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ABSTRACT
With the unprecedented growth of user-generated content pro-
duced on microblogging platforms, finding interesting content
for a given user has become a major issue. However due to the
intrinsic properties of microblogging systems, such as the vol-
umetry, the short lifetime of posts and the sparsity of interactions
between users and content, recommender systems cannot rely
on traditional methods, such as collaborative filtering matrix
factorization. After a thorough study of a large Twitter dataset,
we present a propagation model which relies on homophily to
propose post recommendations. Our approach relies on the con-
struction of a similarity graph based on retweet behaviors on top
of the Twitter graph. Finally we conduct experiments on our real
dataset to demonstrate the quality and scalability of our method.
Keywords: Recommender System; Collaborative Filtering; Mi-
croblogging Systems

1 INTRODUCTION
During the last decade, several microblogging platforms have
emerged such as Twitter, Pinterest, Instagram, Weibo or
Tumblr. These platforms rely on the same paradigm: users fol-
low each other’s and share content. They have their specific
audience and features but all have encountered unprecedented
growth. This growth tends to make microblogging platforms
overcrowded and users to encounter difficulties to keep up with
all the available content. For instance, in 2017, 500 million mes-
sages were published every day on Twitter. Finding relevant
messages to recommend in real time is a real challenge of prime
interest for these platforms. Indeed, effectively recommending
fresh publications leads to higher engagement from users which
is crucial for a social media service [12].

Many recommendations methods have been proposed in the
literature. Some works propose to extract features from items
to recommend them to suitable users like [23]. However this ap-
proach provides poor results on microblogging platforms due to
the short length of themessages (140 characters for a tweet), and a
broad variety of content: video, picture, sound etc. Other methods
based on collaborative filtering try to capture similarity between
users based on "co-liked" items and to use this similarity to de-
termine recommendations [30]. Among collaborative filtering
methods, matrix factorization [20] and social trust models [25]
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are very popular. If these methods provide relevant recommenda-
tions to end-users, they can not scale up with the huge amount
of items produced by a platform like Twitter despite existing
optimization techniques [26]. For instance the similarity matrix
size will be of 1 000 billion of messages with millions of users,
and will permanently grow up, so in addition to storage issues
(even if this is a sparse matrix), it requires constant and costly
computations.

To face this issue, Twitter has developed its own recom-
mender system named GraphJet [32]. This method relies on a
bipartite graph built on users interactions with messages and
computes random walks. By starting these walks from a query
user, it is possible to compute a list of personalized recommen-
dation at low cost [32]. However, due to its random walk-based
computations, GraphJet tends towards recommending mostly
popular messages. Even if many users tends to focus on popu-
lar tweets, this approach reduces chances to recommend more
specific content with similar interests in the neighborhood.

Based on a thorough analysis of a real Twitter dataset of
2.2M users extracted in 2015, with a special focus on the ho-
mophily concept, we propose in this article an original approach
which achieves a good trade-off between relevance, scalabity
and freshness of recommendations. Our intuition is that recom-
mendation relevance can be enhanced by understanding how
people with similar profiles are interconnected. Our proposal
relies on SimGraph, a similarity graph which links users with
relevant-based edges based on common retweets, along with a
scalable propagation model.

In a nutshell, the main contributions of this work are:

(1) a micro-blogging analysis which focuses on retweets and
homophily characterization;

(2) a novel method to drastically reduce the cost of collab-
orative filtering methods relying on homophily and the
construction of a similarity graph SimGraph

(3) a convergent and scalable propagation algorithm enhanc-
ing recommendations with transitivity along with opti-
mization technics;

(4) a thorough experimental comparison between Collabora-
tive Filtering, GraphJet, a Bayes Inference Model and Sim-
Graph, focusing on recommendation quality, processing
time and robustness over time.

The rest of the paper is organized as follows. Section 2 is
a review of the related works. Section 3 provides a thorough
analysis of a Twitter dataset with a focus on homophily, which
leads to our similarity graph and propagation model in Section 4.
Our optimized propagation algorithm is presented in Section 5
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and compared to other solutions in experiments in Section 6.
Finally, Section 7 concludes the paper.

2 RELATEDWORK
Since their appearance in the beginning of the 1990s at Xe-
rox [11], recommender systems have been extremely popular
and are used to recommend a large variety of objects such as :
music [29], movies [27], news [9], recipes [8], etc. Different types
of recommendingmethods emerged: content-based, collaborative
filtering, graph-based, bipartite networks or deep learning.

Content-based methods aim at describing both profiles and
items in order to provide recommendation [23]. The strength of
content-based methods lies in the capacity to provide recommen-
dations without requiring any feedback from users by extracting
tendencies of collected data. In the context of microblogging, the
content itself is poor with small-size tweets, links or multimedia,
even if some works on Twitter targeted this approach [18]. How-
ever, content-based models generally suffer from overspecialized
recommendations [1].

Collaborative Filtering (CF ), on the opposite, combines both
content and user interactions in order to produce recommenda-
tions. CF is generally represented as a matrix resolution problem
and provides relevant recommendation. Lot of works focus on
sparseness [19], on scalability [26] and on cold-start problems [2].
Matrix factorization methods transform both user and item vec-
tors to a latent factor space, where similarities between items and
users are generated by lower-dimensional hidden factors. How-
ever in the Twitter context, matrix factorization is not scalable
due to the matrix size and continuous growth, but also it does
not allow to consider the freshness of the recommended items.

