class are

classified correctly. The recall of the legitimate class is computed

as:

Recalllegitimate =
TP

TP + FN
.

Due to the imbalance of the two classes, we expect a good clas-

sifier to have a high illegitimate precision and an high legitimate
recall. This would mean that the classifier is able to correctly

identify the legitimate examples.

Area Under ROC Curve. The ROC curve is drawn by plotting

the False Positive Rate (FPR = F P
T N+F P ) against the True Posi-

tive Rate (TPR = T P
T P+FN ) of the classifier, at various threshold

settings. The ideal point on this curve would be on the top left

corner, meaning that all the positive examples are classified cor-

rectly, and no negative examples are classified as positive. The

area under ROC curve is a useful measure, especially in the case

of imbalanced datasets.

Pairwise Orderedness. For what concern the second problem,

we rely on a measure generally adopted in ranking problems,

pairwise orderedness, which is an indicator of the number of

“violations” of the ordered property in a list. First of all we define

a function I as follows:

I (p,q) =


1 if rank(p) ≥ rank(q) and O(p) < O(q)
1 if rank(p) ≤ rank(q) and O(p) > O(q)
0 otherwise

This function give 1 if and only if a illegitimate pharmacy receives

an equal or higher score than a legitimate pharmacy. Then, we

evaluate our ranking computing the fraction of the pairs for

which there is not such a violation:

pairord(X) =
|X| −

∑
(p,q)∈X I (p,q)

|X|
,

where X is the set of all the pairs of pharmacies (p,q),p , q, in
the set P \ P0. If pairord is equal to 1 there are no violations in

the pairs and we have all the legitimate pharmacies at the top of

the list and all the illegitimate ones at the bottom.

6.3 Classification Results
We ran experiments on Dataset 1 in order to test the methods

described in Sections 4.1 and 4.2. In particular, we trained dif-

ferent classifiers with several combinations of text and network

features. Below we present the results of the text and network
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classification, and ensemble classification, where we combine

both.

For all results, we computed the corresponding confidence

interval, which indicates the reliability of the results. We used

a confidence level of 100(1 − α)% with α = 0.05 (i.e., confidence

level 95%). In all cases, the confidence intervals for our classifiers

are very small (less than 1%): this means that the classifiers are

stable, with the results of each fold being very close to the mean.

6.3.1 Text Classification. :
Text classifiers were trained with different text representation

techniques on different subsets of the data. We employed 3-fold

cross validation, where two folds were used for training and the

third for testing. In the case of N-Gram Graphs, we randomly

selected half of the training instances to build the class graph [13].

Hence, we compared these class graphs with all our instances

(training and test). The N-Gram Graphs library we used to build

the graphs and compute similarities is JInsect
11
, while for the

implementations of the classifiers we relied on Weka [16].

Table 2 lists the abbreviations concerning the classifiers and

the sampling techniques employed in our experiments. We per-

formed various tests with all combinations among classifiers

and sampling techniques. However, due to space requirements,

for each classifier we present only the sampling technique that

performed best.

The overall accuracy with the TF-IDF representation are re-

ported in Table 3. In all cases, accuracy is above 88%, with the best

performers reaching 99%. However, as we can observe in Table 4,

the J48 classifier has low legitimate recall for small subsamples

of data. (As we already explained in Section 6.2, overall accuracy

is not enough to properly evaluate a classifier in an imbalanced

classes context.)

Increasing the number of words considered in the subsample

generally results in better performance. SVM is the classifier that

performs the best in terms of overall accuracy. Also for what

concerns legitimate precision and illegitimate recall, the best per-
former is SVM (refer to Tables 4 and 5). It is interesting to note

the inverse trend of NBM, whose efficacy decreases, especially

in legitimate precision, as we consider larger term subsets. As

expected, illegitimate precision is generally high, with all values

above 93%. This derives directly by the imbalance of the two

classes. In fact, since we have much less legitimate than illegit-
imate examples, if the classifier put some legitimate instances
in the wrong class, this does not heavily affect the recall of the

illegitimate class.
The AUC ROC curve, which is more robust to the case of

imbalanced classes, in shown in Table 6. NBM is the winner

in all cases considered. We note that SVM, which offers good

results in terms of legitimate precision and illegitimate recall,
does not have high AUC ROC values, especially for small subsets

of terms. Another observation is that the choice of the sampling

technique makes almost no difference for NBM and SVM. Instead,

for J48, the sampling technique leads to substantial variations

in performance. In particular, SMOTE is the sampling technique

that offered the best results. Similar observations have also been

documented in previous studies [8, 10].

We performed the same experiments using N-Gram Graphs,

in order to compare the two text representation techniques. For

N-Gram Graphs we do not use sampling, because of the nature

of this representation.

11
http://sourceforge.net/projects/jinsect

Abbreviation Description
NBM Naïve Bayesian Multinomial

NB Naïve Bayesian

SVM Support Vector Machines

J48 Java implementation of C4.5 algorithm

MLP Multilayer perceptron (Artificial Neural Networks)

NO No sampling technique used

SUB Subsampling

SMOTE Oversampling with SMOTE algorithm

Table 2: Abbreviations

#Terms
100 250 1000 2000 All

NBM NO 0.97 0.97 0.96 0.96 0.95

SVM NO 0.97 0.99 0.99 0.99 0.99
J48 SMOTE 0.89 0.92 0.93 0.96 0.95

Table 3: TF-IDF - Overall Accuracy

#Terms
100 250 1000 2000 All

Recall
NBM NO 0.90 0.98 0.98 0.97 0.96
SVM NO 0.76 0.90 0.93 0.92 0.95

J48 SMOTE 0.57 0.61 0.71 0.83 0.78

Precision
NBM NO 0.84 0.81 0.78 0.78 0.72

SVM NO 0.96 0.98 0.97 0.98 0.98
J48 SMOTE 0.58 0.71 0.76 0.83 0.82

Table 4: TF-iDF - legitimate recall and precision

#Terms
100 250 1000 2000 All

Recall
NBM NO 0.98 0.97 0.96 0.96 0.94

SVM NO 0.99 0.99 0.99 0.99 0.99
J48 SMOTE 0.94 0.96 0.97 0.97 0.98

Precision
NBM NO 0.98 0.99 0.99 0.99 0.99
SVM NO 0.97 0.98 0.99 0.98 0.99

J48 SMOTE 0.94 0.94 0.96 0.98 0.97

Table 5: TF-IDF - illegitimate recall and precision

#Terms
100 250 1000 2000 All

NBM NO 0.99 0.99 0.99 0.99 0.98
SVM NO 0.88 0.95 0.97 0.96 0.97

J48 SMOTE 0.77 0.79 0.83 0.87 0.88

Table 6: TF-IDF - Area Under ROC Curve

#Terms
#100 #250 #1000 #2000 All

NB NO 0.89 0.89 0.94 0.95 0.92

SVM NO 0.92 0.95 0.97 0.96 0.93

J48 NO 0.95 0.96 0.96 0.95 0.96

MLP NO 0.97 0.98 0.98 0.99 0.99
Table 7: N-Gram Graphs - Classifiers Accuracy

#Terms
#100 #250 #1000 #2000 All

Recall

NB NO 0.53 0.48 0.63 0.70 0.60

SVM NO 0.43 0.61 0.77 0.73 0.60

J48 NO 0.76 0.80 0.83 0.79 0.87

MLP NO 0.90 0.89 0.94 0.95 0.97

Precision

NB NO 0.59 0.58 0.93 0.91 0.82

SVM NO 0.99 0.98 0.97 0.98 0.91
J48 NO 0.87 0.91 0.88 0.83 0.89

MLP NO 0.88 0.93 0.94 0.95 0.94

Table 8: N-Gram Graphs - legitimate recall and precision
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#Terms
#100 #250 #1000 #2000 All

Recall

NB NO 0.94 0.95 0.99 0.99 0.98

SVM NO 0.99 0.99 0.99 0.99 0.99
J48 NO 0.98 0.99 0.98 0.98 0.98

MLP NO 0.98 0.99 0.99 0.99 0.99

Precision

NB NO 0.93 0.92 0.95 0.96 0.93

SVM NO 0.92 0.94 0.97 0.96 0.93

J48 NO 0.96 0.97 0.98 0.97 0.98

MLP NO 0.98 0.98 0.99 0.99 0.99
Table 9: N-Gram Graphs - illegitimate recall and precision

#Terms
#100 #250 #1000 #2000 All

NB NO 0.90 0.91 0.94 0.92 0.95

SVM NO 0.71 0.81 0.88 0.86 0.80

J48 NO 0.93 0.92 0.91 0.88 0.95

MLP NO 0.99 0.99 0.99 0.99 0.99
Table 10: N-Gram Graphs - Area Under ROC Curve

The overall accuracies are shown in Table 7. MLP (Artificial

Neural Networks) is the classifier that offers the best accuracy

results. MLP is also the winner when we consider legitimate re-
call and illegitimate precision, s well as the AUC ROC, though

similarly to the TF-IDF case, SVM gives better results for illegit-
imate recall and legitimate precision (see Tables 8 and 9). Note

that J48 is the second best classifier.

When we compare the results obtained by the two text rep-

resentation techniques, we realize that they perform very close

to one another. Nevertheless, TF-IDF has a small edge when

compared to N-Gram Graphs, since it leads to slightly better

legitimate recall and AUC ROC values for “small” documents,

which are easier to handle.

The conclusion of these experiments is that the use of text

classification in the process of internet pharmacy verification

leads to good results, independently of the text representation

technique used. The reason for such good performance resides

on the fact that online legitimate and illegitimate pharmacies

behave very differently when selling products.

Taking a close look at the most frequent terms used by illegit-
imate websites, we noticed that words like “viagra”, “cialis” and

“no prescription” appear more frequently compared to legitimate
pharmacies, which usually target a more broad and educated

audience. Therefore, our classifiers built on top of the text repre-

sentations of the pharmacy websites (using TF-IDF, and N-Gram

Graphs) are in general able to recognize these differences and

correctly predict the class of new instances.

6.3.2 Network Classification. :
In Table 11, we report the ten most linked-to websites by le-
gitimate and illegitimate pharmacies. We observe that the most

linked-to websites we find in the legitimate list are the two major

social networks, Facebook and Twitter. This is in accordance with

a previous study, which claims that illegitimate online pharma-

cies have fewer store presence features than legitimate pharma-

cies [23].

We can also find in the legitimate list many government web-

sites that are not present in its illegitimate counterpart. For ex-
ample, fda.gov, which is an agency responsible for protecting

and promoting public health, is the third most linked-to website

among the legitimate examples, while it is not even present in

the illegitimate list. This is also the case for other government

websites, like the National Institute of Health (nih.gov), and the

Centers for Disease Control and Prevention (cdc.gov).

pointed by

legitimate website

facebook.com

twitter.com

fda.gov

google.com

youtube.com

nih.gov

adobe.com

cdc.gov

doubleclick.net

nabp.net

pointed by

illegitimate website

wikipedia.org

wordpress.org

drugs.com

securebilling-page.com

rxwinners.com

google.com

providesupport.com

euro-med-store.com

statcounter.com

cipla.com

Table 11: Websites pointed to by legitimate and illegitimate pharmacies (top 10)

Classifier Overall Accuracy AUC ROC
NB 0.96 0.95

Table 12: Network - Overall Accuracy and AUC ROC

legitimate legitimate illegitimate illegitimate
precision recall precision recall

NB 0.904 0.732 0.966 0.990

Table 13: Network - precision and recall

On the other hand, we note that the two most linked-to web-

sites in the illegitimate list are not directly related to the health

sector (wikipedia.org and wordpress.org). Furthermore, in the

illegitimate list there are some websites that are themselves classi-

fied as illegitimate pharmacies (e.g., rxwinners.com)
12

This fact is

supported by many studies, which report networks of illegitimate
pharmacies connected together in an affiliated way, where there

is a central website and multiple other sites link to it
13
.

For the network experiments, we used the same settings as for

the text classification. The dataset is divided into 3 folds (2 train,

1 test) and each experiment is repeated three times, changing

the folds, according to cross-validation. Note that the two folds

used for training represent the initial seed P0. In the set of graph

nodes V , we assigned 1 to those nodes that represent legitimate
pharmacies in P+

0
, 0 to the others. We use the scores computed

by TrustRank algorithm to train and test the classifiers, and the

Naïve Bayes as the base classifier.

The overall accuracy and the AUC ROC are summarized in

Table 12. The overall accuracy is around 96%, that is fairly close

to the case of text classification, but for what concerns the AUC

ROC curve the result is significantly worse. This is reflected also

to legitimate recall, shown in Table 13, which is around 0.73, while
for the other measures the method exhibits quite good results.

Given these results, we conclude that network analysis offers

good performance in terms of illegitimate precision and recall,

and could be used to assess the legitimacy of a pharmacy, even

though it does not reach the level of confidence provided by the

text analysis method.

6.3.3 Ensemble Classification. :
In order to enhance our results, we also combine the two analyses

techniques, building a single model that embodies the character-

istics of both the text and the network. In order to implement

12Illegitimate status verified via the LegitScript public interface

(http://www.legitscript.com).

13
http://legitscript.com/research
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legitimate illegitimate
Acc. Rec. Prec. Rec. Prec. AUC ROC

Ensem. Sel. 0.96 0.92 0.96 0.99 0.99 0.99
Neural (Text) 0.98 0.94 0.94 0.99 0.99 0.99

NB (Network) 0.95 0.73 0.90 0.99 0.97 0.95

Table 14: Ensemble Classification Results

pairord

TF-IDF
NBM NO 0.998

SVM NO 0.999
J48 SMOTE 0.994

N-Gram Graph 0.998

Table 15: Ranking using TF-IDF and N-Gram Graphs

this approach, we relied on “Ensemble Selection” [4], which is

a method for constructing ensembles from libraries of models.

We used an implementation of “Ensemble Selection” available in

Weka. According to the process explained in [4], the library of

models was trained, building a new model with standard param-

eters.

The results we obtained are presented in Table 14, comparing

ensemble selection with the two best single models on text and

network. For simplicity we report only the results considering

subsamples of 1000 words; the other cases exhibit very similar

results.

We note that ensemble selection increases the overall accuracy,

legitimate precision and illegitimate recall when compared to the

other classifiers. This results in a higher AUC ROC value, as well,

which means that our ensemble classifier is the preferred method

for this task.

6.4 Ranking Results
In Table 15, we summarize the ranking results for both the TF-

IDF and the N-Gram Graph representations. As we expected, the

results reflect the trend observed in the classification results. The

best ranking is the one that is computed with the SVM classifier.

Also the other classifier results follow the patterns highlighted

in Section 6.3, with SVM and NBM performing better than J48.

As part of the ranking analysis, we performed an analysis

of the legitimate and illegitimate outliers, i.e., the illegitimate
examples that appear high in our ranking, and the legitimate
examples that obtained poor score and appear at the bottom of

the list. Performing a manual analysis on such examples gives us

the possibility to check which illegitimate pharmacies are able to

fool our system. Moreover, these insights could be very useful in

helping legitimate pharmacies to better market themselves.

We extracted a subset of the legitimate and illegitimate out-
liers, and provided those to PharmaVerComp, in order to obtain

feedback about their characteristics. The domain experts pointed

out that illegitimate outliers, are in general not part of any illegit-
imate networks14. On the other hand the legitimate outliers are
the pharmacies that offer new prescriptions, while the majority

of them simply give the possibility to refill existing prescriptions.

6.5 Model Evolution over Time
As previously mentioned, we also want to test the behavior and

robustness of our models over time. Given the good performance

obtained with Dataset 1, we are now interested in evaluating how

14
We recall that illegitimate examples are very likely to belong to illegitimate

networks (see Section 6.3.2).

Old-Old New-New Old-New
#Terms

250 1000 250 1000 250 1000

NBM NO 0.99 0.99 0.99 0.99 0.99 0.99

SVM NO 0.95 0.97 0.96 0.96 0.90 0.93

J48 SMOTE 0.79 0.83 0.80 0.84 0.74 0.78

Table 16: TF-IDF - Model over Time - Area Under ROC Curve

Old-Old New-New Old-New
#Terms

250 1000 250 1000 250 1000

NBM NO 0.81 0.78 0.73 0.74 0.61 0.57

SVM NO 0.98 0.97 0.98 0.96 0.95 0.93

J48 SMOTE 0.71 0.76 0.67 0.79 0.66 0.51

Table 17: TF-IDF - Model over Time - legitimate Precision

much our models are affected by time. In particular, we want to

answer the following two questions:

(1) Will models computed on the new dataset (Dataset 2) get
the same performance as the models computed on the old
dataset (Dataset 1)?

(2) Are models trained with the old data still valid on the new
data?

The answer to the first question will give us the opportunity to

evaluate the robustness of the model. The answer to the second

question, will evaluate the validity of the proposed models over

time, and test whether it is necessary to train the models often,

or not.

In the following analysis, we only consider the classification

part of the proposed approach. Note that ranking models are

derived directly from the classifiers. We report here the perfor-

mance for the two most meaningful classification measures for

our problem, that is, AUC ROC and legitimate precision.
As we have seen, the first one offers a good overall indication

of how well our classification process works, while the second

measure is very sensible due to the small number of legitimate
examples. Moreover, we focus on results for the Term Vector

with TF-IDF weights and subsets of 250 and 1000 words.

6.5.1 New model with new data. :
In order to answer the first question posed above, we ran the

same experiments conducted in Section 6.3, using Dataset 2. The

results are used to verify if our models are effective even when

applied to a new test dataset, despite the fact that illegitimate
pharmacies appear in and disappear form the web at a relatively

high rate.

We report the results in Tables 16 and 17. To do the comparison

we report also the results obtained with the old dataset, namely,

Dataset 1. In particular, we indicate with “Old-Old” the results

obtained when computing and testing models on Dataset 1, and

with “New-New” the results obtained by building and testing

models on Dataset 2. We observe that the two models achieve

almost the same performance for both measures. The conclusion

of this analysis is that our approach is stable in analyzing different

datasets that follow the natural distribution of instance classes.

6.5.2 Old model with new data. :
The answer to the second question will help us understand

whether or not we need to adapt our models to pharmacy be-

havior changes. In particular, we expect that pharmacies change

their text content and their relationship with other websites over
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time. This may affect our approach, which is strongly based on

these two factors.

We tested models computed on old dataset, i.e., Dataset 1, on

the new Dataset 2. Recall that these two datasets were crawled

with a difference of six months. In this period of time, online

pharmacies may have changed their characteristics, especially

the illegitimate pharmacies, since they may be closed by the

inspection authorities.

The results of this analysis are presented in Tables 16 and 17

(column Old-New). We can observe that there is a small reduction

in legitimate precision is evident, while the AUC ROC value

remains almost the same.

The conclusion of this experiment is that our model is fairly

robust over time. However, it has some problems related to the

legitimate accuracy measure. In turn, this means that re-training

andmaintenance of the model is necessary to ensure good quality

of results, though, it is not necessary that this re-training takes

place very often.

7 CONCLUSIONS AND FUTUREWORK
In this paper, we proposed solutions for the problem of automatic

internet pharmacy verification, which is becoming an increas-

ingly relevant and important problem, gaining attention from

both the public and the private sectors.

We formalized two different problems: first, a binary classi-

fication problem, where we define two classes, legitimate and
illegitimate, and we classify the online pharmacies in one of them;

and second, a ranking problem, where we seek a totally ordered
set that defines a ranking among pharmacies. We then described

solutions for both these problems, based on features that are

relevant to the text and the network structure of online pharma-

cies. These are the first solutions that have been proposed in the

literature in order to address the internet pharmacy verification

problem.

We experimentally validated the effectiveness of our approach

using two real datasets from two different time periods. The

experiments demonstrate that the proposed algorithms can very

accurately perform the classification and ranking tasks, and that

the models we use are fairly robust over time. Our results confirm

that our system could be effectively employed in the process of

internet pharmacy verification, as well as in other similar tasks,

offering considerable assistance to the human analysts dealing

with such real-world problems.

As part of future work, we intend to extend our algorithms

across two dimensions: (a) include in our network analysis non

pharmacy websites that point to pharmacies, as well as consider

websites at distances greater than one to our working set, and

(b) study and evaluate classification schemes with combined

(network and text), or additional features. In both cases, the aim

will be to employ a richer input, and therefore to improve the

performance of the algorithms.

Moreover, we plan to apply the proposed techniques to other

domains of electronic commerce, where it will be possible to cre-

ate publicly available datasets that can serve for making further

progress in this area.
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ABSTRACT
Applications need to analyze the past state of their data to provide
auditing and other forms of fact checking. Retrospective snapshot
systems that support computations over data store snapshots,
allow applications using simple data stores like Berkeley DB or
SQLite, to provide past state analysis in a convenient way. Cur-
rent snapshot systems however, offer no satisfactory support for
computations that analyze multiple snapshots. We have devel-
oped a Retrospective Query Language (RQL), a simple declarative
extension to SQL that allows to specify and run multi-snapshot
computations conveniently in a snapshot system, using a small
number of simple mechanisms defined in terms of relational con-
structs familiar to programmers. We describe RQL mechanisms,
explain how they translate into SQL computations in a snapshot
system, and show how to express a number of common analysis
patterns with illustrative examples. We also describe how we im-
plemented RQL in a simple way utilizing SQLite UDF framework
in a Berkeley DB data store using Retro page-level incremen-
tal snapshot system. Multi-snapshot computations running over
page-level incremental snapshots bring up interesting perfor-
mance issues that have not been studied before. We present the
first study defining a performance envelope for multi-snapshot
computations over page-level incremental snapshots.

1 INTRODUCTION
To provide auditing and other forms of claim checking more and
more applications need to answer questions, often formulated
after the fact, about the past states of their data. To free applica-
tions from the burden of managing past states on their own, data
management systems need to run ad-hoc computations over past
states of the objects they store.

Computations over past states have been long supported by
temporal databases, used by applications in specialized domains
but not used by general applications because of cost and perfor-
mance penalty for in-production operation. More recently, cheap
storage and interest in using past state analytics for in-production
operation led to development of systems that integrate past state
analytics in a database [7, 11, 13], and all major vendors today
offer products providing OLTP and OLAP processing in a single
system [16]. These products however are not a good match for In-
ternet applications that store their data in simple key value stores
such as Berkeley DB (BDB) [15] or SQLite [8] and need past state
analysis for on-line historical claim checking or auditing. Today
however, even applications using key value stores can support
past state analysis using snapshot systems that support retro-
spection, the ability of a data store to run queries over consistent
snapshots of application past state as if they were the current
state [22]. Retrospection makes it easy for programmers to pro-
vide expressive past state analysis since it allows to implement
ad-hoc queries as general programs in the application language

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the 21st
International Conference on Extending Database Technology (EDBT), March 26-29,
2018, ISBN 978-3-89318-078-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

using the application code base and then run these programs on
the snapshots of interest. For example, Retro [21], a snapshot
system of BDB, allows to analyze the state of BDB SQLite appli-
cations at a particular point in time simply by running SQLite
queries over the corresponding BDB snapshot.

As convenient as it is to analyze a single point in time using a
snapshot system, many analyses concern multiple data points.
Retro and other snapshot systems come short when it comes to
analyzing multiple snapshots. A programmer needs to write a
C script that manually identifies snapshots of interest, queries
each snapshot separately, manually collects the results, and then
processes the results. This approach is cumbersome, error prone
and onerous for a SQL programmer who needs to learn a new
language. The programmer would much prefer to specify the
computation in a declarative manner using the language of the
application.

To help with programming the desired computation logic for
multiple snapshot analysis, we have developed a Retrospective
Query Language (RQL), a simple declarative extension to SQL
that allows to specify and run multi-snapshot computations with-
out the need to use a low-level script. RQL mechanisms combine
in a modular way high-level relational constructs to express gen-
eral SQL computations over arbitrary sets of past BDB SQLite
application snapshots. The constructs specify in SQL the set of
snapshots that identify the past states of interest, the computa-
tions over each snapshot, and the computations that process the
results.

We describe RQL mechanisms and explain how each high-
level mechanism translates into a SQL computation over multiple
snapshots in the Retro snapshot system. We also show how to
express a number of common analysis patterns with illustrative
examples.We then describe howwe implemented RQL in a simple
way using SQLite UDF.

RQL programs bring to light important performance considera-
tions that arise when programs compute over multiple snapshots.
For one, RQL mechanisms allow to specify computations over
arbitrary size sets of snapshots. The number of snapshots stored
by a snapshot system such as Retro, only limited by available
storage, can be very high given today’s low storage costs. Each
snapshot includes the entire state of the database. RQL program
therefore can compute over potentially very large amounts of
data. A programmer needs to know how much CPU, memory
and I/O resources his program requires, especially in today’s
utility computing environments. Furthermore, an important per-
formance consideration in the design of snapshot systems like
Retro is to avoid interfering with the data store performance
so that snapshots can be created at required frequency without
blocking or disrupting in-production application performance.
Retro snapshot system achieves this by using a low-cost copy-on-
write technique that creates an incremental page-level snapshot
representation with a compact snapshot index [22, 23]. Such rep-
resentation is known to be slower to compute with but the slow-
down is considered to be an acceptable trade-off to preserve in-
production performance. The reason a computation runs slower
over a snapshot and incurs higher resource costs compared to
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the current database state is that the snapshot state needs to be
assembled on-the-fly from the incremental representation. In-
herently however, with a snapshot representation created using
copy-on-write, consecutive snapshots share large parts of their
state. An RQL program that iterates computations over multiple
consecutive snapshots can therefore reduce its costs and improve
performance by assembling such a shared state only once. The
performance of programs computing over multiple page-level
copy-on-write snapshots however has not been studied before.

To this end, we implemented RQL in SQLite BDB using Retro
snapshot system and conducted an experimental study that char-
acterizes the performance envelope of RQL programs. The goal
of the study is to explain the performance in a way that is easy
to understand by the programmer. Since the programmer spec-
ifies RQL mechanisms as a modular composition of relational
constructs in SQLite, we relate the performance of RQL program
to the performance of its SQL components, a cost that should
be familiar to the programmer. Our experiments use workloads
derived from the standard TPC-H benchmark to evaluate RQL
performance so that even though our system is different from
other past state systems, its performance is explained using a
standard workload.

In summary, the paper makes the following contributions:
• RQL, a SQLite extension that allows to express compu-
tations over multiple snapshots in a convenient way in
the language of the application. Our focus here is SQL ex-
tension but we believe a similar approach can be used for
BDB applications in other languages since the BDB/Retro
system is language-independent.

• An implementation of RQL system using SQLite UDF.
• A performance study of RQL programs including the first
analysis explaining the performance of computations run-
ning over multiple page-level copy-on-write snapshots.
While the performance results reported in our study are
specific to our system, our performance analysis is more
general and applies to other page-level copy-on-write
snapshot systems.

The rest of the paper is organized as follows. Section 2 de-
scribes the RQL mechanisms, Section 3 outlines the salient points
of RQL implementation using SQLite UDF, Section 4 briefly out-
lines the basic structure of the copy-on-write snapshot system
Retro, providing the background for our performance analysis,
Section 5 describes the experimental study, Section 6 considers
the related work, Section 7 concludes.

2 RQL LANGUAGE
In this section we present RQL, the programming language for
specifying SQL computations over sets of snapshots of past states
in a data store. Our departure point is a transactional key value
store with an integrated snapshot system that allows a SQL ap-
plication to take snapshots of its state and subsequently run a
SQL computation over a snapshot. Specifically, we assume the
Retro snapshot system integrated with the BDB SQLite [21]. We
first explain the snapshot computation model provided by Retro,
and the concrete language constructs used by SQL programmers
to create snapshots and to specify a program that runs over a
snapshot.

Retro extends BDB/SQLite with a language construct that al-
lows to declare a snapshot as part of normal transaction commit
using the BEGIN; and COMMIT WITH SNAPSHOT; commands.
The declaration command creates a transactionally consistent

l_userid l_time l_country

UserA 2008-11-09 13:23:44 USA
UserB 2008-11-09 15:45:21 UK
UserC 2008-11-09 15:45:21 USA

(a) Snapshot S1

l_userid l_time l_country

UserB 2008-11-09 15:45:21 UK
UserC 2008-11-09 21:33:12 USA

(b) Snapshot S2

l_userid l_time l_country

UserB 2008-11-09 15:45:21 UK
UserC 2008-11-09 21:33:12 USA
UserD 2008-11-11 10:08:04 UK

(c) Snapshot S3

Figure 1: LoggedIn table in snapshots 1-3

snap_id snap_ts

1 2008-11-09 23:59:59
2 2008-11-10 23:59:59
3 2008-11-11 23:59:59

Figure 2: SnapIds table

persistent snapshot that includes the state of the entire database
(e.g., tables, indexes, system catalogs). The snapshot reflects the
modifications committed by the declaring transaction T, and all
the transactions committed before T. The declaration perma-
nently associates with the snapshot a unique snapshot identifier
that names the snapshot. The identifier and a current timestamp
are entered in a table with name SnapIds. Although Retro uses
integer sequence numbers as snapshot identifiers internally, a
programmer can associate meaningful snapshot names with the
identifiers.

A query can run on a snapshot at any point following the
snapshot declaration. To run a SQL program, such as "SELECT
..." over previously declared snapshot with identifier sid , the pro-
grammer simply specifies "SELECT AS OF sid ...". SQL queries
and update transactions that do not declare snapshots remain
unchanged by Retro.

Consider an example SQL application using a LoggedIn table
that stores the users who are logged in a system, along with the
time and the country from which each user has logged in. When-
ever a user logs out, he is deleted from the table. Figure 3 shows a
SQL program containing three consecutive snapshot declaration
commands, (lines 1-2, lines 3-5, and lines 6-8), a snapshot query
command that runs on the snapshot sid 1 (line 9), and the same
query that runs on the current database state (line 10). Figure 1
shows the table state in three declared snapshots, and Figure 2
shows the SnapIds table. Note, that the state of LoggedIn table in
the snapshot 2 declared in lines 3-5 does not includeUserA since
a snapshot reflects updates of the declaring transaction.

Retro makes it easy to analyze a single snapshot but has no
support for analysis concerning multiple snapshots. In order to
provide this functionality we propose RQL, a simple language
for specifying computations over a set of Retro snapshots.
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Declare snapshot S1
1. BEGIN;
2. COMMIT WITH SNAPSHOT;

Update table and declare snapshot S2
3. BEGIN;
4. DELETE FROM LoggedIn WHERE l_userid = ’UserA’;
5. COMMIT WITH SNAPSHOT;

Update table and declare snapshot S3
6. BEGIN;
7. INSERT INTO LoggedIn (l_userid, l_time, l_country)

VALUES (’UserD’, ’2008-11-11 10:08:04’, ’UK’);
8. COMMIT WITH SNAPSHOT;

Retrospective query
9. SELECT AS OF 1 * FROM LoggedIn;

Query on current state
10. SELECT * FROM LoggedIn;

Figure 3: Retro SQL example

RQL queries specify computations using a small set of basic
computational mechanisms that compose relational constructs
familiar to a SQL programmer. A computation defined by an
RQL query iterates over a set of snapshots, runs a SQL query
on each snapshot, collects results of the query and performs on
the results different combining computations determined by the
specific mechanism used.

In specifying the set of snapshots to iterate over, and the
snapshot query to be executed in each iteration, RQL uses two
auxiliary constructs, a snapshot table that holds all the declared
snapshot identifiers and timestamps, referred to as SnapIds , and
a function current_snapshot that provides the identifier of the
snapshot used in the iteration where the current computation is
performed.

The RQL mechanisms Collate Data, Aggregate Data In Variable,
Aggregate Data In Table and Collate Date Into Intervals are best
described operationally by explaining the SQL computation each
one performs.

2.1 Collate Data
The RQL mechanism Collate Data collects records from multiple
snapshots into a table.
CollateData(Qs, Qq, T)

Collate Data requires three parameters, the queries Qs, Qq
and table name T. Query Qs returns a single column containing
snapshot identifiers selected from the snapshot table SnapIds. The
Qs output represent the snapshot set (interval) the programmer
is interested in. Query Qq is applied to every snapshot in the
snapshot interval. T is the name of the table into which we collate
the results of every Qq.

For the first snapshot identifier Sx returned by the Qs, the
mechanism issues "CREATE TABLE T AS Qq" within the snap-
shot Sx. For all the subsequent Sy returned by Qs, "INSERT INTO
T Qq" is issued, within snapshot Sy.

The following example collects all the user_ids and the snap-
shot identifier of the snapshot they appear in.
CollateData("SELECT snap_id FROM SnapIds",

"SELECT DISTINCT l_userid, current_snapshot()
FROM LoggedIn", "Result")

Collate Data along with the snapshot table Snapids and the
current_snapshot() function provide a general language for imple-
menting any kind of computation by issuing SQL queries on the
Collate Data output. However, Collate Data can have a large foot-
print in terms of the memory required to hold its result, especially
when the Qs set and Qq result set are large.

The two aggregation mechanisms we present next, allow to
reduce the memory footprint for RQL computations that need to
aggregate results over snapshots.

2.2 Aggregate Data In Variable
The first aggregation mechanism Aggregate Data In Variable ap-
plies an aggregate function on a single element across multiple
snapshots.
AggregateDataInVariable(Qs, Qq, T, AggFunc)

In addition to the queries Qs, Qq and table name T, it requires
an aggregate function as a parameter and it expects from Qq to
return a single row and a single column. For the first snapshot
identifier Sx returned by Qs, we execute Qq on snapshot Sx
and save the single value in a variable V1. For all subsequent
identifiers Sy returned by Qs, we issue Qq on snapshot Sy, save
the single value in a variable V2 and update V1 as AggFunc(V1,
V2). Finally, we store the result in the table T.

The following example shows how we can count the number
of snapshots in which a tuple appears. For example, we want to
count the number of snapshots in which userUserB is logged in.
AggregateDataInVariable("SELECT snap_id FROM SnapIds",
"SELECT DISTINCT 1 FROM LoggedIn
WHERE l_userid = 'UserB', "Result", "sum")

In the next example, we want to find the first occurrence of
the same user.
AggregateDataInVariable("SELECT snap_id FROM SnapIds",
"SELECT DISTINCT current_snapshot() FROM LoggedIn
WHERE l_userid = 'UserB' ", "Result", "min")

2.3 Aggregate Data In Table
The mechanism Aggregate Data In Table provides the ability to
apply aggregate functions on records of multiple columns across
snapshots.
AggregateDataInTable(Qs, Qq, T, ListOfColFuncPairs)

The additional required parameter is a list of pairs of column
names and aggregate functions.

For the first snapshot identifier Sx returned by Qs, we create a
table T and insert the Qq output. For all the subsequent identifiers
Sy returned by Qs we issue the query Qq and for each record
in its output we search in table T to find a tuple with the same
values in columns not included in the ListOfColFuncPairs. If
such a record exists we perform the required computation on the
values in columns of ListOfColFuncPairs, otherwise we insert
into T the record returned by Qq. Note, the Aggregate Data In
Table queries can be considered as across time GROUP BY queries
where the grouping columns are the columns of the Qq output
not appearing in the ListOfColFuncPairs. So, for the aggregation
across snapshots to be well defined, Qq should never return two
records that coincide on all the values in the grouping columns.

The following example shows how we can find the first time
that each user has logged in.
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RQL mechanism

Qs execution 
on SnapIds 

Programmer BDB/SQLite

RQL Query
RQL mechanism
(Qs, Qq, T, …)

Qq execution on 
current_snapshot

Aggregation Table T 
update

Qq result Aggregation 
result

Snapshot 
set  

Figure 4: General structure of RQL computations

AggregateDataInTable("SELECT snap_id FROM SnapIds",
"SELECT DISTINCT l_userid, l_time FROM LoggedIn",
"Result", "(l_time,min)")

The next example shows how we can compute, for each coun-
try, what is the maximum number of users who are simultane-
ously logged in, from that country.

AggregateDataInTable("SELECT snap_id FROM SnapIds",
"SELECT l_country, COUNT(*) AS c FROM LoggedIn
GROUP BY l_country", "Result", "(c,max)")

In order for Aggregate Data in Variable and Aggregate Data in
Table to work as described, we require the aggregate function to
satisfy certain mathematical properties. Formally, the aggregate
function must be definable by an abelian monoid (X, op, e) where
X is the domain of values, op is an associative and commutative bi-
nary operation and e is the identity element. Most SQL aggregate
functions e.g. min, max, count and sum, satisfy the requirement
but some, e.g. average, and aggregations over distinct elements
e.g. count distinct or sum distinct do not. Because average is
widely used in SQL, our aggregation mechanisms implement a
simple extension that support average as a special case. Aggrega-
tions over distinct elements can use the Collate Data mechanism
to return a column containing the elements and then use SQL to
perform the needed aggregation. Of course, such approach may
not reduce the memory footprint of the result computation.

2.4 Collate Data Into Intervals
The mechanism Collate Data Into Intervals creates an alternative,
potentially more compact snapshot data representation that re-
sembles the traditional record lifetime representation used by
temporal databases, and could be used by applications that ex-
pect this kind of representation. When the snapshots are taken
frequently, it is likely that the same record appears in many
consecutive snapshots. The mechanism collects records from
multiple snapshots into intervals which indicate the lifetime of
the records. This is achieved by creating two attributes in our
result table and storing the start_snapshot and the end_snapshot
for each record’s lifetime.

CollateDataIntoIntervals(Qs, Qq, T)

Collate Data Into Intervals requires the same parameters as
Collate Data. For the first snapshot identifier Sx returned by
the Qs, we create the table T and insert the records returned
by Qq with start_snapshot and end_snapshot for each record
set to Sx. For all the subsequent Sy returned by Qs we issue the
query Qq and for each record in its output we search in table
T to find a tuple with the same values in all columns except
the start_snapshot and end_snapshot. If a tuple exists and if its
end_snapshot value is the same as the snapshot identifier of the
previous iteration we update the end_snapshot to Sy, otherwise
we insert a new tuple with start_snapshot and end_snapshot set
to Sy.

The following example calculates the interval during which
each user was logged in.
CollateDataIntoIntervals("SELECT snap_id FROM SnapIds",
"SELECT l_userid FROM LoggedIn", "Result")

Figure 4 provides the general structure of our RQL computa-
tions. The Aggregation part is bypassed in case of Collate Data.

3 IMPLEMENTATION
An RQL computation iterates (loops) over the snapshots in the
snapshot set defined by the parameter query Qs, and for each
snapshot it executes a "loop body" that invokes the query Qq
on this snapshot, processing its results in a way specific to each
mechanism. This section explains how we implement this com-
putation in SQLite/BDB Retro system using SQLite UDF. We
highlight the salient points of the implementation, including the
cross snapshot iteration with constructs current_snapshot() and
Snapids , and the processing of snapshot query results.

We create the SQL program for RQL computation by com-
posing the Qs and Qq query programs using the callback infras-
tructure provided by SQLite UDF. The infrastructure allows to
interpose a UDF callback function on a SELECT statement so
that the callback is invoked for each element of a set returned by
the SELECT.

We define the "loop body" of our computation in a UDF call-
back function, providing for eachmechanism amechanism-specific
callback, and iterate over snapshots by interposing the "loop
body" callback on the SELECT statement for Qs.

The following SQLite statement shows the general syntax used
by our implementation for an RQL mechanism.
SELECT rql_udf (snap_id, Qq, T, ...)
FROM SnapIds WHERE...;

By issuing this statement to SQLite, we achieve the iteration
over the snapshot identifiers in the table SnapIds returned by the
SELECT (i.e. Qs), where for each returned snapshot identifier,
SQLite invokes the "loop body" defined by the UDF callback
rql_ud f . Figure 5 shows the general structure of the resulting
computation.

The UDF argument snap_id is filled at runtime by SQLite with
values returned by Qs in each iteration, the other parameters,
including the string defining the Qq query, the table name T, and
additional parameters needed for the aggregation mechanisms
are specified by the programmer.

Inside the "loop body" UDF, we treat the parameter snap_id
as "loop index". The "loop body" UDF uses Retro to run the query
Qq on snapshot snap_id in every iteration it gets invoked.

To run on a snapshot snap_id , Retro requires a query to be
in the form of "SELECT AS OF snap_id ...". Furthermore, the
SQL program Qq may include the function current_snapshot(),
explained in Section 2, that denotes the snapshot identifier of the
current iteration. Therefore, as a first step, our "loop body" UDF
rewrites the Qq, binding it to the value of "loop index" snap_id .
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“Loop body” rql_udf callback

Qq rewrite Aggregation Table T 
update

Aggregate callback
Snapshotable DB

Qq result 
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Qs: SELECT rql_udf (snap_id,  Qq, T, ... ) FROM SnapIds WHERE ...;
Qq: SELECT AS OF snap_id ...;

Qs
RQL UDF 
invocation

Qq
Create table T 

if not exist

Figure 5: Implementation structure of RQL computations

The rewriting involves adding the "AS OF snap_id" extension,
and replacing every occurrence of current_snapshot() function
with the value of snap_id .

For example, for the iteration with snap_id value of Si, the
following Qq query typed by the programmer:
SELECT DISTINCT current_snapshot() FROM LoggedIn
WHERE l_userid = 'UserB';

will be rewritten by the RQL UDF to take the following form:
SELECT AS OF Si DISTINCT Si FROM LoggedIn
WHERE l_userid = 'UserB';

After Qq is rewritten, the UDF issues it to SQLite, invoking
the sqlite3_exec function from the SQLite API. The "loop body"
UDF then proceeds to process the results across snapshots in
a mechanism-specific manner, as shown in Figure 5. Note the
shaded area depicts the Qq computation run by Retro within a
single snapshot.

Consider an example Collate Data query specified below:
SELECT CollateData(snap_id,
"SELECT DISTINCT l_userid, current_snapshot() AS sid
FROM LoggedIn", "Result") FROM SnapIds;

Since the mechanism does not perform any computation be-
sides Qq, its "loop body" UDF only utilizes the SQLite API. That
is, Collate Data UDF callback executes SQL statements using the
sqlite3_exec function to insert Qq results into the result table T.

The UDF callbacks that implement our aggregate mechanisms
are more involved since they need to implement aggregation.
Consider and example of Aggregate Data in Variable specified as
follows:
SELECT AggregateDataInVariable(snap_id,
"SELECT DISTINCT current_snapshot() AS sid
FROM LoggedIn WHERE l_userid = 'UserB' ",
"Result", "min") FROM SnapIds;

In the first iteration, its "loop body" UDF creates a table Result
with attribute sid. It then rewrites Qq and invokes the sqlite3_exec
function from the SQLite API to run the Qq. One of the arguments
of sqlite3_exec is a callback function which gets invoked for ev-
ery tuple returned by the Qq, providing access to the returned
tuple. In this callback function we implement the aggregate com-
putation for Aggregate Data In Variable, directly following he
specification in the previous section.

Consider next an example of Aggregate Data in Table specified
as follows.
SELECT AggregateDataInTable(snap_id,
"SELECT l_country, COUNT(*) AS c FROM LoggedIn
GROUP BY l_country", "Result", "(c,max)") FROM SnapIds;

Here the first "loop body" iteration creates the table Result with
attributes l_country and c. It then rewrites and issues Qq and for

every tuple returned by the Qq a callback function is invoked that
inserts the tuple in the table Result. At the end of the first "loop
body" iteration we also create an index on Result using as key
the values in non-aggregating columns, in this case l_country. In
subsequent iterations, for every record returned by the Qq, in the
callback function we utilize the index to search in table Result. If a
tuple with the same values in non-aggregating columns is present,
we apply the aggregate functions on the columns specified in
the ListOfColFuncPairs and update the record in the result table
accordingly, otherwise we insert a new tuple.

We have also experimented with alternative Aggregate Data
in Table implementation using a sort-merge based algorithm that
turned out to be costlier.

For brevity, we omit the implementation details of Collate Data
Into Intervals. It is implemented similarly to Aggregate Data in
Table but instead of applying an aggregate function we check
whether we need to update the record’s lifetime or insert a new
tuple in the result table.

Note that RQL mechanisms by default create the result table T
as temporary non-snapshotable table. However, it can be created
as persistent if the programmer decides otherwise.

We now briefly consider the construct Snapids . It is currently
implemented at application level to support user friendly snap-
shot names. Also, it is stored in a separate SQLite database than
application data because it is a non-snapshotable persistent table
(whereas the rest of the data are snapshotable). Every time the ap-
plication declares a snapshot and gets back the snapshot identifier,
it inserts the identifier in the SnapIds along with a timestamp
and any application meaningful information the programmer
needs to later refer to the snapshot. The update operations on
SnapIds table are transactional. Note, that concurrent updates
to SnapIds table and RQL queries do not block each other since
Retro runs snapshot queries as read-only snapshot transactions
taking advantage of MVCC concurrency control in BDB, as we
explain in section 4. Nevertheless, updating Snapids in a transac-
tion adds overhead so we are currently working on an internal
implementation to reduce this overhead.

4 RETRO SNAPSHOT SYSTEM
We briefly describe Retro, the snapshot system used in RQL. Our
goal is to explain how the cost of snapshot query is impacted
by the method of incremental page-level snapshot creation and
indexing, and the different update workloads. The complete de-
scription of Retro system can be found in [21–23].

Retro snapshot system is implemented as a small set of modu-
lar extensions to the Berkeley DB transactional storage manager.
The extensions interpose on transaction commit, page flush, page
fetch and recovery operations. The implementation at the stor-
age manager level allows to create transactionally consistent,
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recoverable snapshots efficiently, without blocking application
transactions, by exploiting the BDB MVCC concurrency control
and recovery mechanisms [22].

The snapshot system interface supports two operations, snap-
shot declaration and snapshot query, that can be exposed to ap-
plications in a language-specific way. Section 2 presented the
SQL interface. A Retro snapshot is a set of immutable logical
data pages that reflect the entire consistent database state, in-
cluding the catalog and indexes, at snapshot declaration point.
This allows to run on a snapshot any database query q that could
run in the database at the snapshot declaration point. The snap-
shots are captured using a page-level copy-on-write technique
(COW) that copies out and saves snapshot pages incrementally
as transactions commit modifications to pages, following a snap-
shot declaration. At transaction commit time, Retro identifies
any page P that is modified for the first time following the decla-
ration of a snapshot S and copies out the pre-modification state
(pre-state) of P. The pre-state corresponds to the state of P as-of
snapshot S. If this modification of P is also the first since an earlier
declared snapshot S ′, the pre-state is shared by S ′.

Retro accumulates the copied-out pre-states in memory and
writes them to an on-disk log-structured snapshot archive called
Paдeloд when the database flushes updates. The pre-states are
indexed at low cost by simply recording amapping that associates
a snapshot page P with its Paдeloд location. Retro writes the
mappings to an on-disk log-structured list called Maploд [23].
When a snapshot S is needed, an efficient scan of Maplog allows
to construct a snapshot page table SPT (S) that maps every page P
in snapshot S to its location in Paдeloд. The scan length is nloд(n)
where n is the number of pages in the snapshot, independent of
snapshot history length [23].

To run a query q on a snapshot S Retro interposes on the
database page f etch operation. When q requests a page P , Retro
looks up page location in SPT (S) and fetches P from Pagelog, the
same way q would fetch P from the database if it was running
on the current database state.

Retro caches snapshot pages in a buffer cache along with the
database pages and needs extra cache memory to hold the snap-
shot pages when running snapshot queries. While we expect the
database pages to reside in memory given today’s large memories,
we do not expect snapshot pages to fully reside in memory be-
cause with long snapshot histories Pagelog can grow very large,
limited only by the available disk space. For this reason, even
with a large snapshot cache, when a query runs on a snapshot
that has not been accessed recently, we expect the snapshot page
cache hit rate to be low. The I/O cost of a snapshot query there-
fore depends on the number of pages it fetches from Pagelog
when the page is not present in the cache.

Retro allows to run snapshot queries concurrently with cur-
rent state queries and update transactions. It relies on the BDB
concurrency control scheme MVCC to avoid snapshot queries
from interfering with updates. Consider a snapshot query q that
runs over snapshot S following the snapshot declaration. At this
point the snapshot shares all its pages with the database. Con-
sider a page P requested by q and a concurrent transactionT that
modifies page P . Retro runs q as a read-only MVCC transaction
relying on MVCC to provide q with the unmodified pre-state of
P to the end of q, without interfering with T .

We now consider the amount of Pagelog I/O needed by a
snapshot query. Consider a set of update transactions T1, ...Tn
that updates every page in the database following the declaration
of snapshot S . We call such transaction set an overwrite cycle

of S . After the overwrite cycle of S completes, the entire state
of S and all the snapshots declared before S , is copied out into
Pagelog. A snapshot declared a long time ago is likely to have a
complete overwrite cycle so a query running over old snapshots
fetches all its pages not present in a cache from Pagelog. On the
other hand, consider a snapshot S that has been declared recently.
Some of the pages of the database likely have not been modified
since snapshot S declaration, so its overwrite cycle is incomplete.
If a page P has not been modified since snapshot S declaration,
S shares P with the database. A snapshot query running on S
and requesting a shared page P will fetch P from the database.
Therefore, we expect a query running on recent snapshots to
have less Pagelog I/O.

Finally, consider two snapshots S1 and S2 declared consec-
utively, and the set of update transactions T1, ...Tk committed
between S1 and S2. Note that snapshot S1 and S2 share all their
pages except those pages modified byT 1, ..Tk . Let shared(S1, S2)
be the set of pages shared by S1 and S2, and di f f (S1, S2) be the
set of pages that are not shared by S1 and S2. Consider a snapshot
query q running consecutively over two old snapshots S1 and
S2 using a cache large enough to hold all the snapshot pages re-
quested by q. If snapshots S1 and S2 have not been accessed for a
long time, all pages of S1will need to be fetched from Pagelog but
any page P in shared(S1, S2) needs to be fetched from Pagelog
only once since P will be in the cache after q runs on S1. On the
other hand, any page Q in di f f (S1, S2) requested by q running
on S2 likely will need to be fetched from Pagelog. The size of
di f f (S1, S2) will therefore determine the cache miss rate for q
running on S2. The size of di f f (S1, S2) is determined by the
transaction update workload, i.e. by how many pages the trans-
actions modify, and by the frequency of snapshot declarations,
i.e. how many transaction apart are the declarations S1 and S2.
If transactions modify many pages and snapshot declaration are
infrequent, di f f (S1, S2) will be large, but if transactions modify
few pages and snapshot declarations are frequent, di f f (S1, S2)
will be small and S1 and S2 will share most of the pages.

5 PERFORMANCE EVALUATION
This section presents an experimental study that characterizes
the performance of RQL computations. We aim to explain RQL
performance in terms that are familiar to a SQL programmer.
Since the programmer specifies an RQL query r by providing SQL
programsQs ,Qq and the aggregation functions, we consider how
the performance characteristics of these SQL programs impact
the performance of r .

To explain the performance of RQL we need to characterize
the costs of a computation that iterates over snapshots. The
performance of a snapshot computation that runs over a stand-
alone single snapshot has already been studied [21]. However,
as we explain in Section 4 because of snapshot page sharing, a
snapshot computation that runs as one of the RQL iterations can
have a different performance than a snapshot computation that
runs on a stand-alone snapshot. Our study evaluates the benefit
of page sharing for different transaction update workloads and
explains how the benefit of sharing depends on the properties of
the snapshot setQs , and whether the snapshot computationQq is
I/O or computation intensive. Our experiments also analyze the
memory requirements of different RQL mechanism and quantify
the memory benefits of the aggregation mechanisms.

Our experiments run our implementation of RQL in the Retro
snapshot system integrated with BDB SQLite version 5.3.21.
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Parameters Notations Description

Update Workload UW15 Delete and insert 15K orders and their lineitem records per snapshot
UW30 Delete and insert 30K orders and their lineitem records per snapshot

Query Qs Qs_N Query that determines the snapshot interval length N

Query Qq Qq_io SELECT COUNT(*) FROM orders WHERE o_orderstatus = ’O’ ;

Qq_cpu SELECT SUM(l_extendedprice) AS revenue FROM lineitem, part
WHERE p_partkey = l_partkey and p_type = ’STANDARD POLISHED TIN’;

Qq_collate SELECT o_orderkey FROM orders WHERE o_orderdate < ’[DATE]’;

Qq_agg SELECT o_custkey, COUNT(*) AS cn,
AVG(o_totalprice) AS av FROM orders GROUP BY o_custkey;

Qq_int SELECT o_orderkey, o_custkey FROM orders;

RQL UDF CollateData (Qs, Qq, T)
AggregateDataInVariable (Qs, Qq, T, AggFunc)

AggregateDataInTable (Qs, Qq, T, ListOfColFuncPairs)
CollateDataIntoIntervals (Qs, Qq, T)

Aggregate function MIN, MAX, SUM, COUNT, AVG
Table 1: Parameters and notations

The hardware platform consists of 2 hexa-core Intel Xeon CPU
clocked at 2.50 GHz with Hyper-Threading enabled, 2 Intel 400
GB SATA SSD and 64 GB of RAM. The operating system is Red
Hat Enterprise Linux Server release 6.8 (Santiago), x86_64 and
the file system is formatted with ext4.

RQL performance depends on the database update workload,
the in-snapshot query workload, and the type of RQL computa-
tion that combines the results of the snapshot queries. We expect
the in-snapshot queries to include bothnative queries the applica-
tion runs in the current state, e.g. when performing auditing, and
ad − hoc queries formulated after the fact, e.g. when performing
fact checking. The native queries are more likely to have native
indexes captured in the snapshot. The ad-hoc queries may need
to create the indexes at RQL execution time. Our experiments
use both native and ad-hoc queries.

The database we use for our experiments is a TPC-H database.
TPC-H [6] is a standard decision support benchmark consist-
ing of tables designed to be business relevant and the database
schema includes tables with information about Customers, Or-
ders, Lineitems, etc. We create the database by using the TPC-H
dbдen tool to produce the initial state of the database with size
of 1.4 GB (the default size) without additional indices. The size
increases accordingly when indices are included.

In order to create a snapshot history, we utilize the TPC-H
refresh functions which produce a set of order identifiers for
deletion and a set of order records along with Lineitem records
associated with the orders for insertion. Our update workload
program receives as input the TPC-H refresh function output,
updates the database by deleting and inserting a certain number
of Orders and their Lineitem records and creates snapshots. Be-
tween two consecutive snapshot declarations a constant number
of orders and their associated records are inserted and deleted
making it easier to interpret the performance results and memory
requirements.

We consider two update workloads that delete and insert differ-
ent amount of data, as defined in Table 1. These update workloads
generate different di f f (S1, S2), the amounts of non-shared data
between two consecutive snapshots S1 and S2, and affect how
frequently the database gets overwritten, i.e. the length of the

snapshot overwrite cycle. The UW30 overwrites the database ev-
ery 50 snapshots while the UW15 overwrites every 100 snapshots,
so the di f f (S1, S2) in UW30 is double the size of UW15.

We assume the current state database is memory resident, and
the snapshot pages are stored in Pagelog on the SSD. We achieve
the expected snapshot cache behavior by assuming the snapshot
page cache is empty at the start of an RQL query, and assume
the cache can hold the snapshot pages requested by a single RQL
query, except when discussing memory costs.

For our experiments, we define custom queries that stress
different RQL costs in both native and ad-hoc queries. Table 1 re-
ports all the queries used throughout our performance evaluation.
We explain the characteristics of each query when describing
the experiments that use them. The reason we don’t provide
any experimental results using TPC-H queries is because their
complexity makes them CPU intensive and does not allow us to
stress and focus on a single RQL cost each time.

5.1 I/O intensive queries: Impact of snapshot
sharing

Our first set of experiments considers the impact of snapshot
sharing on the I/O costs of an RQL query for old and recent
snapshots.

We first consider old snapshots. When all the snapshots in-
cluded in the set defined by Qs are old, the first iteration fetches
from the Pagelog disk all the pages it needs and is likely to fetch
the highest number of pages compared to the subsequent itera-
tions. We refer to the first iteration as cold , and to the subsequent
iterations as hot . Note, the number of pages fetched by a cold
iteration is identical to a stand-alone snapshot query and is de-
termined by the code of Qq. The maximum number of pages
potentially fetched by the subsequent hot iterations depends on
two factors, the di f f (S1, S2) in the update workload explained
in Section 4 and how far apart are the snapshots in the hot iter-
ations, determined by the number of snapshots skipped in the
Qs query. In the extreme case, if Qs defines a skip that exceeds
the snapshot overwrite cycle length, the performance of a hot
iteration will be no different than a performance of a cold itera-
tion. We refer to an RQL query run where all iterations are cold
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Figure 6: Ratio C with old snapshots: impact of sharing
between snapshots.

as all − cold . In general, we expect sharing to improve the RQL
query performance compared to all − cold but the amount of
improvement depends on the snapshot interval length since for
short intervals the performance of cold iteration may dominate.

The combined impact of sharing can be succinctly captured
using a ratio C of latency of an RQL query r with a given Qq and
Qs, to the latency of an all − cold run with the same number of
snapshots.

Figure 6 shows the ratio C as the number of snapshots in the
interval increases, for update workloads with different amount
of sharing, UW30 and UW15 and different distance between
consecutive iterations. To isolate the impact of sharing on total
I/O costs we use a computationally light RQL Aggregate Data
in Variable query with an I/O intensive and computationally
lightQq_io. At each RQL iteration, Qq scans the table Orders and
returns the number of open orders for the current snapshot and
the RQL query computes the average number of open orders per
snapshot.

Since all snapshots are old, the cost of theall−cold run remains
constant. Sharing increases as we move from update workload
UW30 to UW15 and when the number of skipped snapshots
drops from 10 to 1. The ratio C drops with increased sharing
reflecting the RQL query latency decrease compared to all − cold
run. Overall, C is high for short intervals since sharing makes
little difference as the cost of the first cold iteration dominates
the RQL query latency. For sufficiently long intervals however
(more than 20 snapshots) C converges to a constant as the cost
of the cold iteration stops being the dominant cost, and the RQL
query latency is fully determined by sharing. The first two bars
in Figure 8 break down the cost of the cold and hot iteration for
UW30 showing the impact of sharing on the absolute I/O costs
in the hot and cold iterations in this workload.

We next consider recent snapshots. When the set of snapshots
defined by Qs includes recent snapshots, the number of pages
fetched from Paдeloд in a given snapshot iteration is impacted by
an additional factor, namely by the number of pages the snapshot
shares with the current state of the database since page shared
with the current state is fetched from the main memory, as ex-
plained in Section 4. Therefore, the number of pages fetched by a
snapshot iteration decreases as snapshot gets closer to the end of
our snapshot history and snapshots share more pages with the
current state.
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Figure 7: Ratio C with recent snapshots: impact of sharing
with current state.

The ratio C, defined as ratio of measured RQL query cost to
the cost of all − cold run, can be used to explain the additional
impact of sharing pages with the current state database. Due to
the database overlap, the cost of the cold iteration depends on
the starting point of the interval. Therefore, the cost of all − cold
run for two intervals with the same number snapshots drops
when interval starts at a more recent snapshot. Figure 7 shows
the ratio C(x) for fixed size interval of consecutive snapshots
(skip 1) starting at snapshot x , for intervals that include recent
snapshots. We show two update workloads UW30 and UW15
exhibiting different inter-snapshot sharing di f f (S1, S2).

Assuming Slast is the most recent declared snapshot, and Over-
writeCycle is the overwrite cycle length for a given update work-
load UW, the interval starting at snapshot Slast-OverwriteCycle-
20 is the earliest interval to include a snapshot sharing pages
with the database. OverwriteCycle is 100 in case of UW15 and
50 in case of UW30. We consider therefore intervals starting at
x = Slast − 100 − 20 and later for UW15, and x = Slast − 50 − 20
and later for UW30.

For intervals starting with an old snapshot x, C(x) drops as x
becomes more recent since the measured RQL cost decreases but
the cost of all-cold run remains constant. For intervals starting
with a recent snapshot x, C(x) increases since the cost of all-cold
run decreases and converges to the measured RQL cost, as both
cost drop as intervals become more recent.

In absolute terms, RQL cost decreases sharply as we move to
more recent intervals as shown in Figure 8, where an iteration
on a more recent snapshot Slast-25 performs significantly better
that on older Slast-50 (UW30).

Where cold iteration cost can be a dominant factor for old
snapshot intervals since it can fetch substantial number of pages
from Pagelog, this is not so for recent intervals where cold iter-
ation fetches a substantial number of pages from the database
so the dominating factor for intervals of recent snapshot is the
sharing with the current state of the database.

5.2 CPU intensive queries
We expect snapshot page sharing to have less impact on CPU
intensive RQL queries.

We consider two kinds of CPU intensive RQL queries. In one
case, an RQL query issues a computationally heavy Qq so that
SQL query execution time is the dominant cost, in the other case
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Figure 8: Single iterations cost for the RQL query Ag-
gregateDataInVariable(Qs_50, Qq_io, T, AVG) with update
workload UW30.
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Figure 9: Single iteration cost for the RQL query Aggre-
gateDataInVariable(Qs_50, Qq_cpu, T, AVG) with update
workload UW30.

RQL defines a Qq with a large output size. In the latter case the
RQL UDF becomes the dominant cost.

For computationally intensive Qq, especially with join opera-
tions, if there is no native index in the snapshot, SQLite creates
covering indices to assist the query evaluation. An experiment
reported in Figure 9 shows that index creation always dominates
RQL cost. Our experiment uses Aggregate Data in Variable to
avoid introducing significant RQL UDF cost and Qq_cpu. The
Qq performs a join operation on tables Part and Lineitem and
returns the revenue of the orders that include an item of a certain
type. SQLite decides the building of a covering index on table
Lineitem as part of the query execution plan. Note, unlike for
I/O intensive queries, here the cost difference between a cold
and hot iteration is less since I/O cost is small part of total Qq
execution cost.

The Qq will not always be an ad − hoc query in the database
workload and may have a native index built by the programmer.
We evaluate the cost of the same RQL query where a native index
is available in the snapshot. As shown in Figure 9 the I/O cost due
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Figure 10: Single iteration cost for CollateData(Qs_50,
Qq_collate, T) with varying Qq output size with UW30.

to index creation drops but instead the SPT build cost increase
since an index increases the size of the database and the Pagelog.

Our last experiment considers Qq that returns as a result a
large number of records. This increases RQL UDF cost since
SQlite UDFs invokes a callback function to perform operations
for every record returned by the Qq. These operations are either
insert operations in case of Collate Data or aggregations in case
of Aggregate Data in Table.

Figure 10 shows the RQL performance where the CPU cost
is dominated by the cost of UDF for Collate Data with a com-
putationally light Qq query (Qq_collate in Table 1). The query
scans the table Orders and returns the orders with order date less
than a certain date. It has a single predicate which we vary to
control the query output size. As in earlier CPU intensive queries,
sharing has minimal impact on RQL cost.

5.3 Memory costs
The memory requirements of an RQL computation include two
parts, the memory to hold the snapshot pages requested by Qq
iterations, and the memory needed for result computation and to
hold the result table T. Since Qq iterates over snapshots sequen-
tially, the first part is independent of snapshot set size, and is
essentially the memory needed to run Qq over a single snapshot,
which includes the snapshot pages holding the working set of
Qq plus the snapshot metadata structures such as Maplog and
SPT(S). The memory costs of single snapshot computation have
been studied before [21]. Here we consider the memory costs of
RQL mechanism result computation for different mechanisms.

RQL can support general computations over snapshots using
Collate Data and running SQL computations over the results.
However, such a method could incur high memory cost when Qs
requires to compute over large number of snapshots. Memory
cost can be reduced for RQL computations that perform aggre-
gations on records across snapshots by using RQL aggregation
mechanisms.

Consider the case where given the table Orders of TPC-H
the user wants to find out, for each customer, what is maximum
number of orders placed in a single snapshot by the customer and
their average total price. This can be accomplished by running a
single Aggregate Data in Table.
AggregateDataInTable(Qs_50, Qq_agg, T, (MAX,cn))
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Figure 11: Comparison of RQL queries that producing the
same result using Aggregate Data in Table and Collate
Data for different number of aggregations.

The same result can be produced using Collate Data by first
collecting how many orders each customer has placed in every
snapshot in the given snapshot interval along with their average
total price.

CollateData(Qs_50, Qq_agg, T)

A single SQL query can then compute the final result.

SELECT o_custkey, MAX(cn), av FROM T;

In Figure 11, the first two bars compare the performance of the
two approaches for Qs that iterates over 50 snapshots. The RQL
UDF cost dominates the RQL cost because the query’s output
is approximately 1M of records for every snapshot. The Collate
Data performs slightly better than Aggregate Data in Table.

However, Aggregate Data in Table has a significantly smaller
memory footprint. Where Collate Data result table is more than
1GB, the Aggregate Data in Table result table is less than 100MB.
Aggregate Data in Table achieves thememory footprint reduction
for only 6% overhead in total execution time. Importantly, the
memory footprint of Aggregate Data in Table is independent of
Qs since we don’t expect the result table to grow significantly
after each iteration, whereas Collate Data inserts the entire Qq
output at each iteration.

The reason why Aggregate Data in Table is costlier than Col-
late Data can be explained in Figure 12 which shows single cold
and hot iteration of the two RQL queries issuing the same Qq_agg.
The first cold iteration is more expensive in case of Aggregate
Data in Table even though they insert exactly the same number
of records in the result table, because the Aggregate Data in Table
creates an index on its result table. In addition, the insert opera-
tions in Collate Data is slightly cheaper than in Aggregate Data
in Table because the result table of Collate Data does not have a
primary key. Maintaining a primary key on a table introduces
overhead to the insert operations. The reason why hot iteration is
more expensive in case of Aggregate Data in Table is because we
overall perform more operations. The Qq query returns approxi-
mately 1M records so, Collate Data in a single iteration executes
1M insert operations. Aggregate Data in Table on the other hand
executes 1M select operation on the result table and a number
of inserts or updates given the aggregation it performs. In this
experiment is perform approximately 22K inserts or updates.
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Figure 12: Single iteration cost for theRQLqueries Collate-
Data(Qs_50, Qq_agg) and AggregateDataInTable(Qs_50,
Qq_agg, (MAX,cn)) and update workload UW30.
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Figure 13: Single iteration cost for Aggregate Data in Table
for different aggregate function

Since the Aggregate Data in Table is able to aggregate on
multiple columns Figure 11 also evaluates the cost of additional
aggregation. The second aggregation calculates the maximum
among averages of the total price using the following Aggregate
Data in Table query:
AggregateDataInTable(Qs_50, Qq_agg, (MAX,cn):(MAX,av))

And the extra query required by the Collate Date will be:
SELECT o_custkey, MAX(cn), MAX(av) FROM collate_result;

As we can see adding extra aggregation does introduce signif-
icant overhead.

For some aggregate functions like SUM and COUNT the Ag-
gregate Data in Table have to update its result table for every
record returned by the Qq. For these aggregations, we expect
the hot iterations to have increased cost. Figure 13 compares
Aggregate Data in Table RQL queries that apply different aggre-
gate functions, MAX and SUM on the results of the Qq_agg. The
cold iterations perform the same because they do the same initial
insert operations and index creation. The hot iterations do the
same number of search operations on the result table but in case
of SUM they will do significantly more updates, 1M versus 22K
in case of MAX.
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Next, we briefly consider the Collate Data Into Intervals mech-
anism, comparing it to Collate Data. We focus on the memory
costs since the non-memory costs of Collate Data Into Intervals
closely resemble Aggregate Data In Table.

The result table size of Collate Data Into Intervals depends
on the size of Qq, and the lifetimes of records, i.e. the number
of updated and deleted records between consecutive snapshots.
The mechanism also needs memory to store the index. The result
table size of Collate Data only depends on the size of Qq. Our
experiment uses a Qs that defines an interval of 50 consecutive
snapshots, a Qq that returns 1.5 millions records in each snap-
shot (Qq_int in Table 1), and four different update workloads
UW7.5, UW15, UW30, and UW60 that respectively modify be-
tween consecutive snapshots 7,500, 15,000, 30,000, and 60,000
order records.

For Collate Data mechanism, the result table has 75M records
of total size more than 3GB. For Collate Data Into Intervals, the
result table has respectively 1.86M records (89 MB), 2.3M records
(105MB), 2.97M records (138 MB) and 4.4M records (204 MB) for
UW7.5, UW15, UW30 and UW60 update workloads. For each
workload, the mechanism requires about 50% additional memory
to hold the index during the computation. Interestingly, with our
workloads, increasing the number of modified records between
snapshots does not increase the result table size proportionally.
Overall the experiment shows Collate Data Into Intervals can
substantially reduce memory costs, confirming the known space
saving properties of record lifetime based snapshot representa-
tion compared to naive page-level representation [24].

6 RELATEDWORK
Computations over past state have been investigated in depth
by a rich body of work on temporal databases [17, 27]. The most
common data model adopted by the temporal databases is the
extension of the relational data model with time-stamps that
record lifetimes of record values via attributes indicating the start
and end time [17]. The temporal dimensions can vary depending
on whether a database supports the transaction time or the valid
time, or both (bi-temporal databases). Temporal databases have
not been widely adopted by general applications because of poor
performance during normal in-production operation [10] and
portability concerns.

One of the first commercial databases to support historical
data management was Oracle Flashback [18] which allows to
store all the modifications in a compressed format using the
undo tablespace without affecting application portability. IBM
provides support for bi-temporal tables in DB2 [19] by allowing
the declaration of additional attributes in temporal tables to indi-
cate the time dimension. Both Flashback and DB2 provide time
travel operation to a single point in the past but offer no support
for temporal computations over multiple past points which is
the main focus for our work. Teradata [1] supports bi-temporal
tables by extending the tables with columns representing the
time domain and supports a set of temporal computations called
temporal aggregations [30]. These computations scan the values
which participate in the aggregation at the logical level, to deter-
mine how they have changed between different timestamps, and
then compute the aggregation on the values changes.

In contrast to the logical record level approaches to past state
management, RQL computations run in a snapshot system that
manages the past state using a different low-level page-based
approach where snapshots expose to application the entire past

state of the database, and portions of the state required by the
snapshot computation are assembled on demand from the low-
level representation. Using the snapshot system RQL provides
multi-snapshot computations to applications in a seamless man-
ner as we have explained. Moreover, in terms of expressive power,
these computations can compute anything a record-level past
state system can compute assuming snapshots capture all up-
dates to the database. In particular, our Collate Data Into Intervals
mechanism can create the same time-stamped representation
used by the temporal databases. A potential downside of the
snapshot system approach is that snapshot representation is less
compact than logical record level representation and adds space
overhead. However, prior work has shown that a snapshot system
can reduce the space overhead substantially without impacting
normal in-production application performance, using an adap-
tive low-level page-diff approach [24], that offers a convenient
trade-off between more compact snapshot representation and a
higher cost of snapshot reconstruction.

Temporal aggregations apply aggregate functions on relations
that evolves over time, e.g. the average salary of an employee
over the past certain years. Efficient methods for computing tem-
poral aggregations have been the subject of numerous studies in
temporal database research. The implementation of temporal ag-
gregations is challenging in the logical temporal models because
in order to aggregate along the time dimension a temporal com-
putation may need to assemble the consistent state of multiple
records at each time. Many of the proposed techniques in the liter-
ature accelerate this process using sophisticated data-structures
that impose a variety of constraints to achieve efficiency. An early
work by Kline and Snodgrass uses a non-indexed approach based
on a data structure called Aggregation Tree [12]. The approach
requires the entire structure to be memory resident, and has a
worst case complexity of O(n2) when the tree is unbalanced. The
complexity can be improved in special cases of ordered data. SB-
Tree [28] and MVSB-Tree [29] relax the in-memory limitation by
introducing disk-based indexes for temporal aggregations. The
approach limits the type of aggregate functions if data deletion
is expected to SUM, COUNT and AVG. Moreover, the index size
can be larger than the database. The TMDA [3] and Timeline
Index [9] do not limit the aggregation functions. TMDA how-
ever does not support time travel queries. The Timeline Index is
an in-memory system that requires large amount of memory to
perform well. In contrast, RQL relies on state reconstruction at
a lower level, and since each Retro snapshot includes the entire
state of the database, RQL computations can aggregate over con-
sistent state seamlessly without restricting types of aggregation
and without requiring special temporal indexes. Nevertheless,
auxiliary temporal data-structures can potentially be beneficial
for repeated RQL computations and we consider this future work.

Similarly to temporal aggregations, temporal join is another
challenging computation for temporal databases due to the need
to identify all the versions of the join candidates that overlap in
the time domain. Like with aggregation, in a snapshot system
temporal join poses no addition challenge because the join can-
didates that overlap in time exist in the same snapshots and the
temporal join is executed as if they were in current state.

Several temporal query languages have been adopted by tem-
poral systems. Themost notables are the TSQL2 [26] and TQuel [25]
which extend SQL and Quel languages respectively. Some of the
TSQL2 temporal properties have been adopted in SQL:2011 stan-
dard and the Teradata database. T4SQL [5] and TENORS [4] are
more recent languages designed based on the time-stamping data
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model. These languages are not suitable for our snapshot based
system because of the different data model. Our SQL UDF based
query language is fully compatible with SQL and does not require
any change to the current ISO standard version. Languages de-
signed for streaming data management such as CQL [2], resemble
temporal computations since stream tuples include timestamps
but since they are specialized for computations subject to real-
time performance requirements they offer less expressive power
compared to the temporal languages and RQL.

Although, RQL computations are most closely related to tem-
poral databases, the snapshot system RQL extends is also similar
to versioning systems with linear branching. These systems man-
age historical data by creating versions of the dataset somewhat
similarly to the way Retro uses compact diff-based snapshot [24].
Array data versioning system [20] supports time travel queries
and uses a SELECT primitive similar to ours to collect data from
multiple versions. Decibel [14] is a branching system for rela-
tional datasets and supports time travel queries and multi-version
aggregation. Our snapshot system does not support non-linear
branching so many of the computation primitives and methods
they explore are not applicable to RQL.

A snapshot system calledHyper [11] utilizes hardware-assisted
memory snapshots to implement a hybrid OLTP and OLAP re-
lational database system. OLTP and OLAP queries can run in
parallel, in separate processes. The analytical queries access trans-
action consistent snapshots of the current state which are dis-
carded after the queries are evaluated. Hyper does not consider
a language for snapshot computations.

7 CONCLUSION
Auditing and other forms of claim checking require applications
to compute over multiple past states of their data. The current
systems supporting past state computations cannot be easily
used by general applications using simple data stores. These ap-
plications however can easily use a snapshot system but current
snapshots systems do not provide convenient support for multi-
snapshot computations. Trying to bridge this gap, we proposed
RQL, a retrospective query language that allows programmers
to specify multi-snapshot computations in a snapshot system.
Our language, implemented as a SQL extension using SQL UDF
callbacks in SQLite BDB with Retro snapshot system, provides
programmers a convenient way to express computations using
the language of the application. Our experimental study evaluates
the performance of RQL computations and explains how RQL
program parameters, the SQL programs Qq and Qs interact with
the page-level copy-on-write snapshot representation. This is the
first study explaining the performance of programs running on
multiple page-level copy-on-write snapshots. Our future work
includes performance optimizations for RQL programs exploring
how computations can be shared across multiple snapshots and
whether parallelization can be applied.
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ABSTRACT
The correlated exploitation of heterogeneous data sources of-
fering very large archival and streaming data is important to
increase the accuracy of computations when analysing and pre-
dicting future states of moving entities. Aiming to significantly
advance the capacities of systems to improve safety and effective-
ness of critical operations involving a large number of moving
entities in large geographical areas, this paper describes progress
achieved towards time critical big data analytics solutions to user-
defined challenges in the air-traffic management and maritime
domains. Besides, this paper presents further research challenges
concerning data integration and management, predictive analyt-
ics for trajectory and events forecasting, and visual analytics.

1 INTRODUCTION
Aerial and maritime transportation have significant role and
impact on the global economy and our everyday lives. The im-
provements along the last decades of these transportation means
in terms of management, planning, security, information to opera-
tors and end-users has been driven by location-based information.
The ever-increasing volume of data emphasizes the need for ad-
vanced methods supporting real-time detection and prediction of
events and trajectories, together with advanced visual analytic
methods, over multiple heterogeneous, voluminous, fluctuating,
and noisy data streams of moving entities.

These transportation domains aim at fostering collaborative
decision-making environments, involving all the stakeholders in
the process as this is expected to provide direct and positive con-
sequences in terms safety, efficiency and economy in both, aerial
and maritime domains. For instance, by having a better under-
standing of the air navigation data (historical data of flight plans,
sector configurations and weather), the number of published reg-
ulations (e.g. delays imposed to flights entering congested areas),
which limit the number of flights planned to enter an airspace or
aerodrome to match traffic demand to available capacity, could be
more accurately forecasted and thus the adherence to scheduled
trajectories improved, reducing delays and operational costs.

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the 21st
International Conference on Extending Database Technology (EDBT), March 26-29,
2018, ISBN 978-3-89318-078-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Tracking and analysis of vessels’ behaviour at sea are also
important challenges for enhancing the safety and efficiency of
many maritime operations [10]: preventing ship accidents by
monitoring vessels’ activity represents substantial financial sav-
ings for shipping companies (e.g., oil spill clean-up) and averts
irrevocable damages to maritime ecosystems (e.g., fishery clo-
sure).

The current Air TrafficManagement (ATM) is nowadays chang-
ing its point of view from a time-based operations concept to a
Trajectory-Based Operations (TBO) one, which means a better
exchange, maintenance and use of the aircraft trajectories. Simi-
larly, real-time tracking and forecasting of trajectories of ships
from port-to-port, worldwide, together with route prediction and
early recognition of maritime events, are essential to improve
safety of operations at sea. More accurate and richer informa-
tion on trajectories and related events is expected to increase the
abilities to predict trajectories and forecast events, anticipate the
behaviour of any moving entity, improve situational awareness,
and consequently the decision-making process in both ATM and
maritime domains.

Due to the complexity of these transportation systems, as
well as due to factors contributing to increased uncertainty and
lack of accuracy in the mobility data, the current techniques
for predicting trajectories are limited to a short-term horizon,
while the event detection and forecasting abilities are limited.
The development of methodologies exploiting the amount of
data from heterogeneous data sources, managing the possible
lack of veracity for (actual, historical and planned) trajectories
and other contextual aspects (e.g. airspace sector configurations,
regulations and policies, sea protected areas, weather patterns), is
expected to overcome some of the limitations of existing systems.

The objective of this paper is to describe progress achieved
towards big data analytics solutions concerning moving enti-
ties in the air-traffic management and maritime domains, and
to present related research challenges on data integration and
management, predictive analytics for trajectory and events fore-
casting, and visual analytics. Challenges, methods and techniques
developed in this paper originate from the datAcron project
(http://www.datacron-project.eu/) whose aim is to provide ad-
vances for Big Data Analytics for Time Critical Mobility Fore-
casting.
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The rest of the paper is organised as follows. Section 2 in-
troduces the challenges from both domains from an end-user
perspective. Section 3 presents the overall datAcron architecture.
Section 4 presents the data management components and the
datAcron ontology, while Section 5 presents the location and
trajectory predictors. Section 6 presents the events detection and
forecasting components, and Section 7 the online and offline
visual analytics components. All sections present experimental
results, providing evidence of the progress achieved towards time
critical (i.e. real time) data processing andmobility analytics tasks.
Finally, Section 8 draws the conclusions.

2 USER-DEFINED CHALLENGES IN THE
ATM AND MARITIME DOMAINS

Efficiency in the air-traffic management system requires mini-
mizing costs for both the airspace users (mainly airlines) and the
operators (namely, Air Navigation Service Providers, ANSP’s).
In general, one key enabler for reducing costs is the predictabil-
ity of the system. In particular, from the point of view of the
ANSP, maintaining the balance between the demand (i.e., the
number of users trying to use limited resources like airports,
airspace sectors, etc.) and the capacity (i.e., the number of users
which can safely use the mentioned resources) is one of the main
challenges. For an airline, flying according to the plan, avoiding
delays or extra fuel consumption represents the ideal to achieve
daily operations. A trajectory based operation approach enables
to plan which resources of the air-traffic management system
will be used by each flight (airports, airways, sectors, etc.), define
the achievable schedules, as well as the implied costs, increasing
efficiency.

Big data technology, which can exploit very large historical
and streaming data sources for positioning, contextual aspects
and weather, presents opportunities to boost current predictabil-
ity capacities that are based mainly on complex theoretical mod-
els of the different components of the air-traffic management
system.

Surveillance is an ever-increasing data source since new tech-
nologies are deployed (like ADS-B) which allow to collect data
more widely (space based ADS-B promises global coverage) and
more frequently. Weather data, identically, each time is offered
with more resolution, both geographical and temporal. Contex-
tual data, like flight plans, waypoints, or airways is increasing,
linked to the traffic growth, year after year. While each data set
is big, correlating and jointly exploiting all of them together is
what makes big data technology necessary. The aircraft trajec-
tory must be understood not only as the 4D collection of points:
It should also include events relevant for the traffic management
and the airline operations. So, predicting the aircraft trajectory
implies predicting these events too, and vice versa. The amount
of information involved in this trajectory prediction process re-
quires advanced visual analytics aids in order to understand the
patterns of the predicted trajectories and events, inspect the exact
reasons for deviating from plans towards either making adjust-
ments to the actual system, or tune trajectory and event detection
and prediction methods for more accurate results.

Accurate predictions of trajectories will further advance ad-
herence to flight plans (i.e., intended trajectories) reducing many
factors of uncertainty, allowing stakeholders to do better plan-
ning of the operations, reducing risk of disruptions. Our maritime
scenarios [13] aim to address operational concerns regarding fish-
ing activities, highlighting the need for continuous, timely (i.e.

real time) tracking of fishing vessels and surrounding traffic, as
well as the need for offline data analytics.

Security in fishing addresses the need to detect and foresee
collisions between ships, potentially optimizing rendezvous be-
tween rescuing ships in proximity of a vessel in danger and
emergency services. Collision avoidance is a typical situation to
be addressed: To prevent collision of fishing vessels with other
ships we need to predict which other vessels (such as cargos,
tankers, ferries) will cross the areas where the fishing vessels are
fishing, sending a warning to the vessels identified for possible
collision, taking also appropriate action as specified by COLREGs
1. To advance decision making in these cases the potential risk
assessment should be as accurate as possible. Such a development
could also be used on board to enhance situational awareness,
when it is anticipated that a vessel will be required to “give way"
to a fishing vessel.

Additionally, we need to detect vessels in distress, and further
detect vessels in their vicinity to optimise rescuing operations.
Analytics for detecting fishing patterns that are robust to noise
and lack of veracity in data, as well as accurate trajectory pre-
diction algorithms, are fundamental to support effectively those
operational requirements.

Sustainable development maritime scenarios supporting the
monitoring of fishing activities’ impact, including the illegal ones,
is of immense importance. In particular, towards the protection
of areas from fishing we address the issue of Illegal Unreported
Unregulated (IUU) fishing, which is a global threat to the preser-
vation of maritime ecosystems and could potentially undermine
the sustainable development in large areas of the world that de-
pend on maritime resources. Beside the introduction of maritime
protected areas where protected species live and where navi-
gation is prohibited, fishing seasons are regulated and fishing
activities are forbidden in certain periods of the year, depending
on the area and on the type of catch. Towards these objectives
we need to predict and detect vessels entering, exiting, sailing,
spending time or fishing in geographical zones.

Given the above cases in both domains, real-time integration
of disparate data sources enabling scalability for massive amounts
of dynamic data is an existing challenge, which is very closely
connected to the maritime domain, as well as to the ATM domain.
Table 1 presents the main data sources exploited in datAcron 2.

A series of specific challenges concerning processing and man-
aging data from these sources are as follows: (a) scalable, auto-
matic, real-time processing, semantic annotation and linking
of data towards coherent views on integrated cross-streaming
(data-in-motion) and archival (data-at-rest) data; (b) incremental
integration of data, allowing advanced management and query-
answering of spatio-temporal data; (c) efficient distributed man-
agement and querying of integrated spatio-temporal data.

Revolving around the notion of trajectories and furthermaking
advances towards trajectories and events’ detection and predic-
tion, both domains present the following challenges: (a) real-time
reconstruction of entities’ trajectories, supported by real-time
processing and analysis of streams of data; (b) algorithms for
the prediction of anticipated trajectories at different time scale;
(c) algorithms for complex event recognition and prediction in
real-time.

1www.imo.org/en/About/Conventions/ListOfConventions/Pages/ COLREG.aspx
2Vessels equipped with the Automatic Identification system (AIS) communicate
their positions continuously. Coastal stations and satellites receive messages in
real-time.
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Table 1: The datAcron surveillance weather and contex-
tual data sources (spatial coverage is Europe).

Type Source Format Volume Velocity
Terrestrial

AIS CSV Files 19,680,743 messages
(1.05 GB) for 6 month

∼ 76 messages per min
(in average)

M
ar
it
im

e Mixed
terrestrial
and satellite

AIS

CSVFiles
81,722,110 messages
(8.11 GB) for one

month

∼ 1,830 messages per
min (in average)

Su
rv
ei
ll
an

ce

Mixed
terrestrial
and satellite

AIS

Stream of
messages
in JSON

∼ 400 KB / min (in
average)

∼ 3,700 messages per
min (in average)

FlightAware
Stream of
messages
in JSON

13GB/day 1.2Mb/s

A
T
M IFS Radar

Tracks CSV Files 12GB/day (Spanish
Airspace) 1.1Mb/s

Sea state CSVFiles 79,652,684 forecasts
(3.02 GB)

1,463 forecast files -
1 file / 3 hours

W
ea
th
er

M
ar
it
im

e
&
A
T
M

Weather
forecast CSVFiles 71,516 observations

(5 MB)
1 obs/hour, from

16 stations
Geographi-

cal
ESRI

shapefiles
22 different features

(1.4 GB) Static

Port
Registers

ESRI
shapefiles

5,754 different ports
(70 MB) Static

M
ar
it
im

e

Vessel
Registers CSVFiles 166,683 distinct ships Static

C
on

te
xt
ua

l

Eurocontrol
NM B2B CSV Files 1.7 GB/day Static

A
T
M Eurocontrol

NM B2B Flat Files 30MB/cycle Static

Other (ATM) Eurocontrol CSV Files 30MB/month Static

Nevertheless, Visual Analytics (VA) [33] creates opportuni-
ties for a synergy between human analysts and computers by
providing appropriate visual interfaces to all facets of analytical
reasoning, from data exploration, pattern discovery and outlier
identification, to prediction validation. It therefore facilitates the
inclusion of the human domain expert’s tacit knowledge and his
capabilities for reasoning and intuition into the decision process,
which are of fundamental importance in surveillance activities.
The most important VA research challenges for both domains are
as follows: (a) interactive pattern extraction considering archival
and streaming data, supporting the validation of early alerts ob-
tained by the analysis tools; (b) building situation overview and
situation monitoring, capable of providing the overall operational
picture of mobility at desired scales and levels of detail, both in
spatial and temporal dimensions.

3 THE DATACRON SYSTEM
ARCHITECTURE FOR TIME CRITICAL
MOBILITY FORECASTING

Critical mobility operations require integrating data that stems
from a wide variety of diverse data sources, both archival and
streaming, having all big data characteristics. During data acquisi-
tion, various tasks need to be performed, incuding data cleaning,
compression, transformation to a common representation model,
and data integration. Besides real-time operations that must be
supported with minimum latency requirements, there exists a
need for offline analysis of the integrated data in order to discover
patterns and extract useful knowledge.

To address these challenging requirements, the datAcron sys-
tem architecture, depicted in Figure 1, has been devised as a
Big Data architecture for processing both real-time and archival
data. While it bears similarities with the Lambda architecture
[19], since it encompasses both a real-time and a batch process-
ing layer, these layers for different purposes (e.g. online trajec-
tory/events forecasting vs offline trajectory clustering and visual
analytics over archival data).

Figure 1: The datAcron system architecture.

In the real-time layer, streaming surveillance data describing
the positions of moving entities, collected from terrestrial and
satellite receivers are fed into the system, while several opera-
tions are performed: Statistics (min/max/avg) are computed over
properties, such as speed and acceleration, in an online fash-
ion; online data cleaning of erroneous data, as well as trajectory
reconstruction and compression are performed. The goal is to
provide only the data that is needed for analytics tasks: This is
mainly done by generating synopses of trajectories, which are
annotated towards the construction of “meaningful” trajectories.
Thus, the generated trajectory synopses are transformed to RDF
(Resource Description Framework) form, according to the dat-
Acron ontology, thereby facilitating the expression of links with
data originating from other sources. To this end, spatio-temporal
link discovery is performed resulting in semantically enriched
trajectories. Further online analysis of enriched trajectories aims
at: (a) deriving predictions of the future location of a moving
object, and (b) complex event recognition and forecasting. Fi-
nally, real-time visualizations support human interaction with
the datAcron system.

In the batch layer, the enriched trajectories as well as data
from other sources transformed in RDF are collected for persis-
tent storage, in order to support offline data analytics. Due to the
immense data volume, parallel data processing is performed over
RDF data stored in a distributed way. On top of the distributed
RDF store, higher-level data analysis tasks run, in order to per-
form trajectory analysis (clustering, sequential pattern mining)
and towards building models for complex event recognition and
forecasting using machine learning techniques. Last, but not least,
visual analytics provide the ability to discover hidden knowledge
and patterns, by means of interaction with a domain expert or a
data analyst, further improving situation awareness, as well.

Below, we describe the main components of the architecture.
In-situ processing components. In-situ processing allows

computation as close to the sources as possible, thus reducing
communication and latency. In datAcron, we apply in-situ pro-
cessing on the streaming surveillance data, as it is ingested in the
system. This supports computing statistical measures of moving
entities’ properties (such as speed and acceleration) and execut-
ing low-level event detection, annotating positions of moving
entities with information regarding entry/exit to/from geograph-
ical areas of interest. In addition to that, trajectory compression
aims to retain only a small set of positions of moving entities,
also called critical points, without sacrificing the accuracy of the
representation significantly.

Data manager. The data manager is responsible for provid-
ing a common representation of all data sources by integrating
and linking data in a knowledge graph, and for query process-
ing over that graph. To support linking of data from different
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sources in a common representation format, we opt for RDF. First,
any incoming data (no matter whether streaming or archival)
is lifted to RDF, by means of RDF generators. The obtained
representation is based on the datAcron ontology [28] (also in:
http://ai-group.ds.unipi.gr/datacron_ontology) supporting the
exploitation of semantically enriched information. Data interlink-
ing is achieved via a spatio-temporal link discovery framework,
which is designed to operate on streaming data sources, apart
from archival. Finally, the integrated spatio-temporal RDF data
is stored in a distributed way, supporting spatio-temporal RDF
query answering by means of a parallel processing engine for
RDF data, offering batch processing and analysis, with notable
difference to existing solutions (see [1] for a recent survey).

Trajectory detection and prediction. This component pre-
dicts the future location of moving entities in real-time, exploiting
enriched trajectories offered by the data manager. The trajectory
prediction component complements the future location predictor,
while offline trajectory analytics (not in the scope of this article)
over distributed RDF data are delivered by the corresponding
component.

Complex event recognition and forecasting. This com-
ponent targets the need to detect and forecast complex events
related to the movement of moving entities. To detect and fore-
cast events in a timely fashion, a novel technique using Pattern
Markov Chains is proposed for continuous narrative assimilation
on data streams. In addition to that, machine learning methods
are applied to build prediction models, while an offline complex
event analyser operates on the historical data and discovers pat-
terns of events to be predicted. The latter are not within the scope
of this article.

Visual analytics. The aim is to support exploratory and in-
teractive analysis of data, in order to enable the task of human
interpretation, which is necessary in the case of Big Data. Visual
analytics does not represent a single, specific analysis technique
but rather a methodological approach to gain insight into large,
complex, noisy and often conflicting data, to develop and test hy-
potheses, and to build and understand complex analytical models.
The key aspect is the collaborative work between the computer
and the human analyst, whereby the human expert imparts back-
ground knowledge about the current analysis task’s context and
reasoning in the overall analytical process.

For the implementation of the overall architecture, the big
data technologies employed include a blend of state-of-the-art
solutions that are used in production environments successfully.
Stream processing components have been developed in Apache
Flink, harnessing the scalability and low latency offered. Solu-
tions that rely on micro-batching, such as Spark Streaming, do
not match with the required complex stream processing and low
latency requirements targeted by our work. Instead, for batch
processing and analysis, we have selected Apache Spark which is
a more mature project than Flink, having a larger ecosystem, and
bigger user base, while also achieving scalability, high perfor-
mance, and exploiting in-memory processing. The stream-based
communication between components is achieved by means of
Apache Kafka.

4 DATA PROCESSING AND MANAGEMENT
Aiming to build solutions towards managing data that are con-
nected via, and contribute to enriched views of trajectories upon
which ATM and maritime challenges focus, we revisit the notion
of semantic trajectory and built on it towards integrating the

Figure 2: Themain concepts and relations of the ontology.

wealth of information available in heterogeneous data sources
in both domains in a representation where trajectories are the
main entities: The datAcron ontology (http://ai-group.ds.unipi.
gr/datacron_ontology) has been designed to provide a common
model for all data sources in both domains towards supporting
analysis tasks. Its development has been driven by ontologies
related to our objectives (e.g. DUL, SimpleFeature, NASA Sweet
and SSN) as well as schemas and specifications regarding data
sources from both domains. To a greater extent than other models
for representing trajectories, this ontology provides the means
for specifying trajectories at varying levels of spatio-temporal
analysis: Trajectories can be seen as temporal sequences of mov-
ing entities’ positions derived from raw data, as raw data ag-
gregations signifying meaningful events providing a synoptic
view of raw trajectories (generalizing on the stops and moves
model [31], according to the types of critical points), as temporal
sequences of meaningful trajectories segments (each revealing
specific behaviour, event, goal, activity etc.), or as mere geome-
tries. Representations at any such level of analysis are linked
to each other, as well as to related information and events. Be-
yond answering spatio-temporal SPARQL queries concerning
trajectories along with information regarding aspects that affect
and are affected by the mobility of moving entities, this ontology
supports generic data transformations for adapting available data
to the analysis goals, or to specific requirements of analysis tasks.
This is done by converting movement data from one form to
another, to support different task foci: movers, spatial, events,
space, and time. Details are provided in [28].

According to the ontology specifications, as illustrated in Fig-
ure 2, a Trajectory can be segmented to TrajectoryParts, each
including other segments and/or semantic nodes. Each semantic
node may be associated with a specific raw position or a tem-
porally ordered sequence of raw positions of a moving object.
Trajectories and trajectory parts can be associated with any rele-
vant information, as well as with events (dul:Event). Although
events may happen independently from the trajectory, we focus
on those happening on the trajectory itself (e.g. a “turn" or a
“gap of communication") and on those concerning moving en-
tity state (e.g. vessel in a protected or in a bad-weather area).
The detailed patterns for specifying structured trajectories and
occurring events are presented in [28].

4.1 Data processing
The low-level event detection component is aiming at enriching
the raw-data generated by the moving entities with basic derived
attributes that serve as input for higher-level processing. A major
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consideration is to achieve that enrichment with low-latency,
preferably by processing streaming data close to data source (in-
situ): This provides a number of inherent advantages, such as
decreased communication delays, savings in communication, and
reduced overhead in sub-sequent evaluation steps.

The detection of low-level events refers to generatingmetadata
on incoming raw data for detection of erroneous data, ensuring
data quality, and enriching the data stream with contextual in-
formation for further analysis. For supporting the data quality
assessment, described in Section 7, attributes of min/max, me-
dian/average of properties (e.g. speed, acceleration etc.) are gen-
erated on a per trajectory basis. In addition to that, raw position
data are enriched with low-level events of entering or leaving of
moving entities from one area to another one, by processing the
real-time stream of moving entity positions.

The Synopses Generation detects important mobility events
along trajectories represented as critical points: This task has to
be carried out in a timely fashion against the streaming posi-
tional updates received from a large number of moving entities.
Instead of retaining every incoming position for each object, the
Synopses Generator module drops any predictable positions along
trajectory segments of “normal” motion characteristics, since
most vessels and aircrafts usually follow almost straight, pre-
dictable routes at open sea and in the air, respectively. By doing
so we may only retain positions that signify changes in actual
motion patterns. We opt to avoid costly trajectory simplification
algorithms like [18, 21] operating in batch fashion, online tech-
niques employing sliding windows [20] or safe area bounds for
choosing samples [21], as well as more complex, error-bounded
methods [16, 17]. Instead, emanating from the novel trajectory
summarization framework introduced in [25, 27], specifically for
online maritime surveillance, but significantly enhanced with
additional noise filters and also extended for the needs of the
aviation domain, the Synopses Generator applies single-pass
heuristics for achieving succinct, lightweight representation of
trajectories. We prescribe that each trajectory can be approxi-
mately reconstructed from judiciously chosen critical points of
the following types:
- Stop indicates that an entity remains stationary (i.e., not moving)
by checking whether its instantaneous speed is lower than a
threshold over a period of time.
- Slow motion means that an entity consistently moves at low
speed over a period of time (below a given threshold).
- Change in Heading: Once there is an angle difference in heading
greater than a given threshold with respect to the mean veloc-
ity vector (computed over the most recent course), the current
location should be emitted as critical.
- Speed change: Such critical points are issued once the rate of
change for speed exceeds a given threshold with respect to its
mean speed over a recent time interval.
- Communication gaps occur when an entity has not emitted a
message over a time period, e.g., the past 10 minutes.
- Change in Altitude may be detected for aircrafts by checking
their rate of climb (or descent), i.e., the vertical speed of the
aircraft (in feet/sec) when ascending (respectively, descending).
Once, this value exceeds a given threshold, a critical point should
be issued in the synopsis.
- Takeoff is the latest position of an aircraft while on the ground:
The next position has altitude above ground.
- Landing for flying aircrafts is the first reported location when
they touch the ground.

This module can achieve dramatic compression over the raw
streaming data with tolerable error in the resulting approxima-
tion. At lower or moderate input arrival rates, data reduction is
quite large (around 80% with respect to the input data volume),
but in case of very frequent position reports, compression ratio
can even reach 99% without harming the quality of the derived
trajectory synopses (typically, straight movements with constant
speed).

Empirical results [25] indicate that such critical points can
be emitted in real-time keeping in pace with the incoming raw
streaming data. As a next step, we plan to address the case of
cross-stream processing, i.e., correlating surveillance data from
multiple sources in order to provide a coherent trajectory repre-
sentation.

4.2 Data management
To convert the data from different sources into the common RDF
model and integrate them in a knowledge graph, we designed and
implemented a generic RDF generation framework, which can
be instantiated to any of the given (streaming or archival) data
sources. Due to the syntactic and semantic heterogeneity of data
sources exploited in datAcron, and given that sizes vary from
a few thousands (e.g. aircraft or vessel registries), to practically
infinite streams of data (e.g. reported positions ofmoving entities),
we need an efficient method that can easily be integrated to
widely used SPARQL workflows, to rule all the data sources, and
that will also be easily adapted to changes on both the ontology
and the sources, while the output will be easily verified. The
proposed method stands on two main components: (a)The data
connector, which is responsible to connect to a data source and
accept the data provided. It is capable of applying basic data
cleaning operations, computing and converting values, applying
simple filters, or extracting information regarding the incoming
entries, e.g. extracting the Well-Known-Text representation of
a given geometry in a Shapefile. (b) The triple generator, which
is responsible to convert all the data coming through the data
connector, into meaningful triples w.r.t. the datAcron ontology.
Triple generators exploit graph templates and variables vectors.
The variables vectors enable transparent reference to datasource
fields, while they enable the RDF generation method to refer to
data not explicitly available in the source, but generated during
the generation process. The graph template, on the other hand,
uses these variables into triple patterns; i.e. in triples where any
of the subject or object can be either a variable or a function with
variables as arguments. Such an example of data conversion into
triples by exploiting a graph template made of triple patterns, is
provided in Figure 3.

By doing so, and in contrast to other RDF generators, the pro-
posed method needs no further knowledge of a specific vocabu-
lary (e.g. compared to RML [11]), and it can be used by anyone
who can write simple SPARQL queries. It requires no underlying
SPARQL engine, and it inherently supports parallelisation and
streaming data sources (compared to SPARQL-Generate [15] and
GeoTriples [14]).

This RDF generation method manages to transform 10,500
input records to RDF per second. For some sources, this number
may be smaller due to complicated geometries. Overall, the av-
erage time per triple generated is approximately 0.04 seconds,
given that the frequency of position reporting per aircraft/vessel
is at least 2 seconds.
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Triples produced by the RDF generators are directed to the
datAcron link discovery component: This detects spatio-temporal
and proximity relations such as “within” and “nearby” relations
between stationary and/or moving entities. It is noteworthy
that there is not much work on the challenging topic of spatio-
temporal link discovery nor on link discovery over streaming
data sets. State of the art approaches such as [23], [30], [29] focus
on spatial relations in static archival data sets only. In particular
RADON [29] employs optimizations that can be only applied if
the data sets are a-priori accessible as a whole, which cannot be
assumed for streaming data sets. Our work addresses explicitly
proximity and spatio-temporal relations in both archival and
streaming datasources.

Figure 3: Triple Generation example.

The implemented component continuously applies SPARQL
queries on each RDF graph fragment produced by an RDF gen-
erator, to filter only those triples relevant to the computation
of a relation r. It applies a blocking method to organize entities
(either being moving or stationary entities), and a refinement
function to evaluate pairs of entities in any block.

Aiming to discover spatio-temporal relations among entities,
existing methods use an equi-grid which organizes entities by
space partitioning. The temporal dimension is not partitioned:
given a temporal distance threshold, we can safely clean up data
that are out of temporal scope, i.e. entities that will never satisfy
the temporal constraints of the relations. To effectively prune
candidate pairs of entities, the proposed method computes the
mask of cell: This is the complement of the union of those spatial
areas that correspond to entities in a cell and intersect with the
cell area. Figure 4 depicts examples, where the green regions
illustrate the mask of cells generated from 8,599 Natura2000 and
fishing regions around Europe.

Thus, for each new entity we identify the enclosing cell, and
then we evaluate that entity against the spatial mask of the cell.
If it is found to be in the mask, we do not need to further evaluate
any candidate pair with entities in that cell. In addition to masks,
the link discovery component uses a book-keeping process for
cleaning the grid, towards identifying proximity relations among
entities when dealing with streamed data.

Figure 4: Equi-grid with masks for stationary areas.

We have evaluated the performance of the Link Discovery
method with and without cell masks on a data set of 4,765,647
critical points, against a data set of 8,599 regions generating
381,262 dul:within and 9,122 geosparql:nearTo relations. The
method without masks achieves linking 23.09 entities per second,
while activation of the mask boosts the throughput to 123.51 enti-
ties per second. Preliminary results concerning geosparql:nearTo

relations among critical points, as well as critical points and 3,865
ports, have shown a throughput of 328.53 entities per second,
producing 2,536,967 relations. Challenges lying ahead for link
discovery, include both, the identification of more complex spatio-
temporal relations in real-time streaming data, and improving
performance and scalability. The latter can be achieved by the re-
finement of blocking schemes for achieving better load-balancing
for tasks’ parallelization, as well as by the use of advanced tech-
niques for reducing the number of comparisons in the cells.

As far as the Knowledge Graph Store is concerned, even though
there exist several solutions for distributed RDF processing (see
[1] for a survey), a notable difference is that we deal with mo-
bility data that have a strong spatio-temporal flavour and typi-
cal queries also contain spatio-temporal constraints. A typical
distributed RDF processing engine cannot process efficiently
spatio-temporal constraints, as such constraints would have to
be enforced in a post-processing step to obtain the final result,
at the cost of having computed a much larger set of candidate
results. Motivated by this limitation, we designed a solution for
scalable processing of spatio-temporal RDF data. The system
contains a distributed storage layer, and a batch processing layer
developed in Apache Spark. In the storage layer, we use a custom
dictionary encoding technique for representing spatio-temporal
entities. Our encoding technique allows representing an approx-
imation of the position of any moving entity using a unique
integer identifier, which corresponds to the spatio-temporal cell
where the entity is located. We support different storage layouts,
including “one-triples-table”, vertical partitioning, and property
tables. Also, for the file layout we exploit Parquet, which provides
a columnar layout and achieves compression. The RDF triples
are stored in HDFS, while the dictionary needs to be stored in
main memory for efficient access, so we opt for REDIS which
fits our needs, although other NoSQL key-value stores may also
comprise solutions (e.g., Aerospike, etc.) In the processing layer,
we have developed different implementations of basic operators
(such as filtering and join) that can be used to generate different
physical execution plans from a given logical plan. Moreover,
the spatio-temporal encoding is used during query processing,

617



by filtering triples that do not match with the spatio-temporal
query constraints. This happens in parallel to filtering RDF triples,
matching with the RDF graph patterns specified in the query [24].

Experimental results [24] performed overmore than 269MRDF
triples from surveillance, weather, and contextual data sources
show that we can improve query processing time for star join
queries with spatio-temporal constraints when using our tech-
niques.

5 TRAJECTORY PREDICTION
The prediction of a trajectory evolution can be seen either (a)
as a Future Location Prediction (FLP), or (b) as a Trajectory Pre-
diction (TP) problem. In FLP, the task is to predict the next k
points in the trajectory, a process that is inherently dynamic and
continuously adaptive, exploiting measured (reactive mode) or
predicted (proactive mode) error as feedback. On the other hand,
TP aims to produce a “best guess” of the complete trajectory in
the maximum likelihood sense. The two tasks are interconnected
and applied in parallel, with FLP (TP) being the short-term online
(full-length offline, respectively) predictor. Generally, there are
two main approaches in addressing these prediction tasks:

(a) The Kinetic approach, which describes the forces and mo-
mentums that describe the motion of the moving entity in terms
of physical laws. The kinetic approach can produce accurate pre-
dictions, but requires high-intensity processing, due to detailed
simulation. Moreover, predictions, being sensitive to changes in
many of the (stochastic) parameters involved, are quickly deviat-
ing, as the temporal window expands. In the aviation domain, the
kinetic approach uses extremely accurate aircraft performance
models, such as BADA (Base Of Aircraft Data), combined with
localized weather forecasts. Similar kinetic approaches are used
in various forms, e.g. for dead reckoning in navigation modules,
in the maritime domain.

(b) TheKinematic approach; which considers only the temporal
evolution of the model’s parameters as time series and exploits
the causalities discovered. In practice, this includes data-driven
methods that exploit enriched trajectories as training sets for
FLP and TP purposes. In other words, the model “learns” the
kinetic behaviour of the moving entity by processing historical
information of its own trajectory in case of FLP or of an entire
group of “similar” trajectories in case of TP.

In contrast, the data-driven FLP and TP targeted in datAcron
rely exclusively on reference points of actual trajectories, en-
riched with features (e.g. weather conditions, operational con-
straints, etc.) that affect trajectories.

The current state-of-the-art in data-driven approaches for FLP
and TP range from standard signal processing to advanced re-
gression learners. In FLP, standard regression methods, as well
as motion-type modelling have been applied primarily in the
short-term time frame [32]. Since TP includes complete trajec-
tories, a number of supervised and unsupervised methods have
been applied in the context of classification: Grouping together
“similar” trajectories and predicting new ones based on these
groupings for “similar” input conditions, e.g. for the same depar-
ture/destination, same weather conditions, etc. [34]. The current
state-of-the-art approaches do not address the range of options
from short to long term predictions in its entirety, nor exploit
the full enrichment of the data points as constraints to optimize
the training. Additionally, the volume and velocity of the data
are considered of less or even no importance compared to the
spatio-temporal prediction accuracy.

Recursive Motion Functions (RMF) for FLP: Mobility patterns
over short-term time frames are often studied in the sense of
online predictive analytics, i.e., involving small set of positions as
“recent history” and strict constraints with regard to storage and
processing resources. Tao et al. [32] propose Spatio-Temporal
Prediction trees as an indexing scheme supporting predictive
queries and incorporating a general framework that computes
different non-linear motion patterns to capture movements of
arbitrary characteristics. In this context, the Recursive Motion
Function (RMF) approach enables the computation of different
types of movement (such as linear, polynomial, circular, etc) by
exploiting the recent past of an object’s position sequence and
adapting the prediction model according to its specific character-
istics. According to our knowledge RMF is the most prominent
candidate for addressing the online FLP task and under big data
specifications. RMF captures the motion dynamics of an entity
in a differential recursive formula by combining the most recent
data points per f (system parameter) and is most effective when
the acceleration components are zero, constant or at least exhibit-
ing slow drifts: It results to very low prediction accuracy when
it is applied in any of our domains.