Some other proposals exploit the social network and weight
edges to quantify correlations between users. Jiang et al. [17] mix
the social network with individual preferences into a matrix fac-
torization model and improve recommendations. A broad range
of social recommender systems have a similar approach like [33].
In Jamali et al. [16], authors present SocialMF to also enrich ma-
trix factorization with the network of users. However the size of
the Twitter matrix (more than 100 billions values) and its high
growth (500 millions of messages/day) make these methods hard
to exploit. Many works on trust networks have been done with
explicit information, like in SoRec [24] on Epinion1 producing
and factorizing probabilistic matrices. However, the relationships
between users on microblogging platforms is very heterogeneous
and can carry many different meanings. Consequently it can not
be really considered as a trust relationship.

The bipartite network model is another popular approach in
recommendation systems. For instance Twitter proposes in [32]
GraphJet, a random walk approach on user and post graph. Even
though this method is particularly efficient, it only focuses, for
scalability purposes, on the freshness of interactions. In our point
of view,GraphJet by missing to exploit older interactions reduce
the complexity of users profiles. Moreover, we will see in the
experiments that this solution mainly addresses the hot-topic
recommendations.

There exist also other works on Twitter for recommending
hashtags [10] or users [6], or for filtering messages in the time-
line [34]. But very few address the post recommendation problem.

Finally, deep learning methods on huge datasets such as Twit-
ter [28] or Youtube [7] process neural networks to connect
many dimensions such as similarity matrix, content features,

1http://www.epinions.com/

# nodes 2.2M
# edges 325.5M
# tweets 3,002M
avg. out-deg. 57.8
avg. in-deg. 69.4
max out-deg. 349K
max in-deg. 185K
diameter 15
avg. path length 3.7

Table 1: Main features of the Twitter dataset
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Figure 1: Twitter smallest paths distribution

user feedback. Even if the efficiency of such systems is promising,
it faces scalability and dynamicity challenges for microblogging
platforms. As a matter of facts, it currently uses past content to
extract interesting items from user timelines but does not support
real-time recommendation of posts from the whole network.

3 MICROBLOGGING ANALYSIS
We introduce here the main characteristics of our Twitter
dataset and the different experiments we performed to char-
acterize user behaviors. We discuss the main results of our data
analysis and their implication for our recommendation model.

To build our dataset we first extracted a connected component
from the graph from Kwak et al. [21]. Then for each node of this
subgraph we updated every information in 2015 thanks to the
Twitter API 2. More precisely, for each account we collected the
incoming edges (followers), outcoming edges (followees) and all
the tweets published by the associated account. Observe that due
to the API limit we only retrieved the last 3,200 messages (maxi-
mum) for each account. Table 1 summarizes the main features of
the dataset.Withmore than 2million users and 3 billionmessages
we have a mean number of 1,375 published tweets per user. The
original Kwak connected component contained 125M of edges,
so its connectivity has almost doubled in 6 years. The average
path length for our graph is 3.7 which is very close to the 4.1
found by Kwak et al. (Figure 1). Likewise, the diameter (longest
shortest path between two nodes) for their graph is 18 which is
very close to the one we obtained (15). We also observed that our
2https://dev.twitter.com/rest/public
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Figure 2: Distribution of the number of retweets per tweet

in/out-degree distributions (i.e. number of followers/followees
per user) are close to the ones found in previous Twitter graph
characterizations like [22, 35]. We conclude that we succeed in
building a representative subgraph of Twitter along with the
associated tweets published by the different accounts.

Based on our representative dataset we perform a set of ex-
periments to analyze the retweet activity.

3.1 Retweet characterization
Our objective is to recommend relevant tweets to users. Retweet
is the mean to express interest for a piece of information, which
can indifferently be positively or negatively perceived. The study
of tweet propagation through retweets is consequently of primary
interest.

3.1.1 Retweet behavior. First, we analyzed the popularity of
the retweet behavior. Figure 2 shows the number of retweets for a
given message. A large majority of messages are never retweeted
(≈90% of the tweets), or only a few times, with barely 2-3 retweets
(≈2%). Very popular messages are extremely rare: messages with
more than 50 retweets represent less than 0.005%. These results
are consistent with the study of Kwak [21] which underlines
that a very large majority of the messages are never retweeted
or retweeted only once. From a recommender system point of
view, tweets which are retweeted more than 4-5 times must get
a significant weight since they are popular. Observe that the
network itself promotes the propagation of this type of messages
(social network effect). However being able to recommend a
recent tweet with a small number of retweets (less than 5) is a
real challenge. This is one of the objective of our proposal.