The proposed RMF* method includes significant modifications
and enhancements of the base RMF algorithm producing in real
time the next k forward positions, using minimal storage and
processing resources. It exploits dynamic motion pattern match-
ing interchangeably with linear-only modes of operation. RMF*
incorporates the advantages of linear extrapolation for the steady
parts of the flights, while at the same time exploits additional
information regarding any shift in the motion type provided by
critical points produced by the synopses generation task, before
activating the full pattern-matching mode. This means that the
algorithm continuously checks for drifts to non-linear phases,
i.e., the beginning of turn and/or altitude change, activating the
proper differential approximation method accordingly, including
sections of circular, ellipsoid, parabolic, hyperbolic or general
quadratic trajectory.

RMF* can achieve very accurate predictions for the FLP task, as
the data effectively capture the dynamics of the trajectory. Since
FLP is very difficult for the take offs and landings, the experi-
mental evaluation of the proposed RMF* is primarily focused on
the aviation domain and specifically on these non-linear phases.
Results provided in Figure 5(a) are based on complete flights
between two airports (Barcelona-Madrid) and present average
2-D spatial error (longitude, latitude) of roughly 1-1.2 km for a
look-ahead time frame of up to a minute, with a sampling rate of
8 secs, and 8 look ahead steps, i.e., roughly a 1-minute look-ahead
time window (mean≈1000m, stdev≈500m, skewed towards zero).

The proposed RMF* algorithm is under fine-tuning of the
pattern-matching module, with special attention in identifying
and modelling a set of motion patterns, or “primitives”, separately
for the aviation and for the maritime domains, so that the module
can promptly and correctly identify the best choice when in non-
linear mode.

Hybrid Clustering/HMM method for TP purposes: In order to
address the TP task, there is a trend of using stochastic models for
discovering and retrieving patterns from past history. Addition-
ally, there is a need to address the task in the scale of big data. To
address this challenge towards long term trajectory predictions
our proposal is to partition historic trajectories into subsets, train
separate predictive models for each one of them and then use
these models for individual predictions, provided that the ability
to select the correct model exists.
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Figure 5: (Left) RMF* prediction accuracy over various
look-ahead time frames. (Right) Accuracy estimations for
the per-waypoint deviation (m) from flight plan (cluster
size=255) with the hybrid clustering/HMMmethod.

Clustering is the most popular approach for unsupervised
learning, ranging from simple k nearest neighbour (k-NN) group-
ing, to multi-level hierarchical restructuring of the input data
and using an arbitrary well-defined distance function as simi-
larity metric. The advantages of a clustering approach include
computing “cohesive” clusters of trajectories that are of smaller
scale than the original set, while a distance function that ex-
ploits any data linked to enriched trajectories can be used. The
SemT-OPTICS algorithm [26] is such an approach, where the
similarity between two trajectory points is decomposed in two
parts: The one regarding their spatio-temporal similarity and
another for the enriching data, adopting an appropriate variant
of Edit distance with Real Penalty (ERP) [9].

The Hidden Markov Model (HMM) approach is widely used in
modelling and predicting time series, including spatio-temporal
mobility patterns. The HMM approach models the evolution of
an entity’s motion by a set of states and transitions between
them, each one accompanied by a probability that is typically
extracted by analyzing historic data. Additionally, the deviations
between “intended trajectories” (e.g. flight plans in the ATM do-
main) and actual routes are modelled as HMM observations or
emissions, in order to construct a probabilistic model for trajecto-
ries. We designed HMMs in a way that exploits reference points
in conjunction to the enriching information. This is in contrast
to approaches exploiting raw trajectory data [7, 8].

Based on these, we devised a novel Hybrid Clustering/HMM
approach [12] to address the TP task, following a two-stage ra-
tionale: Clustering at the first stage of processing and training
HMMs for each cluster, using only the reference points of the
medoid of each cluster. The rationale behind this modelling ap-
proach is to be able to predict deviations from flight plans op-
timally, based on all the information available, including local
weather (per waypoint), aircraft size, seasonal factors (time, week-
day), etc. The current experiments on real aviation data (Spain,
April 2016) show that deviations from flight plans can be pre-
dicted with a combined 3-D spatial accuracy of 183–736m (RMSE),
in terms of half-width confidence interval for mean deviation
between intended (flight plan) and actual route flown, averaged
over the entire sequence of reference points for all clusters and
statistically significant at a=0.05. Results are shown in Figure 5
for one such cluster in the Madrid/Barcelona flights. Addition-
ally, this approach exhibits at least an order of magnitude better
accuracy in terms of absolute cross-track error compared to the
current state-of-the-art “blind” HMM for TP, while at the same
time it exhibits two to three orders of magnitude less processing

Figure 6: (Left) DFA and (Right) the correspondingMarkov
Chain.

and storage resources, due to the combined scaling-down of data
due to clustering and to the use of reference points.

The proposed Hybrid Clustering/HMM approach is still un-
der optimization. For the clustering stage, the challenge is to
customize the similarity metrics properly and separately for the
aviation and the maritime domains. For the HMM stage, the main
challenge is to capture the statistics of the per-waypoint devia-
tions for entire clusters of trajectories. Especially for the maritime
domain, the reference points must be defined more dynamically
(e.g. via detected critical points) since there are no equivalents
to flight plans available. Hence, more specialized probabilistic
distributions are tested for modelling the combination of distance-
related Gaussian error distributions per-dimension. This typically
involves exhaustive cross-validation experiments for prediction
accuracy, rather than estimation of confidence intervals; e.g. via
t-Student significance tests. Finally, segmented-trajectory models
are also investigated, for very large training data sets.

6 COMPLEX EVENTS DETECTION AND
FORECASTING

Given a stream of low-level events and a set of patterns defining
spatial and temporal relations between low-level events, opera-
tional constraints and contextual information, we need to detect,
in a timely manner, when these relations are satisfied. Whenever
these relations are satisfied, we say that a high-level (or complex)
event has been detected. Besides event detection, which con-
tributes to increasing situation awareness, given the importance
of predictability in both domains, we additionally address the
problem of forecasting the occurrence of complex events.

Specifically, given the input stream of low-level events gener-
ated by the components described in Section 4.2, let us consider
the case where a maritime analyst is interested in isolating parts
of a vessel’s trajectory during which a vessel changes its direction
by 180 degrees: These could indicate fishing activity. We could
formally define this complex event as a temporal sequence of
Change In Heading events where the first and last events in the
sequence have opposite headings (headings difference is close to
180 degrees). This HeadingReversal pattern could be given to the
event detection and forecasting module.

Whereas there exist multiple event detection systems, at dif-
ferent levels of maturity, very few of them address the issue of
forecasting ([22] is one of the few cases). Moreover, being able to
predict complex events which are defined by patterns that are not
simple sequences of input events, poses significant challenges.
Our event detection and forecasting module advances the state-
of-the-art by moving beyond sequential patterns. It has the ability
to predict complex events that are defined in the form of regular
expressions, where the low-level events may be related through
sequence, disjunction or iteration. In addition, by employing a
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Figure 7: (Left) DFA and (Right) waiting-time distribu-
tions.

rigorous probabilistic framework, it can handle input streams
that are generated by higher-order Markov processes (see [2] for
a detailed description).

As a first step, event patterns in the form of regular expres-
sions are converted to Deterministic Finite Automata (DFA). A
detection occurs every time the DFA reaches one of its final states.
As an example, see Figure 6 which depicts the DFA constructed
for the simple sequential expression R=acc (one event of type a
followed by two events of type c) where the set of events that
may be encountered are Σ={a,b,c}.

For the task of forecasting, we need to build a probabilistic
model for (the behaviour of) the DFA. We achieve this by con-
verting the DFA to a Markov chain. If we assume that the input
events are independent and identically distributed (i.i.d.), then it
can be shown that we can directly map the states of the DFA to
states of a Markov chain and the transitions of the DFA to tran-
sitions of the Markov chain. The probability of each transition
would then be equal to the occurrence probability of the event
that triggers the corresponding transition of the DFA. However,
if we relax the assumption of i.i.d. events, then a more complex
transformation is required, in which case the transition proba-
bilities equal the conditional probabilities of the events. An an
example, see Figure 6 which shows the Markov chain derived
from the indicated DFA, if we assume that the input events are
generated by a 1st-order Markov process (see [2] for details). We
call such a derived Markov chain a Pattern Markov Chain (PMC).

Once we have obtained the PMC corresponding to an initial
pattern, we can compute certain distributions that are useful
for forecasting. At each time point the DFA and the PMC will
be in a certain state and the question we need to answer is the
following: how probable is it that the DFA will reach its final
state (and therefore a complex event will be detected) in k time
points from now? The answer to this question depends on the
state of the PMC. Hence, for each such state we need to calculate
a separate distribution. These distributions are called waiting-
time distributions. As an example, Figure 7 shows a DFA and the
waiting-time distributions for its states.

In order to estimate the final forecasts, another last step is
required. Forecasts are provided in the form of time intervals, like
I = (start , end). When such a forecast is produced, its meaning
is that the DFA is expected to reach a final state sometime in
the future between start and end with probability at least some
constant threshold θ (provided by the user). These intervals are
produced by a single-pass algorithm that scans a waiting-time
distribution and finds the smallest (in terms of length) interval
that exceeds this threshold. As an example, Figure 7 shows a DFA
being in state 2, the waiting-time distribution for this state is
shown in blue color, together with the forecast interval extracted
(I = (2, 4)).

Figure 8: Precision achieved for events’ forecasting using
different Markov process’ orders.

The above described method has been implemented in a sys-
tem calledWayeb, tested with real-world maritime annotated and
enriched trajectories. We show results from one pattern applied
to a single vessel. The pattern is as follows:

R=ChangeInHeadingNorth

(ChangeInHeadingNorth+ChangeInHeading East)*

ChangeInHeadingSouth

where + stands for disjunction and * for iteration and each turn
event has additionally been annotated with the vessel’s heading.
This pattern attempts to detect a NorthToSouthReversal event
where a vessel executes a series of turns, initially heading towards
the northern direction and eventually ends heading towards the
southern direction. Figure 8 shows the precision of the proposed
forecasting method for this pattern using different prediction
thresholds. The precision is defined as the percentage of forecasts
which were accurate (i.e. the event was indeed detected within
the forecast interval). It shows results both for the assumption
of a 1st -order and for a 2nd -order Markov process. We can see
how increasing the assumed order does indeed positively affect
precision.

Promising such results as they may be, there still remain sig-
nificant challenges ahead. The most fundamental concerns rela-
tionality, i.e., the ability to naturally (without a pre-processing
step) handle events with attributes and relations between the
attributes of different events in a pattern. For example, in the
NorthToSouthReversal pattern, the information about the vessel’s
heading would simply be an attribute which could be checked
with predicates like IsHeading(North). Moreover, the method
that we have proposed assumes stationarity which implies that
the transition matrix of the PMC does not change. However, the
statistical properties of a stream may indeed change over time
in which case we would need an efficient method for updating
online the probabilistic model.

7 VISUAL ANALYTICS
The purpose of the Visual Analysis approach is to combine al-
gorithmic analysis with the human analyst’s insight and tacit
knowledge in the face of incomplete or informal problem speci-
fications and noisy, incomplete, or conflicting data [33]. Visual
Analysis therefore is an iterative process where intermediate
results are visually evaluated to ascertain and inform subsequent
analysis steps based on prior knowledge and gathered insights.
From the perspective of Visual Analytics, analysis methods fall
into two categories within the overall architecture (Figure 1).

On the batch layer, Visual Analytics (VA) augments a wide
range of tasks from initial data exploration and curation, com-
plex analysis workflows, to refining and evaluating the different
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models. Synoptic analysis tasks that are the subject of such ex-
ploratory visual analyses presume availability of global measures
like spatial extents, value ranges, (as yet undiscovered) patterns
defined over large time spans/time cycles, and thus must be sup-
ported over sufficiently large data sets. Specifically, it is worth
noting that due to the exploratory focus, VA does not prescribe
a rigid pipeline of algorithmic processing steps, nor does it pre-
scribe a fixed composition of specific visualizations, as opposed
to typical dashboards [3].

To cope with these requirements in an efficient and scalable
way, the VA component within the integrated architecture is
itself of a modular, extensible design, as shown in Figure 9. It
comprises four principal component groups – data storage, anal-
ysis methods, data filtering and selection tools, and of course,
visualization techniques. Different components are typically com-
posed in an ad-hoc fashion, through visual-interactive controls,
to facilitate the workflow required by the human analyst’s task
at hand.

The following paragraphs review several novel workflow com-
positions addressing different analytical challenges in both the
ATM and maritime domains.

The ability to understand data properties and to assess their
quality is a crucial first step in any data analysis setting. Dealing
with massive movement data analysed in context (e.g., as weather
data) amplifies both the importance of that first step as well as
the technical challenge involved in dealing with such large data.

Investigation of quality of movement data, due to their spatio-
temporal nature, requires consideration from multiple perspec-
tives at different scales. In paper [4], we review the key properties
of movement data and, on their basis, create a typology of possi-
ble data quality problems and suggest approaches to identifying
these types of problems. In particular, we systematically consider
different approaches to position recording and related properties
of movement data, taking into account properties of the mover
set, spatial properties, temporal properties and data collection
properties.

However, while [4] lays the foundation for a structured ap-
proach to detect and rectify data quality issues, cleaning and
repairing data for curation purposes are still largely manual tasks
that rely on a combination of tools and technologies such as data-
base SQL, scripts, and functionality available in the VA toolkit.
Especially when handling large data sets (many moving entities,
long time periods) these tasks can become tedious and time-
consuming. Therefore, as one facet of datAcron objective is to
create advanced and scalable spatio-temporal data integration
and management solutions, a modular framework is being de-
veloped that combines Big Data processing technologies with
interactive visual reporting to automatically evaluate the quality
of large movement data sets.

To support preparatory data analysis for building appropriate
detection and prediction models, specifically patterns targeting
at trajectories, events, spatial time series and spatial situations,
novel methods are required that combine interactive visualiza-
tions with appropriate computational methods such as clustering,
event detection, summarization and abstraction, as well as provid-
ing possibilities for manipulating parameters of computational
methods and evaluating sensitivity to parameters.

In [6] we introduced the concept of time mask, which is a type
of temporal filter suitable for selection of multiple disjoint time
intervals in which some query conditions on arbitrary attributes
hold. Such a filter can be applied to time-referenced objects, such
as events and trajectories, for selecting those objects or segments

Figure 9: Principal components of the VA toolset.

Figure 10: (Top)A time series display shows the counts
of the vessels (upper row) and the near-location events
(lower row) by 1-hour time steps. A query selects the inter-
vals containing at least one event (yellow markers). (Bot-
tom) The density of the trajectories in the times of occur-
rence of near-location events (left) and in the remaining
times (right) [6].

of trajectories that fit in one of the selected time intervals. The
selected subsets of objects or segments are dynamically summa-
rized in various ways, and the summaries are represented visually
on maps and/or other displays to enable exploration. The time
mask filtering can be especially helpful in analysis of disparate
data (e.g., event records, positions of moving entities, and time
series of measurements), which in the considered scenarios even
come from different sources.

To detect relationships between such data, the analyst may set
query conditions based on one data set and investigate the subsets
of objects and values in the other data sets that co-occurred in
time with these conditions (e.g., see Figure 10).

Clustering of trajectories of moving entities by similarity is
an important technique in movement analysis. Existing distance
functions assess the similarity between trajectories based on prop-
erties of the trajectory points or segments [3]. The properties
may include the spatial positions, times, and thematic attributes.
There may be a need to focus the analysis on certain parts of
trajectories, i.e., points and segments that have particular prop-
erties. According to the analysis focus, the analyst may need to
cluster trajectories by similarity of their relevant parts only. For
example, when analysing routing decisions taken by airlines in
the ATM context, only the cruise phase of a flight is relevant for
comparison, but not holding patterns nor takeoff and landing
runway directions [5]. Throughout the analysis process, the focus
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Figure 11: (Top) Bars in a time histogram show the counts
of the flight arrivals in hourly intervals. Bar segments are
painted in the colors of the clusters the flights belong to.
(Bottom) The final parts of the flight trajectories in days
1 and 3 are colored according to the cluster membership
[5].

may change, and different parts of trajectories may become rele-
vant, e.g., due to weather conditions. In paper [5], we propose an
analytical workflow that uses interactive filtering tools to attach
relevance flags to elements of trajectories; subsequent clustering
uses a distance function that ignores irrelevant elements. The
resulting clusters are summarized for further analysis. The paper
demonstrates how this workflow can be useful for different anal-
ysis tasks in three case studies related to ATM flow management
(Figure 11). The paper [5] further proposes a suite of generic
techniques and visualization guidelines to support movement
data analysis by means of relevance-aware trajectory clustering.

For developing and evaluating trajectory prediction algorithms
it is important to have the possibility of detailed comparison of
predicted trajectories to actual ones, to see how accurate the
prediction is. It is also necessary to compare predictions obtained
with different parameter settings, to understand the impact of
the parameters and to choose the most suitable settings.

On the real-time layer, in-stream processing algorithms oper-
ate directly on data streams under predefined parameter settings
for monitoring purposes, i.e., trajectory & location prediction
(Section 5) as well as event forecasting (Section 6). The main goal
here is to provide a visual interface to the detection and predic-
tion model output, presented in the context of real-time spatio-
temporal data comprising the current situational picture (vessel
trajectories, specific areas, weather information etc.). These visu-
alizations provide a limited set of interaction for confirmatory
analysis of detected outliers and patterns, as well as in-context
validation of model predictions, and typically are offered as dash-
board components.

A novel technique is the point matching method that is sup-
plemented by interactive visual interfaces enabling the analyst
to view and explore the results of point matching (Figure 12).

For the purposes of situation monitoring, a real-time visu-
alization approach has been developed as an endpoint in the

Figure 12: Detail view of a significantly mismatched pair
of actual (blue) vs. predicted (red) trajectories. The his-
togram shows the statistical distribution of the propor-
tions of the matched points; the map shows the spatial
footprints of both trajectories.

Figure 13: Real-time visualization dashboard formaritime
situation monitoring.

Kafka-based communication infrastructure (Figure 13). The visu-
alization visually encodes a selectable subset of information lay-
ers from the enriched stream provided by the data manager. This
stream, as described in previous sections, includes pre-processed
position data (i.e., trajectory synopses), dynamic and static con-
text information (e.g., weather conditions, maritime areas), trajec-
tory and location predictions, as well as detected and forecasted
events (e.g., initiation of a turn manoeuvre, danger of collision).

Further work will evaluate which visual encodings and inter-
action capabilities (e.g., to interactively adjust event detection
parameters) best match different use case requirements in both
domain.

8 CONCLUSIONS
Given the user-defined challenges and the fact that more and
more data of different nature and purposes is generated in the
air traffic management and the maritime domains, this article
reports on significant progress achieved in datAcron towards
the real-time processing and analysis of big data for improving
the predictability of trajectories and events regarding moving
entities in those domains.

Albeit the progress, there are also significant challenges ahead
in both domains: Discovery of spatio-temporal relations among
entities in a timely manner, efficient query answering of very
large knowledge graphs for online and offline analytics tasks,
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cross-streaming synopses generation, long-term online full tra-
jectory predictions and improvements in forecasting complex
events together with learning/refining their patterns by exploit-
ing examples; as well as, the provision of online visual analytics
workflows.
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ABSTRACT
Anomaly detection is a key feature of applications processing sin-
gularities using IoT sensor measures. In a recent project, we high-
lighted that to guarantee high quality detections, metadata pro-
viding spatio-temporal contexts on sensor measures are needed.
These metadata hence become an integral component of the
anomaly detection computation and need to be processed us-
ing a streaming approach. In this paper, we introduce Scouter,
a generic tool that helps in capturing, analyzing, scoring and
storing the contextual information of a given application domain.
The processing depends on a semantic-based approach that ex-
ploits ontologies to score the relevancy of contextual information.
The paper provides details on the system’s architecture, describes
lessons learned and introduces practical aspects.

1 INTRODUCTION
Large amounts of data generated by IoT streaming devices are
continuously accumulated and processed in Big Data platforms.
The analysis of these data supports intelligent software function-
alities usually based on machine learning or semantic approaches.
Among these features, singularities leading to anomaly detection
is predominant and is tackling domains as diverse as medicine
(e.g., to identify malignant tumors in MRI images), finance (e.g., to
discover cases of credit card transaction frauds), information tech-
nology (e.g., to detect hacking situations in computer networks).
In the WAVES project1, we are interested in detecting anomalies
in large potable water networks managed by an international
company, i.e., Suez company, referred to as the domain field ex-
pert in the paper. The automatic detection of such anomalies is an
important issue at both the environmental and economic levels:
the volume of lost water in the world has reached more that 32
billions m3/year (corresponding to a loss of US$ 14 billion/year)
with 90% of them being invisible due to the underground nature
of the network. As a matter of fact, water leaks can be detected
based on pressure and flow measures retrieved from sensors in-
stalled on strategic spots within such a network. During several
experiments, conducted on the French network, consisting of
100.000 km of pipelines equipped with over 3.000 sensors dis-
tributing drinkable water to more than 12 million clients, field

1https://www.waves-rsp.org/
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experts found out that to guarantee high accuracy in anomaly de-
tection, a contextualization of the measures is needed especially
when a singularity appears. For instance, abnormal high pressure
or peculiar flow signatures could potentially indicate a water
leak. However, in many cases of popular sport or cultural events,
these singularities could easily be explained because of some
arrangements made by the city hall to provide water fountains.
The same singularities can also account for hot weather condi-
tions implying garden watering in a suburb area or a wildfire
forcing firemen to use important amounts of water. Hence, an ef-
ficient approach for singularity contextualization has to integrate
a spatio-temporal dimension on the analyzed measures.

The tasks related to the capturing, analyzing, scoring and stor-
ing of contextual metadata are demanding since they require
interactions between software components that may be hard to
set up, especially in a distributed environment. These compo-
nents generally handle stream, natural language and ontology
processing as well as the storing of complex data structures. De-
signed as a generic system, Scouter2 aims at simplifying these
tasks by proposing implementations of the main functionalities
and by taking care of installation and configuration aspects.

2 CONTRIBUTIONS
In this paper, we present Scouter, a novel singularity contextual-
ization system built on top of Apache Kafka that automatically
proposes relevant explanations to detected anomalies using a
continuous filtering approach.

Scouter proposes a powerful web analysis tool leveraging on
ontology building and semantic web technologies to automati-
cally retrieve, score and rank relevant events extracted from the
web. Scouter also exposes a powerful set of natural language
processing functions such as topic extraction, topic relevancy,
topic matching and sentiment analysis as well as an original
method for geo-profiling to classify areas. Finally, Scouter re-
duces the time complexity of heavy web scrapping using big
data frameworks and eliminates the dataset size limitation by
implementing a continuous filtering method. In summary, the
main contributions of Scouter are:

• An efficient method to fetch both streaming and static
data from various sources on the web based on a hierarchy
graph of concept labels, henceforth denoted an ontology.

• An original geo-profiling method that gives a detailed
portrayal of the areas where the events occur.

2https://badrebelabbess.github.io/Scouter-1/
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Figure 1: Scouter Architecture

• A novel approach to select relevant non duplicate events
using powerful Natural Language Processing (NLP) func-
tions in a three dimensional pipeline: topic extraction,
topic relevancy and sentiment analysis.

• A continuous dynamic data filtering technique based on a
combination of media analytics scoring and geo-profiling
annotations.

3 ARCHITECTURE
As a component of the WAVES platform [1], Scouter was devel-
oped to be a generic system that can handle both streaming and
static events and analyze them using a powerful set of NLP func-
tions and semantic methods. Fully configurable, the primary goal
of Scouter is to fetch data efficiently from different web sources,
process them in a short amount of time in order to score every
event regarding its capability to explain anomalies detected by
the platform. As detailed by Figure 1, the main components of our
system are: a set of Web data connectors, a media analytics unit,
a geo-profiling unit, a storage mainframe, a messaging broker
and a web service provider.

The web connectors consume data from different data sources
at a certain frequency based on predefined configurations which
can be specified using a web interface. These sources include
social networks namely Twitter and Facebook (e.g., citizens com-
menting on water leaks nearby) but also media sources such
as RSS feeds from various newspapers listed in Table 1(e.g., an
article from the French newspaper Le Monde mentioning a fire),
weather information from Open Weather Map (e.g., climate con-
ditions during a specific event), organized events from Open
Agenda (e.g., concerts, exhibitions or sporting events) and also
specific information retrieved from DBpedia (e.g., number of in-
habitants or type of neighborhoods). All of these data sources
are consumed in a powerful multi-threading mechanism using
rest APIs. The concepts, subconcepts and properties used to fetch
data are represented in an ontology that formalizes the different
relationships in a sound manner. More details about the ontology
are provided in the section 4.1.

The media analytics unit digests fetched feeds from Kafka and
leverages on the Apache Spark distributed framework to analyze
feeds in real-time. Feeds are recorded as events annotated with

location, start/end dates and description. In order to filter the
most relevant events without any duplicates in the database, a
topic extraction approach and a sentiment analysis are combined
to match topics. The topic extraction parses the text of feeds
to discover term occurrences. Then, the scoring module takes
advantage of user defined weights, i.e., a real value in the [0, 1]
range, associated to ontology concepts to provide an overall scor-
ing for each text. The sentiment analysis classifies the feeds into
positive or negative categories using the maximum entropy algo-
rithm [2]. It builds a model using multinomial logistic regression
to determine the right category for a given text. Simultaneously,
the geo-profiling unit provides geographical characteristics for
the analyzed area. It determines the type of terrain surrounding
the anomaly location. Based on points of interest and terrains for
a given zone, a profile is generated that describes the category of
the targeted region using a configurable classification.

After the scoring step, events are recorded into a scalable and
distributed document database (namely MongoDB). As a result,
we obtain in real-time spatio-temporal and scored contexts that
can assist the operator to explain an anomaly detected in the
underground water pipeline network. Scouter also provides a
metrics monitoring tool to track the performance of the system
including query times, event processing times, events count and
topic extraction training times. These metrics are stored in a
time series database with very high read/write access (namely
InfluxDB). Finally, the Web services component is used for con-
figuring the system. It provides Rest-based interface that can be
integrated with a graphical user interface to deliver configuration
parameters in an user-friendly and readable way.

4 MEDIA ANALYTICS & NLP
In this section, we detail the methodology of collecting data from
the various types of sources available on the web. This process is
built on four major components that work together in order to:

• Extract the most relevant events based on a complex graph
of concepts and properties.

• Identify the appropriate summaries from each event with
the maximum expressiveness.
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• Avoid duplicate events stored in the database by compar-
ing summaries and assessing the similiarity between them
using sentiment analysis.

4.1 Ontology
Every scrapping tool relies on a configuration file that lists the
properties of words, concepts or events that it tries to fetch [3]. In
Scouter’s case, the fetching capabilities rely heavily on a pre-built
ontology that lists the main concepts the user is looking for but
also organizes the relations in two dimensions:

Vertical Hierarchy: A given concept (e.g., Fire) can have mul-
tiple sub-concepts (e.g., Blaze, Wildfire) or aliases and mispellings
(e.g., fir, wild-fire, blayz).

Horizontal Dependency: A concept can have multiple prop-
erties that describe a specific state in a certain time period. For
example, water can be potable, but can also leak or have a specific
color.

Figure 2: Ontology Overview

By combining the concepts and the properties through predi-
cates, we can build a complex graph such as the one in Figure 2
used for the water leak use case. We can easily argue that this
type of structure holds more expressiveness than a classic list of
keywords exposed in a configuration file.

4.2 Topic Extraction
After fetching the proper events from the various sources based
on the ontology of concepts and subconcepts, the next step is to
extract meaningful topics from the events following the pipeline
in in Figure 3.

Figure 3: Topic Extraction Pipeline

The main preprocessing here concerns the cleaning of the in-
put text, the identification of potential candidates, and finally the

stemming and case-folding of the phrases. Input files are filtered
to regularize the text and determine initial phrase boundaries,
then the splitting into tokens alongside several modifications are
made (apostrophes are removed, hyphenated words are split in
two, etc). Next, we consider all the subsequences in order to de-
termine the ones that are suitable candidate phrases. To increase
the accuracy, we use a list of french stop-word list containing
more than 500 words in different syntactic classes (conjunctions,
articles, particles, etc). Then we case-fold all words and stem
them using the iterated Lovins method [4] to discard any suffix,
and repeating the process until there is no further change. Stem-
ming and case-folding allow us to treat different variations on a
phrase as the same thing.

The main processing involves two calculated features for each
candidate phrase : the phrase frequency in the input text com-
pared to its rarity in general use and the first occurrence, which
is the distance into the input text of the phrase first appear-
ance. These two features are converted to nominal data for the
machine-learning process and a discretization table for each fea-
ture is derived from the training data. Finally, we generate a
model that gives the scores for every candidates and ranks them
using Naive Bayes techniques [5].

4.3 Topic Relevancy
Several research works tackle the issue of automatic summa-
rization [6]. The tools proposed generally mix several classes of
features such as summary likelihood, use of topic signatures or
syntactic analysis [7]. In our case, we chose a direct approach
based on distributional similarity that compares input and sum-
mary content. In fact, we consider that a good summary should
be characterized by low divergence between probability distribu-
tions of words in the input and summary, and by high similarity
with the input. For this purpose, we used two common mea-
sures: the Kullback Leibler divergence and the Jensen Shannon
divergence.

Figure 4: Topic Relevancy Pipeline

First, words in both input and summary are stemmed and
separated before any computation. Then we compute the two
measures:

Kullback Leibler (KL) divergence: It corresponds to the
average number of bits wasted by coding samples belonging to P
using another distribution Q, an approximate of P. It is given by:

DKL(P ∥Q) =
∑
i
P(i) log P(i)

Q(i) .
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In our case, the two distributions of word probabilities are es-
timated from the input and summary, respectively. Because KL
divergence is not symmetric,both input summary and summary
input divergences are introduced as metrics. In addition, we per-
form a simple smoothing using an approximating function that
captures important patterns while leaving out noise and other
fine-scale structures.

Jensen Shannon (JS) divergence: This one leverages on the
fact that the distance between two distributions cannot be very
different from the average of distances of their mean distribution.
It is given by the following formula:

JSD(P ∥ Q) = 1
2D(P ∥ M) + 1

2D(Q ∥ M) (1)

where M =
1
2 (P +Q) (2)

In contrast to KL divergence, the JS distance is symmetric and
always defined. We compute both smoothed and unsmoothed
versions of the divergence as summary scores. The final step is
to use the output of these two functions to rank the extracted
topics and keep only the ones with the best summarization score
(i.e., lowest divergences).

4.4 Sentiment Analysis
During the last decade, sentiment analysis has known an expo-
nential development due to the growing usage of social networks
and the popularity of websites where people can state their opin-
ion on different products and rate them. Many solutions have
been proposed and packaged in several technologies [8], we
propose in this section a simple approach based on some tools
provided by the Stanford CoreNLP toolkit [9].

Figure 5: Sentiment Analysis Pipeline

Before applying the model, we need to launch several prepro-
cessing steps that will improve the accuracy of the output score.
Here, three steps are involved:

Tokenization: It separates the text into a sequence of tokens
and saves the character offsets of each token in the input text.
Then we split a sequence of tokens into meaningful sentences.

Entity Recognition: It checks if the tokens are consistent
and conform to a predefined standard before trying to determine
the likely gender information to names based on a dictionary.
Then, the recognition algorithm annotates recognized tokens
as persons, locations, organizations, numbers, dates, times or
durations.

Syntactic Resolution: The system used a full syntactic anal-
ysis, including both constituent and dependency representation,
based on a probabilistic parser.

Since our use case is to analyze media and social networks
within the French territory, we used a French dictionary embed-
ded in a wrapper to analyze the words.

After the preprocessing phase, we enter the main computa-
tion step where we apply the model. Among several models, we
chose the compositional one over trees using deep learning. It
relies on nodes of a binarized tree of each sentence, including,
in particular, the root node of each sentence, that are given a
sentiment score. In order to capture the sentiment of an input
text, a Recursive Neural Tensor Network model (RNTN) is built
based on the characteristics of the input phrases. These phrases
are represented using word vectors and a parse tree, then we
compute vectors for higher nodes in the tree using the same
tensor-based composition function. This approach is inspired
from the recursive deep models for semantic compositionality
developed by Stanford[10].

4.5 Topic Matching
As stated at the beginning of this section, the goal of the different
steps in the media analytics part is to extract the most relevant
unique events by annotating them with a meaningful summary.
Hence, we try to avoid duplicate events that refer to the same
happening or occurrence. In order to complete this task with
high accuracy, we are mixing several approaches relying on NLP
processing from ontology building to sentiment analysis. The
process follows the following steps: For each event fetched from
the different sources, the topic extraction phase will propose a
list of potential summaries based on a Bayesian approach. Then
these summaries will be ranked using the lowest divergences
(i.e., KL divergence and JS divergence) in order to assess their
accuracy. Among the highest ranked ones, we will check if they
have the same sentiment (i.e., positive, neutral or negative). If
one of the selected topics during this process have the same
sentiment, we assume then that they are referring to the same
event in the same way. Therefore,we conclude that these events
are duplicates and we only keep the content of one event. Also,
we annotate the event with a reference from the other deleted
event to show to the final user that this specific event is present
in different sources. The overall pipeline of our media analytics
module is detailed in figure 6.

Figure 6: Topic Matching Pipeline

Even though this module provides powerful functions to filter
relevant unique even, a spacial dimension is required to fully
contextualize the detected anomaly. This part will be explained
in the following section.
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5 GEO-PROFILING
5.1 Methodology
The goal of Scouter is to provide relevant information to contex-
tualize and potentially explain detected anomalies. The media
analytics module helped in filtering the relevant events and re-
moving duplicates, however geographical information about the
area where the anomaly is spotted could further fine-tune and
improve the accuracy of the context. This task is handled by two
complementary modules: Geo-profiling module and reasoning
module. It can be performed before the reasoning, to orientate
the research of events, or after, to change the ranking of the po-
tential sources.It is composed of two methods, that are combined
and enriched with a third consumption-based method for better
results.

Method 1: It extracts points of interest (POI) present in a
given sector, from online geographic data sources, to determine
the proportion of different types of surfaces composing it. The
domain field expert selected the types of surfaces relevant to our
use cases, giving us five profiling parameters: residential, natural,
agricultural, industrial and touristic. Then, we created a rating
file, assigning notes to each POI, in order to compute a score for
each type of surface, and calculate its proportion (i.e., a real value
in the [0,1] range).

Method 2: It is also based on geographic data, but uses fea-
tures modeled as polygons instead of POI. The inclusion tests are
more complete, since some polygons may be included completely
or partially inside the consumption sector. Also, the computa-
tion is not performed using the rating system, but the areas of
the polygons, which are less arbitrary. Otherwise, both methods
produce the same result: proportions (also as real value in the
[0,1] range) for each type of surface.

Method 3: For certain types of consumption sectors, our two
methods can slightly differ. To decide which method should be
used in each case, we added a third method that computes what
we denote as the consumption ratio. For each sector, we compute
the daily flow, and make an average over a long period of time to
avoid anomalies; then we divide this flow by the pipeline length
on the sector to obtain the ratio. A low ratio corresponds to a
sector with few consumers, such as countryside zones, a high
ratio is the opposite. The program selects the best profiling using
those criterion.

In case of a mixed result, we compute the average of the meth-
ods, to reflect the fact that there may be both open zones and
populated locations. In Figure 7, we sum up our profiling strate-
gies by highlighting their collaborations and the input data for
each method.

Figure 7: Profiling Overview

5.2 Tools & Resources
The geo-profiling module relies essentially on open data: the
identification of the anomalies sources can only be performed
with external sources, and so is their probabilistic classification.

The origins of the problems detected are generally external
events that affect the quality parameters on the network. Several
types of events can be responsible such as natural disasters, sport
events or cultural exhibition. Some are not predictable and will be
noticed by mining the proper sources, but others can be detected
easily: sport events are announced a few weeks in advance, a
cultural festival may be scheduled several months before. Some
events can also be taken in account, even though they are not
directly causing anomalies: meteorological data will help in de-
ciding the relevancy of other events (i.e., an open air festival will
be more relevant as a cause of anomaly in the case of a warm
weather). Static data may also provide accurate information such
as Open Street Map. It has been selected because of its relative
completeness compared to other online data like GeoNames. In
addition to those geographic information, the Linked Open Data
also provides a great amount of details on locations surrounding
our water network. Some are useful to enhance the profiling or
the classification of sources (e.g., population density, touristic
attractions or GDP), others are potential original events (e.g.,
religious celebrations or regular typical events).

6 EVALUATION
In this section, we discuss the performance metrics used in our
system, we evaluate the media analytics part on several dimen-
sions such as the quality of events collected, then we focus on
the geo-profiling module.

6.1 Media Analytics
In this setion, we refer to an experimentation collecting for 9
hours events (feeds) from all the mentioned sources namely social
networks (Facebook and Twitter), newspapers (RSS feeds), Open
Agenda andDBPedia for organized events, OpenWeatherMap for
climate conditions. The target geographical area of interest is a
group of cities in the suburb of Paris, France, denoted as Versailles
and having a coordinates bounding box. The parameters used for
each of the data sources are explained in Table 1.

Source Fetch
Frequency

Pages of
Interest

Concepts
Scores

Facebook 12 hours
Mon Versailles

Versailles Officiel
Public Events

meter:1
damage:10
concert:10
spray:1
fire:10
water:10
blaze:1

wildfire:10
flow:5
tank:1
chlore:5
pressure:5

Twitter Streaming

@Versailles
@monversailles

@prefet78
#sdis78

Open
Agenda 24 hours

Open Weather
Map 4 hours

DBpedia 24 hours

RSS News
Papers 12 hours

Le Parisien
78 Actu

versailles.fr
Sdis78

yvelines.gouv.fr
Table 1: Data Sources and Concepts Scores
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For instance, Twitter was run using a streaming API over all
the tweets located in the bounding box, a special attention was
given to extracted events from some feeds (e.g., @Versailles or
@monversailles) since they are official accounts of the city. The
keywords used to query these tweets are a set of 12 concepts
(each one having sub-concepts in the ontology) with an affected
weight that scores the relevancy of the keyword.

For this evaluation, the system is evaluated in terms of the
following measures:

Number of collected and stored events: It represents the
number of received feeds from all the data sources during the
run time. Figure 8 shows the number of events collected during
the run and the number of events stored in the database that
have a score higher than 0. We can clearly see that many of
the collected events (around 28% for this experiment) are not
relevant, therefore they will be useless for the operator as a
potential explanation for the anomalies.

Figure 8: Collected & Stored Events for 9 Hours

Kafka Queue Messages Per Second: It represents the num-
ber of messages (events) written to Kafka broker, it can indicate
the load on the messaging queue. When Scouter is running, all
processors start ingesting data, then each of them will sleep until
the next round after certain frequency. This explains the peak at
the starting time of the figure 9, while after that, only Twitter
stream feeds are being written to Kafka queue.

Figure 9: Kafka Throughput

Topic extraction training and Average Processing time:
They represent the time spent on building the training model for
detecting topics and processing the incoming events.

Table 2 shows the average time needed to score all collected
events, it is calculated by dividing the sum of scoring time for
each of the events by the collected events count. It also shows the
training time for topic extraction algorithm to build the model
that is used to detect topics. We can see that Scouter performs
very well with relatively large number of events coming to the
system without any failure or delay.

Measure Time in Millisecond
Average Processing Time 7.43

Topic Extraction Training Time 474
Table 2: Scouter Processing Time

6.2 Quality of Events Collected
To evaluate the quality of the events collected, we considered
the water leaks use case, where the events were fetched from
the mentioned data sources over 9 hours, using the ontology in
Figure 2 and the assigned score listed in Table 1. The domain
expert provided the time stamp and location of all the anomalies
reported on 2016 which came to 15 in total. From the database,
we fetched all stored events close to the time stamp and location
of each anomaly and presented them to five domain experts. For
each event, they were asked if they believe that this event can
give a proper and relevant explanation for the anomaly reported.
A constraint was imposed, the answer had to be binary, i.e., Yes
or No, in order to simplify the interpretation of the results.

Table 3: Domain Experts Evaluation

Eval-
uator

Events
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 × ✓ × ✓ ✓ ✓ × ✓ × × ✓ × × × ×
2 × ✓ × ✓ ✓ × × ✓ × ✓ ✓ × × × ×
3 × ✓ × ✓ ✓ × ✓ × × ✓ × ✓ ✓ × ×
4 × ✓ × ✓ ✓ × × ✓ × ✓ × × ✓ × ×
5 × × × ✓ × × × ✓ × × ✓ × × × ×

To evaluate the reliability of the annotation, we used Fleiss
kappa measure [11]. It is a statistical measure that aims to as-
sess the reliability of agreement between a certain number of
annotators when assigning labels to categorical subjects. It can
be interpreted as expressing the extent to which the observed
amount of agreement among raters exceeds what would be ex-
pected if all raters made their ratings completely randomly. It
follows the equation below with the calculated results for our 5
evaluators scenario:

kappa =
P̄ − P̄e

1 − P̄e
=

0.84 − 0.5256888889
1 − 0.5256888889 = 0.6626686657

where P̄e =
k∑
j=1

P2
j =

k∑
j=1

( 1
Nn

N∑
i=1

ni j ))2

And Pi =
1

n(n − 1)

k∑
j=1

ni j (ni j − 1)

P is the mean of Pi, the extent to which annotators agree for
the event. Pe is the summation of squared Pj, where Pj is the
proportion of all assignments which were to the j-th category. In
these equations, N is the number of Events, n is the number of
annotators and k is the number of categories we have (Yes and
No in our use case).

Based on the table for interpreting kappa values[12], we can
say that the annotators have substantial agreement on the events
annotated as being a relevant explanation for a water leak anom-
aly. Therefore, we can say that Scouter system was effective in
selecting the most relevant events and provided a substantial
help to contextualize anomalies related to water leaks.
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However, we are still aiming at improving the evaluation of
stored events based on the following 2 key points :

• Only 5 experts participated in this evaluation which is not
sufficient regarding the scale of the use case.Therefore,
we are preparing a new evaluation with dozens of field
experts from various companies to assess more accurately
Scouter.

• Data are collected over a short period related to 2017. We
would like to extend the evaluation to the anomalies re-
ported in 2015 and 2017 in order to test the full capabilities
of Scouter.

6.3 Geo-profiling
The profiling module can be executed "offline" in our system. This
means that it does not need to be integrated within the stream
processing. In fact, the data required as input are mostly static:
geographic data are rarely updated, and the network configura-
tion does not change much over time. We performed a series of
tests on several data sets given by the domain expert on both
national and international levels.

Area #
Sensors

Available
OSM
data
(Mo)

Profiling
Consump-
tion ratio

(ms)

POI
(ms)

Region
(ms)

P. Laval 2 5.4 270 25 605
V. Nouvelle 16 53.8 620 282 630
Hubies D. 1 5.8 190 13 30
Brezin 1 3.1 150 8 72
Guyancourt 2 4.2 161 13 50
Louveciennes 19 123.2 850 1118 1290
Hubies H. 13 37.15 740 163 180
Haut-Clagny 4 8.6 260 21 32
Garches 3 7.0 220 205 46
Gobert 3 15.4 201 36 105
Satory 5 32.5 292 103 215

Table 4: Performance table of the different methods of the
algorithm

The performances of the reasoning module mainly depend
on the size of the data extracted from Open Street Map: larger
consumption sectors will have more data taking more time in the
end. The profiling with polygons is the longest since it needs the
extraction of both POI and polygons to be processed. On average,
the computation of the consumption ratio is the fastest, since it
doesn’t need any extraction from Open Street Map.

Table 4 details the performance of our differentmethods for the
use case of the region of Versailles (an area of 350.000 inhabitants
in the suburb of Paris), which is composed of 11 consumption
sectors. For each of these sectors, we indicate the number of
flow sensors present on each sector, and the size of the data to
extract from Open Street Map (both POI and polygons), then we
indicate the computing time for each method. As we can see,
the regions with the more data and the more sensors have the
longest processing time: it corresponds to the biggest zones.

7 CONCLUSION
In this paper, we presented Scouter, a system that demonstrated
its usefulness in the WAVES project for improving the contextu-
alization of identified anomalies. The primary goal was to offer a
generic system that can adapt to any Big Data platform whatever

the engine used and without losing the capability to process var-
ious types of data sources. To achieve such target, we chose an
approach based on data connectors relying heavily on messaging
queue system and we offer multiple NLP functionalities such as
topic extraction and sentiment analysis.

Because of its easy-to-use Docker package, Scouter is already
used in other prototypes at Atos and we are aiming to extend
it with novel features such as ontology enrichment based on a
dictionary of concepts and the identification of duplicate events
coming from different data sources. Finally, we plan to improve
the implementation by supporting various ontology formats (e.g.
ttl, N3, RDF/XML, etc.) and adding new data sources to fit most
use cases (e.g. traffic information, etc.).

Lessons Learned:During this work, the research team learned
several lessons along multiple distinct dimensions. Instead of try-
ing to adapt our implementation to heterogeneous technologies
in the Big Data world, the best approach was to create a simple
but powerful bridge that would make the integration seamless.
The right choice was to go with a messaging queue system such
as Apache Kafka that is widely used and known for its robustness.
Moreover, we found out that few data sources with high quality
content outperformed multiple data sources with medium to low
quality content. Therefore, we decided to keep only 4 different
categories and for each one, we selected the most suited source.

Since we are aiming at designing a tool adjustable to multiple
use cases, going for an ontology-based approach seemed to be
a win solution. Hence, we could give the possibility to every
domain expert to use his own ontology with the specific concepts,
properties and keywords that suit her needs. However, the key
component for a successful implementation is to find the right
models and the proper scores. Even tough a lot of libraries were
available for NLP functions, many of them lacked robustness and
flexibility. Instead of investing much time on finding the fittest
technologies, we are quite positive that we can highly improve
the results by investing more time on ontology modeling and
scoring.

Finally, we found out that the best way to remove complexity
was to package the code into a user friendly web application.
Therefore, instead of asking users to plug Scouter to their frame-
work, they would just have to enter the location of the analysis,
the specific data sources alongside with the proper domain ontol-
ogy. As for the deployment part, using containerization technolo-
gies such as Docker tend to remove the burden of deployment
and can be launched within a minute.
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ABSTRACT
Contrast set mining identifies patterns in the data that can best
distinguish between groups. Most of the existing work focuses
on categorical and batch data, and they do not scale well for
large datasets. In this work, we focus on finding contrast patterns
for mixed (quantitative and categorical) and streaming data. We
adapt a discretization methodology, Supervised Dynamic and
Adaptive Discretization, to identify meaningful bin boundaries.
We then use the discretization result to find contrast patterns
on streaming data. In order to achieve this, we identify frequent
items and then contrast them to a group of interest. To handle
potential concept drift, we propose an update strategy to keep
the frequent items relevant. In addition, our algorithm samples
feature combinations based on their "sampling" score and user
feedback to reduce the search space as well as retrieving more
interesting patterns.

1 INTRODUCTION
As the amount of data being collected during the semiconductors
manufacturing process of increases, the time required to analyze
the data and provide relevant feedback also increases. There
is a growing need to develop machine learning algorithms to
deliver fast feedback to the engineers so that adjustments in the
manufacturing line can be made in a timely manner. While the
behavior of manufacturing data is often predictable, at times there
exist anomalies such as a low yield for certain batch of products.
To find the possible cause(s) of this low yield, one approach is
to create a model and compare this batch to a normal batch. To
achieve this, an engineer needs to know what to look for (the
number of features and instances are large), and even after that
he/she needs considerable amount of time for analysis. Our intent
is to quickly and automatically learn complex patterns in the
“population” data (known normal data) and then use these learned
patterns to detect differences in the groups. We note here that our
goal is data understanding rather than prediction. In prediction
such as classification, the goal is to predict an outcome early
on in the manufacturing process to reduce costs such as testing.
The algorithm typically works like a black box where the user
may not understand why the algorithm predicted an outcome.
However, in this paper we design a feedback system in which
the goal is to identify interpretable patterns that might provide
the users helpful insights on potential causes of the differences.
Another key difference is that for a prediction algorithms, the
"classes" such as "good chips" and "bad chips" need to be known
or available in advance in order to build a model. In our proposed
work, we seek to detect patterns from a single group of data (the
“population"), which will then be compared with incoming data
to detect potential differences.

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the 21st
International Conference on Extending Database Technology (EDBT), March 26-29,
2018, ISBN 978-3-89318-078-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

There are several issues that need to be addressed. First, the
data may contain both categorical and continuous features, and
the features may have high order of interaction between them.
Multiple features could contribute to a contrast simultaneously.
In this work, we leverage our recently proposed binning strategy,
Supervised Dynamic and Adaptive Discretization (SDAD) [8, 9],
to address the challenge of dataset containing continuous features.
The discretization technique automatically determines the size
and number of bins needed in order to find meaningful contrast
patterns.

The second challenge we face is the massive data size. A large
amount of data is generated daily. To obtain an understanding of
the “normal” behavior of the data, we create a frequent itemset
database using historical manufacturing data that are known to
be normal. However, this data can change as recipes for different
chips change. The frequent itemset database must adaptively
learn new patterns, update existing ones and discard outdated
ones. This is necessary because the representation of the “popula-
tion” (historical) data needs to stay relevant to the current state of
the database. With the updated representation of the population,
we can quickly identify potential contrasts between that and a
group of interest. If we try to build a database with only a small
sample of the population data (e.g. data collected from one day),
the data may be biased to the specific machine settings and may
not be representative of the population. If the data is too large,
e.g. a month worth of data, the data may contain outdated infor-
mation that bias the results. Building an incremental database of
the population itemsets over time can be more efficient and can
potentially identify more meaningful patterns. Our algorithm
is also easily parallelizable. While this is out of scope for this
work, we refer interested readers to [8, 10] for various ways of
achieving parallelization to find frequent itemsets.

Moreover, as data streams are monitored, the groups to be
compared are not known in advance. Traditional contrast set
mining algorithms require the contrasting groups to be known,
and then find itemsets which differ significantly across groups.
Consider two cases. First, suppose a tester detects a large num-
ber of faulty chips on a particular day, and we want to know if
there is a difference between chips arriving at this tester and the
others. One approach, taken by traditional algorithms, would
be to make all the tester IDs as the ’group’ label and then find
patterns that strongly separate the tester of interest from the rest.
As the second scenario, if an oven gives particularly high yield,
we would like to know if we can improve the yield of the other
ovens. Keeping the oven ID as the ’group’ feature, the contrast
set algorithm finds itemsets that are different between this oven
and the rest. Since the "groups" are not known in advance, our
proposed method identifies all frequent itemsets in the popula-
tion. Once the “sample” of interest (e.g. the oven resulting in high
yield) is found, the difference in supports between the population
and sample is calculated. This led us to develop an algorithm
which identifies frequent patterns[8]. Using frequent itemsets
we can identify contrast sets between a sample (data of interest
to an engineer) and the population.
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The main contributions of the proposed work are as follows:
(1) Given historic data (the “population") and a current data

sample, we propose an algorithm that can find contrast
sets between any subset of the streaming data and the
population quickly. Based on frequent itemsets mining,
our approach avoids a lot of re-computation when new
groups are identified and new contrasts are needed.

(2) The proposed algorithm leverages user feedback to cal-
culate a sampling score, which improves the patterns re-
turned and reduces computation costs.

(3) We propose an updating strategy that keeps discovered
patterns current, discards outdated ones and adds emerg-
ing new patterns.

The following section discusses related work. Sections 3 discusses
the background on contrast sets and the search strategy adapted
in this paper. In section 4, we describe an adaptive and dynamic
discretization algorithm for quantitative data that improves upon
existing discretization algorithms. We propose an updating strat-
egy for finding contrasts on streaming data, as well as a strategy
to use user feedback to compute the sampling probability. In
Section 5, preliminary experimental results show that using our
approach, we are able to discover the same contrasts that ex-
isting algorithms discover, but much more efficiently. Section 6
concludes the paper.

2 RELATEDWORK
We discuss related work in frequent set mining and contrast
set mining. However, due to the maturity of these areas, the
discussion is far from being comprehensive. To the best of our
knowledge, there is no other algorithm that has the exact same
end goal as ours.

Contrast-set mining has been formally defined as “conjunc-
tions of features and values that differ meaningfully in their
distribution across groups” [1]. It can be viewed as a variant
of association rule mining. While association rule mining dis-
covers rules or patterns that describe or explain the current
situation, contrast-set mining finds patterns that differentiate
groups of data by identifying features and values (or conjunc-
tions thereof) that differ meaningfully across them [1]. Knowing
the features that characterize the discrepancies across various
groups can help users understand the fundamental differences
among them, and make independent decisions on those groups
accordingly. Therefore, contrast-sets are often presented as sets
of rules. The authors in [1] provide the following classic exam-
ple: on comparing different education groups by asking "What
are the differences between people with PhD and Bachelor de-
grees?âĂİ we might find that P(occupation = sales | PhD) = 2.7
while P(occupation = sales | Bachelor) = 15.8. For manufacturing
fault analysis, we might have a query such as "Given two sets of
operation sequences: G ("good batch") and B ("bad batch"), what
are the differences between them?" The authors in [1] proposed
an algorithm, STUCCO (Searching and Testing for Understand-
able Consistent COntrasts), to find such contrast sets. STUCCO
employs efficient search through the space of contrast sets based
on another rule mining algorithm, Max-Miner [2]. To assess the
meaningfulness of the difference in support values across groups,
they use chi-square test on the null hypothesis that the support
value is independent of group membership.

Another approach, proposed by [17], discovers that existing
commercial rule-finding system, MagnumOpus [18], can success-
fully perform the contrast-set mining task. The authors conclude

that contrast-set mining is a special case of the more general rule-
discovery task. A good survey on contrast sets, emerging patterns
and subgroup discovery algorithms is provided in [13]. CIGAR
[7], apart from using the pruning criterion from STUCCO, adds
support, correlation and difference in correlation between the
parent and child contrasts. The authors claim that itemsets with
a support less than the minimum support may be uninteresting
to the analysts. We adapt this assumption for the streaming part
of our algorithm. The authors also claim that if the itemset have
low correlation, we may find spurious contrasts due to outliers.
The authors in [4] use user feedback to sample the patterns and
improve the patterns displayed to the user; however, they do not
explicitly handle continuous and streaming data.

In [13] we see that Contrast Set Mining, Emerging PatternMin-
ing and SubgroupDiscovery are compatible and hence techniques
developed in one domain can potentially be used in another.
There is considerably more work done for finding subgroups in
numerical domains. The algorithms presented in [11, 15] finds
bins for subgroups for mixed data and is implemented in an open
source tool Cortana. These techniques usually use an initial dis-
cretization method and then merge spaces based on an interest
measure. An interesting algorithm described in [6], finds bins
for continuous attributes for the problem of subgroup discovery.
The algorithm uses optimistic estimates and horizontal pruning
to prune the search space. This heavily relies on pruning based
on finding the top-k subgroups. Finding all initial split points
(exhaustive search in [6]) is expensive but if the initial partitions
are not exhaustive but rather frequency or entropy based, the
algorithm may miss interesting patterns that occur lower down
the tree due to multivariate interactions. The techniques men-
tioned above are developed for static databases, however the
pruning techniques described may be helpful if the groups are
known in advance (which does not apply for our application).
The current trend of recent algorithms tend to use sampling to
improve efficiency and quality of patterns [3–5]. We use some of
the sampling techniques explained in these papers and incorpo-
rate user feedback to enhance it. This helps improve efficiency
and potentially display more meaningful results to the user.

Although our main goal is contrast set mining, we tackle the
streaming part of our work using frequent itemsets mining. Fre-
quent itemset mining is typically the first step of association rule
mining. This is also where the main computational complexity
issues occur. Most existing work in frequent set mining focuses
on batch processing and improving the efficiency of the algo-
rithm. However, in many real world applications, new data is
continuously generated, e.g. manufacturing processes, sensors
etc. General frequent itemset mining algorithms require multi-
ple passes over the database. However, this is not possible in a
streaming scenario since data come in high volumes. If we miss
a pattern, it may not be possible to go back and check the past
data. Since speed is an important issue, some trade-offs in ac-
curacy may be needed. In addition, the space required to store
information for future runs and current knowledge may be large.

In general, many streaming algorithms adapt the window
model [14]. In landmark window, the goal is to find itemsets
between a fixed start point s and current time t . The other option
is a sliding window where we are only interested in itemsets
found in a time frame. For example, if the window width is w ,
the goal is to find itemsets in the time [t − w + 1, t]. In many
cases newer data are more important than older data, in which
case a damped window model assigns higher weights to more
recent data by defining a decay rate. Time Tilted windows are
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used to find frequent itemsets over a set of windows. Importance
is given to newer data and hence granularity is adjusted as data
arrive. Since our goal is to find the general behavior of the data,
we use a sliding window strategy, assigning equal weights to all
the data.

There are two types of streaming algorithms to find streaming
frequent itemsets, true positive algorithms and true negative
algorithms. A true positive algorithm does not allow any frequent
itemset to be missed. The seminal work by Manku and Motwani
[12], called lossy counting, uses a user-defined parameter ϵ , and
the result contains no itemsets with a support lower than δ - ϵ .
The main disadvantage of this approach is that the number of
itemsets increases exponentially to guarantee the lower bound.
On the other hand, true negative algorithms [19] do not find false
positives, but have a higher probability of finding true frequent
itemsets. The main limitations of these algorithms are that it
is difficult to implement them in parallel; they cannot handle
continuous features; and the space requirement may be too high
if the data are very large. In this work we use a true negative
algorithm; however, as will be discussed later, we can estimate
the support of itemsets are missed in the stream of data.

3 BACKGROUND
3.1 Contrast Sets
Bay [1] formally defines contrast set mining as follows. Let A =
{a1, a2, ..., al } be a set of all attribute values for the entire dataset.
Let C be a set of all combinations of A. An itemset c is a subset
of C. Let G = {g1, g2, ..., gm } be a set of groups. Each instance
belongs to only one group. If |дi | is the number of instances in
group i and ci is the itemset of interest in group i, then support
sic of an itemset c in group i is the number of instances in gi that
contain c:

sic =
count(ci )

|дi |
(1)

An itemset c is large between two groups i and j if

abs(sic − sjc ) > δ (2)
and significant if

χ2i j (c) < α (3)

where α and δ are user-defined parameters.
An itemset is considered a contrast if it is large and significant.

Three pruning strategies are used to reduce the search space.
(1) An itemset is pruned if it does not have a support over δ in
any group (minimum deviation size pruning). (2) If its expected
occurrence is less than 5 since statistical tests are not significant
at that level. (3) By calculating the upper bound value of χ for
the itemset’s children. To reduce the number of false positives,
the value of α is adjusted according to Bonferroni’s adjustment
explained in [1]. We note here that the pruning strategies used
by STUCCO cannot be used in our application since we do not
know the groups in advance. However, as will be seen later, we
only find itemsets with support greater than δ for the streaming
data, and if the group of interest has a support greater than δ ,
we estimate its support from the population sample.

3.2 Search Strategy
To find combinations of attributes, we need a search strategy. To
this end, we adapt the OPUS [16] search tree for our algorithm.
However, some modifications are needed since the original tree is
designed for categorical attributes. Figure 1 shows the modified

Figure 1: OPUS Search Tree for Mixed Data

OPUS tree so that it is compatible with continuous attributes
and attribute-value pairs instead of directly handling itemsets.
Consider an example with one categorical attribute Attr1 having
possible values a and b, and two continuous attributes Attr2 and
Attr3 having values u1, u2 ... un and v1, v2 ... vn respectively
where n is the number of instances. The order in which the nodes
are traversed is indicated by the number in each node. In this
example, node 2 with itemset {a} is first explored. If it can be
asserted that node 2 can be pruned, then we do not need to
explore nodes 5, 8 and 11. It should be noted that the traversal
order is the reverse of depth-first search. The reason that we use
this approach instead of a depth-first approach is to maximize
pruning. Although breadth-first search can also be used, we opt
for OPUS since the storage overhead is less at each level.

3.3 Streaming Frequent Itemsets / Patterns
Frequent Itemsets (FI’s) are itemsets which are present in the
dataset with a frequency greater than a user-defined threshold.
The formal definition follows closely to that of contrast sets but
notice the subtle differences. Using the definition of c from the
earlier paragraph, let T be a dataset of transactions. If |T | is the
number of rows in the dataset then support s of an itemset c is
the number of times c occurs in T :

sc =
count(c)

|T | (4)

A streaming dataset τ is a sequence of indefinite number of
datasets of transactions {T1, T2, T3, ...}. Let Tk,l = {Tk , Tk+1,... Tl }
where k < l . The support s of an itemset c in a time window [k, l]
is:

sc[k,l ] =
count(c[k,l ])

|Tk,l |
(5)

4 STREAMING CONTRAST SETS

Figure 2: Sliding window for Data Streams
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Figure 3: Data flow

We start our discussion by explaining some of the basic termi-
nology used in this section. As shown in Figure 2, data continu-
ously arrive in a data stream. Each block of data is called a pane,
and a group of panes that are relevant is called a window. In
Figure 2, suppose a pane represents a day’s worth of data, then
the window size, λ=3, represents 3 days. Itemsets that are no
longer frequent in this window can be discarded.

Figure 3 provides a high-level view of our proposed algorithm.
In the next few subsections we discuss what is computed in each
block and what information is communicated by each arrow.
Simply stated, we pre-compute the frequent itemsets for the
current window pane from the population data. This is a time-
consuming task, given the massive size of the database. The
frequent itemsets discovered from the population data will be
saved in a Frequent Itemset Database (FID from here on). We
note here that this database is not static; it is updated with the
arrival of new data as shown in the figure. A data structure
such as a prefix tree (like Figure 1) can store this information.
When a new window pane arrives, frequent itemsets from the
current pane will be computed, using techniques explained in a
later section. These frequent itemsets are then compared with
the population frequent itemsets computed previously to obtain
potential Contrast Patterns. If the new pane does not conform
to the patterns found in the previous panes, the engineers can be
notified in a timely manner.

The user can also provide a sample dataset that he or she
wishes to compare against the population data, or generate the
sample from the archived data on the fly as seen in the User
Sample block in Figure 3. The frequent itemsets from the sample
data are extracted and they will be compared against the itemsets
retrieved from the FID for the population data to find Contrast
Patterns.

Sometimes a pattern that is found in the Current Window
Pane or the User Sample may not be in the FID since its support
in the population may be below the threshold. To overcome this,
we keep a Population Sample if the algorithm encounters such
a situation. The supports of the population are then estimated
from this sample.

The intuition behind our algorithm is that the patterns for the
population data represent the "normal" behavior of the popula-
tion, and comparing the set of patterns from sample data against
this "normal prototype" would reveal any differences between the

two datasets. Such discovery could potentially identify anomalies
in the current or sample data, and shed some light on the causes
of the anomalies (by examining the rule differences).

After finding the frequent itemsets for the current pane, the
algorithm updates the FID with the new frequent itemsets found
using our Updating Policy. As new data come in, the distribu-
tion and relationships may change among the features. To keep
the FID relevant, we need to remove patterns that are no longer
relevant and add emerging patterns. If the algorithm finds a new
pattern, we delay adding it to the database until we keep finding
the same pattern in multiple iterations and if an existing pattern
is no longer significant, it is phased out. The user can keep track
of these changes in a timely manner.

The User Feedback block lets the user decide if a pattern
is subjectively interesting. This in turn is fed to the Sampling
Features block which improves the efficiency and displays more
interesting patterns.

In addition to offering the ability to compute the contrast-set
in real-time given the sample data, another advantage that our
approach offers is that the contrasting patterns are not restricted
to having only the values of a feature representing group mem-
bership. We will provide more detail on the algorithm in the next
section.

4.1 Finding Frequent Itemsets for Current
Window Pane

While traversing the OPUS search tree explained in the previous
section, if we reach a node with only categorical features, finding
frequent itemsets for the current window pane for categorical
variables is straightforward, i.e., we just need the support count
of the itemsets in the current pane. Therefore, we will concentrate
on itemsets that contain continuous features. To this end, we use
Supervised Dynamic and Adaptive Discretization for frequent
itemsets (SDAD-FI) [8]. We note that any frequent itemset mining
algorithm that can handle mixed attributes can be applied here;
however, we opt for SDAD-FI since it can handle datasets with
mixed attributes and is parallelizable. We also show in [8, 9]
that SDAD is able to find better quality bins for frequent itemset
mining and association rule mining in a reasonable amount of
time compared to other state of the art binning and rule mining
algorithms. As opposed to standard discretization techniques
such as equi-width or equi-frequency, SDAD-FI does not need to
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(a) (b)

(c) (d)

Figure 4: (a) Simulated dataset with 3 features (b) After first partition between feature 1, 2 and 3 (c) After second partition
between feature 1, 2 and 3 (d) After merging

know the number of bins to partition in advance, nor the sizes
of the bins. It tries to find the "best" bins with respect to the
distribution and relationships between features.

The main idea of SDAD-FI is to first employ a top-down ap-
proach where the algorithm iteratively partitions the space be-
tween features and calculates an interest measure with the goal
to obtain regions that satisfy a user-defined homogeneous thresh-
old. We use the interest measure purity as defined in [8]. The
intuition behind purity is to find the most homogeneous space
of the current set of features. We will describe the algorithm
with an example. Consider Figure 4a. This dataset contains three
features: Attributes 1, 2 and 3. Attributes 1 and 2 are continuous
and Attribute 3 is categorical with 2 values indicated by the color
and shape of the markers in the scatter plot. In Figure 4b, SDAD-
FI divides the continuous features into 4 spaces. Space 1 and
4 (numbers shown in figure) are homogeneous, i.e. it contains
only one categorical feature value. However, space 2 and 3 are
not. SDAD-FI again divides those spaces as shown in Figure 4c
and now finds pure spaces. Since dividing pure spaces do not
find "better" bins, the algorithm stops, and this concludes the
top-down process.

The next step is to merge contiguous and similar spaces in a
bottom-up fashion. Similar spaces are those that are not signifi-
cantly different according to the χ -squared test. SDAD-FI starts
with the smallest contiguous spaces in terms of n-volume (area
in this case). It first merges space 21 and 23, then 31 and 33, and
then 32 and 34. It further merges the combined space of 21 and
23 into space 1, and 32 and 34 into space 4. The final bins are
shown in Figure 4d.

Obviously, the example shown is an ideal case. In real world
datasets, we usually do not find such clear cut boundaries. How-
ever, this example illustrates the flow of the algorithm. In general,
SDAD-FI is a greedy algorithm and continuous features are split
until splitting does not result in statistically significant differ-
ences between the spaces (instead of looking for pure bins). The

example discusses a case in which categorical and continuous fea-
tures co-exist in the itemset. However, SDAD-FI also works when
there are only continuous features in the itemset. In this case, the
splitting and merging operations are as explained above, with
the modification that the interest measure is now the correlation
between the continuous features. See [8] for more details.

4.2 Updating Policy and FID
If an itemset contains only categorical values, the Frequent Item-
set Database (FID) is updated if a difference in the supports of a
Frequent Itemset (FI) is detected between the current pane and
the FID using the following update policy. Consider the example
in Figure 2. Let the minimum support be δ . If the size of the
window is λ, then in Figure 2 we have used λ=3. Now suppose
there is an FI in the FID with support sF ID , and the same FI is
found in the current pane with support scurrent , we calculate
the approximate support of the itemset sexpired in the expired
pane from the population sample (explained later). The support
of the FI in the FID can then be updated using a simple weighted
average technique.

snew = sF ID +
scurrent

λ
−
sexpired

λ
(6)

If a new FI is found in the current pane with a support greater
than δ , but it is not in the FID, then applying the updating strategy
explained above would not work since (λ-1)*sF ID /λ would be
zero and scurrent /λ may not be big enough to be greater than
δ to be added to the FID. For example, suppose δ = 0.1. If in the
current pane we find an itemset with support of 0.9, and if λ = 10,
then snew would be 0.09. As a result, the FI would not be able to
enter the FID even if it is found consistently after a certain point.
To overcome this, we approximate the support (sF ID in the above
formula) from the population sample and keep a temporary
database of new FI’s.

The itemset is stored in a temporary database until the itemset
attains a support greater than the minimum support. After this
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point, we say the itemset is indeed frequent and add it to the
FID, as well as deleting it from the temporary database. There
is a possibility that the current itemset is an anomaly and is not
truly frequent. In this case, the itemset needs to be purged from
the temporary database. Let the number of panes, starting from
the first pane the itemset was found to be frequent, be n. The
algorithm keeps track of the actual support (sact_supp ) as soon
as the itemset was discovered as frequent, and it is calculated by

sact_supp =
(n − 1) ∗ sact_supp

n
+
scurrent

n
(7)

As long as sact supp is above the minimum support threshold,
the algorithm keeps the itemset in the temporary database.

We use this approach to add or purge itemsets because our
goal is to maintain a consistent FID which is representative of the
population. For example, if an FI is in only one pane, it may be
an outlier and not representative of the population. However, if
an itemset appears regularly in multiple panes, but is absent for
some reason for a short period of time, the algorithm should not
purge it out. We note here that keeping the population sample to
estimate the support of unknown itemsets reduces the number
of frequent patterns needed to be stored like in [11, 19], resulting
in less computation. Although the storage overhead is higher to
keep the population sample, it serves another purpose. It also
helps when the user wants to find contrast patterns on the fly,
and the itemset is not present in the FID.

Figure 5: Bin movement

The method explained can be used for frequent itemsets con-
taining only categorical features. Updating FI’s with continuous
features needs a different approach. Binning is an expensive op-
eration and, for each pane, it is unlikely to have exactly the same
bin boundaries even if the distributions are statistically the same
because of noise in the data. Instead of calling SDAD-FI at ev-
ery pane, first, the continuous variables of the current pane are
binned by re-using the bin boundaries of the current FID. If the
supports between the FID and current pane are not significantly
different using the χ -squared test, the bins in the FID are kept
unchanged. However, if that is not the case, we discretize the
itemset in the current pane by running SDAD-FI. At this stage,
we check if there is a slight concept drift or if a completely new
relationship is learned between the features. The algorithm con-
ducts a test to check if the new bin boundaries overlap with the
current boundaries, and if so, by how much. To do this, there has
to be an overlap in every axis. For example, suppose the current
itemset has 2 continuous features (the bin boundaries in this case
form rectangles, see Figure 5), x1 and x2 are the vectors of the x
coordinates, and y1 and y2 vectors of the y coordinates of the 2
rectangles, then there is an overlap between the rectangles

if (((min_x1 ≤ min_x2 &&min_x2 ≤ max_x1) | | (min_x2 ≤
min_x1 &&min_x1 ≤ max_x2)) &&

((min_y1 ≤ min_y2 && min_y2 ≤ max_y1) | | (min_y2 ≤
min_y1 &&min_y1 ≤ max_y2))

In general, to decide if there is significant overlap, the ratio
of the n-volume of the overlapping space to the minimum n-
volume of the original space and the new space is calculated.
This is a user-defined value (we use 0.8 in our experiments). If
there is significant overlap, the algorithm moves the current
boundaries towards the new boundaries as shown in Figure 5.
The figure shows the distribution of the data points in the FID
and the current pane represented by the blue and red points
respectively. The bold rectangles represent the bin boundaries
of the FID, and the dotted lines are the new bins boundaries
found. The arrows indicate the directions of movement of the
boundaries of the new bins. The movement is again calculated by
using a weighted average method, with the weight determined
by the number of days the original pattern was in the FID. For
example, if the number of days the pattern was in the database
is n and the perpendicular distance to the new hyperplane is x,
then the actual distance the current hyperplane moves is x/n.
We note here that each plane (in this case line segment) moves
independently of each other. The number of days in the FID is
then incremented by 1, and the support is approximated using
Equation 6 by calculating the supports of the new bins. More
specifically, we add the support of the current pane and subtract
the support of the expired pane calculated from the population
sample.

If the new boundaries of the current pane are significantly
different from the original boundaries, the new itemsets with the
new bins are stored in the temporary database. In the next panes,
the algorithm checks if the data conforms to these new bins or if
this behavior was just an anomaly. This procedure is similar for
itemsets containing just categorical features.

4.3 Sampling Patterns and User Feedback
During the manufacturing process, the interaction between fea-
tures are not expected to change drastically. We can exploit this
predictability by using a sampling method to decide which item-
set should be checked in each pane. Sampling helps reduce the
search space for each run (and potentially display more inter-
esting contrasts to the user). This is achieved by calculating a
“sampling" score for each itemset in the database. We identified
three factors that should contribute to this score.

(1) Number of days in database
(2) Change in support
(3) User feedback

4.3.1 Number of days in database. In the manufacture of semi-
conductors, we do not expect the interaction between the features
to change drastically on a daily basis once the recipe for a chip is
fixed. However, concept drift is possible due to aging of machines
or inherent properties of the process. This is potentially interest-
ing for our algorithm. Patterns that have been found consistently
tend to be stable and show very little variability on the daily ba-
sis and hence it is less useful to calculate its interest measure in
every pane. Patterns that are newly discovered (i.e. the patterns
in the temporary database) tend to have more variability and
need to be sampled at a higher rate. If n is the number of days
since a pattern is found, and λ is the window size, the scorend is
calculated by

scorend = 1 − n

λ
(8)
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This linear equation produces results ranging from 0 to 1. The
score is inversely proportional to the number of days the pattern
is present in the database.

4.3.2 Change in support. If a pattern is newly discovered, not
found any more or has a high difference in support from what
was found previously, the algorithm should sample this pattern
at a higher rate. We calculate the scores as

scores =
abs(sF ID − scurrent )
max(sF ID , scurrent )

(9)

This score also ranges from 0 to 1, with 1 meaning that the
pattern is new or is not found in the current window. It is also
proportional to the change in support.

4.3.3 User feedback. Pattern mining algorithms tend to find
spurious patterns due to the bias of the interest measures or due
to the domain knowledge of the user (some patterns may be
obvious or inherently not interesting). To overcome this bias, the
proposed algorithm lets the user up vote or down vote a pattern
displayed. Doing so allows the algorithm to learn more impor-
tant combinations of features over time. With the user voting
information, the algorithm will sample these interesting combi-
nations at a higher rate so as to be less likely to miss changes of
these features. Let vmax be the maximum number of up votes
a pattern can receive, vmin be the maximum number of down
votes a pattern can receive, and vup and vdown be the numbers
of up and down votes a pattern actually receives from the users,
respectively, then

scoreu =
vmin + (vup −vdown )

vmax +vmin
(10)

Different users may have different preferences on the types
of patterns that are interesting. Hence, we cannot remove the
pattern from the FID when a user down votes a pattern. Rather,
the algorithm needs to keep track of the votes and not display
such pattern again to the same user.

If w and score are the vectors representing the weight for
each score and score calculated, then

scoretotal = w · score (11)
Once the score is calculated, we use a logistic function to

calculate the probability ϕ of sampling the itemset

ϕ = A +
K −A

1 + escoretotal−mean(score) (12)

where A and K are the lower and upper bound of the proba-
bility of sampling. The expected number of panes after which a
pattern’s interest measures are calculated is 1/ϕ

4.4 Finding Contrast Patterns and Population
Sample

Given a sample, we wish to compare against the population. To
this end, we explore the search space of the sample using OPUS
search. At each node, the algorithm checks the FID to see if it is an
itemset that has been previously found. If it is, and the itemset has
only categorical values, then comparing them is straightforward.
Let λ be the window size and σ be the average number of tuples
present in each pane, then the total number of itemsets (needed
for χ -squared calculation) is given by:

N = λ ∗ σ (13)

Furthermore, let sc be the support of itemset c in the database,
the number of times c is present in the database is:

Nc = sc ∗ N (14)

After finding the counts of an itemset, the algorithm can pro-
ceed to check whether the itemset is large and significant as
explained earlier in the background section. Notice here that
we are only interested in itemsets that are more frequent in the
sample than the population.

If the itemset is present in FID and contains at least one con-
tinuous feature, the algorithm discretizes the continuous features
using the bin boundaries previously found and recorded in the
FID for these same features. Once discretized, the algorithm can
treat the features as categorical features, and can continue as
explained above. If the itemset is not large and significant, this
suggests that the distribution and relationship between features
is not different in the sample.

A problem arises if the distribution or relationship between
features change, or if the itemset is not frequent in the population
but found in the sample (since that information is potentially
lost). To overcome this, we keep a population sample d that fits in
memory. At each window pane, the algorithm randomly samples
k instances of the current transactions. If the algorithm has not
finished running for at least (λ) panes, k instances are added
to the end of d. Otherwise, when a new window pane arrives,
the algorithm removes the first k instances and adds the current
sample to the end. Therefore, the maximum number of tuples
in d is k ∗ λ. Now, if an itemset which is frequent in the current
window pane is not found in the FID, the algorithm can go to
d and calculate the approximate support. Again, if the itemset
contains only categorical features, this is straightforward. If the
itemset contains continuous features, the algorithm discretizes
the samples itemset using SDAD-FI, and uses the bin boundaries
to calculate the support of those bins from d.

5 EXPERIMENTAL EVALUATION
Experimental Setup: For all the experiments, we keep min pr
difference 0.1 (for merge step in SDAD-FI), λ =5, α = 0.05 and δ
= 0.1 (same as [1]). The datasets used to quantitatively compare
the performance of the algorithms are shown in Table 1. Each
dataset is divided into 5 random partitions. The parameters A
and K are set to 0.2 and 0.8 respectively, which means that each
itemset has a minimum of 0.2 and maximum of 0.8 probability to
be tested in each pane. For user feedback, we randomly up vote
or down vote an itemset with probability 0.1. The population
sample is capped at 10% of each partition. A minimum support
of 0.05 is used for experiments in Table 3.

5.1 Public Datasets
These are static datasets. By creating random partitions, we
should find similar distributions of the features in each parti-
tion. We are not aware of any algorithm that works similarly to
ours, or finds contrast patterns for mixed and streaming data.
Hence, the goal of these experiments is to verify that the pro-
posed approach is able to find contrast patterns comparable to the
actual contrasts found if the entire static dataset were used. We
compare our algorithmwith STUCCO on the entire dataset (since
it is a batch algorithm), by binning the continuous attributes us-
ing the bins found by SDAD-FI, and then running STUCCO on
the discretized data.
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Table 1: Public Datasets

Dataset Sample No. of instance
Dataset/ Sample

No. of Features/ Contin-
uous Features

Adult Doctorate 48842/594 13/5
Spambase Spam 4601/1813 57/57
Shuttle High 54489/8903 9/9
Credit Card Yes 29998/6635 24/23
Census Income Above 50K 199523/12382 39/11

Table 2: Average Time in seconds to find Frequent Patterns in each Pane for Public Datasets

Dataset Support=0.05 Support=0.1 Support =0.2 Support=0.3
Adult 17.36 16.49 10.37 10.69
Spambase 27.18 23.88 24.11 26.09
Shuttle 9.13 11.02 7.68 11.03
Credit Card 29.41 28.08 23.7 32.56
Census Income 232.25 189.77 154.98 157.08

Table 3: Quantitative Analysis of Contrast Sets for Public Datasets

Dataset Time to find
Contrast us-
ing SDAD FI
(seconds)

Time to find
Contrast on
entire dataset
(seconds)

True Positive False Positive False Nega-
tive

Adult 3.09 65.02 40 14 26
Spambase 121.59 952.87 27 2 2
Shuttle 4.25 62.33 9 0 0
Credit Card 45.25 482.74 8 0 0
Census Income 148.72 1654.85 228 0 24

The 5 partitions are fed into the algorithm sequentially and
the FID is updated. Finally, the "User Sample" (shown in the table
as sample of interest) is compared to the FID.

In Table 2, we report the average time it takes to find frequent
patterns for each pane for different minimum supports. The re-
sults indicate that not only the minimum support affects the
running time, but the number of items needed to be updated in
the FID also matters. We notice that for some datasets, even in-
creasing the minimum support increases the running time, which
is counter intuitive. We can compare the first column (Support =
0.05) of this table with running SDAD-FI on the entire dataset in
Table 3. The total running time is actually greater (average time
multiplied by 5) because of the time require for updating and com-
putation, however, we see that once the algorithm pre-computes
the frequent itemsets, it can find contrast patterns quickly (see
first 2 columns of Table 3). We also compare the difference be-
tween the contrasts found using the windowing procedure and
the actual difference in support by showing the true positives,
false positives and false negatives.

The results show that our approach finds contrasts comparable
to contrasts found when using the entire dataset. It also shows
that the time it takes to find the contrasts is much faster at run
time than using the entire dataset.

5.2 Simulated Dataset
We simulated a dataset which is a simple but typical scenario
in our application, semiconductor manufacturing. This dataset
gives an overall idea of what we are trying to achieve. The dataset
contains 4 features: the date, the oven id, temperature and a

Figure 6: Simulated dataset temperature data distribution

Table 4: Frequent-1 Items found in Population by SDAD-FI
for Simulated Streaming Dateset

Frequent Item Support

Response0 0.93
Response1 0.07
Temperature <= 150.08 0.5
Temperature > 150.08 0.5
Oven2 0.33
Oven1 0.33
Oven3 0.33

Response which indicates a pass or fail for a particular test. Each
instance represents a chip and has a unique id. In the simulated
data, we have 3 oven ids, and for each oven the temperature is
controlled individually and follows a normal distribution. We
simulate this for 10 batches, each having 600 instances, 200 for
each oven. The probability distribution of the data is shown in
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Table 5: Contrast Sets for Simulated Streaming Dataset

Serial Number Contrast Set Support for
Population

Support for
Sample

1 Temperature <= 150.08 0.5 0.31
2 Temperature > 150.08 0.5 0.69
3 Temperature <= 150.08 0.5 0
4 Temperature > 150.08 0.5 1
5 Oven3 0.33 0.58
6 Oven1 0.33 0.11
7 Temperature <= 150.08 0.5 0.45
8 Temperature > 150.08 0.5 0.55
9 Response 1 0.07 0.11
10 Response 0 0.93 0.89

Table 6: Contrast Sets for Semiconductor Manufacturing Streaming Dataset

Serial Number Contrast Set Support for
Sample

Support for
Population

1 Tester − KAWM 0.51 0.27
2 Tester − KAWM and Burn in Flaд − 80 0.51 0.25
3 Unit Location at CAM − JVFT and Entity at De f lux −VAKM 0.55 0.33
4 CAM Location − 70 0.50 0.33
5 10.6435 <= CAM PEAK TEMP STD <= In f 0.55 0.42
6 91.5456 <= CAM DIE T IME ABOVE AVG <= In f and PRODUCT − YBDF 0.47 0.33

Figure 6. Ovens with IDs 1, 2 and 3 have mean temperatures 145,
150 and 155 respectively, and each has a standard deviation of
10. Instances that failed the test have Response = 1, while those
that passed have Response = 0. The probability of failure follows
a sigmoid distribution where the mean of the sigmoid is 165, as
shown in Figure 6. The minimum probability of failure is 0.05, and
maximum is 0.9. Hence the probability of failure for an instance
is given by

ϕ = 0.05 +
0.9 − 0.05

1 + etemperature−165 (15)

Using this scenario, we try to answer 3 questions: (1)We notice
that the oven with OvenID = 1 yields a high number of chips
that passed the test. What is the difference between the daily runs
of OvenID = 1 and the population? (2) On similar grounds as
(1) but globally, given a sample of chips that have failed the test,
can we find meaningful differences? (3) If, on a particular day,
we change the temperature, can we provide a timely feedback on
how it is affecting the Response? We note here that to answer the
questions above, a traditional contrast set algorithm needs to be
run thrice on the entire data, which is time consuming since the
data is large in a real world scenario. Table 4 shows the Frequent
1-Items found.

For the first scenario, we took a sample that contains only
OvenID = 1. In Table 5, the first 2 contrasts are the ones that
are significant at level = 1. As the contrasts show, OvenID=1 is
operating at a lower temperature.

In the second scenario, looking at contrasts 3 to 6 we notice
that the bad samples are baking at a higher temperature, and
Oven3 is failing much more than average. Looking at the con-
trasts, the analyst can recommend operating the oven at a lower
temperature.

In the third scenario, we increased the mean of each oven by 2,
keeping the standard deviation at 10 for a particular batch. When
the algorithm runs daily, it finds that this batch has a higher

rate of failure than usual and can notify the analyst as soon as
something goes wrong. From the contrast, we see again that the
increase in temperature might be the cause of the high rate of
failure.

All the contrasts shown find very simple contrasts but pro-
vide useful feedback to the analyst. Some of the frequent 2-
itemsets found are Temperature <= 165.02 and Response = 1 ,
Temperature > 165.02 and Response = 0. In a real life scenario,
contrasts can be more complex, and bin boundaries can be fuzzy.
The frequent itemset mining algorithm is capable of finding these
rules [8]. In initial runs, the date feature was listed as strong con-
trasts. This was down voted by the user and soon the algorithm
learned it was not an important feature, hence reducing its sample
rate to the minimum.

5.3 Semiconductor Manufacturing Dataset
We conducted experiments on real production data of a certain
product group. Note that the data was cleaned and modified to
remove any proprietary information, although relationships be-
tween attributes remain unchanged. The goal of this experiment
is to see whether one can quickly identify the root cause of why
parts are failing a specific test. The dataset consists of 15 daysâĂŹ
worth of data. Each day consists of 3,000 to 20,000 instances of
individual units, and each instance has 174 features. We built an
FID, and we then contrasted the failing units to this database.
The contrasts found are shown in Table 6.

The contrasts found shed some light on the potential causes
of the problems. In Table 6 contrasts 1 and 2 show that most of
the failed parts are routed through the same tester and had been
flagged for burn in. Contrasts 3 and 4 show there was a higher
likelihood a particular chip attach tool was used (CAM Location)
and location of the unit in the tray (towards the back of the oven)
was used. This may explain contrasts 4 and 5 which state that the
chip attach reflow temperatures were on the higher end of the
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spectrum. So in summary, this situation exhibits a marginality
between the chip attach process, the presence of burn-in and
potential marginality at that specific test equipment. With this
information, engineers can make changes at these particular
stages of the manufacturing line, which may in turn improve the
process yield.

As mentioned earlier, we do not expect the distribution and
relationships between the features to change a lot on daily basis,
and hence the sampling procedure will help improve the run-
ning time. The first pane of the algorithm is run without any
sampling. Since the FID is empty, all bin boundaries have to be
calculated. The average time for the first run is 2456 seconds.
After the first pane, the average time for a pane to update the
FID with the sampling procedure explained earlier is 182 seconds,
and without sampling it is 515 seconds. This improvement in
the running time is significant, but the contrasts found do not
differ significantly. We calculated the difference in supports be-
tween the population and sample for the top 25 contrasts in the
experiment without sampling. The corresponding contrasts from
the experiment with sampling were extracted. As expected, the
continuous attribute bins were slightly shifted when compared
between the 2 experiments. The absolute average difference of
differences of supports for population and sample between the
2 experiments is 0.017 with a standard deviation of 0.041. Their
distributions are not significantly different at α = 0.05 according
to the Wilcoxon signed rank test.

6 CONCLUSION
In this paper, we propose a method to find Contrast sets in mixed
and streaming data by extending a well-studied approach. Using
a binning strategy that automatically finds the size and number
of bins for the continuous features, we are able to find mean-
ingful contrasts even when higher order interactions occur. An
updating strategy was discussed to keep patterns relevant. To
find contrast patterns, we first find the frequent patterns for the
population, which is then contrasted to the sample of interest.
This algorithm does not need the group information in advance.
The main motivation to find these types of contrast patterns in
streaming data is to provide timely feedback to analyst during
the semiconductor manufacturing process. The next step for our
work is to improve the parallelization capacity for our algorithm
to run on even larger datasets. To achieve this, we plan to distrib-
ute the work evenly among the cluster, based on the estimates
we calculate from previous iterations.
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ABSTRACT
As business decisions and strategies become more and more
automated, real-time, and data-driven, enterprises need to cre-
ate, manage and execute end-to-end analytics workflows that
process increasing data volumes, from new heterogeneous data
sources, on specialized processing engines. Workflows become
more complex and time-consuming to design and execute, since
they span a variety of systems and the amount of data being
processed grows. Therefore, it becomes increasingly difficult to
debug workflows in order to handle errors, as well as adjust the
workflow design and calibrate task parameters for applications
that perform exploratory data analysis. Towards this end, the
workflowmanagement system should provide recalibrationmeth-
ods i.e. methods to monitor and to influence workflow processing
at runtime. We demonstrate novel manual and automatic recali-
bration techniques for analytics workflows, on real use cases and
data from the telecommunication domain and web analytics, but
also on synthetic use cases and data.

1 INTRODUCTION
The analysis of Big Data is a core and critical task in multifarious
domains of science and industry. Such analysis needs to be per-
formed on a range of data stores, both traditional and modern, on
data sources that are heterogeneous in their schemas and formats,
and on a diversity of query engines. Workflow execution can be
extremely resource- and time-consuming. Thus, a system that
enables such long-term analytics processes on Big Data needs to
be able to show the progress of the execution and the intermedi-
ate results. This means that the user should be able to monitor
which workflow tasks have been executed, their produced results,
which tasks are currently executing, as well as data accessing
and resource utilization based on input from the runtime ma-
chines or the visualization tool. Further, the system should allow
the user to influence workflow processing. This means that the
system should provide methods that enable the analytics expert
to change a workflow by altering task parameters or infusing
new tasks manually at runtime, or even to predefine automatic
changes while she creates the workflow by providing alternative
workflow branches. Such recalibration methods constitute a pow-
erful functionality of a workflow management system, since they
enable the gradual design of exploratory analytics workflows
based on feedback from intermediate results, as well as efficient
error handling of complex and long-running workflows.

In this demonstration we focus on the novel functionality of
PAW1 (Platform for Analytics Workflows) for workflow recali-
bration. PAW is a platform for the design, management, analysis,

1Source code and live demo can be found on
https://github.com/project-asap/workflow

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the 21st
International Conference on Extending Database Technology (EDBT), March 26-29,
2018, ISBN 978-3-89318-078-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

optimization and execution of analytics workflows. The first ver-
sion of PAW is presented in [1, 2] and includes the functionalities
of workflow design and analysis in order to clarify execution
semantics, single workflow optimization and multi-workflow op-
timization. In this demonstration we present for the first time the
new functionality of PAW on workflow recalibration. It includes
novel techniques for (a) manually changing a workflow at run-
time and re-executing it avoiding repeated computations, called
recovery and monitoring points technique (3.1); (b) automatically
changing a workflow at runtime based on conditional structures
if-then-else (3.2) and goto statements (3.3).

Several existing workflow management systems support con-
ditional structures to some extent. Each of these systems im-
plements these structures in different ways and with some lim-
itations: Kepler [7] allows the design of scientific workflows
and executes them efficiently using emerging Grid-based ap-
proaches to distributed computation. It offers a structure called
Comparator, which takes two inputs and performs a numerical
comparison. Taverna [8] is a well-known workflow management
system that does not include conditional structures in the work-
flow model, but tries to achieve the if and switch functionality at
a higher layer of workflow management. In Taverna such condi-
tional behavior is implemented using processors fail_if_false and
fail_if_true placed as first vertices of parallel branches. Depend-
ing of their input one of those processors fails, another satisfies
and only satisfied branch continue execution. UNICORE is a grid
middleware, aims to provide seamless, secure and intuitive ac-
cess to distributed resources [9]. UNICORE has a programming
environment to design and execute workflows. It supports three
specific types of if-then-else conditions, ReturnCode, FileTest and
TimeTest. The first performs a numerical comparison, the second
checks if a file exists or is executable and the third checks the cur-
rent time. Recalibration in PAW offers an abstract if-then-else task
that can be customized for a variety of input data and complex
conditions that involve the execution of fully-fledged procedures.
Only Taverna offers the same level of flexibility in the design of
conditions as PAW does. The rest of the considered systems are
very limited in possibilities to construct a condition. Also, they
don’t provide goto statements.

A new system that offers interactive debugging framework
for big data processing is BigDebug [10], which provides a set of
debugging primitives: (a) simulated breakpoints and on-demand
watchpoints that allow users to selectively examine intermediate
data of computation; (b) data provenance capability, crash culprit
determination, tracing and (c) capability to fix code at runtime
by the user, avoiding a program re-run from scratch. Unlike PAW,
BigDebug is a single-engine system and works only on top of
Apache Spark. Moreover, debugging is only one of the several
uses of the manual recalibration of PAW.

Overview of PAW. PAW implements a novel workflowmodel
[4, 5]. AworkflowW is a directed, acyclic graph (DAG)G = (V ,E).
The verticesV represent data processing tasksT and the edges E
represent the flow of data. Each task is a set of inputs, outputs and
an operator. Data and operators need to be accompanied by a set
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Figure 2: The architecture of PAW

of metadata, i.e., properties that describe them. Such properties
include input data types and parameters of operators, the loca-
tion of data objects or operator invocation scripts, data schemas,
implementation details, engines etc. PAW is a part of the system
‘Adaptable Scalable Analytics Platform’ (ASAP) [3], but it can
also stand as an independent tool for workflow management and
optimization. Figure 2 depicts the architecture of PAW, as well as
its interaction with the rest of ASAP. ASAP components include
execution, visualization of results, online adaptation etc. PAW
enables workflow design by users with various expertise, the
automation of workflow analysis in order to clarify and specify
execution semantics, single and multiple workflow optimization
with respect to time efficiency, over a diverse collection of data
stores and processing engines, monitoring of workflow execution
and manual and automatic workflow recalibration.

2 MOTIVATING EXAMPLE
Figure 1 shows a real-world analytics workflow from a telecom-
munication company, which involves processing of the anonymised
Call Data Records (CDR), collected in Rome for 2015 year and
stored in HDFS, to populate a report on a dashboard. The report
lists peaks in calls and their ratios to an averaged number of
calls over a training period (one month). Peaks are defined by
“differences from typical”. The workflow extracts the day of the
week and the hour of the day from the timestamp of each call
record (extract_ts). The task calc_num counts the number of calls
at one-hour intervals. Then, two filters split the data to training

and test datasets. Further, the analysis is limited to specific geo-
graphical regions and, then, the number of calls in the training
period is averaged over each mobile tower region, day in a week
and hour in a day (week_aggr); this is the typical distribution of
calls. Next, calc_test_sum and calc_train_sum produce the sum of
calls in each day of the test and training datasets. Then, the test
and training data are joined and the ratio of calls to the average
number is produced. The filter_peaks finds ratios that are over a
specific limit. These peaks is the sought information.

Initially, this workflow comprised three complex UDFs, (DataFil-
ter, DistrComp and PeakDet), implemented in PySpark. Later on,
for optimization needs [6], they were decomposed to smaller ba-
sic tasks, the operators of which have implementations in Spark
and PostgreSQL. It is quite common that industrial workflows,
like this one, are versioned and updated with time, resulting in
a design that may not be optimal for the exploration procedure
that the analytics expert needs to follow. In this example, the
expert needs to explore the peaks one by one. This requires a
complete restart of the workflow changing each time the search
regions, a parameter of the filter_region tasks. This problem can
be solved with recalibration methods that allow for the re-usage
of the intermediate results produced by the tasks leading to the
filter_region tasks, without re-executing the first. Also, recali-
bration methods would enable the expert to monitor the result
of filter_region, visualized on a geographical map, so that she
can observe faster call congestions and decide to change the
search region. Furthermore, methods for automatic recalibration
enable the expert to predefine conditions on intermediate results
and, moreover, predefine decisions to be taken according to the
outcome of condition evaluation.

3 WORKFLOW RECALIBRATION
We propose three techniques that perform recalibration in an
online manner, i.e. during workflow processing.

Recovery and monitoring points. This technique offers to
the user manual recalibration. It enables the user to monitor
intermediate results, make workflow changes and if the changes
are in the already executed workflow part, then re-execute only
the changed part, avoiding to repeat computations; if changes
affect only the non-executed part then workflow changes are
applied and execution continues.

Conditional points. This automatic technique allows the
execution of alternative predefined workflow branches.

Goto points. This automatic technique conditionally changes
an executed workflow part to a predefined alternative and re-
executes it.
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Figure 4: Monitoring intermediate results of ‘Peak Detec-
tion’ in PAW

3.1 Recovery and monitoring points
This recalibration technique allows the user to change a workflow
during its execution and avoids to unnecessarily repeat compu-
tations in the already executed workflow part. It involves the
employment of two novel types of tasks: recovery andmonitoring
points. A recovery point rpT is a task that stores the result of task
T . Amonitoring pointmpT is a task that invokes the visualization
of the result of taskT or part of it. We use the phrase intermediate
result to refer to the result of a task T that has been executed,
while the whole workflow execution is not yet finished. The vi-
sualization of intermediate results assists the user in making a
recalibration decision.

Recalibration using this technique is performed in four steps:
(1) the user augments a workflow with recovery and monitoring
points and starts the workflow execution; (2) when the execu-
tion reaches a recovery point the system stores the intermediate
results of the preceding task, required for a possible re-execution
of the workflow part following this recovery point; (3) when the
execution reaches a monitoring point the user observes interme-
diate results of the preceding task; the workflow keeps executing
after the monitoring point, while the user observes the interme-
diate results; (4) the user changes the workflow part following
a recovery point and performs a re-execution of the workflow
from this recovery point and on.

When the user changes the workflow and re-executes it, PAW
determines which intermediate results are required to re-execute
the changed workflow part that follows a specific recovery point
(or points). It prepares this workflow part as a new materialized
workflow with these intermediate results as input datasets and
runs it. The execution of the previous (original) workflow is
aborted.

Figure 3 displays the workflow from the motivating example
augmented with recovery and monitoring points. The user ob-
serves the result of filter_regions at monitoring points, decides

to change the parameters of filter_regions and re-executes the
workflow from the recovery points. So the most time-consuming
part of DataFilter is not re-executed.

Figure 4 displays a ‘Peak Detection’ workflow in the interface
of PAW. Green and yellow tasks are executed and currently exe-
cuting, respectively. Using the geographical map on the bottom
the user monitors intermediate results at the monitoring point
marked with a blue stroke.

3.1.1 Implementations of points. Monitoring points invoke
the visualization of the result of the preceding task. PAW includes
monitoring points for specific operators, such as implementa-
tions of k-means, for which the result is visualized as a map of
centroids or the histogram of cluster sizes. It also provides three
basic monitoring operators, for the visualization of: geographical,
numerical and categorical data. PAW includes recovery points
for HDFS, Elasticsearch and PostgreSQL and operator-specific
monitoring points for k-means and tf-idf.

3.1.2 Partial execution. We propose two improvements of the
recovery and monitoring points technique:

Execution of a task until a deadline or a milestone is
reached.The preceding task of amonitoring point is executed for
a predefined time (deadline) or until it has processed a predefined
amount of the input data (milestone). The partial intermediate
result of the task is received by the following monitoring point,
which invokes its visualization. This partial intermediate result
is observed by the user, who decides on recalibration faster.

Execution on a part of a dataset. Data processing between
recovery and monitoring points is made on a part of the input
dataset. This enables the user to observe intermediate results on
a part of the input data, and take the recalibration decision faster.

There is no general method for preparing operators so that
they produce partial intermediate results. However, in some cases
we can have a general methodology. For example, we can break
up a query into multiple queries by dividing the input data in
chunks, and then combine the results after the execution of all
statements. PAW has several SQL query operators, which can be
split up in this way.
SELECT ∗ FROM db
WHERE f i e l d BETWEEN 1 AND 10 0 0 0 ;
SELECT ∗ FROM db
WHERE f i e l d BETWEEN 10000 AND 20 0 0 0 ;
. . .

3.2 Conditional points
PAW includes a new type of task that realizes the conditional
structure of the form if-then-else. The latter allows the design of a
workflow with several alternative workflow parts. Depending on
the intermediate results of the task preceding the if-then-else task,
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a workflow branch is chosen for execution, over another one.
These workflow branches are not yet executed. Figure 5 displays
a workflow that has been augmented with one if-then-else point
and two following workflow branches. The if-then-else task has
two outputs; the boolean condition evaluates to true or false,
depending on which PAW executes one of two branches.

The operator of the if-then-else point is implemented for any
particular data. For example, for tf-idf PAW has an if-then-else
task that evaluates if the weight of some word is above a certain
value. Additional conditional points can be added through the
interface of PAW.

3.3 Goto points
The workflow is augmented with two tasks: goto label and goto
condition points, and an alternative workflow part related to the
goto label point (Fig. 6). When the workflow execution reaches
the goto condition point and if this task triggers ‘goto’ to goto
label, then it re-executes the workflow from that point choosing
for execution the alternative workflow part. Therefore, this tech-
nique is a combination of the recovery and monitoring points and
conditional techniques.

The goto condition task has two outputs and a boolean condi-
tion evaluating to true or false, depending on which PAW con-
tinues execution or jumps to the goto label alternative workflow
branch. The implementation of goto condition is similar to the
if-then-else point.

4 DEMONSTRATION
In the following, we describe the proposed demonstration.

System setup. PAW is demonstrated on a cluster, with the
following configuration: The cluster consists of 4 server-grade
physical nodes. Each one of those is equipped with a 3rd genera-
tion i5 CPU (@ 2.90 GHz) and 16GB of physical memory and an
array of two HDDs on RAID-0. The operating system is Debian 6
(squeeze) Linux. For the time being, four software platforms are
running: Hadoop (CDH 4.6.0), Spark (1.4.1), Elasticsearch (5.1)
and Weka (3.6.13).

Workloads. The demonstration uses synthetic and real work-
flows on real data. The real workflows and data come from the
two use cases of ASAP [3] and belong to the domains of telecom-
munications and web analytics. One of the telecommunication
workflows is described as a motivating example (Section 2). The
web analytics use case involves anonymization of web content
(WARC files) stored in ElasticSearch. The workflows are imple-
mented in Spark and run over varying data set sizes ranging from
1 million to 4 billion rows. There are two types of workflows:
one models entity recognition/disambiguation and k-means, and

another models continuous processing of incoming data, e.g.,
subscription/notification at scale.

Demonstration scenarios. The demonstration focuses on
the recalibration functionality of PAW. It includes four types of
scenarios that aim to show each a distinct view of the recalibra-
tion benefits and create discussion on the potential of recalibra-
tion of analytics workflows. The demonstration is interactive
with the audience. The participants are invited to experience all
functionalities of PAW, create workflows from scratch or change
existing ones, watch the processing of the workflow, as well as
review the internals of the platform, e.g. internal workflow repre-
sentation. Even more, the participants are guided to play with the
recalibration of workflows, by adding recovery and monitoring
points, goto and if-then-else points, and change the workflow
while monitoring intermediate results in GUI of PAW.

Scenarios A. These demonstrate the recovery and monitor-
ing points technique. Specifically, they show real necessities to
change workflows during execution. We show real workflows
which need infusion of new tasks or alteration of task parameters
during the execution.

Scenarios B. These also demonstrate the recovery and mon-
itoring points technique. Specifically, they show how the user
can design a workflow in a gradual and modular manner, while
he is testing and debugging already created parts by monitoring
intermediate results. We show how this workflow design process
benefits exploratory data analysis.

Scenarios C. These demonstrate the conditional technique for
workflows with a natural conditional branching, for which data
analysis based on some conditions follows different paths, and
the selection between these alternative paths should be made at
runtime.

Scenarios D. These demonstrate the goto technique usingwork-
flows that benefit from the goto point in order to find anomalies
in data, narrow or refocus the search or analysis, as well as meet
deadlines and milestones of analysis.
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ABSTRACT
Researchers and scientists have been using crowdsourcing plat-
forms to collect labeled training data in recent years. The process
is cost-effective and scalable, but research has shown that the
quality of truth inference is unstable due to worker bias, work
variance, and task difficulty. In this demonstration, we present a
hybrid system, named IDLE (Integrated Data Labeling Engine),
that brings together a well-trained troop of domain experts and
themultitudes of a crowdsourcing platform to collect high-quality
training data for industry-level classification engines. We show
how to acquire high quality labeled data through quality con-
trol strategies that dynamically and cost-effectively leverage the
strengths of both domain experts and crowdsourcing.

1 INTRODUCTION
Hand-annotated training data, such as ImageNet 1[2], have been
the basis of many machine learning research. In recent years,
crowdsourcing has become a common practice for generating
training data [3], empowering researchers to outsource their
tedious and labor-intensive labeling tasks to workers of crowd-
sourcing platforms. Crowdsourcing platforms provide large and
inexpensive workforce for better cost control and scalability.
However, the unstable quality of work produced by crowdsourc-
ing platform workers is the main concern for crowdsourcing
adopters.

Recent research by Zheng et al. [15] shows that the best truth
inference algorithm is very domain-specific, and no single algo-
rithm outperforms others in most scenarios. Sometimes an intu-
itive approach like an ExpectationâĂŞMaximization algorithm
could be a practical solution. In the literature, research advances
focus on handling task difficulty [7, 13], worker bias [9], and
worker variance [10, 12]. Specifically, task difficulty describes the
degree of ambiguity of a question for which an annotated answer
is sought; whereas worker bias and variance model the quality of
1http://www.image-net.org/

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the 21st
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2018, ISBN 978-3-89318-078-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

workers – describing how likely a worker gives a wrong answer,
assuming all tasks have equal difficulty.

The ability to collect high-quality and stable training data
(i.e. the inferred truth) is essential for powering many super-
vised algorithms. These algorithms are often the foundation for
modern business solutions, such as search engine rankings [6],
image recognition [2, 11, 14], news categorization [8], and so
on. Even though research [15] has unveiled the challenges of
crowdsourcing labeling, it is undeniable that cost-effectiveness
and scalability make crowdsourcing an attractive approach to
generate training data.

In this study, we present a practical end-to-end multilevel
solution based on a hybrid strategy. On the first level, we collect
cost-effective truth inference from crowdsourcing workers whose
answers have potentially high bias and variance.

On another level, we train a group of domain experts who
are expected to perform labeling tasks with low worker bias and
variance due to the training and financial incentives they receive.
Our trained experts are intimately familiar with our product cat-
egory taxonomy as well as the guidelines for assigning the most
appropriate product category label to any given product item.
They are instructed to mark high-difficulty tasks as “unsolvable”
to circumvent ambiguous cases.

We propose IDLE as a system to facilitate the automated col-
laboration between our well-trained domain experts and the
crowdsourcing workers to deliver high-quality hand-annotated
training data. The IDLE framework streamlines the workflow for
generating high quality training data by automating data filtra-
tion (by crowdsourcing) and data relabeling (by in house domain
experts). It also provides an integrated environment for manag-
ing training data generation tasks as well as for assessing quality
of classification results generated by our product classification
engine as described in details in section 2.3.

2 SYSTEM FRAMEWORK
Figure 1 shows the architecture of our system. There are 4 key
components in our framework: (1) Multilevel Worker Plat-
form: a system that assigns tasks to domain experts and various
crowdsourcing platforms through Adapters; it also performs
Worker Quality Assessment and Answer Aggregation. (2)
Sampling Strategy: with a unified user interface, job requester
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Figure 1: IDLE system framework

can choose among various sampling strategies. (3) Job Process-
ing: job requester can launch jobs of various types. (4) Data
Reporter: a dashboard showing the aggregated results from
crowdsourcing and the improvement of the machine learning
model.

2.1 Multilevel Worker Platform
With a unified interface, the job requester can submit a job
through Adapters to various crowdsourcing platforms, such as
MTurk2 and Crowdflower3. Furthermore, the job requester can
assign difficult labeling jobs to domain experts who sign into their
IDLE account to label data. We also design a uniform Function
interface for common features, such as Worker Exclusion and
Answer Aggregation, across various crowdsourcing platforms.