When analyzing whether retweeting is a common behavior,
we observe that only a small number of users produce many
retweets (see Figure 3). The majority of users perform between
10 and 100 retweets. The average number of retweets per user is
156while the median is 37.5 and we observe the traditional power
law distribution where few people gather all the retweets. From
the point of view of recommender systems, the main difficulty
lies in users with very few retweets (or even none) who represent
a large part of the users (a quarter of users have never retweeted).
For these users, methods which rely on collaborative filtering
would be unable to provide recommendations.
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Figure 3: Number of retweets per user
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Figure 4: Lifetime of a tweet

3.1.2 Lifetime of a tweet. Recommender systems must avoid
recommending a tweet which is “outdated”, i.e. which won’t be
propagated anymore because it no longer interests anyone. We
study here the lifetime of a tweet that we measured as the time
span between the publication of the initial message and the last
time it was retweeted. Only messages which were retweeted
at least once are considered in this experiment. The results are
shown in Figure 4. We observe that a large part of the messages
"die" (so are no longer retweeted) before reaching one hour (40%).
90% of the messages die before 72h (three days). It’s very uncom-
mon for a message to be retweeted beyond that point. Therefore
our results differ from the ones reported by Kwak et al. [21] which
notice that 10% of the retweet activity takes place one month
after the publication of the message. Indeed, Twitter still was,
in 2009, a recent system and less content was created, thus it
was more easy to retweet messages older than a few weeks. In
2017, with more than 500 million new tweets published every
day, freshness of the tweets has become a central criterion of
propagation.
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We conclude from this analysis that users mainly share fresh
information and the tweets to consider in our recommender sys-
tem are the messages that reach at least 2 retweets. Moreover,
even for these messages, we do not need to compute their score
after 72h because after this limit they become irrelevant for rec-
ommendation.

3.2 Homophily study
Collaborative filtering methods rely on a list of similar users to
determine recommendations. We study in this section the evo-
lution of similarity scores between users with respect to their
distance in the Twitter network. We adopt a Jaccard similarity
measure with a slight adjustment to take into account the pop-
ularity of the tweet as advised by Breese et al. in [4]: the less
popular a retweeted post by two users is, the closer these users
are. The rationale for relying on retweets to measure the similar-
ity between users, as explained before, is that retweets are the
only way a user expresses explicitly an interest about a piece of
information published.

Definition 3.1 (User similarity measure). The similarity of two
users is defined as:

sim(u,v) =

∑
i ∈Lu∩Lv

1
loд(1+m(i))

|Lu ∪ Lv |
(1)

where sim(u,v) stands for the similarity score between a user u
and a user v . Lu is the profile of user u estimated through the set
of all the tweets he retweeted.m(i) is the popularity of the tweet,
measured here as the number of times it has been retweeted.

Based on this measure we study the homophily between users.
Homophily corresponds in social media to the tendency for peo-
ple to be connected with people sharing the same interest. This
effect has been studied on demographic dimensions (age, gender,
political orientation) for example by Colleoni [5] or Zamal [37].
They show how one could predict a user demographic based
on his neighborhood. Topical homophily also has been studied
by Lerman [15], that shows how people who are topically more
similar are also more likely to be connected. Bhattacharya et
al. [3] present similar results. With our analysis we study the
homophily phenomenon in a different perspective.

Because of computation costs, we limited our study to 2,000
users randomly selected from our dataset, checking that they
retweeted at least a defined number of posts. For each of these
users, we computed the length of the shortest path connecting
them to all other users. The results are shown in Table 2. We
see that only 5.96% of user pairs display a similarity score over 0
and are directly connected through the network. However this
small number of users pair presents the highest mean similarity
score with 0.0056. When exploring at distance 2, to reach the
followees of the followees, we note that the mean similarity
score of 0.0021 is still higher than the average value (0.0019),
and they represent almost 38% of the user pairs. Most of the
users (51%) with a similarity score not null are at distance 3
from each other. However their similarity score is lower, 0.0017.
Moreover, we observe that, according to the topology of the
Twitter network (Figure 1), a distance of 3 corresponds almost
to the entire network.

Table 3 completes this experiment by studying the link be-
tween position in the Top-N of most similar users and their
distance to the user. For each of the 2,000 users from the previous
experiment, we collect the 5 users with the highest similar scores.
We then compute the average shortest distance between a user

Distance Nb of users Perc. Average similarity
1 19,163 05.96% 0.0056
2 121,857 37.91% 0.0021
3 166,633 51.84% 0.0017
4 12,070 03.76% 0.0018
5 297 00.09% 0.0016
6 6 00.01% 0.0019

Impossible 1,396 00.43% 0.0023
Table 2: Evolution of the similarity score through distance
in the network

Distances distribution (%)
Rank Average Distance 1 2 3 4
1 1.65 53.30 28.20 16.65 1.45
2 1.78 43.70 34.50 20.50 1.05
3 1.88 37.99 36.04 24.37 1.35
4 1.97 33.18 36.99 27.68 1.70
5 1.99 32.01 37.93 28.20 1.56

Table 3: Link between distance in the network and posi-
tion in the Top-N ranking

and each user from his Top-5. We observe that the user at first
rank, i.e., the most similar user, is directly connected to the user
in 53% of the cases. The average score decreases when going
down in the user rank. For instance the user ranked at the fifth
position is directly connected to the user in only 32% of the cases.
This study of the top-5 reveals that when considering users at a
distance 1 added with users at distance 2 we capture 70-80% of
the most similar users.

From this experiment we conclude that relying on the "strong"
homophily, i.e. direct connection between users, is not enough
because they represent a very small subset of the set of similar
users. On the other hand we observe a "soft" homophily corre-
sponding to users having a good similarity score but located at
distance 2. These users which represent around 37% of users with
a not null similarity scores, must consequently be considered by
recommender systems to determine meaningful recommenda-
tions.

4 OUR MODEL
Based on our previous analysis we propose a propagation model
relying on homophily to build post recommendation. Our ap-
proach relies on the construction of a similarity graph on top
of the Twitter graph. The basic idea is to exploit the fact that
highest similar users are at a distance lower or equal to 2. Thus
we can use an exploration of the network to drastically reduce
the amount of computed similarities.