Adapter: Using MTurk API4 as a reference, we design the inter-
face through which job requester can (1) launch a job, (2) stop
a job, and (3) retrieve results. Adapters allow us to easily inte-
grate with different crowdsourcing platforms without making
significant changes to the user experience or the rest of the IDLE
platform.

Answer Aggregation: Since answers returned by crowdsourc-
ing workers are not always consistent and worker’s quality varies
(for example, master vs. non-master workers in MTurk), we have
the challenge of inferring ground truth from the returned an-
swers. To tackle the answer aggregation challenge, we imple-
ment three algorithms :Majority Voting[1],Weighted Major-
ity Voting[4], and Bayesian Voting[5]. Through the provided
interface, developers of IDLE platform can easily implement cus-
tomized answer aggregation algorithms. Moreover, job requester
can specify rules in the form of [#answer , #yes] for determin-
ing the final answer. The rule template is interpreted as seeking
#yes/#answer level of consensus in total #answer number of
answers. More elaborate answer aggregation strategies may be
expressed through a sequence of rules. For instance, rules [3, 3]
followed by [4, 3] together instruct the system to first seek unan-
imous consensus among 3 answers ([3, 3]). For questions whose
answers fail to meet the first rule, the system needs to try again
by soliciting an additional answer (#answer= 3 + 1) hoping to
reach the specified 3/4 consensus.
2https://www.mturk.com/
3https://www.crowdflower.com
4https://aws.amazon.com/documentation/mturk/

Figure 2: Control Flow

Worker Quality Assessment: Worker’s quality varies widely
on crowdsourcing platforms. The fact that this quality is un-
known to us in advance makes it even more important to assess
worker’s quality. In IDLE, we randomly select questions from a cu-
rated pool of questions with ground truth answers (called golden
tasks) to estimate worker’s quality. We apply two strategies: (1)
Qualification Test: BEFORE performing the job, workers must
first pass the golden tasks; (2) Hidden Test: mixing the golden
tasks with the regular job questions, and we assess worker’s qual-
ity based on the golden tasks AFTER the job is completed. In our
platform, job requester may use either one or both strategies to
estimate worker’s quality.

2.2 Sampling Strategy Interface
There are many statistical sampling techniques. In IDLE, we
design the general interface for developers to implement the
required sampling strategies. The goal is for job requester to
obtain sampling data from a diverse data set. We incorporate two
hierarchical sampling strategies for IDLE in this version: (1) data
clustering followed by stratified sampling; (2) topic modeling
followed by stratified sampling.

2.3 Job Processing
As illustrated in Figure 2, there are three types of jobs in IDLE:
Filter jobs, Relabel jobs, and Audit jobs.

Filter Job: A small set of data are sampled from prelabeled data
and sent to crowdsourcing platform for confirming their labels.
Questions of a filter job are presented either as yes/no questions
(e.g. Does the given label match this datum?) or multiple choice
questions (e.g. Which of the following labels best matches this
datum?). Golden tasks questions used for excluding poor-quality
workers are also included in the filter job. After the workers
submit their answers, the results are collected through the answer
aggregation techniques described above in section 2.1. The results
that are identified with high confidence level by our answer
aggregation algorithm become new training data for the machine
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learning model. The remaining (filtered-out) data are treated as
mislabeled data and become input data for relabel jobs which are
handled by domain experts as described in section 1. We expect
data that are trivial for crowdsourcing workers can quickly pass
through and data that are difficult to label are filtered out, hence,
the name ’Filter’ job. The cost of domain experts is much higher
than that of crowdsourcing workers, which is why it is more
cost-effective to have crowdsourcing workforce perform filter
jobs on large number of trivial questions first and leave a small
number of more challenging relabel jobs to domain experts.

Relabel Job: As mentioned above, mislabeled data are auto-
matically collected and made available in IDLE framework to
domain experts for relabeling. These domain experts are trained
to assign correct labels to the provided data. Thus, data relabeled
by domain experts do not require quality control or truth infer-
ence measures before they become training data for the machine
learning model. With that said, there might be some data that
even domain experts cannot label, thus are regarded as rejected
data and recorded for further analysis.

Audit Job: After the filter job and the relabel job are done, all
the sampled data are either identified as new training data for
the machine learning model or as rejected data for analysis. After
retraining the machine learning model in our product classifica-
tion engine with the new training data, the model reprocesses
data and updates the product category labels. Up to this point,
all the efforts for enhancing the performance of the machine
learning model are completed. We then assess the accuracy of
this retrained model with an audit job. Similar to a filter job, a
small set of data are sampled and sent to crowdsourcing plat-
form for identifying correctly labeled data. We then apply our
answer aggregation algorithm to identify data with high confi-
dence level and calculate model accuracy while the mislabeled
ones are simply discarded.

2.4 Data Reporter
To maximize the effectiveness of crowdsourcing and minimize
the costs, there are certain questions that analysts would be
curious about: for example, what is the ratio of filter job questions
that need to be handled by a relabel job? The data reporter is a
data visualization dashboard for administrators and analysts to
evaluate the effectiveness of crowdsourcing and the performance
of the machine learning algorithms. There are two parts of data
reporter: (1) Crowdsourcing Report (2) Machine Learning
Model Report.

Crowdsourcing Report: The purpose of crowdsourcing report
is to evaluate the effectiveness and the efficiency of crowdsourc-
ing. Therefore, it is designed to provide insights, such as the
answer distribution and processing time. The crowdsourcing re-
port includes the stats and results of crowdsourcing jobs. For
filter jobs and audit jobs, the stats would include the ratio of
YES vs. NO besides job completion time. For relabel jobs, the re-
port would display the ratio of relabeled rate and job completion
time. To estimate the overall performance of crowdsourcing for
each job, the dashboard would also show the ratio of mislabeled
data vs. data with high confidence level in addition to the total
processing time.

Machine Learning report: The machine learning report is used
to track the rate of improvement for the machine learning model.
Thus, the report shows not only the history of accuracy for the
model but also the ratio of data processed through crowdsourcing.

Algorithm 1 Adaptive Task Assignment
Require: Label confidence scores of prelabeled data PC =

(pc1,pc2, · · · ,pcn ), task confidence threshold θ , worker set
W, budget B

Ensure: (|W1 |, . . . , |Wn |)

1: (W1, . . . ,Wn ) = (∅, ∅, . . . , ∅)

2: PCorder = Order (PC) ▷ reverse sort PC
3: for all pci ∈ PCorder do
4: (W ∗

i ,C
∗
i ) = argmin

Conf (pci ,Wi )≥θ,Wi ∈W

Cost(Wi )

5: B = B −C∗
i

6: if B ≤ 0 then
7: break;
8: return (|W1 |, . . . , |Wn |)

3 ADAPTIVE TASK ASSIGNMENT (ATA)
ALGORITHM

To best utilize available resources (such as a given budget), we
further study the mechanism to adaptively assign the number of
workers for each crowdsourcing task. In practice, the equal as-
signment of workers per task is not the most effective approach to
achieve satisfactory quality when dispatching large-scale crowd-
sourcing tasks. Advances in machine learning research provide
powerful labeling capabilities in predicting the label for each task
along with a confidence score. Keeping the confidence granular-
ity and the importance of a task in mind, we adjust the number
of workers for each task in pursuit of overall optimization. There-
fore, we propose Adaptive Task Assignment Algorithm to
optimize the crowdsourcing resource utilization.

In Algorithm 1, we outline the steps to determine the number
of workers for each task. Each crowdsourcing task consists of
one single product item with category label predicted by our
product classification engine. Initially, we are given prelabeled
data and label confidence score pci of each task (provided by our
supervised learning algorithms). Label confidence score ranges
from 0 to 1. Next, we assign workers to crowdsourcing tasks
that are reverse ordered by their label confidence scores. Here
we introduce a threshold called θ , to ensure that the task confi-
dence score of each task (calculated by theConf (pc,W ) function
described below) exceeds θ eventually. In addition, we use Cost
function to represent the cost for a worker set in search for the
optimal worker setW ∗

i , where the total costC
∗
i of the worker set

is minimal for a task’s confidence score to exceed θ . When the
sum of costC∗

i is equal to budget B, the algorithm terminates and
returns the optimal number of workers |W ∗

i | to assign to each
task.

The task confidence is calculated based on the given label
confidence of prelabeled data and the quality of the assigned
worker.

Conf (pc,W ) = max
a∈{Yes,No }

Confa (pc,W )

We use label confidence score of prelabeled data pci and worker’s
quality qw to calculate the Bayesian probability [5]. Worker’s
quality qw ∈ [0, 1] is the probability that the worker answers the
correct label. As an example, assuming the supervised learning
algorithm provides the prelabeled data with label confidence
score of 0.45; the confidence threshold θ = 0.75, and we have
four workers with quality scores 0.5, 0.8, 0.6 and 0.4 respectively
(assessed through golden tasks described above): Initially, we
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pick the first two workers in the first iteration, and their answers
are No (rejecting the label assigned by machine learning) and
Yes (confirming the label assigned by machine learning). We can
calculate the task confidence score as the following:

ConfYes ∝ 0.45 · (1 − 0.5) · 0.8 = 0.18
ConfNo ∝ (1 − 0.45) · 0.5 · (1 − 0.8) = 0.055,

which lead to

ConfYes =
0.18

0.18 + 0.055
= 0.76

ConfNo =
0.055

0.18 + 0.055
= 0.24

Since Conf (pci , {w1,w2}) = 0.76 exceeds θ = 0.75, it is not
necessary to assign additional workers to this task. In otherwords,
the ATA algorithm can confidently confirm the machine-assigned
label (i.e, concluding the answer Yes) based on answers from
merely two crowdsourcing workers.

4 DEMONSTRATION
Our system implementation of IDLE is based on Flask (a Python
web framework) and ReactJS. We use distributed task queue
Celery to handle asynchronous tasks, such as data sampling
and crowdsourcing result retrieval. At the time of writing, IDLE
is undergoing beta testing at Slice Technologies, and we are
actively improving the system. The screenshots for the following
demonstrations can be found in the GitHub repo5 of IDLE:

Data Ingestion: Job requester first selects prelabeled data to
ingest into IDLE by picking a category from a data set, uploading
a file, or querying the database with SQL commands. Afterwards,
job requester chooses a sampling strategy and sample count for
filter job creation.

Crowdsourcing Job Configuration: After sampled prelabeled
data are ingested, job requester configures parameters of a crowd-
sourcing task, e.g, reward per assignment and number of assign-
ments per HIT (Human Intelligence Task, a term to denote a sin-
gle crowdsourcing task on Amazon Mechanical Turk platform).
To estimate worker’s quality, the system can also be configured
to automatically include golden tasks (quality control questions)
in the job.

Crowdsourcing JobCreation: Configurations of a crowdsourc-
ing job are reviewed and confirmed prior to job creation. After
publishing a job to crowdsourcing platform, IDLE automatically
performs answer aggregation.

Stats Reporting: Job status and other job-related information
are displayed on the main IDLE dashboard. History of the ma-
chine learning model’s performance is also available for evalua-
tion purposes.

5 CONCLUSIONS
In this study, we present IDLE, an integrated data labeling plat-
form consisting of two main features: quality assessment and
answer aggregation. The platform incorporates the adaptive task
assignment algorithm, an algorithm that enables us to provide a
cost-effective process for training data generation. This stream-
lined process alleviates the impact of highly difficult tasks as well
as of crowdsourcing’s worker bias and worker variance. As a
result, IDLE system empowers researchers to effectively and effi-
ciently collect high-quality training data through collaboration
5https://github.com/slice-ncku/IDLE

between in-house domain experts and external crowdsourcing
workers in an automated and integrated manner. IDLE provides
us an integrated platform for generating large amount of training
data with higher quality, faster speed, and optimal cost.
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ABSTRACT

Every year, the number of scientific publications increases, adding
complexity to the networks of collaborations, citations, and top-
ics, in which papers are embedded. Analyzing these networks
with efficient tools is important to help researchers identify rele-
vant works and understand scientific impact. However, available
tools face several limitations, indicating that there is still room
for improvement. We present Hermes, a prototype for explor-
ing large and heterogeneous scholarly networks. Hermes allows
users to seamlessly navigate diverse types of networks within a
single graph, spanning hundreds of millions of nodes and rela-
tionships. Our prototype achieves reasonable responsiveness on
commodity hardware through: a) comprehensive indexing, b) a
careful coupling of a graph database and a search engine, and c)
incremental processing of temporal queries. In this demonstra-
tion, we explain the techniques we adopt and illustrate how to
use Hermes for exploring theMicrosoft Academic Graph.

1 INTRODUCTION

The number of scientific publications increases every week, creat-
ing a large set of data about authors, citations, and collaborations.
As a result, it becomes more and more challenging to determine
which publications are relevant for a specific research goal [16].
In fact, new terms and fields, such as big scholarly data [22] and
science of science [24], are emerging to cover data management
challenges and novel analysis questions, which arise from schol-
arly information growth.

Scholarly network analysis (SNA): The traditional metrics of
science (e.g., the H-index), that rely on network-unaware statis-
tics, have been questioned by scholars [23], making a case for
improving the analysis of scholarly networks by complementing
such metrics with content & network-based analysis.

Types of scholarly networks: At least 7 types of networks are
usually considered for SNA [23]; coauthorship/collaboration, ci-
tations, co-citations, bibliographical coupling, topics, co-words,
and heterogeneous networks.

SNA and heterogeneous networks: Restrictive choices of net-
work type and aggregation entity can limit the generalizability
of SNA. To avoid this, researchers recommend to employ hetero-
geneous networks, and methods capable of extracting value from

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the 21st
International Conference on Extending Database Technology (EDBT), March 26-29,
2018, ISBN 978-3-89318-078-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Figure 1: Indexing approaches in Hermes.

these networks [23]. One of such methods is FutureRank [15],
an approach for relevance ranking based on combining HITS,
over a collaboration graph, with PageRank, over a citation graph.

Data management for SNA: SNA involves studies at macro
(global), meso (community), and micro (individual)-levels of a
network. Considering the scale of networks, in addition to the
need for managing heterogeneity of entities and analysis (e.g.
content & statistical analysis), efficient tool support for SNA
poses several data management challenges. Among them, the
foremost could reasonably be resource management: to provision
for ad-hoc SNA within reasonable response times, while enabling
queries across different network scales and representations. Other
challenges include data cleaning, provenance, management of
analysis results, and integration with external sources.

Existing tools for large scale SNA: Several scientific digital li-
braries and search engines exist that index large amounts of pub-
lications [12], however their services often fall short in several
aspects, including consistency, available metrics, and possibilities
for ad-hoc SNA [11]. Regarding the latter, for example, Arnet-
miner1 [20] internally utilizes several kinds of network analysis,
however only local exploration of ego networks is currently
offered to its Web users. Among tools supporting SNA, CiteS-
pace [4] , Pajek [2] , Gephi [1] , igraph, [6] and NetworkX [10]
are some of the most popular.

Graph databases and SNA: Although RDF technology has been
widely researched for semantic publishing [3], to date there is
little research in specialized graph database technologies for SNA.
Within our work we consider this research gap.

In this demo paper we describe the first version of Hermes,
our proposed tool for SNA based on graph technologies. The core
technical insight behind our work at this stage is in exploiting
opportunities for close search engine/graph database coupling in
SNA tasks.
1https://aminer.org/
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With our tool we seek to enable users to seamlessly interact
with large scale heterogeneous networks, performing ad-hoc SNA
at different granularities, either through our APIs, or through
native graph/search-engine query languages.

Overall, we hope to encourage the audience to use our tool
for multiple purposes. We aim to: 1) help the audience in identi-
fying relevant publications and perfoming SNA tasks; 2) receive
feedback to improve Hermes; 3) introduce to the audience the
key indexing solutions that improve the performance of Hermes;
and 4) employ Hermes for user studies to investigate what could
constitute representative SNA workloads. Based on our work, we
intend to publish corresponding anonymous datasets of usage
patterns as open-source artifacts—thus providing data for work-
load characterization to the research community. Furthermore,
our tool will be freely available.

2 HERMES

In this section we describe the current architecture of our tool,
and we present two techniques we currently explore in Hermes
for improving its data access.

2.1 Architecture

For indexing and primary storage, Hermes relies on a search en-
gine, i.e., Elasticsearch, and a database, i.e., Cassandra. These
two components are integrated through a property graph data-
base, JanusGraph2—which can also be configured to other back-
end indexes and storages. JanusGraph uses the TinkerPop33
framework, and the corresponding Gremlin query language.
Data access in Hermes is provided via a web-interface with data
management supported by Gremlin and Elasticsearch servers.

JanusGraph provides three predefined types of indexes:
• Composites are traditional indexes tuned for point-queries.
They rely on the primary storage. They cover one or mul-
tiple keys of either vertexes or edges of the stored graph.
• Mixed indexes are based on the search engine. They enable
inexact querying, and relevance boosting.
• Vertex-centric indexes are supported by the primary stor-
age. They are included in the same storage space of a ver-
tex. Instead of indexing all entries in the database (global)—
as the former two indexes—they only index the set of edges
attached to a vertex (local). This allows to traverse faster
through edges while filtering on labels and properties.

Apart from these predefined indexes, users of property graph
databases can also use the "graph itself as an index". This is a
straight-forward approach, which we, for lack of a better term,
call GRAIN (graph as an index) [8]. In GRAIN meta-vertexes are
added to the modeled data, acting as roots and nodes of a search
tree, such that they lead within limited hops to a set of expected
entities. A practical enhancement is to denormalize properties
of the target vertexes unto the linking edges, such that filtering
can be applied on the edges without visiting any vertex. In our
system, the GRAIN approach is additionally adopted by using a
set of meta-vertexes with temporal expiration. They serve as a
cache for previous query results.

Within Hermes, we adopt a comprehensive indexing strategy
that exploits all these opportunities. In Figure 1, we show an
overview. We remark that the numbering corresponds only to
the order in which we introduced each index.

2http://janusgraph.org/
3http://tinkerpop.apache.org/

Listing 1: Alternative temporal queries with Gremlin.

titanGraph.V().
hasLabel("journal").
has("retiredAt", P.gte(year0)).
has("createdAt", P.lte(year0)).count().next();

titanGraph.V().
hasLabel("journal").
has("createdAt", year0+i).count().next();

2.2 Incremental Processing for Temporal

Queries

Analyzing the evolution of publication networks can yield in-
teresting findings. For example, studies on theMicrosoft Aca-
demic Graph [18] have found the number of publications per
year to be following an exponential growth for the last century—
doubling every 12 years, with the top 1% of publications contin-
uously accounting for around a quarter of citations each year
[7]. Similar analyses with more localized perspectives can have
practical value for researchers. For instance, they could help to
assess the impact of given conferences over time or to identify
high impact research topics.

Several works consider the formalization and evaluation of
temporal graph queries—both, in graph databases [17], and in
processing engines [13, 14]. Building on studies in this area [9],
we design our temporal queries in Hermes by creating a type of
meta-vertex, which we call logger vertexes. The set of edges in
such vertexes provide a relative time-line for when items appear
in the world represented by a graph. Analyzing the sequence
of edges in a logger vertex allows reconstructing a graph from
a certain point in time to another. Through this, it is possible
to implement incremental computation of temporal data over a
graph model that accumulates several snapshots.

We achieve incremental computation in Hermes by hand-
tuned query rewriting. In Listing 1, we provide an example of a
Gremlin query for identifying the number of journals on a year-
by-year basis throughout a specified period. Instead of adding
up the number of items for all years within the interval, we only
compute the existing journals for the first year. Then, we keep a
rolling total, based on the number of journals created or retired
in each successive year.

Recently, authors have considered automated rewriting of
multi-snapshot queries for co-scheduling tasks by their common
steps—in a style similar to SIMD processing [21]. The authors
call this approach Single Algorithm Multiple Snapshots. Unlike
their work, we do not store separate snapshots, and we do not
include automated rewrites in our tool.

In other study, groundwork for incremental view maintenance
on property graph databases has been proposed, over a formaliza-
tion of OpenCypher [19]. In contrast, the rewrites for incremental
processing illustrated with our current prototype are hand-tuned,
and require further standardization.

2.3 Query Rewrites Across Graph and Search

Engine Representations

Similar to other graph databases, such as Neo4j4, JanusGraph
can integrate a search engine to support full-text queries. This
provides a set of search engine functionalities, which are either

4https://neo4j.com/developer/elastic-search/
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Listing 2: Rewrite of degree centrality (DC) calculation for

Elasticsearch.

TermsBuilder termsBuilder = AggregationBuilders.terms(aggregationName).
field("idOfTargetVertex").size(numberOfVertices);

XContentBuilder contentBuilder;
contentBuilder = JsonXContent.contentBuilder().startObject();
termsBuilder.toXContent(contentBuilder, ToXContent.EMPTY_PARAMS);
contentBuilder.endObject();

SearchRequestBuilder searchRequest= esClient.prepareSearch("index").
setTypes("edges")).
setQuery(QueryBuilders.termQuery("edgeLabel","label")).
setAggregations(contentBuilder);

response = searchRequest.execute().actionGet();

offered through the graph API (e.g., launching so-called index-
Queries), or directly through the search engine APIs. After verify-
ing the potential of external access in previous work [8], we seek
to leverage this concept in Hermes to improve its functionality
by rewriting queries for the search engine APIs.

To make the case for such rewriting, we consider an example
degree centrality (DC) calculation in Gremlin that has to be
rewritten for the search engine. The DC of vertexes is a measure
to understand the actors of a network. It can be defined as the
number of edges (either incoming or outgoing) connected to ver-
texes. The in-DC of a given vertex indicates how prominent it is
within the network, while the out-DC indicates how influential
it is. The average vertex DC for a graph is the average of the DCs
of its vertexes. In Gremlin, we can express the in-DC computa-
tion as a traversal that starts from all vertexes with an incoming
edge having a specific label—grouping them by the vertex ID,
and the number of edges. Here is an implementation based on
recommendations by the TinkerPoP community5:

g.V().in("label").inV().group().by(__.ID()).by(__.inE(label).count())

For the search engine, we can increase the utility of the in-
dexed data by adding to each edge the JanusGraph ID of the
connected vertexes. This design decision amounts to a limited
use of denormalization, with few chances for inconsistency as
the IDs of connected vertexes do not change. Finally, we can con-
struct the average DC calculation as a single Elasticsearch term
query that searches for a given value over all edge labels. This
query aggregates the count of results based on the IDs of vertexes
(either the source or the target vertex). The result is an ordered
list of vertexes and number of edges to which they are either
the source or the target. We show a prototypical implementation
in Listing 2.

For an initial evaluation of this rewrite we use the Pokec
dataset, an online social network, and a commodity machine6.
In Figure 2, we show the results, which indicate a speedup of 150x
over the original, by employing the second query approach.7

The fundamental reason for the differences in performance
is that the queries in fact map to entirely different algorithms.
A Gremlin traversal begins by querying a given set of vertexes
(either using a composite index or a full-table scan). For each
match, Gremlin counts the number of incoming edges with a
specific label, groups the results by vertex IDs, and returns these

5http://tinkerpop.apache.org/docs/3.2.1-SNAPSHOT/recipes/#degree-centrality
6We used an Intel CoreTM i7-2760QM CPU (2.40GHz) processor with 8 cores and
7.7 GiB of memory.
7We would like to add the disclaimer that the performance gains we report are
specific to the queries and database we selected. Further comparisons are pertinent
to assess the benefits of these rewrites for other queries and databases.
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Figure 2: Response times for computing the average de-

gree centrality (DC) on the Pokec dataset.

values. In contrast, the Elasticsearch implementation relies on
a simpler representation of the same data: A set of documents
that stand for the edges, further indexed with Lucene’s inverted
indexes. These serve well term-based searches, such as our entry
query. Another index, covering as terms, the ID of source vertexes,
can be matched with the document numbers found by our entry
query. At last, the resulting collection is aggregated by counting
for each term the number of matching edge documents.

In spite of the benefits, there are limits that need to be consid-
ered in adopting a search engine for graph tasks in a multi-store
context. Namely, the impedance mismatch between domains, in-
adequate performance optimizations in the search engine , and
overheads from application-level mapping of items between the
different storage engines.

3 DEMONSTRATION OVERVIEW

Data: Our preloaded dataset is the complete Microsoft Aca-
demic Graph [18] as of early 2017, which is a property graph of
scholarly publications. It is compiled and made publicly available
by Microsoft. The graph consists of six entities: Field of study, au-
thor, institution, paper, venue, and event. Furthermore, the graph
includes six standard relationships: Citations among papers, pa-
per authorship, the venue or journal a paper was published at
(or a field of study if no venue is available), the institutional af-
filiations of authors, and the relationships of events to venues.
Overall, theMicrosoft Academic Graph comprises around 166
million papers, representing a heterogeneous and large dataset
for our tool.

Considering that the audience of our demonstration will be
conformed by the database community, we have tagged some
subgraphs of interest within the dataset. This includes a graph of
papers with transitive reference relationships to the foundational
paper of Edgar Codd on relational databases [5]. We call this the
Codd’s world graph, on which we aim to undertake studies in
future work.

Demonstration: We will start introducing the audience to the
core functionalities of Hermes by searching for authors or papers,
as shown in Figure 3. Based on the results, we navigate through
some different network representations of the data and explore
dependencies between the results. This will enable the audience
to use the tool by themselves.

In the next step, we explain some representative scenarios for
scholarly network analysis: Impact evaluation, academic recom-
mendation, or expert identification. This selection is based on a
recent survey [22]. We then carry out a task from the outlined
cases. For every alternative, we first accomplish the task and then
walk the user through the series of queries that conform it.
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Figure 3: Exploring networks with Hermes.

Following this, we take the user to a Jupyter notebook, where
we submit alternative versions (with different optimizations) of
a single query. For the queries we observe different execution
times in spite of them achieving the same task. This provides
insights into the practical, positive impact of the optimizations.

As a takeaway, we expect the user to understand the different
indexing and incremental processing techniques, which can be
used to build efficient prototypes based on mainstream graph
databases. We hope to encourage them to use our tool when
searching for literature, due to its supportive features.

4 CONCLUSION

In this paper we introduce Hermes, a tool for exploring and ana-
lyzing large scholarly datasets building upon on a graph database
and an integrated search engine. While in an early phase, it al-
ready comprises a range of functionalities that motivate us to
share our work with the community.We seek to encourage others
to use our tool, helping us to improve it and, through user stud-
ies, contributing to the understanding and characterization of
SNA workloads. For future work, we will enhance Hermes with
additional analysis options and automated query rewrites. Other
target features include support for cross-dataset exploration and
for connecting to more data sources (e.g., ORCIDs). Potentially,
we can also extend our tool to the purpose of supporting system-
atic literature reviews and research exploration, addressing the
lack of suitable tools in these research areas [11, 16].
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ABSTRACT

We present a demonstration about optimizing two database

storage engines by leveraging multi-streamed SSDs (MS-SSD in

short). By storing data pages with similar lifetime together in

the same physical �ash blocks, MS-SSD can e�ectively reduce

the overhead of garbage collection, improving the write perfor-

mance and prolonging the lifespan. Thus, in order to bene�t

from MS-SSD, it is very crucial for database storage engines to

precisely classify logical data pages according to their update in-

tervals and to e�ectively map those logical data streams to phys-

ical streams in MS-SSD. Given that numerous new interfaces be-

tween host and �ash memory SSD for better performance are

emerging, this demonstration will provide a model case of phys-

ical database tuning on �ash memory SSDs.

We have successfully multi-streamed two database engines,

MySQL/InnoDB and ForestDB, by identifying several logical

data streamswith distinct update intervals in each engine and by

taking the stream-per-object policy, instead of the naïve stream-

per-�le one. By running both vanilla and multi-streamed ver-

sions of two storage engines on real MS-SSD, we showcase that

multi-streamed versions consistently outperform vanilla ones.

In addition, we propose a set of guidelines on how to group log-

ical streams with di�erent update intervals into smaller number

of physical streams with minimal performance degradation.

1 INTRODUCTION

During the last decade, we are witnessing that �ash memory

SSDs have relentlessly been replacing harddisks as themain stor-

age because of several advantages such as high IOPS/$ and low

power consumption [9]. However, to prevent data loss due to

electrical interference, �ash memory chips do not allow over-

write. Hence, a costly erase operation against a block is neces-

sary prior to overwriting the existing data pages in the block [5].

For this reason, most contemporary �ash storage device takes

the log-structured copy-on-write approach and, among many

FTL schemes, the page-mapping FTL approach is most popu-

lar [10]. In FTLs, when no more clean block is available, a costly

but inevitable garbage collection (GC) operation has to be trig-

gered so as to secure new blocks to write new incoming page

writes. During GC, valid pages from the victim block has to be

copybacked to a clean block. It is well known that the excessive

copybacks of valid pages during GC negatively a�ects the per-

formance and lifetime of �ash memory SSDs. Hence, one of the

key challenges in modern �ash memory SSDs is to reduce the

GC overhead.

Meanwhile, every modern �ash memory SSD has abundant

computing resource which is a�ordable to support other new

interfaces than the existing dummy read and write block inter-

face. In fact, numerous new interfaces between host and �ash

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the
21st International Conference on Extending Database Technology (EDBT), March
26-29, 2018, ISBN 978-3-89318-078-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

memory SSD have been actively proposed for various purposes

including better performance. Among them, one notable inter-

face is Multi-Streamed SSD (MS-SSD in short) [8]. The interface

is recently standardized in the SCSI interface [11] and the com-

mercial SSDs which support it exists. The goal of the MS-SSD

is to minimize the GC overhead. That is, by storing data pages

with di�erent lifetimes in di�erent physical �ashmemory blocks

(i.e., di�erent write streams), MS-SSD expects that it can reduce,

compared to the existing non-multi-streamed SSD, the number

of pages to be copybacked in victim blocks, and thus can improve

both the write performance and the lifespan. In short, instead of

writing all data pages in one stream regardless of lifetime, by

explicitly allowing to cluster data pages with di�erent lifetime

into di�erent write streams, the MS-SSD interface is intended to

reduce write ampli�cation due to GC.

However, the performance bene�t of MS-SSD depends heav-

ily on the accuracy of classifying logical data streams according

to update interval [7]. Therefore, it is very crucial for storage

engines to precisely classify logical data pages base on their up-

date intervals and to e�ectively map those logical data streams

to physical streams in MS-SSD. For this reason, the �rst step in

making any database engine multi-streamed is to understand its

write patterns and then to �gure out all logical data streams dis-

tinguishable from each other in terms of update intervals.

In this demonstration, we will show how to make two

database storage engines multi-streamed, MySQL/InnoDB and

ForestDB, and present the bene�t of each multi-streamed ver-

sion over its vanilla engine in terms of transaction throughput

and WAF. The contributions of this demonstration can be sum-

marized as follows. First, we show that each database storage

engine has several logical data streams with distinct update in-

tervals. Second and more importantly, we show that, in database

engines, the logical data streams with di�erent update intervals

can be found when the write patterns are analyzed per-object.

Unlike the existing work on multi-streaming LSM-based NoSQL

engines such as Cassandra and RocksDB using the per-�le pol-

icy [6, 8], we found out that those two database engines used in

this demonstration can not be e�ectively multi-streamed with

the per-�le policy. Given that numerous interfaces between host

and �ash memory SSDs for better performance are emerging,

this demonstration will provide a model case of physical data-

base tuning on �ash memory SSDs. Our demonstration will pro-

ceed following the steps below:

• Using the logical data streams identi�ed according to the per-

object approach in each storage engine, we explain how to clas-

sify each of streams intoHot, Cold andWarm and the rationale

behind it. (Section 2)

• Based on the classi�cation obtained from the above step, we

will show that there are numerous other combinations in map-

ping logical streams into physical streams than the naïve one-

to-one mapping, run representative benchmark in each stor-

age engine by changing the combinations, explain the results,

and discuss its implications. (Section 4.2)
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• While running benchmarks on both multi-streamed and

vanilla version of each storage engine, we will show, using

a GUI program, how the key metrics including CPU utiliza-

tion, IOPS, TPS (transaction per second) and WAF dynami-

cally change over time. (Section 4)

• Based on the performance results from several combinations

in mapping logical streams to physical streams, we suggest a

set of practical guidelines for making storage engines multi-

streamed e�ectively. (Section 4.2)

2 BACKGROUND

2.1 MultiStream SSD

The goal of MS-SSD is to reduce the GC overhead by sepa-

rating logical data pages with di�erent lifetimes into di�erent

physical streams of �ash blocks inside SSD [8]. Multiple physi-

cal streams will divide physical space in �ash SSDs into several

smaller spaces. Applications in the host are responsible for dis-

tinguishing data pages by explicitly attaching stream-id when

making a write request toMS-SSD. Upon receiving write request

for data page(s) with stream-id, SSD places the page(s) in the

�ash block belonging to the corresponding physical stream id.

All the blocks belonging to each physical stream will be man-

aged by the �ash translation layer (FTL) separately from other

blocks of other physical streams. Consequently, compared to the

non-multi-streamed SSDs, MS-SSD expects that most pages in

victim blocks upon GCs is invalidated for GC, thus minimizing

the number of pages to be copybacked for GCs.

Although MS-SSD looks promising, there are at least two

practical issues to be addressed when making any database en-

gine multi-streamed. As noted above, the stream-id of data

pages is not determined automatically by MS-SSD itself, but in-

stead should be explicitly hinted by applications. Thus, the per-

formance bene�t of any multi-streamed database engine will be

highly dependent on the accuracy of logical data stream classi�-

cation. Next, because the number of physical streams available

in anMS-SSD is limited in practice (e.g., 16 in the case of PM953),

applications should be able to get best performance with the lim-

ited number of physical streams. For this, when the number of

logical data streams from the applications is larger than that of

physical streams supported by MS-SSD, a set of guidelines on

how to group multiple logical streams into smaller number of

physical streams with minimal performance degradation.

2.2 Logical Streams in Database Engines

As discussed above, the crux in leveraging the opportunities

from MS-SSD is to accurately separate logical stream with dif-

ferent lifetime. In this section, we illustrate how logical streams

from each of two real database engines, MySQL/InnoDB and

ForestDB, are derived. From a set of separate experiments, where

two storage engines were, likewise as in existing work [8] multi-

streamed according to the per-�le approach, anymeaningful per-

formance improvementwas not observed. In some cases, the per-

formance of multi-streamed versions was even worse than that

of non-streamed vanilla ones. This is because the write patterns

from those database engines do not reveal any distinguishable

lifetime among di�erent database �les.

MySQL/InnoDB is a popular open source relational data-

base engine, which takes the traditional in-place update pol-

icy. On the other hand, ForestDB, a storage engine for Couch-

base NoSQL database [3, 4], is taking the out-of-place update

approach, likewise other popular NoSQL engines such as Cas-

sandra and RocksDB. But unlike these LSM-based NoSQL en-

gines used in the previous work on MS-SSD [8], ForestDB is a

B-tree-based storage engine, which appends new key-value ver-

sions at the end of �les (that is, copy-on-write). It periodically

reuses the space occupied by the invalidated old versions of key-

value documents and, when the size of a database �le becomes

larger, the compaction operation has to be carried out. In this

section, although these two database engines of MySQL/InnoDB

and ForestDB take di�erent approaches in updating data, they

are common in that each engine has several object types and in

turn each object type exhibits distinct update intervals. This ob-

servation clearly con�rms that there exist opportunities for im-

proving database performance by making those engines multi-

streamed using the stream-per-object approach.

Table 1: Characteristics of MySQL TPC-C’s Data Type

avg update total write

interval write (MB) ratio(%)

DWB (H1) 2 1330556 50

new_orders(H2) 226410 88349 3.32

order_line(C1) 26425310 202777 7.62

customer(C2) 7741410 157006 5.54

orders (W) 2861170 108706 4.085

stock (W) 2873060 771190 28.98

2.2.1 Mysql. In order to derive logical data streams, which

are suitable to the purpose of MS-SSD, from MySQL/InnoDB en-

gine we collected the write trace while running TPC-C bench-

mark [1]) with 200GB database size for one day. Using the trace,

we calculated the average update interval, total write amount,

and the relative write ratio for major object types in the data-

base. Between the time point when data is written and updated

in each LBA, write commands are issued to another LBAs. Av-

erage update interval represents the average of the numbers of

intervening writes issued for all LBAs belonging to each object

type. Therefore, the larger average update interval is, the less fre-

quently the pages in the object type is updated. The results for

major object types (with write ratio greater than 1%) are summa-

rized in Table 1.

The most outstanding object from the table is double-write

bu�er (DWB), to which every dirty page evicted from the bu�er

cache has to be redundantly journaled to guarantee the page

write atomicity. It shows very low value of average update in-

terval and also occupies half of total writes in MySQL/InnoDB.

For this reason, DWB is de�nitely a hot data object with very short

lifetime and is thus denoted as H1 in Table 1. In addition, we see

from the table that the new_orders table has relatively low av-

erage update interval and thus it is also regarded as hot object.

Similarly, two tables, order_line and customers are treated as

cold objects and all other object are as warm objects.

2.2.2 ForestDB. A ForestDB database consists of multiple

�les and each database �le is comprised of four data types:

database header, super block, index node, and document. As

mentioned above, there was no performance gain when multi-

streamed using the stream-per-�le approach. Therefore, as in the

case of MySQL/InnoDB, in order to verify that those four object
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Table 2: Characteristics of ForestDB’s Data Type

avg update total write

interval write (MB) ratio(%)

DB Header (W1) 764571 6069 10.4

Index Node (W2) 848531 1048 1.8

Data Page (C) 1457589 44858 77.1

Super Block (H) 752 6222 10.7

types are suitable as logical data streams for MS-SSD, we col-

lected the write trace while running ForestDB-Benchmarkwork-

load [2] with 7.5GB database for four hours. Using the trace, we

calculated the average update interval, total write amount, and

the relativewrite ratio for those four object types. The results are

given in Table 2. From Table 2, it is obvious that Super Block is

hot (denoted as H), DB Header and Index Node warm (denoted

as W1 and W2, respectively, and Data Page cold (denoted as C. In

addition, we veri�ed that all data pages of each object type tend

to have uniform update intensity.

3 SYSTEM OVERVIEW

Figure 1: Multi-Streamed Database Engine: Architecture

Figure 1 shows the architectural overview of how a multi-

streamed database engine interacts with MS-SSD. First, as

shown in the bottom of Figure 1, a commercial MS-SSD from

Samsung with NVMe interface (PM953 model) is used. The MS-

SSD currently provides 16 physical streams. Next, as shown at

the top of Figure 1, a multi-streamed database engine will, for

each data page to be written, identify the logical data stream

where the page belongs according to the stream-per-object pol-

icy explained in Section 2. Finally, as illustrated in the middle

of Figure 1, the database engine is responsible for mapping its

each logical stream to a speci�c physical stream in MS-SSD us-

ing the posix_fadvise system call. For example, the database

engine can assign di�erent physical stream to its each logical

stream (that is, one-to-one mapping between logical and physi-

cal stream). As another example, as exempli�ed in Figure 1, four

logical data streams in database engine can be combined to map

to three di�erent physical streams in MS-SSD(that is, many-to-

one mapping between logical and physical stream).

The database engine will, before writing a data page,

�rst check its logical stream, then assign the appropri-

ate physical stream_id to the page according to the map-

ping between logical and physical streams, and �nally call

the multi-streamed write interface using the ioctl command

of posix_fadvise(fd,stream_id,0,POSIX_FADV_STREAMID).

Upon receiving the command, FTL will place the data page in

the physical stream corresponding to the given stream_id.

4 DEMONSTRATION DETAIL

4.1 Demonstration Scenario

The main goals of this demonstration are two-folds. First, we

will show that real database engine can signi�cantly bene�t by

accurately classifying its logical streams according to the stream-

per-object policy and then by calling the multi-stream interface.

Second, given the limited number of physical streams available

in realMS-SSDs, wewill show that it is possible to achieve nearly

optimal performance by e�ectively using physical streams less

than logical streams.

Table 3: Stream Combinations (MySQL/InnoDB)

5 streams 2 streams

(H1, H2, C1, C2, W) (H1, else) (C1, else)

(H1+H2, else) (H1+C1, else)

Table 4: Stream Combinations (ForestDB)

4 streams 3 streams 2 streams

H, C , W1, W2 W1+W2, H, C (H, else) (C,else)

H+C, W1, W2 (W1, else) (W2, else)

For this, by running TPC-C an ForestDB-Benchmark on

MySQL/InnoDB and ForestDB, respectively, this demonstration

will present the performances of vanilla version of each storage

engine. In addition, we will present, as the baseline performance,

the performance of its multi-streamed version when run by as-

signing one physical stream to each logical stream. As shown in

the �rst column of Table 3 and Table 4, respectively, a dedicated

physical stream is assigned to each logical stream in Table 1 and

in Table 2, respectively. Then, for each database engine, we will

present the performance of multi-streamed version when run

by grouping logical data streams into smaller number of phys-

ical streams in several meaningful combinations. In the case of

MySQL/InnoDB, we tested all four combinations shown in the

second column of Table 3. For example, the combination (H1+H2,

else) in the table represents that two hot logical streams of

H1 and H2 share one physical stream while all other three log-

ical streams do other physical stream. Similarly, in the case of

ForestDB, we tested all the six combinations shown in the sec-

ond and third columns of Table 4.

In order to show the e�ect of multi-streamed database visu-

ally, we made a GUI system to monitor status of computer re-

sources utilization, which is illustrated in Figure 3. Using the

GUI we will compare the e�ect of multistream SSD.

4.2 Preliminary Performance Evaluation

For each of MySQL/InnoDB and ForestDB engines, we have

evaluated the performance of its multi-streamed version as well

as its vanilla version. In the case of MySQL/InnoDB, we mea-

sured the write ampli�cation factors over time while running
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(a) TPC-C on MySQL/InnoDB (b) ForestDB-Benchmark on ForestDB

Figure 2: Preliminary Experimental Results: Original vs. Multi-Streamed Database Engine

Figure 3: GUI used in Demonstration

TPC-C benchmark for twelve hours on its multi-streamed ver-

sion for every �ve combinations in Table 1 as well as on its non-

multi-streamed version. The results are presented in Figure 2(a).

Similarly, in the case of ForestDB, we measured the write ampli-

�cation factors over time while running ForestDB-Benchmark

for six hours on its multi-streamed version for every seven com-

binations in Table 2 as well as the original ForestDB version. The

results are presented in Figure 2(b).

From Figure 2(a) and Figure 2(b), we can make several com-

mon observations on the performance implications of combin-

ing logical streams into physical streams. First, since everymulti-

streamed versions always outperforms the vanilla version for

both database engines, it is, obviously, always bene�cial to sepa-

rate at least one logical stream. Second, the best performance is

achievable by one-to-one mapping between logical and physical

streams. Third, it is better to combine data objects having similar

lifetime rather than di�erent lifetime. For example, when com-

paring the (H1+H2, else) case with the (H1+C1, else) one in

the case of MySQL/InnoDB, the former case shows lower WAF

value. Also, the (W1+W2,else) combination in ForestDB outper-

forms all other combinations except for one-to-onemapping log-

ical and physical mapping case, in terms of WAF value. Fourth,

it is always desirable to separate logical streams with extremely

low update interval, such as DWB (H1) in MySQL/InnoDB and

Superblock(H) in ForestDB. Lastly, though obvious, it is less ef-

fective to separate any logical stream with very low write ratio

than to separate one with high write ratio, as exempli�ed by two

streams of W1 and W2 in ForestDB.

5 CONCLUSION AND FUTUREWORK

In this demonstration, we have shown that database engines

can signi�cantly bene�t from MS-SSD by appropriately identi-

fying logical streams according to the stream-per-object policy.

In addition, given that the number of physical streams available

in real MS-SSDs is limited, we have derived a set of guidelines

on e�ectively grouping logical streams into the fewest physical

streams with minimal performance degradation.

One promising future research direction is to automatically

identify logical streams out of any write-intensive application,

which are suitable to MS-SSD, considering that we found out a

set of logical streams from each of two database engines manu-

ally. Another challenging future work is to automatically group

logical streams into minimum number of physical streams.
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ABSTRACT

To realize the premise of the Semantic Web towards knowledge-
able machines, one might often integrate an application with
emerging RDF graphs. Nevertheless, capturing the content of a
rich and open RDF graph by existing tools requires both time and
expertise. We demonstrate eLinda—an explorer for Linked Data.
The challenge addressed by eLinda is that of understanding the
rich content of a given RDF graph. The core functionality is an ex-
ploration path, where each step produces a bar chart (histogram)
that visualizes the distribution of classes in a set of nodes (URIs).
In turn, each bar represents a set of nodes that can be further
expanded through the bar chart in the path. We allow three types
of explorations: subclass distribution, property distribution, and
object distribution for a property of choice. To efficiently com-
pute the exploration queries, we offer a query engine powered
by a worst-case-optimal join algorithm.

1 INTRODUCTION

The potential of enhancingArtificial Intelligencewith rich human
knowledge intensifies with the growth of Linked Data resources
with high quality, volume, and wealth of domains. To realize this
potential, developers continuously explore emerging datasets
and investigate their relevance to the application at hand. We
present eLinda—an exploration tool for RDF that implements
a novel visual query language for exploratory search, designed
especially to facilitate comprehension of unfamiliar datasets. To
that end, we exploit the ontology that is typically associated to
an RDF graph, describing its semantics in terms of classes, class
hierarchies and properties.

The formal model underlying our visual query language ap-
plies in an iterative manner the basic principle for effective data
visualization by Shneiderman [6]: “Overview first, zoom and fil-
ter, then details-on-demand.” Specifically, our formal model is
based on histograms over focus sets of nodes (URIs) that are
constructed iteratively by the user. In this model a bar chart con-
sists of a set of bars, each representing a portion of the focus set.
The user selects a bar and applies an expansion operation that
transforms a bar into a new bar chart that now focuses on the
portion of the selected bar. In addition, a filter can be applied
to restrict the bar chart according to a search condition. The
user can then continue the exploration of the new bar chart, and
hence, construct focus sets of arbitrary depths. (See Section 2 for
the formal model.)

We illustrate the mission and functionality of eLinda through
a hypothetical exploration scenario over the DBpedia dataset [1].
Suppose that the user is interested in understanding what infor-
mation DBpedia has on cities where scientists were born. The ini-
tial bar chart shows how all DBpedia nodes are distributed among
the 49 top-level classes (see Figure 1). For example, the user can
observe that the most popular classes are Agent andWork. The

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the 21st
International Conference on Extending Database Technology (EDBT), March 26-29,
2018, ISBN 978-3-89318-078-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

user then selects Agent and applies a subclass expansion to get
a histogram over agents. Two additional subclass expansions
are then applied to focus on the Scientist nodes (through class
Person). Next, a property expansion is applied to get the distribu-
tion of properties of scientists, and from that the user selects the
birthPlace bar. An object expansion over this bar results in the
histogram over the birth places of scientists, and from there the
user selects the City bar.

The basic implementation of eLinda translates each expan-
sion into a SPARQL query that is sent to an endpoint. A major
challenge is the execution cost, since the queries often involve
large numbers of nodes to extract and apply aggregates to, and a
naïve translation to a black-box SPARQL engine yields impracti-
cal responsiveness. For example, computing the distribution of
properties over all DBpedia nodes takes around 10.5 minutes on
a standard Virtuoso endpoint. Therefore, we have implemented a
novel query engine that is specialized (and restricted) to support
eLinda’s exploration model. For that, we adopt and extend the
Cached Trie Join (CTJ) of Kalinsky et al. [5], an algorithm from
the breed of worst-case-optimal joins, to an evaluation algorithm
that we refer to as CTJ*. Specifically, CTJ*, supports reachability
queries and grouped aggregations. Our engine often achieves
1.5-2 orders of magnitude speedups compared to Virtuoso.

In addition to CTJ*, eLinda supports a remote execution mode
that works on Virtuoso endpoints that are accessible only through
a standard Web interface. In that case, eLinda accelerates respon-
siveness by retrieving data incrementally and caching results.
eLinda has an accompanying demonstration video that is avail-
able at https://tinyurl.com/y9hu2gxl.
Related Work. eLinda is inspired mostly by LD-VOWL [8]
that extracts ontological information from the actual RDF graph
by sending SPARQL queries to the RDF endpoint. The results are
visualized in a graph-based fashion. The fundamental difference
between LD-VOWL and eLinda is the iterative explorationmodel
of the latter—we use the visual tool for iteratively constructing
focus sets of arbitrary description depth (as described earlier).
Another important difference is our handling of efficiency that
does not have any correspondence in LD-VOWL. Many of the
existing ontology visualization tools, such as FlexViz [3] and
GLOW [4] visualize an ontology, yet independently of the data.
On the other extreme, a family of tools known as linked-data
browsers [2] are able to provide informative insights into the
details of a dataset by supporting the exploration of individual
nodes via properties and relations with other nodes. Examples
includeMarbles1 and Sig.ma [7]. In constrast to eLinda, browsers
are appropriate in cases where the task at hand is to look for
specific information from a dataset that the user is familiar with.

2 FRAMEWORK

In this section, we give the formal definition of the data and
interaction model underlying eLinda.

1http://mes.github.io/marbles/

Demonstration

 

 

Series ISSN: 2367-2005 658 10.5441/002/edbt.2018.78

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2018.78


Figure 1: Initial chart in the exploration pane over DBpedia.

RDF graphs. We adopt a standard model of RDF data. Specif-
ically, we assume collections U of Unique Resource Identifiers
(URIs) and L of literals. An RDF triple, is an element of U × U ×
(U ∪ L). An RDF graph is a finite collection G of RDF triples. In
the remainder of this section, we assume a fixed RDF graphG . A
URI u is said to be of class c ifG contains the triple (u, rdf:type, c).
Bar charts. eLinda enables the visual exploration of the RDF
graph by means of bar charts that are constructed interactively
(see Figure 2). We have two kinds of bars: a class bar represents
URIs of a common class, and a property bar represents URIs with
a common property. For a bar B, we denote by U(B) the set of
URIs represented by B. The category of B is the corresponding
class or property, depending on the kind of B. A bar chart (or just
chart for short) is a mapping from categories to bars.
Bar expansion. A bar expansion is a function E that transforms
a given bar B into a chart E(B). eLinda supports three specific
bar expansions E that we define as follows.

Subclass expansion: This expansion is enabled for class bars
B; in this case, the category c of B is a class. The categories of
the chart E(B) are all the subclasses of c , that is, the URIs c ′ such
thatG contains the triple (c ′, rdfs:subClassOf, c). The bar Bc ′ that
E(B) maps to category c ′ is a class bar with the category c ′, and
U(Bc ′) consists of all the URIs u ∈ U(B) such that u is of type c ′.

Property expansion: This expansion is again enabled for class
bars B. The categories of the chart E(B) are the properties of the
URIs of B, that is, the URIs p such that G contains (s,p,o) for
some s ∈ U(B). The bar Bp that E(B) maps to p is a property bar
with the category p, and U(Bp ) consists of all URIs s ∈ U(B) that
have the property p, that is, (s,p,o) ∈ G for some o.

Object expansion: This expansion is enabled for property bars
B; in this case the category of B is a property p. The categories of
the chart E(B) are the classes c of the objects that are connected
to the URIs in U(B) through the property p; that is, the classes c
such that for some triple (s,p,o) ∈ G it is the case that s ∈ U(B)
and o is of class c . The bar Bc that E(B) maps to category c is a
class bar with the category c , and U(Bc ) consists of the p-targets

of type c , that is, all URIs o of class c such that (s,p,o) ∈ G for
some s ∈ U(B).

The property and object expansions are defined above for
outgoing properties, that is, the URIs of B play the roles of the
subjects. We similarly define the incoming versions, where the
URIs of B play the roles of the objects.
Exploration. Finally, eLinda enables the exploration of G by
enabling the user to construct a list of charts in sequence, each
exploring a bar of the previous chart. The exploration begins
with a predefined initial chart that we denote by B0. In our im-
plementation this bar has the form E(B) where E is the subclass
expansion and B is a bar that consists of all URIs of a prede-
fined class. A sensible choice of such class is a general type such
as owl:Thing. By exploration we formally refer to a sequence of
the form (c1,E1) 7→ B1 , (c2,E2) 7→ B2 , . . . , (cm ,Em ) 7→ Bm
where each chart Bi is obtained by selecting the bar B of category
ci from the chart Bi−1 and applying to B the expansion Ei . As
a feature, eLinda enables the user to generate SPARQL code to
extract each of the bars along the exploration.

In addition to the expansion tasks, eLinda allows, at any
stage, to filter the current chart by a filtering condition (e.g.,
the name of the node contains a certain string). The semantics is
straightforward—every bar is restricted to the nodes that satisfy
the condition.

3 USER INTERFACE

eLinda is implemented as a single-page Web application that
points to an online SPARQL endpoint hosting the explored data.
During an exploration, eLinda fetches data from the endpoint by
sending numerous SPARQL queries. The user experience is visual,
and no SPARQL knowledge is needed. The user should have only
a basic understanding of ontology classes and properties.

eLinda’s basic UI component is a tabbed pane as in Figure 1.
Each tab in the pane presents a specific bar chart, which is the
result of an expansion applied on a bar of a previous pane. The
opened tab in Figure 1 shows the initial subclass expansion for
DBpedia. The bar chart visualizes the distribution of all DBpedia
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Figure 2: Screenshot of two exploration panes over DBpedia (upper is partially visible). Lower pane shows property data

about persons who have influenced philosophers.

subjects (instances of class owl:Thing) into subclasses. Each bar
matches a specific subclass, with a height proportional to its
number of instances. The bars are sorted by decreasing height.
Hovering over a bar opens a pop-up box with basic informa-
tion, for instance, DBpedia’s Agent class has more than 2 million
instances, 5 direct subclasses, and 275 subclasses in total.

To support visualization of large charts, a widget allows to
control the visible part of the chart. Class navigation is done by
clicking a bar, which opens a new pane under the current one.
For example, navigation to type Philosopher involves opening
three panes: Agent→ Person→ Philosopher. Alternatively, an
autocomplete search box for class types may be used, in cases
where top-down class navigation is less intuitive.
Property and object expansions. A pane has a second tab
with a property chart—the result of a property expansion. Fig-
ure 2 shows a property chart for Person subjects who have influ-
enced philosophers. Here, a bar represents instances that share
a specific property. (Switching to an incoming chart shows in-
coming properties, as explained in Section 2.) Bars are sorted by
coverage—the percentage of instances that feature the property.
The number of possible properties may be very large, and thus,
eLinda filters out properties with a coverage lower than a thresh-
old (defaults to 20% and adjustable by the user). In the figure,
only 57 properties out of 722 possible properties are shown.