4.1 Similarity graph
Our experiments about the homophily enlighten that the natural
homophily in Twitter, which is translated by a "follow" link, is
not sufficient to detect users of interest while considering all
nodes at a distance up to 2 allows to capture most similar users.
So, we decide to perform a 2-hop exploration from each node
(user) in the Twitter graph. The set of reachable nodes for a node
u is named the 2-hop neighborhood, denoted N2(u). Then we
compute for each nodev inN2(u) the similarity score ofv with all
the nodes from N2(u). For each nodew with a similarity greater
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SimGraph
Nb of nodes 1,149,374
Nb of edges 4,950,417

Mean Similarity Score 0.0078
Mean out-degree 5.9

Diameter 21
Mean smallest path 7.5

Table 4: SimGraph characteristics

than a chosen threshold τ , we create an oriented edge e(u,w) in
our similarity graph.

So formally the definition of the similarity graph is:

Definition 4.1 (Similarity graph). Consider the Twitter graph
G(V ,E) where V denotes the set of vertices and E the set of
edges, and a given similarity threshold τ . The similarity graph
SimGraph(V ′,E ′) is defined as:{

V ′ ⊆ V
e(u,v) ∈ E ′ ⇒ u ∈ V ∧v ∈ N2(u) ∧ sim(u,v) ≥ τ

We report in Table 4 the main characteristics of the similarity
graph for our Twitter dataset. First, we observe that around half
of the users from the original Twitter dataset are not present in
the similarity graph. The reason is that many users either don’t
retweet any message or nobody has retweeted the same messages
as this user. This issue is very close to cold-start problems and
we won’t address in this paper the issue of recommending tweets
for users who are not present in the similarity graph.

However, we could consider an approach similar to the one
used in GraphJet [32] using the neighborhood’s computed rec-
ommendation of cold start nodes to partially solve this issue.
Therefore it seems possible without too much effort to recom-
mend items also for cold-start users.

Another characteristic of the similarity graph is a more uni-
form in-degree distribution than the original graph, with few
nodes having a large number of incoming edges. This property
is particularly interesting since in the opposite situation it would
have led to some users gathering all the influence in the similar-
ity network. Paths between two nodes in our similarity network
are now much longer than the original Twitter network since
the diameter of the similarity graph is now 21 and the average
smallest path was doubled from 3.7 to 7.5. We observe that we
are still in a small world network context according to the defi-
nitions expressed in the work of Schnetrler [31]. Basically, this
construction of a similarity graph, relying on 2-hop exploration
in the Twitter graph could be seen as a dimension reduction
process.

4.2 Propagation Model
The sparsity of user interactions on data is generally consid-
ered a major bottleneck for a successful execution of a collabo-
rative filtering recommender system. As we’ve seen before, in
microblogging context, this sparsity issue is important. In their
work, Huand et al. [14] use transitivity in a collaborative filtering
model to fight the sparsity problem. Considering a similar ap-
proach, we propose a propagation model on top of our similarity
graph. Propagation is an efficient way to face the sparsity since it
allows to transmit content from a user u to a user v while there
exists no link (i.e., edge in the underlying graph) between them.
Intuitively we consider that if a userw has interests similar to u
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Figure 5: SimGraph smallest path

leading to several retweets, the content from u that we recom-
mend to w should also be recommended to v if v is similar to
w .

The only action we can collect to capture interests from a user
for a tweet is the retweet action to share a piece of information.
Consequently we assume here that liking a tweet is similar to
sharing it (retweet). Therefore the words "like" and "retweet"
are interchangeable. We estimate the sharing probability, i.e. the
probability that a user u likes a tweet t as:

Definition 4.2. Sharing probability The probability that a user
u likes (and shares) a tweet t is:

p(u, t) =

∑
v ∈Fu

p(u ← v, t)

|Fu |

where Fu denotes the set of influential (similar) users for u (i.e.,
those connected by outcoming edges in the similarity graph) and
p(u ← v, t) is the probability that u likes t determined consis-
tently by the behavior of his influential user v . This probability
is estimated as:

p(u ← v, t) = p(v, t) × sim(u,v)

Example 4.3. Consider the similarity graph of Figure 6 with 5
nodes (u,v,w,x ,y). An edge u → v expresses the fact that v is
an influential user of u. Edges values correspond to the similarity
score sim(u,v). Assume that user x liked/shared the tweet t1, so
the probability that x like t1 is p(x , t1) = 1. Consequently the
score of p(w, t) is:

p(w, t1) =

∑
v∈Fw

p(w ← v, t )

|Fw |
=

0 × sim(w, y) + 1 × sim(w, x )
2

= 0.25

However since p(w, t1) changes, all probabilities which depend
on the value of p(w, t1) must be updated in turn.

5 PROPAGATION ALGORITHM
We introduce in this section our propagation algorithm which al-
lows to recommend new content to users based on their similarity.
We also present its convergence property and optimizations.
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5.1 Iterative algorithm
Weperform our iterative propagation algorithm each time a tweet
t is retweeted. We discuss different optimizations in Section ??
which exploit our observations regarding the popularity and the
lifespan to avoid performing the propagation for each retweet.

So assume that we have a similarity graph SimGraph = (V ,E)
withV the set of vertices and E the set of edges, and that a tweet
t is retweeted by a user. Algorithm 1 presents our propagation
algorithm. We denote by D the set of users that have already
retweeted t . For each v ∈ D, the probability p(v, t) is conse-
quently 1 (line 3). For all other users u ∈ V \ D we consider that
the initial probability to retweet this tweet is p(u, t) = 0 (line 4).
During an iteration, we compute for all the users u in V \ D the
probability p(u, t) based on the probabilities from his followees,
i.e. p(v, t) for all v ∈ Fu (line 10). So for iteration k we compute
our probabilities based on the those which were computed at
iteration k − 1. Observe that users v ∈ D have a probability of
1 which is not re-computed during the iterative algorithm. The
algorithm stops when no probabilities change during an iteration
(line 7).

Algorithm 1: Propagation algorithm
input :Similarity graph SimGraph = (V,E), a tweet t and a

set of users D who retweet it
output : the set of vertices with their retweet probability

1 Initialization;
2 foreach u in V do
3 if u ∈ D then p(u, t) = 1 ;
4 else p(u, t) = 0;
5 end
6 convergence = false ;

7 while convergence = false do
8 convergence = true ;

9 foreach u in V \ D do
10 p′(u, t) = (

∑
v ∈Fu

p(v, t) × sim(u,v))/|Fu |

11 if p(u, t) , p′(u, t) then convergence = false;
12 p(u, t) = p′(u, t) ;
13 end
14 end
15 Return ∀u ∈ V ,p(u, t) ;

Example 5.1. Consider our previous example in Figure 6. After
that user x liked/shared the tweet t1, we propagate this action on
the similarity graph and we first update the score of p(w, t) since
x is an influential user ofw . Since the value ofp(w, t) changed and
is now 0.25 we must update in a second iteration the probability

of the users influenced byw , so here only u.

p(u, t1) =

∑
v ∈Fu

p(u ← v, t))

|Fw |
=

0 × sim(u,v) + 0.25 × 0.5
2

= 0.0625

Since there is no users influenced by u the algorithm stops.

Therefor this algorithm produces for an incoming tweet a
probability score for every users in the propagated sub-graph.
Then, the recommendations of a user is based on the top-k tweets
sorted on probability. We will study in Section 6.2 the impact of
the size (k) on the quality of the recommendations compared to
competitors.

5.2 Linear system formulation
Consider we have n users (u1,u2, ...,un ) in the similarity graph,
our propagation model consists in resolving the following linear
system with n equations:

a11pu1 + a12pu2 + .... + a1npun = b1
a21pu1 + a22pu2 + .... + a2npun = b2

... = ...

an1pu1 + an2pu2 + .... + annpun = bn

which can be written under a matrix product Ap = b with:
• vector b which is the initial state vector, with bi = 1 if ui
has retweeted (shared) the message and 0 otherwise;
• vector p is the solution vector, containing the probabilities
after propagation of any user to like the tweet;
• the similarity matrix A which is defined as:
∀i ≤ n,∀j ≤ n,

ai, j =


1 i f i = j
−sim(ui ,uj )
|Fui |

i f (ui ,uj ) is an edдe in the SimGraph

0 otherwise

5.3 Convergence property
Incremental resolution methods such as Jacobi, Gauss-Seidel or
successive over-relaxation (SOR) can be used to solve such a
linear system Ap = b. A necessary and sufficient condition to
ensure convergence for this incremental resolutionmethod is that
the matrix A is diagonally dominant. This condition is fulfilled
here because ∀u,v sim(u,v) ≤ 1, so

∑
j,i
|ai j | <

1
Fu ×

∑
j,i

1 = 1.

Since |aj j | = 1, we conclude that |aj j | ≥
∑
j,i
|ai j | for all i , so A is

diagonally dominant.
Considering the Jacobi method of resolution, the convergence

speed is bound by the matrix norm | |A| |. However, this value
is dependent of the matrix’s values, and therefore cannot be
known theoretically. We conducted an experimental study on
our dataset and show that the convergence of our model is bound
to | |A| | = 0.91 - the worst case scenario. The unpredictable or
bad convergence speed of our model led us to apply several
optimizations to guarantee a fast convergence and therefore a
fast computation.

5.4 Propagation algorithm optimizations
We propose and test several optimizations for the propagation
algorithm which significantly improve its performance.

Propagation thresholds. A first optimization consists in setting
a static threshold β to decide whether a score updated at an
iteration k should be transmitted to the followees at the iteration
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k + 1. So when p(u, t)n − p(u, t)n−1 < β the user u does not
propagate its score to his followees for any following iteration.

We extend this traditional approach by proposing a dynamic
threshold based on our analysis about the evolution of the tweet
popularity and its lifespan. Indeed the probabilities computation
for a popular message requires a long time in order to reach
convergence. Moreover, this tweet is likely to be sent to a large
part of our similarity network. Oppositely, a tweet which has
not been retweeted many times because it has just appeared
in the system leads to faster computations. Most recommender
systems focus on already-popular tweets. So, by setting a dynamic
threshold which favors tweets less popular because they have
just appeared, we could recommend them earlier than other
recommender systems, and at lower computing costs. Precisely
we define our dynamic threshold γ (t) for a tweet t as:

γ (t) =
(m(t))p

kp + (m(t))p

wherem(t) denotes the popularity of the message t which can
be measured as the number of retweets, for instance. k and p
are fixed parameters and are superior to 0, they are used to
fit properly the distribution of popular items. Basically γ (t) is
bounded between [0, 1] and close to 0 when few people have
shared t , and close to 1 when the message is considered popular.
However other dynamic thresholds could be considered.