The property chart in the figure was derived after applying
an object expansion to a previous pane of type Philosopher. In
that previous pane (partially shown in Figure 2), an influencedBy
property was selected in its property chart. Then, via a third
object chart, eLindawas asked to open a new pane (current pane)
with instances of type Person connected to philosophers through

the influencedBy property. This allows the user to further explore
only persons who have influenced philosophers.

A user interested in looking into the details of the dataset, may
use the data table that appears below the chart. Upon selection
of properties (bars) in the chart, columns are added to the table
and filled-in with values fetched from the dataset. The SPARQL
query used to generate the data table may be retrieved by the user
for future consumption. Data filters attached to table columns
may restrict the displayed data. In Figure 2, only persons born in
Austria (and have influenced philosophers) are presented.

4 SYSTEM ARCHITECTURE

The architecture design of eLinda is driven primarily by respon-
siveness, aiming for bar chart expansions to occur instantly. This
is challenging, since some of the queries that are submitted to
the endpoint require an execution time of up to several min-
utes on a Virtuoso endpoint. This is mostly because Virtuoso
utilizes traditional join algorithms, which generate up to billions
of intermediate results that are not part of the final result.

eLinda expansion queries retrieve the subject distribution
between subclasses or properties of a given class. Retrieving all
subjects of a class incurs a reachability query that retrieves the
subjects of all transitive subclasses. For example, when applied to
class Thing, the query retrieves all of its subjects, including those
of direct and indirect subclasses. The subjects are later grouped
by each Thing subclass or property and counted distinctly.

To provide the required responsiveness, we built a novel ex-
ploration query engine called eLinda-QE. Our query engine is
based on Cached Trie Join (CTJ) [5], a worst case optimal join
algorithm. CTJ generates only partial intermediate results that
will accelerate the join query. CTJ shows orders of magnitude
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Figure 3: Basic system architecture of eLinda.

speedup over traditional approaches on graph workloads. Yet,
CTJ supports only equi-join queries, and COUNT and SUM ag-
gregations. To support eLinda expansions, we extended CTJ
and refer to the extended algorithm as CTJ*. First, our CTJ* can
compute reachability queries. Second, CTJ aggregations were ex-
tended to support group aggregations. Queries containing outer
joins, such as queries containing the OPTIONAL clause, are not
supported by CTJ*. Such queries are offloaded to a Virtuoso end-
point. We plan to add outer join support to CTJ* in future work.
Different orders of (s,p,o) indexes are maintained and used by
CTJ*, similar to the indexes managed by Virtuoso.

Figure 4 shows the runtime of the slowest and most commonly
used queries by eLinda on an Ubuntu server with 16 cores and
128GB RAM. These queries construct the bar charts of the out-
going and incoming property expansions and the subclasses ex-
pansions in the first levels. The Virtuoso endpoint is configured
to utilize all available memory if needed. For all the queries in
Figure 4, the eLinda-QE is 1–2 orders of magnitude faster than
Virtuoso. For example, the runtime of class Thing property ex-
pansions on the Virtuoso SPARQL endpoint is 630 and 96 seconds
for the incoming and outgoing bar charts, respectively. On the
eLinda engine, the runtime is 11 and 3 seconds, respectively. The
speedups are consistent with other heavy queries we tested.

eLinda remote mode can work with any Virtuoso SPARQL
endpoint. Remote mode incorporates two methods to provide
effective latency for a user interface. First, an incremental evalu-
ation is being applied. eLinda builds the chart of an expansion
by computing it on the first N triples in the RDF graph. It then
continues to compute the query on the next N triples and ag-
gregates the results in the frontend. It continues for k steps, or
until the full chart is computed. The parameters N and k are
determined by an administrator configuration. Second, caching
is used to reduce the latency. These methods allow eLinda to
quickly present information to the user that otherwise will take
minutes or be rejected by the endpoint for running too long.
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Figure 4: Running times of property and subclass expan-

sions on different engines (log scale).

Figure 3 depicts the architecture of eLinda. The frontend is
implemented as a Web page that communicates with the server
via AJAX. Expansion queries are sent to eLinda engine (running
CTJ*) while OPTIONAL queries are offloaded to a Virtuoso end-
point. The eLinda engine is a Web server developed in C++17,
incorporates a multithreaded Web API for query evaluation, and
uses OpenMP for fine-grained parallelism in CTJ*. In remote
mode, all queries are sent to the remote endpoint and are cached
either in the reverse proxy or in the browser.

5 DEMONSTRATION SCENARIOS

During the demonstration, participants will explore several RDF
datasets such as DBpedia and LinkedGeoData with eLinda. Sev-
eral kinds of explorations will be exercised.

The first kind will tackle the task of understanding a large and
unfamiliar dataset. The participants will examine the bar chart
showing the first-level classes of the dataset (subclass expansion).
They will be presented with key statistics that may be inferred
from the chart, such as the three largest classes, the number of
instances these classes have, and the number of their direct and
indirect subclasses.

In the second scenario, the participants will analyze the prop-
erty chart of the largest class in the dataset (property expansion).
They will examine the twenty most significant properties, then
select a few of them and see their values appear in the data table.
Selected properties will be added with filters, and the data pre-
sented in the table will be reduced. The participants will adjust
the default coverage threshold to 50% and see the number of
presented properties decreasing. Similarly, incoming properties
will be explored. Additional scenarios will look into sophisticated
exploration paths such as “the types of people that influenced
philosophers,” “cities where scientists were born,” and “spouses
of former US presidents.” These scenarios will involve opening
several charts in sequence to achieve the desired goal.

Another scenario will demonstrate the performance issue elab-
orated in Section 4. The participants will be presented with sev-
eral explorations that entail heavy queries with the discussed
solutions turned on and off. This demonstration will include
working with the described eLinda engine, as well as working
in remote mode where standard Virtuoso SPARQL endpoints
are used “as is.” In the remote mode, incremental evaluation of
queries and the use of caching will be illustrated.

The last scenario will demonstrate how eLinda can be used
to detect erroneous data such as “people who are indicated to be
born in resources of type food.”
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ABSTRACT
In this paper, we present FAIMUSS a tool for data transformation
from a wide variety of heterogeneous streaming and archival
sources to RDF. This is a typical situation in the analysis of
mobility data, such as maritime and aviation, where streaming
position data of moving objects need to be associated with static
information (such as crossing sectors, protected geographical
areas, weather, etc.) in order to provide semantically enriched tra-
jectories. FAIMUSS is designed to perform “near-to-the-sources”
integration, by interaction between a streaming source and an
archival source, thus generating linked RDF graph fragments.
Most of the existing approaches operate either on streaming or
on static sources, thus fail to address our problem setting. In
addition, FAIMUSS supports reusable user-defined functions that
are applied to input data and achieve the desired data transfor-
mations and cleaning. We demonstrate our prototype by using
data from the maritime and aviation domains.

1 INTRODUCTION
The Resource Description Framework (RDF) enables the descrip-
tion of physical entities as resources, in favor of data interop-
erability, integration and exchange. As a result, a wide range
of solutions exists for converting a data source to RDF, based
on a schema specified by RDFS or OWL profiles. For instance,
R2RML [5] is a mapping language that translates SPARQL queries
to SQL (and vice-versa). Ontology Based Data Access (OBDA) [2,
3] also focuses on relational data sources, but again requires ad-
vanced knowledge to define the (usually complicated) mappings
between the data source and the ontology schema. SPARQL-
Generate [10] provides an extension of SPARQL 1.1 that allows
generation of RDF fragments from documents. Solutions tailored
for specific RDF stores also exist, for example Virtuoso Cartridge1,
however they are tied to a particular product.

Moreover, the amount of streaming data sources has increased
rapidly in recent years, and such sources pose new challenges
for data integration [13]. Apart from the obvious performance
challenge raised by high stream rate, streaming data are typically
1https://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/
VirtProgrammerGuideRDFCartridge
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semi-structured, and contain noisy data. As such, the problem of
integrating streaming data sources is still open, and there is a lack
of flexible tools that transform streaming data to RDF, integrate it
with external sources, and are easily configurable to new sources.

Figure 1: FAIMUSS consumes streaming and archival
sources and produces (linked) RDF data.

Our work is motivated by the need to produce enriched rep-
resentations of moving object trajectories expressed in RDF, by
ingesting streaming surveillance data in real-time and associating
it with other sources, both streaming and archival. Figure 1 illus-
trates this process, focusing on mobility data in maritime [4] and
aviation domains recording positions of moving objects, such as
vessels and aircrafts. However, this is simply for demonstration
reasons, as our work is readily applicable to any other category
of streaming data, including social data consumed through an
API (e.g., Twitter API).

In this paper, we present FAIMUSS (Flexible dAta TransformatIon
to RDF fromMUltiple Streaming Sources), a flexible, user-friendly
system for end-to-end data transformation of streaming data to
RDF and integration with external sources. Given an ontology,
FAIMUSS converts streaming data (but also other data sources)
into RDF triples, which are also integrated with other archival
data sources. We employ the datAcron ontology [12] for rep-
resenting trajectories at multiple levels of analysis. However,
the system imposes no constraints on the use of a specific on-
tology, while it supports a wide range of input source data for-
mats. Salient features of FAIMUSS include its flexibility and user-
friendliness: the process of triple generation is determined by a
Graph Template that is easily edited by the user with the support
of a rich editor. Furthermore, FAIMUSS supports “near-to-the-
sources” integration, by generating linked RDF graph fragments
during the process of data transformation. Finally, the implemen-
tation of FAIMUSS also addresses scalability issues and aims at
high performance.
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Figure 2: System architecture of FAIMUSS. White arrows
indicate data flows and black arrows indicate user interac-
tions.

2 SYSTEM ARCHITECTURE
In this section, we describe the system architecture that con-
sumes data from a variety of data sources and outputs RDF graph
fragments. This process is designed in a generic fashion, so as
to accomplish multiple objectives, including flexibility, exten-
sibility and scalability. FAIMUSS comprises the following main
components, a) the Data Connector, b) the Triple Generator, and
c) the Visual Interface. Figure 2 illustrates the overall system and
the individual components and their interactions, which will be
described in detail. The prototype system has been implemented
in Oracle Java 8 (64-bit) and is platform-independent.

2.1 Data Connector
The Data Connector component implements the functions that
accept data from an individual data source. Moreover, it performs
data conversion on values of specific fields as provided by the
source and basic data cleaning operations. As the data sources
can vary significantly in terms of representation, size, rate of
data access, and noise, FAIMUSS provides a Data Connector for
each type of source. The implemented system currently sup-
ports data consumption from a wide range of sources/formats,
such as: a) CSV format, b) direct access to databases, c) JSON
messages, d) XML files, e) METAR/SPECI weather reports from
offline/continuous feeds from online services, f) binary (GRIB2)
files for weather reports, g) SPARQL endpoints to online open
data, h) ESRI shape-files to convert information about spatial
object to entities and relations of the ontology, and i) proprietary
formats of streaming. The list of supported data formats can be
easily extended, to support the inclusion of any other data format
required in the future.

As an abstraction of the data source in hand, the Data Con-
nector considers all data sources as streams, i.e. it consumes data
record-by-record (or tuple-by-tuple), to be processed with mini-
mal latency. This data access model makes no distinction on the
nature of data (e.g. archival data or streaming data). In addition, it
minimizes the memory footprint of Data Connectors, and enables
scalability and parallelization as a multi-threaded process, both
for a single source and across sources.

2.2 Triple Generator
The role of Triple Generator is to consume the data provided by
the Data Connector and generate the corresponding set of triples.
This procedure depends on configuration files providing a Graph
Template GT , and a vector of variable names V. The vector V
contains the variables that appear in the Graph Template, and
binds the values of the input record to the variables in GT . The

Figure 3: A Graph Template and Variable Vector example
in Triple Generator.

Graph Template consists of a set of triple patterns, i.e. any of
the three elements in the triple (subject, predicate, object) can
be replaced by a variable. The Graph Template differs from the
standard RDF Graph Pattern, in that variables can be used as
arguments in functions, to compute dynamic values at runtime.
Furthermore, the implementation of Triple Generator is paral-
lelized in a multi-threaded process, due to the record-by-record
conversion to triples.

Figure 3 illustrates the application of a Graph Template on a
single record from a stream of aircraft surveillance data to gener-
ate the corresponding triples. Specifically, the Triple Generator
consumes the data provided from the Data Connector and con-
structs a new resource (:sn001_1468) of type :Node, based on
the Graph Template depicted at the top of the figure. This new
resource is the spatio-temporal representation of the moving ob-
ject (aircraft). The Triple Generator also relates the :sn001_1468
to the resource representing an aircraft (using the property :of-
MovingObject), as well as information regarding the status, the
altitude and position of the moving object.

Figure 4 shows another example of data transformation where
two data sources are processed and integrated, by having two
instances of Triple Generator interact with each other. The po-
sitioning data connector provides surveillance data of vessels
to a Triple Generator instance, similar to the previous example.
The GRIB connector accesses binary files that contain weather
forecasts and can extract the related weather attributes for a
given spatio-temporal position. As soon as a new position is re-
ceived, a request is made to the Triple Generator instance that
retrieves the weather information and provides it in RDF repre-
sentation based on the respective Graph Template. This allows
data transformation of selected weather information, namely this
corresponding to the area defined by the positioning information.
More interestingly, the weather Triple Generator returns the URI
of the weather condition to the positioning Triple Generator,
which can then create the :hasWeatherCondition property and
associate the position with the weather. This is an example of
lightweight, “near-to-the-sources” integration.

2.3 Visual Interface
The Visual Interface enables the configuration of Data Connector
and Triple Generator, the preview of input data, the visualization
of output triples on a map, and output validation. Specifically,
the user can select the ontology to be used, which will provide
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Figure 4: Example of data transformation and “near-to-
the-sources” integration (maritime domain).

the vocabulary for the Triple Generator. Obviously, the ontol-
ogy should be taken into consideration when editing a Graph
Template, to guarantee consistency of the generated triples.

Figures 5 and 6 provide screenshots of the Visual Interface
using data from the aviation domain. As illustrated in Figure 5(a),
the user can select and configure the data source that will be
processed (e.g., specify the IP and port of remote endpoints, or
folder/file for local access), and the type of Data Connectors that
should be used for consuming the data. A sample of the data
available in the configured data source, for visual inspection.
The user can also select the fields of the input data source that
should be converted to triples, and specify the Variables Vector
to be used in the Graph Template. Figure 5(b) shows the editor
for composing the Graph Template. On the right side, the set of
available functions is provided, from which the user can insert
in the editor by a double click. Also, the Variables corresponding
to the input source are also available. The editor uses different
font color for functions and variables to improve readability. In
addition, import (export) of Graph Templates from (to) disk is
supported. It should also be mentioned that automatic valida-
tion of a sample (or the entire output) of triples generated w.r.t.
the provided Graph Template is supported. Figure 6 depicts a
map-based interface provided by FAIMUSS, which enables the
illustration of spatial and spatio-temporal RDF data. In this ex-
ample, it depicts trajectories of moving objects (aircrafts), which
correspond to RDF data generated by our system.

3 DEMONSTRATION SCENARIOS
We have used FAIMUSS in two domains, maritime and aviation,
thus showing the generic nature of our system and its appli-
cability in different domains. The selection of these domains
originates from our involvement in the H2020 research project

datAcron (http://datacron-project.eu/), where one of the objec-
tives is to integrate heterogeneous and voluminous archival data
with streaming data sources.

Scenario 1: Flexible Integration of New Sources. We intend to
show in the demo that a new streaming data source can be added
to FAIMUSS, after a small set of steps that can be performed by
selections from the GUI. The aim is to demonstrate the ease of
use of FAIMUSS in practice. In more detail, the streaming data
source is going to be surveillance data from vessels travelling
in the Mediterranean Sea. Each record in the stream contains
the spatio-temporal position of a moving object, along with its
unique identifier. From the GUI of FAIMUSS, we are going to
input the necessary information for establishing a connection
(IP address, port, and authentication details). Thereafter, a Graph
Template is going to be specified from an editor of the GUI, which
guides the Triple Generator and determines the transformation
of stream records into RDF triples. As already mentioned, the
editor facilitates the composition of Graph Templates even for
moderately familiar users, not only by loading existing Graph
Templates that can be modified, but also by providing access to
lists of available functions and variables that generate Graph
Template code in the editor.

Scenario 2: Trajectory Enrichment. We will show in the demo
how we can generate enriched trajectories from moving objects’
positions, where the positional information can be integrated
with arbitrary data sources. Continuing scenario 1, the spatio-
temporal position of each vessel is going to be integrated with
weather conditions. Weather conditions are available as forecasts
for a temporal period (e.g. three hours) in the form of large binary
files (GRIB2 format), and mainly define 3-dimensional cells that
containmultiple variables describingweather condition (e.g., tem-
perature, humidity, pressure, etc.). In this scenario, upon receipt
of a spatio-temporal position of a moving object, the Triple Gener-
ator instance responsible for surveillance data is going to produce
RDF triples. By communication with a Triple Generator instance
for weather data, which produces weather-related triples, the
resulting positional RDF data is linked with weather information.
In this way, we generate enriched trajectories of moving objects
represented in RDF, which will be illustrated on a map for visual
inspection, and provide additional (weather-related) information
for each spatio-temporal position of a moving object.

4 RELATEDWORK
A wide list of data transformation and conversion tools exists,
and such tools2 have been evaluated during the design of our
system, however these are mostly ad-hoc solutions tailored for
converting archival data in specific file formats. For example,
Omnidator [1] converts any CSV or HTML online file into RDF
triples. GeoTriples [8] employs automatically generated R2RML
mappings given a source and a configuration, but demands the
use of a relational database, which is not applicable for streams.
SPARQL-Generate [10] provides an extension of SPARQL 1.1 that
allows generation of RDF fragments from documents.

Data integration over streaming data poses new challenges
compared to traditional data integration [13]. The Graph of
Things [9] targets an IoT setting where many sources provide
data for integration and querying, and supports spatial and tem-
poral data, but it is not optimized for mobility data. Also related
to our work is StreamLoader [11] which provides a user-friendly,
2https://www.w3.org/wiki/ConverterToRdf
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(a) Configuration of Data Connector (b) Editor for Graph Templates

Figure 5: Screenshots of the Visual Interface of FAIMUSS (aviation domain).

Figure 6: Map-based visualization.

web-based environment for ETL (Extract-Transform-Load) of
streaming data from heterogeneous sensors. However, it deviates
from our objective, namely to provide representations of stream-
ing data in RDF, thus allowing linking with other external (web)
sources. Moreover, it does not explicitly address the domain of
moving objects and trajectories thereof, which is the motivation
of our work. Only recently, Optique [6, 7] proposes an approach
for integration of streaming with static relational data. Again,
this problem is much narrower than the one addressed by our
work, since we make no assumptions on the availability of a
relational database nor do we impose such requirements. None
of the existing approaches targets streaming mobility data of
vessels or aircrafts explicitly. Moreover, our work goes one step
further, by introducing a system for flexible data transformation
to RDF, with a particular focus on mobility data, also supporting
linking of generated RDF graph fragments.

5 CONCLUSIONS AND FUTUREWORK
In this paper, we present the FAIMUSS system for flexible data
transformation of streaming and archival data sources to RDF.
Despite the generic and extensible design of our system, the
focus of our attention is on moving objects and integrating their
spatio-temporal positions with a variety of heterogeneous data
sources, including weather conditions, spatial areas of interest,
as well as external databases. In our future work, we intend to

fully parallelize our system, thus providing a scalable solution to
the problem of data integration from different data sources.
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ABSTRACT
The volume of RDF data is now growing tremendously. It is
thus considered prudent to store and process massive RDF data
with distributed SPARQL engines instead of relying on a single-
machine system.Many sophisticated index and partitioning schemes
have also been proposed to support SPARQL query evaluations.
However, existing SPARQL engines have mainly followed one-
at-a-time scheme so that query evaluation is focused only on
processing each query separately. We showcase SAMUEL, a dis-
tributed SPARQL engine that simultaneously evaluates many
SPARQL queries for a massive RDF dataset with MapReduce.
SAMUEL provides an efficient optimization algorithm to evaluate
many SPARQL queries simultaneously in a shared and balanced
way. Extensive experiments present that without any sophisti-
cated partitioning or index mechanisms, our approach signifi-
cantly outperforms other MapReduce-based SPARQL engines as
well as an ad-hoc query engine equipped with various indexes
and partitioning tools for evaluating multiple SPARQL queries.

1 INTRODUCTION
The Resource Description Framework (RDF) is a versatile graph
data model that enables users to express facts and their relation-
ships in the form of triples ⟨ Subject, Predicate, Object ⟩ where a
predicate (P) expresses a relationship between a subject (S) and
an object (O) [2]. Many knowledge bases are now defined in the
RDF format, e.g., DBpedia [16], Bio2RDF [6] and UniProt [7] and
they shape a very large set of graphs having millions of triples
interlinked each other and are queried by using SPARQL query
language [1]. It has been a major challenge to find subgraph
patterns described in given SPARQL queries from a massive set
of RDF graphs with supporting both efficiency and scalability.
To address the issue, numerous SPARQL query engines have
been devised based on MapReduce [15] or their proprietary dis-
tributed architectures [3]. Meanwhile, multiple SPARQL queries
often need to be evaluated together as the queries can be pre-
pared before runtime in some scenarios [13, 20]. Motivated by
these facts and our previous work on XML data [8], we devise
a MapReduce-based SPARQL engine called SAMUEL, which si-
multaneously evaluates many SPARQL queries in a shared and
balanced way. Major features of SAMUEL are as follows :
Support of parallel multi-SPARQL query processing
SAMUEL provides an efficient means to process a massive set of
∗This work is equally supported by KISTI and NRF grant (No. NRF-2015R1A2A2
A01004879) funded by the Korea government.
†Corresponding author
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RDF data in parallel. It does not require any sophisticated par-
titioning or index mechanisms for SPARQL query evaluation.
Nonetheless, SAMUEL easily outperforms other MapReduce-
based distributed SPARQL engines by simultaneously evaluating
multiple SPARQL queries with a short series of MapReduce jobs.
Sharing input scans and intermediate results
SAMUEL enables computing nodes to share input scans and their
intermediate results with each other. While joining RDF triples
for evaluating queries, a group of join operations assigned to
each reducer share their input and intermediate results associated
with distinct subquery patterns that multiple queries commonly
contain. Consequently, it saves many I/Os by removing many
redundant subquery matchings while evaluating queries.
Runtime load balancing and multi-query optimization
In a distributed system, a straggling task delays overall job execu-
tion. This problem deteriorates with the use of MapReduce since
MapReduce typically enforces barrier synchronization between
Map and Reduce tasks. MapReduce’s native runtime scheduling
algorithm also proved to be inefficient especially in the reduce
stage [12, 15]. To address the issue, SAMUEL rather exploits dy-
namic shuffling scheme that balances workloads across reducers
at each MapReduce job in accordance with the cardinality of RDF
triples that each reducer consumes for joining. It decomposes a
given set of SPARQL queries into distinct triple patterns and then
gradually builds a bushy query plan tree that covers all RDF join
operations required to evaluate the given SPARQL queries. Since
processing join operations at each level in the query plan tree
requires a single M/R job, SAMUEL always tries to build a bushy
plan tree with the lowest possible height. Then, it partitions the
join operations at each level into n groups and then assigns them
to n reducers. To balance workloads across reducers that actually
perform join operations, SAMUEL computes the cost of each join
operation at each level of the plan tree before actual joining. It
then assigns join operations into reducers at each level such that
every reducer has the same overall cost of join operations and the
lowest communication cost by avoiding redundant RDF triples
being transferred to multiple reducers so far as possible.

The rest of this paper is organized as follows. Section 2 intro-
duces previous studies directly related to our work. Section 3
describes how we evaluate multiple SPARQL queries together
at a time and our system architecture that provides workload
balancing as well as multi-SPARQL query processing. Section 4
presents our demonstration scenario including the major results
of performance evaluations.

2 RELATEDWORK
Numerous distributed SPARQL engines have been devised to
store RDF data and to evaluate SPARQL queries so far [3, 9,
11, 14, 19, 21, 22]. Readers are referred to a recent survey on
distributed SPARQL query engines [3]. These systems fall into
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A set of SPARQL queriesRDF data

Query results

Join
results

Figure 1: System architecture

two categories in the aspect which framework these systems
rely on : (i) general-purpose framework such as MapReduce and
(ii) specialized RDF systems. In this paper, we only deal with
MapReduce-based RDF engines due to the limit of space.
MapReduce-based RDF engines
MapReduce is a popular parallel processing tool that provides
high scalability as well as simple abstraction. Therefore, many
studies have been done with MapReduce although it has some
inherent limitations [15]. It is noteworthy that most M/R-based
RDF engines do not well utilize index mechanisms since MapRe-
duce is originally devised for batch processing rather than ad hoc
queries. Indexes are considered inefficient for batch jobs due to
their expensive building cost only for one-time use.

SHARD [21] is a distributed RDF engine built with MapRe-
duce. All the RDF triples are stored in a single file in HDFS and
RDF triples are hash-partitioned across nodes. SPARQL queries
are evaluated as M/R job iterations. A subquery pattern is eval-
uated within a M/R job and its results are transferred to a sub-
sequent M/R job. SHARD does not utilize any indexing scheme
so that it needs to scan the entire dataset for query evaluation.
HadoopRDF [11] is another RDF engine built with MapReduce.
It partitions RDF triples into multiple files in the way that each
file contains all the triples that have the same predicate. It also
locates non-duplicate binary joins together into a M/R job to
minimize MR job iterations. SHAPE [14] also uses MapReduce
but it uses semantic hash partitioning scheme to group vertices
on the basis of URI hierarchy for improving data locality. How-
ever, these systems suffer from workload imbalance if a few triple
patterns dominates overall data distribution. H2RDF+ [19] is a
distributed engine based on both MapReduce and HBase, the
open sourced version of BigTable. It materializes combinations
of RDF triples and store them into HBase tables in order to utilize
some features of HBase, e.g., sorted keys and range-partitioned
tables based on the keys. However, H2RDF still join RDF triples
with M/R job iterations thus a complex queries can expand the
iterations. CliqueSquare [9] partitions RDF triple in three ways,
by hashing them on the basis of subject, predicate and object for
increasing data locality. It exploits the data replication feature of
HDFS to locally process all first-level joins on each node. It also
tries to minimize the number of M/R job iterations for RDF joins
with a shallow query plan tree and multi-way join operations.
Multi-query optimizations
Multi-query optimization on MapReduce is regarded as an ex-
tended version of the classical job-shop problem [5] that has a
long history. A few studies related to multi-query optimization
on MapReduce have been reported in the literature [18, 23] in
the context of relational processing. They provide generalized
grouping techniques that merge multiple jobs into a single job

Definitions
 Definition 7 ‐ Common subquery pattern set

• A common subquery pattern refers to a triple pattern that is common to partial 
SPARQL queries Qp = {qi, qj} for a set of SPARQL queries Q

• The common subquery pattern set is given by TPc = {(tp∈qi)∩(tp∈qj)|qi,qj∈Q} 
when 1<i<|Q|
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Example query 1
SELECT ?stud, ?course
WHERE 
{?stud type Student .
?stud type Course .
?stud takesCourse ?course .
Kyu-Chul teaches ?course}

Example query 2
SELECT ?stud, ?facul, ?course
WHERE
{?stud type Student .

?facul type Faculty .
?course type Course .
?stud advisor ?facul .
?facul teaches ?course .
?stud takesCourse ?course}

In the example, 
TPc = {tp(?v type ub:Student),tp(?v type ub:Course)}

takesCourse

teaches

type type

q1Kyu-Chul

Student ?stud ?course Course

q2

Student Faculty

Course

?stud ?facul

?course

type typeadvisor

teachestakesCourse

type

Figure 2: Example of common subquery patterns in two
SPARQL queries

thereby enabling the merged jobs to share input scans and com-
mon mapped outputs. Some studies address the issue in the con-
text of SPARQL queries [13, 20]. Multi-query optimization for
SPARQL is also proven to be NP-hard so that they rather propose
heuristic algorithms that partition a set of queries into groups
such that queries in each group can be optimized together. How-
ever, their algorithms [13, 20] are focused only on working on
a single-machine engine rather than a distributed environment
such as MapReduce. Therefore, all the approaches are hard to be
directly applied to distributed SPARQL engines. On the contrary,
we focus on multi-query optimization on MapReduce-based dis-
tributed SPARQL engines. To the best of our knowledge, this
is the first work that provides a solution for the multi-query
optimization problem in MapReduce-based SPARQL engines.

3 MULTI SPARQL QUERY PROCESSING
SAMUEL performs its query evaluation in three phases: (i) pre-
processing phase, (ii) labeling & filtering phase, and (iii) iterative
joining phase (see Fig. 1). In the preprocessing phase, RDF data
and a set of SPARQL queries are loaded on HDFS. In our system
RDF triples are simply stored in a single file where each triple
is recorded as a single line as it is, except that redundant URIs
and labels are substituted by unique IDs for saving storage vol-
ume and I/Os. Note that we do not use any partitioning or index
mechanisms for RDF data since we only show the effect of our
approach, distinguished from the benefits that we can get with
the mechanisms. Query loader decomposes SPARQL queries into
a set of distinct triple patterns, and then associates each triple
pattern with a set of queries that contains the triple pattern like
Fig. 2. It also builds an in-memory radix tree where a tree node
at each level represents a unique S, P , and O of triple patterns,
respectively. With the radix tree, SAMUEL rapidly finds triple
patterns matched to an input RDF triple while query evaluation.

The labeling & filtering phase is implemented with a single
M/R job. In the phase, RDF triples are labeled with IDs for their
corresponding triple patterns by traversing the radix tree and
also are filtered out if they have no corresponding triple patterns.
This work has an analogy to filtering stream data. Since reducers
aggregate RDF triples that has the same pattern, it allows us to
easily compute the cardinality of each triple pattern in the phase.

Based on the cardinality information, our query optimizer
builds a global query plan tree that has the lowest possible height
to minimize the number of M/R job iterations for joining RDF
triples. Redundant join operations are removed as each join oper-
ation is shared by multiple queries. When assigning binary RDF
join operations to reducers, we consider both join cost and trans-
mission cost to minimize and balance workloads across reducers.
It is achieved by summing the cost of every RDF join operation
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Dataset LUBM-100M WatDiv-1M WatDiv-10M WatDiv-100M WatDiv-1B
# of triples in total 138,280,374 1,098,468 10,989,614 109,795,305 1,098,717,244
# of distinct triples 133,573,856 1,085,817 10,906,204 109,051,965 1,091,667,092

# of distinct patterns matched to queries 23 361 355 358 355
(1,000 queries for WatDiv and 14 queries for LUBM)

Data size(GB) 23.02 0.14 1.45 14.63 148.23
Table 1: Statistics of RDF Datasets
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Figure 3: Data skewness in two datasets

Figure 4: SAMUEL GUI

assigned to each reducer and the cost of each RDF join operation,
implemented with binary hash join, is computed by summing the
sizes of two input RDF triple pattern lists. Triples are grouped on
the basis of distinct triple patterns and the groups are ordered in
a descending order of cardinality. We devise a heuristic optimiza-
tion algorithm based on first-fit decreasing scheme whose input
is a set of ordered lists of the distinct triple pattern groups. Some
triple patterns have very high cardinality as shown in Fig 3. We
thus allow splitting a very large triple pattern list into multiple
small lists for better workload balance. Note that our global query
plan tree is gradually built. That is, the n-th level in the tree is
computed right before running the n-th joining phase. In each
joining phase, implemented by another M/R job, mappers read
grouped RDF triples and tag reducer IDs to the triples accord-
ing to the global plan tree. Since mapped outputs are shuffled
by intermediate keys, triples tagged by the same reducer ID go
to the same reducer together and are then joined. Again, each
reducer computes the cardinality of its joined outputs and the
cardinality information and joined results are stored in HDFS.
Then, our optimizer repeats building the n+1-th level of the plan
tree with the cardinality of the results of the n-th joining phase.

4 DEMONSTRATION
During the demonstration, audience are invited to compare our
system with other distributed SPARQL engines based on the
MapReduce framework, interactingwith the system to run queries
and to check the influences of optimization techniques.

Hardware setup:We implemented our systemwith Hadoop ver-
sion 1.2.1. SAMUEL as well as compared systems were installed
and run on a cluster of 15 nodes, each of which was equipped
with an Xeon E5-2620 2.1GHz CPU, 64GB memory and an 1TB
7200RPM HDD, running on Ubuntu 12.04. All the nodes were
connected via Gigabit switching hub and a node is designated as
a master node. We basically used the same settings for our cluster
for fair comparison. However, the settings were sometimes tuned
for showing the best performance of compared systems.
Dataset: We used two datasets, which had been widely used for
measuring SPARQL engines in the literature [4, 10]. Table 1 and
Figure 3 present the statistics for datasets used in our demonstra-
tion and their data distributions. Both datasets exhibited high
skewness in their data distributions in that only a few of triple
patterns dominated most of the data distributions (see Fig. 3).
Compared systems: In our demonstration, we compare our sys-
tem with RDF-3X [17], a single-machine SPARQL engine that uti-
lizes various indexes, and three other MapReduce-based systems,
i.e., SHARD [21], SHAPE [14], and H2RDF+ [19]. For evaluation,
the performance of each system was averaged over five runs
excluding the maximum and minimum values.
Demo scenarios and interaction
Weprovide a user interface shown in Fig. 4 to demonstrate the per-
formance of SAMUEL using large-scale RDF datasets, i.e., LUBM
and WatDiv. In our demonstration, we however use only a few
fractions of the two datasets due to the limited time and comput-
ing resources. However, we still present our evaluation results
performed with all the datasets (see Fig 5). Currently, SAMUEL
supports a subset of SPARQL language, i.e., basic graph pattern
matching. In our demonstration, users will be given a list of
SPARQL queries generated from WatDiv for the datasets in Ta-
ble 1. Users are also allowed to load their own queries and RDF
data into the system and run the queries themselves. During
the processing, users will be explained with Hadoop GUI and
our own UI how our system processes multiple SPARQL queries
simultaneously. Users will also check how features of SAMUEL
affect the overall performance as they turn on and off the fea-
tures, i.e., sharing input scan and filtered solutions, optimization
policies, and so on.
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ABSTRACT
Existing trajectory patterns, such as flock, convoy, swarm, and

gathering, are to detect moving clusters staying or travelling to-

gether for a certain time period. But these patterns model group

movement behaviors after moving objects’ gathering together.

This may result in loosing golden opportunities to detect emer-

gency incidents earlier, such as traffic congestion and serious

stampedes. In this work, we propose a novel group pattern, called

converging, which can model converging behaviors of moving

objects. As a proof-of-concept, we implemented a visual ana-

lytic system GEDetector based on trajectory streams to detect

gathering events as early as possible. A user-friendly interface

is designed to help users gain insights into gathering events

from spatial and temporal aspects. Finally, we demonstrate the

effectiveness and efficiency of our system by using a real world

dataset.

1 INTRODUCTION
The existing group patternminingmethods, such as flock [1], con-

voy [2], swarm [3], travelling companion [4], and gathering [5],

are to discover a group of objects that stay or travel together for

a certain time period [6]. Analysis tasks based on group patterns

can be used for enormous applications, including transportation

optimization, public security, advertisement delivery, travel rec-

ommendation, and animal movement study and so on [7]. In this

work, we develop a visual analytic system GEDetector to detect

gathering events in trajectory streams.

Previous studies on group patterns are unsuitable for detecting

gathering events despite of wide applications of group patterns.

It is worth pointing out that, most of group patterns can capture

group movement behaviors only after moving objects gather to-

gether. For example, convoys require that each group of objects

travel together during the whole pattern lifetime. Gatherings

also require that all participators stay together at the most times-

tamps in the pattern lifetime. However, in real life, people are

more interesting in modelling and identifying group converg-

ing behaviors before the gathering events actually happen, since

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the 21st
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this helps to proactively report and handle the coming public

incidents, such as traffic congestion and serious stampedes.

However, the efficient discovery of convergings in trajectory

streams is a challenging task due to two main reasons: (1) the

existing group patterns cannot capture intuitively converging

behaviors of gathering events; (2) the discovery of convergings

may face huge search space and incur high cost. In this work,

we propose a novel group pattern, called converging, which can

model the converging behaviors of moving objects and detect

gathering events in trajectory streams. Furthermore, we propose

a converging pattern mining method based on cluster contain-

ment join (CCJ), which utilizes a signature quad-tree based index,

called SQTI, to organize clusters hierarchically and spatially. The

SQTI based mining algorithm enables us to rapidly reduce search

space and efficiently identify interesting and useful converging

patterns.

In this demo, we present a novel Gathering Event Detection

system, named GEDetector, which is designed to achieve an

early detection of gathering events through mining converging

patterns in trajectory streams. The GEDetector has been deployed

on a virtual machine of Alibaba Cloud, which can be accessed at

http://103.242.175.191: 5456/gedetector.

2 PROBLEM FORMULATION
The identifying characteristic of a gathering event is a converging,
which is a group of moving objects gathering from different direc-

tions for at least kt timestamps. It is easy to see that, converging

patterns focus on the earlier stages of gathering events compared

to other existing patterns. To accurately model converging be-

haviors, we introduce participators, which are used to indicate

the objects appearing in at least kp consecutive clusters of this

converging, and require that a converging should contain at least

km participators.

Now we use Fig. 1 as an example to illustrate the converg-

ing pattern, and let kt = 2, kp = 2, km = 4, in which there

are six moving objects joining a gathering event from different

directions and forming one cluster. Additionally, there are two

clusters (i.e., c1 & c2) that are gathered at t2 and later join the

cluster c3 at t3. Such set containment between two clusters is

called cluster containment relation, denoted by ⊆c . Thus, we have

c1 ⊆c c3 & c2 ⊆c c3 in Fig. 1(a). By joining these two cluster

containment relations, we can construct a containment tree to

model converging behaviors of moving objects, as shown in Fig.
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1(b). To realistically model converging behaviors, a converging

requires to have enough participators who appear in the most

snapshot clusters during the event lifetime. As shown in Fig. 1(c),

the group of participators ⟨o1,o2,o3,o4,o5⟩ satisfies the above
requirements because they appear in two clusters (i.e., c1 & c2) at
time t2 and t3. But, the group excludes o6, since o6 only appears

in one snapshot cluster, which is less than the given threshold

kp = 2.

c1 c2

c3
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Figure 1: Example of a converging

3 FRAMEWORK OF GEDETECTOR
Fig. 2 shows the framework of GEDetector, which consists of

three major modules: (1) snapshot cluster discovery (SCD):
we perform density-based clustering on the moving objects to

discover a set of snapshot clusters at each timestamp; (2) clus-
ter containment join (CCJ): we perform a cluster containment

join on any two snapshot cluster sets at consecutive timestamps,

and return a collection of cluster containment relations; and (3)

converging detection (CD): we construct cluster containment

trees through joining all cluster containment relations, and fur-

ther derive the qualifying results from the candidates of cluster

containment trees according to the aforementioned requirements

of converging concepts.

The detection procedure of GEDetector is as follows. The

initial input of GEDetector is a trajectory data stream that is

periodically collected at timestamp ti . When the latest batch of

trajectory data is appended to the trajectory database, GEDetector

will trigger the detection process in an incremental manner, as

shown in Fig. 2. At ti , the snapshot clusters are first discovered
from the new trajectory data by clustering algorithms. Then, the

CCJ is performed between the snapshot cluster sets of ti−1 and
ti . Correspondingly, the new convergings may be generated, and

some existing convergings may be also updated. The procedures

of the first two modules (i.e., SCD & CCJ) can be repeated until

no new trajectory data is given. Finally, the qualified converging

patterns are derived by the third module (CD).

The efficient discovery of convergings in trajectory streams is

a challenging task. First, it is hard to discover all moving objects

attending a gathering event in the same way as many state-of-

the-art trajectory clustering methods since they do not stay close

together most of the time. Second, to achieve early detection,

converging algorithms need to detect gathering events in an

incremental manner. Third, identifying cluster containment rela-

tions between any consecutive timestamps may face huge search

space and hence incur high cost. Fourth, the system has to ensure

the effectiveness of mining converging patterns from trajectory

streams.

To tackle these issues, the GEDetector employs a general

framework for effective and efficient discovery of convergings.

Specially, To boost the performance of CCJ, which is a fundamen-

tal part of mining converging patterns, we develop a signature

quad-tree based index, called SQTI, to organize clusters hier-

archically and spatially, and correspondingly propose an SQTI

based CCJ (SQTCCJ) approximate algorithm, which enables us

to rapidly filter unqualified candidates and efficiently identify

matches by considering cluster containment relationship and spa-

tial proximity simultaneously. In addition, to facilitate evaluating

set containment, we approximate the sets of moving objects by

means of a signature technique, and use a bloom filter method

[8] to generate signatures in this work.

The SQTCCJ consists of two phases: (1) SQTI construction;

and (2) SQTI probing and verification. Firstly, we construct an

SQTI structure to organize all candidate clusters. Then, SQTCCJ

performs a cluster query on SQTI for each query cluster to obtain

all cluster containment matches.

SQTI Construction. An SQTI is constructed in the following

manner. We start with a set of candidate clusters, and insert rep-

resentative points of these clusters into a spatial region according

to their positions. Then we partition the whole spatial region by

recursively subdividing it into four square quadrant cells (i.e., NE,

NW, SE, and SW), until the number of points in it meets a certain

threshold, ρ. Otherwise, the quadrant cell continues splitting into
four small ones. The tree structure of SQTI follows the above spa-

tial decomposition. Although the SQTI is organized in the same

way as the traditional quad-tree, the difference is that each node

is assigned a signature consisting ofm bits, which represents a

set of moving objects of all clusters in the corresponding cell. In

the next phase, we will utilize signature comparisons to support

membership query.

Example 1. We use the data in Fig. 3(a)(b) to illustrate the
construction of SQTI. Based on these clusters, we build an SQTI for
searching clusters, and its nodes are organized as Fig. 3(c)(d) shows.

SQTI Probing and Verification. The search process based

on SQTI works in a top-down manner instead of in a recur-

sive manner. And its goal is to find the nearest quadrant cell to

the query point. Specifically, when a query cluster q comes, the

search starts at the root node and utilize the query signature

and its coordinates to probe the index structure. When it visits a

internal node p with signature p.siд, we need to check it to see

if q.siд ∨ p.siд = p.siд. If yes, it immediately performs a four-

way comparison operation at the node, and then chooses the

subtree where the centroid of its corresponding MBR is nearest

to the query point. Otherwise, it visits the sibling nodes. When

it reaches a leaf node, we need to verify all clusters to check if

there exists a super-cluster in the leaf node. If yes, we can obtain

a cluster containment match; otherwise, we get a mismatch.

Example 2. Continuing with Example 1 , we illustrate how
to perform the query process based on SQTI. For a given query
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node in SQTI signature

v1: {c1 , c2 , c3 , c4 , c5  } 11111111

v2: {c1 , c2 , c5 } 01111110

v3: {c3 , c4 } 11110001

00001100v4: {c5 }

v5: {c1 , c2 } 01111110

11110001v6: {c3 , c4 }

v7: {c1 , c2 } 01111110

other nodes 00000000

v1

v2 v3

v4 v5 v6
v7

(a)

(c)

(b)

candidate cluster signature

c1: {o1 , o2 , o3 } 01110000

c2: {o4 , o5 , o6 } 00001110

c3: {o7 , o8 } 10000001

c4: {o9 , o10 , o11 } 01110000

00001100c5: {o12 , o13 }

q

c1 c2

c5

c3

c4

O

(d)

Figure 3: Illustration of SQTI construction

q = {o1,o2} with the signature 01100000, the search starts at the
root node v1. Then it need to check the nodes v2 and v3 to see if
the query signature is contained. Unfortunately, both v2 and v3
satisfy the above condition. In this case, the search algorithm in the
traditional tree will suffer from a backtracking problem incurred
by a recursive paradigm. But, the search in SQTCCJ can avoid this
since it only takes the nearest quadrant cell to the query position. As
a consequence, the search chooses the sub-tree rooted at the nodev2.
It reaches the leaf node v7 along the path v1v2v5v7 after signature
comparisons. At the leaf node, we still need to verify all clusters in
it because of false positive. Finally, we can obtain a match q ⊆c c1.

4 DEMONSTRATION
4.1 Demo Interface
In the demo of GEDetector, we provide a monitoring map in-

terface for users to visualize and monitor gathering events dy-

namically. A screenshot of the demo is shown in Fig. 4. This

demo interface allows users to investigate gathering events from

various views, including spatial view, temporal view, and detail

view. The map on the upper left pane of the GUI visualizes the

discovered gathering events using map markers, which represent

the location points of all gathering events. The bar chart on the

bottom left pane of the GUI represents the basic characteristics

Figure 4: Screenshot of main interface

Figure 5: Visualization of a taxi gathering event at Shang-
hai Pudong international airport

of gathering events, such as scale, start time, durability, and point

of interest (POI) type. When the user clicks on any map marker,

the interface switches to the display mode of the corresponding

gathering event. The user can obtain more detailed information

of the gathering event, including the routes of all participators,

direction statistics of all routes (represented by a wind rose di-

agram), the event timeline, and other properties. As shown in

Fig. 5 and 6, our system has detected a typical gathering event at

Shanghai Pudong international airport, where a large number of

taxis converge together for waiting guests.

In summary, the GEDetection system can allow users to inter-

actively monitor and visualize gathering behaviours in various

ways, and also help users gain insights of the identified gathering

events from both spatial and temporal aspects.
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Figure 6: Satpic of a cabstand at Shanghai Pudong interna-
tional airport

5 PERFORMANCE OF GEDETECTOR
To evaluate the performance of our system, we conduct all exper-

iments based on a real trajectory dataset, namely Shanghai taxi

cab traces (BigTaxi), which is sourced from the one generated by

13,000 taxis of Shanghai in a period of 30 days (from April 1st to

April 30th in 2015). In this section, we investigate the efficiency of

the SQTCCJ algorithm, which is the essential part of our system.

The SQTCCJ algorithm may generate approximate results due

to missing some cluster containment matches, only when a result

cluster does not share the same cell with the query. Therefore,

we use an accuracy rate metric, which is the fraction of matches

obtained by SQTCCJ over the total amount of those of NLCCJ,

to evaluate the result of SQTCCJ algorithm. In Fig. 7(a), we show

accuracy rates of SQTCCJ. We can find that SQTCCJ can find

almost all candidate clusters when the parameter ρ is greater

than 20.

Next, in Fig. 7(b)(c), we show another nice property of SQTCCJ,

namely insensitivity to key parameters including the signature

lengthm and the number threshold ρ. In addition, we note that we
can tackle the problem of CCJ using set containment joinmethods

if we treat a cluster as a set. Thus, we compare our algorithm

with TT-Join [9], which is the state-of-the-art method evaluating

set containment join. As we can see from Fig. 7(d), SQTCCJ

significantly outperforms TT-Join especially as the dataset size

increases.
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1 INTRODUCTION
When Alice goes trekking in the French Alps with friends, she is
equipped with a pedometer to measure her efforts, takes pictures
using her smartphone and uses a mobile coach app to monitor
her trip and GPS trail. But how could Alice have a transversal
view of the personal data she generates and how could she share
-part of- her data with her friends?

The Personal Cloud paradigm emerges[1] (e.g., Cozy Cloud,
ownCloud, Databox to cite a few) and holds the promise of a
Privacy-by-Design storage and computing platform where each
individual could gather her complete digital environment in one
place and share it under control. Conjointly, smart disclosure
initiatives pushed by legislators (e.g., EU General Data Protection
Regulation) and industry-led consortiums (e.g., Blue Button for
medical records in the US, Midata in the UK, MesInfos in France)
give shape to this paradigm by letting individuals getting their
personal data back from the applications that collected them.
Hence, Alice could link her personal devices to the personal
cloud platform of her choice and then manage the personal data
she generates when trekking and regulate data sharing at will.
However, the personal cloud paradigm causes a gravity shift of
data management and data security from organizations to indi-
viduals, who are usually not database administrators nor security
experts. Unfortunately, the main existing access control models
(e.g., RBAC, ABAC or TBAC [2]) are geared towards central au-
thorities and require a deep expertise to define users, roles and
privileges. Some decentralized models have been proposed to let
individuals manually define their own sharing preferences, often
based on Web of Trust-like approaches [8] or on the owner’s
social graph [3], but offer limited expressive power and poorly
cope with the versatile nature of the personal cloud. To tackle this
issue, several works aim to ease the sharing administration. For
example, [5, 12] give the possibility for the owner to share any
kind of personal data through the use of attribute-based sharing
rules, while [4, 7] explore machine learning techniques to auto-
matically infer the best sharing policies. However, they provide
little means for individuals to control the actual effects of their
policies and could actually resultin unexpected data leakage. This
contradicts a founding principle of the Personal Cloud paradigm,
namely enabling individuals making sovereign decisions about
the sharing of their data [1]. The problem is exacerbated in a
ubiquitous and smart surrounding producing continuous flow of
daily activity events.

We derive from these statements a new sharing paradigm ded-
icated to the personal cloud context, called SWYSWYK (Share
What You See with Who You Know). SWYSWYK relies on two
founding principles: (1) provide intuitive means to derive shar-
ing rules directly from the personal cloud content and help the
personal cloud owner administer the resulting sharing policy by
© 2018 Copyright held by the owner/author(s). Published in Proceedings of the 21st
International Conference on Extending Database Technology (EDBT), March 26-29,
2018, ISBN 978-3-89318-078-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

visualizing and sanitizing its net effects and (2) provide a secure
personal cloud architecture giving tangible guarantees that the
sharing policy will be properly enforced, whatever the security
expertise of the owner.

In [11], we investigated point (2) and proposed a secure ar-
chitecture combining untrusted, isolated and secure execution
environments. [10] presented a practical instantiation of this
architecture where the reference monitor runs into a secure hard-
ware device. In [9], we focus on point (1) and introduce the
semantics of the SWYSWYK sharing paradigm and discuss the
specificities of its administration.

This demonstration focuses on point (1) with the goal to as-
sess the practical interest of our paradigm. To this end, we have
integrated SWYSWYK in a real personal cloud platform, namely
Cozy, and apply it to a smart surrounding scenario inspired by
Alice’s one. A video of the demonstration is available online1.
We refer to [10] for a demonstration focused on the security and
scalability of the platform in a constrained environment.

In this paper, Section 2 presents the SWYSWYK baseline, Sec-
tion 3 gives the scenario and Section 4 concludes.

2 SWYSWYK PARADIGM
2.1 Baseline
SWYSWYK is not yet-another access control model. It is rather
a new sharing paradigm, helping the derivation of expressive
access control rules directly from the personal cloud content and
providing convenient tools to administrate the resulting policies.
The originality of SWYSWYK relies on two core principles help-
ing circumventing the aforementioned difficulties of data sharing
in the Personal Cloud context:

Documents are rules. The personal cloud content on its own
conveys intuitive sharing rules, e.g., share pictures and related
events of a trek with people who appear on these pictures and as
such are identified as participants in that trek. Such rules should
be straightforward to express, as the related permissions could
be derived from the documents’ content. The subjects targeted
by the document, called identifiees [6], should be extracted from
the document content and enter in the rule definition. We call
reflexive sharing rules the rules based on this principle.

Subjects and objects are documents. The content of a personal
cloud also intrinsically describes the individual’s acquaintances
under different forms (e.g., contact files, identity picture.) and
conversely, acquaintances are associated with pieces of informa-
tion in the owner’s space (e.g., agenda entries, photos on which a
friend appears). A corollary is that for each permission granted to
a subject s on an object o, viewable documents should represent
s and o. More generally, the result of a sharing policy (sets of
sharing rules) must be viewable by the personal cloud owner,
who can thus precisely understand what is the net effect of this
policy. For example, a stream of GPS tracks may be represented

1http://wanda.inria.fr/demos/videos/swyswyk_model.ogv
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as trajectories on a map and time series of activities logs could
be represented in graphs.

The combination of these principles gives substance to the
Share What You See with Who You Know (SWYSWYK) paradigm.
This is in direct opposition with existing approaches that are
either very limited and manual, or based on complex and opaque
computations that cannot be easily understood by the end user.

2.2 Sharing Paradigm Semantics
SWYSWYK aims at providing simple expressions for sharing
rules and make the sharing policy self-administrated when the
personal cloud content evolves. We show here how this can
be captured within simple semantics, combined with a set of
simplifying assumptions. First, our sharing paradigm relies on
a closed policy, i.e. every action not explicitly granted is denied.
Actions are CRUD operations on documents in the personal cloud.
The paradigm supports only authorizations (positive rules) but
allows the owner to post-filter the produced Access Control List
(ACL) when exceptions need to be declared. Consequently, there
is a direct translation between sharing rules and sets of ACLs: an
action a is granted to subject s on document d iff (s,d,a) ∈ ACL
and is denied otherwise. The sharing is by construction consistent
(the decision is unique), complete (the decision always exists)
and can be evaluated in logarithmic time.

For the sake of conciseness, we do not formally define here all
the notations and operators of SWYSWYK. Rather, we illustrate
the paradigm through a single type of sharing rules, namely the
reflexive sharing rules,and refer to [9] for a complete description.

Reflexive sharing rules.These rules express the sharing of
documents with subjects appearing on it. They implement the
documents are rules principle and are thus considered as first-
class citizen rules:
ACL← {(s,d,a) ∈ S×D×A/Filter (d,Q)∧MatchS(DI (d), SI (s))}

Filter and DI are user-defined, platform dependent, functions.
Filter returns true if a document d of the personal cloud satisfies
the qualification Q, that can be expressed on the metadata or on
the content of d. DI extracts identification traits of individuals, de-
noted next by IT, from d. IT must uniquely represent a subject in
the personal cloud and can combine simple attributes (e.g., email,
phone number) or complex representation (e.g., facial features,
fingerprint). SI and MatchS are internal SWYSWYK operators. SI
returns the IT from a registered subject s andMatchS returns true
if the compared ITs are equivalent. Below are various illustrations
of reflexive sharing rules.

Example 1. Share the pictures taken during my trekking ses-
sions with the people appearing on it:
Q: docType=’photo’ ∧ tagGallery=’trek’
DI: face detection algorithm
MatchS: here, compares the facial features extracted from DI with
the ones returned by SI from known subjects.

Example 2. Share the minutes of meetings with the attendees:
Q: docName like ’minutes-%.doc’
DI: extract attendee names from a minute document
These two examples, extracted from two different application
contexts, show the generality of the sharing paradigm.

2.3 Sharing Administration
To make the sharing paradigm practical, subject declaration and
maintenance should be (quasi) automatic while respecting the
owner’s privacy. In SWYSWYK, the notion of rule consistency

concretizes the fact that the effects of all rules can be visualized
(and then easily controlled by the owner), the notion of exceptions
permits customization of these effects according to the owner’s
preferences, and subject administration can be automatically
performed such that the set of subjects grows along document
insertions and rule declarations with minimal interactions.

Rules Consistency. A SWYSWYK sharing rule is said well-
formed iff it only produces ACLs involving viewable documents
shared with recognizable subjects: ∀sr ∈ SR,∀acl ∈ ACL,acl .d ∈
DV ∧ acl .s ∈ DS , where SR is the set of sharing rules, DV the set
of viewable documents and DS the subset of viewable documents
characterizing a unique subject. Any acl which does not satisfy
this condition is filtered out.

Rules Exceptions. Instead of introducing interdiction rules
to capture exceptions, which makes the net effects of the re-
sulting policy complex to apprehend, we simply give the owner
the ability to filter out the permissions which hurt her privacy
(considered as suspicious ACLs). We introduce three types of
watchdog triggers to highlight suspicious permissions:
What(Qs ,A) → {(s, {(d,a)})/(s,d,a) ∈ ACL∗ ∧ s ∈ Qs (S) ∧ a =
A}
Who(Qd ,A) → {(d, {(s,a)})/(s,d,a) ∈ ACL∗ ∧ d ∈ Qd (D) ∧ a =
A}
Which(Qs ,Qd ,A) → {(s,d,a)/(s,d,a) ∈ ACL∗ ∧ s ∈ Qs (S) ∧d ∈
Qd (D) ∧ a = A}

ACL∗ corresponds to the set of newly created/updated ACLs.
What identifies, for each sensitive subject, the new set of (docu-
ment, action) she is granted to (e.g., which new documents can be
seen by my boss?). Who identifies, for each sensitive document,
the new set of subjects s with granted action a on them (e.g.,
which new subjects have a read access to my medical records?).
Finally,Which identifies new ACLs combining a selection of (sen-
sitive) subjects and documents (e.g., which new authorizations
my colleagues have on my family photos?).

Subjects Administration. New subjects can automatically
be created while inserting new contact files or address book
entries. The IsS operator is invoked each time (1) documents
are created or updated in the personal cloud and (2) a new rule
invoking IsS is defined, thus enriching the set of subject S along
document insertions and rule declarations as side-effects of the
function. Each s ∈ S is made of the extracted identification traits
and at least one generated credential for the authentication.

2.4 Sharing Enforcement
General principle. The creation, maintenance and evaluation
of a set of SWYSWYK permissions are as follows: (1) the owner
creates sharing rules and watchdog triggers to be applied on her
personal cloud; (2) a rule translator translates the selected rules
into candidate (ACL∗) and suspicious (ACL?) ACLs and material-
ize them; (3) the owner checks the suspicious ACLs at will and
accepts (ACL+) or rejects (ACL−) them using the administration
GUI ; (4) the reference monitor authenticates subjects and evalu-
ates Allowed (i.e., Allowed (s,d,a) = true i f f (s,d,a) ∈ ACL+)
and delivers the requested documents accordingly.

ACL production and maintenance. Five operators are re-
quired to translate any sharing rule into ACLs, namely Filter, DI,
SI, IsS and MatchS. The data flow between the operators to trans-
late a reflexive sharing rule into ACLs is shown in Figure 1. At
declaration time, the rule tree is evaluated over all documents of
the personal cloud. First, Filter operators are evaluated at the leaf
of each branch to select the targeted subjects documents (right
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branch) and the targeted objects documents containing identi-
fiees (left branch). Then DI operators extract the list of ITs from
the targeted subject documents (left branch) and from the objects
documents (ITs of the identifees). In the right branch, IsS tries to
match the extracted ITs with the subjects already registered in S,
then SI appends the identified ITs to each subject. Finally,MatchS
joins the left and right branches on subject ITs and produces
the (candidate) ACLs. At insertion of a new document d in the
personal cloud, the Filters of all rules are evaluated against d to
check whether new candidate ACLs can be produced.

Figure 1: ACL production

Figure 2: Reference architecture

Secure enforcement of sharing policies. The enforcement is-
sue is exacerbated when the personal cloud platform runs on the
owner’s side, the security of which can be questioned. In [10], we
proposed a reference architecture tackling this issue, displayed
in Figure 2. It consists of three environments: (i) an untrusted
environment (UE) on which no security assumption is made for
the code nor for the data, (ii) an isolated environment (IE) on
which general purpose code can be run with the guarantee that
it cannot leak any information but with no guarantee about the
soundness and honesty of its output and (iii) a Secure Execution
Environment (SEE) which runs only certified core programs and
protects data and code against snooping and tampering. In Figure
1, the light grey operators (DI and Filter) are run in the IE, as
they are made of untrusted third parties code, while the ones
in dark grey are executed in the SEE. Administrative tools help-
ing the owner to control and sanitize the ACLs are partly hosted
in SEE (e.g., watchdog triggers) and in IE (e.g., document viewers).

3 DEMONSTRATION
The objective of this demonstration is to show that the SWYSWYK
paradigm makes sense in concrete environments. Hence, it con-
siders a ubiquitous surrounding scenario with connected smart
devices producing continuous data streams that are gathered and
stored in the Cozy personal cloud platform. SWYSWYK has been
partially integrated in Cozy, a simplified version being part of
the server stack2.

3.1 Demonstration platform
The platform consists of an Android smartphone, a Withings
smart watch and a local Cozy instance running on a laptop with
Ubuntu 16.04. Additionally, several Cozy instances running on a
remote server are used to simulate other subject’ personal clouds.
Pictures and GPS tracks are synced with the local Cozy instance
thanks to the Android Cozy app. Pedometer data from the smart-
watch is retrieved through the Withings’ API. The Cozy stack
running on the laptop is implemented in Go and stores docu-
ments in a CouchDB database. The Cozy apps are developed in
JavaScript, with the React framework.

3.2 Demonstration scenario
The demonstration focuses on the usage of the SWYSWYK para-
digm. The scenario is composed of four steps, as summarized in
Figure 3 and described in the video accessible online:

Step 1 - Data collection: this step illustrates how surrounding
data produced by smart devices can be collected by the Cozy
platform to be further exploited. A Cozy instance is populated
with a set of predefined documents and timely integrates data
produced by Paul’s smartphone and pedometer. A Sharowalky
application developed on Cozy (for illustration purpose) manages
Paul’s trekking data, namely his photos, GPS trails and physical
activity. The attendees are invited to connect to Cozy as Paul (the
personal cloud owner and incidentally co-author of this paper),
open the Sharowalky app and browse days of trekking.

Step 2 - Sharing definition: the Sharowalky app proposes the
attendee to share the photos of a trekking day with Paul’s friends
appearing on them (among which Riad). The GUI presents the se-
mantics of the underlying sharing rule, that is a typical SWYSWYK
reflexive rule represented as logic-based predicates on Cozy meta-
data. The GUI allows the attendee to identify that Riad has been
granted access to certain pictures of the circle, confirmed when
connecting to Riad’s personal cloud. The attendee can also share
the GPS and activity trails of the circle with Riad very easily.

Step 3 - Sharing administration: the access control console al-
lows the attendee (playing Paul’s role) to visualize and control the
net effect of the current access control policy (set of all existing
sharing rules). All resulting permissions are shown as viewable
ACLs, i.e., triples <subject, object, permission> where each subject
and object are personal cloud documents which can in turn be
visualized. The GUI brings to light a suspicious permission that
the attendee is invited to remove (or confirm according to her
will).

Step 4 - Dynamicity: the demo operator finally selects from the
Cozy the set of pictures taken during the conference, showing
groups of people. Then, he takes a selfie with a demo attendee and
creates her contact based on the photo, triggering her registration
as a subject. This automatically grants her a read access on all the
2https://cozy.github.io/cozy-stack/sharing.html
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conference pictures on which she appears, including the selfie
and forthcoming ones, thanks to a pre-trained face recognition
model.

3.3 Demonstration results
The demonstration shows an implementation of the SWYSWYK
model in the Cozy platform. The semantics of the model and
its administration principles, based on the combination of the
documents are rules and subjects and objects are documents mottos,
opens to a set of benefits:

Ease-of-use. The content of a personal cloud, which describes
Alice’s acquaintances, and conversely, acquaintances which are
associated with pieces of information of Alice, are used to express
sharing rules. Most interesting rules could also be easily shared
via the Cozy marketplace, and reused among interested users.

Self-administration.The sharing rules are self-administrated
while the personal cloud content evolves. Typically, new subjects
(attendees) are automatically created while inserting new contact
files or address book entries and a search of correspondences with
potential content to share with them is automatically triggered.

Visualization. Subjects and objects are all viewable docu-
ments of the personal cloud. Hence the net effect of any sharing
policy can be visualized and precisely apprehended by Alice (e.g.,
the GPS tracks pictured in a map that she is ready to share with
a subject represented by her identity picture).

Control. Administration tools are provided to ease the detec-
tion of suspicious permissions and sanitize the access control
policy. Pursuing this objective, watchdog triggers highlight newly
generated ACLs involving sensitive subjects, documents and the
associations of presumed incompatible subject/object pairs.

4 CONCLUSION
Finding new ways for the individual to intuitively share personal
data and apprehend the real effects of their sharing policies is
paramount. This is particularly true in a ubiquitous context where
highly sensitive personal data (e.g., well-being data, daily activity
logs) are produced at an increasing rate by smart appliances.
Gathering these data in a personal cloud allows the definition

of new transversal services of great value for the individual and
holds the promise of a better privacy than storing them in a
central cloud. However, appropriate sharing tools are needed
to regulate data sharing and prevent individuals from exposing
their digital life because of too permissive sharing policies. This
demonstrationshows how the SWYSWYK model tackles this
challenge. We hope that this work contributes to a new step in
the privacy preservation of personal data.
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ABSTRACT 

In this paper, we demonstrate Hermes@Neo4j1, an extension of 

Neo4j graph DMBS for semantic trajectories of moving objects, 

on the so-called Spatio-Temporal-Keyword Pattern queries. For 

this purpose, our engine exploits on hybrid Spatio-Temporal-

Keyword (STK) index structures, also boosted by an appropriate 

selectivity estimation model. Hermes@Neo4j functionality is 

demonstrated over synthetic and real semantic trajectory 

datasets. 

1 INTRODUCTION 

The efficient management and analysis of the spatio-temporal 

evolution of a moving object (the so-called object’s trajectory) 

has led to the development of plenty of appropriate index 

structures and algorithms, and even extensions over DBMS 

during the last two decades [1-5]. Recently, the research 

community has turned its interest to semantic trajectories [6], 

where spatio-temporal information is enriched with related 

annotations about the what, how, and why of movement [6-8]. 

The paradigm of Location-based Social Networking (LBSN) 

services, such as Twitter, Instagram and Foursquare, is indicative 

of this shift: the management and analytics over large amounts 

of spatio-temporal-textual data may result in useful conclusions 

about the users’ behaviour. 

Our motivation in this work is to demonstrate how a 

                                                                    
1More information regarding Hermes@Oracle and Hermes@Postgres are available 
at www.datastories.org/hermes. 
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Semantic Trajectory Database (STD), built on top of an 

extensible DBMS, can efficiently support queries where 

constraints are set over the triple (spatial, temporal, textual) 

nature of semantic trajectories. In particular, we aim to 

demonstrate the functionality of our Hermes@Neo4j STD engine 

over Spatio-Temporal-Keyword Pattern (STKP) queries [9].  

According to [9], an STKP query is defined as follows: Let Ei 

be a semantic trajectory episode abstraction, which is defined as 

a partially or completely defined episode. An episode abstraction 

therefore is an episode where some of its properties – spatial, 

temporal, textual information – may be missing. An STKP query 

over a STD takes as input a sequence Q of episode abstractions 

or the * wildchar (more formally, Q := <p* | p is either an episode 

abstraction Ei or the * wildchar>) and gives as output the 

semantic trajectories in STD that are compatible with Q.  

An example of STKP query follows in Fig. 1 [9]. 

 

 

Figure 1: Graph representation of an STD consisting of 3 
trajectories along with a STKP query. 

In Fig. 1, we depict a STD consisting of 3 semantic 

trajectories; each trajectory consists of four episodes. An 

example STKP query Q is also illustrated at the bottom right 

corner. In particular, Q consists of a number of episode 

abstractions; with notation Ei* corresponding to a number of 

Demonstration
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zero or more episode abstractions of the form Ei. For clarity of 

presentation the episode abstractions in Q distinguish the 

temporal from the spatial information, which is not the case in 

reality where both are organized together in a Minimum 

Bounding Box (MBB). Actually, Q searches for trajectories 

starting with zero or more episodes of any kind (see notation (*, 

*, *)* in Q), followed by an episode in a spatial [35, 35, 50, 50] and 

temporal [t18, t20] range with keyword ‘RESTAURANT’ and 

ending with an episode in a spatial [40, 40, 55, 55] and temporal 

[t21, t23] range with keyword ‘DESSERT’. The output set includes 

semantic trajectory 1, which fulfills the above constraints. 

The practical contribution of this work is that we present a 

framework that utilizes recently introduced (a) state-of-the-art 

hybrid indexes and (b) query processing algorithms on (c) a new 

STD engine, coined Hermes@Neo4j STD engine.  

Hermes@Neo4j STD engine provides efficient and effective 

storage, indexing mechanisms and a library of utilities that 

facilitate spatio-temporal and textual operations on data, able to 

support STDs. More specifically, the merits and contributions of 

Hermes@Neo4j STD engine are summarized below:  

1. Following the successful MOD engine paradigm of 

Hermes@Oracle [7,8], we designed a new datatype 

system for the representation and management of 

Semantic Trajectories into the extensible DBMS 

architecture of Neo4j [10], an ACID-compliant 

transactional NoSQL DBMS with native graph storage 

and processing, implemented in Java. The datatype 

system is formulated in the context of the graph 

database, that provides an intuitive model in our case.  

2. Neo4j Spatial library [11], which is a library of utilities 

for Neo4j that facilitates spatial operations on data, is 

extended for processing the spatio-temporal and 

textual information of semantic trajectories.  

3. We designed efficient access methods for semantic 

trajectories, called TSR-tree and TSR-tree indexes, for 

the hybrid indexing of both the spatio-temporal and 

the textual component. The hybrid indexes combine a 

spatiotemporal and text index tightly, such that both 

types of information can be used to prune the search 

space simultaneously during the spatiotemporal 

keyword query algorithm processing in STDs.  

4. We developed efficient query processing algorithms 

upon the proposed indices in order to support a useful 

query type at the STD level, called STKP, as well as 

algorithms for efficiently importing semantic 

trajectories into STDs. 

Employing separate indexes is weaker in comparison with 

the tightly integrated proposed state-of-the-art approach, since 

an efficient resolution of the STKP requires repetitive invocation 

of spatio-temporal-keyword matching queries. 

The paper is organized as follows: in Section 2 we provide a 

brief presentation of the system architecture, the underlying 

indexes, etc. (the interested reader is referred to [9] for more 

details). Section 3 provides more information about system 

implementation details. Finally, Section 4 outlines the flow of the 

demonstration.  

2 SYSTEM ARCHITECTURE 

In this section, we present the core information about the 

architecture of our framework, illustrated in Fig. 2.  

 

Figure 2: Hermes@Neo4j STD engine architecture. 

2.1  Hybrid indexes 

Neo4j Spatial R-tree index is extended to support spatio-

temporal and classical trajectory-based queries (3D R-Tree) and 

is also used in order to enable effective spatiotemporal-keyword 

operations on semantic trajectories. There are two alternative 

indexing structures to support efficient STKP query processing. 

The proposed hybrid indices combine tightly a spatial and a text 

index (i.e. a 3D-Rtree and inverted file, respectively), so that both 

types of information can be used simultaneously for pruning the 

search space.  

TSR-tree index. In this index, a semantic trajectory is 

considered as an individual unit for the tree construction. More 

specifically, for each semantic trajectory we compute its MBB 

and a list of tags related to the semantics of the episodes, sorted 

by time. MBB is the minimum bounding box that encloses a 

specific sub-trajectory of a moving object, along with the start 

and end times of the movement. At the end, the tags in the list 

are concatenated to a single string. Specifically, a pseudo-word 

for each semantic trajectory is created with all the concatenated 

tags of each trajectory’s episode to a single string in order to use 

it for the keyword query search criteria. The leaves of the TSR-

tree index are the above-described approximation of the whole 

semantic trajectories. For the exploitation of the graph database 

where our index resides, these leaf nodes are the starting nodes 
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of the sequence of the episodes of the approximated semantic 

trajectory. Moreover, inverted files (IFs) are created for all the 

internal nodes of the tree. 

ESR-tree index. As an alternative, we build a tree using as 

its structural unit the episodes of the semantic trajectories rather 

than the semantic trajectories themselves. In other words, ESR-

tree index takes into account as structural unit for the creation 

of the 3D-Rtree the episodes of the semantic trajectories. The 

leaves of the ESR-tree index are the base for the creation of the 

episode MBBs. Accordingly, the MBBs of the entries of the 

internal nodes represent the spatio-temporal union of the MBBs 

of the children nodes. Additionally, for each internal node there 

exists a pointer to an IF that organizes all the tags of its children 

nodes. The IFs for each internal node of the tree contain the 

keywords of the episodes of its child nodes. 

2.2  STKP query processing 

STKP queries can be processed in Hermes@Neo4j using either 

TSR-tree or ESR-tree index. In the former (latter) approach, 

STKP search algorithm takes into account that TSR-tree (ESR-

tree, respectively) is built using entire semantic trajectories 

(episodes of semantic trajectories, respectively) as building 

blocks [9]. It is noteworthy that STKP search is boosted by an 

optimization method.  

STKP query optimizer. Given a STKP query Q := <E1, …, Ek>, 

where E1, …, Ek is a sequence of spatio-temporal-textual 

constraints over episode abstractions, the STKP query optimizer 

identifies the most selective episode abstraction E* in Q, in order 

to start the execution of the ESR-tree search algorithm from 

there, thereby pruning candidate results the earliest possible. 

The cost model that the query optimizer implements decomposes 

the computation of selectivity of an episode abstraction in two 

parts, one for the spatio-temporal and another for the textual 

component of the episode abstraction [9]. 

Regardless of the query length, it turns out that the search 

based on the ESR-tree and boosted by the query optimizer, is 

considerably faster, with the penalty of the higher index creation 

time and size compared with the TSR-tree approach. 

3 SYSTEM IMPLEMENTATION 

Our framework provides a robust API with the necessary tools 

for STD creation, querying, etc. Toward the realization of the 

concepts of semantic trajectories and STDs presented in the 

previous section, we followed the object relational (OR) 

approach for the datatype system of Hermes@Neo4j STD 

engine. In detail, we follow the abstract datatype (ADT) 

paradigm and define the episodes and semantic trajectory 

datatypes that support the definitions in [9]. Upon these 

datatypes, we register a rich palette of object methods; some 

indicative examples appear in Table 1. More details are available 

at Hermes@Neo4j web page2. 

Table 1: Methods over episodes and semantic trajectories 

                                                                    
2 http://infolab.cs.unipi.gr/HermesNeo4j/ 

Object Method Definition 
Episode duration() Returns the episode 

duration. 
Semantic 
Trajectory 

num_of_ 
episodes 
(String tag, 

String distinct),  
where “tag” is a 
set of substrings 
and a boolean 

string. 

Returns the number 
of episodes (distinct 
or not, depending 
on distinct string) 
that includes tags 
LIKE the given ones 
(pattern-matching 
per input tag). 

LayerST 
(object with 
the episodes 

and 
semantic 
trajectories 
of an STD) 

confined_in 
(LayerST layer, 
MBB envelope, 
String tag), 
where tag is a 
concatenated 

set of 
substrings. 

Returns semantic 
trajectories, whose 

episodes are 
overlapping 

spatiotemporally 
with the MBB and 
textually with the 
“tag” parameter. 

 

STD creation. STD construction includes two phases (3D R-

tree and IFs), along with segmental options for creating a graph 

database in steps (separate 3D R-tree and IFs creation routines) 

in case of size and memory concerns. 

Semantic Trajectory Synthesizer. In case of trajectory 

datasets lacking textual annotations, our synthesizer is able to 

augment raw trajectories with textual annotations using a 

customized text generator that chooses terms from a lexicon of V 

keywords. The number of keywords for each episode follows a 

Zipfian distribution, in order to simulate the skewness present in 

real-life textual datasets. 

STD search. Several functions are available for a wide range 

of queries like intersection, overlapping or union, with the 

emphasis, of course, in STKP queries (details for the appropriate 

search methods appear in Table 2). 

Table 2: STKP query methods 

Method Parameters Index 
SpatialTemporalKeyword 

TrajectoryQuery 
LayerST,  
list of 
MBBs, 

TSR-tree 
index 

SpatialTemporalKeyword 
TrajectoryEpisodesQuery 

list of String 
tags 

ESR-tree 
index 

 

Hermes@Neo4j STD engine utilizes Apache Lucene [12] 

indexes that use inverted indexes for search and retrieval from 

text collections. For the implementation of interactive 

visualizations of the semantic trajectories over a 3D model of the 

globe and different types of 2D maps, the NASA WorldWind API 

[13] is utilized. The library has been extended in order to display 

the spatio-temporal and textual information of a semantic 

trajectory. Visual representation of search results is performed 

through different 3D / 2D map services, such as Open Street 

Map, Bing, MS Virtual Earth, NASA Blue Marble and i-cubed 

Landsat (Fig. 3). 

The interface has the required parameters for spatio-temporal 
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and textual constraints that are used as query arguments. The 

interface also includes necessary options for importing a dataset 

to a new STD. Apart from setting spatio-temporal and textual 

constraints, in order to perform a STKP query over the selected 

STD, the user decides the index and search algorithm of his/her 

choice. The semantic trajectories that are the results of the STKP 

query are displayed through a proper animation zoom at the 

selected map service and reference system by displaying the 

geographical area that covers the specific semantic trajectories. 

Correspondingly, information about the search results and the 

number of trajectories that meet the search criteria are displayed 

in a relevant result box. 

4 ABOUT THE DEMONSTRATION 

Throughout the demonstration, Hermes@Neo4j users will be 

able to test the system by using the real “Foursquare New York” 

dataset [14] and the synthetic “Hermes Attica” dataset 3 

generated by the Hermoupolis generator [15]. The real dataset 

includes long-term (about 10 months - from Apr.12, 2012 to 

Feb.16, 2013) check-in data (227,428 check-ins) in New York City 

collected from Foursquare social network and the synthetic 

dataset consists of a total of 1,450,738 records that represent 

semantic trajectories.  

 

 

Figure 3: Interactive visual exploration of a semantic 
trajectory that is the result of an STKP query through a 2D 
map representation. 

The demonstration captures the following phases: (i) 

preparatory phase, where users have the opportunity to 

comprehend the internals of our framework, and (ii) our 

Hermes@Neo4j engine in action, where users experience various 

scenarios of STKP search. In particular: 

Preparatory phase (background knowledge). During this 

phase, we show off the different datatypes and operands that can 

be utilized in the Hermes@Neo4j engine. In addition, we 

demonstrate how the user can use our framework to run legacy 

operands, and even more interestingly, focus on the two STKP 

query indexing and searching approaches. 

Hermes@Neo4j engine in action. Having gained the 

necessary background knowledge, the user experiences a 

scenario of STKP search and index creation, based on the TSR-

tree search algorithm. For instance, Fig. 3 present an example of 

                                                                    
3 http://chorochronos.datastories.org/?q=content/hermes-attica 

an STKP query result, which is a semantic trajectory from the 

“Hermes Attica” dataset. The user can display the results with a 

selected 3D/2D map representation and reference system of 

his/her choice. In addition, the user can interactively switch on 

and off the visibility of the results. In turn, we present a scenario 

of STKP search and index creation, based on the ESR-tree search 

algorithm. The goal of this scenario is to effectively demonstrate 

that the STKP search based on the ESR-tree, is more efficient in 

comparison with the STKP search based on the TSR-tree index, 

with the penalty of the higher index creation time and size 

compared with the TSR-index. 

For a deeper comprehension of the demonstrated 

functionality, a related video is available at Hermes@Neo4j web 

page4. 
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ABSTRACT
On-demand integration of multiple data sources is a critical re-
quirement in many Big Data settings. This has been coined as
the data variety challenge, which refers to the complexity of deal-
ing with an heterogeneous set of data sources to enable their
integrated analysis. In Big Data settings, data sources are com-
monly represented by external REST APIs, which provide data
in their original format and continously apply changes in their
structure (i.e., schema). Thus, data analysts face the challenge
to integrate such multiple sources, and then continuosly adapt
their analytical processes to changes in the schema. To address
this challenges, in this paper, we present the Metadata Manage-
ment System, shortly MDM, a tool that supports data stewards
and analysts to manage the integration and analysis of multiple
heterogeneous sources under schema evolution. MDM adopts a
vocabulary-based integration-oriented ontology to conceptualize
the domain of interest and relies on local-as-view mappings to
link it with the sources. MDM provides user-friendly mechanisms
to manage the ontology and mappings. Finally, a query rewriting
algorithm ensures that queries posed to the ontology are correctly
resolved to the sources in the presence of multiple schema ver-
sions, a transparent process to data analysts. On-site, we will
showcase using real-world examples how MDM facilitates the
management of multiple evolving data sources and enables its
integrated analysis.

1 INTRODUCTION
In recent years, a vast number of organizations have adopted data-
driven approaches that align their business strategy with advanced
data analysis. Such organizations leverage Big Data architectures
that support the definition of complex data pipelines in order
to process heterogeneous data, from multiple sources, in their
original format. External data (i.e., neither generated nor under
control of the organization) are commonly ingested from third
party data providers (e.g., social networks) via REST APIs with a
fixed schema. This requires data analysts to tailor their processes
to the imposed schema for each source. A second challenge that
data analysts face is the adaptation of such processes upon schema
changes (i.e., a release of a new version of the API), a cumber-
some task that needs to be manually dealt with. For instance, in
the last year Facebook’s Graph API1 released four major versions

1https://developers.facebook.com/docs/graph-api/changelog

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the 21st
International Conference on Extending Database Technology (EDBT), March 26-29,
2018, ISBN 978-3-89318-078-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

affecting more than twenty endpoints each, many of them break-
ing changes. The maintenance of such data analysis processes is
critical in scenarios integrating tenths of sources and exploiting
them in hundreds of analytical processes, thus its automation is
badly needed.

The definition of an integrated view over an heterogeneous set
of sources is a challenging task that Semantic Web technologies
are well-suited for to overcome the data variety challenge [3].
Given the simplicity and flexibility of ontologies, they constitute
an ideal tool to define a unified interface (i.e., global vocabulary
or schema) for such heterogeneous environments. This family of
systems, that perform data integration using ontologies, propose to
define a global conceptual schema (i.e., by means of an ontology)
over the sources (i.e., by means of mappings) in order to rewrite
ontology-mediated queries (OMQs) to the sources. The state of the
art approaches for such integration-oriented ontologies are based
on generic reasoning algorithms, that rely on certain families of de-
scription logics (DLs). Such approaches rewrite an OMQ, first to
an expression in first-order logic and then to SQL. This approach,
commonly referred as ontology-based data access (OBDA) [8],
does not consider the management of changes in the sources, and
thus such variability in their schema would cause OMQs either
crash or return partial results. This issue, which is magnified in
Big Data settings, is caused because OBDA approaches represent
schema mappings following the global-as-view (GAV) approach,
where elements of the ontology are characterized in terms of a
query over the source schemata. GAV ensures that the process of
query rewriting is tractable and yields a first-order logic expres-
sion, by just unfolding the queries to the sources, but faulty upon
source schema changes [2]. To overcome this issues a desiderata
is to adopt the local-as-view (LAV) approach. Oppositely to GAV,
LAV characterizes elements of the source schemata in terms of a
query over the ontology, making it inherently more suitable for
dynamic environments [4]. LAV flexibility, however, comes at
the expense of computational complexity in the query answering
process.

To address these challenges, we adopt a vocabulary-based ap-
proach for data integration. These approaches are not necessarily
restricted to the expressiveness of a DL and its generic reasoning
algorithms. Such settings rely on rich metamodels for specific
integration tasks, here focused on schema evolution. Under cer-
tain constraints when instantiating the metamodel, it is possible
to define specific efficient algorithms that resolve LAV mappings
without ambiguity. To this end, we created the Metadata Man-
agement System, or shortly MDM2, an end-to-end solution to
assist data stewards and data analysts during the Big Data inte-
gration lifecycle. Data stewards are provided with mechanisms to

2http://www.essi.upc.edu/~snadal/mdm.html

Demonstration

 

 

Series ISSN: 2367-2005 682 10.5441/002/edbt.2018.84

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2018.84


semi-automatically integrate new sources and accomodate schema
evolution into a global schema. In turn, data analysts have means
to pose OMQs to such global schema by making transparent the
underlying mechanisms to query the sources with LAV mappings.

MDM implements a vocabulary-based integration-oriented on-
tology, represented by means of two RDF graphs, specifically the
global graph and the source graph [5]. The former representing
the domain of interest (also known as domain ontology) and the
latter the schema of the sources. The key concepts are releases,
which represent a new source or changes in existing sources. A
relevant element of releases are wrappers (from the well-known
mediator/wrapper architecture in data integration), the mechanism
enabling access to the sources (e.g., an API request or a database
query). Upon new releases the schemata of wrappers are extracted
and their RDF-based representation stored in the source graph.
Afterwards, the data steward is aided on the process of linking
such new schemata to the global graph (i.e., define the LAV map-
ping). Orthogonally, data analysts pose OMQs to the global graph.
The current de-facto standard to query ontologies is the SPARQL
query language, however to enable non-expert analysts to query
the sources MDM offers an interface where OMQs are graphically
posed as subgraph patterns of the global graph, which are automat-
ically translated to SPARQL. A specific query rewriting algorithm
takes care of how to properly resolve LAV mappings, a process
that consists on the discovery of joins amongst wrappers and their
attributes, regardless of the number of wrappers per source.

Motivational use case. As motivational use case, and for the
sake of understandability, we will analyse information related to
european football teams. This represents the simple use case that
will be demoed on-site amongst others with higher complexity
(i.e., the SUPERSEDE project). Precisely, we aim to ingest data
from four data sources, in the form of REST APIs, respectively
providing information about players, teams, leagues and countries.
The integrated schema of this scenario is conceptualized in the
UML depicted in Figure 1, which we use as a starting point to pro-
vide a high-level representation of the domain of interest, used to
generate the ontological knowledge captured in the global graph.

Figure 1: UML of the motivational use case

Each of the APIs is independent from each other, and thus
they differ in terms of schema and format. Thus, for instance,
the Players API provides data in JSON format while the Teams
API in XML. An excerpt of the content provided by such two
APIs is depicted in Figure 2. Next, the goal is to enable data
analysts to pose OMQ to the ontology-based representation of the
UML diagram (i.e., global graph) by navigating over the classes.
Specifically, we aim the sources to be automatically accessed
under multiple schema versions. An exemplary query would be,

“who are the players that play in a league of their nationality?”.
Outline. In the rest of the paper, we will introduce the demon-

strable features to resolve the motivational and other exploratory

{

"id": 6176,

"name": "Lionel Messi",

"height": 170.18,

"weight": 159,

"rating": 94,

"preferred_foot": "left",

"team_id": 25

}

<team>

<id>25</id>

<name>FC Barcelona</name>

<shortName>FCB</shortName>

</team>

Figure 2: Sample data for Players API and Teams API

queries. We first provide an overview of MDM and then, we
present its core features to be demonstrated. Lastly, we outline
our on-site presentation, involving the motivational use case and a
complex real-world use case.

2 DEMONSTRABLE FEATURES
MDM presents an end-to-end solution to integrate and query
a set of continuously evolving data sources. Figure 4 depicts a
high-level overview of the approach. Its pillar is the Big Data
integration (BDI) ontology [7], the metadata model (i.e., set of de-
sign guidelines) that allow data stewards to semantically annotate
the integration constructs that enable automating the evolution
process and unambiguously resolve query answering.

Figure 4: High-level overview of our approach

We devise four kinds of interaction with the system, which
are in turn the offered functionalities: (a) definition of the global
graph, where data stewards define the domain of interest for ana-
lysts to query; (b) registration of wrappers, either in the presence
of a new source or the evolution of an existing one; (c) defini-
tion of LAV mappings, where LAV mappings between the source
and the global graphs are defined; and (d) querying the global
graph, where data analysts pose OMQs to the global graph which
are automatically rewritten over the wrappers. In the following
subsections, we describe how MDM assists on each of them.

2.1 Definition of the global graph
The global graph, whose elements are prefixed with G, reflects the
main domain concepts, relationships among them and features of
analysis. To this end, we distinguish between two main constructs
concepts and features. Concepts (i.e., instances of G:Concept)
are elements that group features (i.e., G:Feature) and do not
take concrete values from the sources. Only concepts can be re-
lated to each other using any user-defined property, we also allow
to define taxonomies for them (i.e., rdfs:subClassOf). It is
possible to reuse existing vocabularies to semantically annotate
the data at the global graph, and thus follow the principles of
Linked Data. This, enables data to be self-descriptive as well as
it opens the door to publish it on the Web [1]. Furthermore, we
restrict features to belong to only one concept.
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MDM supports the definition of the global graph avoiding
the need to use external ontology modeling tools (e.g., Protégé).
Figure 5 depicts an excerpt of the global graph for the demo use
case, focusing on the concepts Player and Team. Like we said, we
reuse vocabularies as much as possible, hence the concept Team is
reused from http://schema.org/SportsTeam. When no reuse is pos-
sible, we define the example’s custom prefix ex. As data stewards
interact with MDM to define the global graph, the corresponding
RDF triples are being generated automatically.

Figure 5: Global graph for the motivational use case. Blue
and yellow nodes denote concepts and features

2.2 Registration of new data sources
New wrappers are introduced either because we want to con-
sider data from a new data source, or because the schema of an
existing source has evolved. Nevertheless, in both cases the pro-
cedure to incorporate them to the source level, whose elements
are prefixed with S, is the same. To this end, we define the data
source (i.e., S:DataSource) and wrapper (i.e., S:Wrapper)
metaconcepts. Data stewards must provide the definition of the
wrapper, as well as its signature. We work under the assumption
that wrappers provide a flat structure in first normal form, thus the
signature is an expression of the form w(a1, . . . ,an ) where w is
the wrapper name and a1, . . . ,an the set of attributes. With such
information, MDM extracts the RDF-based representation of the
wrapper’s schema (i.e., creates elements of type S:Attribute)
which are incorporated to the existing source level. In the case of
a wrapper for an existing data source, MDM will try to reuse as
many attributes as possible from the previous wrappers for that
data source. However, this is not possible among different data
sources as the semantics of attributes might differ. In the case of
attributes in the source graph, as they are not meant to be shared,
oppositely to features in the global graph, there is no need to reuse
external vocabularies.

Figure 6 depicts an excerpt of the source graph for the sources
related to players and teams, the former with a wrapper’s signa-
ture w1(id,pName,heiдht ,weiдht , score, f oot , teamId) and the
latterw2(id,name, , shortName). Note that, forw1, some attribute
names differ from the data stored in the source (see Figure 2), this
is due to the fact that the query contained in the wrapper might
rename (e.g., f oot) or add new attributes (e.g., teamId). The defi-
nition of a wrapper (e.g., a MongoDB query, a Spark job, etc.) is
out of the scope of MDM and should be carried out by the data
steward.

2.3 Definition of LAV mappings
LAV mappings are encoded as part of the ontology. We represent
them as two components, (a) a subgraph of the global graph, one
per wrapper, and (b) a function linking attributes from the source
graph to features in the global. The former are achieved thanks to
RDF named graphs, which allow to identify subsets of other RDF

Figure 6: Source graph for the motivational use case. Red,
orange and blue denote data sources, wrappers and attributes

graphs identified by an URI. In this case, the URI will be the one
for the wrapper. The latter are achieved via the owl:sameAs
property. Note that, traditionally, the definition of LAV mappings
was a difficult task even for IT people. However, in MDM LAV
mappings can be easily asserted through the interface: each wrap-
per must map to a named graph (i.e., a subset of the global graph),
and a set of owl:sameAs from attributes to features. The task
consists on first selecting a wrapper, and then, with the mouse,
drawing a contour around the set of elements in the global graph
that this wrapper is populating (including concept relations).

Figure 7 depicts the LAV mappings for wrappers w1 and w2,
respectively in red and green. Note the intersection in the con-
cept sc:SportsTeam and its identifier, this will be later used
when querying in order to enable joining such concepts. How-
ever, this joins are only restricted to elements that inherit from
sc:identifier.

Figure 7: LAV mappings for the motivational use case

2.4 Querying the global graph
To overcome the complexity of writing SPARQL queries over the
global graph, MDM adopts a graph pattern matching approach to
enable non-technical data analysts perform their OMQs. Recall
that the WHERE clause of a SPARQL query consists of a graph
pattern. To this end, the analyst can graphically select a set of
nodes of the global graph representing such pattern, we refer to it
as a walk. Then, a specific query rewriting algorithm takes as input
a walk and generates as a result an equivalent union of conjunctive
queries over the wrappers resolving the LAV mappings [7]. Such
process consists of three phases: (a) query expansion, where the
walk is automatically expanded to include concept identifiers that
have not been explicitely stated; (b) intra-concept generation, that
generates partial walks per concept indicating how to query the
wrappers in order to obtain the requested features for the concept
at hand; and (c) inter-concept generation, where all partial walks
are joined to obtain a union of conjunctive queries.
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Using the excerpt of the ontology depicted in Figure 7, we
could graphically pose an OMQ fetching the name of the players
and their teams. Figure 8 shows how such query can be defined
in MDM by drawing a contour (in red) around the concepts and
features of interest in the global graph. On the right hand side, it is
depicted the equivalent SPARQL query, as well as the generated
relational algebra expression over the wrappers. Table 1 depicts a
sample of the output resulting of the execution of the query.

Figure 8: Posing an OMQ in MDM

ex:teamName ex:playerName
FC Barcelona Lionel Messi

Bayern Munich Robert Lewandowski
Manchester United Zlatan Ibrahimovic

Table 1: Sample output for the exemplary query.

2.5 Implementation details
MDM has been developed at UPC BarcelonaTech in the context
of the SUPERSEDE3 project using a service-oriented architecture.
It is the cornerstorne of the Big Data architecture supporting the
project, and a central component of its Semantic Layer [6]. On the
frontend, MDM provides the web-based component to assist the
management of the Big Data evolution lifecycle. This component
is implemented in JavaScript and resides in a Node.JS web server.
The interface makes heavy use of the D3.js library to render graphs
and enables the user to interact with them. Web interfaces are
defined using the Pug template engine, and a number of external
libraries are additionally used. The backend is implemented as a
set of REST APIs defined with Jersey for Java, thus the frontend
interacts with the backend by means of HTTP REST calls. This
enables extensibility of the system and a separation of concerns in
such big system. The backend makes heavy use of Jena to deal
with RDF graphs, as well as its persistence engine Jena TDB.
Additionally, a MongoDB document store is responsible of storing
the system’s metadata. Concerning the execution of queries, the
fragment of data provided by wrappers is loaded into temporal
SQLite tables in order to execute the federated query.

3 DEMONSTRATION OVERVIEW
In the on-site demonstration, we will present the functionality of
MDM relying based on two use cases. First, we will focus on the
paper’s motivational scenario, in order to comprehensively show
the functionalities offered by MDM. Next we will focus on the
SUPERSEDE use case, a real-world scenario of Big Data integra-
tion under schema evolution in order to show the full potential and
benefits of MDM. We will cover the four possible kinds of interac-
tions with MDM, taking the role of both data steward (definition
of the global graph, registration of new wrappers, definition of
LAV mappings) and data analyst (querying the global graph). We

3https://www.supersede.eu

will showcase how MDM aids on each of the processes, consid-
ering as well the input from participants. Precisely, the following
scenarios will be covered:

System setup. In the first scenario we will take the role of a
data steward that has been given a UML diagram (likewise Figure
1), and assigned the task of setting up a global schema to enable
integrated querying of a disparate set of sources. Thus, we will
show how MDM supports the definition of its equivalent global
graph (likewise Figure 5) within the interface. Once finished, we
will introduce the four sources (i.e., the players API, teams API,
etc.) and a wrapper for each. We will show how MDM automati-
cally extracts the schemata of wrappers to automatically generate
the source graph (likewise Figure 6). Finally, we will show how
MDM supports the graphical definition of named graphs, which
are the basis for LAV mappings, and thus properly maps the source
and global graphs (likewise Figure 7).

Ontology-mediated queries. With the global graph set up and a
set of data sources and wrappers in place, now we can act as data
analysts in order to pose OMQs to the system. We will encourage
participants to propose their queries of interest, this is possible
because MDM presents the global graph and allows to graphi-
cally draw a walk around its nodes. This is later automatically
translated to its SPARQL form (likewise Figure 8), and to a rela-
tional algebra expression derived from the query rewriting process.
MDM presents the execution of the query in tabular form.

Governance of evolution. In Big Data ecosystems, changes in
the structure of the data sources will frequently occur. In this sce-
nario, we will release a new version of one of the APIs including
breaking changes that would cause the previously defined queries
to crash. First, we will showcase how MDM easily supports the
inclusion of this new source into the existing global graph and
the definition of its LAV mappings. Next, we will execute again
the queries that were supposed to crash showing how MDM has
adapted the generated relational algebra expressions, where the
two schema versions are now fetched and yield correct results.
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ABSTRACT
Tools for visual data exploration allow users to visually browse
through and analyze datasets to possibly reveal interesting infor-
mation hidden in the data that users are a priori unaware of. Such
tools rely on both query recommendations to select data to be
visualized and visualization recommendations for these data to
best support users in their visual data exploration process.

EVLIN (exploring visually with lineage) is a system that assists
users in visually exploring relational data stored in a data ware-
house. EVLIN implements novel techniques for recommending
both queries and their result visualization in an integrated and
interactive way [3]. Recommendations rely on provenance (aka
lineage) that describes the production process of displayed data.

The demonstration of EVLIN includes an introduction to its
features and functionality through sample exploration sessions.
Conference attendees will then have the opportunity to gain hands-
on experience of provenance-based visual data exploration by
performing their own exploration sessions. These sessions will
explore real-world data from several domains. While exploration
sessions use a Web-based visual interface, the demonstration also
features a researcher console, where attendees may have a look
behind the scenes to get a more in-depth understanding of the
underlying recommendation algorithms.

1 VISUAL DATA EXPLORATION
Data exploration [8] helps users in finding interesting informa-
tion in data sets when they do not know beforehand what useful
information hides in their data. It thus supports humans in under-
standing and interpreting data in an investigative way. As manual
data exploration is tedious, time-consuming, and it is easy to over-
look interesting information, there is a need for tools supporting
data exploration. These tools typically rely on different kinds
of recommendations. Essentially, query recommendation guides
users in their investigation of a data set D by suggesting queries
as next exploration steps, given an initial query Q . Opposed to
that, visualization recommendation commonly determines suited
visualizations given a data set as input.
State-of-the-art. Most data and visualization recommendation
techniques work independently from one another, meaning that
the result of query recommendation, i.e., the data set Q ′(D) re-
turned by executing a recommended query Q ′ over D, has no
impact on the visualization recommendation process, and vice
versa. This becomes apparent in Tab. 1 that summarizes works
most closely related to ours. For each approach, it describes (i) the
expressiveness of input queries (e.g., select-project-join (SPJ)
queries, select-project-aggregate (SPA) queries, or cube queries

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the 21st
International Conference on Extending Database Technology (EDBT), March 26-29,
2018, ISBN 978-3-89318-078-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

corresponding to SPJA queries), (ii) the type of recommended out-
put queries, (iii) the information used to compute query recommen-
dations, (iv) the type of recommended visualization, and (v) the
information used to compute visualization recommendations. This
summary clearly shows that there is a gap between query rec-
ommendation systems such as YmalDB [5], SeeDB [12], or RE-
ACT [10] for expressive data exploration on the one hand, and
visualization recommendation systems such as Voyager [14, 15]
and Tableau’s Show Me [9] on the other hand. Indeed, whereas the
former may support the full range of typical OLAP queries, they
do not offer any visualization recommendation. Typically, there is
a one to one mapping between the result relation and a displayed
table [5, 10] or bar chart [12]. Opposed to that, visualization rec-
ommendation solutions typically offer no or very limited support
for query recommendation.

System input
query

recom.
query

input for query
recom.

recom.
vis.

input for vis.
recom.

YmalDB [5] SPJ SPJ D , Q (D) - -
SeeDB [12] cube sub-cube D , Q (D) - -
REACT [10] cube OLAP

queries
previous explo-
ration sessions’
query history

- -

Show Me [9] SPA - - diverse data types
Voyager [14,
15]

SPA Changed
SELECT-
clause

D , Q , metadata
of D (schema,
statistics)

diverse data types, vi-
sual encoding
channels

EVLIN cube OLAP
queries

D , Q , data
& evolution
provenance

diverse Q (D), evo-
lution prove-
nance

Table 1: Summary of data exploration systems leveraging
query recommendation or visualization recommendation

Contribution. EVLIN bridges the gap between query and vi-
sualization recommendation, seamlessly integrating both query
and visualization recommendation for a streamlined, interactive
user-experience. It relies on a novel recommendation strategy that
leverages provenance to recommend queries and interactive visu-
alizations in relation to each other [3]. The underlying techniques
as well as the implementation focus on visually exploring rela-
tional data stored in a data warehouse. That is, we assume an
input data set to conform to a snowflake schema. This demonstra-
tion focuses on the usability and interactivity of EVLIN in letting
users explore these data. Through various real-world scenarios, we
showcase that provenance-based recommendations for visual data
exploration allow to effectively reveal interesting information. An
example exploration session showing the functionality of EVLIN
is available as an online video in [1].
Structure. Sec. 2 highlights the innovative aspects of EVLIN.
The audience experience is first addressed in Sec. 3 where we
discuss an exploration session in detail. On-site details such as
the intended audience, sample scenarios, and a summary of the
audience experience beyond the sample exploration session of
Sec. 3 are then covered in Sec. 4.
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2 EVLIN CONTRIBUTIONS
This section briefly summarizes the scientific contributions of
EVLIN. We refer interested readers to [3] for more technical
details, which we leave out here due to space constraints.
Leveraging data and evolution provenance. EVLIN captures
two types of provenance: data provenance (more specifically
why-provenance) and evolution provenance [7]. Data provenance
records which data in the database D was used to derive the query
result Q(D) of a given query Q . In our context, evolution prove-
nance [3] captures the explored dataset history as well as user
interactions and visual encoding parameters of corresponding vi-
sualizations, thus tracking how a current visualization was derived.
Thus, our model of evolution provenance extends the query history
model used for query recommendation in REACT [10].
Provenance-based recommendation. We have developed a novel
query recommendation algorithm that takes into account data
provenance of data that has been explored and interacted with dur-
ing an exploration session via the visual front-end. For an input
SPJA SQL query, the computed recommendations follow typical
data warehouse operations such as drill-down, roll-up, or slice. To
identify adequate visualizations for the results of recommended
queries, we have further developed a recommendation strategy
that takes into account both interactions and visualizations cap-
tured as evolution provenance. While our query recommendation
is similar in spirit to REACT [10], which records query histories
from exploration sessions, our system leverages a richer prove-
nance model and recommends not only queries but also their result
visualizations.
Recommendation data space coverage and conciseness. To the
best of our knowledge, EVLIN is the first system that recom-
mends visualizations of query results for all queries typical in data
warehouse navigation. Indeed, recommendations include roll-up,
slice/dice, and drill-down queries, including drill-down queries
that navigate to dimensions not considered by previous queries.
In addition, data can be clustered by different characteristics or
measures to zoom-in to more detailed distributions. To reduce
the number of recommendations that are ultimately presented to
the user (both for efficiency and usability reasons) while avoid-
ing the loss of potentially relevant recommendations, we have
explored how to leverage integrity constraints such as functional
dependencies to prune redundant recommendations [3].
Visualization of quantified recommendation quality. Given the
high diversity and possibly large number of recommended queries
(and associated visualizations) produced by EVLIN, we propose
to support users to navigate through the exploration space by quan-
tifying the “interestingness” of recommended next exploration
steps. The computed scores are then visualized in an interactive
impact matrix, pointing users to potentially interesting data visu-
alizations for different data warehouse operations.

3 SYSTEM FUNCTIONALITY
The above contributions are implemented as part of the EVLIN
Web application that supports the exploration of multidimen-
sional relational data stored in a data warehouse D with schema
schema(D), given an initial SQL query Q . EVLIN users are ex-
pected to have initial basic knowledge about the schema and
dimensions of the data warehouse. The query Q , as well as all
queries subsequently recommended take the form

SELECTf (m),A FROM rel(Q) WHERE cond GROUP BY A

where m is a measure in the fact table, A = {a1, . . . ,an } is a
set of attributes, f is an aggregation function, rel(Q) refers to
one or more relations in schema(D), and cond is a conjunction of
predicates.

Data	and	
evolution	
provenance

Rendering	

recommendation

Data	

recommendation

Query	

reformulation

Fig. 2: The system architecture

II. PROVENANCE-BASED EXPLORATION WITH EDVIN

Fig. 2 depicts the general architecture of our system.
EDVIN is a web application that currently supports the ex-
ploration of multidimensional relational data stored in a data
warehouse D. We assume that users of our system have initial
basic knowledge about the structure of fact table and the
set of available dimensions. With this knowledge, users first
write an SQL query via a graphical web interface. The query
processor receives and executes this query Q and sends the
result Q(D) = {r1, . . . , rn} to the visualization renderer that
decides how to adequately visualize the query result. This
component leverages Vega 1 for interactive visualization. Once
the result is displayed, users can interact with it, in particular,
they may express their interest in a a sub-result ri 2 Q(D) by
clicking the corresponding part of the visualization (e.g., bar in
a bar chart). This selection triggers provenance computation.

More specifically, we compute the data provenance of
ri, denoted Lin(ri), using the Perm provenance manage-
ment system [8]. This provenance information corresponds
to all tuples in D that have contributed to producing the
result tuple ri (i.e., why-provenance [6]). This provenance
is then considered to identify attributes and attribute values
that may be of interest for data exploration. Intuitively, the
provenance-based identification of attributes and values of
interest compares the frequency of sufficiently frequent at-
tribute values in the provenance Lin(ri) to the frequency of
these values in the complete database D. If these frequencies
significantly differ, the corresponding attribute-value pair is
considered as potentially interesting. More formally, for each
attribute value v of each attribute a in Lin(ri), we com-
pute fa,v(Lin(ri)) = |{ti|ti2Lin(ri)^ti.a=v}|

|Lin(ri)| . Subsequently,
we consider only attributes that are frequent enough to have
any significance w.r.t. the users initial selection, i.e., their
frequence fa,v � ✓L should be greater or equal to a predefined
threshold ✓L. We use the same formula as above to compute
the frequency of the remaining candidate attributes in the
complete database (by replacing Lin(ri) by D). Using the
two previous frequencies, we compute the support of each
candidate attribute values in the lineage w.r.t. the whole
database, i.e., suppa,v(ri) =

fa,v(Lin(ri))
fa,v(D) . Using this support,

only candidates having suppa,v � ✓supp will ultimately be
recommended by our algorithm. However, to further reduce
the number of recommendations that users will have to choose
from, we further prune the set of candidates that may yield
redundant explorations. More specifically, we perform data

1http://vega.github.io

profiling [9] (such as identification of functional dependencies
and value correlations) to prune candidates from the final set of
recommendations, subsequently denoted R. All attribute-value
pairs in R are displayed via the interactive web interface where
users then select one of the suggested attribute-value pairs to
pursue their data exploration session. The user selection is then
passed to the query reformulation component.

Query reformulation takes into account R and outputs a
ranked list L of variations of the original query Q. Each
variation considers two basic changes w.r.t. Q: In addition to
adapting the selection conditions of Q based on R, EDVIN
also extends the query such that it allows to explore pre-
viously not considered dimensions by recommending joins.
Finally, each query Q0 2 L is executed and the result is
sent to the visualization renderer, starting the next iteration
of the exploration process. Mapping the query result to an
appropriate visualization now takes into account both the
query result and the previous visualizations users have worked
on. The visualization recommendation aims at maximizing
the visual similarity of the recommended visualization with
visualizations users have seen and interacted with previously.
The rationale is that recognizing information from previous
iterations potentially increases the usability and the efficiency
of the exploration process.

III. DEMONSTRATED FEATURES AND SCENARIOS

The demonstration of EDVIN covers all features described
above. Conference attendees will have the opportunity to ask
queries in at least three different domains and to interact with
the system to discover, by themselves, interesting facts hidden
in the data. Currently, the scenarios are from the domains
flights 2, movies 3, and e-governemt 4. As shown in the video
of EDVIN available on our website 5, we already revealed
some misconceptions of our understanding of the flights data
set using data exploration, thus being able to correct an initially
wrong query.