Postponed computation. We propose another optimization
based on the time frame update. It consists in starting the propaga-
tion process not at each time a new retweet happens on amessage
but after time interval δ depending on the account activity. For
instance, assume that a message is very popular with dozens of
retweets per minute. We could decide to wait 10 minutes before
executing the propagation computation. On the opposite a very
unpopular message can wait few hours before launching the
propagation process.

6 EXPERIMENTS
We evaluate the SimGraph model along with our propagation
algorithm. We first detail the experiment protocol used with our
Twitter dataset to measure the quality of generated recommen-
dations. Then we present our different results and compare them
with other recommendation methods.

6.1 Experimental Setup
Our experiments are performed on a Linux machine with 512GB
of RAM memory and 80 Intel(R) Xeon(R) CPU E7-4830 v2 @
2.20GHz. We use Java Openjdk 1.8 for all our implementations.
To compare our method with several baseline solutions, we im-
plement a Bayes Inference Model used for recommendation [36],
a standard collaborative filtering method (CF ) [13] and GraphJet
algorithm [32] which is currently used by Twitter. The rationale
for the choice of these different competitors is that our method
could be seen as a combination of probabilistic and collaborative
filtering approaches. Regarding the Bayesian inference model we
tweak it slightly to consider only the binary feedback of Twitter
(liking or doing nothing) instead of ratings from 1 to 5. Moreover
due to computational issues it is necessary to define a thresh-
old in the Bayesian probabilities computation to stop the costly
process. The implementation of the GraphJet method is based
on Twitter source code3. All experiments are performed on the
real Twitter dataset introduced in Section 3.
3https://github.com/twitter/GraphJet
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Figure 7: Recall Capacity for 1500 users

Tomeasure the quality of the recommendations on our dataset,
we compare the recommendations of the different methods with
real observations. To achieve this, we consider retweets of mes-
sages which were retweeted at least twice. They constitute a
set of 132, 389, 409 sharing actions for these messages that we
ordered on time. We split the set in two: the first 90% of actions
(the oldest retweets) compose the training set and the last 10% the
test set. While the former set is used to train the four methods,
the latter one allows to check the recommendations with real
retweets. Note that the test set captures 66 days of retweets from
the users in our dataset. Then we randomly select 500 users with
less than 100 retweets (low-active users), 500 users with more
than 100 retweets but less than 1,000 (moderate-active users) and
finally 500 users with more than 1,000 retweets (intensive users).
Combined, they constitute a set of 1,500 users used to compare
the results of the different methods. We consider that a message
is a hit if it is recommended to a user before he actually interact
with the message (retweet/like). This prediction task can be seen
as a quality measure.

6.2 Quality of the recommendations
Number of recommendations. Figure 7 displays the average

number of recommendations proposed by the different recom-
mender systems with respect to the maximum number of daily
recommendations for each user (i.e. the size of the top-k rec-
ommendations). We observe that Bayes, GraphJet and SimGraph
present similar behavior, capped between 50 and 70 recommenda-
tions per day and user. Only CF, with a linear growth, is capable
of providing a high number of recommendations for any user
with this maximum of 140 recommendations. There are several
possible explanations for this. First, CF by relying on every simi-
larity scores possible between pair of users is independent of the
network. Therefore the scope of candidate items to be proposed
is very large. Second, Bayes and SimGraph which rely on propa-
gation methods could theoretically compute a prediction score
for any message to almost any user. The fact that their curve is
not linear seems to be a direct consequence of using thresholds
during the propagation. We could argue that our threshold val-
ues are well chosen since 50 recommendations a day per user
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Figure 8: Number of hits for 1500 users
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Figure 9: Number of hits for 500 small users

remains sufficient. Finally, GraphJet is limited by the low con-
nectivity and the slow activity of small users. In fact, the total
number of possibilities offered to small users is limited to their
neighborhood.

Retweet prediction. A prediction corresponds to a hit in the
test dataset when the recommendation of a message happens
before it is effectively retweeted/shared in the dataset. Figure 8
plots the total number of hits for the combined set of 1,500 users
with respect to the number of recommendations proposed to a
user per day. This experiment is refined by different sets of users
on Figure 9 (low-active users), Figure 10 (moderate-active users)
and Figure 11 (big users). We observe that the results are globally
stable among the different sets of considered users.

The main difference between types of users (small, medium,
big) comes from the bounds of the number of hits. In fact, the total
number of retweets/share is higher for big users and therefore
the probability to have a hit. But interestingly, users’ behavior
is identical for medium and big users. According to small users,
since the total number of retweets is low, the probability to find a
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Figure 10: Number of hits for 500medium users
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Figure 11: Number of hits for 500 big users

hit grows up quickly for all approaches but a threshold is reached
faster.

We note that the CF model has a linear evolution in the com-
bined set of 1500 users, so it is better suited for applications
proposing a high number of recommendations. But as we saw
in Figure 7 this model also proposes the largest number of rec-
ommendations which leads to a constant but low precision score
of 0.0001% (i.e., it proposes a lot of noise). For instance, when
limiting to a top-30 for recommendations, CF gets 5,685 hits
while Bayes and GraphJet get respectively 3,564 and 2,541 hits.
SimGraph outperforms them with a total number of 8,509 hits at
top-30. However, this number of hits is limited for small users
with a stabilization of 700 hits for k > 80. It is due to the fact that
those users do not retweet much and cannot statistically lead to
much more hits.