In addition to demonstrating the user experience, our
demonstration also includes a tour “behind the scenes” of
our system and algorithms, showing how data, interaction,
and visualization provenance effectively contribute to support
efficient data exploration.
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Figure 1: EVLIN system overview

Fig. 1 depicts the general processing EVLIN implements: (i) A
user triggers an exploration session by issuing Q . (ii) The query
processor executes the query and returns its result, denoted Q(D).
(iii) Q(D) is then input to rendering recommendation that deter-
mines an adequate visualization to render the query result. (iv) The
user can interact with the data via the graphical user interface, se-
lecting a data-subset of interest, denoted R. (v) Based on this
interaction, data recommendation identifies which attributes and
values within their domain may be of interest to the user at the
next step of his data exploration session. (vi) For each data rec-
ommendation, query reformulation determines variations Q ′ of
the query Q that correspond to different exploration queries over
a data cube in a data warehouse (slice, drill-down, roll-up, etc.).
The interestingness of these queries is quantified based on the data
underlying Q and Q ′ and the consistency of possible visualiza-
tions for Q ′(D) wrt evolution provenance. The result of this step
is a set of recommended queries and respective visualizations for
each recommended attribute of step (v) with associated interest-
ingness scores. This information is visualized as an impact matrix
to the user. The user then chooses one particular query to explore
next. Upon selection of this query Q ′, the next iteration of the
exploration process starts.

Figure 2: Initial input interface and sample query Q

In what follows, we detail functionalities, interfaces, and inter-
actions that the audience will experience, focusing on the render-
ing recommendation, data recommendation, and query reformula-
tion components. Due to space constraints, an in-depth discussion
of the underlying algorithms is out of the scope of this paper, and
we refer interested readers to [3] for details.

An initial user-specified query Q is input via a graphical user
interface, as illustrated in Fig. 2. While our current implementation
requires full-text SQL (loaded from a file or typed in a text field),
a more user-friendly interaction similar to Voyager is planned. Our
sample scenario considers a database D of domestic US flights
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(a) Example of recommended visualization for Q (D)

(b) Visualization of recommended query result Q ′(D)
Figure 3: Sample visualizations rendered using EVLIN

andQ that determines the number of short flights per airline which
arrive ahead of schedule (a possible indicator for airline quality).
Using the same scenario, a more extensive exploration session
than the one described in the following is showcased in an online
video in [1]. It includes for instance visualizations other than bar
charts and further data warehouse operations.

3.1 Rendering recommendation
The rendering recommendation component takes as input a query
result Qi (D) and evolution provenance Pe to determine a suited
visualization of Qi (D). As described in [3], evolution provenance
encompasses information about (i) past queries, (ii) the set of
visualization resources used to render results of these queries,
and (iii) information of past user interactions such as the selected
data regions or specific sub-results. Essentially, this information
are collected for each exploration step of an exploration session,
where steps are delimited by transitioning from visualizing a query
Q to visualizing a query Q ′. This results in evolution provenance
being a directed graph where nodes represent individual explo-
ration steps and edges represent transitions from one step to the
next. For a given Qi (D), its corresponding evolution provenance
Pe includes all meta-data associated to graph nodes on the path
from the initial query Q to the node representing the query Qi .

Using this input, rendering recommendation aims at maximiz-
ing the visual similarity of a recommended visualization with
those seen and interacted with previously for similar queries (intu-
itively, such that users easily recognize the same information as
seen previously and thus understand the meaning of visualizations
faster). This first requires determining similar queries among those
in Pe . We quantify this similarity using a token-based similarity
function betweenQi and a queryQp ∈ Pe , weighted by the inverse
of the shortest distance from Qi to the previously seen Qp on the
path defining Pe . Among all queries of Pe with a similarity to Qi
above a predefined threshold θV , we now take the most frequent
encoding parameters used to visualize information that is also
selected by Qi . These define a preliminary skeleton for the rec-
ommended visualization of Qi (D). In case no prior visualizations
can be used, we resort to the effectiveness metrics adopted by
Voyager [14, 15] to construct the visualization. Finally, the visual-
ization skeleton is possibly updated based on the set of constraints
defined in [11], that reduce conflict between visualizations.

As an example, Fig. 3a displays the recommended bar-chart
visualization for our sample query Q that counts short flights

arriving ahead of schedule for each airline. For this initial ren-
dering, Pe = ∅, thus, the recommendation is solely based on the
effectiveness metrics.

The user can inspect (by mouse hovering) the data and select
a region R of interest by clicking to pursue the exploration. In
Fig. 3a, the user has selected the highest bar that designates the
overly punctual flights of the airline with code WN. The selected
region is highlighted in a different color. At this point, Pe is
updated to include the initial query Q in its query history, the
user interaction event (selection of bar with code=WN) as well as
visual encoding parameters of the displayed chart.

Recommending the visualization of Fig. 3b (explained later)
relies on the updated Pe to generate a similar visualization of same
features, e.g., same axis scale for the y-axis, same order of airline
codes on the x-axis, or choice of a stacked bar chart to maintain
same heights as seen previously (e.g., in the bar-chart of Fig. 3a).

3.2 Data recommendation

Figure 4: Impact matrix for running example

Selecting a particular sub-result R ⊆ Q(D) of the data via the
graphical user interface triggers the data recommendation compo-
nent. It takes as input R, D, and Q to determine a set of attribute-
value pairs P = {(a1,v1), . . . , (an ,vn )}. Before passing these to
query reformulation, the attribute-value pairs in P are grouped by
attribute, resulting in the final output G = {(a1,V1), . . . , (ak ,Vk )}.
Essentially, data recommendation determines which data to ex-
plore next while query reformulation determines how these data
will be explored.

To compute P , we leverage the data provenance of R, denoted
Pd (R), using the Perm provenance management system [6]. This
provenance corresponds to all tuples in D that have contributed
to producing R (i.e., why-provenance [4]). An attribute-value
pair is then recommended if it satisfies one of the two follow-
ing conditions: (i) it is widely present in Pd (R) and more mas-
sively present in the database D or (ii) it is widely present in
Pd (R) but rarely present in D. We verify these conditions by
first requiring a minimum frequency fa,v for an attribute-value
pair in Pd (R), i.e., fa,v (Pd (R)) ≥ θL , where θL is a predefined
threshold. We then compare this frequency to the frequency of
the same attribute-value pair in the whole database D using the
support measure defined by supporta,v (R) =

���loge (
fa,v (Pd (R))
fa,v (D)

)���.
Finally, only those attribute-value pairs with a lineage-based sup-
port above a given threshold θsupp are retained for recommen-
dation. In our prototype, threshold values of θL and θsupp have
been set to 0.1 and 0.7 respectively, which proved to be practi-
cal for the use cases we considered. However, setting these in
general is an interesting avenue for future research. Using the
method described above, it is possible that two distinct entries
in P , i.e., (a,v) and (a′,v ′) yield redundant query reformulations.
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This is for instance the case when functional dependencies ex-
ist between attributes. To avoid redundant recommendations, we
employ data profiling algorithms to determine functional depen-
dencies [2] of the form a → a′ and prune a′. The row labels of
Fig. 4 show the set G, including for instance (cancelled, {1}) or
(dest , {LAS,MDW , PHX }) that result from relevant attribute pairs
(cancelled, 1) and {(dest ,LAS), (dest ,MDW ), (dest , PHX )} ⊆ P ,
respectively.

3.3 Query reformulation
The data recommendations are input to the query reformulation
component that produces, for each (a,V ) ∈ G, a set of queries
corresponding to variations of the original queryQ . Each variation
reflects an operation typical when querying data warehouses. Our
system supports variations implementing slice (and dice), drill-
down, including the navigation to dimensions not considered in
the initial query Q (which we call extension afterward), roll-up,
and grouping or clustering the original results of Q by further
attributes (zoom-in). The variations are systematically constructed
based on Q , (a,V ), and the specific data warehouse operation. For
instance, the query reformulation for slice will add conditions of
the form AND a = v1 OR . . . OR a = vn to the initial WHERE
clause of Q , where {v1, . . . ,vn } = V , whereas a roll-up, drill-
down changes the attribute set A in the SELECT and GROUP BY
clauses of Q to a higher or lower granularity.

To assist users in choosing the next query for the next explo-
ration step, we assign a utility score s to each query variation.
Developing and evaluating suited scoring functions to quantify the
interestingness of query variations based on their result data and
candidate visualization properties is currently actively researched.
As a proof-of-concept for our visual data exploration, we have
currently implemented Kullback-Leibler divergence function [13]
as a utility function. It quantifies the divergence of a’s value distri-
bution in Q ′(D) from its distribution in D.

The mapping of (a,V )-pairs to sets of scored recommended
queries is visualized as an impact matrix. Fig. 4 shows the impact
matrix that results from the query and interaction depicted in Fig. 2
and Fig. 3a. Each line of the matrix corresponds to an (a,V )-pair
and each column corresponds to a type of query variation. The
cell colors encode the divergence score. From this example, we
see for instance that the zoom-in query for (airtime, 0) obtains a
high interestingness score. Upon clicking this interesting cell, the
corresponding query variation is set to be the new query Q , which
is then executed before its result is visualized as recommended by
the rendering recommendation component (see Fig. 3b).

The visualization of Fig. 3b shows that a significant number of
flights satisfying the initially intended quality criteria for airlines,
i.e., arrival ahead of schedule, has a flight duration equal to zero.
Based on this insight, users may decide to revise or refine the
airline quality criteria.

4 SCENARIOS AND USER EXPERIENCE
The demonstration will rely on scenarios from different domains.
The domains are chosen so that some basic knowledge about data-
base schemas and attributes can be assumed. Possible supported
scenarios could leverage for instance the following datasets.
Flights. The first dataset describes US domestic flights1. It con-
tains information about two million flights done by more than
1500 airline companies between 2007 and 2008. It includes fur-
ther information about 3300 airports and almost 4500 plane types

1https://stat-computing.org/dataexpo/2009/

used for the covered flights. The facts recorded for each flight
include various numerical attributes such delays, cancellation,
arrival and departure time etc.
Movies. The second dataset describes one million ratings made
by 6000 users of the MovieLens platform2 on 4000 movies. This
database stores various information about users and movies.
Soccer. The third dataset is the European soccer league database3.
It contains detailed information about more than 25,000 fixtures
between 2008 and 2016 in 11 European championships.

We expect the demonstration to attract a broad audience, gen-
erally interested in interactive data analysis or visual data explo-
ration. Having some proficiency in SQL is crucial to be able to
follow and express SQL queries that trigger an exploration session.

The audience experience will be similar to the sample scenario
used throughout Sec. 3. However, wheres the example limits to
one exploration step, attendees will have the opportunity to run
exploration sessions spanning multiple exploration steps similarly
to the user experience shown in [1].

In addition to experiencing the system’s main functionality,
the demonstration provides a tour “behind the scenes”. This in-
cludes seeing how user interaction translates to a provenance
query, which scores are computed for data recommendation, which
attribute-values are pruned along the way, and which queries (with
associated scores) are recommended. Ultimately, after hands-on
data exploration experience using EVLIN, the audience will have
gained a better understanding of the explored data set and possibly
even discovered new insights on the underlying data set.
Acknowledgments. We thank the German Research Foundation
(DFG) for supporting projects A03 and D03 of SFB-TRR 161.
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ABSTRACT
Entity Resolution (ER) identifies semantically equivalent enti-
ties, e.g. describing the same product or customer. It is a crucial
and challenging step when integrating heterogeneous (big) data
sources. ER approaches typically compute a similarity graph
where vertices represent entities and edges (links) connect sim-
ilar entities. Different clustering algorithms can be applied on
such similarity graphs to finally determine groups of matching
entities. In this demonstration paper, we introduce a new inter-
active tool to visualize and thus help to analyze large similarity
graphs and large sets of ER clusters. Users can intuitively investi-
gate the link and cluster structure to identify potential problems
such as overly large clusters, cluster overlaps or singletons that
might indicate the need for repair activities on the ER result. To
support large graphs, computation-intensive tasks like layout-
ing and sampling are executed on the server side as parallel or
serial processes. The demo walks through different matching
and clustering tasks and allows users to interactively explore the
results.

1 INTRODUCTION
In the era of big data, one of the challenging data integration
tasks is to identify semantically equivalent entities (e.g., describ-
ing the same product or customer) in large and heterogeneous
data sources. This task is referred to as Entity Resolution (ER)
or record linkage [6]. ER typically computes a similarity graph
where vertices represent entities and edges (links) connect similar
entities with a pair-wise similarity above a predefined threshold.
Matching entities can directly be derived from such a similar-
ity graph or from groups of matching entities determined with
subsequent clustering algorithms [9]. Our recently introduced
framework FAMER (Framework for Multi-source Entity Resolu-
tion) supports a parallel computation of such similarity graphs
and ER clusters for multiple (≥ 2) data sources [12].

During the continuous development of FAMER, it is difficult
to investigate the correctness and efficiency of the certain algo-
rithms and to understand the problems. Such an investigation
may lead to introduce better match and cluster algorithms or
even an extra postprocessing step of repair (for more details
see [13]). However, to identify (or debug) such issues with lim-
ited effort and time we see the need for a comprehensive and
powerful approach to visually analyze similarity graphs and ER
clusterings. Unfortunately, general purpose graph visualization
tools like Gephi1 or Graphviz2 have only limited capabilities to
1https://gephi.org
2http://www.graphviz.org
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Figure 1: The software architecture

analyze ER clusterings and also have problems to visualize large
(big data) similarity graphs with vertex and edge properties.

In this demo paper we introduce SIMG-VIZ, a new visual-
ization system for entity resolution and clustering that allows
us to investigate different match and clustering techniques for
multi-source entity resolution. SIMG-VIZ offers the following
key features:

• SIMG-VIZ allows a user to analyze precomputed similarity
graphs and clusterings from existing ER tools and also
supports executing and analyzing ER match tasks directly
with FAMER.

• Different graph and ER cluster visualization techniques
and layouts can be applied to choose the best visualiza-
tions.

• To increase performance, some layouts can be precom-
puted on the server with either parallel or serial computa-
tion. This provides a significant optimization potential in
particular for force-directed layouts [3].

• To support visualization of large graphs, preprocessing
techniques such as sampling (also executed in parallel on
the server) can be selected to obtain a fast overview of
large similarity graphs and their clustering results.

• Clusters and their overlaps as well as edges annotated
with their type and similarity are visualized by using a
simple but useful cake-like visual metaphor. Users can
interact with clusters and select individual clusters for
investigation.

2 SIMG-VIZ OVERVIEW
The SIMG-VIZ system consists of three modules: (1) the FAMER
server, (2) a visualization server in JAVA and (3) a web-based
UI-client written in JavaScript (see Fig. 1).

The FAMER server is used to link several sources and executes
defined matching tasks. However, SIMG-VIZ also allows a user
to load similarity graphs and clustering results that were com-
puted by other frameworks and tools. The visualization server
offers several preprocessing (e.g. for sampling) and layouting
algorithms. The preprocessing algorithms are implemented in
distributed fashion based on Gradoop and Apache Flink whereas
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graph layoutings are currently only implemented as non-distributed
algorithms. The web-based client, provides an interactive visual-
ization of similarity graphs and ER-clusterings. Node and edge
properties can be investigated and server-side components like
matching, clustering, preprocessing and layouting can be trig-
gered. Through the client a user selects options and triggers
server based REST-interfaces. The visualization server and the
FAMER server both respond with JSON results. In the following
paragraphs each of the components is described in detail.

2.1 FAMER Tool
FAMER offers parallel entity resolution for multiple data sources.
It supports different match and clustering schemes that are ex-
ecuted on top of a distributed data processing engine (Apache
Flink [4]) and the graph analytics framework Gradoop [10]. Its
execution has two main phases: (1) computation of a similar-
ity graph based on pairwise matching and (2) clustering. The
first phase consists of several steps, namely blocking, pairwise
comparisons, and match classification. Blocking reduces the num-
ber of necessary comparisons which otherwise would require to
compare each entity of a data source to all entities of any other
source. Different blocking techniques can be applied in FAMER
such as Standard Blocking (SB), Sorted Neighborhood as well as
single- and multi-pass blocking. In the matching step all entities
of the computed blocks are compared by computing and combin-
ing similarities between their attributes, e.g. based on similarity
measures such as Edit-Distance or Jaro Winkler. For matching,
match rules can specify the required minimal similarity for the
considered attribute-comparisons. The output of this step is the
set of matching entity pairs (links) together with a combined
similarity value per link. In the following match classification
step entity pairs are classified as match or no-match based on
the computed similarity values. This output is stored as a simi-
larity graph where entities are represented as vertices and match
links as edges. The clustering phase of FAMER aims at grouping
together all matching vertices of the similarity graph based on
the link structure and similarity values. Clustering algorithms
typically try to maximize the similarity between entities within
a cluster while the similarity between entities of different clus-
ters should be minimized. FAMER supports several clustering
algorithms for ER such as Connected Components, Correlation
Clustering (CCPivot) [2, 5], Center [9], Merge Center [1], and
Star [1].

With SIMG-VIZ, all components of FAMER can be configured
and parameterized which allows users to run and compare dif-
ferent ER match tasks.

2.2 Client (Web-based HTML/JS Frontend)
Fig. 2 shows an overview of the web-based client of SIMG-VIZ. At
the top part of the client, several options can be selected. The user
can choose between different clustering and match configura-
tions which are stored after executing FAMER. Before visualizing
the similarity graph some available preprocessing algorithms
such as sampling can be applied. Moreover, the user can select
layouting options, i.e. which layout to use and where the compu-
tation should take place. In particular for large graphs, computing
the layout on the server gives significant improvements. Finally,
SIMG-VIZ offers a list of actions (see Table 1) that support differ-
ent drawing tasks of the graph and some statistics computations
can be triggered. On the right side of the client a number of
parameters for visualization can be set. To improve interactivity,

styling tasks are performed on the client, for example changing
vertex or edge sizes.

Table 1: Actions in SIMG-VIZ

Action Description

Draw graph (Cytoscape) Draws a sim-graph in Cytoscape3.
Draw graph (WebGL) Draws a sim-graph in WebGL based on Vi-

vaGraph.
Compute only Executes preprocessing and sampling with-

out visualization.
Compute labels/keys Computes all labels and property-keys of

the vertices and edges for filtering in the
left part of the UI.

Save as image Exports an image of the drawn graph.
Remove selected node Removes a selected node.
Degree Distribution Computes the degree distribution of the

graph.
Graph Statistics Computes additional basic statistics of a

graph.

2.3 Visualization Server
The visualization server offers preprocessing and layouting ser-
vices. The preprocessing algorithms are implemented in a dis-
tributed fashion based on Gradoop and Apache Flink. Table 2 lists
currently implemented preprocessing components. All layouting

Table 2: Preprocessing algorithms in SIMG-VIZ

Preprocessing Description

Graph sampling Computes a statistical sampling of a
graph. Currently SIMG-VIZ implements
vertex, edge and page rank sampling.

Graph summary Computes a graph summary by grouping
dense subgraphs of a graph to generate a
compact overview of a large graph [11].
In SIMG-VIZ the Flink implementation is
used.

Cluster neighbor filtering In particular for ER-Clustering a filtering
to neighbors of clusters is needed. The
user specifies a cluster ID (at the right
part of UI) and that cluster together with
its neighbor clusters is visualized.

Cluster sizes filtering Only the clusters with specific sizes are
visualized.

Cluster Aggregation It visualizes a graph in which the cluster
vertices are grouped together.

algorithms are available both for the client and the server as non-
distributed algorithms. We observed that executing layouting
algorithms that need iterations like the force directed layout [8]
should not be executed on the client within a browser. Executing
it on a server brings significant run-time improvements, even
without distributing the computation to multiple nodes. After a
layout computation finishes on the server, the positions of nodes
are send to the client together with the graph. As future work
we plan to implement parallel versions of layouting to be run on
top of Flink or Gradoop.
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Figure 2: An overview of SIMG-VIZ

2.4 Cluster Visualization
In this section, we describe some specific features of SIMG-VIZ
which are designed particularly for the visualization of ER clus-
ters.

These features are explained along a real world ER-example of
integrating four duplicate-free data sources namely Freebase (Fb),
New York Times (nyt), DBpedia (db), and Geonames (geo). We
initially compute a similarity graph and apply different clustering
techniques with FAMER. A result cluster includes only vertices
from these four sources which are most probably the same real
world entities. An edge connects two vertices which have a high
value of computed similarity measure. In Fig. 3 we initially visu-
alize the complete clustering result. Clusters are given different
colors to indicates cluster membership. Users can identify clus-
ters that may warrant a closer inspection, e.g., clusters with more
than 4 vertices or singleton clusters. A user can zoom in and in-
spect the properties of each vertex. Since generic graph layouting
algorithms often have problems in visualizing large similarity
graphs (e.g., problem of edge cluttering) we applied a compound
layout for cluster visualization. Such compound layouts of graphs
like CoSE-Bilkent [7] visualize vertices in a cluster (referred to
as compound in the paper) close to each other while the whole
graph is visualized by using a modified force-directed algorithm.
Fig. 4(middle) shows a visualization of such a compound layout
which we also compute on the server side. Vertices of a cluster
share the same color and are closely grouped together to form a
compound.

To get a cleaner picture, a user can interactively select a specific
cluster or enter a cluster ID to only visualize a specific cluster
for closer inspection. Often we also need to visualize a cluster
together with its neighboring clusters (see Fig. 4 (top)). The vertex
labels here refer to the corresponding data source for that entity.
The scenario illustrates a problem case since there are more than
four cluster members with some data sources having two entities
in the same cluster which should not be possible for duplicate-
free sources. There is also a singleton cluster that might have

Figure 3: A visualization of all clusters.

to be merged with another cluster. Based on such observations
we are now able to re-assess the used cluster algorithms and
investigate new approaches for cluster repair.

We also provide support for visualizing clustering result of
specific clustering algorithms like Star[9]. The Star clustering
computes cluster representatives and all neighbors of those repre-
sentatives are assigned to the corresponding cluster. In SIMG-VIZ
those cluster representatives are highlighted with a black outline
(see Figure 4). It happens that a vertex is a neighbor of several
cluster representatives so that such vertex will belong to multiple
clusters. These multi-assignments are represented as pie-charts
on nodes. Each piece of a pie chart which has a specific color spec-
ifies a cluster assignment. For example, Fig. 4 (Middle) contains a
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Figure 4: visualizations of (top) clusters with different col-
ors, (Middle) vertices can belong to more than one cluster
- drawn in compound layout, (Bottom) different styles for
edges indicating how strong connections between entites
are.

pie chart with three pieces which means that node (entitiy) is as-
signed to three clusters. Obviously some cluster post-processing
is needed to select the best cluster for each entity that have been
assigned to several clusters.

SIMG-VIZ provides special visualization support for evalu-
ating clusters when the perfect cluster result is available for
comparison. As shown in Fig. 4 (Bottom) there are different edge
colors: green for edges within correct clusters and red for (wrong)
edges between such clusters. Hence, clusters containing red edges
should be investigated more closely. Finally we implemented a
map-visualization of geo-referenced data so that entities can be
plotted onto a map. With the help of this map-visualization we
are able to identify false matches within a given data set.

2.5 Web-based Visualization Libraries
Drawing large graphs within a browser is problematic. We inves-
tigated several different Javascript-based visualization libraries
and observed that there are significant performance differences.
Three groups of libraries can be found: (1) SVG-based libraries
compute SVG-nodes and tags. They are often feature rich but do
not scale well due to many generated SVG-Elements. (2) The sec-
ond group relies on HTML-Canvas. These libraries are typically

faster but interactivity is harder to realize. Still they mostly do
not scale well for larger graphs. (3) WebGL-based libraries offer
the best scalability but are still not as feature rich as existing
libraries in the other two categories. We finally decided to use
the Canvas-based Cytoscape4 library for small graphs up to 2000
vertices since it gives more flexibility regarding the style of edges
and vertices. For example, the feature of drawing a pie chart
on vertices is already available in Cytoscape. For large graphs,
we use VivaGraph5, which is a WebGL-based library with less
support for vertex and edge attributes, styling and coloring. How-
ever for larger graphs the user won’t be able to see those details
anyway.

3 DEMONSTRATION
In the demonstration, we walk through a complete workflow of
entity resolution using matching and clustering for small and
large ER match problems. A user could select select data sources
and the corresponding properties, similarity measures and match
classifiers that are used by FAMER. The resulting clusters from
FAMER are loaded into the visualization server. We then allow
a user to compare different preprocessing algorithms as well as
different layoutings. We consider small data sources as well as
large ones.
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ABSTRACT
Cities worldwide aim to reduce their greenhouse gas emissions
and improve air quality for their citizens. Therefore, there is
a need to implement smart city approaches to monitor, model,
and understand local emissions to better guide these actions.
We present our approach that deploys a number of low-cost
sensors through a wireless Internet of Things (IoT) backbone
and is thus capable of collecting high-granular data. Based on a
flexible architecture, we built an ecosystem of data management
and data analytics including processing, integration, analysis,
and visualization as well as decision-support systems for cities
to better understand their emissions. Our prototype system has
so far been tested in two Scandinavian cities. We present this
system and demonstrate how to collect, integrate, analyze, and
visualize real-time air quality data.

1 INTRODUCTION
Urban emissions contribute over 60% to global greenhouse gas
emissions. Cities aim at reducing their emissions through tailored
policy and integration to Smart City approaches. Smart City
approaches facilitate easier integration of emission sensing into
city systems and fulfill city requirements through novel and low-
cost approaches [5, 6, 8, 10, 11].

The overall aim of our project1 is to fulfill the information
needs of cities that need specific data for emission reduction
actions by providing complementary on-the-ground emission
data for improved understanding and decision making [2]. In
short, the need based on future challenges faced by cities will be
better and more high-granularity measurements to complement
existing official measurement stations.

Some Nordic cities have specific challenges in that they have
already implemented a range of climate actions, which means
that future impact on a certain class of emissions can only be
achieved by a more detailed and granular understanding and
analysis of emissions, since many broad measures are already
in place. The next step then is to get better insight into more
1Carbon Track & Trace – CTT: https://www.ntnu.edu/ad/ctt

© 2018 Copyright held by the owner/author(s). Published in Proceedings of the 21st
International Conference on Extending Database Technology (EDBT), March 26-29,
2018, ISBN 978-3-89318-078-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

difficult to measure components, also to be able to adapt policy
in fast feedback loops and at varying scales. This includes impact
assessment of measures ranging from small-scale such as closing
down certain streets (and being able to observe spillover and
evasion effects in surrounding parts of the city) to large-scale
such as changes in public transport or denser urban development.

A high spatial granularity of sensor deployments is obviously
not possible with the existing expensive high-quality measure-
ment stations that are often provided nationally. Our approach,
in contrast, is to use low-cost sensors to cover a city’s spatial
footprint with a much higher sensor density. This enables a trade-
off of high number and high granularity of low-cost sensors that
can compensate for their relatively lower accuracy.

Existing official measurement stations are equipped with high-
quality sensors that cost up to $500,000. Our low-cost approach
could provide a very dense coverage of a city with 250 additional
sensors for the price of one additional station by using sensor
units of around $2,000 each. For ease of installation, this requires
standalone sensor units that do not need cabling for electricity or
connectivity. We achieve that by deploying solar-powered sensor
nodes with a wireless data link over the LoRaWAN standard for
Smart City IoT applications, which also enables us to quickly
scale up the sensor deployment. The approach allows to quickly
prototype system components on the hardware and software
side for the overall goal of linking the measurement data to the
information needs of the cities for emission reduction both for
baseline and continuous data collection.

After having built and deployed the general IoT sensor net-
work before [2], we focus here on the integration of data sources
and the data analysis infrastructure for Smart City applications.

2 APPROACH
Our approach is to build an ecosystem of relevant tools and
methods to better understand city emissions and work with data,
such as analytics [9, 12], visualizations [7], and decision support
systems [5, 6, 11] around local emission measurements and the
integration of external data sources. This is an important aspect
of Smart Cities [9], and can also be used as a case study to un-
derstand and build similar systems. Our system is piloted in the
two cities of Trondheim, Norway, and Vejle, Denmark.

In this paper, we describe key aspects of this ecosystem of data
analysis and visualization that strongly relates to challenges and
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Figure 1: Overall system architecture

requirements of the cities.We further demonstrate the integration
and aggregation of data sources for a smart city.

2.1 Architecture
The system architecture and data flow is sketched in Fig. 1, which
consists of four components: a city-wide IoT sensor network,
cloud-based systems for data collection and storage, integration
of external data, and analysis and visualization platforms for
stakeholders. The architecture is flexible through an ecosystem
approach and accommodates different components for a range of
related tasks. Our technology stack follows common concepts for
IoT and Smart City systems [10] with project-specific adaptations.

The sensor network is composed of sensor nodes deployed
within the city, which measure emissions and air parameters:
CO2, NO2, PMx (particulate matter); temperature, pressure, and
humidity. The data is transmitted to the IoT backbone, which
forwards collected data to the cloud storage, from where it is
available for analysis and visualization, using relevant external
data sources. The backbone uses LoRaWAN as a radio-based ur-
ban sensor networks through a number of gateways covering
the pilot regions [2]. Data forwarding and cloud sensor manage-
ment was built through the event-driven MQTT communication
protocol.

Visualizations and analyses are connected to all stages of the
data processing. Examples are network monitoring and early data
validation close to the sensors, stream processing on measure-
ment data, up to C&C centers, satellite measurement grounding,
integration into GML-based 3D city models, and other forms of
mapping and integration that we describe in the following.

2.2 Data Integration
Apart from the direct sensor data, there is a range of municipal
and national data sets available as well as other external data
sources that need to be included in the data analytics and visu-
alization to support analyses and improve data quality. Table 1
gives an overview of these sources and how they can be utilized.
They range from direct measurements of air quality that can be
used to validate and calibrate the sensor network to other data
sources that help to understand emissions in the context of a city,
for example through traffic patterns [12] or integration into city
tools and systems.

The sensor network has the usual issues of missing data that
is dealt with on a technical monitoring level and being handled
by standard methods in the analyses, as well as the aggregation
of data from multiple sensor units. More interesting are the chal-
lenges posed in the data integration. The sources contain highly
heterogeneous data, with different timescales, measurement fre-
quencies, spatial distributions and granularities, measurement
technologies, and a complex set of related uncertainties and in-
accuracies in the data.

LoRaWAN TCP/IP MQTT REST

Databases

Alarms

CTT Network Visualization

CTT 
Dataport

HTTP, MQTT
HTTP

1 2 3 4 5

6

7
IP

Ping
8

Figure 2: Dataport Protocol Diagram

2.3 Network Metadata Analysis and System
Status Monitoring

The network, server components, gateways and sensors are sub-
ject to transient and permanent failures, which can ultimately
result in missing data. Although the later analysis tasks can detect
such losses of data, they do not analyze the cause for the error, or
prevent further losses. Instead, failures in the system should be
detected as quickly as possible, so that data loss is kept at a mini-
mum. We therefore built a monitoring application (the dataport)
to monitor the status of all sensors, gateways and the network [3].
It is built with the Akka framework, which facilitates the creation
of fault-tolerant applications based on the actor model [4]. Actors
are independent, supervised processes that encapsulate data and
control logic and communicate via messages. Each device in the
real world corresponds to a dedicated actor that acts as its digital
twin, which is a virtual model of the sensor or gateway. It keeps
track of its state in real-time, monitors all communication and
triggers alarms if data is not received as expected. Incoming data
contains meta-data that identifies the originating sensor and the
gateway from which it was received. In this way, the digital twin
for a gateway can detect if a gateway operates as expected.

Faults of a more complex nature, such as decaying sensors, er-
roneous behavior of sensor nodes, or missing data patterns need
specific analysis. For example, a single missing measurement is
expected occasionally. Based on the measurement frequency of
individual sensors, it takes some cycles to determine a failure
with certainty. As sensors nodes can adapt their frequency based
on battery levels, a complex model of the sensor node and its
status is needed for detection. Actors are organized hierarchically.
On higher levels, failures can be grouped so that for example a dis-
tinction can be drawn between sensor failures versus a gateway
outage that would make a set of sensors invisible.

The dataport also monitors the larger system, such as the The
Things Network (TTN) cloud backend and the MQTT connection.
If any of the components on the data path from the sensors to
the data storage fails, the dataport generates a notification. If the
dataport itself fails, it is detected by an external watchdog service,
in this case AppBeat. The dataport further drives a visualization
of the network itself, shown in Fig. 3, of the structure of digital
twins for sensors and gateways, their location, the connections
and live data transmission between sensors and gateways. Apart
from the practical value of monitoring the network, it is also a
useful illustration of the spatial and measurement characteristics.

2.4 Data Analyses and Visualizations
A range of analyses work on the collected data streams as illus-
trated in Fig. 1 apart from the more operational network analysis.
Examples are ongoing data collection and analysis, understand-
ing of patterns, as well as comparison of sensor measurements
to air quality measurement stations to ground the network and
calibrate the sensors. There are very few official stations; to

699



Table 1: Examples of external data integration

Type Example Description

Official air quality
measurements

NILU data (Norwegian Air
Quality Institute)

Ground truth for certain pollution types, grounding and calibrating measurements
to high-quality reference stations

Remote sensing NASA OCO-2 satellite CO2
measurements

Ground truth top-down measurements for certain emission types, large-scale
coverage, low spatial resolution, coupling to large-scale modeling and validation

Traffic data Traffic density from here.com Estimate traffic emissions by correlating continuous external traffic density to
emission measurements

Municipal traffic counts Validate traffic estimations, but only available for short periods
3D city models Municipal 3D model of Vejle Integration into existing visualization tools. Use of city geometry in future

emission modeling
National statistics GHG emission estimates from

national statistics office
down-scaled national GHG emission data, often with high uncertainties

Other municipal
data and tools

GIS, statistics, decision support,
etc.

Understanding emissions in the context of the city

Figure 3: Visualization of sensors, gateways, and links

support the grounding and calibration, we have co-located one
of our sensor units to the only station in the pilot area. This
allows to compare both absolute and relative accuracy and cali-
brate the local sensor and, through larger-scale correlated trends,
the network, but with lower certainty. In connection with the
network monitoring, it also allows the identification of outliers
and malfunctioning sensors. Main ongoing work is modeling
dependencies of NO2, PMx , and CO2, especially from transport
emissions, which therefore also looks at linking to traffic patterns
[12]. We discuss some analytics around this data in the following.

Battery levels depend on the charging of the autonomous sen-
sor units through their solar panels. Charged occurs during day-
time, and is affected by weather conditions. It is important to
monitor the battery level to keep the nodes running. Fig. 4 shows
the battery level as a function of time (left), and the difference in
battery-level from previous sent package versus time of day, and
where red indicates whether the nodes could have been charged
by sunlight since the previous package (right). This allows to
estimate battery depletion.

Dynamics of CO2 emissions and possible links to traffic in the
form of a traffic jam factor (from here.com data) is shown in
Fig. 5. According to the plots, we can conclude for this sensor
location that traffic is not the only factor that accounts for the
dynamics of the CO2 emission as they exhibit different patterns,
and have no apparent correlation. In fact, CO2 emission dynamic
is a more complex issue that may be affected by many factors,
including traffic, wind speed, temperature, humidity and other
weather conditions, as well as daily and seasonal patterns, which
we will further investigate in our future work.

Figure 4: Battery level analysis

Figure 5: A study of CO2 dynamics

Figure 6: Example of dashboards for air quality and traffic

Visualizations and Dashboards for real-time monitoring. Fig. 6
shows the air quality and traffic flow dashboard, respectively.
The dashboard is implemented using Apache Zeppelin as the
visualization platform and accesses the data from the OpenTSDB
time series database. The mapped sensors show the real-time data
and analytic results for each location. Examples are the the air
quality and traffic indicators in Fig. 6. This was further integrated
into a 3D CityGML model as seen in Fig. 7 and also into a full
network and data overview wall display shown in Fig. 8.

3 DEMONSTRATION
In this first full demonstration of the CTT air quality system, we
show the architecture and implementations of IoT and analytics
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Figure 7: Integration of sensor data into 3D city model

Figure 8: Network monitoring and data visualization
dashboards

technologies in air quality monitoring and explore insights. We
use two use cases of deploying our systems in Vejle, Denmark
and Trondheim, Norway, where two and twelve sensors were
deployed respectively to collect air quality data. We demonstrate
our system from the perspective of developers, city policymakers,
and citizens. For developers, we explore the system in detail,
demonstrate the building blocks of the system, and show how
to build similar IoT systems; for policymakers, we aim to assist
them in decision making for smart cities with the proposed IoT
technologies, e.g., urban planning; for citizens, we aim to raise
the awareness of environment protection and greenhouse gas
reduction for better city life.

We use real-time data collected from the deployed sensors from
both cities, as well as traffic data sets streamed from the third-
party traffic flow monitoring operator, here.com. The sensor data
consist of the CO2, NO2, and PMx , and weather data including
humidity and temperature. The sensor data is collected at a five-
minute interval. The demo also uses historic data saved in our
time-series database, collected since January 2017.

Developers’ point of view: We show the architecture and com-
ponents used by our air quality monitoring system, including
sensors, IoT sensor network, cloud storage for sensor data and
external traffic data, analytics, and dashboards. We demonstrate
how to collect, process and visualize high-frequent sensor data
in our system developed on the Zeppelin platform; and how to
streamline the whole data flow, including segmentation, chaining,
and automation. Finally, we demonstrate how to generate dash-
boards and integrate analysis algorithms in the web interface.
Attendees can vary system and analysis properties, and observe
the reflection on the dashboard; and change the dependency of
the data flow to evaluate the flexibility of the data stream analysis.

City officials’ point of view: We show an interactive dashboard
to analyze CO2 dynamics using real-time and historic measure-
ment data, and demonstrate the pattern and its correlation to
the traffic flow (see Fig. 5–6). In addition, we demonstrate the
3D CityGML model integrating different measuring points of air
quality (see Fig. 7). In this demo scenario, we can inject synthetic
data showing different pollution levels. We interact with atten-
dees by discussing urban planning issues such as construction

sites of roads, buildings or factories, and see how different pol-
lution levels will affect their decision makings. Also, we consult
with attendees about choosing the sites of air quality monitoring,
e.g., according to the road network and building density.

Citizens’ point of view: We demonstrate air quality and traffic
flow on the dashboard using the real-time data. Similarly, we
use synthetic data with different pollution levels, and discuss
the influence on routing planning, and citizens’ approaches for
emission reduction. Attendees can browse historic data in the
system to investigate anomalous emission levels.

4 CONCLUSION
Wehave described the possibilities for urban emissionmonitoring
and our approach and the prototype system we have developed
together with the approaches to data flows and analysis. The
flexible and scalable solution allows to quickly prototype different
analysis approaches on top of the sensor streams to linkmeasured
data to cities’ information needs for emission reduction.

In future work, we plan to improve the measurement network
and the real-time and aggregate dashboards. Further, with more
data collected, we will be able to tune models for emission distri-
bution and dispersion to overcome some of the issues and provide
improved analysis with better models. Integration into decision
support systems is a far goal. Urban emission monitoring needs
a range of heterogeneous data and we are continuing to build
useful urban systems around it.
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ABSTRACT
Although outsourcing data to cloud storage has become popular,
the increasing concerns about data security and privacy in the
cloud blocks broader cloud adoption. Recent efforts have devel-
oped oblivious storage systems to hide both the data content
and the data access patterns from an untrusted cloud provider.
These systems have shown great progress in improving the ef-
ficiency of oblivious accesses. However, these systems mainly
focus on privacy without considering fault-tolerance of different
system components. This makes prior proposals impractical for
cloud applications that require 24/7 availability. In this demon-
stration, we propose Pharos, the PrivacyHazards of Replicating
ORAM Stores.We aim to highlight the data access pattern privacy
hazards of naively applying common database replication and
operation execution techniques such as locking and asymmetric
quorums.

1 INTRODUCTION
Outsourcing data to cloud storage has become increasingly pop-
ular due to its promise of better scalability and availability. How-
ever, existing confidentiality concerns [6] make potential users
often skeptical about joining the cloud. While necessary, encryp-
tion alone is not sufficient to solve all privacy challenges posed
by outsourcing private data. Although encryption hides the data
content, the cloud provider can monitor the access patterns of
each data block. This includes the recency and frequency of ac-
cess in addition to the type of access such as reads and writes of
each data block. Revealing data access patterns presents a real
threat to the privacy of the outsourced data. Data access patterns
can leak sensitive information using prior knowledge. For exam-
ple, Islam et al. [11] show a concrete inference attack against an
encrypted e-mail repository exploiting only access patterns.

Oblivious RAM (ORAM) – a cryptographic primitive originally
proposed by Goldreich and Ostrovsky [9] as a solution for soft-
ware protection – is the standard approach to hide access patterns.
ORAM aims to hide the target block of each access operation and
the access operation type. To achieve these two goals, each logical
access is translated to a sequence of random looking accesses.
In addition, ORAM shuffles and re-encrypts the data content in
each data access, making access patterns of any two equally long
sequences of read/write operations completely indistinguishable.

Hiding access patterns was initially considered in the context
of memory access [9]. While classical ORAM schemes with small
client memory apply directly to the memory access setting, in
cloud applications a client has more storage space and is capable
of storing more data locally and more importantly can outsource
the storage of a large dataset to the cloud. The benefits, as well as,
the fast adoption of the cloud encouraged the research commu-
nity in the past several years to develop new secure data services.
Many ORAM schemes have been constructed for secure cloud
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Figure 1: An ORAM node and clients.

storage systems [3, 4, 12–15, 17]. The initial ORAM proposals
focused on developing ORAM constructions for a single client
setting. These systems do not fit the requirements of cloud deploy-
ments, since accesses to the storage are performed sequentially
(e.g. [9, 16]). To overcome the limitations of single client ORAM
constructions, recent proposals develop new constructions that
adopt real-world storage requirements by enabling multi-client
concurrent and asynchronous accesses while preserving access
privacy [3, 13, 14]. Figure 1 shows the typical architecture of an
ORAM node in a cloud setting. The data is outsourced to the
cloud and clients communicates with a trusted proxy to serve
their requests. The trust proxy is responsible for data retrieval
from the cloud storage in an oblivious manner.

Although these systems have shown great improvements in
terms of efficiency and throughput, to the best of our knowledge,
none of the earlier oblivious cloud storage systems were designed
to tolerate the failure of different system components. Designing
systems that run on commodity machines should consider fail-
ures of different system components as the norm such as machine
crashes and network partitioning [7]. By ignoring fault tolerance
as an important design principle, existing oblivious cloud storage
solutions do not fit the requirements of real-world applications.

Figure 2: Replicated Cloud ORAM Node.

This demonstration, Pharos, is an initial attempt to illustrate
the hazards of ignoring privacy when blindly applying standard
database techniques to ensure fault- tolerance. The standard data-
base approach for handling concurrency is locking. The standard
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approach to ensure fault-tolerance is replication, and typically
quorums are used, where quorums of sets of replicas are chosen
so that any two quorums have a none empty intersection. In a
database system, read operations are expected to be much more
frequent thanwrite operations, hence in a typical database system
read operations acquire shared read locks while write operations
acquire exclusive write locks. Furthermore, in a replicated fault-
tolerant setting, asymetric quorums are typically used, i.e., read
operations use read quorums and write operations use write quo-
rums, where read quorums do not need to intersect, but should
intersect with write quorums. Since read operations dominate
database workloads, read quorums are typically much smalled
than the write ones. In fact, if write availability is not critical, a
read quorum of one replica and a write quorum of all replicas is
often recommended (or to increase write fault-tolerance, a read
quorum of two replicas and a write of all replicas minus one).

Pharos supports oblivious access to replicated cloud ORAM
nodes. Figure 2 shows an example of a replicated cloud ORAM
node. The trusted proxy and the cloud storage are replicated to
tolerate the failure of different system components (the cloud
or the trusted proxy). Clients independently communicate with
different trusted proxies to serve their read and write operations.
During the demo, the attendees will be challenged to support
a concurrency control and replication scheme. The traditional
approaches of locking and asymmetric quorums will be proposed
and contrasted with lock-free and symmetric quorums. Either
the attendee or the system will propose an attack to illustrate the
possible data access privacy violations in the chosen solutions.
Pharos is a demonstration that will help bridge the gap between
the database community and the security and privacy commu-
nity by highlighting the privacy hazards in standard database
solutions. Pharos presents attendees different attacks, thus giving
them a real sense of the potential hazards of using a replication
technique or an operation execution technique on the privacy of
data access patterns.

2 DATA MODEL
We give a brief overview of oblivious storage systems that de-
pend on a trusted proxy [3, 13, 14]. As shown in Figure 1, an
ORAM node consists of a storage service that is outsourced to
the cloud and a trusted proxy that is deployed in between to
mediate client server communication as well as to execute the
oblivious algorithm. Data is stored in a key-value store, which
is encrypted and outsourced to the storage and the meta-data
used to locate objects in the storage is maintained in the trusted
proxy. Clients submit single operations: object lookups, get(k),
and object updates, put(k,v), to the trusted proxy, where k is a
key, and v is a value. The trusted proxy translates these requests
into oblivious retrievals (OR) and oblivious evictions (OE). An
oblivious retrieval translates a client get or put of an object O
into fetching multiple objects where accessing O is obfuscated
among the fetched objects. The trusted proxy has to write-back
the retrieved objects by performing an oblivious eviction. An
oblivious eviction hides the type of client access, (get or put),
and the access frequency of different objects by shuffling and
re-encrypting all the fetched objects at the trusted proxy before
writing them back to the storage. Also, the trusted proxy has
to update its meta-data to be able to locate these objects in the
storage for later accesses.

3 THREAT MODEL
We consider the threat model for asynchronous ORAM that is in-
troduced in [13]. The threatmodel assumes an honest-but-curious
adversary which can see the raw storage and network commu-
nication of the server. It controls the asynchronous links where
arbitrary delays can be added to different communication mes-
sages. Additionally, an adversary can adaptively schedule access,
read and write operations and learn the timing of the responses.
This security definition is called aaob-security. It formalizes the
obliviousness in asynchronous and concurrent multiple access
deployment scenarios and ensures that two timing consistent
executions should be indistinguishable in the described threat
model.

4 PRIVACY HAZARDS OF TYPICAL
DATABASE TECHNIQUES

Replication has always been used to provide fault tolerance to
database systems. Many of the database replication techniques
were developed to focus on performance and data consistency
assuming that all the data replicas are trusted. Designing systems
where privacy is considered a first class requirement narrows the
design choices. Many common design alternatives that enhance
the performance might lead to a data access pattern privacy vio-
lation. We first illustrate the privacy hazards of using asymmetric
read and write quorums. Then we demonstrate the problems of
using lock-based concurrency control solutions.

4.1 Asymmetric Quorums Hazard
Database replication is commonly used to tolerate server failures.
Once data is replicated, consistency becomes an important chal-
lenge. We assume linearizability [10] as a correctness condition
for object accesses. Reading an object should always return the
most recent committed update to this object. Although repli-
cas can have different versions of the same object, client reads
should always return the latest value of an object. This behavior
is defined as operation consistency [2]. Operation consistency re-
quires that clients receive the correct expected results regardless
of the state consistency of replicas.

Different replication strategies introduce a trade off between
fault tolerance, the number of replica failures f that the system can
tolerate before it stops completely, and performance, the number
of replicas that should be accessed per read and update operations
for a given consistency requirement. We present the trade offs of
different replication strategies.

Linearizability and operation consistency on the object level
are achieved using quorums and version numbers [8]. A read
quorum (qr ) is the minimum number of replicas that need to
be accessed to retrieve the latest value of an object. A write
quorum (qw ) is the minimum number of replicas that need to
be updated to guarantee consistent reads. To achieve operation
consistency, any read quorum should intersect with all write
quorumsqr∩qw , ϕ. This intersection guarantees that a readwill
always access the latest value of an object. To achieve total order
on updates, a centralized sequencer can be used to assign total
order version numbers for updates. In this case, write quorums
do not have to intersect (e.g. write one read all). However, a total
order can be achieved in a distributed way using quorums. In
this case, any two write quorum qw1 and qw2 should intersect in
at least one replica qw1 ∩ qw2 , ϕ. This intersection guarantees
that objects will be updated in the same order in all the quorum
replicas.
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Table 1: Summary of different replication strategies, their
requirements, and their guarantees.

Replication
Strategy

|qr | |qw | f Hazardous?

Master/Slave
(read optimized)

1 N 0 Yes

Master/Slave
(write optimized)

N 1 0 Yes

Majority quorums N/2 N/2 N/2 - 1 No
Grid quorums [5]

√
N 2.

√
N

√
N − 1 Yes

Tree quorums [1] loд(N ) loд(N ) loд(N ) − 1 No

Table 1 summarizes the commonly used quorum sizes and their
degree of fault tolerance in the worst case. Majority quorums
tolerate the failure of any number of replicas less than a majority.
It executes read and write operations from majority quorums.
Master/slave (read optimized) requires write quorums of size N.
If updates are sent to all the replicas, reading from any single
replica returns the most up to date version of an object. Similarly,
master/slave(write optimized) requires read quorums of size N
and write quorums of size 1. Reading all the replicas of an object
guarantees freshness given that updates are applied to at least one
replica. In a master/slave model, the failure of one replica halts
any update(read optimized) or read(write optimized) and hence
stops the whole system. Many proposals are based on the notion
of logical structures that are imposed on the replicas and used to
reduce the cost of quorums, while maintaining the intersection
property. As a result, usually, one operation, eg, read operations,
requires smaller quorums and hence is cheaper, but then write
operations are more expensive. Cheung et al. [5] proposed the
grid protocol to maintain replicated data. Replicas are ordered in
a grid and a read quorum is any row or any column in the grid
and a write quorum is any row together with any column in the
grid. The failure of a full row or a full column halts the system
and prevents any updates. Agrawal and El Abbadi [1] present
tree quorums where read quorums and write quorums are paths
in the tree from the root to a leaf. The failure of a full path stops
the system.

The last column of Table 1 indicates if a replication strategy
could introduce any privacy hazards on the data access patterns.
As shown, all replication strategies that use symmetric read and
write quorums are safe while others that use asymmetric read
and write quorums are hazardous.

Recall that in the threat model of Section 3, an adversary
monitors all the communication links between the clients and
the trusted proxies. When asymmetric read and write quorums
are used, the adversary can easily distinguish between read and
write accesses by observing the number of messages sent per
access. This allows the adversary to identify the type of access for
every legitimate client request. Although asymmetric quorums
can benefit the system performance, they can easily be used to
leak the access type which represents a privacy hazard on the
data access patterns.

4.2 Locking Hazards
All trusted-proxy-based ORAM systems assume a single trusted
proxy that serves all the client requests. This single trusted proxy
is responsible for hiding the access patterns of all client requests
and achieving linearizability of access for every data object. Upon

replicating the ORAM nodes and their trusted proxies, the prob-
lem of consistently updating the data replicas occurs. In particular,
concurrent updates on the same object need to be serialized across
the different data replicas. A widely used approach to tackle this
problem is locking. When a client updates a data object, she first
acquires an exclusive lock on this object from a write quorum.
Upon receiving the lock response from a write quorum, the client
updates the data object and releases the locks. This prevents any
inconsistencies that may occur from concurrent updates on the
same object. Any concurrent access on the same object that is
issued by another client has to wait until the locks are released.
However, this concurrent access would not block if it updates a
different object.

Recall that in the threat model of Section 3, an adversary can
adaptively schedule read andwrite accesses while trying to under-
stand the objects that are being accessed by other clients. When
locks are used, the adversary can concurrently schedule write
accesses on all the objects immediately after a legitimate client’s
access. The adversary should receive the requested locks on all
the objects except the one that is being access by the legitimate
client. By observing the locking responses, the adversary can
identify which object is being accessed by the legitimate client
request. This attack illustrates the hazard of using locks on the
privacy of data access patterns.

5 PHAROS

Figure 3: An adversary tries to understand the request
types and the data records accessed by a legitimate client.

We propose Pharos to motivate a deeper understanding and
appreciation of the privacy hazards that result from the naive
application of locks and asymmetric quorums to replicate ORAM
stores. Both the attacks on locks and asymmetric quorums result
from observing only the communication patterns between the
client and the trusted proxy. These attacks are independent of the
ORAM implementation. Therefore, we assume a simplified sys-
tem implementation to illustrate the attacks without distracting
the attendee with the ORAM implementation details.

The setup: we assume a simple dataset of 10 student records
stored in the ORAM node. Each record has a student name and a
grade. The dataset is replicated into three trusted-proxy-based
ORAM nodes for fault tolerance. These ORAM nodes are hosted
on three cloudmachines. The attendee gets to know that locks are
used to ensure the consistency of the updates. Also, asymmetric
read one write all quorums are used to optimize the latency
of read operations. Recall that in the data model of Section 2,
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a client can submit get(student_name) to read the record of a
student and put(student _name, grade) to update the grade of a
student. There are two types of players in the system: legitimate
clients and adversaries. A legitimate client submits requests to
read or update a data record. An adversary monitors the network,
adds delays to messages, and schedules read and write requests
in an attempt to reveal the data record or the type of request
submitted by a legitimate client. To simulate adversarial network
monitoring, each ORAM node sends the adversary the number of
messages it receives and an identification of the source of these
messages. The setup and the adversary capabilities are shown in
Figure 3.

This demonstration proceeds in multiple rounds where the
attendee gets to play one of the two roles and the presenter plays
the other role. In the first round, the attendee is asked to update
some student record and the presenter, on another machine, tries
to reveal the data record. In the second round, the attendee and
the presenter flip roles. The presenter submits a sequence of read
and update requests and the attendee tries to reveal the type
of request submitted by the presenter. The attendees who are
able to explain how the two attacks work will have their names
written on the leader board.

6 CONCLUSION
Private access of data stores is becoming very relevant in the con-
text of cloud computing. Prior work in the security community
focused on the privacy of access. We strongly believe that for
the success of the cloud, both privacy and fault-tolerance dimen-
sions need to be addressed. The goal of Pharos is twofold. First
we propose some simple but effective attacks that reveal signifi-
cant security leaks when the standard approaches for replication
are incorporated in a straightforward manner with the privacy
preserving solutions. Second, Pharos is a pedagogical game that
educates the attendee on the privacy hazards of replication. Our
aim is to make the database practitioner attendee aware of these
challenges and hence be motivated to better understand the pri-
vacy concerns when designing fault-tolerant database systems.
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