SimGraph outperforms other approaches, e.g. GraphJet by a
factor of 3.5, for any k < 200. For very large values of k , CF
slightly outperform our method Simgraph. Similarly to CF, Sim-
Graph does not rely directly on the underlying network and
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Figure 12: Popularity of hits

focuses on similarities which quickly provides good results based
on users interests. But, thanks to the similarity graph and transi-
tivity, our solution succeeds in providing new recommendations
coming from other kinds of interests, different from the ones
observed in the user profile, based on proximity where CF fails.

Popularity of the hits. We now focus on how popular the rec-
ommendations are in each solution which led to some hits. It
helps to identify their scope of accuracy. Figure 12 shows that
GraphJet’s random walks mainly generate hits on popular mes-
sages with an average number of retweets equals to 113 for each
hit. Indeed, the most popular a message is, the more often the
random walk will reach it. Therefore, GraphJet naturally is more
inclined to recommend popular items.

On the contrary, the Bayesian model recommends less popular
messages: for the hits it produced there were only 6 retweets on
average. Thus, it produces more "local" recommendations, due to
the probability computation on top of the underlying network.
Observe however that the messages popularity decreases with
the size of the top-k , in order to provide more recommendations
Bayes will find items that are even less popular.

Collaborative filtering approaches, CF and SimGraph, present
a more balanced result with respectively 35 and 23 retweets for a
recommended tweet. These systems recommend both popular
and more dedicated messages. Observe that at first CF will pro-
pose less popular items due to relying on strong similarities far
in the network while SimGraph will propose more popular items.
The curve will then intersect around top-70.

Hits comparison. Figure 13 displays the amount of hits in com-
mon between SimGraph and other methods. It shows the ratio σ
of common hits, ı.e. :

σ (competitor ) =
hits(SimGraph) ∩ hits(competitor )

hits(competitor )
(2)

We notice first that the ratio of common hits does not evolve
more than 10% for each method. Except for CF that proposes less
popular retweet at the beginning (see Figure 8) and more popular
ones then, which levels up the number of common hits.

On the contrary, GraphJet focuses mainly on popularity at
the beginning and shares less similarity between users, but then
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Figure 13: Parts of hits that are included in SimGraph
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Figure 14: F1 Scores over number of recommandations

after 40 recommendations this intersection reaches a bound due
to a more diversified set of recommendations in SimGraph.

The Bayesian method shares more similarities between hits
with more than 50% which means that our method predicts
retweets of tweets with various popularity: popular tweets like
GraphJet, but also less popular tweets like CF and not-popular
like Bayes based on the network.

F1 Measure. Figure 14 plots the F1 score for each method,
according to the hits obtained over the number of daily recom-
mendations per user. Except Bayes, methods peak around the
same size of k = 15, which seems to be a good number of recom-
mendation per day. GraphJet by doing less hits for same amount
of recommendation leads to a lower score when combining pre-
cision and recall. CF proposes too many recommendations even
with better precision obtains a similar F1 score as Bayes that
proposed less recommendations but with more hits. Finally, Sim-
Graph gives a really good compromise, with both popular and
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similar in the neighborhood, of recommendations of tweets. Over-
all on this task, SimGraph performs 4 times better than GraphJet
and 2 times better than Bayes and CF.

6.3 Performances
Processing time. We compare now processing time for the

different methods. Results are presented in Table 5. We observe
that CF has the highest initialization time with almost 9s per user,
since it requires to compute the similarities between all pairs of
users, so theoretically |V |2 ≈ 1.3×1012 computations. Oppositely
Bayes has the lowest initialization time with 10ms per user to
initialize all probabilities. For SimGraph, the initialization consists
in exploring for each user his neighborhood up to distance 2 (BFS
exploration) and to compute similarities for each user found
during the exploration to build the similarity graph. For each
user, using this method requires 311ms to determine its most
similar users. GraphJet only relies on the Twitter and retweets
graph and does not need any initialization.

According to the message processing time, all the methods
were implemented in a multi-thread way on a 70 cores paral-
lelization process. We can observe that Bayes takes around 1
second to compute the recommendation scores for a given mes-
sage due to graph exploration. Oppositely CF is able to compute
very quickly the different recommendations (0.5ms per message)
based on the pre-computed similarities. SimGraph requires 38ms
to compute the recommendation score of a message to users
based on our iterative propagation algorithm. GraphJet is user-
centric and computes top-k recommendations for a given user,
and not a set of users to recommend a given message. Computing
k recommendations for a given user requires 14ms .

To compare performances of the different algorithms we mea-
sure the total time for processing both the initialization and the
recommendations, for each user for GraphJet or for each of the
13.2 million incoming messages during the test dataset for other
methods. For GraphJet we perform the computation periodically,
here we chose every 5 hours. Note that the test period extends
over 66 days. It results that Bayes is the most expensive method
with 51.22h of total computation.CF is also expensive with 41.01h
of computation mainly for the pre-processing. GraphJet provides
much faster recommendations (4.2h). SimGraph is a good trade-
off with an initializing time by node of 311ms and an average
time per message of 38ms leading to a total computation time of
3.41h. We see that both the Bayes and CF methods suffer of very
long computation time, making them hard to use in a real life
scenario.

Notification time. This experiment illustrates the benefit of the
different methods regarding the notification time. In other words,
we want to study how much time in advance a recommended
tweet will be presented to the user before the actual interaction.
Remember that according to our study in Section 3, a tweet has
a short lifespan. We compute for each hit the difference between
the time when the recommendation was performed and the time
when the user perform the retweet in the test dataset. In Fig-
ure 15, we see that GraphJet is very stable and permits to predict
a hit 80,000s (around 22 hours) in advance on average. GraphJet’s
tendency to recommend popular items makes it more efficient
on this task, having more opportunities to predict such messages
before. Interestingly theCF curve is correlated with the average
popularity of the item predicted in Figure 12. Recommending
dedicated items long time in advance is a difficult task therefore,
and naturally the average advance time increases for CF and
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Figure 15: Average advance time before real retweets (in s)
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can predict recommendations before GraphJet for very large k
values. Indeed CF benefits from not having to wait for a message
to propagate through the network to compute a recommendation
score, therefore can predict popular items long time in advance.
Following the same conclusion that predicting dedicated mes-
sages long time in advance is a difficult task, it fully explain why
Bayes and SimGraph can only predict iterations 17h in advance
on average since they have to wait for more signals.

Graph update. Microblogging platforms such as Twitter are
permanently in motion. Each retweet/like performed impacts
some changes of similarity scores and consequently impacting
recommendations computation and quality. Keeping structures
up to date to fit the shift of users’ interest is a very difficult task.
Therefore an efficient updating strategy is crucial to make our
recommendation model robust to network and retweet evolu-
tions. GraphJet is a very suitable solution in real life because, by
avoiding any initialization step, it continuously stays updated no
matter the amount of new information published. However, as
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init. (per user) init total time time (per message) total time (70 cores //) total time
1,149,374 users 13,238,941 Tweets (Trial period) init + recos

Bayes 10ms 0.04h 975ms 51.22h 51.26h
CF 8,583ms 39.40h 0.5ms 0.02h 41.01h

SimGraph 311ms 1.41h 38ms 2.00h 3.41h
init. (per user) init total time time (per user) total time (70 cores //) total time

1,149,374 users 1,149,374 users * 66 days (Trial period) init + recos
GraphJet 0ms 0h 14ms 4.2h 4.2h

Table 5: Initialization and recommendation time (in ms)

we saw in Figure 8 the gain in hits prediction with our method
SimGraph is substantial enough to inquire how we can keep this
increase of accuracy while dealing with incremental updates. We
study the impact of computing our recommendations based on
an outdated similarity graph and the outcome of using different
updating strategies. For this experiment we assume that Sim-
Graph was built at the beginning of the test dataset (after 90% of
the retweets). We plot in Figure 16 the number of hits obtained
for the last 5% of the retweets (half of the 10% trial). We compare
four approaches:

• from scratch, where the graph is totally rebuilt after 95%
of the retweets, from the original graph,
• old simgraph, where we keep the exact same SimGraph
that the one computed at 90%,
• crossfold, where we apply our similarity graph construc-
tion on the previous old simgraph instead of the twitter
graph,
• SimGraph update, where we update similarity scores on
the similarity graph built at 90%

As expected re-building from scratch the similarity graph
at 95% allows to get the best predictions. This strategy is also the
most expensive one with similar computation cost as the ones
expressed in Table 5. Surprisingly old SimGraph and SimGraph
update have almost the exact same results, indicating that the
topology of the computed network has a more important impact
than the weight computed on the edges. The crossfold strategy
is very promising because it fits almost perfectly with the from
scratch strategy while cutting drastically computation cost. In-
deed, the crossfold strategy perform a BFS at distance 2 on the
already computed similarity graph to search for new influential
users that weren’t considered during the first SimGraph compu-
tation. This method both increases the density of the graph while
updating the weight edges. These results enlighten the possibility
to follow the evolution of users by incrementally computing a
SimGraph on top of the previous iteration and avoid computing
things from scratch.

7 CONCLUSION
We propose in this paper SimGraph, a scalable recommendation
model based on a similarity graph which exploits homophily for
propagation of probabilities. We study the homophily impact
between users on the network. This indicate that homophily is a
good property to find quickly users of high similarities and there-
fore drastically reduce the computation cost of such operation.
We find that applying transitivity on those similarities reduces
the sparsity efficiently with a fast convergent model thanks to op-
timization technics. We propose a propagation model in order to
compute on-demand relevant recommendations for an incoming
post. Our experiments enlighten that our method outperforms

other approaches for recommendation computations, but also
provides more hits than the competitors for a lower number of
recommendations blending popular and more confidential items.
We also demonstrate how SimGraph can be updated at low cost,
showing its usability in real world scenarios.

As future works, we intend to enhance our similarity graph by
analyzing content of the tweets with entity recognition. In fact,
our similarity is based on common retweets between users and
can be improved by creating "topic tweets" by merging similar
tweets. This will make users likely to be similar in the similarity
graph and therefore enhance results for small users. We also plan
to break "information bubbles", since recommended information
is generally originated from the same sub-part of the graph. We
are currently working on the identification of bubbles in our
twitter graph based on both the network topology and tweet
topics. Then we will propose a complementary score for recom-
mendations by escaping from information locality from a bubble
to another.
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